Sample records for color coherence implementations

  1. Probing color coherence effects in pp collisions at [Formula: see text].

    PubMed

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Krätschmer, I; Liko, D; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, C; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Gonzalez, J Suarez; Alderweireldt, S; Bansal, M; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Luyckx, S; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Staykova, Z; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Kalogeropoulos, A; Keaveney, J; Lowette, S; Maes, M; Olbrechts, A; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Caillol, C; Clerbaux, B; De Lentdecker, G; Favart, L; Gay, A P R; Hreus, T; Léonard, A; Marage, P E; Mohammadi, A; Perniè, L; Reis, T; Seva, T; Thomas, L; Vander Velde, C; Vanlaer, P; Wang, J; Adler, V; Beernaert, K; Benucci, L; Cimmino, A; Costantini, S; Dildick, S; Garcia, G; Klein, B; Lellouch, J; Marinov, A; Mccartin, J; Rios, A A Ocampo; Ryckbosch, D; Sigamani, M; Strobbe, N; Thyssen, F; Tytgat, M; Walsh, S; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bruno, G; Castello, R; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jez, P; Lemaitre, V; Liao, J; Militaru, O; Nuttens, C; Pagano, D; Pin, A; Piotrzkowski, K; Popov, A; Selvaggi, M; Vidal Marono, M; Garcia, J M Vizan; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Alves, G A; Correa Martins Junior, M; Martins, T; Pol, M E; Souza, M H G; Aldá Júnior, W L; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; De Souza, S Fonseca; Malbouisson, H; Malek, M; Figueiredo, D Matos; Mundim, L; Nogima, H; Da Silva, W L Prado; Santoro, A; Sznajder, A; Manganote, E J Tonelli; Pereira, A Vilela; Dias, F A; Tomei, T R Fernandez Perez; Lagana, C; Novaes, S F; Padula, Sandra S; Bernardes, C A; Gregores, E M; Mercadante, P G; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Sultanov, G; Vutova, M; Dimitrov, A; Hadjiiska, R; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, X; Wang, Z; Asawatangtrakuldee, C; Ban, Y; Guo, Y; Li, Q; Li, W; Liu, S; Mao, Y; Qian, S J; Wang, D; Zhang, L; Zou, W; Avila, C; Montoya, C A Carrillo; Sierra, L F Chaparro; Gomez, J P; Moreno, B Gomez; Sanabria, J C; Godinovic, N; Lelas, D; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Mekterovic, D; Morovic, S; Tikvica, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Abdelalim, A A; Assran, Y; Elgammal, S; Kamel, A Ellithi; Mahmoud, M A; Radi, A; Kadastik, M; Müntel, M; Murumaa, M; Raidal, M; Rebane, L; Tiko, A; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; de Monchenault, G Hamel; Jarry, P; Locci, E; Malcles, J; Millischer, L; Nayak, A; Rander, J; Rosowsky, A; Titov, M; Baffioni, S; Beaudette, F; Benhabib, L; Bluj, M; Busson, P; Charlot, C; Daci, N; Dahms, T; Dalchenko, M; Dobrzynski, L; Florent, A; de Cassagnac, R Granier; Haguenauer, M; Miné, P; Mironov, C; Naranjo, I N; Nguyen, M; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Veelken, C; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Brom, J-M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Juillot, P; Le Bihan, A-C; Van Hove, P; Gadrat, S; Beauceron, S; Beaupere, N; Boudoul, G; Brochet, S; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Xiao, H; Tsamalaidze, Z; Autermann, C; Beranek, S; Bontenackels, M; Calpas, B; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Klein, K; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Caudron, J; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Knutzen, S; Kreuzer, P; Merschmeyer, M; Meyer, A; Olschewski, M; Padeken, K; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Thüer, S; Weber, M; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Haj Ahmad, W; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Lingemann, J; Nowack, A; Nugent, I M; Perchalla, L; Pooth, O; Stahl, A; Asin, I; Bartosik, N; Behr, J; Behrenhoff, W; Behrens, U; Bell, A J; Bergholz, M; Bethani, A; Borras, K; Burgmeier, A; Cakir, A; Calligaris, L; Campbell, A; Choudhury, S; Costanza, F; Diez Pardos, C; Dooling, S; Dorland, T; Eckerlin, G; Eckstein, D; Flucke, G; Geiser, A; Glushkov, I; Grebenyuk, A; Gunnellini, P; Habib, S; Hauk, J; Hellwig, G; Horton, D; Jung, H; Kasemann, M; Katsas, P; Kleinwort, C; Kluge, H; Krämer, M; Krücker, D; Kuznetsova, E; Lange, W; Leonard, J; Lipka, K; Lohmann, W; Lutz, B; Mankel, R; Marfin, I; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Naumann-Emme, S; Novgorodova, O; Nowak, F; Olzem, J; Perrey, H; Petrukhin, A; Pitzl, D; Placakyte, R; Raspereza, A; Cipriano, P M Ribeiro; Riedl, C; Ron, E; Sahin, M Ö; Salfeld-Nebgen, J; Schmidt, R; Schoerner-Sadenius, T; Sen, N; Stein, M; Walsh, R; Wissing, C; Martin, M Aldaya; Blobel, V; Enderle, H; Erfle, J; Garutti, E; Gebbert, U; Görner, M; Gosselink, M; Haller, J; Heine, K; Höing, R S; Kaussen, G; Kirschenmann, H; Klanner, R; Kogler, R; Lange, J; Marchesini, I; Peiffer, T; Pietsch, N; Rathjens, D; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Schröder, M; Schum, T; Seidel, M; Sibille, J; Sola, V; Stadie, H; Steinbrück, G; Thomsen, J; Troendle, D; Usai, E; Vanelderen, L; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; De Boer, W; Descroix, A; Dierlamm, A; Feindt, M; Guthoff, M; Hartmann, F; Hauth, T; Held, H; Hoffmann, K H; Husemann, U; Katkov, I; Komaragiri, J R; Kornmayer, A; Lobelle Pardo, P; Martschei, D; Mozer, M U; Müller, Th; Niegel, M; Nürnberg, A; Oberst, O; Ott, J; Quast, G; Rabbertz, K; Ratnikov, F; Röcker, S; Schilling, F-P; Schott, G; Simonis, H J; Stober, F M; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weiler, T; Zeise, M; Anagnostou, G; Daskalakis, G; Geralis, T; Kesisoglou, S; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Ntomari, E; Topsis-Giotis, I; Gouskos, L; Panagiotou, A; Saoulidou, N; Stiliaris, E; Aslanoglou, X; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Paradas, E; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Molnar, J; Palinkas, J; Szillasi, Z; Karancsi, J; Raics, P; Trocsanyi, Z L; Ujvari, B; Swain, S K; Beri, S B; Bhatnagar, V; Dhingra, N; Gupta, R; Kaur, M; Mehta, M Z; Mittal, M; Nishu, N; Sharma, A; Singh, J B; Kumar, Ashok; Kumar, Arun; Ahuja, S; Bhardwaj, A; Choudhary, B C; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Saxena, P; Sharma, V; Shivpuri, R K; Banerjee, S; Bhattacharya, S; Chatterjee, K; Dutta, S; Gomber, B; Jain, Sa; Jain, Sh; Khurana, R; Modak, A; Mukherjee, S; Roy, D; Sarkar, S; Sharan, M; Singh, A P; Abdulsalam, A; Dutta, D; Kailas, S; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Chatterjee, R M; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Kole, G; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Mohanty, G B; Parida, B; Sudhakar, K; Wickramage, N; Dugad, S; Arfaei, H; Bakhshiansohi, H; Etesami, S M; Fahim, A; Jafari, A; Khakzad, M; Najafabadi, M Mohammadi; Mehdiabadi, S Paktinat; Safarzadeh, B; Zeinali, M; Grunewald, M; Abbrescia, M; Barbone, L; Calabria, C; Chhibra, S S; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Marangelli, B; My, S; Nuzzo, S; Pacifico, N; Pompili, A; Pugliese, G; Selvaggi, G; Silvestris, L; Singh, G; Venditti, R; Verwilligen, P; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Meneghelli, M; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Gonzi, S; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Ferretti, R; Ferro, F; Vetere, M Lo; Musenich, R; Robutti, E; Tosi, S; Benaglia, A; Dinardo, M E; Fiorendi, S; Gennai, S; Ghezzi, A; Govoni, P; Lucchini, M T; Malvezzi, S; Manzoni, R A; Martelli, A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; de Fatis, T Tabarelli; Buontempo, S; Cavallo, N; De Cosa, A; Fabozzi, F; Iorio, A O M; Lista, L; Meola, S; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Bellato, M; Bisello, D; Branca, A; Carlin, R; Checchia, P; Dorigo, T; Dosselli, U; Galanti, M; Gasparini, F; Gasparini, U; Giubilato, P; Gozzelino, A; Kanishchev, K; Lacaprara, S; Lazzizzera, I; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Sgaravatto, M; Simonetto, F; Torassa, E; Tosi, M; Triossi, A; Zotto, P; Zucchetta, A; Zumerle, G; Gabusi, M; Ratti, S P; Riccardi, C; Vitulo, P; Biasini, M; Bilei, G M; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Nappi, A; Romeo, F; Saha, A; Santocchia, A; Spiezia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; Ciocci, M A; D'Agnolo, R T; Dell'Orso, R; Fiori, F; Foà, L; Giassi, A; Grippo, M T; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Moon, C S; Palla, F; Rizzi, A; Savoy-Navarro, A; Serban, A T; Spagnolo, P; Squillacioti, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Vernieri, C; Barone, L; Cavallari, F; Del Re, D; Diemoz, M; Grassi, M; Longo, E; Margaroli, F; Meridiani, P; Micheli, F; Nourbakhsh, S; Organtini, G; Paramatti, R; Rahatlou, S; Rovelli, C; Soffi, L; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bellan, R; Biino, C; Cartiglia, N; Casasso, S; Costa, M; Degano, A; Demaria, N; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Musich, M; Obertino, M M; Pastrone, N; Pelliccioni, M; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Tamponi, U; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Ricca, G Della; Gobbo, B; La Licata, C; Marone, M; Montanino, D; Penzo, A; Schizzi, A; Zanetti, A; Chang, S; Kim, T Y; Nam, S K; Kim, D H; Kim, G N; Kim, J E; Kong, D J; Lee, S; Oh, Y D; Park, H; Son, D C; Kim, J Y; Kim, Zero J; Song, S; Choi, S; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, T J; Lee, K S; Park, S K; Roh, Y; Choi, M; Kim, J H; Park, C; Park, I C; Park, S; Ryu, G; Choi, Y; Choi, Y K; Goh, J; Kim, M S; Kwon, E; Lee, B; Lee, J; Seo, H; Yu, I; Grigelionis, I; Juodagalvis, A; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Lopez-Fernandez, R; Martínez-Ortega, J; Sanchez-Hernandez, A; Villasenor-Cendejas, L M; Moreno, S Carrillo; Valencia, F Vazquez; Ibarguen, H A Salazar; Linares, E Casimiro; Pineda, A Morelos; Reyes-Santos, M A; Krofcheck, D; Butler, P H; Doesburg, R; Reucroft, S; Silverwood, H; Ahmad, M; Asghar, M I; Butt, J; Hoorani, H R; Khalid, S; Khan, W A; Khurshid, T; Qazi, S; Shah, M A; Shoaib, M; Bialkowska, H; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Wrochna, G; Zalewski, P; Brona, G; Bunkowski, K; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Wolszczak, W; Almeida, N; Bargassa, P; Da Cruz E Silva, C Beirão; Faccioli, P; Parracho, P G Ferreira; Gallinaro, M; Nguyen, F; Antunes, J Rodrigues; Seixas, J; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Konoplyanikov, V; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Skatchkov, N; Smirnov, V; Zarubin, A; Evstyukhin, S; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Erofeeva, M; Gavrilov, V; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Spiridonov, A; Stolin, V; Vlasov, E; Zhokin, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Vinogradov, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Markina, A; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Ekmedzic, M; Krpic, D; Milosevic, J; Aguilar-Benitez, M; Maestre, J Alcaraz; Battilana, C; Calvo, E; Cerrada, M; Llatas, M Chamizo; Colino, N; De La Cruz, B; Peris, A Delgado; Vázquez, D Domínguez; Bedoya, C Fernandez; Ramos, J P Fernández; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Lopez, O Gonzalez; Lopez, S Goy; Hernandez, J M; Josa, M I; Merino, G; De Martino, E Navarro; Pelayo, J Puerta; Olmeda, A Quintario; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Willmott, C; Albajar, C; de Trocóniz, J F; Brun, H; Cuevas, J; Menendez, J Fernandez; Folgueras, S; Caballero, I Gonzalez; Iglesias, L Lloret; Gomez, J Piedra; Cifuentes, J A Brochero; Cabrillo, I J; Calderon, A; Chuang, S H; Campderros, J Duarte; Fernandez, M; Gomez, G; Sanchez, J Gonzalez; Graziano, A; Jorda, C; Virto, A Lopez; Marco, J; Marco, R; Rivero, C Martinez; Matorras, F; Sanchez, F J Munoz; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Vila, I; Cortabitarte, R Vilar; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Bendavid, J; Benitez, J F; Bernet, C; Bianchi, G; Bloch, P; Bocci, A; Bonato, A; Bondu, O; Botta, C; Breuker, H; Camporesi, T; Cerminara, G; Christiansen, T; Perez, J A Coarasa; Colafranceschi, S; D'Alfonso, M; d'Enterria, D; Dabrowski, A; David, A; Guio, F De; De Roeck, A; De Visscher, S; Di Guida, S; Dobson, M; Dupont-Sagorin, N; Elliott-Peisert, A; Eugster, J; Franzoni, G; Funk, W; Georgiou, G; Giffels, M; Gigi, D; Gill, K; Giordano, D; Girone, M; Giunta, M; Glege, F; Garrido, R Gomez-Reino; Gowdy, S; Guida, R; Hammer, J; Hansen, M; Harris, P; Hartl, C; Hinzmann, A; Innocente, V; Janot, P; Karavakis, E; Kousouris, K; Krajczar, K; Lecoq, P; Lee, Y-J; Lourenço, C; Magini, N; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moser, R; Mulders, M; Musella, P; Nesvold, E; Orsini, L; Cortezon, E Palencia; Perez, E; Perrozzi, L; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Plagge, M; Quertenmont, L; Racz, A; Reece, W; Rolandi, G; Rovere, M; Sakulin, H; Santanastasio, F; Schäfer, C; Schwick, C; Sekmen, S; Siegrist, P; Silva, P; Simon, M; Sphicas, P; Spiga, D; Stieger, B; Stoye, M; Tsirou, A; Veres, G I; Vlimant, J R; Wöhri, H K; Worm, S D; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Renker, D; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Bortignon, P; Buchmann, M A; Casal, B; Chanon, N; Deisher, A; Dissertori, G; Dittmar, M; Donegà, M; Dünser, M; Eller, P; Freudenreich, K; Grab, C; Hits, D; Lecomte, P; Lustermann, W; Mangano, B; Marini, A C; Del Arbol, P Martinez Ruiz; Meister, D; Mohr, N; Moortgat, F; Nägeli, C; Nef, P; Nessi-Tedaldi, F; Pandolfi, F; Pape, L; Pauss, F; Peruzzi, M; Quittnat, M; Ronga, F J; Rossini, M; Sala, L; Sanchez, A K; Starodumov, A; Takahashi, M; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Urscheler, C; Wallny, R; Weber, H A; Amsler, C; Chiochia, V; Favaro, C; Rikova, M Ivova; Kilminster, B; Mejias, B Millan; Otiougova, P; Robmann, P; Snoek, H; Taroni, S; Verzetti, M; Yang, Y; Cardaci, M; Chen, K H; Ferro, C; Kuo, C M; Li, S W; Lin, W; Lu, Y J; Volpe, R; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Dietz, C; Grundler, U; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Lu, R-S; Majumder, D; Petrakou, E; Shi, X; Shiu, J G; Tzeng, Y M; Wang, M; Asavapibhop, B; Suwonjandee, N; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Gurpinar, E; Hos, I; Kangal, E E; Topaksu, A Kayis; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sogut, K; Cerci, D Sunar; Tali, B; Topakli, H; Vergili, M; Akin, I V; Aliev, T; Bilin, B; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Karapinar, G; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Yalvac, M; Zeyrek, M; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Bahtiyar, H; Barlas, E; Cankocak, K; Günaydin, Y O; Vardarlı, F I; Yücel, M; Levchuk, L; Sorokin, P; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Frazier, R; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Kreczko, L; Lucas, C; Meng, Z; Metson, S; Newbold, D M; Nirunpong, K; Paramesvaran, S; Poll, A; Senkin, S; Smith, V J; Williams, T; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Ilic, J; Olaiya, E; Petyt, D; Radburn-Smith, B C; Shepherd-Themistocleous, C H; Tomalin, I R; Womersley, W J; Bainbridge, R; Buchmuller, O; Burton, D; Colling, D; Cripps, N; Cutajar, M; Dauncey, P; Davies, G; Negra, M Della; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Bryer, A Guneratne; Hall, G; Hatherell, Z; Hays, J; Iles, G; Jarvis, M; Karapostoli, G; Kenzie, M; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Marrouche, J; Mathias, B; Nandi, R; Nash, J; Nikitenko, A; Pela, J; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rogerson, S; Rose, A; Seez, C; Sharp, P; Sparrow, A; Tapper, A; Acosta, M Vazquez; Virdee, T; Wakefield, S; Wardle, N; Chadwick, M; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Martin, W; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Dittmann, J; Hatakeyama, K; Kasmi, A; Liu, H; Scarborough, T; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Avetisyan, A; Bose, T; Fantasia, C; Heister, A; Lawson, P; Lazic, D; Rohlf, J; Sperka, D; St John, J; Sulak, L; Alimena, J; Christopher, G; Cutts, D; Demiragli, Z; Ferapontov, A; Garabedian, A; Heintz, U; Jabeen, S; Kukartsev, G; Laird, E; Landsberg, G; Luk, M; Narain, M; Segala, M; Sinthuprasith, T; Speer, T; Breedon, R; Breto, G; De La Barca Sanchez, M Calderon; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Gardner, M; Houtz, R; Ko, W; Kopecky, A; Lander, R; Miceli, T; Pellett, D; Pilot, J; Ricci-Tam, F; Rutherford, B; Searle, M; Shalhout, S; Smith, J; Squires, M; Tripathi, M; Wilbur, S; Yohay, R; Andreev, V; Cline, D; Cousins, R; Erhan, S; Everaerts, P; Farrell, C; Felcini, M; Hauser, J; Ignatenko, M; Jarvis, C; Rakness, G; Schlein, P; Takasugi, E; Traczyk, P; Valuev, V; Babb, J; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Jandir, P; Liu, H; Long, O R; Luthra, A; Malberti, M; Nguyen, H; Shrinivas, A; Sturdy, J; Sumowidagdo, S; Wilken, R; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Cittolin, S; Evans, D; Holzner, A; Kelley, R; Lebourgeois, M; Letts, J; Macneill, I; Padhi, S; Palmer, C; Petrucciani, G; Pieri, M; Sani, M; Simon, S; Sudano, E; Tadel, M; Tu, Y; Vartak, A; Wasserbaech, S; Würthwein, F; Yagil, A; Yoo, J; Barge, D; Campagnari, C; Danielson, T; Flowers, K; Geffert, P; George, C; Golf, F; Incandela, J; Justus, C; Kovalskyi, D; Krutelyov, V; Villalba, R Magaña; Mccoll, N; Pavlunin, V; Richman, J; Rossin, R; Stuart, D; To, W; West, C; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Di Marco, E; Duarte, J; Kcira, D; Ma, Y; Mott, A; Newman, H B; Pena, C; Rogan, C; Spiropulu, M; Timciuc, V; Veverka, J; Wilkinson, R; Xie, S; Zhu, R Y; Azzolini, V; Calamba, A; Carroll, R; Ferguson, T; Iiyama, Y; Jang, D W; Liu, Y F; Paulini, M; Russ, J; Vogel, H; Vorobiev, I; Cumalat, J P; Drell, B R; Ford, W T; Gaz, A; Lopez, E Luiggi; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Alexander, J; Chatterjee, A; Eggert, N; Gibbons, L K; Hopkins, W; Khukhunaishvili, A; Kreis, B; Mirman, N; Kaufman, G Nicolas; Patterson, J R; Ryd, A; Salvati, E; Sun, W; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Winstrom, L; Wittich, P; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Gray, L; Green, D; Gutsche, O; Hare, D; Harris, R M; Hirschauer, J; Hooberman, B; Jindariani, S; Johnson, M; Joshi, U; Kaadze, K; Klima, B; Kunori, S; Kwan, S; Linacre, J; Lincoln, D; Lipton, R; Lykken, J; Maeshima, K; Marraffino, J M; Outschoorn, V I Martinez; Maruyama, S; Mason, D; McBride, P; Mishra, K; Mrenna, S; Musienko, Y; Newman-Holmes, C; O'Dell, V; Prokofyev, O; Ratnikova, N; Sexton-Kennedy, E; Sharma, S; Spalding, W J; Spiegel, L; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wu, W; Yang, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Chen, M; Cheng, T; Das, S; De Gruttola, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fisher, M; Fu, Y; Furic, I K; Hugon, J; Kim, B; Konigsberg, J; Korytov, A; Kropivnitskaya, A; Kypreos, T; Low, J F; Matchev, K; Milenovic, P; Mitselmakher, G; Muniz, L; Remington, R; Rinkevicius, A; Skhirtladze, N; Snowball, M; Yelton, J; Zakaria, M; Gaultney, V; Hewamanage, S; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Chen, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Prosper, H; Veeraraghavan, V; Weinberg, M; Baarmand, M M; Dorney, B; Hohlmann, M; Kalakhety, H; Yumiceva, F; Adams, M R; Apanasevich, L; Bazterra, V E; Betts, R R; Bucinskaite, I; Callner, J; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Kurt, P; Lacroix, F; Moon, D H; O'Brien, C; Silkworth, C; Strom, D; Turner, P; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Clarida, W; Dilsiz, K; Duru, F; Griffiths, S; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Newsom, C R; Ogul, H; Onel, Y; Ozok, F; Sen, S; Tan, P; Tiras, E; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bolognesi, S; Giurgiu, G; Gritsan, A V; Hu, G; Maksimovic, P; Martin, C; Swartz, M; Whitbeck, A; Baringer, P; Bean, A; Benelli, G; Kenny, R P; Murray, M; Noonan, D; Sanders, S; Stringer, R; Wood, J S; Barfuss, A F; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Saini, L K; Shrestha, S; Svintradze, I; Gronberg, J; Lange, D; Rebassoo, F; Wright, D; Baden, A; Calvert, B; Eno, S C; Gomez, J A; Hadley, N J; Kellogg, R G; Kolberg, T; Lu, Y; Marionneau, M; Mignerey, A C; Pedro, K; Peterman, A; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Apyan, A; Bauer, G; Busza, W; Cali, I A; Chan, M; Di Matteo, L; Dutta, V; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Kim, Y; Klute, M; Lai, Y S; Levin, A; Luckey, P D; Ma, T; Nahn, S; Paus, C; Ralph, D; Roland, C; Roland, G; Stephans, G S F; Stöckli, F; Sumorok, K; Velicanu, D; Wolf, R; Wyslouch, B; Yang, M; Yilmaz, Y; Yoon, A S; Zanetti, M; Zhukova, V; Dahmes, B; De Benedetti, A; Gude, A; Haupt, J; Kao, S C; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rusack, R; Sasseville, M; Singovsky, A; Tambe, N; Turkewitz, J; Acosta, J G; Cremaldi, L M; Kroeger, R; Oliveros, S; Perera, L; Rahmat, R; Sanders, D A; Summers, D; Avdeeva, E; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Eads, M; Suarez, R Gonzalez; Keller, J; Kravchenko, I; Lazo-Flores, J; Malik, S; Meier, F; Snow, G R; Dolen, J; Godshalk, A; Iashvili, I; Jain, S; Kharchilava, A; Rappoccio, S; Wan, Z; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Haley, J; Massironi, A; Nash, D; Orimoto, T; Trocino, D; Wood, D; Zhang, J; Anastassov, A; Hahn, K A; Kubik, A; Lusito, L; Mucia, N; Odell, N; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Sung, K; Velasco, M; Won, S; Berry, D; Brinkerhoff, A; Chan, K M; Hildreth, M; Jessop, C; Karmgard, D J; Kolb, J; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Morse, D M; Pearson, T; Planer, M; Ruchti, R; Slaunwhite, J; Valls, N; Wayne, M; Wolf, M; Antonelli, L; Bylsma, B; Durkin, L S; Hill, C; Hughes, R; Kotov, K; Ling, T Y; Puigh, D; Rodenburg, M; Smith, G; Vuosalo, C; Winer, B L; Wolfe, H; Berry, E; Elmer, P; Halyo, V; Hebda, P; Hegeman, J; Hunt, A; Jindal, P; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Raval, A; Saka, H; Stickland, D; Tully, C; Werner, J S; Zenz, S C; Zuranski, A; Brownson, E; Lopez, A; Mendez, H; Vargas, J E Ramirez; Alagoz, E; Benedetti, D; Bolla, G; Bortoletto, D; De Mattia, M; Everett, A; Hu, Z; Jones, M; Jung, K; Koybasi, O; Kress, M; Leonardo, N; Pegna, D Lopes; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Shipsey, I; Silvers, D; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Yoo, H D; Zablocki, J; Zheng, Y; Parashar, N; Adair, A; Akgun, B; Ecklund, K M; Geurts, F J M; Li, W; Michlin, B; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Garcia-Bellido, A; Goldenzweig, P; Han, J; Harel, A; Miner, D C; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Malik, S; Mesropian, C; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Duggan, D; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Lath, A; Panwalkar, S; Park, M; Patel, R; Rekovic, V; Robles, J; Salur, S; Schnetzer, S; Seitz, C; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Cerizza, G; Hollingsworth, M; Rose, K; Spanier, S; Yang, Z C; York, A; Bouhali, O; Eusebi, R; Flanagan, W; Gilmore, J; Kamon, T; Khotilovich, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Perloff, A; Roe, J; Safonov, A; Sakuma, T; Suarez, I; Tatarinov, A; Toback, D; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Kovitanggoon, K; Lee, S W; Libeiro, T; Volobouev, I; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Johns, W; Maguire, C; Melo, A; Sharma, M; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Boutle, S; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Lin, C; Neu, C; Wood, J; Gollapinni, S; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sakharov, A; Belknap, D A; Borrello, L; Carlsmith, D; Cepeda, M; Dasu, S; Duric, S; Friis, E; Grothe, M; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Klukas, J; Lanaro, A; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ross, I; Sarangi, T; Savin, A; Smith, W H; Swanson, J

    A study of color coherence effects in pp collisions at a center-of-mass energy of 7[Formula: see text] is presented. The data used in the analysis were collected in 2010 with the CMS detector at the LHC and correspond to an integrated luminosity of 36 pb[Formula: see text]. Events are selected that contain at least three jets and where the two jets with the largest transverse momentum exhibit a back-to-back topology. The measured angular correlation between the second- and third-leading jet is shown to be sensitive to color coherence effects, and is compared to the predictions of Monte Carlo models with various implementations of color coherence. None of the models describe the data satisfactorily.

  2. Color Coherent Radiation in Multi - Jet Events from $$p\\overline{p}$$ Collisions at $$\\sqrt{s}$$ = 1.8-TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullen-Vidal, David Edward

    1997-01-01

    Results from a study of color coherence phenomena in multi-jet events produced bymore » $$p\\overline{p}$$ collisions are presented. Approximately 13 $$pb^{-1}$$ of data were collected by the D0 detector during the 1992-1993 run of the Fermilab Tevatron $$p\\overline{p}$$ collider at a center of mass energy of $$\\sqrt{s}$$ = 1.8 TeV. Demonstration of initial-to-final state color interference effects is done by measuring spatial correlations between the softer third jet and the second leading-$$E_{\\tau}$$ jet in the events. The data are compared to several Monte Carlo simulations with different color coherence implementations and to the predictions of a Next-to-Leading Order parton level calculation.« less

  3. Diagnostic blood-flow monitoring during therapeutic interventions using color Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yazdanfar, Siavash; Kulkarni, Manish D.; Wong, Richard C. K.; Sivak, Michael J., Jr.; Willis, Joseph; Barton, Jennifer K.; Welch, Ashley J.; Izatt, Joseph A.

    1998-04-01

    A recently developed modality for blood flow measurement holds high promise in the management of bleeding ulcers. Color Doppler optical coherence tomography (CDOCT) uses low- coherence interferometry and digital signal processing to obtain precise localization of tissue microstructure simultaneous with bi-directional quantitation of blood flow. We discuss CDOCT as a diagnostic tool in the management of bleeding gastrointestinal lesions. Common treatments for bleeding ulcers include local injection of a vasoconstrictor, coagulation of blood via thermal contact or laser treatment, and necrosis of surrounding tissue with a sclerosant. We implemented these procedures in a rat dorsal skin flap model, and acquired CDOCT images before and after treatment. In these studies, CDOCT succeeded in identifying cessation of flow before it could be determined visually. Hence, we demonstrate the diagnostic capabilities of CDOCT in the regulation of bleeding in micron-scale vessels.

  4. A Physicist's view on Chopin's Études

    NASA Astrophysics Data System (ADS)

    Blasone, Massimo

    2017-07-01

    We propose the use of specific dynamical processes and more in general of ideas from Physics to model the evolution in time of musical structures. We apply this approach to two Études by F. Chopin, namely Op.10 n.3 and Op.25 n.1, proposing some original description based on concepts of symmetry breaking/restoration and quantum coherence, which could be useful for interpretation. In this analysis, we take advantage of colored musical scores, obtained by implementing Scriabin's color code for sounds to musical notation.

  5. Assessment of Optical Coherence Tomography Color Probability Codes in Myopic Glaucoma Eyes After Applying a Myopic Normative Database.

    PubMed

    Seol, Bo Ram; Kim, Dong Myung; Park, Ki Ho; Jeoung, Jin Wook

    2017-11-01

    To evaluate the optical coherence tomography (OCT) color probability codes based on a myopic normative database and to investigate whether the implementation of the myopic normative database can improve the OCT diagnostic ability in myopic glaucoma. Comparative validity study. In this study, 305 eyes (154 myopic healthy eyes and 151 myopic glaucoma eyes) were included. A myopic normative database was obtained based on myopic healthy eyes. We evaluated the agreement between OCT color probability codes after applying the built-in and myopic normative databases, respectively. Another 120 eyes (60 myopic healthy eyes and 60 myopic glaucoma eyes) were included and the diagnostic performance of OCT color codes using a myopic normative database was investigated. The mean weighted kappa (Kw) coefficients for quadrant retinal nerve fiber layer (RNFL) thickness, clock-hour RNFL thickness, and ganglion cell-inner plexiform layer (GCIPL) thickness were 0.636, 0.627, and 0.564, respectively. The myopic normative database showed a higher specificity than did the built-in normative database in quadrant RNFL thickness, clock-hour RNFL thickness, and GCIPL thickness (P < .001, P < .001, and P < .001, respectively). The receiver operating characteristic curve values increased when using the myopic normative database in quadrant RNFL thickness, clock-hour RNFL thickness, and GCIPL thickness (P = .011, P = .004, P < .001, respectively). The diagnostic ability of OCT color codes for detection of myopic glaucoma significantly improved after application of the myopic normative database. The implementation of a myopic normative database is needed to allow more precise interpretation of OCT color probability codes when used in myopic eyes. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Blind ICA detection based on second-order cone programming for MC-CDMA systems

    NASA Astrophysics Data System (ADS)

    Jen, Chih-Wei; Jou, Shyh-Jye

    2014-12-01

    The multicarrier code division multiple access (MC-CDMA) technique has received considerable interest for its potential application to future wireless communication systems due to its high data rate. A common problem regarding the blind multiuser detectors used in MC-CDMA systems is that they are extremely sensitive to the complex channel environment. Besides, the perturbation of colored noise may negatively affect the performance of the system. In this paper, a new coherent detection method will be proposed, which utilizes the modified fast independent component analysis (FastICA) algorithm, based on approximate negentropy maximization that is subject to the second-order cone programming (SOCP) constraint. The aim of the proposed coherent detection is to provide robustness against small-to-medium channel estimation mismatch (CEM) that may arise from channel frequency response estimation error in the MC-CDMA system, which is modulated by downlink binary phase-shift keying (BPSK) under colored noise. Noncoherent demodulation schemes are preferable to coherent demodulation schemes, as the latter are difficult to implement over time-varying fading channels. Differential phase-shift keying (DPSK) is therefore the natural choice for an alternative modulation scheme. Furthermore, the new blind differential SOCP-based ICA (SOCP-ICA) detection without channel estimation and compensation will be proposed to combat Doppler spread caused by time-varying fading channels in the DPSK-modulated MC-CDMA system under colored noise. In this paper, numerical simulations are used to illustrate the robustness of the proposed blind coherent SOCP-ICA detector against small-to-medium CEM and to emphasize the advantage of the blind differential SOCP-ICA detector in overcoming Doppler spread.

  7. Probing color coherence effects in pp collisions at √s = 7 TeV

    DOE PAGES

    Chatrchyan, Serguei

    2014-06-11

    A study of color coherence effects in pp collisions at a center-of-mass energy of 7 TeV is presented. The data used in the analysis were collected in 2010 with the CMS detector at the LHC and correspond to an integrated luminosity of 36 inverse picobarns. Events are selected that contain at least three jets and where the two jets with the largest transverse momentum exhibit a back-to-back topology. The measured angular correlation between the second- and third-leading jet is shown to be sensitive to color coherence effects, and is compared to the predictions of Monte Carlo models with various implementationsmore » of color coherence. None of the models describe the data satisfactorily.« less

  8. Spin and Optical Characterization of Defects in Group IV Semiconductors for Quantum Memory Applications

    NASA Astrophysics Data System (ADS)

    Rose, Brendon Charles

    This thesis is focused on the characterization of highly coherent defects in both silicon and diamond, particularly in the context of quantum memory applications. The results are organized into three parts based on the spin system: phosphorus donor electron spins in silicon, negatively charged nitrogen vacancy color centers in diamond (NV-), and neutrally charged silicon vacancy color centers in diamond (SiV0). The first part on phosphorus donor electron spins presents the first realization of strong coupling with spins in silicon. To achieve this, the silicon crystal was made highly pure and highly isotopically enriched so that the ensemble dephasing time, T2*, was long (10 micros). Additionally, the use of a 3D resonator aided in realizing uniform coupling, allowing for high fidelity spin ensemble manipulation. These two properties have eluded past implementations of strongly coupled spin ensembles and have been the limiting factor in storing and retrieving quantum information. Second, we characterize the spin properties of the NV- color center in diamond in a large magnetic field. We observe that the electron spin echo envelope modulation originating from the central 14N nuclear spin is much stronger at large fields and that the optically induced spin polarization exhibits a strong orientation dependence that cannot be explained by the existing model for the NV- optical cycle, we develop a modification of the existing model that reproduces the data in a large magnetic field. In the third part we perform characterization and stabilization of a new color center in diamond, SiV0, and find that it has attractive, highly sought-after properties for use as a quantum memory in a quantum repeater scheme. We demonstrate a new approach to the rational design of new color centers by engineering the Fermi level of the host material. The spin properties were characterized in electron spin resonance, revealing long spin relaxation and spin coherence times at cryogenic temperature. Additionally, we observe that the optical emission is highly coherent, predominately into a narrow zero phonon line that is stable in frequency. The combination of coherent optical and spin degrees of freedom has eluded all previous solid state defects.

  9. Two-color surface-emitting lasers by a GaAs-based coupled multilayer cavity structure for coherent terahertz light sources

    NASA Astrophysics Data System (ADS)

    Lu, Xiangmeng; Ota, Hiroto; Kumagai, Naoto; Minami, Yasuo; Kitada, Takahiro; Isu, Toshiro

    2017-11-01

    Two-color surface-emitting lasers were fabricated using a GaAs-based coupled multilayer cavity structure grown by molecular beam epitaxy. InGaAs/GaAs multiple quantum wells were introduced only in the upper cavity for two-mode emission in the near-infrared region. Two-color lasing of the device was successfully demonstrated under pulsed current operations at room temperature. We also observed good temporal coherence of the two-color laser light using a Michelson interferometer. A coherent terahertz source is expected when a wafer-bonded coupled cavity consisting of (0 0 1) and non-(0 0 1) epitaxial films is used for the two-color laser device, in which the difference-frequency generation can be enabled by the second-order nonlinear response in the lower cavity.

  10. Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation

    PubMed Central

    Wu, Yanling; Wu, Qiong; Sun, Fei; Cheng, Cai; Meng, Sheng; Zhao, Jimin

    2015-01-01

    Generating electron coherence in quantum materials is essential in optimal control of many-body interactions and correlations. In a multidomain system this signifies nonlocal coherence and emergence of collective phenomena, particularly in layered 2D quantum materials possessing novel electronic structures and high carrier mobilities. Here we report nonlocal ac electron coherence induced in dispersed MoS2 flake domains, using coherent spatial self-phase modulation (SSPM). The gap-dependent nonlinear dielectric susceptibility χ(3) measured is surprisingly large, where direct interband transition and two-photon SSPM are responsible for excitations above and below the bandgap, respectively. A wind-chime model is proposed to account for the emergence of the ac electron coherence. Furthermore, all-optical switching is achieved based on SSPM, especially with two-color intraband coherence, demonstrating that electron coherence generation is a ubiquitous property of layered quantum materials. PMID:26351696

  11. New Diamond Color Center for Quantum Communication

    NASA Astrophysics Data System (ADS)

    Huang, Ding; Rose, Brendon; Tyryshkin, Alexei; Sangtawesin, Sorawis; Srinivasan, Srikanth; Twitchen, Daniel; Markham, Matthew; Edmonds, Andrew; Gali, Adam; Stacey, Alastair; Wang, Wuyi; D'Haenens-Johansson, Ulrika; Zaitsev, Alexandre; Lyon, Stephen; de Leon, Nathalie

    2017-04-01

    Color centers in diamond are attractive for quantum communication applications because of their long electron spin coherence times and efficient optical transitions. Previous demonstrations of color centers as solid-state spin qubits were primarily focused on centers that exhibit either long coherence times or highly efficient optical interfaces. Recently, we developed a method to stabilize the neutral charge state of silicon-vacancy center in diamond (SiV0) with high conversion efficiency. We observe spin relaxation times exceeding 1 minute and spin coherence times of 1 ms for SiV0 centers. Additionally, the SiV0 center also has > 90 % of its emission into its zero-phonon line and a narrow inhomogeneous optical linewidth. The combination of a long spin coherence time and efficient optical interface make the SiV0 center a promising candidate for applications in long distance quantum communication.

  12. True color scanning laser ophthalmoscopy and optical coherence tomography handheld probe

    PubMed Central

    LaRocca, Francesco; Nankivil, Derek; Farsiu, Sina; Izatt, Joseph A.

    2014-01-01

    Scanning laser ophthalmoscopes (SLOs) are able to achieve superior contrast and axial sectioning capability compared to fundus photography. However, SLOs typically use monochromatic illumination and are thus unable to extract color information of the retina. Previous color SLO imaging techniques utilized multiple lasers or narrow band sources for illumination, which allowed for multiple color but not “true color” imaging as done in fundus photography. We describe the first “true color” SLO, handheld color SLO, and combined color SLO integrated with a spectral domain optical coherence tomography (OCT) system. To achieve accurate color imaging, the SLO was calibrated with a color test target and utilized an achromatizing lens when imaging the retina to correct for the eye’s longitudinal chromatic aberration. Color SLO and OCT images from volunteers were then acquired simultaneously with a combined power under the ANSI limit. Images from this system were then compared with those from commercially available SLOs featuring multiple narrow-band color imaging. PMID:25401032

  13. Identification of individual coherent sets associated with flow trajectories using coherent structure coloring

    NASA Astrophysics Data System (ADS)

    Schlueter-Kuck, Kristy L.; Dabiri, John O.

    2017-09-01

    We present a method for identifying the coherent structures associated with individual Lagrangian flow trajectories even where only sparse particle trajectory data are available. The method, based on techniques in spectral graph theory, uses the Coherent Structure Coloring vector and associated eigenvectors to analyze the distance in higher-dimensional eigenspace between a selected reference trajectory and other tracer trajectories in the flow. By analyzing this distance metric in a hierarchical clustering, the coherent structure of which the reference particle is a member can be identified. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Additionally, the method is able to assess the relative coherence of the associated structure in comparison to the surrounding flow. Although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems such as neuronal activity, gene expression, or social networks.

  14. Evidence for color fluctuations in hadrons from coherent nuclear diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frankfurt, L.; Miller, G.A.; Strikman, M.

    A QCD-based treatment of projectile size fluctuations is used to compute inelastic diffractive cross sections [sigma][sub diff] for coherent hadron-nuclear processes. We find that fluctuations near the average size give the major contribution to the cross section with [lt] few % contribution from small size configurations. The computed values of [sigma][sub diff] are consistent with the limited available data. The importance of coherent diffraction studies for a wide range of projectiles for high energy Fermilab fixed target experiments is emphasized. The implications of these significant color fluctuations for relativistic heavy ion collisions are discussed.

  15. TOWARD QUANTITATIVE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY: Visualizing Blood Flow Speeds in Ocular Pathology Using Variable Interscan Time Analysis.

    PubMed

    Ploner, Stefan B; Moult, Eric M; Choi, WooJhon; Waheed, Nadia K; Lee, ByungKun; Novais, Eduardo A; Cole, Emily D; Potsaid, Benjamin; Husvogt, Lennart; Schottenhamml, Julia; Maier, Andreas; Rosenfeld, Philip J; Duker, Jay S; Hornegger, Joachim; Fujimoto, James G

    2016-12-01

    Currently available optical coherence tomography angiography systems provide information about blood flux but only limited information about blood flow speed. The authors develop a method for mapping the previously proposed variable interscan time analysis (VISTA) algorithm into a color display that encodes relative blood flow speed. Optical coherence tomography angiography was performed with a 1,050 nm, 400 kHz A-scan rate, swept source optical coherence tomography system using a 5 repeated B-scan protocol. Variable interscan time analysis was used to compute the optical coherence tomography angiography signal from B-scan pairs having 1.5 millisecond and 3.0 milliseconds interscan times. The resulting VISTA data were then mapped to a color space for display. The authors evaluated the VISTA visualization algorithm in normal eyes (n = 2), nonproliferative diabetic retinopathy eyes (n = 6), proliferative diabetic retinopathy eyes (n = 3), geographic atrophy eyes (n = 4), and exudative age-related macular degeneration eyes (n = 2). All eyes showed blood flow speed variations, and all eyes with pathology showed abnormal blood flow speeds compared with controls. The authors developed a novel method for mapping VISTA into a color display, allowing visualization of relative blood flow speeds. The method was found useful, in a small case series, for visualizing blood flow speeds in a variety of ocular diseases and serves as a step toward quantitative optical coherence tomography angiography.

  16. Characterization of human scalp hairs by optical low-coherence reflectometry

    NASA Astrophysics Data System (ADS)

    Wang, X. J.; Milner, T. E.; Dhond, R. P.; Sorin, W. V.; Newton, S. A.; Nelson, J. S.

    1995-03-01

    Optical low-coherence reflectometry is used to investigate the internal structure and optical properties of human scalp hair. Regardless of hair color, the refractive index of the cortical region remains within the range of 1.56-1.59. The amplitude of the backscattered infrared light coupled into different-colored hair confirms the relative melanin content. Discontinuities in the refractive index permit identification of distinct structural layers within the hair shaft.

  17. White-Light Optical Information Processing and Holography.

    DTIC Science & Technology

    1983-05-03

    Processing, White-Light Holography, Image Subtraction, Image Deblurring , Coherence Requirement, Apparent Transfer Function, Source Encoding, Signal...in this period, also demonstrated several color image processing capabilities. Among those are broadband color image deblurring and color image...Broadband Image Deblurring ..... ......... 6 2.5 Color Image Subtraction ............... 7 2.6 Rainbow Holographic Aberrations . . ..... 7 2.7

  18. Scanning fiber endoscopy with highly flexible, 1-mm catheterscopes for wide-field, full-color imaging

    PubMed Central

    Lee, Cameron M.; Engelbrecht, Christoph J.; Soper, Timothy D.; Helmchen, Fritjof; Seibel, Eric J.

    2011-01-01

    In modern endoscopy, wide field of view and full color are considered necessary for navigating inside the body, inspecting tissue for disease and guiding interventions such as biopsy or surgery. Current flexible endoscope technologies suffer from reduced resolution when device diameter shrinks. Endoscopic procedures today using coherent fiber bundle technology, on the scale of 1 mm, are performed with such poor image quality that the clinician’s vision meets the criteria for legal blindness. Here, we review a new and versatile scanning fiber imaging technology and describe its implementation for ultrathin and flexible endoscopy. This scanning fiber endoscope (SFE) or catheterscope enables high quality, laser-based, video imaging for ultrathin clinical applications while also providing new options for in vivo biological research of subsurface tissue and high resolution fluorescence imaging. PMID:20336702

  19. Generation of coherent two-color pulses at two adjacent harmonics in a seeded free-electron laser

    NASA Astrophysics Data System (ADS)

    Zhao, Zhouyu; Li, Heting; Jia, Qika

    2018-02-01

    The growing requirements of pump-probe techniques and nonlinear optics experiments greatly promote the studies of two-color free-electron lasers (FELs). We propose a new method to generate coherent two-color pulses in a high-gain harmonic generation (HGHG) FEL. In this scheme, an initial tilted electron beam is sent though the modulator and dispersive section of an HGHG FEL to generate the bunching at harmonics of the seed laser. Then a transverse gradient undulator (TGU) is adopted as the radiator and in such radiator, only two separated fractions of the tilted beam will resonate at two adjacent harmonics of the seed laser and are enabled to emit the coherent two-color pulses simultaneously. The time separation between the two pulses are on the order of hundreds of femtoseconds, and can be precisely controlled by varying the tilted amplitude of the electron beam and/or the transverse gradient of the TGU radiator. Numerical simulations confirm the validity and feasibility of this scheme in the extreme ultraviolet waveband.

  20. Qualitative investigation of fresh human scalp hair with full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Choi, Woo June; Pi, Long-Quan; Min, Gihyeon; Lee, Won-Soo; Lee, Byeong Ha

    2012-03-01

    We have investigated depth-resolved cellular structures of unmodified fresh human scalp hairs with ultrahigh-resolution full-field optical coherence tomography (FF-OCT). The Linnik-type white light interference microscope has been home-implemented to observe the micro-internal layers of human hairs in their natural environment. In hair shafts, FF-OCT has qualitatively revealed the cellular hair compartments of cuticle and cortex layers involved in keratin filaments and melanin granules. No significant difference between black and white hair shafts was observed except for absence of only the melanin granules in the white hair, reflecting that the density of the melanin granules directly affects the hair color. Anatomical description of plucked hair bulbs was also obtained with the FF-OCT in three-dimensions. We expect this approach will be useful for evaluating cellular alteration of natural hairs on cosmetic assessment or diagnosis of hair diseases.

  1. Real-time high-velocity resolution color Doppler OCT

    NASA Astrophysics Data System (ADS)

    Westphal, Volker; Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    2001-05-01

    Color Doppler optical coherence tomography (CDOCT), also called Optical Doppler Tomography) is a noninvasive optical imaging technique, which allows for micron-scale physiological flow mapping simultaneous with morphological OCT imaging. Current systems for real-time endoscopic optical coherence tomography (EOCT) would be enhanced by the capability to visualize sub-surface blood flow for applications in early cancer diagnosis and the management of bleeding ulcers. Unfortunately, previous implementations of CDOCT have either been sufficiently computationally expensive (employing Fourier or Hilbert transform techniques) to rule out real-time imaging of flow, or have been restricted to imaging of excessively high flow velocities when used in real time. We have developed a novel Doppler OCT signal-processing strategy capable of imaging physiological flow rates in real time. This strategy employs cross-correlation processing of sequential A-scans in an EOCT image, as opposed to autocorrelation processing as described previously. To measure Doppler shifts in the kHz range using this technique, it was necessary to stabilize the EOCT interferometer center frequency, eliminate parasitic phase noise, and to construct a digital cross correlation unit able to correlate signals of megahertz bandwidth by a fixed lag of up to a few ms. The performance of the color Doppler OCT system was demonstrated in a flow phantom, demonstrating a minimum detectable flow velocity of ~0.8 mm/s at a data acquisition rate of 8 images/second (with 480 A-scans/image) using a handheld probe. Dynamic flow as well as using it freehanded was shown. Flow was also detectable in a phantom in combination with a clinical usable endoscopic probe.

  2. Supercontinuum as a light source for miniaturized endoscopes.

    PubMed

    Lu, M K; Lin, H Y; Hsieh, C C; Kao, F J

    2016-09-01

    In this work, we have successfully implemented supercontinuum based illumination through single fiber coupling. The integration of a single fiber illumination with a miniature CMOS sensor forms a very slim and powerful camera module for endoscopic imaging. A set of tests and in vivo animal experiments are conducted accordingly to characterize the corresponding illuminance, spectral profile, intensity distribution, and image quality. The key illumination parameters of the supercontinuum, including color rendering index (CRI: 72%~97%) and correlated color temperature (CCT: 3,100K~5,200K), are modified with external filters and compared with those from a LED light source (CRI~76% & CCT~6,500K). The very high spatial coherence of the supercontinuum allows high luminosity conduction through a single multimode fiber (core size~400μm), whose distal end tip is attached with a diffussion tip to broaden the solid angle of illumination (from less than 10° to more than 80°).

  3. Optimized doppler optical coherence tomography for choroidal capillary vasculature imaging

    NASA Astrophysics Data System (ADS)

    Liu, Gangjun; Qi, Wenjuan; Yu, Lingfeng; Chen, Zhongping

    2011-03-01

    In this paper, we analyzed the retinal and choroidal blood vasculature in the posterior segment of the human eye with optimized color Doppler and Doppler variance optical coherence tomography. Depth-resolved structure, color Doppler and Doppler variance images were compared. Blood vessels down to capillary level were able to be obtained with the optimized optical coherence color Doppler and Doppler variance method. For in-vivo imaging of human eyes, bulkmotion induced bulk phase must be identified and removed before using color Doppler method. It was found that the Doppler variance method is not sensitive to bulk motion and the method can be used without removing the bulk phase. A novel, simple and fast segmentation algorithm to indentify retinal pigment epithelium (RPE) was proposed and used to segment the retinal and choroidal layer. The algorithm was based on the detected OCT signal intensity difference between different layers. A spectrometer-based Fourier domain OCT system with a central wavelength of 890 nm and bandwidth of 150nm was used in this study. The 3-dimensional imaging volume contained 120 sequential two dimensional images with 2048 A-lines per image. The total imaging time was 12 seconds and the imaging area was 5x5 mm2.

  4. Identification of individual coherent sets associated with flow trajectories using Coherent Structure Coloring

    NASA Astrophysics Data System (ADS)

    Schlueter-Kuck, Kristy; Dabiri, John

    2017-11-01

    In recent years, there has been a proliferation of techniques that aim to characterize fluid flow kinematics on the basis of Lagrangian trajectories of collections of tracer particles. Most of these techniques depend on presence of tracer particles that are initially closely-spaced, in order to compute local gradients of their trajectories. In many applications, the requirement of close tracer spacing cannot be satisfied, especially when the tracers are naturally occurring and their distribution is dictated by the underlying flow. Moreover, current methods often focus on determination of the boundaries of coherent sets, whereas in practice it is often valuable to identify the complete set of trajectories that are coherent with an individual trajectory of interest. We extend the concept of Coherent Structure Coloring to achieve identification of the coherent set associated with individual Lagrangian trajectories. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Importantly, although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems. This work was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  5. Coherent structure coloring: identification of coherent structures from sparse flow trajectories using graph theory

    NASA Astrophysics Data System (ADS)

    Schlueter, Kristy; Dabiri, John

    2016-11-01

    Coherent structure identification is important in many fluid dynamics applications, including transport phenomena in ocean flows and mixing and diffusion in turbulence. However, many of the techniques currently available for measuring such flows, including ocean drifter datasets and particle tracking velocimetry, only result in sparse velocity data. This is often insufficient for the use of current coherent structure detection algorithms based on analysis of the deformation gradient. Here, we present a frame-invariant method for detecting coherent structures from Lagrangian flow trajectories that can be sparse in number. The method, based on principles used in graph coloring algorithms, examines a measure of the kinematic dissimilarity of all pairs of flow trajectories, either measured experimentally, e.g. using particle tracking velocimetry; or numerically, by advecting fluid particles in the Eulerian velocity field. Coherence is assigned to groups of particles whose kinematics remain similar throughout the time interval for which trajectory data is available, regardless of their physical proximity to one another. Through the use of several analytical and experimental validation cases, this algorithm is shown to robustly detect coherent structures using significantly less flow data than is required by existing methods. This research was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  6. The emotional valence of a conflict: implications from synesthesia.

    PubMed

    Perry, Amit; Henik, Avishai

    2013-01-01

    According to some synesthetes' reports, their experience involves an emotional sensation in which a conflict between the photism and presented color of a stimulus may evoke a feeling of discomfort. In order to investigate the impact of this experience on performance, two experiments were carried out on two synesthetes and their matched control groups. Experiments were tailored for each synesthete according to her unique photism. Participants were presented with stimuli (numerals or words) in colors and were asked to name the color of the stimulus and to ignore its meaning. Incongruent colors were associated with negative or positive emotional words or with non-emotional words. Not surprisingly, an incongruent color (e.g., 5 presented in yellow to a synesthete that sees 5 in red) slowed down color naming. Conflict situations (e.g., a numeral in an incongruent color) created a negative emotional experience. Most importantly, coherence between a conflict or non-conflict emotional experience and the emotion elicited by the color of the stimulus for a given synesthete modulated performance. In particular, synesthetes were faster in coherent than in incoherent situations. This research contributes to the understanding of emotional experience in synesthesia, and also suggests that synesthesia can be used as an instrument to investigate emotional processes in the wider population.

  7. Limits in feature-based attention to multiple colors.

    PubMed

    Liu, Taosheng; Jigo, Michael

    2017-11-01

    Attention to a feature enhances the sensory representation of that feature. Although much has been learned about the properties of attentional modulation when attending to a single feature, the effectiveness of attending to multiple features is not well understood. We investigated this question in a series of experiments using a color-detection task while varying the number of attended colors in a cueing paradigm. Observers were shown either a single cue, two cues, or no cue (baseline) before detecting a coherent color target. We measured detection threshold by varying the coherence level of the target. Compared to the baseline condition, we found consistent facilitation of detection performance in the one-cue and two-cue conditions, but performance in the two-cue condition was lower than that in the one-cue condition. In the final experiment, we presented a 50% valid cue to emulate the situation in which observers were only able to attend a single color in the two-cue condition, and found equivalent detection thresholds with the standard two-cue condition. These results indicate a limit in attending to two colors and further imply that observers could effectively attend a single color at a time. Such a limit is likely due to an inability to maintain multiple active attentional templates for colors.

  8. Color mapping of one specific velocity of a biological fluid flows with complex geometry using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Potlov, A. Yu.; Frolov, S. V.; Proskurin, S. G.

    2018-04-01

    The method of Doppler color mapping of one specific (previously chosen) velocity in a turbulent flow inside biological tissues using optical coherence tomography is described. The key features of the presented method are: the raw data are separated into three parts, corresponding to the unmoving biological tissue, the positively and negatively directed biological fluid flows; the further independent signal processing procedure yields the structure image and two images of the chosen velocity, which are then normalised, encoded and joined. The described method can be used to obtain in real time the anatomical maps of the chosen velocities in normal and pathological states. The described method can be applied not only in optical coherence tomography, but also in endoscopic and Doppler ultrasonic medical imaging systems.

  9. Accelerating Time-Varying Hardware Volume Rendering Using TSP Trees and Color-Based Error Metrics

    NASA Technical Reports Server (NTRS)

    Ellsworth, David; Chiang, Ling-Jen; Shen, Han-Wei; Kwak, Dochan (Technical Monitor)

    2000-01-01

    This paper describes a new hardware volume rendering algorithm for time-varying data. The algorithm uses the Time-Space Partitioning (TSP) tree data structure to identify regions within the data that have spatial or temporal coherence. By using this coherence, the rendering algorithm can improve performance when the volume data is larger than the texture memory capacity by decreasing the amount of textures required. This coherence can also allow improved speed by appropriately rendering flat-shaded polygons instead of textured polygons, and by not rendering transparent regions. To reduce the polygonization overhead caused by the use of the hierarchical data structure, we introduce an optimization method using polygon templates. The paper also introduces new color-based error metrics, which more accurately identify coherent regions compared to the earlier scalar-based metrics. By showing experimental results from runs using different data sets and error metrics, we demonstrate that the new methods give substantial improvements in volume rendering performance.

  10. Space, color, and direction of movement: how do they affect attention?

    PubMed

    Verghese, Ashika; Anderson, Andrew J; Vidyasagar, Trichur R

    2013-07-19

    Paying attention improves performance, but is this improvement regardless of what we attend to? We explored the differences in performance between attending to a location and attending to a feature when perceiving global motion. Attention was first cued to one of four locations that had coherently moving dots, while the remaining three had randomly moving distracter dots. Participants then viewed a colored display, wherein the color of the coherently moving dots was cued instead of location. In the third task, participants identified the location that had a particular cued direction of motion. Most observers reported reductions of motion threshold in all three tasks compared to when no cue was provided. However, the attentional bias generated by location cues was significantly larger than the bias resulting from feature cues of direction or color. This effect is consistent with the idea that attention is largely controlled by a fronto-parietal network where spatial relations are preferentially processed. On the other hand, color could not be used as a cue to focus attention and integrate motion. This finding suggests that color relies heavily on processing by ventral temporal cortical areas, which may have little control over the global motion areas in the dorsal part of the brain.

  11. Comparison of Color Fundus Photography, Infrared Fundus Photography, and Optical Coherence Tomography in Detecting Retinal Hamartoma in Patients with Tuberous Sclerosis Complex.

    PubMed

    Bai, Da-Yong; Wang, Xu; Zhao, Jun-Yang; Li, Li; Gao, Jun; Wang, Ning-Li

    2016-05-20

    A sensitive method is required to detect retinal hamartomas in patients with tuberous sclerosis complex (TSC). The aim of the present study was to compare the color fundus photography, infrared imaging (IFG), and optical coherence tomography (OCT) in the detection rate of retinal hamartoma in patients with TSC. This study included 11 patients (22 eyes) with TSC, who underwent color fundus photography, IFG, and spectral-domain OCT to detect retinal hamartomas. TSC1 and TSC2RESULTS: The mean age of the 11 patients was 8.0 ± 2.1 years. The mean spherical equivalent was -0.55 ± 1.42 D by autorefraction with cycloplegia. In 11 patients (22 eyes), OCT, infrared fundus photography, and color fundus photography revealed 26, 18, and 9 hamartomas, respectively. The predominant hamartoma was type I (55.6%). All the hamartomas that detected by color fundus photography or IFG can be detected by OCT. Among the methods of color fundus photography, IFG, and OCT, the OCT has higher detection rate for retinal hamartoma in TSC patients; therefore, OCT might be promising for the clinical diagnosis of TSC.

  12. Comparison of light absorption levels with different skin phantoms and the Monte Carlo simulation using Fourier-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jo, Hang Chan; Kim, Jae Hun; Kim, Dae Yu

    2018-02-01

    Dermatologic patients have various skin characteristics such as skin tone and pigmentation color. However most studies on laser ablation and treatment only considered laser operating conditions like wavelength, output power and pulse duration. The laser ablation arises from photothermal effect by photon energy absorption. Chromophores like melanin exist as the absorber in the skin. In this study, we painted color to mimic chromophores on in-vivo and in-vitro skin models to demonstrate influence on the laser ablation by skin color. Water-based pens were used to paint color. Cross sectional images of the laser ablation were acquired by Fourier-domain optical coherence tomography (Fd-OCT). Light source to make ablation was a Q-switch diode-pumped Nd:YVO4 nanosecond laser (532nm central wavelength). Irradiated light energy dose of the laser could not make ablation craters in the control group. However experimental groups showed craters with same irradiation light energy dose. These results show painting on skin increased tissue damage by absorption in painted color without dyeing cells or tissues.

  13. Qualitatively Coherent Representation Makes Decision-Making Easier with Binary-Colored Multi-Attribute Tables: An Eye-Tracking Study

    PubMed Central

    Morii, Masahiro; Ideno, Takashi; Takemura, Kazuhisa; Okada, Mitsuhiro

    2017-01-01

    We aimed to identify the ways in which coloring cells affected decision-making in the context of binary-colored multi-attribute tables, using eye movement data. In our black-white attribute tables, the value of attributes was limited to two (with a certain threshold for each attribute) and each cell of the table was colored either black or white on the white background. We compared the two natural ways of systematic color assignment: “quantitatively coherent” ways and “qualitatively coherent” ways (namely, the ways in which the black-white distinction represented the quantitative amount distinction, and the ways in which the black-white distinction represented the quality distinction). The former consists of the following two types: (Type 1) “larger is black,” where the larger value-level was represented by black, and “smaller is white,” and (Type 2) “smaller is black.” The latter consisted of the following two types: (Type 3) “better is black,” and (Type 4) “worse is black.” We obtained the following two findings. [Result 1] The qualitatively coherent black-white tables (Types 3 and 4) made decision-making easier than the quantitatively coherent ones (Types 1 and 2). [Result 2] Among the two qualitatively coherent types, the “black is better” tables (Type 3) made decision making easier; in fact, the participants focused on the more important (black) cells in the case of “black is better” tables (Type 3) while they did not focus enough on the more important (white) ones in the case of the “white is better” tables (Type 4). We also examined some measures of eye movement patterns and showed that these measures supported our hypotheses. The data showed differences in the eye movement patterns between the first and second halves of each trial, which indicated the phased or combined decision strategies taken by the participants. PMID:28861020

  14. Automated high resolution full-field spatial coherence tomography for quantitative phase imaging of human red blood cells

    NASA Astrophysics Data System (ADS)

    Singla, Neeru; Dubey, Kavita; Srivastava, Vishal; Ahmad, Azeem; Mehta, D. S.

    2018-02-01

    We developed an automated high-resolution full-field spatial coherence tomography (FF-SCT) microscope for quantitative phase imaging that is based on the spatial, rather than the temporal, coherence gating. The Red and Green color laser light was used for finding the quantitative phase images of unstained human red blood cells (RBCs). This study uses morphological parameters of unstained RBCs phase images to distinguish between normal and infected cells. We recorded the single interferogram by a FF-SCT microscope for red and green color wavelength and average the two phase images to further reduced the noise artifacts. In order to characterize anemia infected from normal cells different morphological features were extracted and these features were used to train machine learning ensemble model to classify RBCs with high accuracy.

  15. Generation of Bright, Spatially Coherent Soft X-Ray High Harmonics in a Hollow Waveguide Using Two-Color Synthesized Laser Pulses.

    PubMed

    Jin, Cheng; Stein, Gregory J; Hong, Kyung-Han; Lin, C D

    2015-07-24

    We investigate the efficient generation of low-divergence high-order harmonics driven by waveform-optimized laser pulses in a gas-filled hollow waveguide. The drive waveform is obtained by synthesizing two-color laser pulses, optimized such that highest harmonic yields are emitted from each atom. Optimization of the gas pressure and waveguide configuration has enabled us to produce bright and spatially coherent harmonics extending from the extreme ultraviolet to soft x rays. Our study on the interplay among waveguide mode, atomic dispersion, and plasma effect uncovers how dynamic phase matching is accomplished and how an optimized waveform is maintained when optimal waveguide parameters (radius and length) and gas pressure are identified. Our analysis should help laboratory development in the generation of high-flux bright coherent soft x rays as tabletop light sources for applications.

  16. Comparison of Color Fundus Photography, Infrared Fundus Photography, and Optical Coherence Tomography in Detecting Retinal Hamartoma in Patients with Tuberous Sclerosis Complex

    PubMed Central

    Bai, Da-Yong; Wang, Xu; Zhao, Jun-Yang; Li, Li; Gao, Jun; Wang, Ning-Li

    2016-01-01

    Background: A sensitive method is required to detect retinal hamartomas in patients with tuberous sclerosis complex (TSC). The aim of the present study was to compare the color fundus photography, infrared imaging (IFG), and optical coherence tomography (OCT) in the detection rate of retinal hamartoma in patients with TSC. Methods: This study included 11 patients (22 eyes) with TSC, who underwent color fundus photography, IFG, and spectral-domain OCT to detect retinal hamartomas. TSC1 and TSC2 mutations were tested in eight patients. Results: The mean age of the 11 patients was 8.0 ± 2.1 years. The mean spherical equivalent was −0.55 ± 1.42 D by autorefraction with cycloplegia. In 11 patients (22 eyes), OCT, infrared fundus photography, and color fundus photography revealed 26, 18, and 9 hamartomas, respectively. The predominant hamartoma was type I (55.6%). All the hamartomas that detected by color fundus photography or IFG can be detected by OCT. Conclusion: Among the methods of color fundus photography, IFG, and OCT, the OCT has higher detection rate for retinal hamartoma in TSC patients; therefore, OCT might be promising for the clinical diagnosis of TSC. PMID:27174333

  17. Emotion self-regulation, psychophysiological coherence, and test anxiety: results from an experiment using electrophysiological measures.

    PubMed

    Bradley, Raymond Trevor; McCraty, Rollin; Atkinson, Mike; Tomasino, Dana; Daugherty, Alane; Arguelles, Lourdes

    2010-12-01

    This study investigated the effects of a novel, classroom-based emotion self-regulation program (TestEdge) on measures of test anxiety, socioemotional function, test performance, and heart rate variability (HRV) in high school students. The program teaches students how to self-generate a specific psychophysiological state--psychophysiological coherence--which has been shown to improve nervous system function, emotional stability, and cognitive performance. Implemented as part of a larger study investigating the population of tenth grade students in two California high schools (N = 980), the research reported here was conducted as a controlled pre- and post-intervention laboratory experiment, using electrophysiological measures, on a random stratified sample of students from the intervention and control schools (N = 136). The Stroop color-word conflict test was used as the experiment's stimulus to simulate the stress of taking a high-stakes test, while continuous HRV recordings were gathered. The post-intervention electrophysiological results showed a pattern of improvement across all HRV measures, indicating that students who received the intervention program had learned how to better manage their emotions and to self-activate the psychophysiological coherence state under stressful conditions. Moreover, students with high test anxiety exhibited increased HRV and heart rhythm coherence even during a resting baseline condition (without conscious use of the program's techniques), suggesting that they had internalized the benefits of the intervention. Consistent with these results, students exhibited reduced test anxiety and reduced negative affect after the intervention. Finally, there is suggestive evidence from a matched-pairs analysis that reduced test anxiety and increased psychophysiological coherence appear to be directly associated with improved test performance--a finding consistent with evidence from the larger study.

  18. The Role of Amodal Surface Completion in Stereoscopic Transparency

    PubMed Central

    Anderson, Barton L.; Schmid, Alexandra C.

    2012-01-01

    Previous work has shown that the visual system can decompose stereoscopic textures into percepts of inhomogeneous transparency. We investigate whether this form of layered image decomposition is shaped by constraints on amodal surface completion. We report a series of experiments that demonstrate that stereoscopic depth differences are easier to discriminate when the stereo images generate a coherent percept of surface color, than when images require amodally integrating a series of color changes into a coherent surface. Our results provide further evidence for the intimate link between the segmentation processes that occur in conditions of transparency and occlusion, and the interpolation processes involved in the formation of amodally completed surfaces. PMID:23060829

  19. Photographic film image enhancement

    NASA Technical Reports Server (NTRS)

    Horner, J. L.

    1975-01-01

    A series of experiments were undertaken to assess the feasibility of defogging color film by the techniques of optical spatial filtering. A coherent optical processor was built using red, blue, and green laser light input and specially designed Fourier transformation lenses. An array of spatial filters was fabricated on black and white emulsion slides using the coherent optical processor. The technique was first applied to laboratory white light fogged film, and the results were successful. However, when the same technique was applied to some original Apollo X radiation fogged color negatives, the results showed no similar restoration. Examples of each experiment are presented and possible reasons for the lack of restoration in the Apollo films are discussed.

  20. Speed and the coherence of superimposed chromatic gratings.

    PubMed

    Bosten, J M; Smith, L; Mollon, J D

    2016-05-01

    On the basis of measurements of the perceived coherence of superimposed drifting gratings, Krauskopf and Farell (1990) proposed that motion is analysed independently in different chromatic channels. They found that two gratings appeared to slip if each modulated one of the two 'cardinal' color mechanisms S/(L+M) and L/(L+M). If the gratings were defined along intermediate color directions, observers reported a plaid, moving coherently. We hypothesised that slippage might occur in chromatic gratings if the motion signal from the S/(L+M) channel is weak and equivalent to a lower speed. We asked observers to judge coherence in two conditions. In one, S/(L+M) and L/(L+M) gratings were physically the same speed. In the other, the two gratings had perceptually matched speeds. We found that the relative incoherence of cardinal gratings is the same whether gratings are physically or perceptually matched in speed. Thus our hypothesis was firmly contradicted. In a control condition, observers were asked to judge the coherence of stationary gratings. Interestingly, the difference in judged coherence between cardinal and intermediate gratings remained as strong as it was when the gratings moved. Our results suggest a possible alternative interpretation of Krauskopf and Farell's result: the processes of object segregation may precede the analysis of the motion of chromatic gratings, and the same grouping signals may prompt object segregation in the stationary and moving cases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Is it just motion that silences awareness of other visual changes?

    PubMed

    Peirce, Jonathan W

    2013-06-28

    When an array of visual elements is changing color, size, or shape incoherently, the changes are typically quite visible even when the overall color, size, or shape statistics of the field may not have changed. When the dots also move, however, the changes become much less apparent; awareness of them is "silenced" (Suchow & Alvarez, 2011). This finding might indicate that the perception of motion is of particular importance to the visual system, such that it is given priority in processing over other forms of visual change. Here we test whether that is the case by examining the converse: whether awareness of motion signals can be silenced by potent coherent changes in color or size. We find that they can, and with very similar effects, indicating that motion is not critical for silencing. Suchow and Alvarez's dots always moved in the same direction with the same speed, causing them to be grouped as a single entity. We also tested whether this coherence was a necessary component of the silencing effect. It is not; when the dot speeds are randomly selected, such that no coherent motion is present, the silencing effect remains. It is clear that neither motion nor grouping is directly responsible for the silencing effect. Silencing can be generated from any potent visual change.

  2. Watching the coherence of multiple vibrational states in organic dye molecules by using supercontinuum probing photon echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Guoyang; Song, Yunfei; Wang, Yang; He, Xing; Liu, Yuqiang; Liu, Weilong; Yang, Yanqiang

    2011-12-01

    A modified photon echo (PE) technique, the supercontinuum probing photon echo (SCPPE), is introduced and performed to investigate the vibrational coherence in organic dye IR780 perchlorate doped polyvinyl alcohol (PVA) film. The coherences of multiple vibrational states which belong to four vibrational modes create complex oscillations in SCPPE signal. The frequencies of vibrational modes are confirmed from the results of Raman calculation which accord fairly well with the results of Raman scattering experiment. Compared with conventional one-color PE, the SCPPE technique can realize broadband detection and make the experiment about vibrational coherence more efficient.

  3. Rotary Motion Impairs Attention to Color Change in 4-Month-Old Infants

    ERIC Educational Resources Information Center

    Kavsek, Michael

    2013-01-01

    Continuous color changes of an array of elements appear to stop changing if the array undergoes a coherent motion. This "silencing" illusion was demonstrated for adults by Suchow and Alvarez ("Current Biology", 2011, vol. 21, pp. 140-143). The current forced-choice preferential looking study examined 4-month-old infants' sensitivity to the…

  4. Optical coherence tomography to evaluate the effects of oxidative hair dye on the fiber.

    PubMed

    Velasco, Maria Valéria Robles; de Abreu, Simone Rachid Pfannemüller; de Freitas, Anderson Zanardi; Bedin, Valcinir; Baby, André Rolim; da Gama, Robson Miranda

    2016-11-01

    Oxidative hair dyes can damage the hair, since these chemical procedures are involved to change the fiber structure and therefore changes in their mechanical and surface properties. Evaluate and compare the effect of the two colors of oxidative hair dye emulsions on Caucasian hair. This research analyzed the Dark brown hair untreated (I); Dark brown hair treated with light brown dye (II); Dark brown hair treated with light blond dye (III); Light blond hair untreated (IV); Light blond hair treated with light brown dye (V); Light blond hair treated with light blond dye (VI) on Caucasian hair. The hair samples were submitted to breaking strength, color, and optical coherence tomography (OCT) analysis. For the breaking strength assay no presented statistically significant differences between treatments. The parameters of color and brightness can differ in some hair dye formulations, but also the hair type can respond differently. The OCT images of the sample I and IV was possible observed, clearly Medulla and Cortex, which was not observed clearly after treatment with both oxidative hair dye colors. Based on the results, the oxidative hair dyes increased alteration in color and ultrastructure of hair. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Use of color maps and wavelet coherence to discern seasonal and interannual climate influences on streamflow variability in northern catchments

    NASA Astrophysics Data System (ADS)

    Carey, Sean K.; Tetzlaff, Doerthe; Buttle, Jim; Laudon, Hjalmar; McDonnell, Jeff; McGuire, Kevin; Seibert, Jan; Soulsby, Chris; Shanley, Jamie

    2013-10-01

    The higher midlatitudes of the northern hemisphere are particularly sensitive to change due to the important role the 0°C isotherm plays in the phase of precipitation and intermediate storage as snow. An international intercatchment comparison program called North-Watch seeks to improve our understanding of the sensitivity of northern catchments to change by examining their hydrological and biogeochemical variability and response. Here eight North-Watch catchments located in Sweden (Krycklan), Scotland (Girnock and Strontian), the United States (Sleepers River, Hubbard Brook, and HJ Andrews), and Canada (Dorset and Wolf Creek) with 10 continuous years of daily precipitation and runoff data were selected to assess daily to seasonal coupling of precipitation (P) and runoff (Q) using wavelet coherency, and to explore the patterns and scales of variability in streamflow using color maps. Wavelet coherency revealed that P and Q were decoupled in catchments with cold winters, yet were strongly coupled during and immediately following the spring snowmelt freshet. In all catchments, coupling at shorter time scales occurred during wet periods when the catchment was responsive and storage deficits were small. At longer time scales, coupling reflected coherence between seasonal cycles, being enhanced at sites with enhanced seasonality in P. Color maps were applied as an alternative method to identify patterns and scales of flow variability. Seasonal versus transient flow variability was identified along with the persistence of that variability on influencing the flow regime. While exploratory in nature, this intercomparison exercise highlights the importance of climate and the 0°C isotherm on the functioning of northern catchments.

  6. Edge enhancement of color images using a digital micromirror device.

    PubMed

    Di Martino, J Matías; Flores, Jorge L; Ayubi, Gastón A; Alonso, Julia R; Fernández, Ariel; Ferrari, José A

    2012-06-01

    A method for orientation-selective enhancement of edges in color images is proposed. The method utilizes the capacity of digital micromirror devices to generate a positive and a negative color replica of the image used as input. When both images are slightly displaced and imagined together, one obtains an image with enhanced edges. The proposed technique does not require a coherent light source or precise alignment. The proposed method could be potentially useful for processing large image sequences in real time. Validation experiments are presented.

  7. Simulation of partially coherent light propagation using parallel computing devices

    NASA Astrophysics Data System (ADS)

    Magalhães, Tiago C.; Rebordão, José M.

    2017-08-01

    Light acquires or loses coherence and coherence is one of the few optical observables. Spectra can be derived from coherence functions and understanding any interferometric experiment is also relying upon coherence functions. Beyond the two limiting cases (full coherence or incoherence) the coherence of light is always partial and it changes with propagation. We have implemented a code to compute the propagation of partially coherent light from the source plane to the observation plane using parallel computing devices (PCDs). In this paper, we restrict the propagation in free space only. To this end, we used the Open Computing Language (OpenCL) and the open-source toolkit PyOpenCL, which gives access to OpenCL parallel computation through Python. To test our code, we chose two coherence source models: an incoherent source and a Gaussian Schell-model source. In the former case, we divided into two different source shapes: circular and rectangular. The results were compared to the theoretical values. Our implemented code allows one to choose between the PyOpenCL implementation and a standard one, i.e using the CPU only. To test the computation time for each implementation (PyOpenCL and standard), we used several computer systems with different CPUs and GPUs. We used powers of two for the dimensions of the cross-spectral density matrix (e.g. 324, 644) and a significant speed increase is observed in the PyOpenCL implementation when compared to the standard one. This can be an important tool for studying new source models.

  8. Implementation of Custom Colors in the DECwindows Environment

    DTIC Science & Technology

    1992-01-01

    Implementation of Custom Colors in the DECwindlows Environment Program Element No 0604262 Project No 64214 6. Author(s). Task No Stephanie A. Myrick, Maura C...13. Abstract (Maximum 200 words), This paper describes the implementation of user-defined, or custom , colors in the DECwindows environmeot Custom ...colors can be used to augment the standard color set that is associated with the hardware colormap. The custom color set that is included in this paper

  9. Two-Color Nonlinear Spectroscopy for the Rapid Acquisition of Coherent Dynamics.

    PubMed

    Senlik, S Seckin; Policht, Veronica R; Ogilvie, Jennifer P

    2015-07-02

    There has been considerable recent interest in the observation of coherent dynamics in photosynthetic systems by 2D electronic spectroscopy (2DES). In particular, coherences that persist during the "waiting time" in a 2DES experiment have been attributed to electronic, vibrational, and vibronic origins in various systems. The typical method for characterizing these coherent dynamics requires the acquisition of 2DES spectra as a function of waiting time, essentially a 3DES measurement. Such experiments require lengthy data acquisition times that degrade the signal-to-noise of the recorded coherent dynamics. We present a rapid and high signal-to-noise pulse-shaping-based approach for the characterization of coherent dynamics. Using chlorophyll a, we demonstrate that this method retains much of the information content of a 3DES measurement and provides insight into the physical origin of the coherent dynamics, distinguishing between ground and excited state coherences. It also enables high resolution determination of ground and excited state frequencies.

  10. Young's double-slit interference with two-color biphotons.

    PubMed

    Zhang, De-Jian; Wu, Shuang; Li, Hong-Guo; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige

    2017-12-12

    In classical optics, Young's double-slit experiment with colored coherent light gives rise to individual interference fringes for each light frequency, referring to single-photon interference. However, two-photon double-slit interference has been widely studied only for wavelength-degenerate biphoton, known as subwavelength quantum lithography. In this work, we report double-slit interference experiments with two-color biphoton. Different from the degenerate case, the experimental results depend on the measurement methods. From a two-axis coincidence measurement pattern we can extract complete interference information about two colors. The conceptual model provides an intuitional picture of the in-phase and out-of-phase photon correlations and a complete quantum understanding about the which-path information of two colored photons.

  11. Two-Color Laser High-Harmonic Generation in Cavitated Plasma Wakefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric

    2016-10-03

    A method is proposed for producing coherent x-rays via high-harmonic generation using a laser interacting with highly-stripped ions in cavitated plasma wakefields. Two laser pulses of different colors are employed: a long-wavelength pulse for cavitation and a short-wavelength pulse for harmonic generation. This method enables efficient laser harmonic generation in the sub-nm wavelength regime.

  12. White-Light Optical Information Processing and Holography.

    DTIC Science & Technology

    1984-06-22

    Processing, Image Deblurring , Source Encoding, Signal Sampling, Coherence Measurement, Noise Performance, / Pseudocolor Encoding. , ’ ’ * .~ 10.ASS!RACT...o 2.1 Broad Spectral Band Color Image Deblurring .. . 4 2.2 Noise Performance ...... ...... .. . 4 2.3 Pseudocolor Encoding with Three Primary...spectra. This technique is particularly suitable for linear smeared color image deblurring . 2.2 Noise Performance In this period, we have also

  13. Adaptability and specificity of inhibition processes in distractor-induced blindness.

    PubMed

    Winther, Gesche N; Niedeggen, Michael

    2017-12-01

    In a rapid serial visual presentation task, inhibition processes cumulatively impair processing of a target possessing distractor properties. This phenomenon-known as distractor-induced blindness-has thus far only been elicited using dynamic visual features, such as motion and orientation changes. In three ERP experiments, we used a visual object feature-color-to test for the adaptability and specificity of the effect. In Experiment I, participants responded to a color change (target) in the periphery whose onset was signaled by a central cue. Presentation of irrelevant color changes prior to the cue (distractors) led to reduced target detection, accompanied by a frontal ERP negativity that increased with increasing number of distractors, similar to the effects previously found for dynamic targets. This suggests that distractor-induced blindness is adaptable to color features. In Experiment II, the target consisted of coherent motion contrasting the color distractors. Correlates of distractor-induced blindness were found neither in the behavioral nor in the ERP data, indicating a feature specificity of the process. Experiment III confirmed the strict distinction between congruent and incongruent distractors: A single color distractor was embedded in a stream of motion distractors with the target consisting of a coherent motion. While behavioral performance was affected by the distractors, the color distractor did not elicit a frontal negativity. The experiments show that distractor-induced blindness is also triggered by visual stimuli predominantly processed in the ventral stream. The strict specificity of the central inhibition process also applies to these stimulus features. © 2017 Society for Psychophysiological Research.

  14. Quantum channel for the transmission of information

    DOEpatents

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-01-13

    Systems and methods are described for a quantum channel for the transmission of information. A method includes: down converting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; changing a phase of at least a portion of the converged multi-color entangled photon beam to generate a first interferometric multi-color entangled photon beam; combining the first interferometric multi-color entangled photon beam with a second interferometric multi-color entangled photon beam within a single beam splitter; wherein combining includes erasing energy and momentum characteristics from both the first interferometric multi-color entangled photon beam and the second interferometric multi-color entangled photon beam; splitting the first interferometric multi-color entangled photon beam and the second interferometric multi-color entangled photon beam within the single beam splitter, wherein splitting yields a first output beam of multi-color entangled photons and a second output beam of multi-color entangled photons; and modulating the first output beam of multi-color entangled photons.

  15. Resonance energy transfer process in nanogap-based dual-color random lasing

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoyu; Tong, Junhua; Liu, Dahe; Wang, Zhaona

    2017-04-01

    The resonance energy transfer (RET) process between Rhodamine 6G and oxazine in the nanogap-based random systems is systematically studied by revealing the variations and fluctuations of RET coefficients with pump power density. Three working regions stable fluorescence, dynamic laser, and stable laser are thus demonstrated in the dual-color random systems. The stable RET coefficients in fluorescence and lasing regions are generally different and greatly dependent on the donor concentration and the donor-acceptor ratio. These results may provide a way to reveal the energy distribution regulars in the random system and to design the tunable multi-color coherent random lasers for colorful imaging.

  16. ac Stark-mediated quantum control with femtosecond two-color laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serrat, Carles

    2005-11-15

    A critical dependence of the quantum interference on the optical Stark spectral shift produced when two-color laser pulses interact with a two-level medium is observed. The four-wave mixing of two ultrashort phase-locked {omega}-3{omega} laser pulses propagating coherently in a two-level system depends on the pulses' relative phase. The phase dominating the efficiency of the coupling to the anti-Stokes Raman component is found to be determined by the sign of the total ac Stark shift induced in the system, in such a way that the phase sensitivity disappears precisely where the ac Stark effect due to both pulses is compensated. Amore » coherent control scheme based on this phenomenon can be contemplated as the basis for nonlinear optical spectroscopy techniques.« less

  17. Basic methods for measuring the reflectance color of iron oxides

    NASA Astrophysics Data System (ADS)

    Pospisil, Jaroslav; Hrdy, Jan; Hrdy Jan, Jr.

    2007-06-01

    The main contribution of the present article consists in coherent description and interpretation of the principles of basic measuring methods and colorimeters for color classification and evaluation of light reflecting samples containing iron oxides. The chosen relevant theoretical background is based on the CIE tristimulus colorimetric system (X,Y,Z), the CIE colorimetric system (L*,a*,b*) and the Munsell colorimetric system (H,V,C). As an example of color identification and evaluation, some specific mathematical and graphical relationships between the soil redness rate and the corresponding hematite content are shown.

  18. Adaptive optimization of reference intensity for optical coherence imaging using galvanometric mirror tilting method

    NASA Astrophysics Data System (ADS)

    Kim, Ji-hyun; Han, Jae-Ho; Jeong, Jichai

    2015-09-01

    Integration time and reference intensity are important factors for achieving high signal-to-noise ratio (SNR) and sensitivity in optical coherence tomography (OCT). In this context, we present an adaptive optimization method of reference intensity for OCT setup. The reference intensity is automatically controlled by tilting a beam position using a Galvanometric scanning mirror system. Before sample scanning, the OCT system acquires two dimensional intensity map with normalized intensity and variables in color spaces using false-color mapping. Then, the system increases or decreases reference intensity following the map data for optimization with a given algorithm. In our experiments, the proposed method successfully corrected the reference intensity with maintaining spectral shape, enabled to change integration time without manual calibration of the reference intensity, and prevented image degradation due to over-saturation and insufficient reference intensity. Also, SNR and sensitivity could be improved by increasing integration time with automatic adjustment of the reference intensity. We believe that our findings can significantly aid in the optimization of SNR and sensitivity for optical coherence tomography systems.

  19. Coherent control of D2/H2 dissociative ionization by a mid-infrared two-color laser field

    NASA Astrophysics Data System (ADS)

    Wanie, Vincent; Ibrahim, Heide; Beaulieu, Samuel; Thiré, Nicolas; Schmidt, Bruno E.; Deng, Yunpei; Alnaser, Ali S.; Litvinyuk, Igor V.; Tong, Xiao-Min; Légaré, François

    2016-01-01

    Steering the electrons during an ultrafast photo-induced process in a molecule influences the chemical behavior of the system, opening the door to the control of photochemical reactions and photobiological processes. Electrons can be efficiently localized using a strong laser field with a well-designed temporal shape of the electric component. Consequently, many experiments have been performed with laser sources in the near-infrared region (800 nm) in the interest of studying and enhancing the electron localization. However, due to its limited accessibility, the mid-infrared (MIR) range has barely been investigated, although it allows to efficiently control small molecules and even more complex systems. To push further the manipulation of basic chemical mechanisms, we used a MIR two-color (1800 and 900 nm) laser field to ionize H2 and D2 molecules and to steer the remaining electron during the photo-induced dissociation. The study of this prototype reaction led to the simultaneous control of four fragmentation channels. The results are well reproduced by a theoretical model solving the time-dependent Schrödinger equation for the molecular ion, identifying the involved dissociation mechanisms. By varying the relative phase between the two colors, asymmetries (i.e., electron localization selectivity) of up to 65% were obtained, corresponding to enhanced or equivalent levels of control compared to previous experiments. Experimentally easier to implement, the use of a two-color laser field leads to a better electron localization than carrier-envelope phase stabilized pulses and applying the technique in the MIR range reveals more dissociation channels than at 800 nm.

  20. Interferometric source of multi-color, multi-beam entangled photons with mirror and mixer

    DOEpatents

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-06-01

    53 Systems and methods are described for an interferometric source of multi-color, multi-beam entangled photons. An apparatus includes: a multi-refringent device optically coupled to a source of coherent energy, the multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device i) including a mirror and a mixer and ii) converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a tunable phase adjuster optically coupled to the condenser device, the tunable phase adjuster changing a phase of at least a portion of the converged multi-color entangled photon beam to generate a first interferometeric multi-color entangled photon beam; and a beam splitter optically coupled to the condenser device, the beam splitter combining the first interferometeric multi-color entangled photon beam with a second interferometric multi-color entangled photon beam.

  1. Description and Evaluation of a Four-Channel, Coherent 100-kHz Sidescan Sonar

    DTIC Science & Technology

    2004-12-01

    document contains color images. 14. ABSTRACT This report documents the design and features of a new, four-channel, coherent 100-kHz sidescan sonar...Atlantic Technical Memorandum DRDC Atlantic TM 2004-204 December 2004 Abstract This report documents the design and features of a new...Results This report documents the design and features of this new high-frequency sonar system. These initial field trial results demonstrate some of

  2. Structural colored gels for tunable soft photonic crystals.

    PubMed

    Harun-Ur-Rashid, Mohammad; Seki, Takahiro; Takeoka, Yukikazu

    2009-01-01

    A periodically ordered interconnecting porous structure can be embodied in chemical gels by using closest-packed colloidal crystals as templates. The interconnecting porosity not only provides a quick response but also endows the porous gels with structural color arising from coherent Bragg optical diffraction. The structural colors revealed by porous gels can be regulated by several techniques, and thus, it is feasible to obtain desirable, smart, soft materials. A well-known thermosensitive monomer, N-isopropylacrylamide (NIPA), and other minor monomers were used to fabricate various structural colored gels. The selection of minor monomers depended on the targeted properties. This review focuses on the synthesis of templates, structural colored porous gels, and the applications of structural colored gel as smart soft materials for tunable photonic crystals. (c) 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  3. Macular degeneration - age-related

    MedlinePlus

    ... lining of the eye (fundus photography) Using light waves to view the retina (optical coherence tomography) A ... JA, Vander JF, eds. Ophthalmology Secrets in Color . 4th ed. Philadelphia, PA: Elsevier; 2015:chap 43. Wenick ...

  4. Operational Transition from the First-Generation Heidelberg Spectralis Optical Coherence Tomography [OCT("OCT1")] to the Second-Generation Heidelberg Spectralis OCT("OCT2")

    NASA Technical Reports Server (NTRS)

    Mason, S.; Brunstetter, T.; Young, M.; Van Baalen, M.; Tarver, W.; Derrick, R.; Wells, J.; Dey, B.; Todd, K.; Smith, B.; hide

    2018-01-01

    The Heidelberg Spectralis "OCT2", which recently became commercially available, is going to be implemented at the Johnson Space Center Flight Medicine Clinic and on board the International Space Station. Due to the increased scan rate of the "OCT2", this upgrade will allow for significant reduction in valuable crew testing time and also allow for additional capabilities, like OCT Angiography and Multi-Color Fundus Imaging. Due to the custom scans used to monitor Space Flight-Associated Neuro-ocular Syndrome (SANS) in our crewmembers, an evaluation to assess the impacts of transitioning from "OCT1" to "OCT2" was performed. An engineering assessment (N=1) was performed to identify any potential impacts of maintaining an "OCT1" on board ISS while implementing an "OCT2" in the JSC Clinic. "OCT2" implementation will lag JSC FMC clinical implementation due to the flight certification/manifestation process. The clinical assessment was performed (n=12) to identify any impacts due to the replacement of the "OCT1" with the "OCT2" to the longitudinal OCT data across a crewmember's mission/lifetime. The qualitative results from the engineering and clinical evaluation will be reported, as well as the quantitative assessment of the clinical variables

  5. Optimal control of population and coherence in three-level Λ systems

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen; Malinovskaya, Svetlana A.; Malinovsky, Vladimir S.

    2011-08-01

    Optimal control theory (OCT) implementations for an efficient population transfer and creation of maximum coherence in a three-level system are considered. We demonstrate that the half-stimulated Raman adiabatic passage scheme for creation of the maximum Raman coherence is the optimal solution according to the OCT. We also present a comparative study of several implementations of OCT applied to the complete population transfer and creation of the maximum coherence. Performance of the conjugate gradient method, the Zhu-Rabitz method and the Krotov method has been analysed.

  6. A coherent detection technique via optically biased field for broadband terahertz radiation.

    PubMed

    Du, Hai-Wei; Dong, Jia-Meng; Liu, Yi; Shi, Chang-Cheng; Wu, Jing-Wei; Peng, Xiao-Yu

    2017-09-01

    We demonstrate theoretically and experimentally a coherent terahertz detection technique based on an optically biased field functioning as a local oscillator and a second harmonic induced by the terahertz electric field in the air sensor working in free space. After optimizing the polarization angle and the energy of the probe pulse, and filling the system with dry nitrogen, the terahertz radiation generated from a two-color-femtosecond-laser-pulses induced plasma filament is measured by this technique with a bandwidth of 0.1-10 THz and a signal-to-noise ratio of 48 dB. Our technique provides an alternative simple method for coherent broadband terahertz detection.

  7. MULTIMODAL IMAGING OF ACUTE EXUDATIVE POLYMORPHOUS VITELLIFORM MACULOPATHY WITH OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY AND ADAPTIVE OPTICS SCANNING LASER OPHTHALMOSCOPY.

    PubMed

    Skondra, Dimitra; Nesper, Peter L; Fawzi, Amani A

    2017-05-16

    To report a case of acute exudative polymorphous vitelliform maculopathy including the findings of optical coherence tomography angiography and adaptive optics scanning laser ophthalmoscopy. Findings on clinical examination, color fundus photography, spectral-domain optical coherence tomography, infrared reflectance, autofluorescence, optical coherence tomography angiography, and adaptive optics scanning laser ophthalmoscopy. A 54-year-old white man with no significant medical history and history of smoking presented with bilateral multiple serous and vitelliform detachments consistent with acute exudative polymorphous vitelliform maculopathy. Extensive infectious, inflammatory, and malignancy workup was negative. Spectral-domain optical coherence tomography showed thickened, hyperreflective ellipsoid zone, subretinal fluid, and focal as well as diffuse subretinal hyperreflective material corresponding to the vitelliform lesions. Optical coherence tomography angiography showed normal retinal and choroidal vasculature, whereas adaptive optics scanning laser ophthalmoscopy showed circular focal "target" lesions at the level of the photoreceptors in the area of foveal detachment. Multimodal imaging is valuable in evaluating patients with acute exudative polymorphous vitelliform maculopathy.

  8. The study of protein biomarkers to understand the biochemical processes underlying beef color development in young bulls.

    PubMed

    Gagaoua, Mohammed; Terlouw, E M Claudia; Picard, Brigitte

    2017-12-01

    This study investigates relationships between 21 biomarkers and meat color traits of Longissimus thoracis muscles of young Aberdeen Angus and Limousin bulls. The relationships found allowed to propose metabolic processes underlying meat color. The color coordinates were related with several biomarkers. The relationships were in some cases breed-dependent and the variability explained in the regression models varied between 31 and 56%. The correlations between biomarkers and color parameters were sometimes opposite between breeds. The PCA using the 21 biomarkers and the instrumental color coordinates showed that these variables discriminated efficiently between the two studied breeds. Results are coherent with earlier studies on other beef breeds showing that several proteins belonging to different but partly related biological pathways involved in muscle contraction, metabolism, heat stress and apoptosis are related to beef color. The results suggest that in future, biomarkers may be used to classify meat cuts sampled early post-mortem according to their forthcoming color. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Quantum coherence and entanglement control for atom-cavity systems

    NASA Astrophysics Data System (ADS)

    Shu, Wenchong

    Coherence and entanglement play a significant role in the quantum theory. Ideal quantum systems, "closed" to the outside world, remain quantum forever and thus manage to retain coherence and entanglement. Real quantum systems, however, are open to the environment and are therefore susceptible to the phenomenon of decoherence and disentanglement which are major hindrances to the effectiveness of quantum information processing tasks. In this thesis we have theoretically studied the evolution of coherence and entanglement in quantum systems coupled to various environments. We have also studied ways and means of controlling the decay of coherence and entanglement. We have studied the exact qubit entanglement dynamics of some interesting initial states coupled to a high-Q cavity containing zero photon, one photon, two photons and many photons respectively. We have found that an initially correlated environmental state can serve as an enhancer for entanglement decay or generation processes. More precisely, we have demonstrated that the degree of entanglement, including its collapse as well as its revival times, can be significantly modified by the correlated structure of the environmental modes. We have also studied dynamical decoupling (DD) technique --- a prominent strategy of controlling decoherence and preserving entanglement in open quantum systems. We have analyzed several DD control methods applied to qubit systems that can eliminate the system-environment coupling and prolong the quantum coherence time. Particularly, we have proposed a new DD sequence consisting a set of designed control operators that can universally protected an unknown qutrit state against colored phase and amplitude environment noises. In addition, in a non-Markovian regime, we have reformulated the quantum state diffusion (QSD) equation to incorporate the effect of the external control fields. Without any assumptions on the system-environment coupling and the size of environment, we have consistently solved the control dynamics of open quantum systems using this stochastic QSD approach. By implementing the QSD equation, our numerical results have revealed that how the control efficacy depends on the designed time points and shapes of the applied control pulses, and the environment memory time scale.

  10. Color quality improvement of reconstructed images in color digital holography using speckle method and spectral estimation

    NASA Astrophysics Data System (ADS)

    Funamizu, Hideki; Onodera, Yusei; Aizu, Yoshihisa

    2018-05-01

    In this study, we report color quality improvement of reconstructed images in color digital holography using the speckle method and the spectral estimation. In this technique, an object is illuminated by a speckle field and then an object wave is produced, while a plane wave is used as a reference wave. For three wavelengths, the interference patterns of two coherent waves are recorded as digital holograms on an image sensor. Speckle fields are changed by moving a ground glass plate in an in-plane direction, and a number of holograms are acquired to average the reconstructed images. After the averaging process of images reconstructed from multiple holograms, we use the Wiener estimation method for obtaining spectral transmittance curves in reconstructed images. The color reproducibility in this method is demonstrated and evaluated using a Macbeth color chart film and staining cells of onion.

  11. Photographic Film Image Enhancement

    DOT National Transportation Integrated Search

    1975-01-01

    A series of experiments were undertaken to assess the feasibility of defogging color film by the techniques of Optical Spatial Filtering. A coherent optical processor was built using red, blue, and green laser light input and specially designed Fouri...

  12. Comparison of drusen area detected by spectral domain optical coherence tomography and color fundus imaging.

    PubMed

    Yehoshua, Zohar; Gregori, Giovanni; Sadda, SriniVas R; Penha, Fernando M; Goldhardt, Raquel; Nittala, Muneeswar G; Konduru, Ranjith K; Feuer, William J; Gupta, Pooja; Li, Ying; Rosenfeld, Philip J

    2013-04-03

    To compare the measurements of drusen area from manual segmentation of color fundus photographs with those generated by an automated algorithm designed to detect elevations of the retinal pigment epithelium (RPE) on spectral domain optical coherence tomography (SD-OCT) images. Fifty eyes with drusen secondary to nonexudative age-related macular degeneration were enrolled. All eyes were imaged with a high-definition OCT instrument using a 200 × 200 A-scan raster pattern covering a 6 mm × 6 mm area centered on the fovea. Digital color fundus images were taken on the same day. Drusen were traced manually on the fundus photos by graders at the Doheny Image Reading Center, whereas quantitative OCT measurements of drusen were obtained by using a fully automated algorithm. The color fundus images were registered to the OCT data set and measurements within corresponding 3- and 5-mm circles centered at the fovea were compared. The mean areas (± SD [range]) for the 3-mm circles were SD-OCT = 1.57 (± 1.08 [0.03-4.44]); 3-mm color fundus = 1.92 (± 1.08 [0.20-3.95]); 5-mm SD-OCT = 2.12 (± 1.55 [0.03-5.40]); and 5-mm color fundus = 3.38 (± 1.90 [0.39-7.49]). The mean differences between color images and the SD-OCT (color - SD-OCT) were 0.36 (± 0.93) (P = 0.008) for the 3-mm circle and 1.26 (± 1.38) (P < 0.001) for the 5-mm circle measurements. Intraclass correlation coefficients of agreements for 3- and 5-mm measurements were 0.599 and 0.540, respectively. There was only fair agreement between drusen area measurements obtained from SD-OCT images and color fundus photos. Drusen area measurements on color fundus images were larger than those with SD-OCT scans. This difference can be attributed to the fact that the OCT algorithm defines drusen in terms of RPE deformations above a certain threshold, and will not include small, flat drusen and subretinal drusenoid deposits. The two approaches provide complementary information about drusen.

  13. Approaching Terahertz Range with 3-color Broadband Coherent Raman Micro Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ujj, Laszlo; Olson, Trevor; Amos, James

    The presentation reports the recent progress made on reliable signal recording and processing using 3-color broadband coherent Raman scattering (3C-BCRS). Signals are generated either from nanoparticle structures on surfaces or from bulk samples in transmission and in epi-detected mode. Spectra are recorded with a narrowband (at 532 nm) and a broadband radiation produced by a newly optimized optical parametric oscillator using the signal or idler beams. Vibrational and librational bands are measured over the 0.15-15 THz spectral range from solution and crystalline samples. Volumetric Brag-filter approach is introduced for recording 3C-BCRS spectra at the first time. The technical limitations and advantages of the narrowband filtering relative to the Notch-filter technic is clarified. The signal is proportional to the spectral autocorrelation of the broadband radiation therefore the present scheme gives a better signal-to-noise ratio relative to the traditional multiplex CRS methods. This makes the automation of non-model dependent signal processing more reliable to extract vibrational information which is very crucial in coherent Raman microscopy. Financial support from the Hal Marcus College of Science and Engineering is greatly appreciated.

  14. CHARACTERIZING PHOTORECEPTOR CHANGES IN ACUTE POSTERIOR MULTIFOCAL PLACOID PIGMENT EPITHELIOPATHY USING ADAPTIVE OPTICS.

    PubMed

    Roberts, Philipp K; Nesper, Peter L; Onishi, Alex C; Skondra, Dimitra; Jampol, Lee M; Fawzi, Amani A

    2018-01-01

    To characterize lesions of acute posterior multifocal placoid pigment epitheliopathy (APMPPE) by multimodal imaging including adaptive optics scanning laser ophthalmoscopy (AOSLO). We included patients with APMPPE at different stages of evolution of the placoid lesions. Color fundus photography, spectral domain optical coherence tomography, infrared reflectance, fundus autofluorescence, and AOSLO images were obtained and registered to correlate microstructural changes. Eight eyes of four patients (two women) were included and analyzed by multimodal imaging. Photoreceptor reflectivity within APMPPE lesions was more heterogeneous than in adjacent healthy areas. Hyperpigmentation on color fundus photography appeared hyperreflective on infrared reflectance and on AOSLO. Irregularity of the interdigitation zone and the photoreceptor inner and outer segment junctions (IS/OS) on spectral domain optical coherence tomography was associated with photoreceptor hyporeflectivity on AOSLO. Interruption of the interdigitation zone or IS/OS was associated with loss of photoreceptor reflectivity on AOSLO. Irregularities in the reflectivity of the photoreceptor mosaic are visible on AOSLO even in inactive APMPPE lesions, where the photoreceptor bands on spectral domain optical coherence tomography have recovered. Adaptive optics scanning laser ophthalmoscopy combined with multimodal imaging has the potential to enhance our understanding of photoreceptor involvement in APMPPE.

  15. Signal Coherence Recovery Using Acousto-Optic Fourier Transform Architectures

    DTIC Science & Technology

    1990-06-14

    processing of data in ground- and space-based applications. We have implemented a prototype one-dimensional time-integrating acousto - optic (AO) Fourier...theory of optimum coherence recovery (CR) applicable in computation-limited environments. We have demonstrated direct acousto - optic implementation of CR

  16. Coherent anti-Stokes Raman scattering spectroscope/microscope based on a widely tunable laser source

    NASA Astrophysics Data System (ADS)

    Dementjev, A.; Gulbinas, V.; Serbenta, A.; Kaucikas, M.; Niaura, G.

    2010-03-01

    We present a coherent anti-Stokes Raman scattering (CARS) microscope based on a robust and simple laser source. A picosecond laser operating in a cavity dumping regime at the 1 MHz repetition rate was used to pump a traveling wave optical parametric generator, which serves as a two-color excitation light source for the CARS microscope. We demonstrate the ability of the presented CARS microscope to measure CARS spectra and images by using several detection schemes.

  17. A comparison between coherent and noncoherent mobile systems in large Doppler shift, delay spread, and C/I environment

    NASA Technical Reports Server (NTRS)

    Feher, Kamilo

    1993-01-01

    The performance and implementation complexity of coherent and of noncoherent QPSK and GMSK modulation/demodulation techniques in a complex mobile satellite systems environment, including large Doppler shift, delay spread, and low C/I, are compared. We demonstrate that for large f(sub d)T(sub b) products, where f(sub d) is the Doppler shift and T(sub b) is the bit duration, noncoherent (discriminator detector or differential demodulation) systems have a lower BER floor than their coherent counterparts. For significant delay spreads, e.g., tau(sub rms) greater than 0.4 T(sub b), and low C/I, coherent systems outperform noncoherent systems. However, the synchronization time of coherent systems is longer than that of noncoherent systems. Spectral efficiency, overall capacity, and related hardware complexity issues of these systems are also analyzed. We demonstrate that coherent systems have a simpler overall architecture (IF filter implementation-cost versus carrier recovery) and are more robust in an RF frequency drift environment. Additionally, the prediction tools, computer simulations, and analysis of coherent systems is simpler. The threshold or capture effect in low C/I interference environment is critical for noncoherent discriminator based systems. We conclude with a comparison of hardware architectures of coherent and of noncoherent systems, including recent trends in commercial VLSI technology and direct baseband to RF transmit, RF to baseband (0-IF) receiver implementation strategies.

  18. A comparison between coherent and noncoherent mobile systems in large Doppler shift, delay spread, and C/I environment

    NASA Astrophysics Data System (ADS)

    Feher, Kamilo

    The performance and implementation complexity of coherent and of noncoherent QPSK and GMSK modulation/demodulation techniques in a complex mobile satellite systems environment, including large Doppler shift, delay spread, and low C/I, are compared. We demonstrate that for large f(sub d)T(sub b) products, where f(sub d) is the Doppler shift and T(sub b) is the bit duration, noncoherent (discriminator detector or differential demodulation) systems have a lower BER floor than their coherent counterparts. For significant delay spreads, e.g., tau(sub rms) greater than 0.4 T(sub b), and low C/I, coherent systems outperform noncoherent systems. However, the synchronization time of coherent systems is longer than that of noncoherent systems. Spectral efficiency, overall capacity, and related hardware complexity issues of these systems are also analyzed. We demonstrate that coherent systems have a simpler overall architecture (IF filter implementation-cost versus carrier recovery) and are more robust in an RF frequency drift environment. Additionally, the prediction tools, computer simulations, and analysis of coherent systems is simpler. The threshold or capture effect in low C/I interference environment is critical for noncoherent discriminator based systems. We conclude with a comparison of hardware architectures of coherent and of noncoherent systems, including recent trends in commercial VLSI technology and direct baseband to RF transmit, RF to baseband (0-IF) receiver implementation strategies.

  19. High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts

    NASA Astrophysics Data System (ADS)

    Yang, Victor X. D.; Gordon, Maggie L.; Tang, Shou-Jiang; Marcon, Norman E.; Gardiner, Geoffrey; Qi, Bing; Bisland, Stuart; Seng-Yue, Emily; Lo, Stewart; Pekar, Julius; Wilson, Brian C.; Vitkin, I. Alex

    2003-09-01

    We previously described a fiber based Doppler optical coherence tomography system [1] capable of imaging embryo cardiac blood flow at 4~16 frames per second with wide velocity dynamic range [2]. Coupling this system to a linear scanning fiber optical catheter design that minimizes friction and vibrations, we report here the initial results of in vivo endoscopic Doppler optical coherence tomography (EDOCT) imaging in normal rat and human esophagus. Microvascular flow in blood vessels less than 100 µm diameter was detected using a combination of color-Doppler and velocity variance imaging modes, during clinical endoscopy using a mobile EDOCT system.

  20. Mean-field theory of baryonic matter for QCD in the large Nc and heavy quark mass limits

    NASA Astrophysics Data System (ADS)

    Adhikari, Prabal; Cohen, Thomas D.

    2013-11-01

    We discuss theoretical issues pertaining to baryonic matter in the combined heavy-quark and large Nc limits of QCD. Witten's classic argument that baryons and interacting systems of baryons can be described in a mean-field approximation with each of the quarks moving in an average potential due to the remaining quarks is heuristic. It is important to justify this heuristic description for the case of baryonic matter since systems of interacting baryons are intrinsically more complicated than single baryons due to the possibility of hidden color states—states in which the subsystems making up the entire baryon crystal are not color-singlet nucleons but rather colorful states coupled together to make a color-singlet state. In this work, we provide a formal justification of this heuristic prescription. In order to do this, we start by taking the heavy quark limit, thus effectively reducing the problem to a many-body quantum mechanical system. This problem can be formulated in terms of integrals over coherent states, which for this problem are simple Slater determinants. We show that for the many-body problem, the support region for these integrals becomes narrow at large Nc, yielding an energy which is well approximated by a single coherent state—that is a mean-field description. Corrections to the energy are of relative order 1/Nc. While hidden color states are present in the exact state of the heavy quark system, they only influence the interaction energy below leading order in 1/Nc.

  1. Implementation of generalized quantum measurements for unambiguous discrimination of multiple non-orthogonal coherent states.

    PubMed

    Becerra, F E; Fan, J; Migdall, A

    2013-01-01

    Generalized quantum measurements implemented to allow for measurement outcomes termed inconclusive can perform perfect discrimination of non-orthogonal states, a task which is impossible using only measurements with definitive outcomes. Here we demonstrate such generalized quantum measurements for unambiguous discrimination of four non-orthogonal coherent states and obtain their quantum mechanical description, the positive-operator valued measure. For practical realizations of this positive-operator valued measure, where noise and realistic imperfections prevent perfect unambiguous discrimination, we show that our experimental implementation outperforms any ideal standard-quantum-limited measurement performing the same non-ideal unambiguous state discrimination task for coherent states with low mean photon numbers.

  2. Application of color mixing for safety and quality inspection of agricultural products

    NASA Astrophysics Data System (ADS)

    Ding, Fujian; Chen, Yud-Ren; Chao, Kuanglin

    2005-11-01

    In this paper, color-mixing applications for food safety and quality was studied, including two-color mixing and three-color mixing. It was shown that the chromaticness of the visual signal resulting from two- or three-color mixing is directly related to the band ratio of light intensity at the two or three selected wavebands. An optical visual device using color mixing to implement the band ratio criterion was presented. Inspection through human vision assisted by an optical device that implements the band ratio criterion would offer flexibility and significant cost savings as compared to inspection with a multispectral machine vision system that implements the same criterion. Example applications of this optical color mixing technique were given for the inspection of chicken carcasses with various diseases and for the detection of chilling injury in cucumbers. Simulation results showed that discrimination by chromaticness that has a direct relation with band ratio can work very well with proper selection of the two or three narrow wavebands. This novel color mixing technique for visual inspection can be implemented on visual devices for a variety of applications, ranging from target detection to food safety inspection.

  3. Experimental tests of coherence and entanglement conservation under unitary evolutions

    NASA Astrophysics Data System (ADS)

    Černoch, Antonín; Bartkiewicz, Karol; Lemr, Karel; Soubusta, Jan

    2018-04-01

    We experimentally demonstrate the migration of coherence between composite quantum systems and their subsystems. The quantum systems are implemented using polarization states of photons in two experimental setups. The first setup is based on a linear optical controlled-phase quantum gate and the second scheme utilizes effects of nonlinear optics. Our experiment allows one to verify the relation between correlations of the subsystems and the coherence of the composite system, which was given in terms of a conservation law for maximal accessible coherence by Svozilík et al. [J. Svozilík et al., Phys. Rev. Lett. 115, 220501 (2015), 10.1103/PhysRevLett.115.220501]. We observe that the maximal accessible coherence is conserved for the implemented class of global evolutions of the composite system.

  4. Topological color codes on Union Jack lattices: a stable implementation of the whole Clifford group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katzgraber, Helmut G.; Theoretische Physik, ETH Zurich, CH-8093 Zurich; Bombin, H.

    We study the error threshold of topological color codes on Union Jack lattices that allow for the full implementation of the whole Clifford group of quantum gates. After mapping the error-correction process onto a statistical mechanical random three-body Ising model on a Union Jack lattice, we compute its phase diagram in the temperature-disorder plane using Monte Carlo simulations. Surprisingly, topological color codes on Union Jack lattices have a similar error stability to color codes on triangular lattices, as well as to the Kitaev toric code. The enhanced computational capabilities of the topological color codes on Union Jack lattices with respectmore » to triangular lattices and the toric code combined with the inherent robustness of this implementation show good prospects for future stable quantum computer implementations.« less

  5. Bioinspired Non-iridescent Structural Color from Polymer Blend Thin Films

    NASA Astrophysics Data System (ADS)

    Nallapaneni, Asritha; Shawkey, Matthew; Karim, Alamgir

    Colors exhibited in biological species are either due to natural pigments, sub-micron structural variation or both. Structural colors thus exhibited can be iridescent (ID) or non-iridescent (NID) in nature. NID colors originate due to interference and coherent scattering of light with quasi-ordered micro- and nano- structures. Specifically, in Eastern Bluebird (Sialia sialis) these nanostructures develop as a result of phase separation of β-keratin from cytoplasm present in cells. We replicate these structures via spinodal blend phase separation of PS-PMMA thin films. Colors of films vary from ultraviolet to blue. Scattering of UV-visible light from selectively leeched phase separated blends are studied in terms of varying domain spacing (200nm to 2 μm) of film. We control these parameters by tuning annealing time and temperature. Angle-resolved spectroscopy studies suggest that the films are weakly iridescent and scattering from phase-separated films is more diffused when compared to well-mixed films. This study offers solutions to several color-based application in paints and coatings industry.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evangelinos, Constantinos; Nair, Ravi; Ohmacht, Martin

    In one embodiment, a computer-implemented method includes encountering a store operation during a compile-time of a program, where the store operation is applicable to a memory line. It is determined, by a computer processor, that no cache coherence action is necessary for the store operation. A store-without-coherence-action instruction is generated for the store operation, responsive to determining that no cache coherence action is necessary. The store-without-coherence-action instruction specifies that the store operation is to be performed without a cache coherence action, and cache coherence is maintained upon execution of the store-without-coherence-action instruction.

  7. Store operations to maintain cache coherence

    DOEpatents

    Evangelinos, Constantinos; Nair, Ravi; Ohmacht, Martin

    2017-08-01

    In one embodiment, a computer-implemented method includes encountering a store operation during a compile-time of a program, where the store operation is applicable to a memory line. It is determined, by a computer processor, that no cache coherence action is necessary for the store operation. A store-without-coherence-action instruction is generated for the store operation, responsive to determining that no cache coherence action is necessary. The store-without-coherence-action instruction specifies that the store operation is to be performed without a cache coherence action, and cache coherence is maintained upon execution of the store-without-coherence-action instruction.

  8. Time evolution of surface chlorophyll patterns from cross-spectrum analysis of satellite color images

    NASA Technical Reports Server (NTRS)

    Denman, Kenneth L.; Abbott, Mark R.

    1988-01-01

    The rate of decorrelation of surface chlorophyll patterns as a function of the time separation between pairs of images was determined from two sequences of CZCS images of the Pacific Ocean area adjacent to Vancouver Island, Canada; cloud-free subareas were selected that were common to several images separated in time by 1-17 days. Image pairs were subjected to two-dimensional autospectrum and cross-spectrum analysis in an array processor, and squared coherence estimates found for several wave bands were plotted against time separation, in analogy with a time-lagged cross correlation function. It was found that, for wavelengths of 50-150 km, significant coherence was lost after 7-10 days, while for wavelengths of 25-50 km, significant coherence was lost after only 5-7 days. In both cases, offshore regions maintained coherence longer than coastal regions.

  9. Ultrafast switching of valence and generation of coherent acoustic phonons in semiconducting rare-earth monosulfides

    NASA Astrophysics Data System (ADS)

    Punpongjareorn, Napat; He, Xing; Tang, Zhongjia; Guloy, Arnold M.; Yang, Ding-Shyue

    2017-08-01

    We report on the ultrafast carrier dynamics and generation of coherent acoustic phonons in YbS, a semiconducting rare-earth monochalcogenide, using two-color pump-probe reflectivity. Compared to the carrier relaxation processes and lifetimes of conventional semiconductors, recombination of photoexcited electrons with holes in localized f orbitals is found to take place rapidly with a density-independent time constant of <500 fs in YbS. Such carrier annihilation signifies the unique and ultrafast nature of valence restoration of ytterbium ions after femtosecond photoexcitation switching. Following transfer of the absorbed energy to the lattice, coherent acoustic phonons emerge on the picosecond timescale as a result of the thermal strain in the photoexcited region. By analyzing the electronic and structural dynamics, we obtain the physical properties of YbS including its two-photon absorption and thermooptic coefficients, the period and decay time of the coherent oscillation, and the sound velocity.

  10. Spatially multiplexed interferometric microscopy with partially coherent illumination

    NASA Astrophysics Data System (ADS)

    Picazo-Bueno, José Ángel; Zalevsky, Zeev; García, Javier; Ferreira, Carlos; Micó, Vicente

    2016-10-01

    We have recently reported on a simple, low cost, and highly stable way to convert a standard microscope into a holographic one [Opt. Express 22, 14929 (2014)]. The method, named spatially multiplexed interferometric microscopy (SMIM), proposes an off-axis holographic architecture implemented onto a regular (nonholographic) microscope with minimum modifications: the use of coherent illumination and a properly placed and selected one-dimensional diffraction grating. In this contribution, we report on the implementation of partially (temporally reduced) coherent illumination in SMIM as a way to improve quantitative phase imaging. The use of low coherence sources forces the application of phase shifting algorithm instead of off-axis holographic recording to recover the sample's phase information but improves phase reconstruction due to coherence noise reduction. In addition, a less restrictive field of view limitation (1/2) is implemented in comparison with our previously reported scheme (1/3). The proposed modification is experimentally validated in a regular Olympus BX-60 upright microscope considering a wide range of samples (resolution test, microbeads, swine sperm cells, red blood cells, and prostate cancer cells).

  11. Optical microscope using an interferometric source of two-color, two-beam entangled photons

    DOEpatents

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-07-13

    Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.

  12. Coherence properties of nanofiber-trapped cesium atoms.

    PubMed

    Reitz, D; Sayrin, C; Mitsch, R; Schneeweiss, P; Rauschenbeutel, A

    2013-06-14

    We experimentally study the ground state coherence properties of cesium atoms in a nanofiber-based two-color dipole trap, localized ∼ 200 nm away from the fiber surface. Using microwave radiation to coherently drive the clock transition, we record Ramsey fringes as well as spin echo signals and infer a reversible dephasing time of T(2)(*) = 0.6 ms and an irreversible dephasing time of T(2)(') = 3.7 ms. By modeling the signals, we find that, for our experimental parameters, T(2)(*) and T(2)(') are limited by the finite initial temperature of the atomic ensemble and the heating rate, respectively. Our results represent a fundamental step towards establishing nanofiber-based traps for cold atoms as a building block in an optical fiber quantum network.

  13. Race to the Top. Ohio. State-Reported APR: Year One

    ERIC Educational Resources Information Center

    US Department of Education, 2012

    2012-01-01

    This paper describes Ohio's progress in implementing a comprehensive and coherent approach to education reform from the time of application through June 30, 2011. The sections presented in this report highlight key accomplishments made by Ohio to implement a comprehensive and coherent approach to education reform over the reporting period in the…

  14. Assessment of β-zone peripapillary atrophy by optical coherence tomography and scanning laser ophthalmoscopy imaging in glaucoma patients

    PubMed Central

    Seidensticker, Florian; Reznicek, Lukas; Mann, Thomas; Hübert, Irene; Kampik, Anselm; Ulbig, Michael; Hirneiss, Christoph; Neubauer, Aljoscha S; Kernt, Marcus

    2014-01-01

    Purpose To assess β-zone peripapillary atrophy (β-PPA) using spectral domain optical coherence tomography (SD-OCT), scanning laser ophthalmoscopy (SLO), and fundus auto-fluorescence (FAF) imaging in patients with primary open-angle glaucoma with advanced glaucomatous visual field defects. Methods A consecutive, prospective series of 82 study eyes with primary open-angle glaucoma were included in this study. All study participants underwent a full ophthalmic examination followed by SD-OCT, wide-field SLO, and FAF imaging of the optic nerve head and the peripapillary region. Results Eighty-four glaucomatous eyes were included in our prospective study. Correlation analyses for horizontally and vertically obtained β-PPA for all three imaging modalities (color SLO, FAF, and SD-OCT) revealed highest correlations between FAF and color SLO (Pearson correlation coefficient: 0.904 [P<0.001] for horizontal β-PPA and 0.786 [P<0.001] for vertical β-PPA). Bland–Altman plotting revealed highest agreements between color SLO and FAF, with −2.1 pixels ±1.96 standard deviation (SD) for horizontal β-PPA, SD: 10.5 pixels and 2.4 pixels ±1.96 SD for vertical β-PPA. Conclusion β-PPA can be assessed using en-face SLO and cross-sectional SD-OCT imaging. Correlation analyses revealed highest correlations between color SLO and FAF imaging, while correlations between SLO and SD-OCT were weak. A more precise structural definition of β-PPA is needed. PMID:25061270

  15. Three-color mixing for classifying agricultural products for safety and quality

    NASA Astrophysics Data System (ADS)

    Ding, Fujian; Chen, Yud-Ren; Chao, Kuanglin; Kim, Moon S.

    2006-05-01

    A three-color mixing application for food safety inspection is presented. It is shown that the chromaticness of the visual signal resulting from the three-color mixing achieved through our device is directly related to the three-band ratio of light intensity at three selected wavebands. An optical visual device using three-color mixing to implement the three-band ratio criterion is presented. Inspection through human vision assisted by an optical device that implements the three-band ratio criterion would offer flexibility and significant cost savings as compared to inspection with a multispectral machine vision system that implements the same criterion. Example applications of this optical three-color mixing technique are given for the inspection of chicken carcasses with various diseases and for apples with fecal contamination. With proper selection of the three narrow wavebands, discrimination by chromaticness that has a direct relation with the three-band ratio can work very well. In particular, compared with the previously presented two-color mixing application, the conditions of chicken carcasses were more easily identified using the three-color mixing application. The novel three-color mixing technique for visual inspection can be implemented on visual devices for a variety of applications, ranging from target detection to food safety inspection.

  16. Analysis of Fundus Shape in Highly Myopic Eyes by Using Curvature Maps Constructed from Optical Coherence Tomography

    PubMed Central

    Miyake, Masahiro; Yamashiro, Kenji; Akagi-Kurashige, Yumiko; Oishi, Akio; Tsujikawa, Akitaka; Hangai, Masanori; Yoshimura, Nagahisa

    2014-01-01

    Purpose To evaluate fundus shape in highly myopic eyes using color maps created through optical coherence tomography (OCT) image analysis. Methods We retrospectively evaluated 182 highly myopic eyes from 113 patients. After obtaining 12 lines of 9-mm radial OCT scans with the fovea at the center, the Bruch’s membrane line was plotted and its curvature was measured at 1-µm intervals in each image, which was reflected as a color topography map. For the quantitative analysis of the eye shape, mean absolute curvature and variance of curvature were calculated. Results The color maps allowed staphyloma visualization as a ring of green color at the edge and as that of orange-red color at the bottom. Analyses of mean and variance of curvature revealed that eyes with myopic choroidal neovascularization tended to have relatively flat posterior poles with smooth surfaces, while eyes with chorioretinal atrophy exhibited a steep, curved shape with an undulated surface (P<0.001). Furthermore, eyes with staphylomas and those without clearly differed in terms of mean curvature and the variance of curvature: 98.4% of eyes with staphylomas had mean curvature ≥7.8×10−5 [1/µm] and variance of curvature ≥0.26×10−8 [1/µm]. Conclusions We established a novel method to analyze posterior pole shape by using OCT images to construct curvature maps. Our quantitative analysis revealed that fundus shape is associated with myopic complications. These values were also effective in distinguishing eyes with staphylomas from those without. This tool for the quantitative evaluation of eye shape should facilitate future research of myopic complications. PMID:25259853

  17. Three-Dimensional Morphometric Analysis of the Iris by Swept-Source Anterior Segment Optical Coherence Tomography in a Caucasian Population.

    PubMed

    Invernizzi, Alessandro; Giardini, Piero; Cigada, Mario; Viola, Francesco; Staurenghi, Giovanni

    2015-07-01

    We analyzed by swept-source anterior segment optical coherence tomography (SS-ASOCT) the three-dimensional iris morphology in a Caucasian population, and correlated the findings with iris color, iris sectors, subject age, and sex. One eye each from consecutive healthy emmetropic (refractive spherical equivalent ± 3 diopters) volunteers were selected for the study. The enrolled eye underwent standardized anterior segment photography to assess iris color. Iris images were assessed by SS-ASOCT for volume, thickness, width, and pupil size. Sectoral variations of morphometric data among the superior, nasal, inferior, and temporal sectors were recorded. A total of 135 eyes from 57 males and 78 females, age 49 ± 17 years, fulfilled the inclusion criteria. All iris morphometric parameters varied significantly among the different sectors (all P < 0.0001). Iris total volume and thickness were significantly correlated with increasingly darker pigmentation (P < 0.0001, P = 0.0384, respectively). Neither width nor pupil diameter was influenced by iris color. Age did not affect iris volume or thickness; iris width increased and pupil diameter decreased with age (rs = 0.52, rs = -0.58, respectively). There was no effect of sex on iris volume, thickness, or pupil diameter; iris width was significantly greater in males (P = 0.007). Morphology of the iris varied by iris sector, and iris color was associated with differences in iris volume and thickness. Morphological parameter variations associated with iris color, sector, age, and sex can be used to identify pathological changes in suspect eyes. To be effective in clinical settings, construction of iris morphological databases for different ethnic and racial populations is essential.

  18. A real-time coherent dedispersion pipeline for the giant metrewave radio telescope

    NASA Astrophysics Data System (ADS)

    De, Kishalay; Gupta, Yashwant

    2016-02-01

    A fully real-time coherent dedispersion system has been developed for the pulsar back-end at the Giant Metrewave Radio Telescope (GMRT). The dedispersion pipeline uses the single phased array voltage beam produced by the existing GMRT software back-end (GSB) to produce coherently dedispersed intensity output in real time, for the currently operational bandwidths of 16 MHz and 32 MHz. Provision has also been made to coherently dedisperse voltage beam data from observations recorded on disk. We discuss the design and implementation of the real-time coherent dedispersion system, describing the steps carried out to optimise the performance of the pipeline. Presently functioning on an Intel Xeon X5550 CPU equipped with a NVIDIA Tesla C2075 GPU, the pipeline allows dispersion free, high time resolution data to be obtained in real-time. We illustrate the significant improvements over the existing incoherent dedispersion system at the GMRT, and present some preliminary results obtained from studies of pulsars using this system, demonstrating its potential as a useful tool for low frequency pulsar observations. We describe the salient features of our implementation, comparing it with other recently developed real-time coherent dedispersion systems. This implementation of a real-time coherent dedispersion pipeline for a large, low frequency array instrument like the GMRT, will enable long-term observing programs using coherent dedispersion to be carried out routinely at the observatory. We also outline the possible improvements for such a pipeline, including prospects for the upgraded GMRT which will have bandwidths about ten times larger than at present.

  19. Color fluctuations in hadrons and proton coherent diffractive dissociation on helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strikman, M.; Guzey, V.

    The differential cross section of inelastic coherent diffractive dissociation off nuclei {ital p}+{sup 4}He {r_arrow}{ital X}+{sup 4}He is expressed in terms of the relative cumulants of the cross-section distribution {ital P}{sub {ital N}}({sigma}). The theoretical result for the ratio {ital r}=({ital d}{sigma}{sub diff}/{ital dt}){sub {ital t}=0}{sup {ital p}He}/({ital d}{sigma}{sub diff}/{ital dt}) {sub {ital t}=0}{sup {ital pp}}=6.8--7.6 is close to the value {ital r}=7.1{plus_minus}0.7 which we extracted from the FNAL data. These are the only {ital A}{gt}2 data of this kind. The comparison provides the first confirmation of the color/cross-section fluctuation approach to the description of the absolute value of themore » inelastic diffraction cross section off nuclei. It provides also a new constraint on the first four cumulants of the cross-section distribution.« less

  20. Revealing proton shape fluctuations with incoherent diffraction at high energy

    DOE PAGES

    Mantysaari, H.; Schenke, B.

    2016-08-30

    The di erential cross section of exclusive di ractive vector meson production in electron proton collisions carries important information on the geometric structure of the proton. More speci cally, the coherent cross section as a function of the transferred transverse momentum is sensitive to the size of the proton, while the incoherent, or proton dissociative cross section is sensitive to uctuations of the gluon distribution in coordinate space. We show that at high energies the experimentally measured coherent and incoherent cross sections for the production of J= mesons are very well reproduced within the color glass condensate framework when strongmore » geometric uctuations of the gluon distribution in the proton are included. For meson production we also nd reasonable agreement. We study in detail the dependence of our results on various model parameters, including the average proton shape, analyze the e ect of saturation scale and color charge uctuations and constrain the degree of geometric uctuations.« less

  1. Efficient color display using low-absorption in-pixel color filters

    NASA Technical Reports Server (NTRS)

    Wang, Yu (Inventor)

    2000-01-01

    A display system having a non-absorbing and reflective color filtering array and a reflector to improve light utilization efficiency. One implementation of the color filtering array uses a surface plasmon filter having two symmetric metal-dielectric interfaces coupled with each other to produce a transmission optical wave at a surface plasmon resonance wavelength at one interface from a p-polarized input beam on the other interface. Another implementation of the color filtering array uses a metal-film interference filter having two dielectric layers and three metallic films.

  2. Time scales of pattern evolution from cross-spectrum analysis of advanced very high resolution radiometer and coastal zone color scanner imagery

    NASA Technical Reports Server (NTRS)

    Denman, Kenneth L.; Abbott, Mark R.

    1994-01-01

    We have selected square subareas (110 km on a side) from coastal zone color scanner (CZCS) and advanced very high resolution radiometer (AVHRR) images for 1981 in the California Current region off northern California for which we could identify sequences of cloud-free data over periods of days to weeks. We applied a two-dimensional fast Fourier transformation to images after median filtering, (x, y) plane removal, and cosine tapering. We formed autospectra and coherence spectra as functions of a scalar wavenumber. Coherence estimates between pairs of images were plotted against time separation between images for several wide wavenumber bands to provide a temporal lagged coherence function. The temporal rate of loss of correlation (decorrelation time scale) in surface patterns provides a measure of the rate of pattern change or evolution as a function of spatial dimension. We found that patterns evolved (or lost correlation) approximately twice as rapidly in upwelling jets as in the 'quieter' regions between jets. The rapid evolution of pigment patterns (lifetime of about 1 week or less for scales of 50-100 km) ought to hinder biomass transfer to zooplankton predators compared with phytoplankton patches that persist for longer times. We found no significant differences between the statistics of CZCS and AVHRR images (spectral shape or rate of decorrelation). In addition, in two of the three areas studied, the peak correlation between AVHRR and CZCS images from the same area occurred at zero lag, indicating that the patterns evolved simutaneously. In the third area, maximum coherence between thermal and pigment patterns occurred when pigment images lagged thermal images by 1-2 days, mirroring the expected lag of high pigment behind low temperatures (and high nutrients) in recently upwelled water. We conclude that in dynamic areas such as coastal upwelling systems, the phytoplankton cells (identified by pigment color patterns) behave largely as passive scalars at the mesoscale and that growth, death, and sinking of phytoplankton collectively play at most a mariginal role in determining the spectral statistics of the pigment patterns.

  3. Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout

    NASA Astrophysics Data System (ADS)

    Sukachev, D. D.; Sipahigil, A.; Nguyen, C. T.; Bhaskar, M. K.; Evans, R. E.; Jelezko, F.; Lukin, M. D.

    2017-12-01

    The negatively charged silicon-vacancy (SiV- ) color center in diamond has recently emerged as a promising system for quantum photonics. Its symmetry-protected optical transitions enable the creation of indistinguishable emitter arrays and deterministic coupling to nanophotonic devices. Despite this, the longest coherence time associated with its electronic spin achieved to date (˜250 ns ) has been limited by coupling to acoustic phonons. We demonstrate coherent control and suppression of phonon-induced dephasing of the SiV- electronic spin coherence by 5 orders of magnitude by operating at temperatures below 500 mK. By aligning the magnetic field along the SiV- symmetry axis, we demonstrate spin-conserving optical transitions and single-shot readout of the SiV- spin with 89% fidelity. Coherent control of the SiV- spin with microwave fields is used to demonstrate a spin coherence time T2 of 13 ms and a spin relaxation time T1 exceeding 1 s at 100 mK. These results establish the SiV- as a promising solid-state candidate for the realization of quantum networks.

  4. Colors of Ellipticals from GALEX to Spitzer

    NASA Astrophysics Data System (ADS)

    Schombert, James M.

    2016-12-01

    Multi-color photometry is presented for a large sample of local ellipticals selected by morphology and isolation. The sample uses data from the Galaxy Evolution Explorer (GALEX), Sloan Digital Sky Survey (SDSS), Two Micron All-Sky Survey (2MASS), and Spitzer to cover the filters NUV, ugri, JHK and 3.6 μm. Various two-color diagrams, using the half-light aperture defined in the 2MASS J filter, are very coherent from color to color, meaning that galaxies defined to be red in one color are always red in other colors. Comparison to globular cluster colors demonstrates that ellipticals are not composed of a single age, single metallicity (e.g., [Fe/H]) stellar population, but require a multi-metallicity model using a chemical enrichment scenario. Such a model is sufficient to explain two-color diagrams and the color-magnitude relations for all colors using only metallicity as a variable on a solely 12 Gyr stellar population with no evidence of stars younger than 10 Gyr. The [Fe/H] values that match galaxy colors range from -0.5 to +0.4, much higher (and older) than population characteristics deduced from Lick/IDS line-strength system studies, indicating an inconsistency between galaxy colors and line indices values for reasons unknown. The NUV colors have unusual behavior, signaling the rise and fall of the UV upturn with elliptical luminosity. Models with blue horizontal branch tracks can reproduce this behavior, indicating the UV upturn is strictly a metallicity effect.

  5. Early Visual Cortex Dynamics during Top-Down Modulated Shifts of Feature-Selective Attention.

    PubMed

    Müller, Matthias M; Trautmann, Mireille; Keitel, Christian

    2016-04-01

    Shifting attention from one color to another color or from color to another feature dimension such as shape or orientation is imperative when searching for a certain object in a cluttered scene. Most attention models that emphasize feature-based selection implicitly assume that all shifts in feature-selective attention underlie identical temporal dynamics. Here, we recorded time courses of behavioral data and steady-state visual evoked potentials (SSVEPs), an objective electrophysiological measure of neural dynamics in early visual cortex to investigate temporal dynamics when participants shifted attention from color or orientation toward color or orientation, respectively. SSVEPs were elicited by four random dot kinematograms that flickered at different frequencies. Each random dot kinematogram was composed of dashes that uniquely combined two features from the dimensions color (red or blue) and orientation (slash or backslash). Participants were cued to attend to one feature (such as color or orientation) and respond to coherent motion targets of the to-be-attended feature. We found that shifts toward color occurred earlier after the shifting cue compared with shifts toward orientation, regardless of the original feature (i.e., color or orientation). This was paralleled in SSVEP amplitude modulations as well as in the time course of behavioral data. Overall, our results suggest different neural dynamics during shifts of attention from color and orientation and the respective shifting destinations, namely, either toward color or toward orientation.

  6. Coordinated, Collaborative and Coherent: Developing and Implementing E-Learning Guidelines within a National Tertiary Education System

    ERIC Educational Resources Information Center

    Suddaby, Gordon; Milne, John

    2008-01-01

    Purpose: The paper aims to discusses two complementary initiatives focussed on developing and implementing e-learning guidelines to support good pedagogy in e-learning practice. Design/methodology/approach: The first initiative is the development of a coherent set of open access e-learning guidelines for the New Zealand tertiary sector. The second…

  7. Structural Coloration of a Colloidal Amorphous Array is Intensified by Carbon Nanolayers.

    PubMed

    Takeoka, Yukikazu; Iwata, Masanori; Seki, Takahiro; Nueangnoraj, Khanin; Nishihara, Hirotomo; Yoshioka, Shinya

    2018-04-10

    In this study, we introduce the possibility of applying a colloidal amorphous array composed of fine silica particles as a structural-color material to invisible information technology. The appearance of a thick filmlike colloidal amorphous array formed from fine silica particles is considerably influenced by incoherent light scattering across the entire visible region. Therefore, regardless of the diameter of the fine silica particles, the thick colloidal amorphous array exhibits a white color to the naked eye. When carbon is uniformly deposited in the colloidal amorphous array by a pressure-pulsed chemical vapor deposition method, incoherent light scattering in the colloidal amorphous array is suppressed. As a result, coherent light scattering due to the short-range order in the colloidal amorphous array becomes conspicuous and the array exhibits a vivid structural color. As structures, such as letters and pictures, can be drawn using this technology, the colloidal amorphous array as a structural-colored material may also be applicable for invisible information technology.

  8. Multiple-object permanence tracking: limitation in maintenance and transformation of perceptual objects.

    PubMed

    Saiki, Jun

    2002-01-01

    Research on change blindness and transsaccadic memory revealed that a limited amount of information is retained across visual disruptions in visual working memory. It has been proposed that visual working memory can hold four to five coherent object representations. To investigate their maintenance and transformation in dynamic situations, I devised an experimental paradigm called multiple-object permanence tracking (MOPT) that measures memory for multiple feature-location bindings in dynamic situations. Observers were asked to detect any color switch in the middle of a regular rotation of a pattern with multiple colored disks behind an occluder. The color-switch detection performance dramatically declined as the pattern rotation velocity increased, and this effect of object motion was independent of the number of targets. The MOPT task with various shapes and colors showed that color-shape conjunctions are not available in the MOPT task. These results suggest that even completely predictable motion severely reduces our capacity of object representations, from four to only one or two.

  9. Object detection approach using generative sparse, hierarchical networks with top-down and lateral connections for combining texture/color detection and shape/contour detection

    DOEpatents

    Paiton, Dylan M.; Kenyon, Garrett T.; Brumby, Steven P.; Schultz, Peter F.; George, John S.

    2015-07-28

    An approach to detecting objects in an image dataset may combine texture/color detection, shape/contour detection, and/or motion detection using sparse, generative, hierarchical models with lateral and top-down connections. A first independent representation of objects in an image dataset may be produced using a color/texture detection algorithm. A second independent representation of objects in the image dataset may be produced using a shape/contour detection algorithm. A third independent representation of objects in the image dataset may be produced using a motion detection algorithm. The first, second, and third independent representations may then be combined into a single coherent output using a combinatorial algorithm.

  10. Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip.

    PubMed

    Förster, Michael; Paschen, Timo; Krüger, Michael; Lemell, Christoph; Wachter, Georg; Libisch, Florian; Madlener, Thomas; Burgdörfer, Joachim; Hommelhoff, Peter

    2016-11-18

    We demonstrate coherent control of multiphoton and above-threshold photoemission from a single solid-state nanoemitter driven by a fundamental and a weak second harmonic laser pulse. Depending on the relative phase of the two pulses, electron emission is modulated with a contrast of the oscillating current signal of up to 94%. Electron spectra reveal that all observed photon orders are affected simultaneously and similarly. We confirm that photoemission takes place within 10 fs. Accompanying simulations indicate that the current modulation with its large contrast results from two interfering quantum pathways leading to electron emission.

  11. Acoustical holographic recording with coherent optical read-out and image processing

    NASA Astrophysics Data System (ADS)

    Liu, H. K.

    1980-10-01

    New acoustic holographic wave memory devices have been designed for real-time in-situ recording applications. The basic operating principles of these devices and experimental results through the use of some of the prototypes of the devices are presented. Recording media used in the device include thermoplastic resin, Crisco vegetable oil, and Wilson corn oil. In addition, nonlinear coherent optical image processing techniques including equidensitometry, A-D conversion, and pseudo-color, all based on the new contact screen technique, are discussed with regard to the enhancement of the normally poor-resolved acoustical holographic images.

  12. COLORS OF ELLIPTICALS FROM GALEX TO SPITZER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schombert, James M., E-mail: jschombe@uoregon.edu

    2016-12-01

    Multi-color photometry is presented for a large sample of local ellipticals selected by morphology and isolation. The sample uses data from the Galaxy Evolution Explorer ( GALEX ), Sloan Digital Sky Survey (SDSS), Two Micron All-Sky Survey (2MASS), and Spitzer to cover the filters NUV , ugri , JHK and 3.6 μ m. Various two-color diagrams, using the half-light aperture defined in the 2MASS J filter, are very coherent from color to color, meaning that galaxies defined to be red in one color are always red in other colors. Comparison to globular cluster colors demonstrates that ellipticals are not composedmore » of a single age, single metallicity (e.g., [Fe/H]) stellar population, but require a multi-metallicity model using a chemical enrichment scenario. Such a model is sufficient to explain two-color diagrams and the color–magnitude relations for all colors using only metallicity as a variable on a solely 12 Gyr stellar population with no evidence of stars younger than 10 Gyr. The [Fe/H] values that match galaxy colors range from −0.5 to +0.4, much higher (and older) than population characteristics deduced from Lick/IDS line-strength system studies, indicating an inconsistency between galaxy colors and line indices values for reasons unknown. The NUV colors have unusual behavior, signaling the rise and fall of the UV upturn with elliptical luminosity. Models with blue horizontal branch tracks can reproduce this behavior, indicating the UV upturn is strictly a metallicity effect.« less

  13. Spin coherent states phenomena probed by quantum state tomography in Zeeman perturbed nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Teles, João; Auccaise, Ruben; Rivera-Ascona, Christian; Araujo-Ferreira, Arthur G.; Andreeta, José P.; Bonagamba, Tito J.

    2018-07-01

    Recently, we reported an experimental implementation of quantum information processing (QIP) by nuclear quadrupole resonance (NQR). In this work, we present the first quantum state tomography (QST) experimental implementation in the NQR QIP context. Two approaches are proposed, employing coherence selection by temporal and spatial averaging. Conditions for reduction in the number of cycling steps are analyzed, which can be helpful for larger spin systems. The QST method was applied to the study of spin coherent states, where the alignment-to-orientation phenomenon and the evolution of squeezed spin states show the effect of the nonlinear quadrupole interaction intrinsic to the NQR system. The quantum operations were implemented using a single-crystal sample of KClO3 and observing ^{35}Cl nuclei, which posses spin 3/2.

  14. Open and closed cortico-subcortical loops: A neuro-computational account of access to consciousness in the distractor-induced blindness paradigm.

    PubMed

    Ebner, Christian; Schroll, Henning; Winther, Gesche; Niedeggen, Michael; Hamker, Fred H

    2015-09-01

    How the brain decides which information to process 'consciously' has been debated over for decades without a simple explanation at hand. While most experiments manipulate the perceptual energy of presented stimuli, the distractor-induced blindness task is a prototypical paradigm to investigate gating of information into consciousness without or with only minor visual manipulation. In this paradigm, subjects are asked to report intervals of coherent dot motion in a rapid serial visual presentation (RSVP) stream, whenever these are preceded by a particular color stimulus in a different RSVP stream. If distractors (i.e., intervals of coherent dot motion prior to the color stimulus) are shown, subjects' abilities to perceive and report intervals of target dot motion decrease, particularly with short delays between intervals of target color and target motion. We propose a biologically plausible neuro-computational model of how the brain controls access to consciousness to explain how distractor-induced blindness originates from information processing in the cortex and basal ganglia. The model suggests that conscious perception requires reverberation of activity in cortico-subcortical loops and that basal-ganglia pathways can either allow or inhibit this reverberation. In the distractor-induced blindness paradigm, inadequate distractor-induced response tendencies are suppressed by the inhibitory 'hyperdirect' pathway of the basal ganglia. If a target follows such a distractor closely, temporal aftereffects of distractor suppression prevent target identification. The model reproduces experimental data on how delays between target color and target motion affect the probability of target detection. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. The implementation of thermal image visualization by HDL based on pseudo-color

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Zhang, JiangLing

    2004-11-01

    The pseudo-color method which maps the sampled data to intuitive perception colors is a kind of powerful visualization way. And the all-around system of pseudo-color visualization, which includes the primary principle, model and HDL (Hardware Description Language) implementation for the thermal images, is expatiated on in the paper. The thermal images whose signal is modulated as video reflect the temperature distribution of measured object, so they have the speciality of mass and real-time. The solution to the intractable problem is as follows: First, the reasonable system, i.e. the combining of global pseudo-color visualization and local special area accurate measure, muse be adopted. Then, the HDL pseudo-color algorithms in SoC (System on Chip) carry out the system to ensure the real-time. Finally, the key HDL algorithms for direct gray levels connection coding, proportional gray levels map coding and enhanced gray levels map coding are presented, and its simulation results are showed. The pseudo-color visualization of thermal images implemented by HDL in the paper has effective application in the aspect of electric power equipment test and medical health diagnosis.

  16. Rotary motion impairs attention to color change in 4-month-old infants.

    PubMed

    Kavšek, Michael

    2013-06-01

    Continuous color changes of an array of elements appear to stop changing if the array undergoes a coherent motion. This silencing illusion was demonstrated for adults by Suchow and Alvarez (Current Biology, 2011, vol. 21, pp. 140-143). The current forced-choice preferential looking study examined 4-month-old infants' sensitivity to the silencing illusion. Two experimental conditions were conducted. In the dynamic condition, infants were tested with two rotating rings of circular different-colored dots. In one of these rings the dots continuously changed color, whereas in the other ring the dots did not change color. In the static condition, the global rotary motion was eliminated from the targets. Infants preferred looking at the color-changing target in the static condition but not in the dynamic condition; they attended to the color changes in the static condition but failed to detect them in the dynamic condition. This differential looking pattern is consistent with the hypothesis that the silencing illusion can be established during early infancy. A control group of adults also responded to the silencing phenomenon. This substantiates that the stimuli generate a robust illusory effect. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Color Processing in the Early Visual System of Drosophila.

    PubMed

    Schnaitmann, Christopher; Haikala, Väinö; Abraham, Eva; Oberhauser, Vitus; Thestrup, Thomas; Griesbeck, Oliver; Reiff, Dierk F

    2018-01-11

    Color vision extracts spectral information by comparing signals from photoreceptors with different visual pigments. Such comparisons are encoded by color-opponent neurons that are excited at one wavelength and inhibited at another. Here, we examine the circuit implementation of color-opponent processing in the Drosophila visual system by combining two-photon calcium imaging with genetic dissection of visual circuits. We report that color-opponent processing of UV short /blue and UV long /green is already implemented in R7/R8 inner photoreceptor terminals of "pale" and "yellow" ommatidia, respectively. R7 and R8 photoreceptors of the same type of ommatidia mutually inhibit each other directly via HisCl1 histamine receptors and receive additional feedback inhibition that requires the second histamine receptor Ort. Color-opponent processing at the first visual synapse represents an unexpected commonality between Drosophila and vertebrates; however, the differences in the molecular and cellular implementation suggest that the same principles evolved independently. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Large-Scale Curriculum Reform in Finland--Exploring the Interrelation between Implementation Strategy, the Function of the Reform, and Curriculum Coherence

    ERIC Educational Resources Information Center

    Pietarinen, Janne; Pyhältö, Kirsi; Soini, Tiina

    2017-01-01

    The study aims to gain a better understanding of the national large-scale curriculum process in terms of the used implementation strategies, the function of the reform, and the curriculum coherence perceived by the stakeholders accountable in constructing the national core curriculum in Finland. A large body of school reform literature has shown…

  19. AMISH EYE STUDY: Baseline Spectral Domain Optical Coherence Tomography Characteristics of Age-Related Macular Degeneration.

    PubMed

    Nittala, Muneeswar G; Song, Yeunjoo E; Sardell, Rebecca; Adams, Larry D; Pan, Samuel; Velaga, Swetha B; Horst, Violet; Dana, Debra; Caywood, Laura; Laux, Renee; Fuzzell, Denise; Fuzzell, Sarada; Scott, William K; Cooke Bailey, Jessica N; Igo, Robert P; Haines, Jonathan; Pericak-Vance, Margaret A; Sadda, SriniVas R; Stambolian, Dwight

    2018-05-09

    To describe spectral domain optical coherence tomography (SD-OCT) findings in an Amish cohort to assess SD-OCT markers for early age-related macular degeneration (AMD). The authors performed a family-based prospective cohort study of 1,146 elderly Amish subjects (age range 50-99 years) (2,292 eyes) who had a family history of at least 1 individual with AMD. All subjects underwent complete ophthalmic examinations, SD-OCT using both Cirrus and Spectralis (20 × 20° scan area) instruments, fundus autofluorescence, infrared imaging, and color fundus photography. Spectral domain optical coherence tomography characteristics were analyzed in subjects with AMD (with and without subretinal drusenoid deposits [SDDs]) and normal healthy cohorts. Participants' mean age was 65.2 years (SD ± 11). Color fundus photographic findings in 596 (53%) subjects (1,009 eyes) were consistent with AMD; the remaining 478 (43%) subjects showed no signs of AMD. The choroid was significantly thinner on OCT (242 ± 76 µm, P < 0.001) in those with AMD compared with those without (263 ± 63 µm). Subretinal drusenoid deposits were found in 143 eyes (7%); 11 of the 143 eyes (8%) had no other manifestations of AMD. Drusen volume (P < 0.001) and area of geographic atrophy (P < 0.001) were significantly greater, and choroid was significantly (P < 0.001) thinner in subjects with SDDs versus those without SDDs. The authors describe spectral domain optical coherence tomography characteristics in an elderly Amish population with and without AMD, including the frequency of SDD. Although relatively uncommon in this population, the authors confirmed that SDDs can be found in the absence of other features of AMD and that eyes with SDDs have thinner choroids.

  20. On-Chip Strong Coupling and Efficient Frequency Conversion between Telecom and Visible Optical Modes.

    PubMed

    Guo, Xiang; Zou, Chang-Ling; Jung, Hojoong; Tang, Hong X

    2016-09-16

    While the frequency conversion of photons has been realized with various approaches, the realization of strong coupling between optical modes of different colors has never been reported. Here, we present an experimental demonstration of strong coupling between telecom (1550 nm) and visible (775 nm) optical modes on an aluminum nitride photonic chip. The nonreciprocal normal-mode splitting is demonstrated as a result of the coherent interference between photons with different colors. Furthermore, a wideband, bidirectional frequency conversion with 0.14 on-chip conversion efficiency and a bandwidth up to 1.2 GHz is demonstrated.

  1. Simple and versatile long range swept source for optical coherence tomography applications

    NASA Astrophysics Data System (ADS)

    Bräuer, Bastian; Lippok, Norman; Murdoch, Stuart G.; Vanholsbeeck, Frédérique

    2015-12-01

    We present a versatile long coherence length swept-source laser design for optical coherence tomography applications. This design consists of a polygonal spinning mirror and an optical gain chip in a modified Littman-Metcalf cavity. A narrowband intra-cavity filter is implemented through multiple passes off a diffraction grating set at grazing incidence. The key advantage of this design is that it can be readily adapted to any wavelength regions for which broadband gain chips are available. We demonstrate this by implementing sources at 1650 nm, 1550 nm, 1310 nm and 1050 nm. In particular, we present a 1310 nm swept source laser with 24 mm coherence length, 95 nm optical bandwidth, 2 kHz maximum sweep frequency and 7.5 mW average output power. These parameters make it a suitable source for the imaging of biological samples.

  2. Example-Based Image Colorization Using Locality Consistent Sparse Representation.

    PubMed

    Bo Li; Fuchen Zhao; Zhuo Su; Xiangguo Liang; Yu-Kun Lai; Rosin, Paul L

    2017-11-01

    Image colorization aims to produce a natural looking color image from a given gray-scale image, which remains a challenging problem. In this paper, we propose a novel example-based image colorization method exploiting a new locality consistent sparse representation. Given a single reference color image, our method automatically colorizes the target gray-scale image by sparse pursuit. For efficiency and robustness, our method operates at the superpixel level. We extract low-level intensity features, mid-level texture features, and high-level semantic features for each superpixel, which are then concatenated to form its descriptor. The collection of feature vectors for all the superpixels from the reference image composes the dictionary. We formulate colorization of target superpixels as a dictionary-based sparse reconstruction problem. Inspired by the observation that superpixels with similar spatial location and/or feature representation are likely to match spatially close regions from the reference image, we further introduce a locality promoting regularization term into the energy formulation, which substantially improves the matching consistency and subsequent colorization results. Target superpixels are colorized based on the chrominance information from the dominant reference superpixels. Finally, to further improve coherence while preserving sharpness, we develop a new edge-preserving filter for chrominance channels with the guidance from the target gray-scale image. To the best of our knowledge, this is the first work on sparse pursuit image colorization from single reference images. Experimental results demonstrate that our colorization method outperforms the state-of-the-art methods, both visually and quantitatively using a user study.

  3. At-line cotton color measurements by portable color spectrophotometers

    USDA-ARS?s Scientific Manuscript database

    As a result of reports of cotton bales that had significant color changes from their initial Uster® High Volume Instrument (HVI™) color measurements, a program was implemented to measure cotton fiber color (Rd, +b) at-line in remote locations (warehouse, mill, etc.). The measurement of cotton fiber...

  4. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC).

    PubMed

    Phillips, Zachary F; Chen, Michael; Waller, Laura

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel.

  5. Object detection approach using generative sparse, hierarchical networks with top-down and lateral connections for combining texture/color detection and shape/contour detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paiton, Dylan M.; Kenyon, Garrett T.; Brumby, Steven P.

    An approach to detecting objects in an image dataset may combine texture/color detection, shape/contour detection, and/or motion detection using sparse, generative, hierarchical models with lateral and top-down connections. A first independent representation of objects in an image dataset may be produced using a color/texture detection algorithm. A second independent representation of objects in the image dataset may be produced using a shape/contour detection algorithm. A third independent representation of objects in the image dataset may be produced using a motion detection algorithm. The first, second, and third independent representations may then be combined into a single coherent output using amore » combinatorial algorithm.« less

  6. Color Comprehension and Color Categories among Blind Students: A Multi-Sensory Approach in Implementing Concrete Language to Include All Students in Advanced Writing Classes

    ERIC Educational Resources Information Center

    Antarasena, Salinee

    2009-01-01

    This study investigates teaching methods regarding color comprehension and color categorization among blind students, as compared to their non-blind peers and whether they understand and represent the same color comprehension and color categories. Then after digit codes for color comprehension teaching and assistive technology for the blind had…

  7. Color digital lensless holographic microscopy: laser versus LED illumination.

    PubMed

    Garcia-Sucerquia, Jorge

    2016-08-20

    A comparison of the performance of color digital lensless holographic microscopy (CDLHM) as utilized for illumination of RGB lasers or a super-bright white-light LED with a set of spectral filters is presented. As the use of lasers in CDLHM conceals the possibility of having a compact, lightweight, portable, and low cost microscope, and additionally the limited available laser radiation wavelengths limit a real multispectral imaging microscope, here we present the use of super-bright white-light LED and spectral filters for illuminating the sample. The performance of RGB laser-CDLHM and LED-CDLHM is evaluated on imaging a section of the head of a Drosophila melanogaster fly. This comparison shows that there is trade-off between the spatial resolution of the microscope and the light sources utilized, which can be understood with regard to the coherence properties of the illuminating light. Despite the smaller spatial coherence features of LED-CDLHM in comparison with laser-CDLHM, the former shows promise as a portable RGB digital lensless holographic microscope that could be extended to other wavelengths by the use of different spectral filters.

  8. The original method for imaging of biological tissues in optical coherence tomography with usage of hyperchromatic lens

    NASA Astrophysics Data System (ADS)

    Egorov, D. I.

    2017-06-01

    Our study focuses on an analysis of the original method of investigation biological tissues in the spectral OCT (optical coherence tomography) with usage hyperchromatic lenses. Using hyperchromatic lens, i.e. the lens with uncorrected longitudinal color allows scanning in the depth of the object by changing the wavelength of the emitter. In this case, the depth of the scan will be determined not by the microlens depth of field, but the value of axial color. In our study, we demonstrated the advantages of this method of research on biological tissues existing. Spectral OCT schemes with the hyperchromatic lens could increase the depth of spectral scanning, eliminate the use of multi-channel systems with a set of microscope objectives, reduce the time of measurement. In our paper, we show the developed method of calculation of hyperchromatic lenses and hybrid hyperchromatic lens consisting of a diffractive and refractive component in spectral OCT systems. We also demonstrate the results of aberration calculation designed microscope lenses. We show examples of developed hyperchromatic lenses with the diffractive element and without it.

  9. Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout.

    PubMed

    Sukachev, D D; Sipahigil, A; Nguyen, C T; Bhaskar, M K; Evans, R E; Jelezko, F; Lukin, M D

    2017-12-01

    The negatively charged silicon-vacancy (SiV^{-}) color center in diamond has recently emerged as a promising system for quantum photonics. Its symmetry-protected optical transitions enable the creation of indistinguishable emitter arrays and deterministic coupling to nanophotonic devices. Despite this, the longest coherence time associated with its electronic spin achieved to date (∼250  ns) has been limited by coupling to acoustic phonons. We demonstrate coherent control and suppression of phonon-induced dephasing of the SiV^{-} electronic spin coherence by 5 orders of magnitude by operating at temperatures below 500 mK. By aligning the magnetic field along the SiV^{-} symmetry axis, we demonstrate spin-conserving optical transitions and single-shot readout of the SiV^{-} spin with 89% fidelity. Coherent control of the SiV^{-} spin with microwave fields is used to demonstrate a spin coherence time T_{2} of 13 ms and a spin relaxation time T_{1} exceeding 1 s at 100 mK. These results establish the SiV^{-} as a promising solid-state candidate for the realization of quantum networks.

  10. Classification of functional interactions from multi-electrodes data using conditional modularity analysis

    NASA Astrophysics Data System (ADS)

    Makhtar, Siti Noormiza; Senik, Mohd Harizal

    2018-02-01

    The availability of massive amount of neuronal signals are attracting widespread interest in functional connectivity analysis. Functional interactions estimated by multivariate partial coherence analysis in the frequency domain represent the connectivity strength in this study. Modularity is a network measure for the detection of community structure in network analysis. The discovery of community structure for the functional neuronal network was implemented on multi-electrode array (MEA) signals recorded from hippocampal regions in isoflurane-anaesthetized Lister-hooded rats. The analysis is expected to show modularity changes before and after local unilateral kainic acid (KA)-induced epileptiform activity. The result is presented using color-coded graphic of conditional modularity measure for 19 MEA nodes. This network is separated into four sub-regions to show the community detection within each sub-region. The results show that classification of neuronal signals into the inter- and intra-modular nodes is feasible using conditional modularity analysis. Estimation of segregation properties using conditional modularity analysis may provide further information about functional connectivity from MEA data.

  11. Quantum state engineering by a coherent superposition of photon subtraction and addition

    NASA Astrophysics Data System (ADS)

    Lee, Su-Yong; Nha, Hyunchul

    2011-10-01

    We study a coherent superposition tâ+r↠of field annihilation and creation operator acting on continuous variable systems and propose its application for quantum state engineering. We propose an experimental scheme to implement this elementary coherent operation and discuss its usefulness to produce an arbitrary superposition of number states involving up to two photons.

  12. The Transgender Women of Color Initiative: Implementing and Evaluating Innovative Interventions to Enhance Engagement and Retention in HIV Care.

    PubMed

    Rebchook, Gregory; Keatley, JoAnne; Contreras, Robert; Perloff, Judy; Molano, Luis Freddy; Reback, Cathy J; Ducheny, Kelly; Nemoto, Tooru; Lin, Royce; Birnbaum, Jeffrey; Woods, Tiffany; Xavier, Jessica

    2017-02-01

    To improve health outcomes among transgender women of color living with HIV, the Health Resources and Services Administration's Special Programs of National Significance program funded the Enhancing Engagement and Retention in Quality HIV Care for Transgender Women of Color Initiative in 2012. Nine demonstration projects in four US urban areas implemented innovative, theory-based interventions specifically targeting transgender women of color in their jurisdictions. An evaluation and technical assistance center was funded to evaluate the outcomes of the access to care interventions, and these findings will yield best practices and lessons learned to improve the care and treatment of transgender women of color living with HIV infection.

  13. An Improved Filtering Method for Quantum Color Image in Frequency Domain

    NASA Astrophysics Data System (ADS)

    Li, Panchi; Xiao, Hong

    2018-01-01

    In this paper we investigate the use of quantum Fourier transform (QFT) in the field of image processing. We consider QFT-based color image filtering operations and their applications in image smoothing, sharpening, and selective filtering using quantum frequency domain filters. The underlying principle used for constructing the proposed quantum filters is to use the principle of the quantum Oracle to implement the filter function. Compared with the existing methods, our method is not only suitable for color images, but also can flexibly design the notch filters. We provide the quantum circuit that implements the filtering task and present the results of several simulation experiments on color images. The major advantages of the quantum frequency filtering lies in the exploitation of the efficient implementation of the quantum Fourier transform.

  14. Portable real-time color night vision

    NASA Astrophysics Data System (ADS)

    Toet, Alexander; Hogervorst, Maarten A.

    2008-03-01

    We developed a simple and fast lookup-table based method to derive and apply natural daylight colors to multi-band night-time images. The method deploys an optimal color transformation derived from a set of samples taken from a daytime color reference image. The colors in the resulting colorized multiband night-time images closely resemble the colors in the daytime color reference image. Also, object colors remain invariant under panning operations and are independent of the scene content. Here we describe the implementation of this method in two prototype portable dual band realtime night vision systems. One system provides co-aligned visual and near-infrared bands of two image intensifiers, the other provides co-aligned images from a digital image intensifier and an uncooled longwave infrared microbolometer. The co-aligned images from both systems are further processed by a notebook computer. The color mapping is implemented as a realtime lookup table transform. The resulting colorised video streams can be displayed in realtime on head mounted displays and stored on the hard disk of the notebook computer. Preliminary field trials demonstrate the potential of these systems for applications like surveillance, navigation and target detection.

  15. Coherent and phase-sensitive phenomena of ultrashort laser pulses propagating in three-level {lambda}-type systems studied with the finite-difference time-domain method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loiko, Yurii; Institute of Molecular and Atomic Physics, National Academy of Sciences of Belarus, Nezaleznasty Ave. 70, 220072 Minsk; Serrat, Carles

    2006-06-15

    Propagation of single- and two-color hyperbolic secant femtosecond laser pulses in a three-level {lambda}-type quantum system is investigated by solving the Maxwell and density matrix equations with the finite-difference time-domain and Runge-Kutta methods. As a first study of our modeling, we simulate pulse self-induced transparency (SIT) in two-level systems and see how this phenomenon can be controlled by manipulating the initial relative phase between the SIT pulse and a second control pulse, provided the ratio between both pulse frequencies obeys the relation {omega}{sub 1}/{omega}{sub 2}=3. We then examine frequency down-conversion processes that are observed with single- and two-color pulses themore » envelope area of which is equal to or a multiple of 2{pi}, for pulse frequencies close to resonance with the transitions of a three-level {lambda} medium. Also, phase-sensitive phenomena are discussed in the case of two-color {omega}-3{omega} pulses propagating resonantly in the three-level system. In particular, possibilities for such coherent control are found for frequency down-conversion processes when the ratio of the frequencies of optical transitions is {omega}{sub 13}/{omega}{sub 12}=3. The conditions for quantum control of four-wave mixing processes are also examined when the pulse frequencies of two-color {omega}-3{omega} pulses are far from any resonance of the three-level system. We demonstrate the possibility to cancel the phase sensitivity of the four-wave coupling in a {lambda}-type system by competition effects between optical transitions.« less

  16. Relations between emotion, memory, and attention: evidence from taboo stroop, lexical decision, and immediate memory tasks.

    PubMed

    MacKay, Donald G; Shafto, Meredith; Taylor, Jennifer K; Marian, Diane E; Abrams, Lise; Dyer, Jennifer R

    2004-04-01

    This article reports five experiments demonstrating theoretically coherent effects of emotion on memory and attention. Experiments 1-3 demonstrated three taboo Stroop effects that occur when people name the color of taboo words. One effect is longer color-naming times for taboo than for neutral words, an effect that diminishes with word repetition. The second effect is superior recall of taboo words in surprise memory tests following color naming. The third effect is better recognition memory for colors consistently associated with taboo words rather than with neutral words. None of these effects was due to retrieval factors, attentional disengagement processes, response inhibition, or strategic attention shifts. Experiments 4 and 5 demonstrated that taboo words impair immediate recall of the preceding and succeeding words in rapidly presented lists but do not impair lexical decision times. We argue that taboo words trigger specific emotional reactions that facilitate the binding of taboo word meaning to salient contextual aspects, such as occurrence in a task and font color in taboo Stroop tasks.

  17. Binding of intrinsic and extrinsic features in working memory.

    PubMed

    Ecker, Ullrich K H; Maybery, Murray; Zimmer, Hubert D

    2013-02-01

    There is ongoing debate concerning the mechanisms of feature binding in working memory. In particular, there is controversy regarding the extent to which these binding processes are automatic. The present article demonstrates that binding mechanisms differ depending on whether the to-be-integrated features are perceived as forming a coherent object. We presented a series of experiments that investigated the binding of color and shape, whereby color was either an intrinsic feature of the shape or an extrinsic feature of the shape's background. Results show that intrinsic color affected shape recognition, even when it was incidentally studied and irrelevant for the recognition task. In contrast, extrinsic color did not affect shape recognition, even when the association of color and shape was encoded and retrievable on demand. This strongly suggests that binding of intrinsic intra-item information but not extrinsic contextual information is obligatory in visual working memory. We highlight links to perception as well as implicit and explicit long-term memory, which suggest that the intrinsic-extrinsic dimension is a principle relevant to multiple domains of human cognition. 2013 APA, all rights reserved

  18. Practical witness for electronic coherences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Allan S.; Department of Physics, Imperial College London, London; Yuen-Zhou, Joel

    2014-12-28

    The origin of the coherences in two-dimensional spectroscopy of photosynthetic complexes remains disputed. Recently, it has been shown that in the ultrashort-pulse limit, oscillations in a frequency-integrated pump-probe signal correspond exclusively to electronic coherences, and thus such experiments can be used to form a test for electronic vs. vibrational oscillations in such systems. Here, we demonstrate a method for practically implementing such a test, whereby pump-probe signals are taken at several different pulse durations and used to extrapolate to the ultrashort-pulse limit. We present analytic and numerical results determining requirements for pulse durations and the optimal choice of pulse centralmore » frequency, which can be determined from an absorption spectrum. Our results suggest that for numerous systems, the required experiment could be implemented by many ultrafast spectroscopy laboratories using pulses of tens of femtoseconds in duration. Such experiments could resolve the standing debate over the nature of coherences in photosynthetic complexes.« less

  19. Simultaneous classical communication and quantum key distribution using continuous variables*

    NASA Astrophysics Data System (ADS)

    Qi, Bing

    2016-10-01

    Presently, classical optical communication systems employing strong laser pulses and quantum key distribution (QKD) systems working at single-photon levels are very different communication modalities. Dedicated devices are commonly required to implement QKD. In this paper, we propose a scheme which allows classical communication and QKD to be implemented simultaneously using the same communication infrastructure. More specially, we propose a coherent communication scheme where both the bits for classical communication and the Gaussian distributed random numbers for QKD are encoded on the same weak coherent pulse and decoded by the same coherent receiver. Simulation results based on practical system parameters show that both deterministic classical communication with a bit error rate of 10-9 and secure key distribution could be achieved over tens of kilometers of single-mode fibers. It is conceivable that in the future coherent optical communication network, QKD will be operated in the background of classical communication at a minimal cost.

  20. Practical witness for electronic coherences.

    PubMed

    Johnson, Allan S; Yuen-Zhou, Joel; Aspuru-Guzik, Alán; Krich, Jacob J

    2014-12-28

    The origin of the coherences in two-dimensional spectroscopy of photosynthetic complexes remains disputed. Recently, it has been shown that in the ultrashort-pulse limit, oscillations in a frequency-integrated pump-probe signal correspond exclusively to electronic coherences, and thus such experiments can be used to form a test for electronic vs. vibrational oscillations in such systems. Here, we demonstrate a method for practically implementing such a test, whereby pump-probe signals are taken at several different pulse durations and used to extrapolate to the ultrashort-pulse limit. We present analytic and numerical results determining requirements for pulse durations and the optimal choice of pulse central frequency, which can be determined from an absorption spectrum. Our results suggest that for numerous systems, the required experiment could be implemented by many ultrafast spectroscopy laboratories using pulses of tens of femtoseconds in duration. Such experiments could resolve the standing debate over the nature of coherences in photosynthetic complexes.

  1. A novel color vision test for detection of diabetic macular edema.

    PubMed

    Shin, Young Joo; Park, Kyu Hyung; Hwang, Jeong-Min; Wee, Won Ryang; Lee, Jin Hak; Lee, In Bum; Hyon, Joon Young

    2014-01-02

    To determine the sensitivity of the Seoul National University (SNU) computerized color vision test for detecting diabetic macular edema. From May to September 2003, a total of 73 eyes of 73 patients with diabetes mellitus were examined using the SNU computerized color vision test and optical coherence tomography (OCT). Color deficiency was quantified as the total error score on the SNU test and as error scores for each of four color quadrants corresponding to yellows (Q1), greens (Q2), blues (Q3), and reds (Q4). SNU error scores were assessed as a function of OCT foveal thickness and total macular volume (TMV). The error scores in Q1, Q2, Q3, and Q4 measured by the SNU color vision test increased with foveal thickness (P < 0.05), whereas they were not correlated with TMV. Total error scores, the summation of Q1 and Q3, the summation of Q2 and Q4, and blue-yellow (B-Y) error scores were significantly correlated with foveal thickness (P < 0.05), but not with TMV. The observed correlation between SNU color test error scores and foveal thickness indicates that the SNU test may be useful for detection and monitoring of diabetic macular edema.

  2. Diffraction patterns in Fresnel approximation of periodic objects for a colorimeter of two apertures

    NASA Astrophysics Data System (ADS)

    Cortes-Reynoso, Jose-German R.; Suarez-Romero, Jose G.; Hurtado-Ramos, Juan B.; Tepichin-Rodriguez, Eduardo; Solorio-Leyva, Juan Carlos

    2004-10-01

    In this work, we present a study of Fresnel diffraction of periodic structures in an optical system of two apertures. This system of two apertures was used successfully for measuring color in textile samples solving the problems of illumination and directionality that present current commercial equipments. However, the system is sensible to the spatial frequency of the periodic sample"s area enclosed in its optical field of view. The study of Fresnel diffraction allows us to establish criteria for geometrical parameters of measurements in order to assure invariance in angular rotations and spatial positions. In this work, we use the theory of partial coherence to calculate the diffraction through two continuous apertures. In the calculation process, we use the concept of point-spread function of the system for partial coherence, in this way we avoid complicated statistical processes commonly used in the partial coherence theory.

  3. Patchy 'coherence': using normalization process theory to evaluate a multi-faceted shared decision making implementation program (MAGIC).

    PubMed

    Lloyd, Amy; Joseph-Williams, Natalie; Edwards, Adrian; Rix, Andrew; Elwyn, Glyn

    2013-09-05

    Implementing shared decision making into routine practice is proving difficult, despite considerable interest from policy-makers, and is far more complex than merely making decision support interventions available to patients. Few have reported successful implementation beyond research studies. MAking Good Decisions In Collaboration (MAGIC) is a multi-faceted implementation program, commissioned by The Health Foundation (UK), to examine how best to put shared decision making into routine practice. In this paper, we investigate healthcare professionals' perspectives on implementing shared decision making during the MAGIC program, to examine the work required to implement shared decision making and to inform future efforts. The MAGIC program approached implementation of shared decision making by initiating a range of interventions including: providing workshops; facilitating development of brief decision support tools (Option Grids); initiating a patient activation campaign ('Ask 3 Questions'); gathering feedback using Decision Quality Measures; providing clinical leads meetings, learning events, and feedback sessions; and obtaining executive board level support. At 9 and 15 months (May and November 2011), two rounds of semi-structured interviews were conducted with healthcare professionals in three secondary care teams to explore views on the impact of these interventions. Interview data were coded by two reviewers using a framework derived from the Normalization Process Theory. A total of 54 interviews were completed with 31 healthcare professionals. Partial implementation of shared decision making could be explained using the four components of the Normalization Process Theory: 'coherence,' 'cognitive participation,' 'collective action,' and 'reflexive monitoring.' Shared decision making was integrated into routine practice when clinical teams shared coherent views of role and purpose ('coherence'). Shared decision making was facilitated when teams engaged in developing and delivering interventions ('cognitive participation'), and when those interventions fit with existing skill sets and organizational priorities ('collective action') resulting in demonstrable improvements to practice ('reflexive monitoring'). The implementation process uncovered diverse and conflicting attitudes toward shared decision making; 'coherence' was often missing. The study showed that implementation of shared decision making is more complex than the delivery of patient decision support interventions to patients, a portrayal that often goes unquestioned. Normalizing shared decision making requires intensive work to ensure teams have a shared understanding of the purpose of involving patients in decisions, and undergo the attitudinal shifts that many health professionals feel are required when comprehension goes beyond initial interpretations. Divergent views on the value of engaging patients in decisions remain a significant barrier to implementation.

  4. Coherent-Phase Monitoring Of Cavitation In Turbomachines

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1996-01-01

    Digital electronic signal-processing system analyzes outputs of accelerometers mounted on turbomachine to detect vibrations characteristic of cavitation. Designed to overcome limitation imposed by interference from discrete components. System digitally implements technique called "coherent-phase wide-band demodulation" (CPWBD), using phase-only (PO) filtering along envelope detection to search for unique coherent-phase relationship associated with cavitation and to minimize influence of large-amplitude discrete components.

  5. Wetting in Color: Designing a colorometric indicator for wettability

    NASA Astrophysics Data System (ADS)

    Raymond, Kevin; Burgess, Ian B.; Koay, Natalie; Kolle, Mathias; Loncar, Marko; Aizenberg, Joanna

    2012-02-01

    Colorimetric litmus tests such as pH paper have enjoyed wide commercial success due to their inexpensive production and exceptional ease of use. While such indicators commonly rely on a specific photochemical response to an analyte, we exploit structural color, derived from coherent scattering from wavelength-scale porosity rather than molecular absorption or luminescence, to create a Wetting-in-Color-Kit (WICK). This inexpensive and highly selective colorimetric indicator for organic liquids employs chemically encoded inverse-opal photonic crystals to translate minute differences in liquids' wettability to macroscopically distinct, easy-to-visualize color patterns. The highly symmetric re-entrant inter-pore geometry imparts a highly specific wetting threshold for liquids. We developed surface modification techniques to generate built-in chemistry gradients within the porous network. These let us tailor the wettability threshold to specific liquids across a continuous range. As wetting is a generic fluidic phenomenon, we envision that WICK could be suitable for applications in authentication or identification of unknown liquids across a broad range of industries.

  6. An initial investigation into pseudo-coloring for ultrasonic NDE of polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Van Pamel, A.; Brett, C. R.; Lowe, M. J. S.

    2015-03-01

    Ultrasonic imaging for NDE is limited by the challenge of detection, which relies on discriminating between objects based on their intensity. Whilst this works well in ultrasonically transparent media, in polycrystalline materials however, a host where scatterers are abundant, this is no longer the case. In such media, intensity information, as a means of interpreting an image, is compromised by the background of coherent microstructural noise. In a bid to improve this, it is suggested here to use pseudo-coloring to consider frequency information and distinguish objects based on their emitted frequency spectra. This approach exploits the frequency diversity; namely the difference in frequency dependence of the noise stemming from the material's microstructure, or backscatter, and that exhibited by the targets of interest: defects. Whereas established frequency diversity techniques exploit this additional information to reconvert it into amplitude data, color enables encoding frequency and intensity information independently. This article serves as an initial exploration of pseudo-coloring ultrasonic images for ultrasonic NDE of polycrystalline materials.

  7. Laser & Fiber Optics: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    ERIC Educational Resources Information Center

    Eickhoff, Luvern R.

    This instructional manual contains 20 learning activity packets for use in a workshop on lasers and fiber optics. The lessons cover the following topics: what a laser; coherent light; setting up the laser; characteristics of the laser beam; scattering of light; laser beam divergence, intensity, color, ophthalmology, and reflections; directivity of…

  8. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC)

    PubMed Central

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification—an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel. PMID:28152023

  9. Spectral coherent-state quantum cryptography.

    PubMed

    Cincotti, Gabriella; Spiekman, Leo; Wada, Naoya; Kitayama, Ken-ichi

    2008-11-01

    A novel implementation of quantum-noise optical cryptography is proposed, which is based on a simplified architecture that allows long-haul, high-speed transmission in a fiber optical network. By using a single multiport encoder/decoder and 16 phase shifters, this new approach can provide the same confidentiality as other implementations of Yuen's encryption protocol, which use a larger number of phase or polarization coherent states. Data confidentiality and error probability for authorized and unauthorized receivers are carefully analyzed.

  10. Optical Coherence Tomography Reflective Drusen Substructures Predict Progression to Geographic Atrophy in Age-related Macular Degeneration.

    PubMed

    Veerappan, Malini; El-Hage-Sleiman, Abdul-Karim M; Tai, Vincent; Chiu, Stephanie J; Winter, Katrina P; Stinnett, Sandra S; Hwang, Thomas S; Hubbard, G Baker; Michelson, Michelle; Gunther, Randall; Wong, Wai T; Chew, Emily Y; Toth, Cynthia A

    2016-12-01

    Structural and compositional heterogeneity within drusen comprising lipids, carbohydrates, and proteins have been previously described. We sought to detect and define phenotypic patterns of drusen heterogeneity in the form of optical coherence tomography-reflective drusen substructures (ODS) and examine their associations with age-related macular degeneration (AMD)-related features and AMD progression. Retrospective analysis in a prospective study. Patients with intermediate AMD (n = 349) enrolled in the multicenter Age-Related Eye Disease Study 2 (AREDS2) ancillary spectral-domain optical coherence tomography (SD OCT) study. Baseline SD OCT scans of 1 eye per patient were analyzed for the presence of ODS. Cross-sectional and longitudinal associations of ODS presence with AMD-related features visible on SD OCT and color photographs, including drusen volume, geographic atrophy (GA), and preatrophic features, were evaluated for the entire macular region. Similar associations were also made locally within a 0.5-mm-diameter region around individual ODS and corresponding control region without ODS in the same eye. Preatrophy SD OCT changes and GA, central GA, and choroidal neovascularization (CNV) from color photographs. Four phenotypic subtypes of ODS were defined: low reflective cores, high reflective cores, conical debris, and split drusen. Among the 349 participants, there were 307 eligible eyes and 74 (24%) had at least 1 ODS. The ODS at baseline were associated with (1) greater macular drusen volume at baseline (P < 0.001), (2) development of preatrophic changes at year 2 (P = 0.001-0.01), and (3) development of macular GA (P = 0.005) and preatrophic changes at year 3 (P = 0.002-0.008), but not development of CNV. The ODS at baseline in a local region were associated with (1) presence of preatrophy changes at baseline (P = 0.02-0.03) and (2) development of preatrophy changes at years 2 and 3 within the region (P = 0.008-0.05). Optical coherence tomography-reflective drusen substructures are optical coherence tomography-based biomarkers of progression to GA, but not to CNV, in eyes with intermediate AMD. Optical coherence tomography-reflective drusen substructures may be a clinical entity helpful in monitoring AMD progression and informing mechanisms in GA pathogenesis. Copyright © 2016 American Academy of Ophthalmology. All rights reserved.

  11. Optical Coherence Tomography Reflective Drusen Substructures Predict Progression to Geographic Atrophy in Non-neovascular Age-related Macular Degeneration

    PubMed Central

    Veerappan, Malini; El-Hage Sleiman, Abdul-Karim M.; Tai, Vincent; Chiu, Stephanie J.; Winter, Katrina P.; Stinnett, Sandra S.; Hwang, Thomas S.; Hubbard, G. Baker; Michelson, Michelle; Gunther, Randall; Wong, Wai T.; Chew, Emily Y.; Toth, Cynthia A.

    2016-01-01

    Purpose Structural and compositional heterogeneity within drusen, composed of lipid, carbohydrates, and proteins, have been previously described. We sought to detect and define phenotypic patterns of drusen heterogeneity in the form of optical coherence tomography–reflective drusen substructures (ODS) and examine their associations with age-related macular degeneration (AMD)-related features and AMD progression. Design Retrospective analysis in a prospective study. Participants Patients with intermediate AMD (n = 349) enrolled in the multicenter Age-Related Eye Disease Study 2 (AREDS2) ancillary spectral domain optical coherence tomography (SD OCT) study. Methods Baseline SD OCT scans of 1 eye per patient were analyzed for presence of ODS. Cross-sectional and longitudinal associations of ODS presence with AMD-related features visible on SD OCT and color photographs, including drusen volume, geographic atrophy (GA), and preatrophic features, were evaluated for the entire macular region. Similar associations were also made locally within a 0.5-mm diameter region around individual ODS and corresponding control region without ODS in the same eye. Main Outcome Measures Preatrophy SD OCT changes and GA, central GA, and choroidal neovascularization (CNV) from color photographs. Results Four phenotypic subtypes of ODS were defined: low reflective cores, high reflective cores, conical debris, and split drusen. Of the 349 participants, there were 307 eligible eyes and 74 (24%) had at least 1 ODS. The ODS at baseline were associated with (1) greater macular drusen volume at baseline (P < 0.001), (2) development of preatrophic changes at year 2 (P = 0.001–0.01), and (3) development of macular GA (P = 0.005) and preatrophic changes at year 3 (P = 0.002–0.008), but not development of CNV. The ODS at baseline in a local region were associated with (1) presence of preatrophy changes at baseline (P = 0.02-0.03) and (2) development of preatrophy changes at years 2 and 3 within the region (P = 0.008-0.05). Conclusions Optical coherence tomography–reflective drusen substructures are optical coherence tomography–based biomarkers of progression to GA, but not to CNV, in eyes with intermediate AMD. Optical coherence tomography–reflective drusen substructures may be a clinical entity helpful in monitoring AMD progression and informing mechanisms in GA pathogenesis. PMID:27793356

  12. Environment spectrum and coherence behaviours in a rare-earth doped crystal for quantum memory.

    PubMed

    Gong, Bo; Tu, Tao; Zhou, Zhong-Quan; Zhu, Xing-Yu; Li, Chuan-Feng; Guo, Guang-Can

    2017-12-21

    We theoretically investigate the dynamics of environment and coherence behaviours of the central ion in a quantum memory based on a rare-earth doped crystal. The interactions between the central ion and the bath spins suppress the flip-flop rate of the neighbour bath spins and yield a specific environment spectral density S(ω). Under dynamical decoupling pulses, this spectrum provides a general scaling for the coherence envelope and coherence time, which significantly extend over a range on an hour-long time scale. The characterized environment spectrum with ultra-long coherence time can be used to implement various quantum communication and information processing protocols.

  13. Coherent time-stretch transformation for real-time capture of wideband signals.

    PubMed

    Buckley, Brandon W; Madni, Asad M; Jalali, Bahram

    2013-09-09

    Time stretch transformation of wideband waveforms boosts the performance of analog-to-digital converters and digital signal processors by slowing down analog electrical signals before digitization. The transform is based on dispersive Fourier transformation implemented in the optical domain. A coherent receiver would be ideal for capturing the time-stretched optical signal. Coherent receivers offer improved sensitivity, allow for digital cancellation of dispersion-induced impairments and optical nonlinearities, and enable decoding of phase-modulated optical data formats. Because time-stretch uses a chirped broadband (>1 THz) optical carrier, a new coherent detection technique is required. In this paper, we introduce and demonstrate coherent time stretch transformation; a technique that combines dispersive Fourier transform with optically broadband coherent detection.

  14. On edge-aware path-based color spatial sampling for Retinex: from Termite Retinex to Light Energy-driven Termite Retinex

    NASA Astrophysics Data System (ADS)

    Simone, Gabriele; Cordone, Roberto; Serapioni, Raul Paolo; Lecca, Michela

    2017-05-01

    Retinex theory estimates the human color sensation at any observed point by correcting its color based on the spatial arrangement of the colors in proximate regions. We revise two recent path-based, edge-aware Retinex implementations: Termite Retinex (TR) and Energy-driven Termite Retinex (ETR). As the original Retinex implementation, TR and ETR scan the neighborhood of any image pixel by paths and rescale their chromatic intensities by intensity levels computed by reworking the colors of the pixels on the paths. Our interest in TR and ETR is due to their unique, content-based scanning scheme, which uses the image edges to define the paths and exploits a swarm intelligence model for guiding the spatial exploration of the image. The exploration scheme of ETR has been showed to be particularly effective: its paths are local minima of an energy functional, designed to favor the sampling of image pixels highly relevant to color sensation. Nevertheless, since its computational complexity makes ETR poorly practicable, here we present a light version of it, named Light Energy-driven TR, and obtained from ETR by implementing a modified, optimized minimization procedure and by exploiting parallel computing.

  15. Forth system for coherent-scatter radar data acquisition and processing

    NASA Technical Reports Server (NTRS)

    Rennier, A. D.; Bowhill, S. A.

    1985-01-01

    A real time collection system was developed for the Urbana coherent scatter radar system. The new system, designed for use with a microcomputer, has several advantages over the old system implemented with a minicomputer. The software used to collect the data is described as well as the processing software used to analyze the data. In addition a magnetic tape format for coherent scatter data exchange is given.

  16. Coherence-domain imaging with harmonic holography

    NASA Astrophysics Data System (ADS)

    Pu, Ye; Psaltis, Demetri

    2017-08-01

    Observing the fast dynamics of specific molecules or targets in three-dimensional (3D) space and time inside a crowded and complex environment, such as living cells or tissues, remain one of the grand open challenges in modern science. Harmonic holography tackle this challenge by combining the 3D imaging capability of holography with the ultrafast, coherent optical contrast offered by second-harmonic radiating imaging probes (SHRIMPs). Similar to fluorescence, the second-harmonic signal emitted from SHRIMPs provides a color contrast against the uninterested background scattering, which can be efficiently suppressed by an optical filter. We review the latest developments in SHRIMPs and harmonic holography and discuss their further applications in fluidics and biofluidics.

  17. Concentrating the phase of a coherent state by means of probabilistic amplification

    NASA Astrophysics Data System (ADS)

    Usuga, Mario A.; Müller, Christian R.; Wittmann, Christoffer; Marek, Petr; Filip, Radim; Marquardt, Christoph; Leuchs, Gerd; Andersen, Ulrik L.

    2011-10-01

    We discuss the recent implementation of phase concentration of an optical coherent state by use of a probabilistic noiseless amplifier. The operation of the amplifier is described pictorially with phase space diagrams, and the experimental results are outlined.

  18. Policy Coherence and Interplay between Climate Change Adaptation Policies and the Forestry Sector in Nepal.

    PubMed

    Ranabhat, Sunita; Ghate, Rucha; Bhatta, Laxmi Dutt; Agrawal, Nand Kishor; Tankha, Sunil

    2018-06-01

    Least Developed Countries are likely to be hit the hardest by climate change and need focused efforts towards adaptation. Nepal recognizes that it needs to integrate climate change adaptation into various policies, but limited understanding of how to make these policies coherent is among the factors that hinder effective adaptation action. This can lead to wasted resources and lost opportunities. This paper applies concepts from policy coherence for development frameworks and policy content analysis to examine coherence in Nepal's climate and forest policies-and discusses the factors hindering effective implementation. The policies are analyzed at the horizontal/external level at three layers-motivation, measures, and planned implementation process. The paper finds that policies are more consistent on motivation level and adaptation measures, but are less coherent on implementation. The National Adaptation Programme of Action (NAPA) is more explicit in identifying institutions, organizations, roles and responsibilities, resource allocation (financial), and a monitoring and evaluation plan for climate change adaptation while other policies such as Climate Change Policy 2011, National Biodiversity Strategy and Action Plan 2014-2020, Forest Policy 2015, and Forest Sector Strategy 2016 have critical gaps in this area. This paper conclude that formulation of a policy, articulating targets, and mobilizing financial resources are in themselves not sufficient to effectively address climate change adaptation. Policy-based legislation is required, together with development of a supportive collaborative multi-stakeholder approach at different levels of governance, backed up by effective, collaborative monitoring and enforcement.

  19. Policy Coherence and Interplay between Climate Change Adaptation Policies and the Forestry Sector in Nepal

    NASA Astrophysics Data System (ADS)

    Ranabhat, Sunita; Ghate, Rucha; Bhatta, Laxmi Dutt; Agrawal, Nand Kishor; Tankha, Sunil

    2018-06-01

    Least Developed Countries are likely to be hit the hardest by climate change and need focused efforts towards adaptation. Nepal recognizes that it needs to integrate climate change adaptation into various policies, but limited understanding of how to make these policies coherent is among the factors that hinder effective adaptation action. This can lead to wasted resources and lost opportunities. This paper applies concepts from policy coherence for development frameworks and policy content analysis to examine coherence in Nepal's climate and forest policies—and discusses the factors hindering effective implementation. The policies are analyzed at the horizontal/external level at three layers—motivation, measures, and planned implementation process. The paper finds that policies are more consistent on motivation level and adaptation measures, but are less coherent on implementation. The National Adaptation Programme of Action (NAPA) is more explicit in identifying institutions, organizations, roles and responsibilities, resource allocation (financial), and a monitoring and evaluation plan for climate change adaptation while other policies such as Climate Change Policy 2011, National Biodiversity Strategy and Action Plan 2014-2020, Forest Policy 2015, and Forest Sector Strategy 2016 have critical gaps in this area. This paper conclude that formulation of a policy, articulating targets, and mobilizing financial resources are in themselves not sufficient to effectively address climate change adaptation. Policy-based legislation is required, together with development of a supportive collaborative multi-stakeholder approach at different levels of governance, backed up by effective, collaborative monitoring and enforcement.

  20. Perceptual Organization and Operative Thought: A Study of Coherence in Memory.

    ERIC Educational Resources Information Center

    Heindel, Patricia; Kose, Gary

    Examined in three studies were the influence of perceptual organization on children's memory and the relationship between operational thought and memory performance. In the first study, 72 children at 5, 7, and 9 years of age were given a series of Piagetian tasks and a memory task. Subjects were presented with 10 color-shape pairs depicted in…

  1. Green disease in optical coherence tomography diagnosis of glaucoma.

    PubMed

    Sayed, Mohamed S; Margolis, Michael; Lee, Richard K

    2017-03-01

    Optical coherence tomography (OCT) has become an integral component of modern glaucoma practice. Utilizing color codes, OCT analysis has rendered glaucoma diagnosis and follow-up simpler and faster for the busy clinician. However, green labeling of OCT parameters suggesting normal values may confer a false sense of security, potentially leading to missed diagnoses of glaucoma and/or glaucoma progression. Conditions in which OCT color coding may be falsely negative (i.e., green disease) are identified. Early glaucoma in which retinal nerve fiber layer (RNFL) thickness and optic disc parameters, albeit labeled green, are asymmetric in both eyes may result in glaucoma being undetected. Progressively decreasing RNFL thickness may reveal the presence of progressive glaucoma that, because of green labeling, can be missed by the clinician. Other ocular conditions that can increase RNFL thickness can make the diagnosis of coexisting glaucoma difficult. Recently introduced progression analysis features of OCT may help detect green disease. Recognition of green disease is of paramount importance in diagnosing and treating glaucoma. Understanding the limitations of imaging technologies coupled with evaluation of serial OCT analyses, prompt clinical examination, and structure-function correlation is important to avoid missing real glaucoma requiring treatment.

  2. Subretinal drusenoid deposits with increased autofluorescence in eyes with reticular pseudodrusen.

    PubMed

    Lee, Mee Yon; Ham, Don-Il

    2014-01-01

    To characterize a variant type of drusenoid deposit with different imaging features in comparison to reticular pseudodrusen. Retrospective observational consecutive case series. Eyes showing atypical drusenoid lesions were sorted out from 257 eyes of 133 patients previously diagnosed as reticular pseudodrusen. Eyes were evaluated using color fundus photography, confocal scanning laser ophthalmoscopy, and spectral domain optical coherence tomography. A variant type of drusenoid deposits showing different imaging features from reticular pseudodrusen was found in 17 eyes of 12 patients (6.6%). The mean age of patients was 62.7 ± 11.6 years, and all patients were women. These deposits were observed as yellowish white, round to oval lesions on color photographs, located under the sensory retina and above the retinal pigment epithelium on spectral domain optical coherence tomography similar to reticular pseudodrusen. However, they were present in a smaller number as discrete lesions and showed increased autofluorescence. None of them were accompanied by late age-related macular degeneration. Subretinal drusenoid deposits are not homogeneous and can be classified into two types according to the fundus autofluorescence. Multimodal imaging tests are needed for the differential diagnosis of subretinal drusenoid deposits.

  3. Simultaneous classical communication and quantum key distribution using continuous variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Bing

    Currently, classical optical communication systems employing strong laser pulses and quantum key distribution (QKD) systems working at single-photon levels are very different communication modalities. Dedicated devices are commonly required to implement QKD. In this paper, we propose a scheme which allows classical communication and QKD to be implemented simultaneously using the same communication infrastructure. More specially, we propose a coherent communication scheme where both the bits for classical communication and the Gaussian distributed random numbers for QKD are encoded on the same weak coherent pulse and decoded by the same coherent receiver. Simulation results based on practical system parameters showmore » that both deterministic classical communication with a bit error rate of 10 –9 and secure key distribution could be achieved over tens of kilometers of single-mode fibers. It is conceivable that in the future coherent optical communication network, QKD will be operated in the background of classical communication at a minimal cost.« less

  4. Simultaneous classical communication and quantum key distribution using continuous variables

    DOE PAGES

    Qi, Bing

    2016-10-26

    Currently, classical optical communication systems employing strong laser pulses and quantum key distribution (QKD) systems working at single-photon levels are very different communication modalities. Dedicated devices are commonly required to implement QKD. In this paper, we propose a scheme which allows classical communication and QKD to be implemented simultaneously using the same communication infrastructure. More specially, we propose a coherent communication scheme where both the bits for classical communication and the Gaussian distributed random numbers for QKD are encoded on the same weak coherent pulse and decoded by the same coherent receiver. Simulation results based on practical system parameters showmore » that both deterministic classical communication with a bit error rate of 10 –9 and secure key distribution could be achieved over tens of kilometers of single-mode fibers. It is conceivable that in the future coherent optical communication network, QKD will be operated in the background of classical communication at a minimal cost.« less

  5. Sample-Based Surface Coloring

    PubMed Central

    Bürger, Kai; Krüger, Jens; Westermann, Rüdiger

    2011-01-01

    In this paper, we present a sample-based approach for surface coloring, which is independent of the original surface resolution and representation. To achieve this, we introduce the Orthogonal Fragment Buffer (OFB)—an extension of the Layered Depth Cube—as a high-resolution view-independent surface representation. The OFB is a data structure that stores surface samples at a nearly uniform distribution over the surface, and it is specifically designed to support efficient random read/write access to these samples. The data access operations have a complexity that is logarithmic in the depth complexity of the surface. Thus, compared to data access operations in tree data structures like octrees, data-dependent memory access patterns are greatly reduced. Due to the particular sampling strategy that is employed to generate an OFB, it also maintains sample coherence, and thus, exhibits very good spatial access locality. Therefore, OFB-based surface coloring performs significantly faster than sample-based approaches using tree structures. In addition, since in an OFB, the surface samples are internally stored in uniform 2D grids, OFB-based surface coloring can efficiently be realized on the GPU to enable interactive coloring of high-resolution surfaces. On the OFB, we introduce novel algorithms for color painting using volumetric and surface-aligned brushes, and we present new approaches for particle-based color advection along surfaces in real time. Due to the intermediate surface representation we choose, our method can be used to color polygonal surfaces as well as any other type of surface that can be sampled. PMID:20616392

  6. Time efficient Gabor fused master slave optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cernat, Ramona; Bradu, Adrian; Rivet, Sylvain; Podoleanu, Adrian

    2018-02-01

    In this paper the benefits in terms of operation time that Master/Slave (MS) implementation of optical coherence tomography can bring in comparison to Gabor fused (GF) employing conventional fast Fourier transform based OCT are presented. The Gabor Fusion/Master Slave Optical Coherence Tomography architecture proposed here does not need any data stitching. Instead, a subset of en-face images is produced for each focus position inside the sample to be imaged, using a reduced number of theoretically inferred Master masks. These en-face images are then assembled into a final volume. When the channelled spectra are digitized into 1024 sampling points, and more than 4 focus positions are required to produce the final volume, the Master Slave implementation of the instrument is faster than the conventional fast Fourier transform based procedure.

  7. Partially coherent wavefront propagation simulations: Mirror and monochromator crystal quality assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiegart, L., E-mail: lwiegart@bnl.gov; Fluerasu, A.; Chubar, O.

    2016-07-27

    We have applied fully-and partially-coherent synchrotron radiation wavefront propagation simulations, implemented in the “Synchrotron Radiation Workshop” (SRW) computer code, to analyse the effects of imperfect mirrors and monochromator at the Coherent Hard X-ray beamline. This beamline is designed for X-ray Photon Correlation Spectroscopy, a technique that heavily relies on the partial coherence of the X-ray beam and benefits from a careful preservation of the X-ray wavefront. We present simulations and a comparison with the measured beam profile at the sample position, which show the impact of imperfect optics on the wavefront.

  8. A new maximum-likelihood change estimator for two-pass SAR coherent change detection

    DOE PAGES

    Wahl, Daniel E.; Yocky, David A.; Jakowatz, Jr., Charles V.; ...

    2016-01-11

    In previous research, two-pass repeat-geometry synthetic aperture radar (SAR) coherent change detection (CCD) predominantly utilized the sample degree of coherence as a measure of the temporal change occurring between two complex-valued image collects. Previous coherence-based CCD approaches tend to show temporal change when there is none in areas of the image that have a low clutter-to-noise power ratio. Instead of employing the sample coherence magnitude as a change metric, in this paper, we derive a new maximum-likelihood (ML) temporal change estimate—the complex reflectance change detection (CRCD) metric to be used for SAR coherent temporal change detection. The new CRCD estimatormore » is a surprisingly simple expression, easy to implement, and optimal in the ML sense. As a result, this new estimate produces improved results in the coherent pair collects that we have tested.« less

  9. [Design and Implementation of Image Interpolation and Color Correction for Ultra-thin Electronic Endoscope on FPGA].

    PubMed

    Luo, Qiang; Yan, Zhuangzhi; Gu, Dongxing; Cao, Lei

    This paper proposed an image interpolation algorithm based on bilinear interpolation and a color correction algorithm based on polynomial regression on FPGA, which focused on the limited number of imaging pixels and color distortion of the ultra-thin electronic endoscope. Simulation experiment results showed that the proposed algorithm realized the real-time display of 1280 x 720@60Hz HD video, and using the X-rite color checker as standard colors, the average color difference was reduced about 30% comparing with that before color correction.

  10. Single-shot gas-phase thermometry by time-to-frequency mapping of coherence dephasing.

    PubMed

    Yue, Orin; Bremer, Marshall T; Pestov, Dmitry; Gord, James R; Roy, Sukesh; Dantus, Marcos

    2012-08-09

    We demonstrate a single-beam coherent anti-Stokes Raman scattering (CARS) technique for gas-phase thermometry that assesses the species-specific local gas temperature by single-shot time-to-frequency mapping of Raman-coherence dephasing. The proof-of-principle experiments are performed with air in a temperature-controlled gas cell. Impulsive excitation of molecular vibrations by an ultrashort pump/Stokes pulse is followed by multipulse probing of the 2330 cm(-1) Raman transition of N(2). This sequence of colored probe pulses, delayed in time with respect to each other and corresponding to three isolated spectral bands, imprints the coherence dephasing onto the measured CARS spectrum. For calibration purposes, the dephasing rates are recorded at various gas temperatures, and the relationship is fitted to a linear regression. The calibration data are then used to determine the gas temperature and are shown to provide better than 15 K accuracy. The described approach is insensitive to pulse energy fluctuations and can, in principle, gauge the temperature of multiple chemical species in a single laser shot, which is deemed particularly valuable for temperature profiling of reacting flows in gas-turbine combustors.

  11. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotoh, Hideki, E-mail: gotoh.hideki@lab.ntt.co.jp; Sanada, Haruki; Yamaguchi, Hiroshi

    2014-10-15

    Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL) method in a coherently coupled exciton-biexciton system in a single quantum dot (QD). PL and photoluminescence excitation spectroscopy (PLE) are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicatemore » that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.« less

  12. Preservice Teachers Developing Coherent Inquiry Investigations in Elementary Astronomy

    ERIC Educational Resources Information Center

    Plummer, Julia D.; Tanis Ozcelik, Arzu

    2015-01-01

    For students to attain deep understanding of scientific practices, they will need to have opportunities to participate in sustained engagement in doing science. Such opportunities begin with elementary teachers implementing coherent and well-sequenced inquiry-based investigations in their classrooms. This study explored how preservice teachers (N…

  13. Declining Student Enrollment: A Case Study Exploring How Three Suburban School Districts Crafted Coherence

    ERIC Educational Resources Information Center

    Dimmitt, Eric J.

    2012-01-01

    This qualitative multi-site case study's purpose was to prove that the crafting coherence process was evident when three suburban Midwestern school districts implemented schools' goals while experiencing reductions in instructional programming, staffing, and facilities resources along with school closings due to significant declining student…

  14. Searching for Coherence

    ERIC Educational Resources Information Center

    Lear, Rick

    2007-01-01

    This article describes how the Coalition of Essential Schools Northwest/Small Schools Project (CESNW/SSP) works with schools and districts to help them shape and then implement a coherent strategy that will lead to a redesigned high school system. The author highlights efforts taking place in two multiple high school districts: (1) Cascades School…

  15. Multiplex coherent anti-Stokes Raman scattering microspectroscopy of brain tissue with higher ranking data classification for biomedical imaging

    NASA Astrophysics Data System (ADS)

    Pohling, Christoph; Bocklitz, Thomas; Duarte, Alex S.; Emmanuello, Cinzia; Ishikawa, Mariana S.; Dietzeck, Benjamin; Buckup, Tiago; Uckermann, Ortrud; Schackert, Gabriele; Kirsch, Matthias; Schmitt, Michael; Popp, Jürgen; Motzkus, Marcus

    2017-06-01

    Multiplex coherent anti-Stokes Raman scattering (MCARS) microscopy was carried out to map a solid tumor in mouse brain tissue. The border between normal and tumor tissue was visualized using support vector machines (SVM) as a higher ranking type of data classification. Training data were collected separately in both tissue types, and the image contrast is based on class affiliation of the single spectra. Color coding in the image generated by SVM is then related to pathological information instead of single spectral intensities or spectral differences within the data set. The results show good agreement with the H&E stained reference and spontaneous Raman microscopy, proving the validity of the MCARS approach in combination with SVM.

  16. Coherent control of ultrafast optical four-wave mixing with two-color {omega}-3{omega} laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serrat, Carles

    2005-08-15

    A theoretical investigation on the coherent control of optical transient four-wave mixing interactions in two-level systems with two intense few-cycle propagating laser pulses of central angular frequencies {omega} and 3{omega} is reported. By numerically solving the full Maxwell-Bloch equations beyond the slowly varying envelope and rotating-wave approximations in the time domain, the nonlinear coupling to the optical field at frequency 5{omega} is found to depend critically on the initial relative phase {phi} of the propagating pulses: the coupling is enhanced when the pulses interfere constructively in the center ({phi}=0), while it is nearly suppressed when they are out of phasemore » ({phi}={pi})« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahl, Daniel E.; Yocky, David A.; Jakowatz, Jr., Charles V.

    In previous research, two-pass repeat-geometry synthetic aperture radar (SAR) coherent change detection (CCD) predominantly utilized the sample degree of coherence as a measure of the temporal change occurring between two complex-valued image collects. Previous coherence-based CCD approaches tend to show temporal change when there is none in areas of the image that have a low clutter-to-noise power ratio. Instead of employing the sample coherence magnitude as a change metric, in this paper, we derive a new maximum-likelihood (ML) temporal change estimate—the complex reflectance change detection (CRCD) metric to be used for SAR coherent temporal change detection. The new CRCD estimatormore » is a surprisingly simple expression, easy to implement, and optimal in the ML sense. As a result, this new estimate produces improved results in the coherent pair collects that we have tested.« less

  18. Bubble-Induced Color Doppler Feedback for Histotripsy Tissue Fractionation.

    PubMed

    Miller, Ryan M; Zhang, Xi; Maxwell, Adam D; Cain, Charles A; Xu, Zhen

    2016-03-01

    Histotripsy therapy produces cavitating bubble clouds to increasingly fractionate and eventually liquefy tissue using high-intensity ultrasound pulses. Following cavitation generated by each pulse, coherent motion of the cavitation residual nuclei can be detected using metrics formed from ultrasound color Doppler acquisitions. In this paper, three experiments were performed to investigate the characteristics of this motion as real-time feedback on histotripsy tissue fractionation. In the first experiment, bubble-induced color Doppler (BCD) and particle image velocimetry (PIV) analysis monitored the residual cavitation nuclei in the treatment region in an agarose tissue phantom treated with two-cycle histotripsy pulses at [Formula: see text] using a 500-kHz transducer. Both BCD and PIV results showed brief chaotic motion of the residual nuclei followed by coherent motion first moving away from the transducer and then rebounding back. Velocity measurements from both PIV and BCD agreed well, showing a monotonic increase in rebound time up to a saturation point for increased therapy dose. In a second experiment, a thin layer of red blood cells (RBC) was added to the phantom to allow quantification of the fractionation of the RBC layer to compare with BCD metrics. A strong linear correlation was observed between the fractionation level and the time to BCD peak rebound velocity over histotripsy treatment. Finally, the correlation between BCD feedback and histotripsy tissue fractionation was validated in ex vivo porcine liver evaluated histologically. BCD metrics showed strong linear correlation with fractionation progression, suggesting that BCD provides useful quantitative real-time feedback on histotripsy treatment progression.

  19. Bubble-induced Color Doppler Feedback for Histotripsy Tissue Fractionation

    PubMed Central

    Miller, Ryan M.; Zhang, Xi; Maxwell, Adam; Cain, Charles; Xu, Zhen

    2016-01-01

    Histotripsy therapy produces cavitating bubble clouds to increasingly fractionate and eventually liquefy tissue using high intensity ultrasound pulses. Following cavitation generated by each pulse, coherent motion of the cavitation residual nuclei can be detected using metrics formed from ultrasound color Doppler acquisitions. In this paper, three experiments were performed to investigate the characteristics of this motion as real-time feedback on histotripsy tissue fractionation. In the first experiment, bubble-induced color Doppler (BCD) and particle image velocimetry (PIV) analysis monitored the residual cavitation nuclei in the treatment region in an agarose tissue phantom treated with 2-cycle histotripsy pulses at > 30 MPa using a 500 kHz transducer. Both BCD and PIV results showed brief chaotic motion of the residual nuclei followed by coherent motion first moving away from the transducer and then rebounding back. Velocity measurements from both PIV and BCD agreed well, showing a monotonic increase in rebound time up to a saturation point for increased therapy dose. In a second experiment, a thin layer of red blood cells (RBC) was added to the phantom to allow quantification of the fractionation of the RBC layer to compare with BCD metrics. A strong linear correlation was observed between the fractionation level and the time to BCD peak rebound velocity over histotripsy treatment. Finally, the correlation between BCD feedback and histotripsy tissue fractionation was validated in ex vivo porcine liver evaluated histologically. BCD metrics showed strong linear correlation with fractionation progression, suggesting that BCD provides useful quantitative real-time feedback on histotripsy treatment progression. PMID:26863659

  20. Coherence Evolution and Transfer Supplemented by Sender's Initial-State Restoring

    NASA Astrophysics Data System (ADS)

    Fel'dman, E. B.; Zenchuk, A. I.

    2017-12-01

    The evolution of quantum coherences comes with a set of conservation laws provided that the Hamiltonian governing this evolution conserves the spin-excitation number. At that, coherences do not intertwist during the evolution. Using the transmission line and the receiver in the initial ground state we can transfer the coherences to the receiver without interaction between them, although the matrix elements contributing to each particular coherence intertwist in the receiver's state. Therefore we propose a tool based on the unitary transformation at the receiver side to untwist these elements and thus restore (at least partially) the structure of the sender's initial density matrix. A communication line with two-qubit sender and receiver is considered as an example of implementation of this technique.

  1. Fiber-optics couple arthroscope to TV

    NASA Technical Reports Server (NTRS)

    Franke, J. M.; Rhodes, D. B.

    1981-01-01

    Convenient, hand-held coupler images output of arthroscope onto coherent fiber bundle. Arthroscope allows surgeons to examine internal organs through any small opening in body. Coupler is also used for engine inspection, instrument repair, and around-corner visual inspection. Image from arthroscope travels along flexible bundle and appears at other cable end where it is recollimated by lens. Image is read from lens or projected on color TV camera.

  2. Constraints for proton structure fluctuations from exclusive scattering

    NASA Astrophysics Data System (ADS)

    Mäntysaari, H.; Schenke, B.

    2017-08-01

    We constrain the average density profile of the proton and the amount of event-by-event fluctuations by simultaneously calculating the coherent and incoherent exclusive diffractive vector meson production cross section in deep inelastic scattering. Working within the Color Glass Condensate picture, we find that the gluonic density of the proton must have large geometric fluctuations in order to describe the experimentally measured large incoherent cross section.

  3. White Paper AGA: Advanced Imaging in Barrett's Esophagus.

    PubMed

    Sharma, Prateek; Brill, Joel; Canto, Marcia; DeMarco, Daniel; Fennerty, Brian; Gupta, Neil; Laine, Loren; Lieberman, David; Lightdale, Charles; Montgomery, Elizabeth; Odze, Robert; Tokar, Jeffrey; Kochman, Michael

    2015-12-01

    Enhanced imaging technologies such as narrow band imaging, flexible spectral imaging color enhancement, i-Scan, confocal laser endomicroscopy, and optical coherence tomography are readily available for use by endoscopists in routine clinical practice. In November 2014, the American Gastroenterological Association's Center for GI Innovation and Technology conducted a 2-day workshop to discuss endoscopic image enhancement technologies, focusing on their role in 2 specific clinical conditions (colon polyps and Barrett's esophagus) and on issues relating to training and implementation of these technologies (white papers). Although the majority of the studies that use enhanced imaging technologies have been positive, these techniques ideally need to be validated in larger cohorts and in community centers. As it stands today, detailed endoscopic examination with high-definition white-light endoscopy and random 4-quadrant biopsy remains the standard of care. However, the workshop panelists agreed that in the hands of endoscopists who have met the preservation and incorporation of valuable endoscopic innovation thresholds (diagnostic accuracy) with enhanced imaging techniques (specific technologies), use of the technique in Barrett's esophagus patients is appropriate. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  4. Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble.

    PubMed

    Klimov, Paul V; Falk, Abram L; Christle, David J; Dobrovitski, Viatcheslav V; Awschalom, David D

    2015-11-01

    Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 10(3) identical registers in a 40-μm(3) volume (with [Formula: see text] fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology.

  5. Spatio-spectral color filter array design for optimal image recovery.

    PubMed

    Hirakawa, Keigo; Wolfe, Patrick J

    2008-10-01

    In digital imaging applications, data are typically obtained via a spatial subsampling procedure implemented as a color filter array-a physical construction whereby only a single color value is measured at each pixel location. Owing to the growing ubiquity of color imaging and display devices, much recent work has focused on the implications of such arrays for subsequent digital processing, including in particular the canonical demosaicking task of reconstructing a full color image from spatially subsampled and incomplete color data acquired under a particular choice of array pattern. In contrast to the majority of the demosaicking literature, we consider here the problem of color filter array design and its implications for spatial reconstruction quality. We pose this problem formally as one of simultaneously maximizing the spectral radii of luminance and chrominance channels subject to perfect reconstruction, and-after proving sub-optimality of a wide class of existing array patterns-provide a constructive method for its solution that yields robust, new panchromatic designs implementable as subtractive colors. Empirical evaluations on multiple color image test sets support our theoretical results, and indicate the potential of these patterns to increase spatial resolution for fixed sensor size, and to contribute to improved reconstruction fidelity as well as significantly reduced hardware complexity.

  6. SLMRACE: a noise-free RACE implementation with reduced computational time

    NASA Astrophysics Data System (ADS)

    Chauvin, Juliet; Provenzi, Edoardo

    2017-05-01

    We present a faster and noise-free implementation of the RACE algorithm. RACE has mixed characteristics between the famous Retinex model of Land and McCann and the automatic color equalization (ACE) color-correction algorithm. The original random spray-based RACE implementation suffers from two main problems: its computational time and the presence of noise. Here, we will show that it is possible to adapt two techniques recently proposed by Banić et al. to the RACE framework in order to drastically decrease the computational time and noise generation. The implementation will be called smart-light-memory-RACE (SLMRACE).

  7. Detection and characterization of submesoscale eddies off the southwestern coast of Puerto Rico

    NASA Astrophysics Data System (ADS)

    Pomales, L.; Morell, J. M.

    2016-02-01

    Ubiquitous submesoscale eddies (SE) have been reported to play a major role in upper ocean stirring, mixing and littoral water circulation. Remotely sensed ocean color imagery provided the first views of coherent submesoscale features all around the Puerto Rico coast. Operational numerical models for the region such as NCOM AMSEAS (3km and 3-hours) and global HYCOM (9km and 3-hours) are not able to resolve these. Deployments of High-Frequency Radars (HFRs) off the southwest coast of Puerto Rico now make possible hourly surface current observations which allow detection and characterization of the two dimensional structure of these submesoscale features. Numerical detection of these features has been achieved by the implementation of a vector geometry identification scheme on the HFR data, which has recently led to an exploratory analysis of a cyclonic persistent SE structure. The detected cyclone had a strong well-defined inner core structure coherency and a 13.86km radius, SE was manually confirmed using USF's Alternative Floating Algae Index satellite imagery (1km and daily), which showed the detected eddy center location had an offset of <8km from the real eddy center which was estimated thanks to a patch of floating algae, presumably Sargassum sp., entrained in its center. NCOM AMSEAS or HYCOM did not resolve the observed SE. Further work will focus on the 3D description of these SEs. HFR vector fields, XBT's, CTD's and Glider profile data will be used to characterize the horizontal and vertical extent of the dynamics involved with these SEs.

  8. Coherent Two-Mode Dynamics of a Nanowire Force Sensor

    NASA Astrophysics Data System (ADS)

    Braakman, Floris R.; Rossi, Nicola; Tütüncüoglu, Gözde; Morral, Anna Fontcuberta i.; Poggio, Martino

    2018-05-01

    Classically coherent dynamics analogous to those of quantum two-level systems are studied in the setting of force sensing. We demonstrate quantitative control over the coupling between two orthogonal mechanical modes of a nanowire cantilever through measurement of avoided crossings as we deterministically position the nanowire inside an electric field. Furthermore, we demonstrate Rabi oscillations between the two mechanical modes in the strong-coupling regime. These results give prospects of implementing coherent two-mode control techniques for force-sensing signal enhancement.

  9. Chromatic dispersion estimation based on heterodyne detection for coherent optical communication systems

    NASA Astrophysics Data System (ADS)

    Li, Yong; Yang, Aiying; Guo, Peng; Qiao, Yaojun; Lu, Yueming

    2018-01-01

    We propose an accurate and nondata-aided chromatic dispersion (CD) estimation method involving the use of the cross-correlation function of two heterodyne detection signals for coherent optical communication systems. Simulations are implemented to verify the feasibility of the proposed method for 28-GBaud coherent systems with different modulation formats. The results show that the proposed method has high accuracy for measuring CD and has good robustness against laser phase noise, amplified spontaneous emission noise, and nonlinear impairments.

  10. Color standardization in whole slide imaging using a color calibration slide

    PubMed Central

    Bautista, Pinky A.; Hashimoto, Noriaki; Yagi, Yukako

    2014-01-01

    Background: Color consistency in histology images is still an issue in digital pathology. Different imaging systems reproduced the colors of a histological slide differently. Materials and Methods: Color correction was implemented using the color information of the nine color patches of a color calibration slide. The inherent spectral colors of these patches along with their scanned colors were used to derive a color correction matrix whose coefficients were used to convert the pixels’ colors to their target colors. Results: There was a significant reduction in the CIELAB color difference, between images of the same H & E histological slide produced by two different whole slide scanners by 3.42 units, P < 0.001 at 95% confidence level. Conclusion: Color variations in histological images brought about by whole slide scanning can be effectively normalized with the use of the color calibration slide. PMID:24672739

  11. Global Enhancement but Local Suppression in Feature-based Attention.

    PubMed

    Forschack, Norman; Andersen, Søren K; Müller, Matthias M

    2017-04-01

    A key property of feature-based attention is global facilitation of the attended feature throughout the visual field. Previously, we presented superimposed red and blue randomly moving dot kinematograms (RDKs) flickering at a different frequency each to elicit frequency-specific steady-state visual evoked potentials (SSVEPs) that allowed us to analyze neural dynamics in early visual cortex when participants shifted attention to one of the two colors. Results showed amplification of the attended and suppression of the unattended color as measured by SSVEP amplitudes. Here, we tested whether the suppression of the unattended color also operates globally. To this end, we presented superimposed flickering red and blue RDKs in the center of a screen and a red and blue RDK in the left and right periphery, respectively, also flickering at different frequencies. Participants shifted attention to one color of the superimposed RDKs in the center to discriminate coherent motion events in the attended from the unattended color RDK, whereas the peripheral RDKs were task irrelevant. SSVEP amplitudes elicited by the centrally presented RDKs confirmed the previous findings of amplification and suppression. For peripherally located RDKs, we found the expected SSVEP amplitude increase, relative to precue baseline when color matched the one of the centrally attended RDK. We found no reduction in SSVEP amplitude relative to precue baseline, when the peripheral color matched the unattended one of the central RDK, indicating that, while facilitation in feature-based attention operates globally, suppression seems to be linked to the location of focused attention.

  12. Giga-pixel lensfree holographic microscopy and tomography using color image sensors.

    PubMed

    Isikman, Serhan O; Greenbaum, Alon; Luo, Wei; Coskun, Ahmet F; Ozcan, Aydogan

    2012-01-01

    We report Giga-pixel lensfree holographic microscopy and tomography using color sensor-arrays such as CMOS imagers that exhibit Bayer color filter patterns. Without physically removing these color filters coated on the sensor chip, we synthesize pixel super-resolved lensfree holograms, which are then reconstructed to achieve ~350 nm lateral resolution, corresponding to a numerical aperture of ~0.8, across a field-of-view of ~20.5 mm(2). This constitutes a digital image with ~0.7 Billion effective pixels in both amplitude and phase channels (i.e., ~1.4 Giga-pixels total). Furthermore, by changing the illumination angle (e.g., ± 50°) and scanning a partially-coherent light source across two orthogonal axes, super-resolved images of the same specimen from different viewing angles are created, which are then digitally combined to synthesize tomographic images of the object. Using this dual-axis lensfree tomographic imager running on a color sensor-chip, we achieve a 3D spatial resolution of ~0.35 µm × 0.35 µm × ~2 µm, in x, y and z, respectively, creating an effective voxel size of ~0.03 µm(3) across a sample volume of ~5 mm(3), which is equivalent to >150 Billion voxels. We demonstrate the proof-of-concept of this lensfree optical tomographic microscopy platform on a color CMOS image sensor by creating tomograms of micro-particles as well as a wild-type C. elegans nematode.

  13. 76 FR 70921 - Implementation of the Fair Housing Act's Discriminatory Effects Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... race, color, religion, sex, disability, familial status, or national origin.\\1\\ HUD, to which Congress... effect upon persons of a particular race, color, religion, sex, familial status, national origin or... segregate by race, color, religion, sex, familial status, national origin, or disability. Examples of such...

  14. Analog signal processing for optical coherence imaging systems

    NASA Astrophysics Data System (ADS)

    Xu, Wei

    Optical coherence tomography (OCT) and optical coherence microscopy (OCM) are non-invasive optical coherence imaging techniques, which enable micron-scale resolution, depth resolved imaging capability. Both OCT and OCM are based on Michelson interferometer theory. They are widely used in ophthalmology, gastroenterology and dermatology, because of their high resolution, safety and low cost. OCT creates cross sectional images whereas OCM obtains en face images. In this dissertation, the design and development of three increasingly complicated analog signal processing (ASP) solutions for optical coherence imaging are presented. The first ASP solution was implemented for a time domain OCT system with a Rapid Scanning Optical Delay line (RSOD)-based optical signal modulation and logarithmic amplifier (Log amp) based demodulation. This OCT system can acquire up to 1600 A-scans per second. The measured dynamic range is 106dB at 200A-scan per second. This OCT signal processing electronics includes an off-the-shelf filter box with a Log amp circuit implemented on a PCB board. The second ASP solution was developed for an OCM system with synchronized modulation and demodulation and compensation for interferometer phase drift. This OCM acquired micron-scale resolution, high dynamic range images at acquisition speeds up to 45,000 pixels/second. This OCM ASP solution is fully custom designed on a perforated circuit board. The third ASP solution was implemented on a single 2.2 mm x 2.2 mm complementary metal oxide semiconductor (CMOS) chip. This design is expandable to a multiple channel OCT system. A single on-chip CMOS photodetector and ASP channel was used for coherent demodulation in a time domain OCT system. Cross-sectional images were acquired with a dynamic range of 76dB (limited by photodetector responsivity). When incorporated with a bump-bonded InGaAs photodiode with higher responsivity, the expected dynamic range is close to 100dB.

  15. Evidence for the onset of color transparency in ρ0 electroproduction off nuclei

    NASA Astrophysics Data System (ADS)

    CLAS Collaboration; El Fassi, L.; Zana, L.; Hafidi, K.; Holtrop, M.; Mustapha, B.; Brooks, W. K.; Hakobyan, H.; Zheng, X.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anghinolfi, M.; Arrington, J.; Avakian, H.; Baghdasaryan, H.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Bookwalter, C.; Branford, D.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Dey, B.; Dickson, R.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Gabrielyan, M. Y.; Garçon, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hanretty, C.; Heddle, D.; Hicks, K.; Holt, R. J.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jawalkar, S. S.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Kuznetsov, V.; Laget, J. M.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Markov, N.; Mayer, M.; McAndrew, J.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Moreno, B.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Anefalos Pereira, S.; Phelps, E.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Raue, B. A.; Reimer, P. E.; Ricco, G.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tedeschi, D. J.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vineyard, M. F.; Voskanyan, H.; Voutier, E.; Watts, D.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zhao, B.; Zhao, Z. W.

    2012-06-01

    We have measured the nuclear transparency of the incoherent diffractive A(e,e‧ρ0) process in 12C and 56Fe targets relative to 2H using a 5 GeV electron beam. The nuclear transparency, the ratio of the produced ρ0's on a nucleus relative to deuterium, which is sensitive to ρA interaction, was studied as function of the coherence length (lc), a lifetime of the hadronic fluctuation of the virtual photon, and the four-momentum transfer squared (Q2). While the transparency for both 12C and 56Fe showed no lc dependence, a significant Q2 dependence was measured, which is consistent with calculations that included the color transparency effects.

  16. Theoretical and experimental analyses of the performance of two-color laser ranging systems

    NASA Technical Reports Server (NTRS)

    Im, K. E.; Gardner, C. S.

    1985-01-01

    The statistical properties of the signals reflected from the retroreflector equipped satellites were studied. It is found that coherence interference between pulse reflections from retroreflectors of different ranges on the array platform is the primary cause of signal fluctuations. The performance of a cross-correlation technique to estimate the differential propagation time is analyzed by considering both shot noise and speckle. For the retroreflector arrays, timing performance is dominated by interference induced speckle, and the differential propagation time cannot be resolved to better than the pulse widths of the received signals. The differential timing measurements obtained over a horizontal path are analyzed. The ocean-reflected pulse measurements obtained from the airborne two-color laser altimeter experiment are presented.

  17. Modified two-photon absorption and dispersion of ultrafast third-order polarization beats via twin noisy driving fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yanpeng; Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049; Gan Chenli

    2006-05-15

    We investigate the color-locked twin-noisy-field correlation effects in third-order nonlinear absorption and dispersion of ultrafast polarization beats. We demonstrate a phase-sensitive method for studying the two-photon nondegenerate four-wave mixing (NDFWM) due to atomic coherence in a multilevel system. The reference signal is another one-photon degenerate four-wave-mixing signal, which propagates along the same optical path as the NDFWM signal. This method is used for studying the phase dispersion of the third-order susceptibility and for the optical heterodyne detection of the NDFWM signal. The third-order nonlinear response can be controlled and modified through the color-locked correlation of twin noisy fields.

  18. Multi-Feature Classification of Multi-Sensor Satellite Imagery Based on Dual-Polarimetric Sentinel-1A, Landsat-8 OLI, and Hyperion Images for Urban Land-Cover Classification.

    PubMed

    Zhou, Tao; Li, Zhaofu; Pan, Jianjun

    2018-01-27

    This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively.

  19. Retinal and Optic Nerve Degeneration in Patients with Multiple Sclerosis Followed up for 5 Years.

    PubMed

    Garcia-Martin, Elena; Ara, Jose R; Martin, Jesus; Almarcegui, Carmen; Dolz, Isabel; Vilades, Elisa; Gil-Arribas, Laura; Fernandez, Francisco J; Polo, Vicente; Larrosa, Jose M; Pablo, Luis E; Satue, Maria

    2017-05-01

    To quantify retinal nerve fiber layer (RNFL) changes in patients with multiple sclerosis (MS) and healthy controls with a 5-year follow-up and to analyze correlations between disability progression and RNFL degeneration. Observational and longitudinal study. One hundred patients with relapsing-remitting MS and 50 healthy controls. All participants underwent a complete ophthalmic and electrophysiologic exploration and were re-evaluated annually for 5 years. Visual acuity (Snellen chart), color vision (Ishihara pseudoisochromatic plates), visual field examination, optical coherence tomography (OCT), scanning laser polarimetry (SLP), and visual evoked potentials. Expanded Disability Status Scale (EDSS) scores, disease duration, treatments, prior optic neuritis episodes, and quality of life (QOL; based on the 54-item Multiple Sclerosis Quality of Life Scale score). Optical coherence tomography (OCT) revealed changes in all RNFL thicknesses in both groups. In the MS group, changes were detected in average thickness and in the mean deviation using the GDx-VCC nerve fiber analyzer (Laser Diagnostic Technologies, San Diego, CA) and in the P100 latency of visual evoked potentials; no changes were detected in visual acuity, color vision, or visual fields. Optical coherence tomography showed greater differences in the inferior and temporal RNFL thicknesses in both groups. In MS patients only, OCT revealed a moderate correlation between the increase in EDSS and temporal and superior RNFL thinning. Temporal RNFL thinning based on OCT results was correlated moderately with decreased QOL. Multiple sclerosis patients exhibit a progressive axonal loss in the optic nerve fiber layer. Retinal nerve fiber layer thinning based on OCT results is a useful marker for assessing MS progression and correlates with increased disability and reduced QOL. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  20. Quantum Control and Entanglement of Spins in Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Klimov, Paul

    Over the past several decades silicon carbide (SiC) has matured into a versatile material platform for high-power electronics and optoelectronic and micromechanical devices. Recent advances have also established SiC as a promising host for quantum technologies based on the spin of intrinsic defects, with the potential of leveraging existing device fabrication protocols alongside solid-state quantum control. Among these defects are the divacancies and related color centers, which have ground-state electron-spin triplets with coherence times as long as one millisecond and built-in optical interfaces operating near the telecommunication wavelengths. This rapidly developing field has prompted research into the SiC material host to understand how defect-bound electron spins interact with their surrounding nuclear spin bath. Although nuclear spins are a major source of decoherence in color-center spin systems, they are also a valuable resource since they can have coherence times that are orders of magnitude longer than electron spins. In this talk I will discuss our recent efforts to interface defect-bound electron spins in SiC with the nuclear spins of naturally occurring 29Si and 13C isotopic defects. I will discuss how the hyperfine interaction can be used to strongly initialize them, to coherently control them, to read them out, and to produce genuine electron-nuclear ensemble entanglement, all at ambient conditions. These demonstrations motivate further research into spins in SiC for prospective quantum technologies. In collaboration with A. Falk, D. Christle, K. Miao, H. Seo, V. Ivady, A. Gali, G. Galli, and D. D. Awschalom. This research was supported by the AFOSR, the NSF DMR-1306300, and the NSF Materials Research Science and Engineering Center.

  1. Fundus autofluorescence and optical coherence tomography of congenital grouped albinotic spots.

    PubMed

    Kim, David Y; Hwang, John C; Moore, Anthony T; Bird, Alan C; Tsang, Stephen H

    2010-09-01

    The purpose of this study was to describe the findings of fundus autofluores-cence (FAF) and optical coherence tomography in a series of patients with congenital grouped albinotic spots. Three eyes of three patients with congenital grouped albinotic spots were evaluated with FAF and optical coherence tomography imaging to evaluate the nature of the albinotic spots. In all three eyes with congenital grouped albinotic spots, FAF imaging showed autofluorescent spots corresponding to the albinotic spots seen on stereo biomicroscopy. One eye also had additional spots detected on FAF imaging that were not visible on stereo biomicroscopy or color fundus photographs. Fundus autofluorescence imaging of the spots showed decreased general autofluorescence and decreased peripheral autofluorescence surrounding central areas of retained or increased autofluorescence. Optical coherence tomography showed a disruption in signal from the hyperreflective layer corresponding to the inner and outer segment junction and increased signal backscattering from the choroid in the area of the spots. Fluorescein angiography showed early and stable hyperfluorescence of the spots without leakage. In this case series, FAF showed decreased autofluorescence of the spots consistent with focal retinal pigment epithelium atrophy or abnormal material blocking normal autofluorescence and areas of increased autofluorescence suggesting retinal pigment epithelium dysfunction. The findings of optical coherence tomography and fluorescein angiography suggest photoreceptor and retinal pigment epithelium layer abnormalities. Fundus autofluorescence and optical coherence tomography are useful noninvasive diagnostic adjuncts that can aid in the diagnosis of congenital grouped albinotic spots, help determine extent of disease, and contribute to our understanding of its pathophysiology.

  2. Optimal generation of spatially coherent soft X-ray isolated attosecond pulses in a gas-filled waveguide using two-color synthesized laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Cheng; Hong, Kyung -Han; Lin, C. D.

    2016-12-08

    Here, we numerically demonstrate the generation of intense, low-divergence soft X-ray isolated attosecond pulses in a gas-filled hollow waveguide using synthesized few-cycle two-color laser waveforms. The waveform is a superposition of a fundamental and its second harmonic optimized such that highest harmonic yields are emitted from each atom. We then optimize the gas pressure and the length and radius of the waveguide such that bright coherent high-order harmonics with angular divergence smaller than 1 mrad are generated, for photon energy from the extreme ultraviolet to soft X-rays. By selecting a proper spectral range enhanced isolated attosecond pulses are generated. Wemore » study how dynamic phase matching caused by the interplay among waveguide mode, neutral atomic dispersion, and plasma effect is achieved at the optimal macroscopic conditions, by performing time-frequency analysis and by analyzing the evolution of the driving laser’s electric field during the propagation. Our results, when combined with the on-going push of high-repetition-rate lasers (sub- to few MHz’s) may eventually lead to the generation of high-flux, low-divergence soft X-ray tabletop isolated attosecond pulses for applications.« less

  3. LONGITUDINAL STRUCTURAL CHANGES IN LATE-ONSET RETINAL DEGENERATION.

    PubMed

    Cukras, Catherine; Flamendorf, Jason; Wong, Wai T; Ayyagari, Radha; Cunningham, Denise; Sieving, Paul A

    2016-12-01

    To characterize longitudinal structural changes in early stages of late-onset retinal degeneration to investigate pathogenic mechanisms. Two affected siblings, both with a S163R missense mutation in the causative gene C1QTNF5, were followed for 8+ years. Color fundus photos, fundus autofluorescence images, near-infrared reflectance fundus images, and spectral domain optical coherence tomography scans were acquired during follow-up. Both patients, aged 45 and 50 years, had good visual acuities (>20/20) in the context of prolonged dark adaptation. Baseline color fundus photography demonstrated yellow-white, punctate lesions in the temporal macula that correlated with a reticular pattern on fundus autofluorescence and near-infrared reflectance imaging. Baseline spectral domain optical coherence tomography imaging revealed subretinal deposits that resemble reticular pseudodrusen described in age-related macular degeneration. During follow-up, these affected areas developed confluent thickening of the retinal pigment epithelial layer and disruption of the ellipsoid zone of photoreceptors before progressing to overt retinal pigment epithelium and outer retinal atrophy. Structural changes in early stages of late-onset retinal degeneration, revealed by multimodal imaging, resemble those of reticular pseudodrusen observed in age-related macular degeneration and other retinal diseases. Longitudinal follow-up of these lesions helps elucidate their progression to frank atrophy and may lend insight into the pathogenic mechanisms underlying diverse retinal degenerations.

  4. Development of ultraviolet- and visible-light one-shot spectral domain optical coherence tomography and in situ measurements of human skin

    NASA Astrophysics Data System (ADS)

    Hirayama, Heijiro; Nakamura, Sohichiro

    2015-07-01

    We have developed ultraviolet (UV)- and visible-light one-shot spectral domain (SD) optical coherence tomography (OCT) that enables in situ imaging of human skin with an arbitrary wavelength in the UV-visible-light region (370-800 nm). We alleviated the computational burden for each color OCT image by physically dispersing the irradiating light with a color filter. The system consists of SD-OCT with multicylindrical lenses; thus, mechanical scanning of the mirror or stage is unnecessary to obtain an OCT image. Therefore, only a few dozens of milliseconds are necessary to obtain single-image data. We acquired OCT images of one subject's skin in vivo and of a skin excision ex vivo for red (R, 650±20 nm), green (G, 550±20 nm), blue (B, 450±20 nm), and UV (397±5 nm) light. In the visible-light spectrum, R light penetrated the skin and was reflected at a lower depth than G or B light. On the skin excision, we demonstrated that UV light reached the dermal layer. We anticipated that basic knowledge about the spectral properties of human skin in the depth direction could be acquired with this system.

  5. Development of ultraviolet- and visible-light one-shot spectral domain optical coherence tomography and in situ measurements of human skin.

    PubMed

    Hirayama, Heijiro; Nakamura, Sohichiro

    2015-07-01

    We have developed ultraviolet (UV)- and visible-light one-shot spectral domain (SD) optical coherence tomography (OCT) that enables in situ imaging of human skin with an arbitrary wavelength in the UV-visible-light region (370-800 nm). We alleviated the computational burden for each color OCT image by physically dispersing the irradiating light with a color filter. The system consists of SD-OCT with multicylindrical lenses; thus, mechanical scanning of the mirror or stage is unnecessary to obtain an OCT image. Therefore, only a few dozens of milliseconds are necessary to obtain single-image data. We acquired OCT images of one subject's skin in vivo and of a skin excision ex vivo for red (R, 650 ± 20 nm), green (G, 550 ± 20 nm), blue (B, 450 ± 20 nm), and UV (397 ± 5 nm) light. In the visible-light spectrum, R light penetrated the skin and was reflected at a lower depth than G or B light. On the skin excision, we demonstrated that UV light reached the dermal layer. We anticipated that basic knowledge about the spectral properties of human skin in the depth direction could be acquired with this system.

  6. Braiding by Majorana tracking and long-range CNOT gates with color codes

    NASA Astrophysics Data System (ADS)

    Litinski, Daniel; von Oppen, Felix

    2017-11-01

    Color-code quantum computation seamlessly combines Majorana-based hardware with topological error correction. Specifically, as Clifford gates are transversal in two-dimensional color codes, they enable the use of the Majoranas' non-Abelian statistics for gate operations at the code level. Here, we discuss the implementation of color codes in arrays of Majorana nanowires that avoid branched networks such as T junctions, thereby simplifying their realization. We show that, in such implementations, non-Abelian statistics can be exploited without ever performing physical braiding operations. Physical braiding operations are replaced by Majorana tracking, an entirely software-based protocol which appropriately updates the Majoranas involved in the color-code stabilizer measurements. This approach minimizes the required hardware operations for single-qubit Clifford gates. For Clifford completeness, we combine color codes with surface codes, and use color-to-surface-code lattice surgery for long-range multitarget CNOT gates which have a time overhead that grows only logarithmically with the physical distance separating control and target qubits. With the addition of magic state distillation, our architecture describes a fault-tolerant universal quantum computer in systems such as networks of tetrons, hexons, or Majorana box qubits, but can also be applied to nontopological qubit platforms.

  7. A tunable digital ishihara plate for pre-school aged children.

    PubMed

    Gambino, Orazio; Minafo, Ester; Pirrone, Roberto; Ardizzone, Edoardo

    2016-08-01

    Colors play a fundamental role for children, both in the everyday life and in education. They recognize the surrounding world, and play games making a large use of colors. They learn letters and numbers by means of colors. As a consequence, early diagnosis of color blindness is an crucial to support an individual affected by this visual perception alteration at the initial phase of his/her life. The diagnosis of red-green color deficiencies (protanopia or deuteranopia) is commonly accomplished by means of the Ishihara test, which consists of plates showing dots with different sizes where some of them compose numbers within a gamut of colors while the ones composing the background have different colors. In this paper, a web application written in javascript is presented, that implements a digital Ishihara-like test for pre-school aged children. Instead numbers or letters, It can transform any binary image representing animal shapes, or any other child-friendly shape, into an Ishihara-like image. This digital plate is not static. The operator can increment the dot density to improve the quality of the shape contour and the entire plate can be redrawn with different dot sizes/colors chosen randomly according to the color pattern of the test. Separate controls for brightness and saturation are implemented to calibrate the chromatic aspect of the background and foreground dots.

  8. Doppler optical coherence microscopy and tomography applied to inner ear mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, Scott; Freeman, Dennis M.; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

    While it is clear that cochlear traveling waves underlie the extraordinary sensitivity, frequency selectivity, and dynamic range of mammalian hearing, the underlying micromechanical mechanisms remain unresolved. Recent advances in low coherence measurement techniques show promise over traditional laser Doppler vibrometry and video microscopy, which are limited by low reflectivities of cochlear structures and restricted optical access. Doppler optical coherence tomography (DOCT) and Doppler optical coherence microscopy (DOCM) both utilize a broadband source to limit constructive interference of scattered light to a small axial depth called a coherence gate. The coherence gate can be swept axially to image and measure sub-nanometermore » motions of cochlear structures throughout the cochlear partition. The coherence gate of DOCT is generally narrower than the confocal gate of the focusing optics, enabling increased axial resolution (typically 15 μm) within optical sections of the cochlear partition. DOCM, frequently implemented in the time domain, centers the coherence gate on the focal plane, achieving enhanced lateral and axial resolution when the confocal gate is narrower than the coherence gate. We compare these two complementary systems and demonstrate their utility in studying cellular and micromechanical mechanisms involved in mammalian hearing.« less

  9. Addressing Diversity in the Decade of Behavior: Focus on Women of Color.

    ERIC Educational Resources Information Center

    Russo, Nancy Felipe; Vaz, Kim

    2001-01-01

    Discusses the lives of women of color, illustrating diversity-minded feminist principles that may inform research and program development related to other aspects of diversity. Notes perspectives and priorities of women of color in psychology. Considers why implementing feminist psychology's inclusive vision for research is a continuing struggle,…

  10. A Method of Assembling Compact Coherent Fiber-Optic Bundles

    NASA Technical Reports Server (NTRS)

    Martin, Stefan; Liu, Duncan; Levine, Bruce Martin; Shao, Michael; Wallace, James

    2007-01-01

    A method of assembling coherent fiber-optic bundles in which all the fibers are packed together as closely as possible is undergoing development. The method is based, straightforwardly, on the established concept of hexagonal close packing; hence, the development efforts are focused on fixtures and techniques for practical implementation of hexagonal close packing of parallel optical fibers.

  11. High-speed asynchronous optical sampling for high-sensitivity detection of coherent phonons

    NASA Astrophysics Data System (ADS)

    Dekorsy, T.; Taubert, R.; Hudert, F.; Schrenk, G.; Bartels, A.; Cerna, R.; Kotaidis, V.; Plech, A.; Köhler, K.; Schmitz, J.; Wagner, J.

    2007-12-01

    A new optical pump-probe technique is implemented for the investigation of coherent acoustic phonon dynamics in the GHz to THz frequency range which is based on two asynchronously linked femtosecond lasers. Asynchronous optical sampling (ASOPS) provides the performance of on all-optical oscilloscope and allows us to record optically induced lattice dynamics over nanosecond times with femtosecond resolution at scan rates of 10 kHz without any moving part in the set-up. Within 1 minute of data acquisition time signal-to-noise ratios better than 107 are achieved. We present examples of the high-sensitivity detection of coherent phonons in superlattices and of the coherent acoustic vibration of metallic nanoparticles.

  12. Coherent controlization using superconducting qubits

    PubMed Central

    Friis, Nicolai; Melnikov, Alexey A.; Kirchmair, Gerhard; Briegel, Hans J.

    2015-01-01

    Coherent controlization, i.e., coherent conditioning of arbitrary single- or multi-qubit operations on the state of one or more control qubits, is an important ingredient for the flexible implementation of many algorithms in quantum computation. This is of particular significance when certain subroutines are changing over time or when they are frequently modified, such as in decision-making algorithms for learning agents. We propose a scheme to realize coherent controlization for any number of superconducting qubits coupled to a microwave resonator. For two and three qubits, we present an explicit construction that is of high relevance for quantum learning agents. We demonstrate the feasibility of our proposal, taking into account loss, dephasing, and the cavity self-Kerr effect. PMID:26667893

  13. Three-dimensional Bragg coherent diffraction imaging of an extended ZnO crystal.

    PubMed

    Huang, Xiaojing; Harder, Ross; Leake, Steven; Clark, Jesse; Robinson, Ian

    2012-08-01

    A complex three-dimensional quantitative image of an extended zinc oxide (ZnO) crystal has been obtained using Bragg coherent diffraction imaging integrated with ptychography. By scanning a 2.5 µm-long arm of a ZnO tetrapod across a 1.3 µm X-ray beam with fine step sizes while measuring a three-dimensional diffraction pattern at each scan spot, the three-dimensional electron density and projected displacement field of the entire crystal were recovered. The simultaneously reconstructed complex wavefront of the illumination combined with its coherence properties determined by a partial coherence analysis implemented in the reconstruction process provide a comprehensive characterization of the incident X-ray beam.

  14. Nuclear physics with a medium-energy Electron-Ion Collider

    NASA Astrophysics Data System (ADS)

    Accardi, A.; Guzey, V.; Prokudin, A.; Weiss, C.

    2012-06-01

    A polarized ep/ eA collider (Electron-Ion Collider, or EIC) with variable center-of-mass energy √ s ˜ 20-70 GeV and luminosity ˜1034 cm-2 s-1 would be uniquely suited to address several outstanding questions of Quantum Chromodynamics (QCD) and the microscopic structure of hadrons and nuclei: i) the three-dimensional structure of the nucleon in QCD (sea quark and gluon spatial distributions, orbital motion, polarization, correlations); ii) the fundamental color fields in nuclei (nuclear parton densities, shadowing, coherence effects, color transparency); iii) the conversion of color charge to hadrons (fragmentation, parton propagation through matter, in-medium jets). We briefly review the conceptual aspects of these questions and the measurements that would address them, emphasizing the qualitatively new information that could be obtained with the collider. Such a medium-energy EIC could be realized at Jefferson Lab after the 12GeV Upgrade (MEIC), or at Brookhaven National Lab as the low-energy stage of eRHIC.

  15. Rayleigh-enhanced attosecond sum-frequency polarization beats via twin color-locking noisy lights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yanpeng; Li Long; Ma Ruiqiong

    2005-07-15

    Based on color-locking noisy field correlation, a time-delayed method is proposed to suppress the thermal effect, and the ultrafast longitudinal relaxation time can be measured even in an absorbing medium. One interesting feature in field-correlation effects is that Rayleigh-enhanced four-wave mixing (RFWM) with color-locking noisy light exhibits spectral symmetry and temporal asymmetry with no coherence spike at {tau}=0. Due to the interference between the Rayleigh-resonant signal and the nonresonant background, RFWM exhibits hybrid radiation-matter detuning with terahertz damping oscillations. The subtle Markovian high-order correlation effects have been investigated in the homodyne- or heterodyne-detected Rayleigh-enhanced attosecond sum-frequency polarization beats (RASPBs). Analyticmore » closed forms of fourth-order Markovian stochastic correlations are characterized for homodyne (quadratic) and heterodyne (linear) detection, respectively. Based on the polarization interference between two four-wave mixing processes, the phase-sensitive detection of RASPBs has also been used to obtain the real and imaginary parts of the Rayleigh resonance.« less

  16. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks.

    PubMed

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F; Schnabel, Roman

    2015-10-30

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.

  17. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks

    PubMed Central

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F.; Schnabel, Roman

    2015-01-01

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein–Podolsky–Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components. PMID:26514280

  18. Observable measure of quantum coherence in finite dimensional systems.

    PubMed

    Girolami, Davide

    2014-10-24

    Quantum coherence is the key resource for quantum technology, with applications in quantum optics, information processing, metrology, and cryptography. Yet, there is no universally efficient method for quantifying coherence either in theoretical or in experimental practice. I introduce a framework for measuring quantum coherence in finite dimensional systems. I define a theoretical measure which satisfies the reliability criteria established in the context of quantum resource theories. Then, I present an experimental scheme implementable with current technology which evaluates the quantum coherence of an unknown state of a d-dimensional system by performing two programmable measurements on an ancillary qubit, in place of the O(d2) direct measurements required by full state reconstruction. The result yields a benchmark for monitoring quantum effects in complex systems, e.g., certifying nonclassicality in quantum protocols and probing the quantum behavior of biological complexes.

  19. Dual-color single-mode lasing in axially coupled organic nanowire resonators

    PubMed Central

    Zhang, Chunhuan; Zou, Chang-Ling; Dong, Haiyun; Yan, Yongli; Yao, Jiannian; Zhao, Yong Sheng

    2017-01-01

    Miniaturized lasers with multicolor output and high spectral purity are of crucial importance for yielding more compact and more versatile photonic devices. However, multicolor lasers usually operate in multimode, which largely restricts their practical applications due to the lack of an effective mode selection mechanism that is simultaneously applicable to multiple wavebands. We propose a mutual mode selection strategy to realize dual-color single-mode lasing in axially coupled cavities constructed from two distinct organic self-assembled single-crystal nanowires. The unique mode selection mechanism in the heterogeneously coupled nanowires was elucidated experimentally and theoretically. With each individual nanowire functioning as both the laser source and the mode filter for the other nanowire, dual-color single-mode lasing was successfully achieved in the axially coupled heterogeneous nanowire resonators. Furthermore, the heterogeneously coupled resonators provided multiple nanoscale output ports for delivering coherent signals with different colors, which could greatly contribute to increasing the integration level of functional photonic devices. These results advance the fundamental understanding of the lasing modulation in coupled cavity systems and offer a promising route to building multifunctional nanoscale lasers for high-level practical photonic integrations. PMID:28785731

  20. Effects of feature-selective and spatial attention at different stages of visual processing.

    PubMed

    Andersen, Søren K; Fuchs, Sandra; Müller, Matthias M

    2011-01-01

    We investigated mechanisms of concurrent attentional selection of location and color using electrophysiological measures in human subjects. Two completely overlapping random dot kinematograms (RDKs) of two different colors were presented on either side of a central fixation cross. On each trial, participants attended one of these four RDKs, defined by its specific combination of color and location, in order to detect coherent motion targets. Sustained attentional selection while monitoring for targets was measured by means of steady-state visual evoked potentials (SSVEPs) elicited by the frequency-tagged RDKs. Attentional selection of transient targets and distractors was assessed by behavioral responses and by recording event-related potentials to these stimuli. Spatial attention and attention to color had independent and largely additive effects on the amplitudes of SSVEPs elicited in early visual areas. In contrast, behavioral false alarms and feature-selective modulation of P3 amplitudes to targets and distractors were limited to the attended location. These results suggest that feature-selective attention produces an early, global facilitation of stimuli having the attended feature throughout the visual field, whereas the discrimination of target events takes place at a later stage of processing that is only applied to stimuli at the attended position.

  1. Pathways to the Tenure Track: Reflections from Faculty of Color on Their Recruitment to a Research University

    ERIC Educational Resources Information Center

    Mayo, J. B., Jr.; Chhuon, Vichet

    2014-01-01

    The effective recruitment and retention of faculty of color continue to present major challenges to universities, in part, because the normal search process in higher education has been largely unsuccessful at diversifying faculty. Therefore, universities have implemented alternative strategies to recruit and retain scholars of color, including…

  2. Reconstruction 3-dimensional image from 2-dimensional image of status optical coherence tomography (OCT) for analysis of changes in retinal thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arinilhaq,; Widita, Rena

    2014-09-30

    Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arraysmore » are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.« less

  3. Color management in the real world: sRGB, ICM2, ICC, ColorSync, and other attempts to make color management transparent

    NASA Astrophysics Data System (ADS)

    Stokes, Michael

    1998-07-01

    A uniformly adopted color standards infrastructure has a dramatic impact on any color imaging industry and technology. This presentation begins by framing the current color standards situation in a historical context. A series of similar appearing infrastructure adoptions in color publishing during the last fifty years are reviewed and compared to the current events. This historical review is followed by brief technical, business and marketing reviews of two of the more popular recent color standards proposals, sRGB and ICC, along with their operating system implementations in the Microsoft and Apple operating systems. The paper concludes with a summary of Hewlett- Packard Company's and Microsoft's proposed future direction.

  4. Tree Colors: Color Schemes for Tree-Structured Data.

    PubMed

    Tennekes, Martijn; de Jonge, Edwin

    2014-12-01

    We present a method to map tree structures to colors from the Hue-Chroma-Luminance color model, which is known for its well balanced perceptual properties. The Tree Colors method can be tuned with several parameters, whose effect on the resulting color schemes is discussed in detail. We provide a free and open source implementation with sensible parameter defaults. Categorical data are very common in statistical graphics, and often these categories form a classification tree. We evaluate applying Tree Colors to tree structured data with a survey on a large group of users from a national statistical institute. Our user study suggests that Tree Colors are useful, not only for improving node-link diagrams, but also for unveiling tree structure in non-hierarchical visualizations.

  5. Drifter Motion in the Gulf of Mexico Constrained by Altimetric Lagrangian Coherent Structures

    DTIC Science & Technology

    2013-12-09

    long chlorophyll plume extending southeastward from the Mississippi River mouth was evident, as revealed in the satellite ocean color image shown in...LCS ( black curves) extracted from altimetry using the methodology described below. This confirms the role attributed to the mesoscale circulation...DRIFTER MOTION TIED TO ALTIMETRIC LCS Figure 1. (left) Chlorophyll a concentration in the northern Gulf of Mexico on 12 July 2012 derived from the

  6. Coherent detection in optical fiber systems.

    PubMed

    Ip, Ezra; Lau, Alan Pak Tao; Barros, Daniel J F; Kahn, Joseph M

    2008-01-21

    The drive for higher performance in optical fiber systems has renewed interest in coherent detection. We review detection methods, including noncoherent, differentially coherent, and coherent detection, as well as a hybrid method. We compare modulation methods encoding information in various degrees of freedom (DOF). Polarization-multiplexed quadrature-amplitude modulation maximizes spectral efficiency and power efficiency, by utilizing all four available DOF, the two field quadratures in the two polarizations. Dual-polarization homodyne or heterodyne downconversion are linear processes that can fully recover the received signal field in these four DOF. When downconverted signals are sampled at the Nyquist rate, compensation of transmission impairments can be performed using digital signal processing (DSP). Linear impairments, including chromatic dispersion and polarization-mode dispersion, can be compensated quasi-exactly using finite impulse response filters. Some nonlinear impairments, such as intra-channel four-wave mixing and nonlinear phase noise, can be compensated partially. Carrier phase recovery can be performed using feedforward methods, even when phase-locked loops may fail due to delay constraints. DSP-based compensation enables a receiver to adapt to time-varying impairments, and facilitates use of advanced forward-error-correction codes. We discuss both single- and multi-carrier system implementations. For a given modulation format, using coherent detection, they offer fundamentally the same spectral efficiency and power efficiency, but may differ in practice, because of different impairments and implementation details. With anticipated advances in analog-to-digital converters and integrated circuit technology, DSP-based coherent receivers at bit rates up to 100 Gbit/s should become practical within the next few years.

  7. Fault Diagnosis from Raw Sensor Data Using Deep Neural Networks Considering Temporal Coherence.

    PubMed

    Zhang, Ran; Peng, Zhen; Wu, Lifeng; Yao, Beibei; Guan, Yong

    2017-03-09

    Intelligent condition monitoring and fault diagnosis by analyzing the sensor data can assure the safety of machinery. Conventional fault diagnosis and classification methods usually implement pretreatments to decrease noise and extract some time domain or frequency domain features from raw time series sensor data. Then, some classifiers are utilized to make diagnosis. However, these conventional fault diagnosis approaches suffer from the expertise of feature selection and they do not consider the temporal coherence of time series data. This paper proposes a fault diagnosis model based on Deep Neural Networks (DNN). The model can directly recognize raw time series sensor data without feature selection and signal processing. It also takes advantage of the temporal coherence of the data. Firstly, raw time series training data collected by sensors are used to train the DNN until the cost function of DNN gets the minimal value; Secondly, test data are used to test the classification accuracy of the DNN on local time series data. Finally, fault diagnosis considering temporal coherence with former time series data is implemented. Experimental results show that the classification accuracy of bearing faults can get 100%. The proposed fault diagnosis approach is effective in recognizing the type of bearing faults.

  8. Fault Diagnosis from Raw Sensor Data Using Deep Neural Networks Considering Temporal Coherence

    PubMed Central

    Zhang, Ran; Peng, Zhen; Wu, Lifeng; Yao, Beibei; Guan, Yong

    2017-01-01

    Intelligent condition monitoring and fault diagnosis by analyzing the sensor data can assure the safety of machinery. Conventional fault diagnosis and classification methods usually implement pretreatments to decrease noise and extract some time domain or frequency domain features from raw time series sensor data. Then, some classifiers are utilized to make diagnosis. However, these conventional fault diagnosis approaches suffer from the expertise of feature selection and they do not consider the temporal coherence of time series data. This paper proposes a fault diagnosis model based on Deep Neural Networks (DNN). The model can directly recognize raw time series sensor data without feature selection and signal processing. It also takes advantage of the temporal coherence of the data. Firstly, raw time series training data collected by sensors are used to train the DNN until the cost function of DNN gets the minimal value; Secondly, test data are used to test the classification accuracy of the DNN on local time series data. Finally, fault diagnosis considering temporal coherence with former time series data is implemented. Experimental results show that the classification accuracy of bearing faults can get 100%. The proposed fault diagnosis approach is effective in recognizing the type of bearing faults. PMID:28282936

  9. Colored noise and memory effects on formal spiking neuron models

    NASA Astrophysics Data System (ADS)

    da Silva, L. A.; Vilela, R. D.

    2015-06-01

    Simplified neuronal models capture the essence of the electrical activity of a generic neuron, besides being more interesting from the computational point of view when compared to higher-dimensional models such as the Hodgkin-Huxley one. In this work, we propose a generalized resonate-and-fire model described by a generalized Langevin equation that takes into account memory effects and colored noise. We perform a comprehensive numerical analysis to study the dynamics and the point process statistics of the proposed model, highlighting interesting new features such as (i) nonmonotonic behavior (emergence of peak structures, enhanced by the choice of colored noise characteristic time scale) of the coefficient of variation (CV) as a function of memory characteristic time scale, (ii) colored noise-induced shift in the CV, and (iii) emergence and suppression of multimodality in the interspike interval (ISI) distribution due to memory-induced subthreshold oscillations. Moreover, in the noise-induced spike regime, we study how memory and colored noise affect the coherence resonance (CR) phenomenon. We found that for sufficiently long memory, not only is CR suppressed but also the minimum of the CV-versus-noise intensity curve that characterizes the presence of CR may be replaced by a maximum. The aforementioned features allow to interpret the interplay between memory and colored noise as an effective control mechanism to neuronal variability. Since both variability and nontrivial temporal patterns in the ISI distribution are ubiquitous in biological cells, we hope the present model can be useful in modeling real aspects of neurons.

  10. Gaussian-modulated coherent-state measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Ma, Xiang-Chun; Sun, Shi-Hai; Jiang, Mu-Sheng; Gui, Ming; Liang, Lin-Mei

    2014-04-01

    Measurement-device-independent quantum key distribution (MDI-QKD), leaving the detection procedure to the third partner and thus being immune to all detector side-channel attacks, is very promising for the construction of high-security quantum information networks. We propose a scheme to implement MDI-QKD, but with continuous variables instead of discrete ones, i.e., with the source of Gaussian-modulated coherent states, based on the principle of continuous-variable entanglement swapping. This protocol not only can be implemented with current telecom components but also has high key rates compared to its discrete counterpart; thus it will be highly compatible with quantum networks.

  11. Coherent state amplification using frequency conversion and a single photon source

    NASA Astrophysics Data System (ADS)

    Kasture, Sachin

    2017-11-01

    Quantum state discrimination lies at the heart of quantum communication and quantum cryptography protocols. Quantum Key Distribution (QKD) using coherent states and homodyne detection has been shown to be a feasible method for quantum communication over long distances. However, this method is still limited because of optical losses. Noiseless coherent state amplification has been proposed as a way to overcome this. Photon addition using stimulated Spontaneous Parametric Down-conversion followed by photon subtraction has been used as a way to implement amplification. However, this process occurs with very low probability which makes it very difficult to implement cascaded stages of amplification due to dark count probability in the single photon detectors used to herald the addition and subtraction of single photons. We discuss a scheme using the χ (2) and χ (3) optical non-linearity and frequency conversion (sum and difference frequency generation) along with a single photon source to implement photon addition. Unlike the photon addition scheme using SPDC, this scheme allows us to tune the success probability at the cost of reduced amplification. The photon statistics of the converted field can be controlled using the power of the pump field and the interaction time.

  12. X-ray optical simulations supporting advanced commissioning of the coherent hard x-ray beamline at NSLS-II

    NASA Astrophysics Data System (ADS)

    Wiegart, L.; Rakitin, M.; Fluerasu, A.; Chubar, O.

    2017-08-01

    We present the application of fully- and partially-coherent synchrotron radiation wavefront propagation simulation functions, implemented in the "Synchrotron Radiation Workshop" computer code, to create a `virtual beamline' mimicking the Coherent Hard X-ray scattering beamline at NSLS-II. The beamline simulation includes all optical beamline components, such as the insertion device, mirror with metrology data, slits, double crystal monochromator and refractive focusing elements (compound refractive lenses and kinoform lenses). A feature of this beamline is the exploitation of X-ray beam coherence, boosted by the low-emittance NSLS-II storage-ring, for techniques such as X-ray Photon Correlation Spectroscopy or Coherent Diffraction Imaging. The key performance parameters are the degree of Xray beam coherence and photon flux, and the trade-off between them needs to guide the beamline settings for specific experimental requirements. Simulations of key performance parameters are compared to measurements obtained during beamline commissioning, and include the spectral flux of the undulator source, the degree of transverse coherence as well as focal spot sizes.

  13. Fuzzy-based simulation of real color blindness.

    PubMed

    Lee, Jinmi; dos Santos, Wellington P

    2010-01-01

    About 8% of men are affected by color blindness. That population is at a disadvantage since they cannot perceive a substantial amount of the visual information. This work presents two computational tools developed to assist color blind people. The first one tests color blindness and assess its severity. The second tool is based on Fuzzy Logic, and implements a method proposed to simulate real red and green color blindness in order to generate synthetic cases of color vision disturbance in a statistically significant amount. Our purpose is to develop correction tools and obtain a deeper understanding of the accessibility problems faced by people with chromatic visual impairment.

  14. A color management system for multi-colored LED lighting

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Maumita; Thorseth, Anders; Jepsen, Jørgen; Corell, Dennis D.; Dam-Hansen, Carsten

    2015-09-01

    A new color control system is described and implemented for a five-color LED light engine, covering a wide white gamut. The system combines a new way of using pre-calibrated lookup tables and a rule-based optimization of chromaticity distance from the Planckian locus with a calibrated color sensor. The color sensor monitors the chromaticity of the mixed light providing the correction factor for the current driver by using the generated lookup table. The long term stability and accuracy of the system will be experimentally investigated with target tolerance within a circle radius of 0.0013 in the uniform chromaticity diagram (CIE1976).

  15. Evidence for the onset of color transparency in ρ 0 electroproduction off nuclei

    DOE PAGES

    Guo, L.; Hanretty, C.; Hicks, K.; ...

    2012-05-11

    We have measured the nuclear transparency of the incoherent diffractive A(e,e'ρ 0) process in 12C and 56Fe targets relative to 2H using a 5 GeV electron beam. The nuclear transparency, the ratio of the produced {rho}{sup 0}'s on a nucleus relative to deuterium, which is sensitive to ρA interaction, was studied as function of the coherence length (I c), a lifetime of the hadronic fluctuation of the virtual photon, and the four-momentum transfer squared (Q 2). Thus, while the transparency for both 12C and 56Fe showed no I c dependence, a significant Q 2 dependence was measured, which is consistentmore » with calculations that included the color transparency effects.« less

  16. Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography.

    PubMed

    Fercher, A; Hitzenberger, C; Sticker, M; Zawadzki, R; Karamata, B; Lasser, T

    2001-12-03

    Dispersive samples introduce a wavelength dependent phase distortion to the probe beam. This leads to a noticeable loss of depth resolution in high resolution OCT using broadband light sources. The standard technique to avoid this consequence is to balance the dispersion of the sample byarrangingadispersive materialinthereference arm. However, the impact of dispersion is depth dependent. A corresponding depth dependent dispersion balancing technique is diffcult to implement. Here we present a numerical dispersion compensation technique for Partial Coherence Interferometry (PCI) and Optical Coherence Tomography (OCT) based on numerical correlation of the depth scan signal with a depth variant kernel. It can be used a posteriori and provides depth dependent dispersion compensation. Examples of dispersion compensated depth scan signals obtained from microscope cover glasses are presented.

  17. Compound focusing mirror and X-ray waveguide optics for coherent imaging and nano-diffraction.

    PubMed

    Salditt, Tim; Osterhoff, Markus; Krenkel, Martin; Wilke, Robin N; Priebe, Marius; Bartels, Matthias; Kalbfleisch, Sebastian; Sprung, Michael

    2015-07-01

    A compound optical system for coherent focusing and imaging at the nanoscale is reported, realised by high-gain fixed-curvature elliptical mirrors in combination with X-ray waveguide optics or different cleaning apertures. The key optical concepts are illustrated, as implemented at the Göttingen Instrument for Nano-Imaging with X-rays (GINIX), installed at the P10 coherence beamline of the PETRA III storage ring at DESY, Hamburg, and examples for typical applications in biological imaging are given. Characteristic beam configurations with the recently achieved values are also described, meeting the different requirements of the applications, such as spot size, coherence or bandwidth. The emphasis of this work is on the different beam shaping, filtering and characterization methods.

  18. Modernization of Physical Appearance and Solution Color Tests Using Quantitative Tristimulus Colorimetry: Advantages, Harmonization, and Validation Strategies.

    PubMed

    Pack, Brian W; Montgomery, Laura L; Hetrick, Evan M

    2015-10-01

    Color measurements, including physical appearance, are important yet often misunderstood and underappreciated aspects of a control strategy for drug substances and drug products. From a patient safety perspective, color can be an important control point for detecting contamination, impurities, and degradation products, with human visual acuity often more sensitive for colored impurities than instrumental techniques such as HPLC. Physical appearance tests and solution color tests can also serve an important role in ensuring that appropriate steps are taken such that clinical trials do not become unblinded when the active material is compared with another product or a placebo. Despite the importance of color tests, compendial visual tests are not harmonized across the major pharmacopoeias, which results in ambiguous specifications of little value, difficult communication of true sample color, and significant extra work required for global registration. Some pharmacopoeias have not yet recognized or adopted technical advances in the instrumental measurement of color and appearance, whereas others begin to acknowledge the advantage of instrumental colorimetry, yet leave implementation of the technology ambiguous. This commentary will highlight the above-mentioned inconsistencies, provide an avenue toward harmonization and modernization, and outline a scientifically sound approach for implementing quantitative technologies for improved measurement, communication, and control of color and appearance for both solutions and solids. Importantly, this manuscript, for the first time, outlines a color method validation approach that is consistent with the International Conference on Harmonization's guidance on the topic of method validation. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. Digital signal processing techniques for coherent optical communication

    NASA Astrophysics Data System (ADS)

    Goldfarb, Gilad

    Coherent detection with subsequent digital signal processing (DSP) is developed, analyzed theoretically and numerically and experimentally demonstrated in various fiber-optic transmission scenarios. The use of DSP in conjunction with coherent detection unleashes the benefits of coherent detection which rely on the preservaton of full information of the incoming field. These benefits include high receiver sensitivity, the ability to achieve high spectral-efficiency and the use of advanced modulation formats. With the immense advancements in DSP speeds, many of the problems hindering the use of coherent detection in optical transmission systems have been eliminated. Most notably, DSP alleviates the need for hardware phase-locking and polarization tracking, which can now be achieved in the digital domain. The complexity previously associated with coherent detection is hence significantly diminished and coherent detection is once gain considered a feasible detection alternative. In this thesis, several aspects of coherent detection (with or without subsequent DSP) are addressed. Coherent detection is presented as a means to extend the dispersion limit of a duobinary signal using an analog decision-directed phase-lock loop. Analytical bit-error ratio estimation for quadrature phase-shift keying signals is derived. To validate the promise for high spectral efficiency, the orthogonal-wavelength-division multiplexing scheme is suggested. In this scheme the WDM channels are spaced at the symbol rate, thus achieving the spectral efficiency limit. Theory, simulation and experimental results demonstrate the feasibility of this approach. Infinite impulse response filtering is shown to be an efficient alternative to finite impulse response filtering for chromatic dispersion compensation. Theory, design considerations, simulation and experimental results relating to this topic are presented. Interaction between fiber dispersion and nonlinearity remains the last major challenge deterministic effects pose for long-haul optical data transmission. Experimental results which demonstrate the possibility to digitally mitigate both dispersion and nonlinearity are presented. Impairment compensation is achieved using backward propagation by implementing the split-step method. Efficient realizations of the dispersion compensation operator used in this implementation are considered. Infinite-impulse response and wavelet-based filtering are both investigated as a means to reduce the required computational load associated with signal backward-propagation. Possible future research directions conclude this dissertation.

  20. Human face detection using motion and color information

    NASA Astrophysics Data System (ADS)

    Kim, Yang-Gyun; Bang, Man-Won; Park, Soon-Young; Choi, Kyoung-Ho; Hwang, Jeong-Hyun

    2008-02-01

    In this paper, we present a hardware implementation of a face detector for surveillance applications. To come up with a computationally cheap and fast algorithm with minimal memory requirement, motion and skin color information are fused successfully. More specifically, a newly appeared object is extracted first by comparing average Hue and Saturation values of background image and a current image. Then, the result of skin color filtering of the current image is combined with the result of a newly appeared object. Finally, labeling is performed to locate a true face region. The proposed system is implemented on Altera Cyclone2 using Quartus II 6.1 and ModelSim 6.1. For hardware description language (HDL), Verilog-HDL is used.

  1. The effect of different standard illumination conditions on color balance failure in offset printed images on glossy coated paper expressed by color difference

    NASA Astrophysics Data System (ADS)

    Spiridonov, I.; Shopova, M.; Boeva, R.; Nikolov, M.

    2012-05-01

    One of the biggest problems in color reproduction processes is color shifts occurring when images are viewed under different illuminants. Process ink colors and their combinations that match under one light source will often appear different under another light source. This problem is referred to as color balance failure or color inconstancy. The main goals of the present study are to investigate and determine the color balance failure (color inconstancy) of offset printed images expressed by color difference and color gamut changes depending on three of the most commonly used in practice illuminants, CIE D50, CIE F2 and CIE A. The results obtained are important from a scientific and a practical point of view. For the first time, a methodology is suggested and implemented for the examination and estimation of color shifts by studying a large number of color and gamut changes in various ink combinations for different illuminants.

  2. Quench of non-Markovian coherence in the deep sub-Ohmic spin–boson model: A unitary equilibration scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Yao, E-mail: yaoyao@fudan.edu.cn

    The deep sub-Ohmic spin–boson model shows a longstanding non-Markovian coherence at low temperature. Motivating to quench this robust coherence, the thermal effect is unitarily incorporated into the time evolution of the model, which is calculated by the adaptive time-dependent density matrix renormalization group algorithm combined with the orthogonal polynomials theory. Via introducing a unitary heating operator to the bosonic bath, the bath is heated up so that a majority portion of the bosonic excited states is occupied. It is found in this situation the coherence of the spin is quickly quenched even in the coherent regime, in which the non-Markovianmore » feature dominates. With this finding we come up with a novel way to implement the unitary equilibration, the essential term of the eigenstate-thermalization hypothesis, through a short-time evolution of the model.« less

  3. Coherent Optomechanical Switch for Motion Transduction Based on Dynamically Localized Mechanical Modes

    NASA Astrophysics Data System (ADS)

    Fu, Hao; Gong, Zhi-cheng; Yang, Li-ping; Mao, Tian-hua; Sun, Chang-pu; Yi, Su; Li, Yong; Cao, Geng-yu

    2018-05-01

    We present a coherent switch for motion transduction based on dynamically localized mechanical modes in an optomechanical system consisting of two coupled cantilevers. By placing one of the cantilevers inside a harmonically oscillating optical trap, the effective coupling strength between the degenerate cantilevers can be tuned experimentally. In particular, when the coupling is turned off, we show that mechanical motion becomes tightly bounded to the isolated cantilevers rather than propagating away as a result of destructive Landau-Zener-Stückelberg-like interference. The effect of dynamical localization is adopted to implement a coherent switch, through which the tunneling oscillation is turned on and off with well-preserved phase coherence. We provide a simple yet efficient approach for full control of the coupling between mechanical resonators, which is highly desirable for coherent control of transport phenomena in a coupled-mechanical-resonator array.

  4. Visual perception enhancement for detection of cancerous oral tissue by multi-spectral imaging

    NASA Astrophysics Data System (ADS)

    Wang, Hsiang-Chen; Tsai, Meng-Tsan; Chiang, Chun-Ping

    2013-05-01

    Color reproduction systems based on the multi-spectral imaging technique (MSI) for both directly estimating reflection spectra and direct visualization of oral tissues using various light sources are proposed. Images from three oral cancer patients were taken as the experimental samples, and spectral differences between pre-cancerous and normal oral mucosal tissues were calculated at three time points during 5-aminolevulinic acid photodynamic therapy (ALA-PDT) to analyze whether they were consistent with disease processes. To check the successful treatment of oral cancer with ALA-PDT, oral cavity images by swept source optical coherence tomography (SS-OCT) are demonstrated. This system can also reproduce images under different light sources. For pre-cancerous detection, the oral images after the second ALA-PDT are assigned as the target samples. By using RGB LEDs with various correlated color temperatures (CCTs) for color difference comparison, the light source with a CCT of about 4500 K was found to have the best ability to enhance the color difference between pre-cancerous and normal oral mucosal tissues in the oral cavity. Compared with the fluorescent lighting commonly used today, the color difference can be improved by 39.2% from 16.5270 to 23.0023. Hence, this light source and spectral analysis increase the efficiency of the medical diagnosis of oral cancer and aid patients in receiving early treatment.

  5. Lifting the Veil of Dust from NGC 0959: The Importance of a Pixel-based Two-dimensional Extinction Correction

    NASA Astrophysics Data System (ADS)

    Tamura, K.; Jansen, R. A.; Eskridge, P. B.; Cohen, S. H.; Windhorst, R. A.

    2010-06-01

    We present the results of a study of the late-type spiral galaxy NGC 0959, before and after application of the pixel-based dust extinction correction described in Tamura et al. (Paper I). Galaxy Evolution Explorer far-UV, and near-UV, ground-based Vatican Advanced Technology Telescope, UBVR, and Spitzer/Infrared Array Camera 3.6, 4.5, 5.8, and 8.0 μm images are studied through pixel color-magnitude diagrams and pixel color-color diagrams (pCCDs). We define groups of pixels based on their distribution in a pCCD of (B - 3.6 μm) versus (FUV - U) colors after extinction correction. In the same pCCD, we trace their locations before the extinction correction was applied. This shows that selecting pixel groups is not meaningful when using colors uncorrected for dust. We also trace the distribution of the pixel groups on a pixel coordinate map of the galaxy. We find that the pixel-based (two-dimensional) extinction correction is crucial for revealing the spatial variations in the dominant stellar population, averaged over each resolution element. Different types and mixtures of stellar populations, and galaxy structures such as a previously unrecognized bar, become readily discernible in the extinction-corrected pCCD and as coherent spatial structures in the pixel coordinate map.

  6. Principal Concerns and Superintendent Support during Teacher Evaluation Changes

    ERIC Educational Resources Information Center

    Derrington, Mary Lynne; Campbell, John W.

    2015-01-01

    Teacher evaluation is a major reform initiative in public education's high accountability policy environment. Principals' effective implementation of this high-stakes reform is challenged by time management, policy coherence, communication with teachers, district support, and staff development imperatives. Effective implementation requires moving…

  7. IMAGING AND MEASUREMENT OF THE PRERETINAL SPACE IN VITREOMACULAR ADHESION AND VITREOMACULAR TRACTION BY A NEW SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY ANALYSIS.

    PubMed

    Stopa, Marcin; Marciniak, Elżbieta; Rakowicz, Piotr; Stankiewicz, Agnieszka; Marciniak, Tomasz; Dąbrowski, Adam

    2017-10-01

    To evaluate a new method for volumetric imaging of the preretinal space (also known as the subhyaloid, subcortical, or retrocortical space) and investigate differences in preretinal space volume in vitreomacular adhesion (VMA) and vitreomacular traction (VMT). Nine patients with VMA and 13 with VMT were prospectively evaluated. Automatic inner limiting membrane line segmentation, which exploits graph search theory implementation, and posterior cortical vitreous line segmentation were performed on 141 horizontal spectral domain optical coherence tomography B-scans per patient. Vertical distances (depths) between the posterior cortical vitreous and inner limiting membrane lines were calculated for each optical coherence tomography B-scan acquired. The derived distances were merged and visualized as a color depth map that represented the preretinal space between the posterior surface of the hyaloid and the anterior surface of the retina. The early treatment d retinopathy study macular map was overlaid onto final virtual maps, and preretinal space volumes were calculated for each early treatment diabetic retinopathy study map sector. Volumetric maps representing preretinal space volumes were created for each patient in the VMA and VMT groups. Preretinal space volumes were larger in all early treatment diabetic retinopathy study map macular regions in the VMT group compared with those in the VMA group. The differences reached statistical significance in all early treatment diabetic retinopathy study sectors, except for the superior outer macula and temporal outer macula where significance values were P = 0.05 and P = 0.08, respectively. Overall, the relative differences in preretinal space volumes between the VMT and VMA groups varied from 2.7 to 4.3 in inner regions and 1.8 to 2.9 in outer regions. Our study provides evidence of significant differences in preretinal space volume between eyes with VMA and those with VMT. This may be useful not only in the investigation of preretinal space properties in VMA and VMT, but also in other conditions, such as age-related macular degeneration, diabetic retinopathy, and central retinal vein occlusion.

  8. Coherent-pulse implementations of quantum cryptography protocols resistant to photon-number-splitting attacks

    NASA Astrophysics Data System (ADS)

    Acín, Antonio; Gisin, Nicolas; Scarani, Valerio

    2004-01-01

    We propose a class of quantum cryptography protocols that are robust against photon-number-splitting attacks (PNS) in a weak coherent-pulse implementation. We give a quite exhaustive analysis of several eavesdropping attacks on these schemes. The honest parties (Alice and Bob) use present-day technology, in particular an attenuated laser as an approximation of a single-photon source. The idea of the protocols is to exploit the nonorthogonality of quantum states to decrease the information accessible to Eve due to the multiphoton pulses produced by the imperfect source. The distance at which the key distribution becomes insecure due to the PNS attack is significantly increased compared to the existing schemes. We also show that strong-pulse implementations, where a strong pulse is included as a reference, allow for key distribution robust against photon-number-splitting attacks.

  9. Relating quantum privacy and quantum coherence: an operational approach.

    PubMed

    Devetak, I; Winter, A

    2004-08-20

    Given many realizations of a state or a channel as a resource, two parties can generate a secret key as well as entanglement. We describe protocols to perform the secret key distillation (as it turns out, with optimal rate). Then we show how to achieve optimal entanglement generation rates by "coherent" implementation of a class of secret key agreement protocols, proving the long-conjectured "hashing inequality."

  10. Coherent Ising machines—optical neural networks operating at the quantum limit

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yoshihisa; Aihara, Kazuyuki; Leleu, Timothee; Kawarabayashi, Ken-ichi; Kako, Satoshi; Fejer, Martin; Inoue, Kyo; Takesue, Hiroki

    2017-12-01

    In this article, we will introduce the basic concept and the quantum feature of a novel computing system, coherent Ising machines, and describe their theoretical and experimental performance. We start with the discussion how to construct such physical devices as the quantum analog of classical neuron and synapse, and end with the performance comparison against various classical neural networks implemented in CPU and supercomputers.

  11. Design and implementation of the tree-based fuzzy logic controller.

    PubMed

    Liu, B D; Huang, C Y

    1997-01-01

    In this paper, a tree-based approach is proposed to design the fuzzy logic controller. Based on the proposed methodology, the fuzzy logic controller has the following merits: the fuzzy control rule can be extracted automatically from the input-output data of the system and the extraction process can be done in one-pass; owing to the fuzzy tree inference structure, the search spaces of the fuzzy inference process are largely reduced; the operation of the inference process can be simplified as a one-dimensional matrix operation because of the fuzzy tree approach; and the controller has regular and modular properties, so it is easy to be implemented by hardware. Furthermore, the proposed fuzzy tree approach has been applied to design the color reproduction system for verifying the proposed methodology. The color reproduction system is mainly used to obtain a color image through the printer that is identical to the original one. In addition to the software simulation, an FPGA is used to implement the prototype hardware system for real-time application. Experimental results show that the effect of color correction is quite good and that the prototype hardware system can operate correctly under the condition of 30 MHz clock rate.

  12. FUNDUS AUTOFLUORESCENCE IN RUBELLA RETINOPATHY: Correlation With Photoreceptor Structure and Function.

    PubMed

    Bukowska, Danuta M; Wan, Sue Ling; Chew, Avenell L; Chelva, Enid; Tang, Ivy; Mackey, David A; Chen, Fred K

    2017-01-01

    To illustrate altered fundus autofluorescence in rubella retinopathy and to investigate their relationships with photoreceptor structure and function using multimodal imaging. The authors report four cases of rubella retinopathy aged 8, 33, 42, and 50 years. All patients had dilated clinical fundus examination; wide-field color photography; blue, green, and near-infrared autofluorescence imaging and spectral domain optical coherence tomography. Two patients also underwent microperimetry and adaptive optics imaging. En face optical coherence tomography, cone mosaic, and microperimetry were coregistered with autofluorescence images. The authors explored the structure-function correlation. All four patients had a "salt-and-pepper" appearance on dilated fundus examination and wide-field color photography. There were variable-sized patches of hypoautofluorescence on both blue and near-infrared excitation in all four patients. Wave-guiding cones were visible and retinal sensitivity was intact over these regions. There was no correlation between hypoautofluorescence and regions of attenuated ellipsoid and interdigitation zones. Hyperautofluorescent lesions were also noted and some of these were pseudo-vitelliform lesions. Patchy hypoautofluorescence on near-infrared excitation can be a feature of rubella retinopathy. This may be due to abnormal melanin production or loss of melanin within retinal pigment epithelium cells harboring persistent rubella virus infection. Preservation of the ellipsoid zone, wave-guiding cones, and retinal sensitivity within hypoautofluorescent lesions suggest that these retinal pigment epithelium changes have only mild impact on photoreceptor cell function.

  13. 3-D ultrafast Doppler imaging applied to the noninvasive mapping of blood vessels in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Demene, Charlie; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2015-08-01

    Ultrafast Doppler imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D ultrafast ultrasound imaging, a technique that can produce thousands of ultrasound volumes per second, based on a 3-D plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that noninvasive 3-D ultrafast power Doppler, pulsed Doppler, and color Doppler imaging can be used to perform imaging of blood vessels in humans when using coherent compounding of 3-D tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D ultrafast imaging. Using a 32 × 32, 3-MHz matrix phased array (Vermon, Tours, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. The proof of principle of 3-D ultrafast power Doppler imaging was first performed by imaging Tygon tubes of various diameters, and in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D color and pulsed Doppler imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer.

  14. 3-D Ultrafast Doppler Imaging Applied to the Noninvasive and Quantitative Imaging of Blood Vessels in Vivo

    PubMed Central

    Provost, J.; Papadacci, C.; Demene, C.; Gennisson, J-L.; Tanter, M.; Pernot, M.

    2016-01-01

    Ultrafast Doppler Imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D Ultrafast Ultrasound Imaging, a technique that can produce thousands of ultrasound volumes per second, based on three-dimensional plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that non-invasive 3-D Ultrafast Power Doppler, Pulsed Doppler, and Color Doppler Imaging can be used to perform quantitative imaging of blood vessels in humans when using coherent compounding of three-dimensional tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D Ultrafast Imaging. Using a 32X32, 3-MHz matrix phased array (Vermon, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. 3-D Ultrafast Power Doppler Imaging was first validated by imaging Tygon tubes of varying diameter and its in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D Color and Pulsed Doppler Imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer. PMID:26276956

  15. Full-field optical coherence tomography image restoration based on Hilbert transformation

    NASA Astrophysics Data System (ADS)

    Na, Jihoon; Choi, Woo June; Choi, Eun Seo; Ryu, Seon Young; Lee, Byeong Ha

    2007-02-01

    We propose the envelope detection method that is based on Hilbert transform for image restoration in full-filed optical coherence tomography (FF-OCT). The FF-OCT system presenting a high-axial resolution of 0.9 μm was implemented with a Kohler illuminator based on Linnik interferometer configuration. A 250 W customized quartz tungsten halogen lamp was used as a broadband light source and a CCD camera was used as a 2-dimentional detector array. The proposed image restoration method for FF-OCT requires only single phase-shifting. By using both the original and the phase-shifted images, we could remove the offset and the background signals from the interference fringe images. The desired coherent envelope image was obtained by applying Hilbert transform. With the proposed image restoration method, we demonstrate en-face imaging performance of the implemented FF-OCT system by presenting a tilted mirror surface, an integrated circuit chip, and a piece of onion epithelium.

  16. Coherence properties of the 0-π qubit

    NASA Astrophysics Data System (ADS)

    Groszkowski, Peter; Di Paolo, A.; Grimsmo, A. L.; Blais, A.; Schuster, D. I.; Houck, A. A.; Koch, Jens

    2018-04-01

    Superconducting circuits rank among some of the most interesting architectures for the implementation of quantum information processing devices. The recently proposed 0-π qubit (Brooks et al 2013 Phys. Rev. A 87 52306) promises increased protection from spontaneous relaxation and dephasing. In this paper we present a detailed theoretical study of the coherence properties of the 0-π device, investigate relevant decoherence channels, and show estimates for achievable coherence times in multiple parameter regimes. In our analysis, we include disorder in circuit parameters, which results in the coupling of the qubit to a low-energy, spurious harmonic mode. We analyze the effects of such coupling on decoherence, in particular dephasing due to photon shot noise, and outline how such a noise channel can be mitigated by appropriate parameter choices. In the end we find that the 0-π qubit performs well and may become an attractive candidate for the implementation of the next-generation superconducting devices for uses in quantum computing and information.

  17. Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble

    PubMed Central

    Klimov, Paul V.; Falk, Abram L.; Christle, David J.; Dobrovitski, Viatcheslav V.; Awschalom, David D.

    2015-01-01

    Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 103 identical registers in a 40-μm3 volume (with 0.95−0.07+0.05 fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology. PMID:26702444

  18. Real-time implementation of a color sorting system

    NASA Astrophysics Data System (ADS)

    Srikanteswara, Srikathyanyani; Lu, Qiang O.; King, William; Drayer, Thomas H.; Conners, Richard W.; Kline, D. Earl; Araman, Philip A.

    1997-09-01

    Wood edge glued panels are used extensively in the furniture and cabinetry industries. They are used to make doors, tops, and sides of solid wood furniture and cabinets. Since lightly stained furniture and cabinets are gaining in popularity, there is an increasing demand to color sort the parts used to make these edge glued panels. The goal of the sorting processing is to create panels that are uniform in both color and intensity across their visible surface. If performed manually, the color sorting of edge-glued panel parts is very labor intensive and prone to error. This paper describes a complete machine vision system for performing this sort. This system uses two color line scan cameras for image input and a specially designed custom computing machine to allow real-time implementation. Users define the number of color classes that are to be used. An 'out' class is provided to handle unusually colored parts. The system removes areas of character mark, e.g., knots, mineral streak, etc., from consideration when assigning a color class to a part. The system also includes a better face algorithm for determining which part face would be the better to put on the side of the panel that will show. The throughput is two linear feet per second. Only a four inch between part spacing is required. This system has undergone extensive in plant testing and will be commercially available in the very near future. The results of this testing will be presented.

  19. A Neuroelectrical Brain Imaging Study on the Perception of Figurative Paintings against Only their Color or Shape Contents.

    PubMed

    Maglione, Anton G; Brizi, Ambra; Vecchiato, Giovanni; Rossi, Dario; Trettel, Arianna; Modica, Enrica; Babiloni, Fabio

    2017-01-01

    In this study, the cortical activity correlated with the perception and appreciation of different set of pictures was estimated by using neuroelectric brain activity and graph theory methodologies in a group of artistic educated persons. The pictures shown to the subjects consisted of original pictures of Titian's and a contemporary artist's paintings (Orig dataset) plus two sets of additional pictures. These additional datasets were obtained from the previous paintings by removing all but the colors or the shapes employed (Color and Style dataset, respectively). Results suggest that the verbal appreciation of Orig dataset when compared to Color and Style ones was mainly correlated to the neuroelectric indexes estimated during the first 10 s of observation of the pictures. Always in the first 10 s of observation: (1) Orig dataset induced more emotion and is perceived with more appreciation than the other two Color and Style datasets; (2) Style dataset is perceived with more attentional effort than the other investigated datasets. During the whole period of observation of 30 s: (1) emotion induced by Color and Style datasets increased across the time while that induced of the Orig dataset remain stable; (2) Color and Style dataset were perceived with more attentional effort than the Orig dataset. During the entire experience, there is evidence of a cortical flow of activity from the parietal and central areas toward the prefrontal and frontal areas during the observation of the images of all the datasets. This is coherent from the notion that active perception of the images with sustained cognitive attention in parietal and central areas caused the generation of the judgment about their aesthetic appreciation in frontal areas.

  20. A Neuroelectrical Brain Imaging Study on the Perception of Figurative Paintings against Only their Color or Shape Contents

    PubMed Central

    Maglione, Anton G.; Brizi, Ambra; Vecchiato, Giovanni; Rossi, Dario; Trettel, Arianna; Modica, Enrica; Babiloni, Fabio

    2017-01-01

    In this study, the cortical activity correlated with the perception and appreciation of different set of pictures was estimated by using neuroelectric brain activity and graph theory methodologies in a group of artistic educated persons. The pictures shown to the subjects consisted of original pictures of Titian's and a contemporary artist's paintings (Orig dataset) plus two sets of additional pictures. These additional datasets were obtained from the previous paintings by removing all but the colors or the shapes employed (Color and Style dataset, respectively). Results suggest that the verbal appreciation of Orig dataset when compared to Color and Style ones was mainly correlated to the neuroelectric indexes estimated during the first 10 s of observation of the pictures. Always in the first 10 s of observation: (1) Orig dataset induced more emotion and is perceived with more appreciation than the other two Color and Style datasets; (2) Style dataset is perceived with more attentional effort than the other investigated datasets. During the whole period of observation of 30 s: (1) emotion induced by Color and Style datasets increased across the time while that induced of the Orig dataset remain stable; (2) Color and Style dataset were perceived with more attentional effort than the Orig dataset. During the entire experience, there is evidence of a cortical flow of activity from the parietal and central areas toward the prefrontal and frontal areas during the observation of the images of all the datasets. This is coherent from the notion that active perception of the images with sustained cognitive attention in parietal and central areas caused the generation of the judgment about their aesthetic appreciation in frontal areas. PMID:28790907

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Haixia; Zhang, Jing

    We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme losesmore » the output of phase-conjugate clones and is regarded as irreversible quantum cloning.« less

  2. Coherent population trapping with a controlled dissipation: applications in optical metrology

    NASA Astrophysics Data System (ADS)

    Nicolas, L.; Delord, T.; Jamonneau, P.; Coto, R.; Maze, J.; Jacques, V.; Hétet, G.

    2018-03-01

    We analyze the properties of a pulsed coherent population trapping protocol that uses a controlled decay from the excited state in a Λ-level scheme. We study this problem analytically and numerically and find regimes where narrow transmission, absorption, or fluorescence spectral lines occur. We then look for optimal frequency measurements using these spectral features by computing the Allan deviation in the presence of ground state decoherence and show that the protocol is on a par with Ramsey-CPT. We discuss possible implementations with ensembles of alkali atoms and single ions and demonstrate that typical pulsed-CPT experiments that are realized on femto-second timescales can be implemented on micro-seconds timescales using this scheme.

  3. High-energy cryo x-ray nano-imaging at the ID16A beamline of ESRF

    NASA Astrophysics Data System (ADS)

    da Silva, Julio C.; Pacureanu, Alexandra; Yang, Yang; Fus, Florin; Hubert, Maxime; Bloch, Leonid; Salome, Murielle; Bohic, Sylvain; Cloetens, Peter

    2017-09-01

    The ID16A beamline at ESRF offers unique capabilities for X-ray nano-imaging, and currently produces the worlds brightest high energy diffraction-limited nanofocus. Such a nanoprobe was designed for quantitative characterization of the morphology and the elemental composition of specimens at both room and cryogenic temperatures. Billions of photons per second can be delivered in a diffraction-limited focus spot size down to 13 nm. Coherent X-ray imaging techniques, as magnified holographic-tomography and ptychographic-tomography, are implemented as well as X-ray fluorescence nanoscopy. We will show the latest developments in coherent and spectroscopic X-ray nanoimaging implemented at the ID16A beamline

  4. All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line.

    PubMed

    Choi, Eunseo; Na, Jihoon; Ryu, Seon; Mudhana, Gopinath; Lee, Byeong

    2005-02-21

    We have implemented an all-fiber optical delay line using two linearly chirped fiber Bragg gratings cascaded in reverse order and all-fiber optics components. The features of the proposed all-fiber based technique for variable delay line are discussed theoretically and demonstrated experimentally. The non-invasive cross-sectional images of biomedical samples as well as a transparent glass plate obtained with implemented all-fiber delay line having the axial resolution of 100 mum and the dynamic range of 50dB are presented to validates the imaging performance and demonstrate the feasibility of the delay line for optical coherence tomography.

  5. MULTIMODAL IMAGING OF DISEASE-ASSOCIATED PIGMENTARY CHANGES IN RETINITIS PIGMENTOSA.

    PubMed

    Schuerch, Kaspar; Marsiglia, Marcela; Lee, Winston; Tsang, Stephen H; Sparrow, Janet R

    2016-12-01

    Using multiple imaging modalities, we evaluated the changes in photoreceptor cells and retinal pigment epithelium (RPE) that are associated with bone spicule-shaped melanin pigmentation in retinitis pigmentosa. In a cohort of 60 patients with retinitis pigmentosa, short-wavelength autofluorescence, near-infrared autofluorescence (NIR-AF), NIR reflectance, spectral domain optical coherence tomography, and color fundus images were studied. Central AF rings were visible in both short-wavelength autofluorescence and NIR-AF images. Bone spicule pigmentation was nonreflective in NIR reflectance, hypoautofluorescent with short-wavelength autofluorescence and NIR-AF imaging, and presented as intraretinal hyperreflective foci in spectral domain optical coherence tomography images. In areas beyond the AF ring outer border, the photoreceptor ellipsoid zone band was absent in spectral domain optical coherence tomography and the visibility of choroidal vessels in short-wavelength autofluorescence, NIR-AF, and NIR reflectance images was indicative of reduced RPE pigmentation. Choroidal visibility was most pronounced in the zone approaching peripheral areas of bone spicule pigmentation; here RPE/Bruch membrane thinning became apparent in spectral domain optical coherence tomography. These findings are consistent with a process by which RPE cells vacate their monolayer and migrate into inner retina in response to photoreceptor cell degeneration. The remaining RPE spread undergo thinning and consequently become less pigmented. An explanation for the absence of NIR-AF melanin signal in relation to bone spicule pigmentation is not forthcoming.

  6. Achieving a coherent curriculum in second grade: Science as the organizer

    NASA Astrophysics Data System (ADS)

    Park Rogers, Meredith A.

    The purpose of this study was to examine how a team of four second grade teachers used their approach to teaching science as a means for designing and implementing a coherent curriculum. Within this study, curriculum coherency refers to making logical instructional connections that are both visible and explicit for students. A teacher using a common teaching strategy or critical thinking skills in such a way that the commonalities between subject areas are clearly demonstrated to students is one example of curriculum coherency. The research framework guiding this study was phenomenology; I used a case study method for data analysis. The primary data source was field notes gathered during 10 weeks of classroom observations. Secondary data sources included observations of team meetings, two sets of interviews with each of the four teachers, an interview with the school principal, and artifacts used and developed by the teachers. An analysis of the data led me to interpret the following findings: (1) the teachers viewed science as a tool to motivate their students to learn and believed in teaching science through an inquiry-based approach; (2) they described science inquiry as a process of thinking organized around questions, and saw their teaching role as shifting between guided and open classroom inquiry; (3) they taught all subjects using an inquiry-based approach, emphasized the process skills associated with doing scientific inquiry, and consistently used the language of the process skills throughout their instruction of all disciplines; (4) their team's collaborative approach played a significant role in achieving their vision of a coherent curriculum; the successfulness of their collaboration relied on the unique contributions of each member and her commitment to professional development. This study demonstrates how an inquiry-based science curriculum can provide educators with an effective model for designing and implementing a coherent curriculum. Furthermore, the findings have implications for elementary preservice and inservice programs with respect to using science teaching as a foundation for developing curriculum coherency.

  7. Dissection of Rovibronic Structure by Polarization-Resolved Two-Color Resonant Four-Wave Mixing Spectroscopy

    NASA Astrophysics Data System (ADS)

    Murdock, Daniel; Burns, Lori A.; Vaccaro, Patrick H.

    2009-08-01

    A synergistic theoretical and experimental investigation of stimulated emission pumping (SEP) as implemented in the coherent framework of two-color resonant four-wave mixing (TC-RFWM) spectroscopy is presented, with special emphasis directed toward the identification of polarization geometries that can distinguish spectral features according to their attendant changes in rotational quantum numbers. A vector-recoupling formalism built upon a perturbative treatment of matter-field interactions and a state-multipole expansion of the density operator allowed the weak-field signal intensity to be cast in terms of a TC-RFWM response tensor, RQ(K)(ɛ4*ɛ3ɛ2*ɛ1;Jg,Je,Jh,Jf), which separates the transverse characteristics of the incident and generated electromagnetic waves (ɛ4*ɛ3ɛ2*ɛ1) from the angular momentum properties of the PUMP and DUMP resonances (Jg,Je,Jh,Jf). For an isolated SEP process induced in an isotropic medium, the criteria needed to discriminate against subsets of rovibronic structure were encoded in the roots of a single tensor element, R0(0)(ɛ4*ɛ3ɛ2*ɛ1;Jg,Je,Jh,Je). By assuming all optical fields to be polarized linearly and invoking the limit of high quantum numbers, specific angles of polarization for the detected signal field were found to suppress DUMP resonances selectively according to the nature of their rotational branch and the rotational branch of the meshing PUMP line. These predictions were corroborated by performing SEP measurements on the ground electronic potential energy surface of tropolone in two distinct regimes of vibrational excitation, with the near-ultraviolet Ã1B2-X˜1A1 (π* ← π) absorption system affording the requisite PUMP and DUMP transitions.

  8. Dissection of rovibronic structure by polarization-resolved two-color resonant four-wave mixing spectroscopy.

    PubMed

    Murdock, Daniel; Burns, Lori A; Vaccaro, Patrick H

    2009-11-26

    A synergistic theoretical and experimental investigation of stimulated emission pumping (SEP) as implemented in the coherent framework of two-color resonant four-wave mixing (TC-RFWM) spectroscopy is presented, with special emphasis directed toward the identification of polarization geometries that can distinguish spectral features according to their attendant changes in rotational quantum numbers. A vector-recoupling formalism built upon a perturbative treatment of matter-field interactions and a state-multipole expansion of the density operator allowed the weak-field signal intensity to be cast in terms of a TC-RFWM response tensor, RQ(K)(epsilon4*epsilon3epsilon2*epsilon1;Jg,Je,Jh,Jf), which separates the transverse characteristics of the incident and generated electromagnetic waves (epsilon4*epsilon3epsilon2*epsilon1) from the angular momentum properties of the PUMP and DUMP resonances (Jg,Je,Jh,Jf). For an isolated SEP process induced in an isotropic medium, the criteria needed to discriminate against subsets of rovibronic structure were encoded in the roots of a single tensor element, R0(0)(epsilon4*epsilon3epsilon2*epsilon1;Jg,Je,Jh,Je). By assuming all optical fields to be polarized linearly and invoking the limit of high quantum numbers, specific angles of polarization for the detected signal field were found to suppress DUMP resonances selectively according to the nature of their rotational branch and the rotational branch of the meshing PUMP line. These predictions were corroborated by performing SEP measurements on the ground electronic potential energy surface of tropolone in two distinct regimes of vibrational excitation, with the near-ultraviolet 1B2-1A1 (pi*<--pi) absorption system affording the requisite PUMP and DUMP transitions.

  9. Visuo-spatial orienting during active exploratory behavior: Processing of task-related and stimulus-related signals.

    PubMed

    Macaluso, Emiliano; Ogawa, Akitoshi

    2018-05-01

    Functional imaging studies have associated dorsal and ventral fronto-parietal regions with the control of visuo-spatial attention. Previous studies demonstrated that the activity of both the dorsal and the ventral attention systems can be modulated by many different factors, related both to the stimuli and the task. However, the vast majority of this work utilized stereotyped paradigms with simple and repeated stimuli. This is at odd with any real life situation that instead involve complex combinations of different types of co-occurring signals, thus raising the question of the ecological significance of the previous findings. Here we investigated how the brain responds to task-related and stimulus-related signals using an innovative approach that involved active exploration of a virtual environment. This enabled us to study visuo-spatial orienting in conditions entailing a dynamic and coherent flow of visual signals, to some extent analogous to real life situations. The environment comprised colored/textured spheres and cubes, which allowed us to implement a standard feature-conjunction search task (task-related signals), and included one physically salient object that served to track the processing of stimulus-related signals. The imaging analyses showed that the posterior parietal cortex (PPC) activated when the participants' gaze was directed towards the salient-objects. By contrast, the right inferior partial cortex was associated with the processing of the target-objects and of distractors that shared the target-color and shape, consistent with goal-directed template-matching operations. The study highlights the possibility of combining measures of gaze orienting and functional imaging to investigate the processing of different types of signals during active behavior in complex environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow

    PubMed Central

    Urs, Raksha; Ketterling, Jeffrey A.; Silverman, Ronald H.

    2016-01-01

    Purpose Ophthalmic ultrasound imaging is currently performed with mechanically scanned single-element probes. These probes have limited capabilities overall and lack the ability to image blood flow. Linear-array systems are able to detect blood flow, but these systems exceed ophthalmic acoustic intensity safety guidelines. Our aim was to implement and evaluate a new linear-array–based technology, compound coherent plane-wave ultrasound, which offers ultrafast imaging and depiction of blood flow at safe acoustic intensity levels. Methods We compared acoustic intensity generated by a 128-element, 18-MHz linear array operated in conventionally focused and plane-wave modes and characterized signal-to-noise ratio (SNR) and lateral resolution. We developed plane-wave B-mode, real-time color-flow, and high-resolution depiction of slow flow in postprocessed data collected continuously at a rate of 20,000 frames/s. We acquired in vivo images of the posterior pole of the eye by compounding plane-wave images acquired over ±10° and produced images depicting orbital and choroidal blood flow. Results With the array operated conventionally, Doppler modes exceeded Food and Drug Administration safety guidelines, but plane-wave modalities were well within guidelines. Plane-wave data allowed generation of high-quality compound B-mode images, with SNR increasing with the number of compounded frames. Real-time color-flow Doppler readily visualized orbital blood flow. Postprocessing of continuously acquired data blocks of 1.6-second duration allowed high-resolution depiction of orbital and choroidal flow over the cardiac cycle. Conclusions Newly developed high-frequency linear arrays in combination with plane-wave techniques present opportunities for the evaluation of ocular anatomy and blood flow, as well as visualization and analysis of other transient phenomena such as vessel wall motion over the cardiac cycle and saccade-induced vitreous motion. PMID:27428169

  11. Free-space coherent optical communication receivers implemented with photorefractive optical beam combiners

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.

    1992-01-01

    Performance measurements are reported concerning a coherent optical communication receiver that contained an iron doped indium phosphide photorefractive beam combiner, rather than a conventional optical beam splitter. The system obtained a bit error probability of 10(exp -6) at received signal powers corresponding to less than 100 detected photons per bit. The system used phase modulated Nd:YAG laser light at a wavelength of 1.06 microns.

  12. Color vision impairment in multiple sclerosis points to retinal ganglion cell damage.

    PubMed

    Lampert, E J; Andorra, M; Torres-Torres, R; Ortiz-Pérez, S; Llufriu, S; Sepúlveda, M; Sola, N; Saiz, A; Sánchez-Dalmau, B; Villoslada, P; Martínez-Lapiscina, Elena H

    2015-11-01

    Multiple Sclerosis (MS) results in color vision impairment regardless of optic neuritis (ON). The exact location of injury remains undefined. The objective of this study is to identify the region leading to dyschromatopsia in MS patients' NON-eyes. We evaluated Spearman correlations between color vision and measures of different regions in the afferent visual pathway in 106 MS patients. Regions with significant correlations were included in logistic regression models to assess their independent role in dyschromatopsia. We evaluated color vision with Hardy-Rand-Rittler plates and retinal damage using Optical Coherence Tomography. We ran SIENAX to measure Normalized Brain Parenchymal Volume (NBPV), FIRST for thalamus volume and Freesurfer for visual cortex areas. We found moderate, significant correlations between color vision and macular retinal nerve fiber layer (rho = 0.289, p = 0.003), ganglion cell complex (GCC = GCIP) (rho = 0.353, p < 0.001), thalamus (rho = 0.361, p < 0.001), and lesion volume within the optic radiations (rho = -0.230, p = 0.030). Only GCC thickness remained significant (p = 0.023) in the logistic regression model. In the final model including lesion load and NBPV as markers of diffuse neuroaxonal damage, GCC remained associated with dyschromatopsia [OR = 0.88 95 % CI (0.80-0.97) p = 0.016]. This association remained significant when we also added sex, age, and disease duration as covariates in the regression model. Dyschromatopsia in NON-eyes is due to damage of retinal ganglion cells (RGC) in MS. Color vision can serve as a marker of RGC damage in MS.

  13. A color-communication scheme for digital imagery

    USGS Publications Warehouse

    Acosta, Alex

    1987-01-01

    Color pictures generated from digital images are frequently used by geologists, foresters, range managers, and others. These color products are preferred over black and white pictures because the human eye is more sensitive to color differences than to various shades of gray. Color discrimination is a function of perception, and therefore colors in these color composites are generally described subjectively, which can lead to ambiguous color communication. Numerous color-coordinate systems are available that quantitively relate digital triplets representing amounts of red, free, and blue to the parameters of hue, saturation, and intensity perceived by the eye. Most of these systems implement a complex transformation of the primary colors to a color space that is hard to visualize, thus making it difficult to relate digital triplets to perception parameters. This paper presents a color-communcation scheme that relates colors on a color triangle to corresponding values of "hue" (H), "saturation" (S), and chromaticity coordinates (x,y,z). The scheme simplifies the relation between red, green, and blue (RGB) digital triplets and the color generated by these triplets. Some examples of the use of the color-communication scheme in digital image processing are presented.

  14. Two-Color Pump-Probe Measurement of Photonic Quantum Correlations Mediated by a Single Phonon

    NASA Astrophysics Data System (ADS)

    Anderson, Mitchell D.; Tarrago Velez, Santiago; Seibold, Kilian; Flayac, Hugo; Savona, Vincenzo; Sangouard, Nicolas; Galland, Christophe

    2018-06-01

    We propose and demonstrate a versatile technique to measure the lifetime of the one-phonon Fock state using two-color pump-probe Raman scattering and spectrally resolved, time-correlated photon counting. Following pulsed laser excitation, the n =1 phonon Fock state is probabilistically prepared by projective measurement of a single Stokes photon. The detection of an anti-Stokes photon generated by a second, time-delayed laser pulse probes the phonon population with subpicosecond time resolution. We observe strongly nonclassical Stokes-anti-Stokes correlations, whose decay maps the single phonon dynamics. Our scheme can be applied to any Raman-active vibrational mode. It can be modified to measure the lifetime of n ≥1 Fock states or the phonon quantum coherences through the preparation and detection of two-mode entangled vibrational states.

  15. Two-Color Pump-Probe Measurement of Photonic Quantum Correlations Mediated by a Single Phonon.

    PubMed

    Anderson, Mitchell D; Tarrago Velez, Santiago; Seibold, Kilian; Flayac, Hugo; Savona, Vincenzo; Sangouard, Nicolas; Galland, Christophe

    2018-06-08

    We propose and demonstrate a versatile technique to measure the lifetime of the one-phonon Fock state using two-color pump-probe Raman scattering and spectrally resolved, time-correlated photon counting. Following pulsed laser excitation, the n=1 phonon Fock state is probabilistically prepared by projective measurement of a single Stokes photon. The detection of an anti-Stokes photon generated by a second, time-delayed laser pulse probes the phonon population with subpicosecond time resolution. We observe strongly nonclassical Stokes-anti-Stokes correlations, whose decay maps the single phonon dynamics. Our scheme can be applied to any Raman-active vibrational mode. It can be modified to measure the lifetime of n≥1 Fock states or the phonon quantum coherences through the preparation and detection of two-mode entangled vibrational states.

  16. Implementing a quantum cloning machine in separate cavities via the optical coherent pulse as a quantum communication bus

    NASA Astrophysics Data System (ADS)

    Zhu, Meng-Zheng; Ye, Liu

    2015-04-01

    An efficient scheme is proposed to implement a quantum cloning machine in separate cavities based on a hybrid interaction between electron-spin systems placed in the cavities and an optical coherent pulse. The coefficient of the output state for the present cloning machine is just the direct product of two trigonometric functions, which ensures that different types of quantum cloning machine can be achieved readily in the same framework by appropriately adjusting the rotated angles. The present scheme can implement optimal one-to-two symmetric (asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, optimal symmetric (asymmetric) real-state cloning, optimal one-to-three symmetric economical real-state cloning, and optimal symmetric cloning of qubits given by an arbitrary axisymmetric distribution. In addition, photon loss of the qubus beams during the transmission and decoherence effects caused by such a photon loss are investigated.

  17. Optimal continuous variable quantum teleportation protocol for realistic settings

    NASA Astrophysics Data System (ADS)

    Luiz, F. S.; Rigolin, Gustavo

    2015-03-01

    We show the optimal setup that allows Alice to teleport coherent states | α > to Bob giving the greatest fidelity (efficiency) when one takes into account two realistic assumptions. The first one is the fact that in any actual implementation of the continuous variable teleportation protocol (CVTP) Alice and Bob necessarily share non-maximally entangled states (two-mode finitely squeezed states). The second one assumes that Alice's pool of possible coherent states to be teleported to Bob does not cover the whole complex plane (| α | < ∞). The optimal strategy is achieved by tuning three parameters in the original CVTP, namely, Alice's beam splitter transmittance and Bob's displacements in position and momentum implemented on the teleported state. These slight changes in the protocol are currently easy to be implemented and, as we show, give considerable gain in performance for a variety of possible pool of input states with Alice.

  18. Coherent-pulse implementations of quantum cryptography protocols resistant to photon-number-splitting attacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acin, Antonio; Gisin, Nicolas; Scarani, Valerio

    2004-01-01

    We propose a class of quantum cryptography protocols that are robust against photon-number-splitting attacks (PNS) in a weak coherent-pulse implementation. We give a quite exhaustive analysis of several eavesdropping attacks on these schemes. The honest parties (Alice and Bob) use present-day technology, in particular an attenuated laser as an approximation of a single-photon source. The idea of the protocols is to exploit the nonorthogonality of quantum states to decrease the information accessible to Eve due to the multiphoton pulses produced by the imperfect source. The distance at which the key distribution becomes insecure due to the PNS attack is significantlymore » increased compared to the existing schemes. We also show that strong-pulse implementations, where a strong pulse is included as a reference, allow for key distribution robust against photon-number-splitting attacks.« less

  19. Color waveguide transparent screen using lens array holographic optical element

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Sun, Peng; Wang, Chang; Zheng, Zhenrong

    2017-11-01

    A color transparent screen was designed in this paper, a planar glass was used as a waveguide structure and the lens array holographic optical element (HOE) was used as a display unit. The lens array HOE was exposed by two coherent beams. One was the reference wave which directly illuminated on the holographic material and the other was modulated by the micro lens array. The lens array HOE can display the images with see-through abilities. Unlike the conventional lens array HOE, a planar glass was adopted as the waveguide in the experiment. The projecting light was totally internal-reflected in the planar glass to eliminate the undesired zero-order diffracted light. By using waveguide, it also brings advantage of compact structure. Colorful display can be realized in our system as the holographic materials were capable for multi-wavelength display. In this paper, a color transparent screen utilizing the lens array HOE and waveguide were designed. Experiment results showed a circular display area on the transparent screen. The diameter of the area is 20 mm and it achieved the pixel resolution of 100 μm. This simple and effective method could be an alternative in the augment reality (AR) applications, such as transparent phone and television.

  20. Practical somewhat-secure quantum somewhat-homomorphic encryption with coherent states

    NASA Astrophysics Data System (ADS)

    Tan, Si-Hui; Ouyang, Yingkai; Rohde, Peter P.

    2018-04-01

    We present a scheme for implementing homomorphic encryption on coherent states encoded using phase-shift keys. The encryption operations require only rotations in phase space, which commute with computations in the code space performed via passive linear optics, and with generalized nonlinear phase operations that are polynomials of the photon-number operator in the code space. This encoding scheme can thus be applied to any computation with coherent-state inputs, and the computation proceeds via a combination of passive linear optics and generalized nonlinear phase operations. An example of such a computation is matrix multiplication, whereby a vector representing coherent-state amplitudes is multiplied by a matrix representing a linear optics network, yielding a new vector of coherent-state amplitudes. By finding an orthogonal partitioning of the support of our encoded states, we quantify the security of our scheme via the indistinguishability of the encrypted code words. While we focus on coherent-state encodings, we expect that this phase-key encoding technique could apply to any continuous-variable computation scheme where the phase-shift operator commutes with the computation.

  1. Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging

    DOE PAGES

    Cha, W.; Ulvestad, A.; Allain, M.; ...

    2016-11-23

    Here, we present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We also demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Furthermore, variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.

  2. Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging

    NASA Astrophysics Data System (ADS)

    Cha, W.; Ulvestad, A.; Allain, M.; Chamard, V.; Harder, R.; Leake, S. J.; Maser, J.; Fuoss, P. H.; Hruszkewycz, S. O.

    2016-11-01

    We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.

  3. Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging.

    PubMed

    Cha, W; Ulvestad, A; Allain, M; Chamard, V; Harder, R; Leake, S J; Maser, J; Fuoss, P H; Hruszkewycz, S O

    2016-11-25

    We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.

  4. Improving color characteristics of LCD

    NASA Astrophysics Data System (ADS)

    Feng, Xiao-fan; Daly, Scott J.

    2005-01-01

    The drive for larger size, higher spatial resolution, and wider aperture LCD has shown to increase the electrical crosstalk between electrodes in the driver circuit. This crosstalk leads to additivity errors in color LCD. In this paper, the crosstalk effect was analyzed with micrographs captured from an imaging colorimeter. The experimental result reveals the subpixel nature of color crosstalk. A spatial-based subpixel crosstalk correction algorithm was developed to improve the color performance of LCD. Compared to a 3D lookup table approach, the new algorithm is easier to implement and more accurate in performance.

  5. Improved Spatial Differencing Scheme for 2-D DOA Estimation of Coherent Signals with Uniform Rectangular Arrays.

    PubMed

    Shi, Junpeng; Hu, Guoping; Sun, Fenggang; Zong, Binfeng; Wang, Xin

    2017-08-24

    This paper proposes an improved spatial differencing (ISD) scheme for two-dimensional direction of arrival (2-D DOA) estimation of coherent signals with uniform rectangular arrays (URAs). We first divide the URA into a number of row rectangular subarrays. Then, by extracting all the data information of each subarray, we only perform difference-operation on the auto-correlations, while the cross-correlations are kept unchanged. Using the reconstructed submatrices, both the forward only ISD (FO-ISD) and forward backward ISD (FB-ISD) methods are developed under the proposed scheme. Compared with the existing spatial smoothing techniques, the proposed scheme can use more data information of the sample covariance matrix and also suppress the effect of additive noise more effectively. Simulation results show that both FO-ISD and FB-ISD can improve the estimation performance largely as compared to the others, in white or colored noise conditions.

  6. Improved Spatial Differencing Scheme for 2-D DOA Estimation of Coherent Signals with Uniform Rectangular Arrays

    PubMed Central

    Hu, Guoping; Zong, Binfeng; Wang, Xin

    2017-01-01

    This paper proposes an improved spatial differencing (ISD) scheme for two-dimensional direction of arrival (2-D DOA) estimation of coherent signals with uniform rectangular arrays (URAs). We first divide the URA into a number of row rectangular subarrays. Then, by extracting all the data information of each subarray, we only perform difference-operation on the auto-correlations, while the cross-correlations are kept unchanged. Using the reconstructed submatrices, both the forward only ISD (FO-ISD) and forward backward ISD (FB-ISD) methods are developed under the proposed scheme. Compared with the existing spatial smoothing techniques, the proposed scheme can use more data information of the sample covariance matrix and also suppress the effect of additive noise more effectively. Simulation results show that both FO-ISD and FB-ISD can improve the estimation performance largely as compared to the others, in white or colored noise conditions. PMID:28837115

  7. LOCATING AND CHARACTERIZING ANGIOID STREAKS WITH EN FACE OPTICAL COHERENCE TOMOGRAPHY.

    PubMed

    Hanhart, Joel; Greifner, Hillel; Rozenman, Yaakov

    2017-01-01

    To characterize angioid streaks (AS) with en face optical coherence tomography (OCT). Case report of a patient with myopia presenting with choroidal neovascularization secondary to AS. Swept-source en face OCT ability to image the streaks was compared with spectral-domain and swept-source B-scans as well as color and red-free pictures. A 48-year-old man with myopia presented with sudden central visual loss. Choroidal neovascularization secondary to AS was diagnosed and intraocular anti-vascular endothelial growth factor given with clinical and OCT features improvement. Angioid streaks were visualized as less dark than the overlying retinal and the underlying choroidal vasculature. En face OCT located the changes at the level of Bruch membrane. An AS was found to be interrupted by the choroidal neovascularization, what was not captured by other modalities. En face OCT allows to assess the extent of changes in Bruch membrane and their spatial relationship to choroidal neovascularization.

  8. Flexible pulse delay control up to picosecond for high-intensity twin electron bunches

    DOE PAGES

    Zhang, Zhen; Ding, Yuantao; Emma, Paul; ...

    2015-09-10

    Two closely spaced electron bunches have attracted strong interest due to their applications in two color X-ray free-electron lasers as well as witness bunch acceleration in plasmas and dielectric structures. In this paper, we propose a new scheme of delay system to vary the time delay up to several picoseconds while not affecting the bunch compression. Numerical simulations based on the Linac Coherent Light Source are performed to demonstrate the feasibility of this method.

  9. Imaging in diabetic retinopathy.

    PubMed

    Salz, David A; Witkin, Andre J

    2015-01-01

    While the primary method for evaluating diabetic retinopathy involves direct and indirect ophthalmoscopy, various imaging modalities are of significant utility in the screening, evaluation, diagnosis, and treatment of different presentations and manifestations of this disease. This manuscript is a review of the important imaging modalities that are used in diabetic retinopathy, including color fundus photography, fluorescein angiography, B-scan ultrasonography, and optical coherence tomography. The article will provide an overview of these different imaging techniques and how they can be most effectively used in current practice.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höche, Stefan; Reichelt, Daniel; Siegert, Frank

    We present a systematic study of differences between NLL resummation and parton showers. We first construct a Markovian Monte-Carlo algorithm for resummation of additive observables in electron-positron annihilation. Approximations intrinsic to the pure NLL result are then removed, in order to obtain a traditional, momentum and probability conserving parton shower based on the coherent branching formalism. The impact of each approximation is studied, and an overall comparison is made between the parton shower and pure NLL resummation. Differences compared to modern parton-shower algorithms formulated in terms of color dipoles are analyzed.

  11. Spatial Coherence Between Remotely Sensed Ocean Color Data and Vertical Distribution of Lidar Backscattering in Coastal Stratified Waters

    DTIC Science & Technology

    2010-01-01

    Respondents should be aware that notwithstanding any other provision of law, no person shall be sublet to any penalty for failing to comply with a...Laboratory, NOAA Boulder, CO 8030S USA ’ Naval Research Laboratory, Code 7330. Stennis Space Center. NASA MS 39529. USA ’ Shellfish Assessment. Alaska...of peak) could be retrieved based solely on Rn (A, 0+ ) measurements. The use of Look-Up Tables (LUTs) of regionally and seasonally averaged lOPs

  12. A Grid Approach to Managing Sustainability: Evidence from a Multiple Italian Case Study

    ERIC Educational Resources Information Center

    Agostino, Deborah; Dal Molin, Martina

    2016-01-01

    Purpose: The purpose of this paper is to explore the coherence between sustainability conceptualization (the "what") and its implementation (the "how") in terms of implemented actions and stakeholders' interactions. The paper proposes a grid approach for the simultaneous evaluation of sustainability conceptualization and…

  13. Fundus autofluorescence and optical coherence tomography in relation to visual function in Usher syndrome type 1 and 2.

    PubMed

    Fakin, Ana; Jarc-Vidmar, Martina; Glavač, Damjan; Bonnet, Crystel; Petit, Christine; Hawlina, Marko

    2012-12-15

    Purpose of this study was to characterize retinal disease in Usher syndrome using fundus autofluorescence and optical coherence tomography. Study included 54 patients (26 male, 28 female) aged 7-70 years. There were 18 (33%) USH1 and 36 (67%) USH2 patients. 49/52 (94%) patients were found to carry at least one mutation in Usher genes. Ophthalmological examination included assessment of Snellen visual acuity, color vision with Ishihara tables, Goldmann visual fields (targets II/1-4 and V/4), microperimetry, fundus autofluorescence imaging and optical coherence tomography. Average age at disease onset (nyctalopia) was significantly lower in USH1 than USH2 patients (average 9 vs. 17 years, respectively; p<0.01); however no significant differences were found regarding type of autofluorescence patterns, frequency of foveal lesions and CME, rate of disease progression and age at legal blindness. All representative eyes had abnormal fundus autofluorescence of either hyperautofluorescent ring (55%), hyperautofluorescent foveal patch (35%) or foveal atrophy (10%). Disease duration of more than 30 years was associated with a high incidence of abnormal central fundus autofluorescence (patch or atrophy) and visual acuity loss. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Multi-Feature Classification of Multi-Sensor Satellite Imagery Based on Dual-Polarimetric Sentinel-1A, Landsat-8 OLI, and Hyperion Images for Urban Land-Cover Classification

    PubMed Central

    Pan, Jianjun

    2018-01-01

    This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively. PMID:29382073

  15. Graduate Diversity Officers and Efforts to Retain Students of Color

    ERIC Educational Resources Information Center

    Griffin, Kimberly A.; Muniz, Marcela; Smith, Edward J.

    2016-01-01

    This qualitative study explores how 14 institutional agents (graduate diversity officers or GDOs) work towards improving retention for graduate students of Color. Consistent with Lovitt's framework of graduate student retention, findings reveal GDOs implement diverse strategies that promote opportunities for academic integration, social…

  16. High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers.

    PubMed

    Farrokhi, Hamid; Rohith, Thazhe Madam; Boonruangkan, Jeeranan; Han, Seunghwoi; Kim, Hyunwoong; Kim, Seung-Woo; Kim, Young-Jin

    2017-11-10

    High coherence of lasers is desirable in high-speed, high-resolution, and wide-field imaging. However, it also causes unavoidable background speckle noise thus degrades the image quality in traditional microscopy and more significantly in interferometric quantitative phase imaging (QPI). QPI utilizes optical interference for high-precision measurement of the optical properties where the speckle can severely distort the information. To overcome this, we demonstrated a light source system having a wide tunability in the spatial coherence over 43% by controlling the illumination angle, scatterer's size, and the rotational speed of an electroactive-polymer rotational micro-optic diffuser. Spatially random phase modulation was implemented for the lower speckle imaging with over a 50% speckle reduction without a significant degradation in the temporal coherence. Our coherence control technique will provide a unique solution for a low-speckle, full-field, and coherent imaging in optically scattering media in the fields of healthcare sciences, material sciences and high-precision engineering.

  17. Towards phase-coherent caloritronics in superconducting circuits

    NASA Astrophysics Data System (ADS)

    Fornieri, Antonio; Giazotto, Francesco

    2017-10-01

    The emerging field of phase-coherent caloritronics (from the Latin word calor, heat) is based on the possibility of controlling heat currents by using the phase difference of the superconducting order parameter. The goal is to design and implement thermal devices that can control energy transfer with a degree of accuracy approaching that reached for charge transport by contemporary electronic components. This can be done by making use of the macroscopic quantum coherence intrinsic to superconducting condensates, which manifests itself through the Josephson effect and the proximity effect. Here, we review recent experimental results obtained in the realization of heat interferometers and thermal rectifiers, and discuss a few proposals for exotic nonlinear phase-coherent caloritronic devices, such as thermal transistors, solid-state memories, phase-coherent heat splitters, microwave refrigerators, thermal engines and heat valves. Besides being attractive from the fundamental physics point of view, these systems are expected to have a vast impact on many cryogenic microcircuits requiring energy management, and possibly lay the first stone for the foundation of electronic thermal logic.

  18. Towards phase-coherent caloritronics in superconducting circuits.

    PubMed

    Fornieri, Antonio; Giazotto, Francesco

    2017-10-06

    The emerging field of phase-coherent caloritronics (from the Latin word calor, heat) is based on the possibility of controlling heat currents by using the phase difference of the superconducting order parameter. The goal is to design and implement thermal devices that can control energy transfer with a degree of accuracy approaching that reached for charge transport by contemporary electronic components. This can be done by making use of the macroscopic quantum coherence intrinsic to superconducting condensates, which manifests itself through the Josephson effect and the proximity effect. Here, we review recent experimental results obtained in the realization of heat interferometers and thermal rectifiers, and discuss a few proposals for exotic nonlinear phase-coherent caloritronic devices, such as thermal transistors, solid-state memories, phase-coherent heat splitters, microwave refrigerators, thermal engines and heat valves. Besides being attractive from the fundamental physics point of view, these systems are expected to have a vast impact on many cryogenic microcircuits requiring energy management, and possibly lay the first stone for the foundation of electronic thermal logic.

  19. Experimental Quantum Randomness Processing Using Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Yuan, Xiao; Liu, Ke; Xu, Yuan; Wang, Weiting; Ma, Yuwei; Zhang, Fang; Yan, Zhaopeng; Vijay, R.; Sun, Luyan; Ma, Xiongfeng

    2016-07-01

    Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated the question by showing that a randomness processing, quantum Bernoulli factory, using quantum coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the same scenario, we propose a theoretical protocol that is classically impossible but can be implemented solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment shows the advantage of using quantum coherence of a single qubit for information processing even when multipartite correlation is not present.

  20. Ensemble perception of color in autistic adults.

    PubMed

    Maule, John; Stanworth, Kirstie; Pellicano, Elizabeth; Franklin, Anna

    2017-05-01

    Dominant accounts of visual processing in autism posit that autistic individuals have an enhanced access to details of scenes [e.g., weak central coherence] which is reflected in a general bias toward local processing. Furthermore, the attenuated priors account of autism predicts that the updating and use of summary representations is reduced in autism. Ensemble perception describes the extraction of global summary statistics of a visual feature from a heterogeneous set (e.g., of faces, sizes, colors), often in the absence of local item representation. The present study investigated ensemble perception in autistic adults using a rapidly presented (500 msec) ensemble of four, eight, or sixteen elements representing four different colors. We predicted that autistic individuals would be less accurate when averaging the ensembles, but more accurate in recognizing individual ensemble colors. The results were consistent with the predictions. Averaging was impaired in autism, but only when ensembles contained four elements. Ensembles of eight or sixteen elements were averaged equally accurately across groups. The autistic group also showed a corresponding advantage in rejecting colors that were not originally seen in the ensemble. The results demonstrate the local processing bias in autism, but also suggest that the global perceptual averaging mechanism may be compromised under some conditions. The theoretical implications of the findings and future avenues for research on summary statistics in autism are discussed. Autism Res 2017, 10: 839-851. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  1. Ensemble perception of color in autistic adults

    PubMed Central

    Stanworth, Kirstie; Pellicano, Elizabeth; Franklin, Anna

    2016-01-01

    Dominant accounts of visual processing in autism posit that autistic individuals have an enhanced access to details of scenes [e.g., weak central coherence] which is reflected in a general bias toward local processing. Furthermore, the attenuated priors account of autism predicts that the updating and use of summary representations is reduced in autism. Ensemble perception describes the extraction of global summary statistics of a visual feature from a heterogeneous set (e.g., of faces, sizes, colors), often in the absence of local item representation. The present study investigated ensemble perception in autistic adults using a rapidly presented (500 msec) ensemble of four, eight, or sixteen elements representing four different colors. We predicted that autistic individuals would be less accurate when averaging the ensembles, but more accurate in recognizing individual ensemble colors. The results were consistent with the predictions. Averaging was impaired in autism, but only when ensembles contained four elements. Ensembles of eight or sixteen elements were averaged equally accurately across groups. The autistic group also showed a corresponding advantage in rejecting colors that were not originally seen in the ensemble. The results demonstrate the local processing bias in autism, but also suggest that the global perceptual averaging mechanism may be compromised under some conditions. The theoretical implications of the findings and future avenues for research on summary statistics in autism are discussed. Autism Res 2017, 10: 839–851. © 2016 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research PMID:27874263

  2. Real-time color/shape-based traffic signs acquisition and recognition system

    NASA Astrophysics Data System (ADS)

    Saponara, Sergio

    2013-02-01

    A real-time system is proposed to acquire from an automotive fish-eye CMOS camera the traffic signs, and provide their automatic recognition on the vehicle network. Differently from the state-of-the-art, in this work color-detection is addressed exploiting the HSI color space which is robust to lighting changes. Hence the first stage of the processing system implements fish-eye correction and RGB to HSI transformation. After color-based detection a noise deletion step is implemented and then, for the classification, a template-based correlation method is adopted to identify potential traffic signs, of different shapes, from acquired images. Starting from a segmented-image a matching with templates of the searched signs is carried out using a distance transform. These templates are organized hierarchically to reduce the number of operations and hence easing real-time processing for several types of traffic signs. Finally, for the recognition of the specific traffic sign, a technique based on extraction of signs characteristics and thresholding is adopted. Implemented on DSP platform the system recognizes traffic signs in less than 150 ms at a distance of about 15 meters from 640x480-pixel acquired images. Tests carried out with hundreds of images show a detection and recognition rate of about 93%.

  3. Color back projection for fruit maturity evaluation

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Lee, Dah-Jye; Desai, Alok

    2013-12-01

    In general, fruits and vegetables such as tomatoes and dates are harvested before they fully ripen. After harvesting, they continue to ripen and their color changes. Color is a good indicator of fruit maturity. For example, tomatoes change color from dark green to light green and then pink, light red, and dark red. Assessing tomato maturity helps maximize its shelf life. Color is used to determine the length of time the tomatoes can be transported. Medjool dates change color from green to yellow, and the orange, light red and dark red. Assessing date maturity helps determine the length of drying process to help ripen the dates. Color evaluation is an important step in the processing and inventory control of fruits and vegetables that directly affects profitability. This paper presents an efficient color back projection and image processing technique that is designed specifically for real-time maturity evaluation of fruits. This color processing method requires very simple training procedure to obtain the frequencies of colors that appear in each maturity stage. This color statistics is used to back project colors to predefined color indexes. Fruit maturity is then evaluated by analyzing the reprojected color indexes. This method has been implemented and used for commercial production.

  4. SDR-Ready Standardized Waveforms for Tactical VHF and UHF Communications for NATO

    DTIC Science & Technology

    2010-09-01

    and noncoherent receiver. Both simulator and modem implementation of the NBWF have been undertaken at CRC Canada. Testing using RF channel...20kbps (100ms interleaver, coherent receiver) User to Legacy 16kbps FSK with Noncoherent Receiver (courtesy J. Nieto, Harris Corp., Rochester NY...NBWF NBWF 20kbps (100ms interleaver, coherent receiver) ST4204 16kbps FSK with noncoherent receiver (courtesy J. Nieto, Harris Corp., Rochester NY

  5. Continuous Energy Photon Transport Implementation in MCATK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Terry R.; Trahan, Travis John; Sweezy, Jeremy Ed

    2016-10-31

    The Monte Carlo Application ToolKit (MCATK) code development team has implemented Monte Carlo photon transport into the MCATK software suite. The current particle transport capabilities in MCATK, which process the tracking and collision physics, have been extended to enable tracking of photons using the same continuous energy approximation. We describe the four photoatomic processes implemented, which are coherent scattering, incoherent scattering, pair-production, and photoelectric absorption. The accompanying background, implementation, and verification of these processes will be presented.

  6. Stimulated Raman adiabatic control of a nuclear spin in diamond

    NASA Astrophysics Data System (ADS)

    Coto, Raul; Jacques, Vincent; Hétet, Gabriel; Maze, Jerónimo R.

    2017-08-01

    Coherent manipulation of nuclear spins is a highly desirable tool for both quantum metrology and quantum computation. However, most of the current techniques to control nuclear spins lack fast speed, impairing their robustness against decoherence. Here, based on stimulated Raman adiabatic passage, and its modification including shortcuts to adiabaticity, we present a fast protocol for the coherent manipulation of nuclear spins. Our proposed Λ scheme is implemented in the microwave domain and its excited-state relaxation can be optically controlled through an external laser excitation. These features allow for the initialization of a nuclear spin starting from a thermal state. Moreover we show how to implement Raman control for performing Ramsey spectroscopy to measure the dynamical and geometric phases acquired by nuclear spins.

  7. Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer

    PubMed Central

    Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A. Claude; Gigan, Sylvain; Bourdieu, Laurent

    2012-01-01

    Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm. PMID:23082292

  8. Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer.

    PubMed

    Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A Claude; Gigan, Sylvain; Bourdieu, Laurent

    2012-10-01

    Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm.

  9. Defect inspection of actuator lenses using swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lee, Jaeyul; Shirazi, Muhammad Faizan; Park, Kibeom; Jeon, Mansik; Kim, Jeehyun

    2017-12-01

    Actuator lens industries have gained an enormous interest with the enhancement of various latest communication devices, such as mobile phone and notebooks. The quality of the aforementioned devices can be degraded due to the internal defects of actuator lenses. Therefore, in this study, we implemented swept-source optical coherence tomography (SS-OCT) system to inspect defects of actuator lenses. Owing to the high-resolution of the SS-OCT system, defected foreign substances between the actuator lenses, defective regions of lenses and surface stains were more clearly distinguished through three-dimensional (3D) and two-dimensional (2D) cross-sectional OCT images. Therefore, the implemented SS-OCT system can be considered as a potential application to defect inspection of actuator lens.

  10. Color features as an approach for the automated screening of Salmonella strain

    NASA Astrophysics Data System (ADS)

    Trujillo, Alejandra Serrano; González, Viridiana Contreras; Andrade Rincón, Saulo E.; Palafox, Luis E.

    2016-11-01

    We present the implementation of a feature extraction approach for the automated screening of Salmonella sp., a task visually carried out by a microbiologist, where the resulting color characteristics of the culture media plate indicate the presence of this strain. The screening of Salmonella sp. is based on the inoculation and incubation of a sample on an agar plate, allowing the isolation of this strain, if present. This process uses three media: Xylose lysine deoxycholate, Salmonella Shigella, and Brilliant Green agar plates, which exhibit specific color characteristics over the colonies and over the surrounding medium for a presumed positive interpretation. Under a controlled illumination environment, images of plates are captured and the characteristics found over each agar are processed separately. Each agar is analyzed using statistical descriptors for texture, to determine the presence of colonies, followed by the extraction of color features. A comparison among the color features seen over the three media, according to the FDA Bacteriological Analytical Manual, determines the presence of Salmonella sp. on a given sample. The implemented process proves that the task addressed can be accomplished under an image processing approach, leading to the future validation and automation of additional screening processes.

  11. Slip-rate increase at Parkfield in 1993 detected by high-precision EDM and borehole tensor strainmeters

    USGS Publications Warehouse

    Langbein, J.; Gwyther, R.L.; Hart, R.H.G.; Gladwin, M.T.

    1999-01-01

    On two of the instrument networks at Parkfield, California, the two-color Electronic Distance Meter (EDM) network and Borehole Tensor Strainmeter (BTSM) network, we have detected a rate change starting in 1993 that has persisted at least 5 years. These and other instruments capable of measuring crustal deformation were installed at Parkfield in anticipation of a moderate, M6, earthquake on the San Andreas fault. Many of these instruments have been in operation since the mid 1980s and have established an excellent baseline to judge changes in rate of deformation and the coherence of such changes between instruments. The onset of the observed rate change corresponds in time to two other changes at Parkfield. From late 1992 through late 1994, the Parkfield region had an increase in number of M4 to M5 earthquakes relative to the preceding 6 years. The deformation-rate change also coincides with the end of a 7-year period of sub-normal rainfall. Both the spatial coherence of the rate change and hydrological modeling suggest a tectonic explanation for the rate change. From these observations, we infer that the rate of slip increased over the period 1993-1998.On two of the instrument networks at Parkfield, California, the two-color Electronic Distance Meter (EDM) network and Borehole Tensor Strainmeter (BTSM) network, we have detected a rate change starting in 1993 that has persisted at least 5 years. These and other instruments capable of measuring crustal deformation were installed at Parkfield in anticipation of a moderate, M6, earthquake on the San Andreas fault. Many of these instruments have been in operation since the mid 1980s and have established an excellent baseline to judge changes in rate of deformation and the coherence of such changes between instruments. The onset of the observed rate change corresponds in time to two other changes at Parkfield. From late 1992 through late 1994, the Parkfield region had an increase in number of M4 to M5 earthquakes relative to the preceding 6 years. The deformation-rate change also coincides with the end of a 7-year period of sub-normal rainfall. Both the spatial coherence of the rate change and hydrological modeling suggest a tectonic explanation for the rate change. From these observations, we infer that the rate of slip increased over the period 1993-1998.

  12. Description of algorithms for processing Coastal Zone Color Scanner (CZCS) data

    NASA Technical Reports Server (NTRS)

    Zion, P. M.

    1983-01-01

    The algorithms for processing coastal zone color scanner (CZCS) data to geophysical units (pigment concentration) are described. Current public domain information for processing these data is summarized. Calibration, atmospheric correction, and bio-optical algorithms are presented. Three CZCS data processing implementations are compared.

  13. Stacked STN LCDs for true-color projection systems

    NASA Astrophysics Data System (ADS)

    Gulick, Paul E.; Conner, Arlie R.

    1991-08-01

    The demand for a true color LCD projection panel for use with standard overhead projectors has been around ever since the first monochrome OHP projection panel was introduced in 1986. The monochrome panels evolved along with the LCD technology from the first blue- and-yellow mode units to black-and-white with levels of gray, and to yellow-and-magenta panels with limited intermediate color shades known as pseudo-color. Finally, a novel solution has been implemented using a stack of custom designed STN panels, making possible true color LCD projection panels that are reasonably priced, available in high volume and quite acceptable in overall image quality. This stacked technology relies on the inherent birefringence colors of each layer to switch between white (passing all wavelengths) and a subtractive color primary (passing all wavelengths but red, green, or blue) so the full spectrum can be projected. Standard gray-scale techniques expand the displayable color palette to almost 5,000 colors and beyond. The same technology can also be applied to various self-contained projection architectures.

  14. Computational efficiency improvements for image colorization

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Sharma, Gaurav; Aly, Hussein

    2013-03-01

    We propose an efficient algorithm for colorization of greyscale images. As in prior work, colorization is posed as an optimization problem: a user specifies the color for a few scribbles drawn on the greyscale image and the color image is obtained by propagating color information from the scribbles to surrounding regions, while maximizing the local smoothness of colors. In this formulation, colorization is obtained by solving a large sparse linear system, which normally requires substantial computation and memory resources. Our algorithm improves the computational performance through three innovations over prior colorization implementations. First, the linear system is solved iteratively without explicitly constructing the sparse matrix, which significantly reduces the required memory. Second, we formulate each iteration in terms of integral images obtained by dynamic programming, reducing repetitive computation. Third, we use a coarseto- fine framework, where a lower resolution subsampled image is first colorized and this low resolution color image is upsampled to initialize the colorization process for the fine level. The improvements we develop provide significant speedup and memory savings compared to the conventional approach of solving the linear system directly using off-the-shelf sparse solvers, and allow us to colorize images with typical sizes encountered in realistic applications on typical commodity computing platforms.

  15. Polarization-color mapping strategies: catching up with color theory

    NASA Astrophysics Data System (ADS)

    Kruse, Andrew W.; Alenin, Andrey S.; Vaughn, Israel J.; Tyo, J. Scott

    2017-09-01

    Current visualization techniques for mapping polarization data to a color coordinates defined by the Hue, Saturation, Value (HSV) color representation are analyzed in the context of perceptual uniformity. Since HSV is not designed to be perceptually uniform, the extent of non-uniformity should be evaluated by using robust color difference formulae and by comparison to the state-of-the-art uniform color space CAM02-UCS. For mapping just angle of polarization with HSV hue, the results show clear non-uniformity and implications for how this can misrepresent the data. UCS can be used to create alternative mapping techniques that are perceptually uniform. Implementing variation in lightness may increase shape discrimination within the scene. Future work will be dedicated to measuring performance of both current and proposed methods using psychophysical analysis.

  16. [Macula study in Stargardt's disease].

    PubMed

    Maia, Otacílio de Oliveira; Takahashi, Walter Yukihiko; Arantes, Tiago Eugênio Faria e; Barreto, Raquel Barbosa Paes; Andrade Neto, João Lins de

    2008-01-01

    To evaluate de macular structural damage in Stargardt's disease by optical coherence tomography, correlating with visual acuity and disease duration. Patients with Stargardt's disease were included and submitted to visual acuity (logMAR) measurement and complementary examinations performed were color fundus photographs, fluorescein angiography and optical coherence tomography. All cases were reexamined for diagnostic confirmation and the duration of symptoms was determined. The control group was composed of the same number of subjects, matched by sex and age, without any ophthalmologic alteration. The sample was composed of 22 patients (44 eyes) with Stargardt's disease, 11 (50%) males and 11 (50%) females. The duration of the disease varied from 3 to 21 years (mean of 11.4 +/- 5.3 years). The groups did not show significant differences in age (p= 0.98) and sex. Concerning the macular thickness in optical coherence tomography, the variation in the study group differed significantly from the control group, presenting smaller values of thickness (p<0.001). There was negative and significant correlation between the duration of disease and the macular thickness assessed by optical coherence tomography (r=-0.57 and p=0.005). There was positive correlation between the duration of the disease and the visual acuity (r=0.50 and p=0.0167) and negative correlation between the visual acuity and the macular thickness in optical coherence tomography (r=-0.83 and p=0.0001). It was evidenced that patients with Stargardt's disease have a thinner macular thickness when compared to normal subjects, and this reduction is related to the duration of symptoms of the disease. Additionally, the thickness and also the duration of the disease influence the visual prognosis of the patients.

  17. Curriculum Renewal: Barriers to Successful Curriculum Change and Suggestions for Improvement

    ERIC Educational Resources Information Center

    Cooper, Trudi

    2017-01-01

    This article examines the practical difficulties encountered when a renewed curriculum is implemented in higher education. Attention has been given in the literature to the importance of coherent curriculum and approaches to curriculum design. Less attention has been paid to whether the renewed curriculum can be faithfully implemented within a…

  18. A Flipped Classroom Approach to Teaching Systems Analysis, Design and Implementation

    ERIC Educational Resources Information Center

    Tanner, Maureen; Scott, Elsje

    2015-01-01

    This paper describes a flipped classroom approach followed to teach systems analysis, design and implementation at university level. The techniques employed are described. These techniques were underpinned by a theory of coherent practice: a pedagogy that provides a framework for the design of highly structured interventions to guide students in…

  19. Biotechnology at the University of Toledo: Development and Implementation of an Integrated Curriculum.

    ERIC Educational Resources Information Center

    Hudson, Richard A.

    1988-01-01

    The University of Toledo College of Pharmacy has, over a four-year period, developed and implemented a biotechnology program that has been fully integrated into the professional division of the undergraduate program. Addition of new technologies provides an increasingly coherent curriculum stressing the value of ideas. (MSE)

  20. Development of a National Education and Training Data Standards Strategy and Implementation Plan. Cat. No. EDU 4

    ERIC Educational Resources Information Center

    Australian Institute of Health and Welfare, 2015

    2015-01-01

    The Australian Institute of Health and Welfare developed a national data standards strategy and implementation plan to enhance the comparability, quality and coherence of information across the Australian education and training sectors, including early childhood education, school education, vocational education and training (VET) and higher…

  1. Qubit Architecture with High Coherence and Fast Tunable Coupling.

    PubMed

    Chen, Yu; Neill, C; Roushan, P; Leung, N; Fang, M; Barends, R; Kelly, J; Campbell, B; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Megrant, A; Mutus, J Y; O'Malley, P J J; Quintana, C M; Sank, D; Vainsencher, A; Wenner, J; White, T C; Geller, Michael R; Cleland, A N; Martinis, John M

    2014-11-28

    We introduce a superconducting qubit architecture that combines high-coherence qubits and tunable qubit-qubit coupling. With the ability to set the coupling to zero, we demonstrate that this architecture is protected from the frequency crowding problems that arise from fixed coupling. More importantly, the coupling can be tuned dynamically with nanosecond resolution, making this architecture a versatile platform with applications ranging from quantum logic gates to quantum simulation. We illustrate the advantages of dynamical coupling by implementing a novel adiabatic controlled-z gate, with a speed approaching that of single-qubit gates. Integrating coherence and scalable control, the introduced qubit architecture provides a promising path towards large-scale quantum computation and simulation.

  2. Overlap junctions for high coherence superconducting qubits

    NASA Astrophysics Data System (ADS)

    Wu, X.; Long, J. L.; Ku, H. S.; Lake, R. E.; Bal, M.; Pappas, D. P.

    2017-07-01

    Fabrication of sub-micron Josephson junctions is demonstrated using standard processing techniques for high-coherence, superconducting qubits. These junctions are made in two separate lithography steps with normal-angle evaporation. Most significantly, this work demonstrates that it is possible to achieve high coherence with junctions formed on aluminum surfaces cleaned in situ by Ar plasma before junction oxidation. This method eliminates the angle-dependent shadow masks typically used for small junctions. Therefore, this is conducive to the implementation of typical methods for improving margins and yield using conventional CMOS processing. The current method uses electron-beam lithography and an additive process to define the top and bottom electrodes. Extension of this work to optical lithography and subtractive processes is discussed.

  3. Using Technology to Facilitate Collaboration in Community-Based Participatory Research (CBPR)

    PubMed Central

    Jessell, Lauren; Smith, Vivian; Jemal, Alexis; Windsor, Liliane

    2017-01-01

    This study explores the use of Computer-Supported Collaborative Work (CSCW) technologies, by way of a computer-based system called iCohere. This system was used to facilitate collaboration conducting Community-Based Participatory Research (CBPR). Data was gathered from 13 members of a Community Collaborative Board (CCB). Analysis revealed that iCohere served the following functions: facilitating communication, providing a depository for information and resource sharing, and allowing for remote meeting attendance. Results indicated that while iCohere was useful in performing these functions, less expensive technologies had the potential to achieve similar goals if properly implemented. Implications for future research on CSCW systems and CBPR are discussed. PMID:29056871

  4. How Reasoning, Judgment, and Decision Making are Colored by Gist-based Intuition: A Fuzzy-Trace Theory Approach

    PubMed Central

    Corbin, Jonathan C.; Reyna, Valerie F.; Weldon, Rebecca B.; Brainerd, Charles J.

    2015-01-01

    Fuzzy-trace theory distinguishes verbatim (literal, exact) from gist (meaningful) representations, predicting that reliance on gist increases with experience and expertise. Thus, many judgment-and-decision-making biases increase with development, such that cognition is colored by context in ways that violate logical coherence and probability theories. Nevertheless, this increase in gist-based intuition is adaptive: Gist is stable, less sensitive to interference, and easier to manipulate. Moreover, gist captures the functionally significant essence of information, supporting healthier and more robust decision processes. We describe how fuzzy-trace theory accounts for judgment-and-decision making phenomena, predicting the paradoxical arc of these processes with the development of experience and expertise. We present data linking gist memory processes to gist processing in decision making and provide illustrations of gist reliance in medicine, public health, and intelligence analysis. PMID:26664820

  5. How Reasoning, Judgment, and Decision Making are Colored by Gist-based Intuition: A Fuzzy-Trace Theory Approach.

    PubMed

    Corbin, Jonathan C; Reyna, Valerie F; Weldon, Rebecca B; Brainerd, Charles J

    2015-12-01

    Fuzzy-trace theory distinguishes verbatim (literal, exact) from gist (meaningful) representations, predicting that reliance on gist increases with experience and expertise. Thus, many judgment-and-decision-making biases increase with development, such that cognition is colored by context in ways that violate logical coherence and probability theories. Nevertheless, this increase in gist-based intuition is adaptive: Gist is stable, less sensitive to interference, and easier to manipulate. Moreover, gist captures the functionally significant essence of information, supporting healthier and more robust decision processes. We describe how fuzzy-trace theory accounts for judgment-and-decision making phenomena, predicting the paradoxical arc of these processes with the development of experience and expertise. We present data linking gist memory processes to gist processing in decision making and provide illustrations of gist reliance in medicine, public health, and intelligence analysis.

  6. Generation of coherent terahertz radiation in ultrafast laser-gas interactionsa)

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Yong

    2009-05-01

    The generation of intense terahertz radiation in ultrafast laser-gas interactions is studied on a basis of transient electron current model. When an ultrashort pulse laser's fundamental and its second harmonic fields are mixed to ionize a gas, a nonvanishing, directional photoelectron current can be produced, which simultaneously emits terahertz radiation in the far field. Here, the generation mechanism is examined with an analytic derivation and numerical simulations, in which tunneling ionization and subsequent electron motion in the combined laser field play a key role. In the simulations, three types of laser-gas interactions are considered: (i) mixing the fundamental and its second harmonic fields, (ii) mixing nonharmonic, two-color fields, and (iii) focusing single-color, few-cycle pulses. In these interactions, terahertz generation and other nonlinear effects driven by the transient current are investigated. In particular, anticorrelation between terahertz and second (or third) harmonic generation is observed and analyzed.

  7. Natural Environment Illumination: Coherent Interactive Augmented Reality for Mobile and Non-Mobile Devices.

    PubMed

    Rohmer, Kai; Jendersie, Johannes; Grosch, Thorsten

    2017-11-01

    Augmented Reality offers many applications today, especially on mobile devices. Due to the lack of mobile hardware for illumination measurements, photorealistic rendering with consistent appearance of virtual objects is still an area of active research. In this paper, we present a full two-stage pipeline for environment acquisition and augmentation of live camera images using a mobile device with a depth sensor. We show how to directly work on a recorded 3D point cloud of the real environment containing high dynamic range color values. For unknown and automatically changing camera settings, a color compensation method is introduced. Based on this, we show photorealistic augmentations using variants of differential light simulation techniques. The presented methods are tailored for mobile devices and run at interactive frame rates. However, our methods are scalable to trade performance for quality and can produce quality renderings on desktop hardware.

  8. Single-exposure super-resolved interferometric microscopy by RGB multiplexing in lensless configuration

    NASA Astrophysics Data System (ADS)

    Granero, Luis; Ferreira, Carlos; Zalevsky, Zeev; García, Javier; Micó, Vicente

    2016-07-01

    Single-Exposure Super-Resolved Interferometric Microscopy (SESRIM) reports on a way to achieve one-dimensional (1-D) superresolved imaging in digital holographic microscopy (DHM) by a single illumination shot and digital recording. SESRIM provides color-coded angular multiplexing of the accessible sample's range of spatial frequencies and it allows their recording in a single CCD (color or monochrome) snapshot by adding 3 RGB coherent reference beams at the output plane. In this manuscript, we extend the applicability of SESRIM to the field of digital in-line holographic microscopy (DIHM), that is, working without lenses. As consequence of the in-line configuration, an additional restriction concerning the object field of view (FOV) must be imposed to the technique. Experimental results are reported for both a synthetic object (USAF resolution test target) and a biological sample (swine sperm sample) validating this new kind of superresolution imaging method named as lensless SESRIM (L-SESRIM).

  9. Marine debris ingestion and Thayer's law - The importance of plastic color.

    PubMed

    Santos, Robson G; Andrades, Ryan; Fardim, Lorena M; Martins, Agnaldo Silva

    2016-07-01

    In recent years marine plastic pollution has gained considerable attention as a significant threat to marine animals. Despite the abundant literature related to marine debris ingestion, only a few studies attempted to understand the factors involved in debris ingestion. Plastic ingestion is commonly attributed to visual similarities of plastic fragments to animal's prey items, such as plastic bags and jellyfish. However, this simple explanation is not always coherent with the variety of debris items ingested and with the species' main prey items. We assess differences in the conspicuousness of plastic debris related to their color using Thayer's law to infer the likelihood that visual foragers detect plastic fragments. We hypothesize that marine animals that perceive floating plastic from below should preferentially ingest dark plastic fragments, whereas animals that perceive floating plastic from above should select for paler plastic fragments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Protective effects of biodegradable collagen implants on thinned sclera after strabismus surgery: a paired-eye study.

    PubMed

    Yoo, Tae Keun; Han, Sueng-Han; Han, Jinu

    2017-12-01

    To determine the efficacy of a biodegradable Ologen (Aeon Astron Europe BV, Leiden, The Netherlands) collagen matrix in reducing the blue color change due to exposed thinned sclera after strabismus surgery. Fourteen patients with intermittent exotropia undergoing symmetric bilateral lateral rectus recession surgery were included in this prospective, randomized, paired-eye controlled study. In each patient, Ologen was implanted at the original rectus insertion site in one randomly selected eye; the other eye underwent conventional surgery. Ologen was inserted under the conjunctiva without suturing, covering the muscle insertion site. Conjunctival color change was analyzed using computer-based image analysis immediately and 1 week, 1 month, and 3 months postoperatively. Slit-lamp photographs of each eye were evaluated using contrast limited adaptive histogram equalization (CLAHE), Canny edge, and the RGB (red-green-blue) model. Secondary outcomes were conjunctival and sclera thickness 3 months postoperatively determined by anterior segment optical coherence tomography. Immediately and 1 week postoperatively all color models showed no significant differences between Ologen-implanted and control eyes. Three months postoperatively, Ologen-implanted eyes exhibited significantly lower CLAHE (P = 0.041) and RGB model blue color (P = 0.008) values than control eyes. Canny edge (P = 0.061) and RGB model red color (P = 0.152) values did not differ between eyes. Conjunctival stroma and episcleral complex thickness was greater in Ologen-implanted eyes than in controls (P = 0.001). Blue color change was significantly less noticeable in Ologen-implanted eyes than in controls. Thus, Ologen implantation helps prevent visible blue sclera at the original rectus insertion site after lateral rectus recession. Copyright © 2017 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  11. Association Between Retinal Nerve Fiber Layer Thickness and Abnormalities of Vision in People With Human Immunodeficiency Virus Infection

    PubMed Central

    Kalyani, Partho S.; Holland, Gary N.; Fawzi, Amani A.; Arantes, Tiago E.F.; Yu, Fei; Sadun, Alfredo A.

    2014-01-01

    Purpose To investigate relationships between contrast sensitivity (CS), color vision, and retinal nerve fiber layer (RNFL) among people with human immunodeficiency virus (HIV) infection; to evaluate the effect of time since diagnosis of HIV infection on RNFL thickness. Design Noninterventional cross-sectional study. Methods We evaluated 102 eyes of 57 HIV-infected individuals without ocular opportunistic infections. Peripapillary RNFL thickness was determined with spectraldomain optical coherence tomography in 4 quadrants. CS was measured with the Pelli-Robson technique (expressed as logCS); color vision was measured with the Lanthony desaturated 15-hue technique (expressed as color confusion index [C-index], with higher scores indicating worse color vision). Correlations between values were assessed using Spearman correlation coefficients. Results Median RNFL thickness (average of 4 quadrants) was 102.9 μm (range, 75.0–134.7 μm). Median logCS was 1.90 (range, 1.25–1.95). Median C-index was 1.58 (range, 0.96–4.07). Temporal RNFL thickness was correlated with logCS (r = 0.295, P = .003) and C-index (r = −0.338, P = .0005). Time since diagnosis of HIV infection was shorter for those with thick average RNFL than for those with thin average RNFL (P = .18). Conclusions Both worse CS and worse color vision are correlated with thinning of the temporal RNFL, with possible threshold effects. Increased prevalences of abnormal CS and abnormal color vision in this population are therefore likely attributable to neuroretinal compromise. This pattern of structural and functional losses may reflect preferential damage to small-caliber axons in the maculopapillary bundle, possibly associated with mitochondrial dysfunction, providing a potential disease mechanism for HIV-associated “neuroretinal disorder.” PMID:22245459

  12. Smart light random memory sprays Retinex: a fast Retinex implementation for high-quality brightness adjustment and color correction.

    PubMed

    Banić, Nikola; Lončarić, Sven

    2015-11-01

    Removing the influence of illumination on image colors and adjusting the brightness across the scene are important image enhancement problems. This is achieved by applying adequate color constancy and brightness adjustment methods. One of the earliest models to deal with both of these problems was the Retinex theory. Some of the Retinex implementations tend to give high-quality results by performing local operations, but they are computationally relatively slow. One of the recent Retinex implementations is light random sprays Retinex (LRSR). In this paper, a new method is proposed for brightness adjustment and color correction that overcomes the main disadvantages of LRSR. There are three main contributions of this paper. First, a concept of memory sprays is proposed to reduce the number of LRSR's per-pixel operations to a constant regardless of the parameter values, thereby enabling a fast Retinex-based local image enhancement. Second, an effective remapping of image intensities is proposed that results in significantly higher quality. Third, the problem of LRSR's halo effect is significantly reduced by using an alternative illumination processing method. The proposed method enables a fast Retinex-based image enhancement by processing Retinex paths in a constant number of steps regardless of the path size. Due to the halo effect removal and remapping of the resulting intensities, the method outperforms many of the well-known image enhancement methods in terms of resulting image quality. The results are presented and discussed. It is shown that the proposed method outperforms most of the tested methods in terms of image brightness adjustment, color correction, and computational speed.

  13. Improved color constancy in honey bees enabled by parallel visual projections from dorsal ocelli.

    PubMed

    Garcia, Jair E; Hung, Yu-Shan; Greentree, Andrew D; Rosa, Marcello G P; Endler, John A; Dyer, Adrian G

    2017-07-18

    How can a pollinator, like the honey bee, perceive the same colors on visited flowers, despite continuous and rapid changes in ambient illumination and background color? A hundred years ago, von Kries proposed an elegant solution to this problem, color constancy, which is currently incorporated in many imaging and technological applications. However, empirical evidence on how this method can operate on animal brains remains tenuous. Our mathematical modeling proposes that the observed spectral tuning of simple ocellar photoreceptors in the honey bee allows for the necessary input for an optimal color constancy solution to most natural light environments. The model is fully supported by our detailed description of a neural pathway allowing for the integration of signals originating from the ocellar photoreceptors to the information processing regions in the bee brain. These findings reveal a neural implementation to the classic color constancy problem that can be easily translated into artificial color imaging systems.

  14. Software Coherence in Multiprocessor Memory Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bolosky, William Joseph

    1993-01-01

    Processors are becoming faster and multiprocessor memory interconnection systems are not keeping up. Therefore, it is necessary to have threads and the memory they access as near one another as possible. Typically, this involves putting memory or caches with the processors, which gives rise to the problem of coherence: if one processor writes an address, any other processor reading that address must see the new value. This coherence can be maintained by the hardware or with software intervention. Systems of both types have been built in the past; the hardware-based systems tended to outperform the software ones. However, the ratio of processor to interconnect speed is now so high that the extra overhead of the software systems may no longer be significant. This issue is explored both by implementing a software maintained system and by introducing and using the technique of offline optimal analysis of memory reference traces. It finds that in properly built systems, software maintained coherence can perform comparably to or even better than hardware maintained coherence. The architectural features necessary for efficient software coherence to be profitable include a small page size, a fast trap mechanism, and the ability to execute instructions while remote memory references are outstanding.

  15. Applying GRADE-CERQual to qualitative evidence synthesis findings-paper 4: how to assess coherence.

    PubMed

    Colvin, Christopher J; Garside, Ruth; Wainwright, Megan; Munthe-Kaas, Heather; Glenton, Claire; Bohren, Meghan A; Carlsen, Benedicte; Tunçalp, Özge; Noyes, Jane; Booth, Andrew; Rashidian, Arash; Flottorp, Signe; Lewin, Simon

    2018-01-25

    The GRADE-CERQual (Grading of Recommendations Assessment, Development and Evaluation-Confidence in Evidence from Reviews of Qualitative research) approach has been developed by the GRADE working group. The approach has been developed to support the use of findings from qualitative evidence syntheses in decision-making, including guideline development and policy formulation. CERQual includes four components for assessing how much confidence to place in findings from reviews of qualitative research (also referred to as qualitative evidence syntheses): (1) methodological limitations, (2) relevance, (3) coherence and (4) adequacy of data. This paper is part of a series providing guidance on how to apply CERQual and focuses on CERQual's coherence component. We developed the coherence component by searching the literature for definitions, gathering feedback from relevant research communities and developing consensus through project group meetings. We tested the CERQual coherence component within several qualitative evidence syntheses before agreeing on the current definition and principles for application. When applying CERQual, we define coherence as how clear and cogent the fit is between the data from the primary studies and a review finding that synthesises that data. In this paper, we describe the coherence component and its rationale and offer guidance on how to assess coherence in the context of a review finding as part of the CERQual approach. This guidance outlines the information required to assess coherence, the steps that need to be taken to assess coherence and examples of coherence assessments. This paper provides guidance for review authors and others on undertaking an assessment of coherence in the context of the CERQual approach. We suggest that threats to coherence may arise when the data supporting a review finding are contradictory, ambiguous or incomplete or where competing theories exist that could be used to synthesise the data. We expect the CERQual approach, and its individual components, to develop further as our experiences with the practical implementation of the approach increase.

  16. Measurement of Coherent π^{+} Production in Low Energy Neutrino-Carbon Scattering.

    PubMed

    Abe, K; Andreopoulos, C; Antonova, M; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Ban, S; Barbi, M; Barker, G J; Barr, G; Bartet-Friburg, P; Batkiewicz, M; Bay, F; Berardi, V; Berkman, S; Bhadra, S; Blondel, A; Bolognesi, S; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buizza Avanzini, M; Calland, R G; Campbell, T; Cao, S; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Chikuma, N; Christodoulou, G; Clifton, A; Coleman, J; Collazuol, G; Coplowe, D; Cremonesi, L; Dabrowska, A; De Rosa, G; Dealtry, T; Denner, P F; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Di Luise, S; Dolan, S; Drapier, O; Duffy, K E; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Feusels, T; Finch, A J; Fiorentini, G A; Friend, M; Fujii, Y; Fukuda, D; Fukuda, Y; Furmanski, A P; Galymov, V; Garcia, A; Giffin, S G; Giganti, C; Gizzarelli, F; Gonin, M; Grant, N; Hadley, D R; Haegel, L; Haigh, M D; Hamilton, P; Hansen, D; Harada, J; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayashino, T; Hayato, Y; Helmer, R L; Hierholzer, M; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Hogan, M; Holeczek, J; Horikawa, S; Hosomi, F; Huang, K; Ichikawa, A K; Ieki, K; Ikeda, M; Imber, J; Insler, J; Intonti, R A; Irvine, T J; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Izmaylov, A; Jacob, A; Jamieson, B; Jiang, M; Johnson, S; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kim, H; Kim, J; King, S; Kisiel, J; Knight, A; Knox, A; Kobayashi, T; Koch, L; Koga, T; Konaka, A; Kondo, K; Kopylov, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Lamont, I; Larkin, E; Lasorak, P; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Liptak, Z J; Litchfield, R P; Li, X; Longhin, A; Lopez, J P; Ludovici, L; Lu, X; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Martins, P; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Ma, W Y; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Mefodiev, A; Metelko, C; Mezzetto, M; Mijakowski, P; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K G; Nakamura, K; Nakamura, K D; Nakayama, S; Nakaya, T; Nakayoshi, K; Nantais, C; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; Novella, P; Nowak, J; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Ovsyannikova, T; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Patel, N D; Pavin, M; Payne, D; Perkin, J D; Petrov, Y; Pickard, L; Pickering, L; Pinzon Guerra, E S; Pistillo, C; Popov, B; Posiadala-Zezula, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radermacher, T; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reinherz-Aronis, E; Riccio, C; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Rychter, A; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shah, R; Shaikhiev, A; Shaker, F; Shaw, D; Shiozawa, M; Shirahige, T; Short, S; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Stewart, T; Stowell, P; Suda, Y; Suvorov, S; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Terhorst, D; Terri, R; Thakore, T; Thompson, L F; Tobayama, S; Toki, W; Tomura, T; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vallari, Z; Vasseur, G; Wachala, T; Wakamatsu, K; Walter, C W; Wark, D; Warzycha, W; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Wilson, J R; Wilson, R J; Yamada, Y; Yamamoto, K; Yamamoto, M; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yoo, J; Yoshida, K; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2016-11-04

    We report the first measurement of the flux-averaged cross section for charged current coherent π^{+} production on carbon for neutrino energies less than 1.5 GeV, and with a restriction on the final state phase space volume in the T2K near detector, ND280. Comparisons are made with predictions from the Rein-Sehgal coherent production model and the model by Alvarez-Ruso et al., the latter representing the first implementation of an instance of the new class of microscopic coherent models in a neutrino interaction Monte Carlo event generator. We observe a clear event excess above background, disagreeing with the null results reported by K2K and SciBooNE in a similar neutrino energy region. The measured flux-averaged cross sections are below those predicted by both the Rein-Sehgal and Alvarez-Ruso et al.

  17. Development of a 9.3 micrometer CW LIDAR for the study of atmospheric aerosol

    NASA Technical Reports Server (NTRS)

    Whiteside, B. N.; Schotland, R. M.

    1993-01-01

    This report provides a brief summary of the basic requirements to obtain coherent or heterodyne mixing of the optical radiation backscattered by atmospheric aerosols with that from a fixed frequency source. The continuous wave (CW) mode of operation for a coherent lidar is reviewed along with the associated lidar transfer equation. A complete optical design of the three major subsystems of a CW, coherent lidar is given. Lens design software is implemented to model and optimize receiver performance. Techniques for the opto-mechanical assembly and some of the critical tolerances of the coherent lidar are provided along with preliminary tests of the subsystems. Included in these tests is a comparison of the experimental and the theoretical average power signal-to-noise ratio. The analog to digital software used to evaluate the power spectrum of the backscattered signal is presented in the Appendix of this report.

  18. Coherent Control to Prepare an InAs Quantum Dot for Spin-Photon Entanglement

    NASA Astrophysics Data System (ADS)

    Webster, L. A.; Truex, K.; Duan, L.-M.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.

    2014-03-01

    We optically generated an electronic state in a single InAs /GaAs self-assembled quantum dot that is a precursor to the deterministic entanglement of the spin of the electron with an emitted photon in the proposal of W. Yao, R.-B. Liu, and L. J. Sham [Phys. Rev. Lett. 95, 030504 (2005).]. A superposition state is prepared by optical pumping to a pure state followed by an initial pulse. By modulating the subsequent pulse arrival times and precisely controlling them using interferometric measurement of path length differences, we are able to implement a coherent control technique to selectively drive exactly one of the two components of the superposition to the ground state. This optical transition contingent on spin was driven with the same broadband pulses that created the superposition through the use of a two pulse coherent control sequence. A final pulse affords measurement of the coherence of this "preentangled" state.

  19. An adaptive deep-coupled GNSS/INS navigation system with hybrid pre-filter processing

    NASA Astrophysics Data System (ADS)

    Wu, Mouyan; Ding, Jicheng; Zhao, Lin; Kang, Yingyao; Luo, Zhibin

    2018-02-01

    The deep-coupling of a global navigation satellite system (GNSS) with an inertial navigation system (INS) can provide accurate and reliable navigation information. There are several kinds of deeply-coupled structures. These can be divided mainly into coherent and non-coherent pre-filter based structures, which have their own strong advantages and disadvantages, especially in accuracy and robustness. In this paper, the existing pre-filters of the deeply-coupled structures are analyzed and modified to improve them firstly. Then, an adaptive GNSS/INS deeply-coupled algorithm with hybrid pre-filters processing is proposed to combine the advantages of coherent and non-coherent structures. An adaptive hysteresis controller is designed to implement the hybrid pre-filters processing strategy. The simulation and vehicle test results show that the adaptive deeply-coupled algorithm with hybrid pre-filters processing can effectively improve navigation accuracy and robustness, especially in a GNSS-challenged environment.

  20. The coherence lifetime-borrowing effect in vibronically coupled molecular aggregates under non-perturbative system-environment interactions.

    NASA Astrophysics Data System (ADS)

    Yeh, Shu-Hao; Engel, Gregory S.; Kais, Sabre

    Recently it has been suggested that the long-lived coherences in some photosynthetic pigment-protein systems, such as the Fenna-Matthews-Olson complex, could be attributed to the mixing of the pigments' electronic and vibrational degrees of freedom. In order to verify whether this is the case and to understand its underlying mechanism, a theoretical model capable of including both the electronic excitations and intramolecular vibrational modes of the pigments is necessary. Our model simultaneously considers the electronic and vibrational degrees of freedom, treating the system-environment interactions non-perturbatively by implementing the hierarchical equations of motion approach. Here we report the simulated two-dimensional electronic spectra of vibronically coupled molecular dimers to demonstrate how the electronic coherence lifetimes can be extended by borrowing the lifetime from the vibrational coherences. Funded by Qatar National Research Fund and Qatar Environment and Energy Research Institute.

  1. Optical coherence of 166Er:7LiYF4 crystal below 1 K

    NASA Astrophysics Data System (ADS)

    Kukharchyk, N.; Sholokhov, D.; Morozov, O.; Korableva, S. L.; Kalachev, A. A.; Bushev, P. A.

    2018-02-01

    We explore optical coherence and spin dynamics of an isotopically purified 166Er:7LiYF4 crystal below 1 K and at weak magnetic fields < 0.3T. Crystals were grown in our lab and demonstrate narrow inhomogeneous optical broadening down to 16 MHz. Solid-state atomic ensembles with such narrow linewidths are very attractive for implementing of off-resonant Raman quantum memory and for the interfacing of superconducting quantum circuits and telecom C-band optical photons. Both applications require a low magnetic field of ∼10 mT. However, at conventional experimental temperatures T > 1.5 K, optical coherence of Er:LYF crystal attains ≃ 10 μ {{s}} time scale only at strong magnetic fields above 1.5 T. In the present work, we demonstrate that the deep freezing of Er:LYF crystal below 1 K results in the increase of optical coherence time to ≃ 100 μ {{s}} at weak fields.

  2. Measurement of Coherent π+ Production in Low Energy Neutrino-Carbon Scattering

    NASA Astrophysics Data System (ADS)

    Abe, K.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Ban, S.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berkman, S.; Bhadra, S.; Blondel, A.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buizza Avanzini, M.; Calland, R. G.; Campbell, T.; Cao, S.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Collazuol, G.; Coplowe, D.; Cremonesi, L.; Dabrowska, A.; De Rosa, G.; Dealtry, T.; Denner, P. F.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duffy, K. E.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, D.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S. G.; Giganti, C.; Gizzarelli, F.; Gonin, M.; Grant, N.; Hadley, D. R.; Haegel, L.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Harada, J.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Helmer, R. L.; Hierholzer, M.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Hogan, M.; Holeczek, J.; Horikawa, S.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ikeda, M.; Imber, J.; Insler, J.; Intonti, R. A.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kim, H.; Kim, J.; King, S.; Kisiel, J.; Knight, A.; Knox, A.; Kobayashi, T.; Koch, L.; Koga, T.; Konaka, A.; Kondo, K.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Lasorak, P.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Liptak, Z. J.; Litchfield, R. P.; Li, X.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Lu, X.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Ma, W. Y.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakamura, K. D.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Novella, P.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Patel, N. D.; Pavin, M.; Payne, D.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pickering, L.; Pinzon Guerra, E. S.; Pistillo, C.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radermacher, T.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reinherz-Aronis, E.; Riccio, C.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaikhiev, A.; Shaker, F.; Shaw, D.; Shiozawa, M.; Shirahige, T.; Short, S.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Stewart, T.; Stowell, P.; Suda, Y.; Suvorov, S.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Terhorst, D.; Terri, R.; Thakore, T.; Thompson, L. F.; Tobayama, S.; Toki, W.; Tomura, T.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vallari, Z.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Wilson, J. R.; Wilson, R. J.; Yamada, Y.; Yamamoto, K.; Yamamoto, M.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2016-11-01

    We report the first measurement of the flux-averaged cross section for charged current coherent π+ production on carbon for neutrino energies less than 1.5 GeV, and with a restriction on the final state phase space volume in the T2K near detector, ND280. Comparisons are made with predictions from the Rein-Sehgal coherent production model and the model by Alvarez-Ruso et al., the latter representing the first implementation of an instance of the new class of microscopic coherent models in a neutrino interaction Monte Carlo event generator. We observe a clear event excess above background, disagreeing with the null results reported by K2K and SciBooNE in a similar neutrino energy region. The measured flux-averaged cross sections are below those predicted by both the Rein-Sehgal and Alvarez-Ruso et al. models.

  3. 2D to 3D conversion implemented in different hardware

    NASA Astrophysics Data System (ADS)

    Ramos-Diaz, Eduardo; Gonzalez-Huitron, Victor; Ponomaryov, Volodymyr I.; Hernandez-Fragoso, Araceli

    2015-02-01

    Conversion of available 2D data for release in 3D content is a hot topic for providers and for success of the 3D applications, in general. It naturally completely relies on virtual view synthesis of a second view given by original 2D video. Disparity map (DM) estimation is a central task in 3D generation but still follows a very difficult problem for rendering novel images precisely. There exist different approaches in DM reconstruction, among them manually and semiautomatic methods that can produce high quality DMs but they demonstrate hard time consuming and are computationally expensive. In this paper, several hardware implementations of designed frameworks for an automatic 3D color video generation based on 2D real video sequence are proposed. The novel framework includes simultaneous processing of stereo pairs using the following blocks: CIE L*a*b* color space conversions, stereo matching via pyramidal scheme, color segmentation by k-means on an a*b* color plane, and adaptive post-filtering, DM estimation using stereo matching between left and right images (or neighboring frames in a video), adaptive post-filtering, and finally, the anaglyph 3D scene generation. Novel technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7, and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode. The time values needed, mean Similarity Structural Index Measure (SSIM) and Bad Matching Pixels (B) values for different hardware implementations (GPU, Single CPU, and DSP) are exposed in this paper.

  4. Securing Color Fidelity in 3D Architectural Heritage Scenarios.

    PubMed

    Gaiani, Marco; Apollonio, Fabrizio Ivan; Ballabeni, Andrea; Remondino, Fabio

    2017-10-25

    Ensuring color fidelity in image-based 3D modeling of heritage scenarios is nowadays still an open research matter. Image colors are important during the data processing as they affect algorithm outcomes, therefore their correct treatment, reduction and enhancement is fundamental. In this contribution, we present an automated solution developed to improve the radiometric quality of an image datasets and the performances of two main steps of the photogrammetric pipeline (camera orientation and dense image matching). The suggested solution aims to achieve a robust automatic color balance and exposure equalization, stability of the RGB-to-gray image conversion and faithful color appearance of a digitized artifact. The innovative aspects of the article are: complete automation, better color target detection, a MATLAB implementation of the ACR scripts created by Fraser and the use of a specific weighted polynomial regression. A series of tests are presented to demonstrate the efficiency of the developed methodology and to evaluate color accuracy ('color characterization').

  5. Securing Color Fidelity in 3D Architectural Heritage Scenarios

    PubMed Central

    Apollonio, Fabrizio Ivan; Ballabeni, Andrea; Remondino, Fabio

    2017-01-01

    Ensuring color fidelity in image-based 3D modeling of heritage scenarios is nowadays still an open research matter. Image colors are important during the data processing as they affect algorithm outcomes, therefore their correct treatment, reduction and enhancement is fundamental. In this contribution, we present an automated solution developed to improve the radiometric quality of an image datasets and the performances of two main steps of the photogrammetric pipeline (camera orientation and dense image matching). The suggested solution aims to achieve a robust automatic color balance and exposure equalization, stability of the RGB-to-gray image conversion and faithful color appearance of a digitized artifact. The innovative aspects of the article are: complete automation, better color target detection, a MATLAB implementation of the ACR scripts created by Fraser and the use of a specific weighted polynomial regression. A series of tests are presented to demonstrate the efficiency of the developed methodology and to evaluate color accuracy (‘color characterization’). PMID:29068359

  6. Long-term follow-up of two patients with oligocone trichromacy.

    PubMed

    Smirnov, Vasily; Drumare, Isabelle; Bouacha, Ikram; Puech, Bernard; Defoort-Dhellemmes, Sabine

    2015-10-01

    Oligocone trichromacy (OT) is an uncommon cone dysfunction disorder, the mechanism of which remains poorly understood. OT has been thought to be non-progressive, but its long-term visual outcome has been seldom reported in the literature. Our aim was to present two OT patients followed at our institution over 18 years. Complete ocular examination, color vision, visual fields, and full-field electroretinography (ERG) were performed at initial presentation and follow-up. Spectral-domain optical coherence tomography (OCT) was performed during follow-up when available at our institution. Initial ocular examination showed satisfactory visual acuities with normal fundus examination and near-to-normal color vision. However, computerized perimetry demonstrated a ring-shaped scotoma around fixation, and ERG showed a profound cone dysfunction. The discrepancy between preserved color vision and profound cone dysfunction leads to the diagnosis of OT. Subsequent follow-ups over 18 years showed subtle degradation of visual acuities along with progression of the myopia in both patients and slight worsening of color vision in one patient. Initial OCT revealed a focal interruption of the ellipsoid line along with decreased thickness of the perifoveal macula. Subsequent OCT imaging performed 2 years later did not show any macular changes. Although OT is known to be a non-progressive cone dysfunction, our results suggest that subtle degradation of the visual function might happen over time.

  7. Universal quantum computation using all-optical hybrid encoding

    NASA Astrophysics Data System (ADS)

    Guo, Qi; Cheng, Liu-Yong; Wang, Hong-Fu; Zhang, Shou

    2015-04-01

    By employing displacement operations, single-photon subtractions, and weak cross-Kerr nonlinearity, we propose an alternative way of implementing several universal quantum logical gates for all-optical hybrid qubits encoded in both single-photon polarization state and coherent state. Since these schemes can be straightforwardly implemented only using local operations without teleportation procedure, therefore, less physical resources and simpler operations are required than the existing schemes. With the help of displacement operations, a large phase shift of the coherent state can be obtained via currently available tiny cross-Kerr nonlinearity. Thus, all of these schemes are nearly deterministic and feasible under current technology conditions, which makes them suitable for large-scale quantum computing. Project supported by the National Natural Science Foundation of China (Grant Nos. 61465013, 11465020, and 11264042).

  8. A coherent Ising machine for 2000-node optimization problems

    NASA Astrophysics Data System (ADS)

    Inagaki, Takahiro; Haribara, Yoshitaka; Igarashi, Koji; Sonobe, Tomohiro; Tamate, Shuhei; Honjo, Toshimori; Marandi, Alireza; McMahon, Peter L.; Umeki, Takeshi; Enbutsu, Koji; Tadanaga, Osamu; Takenouchi, Hirokazu; Aihara, Kazuyuki; Kawarabayashi, Ken-ichi; Inoue, Kyo; Utsunomiya, Shoko; Takesue, Hiroki

    2016-11-01

    The analysis and optimization of complex systems can be reduced to mathematical problems collectively known as combinatorial optimization. Many such problems can be mapped onto ground-state search problems of the Ising model, and various artificial spin systems are now emerging as promising approaches. However, physical Ising machines have suffered from limited numbers of spin-spin couplings because of implementations based on localized spins, resulting in severe scalability problems. We report a 2000-spin network with all-to-all spin-spin couplings. Using a measurement and feedback scheme, we coupled time-multiplexed degenerate optical parametric oscillators to implement maximum cut problems on arbitrary graph topologies with up to 2000 nodes. Our coherent Ising machine outperformed simulated annealing in terms of accuracy and computation time for a 2000-node complete graph.

  9. Experimental Implementation of a Quantum Optical State Comparison Amplifier

    NASA Astrophysics Data System (ADS)

    Donaldson, Ross J.; Collins, Robert J.; Eleftheriadou, Electra; Barnett, Stephen M.; Jeffers, John; Buller, Gerald S.

    2015-03-01

    We present an experimental demonstration of a practical nondeterministic quantum optical amplification scheme that employs two mature technologies, state comparison and photon subtraction, to achieve amplification of known sets of coherent states with high fidelity. The amplifier uses coherent states as a resource rather than single photons, which allows for a relatively simple light source, such as a diode laser, providing an increased rate of amplification. The amplifier is not restricted to low amplitude states. With respect to the two key parameters, fidelity and the amplified state production rate, we demonstrate significant improvements over previous experimental implementations, without the requirement of complex photonic components. Such a system may form the basis of trusted quantum repeaters in nonentanglement-based quantum communications systems with known phase alphabets, such as quantum key distribution or quantum digital signatures.

  10. Coherent inflation for large quantum superpositions of levitated microspheres

    NASA Astrophysics Data System (ADS)

    Romero-Isart, Oriol

    2017-12-01

    We show that coherent inflation (CI), namely quantum dynamics generated by inverted conservative potentials acting on the center of mass of a massive object, is an enabling tool to prepare large spatial quantum superpositions in a double-slit experiment. Combined with cryogenic, extreme high vacuum, and low-vibration environments, we argue that it is experimentally feasible to exploit CI to prepare the center of mass of a micrometer-sized object in a spatial quantum superposition comparable to its size. In such a hitherto unexplored parameter regime gravitationally-induced decoherence could be unambiguously falsified. We present a protocol to implement CI in a double-slit experiment by letting a levitated microsphere traverse a static potential landscape. Such a protocol could be experimentally implemented with an all-magnetic scheme using superconducting microspheres.

  11. Color-Coded Front-of-Pack Nutrition Labels-An Option for US Packaged Foods?

    PubMed

    Dunford, Elizabeth K; Poti, Jennifer M; Xavier, Dagan; Webster, Jacqui L; Taillie, Lindsey Smith

    2017-05-10

    The implementation of a standardized front-of-pack-labelling (FoPL) scheme would likely be a useful tool for many consumers trying to improve the healthfulness of their diets. Our objective was to examine what the traffic light labelling scheme would look like if implemented in the US. Data were extracted from Label Insight's Open Access branded food database in 2017. Nutrient levels and the proportion of products classified as "Red" (High), "Amber" (Medium) or "Green" (Low) in total fat, saturated fat, total sugar and sodium for food and beverage items were examined. The proportion of products in each category that had each possible combination of traffic light colors, and met the aggregate score for "healthy" was examined. Out of 175,198 products, >50% of all US packaged foods received a "Red" rating for total sugar and sodium. "Confectionery" had the highest mean total sugar (51.9 g/100 g) and "Meat and meat alternatives" the highest mean sodium (781 mg/100 g). The most common traffic light label combination was "Red" for total fat, saturated fat and sodium and "Green" for sugar. Only 30.1% of products were considered "healthy". A wide variety ( n = 80) of traffic light color combinations were observed. A color coded traffic light scheme appears to be an option for implementation across the US packaged food supply to support consumers in making healthier food choices.

  12. The Simulation of Read-time Scalable Coherent Interface

    NASA Technical Reports Server (NTRS)

    Li, Qiang; Grant, Terry; Grover, Radhika S.

    1997-01-01

    Scalable Coherent Interface (SCI, IEEE/ANSI Std 1596-1992) (SCI1, SCI2) is a high performance interconnect for shared memory multiprocessor systems. In this project we investigate an SCI Real Time Protocols (RTSCI1) using Directed Flow Control Symbols. We studied the issues of efficient generation of control symbols, and created a simulation model of the protocol on a ring-based SCI system. This report presents the results of the study. The project has been implemented using SES/Workbench. The details that follow encompass aspects of both SCI and Flow Control Protocols, as well as the effect of realistic client/server processing delay. The report is organized as follows. Section 2 provides a description of the simulation model. Section 3 describes the protocol implementation details. The next three sections of the report elaborate on the workload, results and conclusions. Appended to the report is a description of the tool, SES/Workbench, used in our simulation, and internal details of our implementation of the protocol.

  13. Noise-resilient quantum evolution steered by dynamical decoupling

    PubMed Central

    Liu, Gang-Qin; Po, Hoi Chun; Du, Jiangfeng; Liu, Ren-Bao; Pan, Xin-Yu

    2013-01-01

    Realistic quantum computing is subject to noise. Therefore, an important frontier in quantum computing is to implement noise-resilient quantum control over qubits. At the same time, dynamical decoupling can protect the coherence of qubits. Here we demonstrate non-trivial quantum evolution steered by dynamical decoupling control, which simultaneously suppresses noise effects. We design and implement a self-protected controlled-NOT gate on the electron spin of a nitrogen-vacancy centre and a nearby carbon-13 nuclear spin in diamond at room temperature, by employing an engineered dynamical decoupling control on the electron spin. Final state fidelity of 0.91(1) is observed in preparation of a Bell state using the gate. At the same time, the qubit coherence time is elongated at least 30 fold. The design scheme does not require the dynamical decoupling control to commute with the qubit interaction and therefore works for general qubit systems. This work marks a step towards implementing realistic quantum computing systems. PMID:23912335

  14. Noise-resilient quantum evolution steered by dynamical decoupling.

    PubMed

    Liu, Gang-Qin; Po, Hoi Chun; Du, Jiangfeng; Liu, Ren-Bao; Pan, Xin-Yu

    2013-01-01

    Realistic quantum computing is subject to noise. Therefore, an important frontier in quantum computing is to implement noise-resilient quantum control over qubits. At the same time, dynamical decoupling can protect the coherence of qubits. Here we demonstrate non-trivial quantum evolution steered by dynamical decoupling control, which simultaneously suppresses noise effects. We design and implement a self-protected controlled-NOT gate on the electron spin of a nitrogen-vacancy centre and a nearby carbon-13 nuclear spin in diamond at room temperature, by employing an engineered dynamical decoupling control on the electron spin. Final state fidelity of 0.91(1) is observed in preparation of a Bell state using the gate. At the same time, the qubit coherence time is elongated at least 30 fold. The design scheme does not require the dynamical decoupling control to commute with the qubit interaction and therefore works for general qubit systems. This work marks a step towards implementing realistic quantum computing systems.

  15. Enhancing the chroma of pigmented polymers using antireflective surface structures.

    PubMed

    Clausen, Jeppe S; Christiansen, Alexander B; Kristensen, Anders; Mortensen, N Asger

    2013-11-10

    In this paper we investigate how the color of a pigmented polymer is affected by reduction of the reflectance at the air-polymer interface. Both theoretical and experimental investigations show modified diffuse-direct reflectance spectra when the reflectance of the surface is lowered. Specifically it is found that the color change is manifested as an increase in chroma, leading to a clearer color experience. The experimental implementation is done using random tapered surface structures replicated in polymer from silicon masters using hot embossing.

  16. Design and Production of Color Calibration Targets for Digital Input Devices

    DTIC Science & Technology

    2000-07-01

    gamuts . Fourth, color transform form CIELCH to sRGB will be described. Fifth, the relevant target mockups will be created. Sixth, the quality will be...Implement statistical _ • process controls Print, process and measure •, reject Transfer the measured CIEXYZ of I the target patches to SRGB a Genterate...Kodak Royal VII paper and sRGB . This plot shows all points on the a*-b* plane without information about the L*. The sRGB’s color gamut is obtained from

  17. A Two-Color Fourier Transform Mm-Wave Spectrometer for Gas Analysis Operating from 260-295 GHZ

    NASA Astrophysics Data System (ADS)

    Steber, Amanda L.; Harris, Brent J.; Lehmann, Kevin K.; Pate, Brooks H.

    2013-06-01

    We have designed a two-color mm-wave spectrometer for Fourier transform mm-wave spectroscopy that uses consumer level components for the tunable synthesizers, digital control of the pulse modulators, and digitization of the coherent free induction decay (FID). The excitation pulses are generated using an x24 active multiplier chain (AMC) that produces a peak power of 30 mW. The microwave input to the AMC is generated in a frequency up conversion circuit that accepts a microwave input frequency from about 2-4 GHz. This circuit also generates the input to the mm-wave subhamonic mixer that creates the local oscillator from a separate 2-4 GHz microwave input. Excitation pulses at two independently tunable frequencies are generated using a dual-channel source based on a low-cost, wideband synthesizer integrated circuit (Valon Technology Model 5008). The outputs of the synthesizer are pulse modulated using a PIN diode switch that is driven using the arbitrary waveform generator (AWG) output of a USB-controlled high-speed digitizer / arbitrary waveform generator combination unit (Tie Pie HS-5 530 XM). The two pulses are combined using a Wilkinson power divider before input to the up conversion circuit. The FID frequency is down converted in a two-stage mixing process to 65 MHz. The two LO frequencies used in the receiver are provided by a second Valon 5008. The FID is digitized at 200 MSamples/s using the 12-bit Tie Pie digitizer. The digital oscilloscope (and its AWG channel) and the two synthesizers use a 10 MHz reference signal from a Rubidium clock to permit time-domain signal averaging. A key feature of the digital oscilloscope is its deep memory of 32 Mpts (complemented by the 64 Mpt memory in the 240 MS/s AWG). This makes it possible to perform several one- and two-color coherent measurements, including pulse echoes and double-resonance spectroscopy, in a single "readout" experiment to speed the analysis of mm-wave rotational spectra. The spectrometer sensitivity and frequency accuracy are illustrated by high-speed measurements of OCS rotational transitions for low-abundance isotopes. Examples of pulse echo measurements to determine the collisional relaxation rate and two-color double-resonance measurements to confirm the presence of a molecular species will be illustrated using OCS as the room-temperature gas sample.

  18. Coherent ambient infrasound recorded by the International Monitoring System

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.; LandèS, Matthieu; Le Pichon, Alexis; Ceranna, Lars; Brown, David

    2013-01-01

    The ability of the International Monitoring System (IMS) infrasound network to detect atmospheric nuclear explosions and other signals of interest is strongly dependent on station-specific ambient noise. This ambient noise includes both incoherent wind noise and real coherent infrasonic waves. Previous ambient infrasound noise models have not distinguished between incoherent and coherent components. We present a first attempt at statistically and systematically characterizing coherent infrasound recorded by the IMS. We perform broadband (0.01-5 Hz) array processing with the IMS continuous waveform archive (39 stations from 1 April 2005 to 31 December 2010) using an implementation of the Progressive Multi-Channel Correlation algorithm in log-frequency space. From these results, we estimate multi-year 5th, 50th, and 95th percentiles of the RMS pressure of coherent signals in 15 frequency bands for each station. We compare the resulting coherent infrasound models with raw power spectral density noise models, which inherently include both incoherent and coherent components. Our results indicate that IMS arrays consistently record coherent ambient infrasound across the broad frequency range from 0.01 to 5 Hz when wind noise levels permit. The multi-year averaging emphasizes continuous signals such as oceanic microbaroms, as well as persistent transient signals such as repetitive volcanic, surf, thunder, or anthropogenic activity. Systematic characterization of coherent infrasound detection is important for quantifying a station's recording environment, signal-to-noise ratio as a function of frequency and direction, and overall performance, which all influence the detection probability of specific signals of interest.

  19. Identification of pixels with stray light and cloud shadow contaminations in the satellite ocean color data processing.

    PubMed

    Jiang, Lide; Wang, Menghua

    2013-09-20

    A new flag/masking scheme has been developed for identifying stray light and cloud shadow pixels that significantly impact the quality of satellite-derived ocean color products. Various case studies have been carried out to evaluate the performance of the new cloud contamination flag/masking scheme on ocean color products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). These include direct visual assessments, detailed quantitative case studies, objective statistic analyses, and global image examinations and comparisons. The National Oceanic and Atmospheric Administration (NOAA) Multisensor Level-1 to Level-2 (NOAA-MSL12) ocean color data processing system has been used in the study. The new stray light and cloud shadow identification method has been shown to outperform the current stray light flag in both valid data coverage and data quality of satellite-derived ocean color products. In addition, some cloud-related flags from the official VIIRS-SNPP data processing software, i.e., the Interface Data Processing System (IDPS), have been assessed. Although the data quality with the IDPS flags is comparable to that of the new flag implemented in the NOAA-MSL12 ocean color data processing system, the valid data coverage from the IDPS is significantly less than that from the NOAA-MSL12 using the new stray light and cloud shadow flag method. Thus, the IDPS flag/masking algorithms need to be refined and modified to reduce the pixel loss, e.g., the proposed new cloud contamination flag/masking can be implemented in IDPS VIIRS ocean color data processing.

  20. Study on Mosaic and Uniform Color Method of Satellite Image Fusion in Large Srea

    NASA Astrophysics Data System (ADS)

    Liu, S.; Li, H.; Wang, X.; Guo, L.; Wang, R.

    2018-04-01

    Due to the improvement of satellite radiometric resolution and the color difference for multi-temporal satellite remote sensing images and the large amount of satellite image data, how to complete the mosaic and uniform color process of satellite images is always an important problem in image processing. First of all using the bundle uniform color method and least squares mosaic method of GXL and the dodging function, the uniform transition of color and brightness can be realized in large area and multi-temporal satellite images. Secondly, using Color Mapping software to color mosaic images of 16bit to mosaic images of 8bit based on uniform color method with low resolution reference images. At last, qualitative and quantitative analytical methods are used respectively to analyse and evaluate satellite image after mosaic and uniformity coloring. The test reflects the correlation of mosaic images before and after coloring is higher than 95 % and image information entropy increases, texture features are enhanced which have been proved by calculation of quantitative indexes such as correlation coefficient and information entropy. Satellite image mosaic and color processing in large area has been well implemented.

  1. Barriers and facilitators to the implementation of SPNS interventions designed to engage and retain HIV positive women of color in medical care.

    PubMed

    Garcia, Iliana A; Blank, Arthur E; Eastwood, Elizabeth A; Karasz, Alison

    2015-04-01

    The use of evidence-based strategies to increase access to medical care and improve health outcomes for people living with HIV is a major public health priority in the United States. As part of a multi-site evaluation funded under the Health Resources and Services Administration (HRSA), a process evaluation was conducted with the goal of understanding barriers and facilitators to the implementation of eleven heterogeneous interventions designed to engage and retain HIV positive women of color (WoC) in medical care. Findings identified barriers and facilitators to program implementation at five levels: (1) program; (2) team; (3) agency; (4) partner network; and (5) the larger socio-ecological context. We conclude with a series of recommendations that may be useful for the implementation of similar interventions focused on recruitment and retention of WoC in HIV medical care.

  2. Abstract ID: 176 Geant4 implementation of inter-atomic interference effect in small-angle coherent X-ray scattering for materials of medical interest.

    PubMed

    Paternò, Gianfranco; Cardarelli, Paolo; Contillo, Adriano; Gambaccini, Mauro; Taibi, Angelo

    2018-01-01

    Advanced applications of digital mammography such as dual-energy and tomosynthesis require multiple exposures and thus deliver higher dose compared to standard mammograms. A straightforward manner to reduce patient dose without affecting image quality would be removal of the anti-scatter grid, provided that the involved reconstruction algorithms are able to take the scatter figure into account [1]. Monte Carlo simulations are very well suited for the calculation of X-ray scatter distribution and can be used to integrate such information within the reconstruction software. Geant4 is an open source C++ particle tracking code widely used in several physical fields, including medical physics [2,3]. However, the coherent scattering cross section used by the standard Geant4 code does not take into account the influence of molecular interference. According to the independent atomic scattering approximation (the so-called free-atom model), coherent radiation is indistinguishable from primary radiation because its angular distribution is peaked in the forward direction. Since interference effects occur between x-rays scattered by neighbouring atoms in matter, it was shown experimentally that the scatter distribution is affected by the molecular structure of the target, even in amorphous materials. The most important consequence is that the coherent scatter distribution is not peaked in the forward direction, and the position of the maximum is strongly material-dependent [4]. In this contribution, we present the implementation of a method to take into account inter-atomic interference in small-angle coherent scattering in Geant4, including a dedicated data set of suitable molecular form factor values for several materials of clinical interest. Furthermore, we present scatter images of simple geometric phantoms in which the Rayleigh contribution is rigorously evaluated. Copyright © 2017.

  3. Coherent feedback control of a single qubit in diamond

    NASA Astrophysics Data System (ADS)

    Hirose, Masashi; Cappellaro, Paola

    2016-04-01

    Engineering desired operations on qubits subjected to the deleterious effects of their environment is a critical task in quantum information processing, quantum simulation and sensing. The most common approach relies on open-loop quantum control techniques, including optimal-control algorithms based on analytical or numerical solutions, Lyapunov design and Hamiltonian engineering. An alternative strategy, inspired by the success of classical control, is feedback control. Because of the complications introduced by quantum measurement, closed-loop control is less pervasive in the quantum setting and, with exceptions, its experimental implementations have been mainly limited to quantum optics experiments. Here we implement a feedback-control algorithm using a solid-state spin qubit system associated with the nitrogen vacancy centre in diamond, using coherent feedback to overcome the limitations of measurement-based feedback, and show that it can protect the qubit against intrinsic dephasing noise for milliseconds. In coherent feedback, the quantum system is connected to an auxiliary quantum controller (ancilla) that acquires information about the output state of the system (by an entangling operation) and performs an appropriate feedback action (by a conditional gate). In contrast to open-loop dynamical decoupling techniques, feedback control can protect the qubit even against Markovian noise and for an arbitrary period of time (limited only by the coherence time of the ancilla), while allowing gate operations. It is thus more closely related to quantum error-correction schemes, although these require larger and increasing qubit overheads. Increasing the number of fresh ancillas enables protection beyond their coherence time. We further evaluate the robustness of the feedback protocol, which could be applied to quantum computation and sensing, by exploring a trade-off between information gain and decoherence protection, as measurement of the ancilla-qubit correlation after the feedback algorithm voids the protection, even if the rest of the dynamics is unchanged.

  4. EUVL back-insertion layout optimization

    NASA Astrophysics Data System (ADS)

    Civay, D.; Laffosse, E.; Chesneau, A.

    2018-03-01

    Extreme ultraviolet lithography (EUVL) is targeted for front-up insertion at advanced technology nodes but will be evaluated for back insertion at more mature nodes. EUVL can put two or more mask levels back on one mask, depending upon what level(s) in the process insertion occurs. In this paper, layout optimization methods are discussed that can be implemented when EUVL back insertion is implemented. The layout optimizations can be focused on improving yield, reliability or density, depending upon the design needs. The proposed methodology modifies the original two or more colored layers and generates an optimized single color EUVL layout design.

  5. Optical Amplifier for Space Applications

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Cole, Spencer T.; Gamble, Lisa J.; Diffey, William M.; Keys, Andrew S.

    1999-01-01

    We describe an optical amplifier designed to amplify a spatially sampled component of an optical wavefront to kilowatt average power. The goal is means for implementing a strategy of spatially segmenting a large aperture wavefront, amplifying the individual segments, maintaining the phase coherence of the segments by active means, and imaging the resultant amplified coherent field. Applications of interest are the transmission of space solar power over multi-megameter distances, as to distant spacecraft, or to remote sites with no preexisting power grid.

  6. Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media.

    PubMed

    Marks, Daniel L; Oldenburg, Amy L; Reynolds, J Joshua; Boppart, Stephen A

    2003-01-10

    The resolution of optical coherence tomography (OCT) often suffers from blurring caused by material dispersion. We present a numerical algorithm for computationally correcting the effect of material dispersion on OCT reflectance data for homogeneous and stratified media. This is experimentally demonstrated by correcting the image of a polydimethyl siloxane microfludic structure and of glass slides. The algorithm can be implemented using the fast Fourier transform. With broad spectral bandwidths and highly dispersive media or thick objects, dispersion correction becomes increasingly important.

  7. Digital Algorithm for Dispersion Correction in Optical Coherence Tomography for Homogeneous and Stratified Media

    NASA Astrophysics Data System (ADS)

    Marks, Daniel L.; Oldenburg, Amy L.; Reynolds, J. Joshua; Boppart, Stephen A.

    2003-01-01

    The resolution of optical coherence tomography (OCT) often suffers from blurring caused by material dispersion. We present a numerical algorithm for computationally correcting the effect of material dispersion on OCT reflectance data for homogeneous and stratified media. This is experimentally demonstrated by correcting the image of a polydimethyl siloxane microfludic structure and of glass slides. The algorithm can be implemented using the fast Fourier transform. With broad spectral bandwidths and highly dispersive media or thick objects, dispersion correction becomes increasingly important.

  8. Protecting quantum memories using coherent parity check codes

    NASA Astrophysics Data System (ADS)

    Roffe, Joschka; Headley, David; Chancellor, Nicholas; Horsman, Dominic; Kendon, Viv

    2018-07-01

    Coherent parity check (CPC) codes are a new framework for the construction of quantum error correction codes that encode multiple qubits per logical block. CPC codes have a canonical structure involving successive rounds of bit and phase parity checks, supplemented by cross-checks to fix the code distance. In this paper, we provide a detailed introduction to CPC codes using conventional quantum circuit notation. We demonstrate the implementation of a CPC code on real hardware, by designing a [[4, 2, 2

  9. Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond

    DOE PAGES

    Zhang, Jingyuan Linda; Sun, Shuo; Burek, Michael J.; ...

    2018-01-29

    Quantum emitters are an integral component for a broad range of quantum technologies, including quantum communication, quantum repeaters, and linear optical quantum computation. Solid-state color centers are promising candidates for scalable quantum optics due to their long coherence time and small inhomogeneous broadening. However, once excited, color centers often decay through phonon-assisted processes, limiting the efficiency of single-photon generation and photon-mediated entanglement generation. Herein, we demonstrate strong enhancement of spontaneous emission rate of a single silicon-vacancy center in diamond embedded within a monolithic optical cavity, reaching a regime in which the excited-state lifetime is dominated by spontaneous emission into themore » cavity mode. We observe 10-fold lifetime reduction and 42-fold enhancement in emission intensity when the cavity is tuned into resonance with the optical transition of a single silicon-vacancy center, corresponding to 90% of the excited-state energy decay occurring through spontaneous emission into the cavity mode. Here, we also demonstrate the largest coupling strength ( g/2π = 4.9 ± 0.3 GHz) and cooperativity ( C = 1.4) to date for color-center-based cavity quantum electrodynamics systems, bringing the system closer to the strong coupling regime.« less

  10. Working memory capacity of biological movements predicts empathy traits.

    PubMed

    Gao, Zaifeng; Ye, Tian; Shen, Mowei; Perry, Anat

    2016-04-01

    Working memory (WM) and empathy are core issues in cognitive and social science, respectively. However, no study so far has explored the relationship between these two constructs. Considering that empathy takes place based on the others' observed experiences, which requires extracting the observed dynamic scene into WM and forming a coherent representation, we hypothesized that a sub-type of WM capacity, i.e., WM for biological movements (BM), should predict one's empathy level. Therefore, WM capacity was measured for three distinct types of stimuli in a change detection task: BM of human beings (BM; Experiment 1), movements of rectangles (Experiment 2), and static colors (Experiment 3). The first two stimuli were dynamic and shared one WM buffer which differed from the WM buffer for colors; yet only the BM conveyed social information. We found that BM-WM capacity was positively correlated with both cognitive and emotional empathy, with no such correlations for WM capacity of movements of rectangles or of colors. Thus, the current study is the first to provide evidence linking a specific buffer of WM and empathy, and highlights the necessity for considering different WM capacities in future social and clinical research.

  11. Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jingyuan Linda; Sun, Shuo; Burek, Michael J.

    Quantum emitters are an integral component for a broad range of quantum technologies, including quantum communication, quantum repeaters, and linear optical quantum computation. Solid-state color centers are promising candidates for scalable quantum optics due to their long coherence time and small inhomogeneous broadening. However, once excited, color centers often decay through phonon-assisted processes, limiting the efficiency of single-photon generation and photon-mediated entanglement generation. Herein, we demonstrate strong enhancement of spontaneous emission rate of a single silicon-vacancy center in diamond embedded within a monolithic optical cavity, reaching a regime in which the excited-state lifetime is dominated by spontaneous emission into themore » cavity mode. We observe 10-fold lifetime reduction and 42-fold enhancement in emission intensity when the cavity is tuned into resonance with the optical transition of a single silicon-vacancy center, corresponding to 90% of the excited-state energy decay occurring through spontaneous emission into the cavity mode. Here, we also demonstrate the largest coupling strength ( g/2π = 4.9 ± 0.3 GHz) and cooperativity ( C = 1.4) to date for color-center-based cavity quantum electrodynamics systems, bringing the system closer to the strong coupling regime.« less

  12. Soft x-ray submicron imaging detector based on point defects in LiF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldacchini, G.; Bollanti, S.; Bonfigli, F.

    2005-11-15

    The use of lithium fluoride (LiF) crystals and films as imaging detectors for EUV and soft-x-ray radiation is discussed. The EUV or soft-x-ray radiation can generate stable color centers, emitting in the visible spectral range an intense fluorescence from the exposed areas. The high dynamic response of the material to the received dose and the atomic scale of the color centers make this detector extremely interesting for imaging at a spatial resolution which can be much smaller than the light wavelength. Experimental results of contact microscopy imaging of test meshes demonstrate a resolution of the order of 400 nm. Thismore » high spatial resolution has been obtained in a wide field of view, up to several mm{sup 2}. Images obtained on different biological samples, as well as an investigation of a soft x-ray laser beam are presented. The behavior of the generated color centers density as a function of the deposited x-ray dose and the advantages of this new diagnostic technique for both coherent and noncoherent EUV sources, compared with CCDs detectors, photographic films, and photoresists are discussed.« less

  13. A chip-integrated coherent photonic-phononic memory.

    PubMed

    Merklein, Moritz; Stiller, Birgit; Vu, Khu; Madden, Stephen J; Eggleton, Benjamin J

    2017-09-18

    Controlling and manipulating quanta of coherent acoustic vibrations-phonons-in integrated circuits has recently drawn a lot of attention, since phonons can function as unique links between radiofrequency and optical signals, allow access to quantum regimes and offer advanced signal processing capabilities. Recent approaches based on optomechanical resonators have achieved impressive quality factors allowing for storage of optical signals. However, so far these techniques have been limited in bandwidth and are incompatible with multi-wavelength operation. In this work, we experimentally demonstrate a coherent buffer in an integrated planar optical waveguide by transferring the optical information coherently to an acoustic hypersound wave. Optical information is extracted using the reverse process. These hypersound phonons have similar wavelengths as the optical photons but travel at five orders of magnitude lower velocity. We demonstrate the storage of phase and amplitude of optical information with gigahertz bandwidth and show operation at separate wavelengths with negligible cross-talk.Optical storage implementations based on optomechanical resonator are limited to one wavelength. Here, exploiting stimulated Brillouin scattering, the authors demonstrate a coherent optical memory based on a planar integrated waveguide, which can operate at different wavelengths without cross-talk.

  14. Enhancement factor in low-coherence enhanced backscattering and its applications for characterizing experimental skin carcinogenesis

    NASA Astrophysics Data System (ADS)

    Liu, Jingjing; Xu, Zhengbin; Song, Qinghai; Konger, Raymond L.; Kim, Young L.

    2010-05-01

    We experimentally study potential mechanisms by which the enhancement factor in low-coherence enhanced backscattering (LEBS) can probe subtle variations in radial intensity distribution in weakly scattering media. We use enhanced backscattering of light by implementing either (1) low spatial coherence illumination or (2) multiple spatially independent detections using a microlens array under spatially coherent illumination. We show that the enhancement factor in these configurations is a measure of the integrated intensity within the localized coherence or detection area, which can exhibit strong dependence on small perturbations in scattering properties. To further evaluate the utility of the LEBS enhancement factor, we use a well-established animal model of cutaneous two-stage chemical carcinogenesis. In this pilot study, we demonstrate that the LEBS enhancement factor can be substantially altered at a stage of preneoplasia. Our animal result supports the idea that early carcinogenesis can cause subtle alterations in the scattering properties that can be captured by the LEBS enhancement factor. Thus, the LEBS enhancement factor has the potential as an easily measurable biomarker in skin carcinogenesis.

  15. An Analysis of Coherent Digital Receivers in the Presence of Colored Noise Interference.

    DTIC Science & Technology

    1985-06-01

    115 6.4 Pe for Det-erministic Jamnmers, JSR = 0.01, E0.3---------------------------------------------116 6.5 Pe for Deterministic Jamnmers, JSR = 0.1...k k where h p(t) and hhi(t) are the particular and homogeneous solutions, respectively, to a differential equation derived from the Fredholm I...yields 2 2D(s2)c (s) = N(s ) (3.4)c Multiplication by s corresponds to differentiation with respect to t in the time domain. So, Eq. (3.4) becomes D(p 2)K

  16. Polarization-tuned Dynamic Color Filters Incorporating a Dielectric-loaded Aluminum Nanowire Array

    PubMed Central

    Raj Shrestha, Vivek; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2015-01-01

    Nanostructured spectral filters enabling dynamic color-tuning are saliently attractive for implementing ultra-compact color displays and imaging devices. Realization of polarization-induced dynamic color-tuning via one-dimensional periodic nanostructures is highly challenging due to the absence of plasmonic resonances for transverse-electric polarization. Here we demonstrate highly efficient dynamic subtractive color filters incorporating a dielectric-loaded aluminum nanowire array, providing a continuum of customized color according to the incident polarization. Dynamic color filtering was realized relying on selective suppression in transmission spectra via plasmonic resonance at a metal-dielectric interface and guided-mode resonance for a metal-clad dielectric waveguide, each occurring at their characteristic wavelengths for transverse-magnetic and electric polarizations, respectively. A broad palette of colors, including cyan, magenta, and yellow, has been attained with high transmission beyond 80%, by tailoring the period of the nanowire array and the incident polarization. Thanks to low cost, high durability, and mass producibility of the aluminum adopted for the proposed devices, they are anticipated to be diversely applied to color displays, holographic imaging, information encoding, and anti-counterfeiting. PMID:26211625

  17. The Acceptance Strategy for Nuclear Power Plant In Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suhaemi, Tjipta; Syaukat, Achmad

    2010-06-22

    Indonesia has planned to build nuclear power plants. Some feasibility studies have been conducted intensively. However, the processes of NPP introduction are still uncertain. National Energy Plan in Indonesia, which has been made by some governmental agencies, does not yet give positive impact to the government decision to construct the nuclear power plant (NPP). This paper discusses the process of NPP introduction in Indonesia, which has been colored with debate of stakeholder and has delayed decision for go-nuclear. The technology paradigm is used to promote NPP as an alternative of reliable energy resources. This paradigm should be complemented with internationalmore » politic-economic point of view. The international politic-economic point of view shows that structural powers, consisting of security, production, finance, and knowledge structures, within which the NPP is introduced, have dynamic characteristics. The process of NPP introduction in Indonesia contains some infrastructure development (R and D, legislation, regulation, energy planning, site study, public acceptance efforts, etc), but they need a better coherent NPP implementation program and NPP Acceptance Program. Strategic patterns for NPP acceptance described in this paper are made by considering nuclear regulation development and the interest of basic domestic participation. The first NPP program in Indonesia having proven technology and basic domestic participation is and important milestone toward and optimal national energy-mix.« less

  18. Simultaneous distance measurement at multiple wavelengths using the intermode beats from a femtosecond laser coherent supercontinuum

    NASA Astrophysics Data System (ADS)

    Salido-Monzú, David; Wieser, Andreas

    2018-04-01

    The intermode beats generated by direct detection of a mode-locked femtosecond laser represent inherent high-quality and high-frequency modulations suitable for electro-optical distance measurement (EDM). This approach has already been demonstrated as a robust alternative to standard long-distance EDM techniques. However, we extend this idea to intermode beating of a wideband source obtained by spectral broadening of a femtosecond laser. We aim at establishing a technological basis for accurate and flexible multiwavelength distance measurement. Results are presented from experiments using beat notes at 1 GHz generated by two bandpass-filtered regions from both extremes of a coherent supercontinuum ranging from 550 to 1050 nm. The displacement measurements performed simultaneously on both colors on a short-distance setup show that noise and coherence of the wideband laser are adequate for achieving accuracies of about 0.01 mm on each channel with a potential improvement by accessing higher beat notes. Pointing and power instabilities have been identified as dominant sources of systematic deviations. Nevertheless, the results demonstrate the basic feasibility of the proposed technique. We consider this a promising starting point for the further development of multiwavelength EDM enabling increased accuracy over long distances through dispersion-based integral refractivity compensation and for remote surface material probing along with distance measurement in laser scanning.

  19. Multi-aperture digital coherent combining for free-space optical communication receivers.

    PubMed

    Geisler, David J; Yarnall, Timothy M; Stevens, Mark L; Schieler, Curt M; Robinson, Bryan S; Hamilton, Scott A

    2016-06-13

    Space-to-ground optical communication systems can benefit from reducing the size, weight, and power profiles of space terminals. One way of reducing the required power-aperture product on a space platform is to implement effective, but costly, single-aperture ground terminals with large collection areas. In contrast, we present a ground terminal receiver architecture in which many small less-expensive apertures are efficiently combined to create a large effective aperture while maintaining excellent receiver sensitivity. This is accomplished via coherent detection behind each aperture followed by digitization. The digitized signals are then combined in a digital signal processing chain. Experimental results demonstrate lossless coherent combining of four lasercom signals, at power levels below 0.1 photons/bit/aperture.

  20. A fast bottom-up algorithm for computing the cut sets of noncoherent fault trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corynen, G.C.

    1987-11-01

    An efficient procedure for finding the cut sets of large fault trees has been developed. Designed to address coherent or noncoherent systems, dependent events, shared or common-cause events, the method - called SHORTCUT - is based on a fast algorithm for transforming a noncoherent tree into a quasi-coherent tree (COHERE), and on a new algorithm for reducing cut sets (SUBSET). To assure sufficient clarity and precision, the procedure is discussed in the language of simple sets, which is also developed in this report. Although the new method has not yet been fully implemented on the computer, we report theoretical worst-casemore » estimates of its computational complexity. 12 refs., 10 figs.« less

  1. Coherence in the Visual Imagination.

    PubMed

    Vertolli, Michael O; Kelly, Matthew A; Davies, Jim

    2018-04-01

    An incoherent visualization is when aspects of different senses of a word (e.g., the biological "mouse" vs. the computer "mouse") are present in the same visualization (e.g., a visualization of a biological mouse in the same image with a computer tower). We describe and implement a new model of creating contextual coherence in the visual imagination called Coherencer, based on the SOILIE model of imagination. We show that Coherencer is able to generate scene descriptions that are more coherent than SOILIE's original approach as well as a parallel connectionist algorithm that is considered competitive in the literature on general coherence. We also show that co-occurrence probabilities are a better association representation than holographic vectors and that better models of coherence improve the resulting output independent of the association type that is used. Theoretically, we show that Coherencer is consistent with other models of cognitive generation. In particular, Coherencer is a similar, but more cognitively plausible model than the C 3 model of concept combination created by Costello and Keane (2000). We show that Coherencer is also consistent with both the modal schematic indices of perceptual symbol systems theory (Barsalou, 1999) and the amodal contextual constraints of Thagard's (2002) theory of coherence. Finally, we describe how Coherencer is consistent with contemporary research on the hippocampus, and we show evidence that the process of making a visualization coherent is serial. Copyright © 2017 Cognitive Science Society, Inc.

  2. Compact optical processor for Hough and frequency domain features

    NASA Astrophysics Data System (ADS)

    Ott, Peter

    1996-11-01

    Shape recognition is necessary in a broad band of applications such as traffic sign or work piece recognition. It requires not only neighborhood processing of the input image pixels but global interconnection of them. The Hough transform (HT) performs such a global operation and it is well suited in the preprocessing stage of a shape recognition system. Translation invariant features can be easily calculated form the Hough domain. We have implemented on the computer a neural network shape recognition system which contains a HT, a feature extraction, and a classification layer. The advantage of this approach is that the total system can be optimized with well-known learning techniques and that it can explore the parallelism of the algorithms. However, the HT is a time consuming operation. Parallel, optical processing is therefore advantageous. Several systems have been proposed, based on space multiplexing with arrays of holograms and CGH's or time multiplexing with acousto-optic processors or by image rotation with incoherent and coherent astigmatic optical processors. We took up the last mentioned approach because 2D array detectors are read out line by line, so a 2D detector can achieve the same speed and is easier to implement. Coherent processing can allow the implementation of tilers in the frequency domain. Features based on wedge/ring, Gabor, or wavelet filters have been proven to show good discrimination capabilities for texture and shape recognition. The astigmatic lens system which is derived form the mathematical formulation of the HT is long and contains a non-standard, astigmatic element. By methods of lens transformation s for coherent applications we map the original design to a shorter lens with a smaller number of well separated standard elements and with the same coherent system response. The final lens design still contains the frequency plane for filtering and ray-tracing shows diffraction limited performance. Image rotation can be done optically by a rotating prism. We realize it on a fast FLC- SLM of our lab as input device. The filters can be implemented on the same type of SLM with 128 by 128 square pixels of size, resulting in a total length of the lens of less than 50cm.

  3. Perceptual issues for color helmet-mounted displays: luminance and color contrast requirements

    NASA Astrophysics Data System (ADS)

    Harding, Thomas H.; Rash, Clarence E.; Lattimore, Morris R.; Statz, Jonathan; Martin, John S.

    2016-05-01

    Color is one of the latest design characteristics of helmet-mounted displays (HMDs). It's inclusion in design specifications is based on two suppositions: 1) color provides an additional method of encoding information, and 2) color provides a more realistic, and hence more intuitive, presentation of information, especially pilotage imagery. To some degree, these two perceived advantages have been validated with head-down panel-mounted displays, although not without a few problems associated with visual physiology and perception. These problems become more prevalent when the user population expands beyond military aviators to a general user population, of which a significant portion may have color vision deficiencies. When color is implemented in HMDs, which are eyes-out, see-through displays, visual perception issues become an increased concern. A major confound with HMDs is their inherent see-through (transparent) property. The result is color in the displayed image combines with color from the outside (or in-cockpit) world, possibly producing a false perception of either or both images. While human-factors derived guidelines based on trial and error have been developed, color HMD systems still place more emphasis on colorimetric than perceptual standards. This paper identifies the luminance and color contrast requirements for see-through HMDs. Also included is a discussion of ambient scene metrics and the choice of symbology color.

  4. Automated color classification of urine dipstick image in urine examination

    NASA Astrophysics Data System (ADS)

    Rahmat, R. F.; Royananda; Muchtar, M. A.; Taqiuddin, R.; Adnan, S.; Anugrahwaty, R.; Budiarto, R.

    2018-03-01

    Urine examination using urine dipstick has long been used to determine the health status of a person. The economical and convenient use of urine dipstick is one of the reasons urine dipstick is still used to check people health status. The real-life implementation of urine dipstick is done manually, in general, that is by comparing it with the reference color visually. This resulted perception differences in the color reading of the examination results. In this research, authors used a scanner to obtain the urine dipstick color image. The use of scanner can be one of the solutions in reading the result of urine dipstick because the light produced is consistent. A method is required to overcome the problems of urine dipstick color matching and the test reference color that have been conducted manually. The method proposed by authors is Euclidean Distance, Otsu along with RGB color feature extraction method to match the colors on the urine dipstick with the standard reference color of urine examination. The result shows that the proposed approach was able to classify the colors on a urine dipstick with an accuracy of 95.45%. The accuracy of color classification on urine dipstick against the standard reference color is influenced by the level of scanner resolution used, the higher the scanner resolution level, the higher the accuracy.

  5. More money more motivation? Master Settlement Agreement and tobacco control funding in communities of color.

    PubMed

    Themba-Nixon, Makani; Sutton, Charyn D; Shorty, Lawrence; Lew, Rod; Baezconde-Garbanati, Lourdes

    2004-07-01

    This article examines state Master Settlement Agreement (MSA) funding of tobacco control in communities of color. The primary research question was whether MSA monies resulted in dedicated funding for communities of color at the state level. This article also explores some of the historical factors that shape the relationship of communities of color to MSA funding as well as some of the institutional barriers to implementing comprehensive tobacco control programs in these communities. Three model approaches to funding parity in tobacco control programs were examined as case studies. Because of the limited amount of research available in this area, the data on tobacco control funding for communities of color was collected in interviews with state tobacco control agencies during October 2003. Findings supported our hypothesis that there were few dedicated resources at the state level for tobacco control and prevention in communities of color.

  6. Noise induced oscillations and coherence resonance in a generic model of the nonisothermal chemical oscillator

    PubMed Central

    Simakov, David S. A.; Pérez-Mercader, Juan

    2013-01-01

    Oscillating chemical reactions are common in biological systems and they also occur in artificial non-biological systems. Generally, these reactions are subject to random fluctuations in environmental conditions which translate into fluctuations in the values of physical variables, for example, temperature. We formulate a mathematical model for a nonisothermal minimal chemical oscillator containing a single negative feedback loop and study numerically the effects of stochastic fluctuations in temperature in the absence of any deterministic limit cycle or periodic forcing. We show that noise in temperature can induce sustained limit cycle oscillations with a relatively narrow frequency distribution and some characteristic frequency. These properties differ significantly depending on the noise correlation. Here, we have explored white and colored (correlated) noise. A plot of the characteristic frequency of the noise induced oscillations as a function of the correlation exponent shows a maximum, therefore indicating the existence of autonomous stochastic resonance, i.e. coherence resonance. PMID:23929212

  7. Optical Coherence Tomography Angiography of Pigmented Paravenous Retinochoroidal Atrophy.

    PubMed

    Cicinelli, Maria Vittoria; Giuffrè, Chiara; Rabiolo, Alessandro; Parodi, Maurizio Battaglia; Bandello, Francesco

    2018-05-01

    A 58-year-old man with bilateral pigmented paravenous retinochoroidal atrophy (PPRCA) associated with macular coloboma in the right eye underwent color fundus photography and fundus autofluorescence with the California ultra-widefield retinal imaging system (Optos, Dunfermline, UK), spectral-domain optical coherence tomography (SD-OCT) (Heidelberg Spectralis HRA + OCT; Heidelberg Engineering, Heidelberg, Germany), and en face OCT angiography (OCTA) (AngioPlex, Cirrus HD-OCT 5000; Carl Zeiss Meditec, Dublin, CA). The patient presented with a visual acuity of counting fingers in the right eye and 20/32 in the left eye. Fundus examination and SD-OCT showed typical PPRCA alterations in both eyes and a macular coloboma in the right eye. The OCTA showed relative sparing of the retinal capillary plexuses, with diffuse defects in the choriocapillaris. The authors concluded OCTA imaging of PPRCA suggests more insights of the pathogenesis of this disease, showing that the disease primarily affects the choroidal vascular network, with a relative sparing of the retinal vasculature. [Ophthalmic Surg Lasers Imaging Retina. 2018;49:381-383.]. Copyright 2018, SLACK Incorporated.

  8. Coherence of particulate beam attenuation and backscattering coefficients in diverse open ocean environments.

    PubMed

    Westberry, Toby K; Dall'Olmo, Giorgio; Boss, Emmanuel; Behrenfeld, Michael J; Moutin, Thierry

    2010-07-19

    We present an extensive data set of particle attenuation (c(p)), backscattering (b(bp)), and chlorophyll concentration (Chl) from a diverse set of open ocean environments. A consistent observation in the data set is the strong coherence between c(p) and b(bp) and the resulting constancy of the backscattering ratio (0.010 +/- 0.002). The strong covariability between c(p) and b(bp) must be rooted in one or both of two explanations, 1) the size distribution of particles in the ocean is remarkably conserved and particle types responsible for c(p) and b(bp) covary, 2) the same particle types exert influence on both quantities. Therefore, existing relationships between c(p) or Chl:c(p) and phytoplankton biomass and physiological indices can be conceptually extended to the use of b(bp). This finding lends support to use of satellite-derived Chl and b(bp) for investigation of phytoplankton biomass and physiology and broadens the applications of existing ocean color retrievals.

  9. Quantum fingerprinting with coherent states and a constant mean number of photons

    NASA Astrophysics Data System (ADS)

    Arrazola, Juan Miguel; Lütkenhaus, Norbert

    2014-06-01

    We present a protocol for quantum fingerprinting that is ready to be implemented with current technology and is robust to experimental errors. The basis of our scheme is an implementation of the signal states in terms of a coherent state in a superposition of time-bin modes. Experimentally, this requires only the ability to prepare coherent states of low amplitude and to interfere them in a balanced beam splitter. The states used in the protocol are arbitrarily close in trace distance to states of O (log2n) qubits, thus exhibiting an exponential separation in abstract communication complexity compared to the classical case. The protocol uses a number of optical modes that is proportional to the size n of the input bit strings but a total mean photon number that is constant and independent of n. Given the expended resources, our protocol achieves a task that is provably impossible using classical communication only. In fact, even in the presence of realistic experimental errors and loss, we show that there exist a large range of input sizes for which our quantum protocol transmits an amount of information that can be more than two orders of magnitude smaller than a classical fingerprinting protocol.

  10. All-Fiber Airborne Coherent Doppler Lidar to Measure Wind Profiles

    NASA Astrophysics Data System (ADS)

    Liu, Jiqiao; Zhu, Xiaopeng; Diao, Weifeng; Zhang, Xin; Liu, Yuan; Bi, Decang; Jiang, Liyuan; Shi, Wei; Zhu, Xiaolei; Chen, Weibiao

    2016-06-01

    An all-fiber airborne pulsed coherent Doppler lidar (CDL) prototype at 1.54μm is developed to measure wind profiles in the lower troposphere layer. The all-fiber single frequency pulsed laser is operated with pulse energy of 300μJ, pulse width of 400ns and pulse repetition rate of 10kHz. To the best of our knowledge, it is the highest pulse energy of all-fiber eye-safe single frequency laser that is used in airborne coherent wind lidar. The telescope optical diameter of monostatic lidar is 100 mm. Velocity-Azimuth-Display (VAD) scanning is implemented with 20 degrees elevation angle in 8 different azimuths. Real-time signal processing board is developed to acquire and process the heterodyne mixing signal with 10000 pulses spectra accumulated every second. Wind profiles are obtained every 20 seconds. Several experiments are implemented to evaluate the performance of the lidar. We have carried out airborne wind lidar experiments successfully, and the wind profiles are compared with aerological theodolite and ground based wind lidar. Wind speed standard error of less than 0.4m/s is shown between airborne wind lidar and balloon aerological theodolite.

  11. Hand-held spectrophotometer design for textile fabrics

    NASA Astrophysics Data System (ADS)

    Böcekçi, Veysel Gökhan; Yıldız, Kazım

    2017-09-01

    In this study, a hand-held spectrophotometer was designed by taking advantage of the developments in modern optoelectronic technology. Spectrophotometer devices are used to determine the color information from the optic properties of the materials. As an alternative to a desktop spectrophotometer device we have implemented, it is the first prototype, low cost and portable. The prototype model designed for the textile industry can detect the color tone of any fabric. The prototype model consists of optic sensor, processor, display floors. According to the color applied on the optic sensor, it produces special frequency information on its output at that color value. In Arduino type processor, the frequency information is evaluated by the program we have written and the color tone information between 0-255 ton is decided and displayed on the screen.

  12. "Does Hope Change? Testing a Project-Based Health Intervention among Urban Students of Color"

    ERIC Educational Resources Information Center

    Zusevics, Kaija L.; Johnson, Sheri

    2014-01-01

    Hope is positively correlated with educational attainment and health. Interventions based on project-based learning (PBL) may increase youth hope. This study examined how a PBL intervention affected hope among urban students of color. Students in health classes were invited to participate. A PBL health class was implemented in four classrooms. The…

  13. Boys II Men: A Culturally-Responsive School Counseling Group for Urban High School Boys of Color

    ERIC Educational Resources Information Center

    Pérez-Gualdrón, Leyla; Yeh, Christine; Russell, LyRyan

    2016-01-01

    Using a participatory and collaborative approach, we developed, implemented, and evaluated a culturally responsive school counseling group, "Boys II Men," for 11 low-income diverse male students of color at an urban public school. The content of the group focused on five areas: social connections and support, exploring gender roles,…

  14. Converging Evidence for Control of Color-Word Stroop Interference at the Item Level

    ERIC Educational Resources Information Center

    Bugg, Julie M.; Hutchison, Keith A.

    2013-01-01

    Prior studies have shown that cognitive control is implemented at the list and context levels in the color-word Stroop task. At first blush, the finding that Stroop interference is reduced for mostly incongruent items as compared with mostly congruent items (i.e., the item-specific proportion congruence [ISPC] effect) appears to provide evidence…

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avetissian, H. K.; Avchyan, B. R.; Mkrtchian, G. F.

    The multiphoton resonant excitation of three-level atoms by the two laser fields of different frequencies is investigated. The time evolution of the system and analytical solutions expressing Rabi oscillations of the probability amplitudes at the two-color multiphoton resonant excitation are found using a nonperturbative resonant approach. The specific examples for experimental implementation of two-color multiphoton resonant excitation of hydrogen atoms are considered.

  16. The Open Method of Coordination and the Implementation of the Bologna Process

    ERIC Educational Resources Information Center

    Veiga, Amelia; Amaral, Alberto

    2006-01-01

    In this paper the authors argue that the use of the Open Method of Coordination (OMC) in the implementation of the Bologna process presents coordination problems that do not allow for the full coherence of the results. As the process is quite complex, involving three different levels (European, national and local) and as the final actors in the…

  17. Real-Time Implementation of Nonlinear Processing Functions.

    DTIC Science & Technology

    1981-08-01

    crystal devices and then to use them in a coherent optical data- processing apparatus using halftone masks custom designed at the University oi Southern...California. With the halftone mask technique, we have demonstrated logarithmic nonlinear transformation, allowing us to separate multiplicative images...improved.,_ This device allowed nonlinear functions to be implemented directly wit - out the need for specially made halftone masks. Besides

  18. Stress Inoculation through Cognitive and Biofeedback Training

    DTIC Science & Technology

    2010-12-01

    based on Heart Rate Variability ( HRV ) with innovative simulation game-based training tools. The training system described here will be implemented on a...Variability ( HRV ) with innovative simulation game-based training tools. The training system described here will be implemented on a mobile device...and studies (e.g. Fletcher & Tobias, 2006; Thayer, 2009). HRV Coherence Training for Stress Resilience Satisfactory performance in stressful

  19. Improved opponent color local binary patterns: an effective local image descriptor for color texture classification

    NASA Astrophysics Data System (ADS)

    Bianconi, Francesco; Bello-Cerezo, Raquel; Napoletano, Paolo

    2018-01-01

    Texture classification plays a major role in many computer vision applications. Local binary patterns (LBP) encoding schemes have largely been proven to be very effective for this task. Improved LBP (ILBP) are conceptually simple, easy to implement, and highly effective LBP variants based on a point-to-average thresholding scheme instead of a point-to-point one. We propose the use of this encoding scheme for extracting intra- and interchannel features for color texture classification. We experimentally evaluated the resulting improved opponent color LBP alone and in concatenation with the ILBP of the local color contrast map on a set of image classification tasks over 9 datasets of generic color textures and 11 datasets of biomedical textures. The proposed approach outperformed other grayscale and color LBP variants in nearly all the datasets considered and proved competitive even against image features from last generation convolutional neural networks, particularly for the classification of biomedical images.

  20. GREAT: a gradient-based color-sampling scheme for Retinex.

    PubMed

    Lecca, Michela; Rizzi, Alessandro; Serapioni, Raul Paolo

    2017-04-01

    Modeling the local color spatial distribution is a crucial step for the algorithms of the Milano Retinex family. Here we present GREAT, a novel, noise-free Milano Retinex implementation based on an image-aware spatial color sampling. For each channel of a color input image, GREAT computes a 2D set of edges whose magnitude exceeds a pre-defined threshold. Then GREAT re-scales the channel intensity of each image pixel, called target, by the average of the intensities of the selected edges weighted by a function of their positions, gradient magnitudes, and intensities relative to the target. In this way, GREAT enhances the input image, adjusting its brightness, contrast and dynamic range. The use of the edges as pixels relevant to color filtering is justified by the importance that edges play in human color sensation. The name GREAT comes from the expression "Gradient RElevAnce for ReTinex," which refers to the threshold-based definition of a gradient relevance map for edge selection and thus for image color filtering.

  1. VASCULAR ABNORMALITIES IN DIABETIC RETINOPATHY ASSESSED WITH SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY WIDEFIELD IMAGING.

    PubMed

    Schaal, Karen B; Munk, Marion R; Wyssmueller, Iris; Berger, Lieselotte E; Zinkernagel, Martin S; Wolf, Sebastian

    2017-11-10

    To detect vascular abnormalities in diabetic retinopathy using swept-source optical coherence tomography angiography (SS-OCTA) widefield images, and to compare the findings with color fundus photographs (CFPs) using Early Treatment Diabetic Retinopathy Study severity grading. 3 mm × 3 mm and 12 mm × 12 mm scans were acquired to cover 70° to 80° of the posterior pole using a 100-kHz SS-OCTA instrument. Two masked graders assessed the presence of vascular abnormalities on SS-OCTA and the Early Treatment Diabetic Retinopathy Study level on CFP. The grading results were then compared. A total of 120 diabetic eyes (60 patients) were imaged with the SS-OCTA instrument. Cohort 1 (91 eyes; SS-OCTA grading only) showed microaneurysms in 91% (n = 83), intraretinal microvascular abnormalities in 79% (n = 72), and neovascularization in 21% (n = 19) of cases. Cohort 2 (52 eyes; CFP grading compared with SS-OCTA) showed microaneurysms on CFP in 90% (n = 47) and on SS-OCTA in 96% (n = 50) of cases. Agreement in intraretinal microvascular abnormality detection was fair (k = 0.2). Swept-source optical coherence tomography angiography detected 50% of intraretinal microvascular abnormality cases (n = 26), which were missed on CFP. Agreement in detecting neovascularization was moderate (k = 0.5). Agreement in detection of diabetic retinopathy features on CFP and SS-OCTA varies depending on the vascular changes examined. Swept-source optical coherence tomography angiography shows a higher detection rate of intraretinal microvascular abnormalities (P = 0.039), compared with Early Treatment Diabetic Retinopathy Study grading.

  2. Complex governance structures and incoherent policies: Implementing the EU water framework directive in Sweden.

    PubMed

    Söderberg, Charlotta

    2016-12-01

    Contemporary processes of environmental policymaking in general span over several territorial tiers. This also holds for the EU Water Framework Directive system of environmental quality standards (EQS), which are part of a complex multi-level institutional landscape, embracing both EU, national and sub-national level. Recent evaluations show that many EU member states, including Sweden, have not reached the ecological goals for water in 2015. Departing from theories on policy coherence and multi-level governance, this paper therefore analyses Swedish water governance as a case to further our understanding of policy implementation in complex governance structures: how does policy coherence (or the lack thereof) affect policy implementation in complex governance structures? To answer this question, the paper maps out the formal structure of the water governance system, focusing on power directions within the system, analyses policy coherence in Swedish water governance through mapping out policy conflicts between the EQS for water and other goals/regulations and explore how they are handled by national and sub-national water bureaucrats. The study concludes that without clear central guidance, 'good ecological status' for Swedish water will be difficult to achieve since incoherent policies makes policy implementation inefficient due to constant power struggles between different authorities, and since environmental goals are often overridden by economic and other societal goals. Further research is needed in order to explore if similar policy conflicts between water quality and other objectives occur in other EU member states and how bureaucrats handle such conflicts in different institutional settings. This study of the Swedish case indicates that the role of the state as a navigator and rudder-holder is important in order to improve policy implementation in complex governance structures - otherwise; bureaucrats risk being lost in an incoherent archipelago of ecological, social and economic goals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Advanced microlens and color filter process technology for the high-efficiency CMOS and CCD image sensors

    NASA Astrophysics Data System (ADS)

    Fan, Yang-Tung; Peng, Chiou-Shian; Chu, Cheng-Yu

    2000-12-01

    New markets are emerging for digital electronic image device, especially in visual communications, PC camera, mobile/cell phone, security system, toys, vehicle image system and computer peripherals for document capture. To enable one-chip image system that image sensor is with a full digital interface, can make image capture devices in our daily lives. Adding a color filter to such image sensor in a pattern of mosaics pixel or wide stripes can make image more real and colorful. We can say 'color filter makes the life more colorful color filter is? Color filter means can filter image light source except the color with specific wavelength and transmittance that is same as color filter itself. Color filter process is coating and patterning green, red and blue (or cyan, magenta and yellow) mosaic resists onto matched pixel in image sensing array pixels. According to the signal caught from each pixel, we can figure out the environment image picture. Widely use of digital electronic camera and multimedia applications today makes the feature of color filter becoming bright. Although it has challenge but it is very worthy to develop the process of color filter. We provide the best service on shorter cycle time, excellent color quality, high and stable yield. The key issues of advanced color process have to be solved and implemented are planarization and micro-lens technology. Lost of key points of color filter process technology have to consider will also be described in this paper.

  4. Edit distance for marked point processes revisited: An implementation by binary integer programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirata, Yoshito; Aihara, Kazuyuki

    2015-12-15

    We implement the edit distance for marked point processes [Suzuki et al., Int. J. Bifurcation Chaos 20, 3699–3708 (2010)] as a binary integer program. Compared with the previous implementation using minimum cost perfect matching, the proposed implementation has two advantages: first, by using the proposed implementation, we can apply a wide variety of software and hardware, even spin glasses and coherent ising machines, to calculate the edit distance for marked point processes; second, the proposed implementation runs faster than the previous implementation when the difference between the numbers of events in two time windows for a marked point process ismore » large.« less

  5. Clustering document fragments using background color and texture information

    NASA Astrophysics Data System (ADS)

    Chanda, Sukalpa; Franke, Katrin; Pal, Umapada

    2012-01-01

    Forensic analysis of questioned documents sometimes can be extensively data intensive. A forensic expert might need to analyze a heap of document fragments and in such cases to ensure reliability he/she should focus only on relevant evidences hidden in those document fragments. Relevant document retrieval needs finding of similar document fragments. One notion of obtaining such similar documents could be by using document fragment's physical characteristics like color, texture, etc. In this article we propose an automatic scheme to retrieve similar document fragments based on visual appearance of document paper and texture. Multispectral color characteristics using biologically inspired color differentiation techniques are implemented here. This is done by projecting document color characteristics to Lab color space. Gabor filter-based texture analysis is used to identify document texture. It is desired that document fragments from same source will have similar color and texture. For clustering similar document fragments of our test dataset we use a Self Organizing Map (SOM) of dimension 5×5, where the document color and texture information are used as features. We obtained an encouraging accuracy of 97.17% from 1063 test images.

  6. The infrared video image pseudocolor processing system

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Zhang, JiangLing

    2003-11-01

    The infrared video image pseudo-color processing system, emphasizing on the algorithm and its implementation for measured object"s 2D temperature distribution using pseudo-color technology, is introduced in the paper. The data of measured object"s thermal image is the objective presentation of its surface temperature distribution, but the color has a close relationship with people"s subjective cognition. The so-called pseudo-color technology cross the bridge between subjectivity and objectivity, and represents the measured object"s temperature distribution in reason and at first hand. The algorithm of pseudo-color is based on the distance of IHS space. Thereby the definition of pseudo-color visual resolution is put forward. Both the software (which realize the map from the sample data to the color space) and the hardware (which carry out the conversion from the color space to palette by HDL) co-operate. Therefore the two levels map which is logic map and physical map respectively is presented. The system has been used abroad in failure diagnose of electric power devices, fire protection for lifesaving and even SARS detection in CHINA lately.

  7. Computer vision-based sorting of Atlantic salmon (Salmo salar) fillets according to their color level.

    PubMed

    Misimi, E; Mathiassen, J R; Erikson, U

    2007-01-01

    Computer vision method was used to evaluate the color of Atlantic salmon (Salmo salar) fillets. Computer vision-based sorting of fillets according to their color was studied on 2 separate groups of salmon fillets. The images of fillets were captured using a digital camera of high resolution. Images of salmon fillets were then segmented in the regions of interest and analyzed in red, green, and blue (RGB) and CIE Lightness, redness, and yellowness (Lab) color spaces, and classified according to the Roche color card industrial standard. Comparisons of fillet color between visual evaluations were made by a panel of human inspectors, according to the Roche SalmoFan lineal standard, and the color scores generated from computer vision algorithm showed that there were no significant differences between the methods. Overall, computer vision can be used as a powerful tool to sort fillets by color in a fast and nondestructive manner. The low cost of implementing computer vision solutions creates the potential to replace manual labor in fish processing plants with automation.

  8. Color-Coded Front-of-Pack Nutrition Labels—An Option for US Packaged Foods?

    PubMed Central

    Dunford, Elizabeth K.; Poti, Jennifer M.; Xavier, Dagan; Webster, Jacqui L.; Taillie, Lindsey Smith

    2017-01-01

    The implementation of a standardized front-of-pack-labelling (FoPL) scheme would likely be a useful tool for many consumers trying to improve the healthfulness of their diets. Our objective was to examine what the traffic light labelling scheme would look like if implemented in the US. Data were extracted from Label Insight’s Open Access branded food database in 2017. Nutrient levels and the proportion of products classified as “Red” (High), “Amber” (Medium) or “Green” (Low) in total fat, saturated fat, total sugar and sodium for food and beverage items were examined. The proportion of products in each category that had each possible combination of traffic light colors, and met the aggregate score for “healthy” was examined. Out of 175,198 products, >50% of all US packaged foods received a “Red” rating for total sugar and sodium. “Confectionery” had the highest mean total sugar (51.9 g/100 g) and “Meat and meat alternatives” the highest mean sodium (781 mg/100 g). The most common traffic light label combination was “Red” for total fat, saturated fat and sodium and “Green” for sugar. Only 30.1% of products were considered “healthy”. A wide variety (n = 80) of traffic light color combinations were observed. A color coded traffic light scheme appears to be an option for implementation across the US packaged food supply to support consumers in making healthier food choices. PMID:28489037

  9. Proof-of-principle test of coherent-state continuous variable quantum key distribution through turbulent atmosphere (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Derkach, Ivan D.; Peuntinger, Christian; Ruppert, László; Heim, Bettina; Gunthner, Kevin; Usenko, Vladyslav C.; Elser, Dominique; Marquardt, Christoph; Filip, Radim; Leuchs, Gerd

    2016-10-01

    Continuous-variable quantum key distribution is a practical application of quantum information theory that is aimed at generation of secret cryptographic key between two remote trusted parties and that uses multi-photon quantum states as carriers of key bits. Remote parties share the secret key via a quantum channel, that presumably is under control of of an eavesdropper, and which properties must be taken into account in the security analysis. Well-studied fiber-optical quantum channels commonly possess stable transmittance and low noise levels, while free-space channels represent a simpler, less demanding and more flexible alternative, but suffer from atmospheric effects such as turbulence that in particular causes a non-uniform transmittance distribution referred to as fading. Nonetheless free-space channels, providing an unobstructed line-of-sight, are more apt for short, mid-range and potentially long-range (using satellites) communication and will play an important role in the future development and implementation of QKD networks. It was previously theoretically shown that coherent-state CV QKD should be in principle possible to implement over a free-space fading channel, but strong transmittance fluctuations result in the significant modulation-dependent channel excess noise. In this regime the post-selection of highly transmitting sub-channels may be needed, which can even restore the security of the protocol in the strongly turbulent channels. We now report the first proof-of-principle experimental test of coherent state CV QKD protocol using different levels Gaussian modulation over a mid-range (1.6-kilometer long) free-space atmospheric quantum channel. The transmittance of the link was characterized using intensity measurements for the reference but channel estimation using the modulated coherent states was also studied. We consider security against Gaussian collective attacks, that were shown to be optimal against CV QKD protocols . We assumed a general entangling cloner collective attack (modeled using data obtained from the state measurement results on both trusted sides of the protocol), that allows to purify the noise added in the quantum channel . Our security analysis of coherent-state protocol also took into account the effect of imperfect channel estimation, limited post-processing efficiency and finite data ensemble size on the performance of the protocol. In this regime we observe the positive key rate even without the need of applying post-selection. We show the positive improvement of the key rate with increase of the modulation variance, still remaining low enough to tolerate the transmittance fluctuations. The obtained results show that coherent-state CV QKD protocol that uses real free-space atmospheric channel can withstand negative influence of transmittance fluctuations, limited post-processing efficiency, imperfect channel estimation and other finite-size effects, and be successfully implemented. Our result paves the way to the full-scale implementation of the CV QKD in real free-space channels at mid-range distances.

  10. Color accuracy and reproducibility in whole slide imaging scanners

    PubMed Central

    Shrestha, Prarthana; Hulsken, Bas

    2014-01-01

    Abstract We propose a workflow for color reproduction in whole slide imaging (WSI) scanners, such that the colors in the scanned images match to the actual slide color and the inter-scanner variation is minimum. We describe a new method of preparation and verification of the color phantom slide, consisting of a standard IT8-target transmissive film, which is used in color calibrating and profiling the WSI scanner. We explore several International Color Consortium (ICC) compliant techniques in color calibration/profiling and rendering intents for translating the scanner specific colors to the standard display (sRGB) color space. Based on the quality of the color reproduction in histopathology slides, we propose the matrix-based calibration/profiling and absolute colorimetric rendering approach. The main advantage of the proposed workflow is that it is compliant to the ICC standard, applicable to color management systems in different platforms, and involves no external color measurement devices. We quantify color difference using the CIE-DeltaE2000 metric, where DeltaE values below 1 are considered imperceptible. Our evaluation on 14 phantom slides, manufactured according to the proposed method, shows an average inter-slide color difference below 1 DeltaE. The proposed workflow is implemented and evaluated in 35 WSI scanners developed at Philips, called the Ultra Fast Scanners (UFS). The color accuracy, measured as DeltaE between the scanner reproduced colors and the reference colorimetric values of the phantom patches, is improved on average to 3.5 DeltaE in calibrated scanners from 10 DeltaE in uncalibrated scanners. The average inter-scanner color difference is found to be 1.2 DeltaE. The improvement in color performance upon using the proposed method is apparent with the visual color quality of the tissue scans. PMID:26158041

  11. The Multi-Orientable Random Tensor Model, a Review

    NASA Astrophysics Data System (ADS)

    Tanasa, Adrian

    2016-06-01

    After its introduction (initially within a group field theory framework) in [Tanasa A., J. Phys. A: Math. Theor. 45 (2012), 165401, 19 pages, arXiv:1109.0694], the multi-orientable (MO) tensor model grew over the last years into a solid alternative of the celebrated colored (and colored-like) random tensor model. In this paper we review the most important results of the study of this MO model: the implementation of the 1/N expansion and of the large N limit (N being the size of the tensor), the combinatorial analysis of the various terms of this expansion and finally, the recent implementation of a double scaling limit.

  12. Focus measure method based on the modulus of the gradient of the color planes for digital microscopy

    NASA Astrophysics Data System (ADS)

    Hurtado-Pérez, Román; Toxqui-Quitl, Carina; Padilla-Vivanco, Alfonso; Aguilar-Valdez, J. Félix; Ortega-Mendoza, Gabriel

    2018-02-01

    The modulus of the gradient of the color planes (MGC) is implemented to transform multichannel information to a grayscale image. This digital technique is used in two applications: (a) focus measurements during autofocusing (AF) process and (b) extending the depth of field (EDoF) by means of multifocus image fusion. In the first case, the MGC procedure is based on an edge detection technique and is implemented in over 15 focus metrics that are typically handled in digital microscopy. The MGC approach is tested on color images of histological sections for the selection of in-focus images. An appealing attribute of all the AF metrics working in the MGC space is their monotonic behavior even up to a magnification of 100×. An advantage of the MGC method is its computational simplicity and inherent parallelism. In the second application, a multifocus image fusion algorithm based on the MGC approach has been implemented on graphics processing units (GPUs). The resulting fused images are evaluated using a nonreference image quality metric. The proposed fusion method reveals a high-quality image independently of faulty illumination during the image acquisition. Finally, the three-dimensional visualization of the in-focus image is shown.

  13. Towards coherent combination of 61 fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Heilmann, Anke; Le Dortz, Jérémy; Daniault, Louis; Fsaifes, Ihsan; Bellanger, Séverine; Antier, Marie; Bourderionnet, Jérôme; Larat, Christian; Lallier, Eric; Durand, Eric; Brignon, Arnaud; Simon-Boisson, Christophe; Chanteloup, Jean-Christophe

    2018-02-01

    The XCAN project aims at the coherent combination of 61 fiber amplifiers in the femtosecond regime. An important intermediate step towards this goal is the implementation of a seven fiber test setup, which allows to address key scientific and technical challenges which might occur in the scaled version of 61 fibers. This work includes the design and characterization of a support unit able to hold 61 fibers with the high precision required for an efficient coherent combination in tiled aperture configuration. This configuration, in combination with an interferometric phase measurement and active phase control, is particularly well suited for the coherent combination of a very large number of beams. Our first preliminary results with seven fibers include a combination efficiency of 30 % and a residual phase error between two fibers as low as λ/40 rms. Experiments conducted with three fibers in order to evaluate technical improvements revealed an increase of efficiency to 54 %. The combined beam was temporally compressed to 225 fs, which is Fourier transform limited with respect to the measured spectrum.

  14. Generating the Local Oscillator "Locally" in Continuous-Variable Quantum Key Distribution Based on Coherent Detection

    NASA Astrophysics Data System (ADS)

    Qi, Bing; Lougovski, Pavel; Pooser, Raphael; Grice, Warren; Bobrek, Miljko

    2015-10-01

    Continuous-variable quantum key distribution (CV-QKD) protocols based on coherent detection have been studied extensively in both theory and experiment. In all the existing implementations of CV-QKD, both the quantum signal and the local oscillator (LO) are generated from the same laser and propagate through the insecure quantum channel. This arrangement may open security loopholes and limit the potential applications of CV-QKD. In this paper, we propose and demonstrate a pilot-aided feedforward data recovery scheme that enables reliable coherent detection using a "locally" generated LO. Using two independent commercial laser sources and a spool of 25-km optical fiber, we construct a coherent communication system. The variance of the phase noise introduced by the proposed scheme is measured to be 0.04 (rad2 ), which is small enough to enable secure key distribution. This technology also opens the door for other quantum communication protocols, such as the recently proposed measurement-device-independent CV-QKD, where independent light sources are employed by different users.

  15. Noise-immune complex correlation for optical coherence angiography based on standard and Jones matrix optical coherence tomography

    PubMed Central

    Makita, Shuichi; Kurokawa, Kazuhiro; Hong, Young-Joo; Miura, Masahiro; Yasuno, Yoshiaki

    2016-01-01

    This paper describes a complex correlation mapping algorithm for optical coherence angiography (cmOCA). The proposed algorithm avoids the signal-to-noise ratio dependence and exhibits low noise in vasculature imaging. The complex correlation coefficient of the signals, rather than that of the measured data are estimated, and two-step averaging is introduced. Algorithms of motion artifact removal based on non perfusing tissue detection using correlation are developed. The algorithms are implemented with Jones-matrix OCT. Simultaneous imaging of pigmented tissue and vasculature is also achieved using degree of polarization uniformity imaging with cmOCA. An application of cmOCA to in vivo posterior human eyes is presented to demonstrate that high-contrast images of patients’ eyes can be obtained. PMID:27446673

  16. Quantum memory receiver for superadditive communication using binary coherent states

    NASA Astrophysics Data System (ADS)

    Klimek, Aleksandra; Jachura, Michał; Wasilewski, Wojciech; Banaszek, Konrad

    2016-11-01

    We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett. 2011, 106, 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet.

  17. Quantum memory receiver for superadditive communication using binary coherent states.

    PubMed

    Klimek, Aleksandra; Jachura, Michał; Wasilewski, Wojciech; Banaszek, Konrad

    2016-11-12

    We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett. 2011 , 106 , 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet.

  18. Helicity coherence in binary neutron star mergers and nonlinear feedback

    NASA Astrophysics Data System (ADS)

    Chatelain, Amélie; Volpe, Cristina

    2017-02-01

    Neutrino flavor conversion studies based on astrophysical environments usually implement neutrino mixings, neutrino interactions with matter, and neutrino self-interactions. In anisotropic media, the most general mean-field treatment includes neutrino mass contributions as well, which introduce a coupling between neutrinos and antineutrinos termed helicity or spin coherence. We discuss resonance conditions for helicity coherence for Dirac and Majorana neutrinos. We explore the role of these mean-field contributions on flavor evolution in the context of a binary neutron star merger remnant. We find that resonance conditions can be satisfied in neutron star merger scenarios while adiabaticity is not sufficient for efficient flavor conversion. We analyze our numerical findings by discussing general conditions to have multiple Mikheyev-Smirnov-Wolfenstein-like resonances, in the presence of nonlinear feedback, in astrophysical environments.

  19. Suppressing relaxation in superconducting qubits by quasiparticle pumping.

    PubMed

    Gustavsson, Simon; Yan, Fei; Catelani, Gianluigi; Bylander, Jonas; Kamal, Archana; Birenbaum, Jeffrey; Hover, David; Rosenberg, Danna; Samach, Gabriel; Sears, Adam P; Weber, Steven J; Yoder, Jonilyn L; Clarke, John; Kerman, Andrew J; Yoshihara, Fumiki; Nakamura, Yasunobu; Orlando, Terry P; Oliver, William D

    2016-12-23

    Dynamical error suppression techniques are commonly used to improve coherence in quantum systems. They reduce dephasing errors by applying control pulses designed to reverse erroneous coherent evolution driven by environmental noise. However, such methods cannot correct for irreversible processes such as energy relaxation. We investigate a complementary, stochastic approach to reducing errors: Instead of deterministically reversing the unwanted qubit evolution, we use control pulses to shape the noise environment dynamically. In the context of superconducting qubits, we implement a pumping sequence to reduce the number of unpaired electrons (quasiparticles) in close proximity to the device. A 70% reduction in the quasiparticle density results in a threefold enhancement in qubit relaxation times and a comparable reduction in coherence variability. Copyright © 2016, American Association for the Advancement of Science.

  20. Imaging tristimulus colorimeter for the evaluation of color in printed textiles

    NASA Astrophysics Data System (ADS)

    Hunt, Martin A.; Goddard, James S., Jr.; Hylton, Kathy W.; Karnowski, Thomas P.; Richards, Roger K.; Simpson, Marc L.; Tobin, Kenneth W., Jr.; Treece, Dale A.

    1999-03-01

    The high-speed production of textiles with complicated printed patterns presents a difficult problem for a colorimetric measurement system. Accurate assessment of product quality requires a repeatable measurement using a standard color space, such as CIELAB, and the use of a perceptually based color difference formula, e.g. (Delta) ECMC color difference formula. Image based color sensors used for on-line measurement are not colorimetric by nature and require a non-linear transformation of the component colors based on the spectral properties of the incident illumination, imaging sensor, and the actual textile color. This research and development effort describes a benchtop, proof-of-principle system that implements a projection onto convex sets (POCS) algorithm for mapping component color measurements to standard tristimulus values and incorporates structural and color based segmentation for improved precision and accuracy. The POCS algorithm consists of determining the closed convex sets that describe the constraints on the reconstruction of the true tristimulus values based on the measured imperfect values. We show that using a simulated D65 standard illuminant, commercial filters and a CCD camera, accurate (under perceptibility limits) per-region based (Delta) ECMC values can be measured on real textile samples.

  1. Optimized universal color palette design for error diffusion

    NASA Astrophysics Data System (ADS)

    Kolpatzik, Bernd W.; Bouman, Charles A.

    1995-04-01

    Currently, many low-cost computers can only simultaneously display a palette of 256 color. However, this palette is usually selectable from a very large gamut of available colors. For many applications, this limited palette size imposes a significant constraint on the achievable image quality. We propose a method for designing an optimized universal color palette for use with halftoning methods such as error diffusion. The advantage of a universal color palette is that it is fixed and therefore allows multiple images to be displayed simultaneously. To design the palette, we employ a new vector quantization method known as sequential scalar quantization (SSQ) to allocate the colors in a visually uniform color space. The SSQ method achieves near-optimal allocation, but may be efficiently implemented using a series of lookup tables. When used with error diffusion, SSQ adds little computational overhead and may be used to minimize the visual error in an opponent color coordinate system. We compare the performance of the optimized algorithm to standard error diffusion by evaluating a visually weighted mean-squared-error measure. Our metric is based on the color difference in CIE L*AL*B*, but also accounts for the lowpass characteristic of human contrast sensitivity.

  2. Adverse effects in dual-feed interferometry

    NASA Astrophysics Data System (ADS)

    Colavita, M. Mark

    2009-11-01

    Narrow-angle dual-star interferometric astrometry can provide very high accuracy in the presence of the Earth's turbulent atmosphere. However, to exploit the high atmospherically-limited accuracy requires control of systematic errors in measurement of the interferometer baseline, internal OPDs, and fringe phase. In addition, as high photometric SNR is required, care must be taken to maximize throughput and coherence to obtain high accuracy on faint stars. This article reviews the key aspects of the dual-star approach and implementation, the main contributors to the systematic error budget, and the coherence terms in the photometric error budget.

  3. Visible-light optical coherence tomography: a review

    NASA Astrophysics Data System (ADS)

    Shu, Xiao; Beckmann, Lisa; Zhang, Hao F.

    2017-12-01

    Visible-light optical coherence tomography (vis-OCT) is an emerging imaging modality, providing new capabilities in both anatomical and functional imaging of biological tissue. It relies on visible light illumination, whereas most commercial and investigational OCTs use near-infrared light. As a result, vis-OCT requires different considerations in engineering design and implementation but brings unique potential benefits to both fundamental research and clinical care of several diseases. Here, we intend to provide a summary of the development of vis-OCT and its demonstrated applications. We also provide perspectives on future technology improvement and applications.

  4. A coherent discrete variable representation method on a sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hua -Gen

    Here, the coherent discrete variable representation (ZDVR) has been extended for construct- ing a multidimensional potential-optimized DVR basis on a sphere. In order to deal with the non-constant Jacobian in spherical angles, two direct product primitive basis methods are proposed so that the original ZDVR technique can be properly implemented. The method has been demonstrated by computing the lowest states of a two dimensional (2D) vibrational model. Results show that the extended ZDVR method gives accurate eigenval- ues and exponential convergence with increasing ZDVR basis size.

  5. A coherent discrete variable representation method on a sphere

    DOE PAGES

    Yu, Hua -Gen

    2017-09-05

    Here, the coherent discrete variable representation (ZDVR) has been extended for construct- ing a multidimensional potential-optimized DVR basis on a sphere. In order to deal with the non-constant Jacobian in spherical angles, two direct product primitive basis methods are proposed so that the original ZDVR technique can be properly implemented. The method has been demonstrated by computing the lowest states of a two dimensional (2D) vibrational model. Results show that the extended ZDVR method gives accurate eigenval- ues and exponential convergence with increasing ZDVR basis size.

  6. Phase Space Tweezers for Tailoring Cavity Fields by Quantum Zeno Dynamics

    NASA Astrophysics Data System (ADS)

    Raimond, J. M.; Sayrin, C.; Gleyzes, S.; Dotsenko, I.; Brune, M.; Haroche, S.; Facchi, P.; Pascazio, S.

    2010-11-01

    We discuss an implementation of quantum Zeno dynamics in a cavity quantum electrodynamics experiment. By performing repeated unitary operations on atoms coupled to the field, we restrict the field evolution in chosen subspaces of the total Hilbert space. This procedure leads to promising methods for tailoring nonclassical states. We propose to realize “tweezers” picking a coherent field at a point in phase space and moving it towards an arbitrary final position without affecting other nonoverlapping coherent components. These effects could be observed with a state-of-the-art apparatus.

  7. Entanglement of atomic qubits using an optical frequency comb.

    PubMed

    Hayes, D; Matsukevich, D N; Maunz, P; Hucul, D; Quraishi, Q; Olmschenk, S; Campbell, W; Mizrahi, J; Senko, C; Monroe, C

    2010-04-09

    We demonstrate the use of an optical frequency comb to coherently control and entangle atomic qubits. A train of off-resonant ultrafast laser pulses is used to efficiently and coherently transfer population between electronic and vibrational states of trapped atomic ions and implement an entangling quantum logic gate with high fidelity. This technique can be extended to the high field regime where operations can be performed faster than the trap frequency. This general approach can be applied to more complex quantum systems, such as large collections of interacting atoms or molecules.

  8. Spread spectrum phase modulation for coherent X-ray diffraction imaging.

    PubMed

    Zhang, Xuesong; Jiang, Jing; Xiangli, Bin; Arce, Gonzalo R

    2015-09-21

    High dynamic range, phase ambiguity and radiation limited resolution are three challenging issues in coherent X-ray diffraction imaging (CXDI), which limit the achievable imaging resolution. This paper proposes a spread spectrum phase modulation (SSPM) method to address the aforementioned problems in a single strobe. The requirements on phase modulator parameters are presented, and a practical implementation of SSPM is discussed via ray optics analysis. Numerical experiments demonstrate the performance of SSPM under the constraint of available X-ray optics fabrication accuracy, showing its potential to real CXDI applications.

  9. Practical quantum appointment scheduling

    NASA Astrophysics Data System (ADS)

    Touchette, Dave; Lovitz, Benjamin; Lütkenhaus, Norbert

    2018-04-01

    We propose a protocol based on coherent states and linear optics operations for solving the appointment-scheduling problem. Our main protocol leaks strictly less information about each party's input than the optimal classical protocol, even when considering experimental errors. Along with the ability to generate constant-amplitude coherent states over two modes, this protocol requires the ability to transfer these modes back-and-forth between the two parties multiple times with very low losses. The implementation requirements are thus still challenging. Along the way, we develop tools to study quantum information cost of interactive protocols in the finite regime.

  10. Combining Topological Hardware and Topological Software: Color-Code Quantum Computing with Topological Superconductor Networks

    NASA Astrophysics Data System (ADS)

    Litinski, Daniel; Kesselring, Markus S.; Eisert, Jens; von Oppen, Felix

    2017-07-01

    We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall-superconductor hybrids.

  11. Two-color mixing for classifying agricultural products for safety and quality

    NASA Astrophysics Data System (ADS)

    Ding, Fujian; Chen, Yud-Ren; Chao, Kuanglin; Chan, Diane E.

    2006-02-01

    We show that the chromaticness of the visual signal that results from the two-color mixing achieved through an optically enhanced binocular device is directly related to the band ratio of light intensity at the two selected wavebands. A technique that implements the band-ratio criterion in a visual device by using two-color mixing is presented here. The device will allow inspectors to identify targets visually in accordance with a two-wavelength band ratio. It is a method of inspection by human vision assisted by an optical device, which offers greater flexibility and better cost savings than a multispectral machine vision system that implements the band-ratio criterion. With proper selection of the two narrow wavebands, discrimination by chromaticness that is directly related to the band ratio can work well. An example application of this technique for the inspection of carcasses chickens of afficted with various diseases is given. An optimal pair of wavelengths of 454 and 578 nm was selected to optimize differences in saturation and hue in CIE LUV color space among different types of target. Another example application, for the detection of chilling injury in cucumbers, is given, here the selected wavelength pair was 504 and 652 nm. The novel two-color mixing technique for visual inspection can be included in visual devices for various applications, ranging from target detection to food safety inspection.

  12. Real-Time Implementation of a Color Sorting System

    Treesearch

    Srikathyanyani Srikanteswara; Qiang Lu; William King; Thomas Drayer; Richard Conners; D. Earl Kline; Philip A. Araman

    1997-01-01

    Wood edge glued panels are used extensively in the furniture and cabinetry industries. They are used to make doors, tops, and sides of solid wood furniture and cabinets. Since lightly stained furniture and cabinets are gaining in popularity, there is an increasing demand to color sort the parts used to make these edge glued panels. The goal of the sorting processing is...

  13. Effects of blue light-filtering intraocular lenses on the macula, contrast sensitivity, and color vision after a long-term follow-up.

    PubMed

    Kara-Junior, Newton; Espindola, Rodrigo F; Gomes, Beatriz A F; Ventura, Bruna; Smadja, David; Santhiago, Marcony R

    2011-12-01

    To evaluate the possible side effects and potential protection 5 years after implantation of an intraocular lens (IOL) with a blue-light filter (yellow tinted). Ophthalmology Department, University of São Paulo, São Paulo, Brazil. Prospective randomized clinical study. Patients with bilateral visually significant cataract randomly received an ultraviolet (UV) and blue light-filtering IOL (Acrysof Natural SN60AT) in 1 eye and an acrylic UV light-filtering only IOL (Acrysof SA60AT) in the fellow eye. The primary outcome measures were contrast sensitivity, color vision, and macular findings 5 years after surgery. The study enrolled 60 eyes of 30 patients. There were no significant clinical or optical coherence tomography findings in terms of age-related macular degeneration in any eye. There were no statistically significant differences in central macular thickness between the 2 IOL groups (P=.712). There were also no significant between-group differences under photopic or scotopic conditions at any spatial frequency studied. No statistically significant differences in the color discrimination test were found between the 2 IOL groups (P=.674). After 5 years, there were no significant differences in color perception, scotopic contrast sensitivity, or photopic contrast sensitivity between the blue light-filtering (yellow-tinted) IOL and the IOL with a UV-light filter only (untinted). The potential advantage of the tinted IOL in providing protection to macular cells remains unclear. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  14. Comparison of color discrimination in chronic heavy smokers and healthy subjects

    PubMed Central

    Fernandes, Thiago Monteiro de Paiva; Almeida, Natalia Leandro; dos Santos, Natanael Antonio

    2017-01-01

    Background: Cigarette smoke is probably the most significant source of exposure to toxic chemicals for humans, involving health-damaging components, such as nicotine, hydrogen cyanide and formaldehyde. The aim of the present study was to assess the influence of chronic heavy smoking on color discrimination (CD). Methods: All subjects were free of any neuropsychiatric disorder, identifiable ocular disease and had normal acuity. No abnormalities were detected in the fundoscopic examination and in the optical coherence tomography exam. We assessed color vision for healthy heavy smokers ( n = 15; age range, 20-45 years), deprived smokers ( n = 15, age range 20-45 years) and healthy non-smokers ( n = 15; age range, 20-45 years), using the psychophysical forced-choice method. All groups were matched for gender and education level. In this test, the volunteers had to choose the pseudoisochromatic stimulus containing a test frequency at four directions (e.g., up, down, right and left) in the subtest of Cambridge Colour Test (CCT): Trivector. Results: Performance on CCT differed between groups, and the observed pattern was that smokers had lower discrimination compared to non-smokers. In addition, deprived smokers presented lower discrimination to smokers and non-smokers. Contrary to expectation, the largest differences were observed for medium and long wavelengths. Conclusions: These results suggests that cigarette smoking, chronic exposure to its compounds, and withdrawal from nicotine affect color discrimination. This highlights the importance of understanding the diverse effects of nicotine on attentional bias. PMID:28928940

  15. Generalization of fewest-switches surface hopping for coherences

    NASA Astrophysics Data System (ADS)

    Tempelaar, Roel; Reichman, David R.

    2018-03-01

    Fewest-switches surface hopping (FSSH) is perhaps the most widely used mixed quantum-classical approach for the modeling of non-adiabatic processes, but its original formulation is restricted to (adiabatic) population terms of the quantum density matrix, leaving its implementations with an inconsistency in the treatment of populations and coherences. In this article, we propose a generalization of FSSH that treats both coherence and population terms on equal footing and which formally reduces to the conventional FSSH algorithm for the case of populations. This approach, coherent fewest-switches surface hopping (C-FSSH), employs a decoupling of population relaxation and pure dephasing and involves two replicas of the classical trajectories interacting with two active surfaces. Through extensive benchmark calculations of a spin-boson model involving a Debye spectral density, we demonstrate the potential of C-FSSH to deliver highly accurate results for a large region of parameter space. Its uniform description of populations and coherences is found to resolve incorrect behavior observed for conventional FSSH in various cases, in particular at low temperature, while the parameter space regions where it breaks down are shown to be quite limited. Its computational expenses are virtually identical to conventional FSSH.

  16. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials.

    PubMed

    Ivić, Z; Lazarides, N; Tsironis, G P

    2016-07-12

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980's, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound "quantum breather" that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.

  17. Assessments in the Global Peace Operations Initiative: A Systems Engineering Approach

    DTIC Science & Technology

    2014-06-01

    police unit GCC GPOI Coordination Committee GIG GPOI Implementation Guide GPOI Global Peace Operations Initiative GRC GPOI Regional Committee G8...degree necessary to build a coherent assessments framework. The GPOI Implementation Guide ( GIG ) begins by alluding to what the program intended to...elements and associated interactions fully observed and understood. Using the U.S. economy as an example, Driscoll (2011) illustrates the common

  18. Predictors of vision impairment in Multiple Sclerosis.

    PubMed

    Sanchez-Dalmau, Bernardo; Martinez-Lapiscina, Elena H; Pulido-Valdeolivas, Irene; Zubizarreta, Irati; Llufriu, Sara; Blanco, Yolanda; Sola-Valls, Nuria; Sepulveda, Maria; Guerrero, Ana; Alba, Salut; Andorra, Magi; Camos, Anna; Sanchez-Vela, Laura; Alfonso, Veronica; Saiz, Albert; Villoslada, Pablo

    2018-01-01

    Visual impairment significantly alters the quality of life of people with Multiple Sclerosis (MS). The objective of this study was to identify predictors (independent variables) of visual outcomes, and to define their relationship with neurological disability and retinal atrophy when assessed by optical coherence tomography (OCT). We performed a cross-sectional analysis of 119 consecutive patients with MS, assessing vision using high contrast visual acuity (LogMar), 2.5% and 1.25% low contrast visual acuity (Sloan charts), and color vision (Hardy-Rand-Rittler plates). Quality of vision is a patient reported outcome based on an individual's unique perception of his or her vision and was assessed with the Visual Functioning Questionnaire-25 (VFQ-25) with the 10 neuro-ophthalmologic items. MS disability was assessed using the expanded disability status scale (EDSS), the MS functional composite (MSFC) and the brief repetitive battery-neuropsychology (BRB-N). Retinal atrophy was assessed using spectral domain OCT, measuring the thickness of the peripapillar retinal nerve fiber layer (pRNFL) and the volume of the ganglion cell plus inner plexiform layer (GCIPL). The vision of patients with MS was impaired, particularly in eyes with prior optic neuritis. Retinal atrophy (pRNFL and GCIPL) was closely associated with impaired low contrast vision and color vision, whereas the volume of the GCIPL showed a trend (p = 0.092) to be associated with quality of vision. Multiple regression analysis revealed that EDSS was an explanatory variable for high contrast vision after stepwise analysis, GCIPL volume for low contrast vision, and GCIPL volume and EDSS for color vision. The explanatory variables for quality of vision were high contrast vision and color vision. In summary, quality of vision in MS depends on the impairment of high contrast visual acuity and color vision due to the disease.

  19. SLOAN DIGITAL SKY SURVEY OBSERVATIONS OF KUIPER BELT OBJECTS: COLORS AND VARIABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ofek, Eran O.

    2012-04-10

    Colors of trans-Neptunian objects (TNOs) are used to study the evolutionary processes of bodies in the outskirts of the solar system and to test theories regarding their origin. Here I describe a search for serendipitous Sloan Digital Sky Survey (SDSS) observations of known TNOs and Centaurs. I present a catalog of SDSS photometry, colors, and astrometry of 388 measurements of 42 outer solar system objects. I find weak evidence, at the Almost-Equal-To 2{sigma} level (per trial), for a correlation between the g - r color and inclination of scattered disk objects and hot classical Kuiper Belt objects. I find amore » correlation between the g - r color and the angular momentum in the z direction of all the objects in this sample. These findings should be verified using larger samples of TNOs. Light curves as a function of phase angle are constructed for 13 objects. The steepness of the slopes of these light curves suggests that the coherent backscatter mechanism plays a major role in the reflectivity of outer solar system small objects at small phase angles. I find weak evidence for an anticorrelation, significant at the 2{sigma} confidence level (per trial), between the g-band phase-angle slope parameter and the semimajor axis, as well as the aphelion distance, of these objects (i.e., they show a more prominent 'opposition effect' at smaller distances from the Sun). However, this plausible correlation should be verified using a larger sample. I discuss the origin of this possible correlation and argue that if this correlation is real it probably indicates that 'Sedna'-like objects have a different origin than other classes of TNOs. Finally, I identify several objects with large variability amplitudes.« less

  20. Improved spatial and temporal characteristics of ionospheric irregularities and polar mesospheric summer echoes using coherent MIMO and aperture synthesis radar imaging

    NASA Astrophysics Data System (ADS)

    Chau, J. L.; Urco, J. M.; Milla, M. A.; Vierinen, J.

    2017-12-01

    We have recently implemented Multiple-input multiple-output (MIMO) radar techniques to resolve temporal and spatial ambiguities of ionospheric and atmospheric irregularities, with improve capabilities than previously experiments using single-input multi-output (SIMO) techniques. SIMO techniques in the atmospheric and ionospheric coherent scatter radar field are usually called aperture synthesis radar imaging. Our implementations have done at the Jicamarca Radio Observatory (JRO) in Lima, Peru, and at the Middle Atmosphere Alomar Radar System (MAARSY) in Andenes, Norway, to study equatorial electrojet (EEJ) field-aligned irregularities and polar mesospheric summer echoes (PMSE), respectively. Figure 1 shows an example of a configuration used at MAARSY and the comparison between the SIMO and MIMO resulting antenna point spread functions, respectively. Although in this work we present the details of the implementations at each facility, we will focus on the observed peculiarities of each phenomenon, making emphasis in the underlying physical mechanisms that govern their existence and their spatial and temporal modulation. For example, what are the typical horizontal scales of PMSE variability in both intensity and wind field?

  1. A phenomenological model of the glasma and photon production

    DOE PAGES

    McLerran, Larry

    2014-12-01

    There have been many talks at this meeting concerning the Color Glass Condensate[1]-[5] and the Glasma[6]-[13], so I will not present an extended review the subject in this talk. I will concentrate here on providing a simplified description of the evolution of the Glasma. The Glasma is a strongly interacting Quark Gluon Plasma. It is not thermalized. It is produced very shortly after the collision of two nuclei, thought of as sheets of Color Glass Condensate, and evolves into the Thermalized Quark Gluon Plasma. The Glasma is strongly interacting because the gluon distributions are over occupied, and this overoccupation enhancesmore » the interaction strength due to Bose coherence. There may or may not be a Bose condensate of gluons in the Glasma, but this interesting feature will not be the subject of this talk[14]-[22]. In fact, I will ignore the possibility of such condensation when I analyze the Glasma, although the result I present may be generalized to the case where condensation is present.« less

  2. Recent progress in tissue optical clearing for spectroscopic application

    NASA Astrophysics Data System (ADS)

    Sdobnov, A. Yu.; Darvin, M. E.; Genina, E. A.; Bashkatov, A. N.; Lademann, J.; Tuchin, V. V.

    2018-05-01

    This paper aims to review recent progress in optical clearing of the skin and over naturally turbid biological tissues and blood using this technique in vivo and in vitro with multiphoton microscopy, confocal Raman microscopy, confocal microscopy, NIR spectroscopy, optical coherence tomography, and laser speckle contrast imaging. Basic principles of the technique, its safety, advantages and limitations are discussed. The application of optical clearing agent on a tissue allows for controlling the optical properties of tissue. Optical clearing-induced reduction of tissue scattering significantly facilitates the observation of deep-located tissue regions, at the same time improving the resolution and image contrast for a variety of optical imaging methods suitable for clinical applications, such as diagnostics and laser treatment of skin diseases, mucosal tumor imaging, laser disruption of pathological abnormalities, etc. Structural images of different skin layers obtained ex vivo for porcine ear skin samples at application of Omnipaque™ and glycerol solutions during 60 min. Red color corresponds to TPEAF signal channel. Green color corresponds to SHG signal channel.

  3. In situ optical measurements of Chang'E-3 landing site in Mare Imbrium: 2. Photometric properties of the regolith

    NASA Astrophysics Data System (ADS)

    Jin, Weidong; Zhang, Hao; Yuan, Ye; Yang, Yazhou; Shkuratov, Yuriy G.; Lucey, Paul G.; Kaydash, Vadim G.; Zhu, Meng-Hua; Xue, Bin; Di, Kaichang; Xu, Bin; Wan, Wenhui; Xiao, Long; Wang, Ziwei

    2015-10-01

    The panorama cameras onboard the Yutu Rover of the Chang'E-3 lunar mission acquired hundreds of high-resolution color images of the lunar surface and captured the first in situ lunar opposition effect (OE) since the Apollo era. We extracted the phase curve and the color ratio in three bands with the phase angle range from 2° to 141°. Photometric inversions using the Hapke model reveal that submicroscopic dusts are present in the landing area and both the coherent backscattering and the shadow hiding are responsible for the strong OE. Compared with spaceborne measurements, the grains in the landing site are brighter, more transparent, and appear to be better crystallized than the average maria basaltic grains. The results show that the phase-reddening effect appears to be present in the in situ phase curves. The current phase curve can be used as the ground-truth validations of any future spaceborne phase curve measurement over the landing site region.

  4. Direct detection of light dark matter and solar neutrinos via color center production in crystals

    NASA Astrophysics Data System (ADS)

    Budnik, Ranny; Cheshnovsky, Ori; Slone, Oren; Volansky, Tomer

    2018-07-01

    We propose a new low-threshold direct-detection concept for dark matter and for coherent nuclear scattering of solar neutrinos, based on the dissociation of atoms and subsequent creation of color center type defects within a lattice. The novelty in our approach lies in its ability to detect single defects in a macroscopic bulk of material. This class of experiments features ultra-low energy thresholds which allows for the probing of dark matter as light as O (10) MeV through nuclear scattering. Another feature of defect creation in crystals is directional information, which presents as a spectacular signal and a handle on background reduction in the form of daily modulation of the interaction rate. We discuss the envisioned setup and detection technique, as well as background reduction. We further calculate the expected rates for dark matter and solar neutrinos in two example crystals for which available data exists, demonstrating the prospective sensitivity of such experiments.

  5. Two-color vibrational, femtosecond, fully resonant electronically enhanced CARS (FREE-CARS) of gas-phase nitric oxide.

    PubMed

    Stauffer, Hans U; Roy, Sukesh; Schmidt, Jacob B; Wrzesinski, Paul J; Gord, James R

    2016-09-28

    A resonantly enhanced, two-color, femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) approach is demonstrated and used to explore the nature of the frequency- and time-dependent signals produced by gas-phase nitric oxide (NO). Through careful selection of the input pulse wavelengths, this fully resonant electronically enhanced CARS (FREE-CARS) scheme allows rovibronic-state-resolved observation of time-dependent rovibrational wavepackets propagating on the vibrationally excited ground-state potential energy surface of this diatomic species. Despite the use of broadband, ultrafast time-resolved input pulses, high spectral resolution of gas-phase rovibronic transitions is observed in the FREE-CARS signal, dictated by the electronic dephasing timescales of these states. Analysis and computational simulation of the time-dependent spectra observed as a function of pump-Stokes and Stokes-probe delays provide insight into the rotationally resolved wavepacket motion observed on the excited-state and vibrationally excited ground-state potential energy surfaces of NO, respectively.

  6. Choroidal OCT

    NASA Astrophysics Data System (ADS)

    Esmaeelpour, Marieh; Drexler, Wolfgang

    Novel imaging devices, imaging strategies and automated image analysis with optical coherence tomography have improved our understanding of the choroid in health and pathology. Non-invasive in-vivo high resolution choroidal imaging has had its highest impact in the investigation of macular diseases such as diabetes macular edema and age-related macular degeneration. Choroidal thickness may provide a clinically feasible measure of disease stage and treatment success. It will even support disease diagnosis and phenotyping as is demonstrated in this chapter. Utilizing color coded thickness mapping of the choroid and its Sattler's and Haller's layer may further strengthen the sensitivity of the investigation findings.

  7. Macular hole-associated retinal detachment in Best vitelliform dystrophy: Series of two cases and literature review

    PubMed Central

    Tewari, Ruchir; Kumar, Vinod; Ravani, Raghav; Dubey, Devashish; Chandra, Parijat; Kumar, Atul

    2018-01-01

    Two eyes of 2 patients with macular hole-associated retinal detachment in clinically diagnosed vitelliruptive stage of Best vitelliform dystrophy were surgically managed by 25-gauge sutureless pars plana vitrectomy, internal limiting membrane (ILM) peeling with inverted ILM flap, and short-acting (SF6) gas tamponade. The patients were assessed with respect to best-corrected visual acuity, color fundus photographs, shortwave fundus autofluorescence, and swept source optical coherence tomography. Surgical intervention led to Type 1 closure of macular hole, resolution of retinal detachment, and improvement in vision in both patients. PMID:29676326

  8. Reversible ultrafast melting in bulk CdSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wenzhi; Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712; He, Feng

    2016-02-07

    In this work, transient reflectivity changes in bulk CdSe have been measured with two-color femtosecond pump-probe spectroscopy under a wide range of pump fluences. Three regions of reflectivity change with pump fluences have been consistently revealed for excited carrier density, coherent phonon amplitude, and lattice temperature. For laser fluences from 13 to 19.3 mJ/cm{sup 2}, ultrafast melting happens in first several picoseconds. This melting process is purely thermal and reversible. A complete phase transformation in bulk CdSe may be reached when the absorbed laser energy is localized long enough, as observed in nanocrystalline CdSe.

  9. Temporal resolution for the perception of features and conjunctions.

    PubMed

    Bodelón, Clara; Fallah, Mazyar; Reynolds, John H

    2007-01-24

    The visual system decomposes stimuli into their constituent features, represented by neurons with different feature selectivities. How the signals carried by these feature-selective neurons are integrated into coherent object representations is unknown. To constrain the set of possible integrative mechanisms, we quantified the temporal resolution of perception for color, orientation, and conjunctions of these two features. We find that temporal resolution is measurably higher for each feature than for their conjunction, indicating that time is required to integrate features into a perceptual whole. This finding places temporal limits on the mechanisms that could mediate this form of perceptual integration.

  10. Strain Engineering of Epitaxially Transferred, Ultrathin Layers of III-V Semiconductor on Insulator

    DTIC Science & Technology

    2011-01-01

    The structure of the source wafer is shown schematically in Fig. 2a, with both InAs and AlGaSb layers coherently strained to the GaSb 001...is due to the surface plasmon-LO phonon FIG. 2. Color online a The structure of GaSb /AlGaSb/InAs source wafer with an assumed strain state for...insulator layers obtained from an epitaxial transfer process is studied. The as-grown InAs epilayer 10–20 nm thick on the GaSb /AlGaSb source wafer has the

  11. Momentum conservation and unitarity in parton showers and NLL resummation

    DOE PAGES

    Höche, Stefan; Reichelt, Daniel; Siegert, Frank

    2018-01-23

    We present a systematic study of differences between NLL resummation and parton showers. We first construct a Markovian Monte-Carlo algorithm for resummation of additive observables in electron-positron annihilation. Approximations intrinsic to the pure NLL result are then removed, in order to obtain a traditional, momentum and probability conserving parton shower based on the coherent branching formalism. The impact of each approximation is studied, and an overall comparison is made between the parton shower and pure NLL resummation. Differences compared to modern parton-shower algorithms formulated in terms of color dipoles are analyzed.

  12. [Tanning lamp radiation-induced photochemical retinal damage].

    PubMed

    Volkov, V V; Kharitonova, N N; Mal'tsev, D S

    2014-01-01

    On the basis of original clinical research a rare case of bilateral retinal damage due to tanning lamp radiation exposure is presented. Along with significant decrease of visual acuity and light sensitivity of central visual field as well as color vision impairment, bilateral macular dystrophy was found during an ophthalmoscopy and confirmed by optical coherent tomography and fluorescent angiography. Intensive retinoprotective, vascular, and antioxidant therapy was effective and led to functional improvement and stabilization of the pathologic process associated with photochemical retinal damage. A brief review of literature compares mechanisms of retinal damage by either short or long-wave near visible radiation.

  13. Implementation and Evaluation of a Mobile Mapping System Based on Integrated Range and Intensity Images for Traffic Signs Localization

    NASA Astrophysics Data System (ADS)

    Shahbazi, M.; Sattari, M.; Homayouni, S.; Saadatseresht, M.

    2012-07-01

    Recent advances in positioning techniques have made it possible to develop Mobile Mapping Systems (MMS) for detection and 3D localization of various objects from a moving platform. On the other hand, automatic traffic sign recognition from an equipped mobile platform has recently been a challenging issue for both intelligent transportation and municipal database collection. However, there are several inevitable problems coherent to all the recognition methods completely relying on passive chromatic or grayscale images. This paper presents the implementation and evaluation of an operational MMS. Being distinct from the others, the developed MMS comprises one range camera based on Photonic Mixer Device (PMD) technology and one standard 2D digital camera. The system benefits from certain algorithms to detect, recognize and localize the traffic signs by fusing the shape, color and object information from both range and intensity images. As the calibrating stage, a self-calibration method based on integrated bundle adjustment via joint setup with the digital camera is applied in this study for PMD camera calibration. As the result, an improvement of 83 % in RMS of range error and 72 % in RMS of coordinates residuals for PMD camera, over that achieved with basic calibration is realized in independent accuracy assessments. Furthermore, conventional photogrammetric techniques based on controlled network adjustment are utilized for platform calibration. Likewise, the well-known Extended Kalman Filtering (EKF) is applied to integrate the navigation sensors, namely GPS and INS. The overall acquisition system along with the proposed techniques leads to 90 % true positive recognition and the average of 12 centimetres 3D positioning accuracy.

  14. Implementation and Evaluation of a Mobile Mapping System Based on Integrated Range and Intensity Images for Traffic Signs Localization

    NASA Astrophysics Data System (ADS)

    Shahbazi, M.; Sattari, M.; Homayouni, S.; Saadatseresht, M.

    2012-07-01

    Recent advances in positioning techniques have made it possible to develop Mobile Mapping Systems (MMS) for detection and 3D localization of various objects from a moving platform. On the other hand, automatic traffic sign recognition from an equipped mobile platform has recently been a challenging issue for both intelligent transportation and municipal database collection. However, there are several inevitable problems coherent to all the recognition methods completely relying on passive chromatic or grayscale images. This paper presents the implementation and evaluation of an operational MMS. Being distinct from the others, the developed MMS comprises one range camera based on Photonic Mixer Device (PMD) technology and one standard 2D digital camera. The system benefits from certain algorithms to detect, recognize and localize the traffic signs by fusing the shape, color and object information from both range and intensity images. As the calibrating stage, a self-calibration method based on integrated bundle adjustment via joint setup with the digital camera is applied in this study for PMD camera calibration. As the result, an improvement of 83% in RMS of range error and 72% in RMS of coordinates residuals for PMD camera, over that achieved with basic calibration is realized in independent accuracy assessments. Furthermore, conventional photogrammetric techniques based on controlled network adjustment are utilized for platform calibration. Likewise, the well-known Extended Kalman Filtering (EKF) is applied to integrate the navigation sensors, namely GPS and INS. The overall acquisition system along with the proposed techniques leads to 90% true positive recognition and the average of 12 centimetres 3D positioning accuracy.

  15. Plans for phase coherent long baseline interferometry for geophysical applications using the Anik-B communications satellite

    NASA Technical Reports Server (NTRS)

    Cannon, W. H.; Petrachenko, W. T.; Yen, J. L.; Galt, J. A.; Waltman, W. B.; Knoweles, S. H.; Popelar, J.

    1980-01-01

    A pilot project to establish an operational phase stable very long baseline interferometer (VLBI) for geophysical studies is described. Methods for implementation as well as practical applications are presented.

  16. DMSK: A practical 2400-bps receiver for the mobile satellite service: An MSAT-X Report

    NASA Technical Reports Server (NTRS)

    Davarian, F.; Simon, M. K.; Sumida, J.

    1985-01-01

    The partical aspects of a 2400-bps differential detection minimum-shift-keying (DMSK) receiver are investigated. Fundamental issues relating to hardware precision, Doppler shift, fading, and frequency offset are examined, and it is concluded that the receiver's implementation at baseband is more advantageous both in cost and simplicity than its IF implementation. The DMSK receiver has been fabricated and tested under simulated mobile satellite environment conditions. The measured receiver performance in the presence of anomalies pertinent to the link is presented in this report. Furthermore, the receiver behavior in a band-limited channel (GMSK) is also investigated. The DMSK receiver performs substantially better than a coherent minimum-shift-keying (MSK) receiver in a heavily fading environment. The DMSK radio is simple and robust, and results in a lower error floor than its coherent counterpart. Moreover, this receiver is suitable for burst-type signals, and its recovery from deep fades is fast.

  17. GPU-Powered Coherent Beamforming

    NASA Astrophysics Data System (ADS)

    Magro, A.; Adami, K. Zarb; Hickish, J.

    2015-03-01

    Graphics processing units (GPU)-based beamforming is a relatively unexplored area in radio astronomy, possibly due to the assumption that any such system will be severely limited by the PCIe bandwidth required to transfer data to the GPU. We have developed a CUDA-based GPU implementation of a coherent beamformer, specifically designed and optimized for deployment at the BEST-2 array which can generate an arbitrary number of synthesized beams for a wide range of parameters. It achieves ˜1.3 TFLOPs on an NVIDIA Tesla K20, approximately 10x faster than an optimized, multithreaded CPU implementation. This kernel has been integrated into two real-time, GPU-based time-domain software pipelines deployed at the BEST-2 array in Medicina: a standalone beamforming pipeline and a transient detection pipeline. We present performance benchmarks for the beamforming kernel as well as the transient detection pipeline with beamforming capabilities as well as results of test observation.

  18. Statistics, Computation, and Modeling in Cosmology

    NASA Astrophysics Data System (ADS)

    Jewell, Jeff; Guiness, Joe; SAMSI 2016 Working Group in Cosmology

    2017-01-01

    Current and future ground and space based missions are designed to not only detect, but map out with increasing precision, details of the universe in its infancy to the present-day. As a result we are faced with the challenge of analyzing and interpreting observations from a wide variety of instruments to form a coherent view of the universe. Finding solutions to a broad range of challenging inference problems in cosmology is one of the goals of the “Statistics, Computation, and Modeling in Cosmology” workings groups, formed as part of the year long program on ‘Statistical, Mathematical, and Computational Methods for Astronomy’, hosted by the Statistical and Applied Mathematical Sciences Institute (SAMSI), a National Science Foundation funded institute. Two application areas have emerged for focused development in the cosmology working group involving advanced algorithmic implementations of exact Bayesian inference for the Cosmic Microwave Background, and statistical modeling of galaxy formation. The former includes study and development of advanced Markov Chain Monte Carlo algorithms designed to confront challenging inference problems including inference for spatial Gaussian random fields in the presence of sources of galactic emission (an example of a source separation problem). Extending these methods to future redshift survey data probing the nonlinear regime of large scale structure formation is also included in the working group activities. In addition, the working group is also focused on the study of ‘Galacticus’, a galaxy formation model applied to dark matter-only cosmological N-body simulations operating on time-dependent halo merger trees. The working group is interested in calibrating the Galacticus model to match statistics of galaxy survey observations; specifically stellar mass functions, luminosity functions, and color-color diagrams. The group will use subsampling approaches and fractional factorial designs to statistically and computationally efficiently explore the Galacticus parameter space. The group will also use the Galacticus simulations to study the relationship between the topological and physical structure of the halo merger trees and the properties of the resulting galaxies.

  19. Photothermal effects during nanodiamond synthesis from a carbon aerogel in a laser-heated diamond anvil cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crane, Matthew J.; Smith, Bennett E.; Meisenheimer, Peter B.

    Nanodiamonds have emerged as promising materials for quantum computing, biolabeling, and sensing due to their ability to host color centers with remarkable photostability and long spin-coherence times at room temperature. Recently, a bottom-up, high-pressure, high-temperature (HPHT) approach was demonstrated for growing nanodiamonds with color centers from amorphous carbon precursors in a laser-heated diamond anvil cell (LH-DAC) that was supported by a near-hydrostatic noble gas pressure medium. However, a detailed understanding of the photothermal heating and its effect on diamond growth, including the phase conversion conditions and the temperature-dependence of color center formation, has not been reported. In this work, wemore » measure blackbody radiation during LH-DAC synthesis of nanodiamond from carbon aerogel to examine these temperature-dependent effects. Blackbody temperature measurements suggest that nanodiamond growth can occur at 16.3 GPa and 1800 K. We use Mie theory and analytical heat transport to develop a predictive photothermal heating model. This model demonstrates that melting the noble gas pressure medium during laser heating decreases the local thermal conductivity to drive a high spatial resolution of phase conversion to diamond. In conclusion, we observe a temperature-dependent formation of nitrogen vacancy centers and interpret this phenomenon in the context of HPHT carbon vacancy diffusion.« less

  20. Unconscious analyses of visual scenes based on feature conjunctions.

    PubMed

    Tachibana, Ryosuke; Noguchi, Yasuki

    2015-06-01

    To efficiently process a cluttered scene, the visual system analyzes statistical properties or regularities of visual elements embedded in the scene. It is controversial, however, whether those scene analyses could also work for stimuli unconsciously perceived. Here we show that our brain performs the unconscious scene analyses not only using a single featural cue (e.g., orientation) but also based on conjunctions of multiple visual features (e.g., combinations of color and orientation information). Subjects foveally viewed a stimulus array (duration: 50 ms) where 4 types of bars (red-horizontal, red-vertical, green-horizontal, and green-vertical) were intermixed. Although a conscious perception of those bars was inhibited by a subsequent mask stimulus, the brain correctly analyzed the information about color, orientation, and color-orientation conjunctions of those invisible bars. The information of those features was then used for the unconscious configuration analysis (statistical processing) of the central bars, which induced a perceptual bias and illusory feature binding in visible stimuli at peripheral locations. While statistical analyses and feature binding are normally 2 key functions of the visual system to construct coherent percepts of visual scenes, our results show that a high-level analysis combining those 2 functions is correctly performed by unconscious computations in the brain. (c) 2015 APA, all rights reserved).

  1. Photothermal effects during nanodiamond synthesis from a carbon aerogel in a laser-heated diamond anvil cell

    DOE PAGES

    Crane, Matthew J.; Smith, Bennett E.; Meisenheimer, Peter B.; ...

    2018-05-17

    Nanodiamonds have emerged as promising materials for quantum computing, biolabeling, and sensing due to their ability to host color centers with remarkable photostability and long spin-coherence times at room temperature. Recently, a bottom-up, high-pressure, high-temperature (HPHT) approach was demonstrated for growing nanodiamonds with color centers from amorphous carbon precursors in a laser-heated diamond anvil cell (LH-DAC) that was supported by a near-hydrostatic noble gas pressure medium. However, a detailed understanding of the photothermal heating and its effect on diamond growth, including the phase conversion conditions and the temperature-dependence of color center formation, has not been reported. In this work, wemore » measure blackbody radiation during LH-DAC synthesis of nanodiamond from carbon aerogel to examine these temperature-dependent effects. Blackbody temperature measurements suggest that nanodiamond growth can occur at 16.3 GPa and 1800 K. We use Mie theory and analytical heat transport to develop a predictive photothermal heating model. This model demonstrates that melting the noble gas pressure medium during laser heating decreases the local thermal conductivity to drive a high spatial resolution of phase conversion to diamond. In conclusion, we observe a temperature-dependent formation of nitrogen vacancy centers and interpret this phenomenon in the context of HPHT carbon vacancy diffusion.« less

  2. School-wide implementation of the elements of effective classroom instruction: Lessons from a high-performing, high-poverty urban school

    NASA Astrophysics Data System (ADS)

    Dyson, Hilarie

    2008-10-01

    The purpose of the study was to identify structures and systems implemented in a high-performing high-poverty urban school to promote high academic achievement among students of color. The researcher used a sociocultural theoretical framework to examine the influence of culture on the structures and systems that increased performance by African American and Hispanic students. Four research questions guided the study: (1) What are the trends and patterns of student performance among students of color? (2) What are the organizational structures and systems that are perceived to contribute to high student performance in high-poverty urban schools with high concentrations of students of color? (3) How are the organizational structures and systems implemented to support school-wide effective classroom instruction that promotes student learning? (4) How is the construct of race reflected in the school's structures and systems? Qualitative data were collected through interviews, observations, and artifact collection. A single case study method was employed and collected data were triangulated to capture and explore the rich details of the study. The study focused on a high-performing high-poverty urban elementary school located in southern California. The school population consisted of 99% students of color and 93% were economically disadvantaged. The school was selected for making significant and consistent growth in Academic Performance Index and Adequate Yearly Progress over a 3-year period. The school-wide structures and systems studied were (a) leadership, (b) school climate and culture, (c) standards-based instruction, (d) data-driven decision making, and (e) professional development. Four common themes emerged from the findings: (a) instructional leadership that focused on teaching and learning; (b) high expectations for all students; (c) school-wide focus on student achievement using standards, data, and culturally responsive teaching; and (d) positive relationships and interactions among students, teachers, parents, and community. Suggestion for future research include a deep examination of how and why culturally relevant pedagogy supports students of color, research on leadership and its impact on creating a positive school climate and culture to produce high student achievement by students of color, and the impact of early education programs on student achievement among poor students and students of color.

  3. Exploring multivariate representations of indices along linear geographic features

    NASA Astrophysics Data System (ADS)

    Bleisch, Susanne; Hollenstein, Daria

    2018-05-01

    A study of the walkability of a Swiss town required finding suitable representations of multivariate geographical da-ta. The goal was to represent multiple indices of walkability concurrently and visualizing the data along the street network it relates to. Different indices of pedestrian friendliness were assessed for short street sections and then mapped to an overlaid grid. Basic and composite glyphs were designed using square- or triangle-areas to display one to four index values concurrently within the grid structure. Color was used to indicate different indices. Implement-ing visualizations for different combinations of index sets, we find that single values can be emphasized or de-emphasized by selecting the color scheme accordingly and that different color selections either allow perceiving sin-gle values or overall trends over the evaluated area. Values for up to four indices can be displayed in combination within the resulting geovisualizations and the underlying gridded road network references the data to its real world locations.

  4. Color postprocessing for 3-dimensional finite element mesh quality evaluation and evolving graphical workstation

    NASA Technical Reports Server (NTRS)

    Panthaki, Malcolm J.

    1987-01-01

    Three general tasks on general-purpose, interactive color graphics postprocessing for three-dimensional computational mechanics were accomplished. First, the existing program (POSTPRO3D) is ported to a high-resolution device. In the course of this transfer, numerous enhancements are implemented in the program. The performance of the hardware was evaluated from the point of view of engineering postprocessing, and the characteristics of future hardware were discussed. Second, interactive graphical tools implemented to facilitate qualitative mesh evaluation from a single analysis. The literature was surveyed and a bibliography compiled. Qualitative mesh sensors were examined, and the use of two-dimensional plots of unaveraged responses on the surface of three-dimensional continua was emphasized in an interactive color raster graphics environment. Finally, a postprocessing environment was designed for state-of-the-art workstation technology. Modularity, personalization of the environment, integration of the engineering design processes, and the development and use of high-level graphics tools are some of the features of the intended environment.

  5. Object-color-signal prediction using wraparound Gaussian metamers.

    PubMed

    Mirzaei, Hamidreza; Funt, Brian

    2014-07-01

    Alexander Logvinenko introduced an object-color atlas based on idealized reflectances called rectangular metamers in 2009. For a given color signal, the atlas specifies a unique reflectance that is metameric to it under the given illuminant. The atlas is complete and illuminant invariant, but not possible to implement in practice. He later introduced a parametric representation of the object-color atlas based on smoother "wraparound Gaussian" functions. In this paper, these wraparound Gaussians are used in predicting illuminant-induced color signal changes. The method proposed in this paper is based on computationally "relighting" that reflectance to determine what its color signal would be under any other illuminant. Since that reflectance is in the metamer set the prediction is also physically realizable, which cannot be guaranteed for predictions obtained via von Kries scaling. Testing on Munsell spectra and a multispectral image shows that the proposed method outperforms the predictions of both those based on von Kries scaling and those based on the Bradford transform.

  6. Single-exposure quantitative phase imaging in color-coded LED microscopy.

    PubMed

    Lee, Wonchan; Jung, Daeseong; Ryu, Suho; Joo, Chulmin

    2017-04-03

    We demonstrate single-shot quantitative phase imaging (QPI) in a platform of color-coded LED microscopy (cLEDscope). The light source in a conventional microscope is replaced by a circular LED pattern that is trisected into subregions with equal area, assigned to red, green, and blue colors. Image acquisition with a color image sensor and subsequent computation based on weak object transfer functions allow for the QPI of a transparent specimen. We also provide a correction method for color-leakage, which may be encountered in implementing our method with consumer-grade LEDs and image sensors. Most commercially available LEDs and image sensors do not provide spectrally isolated emissions and pixel responses, generating significant error in phase estimation in our method. We describe the correction scheme for this color-leakage issue, and demonstrate improved phase measurement accuracy. The computational model and single-exposure QPI capability of our method are presented by showing images of calibrated phase samples and cellular specimens.

  7. Quantitative analysis of diffusion tensor orientation: theoretical framework.

    PubMed

    Wu, Yu-Chien; Field, Aaron S; Chung, Moo K; Badie, Benham; Alexander, Andrew L

    2004-11-01

    Diffusion-tensor MRI (DT-MRI) yields information about the magnitude, anisotropy, and orientation of water diffusion of brain tissues. Although white matter tractography and eigenvector color maps provide visually appealing displays of white matter tract organization, they do not easily lend themselves to quantitative and statistical analysis. In this study, a set of visual and quantitative tools for the investigation of tensor orientations in the human brain was developed. Visual tools included rose diagrams, which are spherical coordinate histograms of the major eigenvector directions, and 3D scatterplots of the major eigenvector angles. A scatter matrix of major eigenvector directions was used to describe the distribution of major eigenvectors in a defined anatomic region. A measure of eigenvector dispersion was developed to describe the degree of eigenvector coherence in the selected region. These tools were used to evaluate directional organization and the interhemispheric symmetry of DT-MRI data in five healthy human brains and two patients with infiltrative diseases of the white matter tracts. In normal anatomical white matter tracts, a high degree of directional coherence and interhemispheric symmetry was observed. The infiltrative diseases appeared to alter the eigenvector properties of affected white matter tracts, showing decreased eigenvector coherence and interhemispheric symmetry. This novel approach distills the rich, 3D information available from the diffusion tensor into a form that lends itself to quantitative analysis and statistical hypothesis testing. (c) 2004 Wiley-Liss, Inc.

  8. Quantifying the effect of colorization enhancement on mammogram images

    NASA Astrophysics Data System (ADS)

    Wojnicki, Paul J.; Uyeda, Elizabeth; Micheli-Tzanakou, Evangelia

    2002-04-01

    Current methods of radiological displays provide only grayscale images of mammograms. The limitation of the image space to grayscale provides only luminance differences and textures as cues for object recognition within the image. However, color can be an important and significant cue in the detection of shapes and objects. Increasing detection ability allows the radiologist to interpret the images in more detail, improving object recognition and diagnostic accuracy. Color detection experiments using our stimulus system, have demonstrated that an observer can only detect an average of 140 levels of grayscale. An optimally colorized image can allow a user to distinguish 250 - 1000 different levels, hence increasing potential image feature detection by 2-7 times. By implementing a colorization map, which follows the luminance map of the original grayscale images, the luminance profile is preserved and color is isolated as the enhancement mechanism. The effect of this enhancement mechanism on the shape, frequency composition and statistical characteristics of the Visual Evoked Potential (VEP) are analyzed and presented. Thus, the effectiveness of the image colorization is measured quantitatively using the Visual Evoked Potential (VEP).

  9. Grayscale standard display function on LCD color monitors

    NASA Astrophysics Data System (ADS)

    De Monte, Denis; Casale, Carlo; Albani, Luigi; Bonfiglio, Silvio

    2007-03-01

    Currently, as a rule, digital medical systems use monochromatic Liquid Crystal Display (LCD) monitors to ensure an accurate reproduction of the Grayscale Standard Display Function (GSDF) as specified in the Digital Imaging and Communications in Medicine (DICOM) Standard. As a drawback, special panels need to be utilized in digital medical systems, while it would be preferable to use regular color panels, which are manufactured on a wide scale and are thus available at by far lower prices. The method proposed introduces a temporal color dithering technique to accurately reproduce the GSDF on color monitors without losing monitor resolution. By exploiting the characteristics of the Human Visual System (HVS) the technique ensures that a satisfactory grayscale reproduction is achieved minimizing perceivable flickering and undesired color artifacts. The algorithm has been implemented in the monitor using a low-cost Field Programmable Gate Array (FPGA). Quantitative evaluations of luminance response on a 3 Mega-pixel color monitor have shown that the compliance with the GSDF can be achieved with the accuracy level required by medical applications. At the same time the measured color deviation is below the threshold perceivable by the human eye.

  10. Evaluation of the Color Me Healthy Program in Influencing Nutrition and Physical Activity in Mississippi Preschool Child Care Facilities

    ERIC Educational Resources Information Center

    Huye, Holly F.; Bankston, Sarah; Speed, Donna; Molaison, Elaine F.

    2014-01-01

    Purpose/Objectives: The purpose of this research was to determine the level of implementation and perceived value in creating knowledge and behavior change from the Color Me Healthy (CMH) training program in child care centers, family day carehomes, or Head Start facilities throughout Mississippi. Methods: A two-phase survey was used to initially…

  11. The health care system: factoring in the ethnicity, cultural and health care needs of women and children of color.

    PubMed

    Griffin, F N

    1994-01-01

    The author reviews the literature on factors which influence the health of African Americans. The concept of poverty as a health problem is discussed as well as the feminization of poverty. The author implores health care workers, to begin to implement the concepts of ethnicity and culture when giving care to clients of color.

  12. Teaching color as an experiential exercise

    NASA Astrophysics Data System (ADS)

    Miele, Margaret A.

    2002-06-01

    This paper describes the evolution of the course 'The Psychology of Color' that I teach at the Fashion Institute of Technology. Information was synthesized from many disciplines including human biology, physics, consumer behavior, developmental psychology, cross-cultural anthropology and sociology. After initial implementation, the course went through two additional phases of refinement. The current course is an integration of research, theory and application to our everyday lives.

  13. Pragmatic Approach to Device-Independent Color

    NASA Technical Reports Server (NTRS)

    Brandt, R. D.; Capraro, K. S.

    1995-01-01

    JPL has been producing images of planetary bodies for over 30 years. The results of an effort to implement device-independent color on three types of devices are described. The goal is to produce near the same eye-brain response when the observer views the image produced by each device under the correct lighting conditions. The procedure used to calibrate and obtain each device profile is described.

  14. High Dynamic Range Spectral Imaging Pipeline For Multispectral Filter Array Cameras.

    PubMed

    Lapray, Pierre-Jean; Thomas, Jean-Baptiste; Gouton, Pierre

    2017-06-03

    Spectral filter arrays imaging exhibits a strong similarity with color filter arrays. This permits us to embed this technology in practical vision systems with little adaptation of the existing solutions. In this communication, we define an imaging pipeline that permits high dynamic range (HDR)-spectral imaging, which is extended from color filter arrays. We propose an implementation of this pipeline on a prototype sensor and evaluate the quality of our implementation results on real data with objective metrics and visual examples. We demonstrate that we reduce noise, and, in particular we solve the problem of noise generated by the lack of energy balance. Data are provided to the community in an image database for further research.

  15. Project Report: Reducing Color Rivalry in Imagery for Conjugated Multiple Bandpass Filter Based Stereo Endoscopy

    NASA Technical Reports Server (NTRS)

    Ream, Allen

    2011-01-01

    A pair of conjugated multiple bandpass filters (CMBF) can be used to create spatially separated pupils in a traditional lens and imaging sensor system allowing for the passive capture of stereo video. This method is especially useful for surgical endoscopy where smaller cameras are needed to provide ample room for manipulating tools while also granting improved visualizations of scene depth. The significant issue in this process is that, due to the complimentary nature of the filters, the colors seen through each filter do not match each other, and also differ from colors as seen under a white illumination source. A color correction model was implemented that included optimized filter selection, such that the degree of necessary post-processing correction was minimized, and a chromatic adaptation transformation that attempted to fix the imaged colors tristimulus indices based on the principle of color constancy. Due to fabrication constraints, only dual bandpass filters were feasible. The theoretical average color error after correction between these filters was still above the fusion limit meaning that rivalry conditions are possible during viewing. This error can be minimized further by designing the filters for a subset of colors corresponding to specific working environments.

  16. A New Perspective on Modeling Groundwater-Driven Health Risk With Subjective Information

    NASA Astrophysics Data System (ADS)

    Ozbek, M. M.

    2003-12-01

    Fuzzy rule-based systems provide an efficient environment for the modeling of expert information in the context of risk management for groundwater contamination problems. In general, their use in the form of conditional pieces of knowledge, has been either as a tool for synthesizing control laws from data (i.e., conjunction-based models), or in a knowledge representation and reasoning perspective in Artificial Intelligence (i.e., implication-based models), where only the latter may lead to coherence problems (e.g., input data that leads to logical inconsistency when added to the knowledge base). We implement a two-fold extension to an implication-based groundwater risk model (Ozbek and Pinder, 2002) including: 1) the implementation of sufficient conditions for a coherent knowledge base, and 2) the interpolation of expert statements to supplement gaps in knowledge. The original model assumes statements of public health professionals for the characterization of the exposed individual and the relation of dose and pattern of exposure to its carcinogenic effects. We demonstrate the utility of the extended model in that it: 1)identifies inconsistent statements and establishes coherence in the knowledge base, and 2) minimizes the burden of knowledge elicitation from the experts for utilizing existing knowledge in an optimal fashion.ÿÿ

  17. Availability of color calibration for consistent color display in medical images and optimization of reference brightness for clinical use

    NASA Astrophysics Data System (ADS)

    Iwai, Daiki; Suganami, Haruka; Hosoba, Minoru; Ohno, Kazuko; Emoto, Yutaka; Tabata, Yoshito; Matsui, Norihisa

    2013-03-01

    Color image consistency has not been accomplished yet except the Digital Imaging and Communication in Medicine (DICOM) Supplement 100 for implementing a color reproduction pipeline and device independent color spaces. Thus, most healthcare enterprises could not check monitor degradation routinely. To ensure color consistency in medical color imaging, monitor color calibration should be introduced. Using simple color calibration device . chromaticity of colors including typical color (Red, Green, Blue, Green and White) are measured as device independent profile connection space value called u'v' before and after calibration. In addition, clinical color images are displayed and visual differences are observed. In color calibration, monitor brightness level has to be set to quite lower value 80 cd/m2 according to sRGB standard. As Maximum brightness of most color monitors available currently for medical use have much higher brightness than 80 cd/m2, it is not seemed to be appropriate to use 80 cd/m2 level for calibration. Therefore, we propose that new brightness standard should be introduced while maintaining the color representation in clinical use. To evaluate effects of brightness to chromaticity experimentally, brightness level is changed in two monitors from 80 to 270cd/m2 and chromaticity value are compared with each brightness levels. As a result, there are no significant differences in chromaticity diagram when brightness levels are changed. In conclusion, chromaticity is close to theoretical value after color calibration. Moreover, chromaticity isn't moved when brightness is changed. The results indicate optimized reference brightness level for clinical use could be set at high brightness in current monitors .

  18. Coherent control with optical pulses for deterministic spin-photon entanglement

    NASA Astrophysics Data System (ADS)

    Truex, Katherine; Webster, L. A.; Duan, L.-M.; Sham, L. J.; Steel, D. G.

    2013-11-01

    We present a procedure for the optical coherent control of quantum bits within a quantum dot spin-exciton system, as a preliminary step to implementing a proposal by Yao, Liu, and Sham [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.95.030504 95, 030504 (2005)] for deterministic spin-photon entanglement. The experiment proposed here utilizes a series of picosecond optical pulses from a single laser to coherently control a single self-assembled quantum dot in a magnetic field, creating the precursor state in 25 ps with a predicted fidelity of 0.991. If allowed to decay in an appropriate cavity, the ideal precursor superposition state would create maximum spin-photon entanglement. Numerical simulations using values typical of InAs quantum dots give a predicted entropy of entanglement of 0.929, largely limited by radiative decay and electron spin flips.

  19. Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation

    NASA Astrophysics Data System (ADS)

    Nasiri-Avanaki, M. R.; Aber, Ahmed; Hojjatoleslami, S. A.; Sira, Mano; Schofield, John B.; Jones, Carole; Podoleanu, A. Gh.

    2012-03-01

    Basal cell carcinoma (BCC) is the most common form of skin cancer. To improve the diagnostic accuracy, additional non-invasive methods of making a preliminary diagnosis have been sought. We have implemented an En-Face optical coherence tomography (OCT) for this study in which the dynamic focus was integrated into it. With the dynamic focus scheme, the coherence gate moves synchronously with the peak of confocal gate determined by the confocal interface optics. The transversal resolution is then conserved throughout the depth range and an enhanced signal is returned from all depths. The Basal Cell Carcinoma specimens were obtained from the eyelid a patient. The specimens under went analysis by DF-OCT imaging. We searched for remarkable features that were visualized by OCT and compared these findings with features presented in the histology slices.

  20. Single-shot coherent diffraction imaging of microbunched relativistic electron beams for free-electron laser applications.

    PubMed

    Marinelli, A; Dunning, M; Weathersby, S; Hemsing, E; Xiang, D; Andonian, G; O'Shea, F; Miao, Jianwei; Hast, C; Rosenzweig, J B

    2013-03-01

    With the advent of coherent x rays provided by the x-ray free-electron laser (FEL), strong interest has been kindled in sophisticated diffraction imaging techniques. In this Letter, we exploit such techniques for the diagnosis of the density distribution of the intense electron beams typically utilized in an x-ray FEL itself. We have implemented this method by analyzing the far-field coherent transition radiation emitted by an inverse-FEL microbunched electron beam. This analysis utilizes an oversampling phase retrieval method on the transition radiation angular spectrum to reconstruct the transverse spatial distribution of the electron beam. This application of diffraction imaging represents a significant advance in electron beam physics, having critical applications to the diagnosis of high-brightness beams, as well as the collective microbunching instabilities afflicting these systems.

  1. Using pixel intensity as a self-regulating threshold for deterministic image sampling in Milano Retinex: the T-Rex algorithm

    NASA Astrophysics Data System (ADS)

    Lecca, Michela; Modena, Carla Maria; Rizzi, Alessandro

    2018-01-01

    Milano Retinexes are spatial color algorithms, part of the Retinex family, usually employed for image enhancement. They modify the color of each pixel taking into account the surrounding colors and their position, catching in this way the local spatial color distribution relevant to image enhancement. We present T-Rex (from the words threshold and Retinex), an implementation of Milano Retinex, whose main novelty is the use of the pixel intensity as a self-regulating threshold to deterministically sample local color information. The experiments, carried out on real-world pictures, show that T-Rex image enhancement performance are in line with those of the Milano Retinex family: T-Rex increases the brightness, the contrast, and the flatness of the channel distributions of the input image, making more intelligible the content of pictures acquired under difficult light conditions.

  2. Analyzing task-based user study data to determine colormap efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashton, Zoe Charon Maria; Wendelberger, Joanne Roth; Ticknor, Lawrence O.

    2015-07-23

    Domain scientists need colormaps to visualize their data and are especially useful for identifying areas of interest, like in ocean data to identify eddies or characterize currents. However, traditional Rainbow colormap performs poorly for understanding details, because of the small perceptual range. In order to assist domain scientists in recognizing and identifying important details in their data, different colormaps need to be applied to allow higher perceptual definition. Visual artist Francesca Samsel used her understanding of color theory to create new colormaps to improve perception. While domain scientists find the new colormaps to be useful, we implemented a rigorous andmore » quantitative study to determine whether or not the new colormaps have perceptually more colors. Color count data from one of these studies will be analyzed in depth in order to determine whether or not the new colormaps have more perceivable colors and what affects the number of perceivable colors.« less

  3. NASA In Situ Data Needs to Support the Operational Calibration and Validation of Ocean Color Satellite Data Products

    NASA Technical Reports Server (NTRS)

    Werdel, P. Jeremy

    2012-01-01

    Calibrating ocean color satellite instruments and validating their data products requires temporal and spatial abundances of high quality in situ oceanographic data. The Consortium for Ocean Leadership Ocean Observing Initiative (OOl) is currently implementing a distributed array of in-water sensors that could provide a significant contribution to future ocean color activities. This workshop will scope the optimal way to use and possibly supplement the planned OOl infrastructure to maximize its utility and relevance for calibration and validation activities that support existing and planned NASA ocean color missions. Here, I present the current state of the art of NASA validation of ocean color data products, with attention to autonomous time-series (e.g., the AERONET -OC network of above-water radiometers), and outline NASA needs for data quality assurance metrics and adherence to community-vetted data collection protocols

  4. SeaWiFS technical report series. Volume 17: Ocean color in the 21st century. A strategy for a 20-year time series

    NASA Technical Reports Server (NTRS)

    Abbott, Mark R.; Brown, Otis B.; Evans, Robert H.; Gordon, Howard R.; Carder, Kendall L.; Mueller-Karger, Frank E.; Esaias, Wayne E.; Hooker, Stanford B.; Firestone, Elaine R.

    1994-01-01

    Beginning with the upcoming launch of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), there should be almost continuous measurements of ocean color for nearly 20 years if all of the presently planned national and international missions are implemented. This data set will present a unique opportunity to understand the coupling of physical and biological processes in the world ocean. The presence of multiple ocean color sensors will allow the eventual development of an ocean color observing system that is both cost effective and scientifically based. This report discusses the issues involved and makes recommendations intended to ensure the maximum scientific return from this unique set of planned ocean color missions. An executive summary is included with this document which briefly discusses the primary issues and suggested actions to be considered.

  5. Development and implementation of a low cost micro computer system for LANDSAT analysis and geographic data base applications

    NASA Technical Reports Server (NTRS)

    Faust, N.; Jordon, L.

    1981-01-01

    Since the implementation of the GRID and IMGRID computer programs for multivariate spatial analysis in the early 1970's, geographic data analysis subsequently moved from large computers to minicomputers and now to microcomputers with radical reduction in the costs associated with planning analyses. Programs designed to process LANDSAT data to be used as one element in a geographic data base were used once NIMGRID (new IMGRID), a raster oriented geographic information system, was implemented on the microcomputer. Programs for training field selection, supervised and unsupervised classification, and image enhancement were added. Enhancements to the color graphics capabilities of the microsystem allow display of three channels of LANDSAT data in color infrared format. The basic microcomputer hardware needed to perform NIMGRID and most LANDSAT analyses is listed as well as the software available for LANDSAT processing.

  6. Coherent photonic beamformer for a Ka-band phased array antenna receiver implemented in silicon photonic integrated circuit

    NASA Astrophysics Data System (ADS)

    Duarte, V. C.; Peczek, A.; Drummond, M. V.; Nogueira, R. N.; Winzer, G.; Petousi, D.; Zimmermann, L.

    2017-09-01

    The generation of satellite communications with flexible and efficient transmission of radio signals requires a large number of low interfering beams and a maximum exploitation of the available frequency spectrum.

  7. ACUTE ZONAL OCCULT OUTER RETINOPATHY: Structural and Functional Analysis Across the Transition Zone Between Healthy and Diseased Retina.

    PubMed

    Duncker, Tobias; Lee, Winston; Jiang, Fan; Ramachandran, Rithambara; Hood, Donald C; Tsang, Stephen H; Sparrow, Janet R; Greenstein, Vivienne C

    2018-01-01

    To assess structure and function across the transition zone (TZ) between relatively healthy and diseased retina in acute zonal occult outer retinopathy. Six patients (6 eyes; age 22-71 years) with acute zonal occult outer retinopathy were studied. Spectral-domain optical coherence tomography, fundus autofluorescence, near-infrared reflectance, color fundus photography, and fundus perimetry were performed and images were registered to each other. The retinal layers of the spectral-domain optical coherence tomography scans were segmented and the thicknesses of two outer retinal layers, that is, the total receptor and outer segment plus layers, and the retinal nerve fiber layer were measured. All eyes showed a TZ on multimodal imaging. On spectral-domain optical coherence tomography, the TZ was in the nasal retina at varying distances from the fovea. For all eyes, it was associated with loss of the ellipsoid zone band, significant thinning of the two outer retinal layers, and in three eyes with thickening of the retinal nerve fiber layer. On fundus autofluorescence, all eyes had a clearly demarcated peripapillary area of abnormal fundus autofluorescence delimited by a border of high autofluorescence; the latter was associated with loss of the ellipsoid zone band and with a change from relatively normal to markedly decreased or nonrecordable visual sensitivity on fundus perimetry. The results of multimodal imaging clarified the TZ in acute zonal occult outer retinopathy. The TZ was outlined by a distinct high autofluorescence border that correlated with loss of the ellipsoid zone band on spectral-domain optical coherence tomography. However, in fundus areas that seemed healthy on fundus autofluorescence, thinning of the outer retinal layers and thickening of the retinal nerve fiber layer were observed near the TZ. The TZ was also characterized by a decrease in visual sensitivity.

  8. Single-wavelength based rice leaf color analyzer for nitrogen status estimation

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun; Intaravanne, Yuttana

    2014-02-01

    With the need of a tool for efficient nitrogen (N) fertilizer management in the rice field, this paper proposes a low-cost compact single-wavelength based colorimeter that can be used to indicate the specified six color levels of a rice leaf associated with the desired amount of N fertilizer for the rice field. Our key design is in a reflective optical architecture that allows us to investigate the amount of light scattered from only one side of the rice leaf. We also show how we implement this needed rice leaf color analyzer by integrating an off-the-shelf 562-nm wavelength light emitting diode (LED), a silicon photodiode, an 8-bit microcontroller, and a 6×1 LED panel in a compact plastic package. Field test results in rice fields confirm that leaf color levels of 1, 2, 3, 5, and 6 are effectively identified and their corresponding amount of N fertilizer can be determined. For the leaf color level of 4, our single-wavelength based rice leaf color analyzer sometimes indicates a higher color level of 5 whose suggested amount of N fertilizer is equal to that for the leaf color level of 4. Other key features include ease of use and upgradability for different color levels.

  9. 30 CFR 735.21 - Grant reduction and termination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... authorized designee may reduce or terminate the grant. (2) If an agency fails to implement, enforce or... terminate the administration and enforcement grant or cooperative agreement grant. (3) If an agency fails to... against because of race, creed, color, sex, or national origin, and the implementing regulations at 41 CFR...

  10. 30 CFR 735.21 - Grant reduction and termination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... authorized designee may reduce or terminate the grant. (2) If an agency fails to implement, enforce or... terminate the administration and enforcement grant or cooperative agreement grant. (3) If an agency fails to... against because of race, creed, color, sex, or national origin, and the implementing regulations at 41 CFR...

  11. 30 CFR 735.21 - Grant reduction and termination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... authorized designee may reduce or terminate the grant. (2) If an agency fails to implement, enforce or... terminate the administration and enforcement grant or cooperative agreement grant. (3) If an agency fails to... against because of race, creed, color, sex, or national origin, and the implementing regulations at 41 CFR...

  12. 30 CFR 735.21 - Grant reduction and termination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... authorized designee may reduce or terminate the grant. (2) If an agency fails to implement, enforce or... terminate the administration and enforcement grant or cooperative agreement grant. (3) If an agency fails to... against because of race, creed, color, sex, or national origin, and the implementing regulations at 41 CFR...

  13. 30 CFR 735.21 - Grant reduction and termination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... authorized designee may reduce or terminate the grant. (2) If an agency fails to implement, enforce or... terminate the administration and enforcement grant or cooperative agreement grant. (3) If an agency fails to... against because of race, creed, color, sex, or national origin, and the implementing regulations at 41 CFR...

  14. Mass and tracer transport within oceanic Lagrangian coherent vortices as diagnosed in a global mesoscale eddying climate model

    NASA Astrophysics Data System (ADS)

    Tarshish, Nathaniel; Abernathey, Ryan; Dufour, Carolina; Frenger, Ivy; Griffies, Stephen

    2017-04-01

    Transient ocean mesoscale fluctuations play a central role in the global climate system, transporting climate relevant tracers such as heat and carbon. In satellite observations and numerical simulations, mesoscale vortices feature prominently as collectively rotating regions that remain visibly coherent. Prior studies on transport from ocean vortices typically rely on Eulerian identification methods, in which vortices are identified by selecting closed contours of Eulerian fields (e.g. sea surface height, or the Okubo-Weiss parameter) that satisfy geometric criteria and anomaly thresholds. In contrast, recent studies employ Lagrangian analysis of virtual particle trajectories initialized within the selected Eulerian contours, revealing significant discrepancies between the advection of the contour's material interior and the evolution of the Eulerian field contour. This work investigates the global mass and tracer transport associated with materially coherent surface ocean vortices. Further, it addresses differences between Eulerian and Lagrangian analyses for the detection of vortices. To do so, we use GFDL's CM2.6 coupled climate model with 5-10km horizontal grid spacing. We identify coherent vortices in CM2.6 by implementing the Rotationally Coherent Lagrangian Vortex (RCLV) framework, which recently emerged from dynamical systems theory. This approach involves the numerical advection of millions of Lagrangian particles and guarantees material coherence by construction. We compute the statistics, spatial distribution, and lifetimes of coherent vortices in addition to calculating the associated mass and tracer transports. We offer compelling evidence that Eulerian vortex methods are poorly suited to answer questions of mass and tracer transport.

  15. Clock and carrier recovery in high-speed coherent optical communication systems

    NASA Astrophysics Data System (ADS)

    Amado, Sofia B.; Ferreira, Ricardo; Costa, Pedro S.; Guiomar, Fernando P.; Ziaie, Somayeh; Teixeira, António L.; Muga, Nelson J.; Pinto, Armando N.

    2014-08-01

    In this paper, the implementations of clock and carrier recovery in digital domain are analyzed. Hardware implementation details, resources estimation and real-time results are presented. Analog-to-Digital Converters (ADC), operating at 1.25Gsa/s, and a Virtex-6 Field-Programmable Gate Array (FPGA), have been used, allowing the implementation of a real-time Quadrature Phase Shift Keying (QPSK) system operating at 1.25Gb/s. The real-time mode operation is successfully demonstrated over 80 km of Standard Single Mode Fiber (SSMF).

  16. AN OSCILLATOR CONFIGURATION FOR FULL REALIZATION OF HARD X-RAY FREE ELECTRON LASER*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K.-J.; Kolodziej, T.; Lindberg, R. R.

    2017-06-01

    An x-ray free electron laser oscillator (XFELO) is feasible by employing an X-ray cavity with Bragg mirrors such as diamond crystals. An XFELO at the 5th harmonic frequency may be implemented at the LCLS II using its 4 GeV superconducting linac, producing stable, fully coherent, high-spectral-purity hard x-rays. In addition, its output can be a coherent seed to the LCLS amplifier for stable, high-power, femto-second x-ray pulses. We summarize the recent progress in various R&D efforts addressing critical issues for realizing an XFELO at LCLS II.

  17. Detecting apoptosis using dynamic light scattering with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Farhat, Golnaz; Mariampillai, Adrian; Yang, Victor X. D.; Czarnota, Gregory J.; Kolios, Michael C.

    2011-07-01

    A dynamic light scattering technique is implemented using optical coherence tomography (OCT) to measure the change in intracellular motion as cells undergo apoptosis. Acute myeloid leukemia cells were treated with cisplatin and imaged at a frame rate of 166 Hz using a 1300 nm swept-source OCT system at various times over a period of 48 h. Time correlation analysis of the speckle intensities indicated a significant increase in intracellular motion 24 h after treatment. This rise in intracellular motion correlated with histological findings of irregularly shaped and fragmented cells indicative of cell membrane blebbing and fragmentation.

  18. Mueller matrix polarimetry on a Young's double-slit experiment analog.

    PubMed

    Arteaga, Oriol; Ossikovski, Razvigor; Kuntman, Ertan; Kuntman, Mehmet A; Canillas, Adolf; Garcia-Caurel, Enric

    2017-10-01

    In this Letter we describe an experiment in which coherent light is sent through a calcite crystal that separates the photons by their polarization. The two beams are then let to superpose, and this recombined beam is used to measure the Mueller matrix of the system. Results are interpreted according to our recent formalism of coherent superposition in material media. This is the first experimental implementation of a Young's experiment with complete polarimetry, and it is demonstrated that our method can be used for the experimental synthesis of optical devices with on-demand optical properties.

  19. Equalization of nonlinear transmission impairments by maximum-likelihood-sequence estimation in digital coherent receivers.

    PubMed

    Khairuzzaman, Md; Zhang, Chao; Igarashi, Koji; Katoh, Kazuhiro; Kikuchi, Kazuro

    2010-03-01

    We describe a successful introduction of maximum-likelihood-sequence estimation (MLSE) into digital coherent receivers together with finite-impulse response (FIR) filters in order to equalize both linear and nonlinear fiber impairments. The MLSE equalizer based on the Viterbi algorithm is implemented in the offline digital signal processing (DSP) core. We transmit 20-Gbit/s quadrature phase-shift keying (QPSK) signals through a 200-km-long standard single-mode fiber. The bit-error rate performance shows that the MLSE equalizer outperforms the conventional adaptive FIR filter, especially when nonlinear impairments are predominant.

  20. Invited Article: Progress in coherent lithography using table-top extreme ultraviolet lasers

    NASA Astrophysics Data System (ADS)

    Li, W.; Urbanski, L.; Marconi, M. C.

    2015-12-01

    Compact (table top) lasers emitting at wavelengths below 50 nm had expanded the spectrum of applications in the extreme ultraviolet (EUV). Among them, the high-flux, highly coherent laser sources enabled lithographic approaches with distinctive characteristics. In this review, we will describe the implementation of a compact EUV lithography system capable of printing features with sub-50 nm resolution using Talbot imaging. This compact system is capable of producing consistent defect-free samples in a reliable and effective manner. Examples of different patterns and structures fabricated with this method will be presented.

Top