Living Color Frame System: PC graphics tool for data visualization
NASA Technical Reports Server (NTRS)
Truong, Long V.
1993-01-01
Living Color Frame System (LCFS) is a personal computer software tool for generating real-time graphics applications. It is highly applicable for a wide range of data visualization in virtual environment applications. Engineers often use computer graphics to enhance the interpretation of data under observation. These graphics become more complicated when 'run time' animations are required, such as found in many typical modern artificial intelligence and expert systems. Living Color Frame System solves many of these real-time graphics problems.
NASA Technical Reports Server (NTRS)
Anderson, B. H.; Putt, C. W.; Giamati, C. C.
1981-01-01
Color coding techniques used in the processing of remote sensing imagery were adapted and applied to the fluid dynamics problems associated with turbofan mixer nozzles. The computer generated color graphics were found to be useful in reconstructing the measured flow field from low resolution experimental data to give more physical meaning to this information and in scanning and interpreting the large volume of computer generated data from the three dimensional viscous computer code used in the analysis.
Laserprinter applications in a medical graphics department.
Lynch, P J
1987-01-01
Our experience with the Apple Macintosh and LaserWriter equipment has convinced us that lasergraphics holds much current and future promise in the creation of line graphics and typography for the biomedical community. Although we continue to use other computer graphics equipment to produce color slides and an occasional pen-plotter graphic, the most rapidly growing segment of our graphics workload is in material well-suited to production on the Macintosh/LaserWriter system. At present our goal is to integrate all of our computer graphics production (color slides, video paint graphics and monochrome print graphics) into a single Macintosh-based system within the next two years. The software and hardware currently available are capable of producing a wide range of science graphics very quickly and inexpensively. The cost-effectiveness, versatility and relatively low initial investment required to install this equipment make it an attractive alternative for cost-recovery departments just entering the field of computer graphics.
NASA Technical Reports Server (NTRS)
Truong, L. V.
1994-01-01
Computer graphics are often applied for better understanding and interpretation of data under observation. These graphics become more complicated when animation is required during "run-time", as found in many typical modern artificial intelligence and expert systems. Living Color Frame Maker is a solution to many of these real-time graphics problems. Living Color Frame Maker (LCFM) is a graphics generation and management tool for IBM or IBM compatible personal computers. To eliminate graphics programming, the graphic designer can use LCFM to generate computer graphics frames. The graphical frames are then saved as text files, in a readable and disclosed format, which can be easily accessed and manipulated by user programs for a wide range of "real-time" visual information applications. For example, LCFM can be implemented in a frame-based expert system for visual aids in management of systems. For monitoring, diagnosis, and/or controlling purposes, circuit or systems diagrams can be brought to "life" by using designated video colors and intensities to symbolize the status of hardware components (via real-time feedback from sensors). Thus status of the system itself can be displayed. The Living Color Frame Maker is user friendly with graphical interfaces, and provides on-line help instructions. All options are executed using mouse commands and are displayed on a single menu for fast and easy operation. LCFM is written in C++ using the Borland C++ 2.0 compiler for IBM PC series computers and compatible computers running MS-DOS. The program requires a mouse and an EGA/VGA display. A minimum of 77K of RAM is also required for execution. The documentation is provided in electronic form on the distribution medium in WordPerfect format. A sample MS-DOS executable is provided on the distribution medium. The standard distribution medium for this program is one 5.25 inch 360K MS-DOS format diskette. The contents of the diskette are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. The Living Color Frame Maker tool was developed in 1992.
NASA Astrophysics Data System (ADS)
Testan, Peter R.
1987-04-01
A number of Color Hard Copy (CHC) market drivers are currently indicating strong growth in the use of CHC technologies for the business graphics marketplace. These market drivers relate to product, software, color monitors and color copiers. The use of color in business graphics allows more information to be relayed than is normally the case in a monochrome format. The communicative powers of full-color computer generated output in the business graphics application area will continue to induce end users to desire and require color in their future applications. A number of color hard copy technologies will be utilized in the presentation graphics arena. Thermal transfer, ink jet, photographic and electrophotographic technologies are all expected to be utilized in the business graphics presentation application area in the future. Since the end of 1984, the availability of color application software packages has grown significantly. Sales revenue generated by business graphics software is expected to grow at a compound annual growth rate of just over 40 percent to 1990. Increased availability of packages to allow the integration of text and graphics is expected. Currently, the latest versions of page description languages such as Postscript, Interpress and DDL all support color output. The use of color monitors will also drive the demand for color hard copy in the business graphics market place. The availability of higher resolution screens is allowing color monitors to be easily used for both text and graphics applications in the office environment. During 1987, the sales of color monitors are expected to surpass the sales of monochrome monitors. Another major color hard copy market driver will be the color copier. In order to take advantage of the communications power of computer generated color output, multiple copies are required for distribution. Product introductions of a new generation of color copiers is now underway with additional introductions expected during 1987. The color hard copy market continues to be in a state of constant change, typical of any immature market. However, much of the change is positive. During 1985, the color hard copy market generated 1.2 billion. By 1990, total market revenue is expected to exceed 5.5 billion. The business graphics CHC application area is expected to grow at a compound annual growth rate greater than 40 percent to 1990.
Graphics and Flow Visualization of Computer Generated Flow Fields
NASA Technical Reports Server (NTRS)
Kathong, M.; Tiwari, S. N.
1987-01-01
Flow field variables are visualized using color representations described on surfaces that are interpolated from computational grids and transformed to digital images. Techniques for displaying two and three dimensional flow field solutions are addressed. The transformations and the use of an interactive graphics program for CFD flow field solutions, called PLOT3D, which runs on the color graphics IRIS workstation are described. An overview of the IRIS workstation is also described.
Graphics-Printing Program For The HP Paintjet Printer
NASA Technical Reports Server (NTRS)
Atkins, Victor R.
1993-01-01
IMPRINT utility computer program developed to print graphics specified in raster files by use of Hewlett-Packard Paintjet(TM) color printer. Reads bit-mapped images from files on UNIX-based graphics workstation and prints out three different types of images: wire-frame images, solid-color images, and gray-scale images. Wire-frame images are in continuous tone or, in case of low resolution, in random gray scale. In case of color images, IMPRINT also prints by use of default palette of solid colors. Written in C language.
Color vision testing with a computer graphics system: preliminary results.
Arden, G; Gündüz, K; Perry, S
1988-06-01
We report a method for computer enhancement of color vision tests. In our graphics system 256 colors are selected from a much larger range and displayed on a screen divided into 768 x 288 pixels. Eight-bit digital-to-analogue converters drive a high quality monitor with separate inputs to the red, green, and blue amplifiers and calibrated gun chromaticities. The graphics are controlled by a PASCAL program written for a personal computer, which calculates the values of the red, green, and blue signals and specifies them in Commité Internationale d'Eclairage X, Y, and Z fundamentals, so changes in chrominance occur without changes in luminance. The system for measuring color contrast thresholds with gratings is more than adequate in normal observers. In patients with mild retinal damage in whom other tests of visual function are normal, this method of testing color vision shows specific increases in contrast thresholds along tritan color-confusion lines. By the time the Hardy-Rand-Rittler and Farnsworth-Munsell 100-hue tests disclose abnormalities, gross defects in color contrast threshold can be seen with our system.
Ink Jet For Business Graphic Application
NASA Astrophysics Data System (ADS)
Hooper, Dana H.
1987-04-01
This talk covers the use of Computer generated color output in the preparation of professional, memorable presentations. The focus is on this application and today's business graphic marketplace. To provide a background, on overview of the factors and trends influencing the market for color hard copy output is essential. The availability of lower cost computing technology, improved graphic software and user interfaces and the availability of color copiers is combining with the latest generation of color ink jet printers to cause a strong growth in the use of color hardcopy devices in the business graphics marketplace. The market is expected to grow at a compound annual growth rate in excess of 25% and reach a level of 5 Billion by 1990. Color lasography and ink jet technology based products are expected to increase share significantly primarily at the expense of pen plotters. Essential to the above mentioned growth is the latest generation of products. The Xerox 4020 Color Ink Jet Printer embodies the latest ink jet technology and is a good example of this new generation of products. The printer brings highly reliable color to a broad range of business users. The 4020 is driven by over 50 software packages allowing users compatibility and supporting a variety of applications. The 4020 is easy to operate and maintain and capable of producing excellent hardcopy and transparencies at an attractive price point. Several specific applications areas were discussed. Images were typically created on an IBM PC or compatible with a graphics application package and output to the Xerox 4020 Color Ink Jet Printer. Bar charts, line graphs, pie charts, integrated text and graphics, reports and maps were displayed with a brief description. Additionally, the use of color in brainscanning to discern and communicate information and in computer generated Art demonstrate the wide variety of potential applications. Images may be output to paper or to transparency for overhead presentation. The future of color in the business graphics market looks bright and will continue to be strongly influenced by future product introductions.
Color graphics, interactive processing, and the supercomputer
NASA Technical Reports Server (NTRS)
Smith-Taylor, Rudeen
1987-01-01
The development of a common graphics environment for the NASA Langley Research Center user community and the integration of a supercomputer into this environment is examined. The initial computer hardware, the software graphics packages, and their configurations are described. The addition of improved computer graphics capability to the supercomputer, and the utilization of the graphic software and hardware are discussed. Consideration is given to the interactive processing system which supports the computer in an interactive debugging, processing, and graphics environment.
Program Helps Generate And Manage Graphics
NASA Technical Reports Server (NTRS)
Truong, L. V.
1994-01-01
Living Color Frame Maker (LCFM) computer program generates computer-graphics frames. Graphical frames saved as text files, in readable and disclosed format, easily retrieved and manipulated by user programs for wide range of real-time visual information applications. LCFM implemented in frame-based expert system for visual aids in management of systems. Monitoring, diagnosis, and/or control, diagrams of circuits or systems brought to "life" by use of designated video colors and intensities to symbolize status of hardware components (via real-time feedback from sensors). Status of systems can be displayed. Written in C++ using Borland C++ 2.0 compiler for IBM PC-series computers and compatible computers running MS-DOS.
Graphical Man/Machine Communications
Progress is reported concerning the use of computer controlled graphical displays in the areas of radiaton diffusion and hydrodynamics, general...ventricular dynamics. Progress is continuing on the use of computer graphics in architecture. Some progress in halftone graphics is reported with no basic...developments presented. Colored halftone perspective pictures are being used to represent multivariable situations. Nonlinear waveform processing is
VTGRAPH - GRAPHIC SOFTWARE TOOL FOR VT TERMINALS
NASA Technical Reports Server (NTRS)
Wang, C.
1994-01-01
VTGRAPH is a graphics software tool for DEC/VT or VT compatible terminals which are widely used by government and industry. It is a FORTRAN or C-language callable library designed to allow the user to deal with many computer environments which use VT terminals for window management and graphic systems. It also provides a PLOT10-like package plus color or shade capability for VT240, VT241, and VT300 terminals. The program is transportable to many different computers which use VT terminals. With this graphics package, the user can easily design more friendly user interface programs and design PLOT10 programs on VT terminals with different computer systems. VTGRAPH was developed using the ReGis Graphics set which provides a full range of graphics capabilities. The basic VTGRAPH capabilities are as follows: window management, PLOT10 compatible drawing, generic program routines for two and three dimensional plotting, and color graphics or shaded graphics capability. The program was developed in VAX FORTRAN in 1988. VTGRAPH requires a ReGis graphics set terminal and a FORTRAN compiler. The program has been run on a DEC MicroVAX 3600 series computer operating under VMS 5.0, and has a virtual memory requirement of 5KB.
Volumetric graphics in liquid using holographic femtosecond laser pulse excitations
NASA Astrophysics Data System (ADS)
Kumagai, Kota; Hayasaki, Yoshio
2017-06-01
Much attention has been paid to the development of three-dimensional volumetric displays in the fields of optics and computer graphics, and it is a dream of we display researchers. However, full-color volumetric displays are challenging because many voxels with different colors have to be formed to render volumetric graphics in real three-dimensional space. Here, we show a new volumetric display in which microbubble voxels are three-dimensionally generated in a liquid by focused femtosecond laser pulses. Use of a high-viscosity liquid, which is the key idea of this system, slows down the movement of the microbubbles, and as a result, volumetric graphics can be displayed. This "volumetric bubble display" has a wide viewing angle and simple refresh and requires no addressing wires because it involves optical access to transparent liquid and achieves full-color graphics composed on light-scattering voxels controlled by illumination light sources. In addition, a bursting of bubble graphics system using an ultrasonic vibrator also has been demonstrated. This technology will open up a wide range of applications in three-dimensional displays, augmented reality and computer graphics.
Mesoscale and severe storms (Mass) data management and analysis system
NASA Technical Reports Server (NTRS)
Hickey, J. S.; Karitani, S.; Dickerson, M.
1984-01-01
Progress on the Mesoscale and Severe Storms (MASS) data management and analysis system is described. An interactive atmospheric data base management software package to convert four types of data (Sounding, Single Level, Grid, Image) into standard random access formats is implemented and integrated with the MASS AVE80 Series general purpose plotting and graphics display data analysis software package. An interactive analysis and display graphics software package (AVE80) to analyze large volumes of conventional and satellite derived meteorological data is enhanced to provide imaging/color graphics display utilizing color video hardware integrated into the MASS computer system. Local and remote smart-terminal capability is provided by installing APPLE III computer systems within individual scientist offices and integrated with the MASS system, thus providing color video display, graphics, and characters display of the four data types.
Procurement specification color graphic camera system
NASA Technical Reports Server (NTRS)
Prow, G. E.
1980-01-01
The performance and design requirements for a Color Graphic Camera System are presented. The system is a functional part of the Earth Observation Department Laboratory System (EODLS) and will be interfaced with Image Analysis Stations. It will convert the output of a raster scan computer color terminal into permanent, high resolution photographic prints and transparencies. Images usually displayed will be remotely sensed LANDSAT imager scenes.
The End of the Rainbow? Color Schemes for Improved Data Graphics
NASA Astrophysics Data System (ADS)
Light, Adam; Bartlein, Patrick J.
2004-10-01
Modern computer displays and printers enable the widespread use of color in scientific communication, but the expertise for designing effective graphics has not kept pace with the technology for producing them. Historically, even the most prestigious publications have tolerated high defect rates in figures and illustrations, and technological advances that make creating and reproducing graphics easier do not appear to have decreased the frequency of errors. Flawed graphics consequently beget more flawed graphics as authors emulate published examples. Color has the potential to enhance communication, but design mistakes can result in color figures that are less effective than gray scale displays of the same data. Empirical research on human subjects can build a fundamental understanding of visual perception and scientific methods can be used to evaluate existing designs, but creating effective data graphics is a design task and not fundamentally a scientific pursuit. Like writing well, creating good data graphics requires a combination of formal knowledge and artistic sensibility tempered by experience: a combination of ``substance, statistics, and design''.
Writing a Scientific Paper II. Communication by Graphics
NASA Astrophysics Data System (ADS)
Sterken, C.
2011-07-01
This paper discusses facets of visual communication by way of images, graphs, diagrams and tabular material. Design types and elements of graphical images are presented, along with advice on how to create graphs, and on how to read graphical illustrations. This is done in astronomical context, using case studies and historical examples of good and bad graphics. Design types of graphs (scatter and vector plots, histograms, pie charts, ternary diagrams and three-dimensional surface graphs) are explicated, as well as the major components of graphical images (axes, legends, textual parts, etc.). The basic features of computer graphics (image resolution, vector images, bitmaps, graphical file formats and file conversions) are explained, as well as concepts of color models and of color spaces (with emphasis on aspects of readability of color graphics by viewers suffering from color-vision deficiencies). Special attention is given to the verity of graphical content, and to misrepresentations and errors in graphics and associated basic statistics. Dangers of dot joining and curve fitting are discussed, with emphasis on the perception of linearity, the issue of nonsense correlations, and the handling of outliers. Finally, the distinction between data, fits and models is illustrated.
Glossiness of Colored Papers based on Computer Graphics Model and Its Measuring Method
NASA Astrophysics Data System (ADS)
Aida, Teizo
In the case of colored papers, the color of surface effects strongly upon the gloss of its paper. The new glossiness for such a colored paper is suggested in this paper. First, using the Achromatic and Chromatic Munsell colored chips, the author obtained experimental equation which represents the relation between lightness V ( or V and saturation C ) and psychological glossiness Gph of these chips. Then, the author defined a new glossiness G for the colored papers, based on the above mentioned experimental equations Gph and Cook-Torrance's reflection model which are widely used in the filed of Computer Graphics. This new glossiness is shown to be nearly proportional to the psychological glossiness Gph. The measuring system for the new glossiness G is furthermore descrived. The measuring time for one specimen is within 1 minute.
Computer Graphics in Research: Some State -of-the-Art Systems
ERIC Educational Resources Information Center
Reddy, R.; And Others
1975-01-01
A description is given of the structure and functional characteristics of three types of interactive computer graphic systems, developed by the Department of Computer Science at Carnegie-Mellon; a high-speed programmable display capable of displaying 50,000 short vectors, flicker free; a shaded-color video display for the display of gray-scale…
Program Aids Visualization Of Data
NASA Technical Reports Server (NTRS)
Truong, L. V.
1995-01-01
Living Color Frame System (LCFS) computer program developed to solve some problems that arise in connection with generation of real-time graphical displays of numerical data and of statuses of systems. Need for program like LCFS arises because computer graphics often applied for better understanding and interpretation of data under observation and these graphics become more complicated when animation required during run time. Eliminates need for custom graphical-display software for application programs. Written in Turbo C++.
Designer: A Knowledge-Based Graphic Design Assistant.
ERIC Educational Resources Information Center
Weitzman, Louis
This report describes Designer, an interactive tool for assisting with the design of two-dimensional graphic interfaces for instructional systems. The system, which consists of a color graphics interface to a mathematical simulation, provides enhancements to the Graphics Editor component of Steamer (a computer-based training system designed to aid…
CHARGE Image Generator: Theory of Operation and Author Language Support. Technical Report 75-3.
ERIC Educational Resources Information Center
Gunwaldsen, Roger L.
The image generator function and author language software support for the CHARGE (Color Halftone Area Graphics Environment) Interactive Graphics System are described. Designed initially for use in computer-assisted instruction (CAI) systems, the CHARGE Interactive Graphics System can provide graphic displays for various applications including…
Graphics Software For VT Terminals
NASA Technical Reports Server (NTRS)
Wang, Caroline
1991-01-01
VTGRAPH graphics software tool for DEC/VT computer terminal or terminals compatible with it, widely used by government and industry. Callable in FORTRAN or C language, library program enabling user to cope with many computer environments in which VT terminals used for window management and graphic systems. Provides PLOT10-like package plus color or shade capability for VT240, VT241, and VT300 terminals. User can easily design more-friendly user-interface programs and design PLOT10 programs on VT terminals with different computer systems. Requires ReGis graphics set terminal and FORTRAN compiler.
New space sensor and mesoscale data analysis
NASA Technical Reports Server (NTRS)
Hickey, John S.
1987-01-01
The developed Earth Science and Application Division (ESAD) system/software provides the research scientist with the following capabilities: an extensive data base management capibility to convert various experiment data types into a standard format; and interactive analysis and display package (AVE80); an interactive imaging/color graphics capability utilizing the Apple III and IBM PC workstations integrated into the ESAD computer system; and local and remote smart-terminal capability which provides color video, graphics, and Laserjet output. Recommendations for updating and enhancing the performance of the ESAD computer system are listed.
Effective color design for displays
NASA Astrophysics Data System (ADS)
MacDonald, Lindsay W.
2002-06-01
Visual communication is a key aspect of human-computer interaction, which contributes to the satisfaction of user and application needs. For effective design of presentations on computer displays, color should be used in conjunction with the other visual variables. The general needs of graphic user interfaces are discussed, followed by five specific tasks with differing criteria for display color specification - advertising, text, information, visualization and imaging.
Space Spurred Computer Graphics
NASA Technical Reports Server (NTRS)
1983-01-01
Dicomed Corporation was asked by NASA in the early 1970s to develop processing capabilities for recording images sent from Mars by Viking spacecraft. The company produced a film recorder which increased the intensity levels and the capability for color recording. This development led to a strong technology base resulting in sophisticated computer graphics equipment. Dicomed systems are used to record CAD (computer aided design) and CAM (computer aided manufacturing) equipment, to update maps and produce computer generated animation.
Graphic artist in computerland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolberg, K.M.
1983-01-01
The field of computer graphics is rapidly opening up to the graphic artist. It is not necessary to be a programming expert to enter this fascinating world. The capabilities of the medium are astounding: neon and metallic effects, translucent plastic and clear glass effects, sensitive 3-D shadings, limitless textures, and above all color. As with any medium, computer graphics has its advantages, such as speed, ease of form manipulation, and a variety of type fonts and alphabets. It also has its limitations, such as data input time, final output turnaround time, and not necessarily being the right medium for themore » job at hand. And finally, it is the time- and cost-saving characteristics of computer-generated visuals, opposed to original artwork, that make computer graphics a viable alternative. This paper focuses on parts of the computer graphics system in use at the Los Alamos National Laboratory to provide specific examples.« less
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
2017-01-01
A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.
Computers Transform an Industry.
ERIC Educational Resources Information Center
Simich, Jack
1982-01-01
Describes the use of computer technology in the graphics communication industry. Areas that are examined include typesetting, color scanners, communications satellites, page make-up systems, and the business office. (CT)
Color engineering in the age of digital convergence
NASA Astrophysics Data System (ADS)
MacDonald, Lindsay W.
1998-09-01
Digital color imaging has developed over the past twenty years from specialized scientific applications into the mainstream of computing. In addition to the phenomenal growth of computer processing power and storage capacity, great advances have been made in the capabilities and cost-effectiveness of color imaging peripherals. The majority of imaging applications, including the graphic arts, video and film have made the transition from analogue to digital production methods. Digital convergence of computing, communications and television now heralds new possibilities for multimedia publishing and mobile lifestyles. Color engineering, the application of color science to the design of imaging products, is an emerging discipline that poses exciting challenges to the international color imaging community for training, research and standards.
Enhancement of the Shared Graphics Workspace.
1987-12-31
participants to share videodisc images and computer graphics displayed in color and text and facsimile information displayed in black on amber. They...could annotate the information in up to five * colors and print the annotated version at both sites, using a standard fax machine. The SGWS also used a fax...system to display a document, whether text or photo, the camera scans the document, digitizes the data, and sends it via direct memory access (DMA) to
NASA Technical Reports Server (NTRS)
Panthaki, Malcolm J.
1987-01-01
Three general tasks on general-purpose, interactive color graphics postprocessing for three-dimensional computational mechanics were accomplished. First, the existing program (POSTPRO3D) is ported to a high-resolution device. In the course of this transfer, numerous enhancements are implemented in the program. The performance of the hardware was evaluated from the point of view of engineering postprocessing, and the characteristics of future hardware were discussed. Second, interactive graphical tools implemented to facilitate qualitative mesh evaluation from a single analysis. The literature was surveyed and a bibliography compiled. Qualitative mesh sensors were examined, and the use of two-dimensional plots of unaveraged responses on the surface of three-dimensional continua was emphasized in an interactive color raster graphics environment. Finally, a postprocessing environment was designed for state-of-the-art workstation technology. Modularity, personalization of the environment, integration of the engineering design processes, and the development and use of high-level graphics tools are some of the features of the intended environment.
Integration of rocket turbine design and analysis through computer graphics
NASA Technical Reports Server (NTRS)
Hsu, Wayne; Boynton, Jim
1988-01-01
An interactive approach with engineering computer graphics is used to integrate the design and analysis processes of a rocket engine turbine into a progressive and iterative design procedure. The processes are interconnected through pre- and postprocessors. The graphics are used to generate the blade profiles, their stacking, finite element generation, and analysis presentation through color graphics. Steps of the design process discussed include pitch-line design, axisymmetric hub-to-tip meridional design, and quasi-three-dimensional analysis. The viscous two- and three-dimensional analysis codes are executed after acceptable designs are achieved and estimates of initial losses are confirmed.
General-Purpose Software For Computer Graphics
NASA Technical Reports Server (NTRS)
Rogers, Joseph E.
1992-01-01
NASA Device Independent Graphics Library (NASADIG) is general-purpose computer-graphics package for computer-based engineering and management applications which gives opportunity to translate data into effective graphical displays for presentation. Features include two- and three-dimensional plotting, spline and polynomial interpolation, control of blanking of areas, multiple log and/or linear axes, control of legends and text, control of thicknesses of curves, and multiple text fonts. Included are subroutines for definition of areas and axes of plots; setup and display of text; blanking of areas; setup of style, interpolation, and plotting of lines; control of patterns and of shading of colors; control of legends, blocks of text, and characters; initialization of devices; and setting of mixed alphabets. Written in FORTRAN 77.
ERIC Educational Resources Information Center
Garmon, Linda
1981-01-01
Describes the features of various computer chemistry programs. Utilization of computer graphics, color, digital imaging, and other innovations are discussed in programs including those which aid in the identification of unknowns, predict whether chemical reactions are feasible, and predict the biological activity of xenobiotic compounds. (CS)
NASA Technical Reports Server (NTRS)
Edwards, C. L. W.; Meissner, F. T.; Hall, J. B.
1979-01-01
Color computer graphics techniques were investigated as a means of rapidly scanning and interpreting large sets of transient heating data. The data presented were generated to support the conceptual design of a heat-sink thermal protection system (TPS) for a hypersonic research airplane. Color-coded vector and raster displays of the numerical geometry used in the heating calculations were employed to analyze skin thicknesses and surface temperatures of the heat-sink TPS under a variety of trajectory flight profiles. Both vector and raster displays proved to be effective means for rapidly identifying heat-sink mass concentrations, regions of high heating, and potentially adverse thermal gradients. The color-coded (raster) surface displays are a very efficient means for displaying surface-temperature and heating histories, and thereby the more stringent design requirements can quickly be identified. The related hardware and software developments required to implement both the vector and the raster displays for this application are also discussed.
UltraColor: a new gamut-mapping strategy
NASA Astrophysics Data System (ADS)
Spaulding, Kevin E.; Ellson, Richard N.; Sullivan, James R.
1995-04-01
Many color calibration and enhancement strategies exist for digital systems. Typically, these approaches are optimized to work well with one class of images, but may produce unsatisfactory results for other types of images. For example, a colorimetric strategy may work well when printing photographic scenes, but may give inferior results for business graphic images because of device color gamut limitations. On the other hand, a color enhancement strategy that works well for business graphics images may distort the color reproduction of skintones and other important photographic colors. This paper describes a method for specifying different color mapping strategies in various regions of color space, while providing a mechanism for smooth transitions between the different regions. The method involves a two step process: (1) constraints are applied so some subset of the points in the input color space explicitly specifying the color mapping function; (2) the color mapping for the remainder of the color values is then determined using an interpolation algorithm that preserves continuity and smoothness. The interpolation algorithm that was developed is based on a computer graphics morphing technique. This method was used to develop the UltraColor gamut mapping strategy, which combines a colorimetric mapping for colors with low saturation levels, with a color enhancement technique for colors with high saturation levels. The result is a single color transformation that produces superior quality for all classes of imagery. UltraColor has been incorporated in several models of Kodak printers including the Kodak ColorEase PS and the Kodak XLS 8600 PS thermal dye sublimation printers.
NLM microcomputer-based tutorials (for microcomputers). Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, M.
1990-04-01
The package consists of TOXLEARN--a microcomputer-based training package for TOXLINE (Toxicology Information Online), CHEMLEARN-a microcomputer-based training package for CHEMLINE (Chemical Information Online), MEDTUTOR--a microcomputer-based training package for MEDLINE (Medical Information Online), and ELHILL LEARN--a microcomputer-based training package for the ELHILL search and retrieval software that supports the above-mentioned databases...Software Description: The programs were developed under PILOTplus using the NLM LEARN Programmer. They run on IBM-PC, XT, AT, PS/2, and fully compatible computers. The programs require 512K RAM memory, one disk drive, and DOS 2.0 or higher. The software supports most monochrome, color graphics, enhanced color graphics, or visual graphics displays.
A computer graphics display technique for the examination of aircraft design data
NASA Technical Reports Server (NTRS)
Talcott, N. A., Jr.
1981-01-01
An interactive computer graphics technique has been developed for quickly sorting and interpreting large amounts of aerodynamic data. It utilizes a graphic representation rather than numbers. The geometry package represents the vehicle as a set of panels. These panels are ordered in groups of ascending values (e.g., equilibrium temperatures). The groups are then displayed successively on a CRT building up to the complete vehicle. A zoom feature allows for displaying only the panels with values between certain limits. The addition of color allows a one-time display thus eliminating the need for a display build up.
The Easy Way to Create Computer Slide Shows.
ERIC Educational Resources Information Center
Anderson, Mary Alice
1995-01-01
Discusses techniques for creating computer slide shows. Topics include memory; format; color use; HyperCard and CD-ROM; font styles and sizes; graphs and graphics; the slide show option; special effects; and tips for effective presentation. (Author/AEF)
Faster, Better, Cheaper: A Decade of PC Progress.
ERIC Educational Resources Information Center
Crawford, Walt
1997-01-01
Reviews the development of personal computers and how computer components have changed in price and value. Highlights include disk drives; keyboards; displays; memory; color graphics; modems; CPU (central processing unit); storage; direct mail vendors; and future possibilities. (LRW)
Designing a Visual Factors-Based Screen Display Interface: The New Role of the Graphic Technologist.
ERIC Educational Resources Information Center
Faiola, Tony; DeBloois, Michael L.
1988-01-01
Discusses the role of the graphic technologist in preparing computer screen displays for interactive videodisc systems, and suggests screen design guidelines. Topics discussed include the grid system; typography; visual factors research; color; course mobility through branching and software menus; and a model of course integration. (22 references)…
Really Large Scale Computer Graphic Projection Using Lasers and Laser Substitutes
NASA Astrophysics Data System (ADS)
Rother, Paul
1989-07-01
This paper reflects on past laser projects to display vector scanned computer graphic images onto very large and irregular surfaces. Since the availability of microprocessors and high powered visible lasers, very large scale computer graphics projection have become a reality. Due to the independence from a focusing lens, lasers easily project onto distant and irregular surfaces and have been used for amusement parks, theatrical performances, concert performances, industrial trade shows and dance clubs. Lasers have been used to project onto mountains, buildings, 360° globes, clouds of smoke and water. These methods have proven successful in installations at: Epcot Theme Park in Florida; Stone Mountain Park in Georgia; 1984 Olympics in Los Angeles; hundreds of Corporate trade shows and thousands of musical performances. Using new ColorRayTM technology, the use of costly and fragile lasers is no longer necessary. Utilizing fiber optic technology, the functionality of lasers can be duplicated for new and exciting projection possibilities. The use of ColorRayTM technology has enjoyed worldwide recognition in conjunction with Pink Floyd and George Michaels' world wide tours.
Shade matching assisted by digital photography and computer software.
Schropp, Lars
2009-04-01
To evaluate the efficacy of digital photographs and graphic computer software for color matching compared to conventional visual matching. The shade of a tab from a shade guide (Vita 3D-Master Guide) placed in a phantom head was matched to a second guide of the same type by nine observers. This was done for twelve selected shade tabs (tests). The shade-matching procedure was performed visually in a simulated clinic environment and with digital photographs, and the time spent for both procedures was recorded. An alternative arrangement of the shade tabs was used in the digital photographs. In addition, a graphic software program was used for color analysis. Hue, chroma, and lightness values of the test tab and all tabs of the second guide were derived from the digital photographs. According to the CIE L*C*h* color system, the color differences between the test tab and tabs of the second guide were calculated. The shade guide tab that deviated least from the test tab was determined to be the match. Shade matching performance by means of graphic software was compared with the two visual methods and tested by Chi-square tests (alpha= 0.05). Eight of twelve test tabs (67%) were matched correctly by the computer software method. This was significantly better (p < 0.02) than the performance of the visual shade matching methods conducted in the simulated clinic (32% correct match) and with photographs (28% correct match). No correlation between time consumption for the visual shade matching methods and frequency of correct match was observed. Shade matching assisted by digital photographs and computer software was significantly more reliable than by conventional visual methods.
Graphics modelling of non-contact thickness measuring robotics work cell
NASA Technical Reports Server (NTRS)
Warren, Charles W.
1990-01-01
A system was developed for measuring, in real time, the thickness of a sprayable insulation during its application. The system was graphically modelled, off-line, using a state-of-the-art graphics workstation and associated software. This model was to contain a 3D color model of a workcell containing a robot and an air bearing turntable. A communication link was established between the graphics workstations and the robot's controller. Sequences of robot motion generated by the computer simulation are transmitted to the robot for execution.
Computer animation of modal and transient vibrations
NASA Technical Reports Server (NTRS)
Lipman, Robert R.
1987-01-01
An interactive computer graphics processor is described that is capable of generating input to animate modal and transient vibrations of finite element models on an interactive graphics system. The results from NASTRAN can be postprocessed such that a three dimensional wire-frame picture, in perspective, of the finite element mesh is drawn on the graphics display. Modal vibrations of any mode shape or transient motions over any range of steps can be animated. The finite element mesh can be color-coded by any component of displacement. Viewing parameters and the rate of vibration of the finite element model can be interactively updated while the structure is vibrating.
Software For Clear-Air Doppler-Radar Display
NASA Technical Reports Server (NTRS)
Johnston, Bruce W.
1990-01-01
System of software developed to present plan-position-indicator scans of clear-air Doppler radar station on color graphical cathode-ray-tube display. Designed to incorporate latest accepted standards for equipment, computer programs, and meteorological data bases. Includes use of Ada programming language, of "Graphical-Kernel-System-like" graphics interface, and of Common Doppler Radar Exchange Format. Features include portability and maintainability. Use of Ada software packages produced number of software modules reused on other related projects.
1987-11-01
assistance to the ATE test technicians by means of computer generated graphics on a 19" display terminal. The TEG presents colorized annotations on ACCA ...perform outstanding acts to meet goals. Savings and goals are auditable from reports, charts, SPC, and Oregon Matrix. COMPUTER-AIDED MANUFACTURING
Automatic Perceptual Color Map Generation for Realistic Volume Visualization
Silverstein, Jonathan C.; Parsad, Nigel M.; Tsirline, Victor
2008-01-01
Advances in computed tomography imaging technology and inexpensive high performance computer graphics hardware are making high-resolution, full color (24-bit) volume visualizations commonplace. However, many of the color maps used in volume rendering provide questionable value in knowledge representation and are non-perceptual thus biasing data analysis or even obscuring information. These drawbacks, coupled with our need for realistic anatomical volume rendering for teaching and surgical planning, has motivated us to explore the auto-generation of color maps that combine natural colorization with the perceptual discriminating capacity of grayscale. As evidenced by the examples shown that have been created by the algorithm described, the merging of perceptually accurate and realistically colorized virtual anatomy appears to insightfully interpret and impartially enhance volume rendered patient data. PMID:18430609
FLEXAN (version 2.0) user's guide
NASA Technical Reports Server (NTRS)
Stallcup, Scott S.
1989-01-01
The FLEXAN (Flexible Animation) computer program, Version 2.0 is described. FLEXAN animates 3-D wireframe structural dynamics on the Evans and Sutherland PS300 graphics workstation with a VAX/VMS host computer. Animation options include: unconstrained vibrational modes, mode time histories (multiple modes), delta time histories (modal and/or nonmodal deformations), color time histories (elements of the structure change colors through time), and rotational time histories (parts of the structure rotate through time). Concurrent color, mode, delta, and rotation, time history animations are supported. FLEXAN does not model structures or calculate the dynamics of structures; it only animates data from other computer programs. FLEXAN was developed to aid in the study of the structural dynamics of spacecraft.
Internet design preferences of patients with cancer.
Chernecky, Cynthia; Macklin, Denise; Walter, Jennifer
2006-07-01
To describe computer experience and preferences for multimedia design. Prospective, descriptive. Physician office and outpatient cancer centers in an urban area in the southeastern United States. Convenience sample of 22 volunteer patients with cancer from four racial groups. A questionnaire on computer experiences was followed by a hands-on computer session with questions regarding preferences for seven interface items. Data termination occurred when sample size was obtained. Design of Internet education site for patients. Variables include preferences, computer, cancer, multimedia, and education. Eighty-two percent had personal computers, 41% used a computer daily, and 95% believed that computers would be a good avenue for learning about cancer care. Preferences included display colors in blue and green hues; colored buttons; easy-to-read text; graphics with a simple design and large, clear pictures; serif font in dark type; light-colored background; and larger photo size in a rectangle shape. Most popular graphic icons as metaphors were 911 for emergency, picture of skull and crossbones for danger, and a picture of a string on an index finger representing reminder. The simple layout most preferred for appearances was one that included text and pictures, read from left to right, and was symmetrical in its placement of pictures and text on the page. Preferences are necessary to maintain interest and support navigation through computer designs to enhance the translation of knowledge to patients. Development of multimedia based on patient preferences will enhance education, learning, and, ultimately, quality patient care.
Shwirl: Meaningful coloring of spectral cube data with volume rendering
NASA Astrophysics Data System (ADS)
Vohl, Dany
2017-04-01
Shwirl visualizes spectral data cubes with meaningful coloring methods. The program has been developed to investigate transfer functions, which combines volumetric elements (or voxels) to set the color, and graphics shaders, functions used to compute several properties of the final image such as color, depth, and/or transparency, as enablers for scientific visualization of astronomical data. The program uses Astropy (ascl:1304.002) to handle FITS files and World Coordinate System, Qt (and PyQt) for the user interface, and VisPy, an object-oriented Python visualization library binding onto OpenGL.
The use of interpractive graphic displays for interpretation of surface design parameters
NASA Technical Reports Server (NTRS)
Talcott, N. A., Jr.
1981-01-01
An interactive computer graphics technique known as the Graphic Display Data method has been developed to provide a convenient means for rapidly interpreting large amounts of surface design data. The display technique should prove valuable in such disciplines as aerodynamic analysis, structural analysis, and experimental data analysis. To demonstrate the system's features, an example is presented of the Graphic Data Display method used as an interpretive tool for radiation equilibrium temperature distributions over the surface of an aerodynamic vehicle. Color graphic displays were also examined as a logical extension of the technique to improve its clarity and to allow the presentation of greater detail in a single display.
Federal High Performance Computing and Communications Program. The Department of Energy Component.
ERIC Educational Resources Information Center
Department of Energy, Washington, DC. Office of Energy Research.
This report, profusely illustrated with color photographs and other graphics, elaborates on the Department of Energy (DOE) research program in High Performance Computing and Communications (HPCC). The DOE is one of seven agency programs within the Federal Research and Development Program working on HPCC. The DOE HPCC program emphasizes research in…
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
2017-01-01
A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liscom, W.L.
This book presents a complete graphic and statistical portrait of the dramatic shifts in global energy flows during the 1970s and the resultant transfer of economic and political power from the industrial nations to the oil-producing states. The information was extracted from government-source documents and compiled in a computer data base. Computer graphics were combined with the data base to produce over 400 full-color graphs. The energy commodities covered are oil, natural gas, coal, nuclear, and conventional electric-power generation. Also included are data on hydroelectric and geothermal power, oil shale, tar sands, and other alternative energy sources. 72 references.
Wargaming and interactive color graphics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bly, S.; Buzzell, C.; Smith, G.
1980-08-04
JANUS is a two-sided interactive color graphic simulation in which human commanders can direct their forces, each trying to accomplish their mission. This competitive synthetic battlefield is used to explore the range of human ingenuity under conditions of incomplete information about enemy strength and deployment. Each player can react to new situations by planning new unit movements, using conventional and nuclear weapons, or modifying unit objectives. Conventional direct fire among tanks, infantry fighting vehicles, helicopters, and other units is automated subject to constraints of target acquisition, reload rate, range, suppression, etc. Artillery and missile indirect fire systems deliver conventional munitions,more » smoke, and nuclear weapons. Players use reconnaissance units, helicopters, or fixed wing aircraft to search for enemy unit locations. Counter-battery radars acquire enemy artillery. The JANUS simulation at LLL has demonstrated the value of the computer as a sophisticated blackboard. A small dedicated minicomputer is adequate for detailed calculations, and may be preferable to sharing a more powerful machine. Real-time color interactive graphics are essential to allow realistic command decision inputs. Competitive human-versus-human synthetic experiences are intense and well-remembered. 2 figures.« less
NASA Astrophysics Data System (ADS)
Shimobaba, Tomoyoshi; Kakue, Takashi; Ito, Tomoyoshi
2014-06-01
We propose acceleration of color computer-generated holograms (CGHs) from three-dimensional (3D) scenes that are expressed as texture (RGB) and depth (D) images. These images are obtained by 3D graphics libraries and RGB-D cameras: for example, OpenGL and Kinect, respectively. We can regard them as two-dimensional (2D) cross-sectional images along the depth direction. The generation of CGHs from the 2D cross-sectional images requires multiple diffraction calculations. If we use convolution-based diffraction such as the angular spectrum method, the diffraction calculation takes a long time and requires large memory usage because the convolution diffraction calculation requires the expansion of the 2D cross-sectional images to avoid the wraparound noise. In this paper, we first describe the acceleration of the diffraction calculation using "Band-limited double-step Fresnel diffraction," which does not require the expansion. Next, we describe color CGH acceleration using color space conversion. In general, color CGHs are generated on RGB color space; however, we need to repeat the same calculation for each color component, so that the computational burden of the color CGH generation increases three-fold, compared with monochrome CGH generation. We can reduce the computational burden by using YCbCr color space because the 2D cross-sectional images on YCbCr color space can be down-sampled without the impairing of the image quality.
Shortcomings of low-cost imaging systems for viewing computed radiographs.
Ricke, J; Hänninen, E L; Zielinski, C; Amthauer, H; Stroszczynski, C; Liebig, T; Wolf, M; Hosten, N
2000-01-01
To assess potential advantages of a new PC-based viewing tool featuring image post-processing for viewing computed radiographs on low-cost hardware (PC) with a common display card and color monitor, and to evaluate the effect of using color versus monochrome monitors. Computed radiographs of a statistical phantom were viewed on a PC, with and without post-processing (spatial frequency and contrast processing), employing a monochrome or a color monitor. Findings were compared with the viewing on a radiological Workstation and evaluated with ROC analysis. Image post-processing improved the perception of low-contrast details significantly irrespective of the monitor used. No significant difference in perception was observed between monochrome and color monitors. The review at the radiological Workstation was superior to the review done using the PC with image processing. Lower quality hardware (graphic card and monitor) used in low cost PCs negatively affects perception of low-contrast details in computed radiographs. In this situation, it is highly recommended to use spatial frequency and contrast processing. No significant quality gain has been observed for the high-end monochrome monitor compared to the color display. However, the color monitor was affected stronger by high ambient illumination.
NASA Technical Reports Server (NTRS)
Cheng, Thomas D.; Angelici, Gary L.; Slye, Robert E.; Ma, Matt
1991-01-01
The USDA presently uses labor-intensive photographic interpretation procedures to delineate large geographical areas into manageable size sampling units for the estimation of domestic crop and livestock production. Computer software to automate the boundary delineation procedure, called the computer-assisted stratification and sampling (CASS) system, was developed using a Hewlett Packard color-graphics workstation. The CASS procedures display Thematic Mapper (TM) satellite digital imagery on a graphics display workstation as the backdrop for the onscreen delineation of sampling units. USGS Digital Line Graph (DLG) data for roads and waterways are displayed over the TM imagery to aid in identifying potential sample unit boundaries. Initial analysis conducted with three Missouri counties indicated that CASS was six times faster than the manual techniques in delineating sampling units.
Computer Software Management and Information Center
NASA Technical Reports Server (NTRS)
1983-01-01
Computer programs for passive anti-roll tank, earth resources laboratory applications, the NIMBUS-7 coastal zone color scanner derived products, transportable applications executive, plastic and failure analysis of composites, velocity gradient method for calculating velocities in an axisymmetric annular duct, an integrated procurement management system, data I/O PRON for the Motorola exorcisor, aerodynamic shock-layer shape, kinematic modeling, hardware library for a graphics computer, and a file archival system are documented.
IGMtransmission: Transmission curve computation
NASA Astrophysics Data System (ADS)
Harrison, Christopher M.; Meiksin, Avery; Stock, David
2015-04-01
IGMtransmission is a Java graphical user interface that implements Monte Carlo simulations to compute the corrections to colors of high-redshift galaxies due to intergalactic attenuation based on current models of the Intergalactic Medium. The effects of absorption due to neutral hydrogen are considered, with particular attention to the stochastic effects of Lyman Limit Systems. Attenuation curves are produced, as well as colors for a wide range of filter responses and model galaxy spectra. Photometric filters are included for the Hubble Space Telescope, the Keck telescope, the Mt. Palomar 200-inch, the SUBARU telescope and UKIRT; alternative filter response curves and spectra may be readily uploaded.
The Presentation: A New Genre in Business Communication.
ERIC Educational Resources Information Center
Carney, Thomas F.
1992-01-01
Discusses the value and importance of presentation graphics. Deals with using storyboards to design presentations, design principles and construction guidelines, subliminals (overtext, intertextuality, and color), choosing a medium for visuals, choosing a computer program to generate visuals, and design similarities between presentation visuals…
13 point video tape quality guidelines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaunt, R.
1997-05-01
Until high definition television (ATV) arrives, in the U.S. we must still contend with the National Television Systems Committee (NTSC) video standard (or PAL or SECAM-depending on your country). NTSC, a 40-year old standard designed for transmission of color video camera images over a small bandwidth, is not well suited for the sharp, full-color images that todays computers are capable of producing. PAL and SECAM also suffers from many of NTSC`s problems, but to varying degrees. Video professionals, when working with computer graphic (CG) images, use two monitors: a computer monitor for producing CGs and an NTSC monitor to viewmore » how a CG will look on video. More often than not, the NTSC image will differ significantly from the CG image, and outputting it to NTSC as an artist works enables the him or her to see the images as others will see it. Below are thirteen guidelines designed to increase the quality of computer graphics recorded onto video tape. Viewing your work in NTSC and attempting to follow the below tips will enable you to create higher quality videos. No video is perfect, so don`t expect to abide by every guideline every time.« less
Visual comparison testing of automotive paint simulation
NASA Astrophysics Data System (ADS)
Meyer, Gary; Fan, Hua-Tzu; Seubert, Christopher; Evey, Curtis; Meseth, Jan; Schnackenberg, Ryan
2015-03-01
An experiment was performed to determine whether typical industrial automotive color paint comparisons made using real physical samples could also be carried out using a digital simulation displayed on a calibrated color television monitor. A special light booth, designed to facilitate evaluation of the car paint color with reflectance angle, was employed in both the real and virtual color comparisons. Paint samples were measured using a multi-angle spectrophotometer and were simulated using a commercially available software package. Subjects performed the test quicker using the computer graphic simulation, and results indicate that there is only a small difference between the decisions made using the light booth and the computer monitor. This outcome demonstrates the potential of employing simulations to replace some of the time consuming work with real physical samples that still characterizes material appearance work in industry.
Slide Composition for Electronic Presentations
ERIC Educational Resources Information Center
Larson, Ronald B.
2004-01-01
Instructors who use computer-generated graphics in their lectures have many options to consider when developing their presentations. Experts give different advice on which typefaces, background and letter colors, and background imagery improve communications. This study attempted to resolve these controversies by examining how short-term recall of…
NASA Astrophysics Data System (ADS)
Sherley, Patrick L.; Pujol, Alfonso, Jr.; Meadow, John S.
1990-07-01
To provide a means of rendering complex computer architectures languages and input/output modalities transparent to experienced and inexperienced users research is being conducted to develop a voice driven/voice response computer graphics imaging system. The system will be used for reconstructing and displaying computed tomography and magnetic resonance imaging scan data. In conjunction with this study an artificial intelligence (Al) control strategy was developed to interface the voice components and support software to the computer graphics functions implemented on the Sun Microsystems 4/280 color graphics workstation. Based on generated text and converted renditions of verbal utterances by the user the Al control strategy determines the user''s intent and develops and validates a plan. The program type and parameters within the plan are used as input to the graphics system for reconstructing and displaying medical image data corresponding to that perceived intent. If the plan is not valid the control strategy queries the user for additional information. The control strategy operates in a conversation mode and vocally provides system status reports. A detailed examination of the various AT techniques is presented with major emphasis being placed on their specific roles within the total control strategy structure. 1.
Designer: A Knowledge-Based Graphic Design Assistant.
1986-07-01
pro- pulsion. The system consists of a color graphics interface to a mathematical simulation. One can view and manipulate this simulation at a number of...valve vaive graph 50- mufi -plot graph 100 4 0 80 6.. 30 60 4 20 .... 40 2 10 V 20 0 2 4 6 8 10 0 20 40 60 80 100 FIGURE 4. Icon Sampler. This view...in Computing Systems. New York: ACM, 1983. 8306. Paul Smolensky. Harmony Theory: A Mathematical Framework for Stochastic Parallel Pro- cessing
Interactive display/graphics systems for remote sensor data analysis.
NASA Technical Reports Server (NTRS)
Eppler, W. G.; Loe, D. L.; Wilson, E. L.; Whitley, S. L.; Sachen, R. J.
1971-01-01
Using a color-television display system and interactive graphics equipment on-line to an IBM 360/44 computer, investigators at the Manned Spacecraft Center have developed a variety of interactive displays which aid in analyzing remote sensor data. This paper describes how such interactive displays are used to: (1) analyze data from a multispectral scanner, (2) develop automatic pattern recognition systems based on multispectral scanner measurements, and (3) analyze data from nonimaging sensors such as the infrared radiometer and microwave scatterometer.
NASA Technical Reports Server (NTRS)
Szatkowski, G. P.
1983-01-01
A computer simulation system has been developed for the Space Shuttle's advanced Centaur liquid fuel booster rocket, in order to conduct systems safety verification and flight operations training. This simulation utility is designed to analyze functional system behavior by integrating control avionics with mechanical and fluid elements, and is able to emulate any system operation, from simple relay logic to complex VLSI components, with wire-by-wire detail. A novel graphics data entry system offers a pseudo-wire wrap data base that can be easily updated. Visual subsystem operations can be selected and displayed in color on a six-monitor graphics processor. System timing and fault verification analyses are conducted by injecting component fault modes and min/max timing delays, and then observing system operation through a red line monitor.
The Resource Directory: Designing Your Success.
ERIC Educational Resources Information Center
Bowers, Richard A.
1995-01-01
Discusses computer software and system design in the information industry and provides an annotated bibliography of 31 resources that address the issue of design. Highlights include competition, color use, hardware and presentation design, content and packaging, screen design, graphics, and interactive multimedia. A sidebar reviews and rates seven…
Message Design Guidelines For Screen-Based Programs.
ERIC Educational Resources Information Center
Rimar, G. I.
1996-01-01
Effective message design for screen-based computer or video instructional programs requires knowledge from many disciplines. Evaluates current conventions and suggests a new set of guidelines for screen-based designers. Discusses screen layout, highlighting and cueing, text font and style, text positioning, color, and graphical user interfaces for…
Exploring the Realized Niche: Simulated Ecological Mapping with a Microcomputer.
ERIC Educational Resources Information Center
Kent, J. W.
1983-01-01
Describes a computer program based upon field observations of littoral zonation modified by a small stream. The program employs user-defined color graphic characters to display simulated ecological maps representing the patterning of organisms in response to local values of niche limiting factors. (Author/JN)
Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R.
2012-01-01
We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient’s skin in real-time by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures. PMID:24027616
Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R
2012-02-23
We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient's skin in real-time by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures.
NASA Technical Reports Server (NTRS)
Gupta, K. K.
1997-01-01
A multidisciplinary, finite element-based, highly graphics-oriented, linear and nonlinear analysis capability that includes such disciplines as structures, heat transfer, linear aerodynamics, computational fluid dynamics, and controls engineering has been achieved by integrating several new modules in the original STARS (STructural Analysis RoutineS) computer program. Each individual analysis module is general-purpose in nature and is effectively integrated to yield aeroelastic and aeroservoelastic solutions of complex engineering problems. Examples of advanced NASA Dryden Flight Research Center projects analyzed by the code in recent years include the X-29A, F-18 High Alpha Research Vehicle/Thrust Vectoring Control System, B-52/Pegasus Generic Hypersonics, National AeroSpace Plane (NASP), SR-71/Hypersonic Launch Vehicle, and High Speed Civil Transport (HSCT) projects. Extensive graphics capabilities exist for convenient model development and postprocessing of analysis results. The program is written in modular form in standard FORTRAN language to run on a variety of computers, such as the IBM RISC/6000, SGI, DEC, Cray, and personal computer; associated graphics codes use OpenGL and IBM/graPHIGS language for color depiction. This program is available from COSMIC, the NASA agency for distribution of computer programs.
Gist: A scientific graphics package for Python
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busby, L.E.
1996-05-08
{open_quotes}Gist{close_quotes} is a scientific graphics library written by David H. Munro of Lawrence Livermore National Laboratory (LLNL). It features support for three common graphics output devices: X Windows, (Color) PostScript, and ANSI/ISO Standard Computer Graphics Metafiles (CGM). The library is small (written directly to Xlib), portable, efficient, and full-featured. It produces X versus Y plots with {open_quotes}good{close_quotes} tick marks and tick labels, 2-dimensional quadrilateral mesh plots with contours, vector fields, or pseudo color maps on such meshes, with 3-dimensional plots on the way. The Python Gist module utilizes the new {open_quotes}Numeric{close_quotes} module due to J. Hugunin and others. It ismore » therefore fast and able to handle large datasets. The Gist module includes an X Windows event dispatcher which can be dynamically added (e.g., via importing a dynamically loaded module) to the Python interpreter after a simple two-line modification to the Python core. This makes fast mouse-controlled zoom, pan, and other graphic operations available to the researcher while maintaining the usual Python command-line interface. Munro`s Gist library is already freely available. The Python Gist module is currently under review and is also expected to qualify for unlimited release.« less
Development and usage of a false color display technique for presenting Seasat-A scatterometer data
NASA Technical Reports Server (NTRS)
Jackson, C. B.
1980-01-01
A computer generated false color program which creates digital multicolor graphics to display geophysical surface parameters measured by the Seasat-A satellite scatterometer (SASS) is described. The data is incrementally scaled over the range of acceptable values and each increment and its data points are assigned a color. The advantage of the false color display is that it visually infers cool or weak data versus hot or intense data by using the rainbow of colors. For example, with wind speeds, levels of yellow and red could be used to imply high winds while green and blue could imply calmer air. The SASS data is sorted into geographic regions and the final false color images are projected onto various world maps with superimposed land/water boundaries.
Starting Over: Current Issues in Online Catalog User Interface Design.
ERIC Educational Resources Information Center
Crawford, Walt
1992-01-01
Discussion of online catalogs focuses on issues in interface design. Issues addressed include understanding the user base; common user access (CUA) with personal computers; common command language (CCL); hyperlinks; screen design issues; differences from card catalogs; indexes; graphic user interfaces (GUIs); color; online help; and remote users.…
Use of Computer-Assisted Instruction to Review Microbiology and Antimicrobial Agents.
ERIC Educational Resources Information Center
Carver, Peggy L.; And Others
1991-01-01
A study assessed the effectiveness of a microcomputer-assisted instructional program using graphics, color, and text in simulations to enhance pharmacy students' knowledge of microbiology and antimicrobial agents. Results indicated high short- and long-term retention of information presented and higher levels of knowledge and comprehension among…
3D Printing of Protein Models in an Undergraduate Laboratory: Leucine Zippers
ERIC Educational Resources Information Center
Meyer, Scott C.
2015-01-01
An upper-division undergraduate laboratory experiment is described that explores the structure/function relationship of protein domains, namely leucine zippers, through a molecular graphics computer program and physical models fabricated by 3D printing. By generating solvent accessible surfaces and color-coding hydrophobic, basic, and acidic amino…
Videotex--A Thousand and One Applications. Videotex in General.
ERIC Educational Resources Information Center
Department of External Affairs, Ottawa (Ontario).
This promotional brochure, one of 10 in a series on videotex, explains applications of videotex and the North American Presentation Level Protocol Syntax (NAPLPS) standard system (known as Telidon in Canada) for creating, storing, and transmitting text and color graphics information on a television screen or computer terminal. The specific…
NASA Astrophysics Data System (ADS)
Jung, E.
1984-05-01
A color recording unit was designed for output and control of digitized picture data within computer controlled reproduction and picture processing systems. In order to get a color proof picture of high quality similar to a color print, together with reduced time and material consumption, a photographic color film material was exposed pixelwise by modulated laser beams of three wavelengths for red, green and blue light. Components of different manufacturers for lasers, acousto-optic modulators and polygon mirrors were tested, also different recording methods as (continuous tone mode or screened mode and with a drum or flatbed recording principle). Besides the application for the graphic arts - the proof recorder CPR 403 with continuous tone color recording with a drum scanner - such a color hardcopy peripheral unit with large picture formats and high resolution can be used in medicine, communication, and satellite picture processing.
Hypercomplex Fourier transforms of color images.
Ell, Todd A; Sangwine, Stephen J
2007-01-01
Fourier transforms are a fundamental tool in signal and image processing, yet, until recently, there was no definition of a Fourier transform applicable to color images in a holistic manner. In this paper, hypercomplex numbers, specifically quaternions, are used to define a Fourier transform applicable to color images. The properties of the transform are developed, and it is shown that the transform may be computed using two standard complex fast Fourier transforms. The resulting spectrum is explained in terms of familiar phase and modulus concepts, and a new concept of hypercomplex axis. A method for visualizing the spectrum using color graphics is also presented. Finally, a convolution operational formula in the spectral domain is discussed.
A reinterpretation of transparency perception in terms of gamut relativity.
Vladusich, Tony
2013-03-01
Classical approaches to transparency perception assume that transparency constitutes a perceptual dimension corresponding to the physical dimension of transmittance. Here I present an alternative theory, termed gamut relativity, that naturally explains key aspects of transparency perception. Rather than being computed as values along a perceptual dimension corresponding to transmittance, gamut relativity postulates that transparency is built directly into the fabric of the visual system's representation of surface color. The theory, originally developed to explain properties of brightness and lightness perception, proposes how the relativity of the achromatic color gamut in a perceptual blackness-whiteness space underlies the representation of foreground and background surface layers. Whereas brightness and lightness perception were previously reanalyzed in terms of the relativity of the achromatic color gamut with respect to illumination level, transparency perception is here reinterpreted in terms of relativity with respect to physical transmittance. The relativity of the achromatic color gamut thus emerges as a fundamental computational principle underlying surface perception. A duality theorem relates the definition of transparency provided in gamut relativity with the classical definition underlying the physical blending models of computer graphics.
Data Images and Other Graphical Displays for Directional Data
NASA Technical Reports Server (NTRS)
Morphet, Bill; Symanzik, Juergen
2005-01-01
Vectors, axes, and periodic phenomena have direction. Directional variation can be expressed as points on a unit circle and is the subject of circular statistics, a relatively new application of statistics. An overview of existing methods for the display of directional data is given. The data image for linear variables is reviewed, then extended to directional variables by displaying direction using a color scale composed of a sequence of four or more color gradients with continuity between sequences and ordered intuitively in a color wheel such that the color of the 0deg angle is the same as the color of the 360deg angle. Cross over, which arose in automating the summarization of historical wind data, and color discontinuity resulting from the use a single color gradient in computational fluid dynamics visualization are eliminated. The new method provides for simultaneous resolution of detail on a small scale and overall structure on a large scale. Example circular data images are given of a global view of average wind direction of El Nino periods, computed rocket motor internal combustion flow, a global view of direction of the horizontal component of earth's main magnetic field on 9/15/2004, and Space Shuttle solid rocket motor nozzle vectoring.
Araki, Hiromitsu; Takada, Naoki; Niwase, Hiroaki; Ikawa, Shohei; Fujiwara, Masato; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2015-12-01
We propose real-time time-division color electroholography using a single graphics processing unit (GPU) and a simple synchronization system of reference light. To facilitate real-time time-division color electroholography, we developed a light emitting diode (LED) controller with a universal serial bus (USB) module and the drive circuit for reference light. A one-chip RGB LED connected to a personal computer via an LED controller was used as the reference light. A single GPU calculates three computer-generated holograms (CGHs) suitable for red, green, and blue colors in each frame of a three-dimensional (3D) movie. After CGH calculation using a single GPU, the CPU can synchronize the CGH display with the color switching of the one-chip RGB LED via the LED controller. Consequently, we succeeded in real-time time-division color electroholography for a 3D object consisting of around 1000 points per color when an NVIDIA GeForce GTX TITAN was used as the GPU. Furthermore, we implemented the proposed method in various GPUs. The experimental results showed that the proposed method was effective for various GPUs.
Experimental investigation of the persuasive impact of computer generated presentation graphics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, D.R.
1986-01-01
Computer generated presentation graphics are increasingly becoming a tool to aid management in communicating information and to cause an audience to accept a point of view or take action. Unfortunately, technological capability significantly exceeds current levels of user understanding and effective application. This research examines experimentally one aspect of this problem, the persuasive impact of characteristics of computer generated presentation graphics. The research was founded in theory based on the message learning approach to persuasion. Characteristics examined were color versus black and white, text versus image enhancement, and overhead transparencies versus 35 mm slides. Treatments were presented in association withmore » a videotaped presentation intended to persuade subjects to invest time and money in a set of time management seminars. Data were collected using pre-measure, post measure, and post measure follow up questionnaires. Presentation support had a direct impact on perceptions of the presenter as well as components of persuasion, i.e., attention, comprehension, yielding, and retention. Further, a strong positive relationship existed between enhanced perceptions of the presenter and attention and yielding.« less
NASA Technical Reports Server (NTRS)
Giddings, L.; Boston, S.
1976-01-01
A method for digitizing zone maps is presented, starting with colored images and producing a final one-channel digitized tape. This method automates the work previously done interactively on the Image-100 and Data Analysis System computers of the Johnson Space Center (JSC) Earth Observations Division (EOD). A color-coded map was digitized through color filters on a scanner to form a digital tape in LARSYS-2 or JSC Universal format. The taped image was classified by the EOD LARSYS program on the basis of training fields included in the image. Numerical values were assigned to all pixels in a given class, and the resulting coded zone map was written on a LARSYS or Universal tape. A unique spatial filter option permitted zones to be made homogeneous and edges of zones to be abrupt transitions from one zone to the next. A zoom option allowed the output image to have arbitrary dimensions in terms of number of lines and number of samples on a line. Printouts of the computer program are given and the images that were digitized are shown.
Computer graphics applications to crew displays
NASA Technical Reports Server (NTRS)
Wyzkoski, J.
1983-01-01
Astronauts are provided much data and information via the monochrome CRT displays on the orbiter. For this project two areas were investigated for the possible introduction of computer graphics to enhance and extend the utility of these displays. One involved reviewing the current orbiter displays and identifying those which could be improved via computer graphics. As an example, the tabular data on electrical power distribution and control was enhanced by the addition of color and bar charts. The other dealt with the development of an aid to berthing a payload with the Remote Manipulator System (RMS). This aid consists of a graphics display of the top, front and side views of the payload and cargo bay and point of resolution (POR) position and attitude data for the current location of the payload. The initial implementation was on an IBM PC clone. The demonstration software installed in the Johnson Space Center Manipulator Development Facility (MD) was reviewed. Due to current hardware limitations, the MDF verision is slow, i.e., about a 40+ seond update rate and, hence, not real-time. Despite this fact, the evaluation of this additional visual cue as an RMS operator aid indicates that this display, with modifications for speed, etc., can assist the crew. Further development is appropriate.
Data Visualization and Animation Lab (DVAL) overview
NASA Technical Reports Server (NTRS)
Stacy, Kathy; Vonofenheim, Bill
1994-01-01
The general capabilities of the Langley Research Center Data Visualization and Animation Laboratory is described. These capabilities include digital image processing, 3-D interactive computer graphics, data visualization and analysis, video-rate acquisition and processing of video images, photo-realistic modeling and animation, video report generation, and color hardcopies. A specialized video image processing system is also discussed.
Fire characteristics charts for fire behavior and U.S. fire danger rating
Faith Ann Heinsch; Pat Andrews
2010-01-01
The fire characteristics chart is a graphical method of presenting U.S. National Fire Danger Rating indices or primary surface or crown fire behavior characteristics. A desktop computer application has been developed to produce fire characteristics charts in a format suitable for inclusion in reports and presentations. Many options include change of scales, colors,...
Using Graphic Organizers to Improve Reading Comprehension Skills for the Middle School ESL Students
ERIC Educational Resources Information Center
Praveen, Sam D.; Rajan, Premalatha
2013-01-01
"A picture is worth a thousand words." In a modern-day classroom, students are surrounded by visual imagery through textbooks, notice boards, television, videos, or computers. Many middle school classrooms are filled with colorful pictures and photographs. However, it is unclear how--or if --these images impact the middle school ESL…
NASA Technical Reports Server (NTRS)
Jiang, Jian-Ping; Murphy, Elizabeth D.; Bailin, Sidney C.; Truszkowski, Walter F.
1993-01-01
Capturing human factors knowledge about the design of graphical user interfaces (GUI's) and applying this knowledge on-line are the primary objectives of the Computer-Human Interaction Models (CHIMES) project. The current CHIMES prototype is designed to check a GUI's compliance with industry-standard guidelines, general human factors guidelines, and human factors recommendations on color usage. Following the evaluation, CHIMES presents human factors feedback and advice to the GUI designer. The paper describes the approach to modeling human factors guidelines, the system architecture, a new method developed to convert quantitative RGB primaries into qualitative color representations, and the potential for integrating CHIMES with user interface management systems (UIMS). Both the conceptual approach and its implementation are discussed. This paper updates the presentation on CHIMES at the first International Symposium on Ground Data Systems for Spacecraft Control.
GEMPAK 5.1 - A GENERAL METEOROLOGICAL PACKAGE (UNIX VERSION)
NASA Technical Reports Server (NTRS)
Desjardins, M. L.
1994-01-01
GEMPAK is a general meteorological software package developed at NASA/Goddard Space Flight Center. It includes programs to analyze and display surface, upper-air, and gridded data, including model output. There are very general programs to list, edit, and plot data on maps, to display profiles and time series, to draw and fill contours, to draw streamlines, to plot symbols for clouds, sky cover, and pressure tendency, and draw cross sections in the case of gridded data and sounding data. In addition, there are Barnes objective analysis programs to grid surface and upper-air data. The programs include the capabilities to derive meteorological parameters from those found in the dataset, to perform vertical interpolations of sounding data to different coordinate systems, and to compute an extensive set of gridded diagnostic quantities by specifying various nested combinations of scalars and vector arithmetic, algebraic, and differential operators. The GEMPAK 5.1 graphics/transformation subsystem, GEMPLT, provides device-independent graphics. GEMPLT also has the capability to display output in a variety of map projections or overlaid on satellite imagery. GEMPAK 5.1 is written in FORTRAN 77 and C-language and has been implemented on VAX computers under VMS and on computers running the UNIX operating system. During installation and normal use, this package occupies approximately 100Mb of hard disk space. The UNIX version of GEMPAK includes drivers for several graphic output systems including MIT's X Window System (X11,R4), Sun GKS, PostScript (color and monochrome), Silicon Graphics, and others. The VMS version of GEMPAK also includes drivers for several graphic output systems including PostScript (color and monochrome). The VMS version is delivered with the object code for the Transportable Applications Environment (TAE) program, version 4.1 which serves as a user interface. A color monitor is recommended for displaying maps on video display devices. Data for rendering regional maps is included with this package. The standard distribution medium for the UNIX version of GEMPAK 5.1 is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the VMS version of GEMPAK 5.1 is a 6250 BPI 9-track magnetic tape in DEC VAX BACKUP format. The VMS version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. This program was developed in 1985. The current version, GEMPAK 5.1, was released in 1992. The package is delivered with source code. An extensive collection of subroutine libraries allows users to format data for use by GEMPAK, to develop new programs, and to enhance existing ones.
Solar physics applications of computer graphics and image processing
NASA Technical Reports Server (NTRS)
Altschuler, M. D.
1985-01-01
Computer graphics devices coupled with computers and carefully developed software provide new opportunities to achieve insight into the geometry and time evolution of scalar, vector, and tensor fields and to extract more information quickly and cheaply from the same image data. Two or more different fields which overlay in space can be calculated from the data (and the physics), then displayed from any perspective, and compared visually. The maximum regions of one field can be compared with the gradients of another. Time changing fields can also be compared. Images can be added, subtracted, transformed, noise filtered, frequency filtered, contrast enhanced, color coded, enlarged, compressed, parameterized, and histogrammed, in whole or section by section. Today it is possible to process multiple digital images to reveal spatial and temporal correlations and cross correlations. Data from different observatories taken at different times can be processed, interpolated, and transformed to a common coordinate system.
Displaying Colors of Specified Chrominance on a Color Graphics Display.
1982-12-01
coordinates (such as Commission Internationale de l’Eclairage CIEXYZ coordinates). This report contains the description of a procedure for displaying...colors of known chrominance as specified by CIEXYZ coordinates. The procedure makes use of models of a color graphics system intensity (bits) to lumi...coordinates (e.g., CIELUV -1976 CT contrast equations as described in Robertson, 1977). Thus, the results of most efforts to specify a set of colors to
A prototype expert/information system for examining environmental risks of KSC activities
NASA Technical Reports Server (NTRS)
Engel, Bernard A.
1993-01-01
Protection of the environment and natural resources at the Kennedy Space Center (KSC) is of great concern. An expert/information system to replace the paper-based KSC Environmental Checklist was developed. The computer-based system requests information only as a required and supplies assistance as needed. The most comprehensive portion of the system provides information about endangered species habitat at KSC. This module uses geographic information system (GIS) data and tools, expert rules, color graphics, computer-based video, and hypertext to provide information.
Stone, B N; Griesinger, G L; Modelevsky, J L
1984-01-01
We describe an interactive computational tool, PLASMAP, which allows the user to electronically store, retrieve, and display circular restriction maps. PLASMAP permits users to construct libraries of plasmid restriction maps as a set of files which may be edited in the laboratory at any time. The display feature of PLASMAP quickly generates device-independent, artist-quality, full-color or monochrome, hard copies or CRT screens of complex, conventional circular restriction maps. PMID:6320096
Heinke, Florian; Bittrich, Sebastian; Kaiser, Florian; Labudde, Dirk
2016-01-01
To understand the molecular function of biopolymers, studying their structural characteristics is of central importance. Graphics programs are often utilized to conceive these properties, but with the increasing number of available structures in databases or structure models produced by automated modeling frameworks this process requires assistance from tools that allow automated structure visualization. In this paper a web server and its underlying method for generating graphical sequence representations of molecular structures is presented. The method, called SequenceCEROSENE (color encoding of residues obtained by spatial neighborhood embedding), retrieves the sequence of each amino acid or nucleotide chain in a given structure and produces a color coding for each residue based on three-dimensional structure information. From this, color-highlighted sequences are obtained, where residue coloring represent three-dimensional residue locations in the structure. This color encoding thus provides a one-dimensional representation, from which spatial interactions, proximity and relations between residues or entire chains can be deduced quickly and solely from color similarity. Furthermore, additional heteroatoms and chemical compounds bound to the structure, like ligands or coenzymes, are processed and reported as well. To provide free access to SequenceCEROSENE, a web server has been implemented that allows generating color codings for structures deposited in the Protein Data Bank or structure models uploaded by the user. Besides retrieving visualizations in popular graphic formats, underlying raw data can be downloaded as well. In addition, the server provides user interactivity with generated visualizations and the three-dimensional structure in question. Color encoded sequences generated by SequenceCEROSENE can aid to quickly perceive the general characteristics of a structure of interest (or entire sets of complexes), thus supporting the researcher in the initial phase of structure-based studies. In this respect, the web server can be a valuable tool, as users are allowed to process multiple structures, quickly switch between results, and interact with generated visualizations in an intuitive manner. The SequenceCEROSENE web server is available at https://biosciences.hs-mittweida.de/seqcerosene.
High-performance floating-point image computing workstation for medical applications
NASA Astrophysics Data System (ADS)
Mills, Karl S.; Wong, Gilman K.; Kim, Yongmin
1990-07-01
The medical imaging field relies increasingly on imaging and graphics techniques in diverse applications with needs similar to (or more stringent than) those of the military, industrial and scientific communities. However, most image processing and graphics systems available for use in medical imaging today are either expensive, specialized, or in most cases both. High performance imaging and graphics workstations which can provide real-time results for a number of applications, while maintaining affordability and flexibility, can facilitate the application of digital image computing techniques in many different areas. This paper describes the hardware and software architecture of a medium-cost floating-point image processing and display subsystem for the NeXT computer, and its applications as a medical imaging workstation. Medical imaging applications of the workstation include use in a Picture Archiving and Communications System (PACS), in multimodal image processing and 3-D graphics workstation for a broad range of imaging modalities, and as an electronic alternator utilizing its multiple monitor display capability and large and fast frame buffer. The subsystem provides a 2048 x 2048 x 32-bit frame buffer (16 Mbytes of image storage) and supports both 8-bit gray scale and 32-bit true color images. When used to display 8-bit gray scale images, up to four different 256-color palettes may be used for each of four 2K x 2K x 8-bit image frames. Three of these image frames can be used simultaneously to provide pixel selectable region of interest display. A 1280 x 1024 pixel screen with 1: 1 aspect ratio can be windowed into the frame buffer for display of any portion of the processed image or images. In addition, the system provides hardware support for integer zoom and an 82-color cursor. This subsystem is implemented on an add-in board occupying a single slot in the NeXT computer. Up to three boards may be added to the NeXT for multiple display capability (e.g., three 1280 x 1024 monitors, each with a 16-Mbyte frame buffer). Each add-in board provides an expansion connector to which an optional image computing coprocessor board may be added. Each coprocessor board supports up to four processors for a peak performance of 160 MFLOPS. The coprocessors can execute programs from external high-speed microcode memory as well as built-in internal microcode routines. The internal microcode routines provide support for 2-D and 3-D graphics operations, matrix and vector arithmetic, and image processing in integer, IEEE single-precision floating point, or IEEE double-precision floating point. In addition to providing a library of C functions which links the NeXT computer to the add-in board and supports its various operational modes, algorithms and medical imaging application programs are being developed and implemented for image display and enhancement. As an extension to the built-in algorithms of the coprocessors, 2-D Fast Fourier Transform (FF1), 2-D Inverse FFF, convolution, warping and other algorithms (e.g., Discrete Cosine Transform) which exploit the parallel architecture of the coprocessor board are being implemented.
Khomtchouk, Bohdan B; Van Booven, Derek J; Wahlestedt, Claes
2014-01-01
The graphical visualization of gene expression data using heatmaps has become an integral component of modern-day medical research. Heatmaps are used extensively to plot quantitative differences in gene expression levels, such as those measured with RNAseq and microarray experiments, to provide qualitative large-scale views of the transcriptonomic landscape. Creating high-quality heatmaps is a computationally intensive task, often requiring considerable programming experience, particularly for customizing features to a specific dataset at hand. Software to create publication-quality heatmaps is developed with the R programming language, C++ programming language, and OpenGL application programming interface (API) to create industry-grade high performance graphics. We create a graphical user interface (GUI) software package called HeatmapGenerator for Windows OS and Mac OS X as an intuitive, user-friendly alternative to researchers with minimal prior coding experience to allow them to create publication-quality heatmaps using R graphics without sacrificing their desired level of customization. The simplicity of HeatmapGenerator is that it only requires the user to upload a preformatted input file and download the publicly available R software language, among a few other operating system-specific requirements. Advanced features such as color, text labels, scaling, legend construction, and even database storage can be easily customized with no prior programming knowledge. We provide an intuitive and user-friendly software package, HeatmapGenerator, to create high-quality, customizable heatmaps generated using the high-resolution color graphics capabilities of R. The software is available for Microsoft Windows and Apple Mac OS X. HeatmapGenerator is released under the GNU General Public License and publicly available at: http://sourceforge.net/projects/heatmapgenerator/. The Mac OS X direct download is available at: http://sourceforge.net/projects/heatmapgenerator/files/HeatmapGenerator_MAC_OSX.tar.gz/download. The Windows OS direct download is available at: http://sourceforge.net/projects/heatmapgenerator/files/HeatmapGenerator_WINDOWS.zip/download.
Chroma Shift and Gamut Shape: Going Beyond Average Color Fidelity and Gamut Area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Royer, Michael P.; Houser, Kevin W.; David, Aurelien
Though sometimes referred to as a two-measure system for evaluating color rendition, IES TM-30-15 includes key components that go beyond the two high-level average values, Fidelity Index (IES Rf) and Gamut Index (IES Rg). This article focuses on the Color Vector Graphic and Local Chroma Shift (IES Rcs,hj), discussing the calculation methods for these evaluation tools and providing context for the interpretation of the values. We illustrate why and how the Color Vector Graphic and Local Chroma Shift values capture information about color rendition that is impossible to describe with average measures (such as CIE Ra, IES Rf, or IESmore » Rg), but that is pertinent to more completely quantifying color rendition, and to understanding human evaluations of color quality in the built environment. We also present alternatives for quantifying the Color Vector Graphic and Local Chroma Shift values, which can inform the development of future measures.« less
Thermal Transfer Compared To The Fourteen Other Imaging Technologies
NASA Astrophysics Data System (ADS)
O'Leary, John W.
1989-07-01
A quiet revolution in the world of imaging has been underway for the past few years. The older technologies of dot matrix, daisy wheel, thermal paper and pen plotters have been increasingly displaced by laser, ink jet and thermal transfer. The net result of this revolution is improved technologies that afford superior imaging, quiet operation, plain paper usage, instant operation, and solid state components. Thermal transfer is one of the processes that incorporates these benefits. Among the imaging application for thermal transfer are: 1. Bar code labeling and scanning. 2. New systems for airline ticketing, boarding passes, reservations, etc. 3. Color computer graphics and imaging. 4. Copying machines that copy in color. 5. Fast growing communications media such as facsimile. 6. Low cost word processors and computer printers. 7. New devices that print pictures from video cameras or television sets. 8. Cameras utilizing computer chips in place of film.
NASA Technical Reports Server (NTRS)
Faust, N.; Jordon, L.
1981-01-01
Since the implementation of the GRID and IMGRID computer programs for multivariate spatial analysis in the early 1970's, geographic data analysis subsequently moved from large computers to minicomputers and now to microcomputers with radical reduction in the costs associated with planning analyses. Programs designed to process LANDSAT data to be used as one element in a geographic data base were used once NIMGRID (new IMGRID), a raster oriented geographic information system, was implemented on the microcomputer. Programs for training field selection, supervised and unsupervised classification, and image enhancement were added. Enhancements to the color graphics capabilities of the microsystem allow display of three channels of LANDSAT data in color infrared format. The basic microcomputer hardware needed to perform NIMGRID and most LANDSAT analyses is listed as well as the software available for LANDSAT processing.
Low-cost digital image processing at the University of Oklahoma
NASA Technical Reports Server (NTRS)
Harrington, J. A., Jr.
1981-01-01
Computer assisted instruction in remote sensing at the University of Oklahoma involves two separate approaches and is dependent upon initial preprocessing of a LANDSAT computer compatible tape using software developed for an IBM 370/158 computer. In-house generated preprocessing algorithms permits students or researchers to select a subset of a LANDSAT scene for subsequent analysis using either general purpose statistical packages or color graphic image processing software developed for Apple II microcomputers. Procedures for preprocessing the data and image analysis using either of the two approaches for low-cost LANDSAT data processing are described.
Computer graphics to display plume-modeling results for nuclear emergency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krawchuk, B.; Gotham, I.; Matuszek, J.
1985-01-01
New York uses a color graphics display/analysis system, ANALYSE, to portray the results of the plume transport models, MATHEW/ADPIC and PATRIC. As a tool for the researcher and meteorologist, it provides a detailed look into the model results, input and performance. Used in an automatic mode and pre-programmed for use in an emergency, it provides a sequence of informative and attractive of displays to assessment staff at the State EOC through an easily-learned display module. Though successfully implemented on low-cost display and communication equipment, further technical improvements and software development would greatly enhance the system for use in an emergency.
Issues Regarding Student Interpretation of Color as a Third Dimension on Graphical Representations
ERIC Educational Resources Information Center
Cid, Ximena C.; Lopez, Ramon E.; Lazarus, Steven M.
2009-01-01
In this study we report on issues related to the use of color as a third dimension on graphical representations provided to students. We find that a majority of the students sampled have a preconceived color map regarding temperature, with blue indicating low temperatures and red indicating high temperatures. Attempts to transfer this particular…
Neural classification of the selected family of butterflies
NASA Astrophysics Data System (ADS)
Zaborowicz, M.; Boniecki, P.; Piekarska-Boniecka, H.; Koszela, K.; Mueller, W.; Górna, K.; Okoń, P.
2017-07-01
There have been noticed growing explorers' interest in drawing conclusions based on information of data coded in a graphic form. The neuronal identification of pictorial data, with special emphasis on both quantitative and qualitative analysis, is more frequently utilized to gain and deepen the empirical data knowledge. Extraction and then classification of selected picture features, such as color or surface structure, enables one to create computer tools in order to identify these objects presented as, for example, digital pictures. The work presents original computer system "Processing the image v.1.0" designed to digitalize pictures on the basis of color criterion. The system has been applied to generate a reference learning file for generating the Artificial Neural Network (ANN) to identify selected kinds of butterflies from the Papilionidae family.
Design of a 3-dimensional visual illusion speed reduction marking scheme.
Liang, Guohua; Qian, Guomin; Wang, Ye; Yi, Zige; Ru, Xiaolei; Ye, Wei
2017-03-01
To determine which graphic and color combination for a 3-dimensional visual illusion speed reduction marking scheme presents the best visual stimulus, five parameters were designed. According to the Balanced Incomplete Blocks-Law of Comparative Judgment, three schemes, which produce strong stereoscopic impressions, were screened from the 25 initial design schemes of different combinations of graphics and colors. Three-dimensional experimental simulation scenes of the three screened schemes were created to evaluate four different effects according to a semantic analysis. The following conclusions were drawn: schemes with a red color are more effective than those without; the combination of red, yellow and blue produces the best visual stimulus; a larger area from the top surface and the front surface should be colored red; and a triangular prism should be painted as the graphic of the marking according to the stereoscopic impression and the coordination of graphics with the road.
Cockpit weather information needs
NASA Technical Reports Server (NTRS)
Scanlon, Charles H.
1992-01-01
The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe weather notice, AIRMET or SIGMET, is received. The cockpit weather display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical weather system so pilot review of weather along the route can be accomplished prior to pilot acceptance of the clearance. An ongoing multiphase test series is planned for testing and modifying the graphical weather system. Preliminary data shows that the nine test subjects considered the graphical presentation to be much better than their current weather information source for situation awareness, flight safety, and reroute decision making.
Color image display and visual perception in computer graphics
NASA Astrophysics Data System (ADS)
Bouatouch, Kadi; Tellier, Pierre
1996-03-01
This paper put an emphasis on the importance of two points which are crucial when the aim is physically based lighting simulation. The first one is the spectral approach which considers emitted, reflected, diffused and transmitted light as wavelength dependent. The second corresponds to the different steps aiming at converting into RGB components the radiance arriving at the viewpoint through the pixels of a screen.
GEMPAK 5.1 - A GENERAL METEOROLOGICAL PACKAGE (VAX VMS VERSION)
NASA Technical Reports Server (NTRS)
Des, Jardins M. L.
1994-01-01
GEMPAK is a general meteorological software package developed at NASA/Goddard Space Flight Center. It includes programs to analyze and display surface, upper-air, and gridded data, including model output. There are very general programs to list, edit, and plot data on maps, to display profiles and time series, to draw and fill contours, to draw streamlines, to plot symbols for clouds, sky cover, and pressure tendency, and draw cross sections in the case of gridded data and sounding data. In addition, there are Barnes objective analysis programs to grid surface and upper-air data. The programs include the capabilities to derive meteorological parameters from those found in the dataset, to perform vertical interpolations of sounding data to different coordinate systems, and to compute an extensive set of gridded diagnostic quantities by specifying various nested combinations of scalars and vector arithmetic, algebraic, and differential operators. The GEMPAK 5.1 graphics/transformation subsystem, GEMPLT, provides device-independent graphics. GEMPLT also has the capability to display output in a variety of map projections or overlaid on satellite imagery. GEMPAK 5.1 is written in FORTRAN 77 and C-language and has been implemented on VAX computers under VMS and on computers running the UNIX operating system. During installation and normal use, this package occupies approximately 100Mb of hard disk space. The UNIX version of GEMPAK includes drivers for several graphic output systems including MIT's X Window System (X11,R4), Sun GKS, PostScript (color and monochrome), Silicon Graphics, and others. The VMS version of GEMPAK also includes drivers for several graphic output systems including PostScript (color and monochrome). The VMS version is delivered with the object code for the Transportable Applications Environment (TAE) program, version 4.1 which serves as a user interface. A color monitor is recommended for displaying maps on video display devices. Data for rendering regional maps is included with this package. The standard distribution medium for the UNIX version of GEMPAK 5.1 is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the VMS version of GEMPAK 5.1 is a 6250 BPI 9-track magnetic tape in DEC VAX BACKUP format. The VMS version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. This program was developed in 1985. The current version, GEMPAK 5.1, was released in 1992. The package is delivered with source code. An extensive collection of subroutine libraries allows users to format data for use by GEMPAK, to develop new programs, and to enhance existing ones.
Peuquet, D.J.
1981-01-01
Current graphic devices suitable for high-speed computer input and output of cartographic data are tending more and more to be raster-oriented, such as the rotating drum scanner and the color raster display. However, the majority of commonly used manipulative techniques in computer-assisted cartography and automated spatial data handling continue to require that the data be in vector format. The current article is the second part of a two-part paper that examines the state of the art in these conversion techniques. - from Author
Stork Color Proofing Technology
NASA Astrophysics Data System (ADS)
Ekman, C. Frederick
1989-04-01
For the past few years, Stork Colorproofing B.V. has been marketing an analog color proofing system in Europe based on electrophoto-graphic technology it pioneered for the purpose of high resolution, high fidelity color imaging in the field of the Graphic Arts. Based in part on this technology, it will make available on a commercial basis a digital color proofing system in 1989. Proofs from both machines will provide an exact reference for the user and will look, feel, and behave in a reproduction sense like the printed press sheet.
Liquid-crystal displays for medical imaging: a discussion of monochrome versus color
NASA Astrophysics Data System (ADS)
Wright, Steven L.; Samei, Ehsan
2004-05-01
A common view is that color displays cannot match the performance of monochrome displays, normally used for diagnostic x-ray imaging. This view is based largely on historical experience with cathode-ray tube (CRT) displays, and does not apply in the same way to liquid-crystal displays (LCDs). Recent advances in color LCD technology have considerably narrowed performance differences with monochrome LCDs for medical applications. The most significant performance advantage of monochrome LCDs is higher luminance, a concern for use under bright ambient conditions. LCD luminance is limited primarily by backlight design, yet to be optimized for color LCDs for medical applications. Monochrome LCDs have inherently higher contrast than color LCDs, but this is not a major advantage under most conditions. There is no practical difference in luminance precision between color and monochrome LCDs, with a slight theoretical advantage for color. Color LCDs can provide visualization and productivity enhancement for medical applications, using digital drive from standard commercial graphics cards. The desktop computer market for color LCDs far exceeds the medical monitor market, with an economy of scale. The performance-to-price ratio for color LCDs is much higher than monochrome, and warrants re-evaluation for medical applications.
NASA Technical Reports Server (NTRS)
Fales, Janine L.
1991-01-01
The capabilities of the postprocessing program CANDI (Color Animation of Nastran DIsplacements) were expanded to accept results from axisymmetric analysis. An auxiliary program, ANIMATE, was developed to allow color display of CANDI output on the IRIS 4D-series workstations. The user can interactively manipulate the graphics display by three-dimensional rotations, translations, and scaling through the use of the keyboard and/or dials box. The user can also specify what portion of the model is displayed. These developments are limited to the display of complex displacements calculated with the NASHUA/NASTRAN procedure for structural acoustics analysis.
Forman, Bruce H.; Eccles, Randy; Piggins, Judith; Raila, Wayne; Estey, Greg; Barnett, G. Octo
1990-01-01
We have developed a visually oriented, computer-controlled learning environment designed for use by students of gross anatomy. The goals of this module are to reinforce the concepts of organ relationships and topography by using computed axial tomographic (CAT) images accessed from a videodisc integrated with color graphics and to introduce students to cross-sectional radiographic anatomy. We chose to build the program around CAT scan images because they not only provide excellent structural detail but also offer an anatomic orientation (transverse) that complements that used in the dissection laboratory (basically a layer-by-layer, anterior-to-posterior, or coronal approach). Our system, built using a Microsoft Windows-386 based authoring environment which we designed and implemented, integrates text, video images, and graphics into a single screen display. The program allows both user browsing of information, facilitated by hypertext links, and didactic sessions including mini-quizzes for self-assessment.
Wrist display concept demonstration based on 2-in. color AMOLED
NASA Astrophysics Data System (ADS)
Meyer, Frederick M.; Longo, Sam J.; Hopper, Darrel G.
2004-09-01
The wrist watch needs an upgrade. Recent advances in optoelectronics, microelectronics, and communication theory have established a technology base that now make the multimedia Dick Tracy watch attainable during the next decade. As a first step towards stuffing the functionality of an entire personnel computer (PC) and television receiver under a watch face, we have set a goal of providing wrist video capability to warfighters. Commercial sector work on the wrist form factor already includes all the functionality of a personal digital assistant (PDA) and full PC operating system. Our strategy is to leverage these commercial developments. In this paper we describe our use of a 2.2 in. diagonal color active matrix light emitting diode (AMOLED) device as a wrist-mounted display (WMD) to present either full motion video or computer generated graphical image formats.
NASA Astrophysics Data System (ADS)
Yamaguchi, Masahiro; Haneishi, Hideaki; Fukuda, Hiroyuki; Kishimoto, Junko; Kanazawa, Hiroshi; Tsuchida, Masaru; Iwama, Ryo; Ohyama, Nagaaki
2006-01-01
In addition to the great advancement of high-resolution and large-screen imaging technology, the issue of color is now receiving considerable attention as another aspect than the image resolution. It is difficult to reproduce the original color of subject in conventional imaging systems, and that obstructs the applications of visual communication systems in telemedicine, electronic commerce, and digital museum. To breakthrough the limitation of conventional RGB 3-primary systems, "Natural Vision" project aims at an innovative video and still-image communication technology with high-fidelity color reproduction capability, based on spectral information. This paper summarizes the results of NV project including the development of multispectral and multiprimary imaging technologies and the experimental investigations on the applications to medicine, digital archives, electronic commerce, and computer graphics.
AFTOMS Technology Issues and Alternatives Report
1989-12-01
color , resolu- power requirements, physi- tion; memory , processor speed; cal and weather rugged- IAN interfaces, etc,) f,: these ness. display...Telephone and Telegraph 3 CD-I Compact Disk - Interactive CD-ROM Compact Disk-Read Only Memory CGM Computer Graphics Metafile CNWDI Critical Nuclear...Database Management System RFP Request For Proposal 3 RFS Remote File System ROM Read Only Memory 3 S SA-ALC San Antonio Air Logistics Center 3 SAC
ERIC Educational Resources Information Center
Post, Susan
1975-01-01
An art teacher described an elective course in graphics which was designed to enlarge a student's knowledge of value, color, shape within a shape, transparency, line and texture. This course utilized the technique of working a multi-colored print from a single block that was first introduced by Picasso. (Author/RK)
2014-01-01
Background Ambiscript is a graphically-designed nucleic acid notation that uses symbol symmetries to support sequence complementation, highlight biologically-relevant palindromes, and facilitate the analysis of consensus sequences. Although the original Ambiscript notation was designed to easily represent consensus sequences for multiple sequence alignments, the notation’s black-on-white ambiguity characters are unable to reflect the statistical distribution of nucleotides found at each position. We now propose a color-augmented ambigraphic notation to encode the frequency of positional polymorphisms in these consensus sequences. Results We have implemented this color-coding approach by creating an Adobe Flash® application ( http://www.ambiscript.org) that shades and colors modified Ambiscript characters according to the prevalence of the encoded nucleotide at each position in the alignment. The resulting graphic helps viewers perceive biologically-relevant patterns in multiple sequence alignments by uniquely combining color, shading, and character symmetries to highlight palindromes and inverted repeats in conserved DNA motifs. Conclusion Juxtaposing an intuitive color scheme over the deliberate character symmetries of an ambigraphic nucleic acid notation yields a highly-functional nucleic acid notation that maximizes information content and successfully embodies key principles of graphic excellence put forth by the statistician and graphic design theorist, Edward Tufte. PMID:24447494
Culvert analysis program for indirect measurement of discharge
Fulford, Janice M.; ,
1993-01-01
A program based on the U.S. Geological Survey (USGS) methods for indirectly computing peak discharges through culverts allows users to employ input data formats used by the water surface profile program (WSPRO). The program can be used to compute discharge rating surfaces or curves that describe the behavior of flow through a particular culvert or to compute discharges from measurements of upstream of the gradually varied flow equations and has been adapted slightly to provide solutions that minimize the need for the user to determine between different flow regimes. The program source is written in Fortran 77 and has been run on mini-computers and personal computers. The program does not use or require graphics capability, a color monitor, or a mouse.
Rapid preparation of lecture slides.
Persson, A V; Frusha, J D; Chevalier, R J
1985-02-01
When lecture slides must be prepared at a moment's notice, these methods of rapid preparation will allow you to create good quality slides. Although rush jobs are usually associated with higher costs, using these methods will keep the price per slide to a minimum. An investment must be made for the initial equipment, but the cost per slide is much less than that of slides produced by the standard methods. Type produced by typewriters or computer printers is adequate for most slides, but better slides can be produced with KroyType or Letraset letters. The KL film is preferred for reverse slides of text or line drawings, and the RPC film for production of radiographic slides. If an X-omat developer is not available, Polaroid film is a good alternative for rapid production of slides. The KL reverse slide projects best and can be colored, but RPC film produces a good positive slide of typed material. We have also photographed from a computer terminal screen using the KL film to make positive slides, the Polaroid continuous tone film for reverse slides, and Polaroid color film for color slides of material composed on a computer terminal with multicolor and graphics capabilities.
NASA Astrophysics Data System (ADS)
Lee, Kyung Jae
2005-03-01
As an investigation of color categorization in language and perception, this research intends to study the affective associations between certain colors and different media content (i.e., movie genres). Compared to non-entertainment graphics (medical imaging and engineering graphics), entertainment graphics (video games and movies) are designed to deliver emotionally stimulating content to audiences. Based on an online color survey of 19 subjects, this study investigated whether or not subjects had different color preferences on diverse movie genres. Instead of providing predefined limited number of color chips (or pictures) as stimuli, this study was conducted by asking the subjects to visualize their own images of movie genres and to select their preferred colors through an online RGB color palette. By providing a combined application interface of three color slides (red, green, blue) and 216 digital color cells, the subjects were interactively able to select their preferred colors of different movie genres. To compare the distribution of movie genres, the user selected colors were mapped on CIE chromaticity diagram. This study also investigated preferred color naming of different movie genres as well as three primary color names of the subjects" most favorite genre. The results showed that the subjects had different color associations with specific movie genres as well as certain genres showed higher individual differences. Regardless of genre differences, the subjects selected blue, red or green as their three primary color names that represent their favorite movie genres. Also, the results supports Berlin & Kay"s eleven color terms.
Fast distributed large-pixel-count hologram computation using a GPU cluster.
Pan, Yuechao; Xu, Xuewu; Liang, Xinan
2013-09-10
Large-pixel-count holograms are one essential part for big size holographic three-dimensional (3D) display, but the generation of such holograms is computationally demanding. In order to address this issue, we have built a graphics processing unit (GPU) cluster with 32.5 Tflop/s computing power and implemented distributed hologram computation on it with speed improvement techniques, such as shared memory on GPU, GPU level adaptive load balancing, and node level load distribution. Using these speed improvement techniques on the GPU cluster, we have achieved 71.4 times computation speed increase for 186M-pixel holograms. Furthermore, we have used the approaches of diffraction limits and subdivision of holograms to overcome the GPU memory limit in computing large-pixel-count holograms. 745M-pixel and 1.80G-pixel holograms were computed in 343 and 3326 s, respectively, for more than 2 million object points with RGB colors. Color 3D objects with 1.02M points were successfully reconstructed from 186M-pixel hologram computed in 8.82 s with all the above three speed improvement techniques. It is shown that distributed hologram computation using a GPU cluster is a promising approach to increase the computation speed of large-pixel-count holograms for large size holographic display.
Naval Research Lab Review 1999
1999-01-01
Center offers high-quality out- put from computer-generated files in EPS, Postscript, PICT, TIFF, Photoshop , and PowerPoint. Photo- graphic-quality color...767-3200 (228) 688-3390 (831) 656-4731 (410) 257-4000 DSN 297- or 754- 485 878 — Direct- in -Dialing 767- or 404- 688 656 257 Public Affairs (202) 767...research described in this NRL Review can be obtained from the Public Affairs Office, Code 1230, (202) 767-2541. Information concerning Technology
A Call for Considering Color Vision Deficiency When Creating Graphics for Psychology Reports.
Frane, Andrew
2015-01-01
Although color vision deficiency (CVD) is fairly common, it is often not adequately considered when data is presented in color graphics. This study found that CVD tends to be mentioned neither in the author guidelines of psychology journals nor in the standard publication manuals of the field (e.g., the publication manuals of the American Psychological Association and the American Medical Association). To illustrate the relevance of this problem, a panel of scholars with CVD was used to evaluate the color figures in three respected psychological science journals. Results suggested that a substantial proportion of those figures were needlessly confusing for viewers with CVD and could have been easily improved through simple adjustments. Based on prior literature and on feedback from the panelists, recommendations are made for improving the accessibility of graphics in psychology reports.
In-Situ Swelling For Holographic Color Control
NASA Astrophysics Data System (ADS)
Walker Parker, Julie L.; Benton, Stephen A.
1989-05-01
Deliberate variations of the emulsion thickness between holographic exposures and reconstruction produce a range of output wavelengths from a fixed exposure wavelength, a technique known as "pseudo-color" multi-color reflection holography. Usual methods require the removal of the film or plate from the holographic setup between exposures for imbibition of a swelling agent, followed by drying and replacement, so that a retention of the swelling agent forces a physical increase in the thickness of the emulsion. The density (and hence the thickness) of the gelatin binder can also be varied by changing its electrolytic environment. By immersing the holographic emulsion in a suitable solution, allowing it to come to a new equilibrium thickness, and exposing with a long-wavelength laser, shorter wavelength reconstructions can be obtained without removing the film or plate from the setup. Accurate changes of solution can make a precise sequence of swellings possible, producing multiple reconstruction colors from a set of constant-wavelength recordings. Here we describe pre-treatments of the emulsion that make rapid and stable equilibria possible, and swelling bath sequences that produce color primaries suitable for full-color computer-graphic holographic imagery.
Techniques for animation of CFD results. [computational fluid dynamics
NASA Technical Reports Server (NTRS)
Horowitz, Jay; Hanson, Jeffery C.
1992-01-01
Video animation is becoming increasingly vital to the computational fluid dynamics researcher, not just for presentation, but for recording and comparing dynamic visualizations that are beyond the current capabilities of even the most powerful graphic workstation. To meet these needs, Lewis Research Center has recently established a facility to provide users with easy access to advanced video animation capabilities. However, producing animation that is both visually effective and scientifically accurate involves various technological and aesthetic considerations that must be understood both by the researcher and those supporting the visualization process. These considerations include: scan conversion, color conversion, and spatial ambiguities.
GPU Accelerated Vector Median Filter
NASA Technical Reports Server (NTRS)
Aras, Rifat; Shen, Yuzhong
2011-01-01
Noise reduction is an important step for most image processing tasks. For three channel color images, a widely used technique is vector median filter in which color values of pixels are treated as 3-component vectors. Vector median filters are computationally expensive; for a window size of n x n, each of the n(sup 2) vectors has to be compared with other n(sup 2) - 1 vectors in distances. General purpose computation on graphics processing units (GPUs) is the paradigm of utilizing high-performance many-core GPU architectures for computation tasks that are normally handled by CPUs. In this work. NVIDIA's Compute Unified Device Architecture (CUDA) paradigm is used to accelerate vector median filtering. which has to the best of our knowledge never been done before. The performance of GPU accelerated vector median filter is compared to that of the CPU and MPI-based versions for different image and window sizes, Initial findings of the study showed 100x improvement of performance of vector median filter implementation on GPUs over CPU implementations and further speed-up is expected after more extensive optimizations of the GPU algorithm .
NASA Technical Reports Server (NTRS)
Ozsoy, T.; Ochs, J. B.
1984-01-01
The development of a general link between three dimensional wire frame models and rigid solid models is discussed. An interactive computer graphics program was developed to serve as a front end to an algorithm (COSMIC Program No. ARC-11446) which offers a general solution to the hidden line problem where the input data is either line segments of n-sided planar polygons of the most general type with internal boundaries. The program provides a general interface to CAD/CAM data bases and is implemented for models created on the Unigraphics VAX 11/780-based CAD/CAM systems with the display software written for DEC's VS11 color graphics devices.
Incorporating 3-dimensional models in online articles.
Cevidanes, Lucia H S; Ruellas, Antonio C O; Jomier, Julien; Nguyen, Tung; Pieper, Steve; Budin, Francois; Styner, Martin; Paniagua, Beatriz
2015-05-01
The aims of this article are to introduce the capability to view and interact with 3-dimensional (3D) surface models in online publications, and to describe how to prepare surface models for such online 3D visualizations. Three-dimensional image analysis methods include image acquisition, construction of surface models, registration in a common coordinate system, visualization of overlays, and quantification of changes. Cone-beam computed tomography scans were acquired as volumetric images that can be visualized as 3D projected images or used to construct polygonal meshes or surfaces of specific anatomic structures of interest. The anatomic structures of interest in the scans can be labeled with color (3D volumetric label maps), and then the scans are registered in a common coordinate system using a target region as the reference. The registered 3D volumetric label maps can be saved in .obj, .ply, .stl, or .vtk file formats and used for overlays, quantification of differences in each of the 3 planes of space, or color-coded graphic displays of 3D surface distances. All registered 3D surface models in this study were saved in .vtk file format and loaded in the Elsevier 3D viewer. In this study, we describe possible ways to visualize the surface models constructed from cone-beam computed tomography images using 2D and 3D figures. The 3D surface models are available in the article's online version for viewing and downloading using the reader's software of choice. These 3D graphic displays are represented in the print version as 2D snapshots. Overlays and color-coded distance maps can be displayed using the reader's software of choice, allowing graphic assessment of the location and direction of changes or morphologic differences relative to the structure of reference. The interpretation of 3D overlays and quantitative color-coded maps requires basic knowledge of 3D image analysis. When submitting manuscripts, authors can now upload 3D models that will allow readers to interact with or download them. Such interaction with 3D models in online articles now will give readers and authors better understanding and visualization of the results. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
A synthesis of research on color, typography and graphics as they relate to readability
NASA Astrophysics Data System (ADS)
Lamoreaux, M. E.
1985-09-01
A foundation for future research on the use of color, typography, and graphics to improve readability is provided. Articles from the broad fields of education and psychology, as well as from the fields of journalism and printing, have been reviewed for research relating color, typography, and graphics to reading ease, speed, or comprehension. The most relevant articles reviewed are presented in an annoated bibliography; the remaining articles are also presented in bibliographic format. This literature review indicates that recognition and recall of printed material may be improved through the use of headings, underlining, color, and, especially, illustrations. Current research suggests that individuals can remember pictures far longer than past research indicates. However, researchers are divided on the usefulness of illustrations to improve reading comprehension. On the other hand, reading comprehension can be improved through the use of statistical graphs and tables if the reader is properly trained in the use of these devices.
Bix, Laura; Seo, Do Chan; Ladoni, Moslem; Brunk, Eric; Becker, Mark W
2016-01-01
Effective standardization of medical device labels requires objective study of varied designs. Insufficient empirical evidence exists regarding how practitioners utilize and view labeling. Measure the effect of graphic elements (boxing information, grouping information, symbol use and color-coding) to optimize a label for comparison with those typical of commercial medical devices. Participants viewed 54 trials on a computer screen. Trials were comprised of two labels that were identical with regard to graphics, but differed in one aspect of information (e.g., one had latex, the other did not). Participants were instructed to select the label along a given criteria (e.g., latex containing) as quickly as possible. Dependent variables were binary (correct selection) and continuous (time to correct selection). Eighty-nine healthcare professionals were recruited at Association of Surgical Technologists (AST) conferences, and using a targeted e-mail of AST members. Symbol presence, color coding and grouping critical pieces of information all significantly improved selection rates and sped time to correct selection (α = 0.05). Conversely, when critical information was graphically boxed, probability of correct selection and time to selection were impaired (α = 0.05). Subsequently, responses from trials containing optimal treatments (color coded, critical information grouped with symbols) were compared to two labels created based on a review of those commercially available. Optimal labels yielded a significant positive benefit regarding the probability of correct choice ((P<0.0001) LSM; UCL, LCL: 97.3%; 98.4%, 95.5%)), as compared to the two labels we created based on commercial designs (92.0%; 94.7%, 87.9% and 89.8%; 93.0%, 85.3%) and time to selection. Our study provides data regarding design factors, namely: color coding, symbol use and grouping of critical information that can be used to significantly enhance the performance of medical device labels.
Image-Based Techniques for Digitizing Environments and Artifacts
2003-01-01
renderings in Fig. 7, and Maya Martinez arranged for the use of the cultural ar- tifacts used in this work. This work has been funded by Interval...Electronic Imaging and Computer Graphics in Mu- seum and Archaeology , pages 199–209, 1996. [3] R. Baribeau, M. Rioux, and G. Godin. Color reflectance...artifacts. In Proc. 2nd Inter- national Symposium on Virtual Reality, Archaeology , and Cultural Heritage (VAST 2001), pages 333–342, December 2001. [12
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-18
... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,142] World Color Mt. Morris, IL LLC, Premedia Chicago Division, Currently Known as Quad/Graphics, Inc., Including On-Site Leased Workers From Creative Group and Creative Circle, Schaumburg, IL; Amended Certification Regarding Eligibility To Apply for Worker Adjustment Assistance...
WORM - WINDOWED OBSERVATION OF RELATIVE MOTION
NASA Technical Reports Server (NTRS)
Bauer, F.
1994-01-01
The Windowed Observation of Relative Motion, WORM, program is primarily intended for the generation of simple X-Y plots from data created by other programs. It allows the user to label, zoom, and change the scale of various plots. Three dimensional contour and line plots are provided, although with more limited capabilities. The input data can be in binary or ASCII format, although all data must be in the same format. A great deal of control over the details of the plot is provided, such as gridding, size of tick marks, colors, log/semilog capability, time tagging, and multiple and phase plane plots. Many color and monochrome graphics terminals and hard copy printer/plotters are supported. The WORM executive commands, menu selections and macro files can be used to develop plots and tabular data, query the WORM Help library, retrieve data from input files, and invoke VAX DCL commands. WORM generated plots are displayed on local graphics terminals and can be copied using standard hard copy capabilities. Some of the graphics features of WORM include: zooming and dezooming various portions of the plot; plot documentation including curve labeling and function listing; multiple curves on the same plot; windowing of multiple plots and insets of the same plot; displaying a specific on a curve; and spinning the curve left, right, up, and down. WORM is written in PASCAL for interactive execution and has been implemented on a DEC VAX computer operating under VMS 4.7 with a virtual memory requirement of approximately 392K of 8 bit bytes. It uses the QPLOT device independent graphics library included with WORM. It was developed in 1988.
Blend Shape Interpolation and FACS for Realistic Avatar
NASA Astrophysics Data System (ADS)
Alkawaz, Mohammed Hazim; Mohamad, Dzulkifli; Basori, Ahmad Hoirul; Saba, Tanzila
2015-03-01
The quest of developing realistic facial animation is ever-growing. The emergence of sophisticated algorithms, new graphical user interfaces, laser scans and advanced 3D tools imparted further impetus towards the rapid advancement of complex virtual human facial model. Face-to-face communication being the most natural way of human interaction, the facial animation systems became more attractive in the information technology era for sundry applications. The production of computer-animated movies using synthetic actors are still challenging issues. Proposed facial expression carries the signature of happiness, sadness, angry or cheerful, etc. The mood of a particular person in the midst of a large group can immediately be identified via very subtle changes in facial expressions. Facial expressions being very complex as well as important nonverbal communication channel are tricky to synthesize realistically using computer graphics. Computer synthesis of practical facial expressions must deal with the geometric representation of the human face and the control of the facial animation. We developed a new approach by integrating blend shape interpolation (BSI) and facial action coding system (FACS) to create a realistic and expressive computer facial animation design. The BSI is used to generate the natural face while the FACS is employed to reflect the exact facial muscle movements for four basic natural emotional expressions such as angry, happy, sad and fear with high fidelity. The results in perceiving the realistic facial expression for virtual human emotions based on facial skin color and texture may contribute towards the development of virtual reality and game environment of computer aided graphics animation systems.
Extended Colour--Some Methods and Applications.
ERIC Educational Resources Information Center
Dean, P. J.; Murkett, A. J.
1985-01-01
Describes how color graphics are built up on microcomputer displays and how a range of colors can be produced. Discusses the logic of color formation, noting that adding/subtracting color can be conveniently demonstrated. Color generating techniques in physics (resistor color coding and continuous spectrum production) are given with program…
23 CFR Appendix A to Part 1313 - Tamper Resistant Driver's License
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Block graphics. (15) Security fonts and graphics with known hidden flaws. (16) Card stock, layer with colors. (17) Micro-graphics. (18) Retroflective security logos. (19) Machine readable technologies such... permit that has one or more of the following security features: (1) Ghost image. (2) Ghost graphic. (3...
NASA Astrophysics Data System (ADS)
Kalvin, Alan D.
2002-06-01
The importance of using perceptual colormaps for visualizing numerical data is well established in the fields of scientific visualization, computer graphics and color science and related areas of research. In practice however, the use of perceptual colormaps tends to be the exception rather than the rule. In general it is difficult for end-users to find suitable colormaps. In addition, even when such colormaps are available, the inherent variability in color reproduction among computer displays makes it very difficult for the users to verify that these colormaps do indeed preserve their perceptual characteristics when used on different displays. Generally, verification requires display profiling (evaluating the display's color reproduction characteristics), using a colorimeter or a similar type of measuring device. With the growth of the Internet, and the resulting proliferation of remote, client-based displays, the profiling problem has become even more difficult, and in many cases, impossible. We present a method for enumerating and generating perceptual colormaps in such a way that ensures that the perceptual characteristics of the colormaps are maintained for over a wide range of different displays. This method constructs colormaps that are guaranteed to be 'perceptually correct' for a given display by using whatever partial profile information of the display is available. We use the term 'graduated profiling' to describe this method of partial profiling.
Presenting self-monitoring test results for consumers: the effects of graphical formats and age.
Tao, Da; Yuan, Juan; Qu, Xingda
2018-05-11
To examine the effects of graphical formats and age on consumers' comprehension and perceptions of the use of self-monitoring test results. Participants (36 older and 36 young adults) were required to perform verbatim comprehension and value interpretation tasks with hypothetical self-monitoring test results. The test results were randomly presented by four reference range number lines: basic, color enhanced, color/text enhanced, and personalized information enhanced formats. We measured participants' task performance and eye movement data during task completion, and their perceptions and preference of the graphical formats. The 4 graphical formats yielded comparable task performance, while text/color and personalized information enhanced formats were believed to be easier and more useful in information comprehension, and led to increased confidence in correct comprehension of test results, compared with other formats (all p's < .05). Perceived health risk increased as the formats applied more information cues (p = .008). There were age differences in task performance and visual attention (all p's < .01), while young and older adults had similar perceptions for the 4 formats. Personalized information enhanced format was preferred by both groups. Text/color and personalized information cues appear to be useful for comprehending test results. Future work can be directed to improve the design of graphical formats especially for older adults, and to assess the formats in clinical settings.
... color perception of its employees, such as graphic design, photography, and food quality inspection. The Farnsworth Lantern ... challenging. Color blindness can go undetected for some time since children will often try to hide their ...
Commercial and industrial applications of color ink jet: a technological perspective
NASA Astrophysics Data System (ADS)
Dunand, Alain
1996-03-01
In just 5 years, color ink-jet has become the dominant technology for printing color images and graphics in the office and home markets. In commercial printing, the traditional printing processes are being influenced by new digital techniques. Color ink-jet proofing, and concepts such as computer to film/plate or digital processes are contributing to the evolution of the industry. In industrial color printing, the penetration of digital techniques is just beginning. All widely used conventional contact printing technologies involve mechanical printing forms including plates, screens or engraved cylinders. Such forms, which need to be newly created and set up for each job, increase costs. In our era of fast changing customer demands, growing needs for customization, and increasing use of digital exchange of information, the commercial and industrial printing markets represent an enormous potential for digital printing technologies. The adoption characteristics for the use of color ink-jet in these industries are discussed. Examples of color ink-jet applications in the fields of billboard printing, floor/wall covering decoration, and textile printing are described. The requirements on print quality, productivity, reliability, substrate compatibility, and color lead to the consideration of various types of ink-jet technologies. Key technical enabling factors and directions for future improvements are presented.
Preparing Colorful Astronomical Images and Illustrations
NASA Astrophysics Data System (ADS)
Levay, Z. G.; Frattare, L. M.
2001-12-01
We present techniques for using mainstream graphics software, specifically Adobe Photoshop and Illustrator, for producing composite color images and illustrations from astronomical data. These techniques have been used with numerous images from the Hubble Space Telescope to produce printed and web-based news, education and public presentation products as well as illustrations for technical publication. While Photoshop is not intended for quantitative analysis of full dynamic range data (as are IRAF or IDL, for example), we have had much success applying Photoshop's numerous, versatile tools to work with scaled images, masks, text and graphics in multiple semi-transparent layers and channels. These features, along with its user-oriented, visual interface, provide convenient tools to produce high-quality, full-color images and graphics for printed and on-line publication and presentation.
Optimum color filters for CCD digital cameras
NASA Astrophysics Data System (ADS)
Engelhardt, Kai; Kunz, Rino E.; Seitz, Peter; Brunner, Harald; Knop, Karl
1993-12-01
As part of the ESPRIT II project No. 2103 (MASCOT) a high performance prototype color CCD still video camera was developed. Intended for professional usage such as in the graphic arts, the camera provides a maximum resolution of 3k X 3k full color pixels. A high colorimetric performance was achieved through specially designed dielectric filters and optimized matrixing. The color transformation was obtained by computer simulation of the camera system and non-linear optimization which minimized the perceivable color errors as measured in the 1976 CIELUV uniform color space for a set of about 200 carefully selected test colors. The color filters were designed to allow perfect colorimetric reproduction in principle and at the same time with imperceptible color noise and with special attention to fabrication tolerances. The camera system includes a special real-time digital color processor which carries out the color transformation. The transformation can be selected from a set of sixteen matrices optimized for different illuminants and output devices. Because the actual filter design was based on slightly incorrect data the prototype camera showed a mean colorimetric error of 2.7 j.n.d. (CIELUV) in experiments. Using correct input data in the redesign of the filters, a mean colorimetric error of only 1 j.n.d. (CIELUV) seems to be feasible, implying that it is possible with such an optimized color camera to achieve such a high colorimetric performance that the reproduced colors in an image cannot be distinguished from the original colors in a scene, even in direct comparison.
NASA Technical Reports Server (NTRS)
Barrett, Eamon B. (Editor); Pearson, James J. (Editor)
1989-01-01
Image understanding concepts and models, image understanding systems and applications, advanced digital processors and software tools, and advanced man-machine interfaces are among the topics discussed. Particular papers are presented on such topics as neural networks for computer vision, object-based segmentation and color recognition in multispectral images, the application of image algebra to image measurement and feature extraction, and the integration of modeling and graphics to create an infrared signal processing test bed.
Invisible photonic printing: computer designing graphics, UV printing and shown by a magnetic field
Hu, Haibo; Tang, Jian; Zhong, Hao; Xi, Zheng; Chen, Changle; Chen, Qianwang
2013-01-01
Invisible photonic printing, an emerging printing technique, is particularly useful for steganography and watermarking for anti-counterfeiting purposes. However, many challenges exist in order to realize this technique. Herein, we describe a novel photonic printing strategy targeting to overcome these challenges and realize fast and convenient fabrication of invisible photonic prints with good tenability and reproducibility. With this novel photonic printing technique, a variety of graphics with brilliant colors can be perfectly hidden in a soft and waterproof photonic-paper. The showing and hiding of the latent photonic prints are instantaneous with magnet as the only required instrument. In addition, this strategy has excellent practicality and allows end-user control of the structural design utilizing simple software on a PC. PMID:23508071
Caple, Jodi; Stephan, Carl N
2017-05-01
Graphic exemplars of cranial sex and ancestry are essential to forensic anthropology for standardizing casework, training analysts, and communicating group trends. To date, graphic exemplars have comprised hand-drawn sketches, or photographs of individual specimens, which risks bias/subjectivity. Here, we performed quantitative analysis of photographic data to generate new photo-realistic and objective exemplars of skull form. Standardized anterior and left lateral photographs of skulls for each sex were analyzed in the computer graphics program Psychomorph for the following groups: South African Blacks, South African Whites, American Blacks, American Whites, and Japanese. The average cranial form was calculated for each photographic view, before the color information for every individual was warped to the average form and combined to produce statistical averages. These mathematically derived exemplars-and their statistical exaggerations or extremes-retain the high-resolution detail of the original photographic dataset, making them the ideal casework and training reference standards. © 2016 American Academy of Forensic Sciences.
AirShow 1.0 CFD Software Users' Guide
NASA Technical Reports Server (NTRS)
Mohler, Stanley R., Jr.
2005-01-01
AirShow is visualization post-processing software for Computational Fluid Dynamics (CFD). Upon reading binary PLOT3D grid and solution files into AirShow, the engineer can quickly see how hundreds of complex 3-D structured blocks are arranged and numbered. Additionally, chosen grid planes can be displayed and colored according to various aerodynamic flow quantities such as Mach number and pressure. The user may interactively rotate and translate the graphical objects using the mouse. The software source code was written in cross-platform Java, C++, and OpenGL, and runs on Unix, Linux, and Windows. The graphical user interface (GUI) was written using Java Swing. Java also provides multiple synchronized threads. The Java Native Interface (JNI) provides a bridge between the Java code and the C++ code where the PLOT3D files are read, the OpenGL graphics are rendered, and numerical calculations are performed. AirShow is easy to learn and simple to use. The source code is available for free from the NASA Technology Transfer and Partnership Office.
Creating experimental color harmony map
NASA Astrophysics Data System (ADS)
Chamaret, Christel; Urban, Fabrice; Lepinel, Josselin
2014-02-01
Starting in the 17th century with Newton, color harmony is a topic that did not reach a consensus on definition, representation or modeling so far. Previous work highlighted specific characteristics for color harmony on com- bination of color doublets or triplets by means of a human rating on a harmony scale. However, there were no investigation involving complex stimuli or pointing out how harmony is spatially located within a picture. The modeling of such concept as well as a reliable ground-truth would be of high value for the community, since the applications are wide and concern several communities: from psychology to computer graphics. We propose a protocol for creating color harmony maps from a controlled experiment. Through an eye-tracking protocol, we focus on the identification of disharmonious colors in pictures. The experiment was composed of a free viewing pass in order to let the observer be familiar with the content before a second pass where we asked "to search for the most disharmonious areas in the picture". Twenty-seven observers participated to the experiments that was composed of a total of 30 different stimuli. The high inter-observer agreement as well as a cross-validation confirm the validity of the proposed ground-truth.
Li, Xiangrui; Lu, Zhong-Lin
2012-02-29
Display systems based on conventional computer graphics cards are capable of generating images with 8-bit gray level resolution. However, most experiments in vision research require displays with more than 12 bits of luminance resolution. Several solutions are available. Bit++ (1) and DataPixx (2) use the Digital Visual Interface (DVI) output from graphics cards and high resolution (14 or 16-bit) digital-to-analog converters to drive analog display devices. The VideoSwitcher (3) described here combines analog video signals from the red and blue channels of graphics cards with different weights using a passive resister network (4) and an active circuit to deliver identical video signals to the three channels of color monitors. The method provides an inexpensive way to enable high-resolution monochromatic displays using conventional graphics cards and analog monitors. It can also provide trigger signals that can be used to mark stimulus onsets, making it easy to synchronize visual displays with physiological recordings or response time measurements. Although computer keyboards and mice are frequently used in measuring response times (RT), the accuracy of these measurements is quite low. The RTbox is a specialized hardware and software solution for accurate RT measurements. Connected to the host computer through a USB connection, the driver of the RTbox is compatible with all conventional operating systems. It uses a microprocessor and high-resolution clock to record the identities and timing of button events, which are buffered until the host computer retrieves them. The recorded button events are not affected by potential timing uncertainties or biases associated with data transmission and processing in the host computer. The asynchronous storage greatly simplifies the design of user programs. Several methods are available to synchronize the clocks of the RTbox and the host computer. The RTbox can also receive external triggers and be used to measure RT with respect to external events. Both VideoSwitcher and RTbox are available for users to purchase. The relevant information and many demonstration programs can be found at http://lobes.usc.edu/.
Process industries - graphic arts, paint, plastics, and textiles: all cousins under the skin
NASA Astrophysics Data System (ADS)
Simon, Frederick T.
2002-06-01
The origin and selection of colors in the process industries is different depending upon how the creative process is applied and what are the capabilities of the manufacturing process. The fashion industry (clothing) with its supplier of textiles is the leader of color innovation. Color may be introduced into textile products at several stages in the manufacturing process from fiber through yarn and finally into fabric. The paint industry is divided into two major applications: automotive and trades sales. Automotive colors are selected by stylists who are in the employ of the automobile manufacturers. Trade sales paint on the other hand can be decided by paint manufactureres or by invididuals who patronize custom mixing facilities. Plastics colors are for the most part decided by the industrial designers who include color as part of the design. Graphic Arts (painting) is a burgeoning industry that uses color in image reproduction and package design. Except for text, printed material in color today has become the norm rather than an exception.
Computer graphics and the graphic artist
NASA Technical Reports Server (NTRS)
Taylor, N. L.; Fedors, E. G.; Pinelli, T. E.
1985-01-01
A centralized computer graphics system is being developed at the NASA Langley Research Center. This system was required to satisfy multiuser needs, ranging from presentation quality graphics prepared by a graphic artist to 16-mm movie simulations generated by engineers and scientists. While the major thrust of the central graphics system was directed toward engineering and scientific applications, hardware and software capabilities to support the graphic artists were integrated into the design. This paper briefly discusses the importance of computer graphics in research; the central graphics system in terms of systems, software, and hardware requirements; the application of computer graphics to graphic arts, discussed in terms of the requirements for a graphic arts workstation; and the problems encountered in applying computer graphics to the graphic arts. The paper concludes by presenting the status of the central graphics system.
NASADIG - NASA DEVICE INDEPENDENT GRAPHICS LIBRARY (AMDAHL VERSION)
NASA Technical Reports Server (NTRS)
Rogers, J. E.
1994-01-01
The NASA Device Independent Graphics Library, NASADIG, can be used with many computer-based engineering and management applications. The library gives the user the opportunity to translate data into effective graphic displays for presentation. The software offers many features which allow the user flexibility in creating graphics. These include two-dimensional plots, subplot projections in 3D-space, surface contour line plots, and surface contour color-shaded plots. Routines for three-dimensional plotting, wireframe surface plots, surface plots with hidden line removal, and surface contour line plots are provided. Other features include polar and spherical coordinate plotting, world map plotting utilizing either cylindrical equidistant or Lambert equal area projection, plot translation, plot rotation, plot blowup, splines and polynomial interpolation, area blanking control, multiple log/linear axes, legends and text control, curve thickness control, and multiple text fonts (18 regular, 4 bold). NASADIG contains several groups of subroutines. Included are subroutines for plot area and axis definition; text set-up and display; area blanking; line style set-up, interpolation, and plotting; color shading and pattern control; legend, text block, and character control; device initialization; mixed alphabets setting; and other useful functions. The usefulness of many routines is dependent on the prior definition of basic parameters. The program's control structure uses a serial-level construct with each routine restricted for activation at some prescribed level(s) of problem definition. NASADIG provides the following output device drivers: Selanar 100XL, VECTOR Move/Draw ASCII and PostScript files, Tektronix 40xx, 41xx, and 4510 Rasterizer, DEC VT-240 (4014 mode), IBM AT/PC compatible with SmartTerm 240 emulator, HP Lasergrafix Film Recorder, QMS 800/1200, DEC LN03+ Laserprinters, and HP LaserJet (Series III). NASADIG is written in FORTRAN and is available for several platforms. NASADIG 5.7 is available for DEC VAX series computers running VMS 5.0 or later (MSC-21801), Cray X-MP and Y-MP series computers running UNICOS (COS-10049), and Amdahl 5990 mainframe computers running UTS (COS-10050). NASADIG 5.1 is available for UNIX-based operating systems (MSC-22001). The UNIX version has been successfully implemented on Sun4 series computers running SunOS, SGI IRIS computers running IRIX, Hewlett Packard 9000 computers running HP-UX, and Convex computers running Convex OS (MSC-22001). The standard distribution medium for MSC-21801 is a set of two 6250 BPI 9-track magnetic tapes in DEC VAX BACKUP format. It is also available on a set of two TK50 tape cartridges in DEC VAX BACKUP format. The standard distribution medium for COS-10049 and COS-10050 is a 6250 BPI 9-track magnetic tape in UNIX tar format. Other distribution media and formats may be available upon request. The standard distribution medium for MSC-22001 is a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. Alternate distribution media and formats are available upon request. With minor modification, the UNIX source code can be ported to other platforms including IBM PC/AT series computers and compatibles. NASADIG is also available bundled with TRASYS, the Thermal Radiation Analysis System (COS-10026, DEC VAX version; COS-10040, CRAY version).
NASADIG - NASA DEVICE INDEPENDENT GRAPHICS LIBRARY (UNIX VERSION)
NASA Technical Reports Server (NTRS)
Rogers, J. E.
1994-01-01
The NASA Device Independent Graphics Library, NASADIG, can be used with many computer-based engineering and management applications. The library gives the user the opportunity to translate data into effective graphic displays for presentation. The software offers many features which allow the user flexibility in creating graphics. These include two-dimensional plots, subplot projections in 3D-space, surface contour line plots, and surface contour color-shaded plots. Routines for three-dimensional plotting, wireframe surface plots, surface plots with hidden line removal, and surface contour line plots are provided. Other features include polar and spherical coordinate plotting, world map plotting utilizing either cylindrical equidistant or Lambert equal area projection, plot translation, plot rotation, plot blowup, splines and polynomial interpolation, area blanking control, multiple log/linear axes, legends and text control, curve thickness control, and multiple text fonts (18 regular, 4 bold). NASADIG contains several groups of subroutines. Included are subroutines for plot area and axis definition; text set-up and display; area blanking; line style set-up, interpolation, and plotting; color shading and pattern control; legend, text block, and character control; device initialization; mixed alphabets setting; and other useful functions. The usefulness of many routines is dependent on the prior definition of basic parameters. The program's control structure uses a serial-level construct with each routine restricted for activation at some prescribed level(s) of problem definition. NASADIG provides the following output device drivers: Selanar 100XL, VECTOR Move/Draw ASCII and PostScript files, Tektronix 40xx, 41xx, and 4510 Rasterizer, DEC VT-240 (4014 mode), IBM AT/PC compatible with SmartTerm 240 emulator, HP Lasergrafix Film Recorder, QMS 800/1200, DEC LN03+ Laserprinters, and HP LaserJet (Series III). NASADIG is written in FORTRAN and is available for several platforms. NASADIG 5.7 is available for DEC VAX series computers running VMS 5.0 or later (MSC-21801), Cray X-MP and Y-MP series computers running UNICOS (COS-10049), and Amdahl 5990 mainframe computers running UTS (COS-10050). NASADIG 5.1 is available for UNIX-based operating systems (MSC-22001). The UNIX version has been successfully implemented on Sun4 series computers running SunOS, SGI IRIS computers running IRIX, Hewlett Packard 9000 computers running HP-UX, and Convex computers running Convex OS (MSC-22001). The standard distribution medium for MSC-21801 is a set of two 6250 BPI 9-track magnetic tapes in DEC VAX BACKUP format. It is also available on a set of two TK50 tape cartridges in DEC VAX BACKUP format. The standard distribution medium for COS-10049 and COS-10050 is a 6250 BPI 9-track magnetic tape in UNIX tar format. Other distribution media and formats may be available upon request. The standard distribution medium for MSC-22001 is a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. Alternate distribution media and formats are available upon request. With minor modification, the UNIX source code can be ported to other platforms including IBM PC/AT series computers and compatibles. NASADIG is also available bundled with TRASYS, the Thermal Radiation Analysis System (COS-10026, DEC VAX version; COS-10040, CRAY version).
EPA Communications Stylebook: Graphics Guide
Includes standards and guidance for graphics typography, layout, composition, color scheme, appropriate use of charts and graphs, logos and related symbols, and consistency with the message of accompanied content.
NASA Technical Reports Server (NTRS)
Montoya, R. J.; England, J. N.; Hatfield, J. J.; Rajala, S. A.
1981-01-01
The hardware configuration, software organization, and applications software for the NASA IKONAS color graphics display system are described. The systems were created at the Langley Research Center Display Device Laboratory to develop, evaluate, and demonstrate advanced generic concepts, technology, and systems integration techniques for electronic crew station systems of future civil aircraft. A minicomputer with 64K core memory acts as a host for a raster scan graphics display generator. The architectures of the hardware system and the graphics display system are provided. The applications software features a FORTRAN-based model of an aircraft, a display system, and the utility program for real-time communications. The model accepts inputs from a two-dimensional joystick and outputs a set of aircraft states. Ongoing and planned work for image segmentation/generation, specialized graphics procedures, and higher level language user interface are discussed.
NASA Technical Reports Server (NTRS)
Stanfill, D. F.
1994-01-01
Pixel Pusher is a Macintosh application used for viewing and performing minor enhancements on imagery. It will read image files in JPL's two primary image formats- VICAR and PDS - as well as the Macintosh PICT format. VICAR (NPO-18076) handles an array of image processing capabilities which may be used for a variety of applications including biomedical image processing, cartography, earth resources, and geological exploration. Pixel Pusher can also import VICAR format color lookup tables for viewing images in pseudocolor (256 colors). This program currently supports only eight bit images but will work on monitors with any number of colors. Arbitrarily large image files may be viewed in a normal Macintosh window. Color and contrast enhancement can be performed with a graphical "stretch" editor (as in contrast stretch). In addition, VICAR images may be saved as Macintosh PICT files for exporting into other Macintosh programs, and individual pixels can be queried to determine their locations and actual data values. Pixel Pusher is written in Symantec's Think C and was developed for use on a Macintosh SE30, LC, or II series computer running System Software 6.0.3 or later and 32 bit QuickDraw. Pixel Pusher will only run on a Macintosh which supports color (whether a color monitor is being used or not). The standard distribution medium for this program is a set of three 3.5 inch Macintosh format diskettes. The program price includes documentation. Pixel Pusher was developed in 1991 and is a copyrighted work with all copyright vested in NASA. Think C is a trademark of Symantec Corporation. Macintosh is a registered trademark of Apple Computer, Inc.
ERIC Educational Resources Information Center
Kimball, Miles A.
2006-01-01
In this article, I examine a historical information graphic--Charles Booth's maps of London poverty (1889-1902)--to analyze the cultural basis of ideas of transparency and clarity in information graphics. I argue that Booth's maps derive their rhetorical power from contemporary visual culture as much as from their scientific authority. The visual…
Sorensen, Mads Solvsten; Mosegaard, Jesper; Trier, Peter
2009-06-01
Existing virtual simulators for middle ear surgery are based on 3-dimensional (3D) models from computed tomographic or magnetic resonance imaging data in which image quality is limited by the lack of detail (maximum, approximately 50 voxels/mm3), natural color, and texture of the source material.Virtual training often requires the purchase of a program, a customized computer, and expensive peripherals dedicated exclusively to this purpose. The Visible Ear freeware library of digital images from a fresh-frozen human temporal bone was segmented, and real-time volume rendered as a 3D model of high-fidelity, true color, and great anatomic detail and realism of the surgically relevant structures. A haptic drilling model was developed for surgical interaction with the 3D model. Realistic visualization in high-fidelity (approximately 125 voxels/mm3) and true color, 2D, or optional anaglyph stereoscopic 3D was achieved on a standard Core 2 Duo personal computer with a GeForce 8,800 GTX graphics card, and surgical interaction was provided through a relatively inexpensive (approximately $2,500) Phantom Omni haptic 3D pointing device. This prototype is published for download (approximately 120 MB) as freeware at http://www.alexandra.dk/ves/index.htm.With increasing personal computer performance, future versions may include enhanced resolution (up to 8,000 voxels/mm3) and realistic interaction with deformable soft tissue components such as skin, tympanic membrane, dura, and cholesteatomas-features some of which are not possible with computed tomographic-/magnetic resonance imaging-based systems.
Deep Space Network (DSN), Network Operations Control Center (NOCC) computer-human interfaces
NASA Technical Reports Server (NTRS)
Ellman, Alvin; Carlton, Magdi
1993-01-01
The technical challenges, engineering solutions, and results of the NOCC computer-human interface design are presented. The use-centered design process was as follows: determine the design criteria for user concerns; assess the impact of design decisions on the users; and determine the technical aspects of the implementation (tools, platforms, etc.). The NOCC hardware architecture is illustrated. A graphical model of the DSN that represented the hierarchical structure of the data was constructed. The DSN spacecraft summary display is shown. Navigation from top to bottom is accomplished by clicking the appropriate button for the element about which the user desires more detail. The telemetry summary display and the antenna color decision table are also shown.
Chroma Shift and Gamut Shape: Going Beyond Average Color Fidelity and Gamut Area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Royer, Michael P.; Houser, Kevin W.; David, Aurélien
Though sometimes referred to as a two-measure system for evaluating color rendition, IES TM-30-15 includes other key components that go beyond the high-level average values IES Rf and IES Rg. This article focuses on the Color Vector Graphic and Local Chroma Shift (IES Rcs,hj), discussing the calculation methods for these evaluation tools and providing context for the interpretation of the values. It also presents alternatives for quantifying the same characteristics, which can inform the development of future measures. The Color Vector Graphic (CVG) is a visual representation of hue and chroma shifts across different hues. It quickly communicates complex informationmore » about how object colors will be rendered by a light source, although it is difficult or impossible to use for writing a specification. CVGs demonstrate that increases in chroma for certain hues sometimes means a decrease in chroma for other hues, and illustrates hue shifts for intermediate colors. The combination of shifts over different hues can be referred to as gamut shape. Complementing this information are the IES Rcs,hj values, which quantify the average relative chroma shift for samples in each of the 16 hue-angle bins (j) specified in IES TM-30-15. Unlike measures of average color fidelity and gamut area, gamut shape and hue-specific chroma shift are new concepts with no directly-comparable historical references. It will be critical to incorporate the Color Vector Graphic and Local Chroma Shift values into practice because they capture information about color rendition that is impossible to describe with average measures (such as CIE Ra, IES Rf, or IES Rg), but that is critical to understanding human evaluations of color quality in architectural environments.« less
Bio-inspired color sketch for eco-friendly printing
NASA Astrophysics Data System (ADS)
Safonov, Ilia V.; Tolstaya, Ekaterina V.; Rychagov, Michael N.; Lee, Hokeun; Kim, Sang Ho; Choi, Donchul
2012-01-01
Saving of toner/ink consumption is an important task in modern printing devices. It has a positive ecological and social impact. We propose technique for converting print-job pictures to a recognizable and pleasant color sketches. Drawing a "pencil sketch" from a photo relates to a special area in image processing and computer graphics - non-photorealistic rendering. We describe a new approach for automatic sketch generation which allows to create well-recognizable sketches and to preserve partly colors of the initial picture. Our sketches contain significantly less color dots then initial images and this helps to save toner/ink. Our bio-inspired approach is based on sophisticated edge detection technique for a mask creation and multiplication of source image with increased contrast by this mask. To construct the mask we use DoG edge detection, which is a result of blending of initial image with its blurred copy through the alpha-channel, which is created from Saliency Map according to Pre-attentive Human Vision model. Measurement of percentage of saved toner and user study proves effectiveness of proposed technique for toner saving in eco-friendly printing mode.
Current And Future Directions Of Lens Design Software
NASA Astrophysics Data System (ADS)
Gustafson, Darryl E.
1983-10-01
The most effective environment for doing lens design continues to evolve as new computer hardware and software tools become available. Important recent hardware developments include: Low-cost but powerful interactive multi-user 32 bit computers with virtual memory that are totally software-compatible with prior larger and more expensive members of the family. A rapidly growing variety of graphics devices for both hard-copy and screen graphics, including many with color capability. In addition, with optical design software readily accessible in many forms, optical design has become a part-time activity for a large number of engineers instead of being restricted to a small number of full-time specialists. A designer interface that is friendly for the part-time user while remaining efficient for the full-time designer is thus becoming more important as well as more practical. Along with these developments, software tools in other scientific and engineering disciplines are proliferating. Thus, the optical designer is less and less unique in his use of computer-aided techniques and faces the challenge and opportunity of efficiently communicating his designs to other computer-aided-design (CAD), computer-aided-manufacturing (CAM), structural, thermal, and mechanical software tools. This paper will address the impact of these developments on the current and future directions of the CODE VTM optical design software package, its implementation, and the resulting lens design environment.
Graphical Methods for Quantifying Macromolecules through Bright Field Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Hang; DeFilippis, Rosa Anna; Tlsty, Thea D.
Bright ?eld imaging of biological samples stained with antibodies and/or special stains provides a rapid protocol for visualizing various macromolecules. However, this method of sample staining and imaging is rarely employed for direct quantitative analysis due to variations in sample fixations, ambiguities introduced by color composition, and the limited dynamic range of imaging instruments. We demonstrate that, through the decomposition of color signals, staining can be scored on a cell-by-cell basis. We have applied our method to Flbroblasts grown from histologically normal breast tissue biopsies obtained from two distinct populations. Initially, nuclear regions are segmented through conversion of color imagesmore » into gray scale, and detection of dark elliptic features. Subsequently, the strength of staining is quanti?ed by a color decomposition model that is optimized by a graph cut algorithm. In rare cases where nuclear signal is significantly altered as a result of samplepreparation, nuclear segmentation can be validated and corrected. Finally, segmented stained patterns are associated with each nuclear region following region-based tessellation. Compared to classical non-negative matrix factorization, proposed method (i) improves color decomposition, (ii) has a better noise immunity, (iii) is more invariant to initial conditions, and (iv) has a superior computing performance« less
A real-time photo-realistic rendering algorithm of ocean color based on bio-optical model
NASA Astrophysics Data System (ADS)
Ma, Chunyong; Xu, Shu; Wang, Hongsong; Tian, Fenglin; Chen, Ge
2016-12-01
A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton, colored dissolved organic material (CDOM), inorganic suspended particle, etc., which have different contributions to absorption and scattering of light. We decompose the emergent light of the ocean surface into the reflected light from the sun and the sky, and the subsurface scattering light. We establish an ocean surface transmission model based on ocean bidirectional reflectance distribution function (BRDF) and the Fresnel law, and this model's outputs would be the incident light parameters of subsurface scattering. Using ocean subsurface scattering algorithm combined with bio-optical model, we compute the scattering light emergent radiation in different directions. Then, we blend the reflection of sunlight and sky light to implement the real-time ocean color rendering in graphics processing unit (GPU). Finally, we use two kinds of radiance reflectance calculated by Hydrolight radiative transfer model and our algorithm to validate the physical reality of our method, and the results show that our algorithm can achieve real-time highly realistic ocean color scenes.
A Prototype Graphical User Interface for Co-op: A Group Decision Support System.
1992-03-01
achieve their potential to communicate. Information-oriented, systematic graphic design is the use of typography , symbols, color, and other static and...apphcuittin by reducig Uber ellurt anid enhuncizig Iliteracti. ’Iliis thesis designs and de% elupht Itrututylle Graphical User Interface iGUl i fui Cu f...ORGANIZATION.... .. .. ............ II. INTERFACE DESIGN PRINCIPLES. .............. 7 A. GRAPHICAL USER INTERFACES.............7 1. Design Principles
Artist Material BRDF Database for Computer Graphics Rendering
NASA Astrophysics Data System (ADS)
Ashbaugh, Justin C.
The primary goal of this thesis was to create a physical library of artist material samples. This collection provides necessary data for the development of a gonio-imaging system for use in museums to more accurately document their collections. A sample set was produced consisting of 25 panels and containing nearly 600 unique samples. Selected materials are representative of those commonly used by artists both past and present. These take into account the variability in visual appearance resulting from the materials and application techniques used. Five attributes of variability were identified including medium, color, substrate, application technique and overcoat. Combinations of these attributes were selected based on those commonly observed in museum collections and suggested by surveying experts in the field. For each sample material, image data is collected and used to measure an average bi-directional reflectance distribution function (BRDF). The results are available as a public-domain image and optical database of artist materials at art-si.org. Additionally, the database includes specifications for each sample along with other information useful for computer graphics rendering such as the rectified sample images and normal maps.
Application of programmable logic controllers to space simulation
NASA Technical Reports Server (NTRS)
Sushon, Janet
1992-01-01
Incorporating a state-of-the-art process control and instrumentation system into a complex system for thermal vacuum testing is discussed. The challenge was to connect several independent control systems provided by various vendors to a supervisory computer. This combination will sequentially control and monitor the process, collect the data, and transmit it to color a graphic system for subsequent manipulation. The vacuum system upgrade included: replacement of seventeen diffusion pumps with eight cryogenic pumps and one turbomolecular pump, replacing a relay based control system, replacing vacuum instrumentation, and upgrading the data acquisition system.
ARCGRAPH SYSTEM - AMES RESEARCH GRAPHICS SYSTEM
NASA Technical Reports Server (NTRS)
Hibbard, E. A.
1994-01-01
Ames Research Graphics System, ARCGRAPH, is a collection of libraries and utilities which assist researchers in generating, manipulating, and visualizing graphical data. In addition, ARCGRAPH defines a metafile format that contains device independent graphical data. This file format is used with various computer graphics manipulation and animation packages at Ames, including SURF (COSMIC Program ARC-12381) and GAS (COSMIC Program ARC-12379). In its full configuration, the ARCGRAPH system consists of a two stage pipeline which may be used to output graphical primitives. Stage one is associated with the graphical primitives (i.e. moves, draws, color, etc.) along with the creation and manipulation of the metafiles. Five distinct data filters make up stage one. They are: 1) PLO which handles all 2D vector primitives, 2) POL which handles all 3D polygonal primitives, 3) RAS which handles all 2D raster primitives, 4) VEC which handles all 3D raster primitives, and 5) PO2 which handles all 2D polygonal primitives. Stage two is associated with the process of displaying graphical primitives on a device. To generate the various graphical primitives, create and reprocess ARCGRAPH metafiles, and access the device drivers in the VDI (Video Device Interface) library, users link their applications to ARCGRAPH's GRAFIX library routines. Both FORTRAN and C language versions of the GRAFIX and VDI libraries exist for enhanced portability within these respective programming environments. The ARCGRAPH libraries were developed on a VAX running VMS. Minor documented modification of various routines, however, allows the system to run on the following computers: Cray X-MP running COS (no C version); Cray 2 running UNICOS; DEC VAX running BSD 4.3 UNIX, or Ultrix; SGI IRIS Turbo running GL2-W3.5 and GL2-W3.6; Convex C1 running UNIX; Amhdahl 5840 running UTS; Alliant FX8 running UNIX; Sun 3/160 running UNIX (no native device driver); Stellar GS1000 running Stellex (no native device driver); and an SGI IRIS 4D running IRIX (no native device driver). Currently with version 7.0 of ARCGRAPH, the VDI library supports the following output devices: A VT100 terminal with a RETRO-GRAPHICS board installed, a VT240 using the Tektronix 4010 emulation capability, an SGI IRIS turbo using the native GL2 library, a Tektronix 4010, a Tektronix 4105, and the Tektronix 4014. ARCGRAPH version 7.0 was developed in 1988.
Ashizawa, Yuko; Tachikawa, Hirokazu; Hori, Masashi; Hori, Takafumi; Mizukami, Katsuyoshi; Asada, Takashi
2004-01-01
A patient with catatonic type schizophrenia drawing 3-dimensional computer graphics (3DCGs) before and after the onset is reported. His 3DCGs are discussed from the view of psychopathology. A 21-year-old male was admitted to our hospital. He was an art student. For three months before admission, he had been absorbed in drawing 3DCGs. When he was asked to draw handmade pictures by his teacher, he experienced a bizarre mood and took an overdose of aspirin. At the time of admission, he was in a stupor state, and was diagnosed with catatonic type schizophrenia. After admission, he exhibited excitement and disorganized speech. These symptoms disappeared after administration of neuroleptics, and he was discharged. The 3DCGs he drew before and after the onset revealed several special characteristics. First, the compositions of his pictures were too geometric and too precise. Secondly, the themes of his pictures changed from romantic before the onset to symbolic after it, and the styles changed from realistic to abstractive after the onset. Finally, histograms of the 3DCGs revealed many colors before onset, which converged to simple colors after. Therefore, it was suggested that the latent pathological process at the beginning of schizophrenia might be reflected in his 3DCGs. 3DCGs are a new type of fine art. They can express beautiful and cool images more simply than handmade pictures. Due to these features, artists can create images of their innerworld, with less effort and talent than picture drawings, by computer assistance. This case suggests that the geometric working space, change-free viewpoints, and computer assistance, which are characteristics of the methods in making 3DCGs may be suitable for schizophrenic artists to create images of their innerworld. However, being absorbed in making 3DCGs could also promote the latent schizophrenic process to the onset.
Augmenting reality in Direct View Optical (DVO) overlay applications
NASA Astrophysics Data System (ADS)
Hogan, Tim; Edwards, Tim
2014-06-01
The integration of overlay displays into rifle scopes can transform precision Direct View Optical (DVO) sights into intelligent interactive fire-control systems. Overlay displays can provide ballistic solutions within the sight for dramatically improved targeting, can fuse sensor video to extend targeting into nighttime or dirty battlefield conditions, and can overlay complex situational awareness information over the real-world scene. High brightness overlay solutions for dismounted soldier applications have previously been hindered by excessive power consumption, weight and bulk making them unsuitable for man-portable, battery powered applications. This paper describes the advancements and capabilities of a high brightness, ultra-low power text and graphics overlay display module developed specifically for integration into DVO weapon sight applications. Central to the overlay display module was the development of a new general purpose low power graphics controller and dual-path display driver electronics. The graphics controller interface is a simple 2-wire RS-232 serial interface compatible with existing weapon systems such as the IBEAM ballistic computer and the RULR and STORM laser rangefinders (LRF). The module features include multiple graphics layers, user configurable fonts and icons, and parameterized vector rendering, making it suitable for general purpose DVO overlay applications. The module is configured for graphics-only operation for daytime use and overlays graphics with video for nighttime applications. The miniature footprint and ultra-low power consumption of the module enables a new generation of intelligent DVO systems and has been implemented for resolutions from VGA to SXGA, in monochrome and color, and in graphics applications with and without sensor video.
Compression of 3D Point Clouds Using a Region-Adaptive Hierarchical Transform.
De Queiroz, Ricardo; Chou, Philip A
2016-06-01
In free-viewpoint video, there is a recent trend to represent scene objects as solids rather than using multiple depth maps. Point clouds have been used in computer graphics for a long time and with the recent possibility of real time capturing and rendering, point clouds have been favored over meshes in order to save computation. Each point in the cloud is associated with its 3D position and its color. We devise a method to compress the colors in point clouds which is based on a hierarchical transform and arithmetic coding. The transform is a hierarchical sub-band transform that resembles an adaptive variation of a Haar wavelet. The arithmetic encoding of the coefficients assumes Laplace distributions, one per sub-band. The Laplace parameter for each distribution is transmitted to the decoder using a custom method. The geometry of the point cloud is encoded using the well-established octtree scanning. Results show that the proposed solution performs comparably to the current state-of-the-art, in many occasions outperforming it, while being much more computationally efficient. We believe this work represents the state-of-the-art in intra-frame compression of point clouds for real-time 3D video.
Compressing images for the Internet
NASA Astrophysics Data System (ADS)
Beretta, Giordano B.
1998-01-01
The World Wide Web has rapidly become the hot new mass communications medium. Content creators are using similar design and layout styles as in printed magazines, i.e., with many color images and graphics. The information is transmitted over plain telephone lines, where the speed/price trade-off is much more severe than in the case of printed media. The standard design approach is to use palettized color and to limit as much as possible the number of colors used, so that the images can be encoded with a small number of bits per pixel using the Graphics Interchange Format (GIF) file format. The World Wide Web standards contemplate a second data encoding method (JPEG) that allows color fidelity but usually performs poorly on text, which is a critical element of information communicated on this medium. We analyze the spatial compression of color images and describe a methodology for using the JPEG method in a way that allows a compact representation while preserving full color fidelity.
Wide-angle display developments by computer graphics
NASA Technical Reports Server (NTRS)
Fetter, William A.
1989-01-01
Computer graphics can now expand its new subset, wide-angle projection, to be as significant a generic capability as computer graphics itself. Some prior work in computer graphics is presented which leads to an attractive further subset of wide-angle projection, called hemispheric projection, to be a major communication media. Hemispheric film systems have long been present and such computer graphics systems are in use in simulators. This is the leading edge of capabilities which should ultimately be as ubiquitous as CRTs (cathode-ray tubes). These assertions are not from degrees in science or only from a degree in graphic design, but in a history of computer graphics innovations, laying groundwork by demonstration. The author believes that it is timely to look at several development strategies, since hemispheric projection is now at a point comparable to the early stages of computer graphics, requiring similar patterns of development again.
OAP- OFFICE AUTOMATION PILOT GRAPHICS DATABASE SYSTEM
NASA Technical Reports Server (NTRS)
Ackerson, T.
1994-01-01
The Office Automation Pilot (OAP) Graphics Database system offers the IBM PC user assistance in producing a wide variety of graphs and charts. OAP uses a convenient database system, called a chartbase, for creating and maintaining data associated with the charts, and twelve different graphics packages are available to the OAP user. Each of the graphics capabilities is accessed in a similar manner. The user chooses creation, revision, or chartbase/slide show maintenance options from an initial menu. The user may then enter or modify data displayed on a graphic chart. The cursor moves through the chart in a "circular" fashion to facilitate data entries and changes. Various "help" functions and on-screen instructions are available to aid the user. The user data is used to generate the graphics portion of the chart. Completed charts may be displayed in monotone or color, printed, plotted, or stored in the chartbase on the IBM PC. Once completed, the charts may be put in a vector format and plotted for color viewgraphs. The twelve graphics capabilities are divided into three groups: Forms, Structured Charts, and Block Diagrams. There are eight Forms available: 1) Bar/Line Charts, 2) Pie Charts, 3) Milestone Charts, 4) Resources Charts, 5) Earned Value Analysis Charts, 6) Progress/Effort Charts, 7) Travel/Training Charts, and 8) Trend Analysis Charts. There are three Structured Charts available: 1) Bullet Charts, 2) Organization Charts, and 3) Work Breakdown Structure (WBS) Charts. The Block Diagram available is an N x N Chart. Each graphics capability supports a chartbase. The OAP graphics database system provides the IBM PC user with an effective means of managing data which is best interpreted as a graphic display. The OAP graphics database system is written in IBM PASCAL 2.0 and assembler for interactive execution on an IBM PC or XT with at least 384K of memory, and a color graphics adapter and monitor. Printed charts require an Epson, IBM, OKIDATA, or HP Laser printer (or equivalent). Plots require the Tektronix 4662 Penplotter. Source code is supplied to the user for modification and customizing. Executables are also supplied for all twelve graphics capabilities. This system was developed in 1983, and Version 3.1 was released in 1986.
Color appearance for photorealistic image synthesis
NASA Astrophysics Data System (ADS)
Marini, Daniele; Rizzi, Alessandro; Rossi, Maurizio
2000-12-01
Photorealistic Image Synthesis is a relevant research and application field in computer graphics, whose aim is to produce synthetic images that are undistinguishable from real ones. Photorealism is based upon accurate computational models of light material interaction, that allow us to compute the spectral intensity light field of a geometrically described scene. The fundamental methods are ray tracing and radiosity. While radiosity allows us to compute the diffuse component of the emitted and reflected light, applying ray tracing in a two pass solution we can also cope with non diffuse properties of the model surfaces. Both methods can be implemented to generate an accurate photometric distribution of light of the simulated environment. A still open problem is the visualization phase, whose purpose is to display the final result of the simulated mode on a monitor screen or on a printed paper. The tone reproduction problem consists of finding the best solution to compress the extended dynamic range of the computed light field into the limited range of the displayable colors. Recently some scholars have addressed this problem considering the perception stage of image formation, so including a model of the human visual system in the visualization process. In this paper we present a working hypothesis to solve the tone reproduction problem of synthetic image generation, integrating Retinex perception model into the photo realistic image synthesis context.
Peuquet, D.J.
1981-01-01
Current graphic devices suitable for high-speed computer input and output of cartographic data are tending more and more to be raster-oriented, such as the rotating drum scanner and the color raster display. However, the majority of commonly used manipulative techniques in computer-assisted cartography and automated spatial data handling continue to require that the data be in vector format. This situation has recently precipitated the requirement for very fast techniques for converting digital cartographic data from raster to vector format for processing, and then back into raster format for plotting. The current article is part 1 of a 2 part paper concerned with examining the state-of-the-art in these conversion techniques. -from Author
Halftoning method for the generation of motion stimuli
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.; Stone, Leland S.
1989-01-01
This paper describes a novel computer-graphic technique for the generation of a broad class of motion stimuli for vision research, which uses color table animation in conjunction with a single base image. Using this technique, contrast and temporal frequency can be varied with a negligible amount of computation, once a single-base image is produced. Since only two-bit planes are needed to display a single drifting grating, an eight-bit/pixel display can be used to generate four-component plaids, in which each component of the plaid has independently programmable contrast and temporal frequency. Because the contrast and temporal frequencies of the various components are mutually independent, a large number of two-dimensional stimulus motions can be produced from a single image file.
Burns, A.W.
1988-01-01
This report describes an interactive-accounting model used to simulate streamflow, chemical-constituent concentrations and loads, and water-supply operations in a river basin. The model uses regression equations to compute flow from incremental (internode) drainage areas. Conservative chemical constituents (typically dissolved solids) also are computed from regression equations. Both flow and water quality loads are accumulated downstream. Optionally, the model simulates the water use and the simplified groundwater systems of a basin. Water users include agricultural, municipal, industrial, and in-stream users , and reservoir operators. Water users list their potential water sources, including direct diversions, groundwater pumpage, interbasin imports, or reservoir releases, in the order in which they will be used. Direct diversions conform to basinwide water law priorities. The model is interactive, and although the input data exist in files, the user can modify them interactively. A major feature of the model is its color-graphic-output options. This report includes a description of the model, organizational charts of subroutines, and examples of the graphics. Detailed format instructions for the input data, example files of input data, definitions of program variables, and listing of the FORTRAN source code are Attachments to the report. (USGS)
NASA Technical Reports Server (NTRS)
Smith, Elizabeth A.
2001-01-01
Standard, text-book based learning for earth, ocean, and atmospheric sciences has been limited by the unavailability of quantitative teaching materials. While a descriptive presentation, in a lecture format, of discrete satellite images is often adequate for high school classrooms, this is seldom the case at the undergraduate level. In order to address these concerns, a series of numerical exercises for the Macintosh was developed for use with satellite-derived Sea Surface Temperature, pigment and sea ice concentration data. Using a modified version of NIH Image, to analyze actual satellite data, students are able to better understand ocean processes, such as circulation, upwelling, primary production, and ocean/atmosphere coupling. Graphical plots, image math, and numerical comparisons are utilized to substantiate temporal and spatial trends in sea surface temperature and ocean color. Particularly for institutions that do not offer a program in remote sensing, the subject matter is presented as modular units, each of which can be readily incorporated into existing curricula. These materials have been produced in both CD-ROM and WWW format, making them useful for classroom or lab setting. Depending upon the level of available computer support, graphics can be displayed directly from the CD-ROM, or as a series of color view graphs for standard overhead projection.
Visualization of instationary flows by particle traces
NASA Astrophysics Data System (ADS)
Raasch, S.
An abstract on a study which represents a model of atmospheric flow output by computer movies is presented. The structure and evolution of the flow is visualized by starting weightless particles at the locations of the model grid points at distinct, equally spaced times. These particles are then only advected by the flow. In order to avoid useless accumulation of particles, they can be provided with a limited lifetime. Scalar quantities can be shown in addition to using color shaded contours as background information. A movie with several examples of atmospheric flows, for example convection in the atmospheric boundary layer, slope winds, land seabreeze and Kelvin-Helmholtz waves is presented. The simulations are performed by two dimensional and three dimensional nonhydrostatic, finite difference models. Graphics are produced by using the UNIRAS software and the graphic output is in form of CGM metafiles. The single frames are stored on an ABEKAS real time video disc and then transferred to a BETACAM-SP tape recorder. The graphic software is suitable to produce 2 dimensional pictures, for example only cross sections of three dimensional simulations can be made. To produce a movie of typically 90 seconds duration, the graphic software and the particle model need about 10 hours CPU time on a CCD CYBER 990 and the CGM metafile has a size of about 1.4 GByte.
UWGSP4: an imaging and graphics superworkstation and its medical applications
NASA Astrophysics Data System (ADS)
Jong, Jing-Ming; Park, Hyun Wook; Eo, Kilsu; Kim, Min-Hwan; Zhang, Peng; Kim, Yongmin
1992-05-01
UWGSP4 is configured with a parallel architecture for image processing and a pipelined architecture for computer graphics. The system's peak performance is 1,280 MFLOPS for image processing and over 200,000 Gouraud shaded 3-D polygons per second for graphics. The simulated sustained performance is about 50% of the peak performance in general image processing. Most of the 2-D image processing functions are efficiently vectorized and parallelized in UWGSP4. A performance of 770 MFLOPS in convolution and 440 MFLOPS in FFT is achieved. The real-time cine display, up to 32 frames of 1280 X 1024 pixels per second, is supported. In 3-D imaging, the update rate for the surface rendering is 10 frames of 20,000 polygons per second; the update rate for the volume rendering is 6 frames of 128 X 128 X 128 voxels per second. The system provides 1280 X 1024 X 32-bit double frame buffers and one 1280 X 1024 X 8-bit overlay buffer for supporting realistic animation, 24-bit true color, and text annotation. A 1280 X 1024- pixel, 66-Hz noninterlaced display screen with 1:1 aspect ratio can be windowed into the frame buffer for the display of any portion of the processed image or graphics.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-13
... that is suitable for high quality print graphics; \\8\\ printed with three colors or more in register... goods such as pet foods and bird seed. \\8\\ ``Paper suitable for high quality print graphics,'' as used.... Coated free sheet is an example of a paper suitable for high quality print graphics. Effective July 1...
Kin, Taichi; Nakatomi, Hirofumi; Shojima, Masaaki; Tanaka, Minoru; Ino, Kenji; Mori, Harushi; Kunimatsu, Akira; Oyama, Hiroshi; Saito, Nobuhito
2012-07-01
In this study, the authors used preoperative simulation employing 3D computer graphics (interactive computer graphics) to fuse all imaging data for brainstem cavernous malformations. The authors evaluated whether interactive computer graphics or 2D imaging correlated better with the actual operative field, particularly in identifying a developmental venous anomaly (DVA). The study population consisted of 10 patients scheduled for surgical treatment of brainstem cavernous malformations. Data from preoperative imaging (MRI, CT, and 3D rotational angiography) were automatically fused using a normalized mutual information method, and then reconstructed by a hybrid method combining surface rendering and volume rendering methods. With surface rendering, multimodality and multithreshold techniques for 1 tissue were applied. The completed interactive computer graphics were used for simulation of surgical approaches and assumed surgical fields. Preoperative diagnostic rates for a DVA associated with brainstem cavernous malformation were compared between conventional 2D imaging and interactive computer graphics employing receiver operating characteristic (ROC) analysis. The time required for reconstruction of 3D images was 3-6 hours for interactive computer graphics. Observation in interactive mode required approximately 15 minutes. Detailed anatomical information for operative procedures, from the craniotomy to microsurgical operations, could be visualized and simulated three-dimensionally as 1 computer graphic using interactive computer graphics. Virtual surgical views were consistent with actual operative views. This technique was very useful for examining various surgical approaches. Mean (±SEM) area under the ROC curve for rate of DVA diagnosis was significantly better for interactive computer graphics (1.000±0.000) than for 2D imaging (0.766±0.091; p<0.001, Mann-Whitney U-test). The authors report a new method for automatic registration of preoperative imaging data from CT, MRI, and 3D rotational angiography for reconstruction into 1 computer graphic. The diagnostic rate of DVA associated with brainstem cavernous malformation was significantly better using interactive computer graphics than with 2D images. Interactive computer graphics was also useful in helping to plan the surgical access corridor.
Building black holes: supercomputer cinema.
Shapiro, S L; Teukolsky, S A
1988-07-22
A new computer code can solve Einstein's equations of general relativity for the dynamical evolution of a relativistic star cluster. The cluster may contain a large number of stars that move in a strong gravitational field at speeds approaching the speed of light. Unstable star clusters undergo catastrophic collapse to black holes. The collapse of an unstable cluster to a supermassive black hole at the center of a galaxy may explain the origin of quasars and active galactic nuclei. By means of a supercomputer simulation and color graphics, the whole process can be viewed in real time on a movie screen.
Preliminary development of an intelligent computer assistant for engine monitoring
NASA Technical Reports Server (NTRS)
Disbrow, James D.; Duke, Eugene L.; Ray, Ronald J.
1989-01-01
As part of the F-18 high-angle-of-attack vehicle program, an AI method was developed for the real time monitoring of the propulsion system and for the identification of recovery procedures for the F404 engine. The aim of the development program is to provide enhanced flight safety and to reduce the duties of the propulsion engineers. As telemetry data is received, the results are continually displayed in a number of different color graphical formats. The system makes possible the monitoring of the engine state and the individual parameters. Anomaly information is immediately displayed to the engineer.
Tips for Good Electronic Presentations.
ERIC Educational Resources Information Center
Strasser, Dennis
1996-01-01
Describes library uses of presentation graphics software and offers tips for creating electronic presentations. Tips include: audience retention; visual aid options; software package options; presentation planning; presentation showing; and use of text, colors, and graphics. Sidebars note common presentation errors and popular presentation…
Color in graphic design: an analysis of meaning and trends
NASA Astrophysics Data System (ADS)
Martinson, Barbara; Waldron, Carol C.
2002-06-01
Graphic design is visual communication through the selection, arrangement, and presentation of words and images, most often for the printed page which offer the designer almost limitless options for color use. The objective of this project is to identify patterns of color use. Ethnographic content analysis was used to document color use in annual reports represented in two publications, Print and Communication Arts, 1993-2000. The analysis focuses on the selection, combination, and contrast of hues; and their use with achromatic values. An analysis of the entire sample indicates that one-third of the annual reports used a palette that include black, white, and a hue from quadrant one (red to yellow). Nearly one-fifth of the designs used black, white, and colors from quadrants one and three (cyan to blue). The large samples for Technology, Health Sciences, Financial, and Civic organizations follow the first pattern. Food Service, Business products and services, and Transportation industries favor the second pattern.
Human sense utilization method on real-time computer graphics
NASA Astrophysics Data System (ADS)
Maehara, Hideaki; Ohgashi, Hitoshi; Hirata, Takao
1997-06-01
We are developing an adjustment method of real-time computer graphics, to obtain effective ones which give audience various senses intended by producer, utilizing human sensibility technologically. Generally, production of real-time computer graphics needs much adjustment of various parameters, such as 3D object models/their motions/attributes/view angle/parallax etc., in order that the graphics gives audience superior effects as reality of materials, sense of experience and so on. And it is also known it costs much to adjust such various parameters by trial and error. A graphics producer often evaluates his graphics to improve it. For example, it may lack 'sense of speed' or be necessary to be given more 'sense of settle down,' to improve it. On the other hand, we can know how the parameters in computer graphics affect such senses by means of statistically analyzing several samples of computer graphics which provide different senses. We paid attention to these two facts, so that we designed an adjustment method of the parameters by inputting phases of sense into a computer. By the way of using this method, it becomes possible to adjust real-time computer graphics more effectively than by conventional way of trial and error.
Survey of currently available high-resolution raster graphics systems
NASA Technical Reports Server (NTRS)
Jones, Denise R.
1987-01-01
Presented are data obtained on high-resolution raster graphics engines currently available on the market. The data were obtained through survey responses received from various vendors and also from product literature. The questionnaire developed for this survey was basically a list of characteristics desired in a high performance color raster graphics system which could perform real-time aircraft simulations. Several vendors responded to the survey, with most reporting on their most advanced high-performance, high-resolution raster graphics engine.
Redesigning Your Periodical? Start Here!
ERIC Educational Resources Information Center
D'Alelio, Jane
1980-01-01
Graphics help communicate the image of a publication and of the institution: good graphics gain the readers' attention, and good content gains their respect. Survey of readers, development of a content formula, format, cover, nameplate, typography, photographs, artwork, and paper and color choices are discussed. (MLW)
Scientific and Graphic Design Foundations for C2
2007-06-01
the elements in the composition. This section presents a summary of the concepts in graphic design layout, typography , color, and data graphics...assist the users in perceiving and recognizing patterns in information. Typography Typography is the art and technique of designing textual...Principles of typography for user interface design, interactions, Vol 5, pp. 15, Nov/Dec 1998 Kahneman, D., & Henik, A. 1981. Perceptual organization and
Learning about light and optics in on-line general education classes using at-home experimentation
NASA Astrophysics Data System (ADS)
Millspaw, Jacob; Wang, Gang; Masters, Mark F.
2014-07-01
College students are facing a constantly evolving educational system. Some still see mostly the traditional face to face lecture type classes where as others may never set foot on campus thanks to distance learning programs. In between they may enroll in a mix of face-to-face, two-way broadcasted interactive courses, streaming lecture courses, hybrid face-to-face/ on-line courses and the ominous MOOC! A large number of these non-traditional courses are general education courses and play an important role in developing non-science majors' understanding of science in general, and of physics in particular. We have been keeping pace with theses modern modes of instruction by offering several on-line courses such as Physics for Computer Graphics and Animation and Light and Color. These courses cover basic concepts in light, color and optics.
ERIC Educational Resources Information Center
Prosise, Jeff
This document presents the principles behind modern computer graphics without straying into the arcane languages of mathematics and computer science. Illustrations accompany the clear, step-by-step explanations that describe how computers draw pictures. The 22 chapters of the book are organized into 5 sections. "Part 1: Computer Graphics in…
ERIC Educational Resources Information Center
Halpern, Jeanne W.
1970-01-01
Computer graphics have been called the most exciting development in computer technology. At the University of Michigan, three kinds of graphics output equipment are now being used: symbolic printers, line plotters or drafting devices, and cathode-ray tubes (CRT). Six examples are given that demonstrate the range of graphics use at the University.…
General aviation design synthesis utilizing interactive computer graphics
NASA Technical Reports Server (NTRS)
Galloway, T. L.; Smith, M. R.
1976-01-01
Interactive computer graphics is a fast growing area of computer application, due to such factors as substantial cost reductions in hardware, general availability of software, and expanded data communication networks. In addition to allowing faster and more meaningful input/output, computer graphics permits the use of data in graphic form to carry out parametric studies for configuration selection and for assessing the impact of advanced technologies on general aviation designs. The incorporation of interactive computer graphics into a NASA developed general aviation synthesis program is described, and the potential uses of the synthesis program in preliminary design are demonstrated.
Wilson, Frederic H.
1989-01-01
Graphics programs on computers can facilitate the compilation and production of geologic maps, including full color maps of publication quality. This paper describes the application of two different programs, GSMAP and ARC/INFO, to the production of a geologic map of the Port Meller and adjacent 1:250,000-scale quadrangles on the Alaska Peninsula. GSMAP was used at first because of easy digitizing on inexpensive computer hardware. Limitations in its editing capability led to transfer of the digital data to ARC/INFO, a Geographic Information System, which has better editing and also added data analysis capability. Although these improved capabilities are accompanied by increased complexity, the availability of ARC/INFO's data analysis capability provides unanticipated advantages. It allows digital map data to be processed as one of multiple data layers for mineral resource assessment. As a result of development of both software packages, it is now easier to apply both software packages to geologic map production. Both systems accelerate the drafting and revision of maps and enhance the compilation process. Additionally, ARC/ INFO's analysis capability enhances the geologist's ability to develop answers to questions of interest that were previously difficult or impossible to obtain.
Fayn, J; Rubel, P
1988-01-01
The authors present a new computer program for serial ECG analysis that allows a direct comparison of any couple of three-dimensional ECGs and quantitatively assesses the degree of evolution of the spatial loops as well as of their initial, central, or terminal sectors. Loops and sectors are superposed as best as possible, with the aim of overcoming tracing variability of nonpathological origin. As a result, optimal measures of evolution are computed and a tabular summary of measurements is dynamically configured with respect to the patient's history and is then printed. A multivariate classifier assigns each couple of tracings to one of four classes of evolution. Color graphic displays corresponding to several modes of representation may also be plotted.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-25
... colors printed in register at two different print stations. However, the artwork, by use of a screen...-circumvention inquiry is laminated woven sacks produced with two ink colors printed in register and a screening... have adapted the screening process to create graphics that appear to have three or more distinct colors...
A methodology to emulate and evaluate a productive virtual workstation
NASA Technical Reports Server (NTRS)
Krubsack, David; Haberman, David
1992-01-01
The Advanced Display and Computer Augmented Control (ADCACS) Program at ACT is sponsored by NASA Ames to investigate the broad field of technologies which must be combined to design a 'virtual' workstation for the Space Station Freedom. This program is progressing in several areas and resulted in the definition of requirements for a workstation. A unique combination of technologies at the ACT Laboratory have been networked to effectively create an experimental environment. This experimental environment allows the integration of nonconventional input devices with a high power graphics engine within the framework of an expert system shell which coordinates the heterogeneous inputs with the 'virtual' presentation. The flexibility of the workstation is evolved as experiments are designed and conducted to evaluate the condition descriptions and rule sets of the expert system shell and its effectiveness in driving the graphics engine. Workstation productivity has been defined by the achievable performance in the emulator of the calibrated 'sensitivity' of input devices, the graphics presentation, the possible optical enhancements to achieve a wide field of view color image and the flexibility of conditional descriptions in the expert system shell in adapting to prototype problems.
Planetary Photojournal Home Page Graphic
NASA Technical Reports Server (NTRS)
2004-01-01
This image is an unannotated version of the Planetary Photojournal Home Page graphic. This digital collage contains a highly stylized rendition of our solar system and points beyond. As this graphic was intended to be used as a navigation aid in searching for data within the Photojournal, certain artistic embellishments have been added (color, location, etc.). Several data sets from various planetary and astronomy missions were combined to create this image.Perfect Color Registration Realized.
ERIC Educational Resources Information Center
Lovedahl, Gerald G.
1979-01-01
Describes apparatus and procedures to design and construct a "printing box" as a graphic arts project to make color prints on T-shirts using photography, indirect and direct photo screen methods, and other types of stencils. Step-by-step photographs illustrate the process. (MF)
1985-07-18
Element Predictions 28 2.1.1.2-9 CIELUV Color Difference Derivation Graphically Described In a Three-Dimensional Rectangular Coordinate System 31...in CIE 1976 Coordinates 141 2.2.2-3 Derivation of CIE (L*, U*, V*) Coordinates 145 2.2.2-4 Three-Dimensional Representation of CIELUV Color...Difference Estimates 145 2.2.2-5 Application of CIELUV for Estimating Color Difference on an Electronic Color Display 146 2.2.2-6 Color Performance Envelopes
Computer graphics application in the engineering design integration system
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Abel, R. W.; Hirsch, G. N.; Alford, G. E.; Colquitt, W. N.; Stewart, W. A.
1975-01-01
The computer graphics aspect of the Engineering Design Integration (EDIN) system and its application to design problems were discussed. Three basic types of computer graphics may be used with the EDIN system for the evaluation of aerospace vehicles preliminary designs: offline graphics systems using vellum-inking or photographic processes, online graphics systems characterized by direct coupled low cost storage tube terminals with limited interactive capabilities, and a minicomputer based refresh terminal offering highly interactive capabilities. The offline line systems are characterized by high quality (resolution better than 0.254 mm) and slow turnaround (one to four days). The online systems are characterized by low cost, instant visualization of the computer results, slow line speed (300 BAUD), poor hard copy, and the early limitations on vector graphic input capabilities. The recent acquisition of the Adage 330 Graphic Display system has greatly enhanced the potential for interactive computer aided design.
Engineering computer graphics in gas turbine engine design, analysis and manufacture
NASA Technical Reports Server (NTRS)
Lopatka, R. S.
1975-01-01
A time-sharing and computer graphics facility designed to provide effective interactive tools to a large number of engineering users with varied requirements was described. The application of computer graphics displays at several levels of hardware complexity and capability is discussed, with examples of graphics systems tracing gas turbine product development, beginning with preliminary design through manufacture. Highlights of an operating system stylized for interactive engineering graphics is described.
Graphical Route Information Panel Signs for Southbound I-35 and SH 130 Travel through Austin
DOT National Transportation Integrated Search
2014-03-01
A Graphic Route Information Panel (GRIP) is a proposed on-roadway signage approach to deliver information in advance of a driver decision point, using a combination of text, colors, and representative maps of the roadway system. The information basis...
NASA Astrophysics Data System (ADS)
Gao, Jerry Z.; Zhu, Eugene; Shim, Simon
2003-01-01
With the increasing applications of the Web in e-commerce, advertising, and publication, new technologies are needed to improve Web graphics technology due to the current limitation of technology. The SVG (Scalable Vector Graphics) technology is a new revolutionary solution to overcome the existing problems in the current web technology. It provides precise and high-resolution web graphics using plain text format commands. It sets a new standard for web graphic format to allow us to present complicated graphics with rich test fonts and colors, high printing quality, and dynamic layout capabilities. This paper provides a tutorial overview about SVG technology and its essential features, capability, and advantages. The reports a comparison studies between SVG and other web graphics technologies.
A modern approach to storing of 3D geometry of objects in machine engineering industry
NASA Astrophysics Data System (ADS)
Sokolova, E. A.; Aslanov, G. A.; Sokolov, A. A.
2017-02-01
3D graphics is a kind of computer graphics which has absorbed a lot from the vector and raster computer graphics. It is used in interior design projects, architectural projects, advertising, while creating educational computer programs, movies, visual images of parts and products in engineering, etc. 3D computer graphics allows one to create 3D scenes along with simulation of light conditions and setting up standpoints.
Distributed computation of graphics primitives on a transputer network
NASA Technical Reports Server (NTRS)
Ellis, Graham K.
1988-01-01
A method is developed for distributing the computation of graphics primitives on a parallel processing network. Off-the-shelf transputer boards are used to perform the graphics transformations and scan-conversion tasks that would normally be assigned to a single transputer based display processor. Each node in the network performs a single graphics primitive computation. Frequently requested tasks can be duplicated on several nodes. The results indicate that the current distribution of commands on the graphics network shows a performance degradation when compared to the graphics display board alone. A change to more computation per node for every communication (perform more complex tasks on each node) may cause the desired increase in throughput.
An Object-Oriented Graphical User Interface for a Reusable Rocket Engine Intelligent Control System
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Musgrave, Jeffrey L.; Guo, Ten-Huei; Paxson, Daniel E.; Wong, Edmond; Saus, Joseph R.; Merrill, Walter C.
1994-01-01
An intelligent control system for reusable rocket engines under development at NASA Lewis Research Center requires a graphical user interface to allow observation of the closed-loop system in operation. The simulation testbed consists of a real-time engine simulation computer, a controls computer, and several auxiliary computers for diagnostics and coordination. The system is set up so that the simulation computer could be replaced by the real engine and the change would be transparent to the control system. Because of the hard real-time requirement of the control computer, putting a graphical user interface on it was not an option. Thus, a separate computer used strictly for the graphical user interface was warranted. An object-oriented LISP-based graphical user interface has been developed on a Texas Instruments Explorer 2+ to indicate the condition of the engine to the observer through plots, animation, interactive graphics, and text.
Circular Data Images for Directional Data
NASA Technical Reports Server (NTRS)
Morpet, William J.
2004-01-01
Directional data includes vectors, points on a unit sphere, axis orientation, angular direction, and circular or periodic data. The theoretical statistics for circular data (random points on a unit circle) or spherical data (random points on a unit sphere) are a recent development. An overview of existing graphical methods for the display of directional data is given. Cross-over occurs when periodic data are measured on a scale for the measurement of linear variables. For example, if angle is represented by a linear color gradient changing uniformly from dark blue at -180 degrees to bright red at +180 degrees, the color image will be discontinuous at +180 degrees and -180 degrees, which are the same location. The resultant color would depend on the direction of approach to the cross-over point. A new graphical method for imaging directional data is described, which affords high resolution without color discontinuity from "cross-over". It is called the circular data image. The circular data image uses a circular color scale in which colors repeat periodically. Some examples of the circular data image include direction of earth winds on a global scale, rocket motor internal flow, earth global magnetic field direction, and rocket motor nozzle vector direction vs. time.
Advanced Certification Program for Computer Graphic Specialists. Final Performance Report.
ERIC Educational Resources Information Center
Parkland Coll., Champaign, IL.
A pioneer program in computer graphics was implemented at Parkland College (Illinois) to meet the demand for specialized technicians to visualize data generated on high performance computers. In summer 1989, 23 students were accepted into the pilot program. Courses included C programming, calculus and analytic geometry, computer graphics, and…
Newspaper: What's in It for Me? Your Complete Guide to Newspaper Careers.
ERIC Educational Resources Information Center
Chattman, Ray, Ed.; And Others
Intended to inform young people about the wealth of career opportunities in the newspaper business, this magazine-style booklet, profusely illustrated with color photographs and graphics, discusses 10 career areas (advertising, art and design, business, circulation, human resources, marketing/promotion, news/editorial, news graphics and…
The Effects of Iconic Presentation on Individuals
1992-09-01
attitudes (Davis, 1981; Lusk and Dersnick, 1979; Robey, 1983; Zmud, Blocher, and Moffie , 1983). Davis (1981) performed a study based on the Myers-Briggs...Cheshire CT: Graphics Press, 1983. Zmud, R. W., E. Blocher, and R. P. Moffie . "The Impact of Color Graphic Report Formats on Decision Performance and
DOT National Transportation Integrated Search
2016-08-01
Graphic Route Information Panel (GRIP) signs use a combination of text, colors, and representative maps of : the roadway system to convey real-time roadway congestion location and severity information. The intent of : this project was to facilitate t...
A study of computer graphics technology in application of communication resource management
NASA Astrophysics Data System (ADS)
Li, Jing; Zhou, Liang; Yang, Fei
2017-08-01
With the development of computer technology, computer graphics technology has been widely used. Especially, the success of object-oriented technology and multimedia technology promotes the development of graphics technology in the computer software system. Therefore, the computer graphics theory and application technology have become an important topic in the field of computer, while the computer graphics technology becomes more and more extensive in various fields of application. In recent years, with the development of social economy, especially the rapid development of information technology, the traditional way of communication resource management cannot effectively meet the needs of resource management. In this case, the current communication resource management is still using the original management tools and management methods, resource management equipment management and maintenance, which brought a lot of problems. It is very difficult for non-professionals to understand the equipment and the situation in communication resource management. Resource utilization is relatively low, and managers cannot quickly and accurately understand the resource conditions. Aimed at the above problems, this paper proposes to introduce computer graphics technology into the communication resource management. The introduction of computer graphics not only makes communication resource management more vivid, but also reduces the cost of resource management and improves work efficiency.
Photojournal Home Page Graphic 2007
NASA Technical Reports Server (NTRS)
2008-01-01
This image is an unannotated version of the Photojournal Home Page graphic released in October 2007. This digital collage contains a highly stylized rendition of our solar system and points beyond. As this graphic was intended to be used as a navigation aid in searching for data within the Photojournal, certain artistic embellishments have been added (color, location, etc.). Several data sets from various planetary and astronomy missions were combined to create this image.NASA Astrophysics Data System (ADS)
Min, Jae-Hong; Gelo, Nikolas J.; Jo, Hongki
2016-04-01
The newly developed smartphone application, named RINO, in this study allows measuring absolute dynamic displacements and processing them in real time using state-of-the-art smartphone technologies, such as high-performance graphics processing unit (GPU), in addition to already powerful CPU and memories, embedded high-speed/ resolution camera, and open-source computer vision libraries. A carefully designed color-patterned target and user-adjustable crop filter enable accurate and fast image processing, allowing up to 240fps for complete displacement calculation and real-time display. The performances of the developed smartphone application are experimentally validated, showing comparable accuracy with those of conventional laser displacement sensor.
Photoshop tips and tricks every facial plastic surgeon should know.
Hamilton, Grant S
2010-05-01
Postprocessing of patient photographs is an important skill for the facial plastic surgeon. Postprocessing is intended to optimize the image, not change the surgical result. This article refers to use of Photoshop CS3 (Adobe Systems Incorporated, San Jose, CA, USA) for descriptions, but any recent version of Photoshop is sufficiently similar. Topics covered are types of camera, shooting formats, color balance, alignment of preoperative and postoperative photographs, and preparing figures for publication. Each section presents step-by-step guidance and instructions along with a graphic depiction of the computer screen and Photoshop tools under discussion. Copyright 2010 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Dewdney, A. K.
1989-01-01
Discussed are three examples of computer graphics including biomorphs, Truchet tilings, and fractal popcorn. The graphics are shown and the basic algorithm using multiple iteration of a particular function or mathematical operation is described. An illustration of a snail shell created by computer graphics is presented. (YP)
Is There Computer Graphics after Multimedia?
ERIC Educational Resources Information Center
Booth, Kellogg S.
Computer graphics has been driven by the desire to generate real-time imagery subject to constraints imposed by the human visual system. The future of computer graphics, when off-the-shelf systems have full multimedia capability and when standard computing engines render imagery faster than real-time, remains to be seen. A dedicated pipeline for…
Displaying Geographically-Based Domestic Statistics
NASA Technical Reports Server (NTRS)
Quann, J.; Dalton, J.; Banks, M.; Helfer, D.; Szczur, M.; Winkert, G.; Billingsley, J.; Borgstede, R.; Chen, J.; Chen, L.;
1982-01-01
Decision Information Display System (DIDS) is rapid-response information-retrieval and color-graphics display system. DIDS transforms tables of geographically-based domestic statistics (such as population or unemployment by county, energy usage by county, or air-quality figures) into high-resolution, color-coded maps on television display screen.
3M's Dry Silver technology: an ideal media for electronic imaging
NASA Astrophysics Data System (ADS)
Morgan, David A.
1991-08-01
In recent years there has been great interest and growth in the ability to create images electronically. This trend has been driven by the lower cost of computing and storing data, and the speed in which this can be accomplished. The ability to scan, create, and transmit color images is possible even with the enormous amount of data needed to create color images with gray scale and high resolution. In the past, there has not been a great demand for color copiers because few color images were in existence. The above-mentioned trend is changing this, and in addition scanners can quickly translate color graphics into electronic forms at affordable costs. The replacement of black and white televisions and monitors with color was rapid and nearly 100% once the technology was available at a reasonable cost. It is felt by some equipment manufacturers that soft copy will replace hard copy and there will be a diminishing need for imaging media. The author believes, however, that the need for hard copy will continue, and in fact may increase, but with new technology. To create black and white or color hard copy from electronically generated data, some essential characteristics are needed. They are: (1) total dryness, (2) rapid access, (3) gray scale, (4) high resolution, (5) good image quality, and (6) easy to use, low-cost, reliable equipment. Some of the leading technologies for this are electrostatic, thermal dye transfer, ink jet, instant silver photography, and 3M's Dry Silver. This paper gives a general overview of these technologies, but its main emphasis is 3M's Dry Silver approach.
An introduction to real-time graphical techniques for analyzing multivariate data
NASA Astrophysics Data System (ADS)
Friedman, Jerome H.; McDonald, John Alan; Stuetzle, Werner
1987-08-01
Orion I is a graphics system used to study applications of computer graphics - especially interactive motion graphics - in statistics. Orion I is the newest of a family of "Prim" systems, whose most striking common feature is the use of real-time motion graphics to display three dimensional scatterplots. Orion I differs from earlier Prim systems through the use of modern and relatively inexpensive raster graphics and microprocessor technology. It also delivers more computing power to its user; Orion I can perform more sophisticated real-time computations than were possible on previous such systems. We demonstrate some of Orion I's capabilities in our film: "Exploring data with Orion I".
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of Apollo's 3-dimensional graphics hardware, but does not take advantage of the shading and hidden line/surface removal capabilities of the Apollo DN10000. Although this implementation does not offer a capability for putting text on plots, it does support the use of a mouse to translate, rotate, or zoom in on views. The version 3.6b+ Apollo implementations of PLOT3D (ARC-12789) and PLOT3D/TURB3D (ARC-12785) were developed for use on Apollo computers running UNIX System V with BSD 4.3 extensions and the graphics library GMR3D Version 2.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: 1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); 2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); 3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.
PLOT3D/AMES, SGI IRIS VERSION (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In each of these areas, the IRIS implementation of PLOT3D offers advanced features which aid visualization efforts. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are even offered: creation of simple animation sequences without the need for other software; and, creation of files for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and can record images to digital disk, video tape, or 16-mm film. The version 3.6b+ SGI implementations of PLOT3D (ARC-12783) and PLOT3D/TURB3D (ARC-12782) were developed for use on Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations. These programs are each distributed on one .25 inch magnetic tape cartridge in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777,ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of Apollo's 3-dimensional graphics hardware, but does not take advantage of the shading and hidden line/surface removal capabilities of the Apollo DN10000. Although this implementation does not offer a capability for putting text on plots, it does support the use of a mouse to translate, rotate, or zoom in on views. The version 3.6b+ Apollo implementations of PLOT3D (ARC-12789) and PLOT3D/TURB3D (ARC-12785) were developed for use on Apollo computers running UNIX System V with BSD 4.3 extensions and the graphics library GMR3D Version 2.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: 1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); 2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); 3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.
PLOT3D/AMES, SGI IRIS VERSION (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In each of these areas, the IRIS implementation of PLOT3D offers advanced features which aid visualization efforts. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are even offered: creation of simple animation sequences without the need for other software; and, creation of files for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and can record images to digital disk, video tape, or 16-mm film. The version 3.6b+ SGI implementations of PLOT3D (ARC-12783) and PLOT3D/TURB3D (ARC-12782) were developed for use on Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations. These programs are each distributed on one .25 inch magnetic tape cartridge in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777,ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.
Interactive graphical computer-aided design system
NASA Technical Reports Server (NTRS)
Edge, T. M.
1975-01-01
System is used for design, layout, and modification of large-scale-integrated (LSI) metal-oxide semiconductor (MOS) arrays. System is structured around small computer which provides real-time support for graphics storage display unit with keyboard, slave display unit, hard copy unit, and graphics tablet for designer/computer interface.
SIGMA--A Graphical Approach to Teaching Simulation.
ERIC Educational Resources Information Center
Schruben, Lee W.
1992-01-01
SIGMA (Simulation Graphical Modeling and Analysis) is a computer graphics environment for building, testing, and experimenting with discrete event simulation models on personal computers. It uses symbolic representations (computer animation) to depict the logic of large, complex discrete event systems for easier understanding and has proven itself…
Development of a Traditional/Computer-aided Graphics Course for Engineering Technology.
ERIC Educational Resources Information Center
Anand, Vera B.
1985-01-01
Describes a two-semester-hour freshman course in engineering graphics which uses both traditional and computerized instruction. Includes course description, computer graphics topics, and recommendations. Indicates that combining interactive graphics software with development of simple programs gave students a better foundation for upper-division…
Visualized modeling platform for virtual plant growth and monitoring on the internet
NASA Astrophysics Data System (ADS)
Zhou, De-fu; Tian, Feng-qui; Ren, Ping
2009-07-01
Virtual plant growth is a key research topic in Agriculture Information Technique and Computer Graphics. It has been applied in botany, agronomy, environmental sciences, computre sciences and applied mathematics. Modeling leaf color dynamics in plant is of significant importance for realizing virtual plant growth. Using systematic analysis method and dynamic modeling technology, a SPAD-based leaf color dynamic model was developed to simulate time-course change characters of leaf SPAD on the plant. In addition, process of plant growth can be computer-stimulated using Virtual Reality Modeling Language (VRML) to establish a vivid and visible model, including shooting, rooting, blooming, as well as growth of the stems and leaves. In the resistance environment, e.g., lacking of water, air or nutrient substances, high salt or alkaline, freezing injury, high temperature, suffering from diseases and insect pests, the changes from the level of whole plant to organs, tissues and cells could be computer-stimulated. Changes from physiological and biochemistry could also be described. When a series of indexes were input by the costumers, direct view and microcosmic changes could be shown. Thus, the model has a good performance in predicting growth condition of the plant, laying a foundation for further constructing virtual plant growth system. The results revealed that realistic physiological and pathological processes of 3D virtual plants could be demonstrated by proper design and effectively realized in the internet.
GPUs: An Emerging Platform for General-Purpose Computation
2007-08-01
programming; real-time cinematic quality graphics Peak stream (26) License required (limited time no- cost evaluation program) Commercially...folding.stanford.edu (accessed 30 March 2007). 2. Fan, Z.; Qiu, F.; Kaufman, A.; Yoakum-Stover, S. GPU Cluster for High Performance Computing. ACM/IEEE...accessed 30 March 2007). 8. Goodnight, N.; Wang, R.; Humphreys, G. Computation on Programmable Graphics Hardware. IEEE Computer Graphics and
PLOT3D/AMES, GENERIC UNIX VERSION USING DISSPLA (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The UNIX/DISSPLA implementation of PLOT3D supports 2-D polygons as well as 2-D and 3-D lines, but does not support graphics features requiring 3-D polygons (shading and hidden line removal, for example). Views can be manipulated using keyboard commands. This version of PLOT3D is potentially able to produce files for a variety of output devices; however, site-specific capabilities will vary depending on the device drivers supplied with the user's DISSPLA library. The version 3.6b+ UNIX/DISSPLA implementations of PLOT3D (ARC-12788) and PLOT3D/TURB3D (ARC-12778) were developed for use on computers running UNIX SYSTEM 5 with BSD 4.3 extensions. The standard distribution media for each ofthese programs is a 9track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D (ARC-12783, ARC-12782); (3) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. System 5 is a trademark of Bell Labs, Incorporated. BSD4.3 is a trademark of the University of California at Berkeley. UNIX is a registered trademark of AT&T.
PLOT3D/AMES, GENERIC UNIX VERSION USING DISSPLA (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The UNIX/DISSPLA implementation of PLOT3D supports 2-D polygons as well as 2-D and 3-D lines, but does not support graphics features requiring 3-D polygons (shading and hidden line removal, for example). Views can be manipulated using keyboard commands. This version of PLOT3D is potentially able to produce files for a variety of output devices; however, site-specific capabilities will vary depending on the device drivers supplied with the user's DISSPLA library. The version 3.6b+ UNIX/DISSPLA implementations of PLOT3D (ARC-12788) and PLOT3D/TURB3D (ARC-12778) were developed for use on computers running UNIX SYSTEM 5 with BSD 4.3 extensions. The standard distribution media for each ofthese programs is a 9track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D (ARC-12783, ARC-12782); (3) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. System 5 is a trademark of Bell Labs, Incorporated. BSD4.3 is a trademark of the University of California at Berkeley. UNIX is a registered trademark of AT&T.
Graphical User Interface Programming in Introductory Computer Science.
ERIC Educational Resources Information Center
Skolnick, Michael M.; Spooner, David L.
Modern computing systems exploit graphical user interfaces for interaction with users; as a result, introductory computer science courses must begin to teach the principles underlying such interfaces. This paper presents an approach to graphical user interface (GUI) implementation that is simple enough for beginning students to understand, yet…
DOT National Transportation Integrated Search
1981-01-01
This report describes a method for locating historic site information using a computer graphics program. If adopted for use by the Virginia Department of Highways and Transportation, this method should significantly reduce the time now required to de...
Oklahoma's Mobile Computer Graphics Laboratory.
ERIC Educational Resources Information Center
McClain, Gerald R.
This Computer Graphics Laboratory houses an IBM 1130 computer, U.C.C. plotter, printer, card reader, two key punch machines, and seminar-type classroom furniture. A "General Drafting Graphics System" (GDGS) is used, based on repetitive use of basic coordinate and plot generating commands. The system is used by 12 institutions of higher education…
Traditional Engineering Graphics versus Computer-Aided Drafting: A View from Academe.
ERIC Educational Resources Information Center
Foster, Robert J.
1987-01-01
Argues for a legitimate role of manually expressed engineering graphics within engineering education as a needed support for computer-assisted drafting work. Discusses what and how students should learn as well as trends in engineering graphics education. Compares and contrasts manual and computer drafting methods. (CW)
A Program of Continuing Research on Representing, Manipulating, and Reasoning about Physical Objects
1991-09-30
graphics with the goal of automatically converting complex graphics models into forms more appropriate for radiosity computation. 2.4 Least Constraint We...to computer graphics with the goal of automatically 7 converting complex graphics models into forms more appropriate for radiosity com- putation. 8 4
Engineering Graphics Educational Outcomes for the Global Engineer: An Update
ERIC Educational Resources Information Center
Barr, R. E.
2012-01-01
This paper discusses the formulation of educational outcomes for engineering graphics that span the global enterprise. Results of two repeated faculty surveys indicate that new computer graphics tools and techniques are now the preferred mode of engineering graphical communication. Specifically, 3-D computer modeling, assembly modeling, and model…
GPU-computing in econophysics and statistical physics
NASA Astrophysics Data System (ADS)
Preis, T.
2011-03-01
A recent trend in computer science and related fields is general purpose computing on graphics processing units (GPUs), which can yield impressive performance. With multiple cores connected by high memory bandwidth, today's GPUs offer resources for non-graphics parallel processing. This article provides a brief introduction into the field of GPU computing and includes examples. In particular computationally expensive analyses employed in financial market context are coded on a graphics card architecture which leads to a significant reduction of computing time. In order to demonstrate the wide range of possible applications, a standard model in statistical physics - the Ising model - is ported to a graphics card architecture as well, resulting in large speedup values.
PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In addition to providing the advantages of performing complex calculations on a supercomputer, the Supercomputer/IRIS implementation of PLOT3D offers advanced 3-D, view manipulation, and animation capabilities. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are available. Simple animation sequences can be created on the IRIS, or,if an appropriately modified version of ARCGRAPH (ARC-12350) is accesible on the supercomputer, files can be created for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and options for recording images to digital disk, video tape, or 16-mm film. The version 3.6b+ Supercomputer/IRIS implementations of PLOT3D (ARC-12779) and PLOT3D/TURB3D (ARC-12784) are suitable for use on CRAY 2/UNICOS, CONVEX, and ALLIANT computers with a remote Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstation. These programs are distributed on .25 inch magnetic tape cartridges in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC12777, ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 - which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo, DN10000, and GMR3D are trademarks of Hewlett-Packard, Incorporated. System V is a trademark of Bell Labs, Incorporated. BSD4.3 is a trademark of the University of California at Berkeley. UNIX is a registered trademark of AT&T.
PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In addition to providing the advantages of performing complex calculations on a supercomputer, the Supercomputer/IRIS implementation of PLOT3D offers advanced 3-D, view manipulation, and animation capabilities. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are available. Simple animation sequences can be created on the IRIS, or,if an appropriately modified version of ARCGRAPH (ARC-12350) is accesible on the supercomputer, files can be created for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and options for recording images to digital disk, video tape, or 16-mm film. The version 3.6b+ Supercomputer/IRIS implementations of PLOT3D (ARC-12779) and PLOT3D/TURB3D (ARC-12784) are suitable for use on CRAY 2/UNICOS, CONVEX, and ALLIANT computers with a remote Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstation. These programs are distributed on .25 inch magnetic tape cartridges in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC12777, ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 - which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo, DN10000, and GMR3D are trademarks of Hewlett-Packard, Incorporated. System V is a trademark of Bell Labs, Incorporated. BSD4.3 is a trademark of the University of California at Berkeley. UNIX is a registered trademark of AT&T.
Physically-Based Modelling and Real-Time Simulation of Fluids.
NASA Astrophysics Data System (ADS)
Chen, Jim Xiong
1995-01-01
Simulating physically realistic complex fluid behaviors presents an extremely challenging problem for computer graphics researchers. Such behaviors include the effects of driving boats through water, blending differently colored fluids, rain falling and flowing on a terrain, fluids interacting in a Distributed Interactive Simulation (DIS), etc. Such capabilities are useful in computer art, advertising, education, entertainment, and training. We present a new method for physically-based modeling and real-time simulation of fluids in computer graphics and dynamic virtual environments. By solving the 2D Navier -Stokes equations using a CFD method, we map the surface into 3D using the corresponding pressures in the fluid flow field. This achieves realistic real-time fluid surface behaviors by employing the physical governing laws of fluids but avoiding extensive 3D fluid dynamics computations. To complement the surface behaviors, we calculate fluid volume and external boundary changes separately to achieve full 3D general fluid flow. To simulate physical activities in a DIS, we introduce a mechanism which uses a uniform time scale proportional to the clock-time and variable time-slicing to synchronize physical models such as fluids in the networked environment. Our approach can simulate many different fluid behaviors by changing the internal or external boundary conditions. It can model different kinds of fluids by varying the Reynolds number. It can simulate objects moving or floating in fluids. It can also produce synchronized general fluid flows in a DIS. Our model can serve as a testbed to simulate many other fluid phenomena which have never been successfully modeled previously.
Realistic facial expression of virtual human based on color, sweat, and tears effects.
Alkawaz, Mohammed Hazim; Basori, Ahmad Hoirul; Mohamad, Dzulkifli; Mohamed, Farhan
2014-01-01
Generating extreme appearances such as scared awaiting sweating while happy fit for tears (cry) and blushing (anger and happiness) is the key issue in achieving the high quality facial animation. The effects of sweat, tears, and colors are integrated into a single animation model to create realistic facial expressions of 3D avatar. The physical properties of muscles, emotions, or the fluid properties with sweating and tears initiators are incorporated. The action units (AUs) of facial action coding system are merged with autonomous AUs to create expressions including sadness, anger with blushing, happiness with blushing, and fear. Fluid effects such as sweat and tears are simulated using the particle system and smoothed-particle hydrodynamics (SPH) methods which are combined with facial animation technique to produce complex facial expressions. The effects of oxygenation of the facial skin color appearance are measured using the pulse oximeter system and the 3D skin analyzer. The result shows that virtual human facial expression is enhanced by mimicking actual sweating and tears simulations for all extreme expressions. The proposed method has contribution towards the development of facial animation industry and game as well as computer graphics.
Realistic Facial Expression of Virtual Human Based on Color, Sweat, and Tears Effects
Alkawaz, Mohammed Hazim; Basori, Ahmad Hoirul; Mohamad, Dzulkifli; Mohamed, Farhan
2014-01-01
Generating extreme appearances such as scared awaiting sweating while happy fit for tears (cry) and blushing (anger and happiness) is the key issue in achieving the high quality facial animation. The effects of sweat, tears, and colors are integrated into a single animation model to create realistic facial expressions of 3D avatar. The physical properties of muscles, emotions, or the fluid properties with sweating and tears initiators are incorporated. The action units (AUs) of facial action coding system are merged with autonomous AUs to create expressions including sadness, anger with blushing, happiness with blushing, and fear. Fluid effects such as sweat and tears are simulated using the particle system and smoothed-particle hydrodynamics (SPH) methods which are combined with facial animation technique to produce complex facial expressions. The effects of oxygenation of the facial skin color appearance are measured using the pulse oximeter system and the 3D skin analyzer. The result shows that virtual human facial expression is enhanced by mimicking actual sweating and tears simulations for all extreme expressions. The proposed method has contribution towards the development of facial animation industry and game as well as computer graphics. PMID:25136663
Focus measure method based on the modulus of the gradient of the color planes for digital microscopy
NASA Astrophysics Data System (ADS)
Hurtado-Pérez, Román; Toxqui-Quitl, Carina; Padilla-Vivanco, Alfonso; Aguilar-Valdez, J. Félix; Ortega-Mendoza, Gabriel
2018-02-01
The modulus of the gradient of the color planes (MGC) is implemented to transform multichannel information to a grayscale image. This digital technique is used in two applications: (a) focus measurements during autofocusing (AF) process and (b) extending the depth of field (EDoF) by means of multifocus image fusion. In the first case, the MGC procedure is based on an edge detection technique and is implemented in over 15 focus metrics that are typically handled in digital microscopy. The MGC approach is tested on color images of histological sections for the selection of in-focus images. An appealing attribute of all the AF metrics working in the MGC space is their monotonic behavior even up to a magnification of 100×. An advantage of the MGC method is its computational simplicity and inherent parallelism. In the second application, a multifocus image fusion algorithm based on the MGC approach has been implemented on graphics processing units (GPUs). The resulting fused images are evaluated using a nonreference image quality metric. The proposed fusion method reveals a high-quality image independently of faulty illumination during the image acquisition. Finally, the three-dimensional visualization of the in-focus image is shown.
Volumetric Visualization of Human Skin
NASA Astrophysics Data System (ADS)
Kawai, Toshiyuki; Kurioka, Yoshihiro
We propose a modeling and rendering technique of human skin, which can provide realistic color, gloss and translucency for various applications in computer graphics. Our method is based on volumetric representation of the structure inside of the skin. Our model consists of the stratum corneum and three layers of pigments. The stratum corneum has also layered structure in which the incident light is reflected, refracted and diffused. Each layer of pigment has carotene, melanin or hemoglobin. The density distributions of pigments which define the color of each layer can be supplied as one of the voxel values. Surface normals of upper-side voxels are fluctuated to produce bumps and lines on the skin. We apply ray tracing approach to this model to obtain the rendered image. Multiple scattering in the stratum corneum, reflective and absorptive spectrum of pigments are considered. We also consider Fresnel term to calculate the specular component for glossy surface of skin. Some examples of rendered images are shown, which can successfully visualize a human skin.
Practical method for appearance match between soft copy and hard copy
NASA Astrophysics Data System (ADS)
Katoh, Naoya
1994-04-01
CRT monitors are often used as a soft proofing device for the hard copy image output. However, what the user sees on the monitor does not match its output, even if the monitor and the output device are calibrated with CIE/XYZ or CIE/Lab. This is especially obvious when correlated color temperature (CCT) of CRT monitor's white point significantly differs from ambient light. In a typical office environment, one uses a computer graphic monitor having a CCT of 9300K in a room of white fluorescent light of 4150K CCT. In such a case, human visual system is partially adapted to the CRT monitor's white point and partially to the ambient light. The visual experiments were performed on the effect of the ambient lighting. Practical method for soft copy color reproduction that matches the hard copy image in appearance is presented in this paper. This method is fundamentally based on a simple von Kries' adaptation model and takes into account the human visual system's partial adaptation and contrast matching.
Predicting Visibility of Aircraft
Watson, Andrew; Ramirez, Cesar V.; Salud, Ellen
2009-01-01
Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration. PMID:19462007
Processing Infrared Images For Fire Management Applications
NASA Astrophysics Data System (ADS)
Warren, John R.; Pratt, William K.
1981-12-01
The USDA Forest Service has used airborne infrared systems for forest fire detection and mapping for many years. The transfer of the images from plane to ground and the transposition of fire spots and perimeters to maps has been performed manually. A new system has been developed which uses digital image processing, transmission, and storage. Interactive graphics, high resolution color display, calculations, and computer model compatibility are featured in the system. Images are acquired by an IR line scanner and converted to 1024 x 1024 x 8 bit frames for transmission to the ground at a 1.544 M bit rate over a 14.7 GHZ carrier. Individual frames are received and stored, then transferred to a solid state memory to refresh the display at a conventional 30 frames per second rate. Line length and area calculations, false color assignment, X-Y scaling, and image enhancement are available. Fire spread can be calculated for display and fire perimeters plotted on maps. The performance requirements, basic system, and image processing will be described.
Program Aids Specification Of Multiple-Block Grids
NASA Technical Reports Server (NTRS)
Sorenson, R. L.; Mccann, K. M.
1993-01-01
3DPREP computer program aids specification of multiple-block computational grids. Highly interactive graphical preprocessing program designed for use on powerful graphical scientific computer workstation. Divided into three main parts, each corresponding to principal graphical-and-alphanumerical display. Relieves user of some burden of collecting and formatting many data needed to specify blocks and grids, and prepares input data for NASA's 3DGRAPE grid-generating computer program.
Two demonstrators and a simulator for a sparse, distributed memory
NASA Technical Reports Server (NTRS)
Brown, Robert L.
1987-01-01
Described are two programs demonstrating different aspects of Kanerva's Sparse, Distributed Memory (SDM). These programs run on Sun 3 workstations, one using color, and have straightforward graphically oriented user interfaces and graphical output. Presented are descriptions of the programs, how to use them, and what they show. Additionally, this paper describes the software simulator behind each program.
Color-Coded Graphic Organizers for Teaching Writing to Students with Learning Disabilities
ERIC Educational Resources Information Center
Ewoldt, Kathy B.; Morgan, Joseph John
2017-01-01
A commonly used method for supporting the writing of students with learning disabilities (LD), graphic organizers have been shown to effectively support instruction for students with LD in a variety of content areas (Dexter & Hughes, 2011). Students with LD often struggle with the process of developing their ideas into organized sentences; the…
COINGRAD; Control Oriented Interactive Graphical Analysis and Design.
ERIC Educational Resources Information Center
Volz, Richard A.; And Others
The computer is currently a vital tool in engineering analysis and design. With the introduction of moderately priced graphics terminals, it will become even more important in the future as rapid graphic interaction between the engineer and the computer becomes more feasible in computer-aided design (CAD). To provide a vehicle for introducing…
Design and Curriculum Considerations for a Computer Graphics Program in the Arts.
ERIC Educational Resources Information Center
Leeman, Ruedy W.
This history and state-of-the-art review of computer graphics describes computer graphics programs and proposed programs at Sheridan College (Canada), the Rhode Island School of Design, the University of Oregon, Northern Illinois University, and Ohio State University. These programs are discussed in terms of their philosophy, curriculum, student…
Multi-Attribute Task Battery - Applications in pilot workload and strategic behavior research
NASA Technical Reports Server (NTRS)
Arnegard, Ruth J.; Comstock, J. R., Jr.
1991-01-01
The Multi-Attribute Task (MAT) Battery provides a benchmark set of tasks for use in a wide range of lab studies of operator performance and workload. The battery incorporates tasks analogous to activities that aircraft crewmembers perform in flight, while providing a high degree of experimenter control, performance data on each subtask, and freedom to nonpilot test subjects. Features not found in existing computer based tasks include an auditory communication task (to simulate Air Traffic Control communication), a resource management task permitting many avenues or strategies of maintaining target performance, a scheduling window which gives the operator information about future task demands, and the option of manual or automated control of tasks. Performance data are generated for each subtask. In addition, the task battery may be paused and onscreen workload rating scales presented to the subject. The MAT Battery requires a desktop computer with color graphics. The communication task requires a serial link to a second desktop computer with a voice synthesizer or digitizer card.
The multi-attribute task battery for human operator workload and strategic behavior research
NASA Technical Reports Server (NTRS)
Comstock, J. Raymond, Jr.; Arnegard, Ruth J.
1992-01-01
The Multi-Attribute Task (MAT) Battery provides a benchmark set of tasks for use in a wide range of lab studies of operator performance and workload. The battery incorporates tasks analogous to activities that aircraft crewmembers perform in flight, while providing a high degree of experimenter control, performance data on each subtask, and freedom to use nonpilot test subjects. Features not found in existing computer based tasks include an auditory communication task (to simulate Air Traffic Control communication), a resource management task permitting many avenues or strategies of maintaining target performance, a scheduling window which gives the operator information about future task demands, and the option of manual or automated control of tasks. Performance data are generated for each subtask. In addition, the task battery may be paused and onscreen workload rating scales presented to the subject. The MAT Battery requires a desktop computer with color graphics. The communication task requires a serial link to a second desktop computer with a voice synthesizer or digitizer card.
Building perceptual color maps for visualizing interval data
NASA Astrophysics Data System (ADS)
Kalvin, Alan D.; Rogowitz, Bernice E.; Pelah, Adar; Cohen, Aron
2000-06-01
In visualization, a 'color map' maps a range of data values onto a scale of colors. However, unless a color map is e carefully constructed, visual artifacts can be produced. This problem has stimulated considerable interest in creating perceptually based color maps, that is, color maps where equal steps in data value are perceived as equal steps in the color map [Robertson (1988); Pizer (1981); Green (1992); Lefkowitz and Herman, 1992)]. In Rogowitz and Treinish, (1996, 1998) and in Bergman, Treinish and Rogowitz, (1995), we demonstrated that color maps based on luminance or saturation could be good candidates for satisfying this requirement. This work is based on the seminal work of S.S. Stevens (1966), who measured the perceived magnitude of different magnitudes of physical stimuli. He found that for many physical scales, including luminance (cd/m2) and saturation (the 'redness' of a long-wavelength light source), equal ratios in stimulus value produced equal ratios in perceptual magnitude. He interpreted this as indicating that there exists in human cognition a common scale for representing magnitude, and we scale the effects of different physical stimuli to this internal scale. In Rogowitz, Kalvin, Pelahb and Cohen (1999), we used a psychophysical technique to test this hypothesis as it applies to the creation of perceptually uniform color maps. We constructed color maps as trajectories through three-color spaces, a common computer graphics standard (uncalibrated HSV), a common perceptually-based engineering standard for creating visual stimuli (L*a*b*), and a space commonly used in the graphic arts (Munsell). For each space, we created color scales that varied linearly in hue, saturation, or luminance and measured the detectability of increments in hue, saturation or luminance for each of these color scales. We measured the amplitude of the just-detectable Gaussian increments at 20 different values along the range of each color map. For all three color spaces, we found that luminance-based color maps provided the most perceptually- uniform representations of the data. The just-detectable increment was constant at all points in the color map, with the exception of the lowest-luminance values, where a larger increment was required. The saturation-based color maps provided less sensitivity than the luminance-based color maps, requiring much larger increments for detection. For the hue- based color maps, the size of the increment required for detection varied across the range. For example, for the standard 'rainbow' color map (uncalibrated HSV, hue-varying map), a step in the 'green' region required an increment 16 times the size of the increment required in the 'cyan' part of the range. That is, the rainbow color map would not successfully represent changes in the data in the 'green' region of this color map. In this paper, we extend this research by studying the detectability of spatially-modulated Gabor targets based on these hue, saturation and luminance scales. Since, in visualization, the user is called upon to detect and identify patterns that vary in their spatial characteristics, it is important to study how different types of color maps represent data with varying spatial properties. To do so, we measured modulation thresholds for low-(0.2 c/deg) and high-spatial frequency (4.0 c/deg) Gabor patches and compared them with the Gaussian results. As before, we measured increment thresholds for hue, saturation, and luminance modulations. These color scales were constructed as trajectories along the three perceptual dimensions of color (hue, saturation, and luminance) in two color spaces, uncalibrated HSV and calibrated L*a*b. This allowed us to study how the three perceptual dimensions represent magnitude information for test patterns varying in spatial frequency. This design also allowed us to test the hypothesis that the luminance channel best carries high-spatial frequency information while the saturation channel best represents low spatial-frequency information (Mullen 1985; DeValois and DeValois 1988).
Tree Colors: Color Schemes for Tree-Structured Data.
Tennekes, Martijn; de Jonge, Edwin
2014-12-01
We present a method to map tree structures to colors from the Hue-Chroma-Luminance color model, which is known for its well balanced perceptual properties. The Tree Colors method can be tuned with several parameters, whose effect on the resulting color schemes is discussed in detail. We provide a free and open source implementation with sensible parameter defaults. Categorical data are very common in statistical graphics, and often these categories form a classification tree. We evaluate applying Tree Colors to tree structured data with a survey on a large group of users from a national statistical institute. Our user study suggests that Tree Colors are useful, not only for improving node-link diagrams, but also for unveiling tree structure in non-hierarchical visualizations.
NASA Technical Reports Server (NTRS)
Hofman, L. B.; Erickson, W. K.; Donovan, W. E.
1984-01-01
Image Display and Analysis Systems (MIDAS) developed at NASA/Ames for the analysis of Landsat MSS images is described. The MIDAS computer power and memory, graphics, resource-sharing, expansion and upgrade, environment and maintenance, and software/user-interface requirements are outlined; the implementation hardware (including 32-bit microprocessor, 512K error-correcting RAM, 70 or 140-Mbyte formatted disk drive, 512 x 512 x 24 color frame buffer, and local-area-network transceiver) and applications software (ELAS, CIE, and P-EDITOR) are characterized; and implementation problems, performance data, and costs are examined. Planned improvements in MIDAS hardware and design goals and areas of exploration for MIDAS software are discussed.
NASA Technical Reports Server (NTRS)
Apodaca, Tony; Porter, Tom
1989-01-01
The two worlds of interactive graphics and realistic graphics have remained separate. Fast graphics hardware runs simple algorithms and generates simple looking images. Photorealistic image synthesis software runs slowly on large expensive computers. The time has come for these two branches of computer graphics to merge. The speed and expense of graphics hardware is no longer the barrier to the wide acceptance of photorealism. There is every reason to believe that high quality image synthesis will become a standard capability of every graphics machine, from superworkstation to personal computer. The significant barrier has been the lack of a common language, an agreed-upon set of terms and conditions, for 3-D modeling systems to talk to 3-D rendering systems for computing an accurate rendition of that scene. Pixar has introduced RenderMan to serve as that common language. RenderMan, specifically the extensibility it offers in shading calculations, is discussed.
The use of graphics in the design of the human-telerobot interface
NASA Technical Reports Server (NTRS)
Stuart, Mark A.; Smith, Randy L.
1989-01-01
The Man-Systems Telerobotics Laboratory (MSTL) of NASA's Johnson Space Center employs computer graphics tools in their design and evaluation of the Flight Telerobotic Servicer (FTS) human/telerobot interface on the Shuttle and on the Space Station. It has been determined by the MSTL that the use of computer graphics can promote more expedient and less costly design endeavors. Several specific examples of computer graphics applied to the FTS user interface by the MSTL are described.
Compress compound images in H.264/MPGE-4 AVC by exploiting spatial correlation.
Lan, Cuiling; Shi, Guangming; Wu, Feng
2010-04-01
Compound images are a combination of text, graphics and natural image. They present strong anisotropic features, especially on the text and graphics parts. These anisotropic features often render conventional compression inefficient. Thus, this paper proposes a novel coding scheme from the H.264 intraframe coding. In the scheme, two new intramodes are developed to better exploit spatial correlation in compound images. The first is the residual scalar quantization (RSQ) mode, where intrapredicted residues are directly quantized and coded without transform. The second is the base colors and index map (BCIM) mode that can be viewed as an adaptive color quantization. In this mode, an image block is represented by several representative colors, referred to as base colors, and an index map to compress. Every block selects its coding mode from two new modes and the previous intramodes in H.264 by rate-distortion optimization (RDO). Experimental results show that the proposed scheme improves the coding efficiency even more than 10 dB at most bit rates for compound images and keeps a comparable efficient performance to H.264 for natural images.
Interplay of Computer and Paper-Based Sketching in Graphic Design
ERIC Educational Resources Information Center
Pan, Rui; Kuo, Shih-Ping; Strobel, Johannes
2013-01-01
The purpose of this study is to investigate student designers' attitude and choices towards the use of computers and paper sketches when involved in a graphic design process. 65 computer graphic technology undergraduates participated in this research. A mixed method study with survey and in-depth interviews was applied to answer the research…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This paper reports on an automated metering/proving system for custody transfer of crude oil at the Phillips 66 Co. tanker unloading terminal in Freeport, Texas. It is described as one of the most sophisticated systems developed. The menu-driven, one-button automation removes the proving sequence entirely from manual control. The system also is the to be cost-effective and versatile compared to a dedicated flow computer with API calculation capabilities. Developed by Puffer-Sweiven, systems integrators, the new technology additionally is thought to be the first custody transfer system to employ a programmable logic controller (PLC). The PLC provides the automation, gathers andmore » stores all raw data, and prints alarms. Also the system uses a personal computer operator interface (OI) that runs on the Intel iRMX real time operating system. The OI is loaded with Puffer-Sweiven application software that performs API meter factor and volume correction calculations as well as present color graphics and generate reports.« less
Rapid Parallel Calculation of shell Element Based On GPU
NASA Astrophysics Data System (ADS)
Wanga, Jian Hua; Lia, Guang Yao; Lib, Sheng; Li, Guang Yao
2010-06-01
Long computing time bottlenecked the application of finite element. In this paper, an effective method to speed up the FEM calculation by using the existing modern graphic processing unit and programmable colored rendering tool was put forward, which devised the representation of unit information in accordance with the features of GPU, converted all the unit calculation into film rendering process, solved the simulation work of all the unit calculation of the internal force, and overcame the shortcomings of lowly parallel level appeared ever before when it run in a single computer. Studies shown that this method could improve efficiency and shorten calculating hours greatly. The results of emulation calculation about the elasticity problem of large number cells in the sheet metal proved that using the GPU parallel simulation calculation was faster than using the CPU's. It is useful and efficient to solve the project problems in this way.
The Use of Color as a Third Dimension on Maps
NASA Astrophysics Data System (ADS)
Cid, X.; Lopez, R.; Lazarus, S.
2007-12-01
As experts, we are trained to understand color schemes used in visualizations in our respective scientific fields. As experts we also forget how complicated graphics can be when viewed for the first time. Previous studies have shown that three-dimensional diagrams can produce a cognitive overload when rendered on a two-dimensional surface, so the same might apply to graphics that use color as a third dimension. This study was conducted to investigate the use of color as a third dimension. We looked at the use of color as a scale height on a basic topographic map, as well as the use of color as temperature. Fifty-four undergraduates from two different physics courses and REU programs during the spring and summer semesters in 2007 were given surveys regarding the use of color. Of these 54 students, eight students were chosen to participate in interviews designed to investigate, in more detail, the responses provided by the students in the hopes to discover where confusions occur. It was found that students have an embedded color scheme for temperatures of red representing hot and blue representing cold as a product of societal influences, which was expected, but there was no embedded color scheme when color was applied to height. We found that students did not have a preference when viewing a topographic map with different color schemes, but did prefer the color scheme of the figure that they viewed first. We observed that the students did have an embedded notion of what the topographic figure was representing, and tried to fit the color scheme shown to match their idea. During the interviews we also found that even the slightest deviations from a specific color scheme gives rise to confusion. These results, therefore, show the importance of detail consistency when using visualizations in a lecture where the population is composed of novices.
Computer-Graphics Emulation of Chemical Instrumentation: Absorption Spectrophotometers.
ERIC Educational Resources Information Center
Gilbert, D. D.; And Others
1982-01-01
Describes interactive, computer-graphics program emulating behavior of high resolution, ultraviolet-visible analog recording spectrophotometer. Graphics terminal behaves as recording absorption spectrophotometer. Objective of the emulation is study of optimization of the instrument to yield accurate absorption spectra, including…
NASA Astrophysics Data System (ADS)
Santos, Richard P.
1989-04-01
IRIS Graphics, Inc., is a new start-up company chartered to develop, manufacture, and market direct digital filmless color imaging systems. IRIS is pleased to have been the recipient of the Graphic Art Technologies Foundation INTERTEC '87 Award for innovative excellence. IRIS is extremely proud to have been given this honor. IRIS was incorporated in April 1984 and received its initial funding of approximately 1 million by September 1984. The first 2044 Beta unit was installed in August 1985, and the first 2044 sales were made in December 1985 to R. R. Donnelley, the largest printer in the United States, and to G. S. Litho, the largest U.S. color separation house. In May 1986, IRIS received an additional 3 million in its second round of financing. A smaller version of the 2044, the 2024 was introduced at Lasers In Graphics in September 1986. IRIS achieved additional financing in July 1987 and completed the introduction of the new breakthrough Series 3000 again at Lasers In Graphics in September 1987 in Orlando, Florida. IRIS occupies 20,000 square feet at its new location in Bedford, Massachusetts, which located off of Route 128 in the high technology area near Boston.
Miran, Seyed M; Ling, Chen; James, Joseph J; Gerard, Alan; Rothfusz, Lans
2017-11-01
Effective design for presenting severe weather information is important to reduce devastating consequences of severe weather. The Probabilistic Hazard Information (PHI) system for severe weather is being developed by NOAA National Severe Storms Laboratory (NSSL) to communicate probabilistic hazardous weather information. This study investigates the effects of four PHI graphical designs for tornado threat, namely, "four-color"," red-scale", "grayscale" and "contour", on users' perception, interpretation, and reaction to threat information. PHI is presented on either a map background or a radar background. Analysis showed that the accuracy was significantly higher and response time faster when PHI was displayed on map background as compared to radar background due to better contrast. When displayed on a radar background, "grayscale" design resulted in a higher accuracy of responses. Possibly due to familiarity, participants reported four-color design as their favorite design, which also resulted in the fastest recognition of probability levels on both backgrounds. Our study shows the importance of using intuitive color-coding and sufficient contrast in conveying probabilistic threat information via graphical design. We also found that users follows a rational perceiving-judging-feeling-and acting approach in processing probabilistic hazard information for tornado. Copyright © 2017 Elsevier Ltd. All rights reserved.
Using the Generic Mapping Tools From Within the MATLAB, Octave and Julia Computing Environments
NASA Astrophysics Data System (ADS)
Luis, J. M. F.; Wessel, P.
2016-12-01
The Generic Mapping Tools (GMT) is a widely used software infrastructure tool set for analyzing and displaying geoscience data. Its power to analyze and process data and produce publication-quality graphics has made it one of several standard processing toolsets used by a large segment of the Earth and Ocean Sciences. GMT's strengths lie in superior publication-quality vector graphics, geodetic-quality map projections, robust data processing algorithms scalable to enormous data sets, and ability to run under all common operating systems. The GMT tool chest offers over 120 modules sharing a common set of command options, file structures, and documentation. GMT modules are command line tools that accept input and write output, and this design allows users to write scripts in which one module's output becomes another module's input, creating highly customized GMT workflows. With the release of GMT 5, these modules are high-level functions with a C API, potentially allowing users access to high-level GMT capabilities from any programmable environment. Many scientists who use GMT also use other computational tools, such as MATLAB® and its clone Octave. We have built a MATLAB/Octave interface on top of the GMT 5 C API. Thus, MATLAB or Octave now has full access to all GMT modules as well as fundamental input/output of GMT data objects via a MEX function. Internally, the GMT/MATLAB C API defines six high-level composite data objects that handle input and output of data via individual GMT modules. These are data tables, grids, text tables (text/data mixed records), color palette tables, raster images (1-4 color bands), and PostScript. The API is responsible for translating between the six GMT objects and the corresponding native MATLAB objects. References to data arrays are passed if transposing of matrices is not required. The GMT and MATLAB/Octave combination is extremely flexible, letting the user harvest the general numerical and graphical capabilities of both systems, and represents a giant step forward in interoperability between GMT and other software package. We will present examples of the symbiotic benefits of combining these platforms. Two other extensions are also in the works: a nearly finished Julia wrapper and an embryonic Python module. Publication supported by FCT- project UID/GEO/50019/2013 - Instituto D. Luiz
ERIC Educational Resources Information Center
McKee, Richard Lee
This master's thesis reports the results of a survey submitted to over 30 colleges and universities that currently offer computer graphics courses or are in the planning stage of curriculum design. Intended to provide a profile of the computer graphics programs and insight into the process of curriculum design, the survey gathered data on program…
Interactive computer graphics and its role in control system design of large space structures
NASA Technical Reports Server (NTRS)
Reddy, A. S. S. R.
1985-01-01
This paper attempts to show the relevance of interactive computer graphics in the design of control systems to maintain attitude and shape of large space structures to accomplish the required mission objectives. The typical phases of control system design, starting from the physical model such as modeling the dynamics, modal analysis, and control system design methodology are reviewed and the need of the interactive computer graphics is demonstrated. Typical constituent parts of large space structures such as free-free beams and free-free plates are used to demonstrate the complexity of the control system design and the effectiveness of the interactive computer graphics.
PLOT3D/AMES, DEC VAX VMS VERSION USING DISSPLA (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P. G.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The VAX/VMS/DISSPLA implementation of PLOT3D supports 2-D polygons as well as 2-D and 3-D lines, but does not support graphics features requiring 3-D polygons (shading and hidden line removal, for example). Views can be manipulated using keyboard commands. This version of PLOT3D is potentially able to produce files for a variety of output devices; however, site-specific capabilities will vary depending on the device drivers supplied with the user's DISSPLA library. If ARCGRAPH (ARC-12350) is installed on the user's VAX, the VMS/DISSPLA version of PLOT3D can also be used to create files for use in GAS (Graphics Animation System, ARC-12379), an IRIS program capable of animating and recording images on film. The version 3.6b+ VMS/DISSPLA implementations of PLOT3D (ARC-12777) and PLOT3D/TURB3D (ARC-12781) were developed for use on VAX computers running VMS Version 5.0 and DISSPLA Version 11.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in DEC VAX BACKUP format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D (ARC-12783, ARC12782); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.
PLOT3D/AMES, DEC VAX VMS VERSION USING DISSPLA (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The VAX/VMS/DISSPLA implementation of PLOT3D supports 2-D polygons as well as 2-D and 3-D lines, but does not support graphics features requiring 3-D polygons (shading and hidden line removal, for example). Views can be manipulated using keyboard commands. This version of PLOT3D is potentially able to produce files for a variety of output devices; however, site-specific capabilities will vary depending on the device drivers supplied with the user's DISSPLA library. If ARCGRAPH (ARC-12350) is installed on the user's VAX, the VMS/DISSPLA version of PLOT3D can also be used to create files for use in GAS (Graphics Animation System, ARC-12379), an IRIS program capable of animating and recording images on film. The version 3.6b+ VMS/DISSPLA implementations of PLOT3D (ARC-12777) and PLOT3D/TURB3D (ARC-12781) were developed for use on VAX computers running VMS Version 5.0 and DISSPLA Version 11.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in DEC VAX BACKUP format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D (ARC-12783, ARC12782); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.
Key Issues in Instructional Computer Graphics.
ERIC Educational Resources Information Center
Wozny, Michael J.
1981-01-01
Addresses key issues facing universities which plan to establish instructional computer graphics facilities, including computer-aided design/computer aided manufacturing systems, role in curriculum, hardware, software, writing instructional software, faculty involvement, operations, and research. Thirty-seven references and two appendices are…
Proceedings of the 6th annual Speakeasy conference. [Chicago, August 17-18, 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-01-01
This meeting on the Speakeasy programming language and its applications included papers on the following subjects: graphics (graphics under Speakeasy, Speakeasy on a mini, color graphics), time series (OASIS - a user-oriented system at USDA, writing input-burdened linkules), applications (weather and crop yield analysis system, property investment analysis system), data bases under Speakeasy (relational data base, applications of relational data bases), survey analysis (survey analysis package from Liege, sic and its future under Speakeasy), and new features in Speakeasy (partial differential equations, the Speakeasy compiler and optimization). (RWR)
DROIDS 1.20: A GUI-Based Pipeline for GPU-Accelerated Comparative Protein Dynamics.
Babbitt, Gregory A; Mortensen, Jamie S; Coppola, Erin E; Adams, Lily E; Liao, Justin K
2018-03-13
Traditional informatics in comparative genomics work only with static representations of biomolecules (i.e., sequence and structure), thereby ignoring the molecular dynamics (MD) of proteins that define function in the cell. A comparative approach applied to MD would connect this very short timescale process, defined in femtoseconds, to one of the longest in the universe: molecular evolution measured in millions of years. Here, we leverage advances in graphics-processing-unit-accelerated MD simulation software to develop a comparative method of MD analysis and visualization that can be applied to any two homologous Protein Data Bank structures. Our open-source pipeline, DROIDS (Detecting Relative Outlier Impacts in Dynamic Simulations), works in conjunction with existing molecular modeling software to convert any Linux gaming personal computer into a "comparative computational microscope" for observing the biophysical effects of mutations and other chemical changes in proteins. DROIDS implements structural alignment and Benjamini-Hochberg-corrected Kolmogorov-Smirnov statistics to compare nanosecond-scale atom bond fluctuations on the protein backbone, color mapping the significant differences identified in protein MD with single-amino-acid resolution. DROIDS is simple to use, incorporating graphical user interface control for Amber16 MD simulations, cpptraj analysis, and the final statistical and visual representations in R graphics and UCSF Chimera. We demonstrate that DROIDS can be utilized to visually investigate molecular evolution and disease-related functional changes in MD due to genetic mutation and epigenetic modification. DROIDS can also be used to potentially investigate binding interactions of pharmaceuticals, toxins, or other biomolecules in a functional evolutionary context as well. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Interactive computer graphics - Why's, wherefore's and examples
NASA Technical Reports Server (NTRS)
Gregory, T. J.; Carmichael, R. L.
1983-01-01
The benefits of using computer graphics in design are briefly reviewed. It is shown that computer graphics substantially aids productivity by permitting errors in design to be found immediately and by greatly reducing the cost of fixing the errors and the cost of redoing the process. The possibilities offered by computer-generated displays in terms of information content are emphasized, along with the form in which the information is transferred. The human being is ideally and naturally suited to dealing with information in picture format, and the content rate in communication with pictures is several orders of magnitude greater than with words or even graphs. Since science and engineering involve communicating ideas, concepts, and information, the benefits of computer graphics cannot be overestimated.
Time-resolved laser-induced fluorescence system
NASA Astrophysics Data System (ADS)
Bautista, F. J.; De la Rosa, J.; Gallegos, F. J.
2006-02-01
Fluorescence methods are being used increasingly in the measurement of species concentrations in gases, liquids and solids. Laser induced fluorescence is spontaneous emission from atoms or molecules that have been excited by laser radiation. Here we present a time resolved fluorescence instrument that consists of a 5 μJ Nitrogen laser (337.1 nm), a sample holder, a quartz optical fiber, a spectrometer, a PMT and a PC that allows the measurement of visible fluorescence spectra (350-750 nm). Time response of the system is approximately 5 ns. The instrument has been used in the measurement of colored bond paper, antifreeze, diesel, cochineal pigment and malignant tissues. The data acquisition was achieved through computer control of a digital oscilloscope (using General Purpose Interface Bus GPIB) and the spectrometer via serial (RS232). The instrument software provides a graphic interface that lets make some data acquisition tasks like finding fluorescence spectra, and fluorescence lifetimes. The software was developed using the Lab-View 6i graphic programming package and can be easily managed in order to add more functions to it.
Multichannel Networked Phasemeter Readout and Analysis
NASA Technical Reports Server (NTRS)
Edmonds, Karina
2008-01-01
Netmeter software reads a data stream from up to 250 networked phasemeters, synchronizes the data, saves the reduced data to disk (after applying a low-pass filter), and provides a Web server interface for remote control. Unlike older phasemeter software that requires a special, real-time operating system, this program can run on any general-purpose computer. It needs about five percent of the CPU (central processing unit) to process 20 channels because it adds built-in data logging and network-based GUIs (graphical user interfaces) that are implemented in Scalable Vector Graphics (SVG). Netmeter runs on Linux and Windows. It displays the instantaneous displacements measured by several phasemeters at a user-selectable rate, up to 1 kHz. The program monitors the measure and reference channel frequencies. For ease of use, levels of status in Netmeter are color coded: green for normal operation, yellow for network errors, and red for optical misalignment problems. Netmeter includes user-selectable filters up to 4 k samples, and user-selectable averaging windows (after filtering). Before filtering, the program saves raw data to disk using a burst-write technique.
A System for Generating Instructional Computer Graphics.
ERIC Educational Resources Information Center
Nygard, Kendall E.; Ranganathan, Babusankar
1983-01-01
Description of the Tektronix-Based Interactive Graphics System for Instruction (TIGSI), which was developed for generating graphics displays in computer-assisted instruction materials, discusses several applications (e.g., reinforcing learning of concepts, principles, rules, and problem-solving techniques) and presents advantages of the TIGSI…
The development of an engineering computer graphics laboratory
NASA Technical Reports Server (NTRS)
Anderson, D. C.; Garrett, R. E.
1975-01-01
Hardware and software systems developed to further research and education in interactive computer graphics were described, as well as several of the ongoing application-oriented projects, educational graphics programs, and graduate research projects. The software system consists of a FORTRAN 4 subroutine package, in conjunction with a PDP 11/40 minicomputer as the primary computation processor and the Imlac PDS-1 as an intelligent display processor. The package comprises a comprehensive set of graphics routines for dynamic, structured two-dimensional display manipulation, and numerous routines to handle a variety of input devices at the Imlac.
An application of interactive computer graphics technology to the design of dispersal mechanisms
NASA Technical Reports Server (NTRS)
Richter, B. J.; Welch, B. H.
1977-01-01
Interactive computer graphics technology is combined with a general purpose mechanisms computer code to study the operational behavior of three guided bomb dispersal mechanism designs. These studies illustrate the use of computer graphics techniques to discover operational anomalies, to assess the effectiveness of design improvements, to reduce the time and cost of the modeling effort, and to provide the mechanism designer with a visual understanding of the physical operation of such systems.
Design and characterization of an ultraresolution seamlessly tiled display for data visualization
NASA Astrophysics Data System (ADS)
Bordes, Nicole; Bleha, William P.; Pailthorpe, Bernard
2003-09-01
The demand for more pixels in digital displays is beginning to be met as manufacturers increase the native resolution of projector chips. Tiling several projectors still offers one solution to augment the pixel capacity of a display. However problems of color and illumination uniformity across projectors need to be addressed as well as the computer software required to drive such devices. In this paper we present the results obtained on a desktop size tiled projector array of three D-ILA projectors sharing a common illumination source. The composite image on a 3 x 1 array, is 3840 by 1024 pixels with a resolution of about 80 dpi. The system preserves desktop resolution, is compact and can fit in a normal room or laboratory. A fiber optic beam splitting system and a single set of red, green and blue dichroic filters are the key to color and illumination uniformity. The D-ILA chips inside each projector can be adjusted individually to set or change characteristics such as contrast, brightness or gamma curves. The projectors were matched carefully and photometric variations were corrected, leading to a seamless tiled image. Photometric measurements were performed to characterize the display and losses through the optical paths, and are reported here. This system is driven by a small PC computer cluster fitted with graphics cards and is running Linux. The Chromium API can be used for tiling graphics tiles across the display and interfacing to users' software applications. There is potential for scaling the design to accommodate larger arrays, up to 4x5 projectors, increasing display system capacity to 50 Megapixels. Further increases, beyond 100 Megapixels can be anticipated with new generation D-ILA chips capable of projecting QXGA (2k x 1.5k), with ongoing evolution as QUXGA (4k x 2k) becomes available.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-22
... merchandise anti-circumvention inquiry to determine whether laminated woven sacks printed with two colors in... Circumvention (Printed Ink Colors) dated March 25, 2011. \\5\\ See Laminated Woven Sacks From the People's... to an exterior ply of paper that is suitable for high quality print graphics; \\6\\ printed with three...
Interactive Electronic Technical Manuals (IETMs) Annotated Bibliography
2002-10-22
translated from their graphical counterparts. This paper examines a set of challenging issues facing speech interface designers and describes approaches...spreading network, combined with visual design techniques, such as typography , color, and transparency, enables the system to fluidly respond to...However, most research and design guidelines address typography and color separately without considering their spatial context or their function as
A GPU-Parallelized Eigen-Based Clutter Filter Framework for Ultrasound Color Flow Imaging.
Chee, Adrian J Y; Yiu, Billy Y S; Yu, Alfred C H
2017-01-01
Eigen-filters with attenuation response adapted to clutter statistics in color flow imaging (CFI) have shown improved flow detection sensitivity in the presence of tissue motion. Nevertheless, its practical adoption in clinical use is not straightforward due to the high computational cost for solving eigendecompositions. Here, we provide a pedagogical description of how a real-time computing framework for eigen-based clutter filtering can be developed through a single-instruction, multiple data (SIMD) computing approach that can be implemented on a graphical processing unit (GPU). Emphasis is placed on the single-ensemble-based eigen-filtering approach (Hankel singular value decomposition), since it is algorithmically compatible with GPU-based SIMD computing. The key algebraic principles and the corresponding SIMD algorithm are explained, and annotations on how such algorithm can be rationally implemented on the GPU are presented. Real-time efficacy of our framework was experimentally investigated on a single GPU device (GTX Titan X), and the computing throughput for varying scan depths and slow-time ensemble lengths was studied. Using our eigen-processing framework, real-time video-range throughput (24 frames/s) can be attained for CFI frames with full view in azimuth direction (128 scanlines), up to a scan depth of 5 cm ( λ pixel axial spacing) for slow-time ensemble length of 16 samples. The corresponding CFI image frames, with respect to the ones derived from non-adaptive polynomial regression clutter filtering, yielded enhanced flow detection sensitivity in vivo, as demonstrated in a carotid imaging case example. These findings indicate that the GPU-enabled eigen-based clutter filtering can improve CFI flow detection performance in real time.
Graphical Requirements for Force Level Planning. Volume 2
1991-09-01
technology review includes graphics algorithms, computer hardware, computer software, and design methodologies. The technology can either exist today or...level graphics language. 7.4 User Interface Design Tools As user interfaces have become more sophisticated, they have become harder to develop. Xl...Setphen M. Pizer, editors. Proceedings 1986 Workshop on Interactive 31) Graphics , October 1986. 18 J. S. Dumas. Designing User Interface Software. Prentice
The Graphical User Interface: Crisis, Danger, and Opportunity.
ERIC Educational Resources Information Center
Boyd, L. H.; And Others
1990-01-01
This article describes differences between the graphical user interface and traditional character-based interface systems, identifies potential problems posed by graphic computing environments for blind computer users, and describes some programs and strategies that are being developed to provide access to those environments. (Author/JDD)
The use of computer graphics in the visual analysis of the proposed Sunshine Ski Area expansion
Mark Angelo
1979-01-01
This paper describes the use of computer graphics in designing part of the Sunshine Ski Area in Banff National Park. The program used was capable of generating perspective landscape drawings from a number of different viewpoints. This allowed managers to predict, and subsequently reduce, the adverse visual impacts of ski-run development. Computer graphics have proven,...
2017-08-01
access to the GPU for general purpose processing .5 CUDA is designed to work easily with multiple programming languages , including Fortran. CUDA is a...Using Graphics Processing Unit (GPU) Computing by Leelinda P Dawson Approved for public release; distribution unlimited...The Performance Improvement of the Lagrangian Particle Dispersion Model (LPDM) Using Graphics Processing Unit (GPU) Computing by Leelinda
Computer Corner: Computer Graphics for the Vibrating String.
ERIC Educational Resources Information Center
Smith, David A.; Cunningham, R. Stephen
1986-01-01
Computer graphics are used to display the sum of the first few terms of the series solution for the problem of the vibrating string frequently discussed in introductory courses on differential equations. (MNS)
shinyheatmap: Ultra fast low memory heatmap web interface for big data genomics.
Khomtchouk, Bohdan B; Hennessy, James R; Wahlestedt, Claes
2017-01-01
Transcriptomics, metabolomics, metagenomics, and other various next-generation sequencing (-omics) fields are known for their production of large datasets, especially across single-cell sequencing studies. Visualizing such big data has posed technical challenges in biology, both in terms of available computational resources as well as programming acumen. Since heatmaps are used to depict high-dimensional numerical data as a colored grid of cells, efficiency and speed have often proven to be critical considerations in the process of successfully converting data into graphics. For example, rendering interactive heatmaps from large input datasets (e.g., 100k+ rows) has been computationally infeasible on both desktop computers and web browsers. In addition to memory requirements, programming skills and knowledge have frequently been barriers-to-entry for creating highly customizable heatmaps. We propose shinyheatmap: an advanced user-friendly heatmap software suite capable of efficiently creating highly customizable static and interactive biological heatmaps in a web browser. shinyheatmap is a low memory footprint program, making it particularly well-suited for the interactive visualization of extremely large datasets that cannot typically be computed in-memory due to size restrictions. Also, shinyheatmap features a built-in high performance web plug-in, fastheatmap, for rapidly plotting interactive heatmaps of datasets as large as 105-107 rows within seconds, effectively shattering previous performance benchmarks of heatmap rendering speed. shinyheatmap is hosted online as a freely available web server with an intuitive graphical user interface: http://shinyheatmap.com. The methods are implemented in R, and are available as part of the shinyheatmap project at: https://github.com/Bohdan-Khomtchouk/shinyheatmap. Users can access fastheatmap directly from within the shinyheatmap web interface, and all source code has been made publicly available on Github: https://github.com/Bohdan-Khomtchouk/fastheatmap.
Integrating Commercial Off-The-Shelf (COTS) graphics and extended memory packages with CLIPS
NASA Technical Reports Server (NTRS)
Callegari, Andres C.
1990-01-01
This paper addresses the question of how to mix CLIPS with graphics and how to overcome PC's memory limitations by using the extended memory available in the computer. By adding graphics and extended memory capabilities, CLIPS can be converted into a complete and powerful system development tool, on the other most economical and popular computer platform. New models of PCs have amazing processing capabilities and graphic resolutions that cannot be ignored and should be used to the fullest of their resources. CLIPS is a powerful expert system development tool, but it cannot be complete without the support of a graphics package needed to create user interfaces and general purpose graphics, or without enough memory to handle large knowledge bases. Now, a well known limitation on the PC's is the usage of real memory which limits CLIPS to use only 640 Kb of real memory, but now that problem can be solved by developing a version of CLIPS that uses extended memory. The user has access of up to 16 MB of memory on 80286 based computers and, practically, all the available memory (4 GB) on computers that use the 80386 processor. So if we give CLIPS a self-configuring graphics package that will automatically detect the graphics hardware and pointing device present in the computer, and we add the availability of the extended memory that exists in the computer (with no special hardware needed), the user will be able to create more powerful systems at a fraction of the cost and on the most popular, portable, and economic platform available such as the PC platform.
76 FR 36627 - Required Warnings for Cigarette Packages and Advertisements
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-22
...The Food and Drug Administration (FDA) is amending its regulations to add a new requirement for the display of health warnings on cigarette packages and in cigarette advertisements. This rule implements a provision of the Family Smoking Prevention and Tobacco Control Act (Tobacco Control Act) that requires FDA to issue regulations requiring color graphics, depicting the negative health consequences of smoking, to accompany the nine new textual warning statements required under the Tobacco Control Act. The Tobacco Control Act amends the Federal Cigarette Labeling and Advertising Act (FCLAA) to require each cigarette package and advertisement to bear one of nine new textual warning statements. This final rule specifies the color graphic images that must accompany each of the nine new textual warning statements.
Required warnings for cigarette packages and advertisements. Final rule.
2011-06-22
The Food and Drug Administration (FDA) is amending its regulations to add a new requirement for the display of health warnings on cigarette packages and in cigarette advertisements. This rule implements a provision of the Family Smoking Prevention and Tobacco Control Act (Tobacco Control Act) that requires FDA to issue regulations requiring color graphics, depicting the negative health consequences of smoking, to accompany the nine new textual warning statements required under the Tobacco Control Act. The Tobacco Control Act amends the Federal Cigarette Labeling and Advertising Act (FCLAA) to require each cigarette package and advertisement to bear one of nine new textual warning statements. This final rule specifies the color graphic images that must accompany each of the nine new textual warning statements.
Preparing Colorful Astronomical Images II
NASA Astrophysics Data System (ADS)
Levay, Z. G.; Frattare, L. M.
2002-12-01
We present additional techniques for using mainstream graphics software (Adobe Photoshop and Illustrator) to produce composite color images and illustrations from astronomical data. These techniques have been used on numerous images from the Hubble Space Telescope to produce photographic, print and web-based products for news, education and public presentation as well as illustrations for technical publication. We expand on a previous paper to present more detail and additional techniques, taking advantage of new or improved features available in the latest software versions. While Photoshop is not intended for quantitative analysis of full dynamic range data (as are IRAF or IDL, for example), we have had much success applying Photoshop's numerous, versatile tools to work with scaled images, masks, text and graphics in multiple semi-transparent layers and channels.
Architectures for single-chip image computing
NASA Astrophysics Data System (ADS)
Gove, Robert J.
1992-04-01
This paper will focus on the architectures of VLSI programmable processing components for image computing applications. TI, the maker of industry-leading RISC, DSP, and graphics components, has developed an architecture for a new-generation of image processors capable of implementing a plurality of image, graphics, video, and audio computing functions. We will show that the use of a single-chip heterogeneous MIMD parallel architecture best suits this class of processors--those which will dominate the desktop multimedia, document imaging, computer graphics, and visualization systems of this decade.
Integration of an open interface PC scene generator using COTS DVI converter hardware
NASA Astrophysics Data System (ADS)
Nordland, Todd; Lyles, Patrick; Schultz, Bret
2006-05-01
Commercial-Off-The-Shelf (COTS) personal computer (PC) hardware is increasingly capable of computing high dynamic range (HDR) scenes for military sensor testing at high frame rates. New electro-optical and infrared (EO/IR) scene projectors feature electrical interfaces that can accept the DVI output of these PC systems. However, military Hardware-in-the-loop (HWIL) facilities such as those at the US Army Aviation and Missile Research Development and Engineering Center (AMRDEC) utilize a sizeable inventory of existing projection systems that were designed to use the Silicon Graphics Incorporated (SGI) digital video port (DVP, also known as DVP2 or DD02) interface. To mate the new DVI-based scene generation systems to these legacy projection systems, CG2 Inc., a Quantum3D Company (CG2), has developed a DVI-to-DVP converter called Delta DVP. This device takes progressive scan DVI input, converts it to digital parallel data, and combines and routes color components to derive a 16-bit wide luminance channel replicated on a DVP output interface. The HWIL Functional Area of AMRDEC has developed a suite of modular software to perform deterministic real-time, wave band-specific rendering of sensor scenes, leveraging the features of commodity graphics hardware and open source software. Together, these technologies enable sensor simulation and test facilities to integrate scene generation and projection components with diverse pedigrees.
Orthorectification by Using Gpgpu Method
NASA Astrophysics Data System (ADS)
Sahin, H.; Kulur, S.
2012-07-01
Thanks to the nature of the graphics processing, the newly released products offer highly parallel processing units with high-memory bandwidth and computational power of more than teraflops per second. The modern GPUs are not only powerful graphic engines but also they are high level parallel programmable processors with very fast computing capabilities and high-memory bandwidth speed compared to central processing units (CPU). Data-parallel computations can be shortly described as mapping data elements to parallel processing threads. The rapid development of GPUs programmability and capabilities attracted the attentions of researchers dealing with complex problems which need high level calculations. This interest has revealed the concepts of "General Purpose Computation on Graphics Processing Units (GPGPU)" and "stream processing". The graphic processors are powerful hardware which is really cheap and affordable. So the graphic processors became an alternative to computer processors. The graphic chips which were standard application hardware have been transformed into modern, powerful and programmable processors to meet the overall needs. Especially in recent years, the phenomenon of the usage of graphics processing units in general purpose computation has led the researchers and developers to this point. The biggest problem is that the graphics processing units use different programming models unlike current programming methods. Therefore, an efficient GPU programming requires re-coding of the current program algorithm by considering the limitations and the structure of the graphics hardware. Currently, multi-core processors can not be programmed by using traditional programming methods. Event procedure programming method can not be used for programming the multi-core processors. GPUs are especially effective in finding solution for repetition of the computing steps for many data elements when high accuracy is needed. Thus, it provides the computing process more quickly and accurately. Compared to the GPUs, CPUs which perform just one computing in a time according to the flow control are slower in performance. This structure can be evaluated for various applications of computer technology. In this study covers how general purpose parallel programming and computational power of the GPUs can be used in photogrammetric applications especially direct georeferencing. The direct georeferencing algorithm is coded by using GPGPU method and CUDA (Compute Unified Device Architecture) programming language. Results provided by this method were compared with the traditional CPU programming. In the other application the projective rectification is coded by using GPGPU method and CUDA programming language. Sample images of various sizes, as compared to the results of the program were evaluated. GPGPU method can be used especially in repetition of same computations on highly dense data, thus finding the solution quickly.
Designing low cost LED display for the billboard
NASA Astrophysics Data System (ADS)
Hong, Yi-Jian; Uang, Chii-Maw; Wang, Ping-Chieh; Ho, Zu-Sheng
2011-10-01
With quickly advance of the computer, microelectronics and photonics technologies, LED display panel becomes a new electronic advertising media. It can be used to show any information whatever characters or graphics. Most LED display panels are built of many Light-Emitting Diodes arranged in a matrix form. The display has many advantages such as low power, low cost, long life and high definition. Because the display panel is asked to show rich color, the LED display panel's driving system becomes very complex. The design methodology of LED display panel's driver becomes more and more important to meet the market requirements. Cost is always the most important issue in public market domain. In this paper, we report a design methodology of LED display panel's driver based on the microprocessor control unit (MCU) system and LED display controller IC, HT1632C, to control three colors, RGB, color LED display panel and the modular panel size is 24*16 in matrix form. The HT1632C is a memory mapping LED display controller, it can be used on many applications, such as digital clock, thermometer, counter, voltmeter or other instrumentation readouts. Three pieces of HT1632C are used to drive a 24*16 RGB LED display panel, in our design case. Each HT163C chip is used to control one of the R, G and B color. As the drive mode is driven in DC mode, the RGB display panel can create and totally of seven colors under the control of MCU. The MCU generates the control signal to drive HT1632C. In this study, the software design methodology is adopted with dynamic display principle. When the scan frequency is 60Hz, LED display panel will get the clear picture and be able to display seven colors.
NASA Technical Reports Server (NTRS)
Leberl, Franz; Karspeck, Milan; Millot, Michel; Maurice, Kelly; Jackson, Matt
1992-01-01
This final report summarizes the work done from mid-1989 until January 1992 to develop a prototype set of tools for the analysis of EOS-type images. Such images are characterized by great multiplicity and quantity. A single 'snapshot' of EOS-type imagery may contain several hundred component images so that on a particular pixel, one finds multiple gray values. A prototype EOS-sensor, AVIRIS, has 224 gray values at each pixel. The work focused on the ability to utilize very large images and continuously roam through those images, zoom and be able to hold more than one black and white or color image, for example for stereo viewing or for image comparisons. A second focus was the utilization of so-called 'image cubes', where multiple images need to be co-registered and then jointly analyzed, viewed, and manipulated. The target computer platform that was selected was a high-performance graphics superworkstation, Stardent 3000. This particular platform offered many particular graphics tools such as the Application Visualization System (AVS) or Dore, but it missed availability of commercial third-party software for relational data bases, image processing, etc. The project was able to cope with these limitations and a phase-3 activity is currently being negotiated to port the software and enhance it for use with a novel graphics superworkstation to be introduced into the market in the Spring of 1993.
News from Online: A Spectrum of Color
NASA Astrophysics Data System (ADS)
Sweeney Judd, Carolyn
1999-06-01
Thomas Chasteen's site ( http://www.shsu.edu/~chm_tgc/sounds/sound.html) shows how to separate colors using a tuneable monochromator. This graphic comes from his monochromator animation ( http://www.shsu.edu/~chemistry/monochromator/mono.gif).
Science Media's site ( http://www.scimedia.com/index.html#scimedia) includes spectroscopy tutorials by Brian Tissue. This graphic can be found at http://www.scimedia.com/chem-ed/light/graphics/em-rad.gif (©1998 B. M. Tissue, www.scimedia.com). All the colors in the rainbow! Now that is a good place to start. Go to About Rainbows ( http://www.unidata.ucar.edu/staff/blynds/rnbw.html), a tutorial from astronomer Beverly Lynds, working with the University Corporation for Atmospheric Research. The tutorial begins with a historical perspective, complete with a sketch by René Descartes in 1637. The bibliography makes this tutorial a good starting point for color exploration. About Rainbows brings you questions to explorefor example, "What happens when you look at a rainbow through dark glasses?" Try the links to these other sites. Project SkyMath: Making Mathematical Connections ( http://www.unidata.ucar.edu/staff/blynds/Skymath.html) is especially for the middle school student. Reproducible masters of these teaching modules can be printed in English and Spanish. From Project SkyMath, you can go to Blue-Skies, a user-friendly graphical interface from The Weather Underground at the University of Michigan ( http://groundhog.sprl.umich.edu/BS.html). And speaking of blue skies, look at a great site, Why is the Sky Blue at http://acept.la.asu.edu/PiN/act/sky/sky.shtml. This is a super site from the Arizona Collaborative for Excellence in the Preparation of Teachers, by the Department of Physics and Astronomy at Arizona State University. If you go to Patterns in Nature: Light and Optics at http://acept.la.asu.edu/PiN/act/activities.shtml, plan to spend some time, for it is wonderful. Another link from the About Rainbows tutorial goes to an experiment that is suitable for older students, Circles of Light--The Mathematics of Rainbows at http://www.geom.umn.edu/education/calc-init/rainbow/. Frederick J. Wicklin and Paul Edelman of the University of Minnesota note that this comprehensive lab is based on a module developed by Steven Janke. Go back to About Rainbows to link to a Java applet, allowing you to change the incident angle and color of light striking a water droplet. This great teaching device is from Fu-Kwun Hwang of the National Taiwan Normal University at http://science.kongju.ac.kr/phys/shin/experiment/ntnujava /Rainbow/rainbow.html. And while you are here in this site (choose English or Chinese), look at the more than 30 Java applets created by F.-K. Hwang at http://science.kongju.ac.kr/phys/shin/experiment/ntnujava/index.html. The interactive applet on Shadow/Image and Color is great fun, (http://science.kongju.ac.kr/phys/shin/experiment/ntnujava/shadow /shadow.html). From mixing colors, we can go to Thomas Chasteen's fine work at http://www.shsu.edu/~chm_tgc/sounds/sound.html for an animation (and movie also) of how to separate colors using a tuneable monochromator ( http://www.shsu.edu/~chemistry/monochromator/mono.gif). This colorful graphic, showing incoming parallel white light, is clipped from that monochromator animation. While you are here at this site at Sam Houston State University, look at the other great animations and movies, including a movie showing solution-phase chemiluminescence at http://www.shsu.edu/~chm_tgc/chemilumdir/movie.html. So now that we have explored the breaking down of light into its component colors, we need to also look at another process--polarizing light. Let's go to Science Media's comprehensive site ( http://www.scimedia.com/index.html#scimedia) to examine polarized light ( http://www.scimedia.com/chem-ed/spec/molec/polarim.htm). Of course, most sunglasses polarize light--bringing us back to the question of the rainbow again. Explore here for a while--appreciate the beautiful visible electromagnetic spectrum at http://www.scimedia.com/chem-ed/light/graphics/em-visib.jpg. Great spectroscopy tutorials from Brian Tissue of the Virginia Polytechnic Institute and State University are found at Science Media's site. One of my favorite graphics ( http://www.scimedia.com/chem-ed/light/graphics/em-rad.gif) reminds us of why light is electromagnetic radiation. But how to we actually see color? Go to the Access Excellence Classic Collection sponsored by Genentech, Inc. (http://www.gene.com/ae/AE/AEC/CC/). From here, go to How We See: The First Steps of Human Vision at http://www.gene.com/ae/AE/AEC/CC/vision_background.html. Here are good graphics and explanations of the roles of rod and cone cells, and lots more! And marvel a little the next time you see a rainbow. World Wide Web Addresses About Rainbows http://www.unidata.ucar.edu/staff/blynds/rnbw.html Project SkyMath: Making Mathematical Connections http://www.unidata.ucar.edu/staff/blynds/Skymath.html The Weather Underground at the University of Michigan--Blue- Skies http://groundhog.sprl.umich.edu/BS.html Why is the Sky Blue http://acept.la.asu.edu/PiN/act/sky/sky.shtml Patterns in NatureLight and Optics Activities http://acept.la.asu.edu/PiN/act/activities.shtml Circles of Lightthe Mathematics of Rainbows http://www.geom.umn.edu/education/calc-init/rainbow/ The Physics of a Rainbow http://science.kongju.ac.kr/phys/shin/experiment/ntnujava /Rainbow/rainbow.html The NTNU Virtual Physics Laboratory http://science.kongju.ac.kr/phys/shin/experiment/ntnujava /index.html Shadow/Image and Color http://science.kongju.ac.kr/phys/shin/experiment/ntnujava/shadow/shadow.html Thomas Chasteen's Chemistry-Based QuickTime Movies, Animations, and Streaming Audio http://www.shsu.edu/~chm_tgc/sounds/sound.html Tuneable Monochromator http://www.shsu.edu/~chemistry/monochromator/mono.gif The Chemiluminescence Home Page http://www.shsu.edu/~chm_tgc/chemilumdir/movie.html Science Hypermedia Home Page http://www.scimedia.com/index.html#scimedia Polarimetry http://www.scimedia.com/chem-ed/spec/molec/polarim.htm The Visible Spectrum http://www.scimedia.com/chem-ed/light/graphics/em-visib.jpg Propagation Direction of Electromagnetic Radiation http://www.scimedia.com/chem-ed/light/graphics/em-rad.gif Access Excellence Classic Collection http://www.gene.com/ae/AE/AEC/CC/ How We SeeThe First Steps of Human Vision http://www.gene.com/ae/AE/AEC/CC/vision_background.html access date for all sites: April 1999
A Graphical Approach to Quantitative Structural Geology.
ERIC Educational Resources Information Center
De Paor, Declan G.
1986-01-01
Describes how computer graphic methods can be used in teaching structural geology. Describes the design of a graphics workstation for the Apple microcomputer. Includes a listing of commands used with software to plot structures in a digitized form. Argues for the establishment of computer laboratories for structural geology classes. (TW)
A Laboratory Application of Microcomputer Graphics.
ERIC Educational Resources Information Center
Gehring, Kalle B.; Moore, John W.
1983-01-01
A PASCAL graphics and instrument interface program for a Z80/S-100 based microcomputer was developed. The computer interfaces to a stopped-flow spectrophotometer replacing a storage oscilloscope and polaroid camera. Applications of this system are discussed, indicating that graphics and analog-to-digital boards have transformed the computer into…
Computer Graphics and Physics Teaching.
ERIC Educational Resources Information Center
Bork, Alfred M.; Ballard, Richard
New, more versatile and inexpensive terminals will make computer graphics more feasible in science instruction than before. This paper describes the use of graphics in physics teaching at the University of California at Irvine. Commands and software are detailed in established programs, which include a lunar landing simulation and a program which…
Learning with Interactive Computer Graphics in the Undergraduate Neuroscience Classroom
ERIC Educational Resources Information Center
Pani, John R.; Chariker, Julia H.; Naaz, Farah; Mattingly, William; Roberts, Joshua; Sephton, Sandra E.
2014-01-01
Instruction of neuroanatomy depends on graphical representation and extended self-study. As a consequence, computer-based learning environments that incorporate interactive graphics should facilitate instruction in this area. The present study evaluated such a system in the undergraduate neuroscience classroom. The system used the method of…
Inexpensive Timeshared Graphics on the SIGMA 7.
ERIC Educational Resources Information Center
Bork, Alfred M.
This paper gives a technical description of various computer graphics programs developed on the Sigma 7 computer. Terminals used are the Adage 100 and the Tektronix 4002-4010. Commands are Metasymbol procedures which access Metasymbol library subroutines; programs can also be coupled with FORTRAN programs. Available, inexpensive graphic terminals…
Computer Graphics and Metaphorical Elaboration for Learning Science Concepts.
ERIC Educational Resources Information Center
ChanLin, Lih-Juan; Chan, Kung-Chi
This study explores the instructional impact of using computer multimedia to integrate metaphorical verbal information into graphical representations of biotechnology concepts. The combination of text and graphics into a single metaphor makes concepts dual-coded, and therefore more comprehensible and memorable for the student. Visual stimuli help…
Graphics supercomputer for computational fluid dynamics research
NASA Astrophysics Data System (ADS)
Liaw, Goang S.
1994-11-01
The objective of this project is to purchase a state-of-the-art graphics supercomputer to improve the Computational Fluid Dynamics (CFD) research capability at Alabama A & M University (AAMU) and to support the Air Force research projects. A cutting-edge graphics supercomputer system, Onyx VTX, from Silicon Graphics Computer Systems (SGI), was purchased and installed. Other equipment including a desktop personal computer, PC-486 DX2 with a built-in 10-BaseT Ethernet card, a 10-BaseT hub, an Apple Laser Printer Select 360, and a notebook computer from Zenith were also purchased. A reading room has been converted to a research computer lab by adding some furniture and an air conditioning unit in order to provide an appropriate working environments for researchers and the purchase equipment. All the purchased equipment were successfully installed and are fully functional. Several research projects, including two existing Air Force projects, are being performed using these facilities.
Illustrative visualization of 3D city models
NASA Astrophysics Data System (ADS)
Doellner, Juergen; Buchholz, Henrik; Nienhaus, Marc; Kirsch, Florian
2005-03-01
This paper presents an illustrative visualization technique that provides expressive representations of large-scale 3D city models, inspired by the tradition of artistic and cartographic visualizations typically found in bird"s-eye view and panoramic maps. We define a collection of city model components and a real-time multi-pass rendering algorithm that achieves comprehensible, abstract 3D city model depictions based on edge enhancement, color-based and shadow-based depth cues, and procedural facade texturing. Illustrative visualization provides an effective visual interface to urban spatial information and associated thematic information complementing visual interfaces based on the Virtual Reality paradigm, offering a huge potential for graphics design. Primary application areas include city and landscape planning, cartoon worlds in computer games, and tourist information systems.
New Research Methods Developed for Studying Diabetic Foot Ulceration
NASA Technical Reports Server (NTRS)
1998-01-01
Dr. Brian Davis, one of the Cleveland Clinic Foundation's researchers, has been investigating the risk factors related to diabetic foot ulceration, a problem that accounts for 20 percent of all hospital admissions for diabetic patients. He had developed a sensor pad to measure the friction and pressure forces under a person's foot when walking. As part of NASA Lewis Research Center's Space Act Agreement with the Cleveland Clinic Foundation, Dr. Davis requested Lewis' assistance in visualizing the data from the sensor pad. As a result, Lewis' Interactive Data Display System (IDDS) was installed at the Cleveland Clinic. This computer graphics program is normally used to visualize the flow of air through aircraft turbine engines, producing color two- and three-dimensional images.
Development of a 32-bit UNIX-based ELAS workstation
NASA Technical Reports Server (NTRS)
Spiering, Bruce A.; Pearson, Ronnie W.; Cheng, Thomas D.
1987-01-01
A mini/microcomputer UNIX-based image analysis workstation has been designed and is being implemented to use the Earth Resources Laboratory Applications Software (ELAS). The hardware system includes a MASSCOMP 5600 computer, which is a 32-bit UNIX-based system (compatible with AT&T System V and Berkeley 4.2 BSD operating system), a floating point accelerator, a 474-megabyte fixed disk, a tri-density magnetic tape drive, and an 1152 by 910 by 12-plane color graphics/image interface. The software conversion includes reconfiguring the ELAs driver Master Task, recompiling and then testing the converted application modules. This hardware and software configuration is a self-sufficient image analysis workstation which can be used as a stand-alone system, or networked with other compatible workstations.
1999-11-30
This graphic shows the computer simulation of a black hole from start to finish. Plasma is falling slowly toward the black hole in a (at the upper left). The plasma has a magnetic field, shown by the white lines. It picks up speed as it falls toward the hole in b (at the upper right), c (lower left) and d (lower right). However, the rotating black hole twists up space itself (and the magnetic field lines) and ejects electromagnetic power along the north and south poles above the black hole. The red and white color shows the immense electromagnetic power output, which eventually will pick up particles and form squirting jets. This simulation was conducted using supercomputers at Japan's National Institute for Fusion Science. http://photojournal.jpl.nasa.gov/catalog/PIA04206
Computer discrimination procedures applicable to aerial and ERTS multispectral data
NASA Technical Reports Server (NTRS)
Richardson, A. J.; Torline, R. J.; Allen, W. A.
1970-01-01
Two statistical models are compared in the classification of crops recorded on color aerial photographs. A theory of error ellipses is applied to the pattern recognition problem. An elliptical boundary condition classification model (EBC), useful for recognition of candidate patterns, evolves out of error ellipse theory. The EBC model is compared with the minimum distance to the mean (MDM) classification model in terms of pattern recognition ability. The pattern recognition results of both models are interpreted graphically using scatter diagrams to represent measurement space. Measurement space, for this report, is determined by optical density measurements collected from Kodak Ektachrome Infrared Aero Film 8443 (EIR). The EBC model is shown to be a significant improvement over the MDM model.
Commercial printing and electronic color printing
NASA Astrophysics Data System (ADS)
Webb, Joseph W.
1995-04-01
Technologies such as Xeikon, Indigo, and the Heidelberg/Presstek GTO-DI can change both the way print buyers may purchase printed material and the way printers and trade services respond to changing demands. Our recent study surveys the graphic arts industry for their current views of these new products and provides forecasts of installations and usage with breakdowns by market segment and size of firm. The acceptance of desktop publishing and electronic prepress have not only paved the way for a totally electronic printing process, but it has broadened the base of people who develop color originals for reproduction. Electronic printing adds the ability to customize jobs on the fly. How print providers will respond to the impact of electronic color printing depends on how each firm perceives the 'threat.' Most printing companies are run by entrepreneurial individuals who have, as their highest priority, their own economic survival. Service bureaus are already looking at electronic color printing as yet another way to differentiate their businesses. The study was based on a mail survey with 682 responses from graphic arts firms, interviews with printers, suppliers, associations and industry executives, and detailed secondary research. Results of a new survey in progress in January 1995 is also presented.
Color in Computer-Assisted Instruction.
ERIC Educational Resources Information Center
Steinberg, Esther R.
Color monitors are in wide use in computer systems. Thus, it is important to understand how to apply color effectively in computer assisted instruction (CAI) and computer based training (CBT). Color can enhance learning, but it does not automatically do so. Indiscriminate application of color can mislead a student and thereby even interfere with…
Color planner for designers based on color emotions
NASA Astrophysics Data System (ADS)
Cheng, Ka-Man; Xin, John H.; Taylor, Gail
2002-06-01
During the color perception process, an associated feeling or emotion is induced in our brains, and this kind of emotion is termed as 'color emotion.' The researchers in the field of color emotions have put many efforts in quantifying color emotions with the standard color specifications and evaluating the influence of hue, lightness and chroma to the color emotions of human beings. In this study, a color planner was derived according to these findings so that the correlation of color emotions and standard color specifications was clearly indicated. Since people of different nationalities usually have different color emotions as different cultural and traditional backgrounds, the subjects in this study were all native Hong Kong Chinese and the color emotion words were all written in Chinese language in the visual assessments. Through the color planner, the designers from different areas, no matter fashion, graphic, interior or web site etc., can select suitable colors for inducing target color emotions to the customers or product-users since different colors convey different meanings to them. In addition, the designers can enhance the functionality and increase the attractiveness of their designed products by selecting suitable colors.
Adaptive-optics optical coherence tomography processing using a graphics processing unit.
Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T
2014-01-01
Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability.
For Drafting Programs--Computer Graphics in Industrial Tech.
ERIC Educational Resources Information Center
Sutliff, Ron
1980-01-01
Posits that computer-aided drafting and design should be introduced to students in industrial technology programs. Discusses ways the technical educator can get involved in computer graphics to familiarize students with it without a large outlay of money. (JOW)
Structured, Graphical Analysis of C2 Teams and their Technologies
2011-01-01
Two Fratricide Cases Revisited. Paper presented at the 15th International Command and Control Reserach and Technology Symposium (ICCRTS), June 22-24...network-enabled ADF. The paper is thus organized in three sections. The first section introduces the graphics for analyzing the formation and use...summarize, Colored Petri Nets center on networks in which tokens are created, moved, copied, or destroyed (Figure 1). An ellipse denotes a space for
Computer Instructional Aids for Undergraduate Control Education.
ERIC Educational Resources Information Center
Volz, Richard A.; And Others
Engineering is coming to rely more and more heavily upon the computer for computations, analyses, and graphic displays which aid the design process. A general purpose simulation system, the Time-shared Automatic Control Laboratory (TACL), and a set of computer-aided design programs, Control Oriented Interactive Graphic Analysis and Design…
[Study of spectrum drifting of primary colors and its impact on color rendering properties].
Cui, Xiao-yan; Zhang, Xiao-dong
2012-08-01
LEDs are currently used widely to display text, graphics and images in large screens. With red, green and blue LEDs as three primary colors, color rendition will be realized through color mixing. However, LEDs' spectrum will produce drifts with the changes in the temperature environment. With the changes in the driving current simulating changes in the temperature, the three primary color LEDs' spectral drifts were tested, and the drift characteristics of the three primary colors were obtained respectively. Based on the typical characteristics of the LEDs and the differences between LEDs with different colors in composition and molecular structure, the paper analyzed the reason for the spectrum drifts and the drift characteristics of different color LEDs, and proposed the equations of spectrum drifts. Putting the experimental data into the spectrum drift equations, the paper analyzed the impacts of primary colors on the mixed color, pointed out a way to reduce the chromatic aberration, and provided the theory for engineering application of color LEDs.
Graphics with Special Interfaces for Disabled People.
ERIC Educational Resources Information Center
Tronconi, A.; And Others
The paper describes new software and special input devices to allow physically impaired children to utilize the graphic capabilities of personal computers. Special input devices for computer graphics access--the voice recognition card, the single switch, or the mouse emulator--can be used either singly or in combination by the disabled to control…
NASA Astrophysics Data System (ADS)
Lanzagorta, Marco O.; Gomez, Richard B.; Uhlmann, Jeffrey K.
2003-08-01
In recent years, computer graphics has emerged as a critical component of the scientific and engineering process, and it is recognized as an important computer science research area. Computer graphics are extensively used for a variety of aerospace and defense training systems and by Hollywood's special effects companies. All these applications require the computer graphics systems to produce high quality renderings of extremely large data sets in short periods of time. Much research has been done in "classical computing" toward the development of efficient methods and techniques to reduce the rendering time required for large datasets. Quantum Computing's unique algorithmic features offer the possibility of speeding up some of the known rendering algorithms currently used in computer graphics. In this paper we discuss possible implementations of quantum rendering algorithms. In particular, we concentrate on the implementation of Grover's quantum search algorithm for Z-buffering, ray-tracing, radiosity, and scene management techniques. We also compare the theoretical performance between the classical and quantum versions of the algorithms.
NASA Technical Reports Server (NTRS)
1985-01-01
Slides are reproduced that describe the importance of having high performance number crunching and graphics capability. They also indicate the types of research and development underway at Ames Research Center to ensure that, in the near term, Ames is a smart buyer and user, and in the long-term that Ames knows the best possible solutions for number crunching and graphics needs. The drivers for this research are real computational physics applications of interest to Ames and NASA. They are concerned with how to map the applications, and how to maximize the physics learned from the results of the calculations. The computer graphics activities are aimed at getting maximum information from the three-dimensional calculations by using the real time manipulation of three-dimensional data on the Silicon Graphics workstation. Work is underway on new algorithms that will permit the display of experimental results that are sparse and random, the same way that the dense and regular computed results are displayed.
NASA Astrophysics Data System (ADS)
Moon, Hye Sun
Visuals are most extensively used as instructional tools in education to present spatially-based information. Recent computer technology allows the generation of 3D animated visuals to extend the presentation in computer-based instruction. Animated visuals in 3D representation not only possess motivational value that promotes positive attitudes toward instruction but also facilitate learning when the subject matter requires dynamic motion and 3D visual cue. In this study, three questions are explored: (1) how 3D graphics affects student learning and attitude, in comparison with 2D graphics; (2) how animated graphics affects student learning and attitude, in comparison with static graphics; and (3) whether the use of 3D graphics, when they are supported by interactive animation, is the most effective visual cues to improve learning and to develop positive attitudes. A total of 145 eighth-grade students participated in a 2 x 2 factorial design study. The subjects were randomly assigned to one of four computer-based instructions: 2D static; 2D animated; 3D static; and 3D animated. The results indicated that: (1) Students in the 3D graphic condition exhibited more positive attitudes toward instruction than those in the 2D graphic condition. No group differences were found between the posttest score of 3D graphic condition and that of 2D graphic condition. However, students in the 3D graphic condition took less time for information retrieval on posttest than those in the 2D graphic condition. (2) Students in the animated graphic condition exhibited slightly more positive attitudes toward instruction than those in the static graphic condition. No group differences were found between the posttest score of animated graphic condition and that of static graphic condition. However, students in the animated graphic condition took less time for information retrieval on posttest than those in the static graphic condition. (3) Students in the 3D animated graphic condition exhibited more positive attitudes toward instruction than those in other treatment conditions (2D static, 2D animated, and 3D static conditions). No group differences were found in the posttest scores among four treatment conditions. However, students in the 3D animated condition took less time for information retrieval on posttest than those in other treatment conditions.
Designing Flight Deck Procedures
NASA Technical Reports Server (NTRS)
Degani, Asaf; Wiener, Earl
2005-01-01
Three reports address the design of flight-deck procedures and various aspects of human interaction with cockpit systems that have direct impact on flight safety. One report, On the Typography of Flight- Deck Documentation, discusses basic research about typography and the kind of information needed by designers of flight deck documentation. Flight crews reading poorly designed documentation may easily overlook a crucial item on the checklist. The report surveys and summarizes the available literature regarding the design and typographical aspects of printed material. It focuses on typographical factors such as proper typefaces, character height, use of lower- and upper-case characters, line length, and spacing. Graphical aspects such as layout, color coding, fonts, and character contrast are discussed; and several cockpit conditions such as lighting levels and glare are addressed, as well as usage factors such as angular alignment, paper quality, and colors. Most of the insights and recommendations discussed in this report are transferable to paperless cockpit systems of the future and computer-based procedure displays (e.g., "electronic flight bag") in aerospace systems and similar systems that are used in other industries such as medical, nuclear systems, maritime operations, and military systems.
NASA Astrophysics Data System (ADS)
Fay, James A.; Sonwalkar, Nishikant
1996-05-01
This CD-ROM is designed to accompany James Fay's Introduction to Fluid Mechanics. An enhanced hypermedia version of the textbook, it offers a number of ways to explore the fluid mechanics domain. These include a complete hypertext version of the original book, physical-experiment video clips, excerpts from external references, audio annotations, colored graphics, review questions, and progressive hints for solving problems. Throughout, the authors provide expert guidance in navigating the typed links so that students do not get lost in the learning process. System requirements: Macintosh with 68030 or greater processor and with at least 16 Mb of RAM. Operating System 6.0.4 or later for 680x0 processor and System 7.1.2 or later for Power-PC. CD-ROM drive with 256- color capability. Preferred display 14 inches or above (SuperVGA with 1 megabyte of VRAM). Additional system font software: Computer Modern postscript fonts (CM/PS Screen Fonts, CMBSY10, and CMTT10) and Adobe Type Manager (ATM 3.0 or later). James A. Fay is Professor Emeritus and Senior Lecturer in the Department of Mechanical Engineering at MIT.
75 FR 69523 - Required Warnings for Cigarette Packages and Advertisements
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-12
...The Food and Drug Administration (FDA) is proposing to amend its regulations to add a new requirement for the display of health warnings on cigarette packages and in cigarette advertisements. The proposed rule would implement a provision of the Family Smoking Prevention and Tobacco Control Act (Tobacco Control Act) that requires FDA to issue regulations requiring color graphics depicting the negative health consequences of smoking to accompany the nine new textual warning statements that will be required under the Tobacco Control Act. The Tobacco Control Act amends the Federal Cigarette Labeling and Advertising Act (FCLAA) to require each cigarette package and advertisement to bear one of nine new textual warning statements. This proposed rule, once finalized, would specify the color graphics that must accompany each of the nine new textual warning statements.
Light reflection models for computer graphics.
Greenberg, D P
1989-04-14
During the past 20 years, computer graphic techniques for simulating the reflection of light have progressed so that today images of photorealistic quality can be produced. Early algorithms considered direct lighting only, but global illumination phenomena with indirect lighting, surface interreflections, and shadows can now be modeled with ray tracing, radiosity, and Monte Carlo simulations. This article describes the historical development of computer graphic algorithms for light reflection and pictorially illustrates what will be commonly available in the near future.
Graphics Flutter Analysis Methods, an interactive computing system at Lockheed-California Company
NASA Technical Reports Server (NTRS)
Radovcich, N. A.
1975-01-01
An interactive computer graphics system, Graphics Flutter Analysis Methods (GFAM), was developed to complement FAMAS, a matrix-oriented batch computing system, and other computer programs in performing complex numerical calculations using a fully integrated data management system. GFAM has many of the matrix operation capabilities found in FAMAS, but on a smaller scale, and is utilized when the analysis requires a high degree of interaction between the engineer and computer, and schedule constraints exclude the use of batch entry programs. Applications of GFAM to a variety of preliminary design, development design, and project modification programs suggest that interactive flutter analysis using matrix representations is a feasible and cost effective computing tool.
ERM TLB Teaching-Learning Behavior News
ERIC Educational Resources Information Center
LeBold, William K., Ed.
1978-01-01
Describes a graduate electrical engineering mini-course, computer graphics gaming and simulation, classroom management and student progress records, student reaction to instruction, and computer graphics in undergraduate education. (SL)
Sheriff, Kelli A; Boon, Richard T
2014-08-01
The purpose of this study was to examine the effects of computer-based graphic organizers, using Kidspiration 3© software, to solve one-step word problems. Participants included three students with mild intellectual disability enrolled in a functional academic skills curriculum in a self-contained classroom. A multiple probe single-subject research design (Horner & Baer, 1978) was used to evaluate the effectiveness of computer-based graphic organizers to solving mathematical one-step word problems. During the baseline phase, the students completed a teacher-generated worksheet that consisted of nine functional word problems in a traditional format using a pencil, paper, and a calculator. In the intervention and maintenance phases, the students were instructed to complete the word problems using a computer-based graphic organizer. Results indicated that all three of the students improved in their ability to solve the one-step word problems using computer-based graphic organizers compared to traditional instructional practices. Limitations of the study and recommendations for future research directions are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Polychromatic plots: graphical display of multidimensional data.
Roederer, Mario; Moody, M Anthony
2008-09-01
Limitations of graphical displays as well as human perception make the presentation and analysis of multidimensional data challenging. Graphical display of information on paper or by current projectors is perforce limited to two dimensions; the encoding of information from other dimensions must be overloaded into the two physical dimensions. A number of alternative means of encoding this information have been implemented, such as offsetting data points at an angle (e.g., three-dimensional projections onto a two-dimensional surface) or generating derived parameters that are combinations of other variables (e.g., principal components). Here, we explore the use of color to encode additional dimensions of data. PolyChromatic Plots are standard dot plots, where the color of each event is defined by the values of one, two, or three of the measurements for that event. The measurements for these parameters are mapped onto an intensity value for each primary color (red, green, or blue) based on different functions. In addition, differential weighting of the priority with which overlapping events are displayed can be defined by these same measurements. PolyChromatic Plots can encode up to five independent dimensions of data in a single display. By altering the color mapping function and the priority function, very different displays that highlight or de-emphasize populations of events can be generated. As for standard black-and-white dot plots, frequency information can be significantly biased by this display; care must be taken to ensure appropriate interpretation of the displays. PolyChromatic Plots are a powerful display type that enables rapid data exploration. By virtue of encoding as many as five dimensions of data independently, an enormous amount of information can be gleaned from the displays. In many ways, the display performs somewhat like an unsupervised cluster algorithm, by highlighting events of similar distributions in multivariate space.
Case Study: Audio-Guided Learning, with Computer Graphics.
ERIC Educational Resources Information Center
Koumi, Jack; Daniels, Judith
1994-01-01
Describes teaching packages which involve the use of audiotape recordings with personal computers in Open University (United Kingdom) mathematics courses. Topics addressed include software development; computer graphics; pedagogic principles for distance education; feedback, including course evaluations and student surveys; and future plans.…
ERIC Educational Resources Information Center
Cheng, Wan-Lee
This instructional manual contains 12 learning activity packets for use in a workshop in computer-aided design and drafting (CADD). The lessons cover the following topics: introduction to computer graphics and computer-aided design/drafting; coordinate systems; advance space graphics hardware configuration and basic features of the IBM PC…
Toward a Singleton Undergraduate Computer Graphics Course in Small and Medium-Sized Colleges
ERIC Educational Resources Information Center
Shesh, Amit
2013-01-01
This article discusses the evolution of a single undergraduate computer graphics course over five semesters, driven by a primary question: if one could offer only one undergraduate course in graphics, what would it include? This constraint is relevant to many small and medium-sized colleges that lack resources, adequate expertise, and enrollment…
RADIK: An Interactive Graphics and Text Editor.
RADIK is an interactive graphics and text editing system designed for use with an ADAGE AGT/10 graphics computer, either in a stand-alone mode, or in...designing RADIK . A brief summary of results and applications is presented and implementation of RADIK is proposed. Assembly language computer programs developed during the work are appended for reference. (Author)
Young Children and Turtle Graphics Programming: Generating and Debugging Simple Turtle Programs.
ERIC Educational Resources Information Center
Cuneo, Diane O.
Turtle graphics is a popular vehicle for introducing children to computer programming. Children combine simple graphic commands to get a display screen cursor (called a turtle) to draw designs on the screen. The purpose of this study was to examine young children's abilities to function in a simple computer programming environment. Four- and…
Visual Debugging of Object-Oriented Systems With the Unified Modeling Language
2004-03-01
to be “the systematic and imaginative use of the technology of interactive computer graphics and the disciplines of graphic design , typography ... Graphics volume 23 no 6, pp893-901, 1999. [SHN98] Shneiderman, B. Designing the User Interface. Strategies for Effective Human-Computer Interaction...System Design Objectives ................................................................................ 44 3.3 System Architecture
Computer graphics for management: An abstract of capabilities and applications of the EIS system
NASA Technical Reports Server (NTRS)
Solem, B. J.
1975-01-01
The Executive Information Services (EIS) system, developed as a computer-based, time-sharing tool for making and implementing management decisions, and including computer graphics capabilities, was described. The following resources are available through the EIS languages: centralized corporate/gov't data base, customized and working data bases, report writing, general computational capability, specialized routines, modeling/programming capability, and graphics. Nearly all EIS graphs can be created by a single, on-line instruction. A large number of options are available, such as selection of graphic form, line control, shading, placement on the page, multiple images on a page, control of scaling and labeling, plotting of cum data sets, optical grid lines, and stack charts. The following are examples of areas in which the EIS system may be used: research, estimating services, planning, budgeting, and performance measurement, national computer hook-up negotiations.
Basic methods for measuring the reflectance color of iron oxides
NASA Astrophysics Data System (ADS)
Pospisil, Jaroslav; Hrdy, Jan; Hrdy Jan, Jr.
2007-06-01
The main contribution of the present article consists in coherent description and interpretation of the principles of basic measuring methods and colorimeters for color classification and evaluation of light reflecting samples containing iron oxides. The chosen relevant theoretical background is based on the CIE tristimulus colorimetric system (X,Y,Z), the CIE colorimetric system (L*,a*,b*) and the Munsell colorimetric system (H,V,C). As an example of color identification and evaluation, some specific mathematical and graphical relationships between the soil redness rate and the corresponding hematite content are shown.
Chun, Hyeong Jin; Han, Yong Duk; Park, Yoo Min; Kim, Ka Ram; Lee, Seok Jae
2018-01-01
To overcome the time and space constraints in disease diagnosis via the biosensing approach, we developed a new signal-transducing strategy that can be applied to colorimetric optical biosensors. Our study is focused on implementation of a signal transduction technology that can directly translate the color intensity signals—that require complicated optical equipment for the analysis—into signals that can be easily counted with the naked eye. Based on the selective light absorption and wavelength-filtering principles, our new optical signaling transducer was built from a common computer monitor and a smartphone. In this signal transducer, the liquid crystal display (LCD) panel of the computer monitor served as a light source and a signal guide generator. In addition, the smartphone was used as an optical receiver and signal display. As a biorecognition layer, a transparent and soft material-based biosensing channel was employed generating blue output via a target-specific bienzymatic chromogenic reaction. Using graphics editor software, we displayed the optical signal guide patterns containing multiple polygons (a triangle, circle, pentagon, heptagon, and 3/4 circle, each associated with a specified color ratio) on the LCD monitor panel. During observation of signal guide patterns displayed on the LCD monitor panel using a smartphone camera via the target analyte-loaded biosensing channel as a color-filtering layer, the number of observed polygons changed according to the concentration of the target analyte via the spectral correlation between absorbance changes in a solution of the biosensing channel and color emission properties of each type of polygon. By simple counting of the changes in the number of polygons registered by the smartphone camera, we could efficiently measure the concentration of a target analyte in a sample without complicated and expensive optical instruments. In a demonstration test on glucose as a model analyte, we could easily measure the concentration of glucose in the range from 0 to 10 mM. PMID:29509682
Chun, Hyeong Jin; Han, Yong Duk; Park, Yoo Min; Kim, Ka Ram; Lee, Seok Jae; Yoon, Hyun C
2018-03-06
To overcome the time and space constraints in disease diagnosis via the biosensing approach, we developed a new signal-transducing strategy that can be applied to colorimetric optical biosensors. Our study is focused on implementation of a signal transduction technology that can directly translate the color intensity signals-that require complicated optical equipment for the analysis-into signals that can be easily counted with the naked eye. Based on the selective light absorption and wavelength-filtering principles, our new optical signaling transducer was built from a common computer monitor and a smartphone. In this signal transducer, the liquid crystal display (LCD) panel of the computer monitor served as a light source and a signal guide generator. In addition, the smartphone was used as an optical receiver and signal display. As a biorecognition layer, a transparent and soft material-based biosensing channel was employed generating blue output via a target-specific bienzymatic chromogenic reaction. Using graphics editor software, we displayed the optical signal guide patterns containing multiple polygons (a triangle, circle, pentagon, heptagon, and 3/4 circle, each associated with a specified color ratio) on the LCD monitor panel. During observation of signal guide patterns displayed on the LCD monitor panel using a smartphone camera via the target analyte-loaded biosensing channel as a color-filtering layer, the number of observed polygons changed according to the concentration of the target analyte via the spectral correlation between absorbance changes in a solution of the biosensing channel and color emission properties of each type of polygon. By simple counting of the changes in the number of polygons registered by the smartphone camera, we could efficiently measure the concentration of a target analyte in a sample without complicated and expensive optical instruments. In a demonstration test on glucose as a model analyte, we could easily measure the concentration of glucose in the range from 0 to 10 mM.
Monitoring and analysis of data in cyberspace
NASA Technical Reports Server (NTRS)
Schwuttke, Ursula M. (Inventor); Angelino, Robert (Inventor)
2001-01-01
Information from monitored systems is displayed in three dimensional cyberspace representations defining a virtual universe having three dimensions. Fixed and dynamic data parameter outputs from the monitored systems are visually represented as graphic objects that are positioned in the virtual universe based on relationships to the system and to the data parameter categories. Attributes and values of the data parameters are indicated by manipulating properties of the graphic object such as position, color, shape, and motion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohn, Michael; Adams, Paul
2006-09-05
The L3 system is a computational steering environment for image processing and scientific computing. It consists of an interactive graphical language and interface. Its purpose is to help advanced users in controlling their computational software and assist in the management of data accumulated during numerical experiments. L3 provides a combination of features not found in other environments; these are: - textual and graphical construction of programs - persistence of programs and associated data - direct mapping between the scripts, the parameters, and the produced data - implicit hierarchial data organization - full programmability, including conditionals and functions - incremental executionmore » of programs The software includes the l3 language and the graphical environment. The language is a single-assignment functional language; the implementation consists of lexer, parser, interpreter, storage handler, and editing support, The graphical environment is an event-driven nested list viewer/editor providing graphical elements corresponding to the language. These elements are both the represenation of a users program and active interfaces to the values computed by that program.« less
Teaching color measurement in graphic arts
NASA Astrophysics Data System (ADS)
Ingram, Samuel T.; Simon, Frederick T.
1997-04-01
The production of color images has grown in recent years due to the impact of digital technology. Access and equipment affordability are now bringing a new generation of color producers into the marketplace. Many traditional questions concerning color attributes are repeatedly asked by individuals: color fidelity, quality, measurements and device characterization pose daily dilemmas. Curriculum components should be offered in an educational environment that enhance the color foundations required of knowledgeable managers, researchers and technicians. The printing industry is adding many of the new digital color technologies to their vocabulary pertinent to color production. This paper presents current efforts being made to integrate color knowledge in a four year program of undergraduate study. Specific topics include: color reproduction, device characterization, material characterization and the role of measurements as a linking attribute. This paper also provides information detailing efforts to integrate color specification/measurement and analysis procedures used by students and subsequent application in color image production are provided. A discussion of measurement devices used in the learning environment is also presented. The investigation involves descriptive data on colorants typically used in printing inks and color.
Analysis of the Optimum Receiver Design Problem Using Interactive Computer Graphics.
1981-12-01
7 _AD A115 498A l AR FORCE INST OF TECH WR16HT-PATTERSON AF8 OH SCHOO--ETC F/6 9/2 ANALYSIS OF THE OPTIMUM RECEIVER DESIGN PROBLEM USING INTERACTI...ANALYSIS OF THE OPTIMUM RECEIVER DESIGN PROBLEM USING INTERACTIVE COMPUTER GRAPHICS THESIS AFIT/GE/EE/81D-39 Michael R. Mazzuechi Cpt USA Approved for...public release; distribution unlimited AFIT/GE/EE/SlD-39 ANALYSIS OF THE OPTIMUM RECEIVER DESIGN PROBLEM USING INTERACTIVE COMPUTER GRAPHICS THESIS
Bridges, N.J.; McCammon, R.B.
1980-01-01
DISCRIM is an interactive computer graphics program that dissects mixtures of normal or lognormal distributions. The program was written in an effort to obtain a more satisfactory solution to the dissection problem than that offered by a graphical or numerical approach alone. It combines graphic and analytic techniques using a Tektronix1 terminal in a time-share computing environment. The main program and subroutines were written in the FORTRAN language. ?? 1980.
NASA Technical Reports Server (NTRS)
Marshall, S. E.; Bernhard, R.
1984-01-01
A survey of the most widely used methods for visualizing acoustic phenomena is presented. Emphasis is placed on acoustic processes in the audible frequencies. Many visual problems are analyzed on computer graphic systems. A brief description of the current technology in computer graphics is included. The visualization technique survey will serve as basis for recommending an optimum scheme for displaying acoustic fields on computer graphic systems.
X based interactive computer graphics applications for aerodynamic design and education
NASA Technical Reports Server (NTRS)
Benson, Thomas J.; Higgs, C. Fred, III
1995-01-01
Six computer applications packages have been developed to solve a variety of aerodynamic problems in an interactive environment on a single workstation. The packages perform classical one dimensional analysis under the control of a graphical user interface and can be used for preliminary design or educational purposes. The programs were originally developed on a Silicon Graphics workstation and used the GL version of the FORMS library as the graphical user interface. These programs have recently been converted to the XFORMS library of X based graphics widgets and have been tested on SGI, IBM, Sun, HP and PC-Lunix computers. The paper will show results from the new VU-DUCT program as a prime example. VU-DUCT has been developed as an educational package for the study of subsonic open and closed loop wind tunnels.
Measuring Cognitive Load in Test Items: Static Graphics versus Animated Graphics
ERIC Educational Resources Information Center
Dindar, M.; Kabakçi Yurdakul, I.; Inan Dönmez, F.
2015-01-01
The majority of multimedia learning studies focus on the use of graphics in learning process but very few of them examine the role of graphics in testing students' knowledge. This study investigates the use of static graphics versus animated graphics in a computer-based English achievement test from a cognitive load theory perspective. Three…
Methodology for CFD Design Analysis of National Launch System Nozzle Manifold
NASA Technical Reports Server (NTRS)
Haire, Scot L.
1993-01-01
The current design environment dictates that high technology CFD (Computational Fluid Dynamics) analysis produce quality results in a timely manner if it is to be integrated into the design process. The design methodology outlined describes the CFD analysis of an NLS (National Launch System) nozzle film cooling manifold. The objective of the analysis was to obtain a qualitative estimate for the flow distribution within the manifold. A complex, 3D, multiple zone, structured grid was generated from a 3D CAD file of the geometry. A Euler solution was computed with a fully implicit compressible flow solver. Post processing consisted of full 3D color graphics and mass averaged performance. The result was a qualitative CFD solution that provided the design team with relevant information concerning the flow distribution in and performance characteristics of the film cooling manifold within an effective time frame. Also, this design methodology was the foundation for a quick turnaround CFD analysis of the next iteration in the manifold design.
Software for Analyzing Sequences of Flow-Related Images
NASA Technical Reports Server (NTRS)
Klimek, Robert; Wright, Ted
2004-01-01
Spotlight is a computer program for analysis of sequences of images generated in combustion and fluid physics experiments. Spotlight can perform analysis of a single image in an interactive mode or a sequence of images in an automated fashion. The primary type of analysis is tracking of positions of objects over sequences of frames. Features and objects that are typically tracked include flame fronts, particles, droplets, and fluid interfaces. Spotlight automates the analysis of object parameters, such as centroid position, velocity, acceleration, size, shape, intensity, and color. Images can be processed to enhance them before statistical and measurement operations are performed. An unlimited number of objects can be analyzed simultaneously. Spotlight saves results of analyses in a text file that can be exported to other programs for graphing or further analysis. Spotlight is a graphical-user-interface-based program that at present can be executed on Microsoft Windows and Linux operating systems. A version that runs on Macintosh computers is being considered.
ISS Radiation Shielding and Acoustic Simulation Using an Immersive Environment
NASA Technical Reports Server (NTRS)
Verhage, Joshua E.; Sandridge, Chris A.; Qualls, Garry D.; Rizzi, Stephen A.
2002-01-01
The International Space Station Environment Simulator (ISSES) is a virtual reality application that uses high-performance computing, graphics, and audio rendering to simulate the radiation and acoustic environments of the International Space Station (ISS). This CAVE application allows the user to maneuver to different locations inside or outside of the ISS and interactively compute and display the radiation dose at a point. The directional dose data is displayed as a color-mapped sphere that indicates the relative levels of radiation from all directions about the center of the sphere. The noise environment is rendered in real time over headphones or speakers and includes non-spatial background noise, such as air-handling equipment, and spatial sounds associated with specific equipment racks, such as compressors or fans. Changes can be made to equipment rack locations that produce changes in both the radiation shielding and system noise. The ISSES application allows for interactive investigation and collaborative trade studies between radiation shielding and noise for crew safety and comfort.
Assessing the impact of graphical quality on automatic text recognition in digital maps
NASA Astrophysics Data System (ADS)
Chiang, Yao-Yi; Leyk, Stefan; Honarvar Nazari, Narges; Moghaddam, Sima; Tan, Tian Xiang
2016-08-01
Converting geographic features (e.g., place names) in map images into a vector format is the first step for incorporating cartographic information into a geographic information system (GIS). With the advancement in computational power and algorithm design, map processing systems have been considerably improved over the last decade. However, the fundamental map processing techniques such as color image segmentation, (map) layer separation, and object recognition are sensitive to minor variations in graphical properties of the input image (e.g., scanning resolution). As a result, most map processing results would not meet user expectations if the user does not "properly" scan the map of interest, pre-process the map image (e.g., using compression or not), and train the processing system, accordingly. These issues could slow down the further advancement of map processing techniques as such unsuccessful attempts create a discouraged user community, and less sophisticated tools would be perceived as more viable solutions. Thus, it is important to understand what kinds of maps are suitable for automatic map processing and what types of results and process-related errors can be expected. In this paper, we shed light on these questions by using a typical map processing task, text recognition, to discuss a number of map instances that vary in suitability for automatic processing. We also present an extensive experiment on a diverse set of scanned historical maps to provide measures of baseline performance of a standard text recognition tool under varying map conditions (graphical quality) and text representations (that can vary even within the same map sheet). Our experimental results help the user understand what to expect when a fully or semi-automatic map processing system is used to process a scanned map with certain (varying) graphical properties and complexities in map content.
Shaded-Color Picture Generation of Computer-Defined Arbitrary Shapes
NASA Technical Reports Server (NTRS)
Cozzolongo, J. V.; Hermstad, D. L.; Mccoy, D. S.; Clark, J.
1986-01-01
SHADE computer program generates realistic color-shaded pictures from computer-defined arbitrary shapes. Objects defined for computer representation displayed as smooth, color-shaded surfaces, including varying degrees of transparency. Results also used for presentation of computational results. By performing color mapping, SHADE colors model surface to display analysis results as pressures, stresses, and temperatures. NASA has used SHADE extensively in sign and analysis of high-performance aircraft. Industry should find applications for SHADE in computer-aided design and computer-aided manufacturing. SHADE written in VAX FORTRAN and MACRO Assembler for either interactive or batch execution.
Graphics and composite material computer program enhancements for SPAR
NASA Technical Reports Server (NTRS)
Farley, G. L.; Baker, D. J.
1980-01-01
User documentation is provided for additional computer programs developed for use in conjunction with SPAR. These programs plot digital data, simplify input for composite material section properties, and compute lamina stresses and strains. Sample problems are presented including execution procedures, program input, and graphical output.
Concept Learning through Image Processing.
ERIC Educational Resources Information Center
Cifuentes, Lauren; Yi-Chuan, Jane Hsieh
This study explored computer-based image processing as a study strategy for middle school students' science concept learning. Specifically, the research examined the effects of computer graphics generation on science concept learning and the impact of using computer graphics to show interrelationships among concepts during study time. The 87…
The Brainbow Connection: Supplementing the Romance of Classroom Color Computing.
ERIC Educational Resources Information Center
Burns, Hugh
1982-01-01
Discusses the role and use of color in instructional computing. Suggests teachers consider: (1) how color symbolically represents content and reinforces organization of lessons; (2) how color enhances a lesson's style and short/long-term memory; and (3) cost of classroom color computer assisted lessons. (Author/JN)
ESDAPT - APT PROGRAMMING EDITOR AND INTERPRETER
NASA Technical Reports Server (NTRS)
Premack, T.
1994-01-01
ESDAPT is a graphical programming environment for developing APT (Automatically Programmed Tool) programs for controlling numerically controlled machine tools. ESDAPT has a graphical user interface that provides the user with an APT syntax sensitive text editor and windows for displaying geometry and tool paths. APT geometry statement can also be created using menus and screen picks. ESDAPT interprets APT geometry statements and displays the results in its view windows. Tool paths are generated by batching the APT source to an APT processor (COSMIC P-APT recommended). The tool paths are then displayed in the view windows. Hardcopy output of the view windows is in color PostScript format. ESDAPT is written in C-language, yacc, lex, and XView for use on Sun4 series computers running SunOS. ESDAPT requires 4Mb of disk space, 7Mb of RAM, and MIT's X Window System, Version 11 Release 4, or OpenWindows version 3 for execution. Program documentation in PostScript format and an executable for OpenWindows version 3 are provided on the distribution media. The standard distribution medium for ESDAPT is a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. This program was developed in 1992.
VisANT 3.0: new modules for pathway visualization, editing, prediction and construction.
Hu, Zhenjun; Ng, David M; Yamada, Takuji; Chen, Chunnuan; Kawashima, Shuichi; Mellor, Joe; Linghu, Bolan; Kanehisa, Minoru; Stuart, Joshua M; DeLisi, Charles
2007-07-01
With the integration of the KEGG and Predictome databases as well as two search engines for coexpressed genes/proteins using data sets obtained from the Stanford Microarray Database (SMD) and Gene Expression Omnibus (GEO) database, VisANT 3.0 supports exploratory pathway analysis, which includes multi-scale visualization of multiple pathways, editing and annotating pathways using a KEGG compatible visual notation and visualization of expression data in the context of pathways. Expression levels are represented either by color intensity or by nodes with an embedded expression profile. Multiple experiments can be navigated or animated. Known KEGG pathways can be enriched by querying either coexpressed components of known pathway members or proteins with known physical interactions. Predicted pathways for genes/proteins with unknown functions can be inferred from coexpression or physical interaction data. Pathways produced in VisANT can be saved as computer-readable XML format (VisML), graphic images or high-resolution Scalable Vector Graphics (SVG). Pathways in the format of VisML can be securely shared within an interested group or published online using a simple Web link. VisANT is freely available at http://visant.bu.edu.
Carotti, A; Smith, R N; Wong, S; Hansch, C; Blaney, J M; Langridge, R
1984-02-15
The hydrolysis of 32 X-phenyl-N-methanesulfonyl glycinates by papain was investigated. It was found that the variation in the Michaelis constants could be rationalized by the following correlation equation: log 1/Km = 0.61 pi '3 + 0.46 MR4 + 0.55 sigma + 2.00 with a correlation coefficient of 0.945. In this expression, pi '3 is the hydrophobic constant for the more lipophilic of the two possible meta substituents, MR4 is the molar refractivity of 4-substituents, and sigma is the Hammett constant summed for all substituents. Using this equation, we designed, synthesized, and successfully predicted Km for a new congener intended to maximize binding (1/Km). The interactions involved in enzyme-substrate binding, as characterized by the correlation equation, are interpreted using a computer-constructed color three-dimensional-graphics molecular model of the enzyme active site. The nonenzymatic hydrolysis (both acid and basic) of phenyl hippurates yield rate constants which are well correlated by Hammett equations; however, log k for both acid and alkaline hydrolysis are not linearly related to log 1/Km or log kcat/Km.
The Gene Construction Kit: a new computer program for manipulating and presenting DNA constructs.
Gross, R H
1990-06-01
The Gene Construction Kit is a new tool for manipulating and displaying DNA sequence information. Constructs can be displayed either graphically or as formatted sequence. Segments of DNA can be cut out with restriction enzymes and pasted into other sites. The program keeps track of staggered ends and notifies the user of incompatibilities and offers a choice of ligation options. Each segment of a construct can have its own defined thickness, pattern, direction and color. The sequence listing can be displayed in any font and style in user defined grouping. Nucleotide positions can be displayed as can restriction sites and protein sequences. The DNA can be displayed as either single- or double-stranded. Restriction sites can be readily marked. Alternative views of the DNA can be maintained and the history of the construct automatically stored. Gel electrophoresis patterns can be generated and can be used in cloning project design. Extensive comments can be stored with the construct and can be searched rapidly for key words. High quality illustrations showing multiple editable constructs with added graphics and text information can be generated for slides, posters or publication.
Visualization in aerospace research with a large wall display system
NASA Astrophysics Data System (ADS)
Matsuo, Yuichi
2002-05-01
National Aerospace Laboratory of Japan has built a large- scale visualization system with a large wall-type display. The system has been operational since April 2001 and comprises a 4.6x1.5-meter (15x5-foot) rear projection screen with 3 BARCO 812 high-resolution CRT projectors. The reason we adopted the 3-gun CRT projectors is support for stereoscopic viewing, ease with color/luminosity matching and accuracy of edge-blending. The system is driven by a new SGI Onyx 3400 server of distributed shared-memory architecture with 32 CPUs, 64Gbytes memory, 1.5TBytes FC RAID disk and 6 IR3 graphics pipelines. Software is another important issue for us to make full use of the system. We have introduced some applications available in a multi- projector environment such as AVS/MPE, EnSight Gold and COVISE, and been developing some software tools that create volumetric images with using SGI graphics libraries. The system is mainly used for visualization fo computational fluid dynamics (CFD) simulation sin aerospace research. Visualized CFD results are of our help for designing an improved configuration of aerospace vehicles and analyzing their aerodynamic performances. These days we also use it for various collaborations among researchers.
Application of Computer Graphics to Graphing in Algebra and Trigonometry. Final Report.
ERIC Educational Resources Information Center
Morris, J. Richard
This project was designed to improve the graphing competency of students in elementary algebra, intermediate algebra, and trigonometry courses at Virginia Commonwealth University. Computer graphics programs were designed using an Apple II Plus computer and implemented using Pascal. The software package is interactive and gives students control…
Computer Art--A New Tool in Advertising Graphics.
ERIC Educational Resources Information Center
Wassmuth, Birgit L.
Using computers to produce art began with scientists, mathematicians, and individuals with strong technical backgrounds who used the graphic material as visualizations of data in technical fields. People are using computer art in advertising, as well as in painting; sculpture; music; textile, product, industrial, and interior design; architecture;…
The Use of Computer Graphics in the Design Process.
ERIC Educational Resources Information Center
Palazzi, Maria
This master's thesis examines applications of computer technology to the field of industrial design and ways in which technology can transform the traditional process. Following a statement of the problem, the history and applications of the fields of computer graphics and industrial design are reviewed. The traditional industrial design process…
Diffusion accessibility as a method for visualizing macromolecular surface geometry.
Tsai, Yingssu; Holton, Thomas; Yeates, Todd O
2015-10-01
Important three-dimensional spatial features such as depth and surface concavity can be difficult to convey clearly in the context of two-dimensional images. In the area of macromolecular visualization, the computer graphics technique of ray-tracing can be helpful, but further techniques for emphasizing surface concavity can give clearer perceptions of depth. The notion of diffusion accessibility is well-suited for emphasizing such features of macromolecular surfaces, but a method for calculating diffusion accessibility has not been made widely available. Here we make available a web-based platform that performs the necessary calculation by solving the Laplace equation for steady state diffusion, and produces scripts for visualization that emphasize surface depth by coloring according to diffusion accessibility. The URL is http://services.mbi.ucla.edu/DiffAcc/. © 2015 The Protein Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Da Rio, Nicola; Robberto, Massimo, E-mail: ndario@rssd.esa.int
We present the Tool for Astrophysical Data Analysis (TA-DA), a new software aimed to greatly simplify and improve the analysis of stellar photometric data in comparison with theoretical models, and allow the derivation of stellar parameters from multi-band photometry. Its flexibility allows one to address a number of such problems: from the interpolation of stellar models, or sets of stellar physical parameters in general, to the computation of synthetic photometry in arbitrary filters or units; from the analysis of observed color-magnitude diagrams to a Bayesian derivation of stellar parameters (and extinction) based on multi-band data. TA-DA is available as amore » pre-compiled Interactive Data Language widget-based application; its graphical user interface makes it considerably user-friendly. In this paper, we describe the software and its functionalities.« less
Color visualization for fluid flow prediction
NASA Technical Reports Server (NTRS)
Smith, R. E.; Speray, D. E.
1982-01-01
High-resolution raster scan color graphics allow variables to be presented as a continuum, in a color-coded picture that is referenced to a geometry such as a flow field grid or a boundary surface. Software is used to map a scalar variable such as pressure or temperature, defined on a two-dimensional slice of a flow field. The geometric shape is preserved in the resulting picture, and the relative magnitude of the variable is color-coded onto the geometric shape. The primary numerical process for color coding is an efficient search along a raster scan line to locate the quadrilteral block in the grid that bounds each pixel on the line. Tension spline interpolation is performed relative to the grid for specific values of the scalar variable, which is then color coded. When all pixels for the field of view are color-defined, a picture is played back from a memory device onto a television screen.
Use of parallel computing in mass processing of laser data
NASA Astrophysics Data System (ADS)
Będkowski, J.; Bratuś, R.; Prochaska, M.; Rzonca, A.
2015-12-01
The first part of the paper includes a description of the rules used to generate the algorithm needed for the purpose of parallel computing and also discusses the origins of the idea of research on the use of graphics processors in large scale processing of laser scanning data. The next part of the paper includes the results of an efficiency assessment performed for an array of different processing options, all of which were substantially accelerated with parallel computing. The processing options were divided into the generation of orthophotos using point clouds, coloring of point clouds, transformations, and the generation of a regular grid, as well as advanced processes such as the detection of planes and edges, point cloud classification, and the analysis of data for the purpose of quality control. Most algorithms had to be formulated from scratch in the context of the requirements of parallel computing. A few of the algorithms were based on existing technology developed by the Dephos Software Company and then adapted to parallel computing in the course of this research study. Processing time was determined for each process employed for a typical quantity of data processed, which helped confirm the high efficiency of the solutions proposed and the applicability of parallel computing to the processing of laser scanning data. The high efficiency of parallel computing yields new opportunities in the creation and organization of processing methods for laser scanning data.
Thermal Protection System Imagery Inspection Management System -TIIMS
NASA Technical Reports Server (NTRS)
Goza, Sharon; Melendrez, David L.; Henningan, Marsha; LaBasse, Daniel; Smith, Daniel J.
2011-01-01
TIIMS is used during the inspection phases of every mission to provide quick visual feedback, detailed inspection data, and determination to the mission management team. This system consists of a visual Web page interface, an SQL database, and a graphical image generator. These combine to allow a user to ascertain quickly the status of the inspection process, and current determination of any problem zones. The TIIMS system allows inspection engineers to enter their determinations into a database and to link pertinent images and video to those database entries. The database then assigns criteria to each zone and tile, and via query, sends the information to a graphical image generation program. Using the official TIPS database tile positions and sizes, the graphical image generation program creates images of the current status of the orbiter, coloring zones, and tiles based on a predefined key code. These images are then displayed on a Web page using customized JAVA scripts to display the appropriate zone of the orbiter based on the location of the user's cursor. The close-up graphic and database entry for that particular zone can then be seen by selecting the zone. This page contains links into the database to access the images used by the inspection engineer when they make the determination entered into the database. Status for the inspection zones changes as determinations are refined and shown by the appropriate color code.
Graphic Design Is Not a Medium.
ERIC Educational Resources Information Center
Gruber, John Edward, Jr.
2001-01-01
Discusses graphic design and reviews its development from analog processes to a digital tool with the use of computers. Topics include graphical user interfaces; the need for visual communication concepts; transmedia as opposed to repurposing; and graphic design instruction in higher education. (LRW)
A graphics subsystem retrofit design for the bladed-disk data acquisition system. M.S. Thesis
NASA Technical Reports Server (NTRS)
Carney, R. R.
1983-01-01
A graphics subsystem retrofit design for the turbojet blade vibration data acquisition system is presented. The graphics subsystem will operate in two modes permitting the system operator to view blade vibrations on an oscilloscope type of display. The first mode is a real-time mode that displays only gross blade characteristics, such as maximum deflections and standing waves. This mode is used to aid the operator in determining when to collect detailed blade vibration data. The second mode of operation is a post-processing mode that will animate the actual blade vibrations using the detailed data collected on an earlier data collection run. The operator can vary the rate of payback to view differring characteristics of blade vibrations. The heart of the graphics subsystem is a modified version of AMD's ""super sixteen'' computer, called the graphics preprocessor computer (GPC). This computer is based on AMD's 2900 series of bit-slice components.
DDP-516 Computer Graphics System Capabilities
DOT National Transportation Integrated Search
1972-06-01
This report describes the capabilities of the DDP-516 Computer Graphics System. One objective of this report is to acquaint DOT management and project planners with the system's current capabilities, applications hardware and software. The Appendix i...
An Interactive Version of MULR04 With Enhanced Graphic Capability
ERIC Educational Resources Information Center
Burkholder, Joel H.
1978-01-01
An existing computer program for computing multiple regression analyses is made interactive in order to alleviate core storage requirements. Also, some improvements in the graphics aspects of the program are included. (JKS)
Real-time interactive simulation: using touch panels, graphics tablets, and video-terminal keyboards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venhuizen, J.R.
1983-01-01
A Simulation Laboratory utilizing only digital computers for interactive computing must rely on CRT based graphics devices for output devices, and keyboards, graphics tablets, and touch panels, etc., for input devices. The devices all work well, with the combination of a CRT with a touch panel mounted on it as the most flexible combination of input/output devices for interactive simulation.
Three varieties of realism in computer graphics
NASA Astrophysics Data System (ADS)
Ferwerda, James A.
2003-06-01
This paper describes three varieties of realism that need to be considered in evaluating computer graphics images and defines the criteria that need to be met if each kind of realism is to be achieved. The paper introduces a conceptual framework for thinking about realism in images, and describes a set of research tools for measuring image realism and assessing its value in graphics applications.
The Triangle: a Multiprocessor Architecture for Fast Curve and Surface Generation.
1987-08-01
design , curves and surfaces, graphics hardware. 20...curves, B-splines, computer-aided geometric design ; curves and sur- faces, graphics hardware. (k 12). -/ .... This work was supported in part by the...34 Electronic Design , October 30, 1986. 21. M. A. Penna and R. R. Patterson, Projective Geometry and its Applications to Computer Graphics , Prentice-Hall, Englewood Cliffs, N.J., 1985. 70,e, 41100vr -~ ~ - -- --
Engineering Design Graphics: Into the 21st Century
ERIC Educational Resources Information Center
Harris, La Verne Abe; Meyers, Frederick
2007-01-01
Graphical plans for construction of machinery and architecture have evolved over the last 6,000 years beginning from hieroglyphics to drawings on printable media, from the "Golden Age" of engineering graphics to the innovation of computer graphics and prototyping. The evolution of engineering design graphics as a profession has also evolved. Years…
The use of computer graphic simulation in the development of on-orbit tele-robotic systems
NASA Technical Reports Server (NTRS)
Fernandez, Ken; Hinman, Elaine
1987-01-01
This paper describes the use of computer graphic simulation techniques to resolve critical design and operational issues for robotic systems used for on-orbit operations. These issues are robot motion control, robot path-planning/verification, and robot dynamics. The major design issues in developing effective telerobotic systems are discussed, and the use of ROBOSIM, a NASA-developed computer graphic simulation tool, to address these issues is presented. Simulation plans for the Space Station and the Orbital Maneuvering Vehicle are presented and discussed.
NASA Technical Reports Server (NTRS)
Coles, W. A.
1975-01-01
The CAD/CAM interactive computer graphics system was described; uses to which it has been put were shown, and current developments of the system were outlined. The system supports batch, time sharing, and fully interactive graphic processing. Engineers using the system may switch between these methods of data processing and problem solving to make the best use of the available resources. It is concluded that the introduction of on-line computing in the form of teletypes, storage tubes, and fully interactive graphics has resulted in large increases in productivity and reduced timescales in the geometric computing, numerical lofting and part programming areas, together with a greater utilization of the system in the technical departments.
Fundamentals of computer graphics for artists and designers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, B.A.
1986-01-01
This tutorial provides introductory information about computer graphics slanted towards novice users from artist/designer backgrounds. The goal is to describe the applications and terminology sufficiently to provide a base of knowledge for discussions with vendors.
Peng, Fei; Li, Jiao-ting; Long, Min
2015-03-01
To discriminate the acquisition pipelines of digital images, a novel scheme for the identification of natural images and computer-generated graphics is proposed based on statistical and textural features. First, the differences between them are investigated from the view of statistics and texture, and 31 dimensions of feature are acquired for identification. Then, LIBSVM is used for the classification. Finally, the experimental results are presented. The results show that it can achieve an identification accuracy of 97.89% for computer-generated graphics, and an identification accuracy of 97.75% for natural images. The analyses also demonstrate the proposed method has excellent performance, compared with some existing methods based only on statistical features or other features. The method has a great potential to be implemented for the identification of natural images and computer-generated graphics. © 2014 American Academy of Forensic Sciences.
Computational efficiency improvements for image colorization
NASA Astrophysics Data System (ADS)
Yu, Chao; Sharma, Gaurav; Aly, Hussein
2013-03-01
We propose an efficient algorithm for colorization of greyscale images. As in prior work, colorization is posed as an optimization problem: a user specifies the color for a few scribbles drawn on the greyscale image and the color image is obtained by propagating color information from the scribbles to surrounding regions, while maximizing the local smoothness of colors. In this formulation, colorization is obtained by solving a large sparse linear system, which normally requires substantial computation and memory resources. Our algorithm improves the computational performance through three innovations over prior colorization implementations. First, the linear system is solved iteratively without explicitly constructing the sparse matrix, which significantly reduces the required memory. Second, we formulate each iteration in terms of integral images obtained by dynamic programming, reducing repetitive computation. Third, we use a coarseto- fine framework, where a lower resolution subsampled image is first colorized and this low resolution color image is upsampled to initialize the colorization process for the fine level. The improvements we develop provide significant speedup and memory savings compared to the conventional approach of solving the linear system directly using off-the-shelf sparse solvers, and allow us to colorize images with typical sizes encountered in realistic applications on typical commodity computing platforms.
2010-09-21
This graphic, constructed from data obtained by NASA Cassini spacecraft, shows the percentage of cloud coverage across the surface of Saturn moon Titan. The color scale from black to yellow signifies no cloud coverage to complete cloud coverage.
An Alternative Proposal for the Graphical Representation of Anticolor Charge
NASA Astrophysics Data System (ADS)
Wiener, Gerfried J.; Schmeling, Sascha M.; Hopf, Martin
2017-11-01
We have developed a learning unit based on the Standard Model of particle physics, featuring novel typographic illustrations of elementary particles and particle systems. Since the unit includes antiparticles and systems of antiparticles, a visualization of anticolor charge was required. We propose an alternative to the commonly used complementary-color method, whereby antiparticles and antiparticle systems are identified through the use of stripes instead of a change in color. We presented our proposal to high school students and physics teachers, who evaluated it to be a more helpful way of distinguishing between color charge and anticolor charge.
1987-12-01
definition 33., below). 7. Commercial VI Production. A completed VI production, purchased off-the- shelf; i.e., from the stocks of a vendor. 8. Computer ...Generated Graphics. The production of graphics through an electronic medium based on a computer or computer techniques. 9. Contract VI Production. A VI...displays, presentations, and exhibits prepared manually, by machine, or by computer . 16. Indirect Costs. An item of cost (or the aggregate thereof) that is
A Theoretical Analysis of Learning with Graphics--Implications for Computer Graphics Design.
ERIC Educational Resources Information Center
ChanLin, Lih-Juan
This paper reviews the literature pertinent to learning with graphics. The dual coding theory provides explanation about how graphics are stored and precessed in semantic memory. The level of processing theory suggests how graphics can be employed in learning to encourage deeper processing. In addition to dual coding theory and level of processing…
2D to 3D conversion implemented in different hardware
NASA Astrophysics Data System (ADS)
Ramos-Diaz, Eduardo; Gonzalez-Huitron, Victor; Ponomaryov, Volodymyr I.; Hernandez-Fragoso, Araceli
2015-02-01
Conversion of available 2D data for release in 3D content is a hot topic for providers and for success of the 3D applications, in general. It naturally completely relies on virtual view synthesis of a second view given by original 2D video. Disparity map (DM) estimation is a central task in 3D generation but still follows a very difficult problem for rendering novel images precisely. There exist different approaches in DM reconstruction, among them manually and semiautomatic methods that can produce high quality DMs but they demonstrate hard time consuming and are computationally expensive. In this paper, several hardware implementations of designed frameworks for an automatic 3D color video generation based on 2D real video sequence are proposed. The novel framework includes simultaneous processing of stereo pairs using the following blocks: CIE L*a*b* color space conversions, stereo matching via pyramidal scheme, color segmentation by k-means on an a*b* color plane, and adaptive post-filtering, DM estimation using stereo matching between left and right images (or neighboring frames in a video), adaptive post-filtering, and finally, the anaglyph 3D scene generation. Novel technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7, and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode. The time values needed, mean Similarity Structural Index Measure (SSIM) and Bad Matching Pixels (B) values for different hardware implementations (GPU, Single CPU, and DSP) are exposed in this paper.
Direct volumetric rendering based on point primitives in OpenGL.
da Rosa, André Luiz Miranda; de Almeida Souza, Ilana; Yuuji Hira, Adilson; Zuffo, Marcelo Knörich
2006-01-01
The aim of this project is to present a renderization by software algorithm of acquired volumetric data. The algorithm was implemented in Java language and the LWJGL graphical library was used, allowing the volume renderization by software and thus preventing the necessity to acquire specific graphical boards for the 3D reconstruction. The considered algorithm creates a model in OpenGL, through point primitives, where each voxel becomes a point with the color values related to this pixel position in the corresponding images.
Lithographically Encrypted Inverse Opals for Anti-Counterfeiting Applications.
Heo, Yongjoon; Kang, Hyelim; Lee, Joon-Seok; Oh, You-Kwan; Kim, Shin-Hyun
2016-07-01
Colloidal photonic crystals possess inimitable optical properties of iridescent structural colors and unique spectral shape, which render them useful for security materials. This work reports a novel method to encrypt graphical and spectral codes in polymeric inverse opals to provide advanced security. To accomplish this, this study prepares lithographically featured micropatterns on the top surface of hydrophobic inverse opals, which serve as shadow masks against the surface modification of air cavities to achieve hydrophilicity. The resultant inverse opals allow rapid infiltration of aqueous solution into the hydrophilic cavities while retaining air in the hydrophobic cavities. Therefore, the structural color of inverse opals is regioselectively red-shifted, disclosing the encrypted graphical codes. The decoded inverse opals also deliver unique reflectance spectral codes originated from two distinct regions. The combinatorial code composed of graphical and optical codes is revealed only when the aqueous solution agreed in advance is used for decoding. In addition, the encrypted inverse opals are chemically stable, providing invariant codes with high reproducibility. In addition, high mechanical stability enables the transfer of the films onto any surfaces. This novel encryption technology will provide a new opportunity in a wide range of security applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Commercial Off-The-Shelf (COTS) Graphics Processing Board (GPB) Radiation Test Evaluation Report
NASA Technical Reports Server (NTRS)
Salazar, George A.; Steele, Glen F.
2013-01-01
Large round trip communications latency for deep space missions will require more onboard computational capabilities to enable the space vehicle to undertake many tasks that have traditionally been ground-based, mission control responsibilities. As a result, visual display graphics will be required to provide simpler vehicle situational awareness through graphical representations, as well as provide capabilities never before done in a space mission, such as augmented reality for in-flight maintenance or Telepresence activities. These capabilities will require graphics processors and associated support electronic components for high computational graphics processing. In an effort to understand the performance of commercial graphics card electronics operating in the expected radiation environment, a preliminary test was performed on five commercial offthe- shelf (COTS) graphics cards. This paper discusses the preliminary evaluation test results of five COTS graphics processing cards tested to the International Space Station (ISS) low earth orbit radiation environment. Three of the five graphics cards were tested to a total dose of 6000 rads (Si). The test articles, test configuration, preliminary results, and recommendations are discussed.
Evaluating virtual hosted desktops for graphics-intensive astronomy
NASA Astrophysics Data System (ADS)
Meade, B. F.; Fluke, C. J.
2018-04-01
Visualisation of data is critical to understanding astronomical phenomena. Today, many instruments produce datasets that are too big to be downloaded to a local computer, yet many of the visualisation tools used by astronomers are deployed only on desktop computers. Cloud computing is increasingly used to provide a computation and simulation platform in astronomy, but it also offers great potential as a visualisation platform. Virtual hosted desktops, with graphics processing unit (GPU) acceleration, allow interactive, graphics-intensive desktop applications to operate co-located with astronomy datasets stored in remote data centres. By combining benchmarking and user experience testing, with a cohort of 20 astronomers, we investigate the viability of replacing physical desktop computers with virtual hosted desktops. In our work, we compare two Apple MacBook computers (one old and one new, representing hardware and opposite ends of the useful lifetime) with two virtual hosted desktops: one commercial (Amazon Web Services) and one in a private research cloud (the Australian NeCTAR Research Cloud). For two-dimensional image-based tasks and graphics-intensive three-dimensional operations - typical of astronomy visualisation workflows - we found that benchmarks do not necessarily provide the best indication of performance. When compared to typical laptop computers, virtual hosted desktops can provide a better user experience, even with lower performing graphics cards. We also found that virtual hosted desktops are equally simple to use, provide greater flexibility in choice of configuration, and may actually be a more cost-effective option for typical usage profiles.
Configurable software for satellite graphics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartzman, P D
An important goal in interactive computer graphics is to provide users with both quick system responses for basic graphics functions and enough computing power for complex calculations. One solution is to have a distributed graphics system in which a minicomputer and a powerful large computer share the work. The most versatile type of distributed system is an intelligent satellite system in which the minicomputer is programmable by the application user and can do most of the work while the large remote machine is used for difficult computations. At New York University, the hardware was configured from available equipment. The levelmore » of system intelligence resulted almost completely from software development. Unlike previous work with intelligent satellites, the resulting system had system control centered in the satellite. It also had the ability to reconfigure software during realtime operation. The design of the system was done at a very high level using set theoretic language. The specification clearly illustrated processor boundaries and interfaces. The high-level specification also produced a compact, machine-independent virtual graphics data structure for picture representation. The software was written in a systems implementation language; thus, only one set of programs was needed for both machines. A user can program both machines in a single language. Tests of the system with an application program indicate that is has very high potential. A major result of this work is the demonstration that a gigantic investment in new hardware is not necessary for computing facilities interested in graphics.« less
Perception and multimeaning analysis of graphic symbols for Thai picture-based communication system.
Chompoobutr, Sarinya; Potibal, Puttachart; Boriboon, Monthika; Phantachat, Wantanee
2013-03-01
Graphic symbols are a vital part of most augmentative and alternative communication systems. Communication fluency of graphic symbol user depends on how well the relationship between symbols and its referents are learnt. The first aim of this study is to survey the perception of the selected graphic symbols across seven age groups of participants with different educational background. Sixty-five individuals identified themselves as Thai and ranged in age from 10 to 50 years participated in the investigation used 64 graphic symbols. The last aim of this study is to demonstrate the analysis of multimeaning graphic symbols, which will be used in Thai Picture-based communication system. The twenty graphic symbols with 9-14 meanings are analyzed in both syntactic and semantic aspects. The meanings are divided into five categories: noun, verb/adjective, size, color and shape. Respect to the first aim, the results suggest that the participants under investigation with different sexes, age groups, as well as various educational levels perceive the features or inherent characteristics of such graphic symbols similarly. The results of the analysis of multimeaning of graphic symbols indicate that the foundation of Minspeak, polysemy and redundancy of the words illustrates the inherit meanings of the real-life objects, and it also conveys that the Thai graphic symbols are influenced by numerous factors in Thai circumstance such as ability, motivation, experience, worldview and culture.
NASA Technical Reports Server (NTRS)
Dittman, R. A.; Marks, V.
1983-01-01
Management Information System, MIS, provides Life Sciences Projects Division at Johnson Space Center with automated system for project managment. MIS utilizes Tektronix 4027 color graphics display terminal and form-fillout capability. User interface with MIS data base is through series of forms.
Tendril-producing Geysers on Enceladus South Polar Terrain
2015-04-14
This graphic plots the source locations of geysers scientists have located on Enceladus south polar terrain, with the 36 most active geyser sources marked and color coded by the behavior of the grains erupting from the geysers.
ERIC Educational Resources Information Center
Onaral, Banu; And Others
This report describes the development of a Drexel University electrical and computer engineering course on digital filter design that used interactive computing and graphics, and was one of three courses in a senior-level sequence on digital signal processing (DSP). Interactive and digital analysis/design routines and the interconnection of these…
ResidPlots-2: Computer Software for IRT Graphical Residual Analyses
ERIC Educational Resources Information Center
Liang, Tie; Han, Kyung T.; Hambleton, Ronald K.
2009-01-01
This article discusses the ResidPlots-2, a computer software that provides a powerful tool for IRT graphical residual analyses. ResidPlots-2 consists of two components: a component for computing residual statistics and another component for communicating with users and for plotting the residual graphs. The features of the ResidPlots-2 software are…
NASA Technical Reports Server (NTRS)
Jacobsen, R. A.; Bivens, C. C.; Rediess, N. A.; Hindson, W. S.; Aiken, E. W.; Aiken, Edwin W. (Technical Monitor)
1995-01-01
The Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) is a UH-60A Black Hawk helicopter that is being modified by the US Army and NASA for flight systems research. The principal systems that are being installed in the aircraft are a Helmet Mounted Display (HMD) and imaging system, and a programmable full authority Research Flight Control System (RFCS). In addition, comprehensive instrumentation of both the rigid body of the helicopter and the rotor system is provided. The paper will describe the capabilities of these systems and their current state of development. A brief description of initial research applications is included. The wide (40 X 60 degree) field-of-view HMD system has been provided by Kaiser Electronics. It can be configured as a monochromatic system for use in bright daylight conditions, a two color system for darker ambients, or a full color system for use in night viewing conditions. Color imagery is achieved using field sequential video and a mechanical color wheel. In addition to the color symbology, high resolution computer-gene rated imagery from an onboard Silicon Graphics Reality Engine Onyx processor is available for research in virtual reality applications. This synthetic imagery can also be merged with real world video from a variety of imaging systems that can be installed easily on the front of the helicopter. These sensors include infrared or tv cameras, or potentially small millimeter wave radars. The Research Flight Control System is being developed for the aircraft by a team of contractors led by Boeing Helicopters. It consists of a full authority high bandwidth fly-by-wire actuators that drive the main rotor swashplate actuators and the tail rotor actuator in parallel. This arrangement allows the basic mechanical flight control system of the Black Hawk to be retained so that the safety pilot can monitor the operation of the system through the action of his own controls. The evaluation pilot will signal the fly-by-wire actuators through the flight computer from electrical sidearm controllers located in the right hand cockpit. The system will have very substantial input/output capacity and impressive computational power. These systems are installed in the aircraft using predominantly a MIL-STD 1553B data bus architecture. Sensor data from the RFCS, the basic aircraft and rotor system instrumentation including navigation information, and the HMD system are easily exchanged among user systems, or are available at the systems operator station located in the cabin for real time monitoring or data recording.
Interactive computer graphics system for structural sizing and analysis of aircraft structures
NASA Technical Reports Server (NTRS)
Bendavid, D.; Pipano, A.; Raibstein, A.; Somekh, E.
1975-01-01
A computerized system for preliminary sizing and analysis of aircraft wing and fuselage structures was described. The system is based upon repeated application of analytical program modules, which are interactively interfaced and sequence-controlled during the iterative design process with the aid of design-oriented graphics software modules. The entire process is initiated and controlled via low-cost interactive graphics terminals driven by a remote computer in a time-sharing mode.
Iconographic dental typography. A dental character font for computer graphics.
McCormack, J
1991-06-08
The recent massive increase in available memory for microcomputers now allows multiple font faces to be stored in computer RAM memory for instant access to the screen and for printed output. Fonts can be constructed in which the characters are not just letters or numbers, but are miniature graphic icons--in this instance pictures of teeth. When printed on an appropriate laser printer, this produces printed graphics of publishing quality.
2014-08-12
Nolan Warner, Mubarak Shah. Tracking in Dense Crowds Using Prominenceand Neighborhood Motion Concurrence, IEEE Transactions on Pattern Analysis...of computer vision, computer graphics and evacuation dynamics by providing a common platform, and provides...areas that includes Computer Vision, Computer Graphics , and Pedestrian Evacuation Dynamics. Despite the
Gene Graphics: a genomic neighborhood data visualization web application.
Harrison, Katherine J; Crécy-Lagard, Valérie de; Zallot, Rémi
2018-04-15
The examination of gene neighborhood is an integral part of comparative genomics but no tools to produce publication quality graphics of gene clusters are available. Gene Graphics is a straightforward web application for creating such visuals. Supported inputs include National Center for Biotechnology Information gene and protein identifiers with automatic fetching of neighboring information, GenBank files and data extracted from the SEED database. Gene representations can be customized for many parameters including gene and genome names, colors and sizes. Gene attributes can be copied and pasted for rapid and user-friendly customization of homologous genes between species. In addition to Portable Network Graphics and Scalable Vector Graphics, produced representations can be exported as Tagged Image File Format or Encapsulated PostScript, formats that are standard for publication. Hands-on tutorials with real life examples inspired from publications are available for training. Gene Graphics is freely available at https://katlabs.cc/genegraphics/ and source code is hosted at https://github.com/katlabs/genegraphics. katherinejh@ufl.edu or remizallot@ufl.edu. Supplementary data are available at Bioinformatics online.
Using Three-Dimensional Interactive Graphics To Teach Equipment Procedures.
ERIC Educational Resources Information Center
Hamel, Cheryl J.; Ryan-Jones, David L.
1997-01-01
Focuses on how three-dimensional graphical and interactive features of computer-based instruction can enhance learning and support human cognition during technical training of equipment procedures. Presents guidelines for using three-dimensional interactive graphics to teach equipment procedures based on studies of the effects of graphics, motion,…
Experimenter's laboratory for visualized interactive science
NASA Technical Reports Server (NTRS)
Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.
1992-01-01
The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.
Experimenter's laboratory for visualized interactive science
NASA Technical Reports Server (NTRS)
Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.
1993-01-01
The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperatable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color-shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.
The development of the Canadian Mobile Servicing System Kinematic Simulation Facility
NASA Technical Reports Server (NTRS)
Beyer, G.; Diebold, B.; Brimley, W.; Kleinberg, H.
1989-01-01
Canada will develop a Mobile Servicing System (MSS) as its contribution to the U.S./International Space Station Freedom. Components of the MSS will include a remote manipulator (SSRMS), a Special Purpose Dexterous Manipulator (SPDM), and a mobile base (MRS). In order to support requirements analysis and the evaluation of operational concepts related to the use of the MSS, a graphics based kinematic simulation/human-computer interface facility has been created. The facility consists of the following elements: (1) A two-dimensional graphics editor allowing the rapid development of virtual control stations; (2) Kinematic simulations of the space station remote manipulators (SSRMS and SPDM), and mobile base; and (3) A three-dimensional graphics model of the space station, MSS, orbiter, and payloads. These software elements combined with state of the art computer graphics hardware provide the capability to prototype MSS workstations, evaluate MSS operational capabilities, and investigate the human-computer interface in an interactive simulation environment. The graphics technology involved in the development and use of this facility is described.
Gray, A J; Beecher, D E; Olson, M V
1984-01-01
A stand-alone, interactive computer system has been developed that automates the analysis of ethidium bromide-stained agarose and acrylamide gels on which DNA restriction fragments have been separated by size. High-resolution digital images of the gels are obtained using a camera that contains a one-dimensional, 2048-pixel photodiode array that is mechanically translated through 2048 discrete steps in a direction perpendicular to the gel lanes. An automatic band-detection algorithm is used to establish the positions of the gel bands. A color-video graphics system, on which both the gel image and a variety of operator-controlled overlays are displayed, allows the operator to visualize and interact with critical stages of the analysis. The principal interactive steps involve defining the regions of the image that are to be analyzed and editing the results of the band-detection process. The system produces a machine-readable output file that contains the positions, intensities, and descriptive classifications of all the bands, as well as documentary information about the experiment. This file is normally further processed on a larger computer to obtain fragment-size assignments. Images PMID:6320097
Controlling the digital transfer process
NASA Astrophysics Data System (ADS)
Brunner, Felix
1997-02-01
The accuracy of today's color management systems fails to satisfy the requirements of the graphic arts market. A first explanation for this is that color calibration charts on which these systems rely, because of print technical reasons, are subject to color deviations and inconsistencies. A second reason is that colorimetry describes the human visual perception of color differences and has no direct relation to the rendering technology itself of a proofing or printing device. The author explains that only firm process control of the many parameters in offset printing by means of a system as for example EUROSTANDARD System Brunner, can lead to accurate and consistent calibration of scanner, display, proof and print. The same principles hold for the quality management of digital presses.
Microcomputer Simulated CAD for Engineering Graphics.
ERIC Educational Resources Information Center
Huggins, David L.; Myers, Roy E.
1983-01-01
Describes a simulated computer-aided-graphics (CAD) program at The Pennsylvania State University. Rationale for the program, facilities, microcomputer equipment (Apple) used, and development of a software package for simulating applied engineering graphics are considered. (JN)
Artwork Interactive Design System (AIDS) program description
NASA Technical Reports Server (NTRS)
Johnson, B. T.; Taylor, J. F.
1976-01-01
An artwork interactive design system is described which provides the microelectronic circuit designer/engineer a tool to perform circuit design, automatic layout modification, standard cell design, and artwork verification at a graphics computer terminal using a graphics tablet at the designer/computer interface.
Computer Graphics Instruction in VizClass
ERIC Educational Resources Information Center
Grimes, Douglas; Warschauer, Mark; Hutchinson, Tara; Kuester, Falko
2005-01-01
"VizClass" is a university classroom environment designed to offer students in computer graphics and engineering courses up-to-date visualization technologies. Three digital whiteboards and a three-dimensional stereoscopic display provide complementary display surfaces. Input devices include touchscreens on the digital whiteboards, remote…
Computer-aided design of large-scale integrated circuits - A concept
NASA Technical Reports Server (NTRS)
Schansman, T. T.
1971-01-01
Circuit design and mask development sequence are improved by using general purpose computer with interactive graphics capability establishing efficient two way communications link between design engineer and system. Interactive graphics capability places design engineer in direct control of circuit development.
Combining 3D structure of real video and synthetic objects
NASA Astrophysics Data System (ADS)
Kim, Man-Bae; Song, Mun-Sup; Kim, Do-Kyoon
1998-04-01
This paper presents a new approach of combining real video and synthetic objects. The purpose of this work is to use the proposed technology in the fields of advanced animation, virtual reality, games, and so forth. Computer graphics has been used in the fields previously mentioned. Recently, some applications have added real video to graphic scenes for the purpose of augmenting the realism that the computer graphics lacks in. This approach called augmented or mixed reality can produce more realistic environment that the entire use of computer graphics. Our approach differs from the virtual reality and augmented reality in the manner that computer- generated graphic objects are combined to 3D structure extracted from monocular image sequences. The extraction of the 3D structure requires the estimation of 3D depth followed by the construction of a height map. Graphic objects are then combined to the height map. The realization of our proposed approach is carried out in the following steps: (1) We derive 3D structure from test image sequences. The extraction of the 3D structure requires the estimation of depth and the construction of a height map. Due to the contents of the test sequence, the height map represents the 3D structure. (2) The height map is modeled by Delaunay triangulation or Bezier surface and each planar surface is texture-mapped. (3) Finally, graphic objects are combined to the height map. Because 3D structure of the height map is already known, Step (3) is easily manipulated. Following this procedure, we produced an animation video demonstrating the combination of the 3D structure and graphic models. Users can navigate the realistic 3D world whose associated image is rendered on the display monitor.
Misimi, E; Mathiassen, J R; Erikson, U
2007-01-01
Computer vision method was used to evaluate the color of Atlantic salmon (Salmo salar) fillets. Computer vision-based sorting of fillets according to their color was studied on 2 separate groups of salmon fillets. The images of fillets were captured using a digital camera of high resolution. Images of salmon fillets were then segmented in the regions of interest and analyzed in red, green, and blue (RGB) and CIE Lightness, redness, and yellowness (Lab) color spaces, and classified according to the Roche color card industrial standard. Comparisons of fillet color between visual evaluations were made by a panel of human inspectors, according to the Roche SalmoFan lineal standard, and the color scores generated from computer vision algorithm showed that there were no significant differences between the methods. Overall, computer vision can be used as a powerful tool to sort fillets by color in a fast and nondestructive manner. The low cost of implementing computer vision solutions creates the potential to replace manual labor in fish processing plants with automation.
Dimensionality of visual complexity in computer graphics scenes
NASA Astrophysics Data System (ADS)
Ramanarayanan, Ganesh; Bala, Kavita; Ferwerda, James A.; Walter, Bruce
2008-02-01
How do human observers perceive visual complexity in images? This problem is especially relevant for computer graphics, where a better understanding of visual complexity can aid in the development of more advanced rendering algorithms. In this paper, we describe a study of the dimensionality of visual complexity in computer graphics scenes. We conducted an experiment where subjects judged the relative complexity of 21 high-resolution scenes, rendered with photorealistic methods. Scenes were gathered from web archives and varied in theme, number and layout of objects, material properties, and lighting. We analyzed the subject responses using multidimensional scaling of pooled subject responses. This analysis embedded the stimulus images in a two-dimensional space, with axes that roughly corresponded to "numerosity" and "material / lighting complexity". In a follow-up analysis, we derived a one-dimensional complexity ordering of the stimulus images. We compared this ordering with several computable complexity metrics, such as scene polygon count and JPEG compression size, and did not find them to be very correlated. Understanding the differences between these measures can lead to the design of more efficient rendering algorithms in computer graphics.
Effective correlator for RadioAstron project
NASA Astrophysics Data System (ADS)
Sergeev, Sergey
This paper presents the implementation of programme FX-correlator for Very Long Baseline Interferometry, adapted for the project "RadioAstron". Software correlator implemented for heterogeneous computing systems using graphics accelerators. It is shown that for the task interferometry implementation of the graphics hardware has a high efficiency. The host processor of heterogeneous computing system, performs the function of forming the data flow for graphics accelerators, the number of which corresponds to the number of frequency channels. So, for the Radioastron project, such channels is seven. Each accelerator is perform correlation matrix for all bases for a single frequency channel. Initial data is converted to the floating-point format, is correction for the corresponding delay function and computes the entire correlation matrix simultaneously. Calculation of the correlation matrix is performed using the sliding Fourier transform. Thus, thanks to the compliance of a solved problem for architecture graphics accelerators, managed to get a performance for one processor platform Kepler, which corresponds to the performance of this task, the computing cluster platforms Intel on four nodes. This task successfully scaled not only on a large number of graphics accelerators, but also on a large number of nodes with multiple accelerators.
A High Performance VLSI Computer Architecture For Computer Graphics
NASA Astrophysics Data System (ADS)
Chin, Chi-Yuan; Lin, Wen-Tai
1988-10-01
A VLSI computer architecture, consisting of multiple processors, is presented in this paper to satisfy the modern computer graphics demands, e.g. high resolution, realistic animation, real-time display etc.. All processors share a global memory which are partitioned into multiple banks. Through a crossbar network, data from one memory bank can be broadcasted to many processors. Processors are physically interconnected through a hyper-crossbar network (a crossbar-like network). By programming the network, the topology of communication links among processors can be reconfigurated to satisfy specific dataflows of different applications. Each processor consists of a controller, arithmetic operators, local memory, a local crossbar network, and I/O ports to communicate with other processors, memory banks, and a system controller. Operations in each processor are characterized into two modes, i.e. object domain and space domain, to fully utilize the data-independency characteristics of graphics processing. Special graphics features such as 3D-to-2D conversion, shadow generation, texturing, and reflection, can be easily handled. With the current high density interconnection (MI) technology, it is feasible to implement a 64-processor system to achieve 2.5 billion operations per second, a performance needed in most advanced graphics applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munro, J.K. Jr.
1980-05-01
The advent of large, fast computers has opened the way to modeling more complex physical processes and to handling very large quantities of experimental data. The amount of information that can be processed in a short period of time is so great that use of graphical displays assumes greater importance as a means of displaying this information. Information from dynamical processes can be displayed conveniently by use of animated graphics. This guide presents the basic techniques for generating black and white animated graphics, with consideration of aesthetic, mechanical, and computational problems. The guide is intended for use by someone whomore » wants to make movies on the National Magnetic Fusion Energy Computing Center (NMFECC) CDC-7600. Problems encountered by a geographically remote user are given particular attention. Detailed information is given that will allow a remote user to do some file checking and diagnosis before giving graphics files to the system for processing into film in order to spot problems without having to wait for film to be delivered. Source listings of some useful software are given in appendices along with descriptions of how to use it. 3 figures, 5 tables.« less
ERIC Educational Resources Information Center
Byrom, Elizabeth
1990-01-01
Hypermedia allows students to follow associative links among elements of nonsequential information, by combining information from multiple sources into one microcomputer-controlled system. Hypermedia products help teachers create lessons integrating text, motion film, color graphics, speech, and music, by linking such electronic devices as…
Osterwald, C.R.; Emery, K.A.
1984-05-29
A laser scanning system for scanning the surface of photovoltaic cell in a precise, stepped raster pattern includes electric current detecting and measuring equipment for sensing the current response of the scanned cell to the laser beam at each stepped irradiated spot or pixel on the cell surface. A computer is used to control and monitor the raster position of the laser scan as well as monitoring the corresponding current responses, storing this data, operating on it, and for feeding the data to a graphical plotter for producing a visual, color-coded image of the current response of the cell to the laser scan. A translation platform driven by stepper motors in precise X and Y distances holds and rasters the cell being scanned under a stationary spot-focused laser beam.
Osterwald, Carl R.; Emery, Keith A.
1987-01-01
A laser scanning system for scanning the surface of a photovoltaic cell in a precise, stepped raster pattern includes electric current detecting and measuring equipment for sensing the current response of the scanned cell to the laser beam at each stepped irradiated spot or pixel on the cell surface. A computer is used to control and monitor the raster position of the laser scan as well as monitoring the corresponding current responses, storing this data, operating on it, and for feeding the data to a graphic plotter for producing a visual, color-coded image of the current response of the cell to the laser scan. A translation platform driven by stepper motors in precise X and Y distances holds and rasters the cell being scanned under a stationary spot-focused laser beam.
ERIC Educational Resources Information Center
Abass, Bada Tayo
2012-01-01
This paper focused on the use of computer technology in the teaching and learning of graphic arts in Nigeria colleges of Education. Osun State Colleges of Education Ila-Orangun was used as a case study. The population of the study consisted of all Graphic students in Nigeria colleges of Education. 50 subjects were used for the study while…
Simulation of Robot Kinematics Using Interactive Computer Graphics.
ERIC Educational Resources Information Center
Leu, M. C.; Mahajan, R.
1984-01-01
Development of a robot simulation program based on geometric transformation softwares available in most computer graphics systems and program features are described. The program can be extended to simulate robots coordinating with external devices (such as tools, fixtures, conveyors) using geometric transformations to describe the…
Target Information Processing: A Joint Decision and Estimation Approach
2012-03-29
ground targets ( track - before - detect ) using computer cluster and graphics processing unit. Estimation and filtering theory is one of the most important...targets ( track - before - detect ) using computer cluster and graphics processing unit. Estimation and filtering theory is one of the most important
Computer Graphics Simulations of Sampling Distributions.
ERIC Educational Resources Information Center
Gordon, Florence S.; Gordon, Sheldon P.
1989-01-01
Describes the use of computer graphics simulations to enhance student understanding of sampling distributions that arise in introductory statistics. Highlights include the distribution of sample proportions, the distribution of the difference of sample means, the distribution of the difference of sample proportions, and the distribution of sample…
PC graphics generation and management tool for real-time applications
NASA Technical Reports Server (NTRS)
Truong, Long V.
1992-01-01
A graphics tool was designed and developed for easy generation and management of personal computer graphics. It also provides methods and 'run-time' software for many common artificial intelligence (AI) or expert system (ES) applications.
Computer graphics in architecture and engineering
NASA Technical Reports Server (NTRS)
Greenberg, D. P.
1975-01-01
The present status of the application of computer graphics to the building profession or architecture and its relationship to other scientific and technical areas were discussed. It was explained that, due to the fragmented nature of architecture and building activities (in contrast to the aerospace industry), a comprehensive, economic utilization of computer graphics in this area is not practical and its true potential cannot now be realized due to the present inability of architects and structural, mechanical, and site engineers to rely on a common data base. Future emphasis will therefore have to be placed on a vertical integration of the construction process and effective use of a three-dimensional data base, rather than on waiting for any technological breakthrough in interactive computing.
Animation graphic interface for the space shuttle onboard computer
NASA Technical Reports Server (NTRS)
Wike, Jeffrey; Griffith, Paul
1989-01-01
Graphics interfaces designed to operate on space qualified hardware challenge software designers to display complex information under processing power and physical size constraints. Under contract to Johnson Space Center, MICROEXPERT Systems is currently constructing an intelligent interface for the LASER DOCKING SENSOR (LDS) flight experiment. Part of this interface is a graphic animation display for Rendezvous and Proximity Operations. The displays have been designed in consultation with Shuttle astronauts. The displays show multiple views of a satellite relative to the shuttle, coupled with numeric attitude information. The graphics are generated using position data received by the Shuttle Payload and General Support Computer (PGSC) from the Laser Docking Sensor. Some of the design considerations include crew member preferences in graphic data representation, single versus multiple window displays, mission tailoring of graphic displays, realistic 3D images versus generic icon representations of real objects, the physical relationship of the observers to the graphic display, how numeric or textual information should interface with graphic data, in what frame of reference objects should be portrayed, recognizing conditions of display information-overload, and screen format and placement consistency.
Graphical workstation capability for reliability modeling
NASA Technical Reports Server (NTRS)
Bavuso, Salvatore J.; Koppen, Sandra V.; Haley, Pamela J.
1992-01-01
In addition to computational capabilities, software tools for estimating the reliability of fault-tolerant digital computer systems must also provide a means of interfacing with the user. Described here is the new graphical interface capability of the hybrid automated reliability predictor (HARP), a software package that implements advanced reliability modeling techniques. The graphics oriented (GO) module provides the user with a graphical language for modeling system failure modes through the selection of various fault-tree gates, including sequence-dependency gates, or by a Markov chain. By using this graphical input language, a fault tree becomes a convenient notation for describing a system. In accounting for any sequence dependencies, HARP converts the fault-tree notation to a complex stochastic process that is reduced to a Markov chain, which it can then solve for system reliability. The graphics capability is available for use on an IBM-compatible PC, a Sun, and a VAX workstation. The GO module is written in the C programming language and uses the graphical kernal system (GKS) standard for graphics implementation. The PC, VAX, and Sun versions of the HARP GO module are currently in beta-testing stages.
Alloy Design Workbench-Surface Modeling Package Developed
NASA Technical Reports Server (NTRS)
Abel, Phillip B.; Noebe, Ronald D.; Bozzolo, Guillermo H.; Good, Brian S.; Daugherty, Elaine S.
2003-01-01
NASA Glenn Research Center's Computational Materials Group has integrated a graphical user interface with in-house-developed surface modeling capabilities, with the goal of using computationally efficient atomistic simulations to aid the development of advanced aerospace materials, through the modeling of alloy surfaces, surface alloys, and segregation. The software is also ideal for modeling nanomaterials, since surface and interfacial effects can dominate material behavior and properties at this level. Through the combination of an accurate atomistic surface modeling methodology and an efficient computational engine, it is now possible to directly model these types of surface phenomenon and metallic nanostructures without a supercomputer. Fulfilling a High Operating Temperature Propulsion Components (HOTPC) project level-I milestone, a graphical user interface was created for a suite of quantum approximate atomistic materials modeling Fortran programs developed at Glenn. The resulting "Alloy Design Workbench-Surface Modeling Package" (ADW-SMP) is the combination of proven quantum approximate Bozzolo-Ferrante-Smith (BFS) algorithms (refs. 1 and 2) with a productivity-enhancing graphical front end. Written in the portable, platform independent Java programming language, the graphical user interface calls on extensively tested Fortran programs running in the background for the detailed computational tasks. Designed to run on desktop computers, the package has been deployed on PC, Mac, and SGI computer systems. The graphical user interface integrates two modes of computational materials exploration. One mode uses Monte Carlo simulations to determine lowest energy equilibrium configurations. The second approach is an interactive "what if" comparison of atomic configuration energies, designed to provide real-time insight into the underlying drivers of alloying processes.
Interactive computer programs for the graphic analysis of nucleotide sequence data.
Luckow, V A; Littlewood, R K; Rownd, R H
1984-01-01
A group of interactive computer programs have been developed which aid in the collection and graphical analysis of nucleotide and protein sequence data. The programs perform the following basic functions: a) enter, edit, list, and rearrange sequence data; b) permit automatic entry of nucleotide sequence data directly from an autoradiograph into the computer; c) search for restriction sites or other specified patterns and plot a linear or circular restriction map, or print their locations; d) plot base composition; e) analyze homology between sequences by plotting a two-dimensional graphic matrix; and f) aid in plotting predicted secondary structures of RNA molecules. PMID:6546437
A system to track skin dose for neuro-interventional cone-beam computed tomography (CBCT)
NASA Astrophysics Data System (ADS)
Vijayan, Sarath; Xiong, Zhenyu; Rudin, Stephen; Bednarek, Daniel R.
2016-03-01
The skin-dose tracking system (DTS) provides a color-coded illustration of the cumulative skin-dose distribution on a closely-matching 3D graphic of the patient during fluoroscopic interventions in real-time for immediate feedback to the interventionist. The skin-dose tracking utility of DTS has been extended to include cone-beam computed tomography (CBCT) of neurointerventions. While the DTS was developed to track the entrance skin dose including backscatter, a significant part of the dose in CBCT is contributed by exit primary radiation and scatter due to the many overlapping projections during the rotational scan. The variation of backscatter inside and outside the collimated beam was measured with radiochromic film and a curve was fit to obtain a scatter spread function that could be applied in the DTS. Likewise, the exit dose distribution was measured with radiochromic film for a single projection and a correction factor was determined as a function of path length through the head. Both of these sources of skin dose are added for every projection in the CBCT scan to obtain a total dose mapping over the patient graphic. Results show the backscatter to follow a sigmoidal falloff near the edge of the beam, extending outside the beam as far as 8 cm. The exit dose measured for a cylindrical CTDI phantom was nearly 10 % of the entrance peak skin dose for the central ray. The dose mapping performed by the DTS for a CBCT scan was compared to that measured with radiochromic film and a CTDI-head phantom with good agreement.
Computer graphics testbed to simulate and test vision systems for space applications
NASA Technical Reports Server (NTRS)
Cheatham, John B.
1991-01-01
Research activity has shifted from computer graphics and vision systems to the broader scope of applying concepts of artificial intelligence to robotics. Specifically, the research is directed toward developing Artificial Neural Networks, Expert Systems, and Laser Imaging Techniques for Autonomous Space Robots.
Textbook Factor Demand Curves.
ERIC Educational Resources Information Center
Davis, Joe C.
1994-01-01
Maintains that teachers and textbook graphics follow the same basic pattern in illustrating changes in demand curves when product prices increase. Asserts that the use of computer graphics will enable teachers to be more precise in their graphic presentation of price elasticity. (CFR)
RIP-REMOTE INTERACTIVE PARTICLE-TRACER
NASA Technical Reports Server (NTRS)
Rogers, S. E.
1994-01-01
Remote Interactive Particle-tracing (RIP) is a distributed-graphics program which computes particle traces for computational fluid dynamics (CFD) solution data sets. A particle trace is a line which shows the path a massless particle in a fluid will take; it is a visual image of where the fluid is going. The program is able to compute and display particle traces at a speed of about one trace per second because it runs on two machines concurrently. The data used by the program is contained in two files. The solution file contains data on density, momentum and energy quantities of a flow field at discrete points in three-dimensional space, while the grid file contains the physical coordinates of each of the discrete points. RIP requires two computers. A local graphics workstation interfaces with the user for program control and graphics manipulation, and a remote machine interfaces with the solution data set and performs time-intensive computations. The program utilizes two machines in a distributed mode for two reasons. First, the data to be used by the program is usually generated on the supercomputer. RIP avoids having to convert and transfer the data, eliminating any memory limitations of the local machine. Second, as computing the particle traces can be computationally expensive, RIP utilizes the power of the supercomputer for this task. Although the remote site code was developed on a CRAY, it is possible to port this to any supercomputer class machine with a UNIX-like operating system. Integration of a velocity field from a starting physical location produces the particle trace. The remote machine computes the particle traces using the particle-tracing subroutines from PLOT3D/AMES, a CFD post-processing graphics program available from COSMIC (ARC-12779). These routines use a second-order predictor-corrector method to integrate the velocity field. Then the remote program sends graphics tokens to the local machine via a remote-graphics library. The local machine interprets the graphics tokens and draws the particle traces. The program is menu driven. RIP is implemented on the silicon graphics IRIS 3000 (local workstation) with an IRIX operating system and on the CRAY2 (remote station) with a UNICOS 1.0 or 2.0 operating system. The IRIS 4D can be used in place of the IRIS 3000. The program is written in C (67%) and FORTRAN 77 (43%) and has an IRIS memory requirement of 4 MB. The remote and local stations must use the same user ID. PLOT3D/AMES unformatted data sets are required for the remote machine. The program was developed in 1988.
Visual design for the user interface, Part 1: Design fundamentals.
Lynch, P J
1994-01-01
Digital audiovisual media and computer-based documents will be the dominant forms of professional communication in both clinical medicine and the biomedical sciences. The design of highly interactive multimedia systems will shortly become a major activity for biocommunications professionals. The problems of human-computer interface design are intimately linked with graphic design for multimedia presentations and on-line document systems. This article outlines the history of graphic interface design and the theories that have influenced the development of today's major graphic user interfaces.
Application of computer graphics in the design of custom orthopedic implants.
Bechtold, J E
1986-10-01
Implementation of newly developed computer modelling techniques and computer graphics displays and software have greatly aided the orthopedic design engineer and physician in creating a custom implant with good anatomic conformity in a short turnaround time. Further advances in computerized design and manufacturing will continue to simplify the development of custom prostheses and enlarge their niche in the joint replacement market.
1989-03-01
detail in a small area, use achromatic colors ( black , white, and grey) and use chromatic colors for larger panels or for attracting attention. b. Blues...purposes (e.g., to draw the users attention to a total, a broken bar or other important data element). b. Black and white should be used with caution. They...enough to set the bars or columns off from the background and define figure and ground relationships. (2) Use black in small areas and for certain
USGS Scientific Visualization Laboratory
,
1995-01-01
The U.S. Geological Survey's (USGS) Scientific Visualization Laboratory at the National Center in Reston, Va., provides a central facility where USGS employees can use state-of-the-art equipment for projects ranging from presentation graphics preparation to complex visual representations of scientific data. Equipment including color printers, black-and-white and color scanners, film recorders, video equipment, and DOS, Apple Macintosh, and UNIX platforms with software are available for both technical and nontechnical users. The laboratory staff provides assistance and demonstrations in the use of the hardware and software products.
Wilshire, Howard G.; Bedford, David R.; Coleman, Teresa
2002-01-01
3. Plottable map representations of the database at 1:24,000 scale in PostScript and Adobe PDF formats. The plottable files consist of a color geologic map derived from the spatial database, composited with a topographic base map in the form of the USGS Digital Raster Graphic for the map area. Color symbology from each of these datasets is maintained, which can cause plot file sizes to be large.
Color reproduction system based on color appearance model and gamut mapping
NASA Astrophysics Data System (ADS)
Cheng, Fang-Hsuan; Yang, Chih-Yuan
2000-06-01
By the progress of computer, computer peripherals such as color monitor and printer are often used to generate color image. However, cross media color reproduction by human perception is usually different. Basically, the influence factors are device calibration and characterization, viewing condition, device gamut and human psychology. In this thesis, a color reproduction system based on color appearance model and gamut mapping is proposed. It consists of four parts; device characterization, color management technique, color appearance model and gamut mapping.
NASA Technical Reports Server (NTRS)
Oreilly, Daniel; Williams, Robert; Yarborough, Kevin
1988-01-01
This is a tutorial/diagnostic system for training personnel in the use of the Space Shuttle Main Engine Controller (SSMEC) Simulation Lab. It also provides a diagnostic capable of isolating lab failures at least to the major lab component. The system was implemented using Hypercard, which is an program of hypermedia running on Apple Macintosh computers. Hypercard proved to be a viable platform for the development and use of sophisticated tutorial systems and moderately capable diagnostic systems. This tutorial/diagnostic system uses the basic Hypercard tools to provide the tutorial. The diagnostic part of the system uses a simple interpreter written in the Hypercard language (Hypertalk) to implement the backward chaining rule based logic commonly found in diagnostic systems using Prolog. Some of the advantages of Hypercard in developing this type of system include sophisticated graphics, animation, sound and voice capabilities, its ability as a hypermedia tool, and its ability to include digitized pictures. The major disadvantage is the slow execution time for evaluation of rules (due to the interpretive processing of the language). Other disadvantages include the limitation on the size of the cards, that color is not supported, that it does not support grey scale graphics, and its lack of selectable fonts for text fields.
Dogdu, Gamze; Yalcuk, Arda; Postalcioglu, Seda
2017-02-01
There are more than a hundred textile industries in Turkey that discharge large quantities of dye-rich wastewater, resulting in water pollution. Such effluents must be treated to meet discharge limits imposed by the Water Framework Directive in Turkey. Industrial treatment facilities must be required to monitor operations, keep them cost-effective, prevent operational faults, discharge-limit infringements, and water pollution. This paper proposes the treatment of actual textile wastewater by vertical flow constructed wetland (VFCW) systems operation and monitoring effluent wastewater quality using fuzzy logic with a graphical user interface. The treatment performance of VFCW is investigated in terms of chemical oxygen demand and ammonium nitrogen (NH4-N) content, color, and pH parameters during a 75-day period of operation. A computer program was developed with a fuzzy logic system (a decision- making tool) to graphically present (via a status analysis chart) the quality of treated textile effluent in relation to the Turkish Water Pollution Control Regulation. Fuzzy logic is used in the evaluation of data obtained from the VFCW systems and for notification of critical states exceeding the discharge limits. This creates a warning chart that reports any errors encountered in a reactor during the collection of any sample to the concerned party.
Gorman, C; Looker, J; Fisk, T; Oelke, W; Erickson, D; Smith, S; Zimmerman, B
1996-01-01
We have analysed the deficiencies of paper medical records in facilitating the care of patients with diabetes and have developed an electronic medical record that corrects some of them. The diabetes electronic medical record (DEMR) is designed to facilitate the work of a busy diabetes clinic. Design principles include heavy reliance on graphic displays of laboratory and clinical data, consistent color coding and aggregation of data needed to facilitate the different types of clinical encounter (initial consultation, continuing care visit, insulin adjustment visit, dietitian encounter, nurse educator encounter, obstetric patient, transplant patient, visits for problems unrelated to diabetes). Data input is by autoflow from the institutional laboratories, by desk attendants or on-line by all users. Careful attention has been paid to making data entry a point and click process wherever possible. Opportunity for free text comment is provided on every screen. On completion of the encounter a narrative text summary of the visit is generated by the computer and is annotated by the care giver. Currently there are about 7800 patients in the system. Remaining challenges include the adaptation of the system to accommodate the occasional user, development of portable laptop derivatives that remain compatible with the parent system and improvements in the screen structure and graphic display formats.
SABRINA - An interactive geometry modeler for MCNP (Monte Carlo Neutron Photon)
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, J.T.; Murphy, J.
SABRINA is an interactive three-dimensional geometry modeler developed to produce complicated models for the Los Alamos Monte Carlo Neutron Photon program MCNP. SABRINA produces line drawings and color-shaded drawings for a wide variety of interactive graphics terminals. It is used as a geometry preprocessor in model development and as a Monte Carlo particle-track postprocessor in the visualization of complicated particle transport problem. SABRINA is written in Fortran 77 and is based on the Los Alamos Common Graphics System, CGS. 5 refs., 2 figs.
Number of discernible colors for color-deficient observers estimated from the MacAdam limits.
Perales, Esther; Martínez-Verdú, Francisco Miguel; Linhares, João Manuel Maciel; Nascimento, Sérgio Miguel Cardoso
2010-10-01
We estimated the number of colors perceived by color normal and color-deficient observers when looking at the theoretic limits of object-color stimuli. These limits, the optimal color stimuli, were computed for a color normal observer and CIE standard illuminant D65, and the resultant colors were expressed in the CIELAB and DIN99d color spaces. The corresponding color volumes for abnormal color vision were computed using models simulating for normal trichromatic observers the appearance for dichromats and anomalous trichomats. The number of colors perceived in each case was then computed from the color volumes enclosed by the optimal colors also known as MacAdam limits. It was estimated that dichromats perceive less than 1% of the colors perceived by normal trichromats and that anomalous trichromats perceive 50%-60% for anomalies in the medium-wavelength-sensitive and 60%-70% for anomalies in the long-wavelength-sensitive cones. Complementary estimates obtained similarly for the spectral locus of monochromatic stimuli suggest less impairment for color-deficient observers, a fact that is explained by the two-dimensional nature of the locus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasser, D.W.
1978-03-01
EASI (Estimate of Adversary Sequence Interruption) is an analytical technique for measuring the effectiveness of physical protection systems. EASI Graphics is a computer graphics extension of EASI which provides a capability for performing sensitivity and trade-off analyses of the parameters of a physical protection system. This document reports on the implementation of EASI Graphics and illustrates its application with some examples.
Graphic Design for the Computer Age; Visual Communication for all Media.
ERIC Educational Resources Information Center
Hamilton, Edward A.
Because of the rapid pace of today's world, graphic designs which communicate at a glance are needed in all information areas. The essays in this book deal with various aspects of graphic design. These brief essays, each illustrated with graphics, concern the following topics: a short history of visual communication, information design, the merits…
Scoria: a Python module for manipulating 3D molecular data.
Ropp, Patrick; Friedman, Aaron; Durrant, Jacob D
2017-09-18
Third-party packages have transformed the Python programming language into a powerful computational-biology tool. Package installation is easy for experienced users, but novices sometimes struggle with dependencies and compilers. This presents a barrier that can hinder the otherwise broad adoption of new tools. We present Scoria, a Python package for manipulating three-dimensional molecular data. Unlike similar packages, Scoria requires no dependencies, compilation, or system-wide installation. One can incorporate the Scoria source code directly into their own programs. But Scoria is not designed to compete with other similar packages. Rather, it complements them. Our package leverages others (e.g. NumPy, SciPy), if present, to speed and extend its own functionality. To show its utility, we use Scoria to analyze a molecular dynamics trajectory. Our FootPrint script colors the atoms of one chain by the frequency of their contacts with a second chain. We are hopeful that Scoria will be a useful tool for the computational-biology community. A copy is available for download free of charge (Apache License 2.0) at http://durrantlab.com/scoria/ . Graphical abstract .
Designing the user interface: strategies for effective human-computer interaction
NASA Astrophysics Data System (ADS)
Shneiderman, B.
1998-03-01
In revising this popular book, Ben Shneiderman again provides a complete, current and authoritative introduction to user-interface design. The user interface is the part of every computer system that determines how people control and operate that system. When the interface is well designed, it is comprehensible, predictable, and controllable; users feel competent, satisfied, and responsible for their actions. Shneiderman discusses the principles and practices needed to design such effective interaction. Based on 20 years experience, Shneiderman offers readers practical techniques and guidelines for interface design. He also takes great care to discuss underlying issues and to support conclusions with empirical results. Interface designers, software engineers, and product managers will all find this book an invaluable resource for creating systems that facilitate rapid learning and performance, yield low error rates, and generate high user satisfaction. Coverage includes the human factors of interactive software (with a new discussion of diverse user communities), tested methods to develop and assess interfaces, interaction styles such as direct manipulation for graphical user interfaces, and design considerations such as effective messages, consistent screen design, and appropriate color.
ERIC Educational Resources Information Center
Chandramouli, Magesh; Chittamuru, Siva-Teja
2016-01-01
This paper explains the design of a graphics-based virtual environment for instructing computer hardware concepts to students, especially those at the beginner level. Photorealistic visualizations and simulations are designed and programmed with interactive features allowing students to practice, explore, and test themselves on computer hardware…
Mouse Driven Window Graphics for Network Teaching.
ERIC Educational Resources Information Center
Makinson, G. J.; And Others
Computer enhanced teaching of computational mathematics on a network system driving graphics terminals is being redeveloped for a mouse-driven, high resolution, windowed environment of a UNIX work station. Preservation of the features of networked access by heterogeneous terminals is provided by the use of the X Window environment. A dmonstrator…
KINPLOT: An Interactive Pharmacokinetics Graphics Program for Digital Computers.
ERIC Educational Resources Information Center
Wilson, Robert C.; And Others
1982-01-01
Inability to see the relevance of mathematics to understanding the time course of drugs in the body may discourage interest in pharmacokinetics. A UNC-developed computer graphics simulation program helps visualize the nature of pharmacokinetic-patient interactions, generates classroom handouts, and is used in the pharmaceuticals industry to…
Using Computer-Assisted Multiple Representations in Learning Geometry Proofs
ERIC Educational Resources Information Center
Wong, Wing-Kwong; Yin, Sheng-Kai; Yang, Hsi-Hsun; Cheng, Ying-Hao
2011-01-01
Geometry theorem proving involves skills that are difficult to learn. Instead of working with abstract and complicated representations, students might start with concrete, graphical representations. A proof tree is a graphical representation of a formal proof, with each node representing a proposition or given conditions. A computer-assisted…
Interactive computer graphics applications for compressible aerodynamics
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
1994-01-01
Three computer applications have been developed to solve inviscid compressible fluids problems using interactive computer graphics. The first application is a compressible flow calculator which solves for isentropic flow, normal shocks, and oblique shocks or centered expansions produced by two dimensional ramps. The second application couples the solutions generated by the first application to a more graphical presentation of the results to produce a desk top simulator of three compressible flow problems: 1) flow past a single compression ramp; 2) flow past two ramps in series; and 3) flow past two opposed ramps. The third application extends the results of the second to produce a design tool which solves for the flow through supersonic external or mixed compression inlets. The applications were originally developed to run on SGI or IBM workstations running GL graphics. They are currently being extended to solve additional types of flow problems and modified to operate on any X-based workstation.
The design and implementation of CRT displays in the TCV real-time simulation
NASA Technical Reports Server (NTRS)
Leavitt, J. B.; Tariq, S. I.; Steinmetz, G. G.
1975-01-01
The design and application of computer graphics to the Terminal Configured Vehicle (TCV) program were described. A Boeing 737-100 series aircraft was modified with a second flight deck and several computers installed in the passenger cabin. One of the elements in support of the TCV program is a sophisticated simulation system developed to duplicate the operation of the aft flight deck. This facility consists of an aft flight deck simulator, equipped with realistic flight instrumentation, a CDC 6600 computer, and an Adage graphics terminal; this terminal presents to the simulator pilot displays similar to those used on the aircraft with equivalent man-machine interactions. These two displays form the primary flight instrumentation for the pilot and are dynamic images depicting critical flight information. The graphics terminal is a high speed interactive refresh-type graphics system. To support the cockpit display, two remote CRT's were wired in parallel with two of the Adage scopes.
A novel graphical user interface for ultrasound-guided shoulder arthroscopic surgery
NASA Astrophysics Data System (ADS)
Tyryshkin, K.; Mousavi, P.; Beek, M.; Pichora, D.; Abolmaesumi, P.
2007-03-01
This paper presents a novel graphical user interface developed for a navigation system for ultrasound-guided computer-assisted shoulder arthroscopic surgery. The envisioned purpose of the interface is to assist the surgeon in determining the position and orientation of the arthroscopic camera and other surgical tools within the anatomy of the patient. The user interface features real time position tracking of the arthroscopic instruments with an optical tracking system, and visualization of their graphical representations relative to a three-dimensional shoulder surface model of the patient, created from computed tomography images. In addition, the developed graphical interface facilitates fast and user-friendly intra-operative calibration of the arthroscope and the arthroscopic burr, capture and segmentation of ultrasound images, and intra-operative registration. A pilot study simulating the computer-aided shoulder arthroscopic procedure on a shoulder phantom demonstrated the speed, efficiency and ease-of-use of the system.
Potential digitization/compression techniques for Shuttle video
NASA Technical Reports Server (NTRS)
Habibi, A.; Batson, B. H.
1978-01-01
The Space Shuttle initially will be using a field-sequential color television system but it is possible that an NTSC color TV system may be used for future missions. In addition to downlink color TV transmission via analog FM links, the Shuttle will use a high resolution slow-scan monochrome system for uplink transmission of text and graphics information. This paper discusses the characteristics of the Shuttle video systems, and evaluates digitization and/or bandwidth compression techniques for the various links. The more attractive techniques for the downlink video are based on a two-dimensional DPCM encoder that utilizes temporal and spectral as well as the spatial correlation of the color TV imagery. An appropriate technique for distortion-free coding of the uplink system utilizes two-dimensional HCK codes.
Broadening the interface bandwidth in simulation based training
NASA Technical Reports Server (NTRS)
Somers, Larry E.
1989-01-01
Currently most computer based simulations rely exclusively on computer generated graphics to create the simulation. When training is involved, the method almost exclusively used to display information to the learner is text displayed on the cathode ray tube. MICROEXPERT Systems is concentrating on broadening the communications bandwidth between the computer and user by employing a novel approach to video image storage combined with sound and voice output. An expert system is used to combine and control the presentation of analog video, sound, and voice output with computer based graphics and text. Researchers are currently involved in the development of several graphics based user interfaces for NASA, the U.S. Army, and the U.S. Navy. Here, the focus is on the human factors considerations, software modules, and hardware components being used to develop these interfaces.
Propagation characteristics of two-color laser pulses in homogeneous plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemlata,; Saroch, Akanksha; Jha, Pallavi
2015-11-15
An analytical and numerical study of the evolution of two-color, sinusoidal laser pulses in cold, underdense, and homogeneous plasma has been presented. The wave equations for the radiation fields driven by linear as well as nonlinear contributions due to the two-color laser pulses have been set up. A variational technique is used to obtain the simultaneous equations describing the evolution of the laser spot size, pulse length, and chirp parameter. Numerical methods are used to graphically analyze the simultaneous evolution of these parameters due to the combined effect of the two-color laser pulses. Further, the pulse parameters are compared withmore » those obtained for a single laser pulse. Significant focusing, compression, and enhanced positive chirp is obtained due to the combined effect of simultaneously propagating two-color pulses as compared to a single pulse propagating in plasma.« less
GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models
Mukherjee, Chiranjit; Rodriguez, Abel
2016-01-01
Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful. PMID:28626348
GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.
Mukherjee, Chiranjit; Rodriguez, Abel
2016-01-01
Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful.
The mission events graphic generator software: A small tool with big results
NASA Technical Reports Server (NTRS)
Lupisella, Mark; Leibee, Jack; Scaffidi, Charles
1993-01-01
Utilization of graphics has long been a useful methodology for many aspects of spacecraft operations. A personal computer based software tool that implements straight-forward graphics and greatly enhances spacecraft operations is presented. This unique software tool is the Mission Events Graphic Generator (MEGG) software which is used in support of the Hubble Space Telescope (HST) Project. MEGG reads the HST mission schedule and generates a graphical timeline.
Graphics Processing Unit Assisted Thermographic Compositing
NASA Technical Reports Server (NTRS)
Ragasa, Scott; Russell, Samuel S.
2012-01-01
Objective Develop a software application utilizing high performance computing techniques, including general purpose graphics processing units (GPGPUs), for the analysis and visualization of large thermographic data sets. Over the past several years, an increasing effort among scientists and engineers to utilize graphics processing units (GPUs) in a more general purpose fashion is allowing for previously unobtainable levels of computation by individual workstations. As data sets grow, the methods to work them grow at an equal, and often greater, pace. Certain common computations can take advantage of the massively parallel and optimized hardware constructs of the GPU which yield significant increases in performance. These common computations have high degrees of data parallelism, that is, they are the same computation applied to a large set of data where the result does not depend on other data elements. Image processing is one area were GPUs are being used to greatly increase the performance of certain analysis and visualization techniques.
NASA Technical Reports Server (NTRS)
Taylor, Nancy L.; Randall, Donald P.; Bowen, John T.; Johnson, Mary M.; Roland, Vincent R.; Matthews, Christine G.; Gates, Raymond L.; Skeens, Kristi M.; Nolf, Scott R.; Hammond, Dana P.
1990-01-01
The computer graphics capabilities available at the Center are introduced and their use is explained. More specifically, the manual identifies and describes the various graphics software and hardware components, details the interfaces between these components, and provides information concerning the use of these components at LaRC.
Alternatives for Saving and Viewing CAD Graphics for the Web.
ERIC Educational Resources Information Center
Harris, La Verne Abe; Sadowski, Mary A.
2001-01-01
Introduces some alternatives for preparing and viewing computer aided design (CAD) graphics for Internet output on a budget, without the fear of copyright infringement, and without having to go back to college to learn a complex graphic application. (Author/YDS)
IPEG- IMPROVED PRICE ESTIMATION GUIDELINES (IBM PC VERSION)
NASA Technical Reports Server (NTRS)
Aster, R. W.
1994-01-01
The Improved Price Estimation Guidelines, IPEG, program provides a simple yet accurate estimate of the price of a manufactured product. IPEG facilitates sensitivity studies of price estimates at considerably less expense than would be incurred by using the Standard Assembly-line Manufacturing Industry Simulation, SAMIS, program (COSMIC program NPO-16032). A difference of less than one percent between the IPEG and SAMIS price estimates has been observed with realistic test cases. However, the IPEG simplification of SAMIS allows the analyst with limited time and computing resources to perform a greater number of sensitivity studies than with SAMIS. Although IPEG was developed for the photovoltaics industry, it is readily adaptable to any standard assembly line type of manufacturing industry. IPEG estimates the annual production price per unit. The input data includes cost of equipment, space, labor, materials, supplies, and utilities. Production on an industry wide basis or a process wide basis can be simulated. Once the IPEG input file is prepared, the original price is estimated and sensitivity studies may be performed. The IPEG user selects a sensitivity variable and a set of values. IPEG will compute a price estimate and a variety of other cost parameters for every specified value of the sensitivity variable. IPEG is designed as an interactive system and prompts the user for all required information and offers a variety of output options. The IPEG/PC program is written in TURBO PASCAL for interactive execution on an IBM PC computer under DOS 2.0 or above with at least 64K of memory. The IBM PC color display and color graphics adapter are needed to use the plotting capabilities in IPEG/PC. IPEG/PC was developed in 1984. The original IPEG program is written in SIMSCRIPT II.5 for interactive execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 300K of 8 bit bytes. The original IPEG was developed in 1980.
IPEG- IMPROVED PRICE ESTIMATION GUIDELINES (IBM 370 VERSION)
NASA Technical Reports Server (NTRS)
Chamberlain, R. G.
1994-01-01
The Improved Price Estimation Guidelines, IPEG, program provides a simple yet accurate estimate of the price of a manufactured product. IPEG facilitates sensitivity studies of price estimates at considerably less expense than would be incurred by using the Standard Assembly-line Manufacturing Industry Simulation, SAMIS, program (COSMIC program NPO-16032). A difference of less than one percent between the IPEG and SAMIS price estimates has been observed with realistic test cases. However, the IPEG simplification of SAMIS allows the analyst with limited time and computing resources to perform a greater number of sensitivity studies than with SAMIS. Although IPEG was developed for the photovoltaics industry, it is readily adaptable to any standard assembly line type of manufacturing industry. IPEG estimates the annual production price per unit. The input data includes cost of equipment, space, labor, materials, supplies, and utilities. Production on an industry wide basis or a process wide basis can be simulated. Once the IPEG input file is prepared, the original price is estimated and sensitivity studies may be performed. The IPEG user selects a sensitivity variable and a set of values. IPEG will compute a price estimate and a variety of other cost parameters for every specified value of the sensitivity variable. IPEG is designed as an interactive system and prompts the user for all required information and offers a variety of output options. The IPEG/PC program is written in TURBO PASCAL for interactive execution on an IBM PC computer under DOS 2.0 or above with at least 64K of memory. The IBM PC color display and color graphics adapter are needed to use the plotting capabilities in IPEG/PC. IPEG/PC was developed in 1984. The original IPEG program is written in SIMSCRIPT II.5 for interactive execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 300K of 8 bit bytes. The original IPEG was developed in 1980.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faculjak, D.A.
1988-03-01
Graphics Manager (GFXMGR) is menu-driven, user-friendly software designed to interactively create, edit, and delete graphics displays on the Advanced Electronics Design (AED) graphics controller, Model 767. The software runs on the VAX family of computers and has been used successfully in security applications to create and change site layouts (maps) of specific facilities. GFXMGR greatly benefits graphics development by minimizing display-development time, reducing tedium on the part of the user, and improving system performance. It is anticipated that GFXMGR can be used to create graphics displays for many types of applications. 8 figs., 2 tabs.
NASA Astrophysics Data System (ADS)
Grzeszczuk, A.; Kowalski, S.
2015-04-01
Compute Unified Device Architecture (CUDA) is a parallel computing platform developed by Nvidia for increase speed of graphics by usage of parallel mode for processes calculation. The success of this solution has opened technology General-Purpose Graphic Processor Units (GPGPUs) for applications not coupled with graphics. The GPGPUs system can be applying as effective tool for reducing huge number of data for pulse shape analysis measures, by on-line recalculation or by very quick system of compression. The simplified structure of CUDA system and model of programming based on example Nvidia GForce GTX580 card are presented by our poster contribution in stand-alone version and as ROOT application.
Human-computer interfaces applied to numerical solution of the Plateau problem
NASA Astrophysics Data System (ADS)
Elias Fabris, Antonio; Soares Bandeira, Ivana; Ramos Batista, Valério
2015-09-01
In this work we present a code in Matlab to solve the Problem of Plateau numerically, and the code will include human-computer interface. The Problem of Plateau has applications in areas of knowledge like, for instance, Computer Graphics. The solution method will be the same one of the Surface Evolver, but the difference will be a complete graphical interface with the user. This will enable us to implement other kinds of interface like ocular mouse, voice, touch, etc. To date, Evolver does not include any graphical interface, which restricts its use by the scientific community. Specially, its use is practically impossible for most of the Physically Challenged People.
NASA Astrophysics Data System (ADS)
Dave, Gaurav P.; Sureshkumar, N.; Blessy Trencia Lincy, S. S.
2017-11-01
Current trend in processor manufacturing focuses on multi-core architectures rather than increasing the clock speed for performance improvement. Graphic processors have become as commodity hardware for providing fast co-processing in computer systems. Developments in IoT, social networking web applications, big data created huge demand for data processing activities and such kind of throughput intensive applications inherently contains data level parallelism which is more suited for SIMD architecture based GPU. This paper reviews the architectural aspects of multi/many core processors and graphics processors. Different case studies are taken to compare performance of throughput computing applications using shared memory programming in OpenMP and CUDA API based programming.
Jürgens, Clemens; Grossjohann, Rico; Czepita, Damian; Tost, Frank
2009-01-01
Graphic documentation of retinal examination results in clinical ophthalmological practice is often depicted using pictures or in handwritten form. Popular software products used to describe changes in the fundus do not vary much from simple graphic programs that enable to insert, scale and edit basic graphic elements such as: a circle, rectangle, arrow or text. Displaying the results of retinal examinations in a unified way is difficult to achieve. Therefore, we devised and implemented modern software tools for this purpose. A computer program enabling to quickly and intuitively form graphs of the fundus, that can be digitally archived or printed was created. Especially for the needs of ophthalmological clinics, a set of standard digital symbols used to document the results of retinal examinations was developed and installed in a library of graphic symbols. These symbols are divided into the following categories: preoperative, postoperative, neovascularization, retinopathy of prematurity. The appropriate symbol can be selected with a click of the mouse and dragged-and-dropped on the canvas of the fundus. Current forms of documenting results of retinal examinations are unsatisfactory, due to the fact that they are time consuming and imprecise. Unequivocal interpretation is difficult or in some cases impossible. Using the developed computer program a sketch of the fundus can be created much more quickly than by hand drawing. Additionally the quality of the medica documentation using a system of well described and standardized symbols will be enhanced. (1) Graphic symbols used to document the results of retinal examinations are a part of everyday clinical practice. (2) The designed computer program will allow quick and intuitive graphical creation of fundus sketches that can be either digitally archived or printed.
Experimental design for three-color and four-color gene expression microarrays.
Woo, Yong; Krueger, Winfried; Kaur, Anupinder; Churchill, Gary
2005-06-01
Three-color microarrays, compared with two-color microarrays, can increase design efficiency and power to detect differential expression without additional samples and arrays. Furthermore, three-color microarray technology is currently available at a reasonable cost. Despite the potential advantages, clear guidelines for designing and analyzing three-color experiments do not exist. We propose a three- and a four-color cyclic design (loop) and a complementary graphical representation to help design experiments that are balanced, efficient and robust to hybridization failures. In theory, three-color loop designs are more efficient than two-color loop designs. Experiments using both two- and three-color platforms were performed in parallel and their outputs were analyzed using linear mixed model analysis in R/MAANOVA. These results demonstrate that three-color experiments using the same number of samples (and fewer arrays) will perform as efficiently as two-color experiments. The improved efficiency of the design is somewhat offset by a reduced dynamic range and increased variability in the three-color experimental system. This result suggests that, with minor technological improvements, three-color microarrays using loop designs could detect differential expression more efficiently than two-color loop designs. http://www.jax.org/staff/churchill/labsite/software Multicolor cyclic design construction methods and examples along with additional results of the experiment are provided at http://www.jax.org/staff/churchill/labsite/pubs/yong.
Computer-aided light sheet flow visualization using photogrammetry
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1994-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and a visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) results, was chosen to interactively display the reconstructed light sheet images with the numerical surface geometry for the model or aircraft under study. The photogrammetric reconstruction technique and the image processing and computer graphics techniques and equipment are described. Results of the computer-aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images with CFD solutions in the same graphics environment is also demonstrated.
Computer-Aided Light Sheet Flow Visualization
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1993-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.
Computer-aided light sheet flow visualization
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1993-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.
Learning with Interactive Computer Graphics in the Undergraduate Neuroscience Classroom
Pani, John R.; Chariker, Julia H.; Naaz, Farah; Mattingly, William; Roberts, Joshua; Sephton, Sandra E.
2014-01-01
Instruction of neuroanatomy depends on graphical representation and extended self-study. As a consequence, computer-based learning environments that incorporate interactive graphics should facilitate instruction in this area. The present study evaluated such a system in the undergraduate neuroscience classroom. The system used the method of adaptive exploration, in which exploration in a high fidelity graphical environment is integrated with immediate testing and feedback in repeated cycles of learning. The results of this study were that students considered the graphical learning environment to be superior to typical classroom materials used for learning neuroanatomy. Students managed the frequency and duration of study, test, and feedback in an efficient and adaptive manner. For example, the number of tests taken before reaching a minimum test performance of 90% correct closely approximated the values seen in more regimented experimental studies. There was a wide range of student opinion regarding the choice between a simpler and a more graphically compelling program for learning sectional anatomy. Course outcomes were predicted by individual differences in the use of the software that reflected general work habits of the students, such as the amount of time committed to testing. The results of this introduction into the classroom are highly encouraging for development of computer-based instruction in biomedical disciplines. PMID:24449123
Chemical Engineering and Instructional Computing: Are They in Step? (Part 2).
ERIC Educational Resources Information Center
Seider, Warren D.
1988-01-01
Describes the use of "CACHE IBM PC Lessons for Courses Other than Design and Control" as open-ended design oriented problems. Presents graphics from some of the software and discusses high-resolution graphics workstations. Concludes that computing tools are in line with design and control practice in chemical engineering. (MVL)
Some research advances in computer graphics that will enhance applications to engineering design
NASA Technical Reports Server (NTRS)
Allan, J. J., III
1975-01-01
Research in man/machine interactions and graphics hardware/software that will enhance applications to engineering design was described. Research aspects of executive systems, command languages, and networking used in the computer applications laboratory are mentioned. Finally, a few areas where little or no research is being done were identified.
Emphasizing Planning for Essay Writing with a Computer-Based Graphic Organizer
ERIC Educational Resources Information Center
Evmenova, Anya S.; Regan, Kelley; Boykin, Andrea; Good, Kevin; Hughes, Melissa; MacVittie, Nichole; Sacco, Donna; Ahn, Soo Y.; Chirinos, David
2016-01-01
The authors conducted a multiple-baseline study to investigate the effects of a computer-based graphic organizer (CBGO) with embedded self-regulated learning strategies on the quantity and quality of persuasive essay writing by students with high-incidence disabilities. Ten seventh- and eighth-grade students with learning disabilities, emotional…
Constructing Stylish Characters on Computer Graphics Systems.
ERIC Educational Resources Information Center
Goldman, Gary S.
1980-01-01
Computer graphics systems typically produce a single, machine-like character font. At most, these systems enable the user to (1) alter the aspect ratio (height-to-width ratio) of the characters, (2) specify a transformation matrix to slant the characters, and (3) define a virtual pen table to change the lineweight of the plotted characters.…
A "Service-Learning Approach" to Teaching Computer Graphics
ERIC Educational Resources Information Center
Hutzel, Karen
2007-01-01
The author taught a computer graphics course through a service-learning framework to undergraduate and graduate students in the spring of 2003 at Florida State University (FSU). The students in this course participated in learning a software program along with youths from a neighboring, low-income, primarily African-American community. Together,…
The Generative Effects of Instructional Organizers with Computer-Based Interactive Video.
ERIC Educational Resources Information Center
Kenny, Richard F.
This study compared the use of three instructional organizers--the advance organizer (AO), the participatory pictorial graphic organizer (PGO), and the final form pictorial graphic organizer (FGO)--in the design and use of computer-based interactive video (CBIV) programs. That is, it attempted to determine whether a less generative or more…
Digital-Computer Processing of Graphical Data. Final Report.
ERIC Educational Resources Information Center
Freeman, Herbert
The final report of a two-year study concerned with the digital-computer processing of graphical data. Five separate investigations carried out under this study are described briefly, and a detailed bibliography, complete with abstracts, is included in which are listed the technical papers and reports published during the period of this program.…
Using Color as Information in Computer Displays: Problems with Perception and Communication.
ERIC Educational Resources Information Center
Adkins, Mark; Pease, Warren
The advancement of microcomputer technology has reached the point where color monitors and color computer software are fast becoming the norm in our information society. Color is another channel for communication, and can be used for enhancement of both aesthetic characteristics and productivity. The advantage to the use of color for communication…
Pecevski, Dejan; Buesing, Lars; Maass, Wolfgang
2011-01-01
An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows (“explaining away”) and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons. PMID:22219717