Sample records for color fluctuation approximation

  1. Semiclassical Models for Virtual Antiparticle Pairs, the Unit of Charge e, and the QCD Coupling alpha(sub s)

    NASA Technical Reports Server (NTRS)

    Batchelor, David; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    New semiclassical models of virtual antiparticle pairs are used to compute the pair lifetimes, and good agreement with the Heisenberg lifetimes from quantum field theory (QFT) is found. The modeling method applies to both the electromagnetic and color forces. Evaluation of the action integral of potential field fluctuation for each interaction potential yields approximately Planck's constant/2 for both electromagnetic and color fluctuations, in agreement with QFT. Thus each model is a quantized semiclassical representation for such virtual antiparticle pairs, to good approximation. When the results of the new models and QFT are combined, formulae for e and alpha(sub s)(q) are derived in terms of only Planck's constant and c.

  2. Correlation between low level fluctuations in the x ray background and faint galaxies

    NASA Technical Reports Server (NTRS)

    Tolstoy, Eline; Griffiths, R. E.

    1993-01-01

    A correlation between low-level x-ray fluctuations in the cosmic x-ray background flux and the large numbers of galaxies found in deep optical imaging, to m(sub v) is less than or equal to 24 - 26, is desired. These (faint) galaxies by their morphology and color in deep multi-color CCD images and plate material were optically identified. Statistically significant correlations between these galaxies and low-level x-ray fluctuations at the same positions in multiple deep Einstein HRI observations in PAVO and in a ROSAT PSPC field were searched for. Our aim is to test the hypothesis that faint 'star burst' galaxies might contribute significantly to the cosmic x-ray background (at approximately 1 keV).

  3. The derivation and approximation of coarse-grained dynamics from Langevin dynamics

    NASA Astrophysics Data System (ADS)

    Ma, Lina; Li, Xiantao; Liu, Chun

    2016-11-01

    We present a derivation of a coarse-grained description, in the form of a generalized Langevin equation, from the Langevin dynamics model that describes the dynamics of bio-molecules. The focus is placed on the form of the memory kernel function, the colored noise, and the second fluctuation-dissipation theorem that connects them. Also presented is a hierarchy of approximations for the memory and random noise terms, using rational approximations in the Laplace domain. These approximations offer increasing accuracy. More importantly, they eliminate the need to evaluate the integral associated with the memory term at each time step. Direct sampling of the colored noise can also be avoided within this framework. Therefore, the numerical implementation of the generalized Langevin equation is much more efficient.

  4. Tracing the origin of azimuthal gluon correlations in the color glass condensate

    NASA Astrophysics Data System (ADS)

    Lappi, T.; Schenke, B.; Schlichting, S.; Venugopalan, R.

    2016-01-01

    We examine the origins of azimuthal correlations observed in high energy proton-nucleus collisions by considering the simple example of the scattering of uncorrelated partons off color fields in a large nucleus. We demonstrate how the physics of fluctuating color fields in the color glass condensate (CGC) effective theory generates these azimuthal multiparticle correlations and compute the corresponding Fourier coefficients v n within different CGC approximation schemes. We discuss in detail the qualitative and quantitative differences between the different schemes. We will show how a recently introduced color field domain model that captures key features of the observed azimuthal correlations can be understood in the CGC effective theory as a model of non-Gaussian correlations in the target nucleus.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lappi, T.; Schenke, B.; Schlichting, S.

    Here we examine the origins of azimuthal correlations observed in high energy proton-nucleus collisions by considering the simple example of the scattering of uncorrelated partons off color fields in a large nucleus. We demonstrate how the physics of fluctuating color fields in the color glass condensate (CGC) effective theory generates these azimuthal multiparticle correlations and compute the corresponding Fourier coefficients v n within different CGC approximation schemes. We discuss in detail the qualitative and quantitative differences between the different schemes. Lastly, we will show how a recently introduced color field domain model that captures key features of the observed azimuthalmore » correlations can be understood in the CGC effective theory as a model of non-Gaussian correlations in the target nucleus.« less

  6. Tracing the origin of azimuthal gluon correlations in the color glass condensate

    DOE PAGES

    Lappi, T.; Schenke, B.; Schlichting, S.; ...

    2016-01-11

    Here we examine the origins of azimuthal correlations observed in high energy proton-nucleus collisions by considering the simple example of the scattering of uncorrelated partons off color fields in a large nucleus. We demonstrate how the physics of fluctuating color fields in the color glass condensate (CGC) effective theory generates these azimuthal multiparticle correlations and compute the corresponding Fourier coefficients v n within different CGC approximation schemes. We discuss in detail the qualitative and quantitative differences between the different schemes. Lastly, we will show how a recently introduced color field domain model that captures key features of the observed azimuthalmore » correlations can be understood in the CGC effective theory as a model of non-Gaussian correlations in the target nucleus.« less

  7. Virtual Antiparticle Pairs, the Unit of Charge Epsilon and the QCD Coupling Alpha(sub s)

    NASA Technical Reports Server (NTRS)

    Batchelor, David

    2001-01-01

    New semi-classical models of virtual antiparticle pairs are used to compute the pair lifetimes, and good agreement with the Heisenberg lifetimes from quantum field theory (QFT) is found. When the results of the new models and QFT are combined, formulae for e and alpha(sub s)(q) are derived in terms of only h and c. The modeling method applies to both the electromagnetic and color forces. Evaluation of the action integral of potential field fluctuation for each interaction potential yields approx. = h/2 for both electromagnetic and color fluctuations, in agreement with QFT. Thus each model is a quantized semiclassical representation for such virtual antiparticle pairs, to good approximation. This work reduces the number of arbitrary parameters of the Standard Model by two from 18 to 16. These are remarkable, unexpected results from a basically classical method.

  8. Air-Sea and Lateral Exchange Processes in East Indian Coastal Current off Sri Lanka

    DTIC Science & Technology

    2015-09-30

    moorings to shed light on the spatial structure of the upper layer currents in the area associated with southwest monsoons. C. CTD and ADCP...thermohaline profiles (Fig. 4a). Figure 3. The weekly composite (June 30 – July 3) image of the BoB ocean color, showing enhanced chlorophyll ...measurements. The depth- averaged (between z = 21 and 141m) velocity magnitude is shown by black line; a polynomial approximation of these fluctuations is in

  9. Evidence for color fluctuations in hadrons from coherent nuclear diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frankfurt, L.; Miller, G.A.; Strikman, M.

    A QCD-based treatment of projectile size fluctuations is used to compute inelastic diffractive cross sections [sigma][sub diff] for coherent hadron-nuclear processes. We find that fluctuations near the average size give the major contribution to the cross section with [lt] few % contribution from small size configurations. The computed values of [sigma][sub diff] are consistent with the limited available data. The importance of coherent diffraction studies for a wide range of projectiles for high energy Fermilab fixed target experiments is emphasized. The implications of these significant color fluctuations for relativistic heavy ion collisions are discussed.

  10. Color confinement from fluctuating topology

    DOE PAGES

    Kharzeev, Dmitri E.

    2016-10-19

    QCD possesses a compact gauge group, and this implies a non-trivial topological structure of the vacuum. In this contribution to the Gribov-85 Memorial volume, we first discuss the origin of Gribov copies and their interpretation in terms of fluctuating topology in the QCD vacuum. We then describe the recent work with E. Levin that links the confinement of gluons and color screening to the fluctuating topology, and discuss implications for spin physics, high energy scattering, and the physics of quark-gluon plasma.

  11. Extreme reaction times determine fluctuation scaling in human color vision

    NASA Astrophysics Data System (ADS)

    Medina, José M.; Díaz, José A.

    2016-11-01

    In modern mental chronometry, human reaction time defines the time elapsed from stimulus presentation until a response occurs and represents a reference paradigm for investigating stochastic latency mechanisms in color vision. Here we examine the statistical properties of extreme reaction times and whether they support fluctuation scaling in the skewness-kurtosis plane. Reaction times were measured for visual stimuli across the cardinal directions of the color space. For all subjects, the results show that very large reaction times deviate from the right tail of reaction time distributions suggesting the existence of dragon-kings events. The results also indicate that extreme reaction times are correlated and shape fluctuation scaling over a wide range of stimulus conditions. The scaling exponent was higher for achromatic than isoluminant stimuli, suggesting distinct generative mechanisms. Our findings open a new perspective for studying failure modes in sensory-motor communications and in complex networks.

  12. Critical phenomena in active matter

    NASA Astrophysics Data System (ADS)

    Paoluzzi, M.; Maggi, C.; Marini Bettolo Marconi, U.; Gnan, N.

    2016-11-01

    We investigate the effect of self-propulsion on a mean-field order-disorder transition. Starting from a φ4 scalar field theory subject to an exponentially correlated noise, we exploit the unified colored-noise approximation to map the nonequilibrium active dynamics onto an effective equilibrium one. This allows us to follow the evolution of the second-order critical point as a function of the noise parameters: the correlation time τ and the noise strength D . Our results suggest that the universality class of the model remains unchanged. We also estimate the effect of Gaussian fluctuations on the mean-field approximation finding an Ornstein-Zernike-like expression for the static structure factor at long wavelengths. Finally, to assess the validity of our predictions, we compare the mean-field theoretical results with numerical simulations of active Lennard-Jones particles in two and three dimensions, finding good qualitative agreement at small τ values.

  13. Changes in primary metabolites and polyphenols in the peel of "Braeburn" apples (Malus domestica Borkh.) during advanced maturation.

    PubMed

    Bizjak, Jan; Mikulic-Petkovsek, Maja; Stampar, Franci; Veberic, Robert

    2013-10-30

    During the two growing seasons the evolution of primary metabolites and wide range of polyphenols in the "Braeburn" apple peel during advanced maturation were investigated. During the five weeks sucrose significantly increased, whereas fructose and glucose fluctuated around the same level in one season and decreased in another. Regarding malic and citric acids, an expected decrease was recorded. The concentrations of hydroxycinnamic acids, dihydrochalcones, and flavanols remained quite constant or slightly decreased during advanced apple ripening. On the contrary an intensive accumulation of quercetin glycosides and anthocyanins took place during this period, starting with the onset of rapid formation approximately 3 weeks before the technological maturity of apples. Total phenolic content was relatively constant or slightly increased. The present results suggest that measures designed to improve the apple color and quality of "Braeburn" apples should be performed approximately 3-4 weeks before the expected technological maturity of apples.

  14. Intrinsic fluctuations of the proton saturation momentum scale in high multiplicity p+p collisions

    DOE PAGES

    McLerran, Larry; Tribedy, Prithwish

    2015-11-02

    High multiplicity events in p+p collisions are studied using the theory of the Color Glass Condensate. Here, we show that intrinsic fluctuations of the proton saturation momentum scale are needed in addition to the sub-nucleonic color charge fluctuations to explain the very high multiplicity tail of distributions in p+p collisions. It is presumed that the origin of such intrinsic fluctuations is non-perturbative in nature. Classical Yang Mills simulations using the IP-Glasma model are performed to make quantitative estimations. Furthermore, we find that fluctuations as large as O(1) of the average values of the saturation momentum scale can lead to raremore » high multiplicity events seen in p+p data at RHIC and LHC energies. Using the available data on multiplicity distributions we try to constrain the distribution of the proton saturation momentum scale and make predictions for the multiplicity distribution in 13 TeV p+p collisions.« less

  15. Colors of the Sky.

    ERIC Educational Resources Information Center

    Bohren, Craig F.; Fraser, Alistair B.

    1985-01-01

    Explains the physical principles which result in various colors of the sky. Topics addressed include: blueness, mystical properties of water vapor, ozone, fluctuation theory of scattering, variation of purity and brightness, and red sunsets and sunrises. (DH)

  16. Evidence of strong proton shape fluctuations from incoherent diffraction

    DOE PAGES

    Mantysaari, H.; Schenke, B.

    2016-07-25

    We show within the saturation framework that measurements of exclusive vector meson production at high energy provide evidence for strong geometric fluctuations of the proton. In comparison, the effect of saturation scale and color charge fluctuations is weak. This knowledge will allow detailed future measurements of the incoherent cross section to tightly constrain the fluctuating geometry of the proton as a function of the parton momentum fraction x.

  17. Simulating the Timescale-Dependent Color Variation in Quasars with a Revised Inhomogeneous Disk Model

    NASA Astrophysics Data System (ADS)

    Cai, Zhen-Yi; Wang, Jun-Xian; Gu, Wei-Min; Sun, Yu-Han; Wu, Mao-Chun; Huang, Xing-Xing; Chen, Xiao-Yang

    2016-07-01

    The UV-optical variability of active galactic nuclei and quasars is useful for understanding the physics of the accretion disk and is gradually being attributed to stochastic fluctuations over the accretion disk. Quasars generally appear bluer when they brighten in the UV-optical bands; the nature of this phenomenon remains controversial. Recently, Sun et al. discovered that the color variation of quasars is timescale-dependent, in the way that faster variations are even bluer than longer term ones. While this discovery can directly rule out models that simply attribute the color variation to contamination from the host galaxies, or to changes in the global accretion rates, it favors the stochastic disk fluctuation model as fluctuations in the inner-most hotter disk could dominate the short-term variations. In this work, we show that a revised inhomogeneous disk model, where the characteristic timescales of thermal fluctuations in the disk are radius-dependent (I.e., τ ˜ r; based on that originally proposed by Dexter & Agol), can reproduce well a timescale-dependent color variation pattern, similar to the observed one and unaffected by the uneven sampling and photometric error. This demonstrates that one may statistically use variation emission at different timescales to spatially resolve the accretion disk in quasars, thus opening a new window with which to probe and test the accretion disk physics in the era of time domain astronomy. Caveats of the current model, which ought to be addressed in future simulations, are discussed.

  18. Binary collision approximations for the memory function for density fluctuations in equilibrium atomic liquids

    NASA Astrophysics Data System (ADS)

    Noah, Joyce E.

    Time correlation functions of density fluctuations of liquids at equilibrium can be used to relate the microscopic dynamics of a liquid to its macroscopic transport properties. Time correlation functions are especially useful since they can be generated in a variety of ways, from scattering experiments to computer simulation to analytic theory. The kinetic theory of fluctuations in equilibrium liquids is an analytic theory for calculating correlation functions using memory functions. In this work, we use a diagrammatic formulation of the kinetic theory to develop a series of binary collision approximations for the collisional part of the memory function. We define binary collisions as collisions between two distinct density fluctuations whose identities are fixed during the duration of a collsion. R approximations are for the short time part of the memory function, and build upon the work of Ranganathan and Andersen. These approximations have purely repulsive interactions between the fluctuations. The second type of approximation, RA approximations, is for the longer time part of the memory function, where the density fluctuations now interact via repulsive and attractive forces. Although RA approximations are a natural extension of R approximations, they permit two density fluctuations to become trapped in the wells of the interaction potential, leading to long-lived oscillatory behavior, which is unphysical. Therefore we consider S approximations which describe binary particles which experience the random effect of the surroundings while interacting via repulsive or repulsive and attractive interactions. For each of these approximations for the memory function we numerically solve the kinetic equation to generate correlation functions. These results are compared to molecular dynamics results for the correlation functions. Comparing the successes and failures of the different approximations, we conclude that R approximations give more accurate intermediate and long time results while RA and S approximations do particularly well at predicting the short time behavior. Lastly, we also develop a series of non-graphically derived approximations and use an optimization procedure to determine the underlying memory function from the simulation data. These approaches provide valuable information about the memory function that will be used in the development of future kinetic theories.

  19. SIMULATING THE TIMESCALE-DEPENDENT COLOR VARIATION IN QUASARS WITH A REVISED INHOMOGENEOUS DISK MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Zhen-Yi; Wang, Jun-Xian; Sun, Yu-Han

    The UV–optical variability of active galactic nuclei and quasars is useful for understanding the physics of the accretion disk and is gradually being attributed to stochastic fluctuations over the accretion disk. Quasars generally appear bluer when they brighten in the UV–optical bands; the nature of this phenomenon remains controversial. Recently, Sun et al. discovered that the color variation of quasars is timescale-dependent, in the way that faster variations are even bluer than longer term ones. While this discovery can directly rule out models that simply attribute the color variation to contamination from the host galaxies, or to changes in themore » global accretion rates, it favors the stochastic disk fluctuation model as fluctuations in the inner-most hotter disk could dominate the short-term variations. In this work, we show that a revised inhomogeneous disk model, where the characteristic timescales of thermal fluctuations in the disk are radius-dependent (i.e., τ ∼ r ; based on that originally proposed by Dexter and Agol), can reproduce well a timescale-dependent color variation pattern, similar to the observed one and unaffected by the uneven sampling and photometric error. This demonstrates that one may statistically use variation emission at different timescales to spatially resolve the accretion disk in quasars, thus opening a new window with which to probe and test the accretion disk physics in the era of time domain astronomy. Caveats of the current model, which ought to be addressed in future simulations, are discussed.« less

  20. Constraints for proton structure fluctuations from exclusive scattering

    NASA Astrophysics Data System (ADS)

    Mäntysaari, H.; Schenke, B.

    2017-08-01

    We constrain the average density profile of the proton and the amount of event-by-event fluctuations by simultaneously calculating the coherent and incoherent exclusive diffractive vector meson production cross section in deep inelastic scattering. Working within the Color Glass Condensate picture, we find that the gluonic density of the proton must have large geometric fluctuations in order to describe the experimentally measured large incoherent cross section.

  1. Fluctuations in microwave background radiation due to secondary ionization of the intergalactic gas in the universe

    NASA Technical Reports Server (NTRS)

    Sunyayev, R. A.

    1979-01-01

    Secondary heating and ionization of the intergalactic gas at redshifts z approximately 10-30 could lead to the large optical depth of the Universe for Thomson scattering and could smooth the primordial fluctuations formed at z approximately 1500. It is shown that the gas motions connected with the large scale density perturbations at z approximately 10-15 must lead to the generation of secondary fluctuations of microwave background. The contribution of the rich clusters of galaxies and young galaxies to the fluctuations of microwave background is also estimated.

  2. Chicks use changes in luminance and chromatic contrast as indicators of the sign of defocus

    PubMed Central

    Rucker, Frances J.; Wallman, Josh

    2012-01-01

    As the eye changes focus, the resulting changes in cone contrast are associated with changes in color and luminance. Color fluctuations should simulate the eye being hyperopic and make the eye grow in the myopic direction, while luminance fluctuations should simulate myopia and make the eye grow in the hyperopic direction. Chicks without lenses were exposed daily (9 a.m. to 5 p.m.) for three days on two consecutive weeks to 2 Hz sinusoidally modulated illumination (mean illuminance of 680 lux) to one of the following: in-phase modulated luminance flicker (LUM), counterphase-modulated red/green (R/G Color) or blue/yellow flicker (B/Y Color), combined color and luminance flicker (Color + LUM), reduced amplitude luminance flicker (Low LUM), or no flicker. After the three-day exposure to flicker, chicks were kept in a brooder under normal diurnal lighting for four days. Changes in the ocular components were measured with ultrasound and with a Hartinger Coincidence Refractometer (aus Jena, Jena, East Germany. After the first three-day exposure, luminance flicker produced more hyperopic refractions (LUM: 2.27 D) than did color flicker (R/G Color: 0.09 D; B/Y Color: −0.25 D). Changes in refraction were mainly due to changes in eye length, with color flicker producing much greater changes in eye length than luminance flicker (R/G Color: 102 μm; B/Y Color: 98 μm; LUM: 66 μm). Our results support the hypothesis that the eye can differentiate between hyperopic and myopic defocus on the basis of the effects of change in luminance or color contrast. PMID:22715194

  3. Quantifying Intrinsic and Extrinsic Variability in Stochastic Gene Expression Models

    PubMed Central

    Singh, Abhyudai; Soltani, Mohammad

    2013-01-01

    Genetically identical cell populations exhibit considerable intercellular variation in the level of a given protein or mRNA. Both intrinsic and extrinsic sources of noise drive this variability in gene expression. More specifically, extrinsic noise is the expression variability that arises from cell-to-cell differences in cell-specific factors such as enzyme levels, cell size and cell cycle stage. In contrast, intrinsic noise is the expression variability that is not accounted for by extrinsic noise, and typically arises from the inherent stochastic nature of biochemical processes. Two-color reporter experiments are employed to decompose expression variability into its intrinsic and extrinsic noise components. Analytical formulas for intrinsic and extrinsic noise are derived for a class of stochastic gene expression models, where variations in cell-specific factors cause fluctuations in model parameters, in particular, transcription and/or translation rate fluctuations. Assuming mRNA production occurs in random bursts, transcription rate is represented by either the burst frequency (how often the bursts occur) or the burst size (number of mRNAs produced in each burst). Our analysis shows that fluctuations in the transcription burst frequency enhance extrinsic noise but do not affect the intrinsic noise. On the contrary, fluctuations in the transcription burst size or mRNA translation rate dramatically increase both intrinsic and extrinsic noise components. Interestingly, simultaneous fluctuations in transcription and translation rates arising from randomness in ATP abundance can decrease intrinsic noise measured in a two-color reporter assay. Finally, we discuss how these formulas can be combined with single-cell gene expression data from two-color reporter experiments for estimating model parameters. PMID:24391934

  4. Quantifying intrinsic and extrinsic variability in stochastic gene expression models.

    PubMed

    Singh, Abhyudai; Soltani, Mohammad

    2013-01-01

    Genetically identical cell populations exhibit considerable intercellular variation in the level of a given protein or mRNA. Both intrinsic and extrinsic sources of noise drive this variability in gene expression. More specifically, extrinsic noise is the expression variability that arises from cell-to-cell differences in cell-specific factors such as enzyme levels, cell size and cell cycle stage. In contrast, intrinsic noise is the expression variability that is not accounted for by extrinsic noise, and typically arises from the inherent stochastic nature of biochemical processes. Two-color reporter experiments are employed to decompose expression variability into its intrinsic and extrinsic noise components. Analytical formulas for intrinsic and extrinsic noise are derived for a class of stochastic gene expression models, where variations in cell-specific factors cause fluctuations in model parameters, in particular, transcription and/or translation rate fluctuations. Assuming mRNA production occurs in random bursts, transcription rate is represented by either the burst frequency (how often the bursts occur) or the burst size (number of mRNAs produced in each burst). Our analysis shows that fluctuations in the transcription burst frequency enhance extrinsic noise but do not affect the intrinsic noise. On the contrary, fluctuations in the transcription burst size or mRNA translation rate dramatically increase both intrinsic and extrinsic noise components. Interestingly, simultaneous fluctuations in transcription and translation rates arising from randomness in ATP abundance can decrease intrinsic noise measured in a two-color reporter assay. Finally, we discuss how these formulas can be combined with single-cell gene expression data from two-color reporter experiments for estimating model parameters.

  5. Approximating Matsubara dynamics using the planetary model: Tests on liquid water and ice

    NASA Astrophysics Data System (ADS)

    Willatt, Michael J.; Ceriotti, Michele; Althorpe, Stuart C.

    2018-03-01

    Matsubara dynamics is the quantum-Boltzmann-conserving classical dynamics which remains when real-time coherences are taken out of the exact quantum Liouvillian [T. J. H. Hele et al., J. Chem. Phys. 142, 134103 (2015)]; because of a phase-term, it cannot be used as a practical method without further approximation. Recently, Smith et al. [J. Chem. Phys. 142, 244112 (2015)] developed a "planetary" model dynamics which conserves the Feynman-Kleinert (FK) approximation to the quantum-Boltzmann distribution. Here, we show that for moderately anharmonic potentials, the planetary dynamics gives a good approximation to Matsubara trajectories on the FK potential surface by decoupling the centroid trajectory from the locally harmonic Matsubara fluctuations, which reduce to a single phase-less fluctuation particle (the "planet"). We also show that the FK effective frequency can be approximated by a direct integral over these fluctuations, obviating the need to solve iterative equations. This modification, together with use of thermostatted ring-polymer molecular dynamics, allows us to test the planetary model on water (gas-phase, liquid, and ice) using the q-TIP4P/F potential surface. The "planetary" fluctuations give a poor approximation to the rotational/librational bands in the infrared spectrum, but a good approximation to the bend and stretch bands, where the fluctuation lineshape is found to be motionally narrowed by the vibrations of the centroid.

  6. Approximating Matsubara dynamics using the planetary model: Tests on liquid water and ice.

    PubMed

    Willatt, Michael J; Ceriotti, Michele; Althorpe, Stuart C

    2018-03-14

    Matsubara dynamics is the quantum-Boltzmann-conserving classical dynamics which remains when real-time coherences are taken out of the exact quantum Liouvillian [T. J. H. Hele et al., J. Chem. Phys. 142, 134103 (2015)]; because of a phase-term, it cannot be used as a practical method without further approximation. Recently, Smith et al. [J. Chem. Phys. 142, 244112 (2015)] developed a "planetary" model dynamics which conserves the Feynman-Kleinert (FK) approximation to the quantum-Boltzmann distribution. Here, we show that for moderately anharmonic potentials, the planetary dynamics gives a good approximation to Matsubara trajectories on the FK potential surface by decoupling the centroid trajectory from the locally harmonic Matsubara fluctuations, which reduce to a single phase-less fluctuation particle (the "planet"). We also show that the FK effective frequency can be approximated by a direct integral over these fluctuations, obviating the need to solve iterative equations. This modification, together with use of thermostatted ring-polymer molecular dynamics, allows us to test the planetary model on water (gas-phase, liquid, and ice) using the q-TIP4P/F potential surface. The "planetary" fluctuations give a poor approximation to the rotational/librational bands in the infrared spectrum, but a good approximation to the bend and stretch bands, where the fluctuation lineshape is found to be motionally narrowed by the vibrations of the centroid.

  7. Tracers of Stellar Mass-loss. II. Mid-IR Colors and Surface Brightness Fluctuations

    NASA Astrophysics Data System (ADS)

    González-Lópezlira, Rosa A.

    2018-04-01

    I present integrated colors and surface brightness fluctuation magnitudes in the mid-infrared (IR), derived from stellar population synthesis models that include the effects of the dusty envelopes around thermally pulsing asymptotic giant branch (TP-AGB) stars. The models are based on the Bruzual & Charlot CB* isochrones; they are single-burst, range in age from a few Myr to 14 Gyr, and comprise metallicities between Z = 0.0001 and Z = 0.04. I compare these models to mid-IR data of AGB stars and star clusters in the Magellanic Clouds, and study the effects of varying self-consistently the mass-loss rate, the stellar parameters, and the output spectra of the stars plus their dusty envelopes. I find that models with a higher than fiducial mass-loss rate are needed to fit the mid-IR colors of “extreme” single AGB stars in the Large Magellanic Cloud. Surface brightness fluctuation magnitudes are quite sensitive to metallicity for 4.5 μm and longer wavelengths at all stellar population ages, and powerful diagnostics of mass-loss rate in the TP-AGB for intermediate-age populations, between 100 Myr and 2–3 Gyr.

  8. Numerical Modeling of Fluorescence Emission Energy Dispersion in Luminescent Solar Concentrator

    NASA Astrophysics Data System (ADS)

    Li, Lanfang; Sheng, Xing; Rogers, John; Nuzzo, Ralph

    2013-03-01

    We present a numerical modeling method and the corresponding experimental results, to address fluorescence emission dispersion for applications such as luminescent solar concentrator and light emitting diode color correction. Previously established modeling methods utilized a statistic-thermodynamic theory (Kenard-Stepnov etc.) that required a thorough understanding of the free energy landscape of the fluorophores. Some more recent work used an empirical approximation of the measured emission energy dispersion profile without considering anti-Stokes shifting during absorption and emission. In this work we present a technique for modeling fluorescence absorption and emission that utilizes the experimentally measured spectrum and approximates the observable Frank-Condon vibronic states as a continuum and takes into account thermodynamic energy relaxation by allowing thermal fluctuations. This new approximation method relaxes the requirement for knowledge of the fluorophore system and reduces demand on computing resources while still capturing the essence of physical process. We present simulation results of the energy distribution of emitted photons and compare them with experimental results with good agreement in terms of peak red-shift and intensity attenuation in a luminescent solar concentrator. This work is supported by the DOE `Light-Material Interactions in Energy Conversion' Energy Frontier Research Center under grant DE-SC0001293.

  9. Open channel noise. I. Noise in acetylcholine receptor currents suggests conformational fluctuations.

    PubMed

    Sigworth, F J

    1985-05-01

    The random passage of ions through an open channel is expected to result in shot noise fluctuations in the channel current. The patch-clamp technique now allows fluctuations of this size to be observed in single-channel currents. In the experiments reported here the acetylcholine-induced currents in cultured rat muscle cells were analyzed; fluctuations were found that were considerably larger than expected for shot noise. A low-frequency component, which was fitted with a Lorentzian, was examined in detail; it appears to arise from fluctuations in channel conductance of approximately 3% on a time scale of 1 ms. The characteristic relaxation time is voltage dependent and temperature dependent (Q10 approximately equal to 3) suggesting that the fluctuations arise from conformational fluctuations in the channel protein.

  10. Energy transfer between two vacuum-gapped metal plates: Coulomb fluctuations and electron tunneling

    NASA Astrophysics Data System (ADS)

    Zhang, Zu-Quan; Lü, Jing-Tao; Wang, Jian-Sheng

    2018-05-01

    Recent experimental measurements for near-field radiative heat transfer between two bodies have been able to approach the gap distance within 2 nm , where the contributions of Coulomb fluctuation and electron tunneling are comparable. Using the nonequilibrium Green's function method in the G0W0 approximation, based on a tight-binding model, we obtain for the energy current a Caroli formula from the Meir-Wingreen formula in the local equilibrium approximation. Also, the Caroli formula is consistent with the evanescent part of the heat transfer from the theory of fluctuational electrodynamics. We go beyond the local equilibrium approximation to study the energy transfer in the crossover region from electron tunneling to Coulomb fluctuation based on a numerical calculation.

  11. Classical gluon fields and collective dynamics of color-charge systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voronyuk, V.; Goloviznin, V. V.; Zinovjev, G. M.

    2015-03-15

    An investigation of color fields that arise in collisions of relativistic heavy ions reveals that, in the non-Abelian case, a change in the color charge leads to the appearance of an extra term that generates a sizable contribution of color-charge glow in chromoelectric and chromomagnetic fields. The possibility of the appearance of a color echo in the scattering of composite color particles belonging to the dipole type is discussed. Arguments are adduced in support of the statement that such effects are of importance in simulating the first stage of ultrarelativistic heavy-ion collisions,where the initial parton state is determined by amore » high nonequilibrium parton density and by strong local color fluctuations.« less

  12. EUCLIA—Exploring the UV/Optical Continuum Lag in Active Galactic Nuclei. I. A Model without Light Echoing

    NASA Astrophysics Data System (ADS)

    Cai, Zhen-Yi; Wang, Jun-Xian; Zhu, Fei-Fan; Sun, Mou-Yuan; Gu, Wei-Min; Cao, Xin-Wu; Yuan, Feng

    2018-03-01

    The tight interband correlation and the lag–wavelength relation among UV/optical continua of active galactic nuclei have been firmly established. They are usually understood within the widespread reprocessing scenario; however, the implied interband lags are generally too small. Furthermore, it is challenged by new evidence, such as that the X-ray reprocessing yields too much high-frequency UV/optical variation and that it fails to reproduce the observed timescale-dependent color variations among the Swift light curves of NGC 5548. In a different manner, we demonstrate that an upgraded inhomogeneous accretion disk model, whose local independent temperature fluctuations are subject to a speculated common large-scale temperature fluctuation, can intrinsically generate the tight interband correlation and lag across the UV/optical and be in nice agreement with several observational properties of NGC 5548, including the timescale-dependent color variation. The emergent lag is a result of the differential regression capability of local temperature fluctuations when responding to the large-scale fluctuation. An average speed of propagations as large as ≳15% of the speed of light may be required by this common fluctuation. Several potential physical mechanisms for such propagations are discussed. Our interesting phenomenological scenario may shed new light on comprehending the UV/optical continuum variations of active galactic nuclei.

  13. Active field control (AFC) -electro-acoustic enhancement system using acoustical feedback control

    NASA Astrophysics Data System (ADS)

    Miyazaki, Hideo; Watanabe, Takayuki; Kishinaga, Shinji; Kawakami, Fukushi

    2003-10-01

    AFC is an electro-acoustic enhancement system using FIR filters to optimize auditory impressions, such as liveness, loudness, and spaciousness. This system has been under development at Yamaha Corporation for more than 15 years and has been installed in approximately 50 venues in Japan to date. AFC utilizes feedback control techniques for recreation of reverberation from the physical reverberation of the room. In order to prevent coloration problems caused by a closed loop condition, two types of time-varying control techniques are implemented in the AFC system to ensure smooth loop gain and a sufficient margin in frequency characteristics to prevent instability. Those are: (a) EMR (electric microphone rotator) -smoothing frequency responses between microphones and speakers by changing the combinations of inputs and outputs periodically; (b) fluctuating-FIR -smoothing frequency responses of FIR filters and preventing coloration problems caused by fixed FIR filters, by moving each FIR tap periodically on time axis with a different phase and time period. In this paper, these techniques are summarized. A block diagram of AFC using new equipment named AFC1, which has been developed at Yamaha Corporation and released recently in the US, is also presented.

  14. Addendum to "Colored-noise-induced discontinuous transitions in symbiotic ecosystems".

    PubMed

    Sauga, Ako; Mankin, Romi

    2005-06-01

    A symbiotic ecosystem with Gompertz self-regulation and with adaptive competition between populations is studied by means of a N-species Lotka-Volterra stochastic model. The influence of fluctuating environment on the carrying capacity of a population is modeled as a dichotomous noise. The study is a follow up of previous investigations of symbiotic ecosystems subjected to the generalized Verhulst self-regulation [Phys. Rev. E 69, 061106 (2004); 65, 051108 (2002)]. In the framework of mean-field approximation the behavior of the solutions of the self-consistency equation for a stationary system is examined analytically in the full phase space of system parameters. Depending on the mutual interplay of symbiosis and competition of species, variation of noise parameters (amplitude, correlation time) can induce doubly unidirectional discontinuous transitions as well as single unidirectional discontinuous transitions of the mean population size.

  15. Addendum to ``Colored-noise-induced discontinuous transitions in symbiotic ecosystems''

    NASA Astrophysics Data System (ADS)

    Sauga, Ako; Mankin, Romi

    2005-06-01

    A symbiotic ecosystem with Gompertz self-regulation and with adaptive competition between populations is studied by means of a N -species Lotka-Volterra stochastic model. The influence of fluctuating environment on the carrying capacity of a population is modeled as a dichotomous noise. The study is a follow up of previous investigations of symbiotic ecosystems subjected to the generalized Verhulst self-regulation [Phys. Rev. E 69, 061106 (2004); 65, 051108 (2002)]. In the framework of mean-field approximation the behavior of the solutions of the self-consistency equation for a stationary system is examined analytically in the full phase space of system parameters. Depending on the mutual interplay of symbiosis and competition of species, variation of noise parameters (amplitude, correlation time) can induce doubly unidirectional discontinuous transitions as well as single unidirectional discontinuous transitions of the mean population size.

  16. Microwave beam broadening due to turbulent plasma density fluctuations within the limit of the Born approximation and beyond

    NASA Astrophysics Data System (ADS)

    Köhn, A.; Guidi, L.; Holzhauer, E.; Maj, O.; Poli, E.; Snicker, A.; Weber, H.

    2018-07-01

    Plasma turbulence, and edge density fluctuations in particular, can under certain conditions broaden the cross-section of injected microwave beams significantly. This can be a severe problem for applications relying on well-localized deposition of the microwave power, like the control of MHD instabilities. Here we investigate this broadening mechanism as a function of fluctuation level, background density and propagation length in a fusion-relevant scenario using two numerical codes, the full-wave code IPF-FDMC and the novel wave kinetic equation solver WKBeam. The latter treats the effects of fluctuations using a statistical approach, based on an iterative solution of the scattering problem (Born approximation). The full-wave simulations are used to benchmark this approach. The Born approximation is shown to be valid over a large parameter range, including ITER-relevant scenarios.

  17. The Transport of Density Fluctuations Throughout the Heliosphere

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Jetha, N.; Hu, Q.; Hunana, P.

    2012-01-01

    The solar wind is recognized as a turbulent magnetofluid, for which the properties of the turbulent velocity and magnetic field fluctuations are often described by the equations of incompressible magnetohydrodynamics (MHD). However, low-frequency density turbulence is also ubiquitous. On the basis of a nearly incompressible formulation of MHD in the expanding inhomogeneous solar wind, we derive the transport equation for the variance of the density fluctuations (Rho(exp 2)). The transport equation shows that density fluctuations behave as a passive scalar in the supersonic solar wind. In the absence of sources of density turbulence, such as within 1AU, the variance (Rho(exp 2)) approximates r(exp -4). In the outer heliosphere beyond 1 AU, the shear between fast and slow streams, the propagation of shocks, and the creation of interstellar pickup ions all act as sources of density turbulence. The model density fluctuation variance evolves with heliocentric distance within approximately 300 AU as (Rho(exp 2)) approximates r(exp -3.3) after which it flattens and then slowly increases. This is precisely the radial profile for the density fluctuation variance observed by Voyager 2. Using a different analysis technique, we confirm the radial profile for Rho(exp 2) of Bellamy, Cairns, & Smith using Voyager 2 data. We conclude that a passive scalar description for density fluctuations in the supersonic solar wind can explain the density fluctuation variance observed in both the inner and the outer heliosphere.

  18. Design and fabrication of dichroic mirrors for color separation and recombination of the Kr-Ar laser (white laser)

    NASA Astrophysics Data System (ADS)

    Park, Jungho; Park, Youngjun; Hwang, Young M.

    1997-10-01

    Cut-off filters reject all the radiation below and transmit all the above a certain wavelength and vice versa. In this paper, we will study the design and fabrication of a short wave pass or a long wave pass dichroic mirrors for color separation and recombination from the R.G.B. color beam source. In the laser display system, color separation and recombination is very important. We designed the coating layers so that the best performance may be obtained from a 45 degree incident s-polarized light. The following fabrication specification is satisfied in our color separation/recombination of the Kr-Ar laser source. The first dichroic mirror for the blue color separation, maximized on reflectance and transmittance as R > 99% in the blue regions (400 approximately 490 nm) and T > 90% in the green and red region (510 approximately 700 nm). The second dichroic mirror for the color recombination maximized the reflectance and transmittance as R > 99% in the range of 510 approximately 700 nm and T > 90% in the blue color region. In the third dichroic mirror for which it used the color separation and recombination of the green and red simultaneously, maximized the reflectance and transmittance as R > 99% in the green region (510 approximately 560 nm) and T > 90% in the red region. These fabricated mirrors were applied in our laser display projection system. We obtained an excellent result.

  19. Resonance energy transfer process in nanogap-based dual-color random lasing

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoyu; Tong, Junhua; Liu, Dahe; Wang, Zhaona

    2017-04-01

    The resonance energy transfer (RET) process between Rhodamine 6G and oxazine in the nanogap-based random systems is systematically studied by revealing the variations and fluctuations of RET coefficients with pump power density. Three working regions stable fluorescence, dynamic laser, and stable laser are thus demonstrated in the dual-color random systems. The stable RET coefficients in fluorescence and lasing regions are generally different and greatly dependent on the donor concentration and the donor-acceptor ratio. These results may provide a way to reveal the energy distribution regulars in the random system and to design the tunable multi-color coherent random lasers for colorful imaging.

  20. The Atmospheric Mutual Coherence Function From the First and Second Rytov Approximations and Its Comparison to That of Strong Fluctuation Theory

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2011-01-01

    An expression for the mutual coherence function (MCF) of an electromagnetic beam wave propagating through atmospheric turbulence is derived within the confines of the Rytov approximation. It is shown that both the first and second Rytov approximations are required. The Rytov MCF is then compared to that which issues from the parabolic equation method of strong fluctuation theory. The agreement is found to be quite good in the weak fluctuation case. However, an instability is observed for the special case of beam wave intensities. The source of the instabilities is identified to be the characteristic way beam wave amplitudes are treated within the Rytov method.

  1. Characterization of maximally random jammed sphere packings. III. Transport and electromagnetic properties via correlation functions

    NASA Astrophysics Data System (ADS)

    Klatt, Michael A.; Torquato, Salvatore

    2018-01-01

    In the first two papers of this series, we characterized the structure of maximally random jammed (MRJ) sphere packings across length scales by computing a variety of different correlation functions, spectral functions, hole probabilities, and local density fluctuations. From the remarkable structural features of the MRJ packings, especially its disordered hyperuniformity, exceptional physical properties can be expected. Here we employ these structural descriptors to estimate effective transport and electromagnetic properties via rigorous bounds, exact expansions, and accurate analytical approximation formulas. These property formulas include interfacial bounds as well as universal scaling laws for the mean survival time and the fluid permeability. We also estimate the principal relaxation time associated with Brownian motion among perfectly absorbing traps. For the propagation of electromagnetic waves in the long-wavelength limit, we show that a dispersion of dielectric MRJ spheres within a matrix of another dielectric material forms, to a very good approximation, a dissipationless disordered and isotropic two-phase medium for any phase dielectric contrast ratio. We compare the effective properties of the MRJ sphere packings to those of overlapping spheres, equilibrium hard-sphere packings, and lattices of hard spheres. Moreover, we generalize results to micro- and macroscopically anisotropic packings of spheroids with tensorial effective properties. The analytic bounds predict the qualitative trend in the physical properties associated with these structures, which provides guidance to more time-consuming simulations and experiments. They especially provide impetus for experiments to design materials with unique bulk properties resulting from hyperuniformity, including structural-color and color-sensing applications.

  2. Phase fluctuations model for EM wave propagation through solar scintillation at superior solar conjunction

    NASA Astrophysics Data System (ADS)

    Xu, Guanjun; Song, Zhaohui

    2017-04-01

    Traveling solar wind disturbances have a significant influence on radio wave characteristics during the superior solar conjunction communication. This paper considers the impact of solar scintillation on phase fluctuations of electromagnetic (EM) wave propagation during the superior solar conjunction. Based on the Geometric Optics approximation, the close-form approximation model for phase fluctuations is developed. Both effects of anisotropic temporal variations function of plasma irregularities and their power spectrum are presented and analyzed numerically. It is found that phase fluctuations rapidly decrease with increasing Sun-Earth-Probe angle and decrease with increasing frequency at the rate of 1/f2. Moreover, the role of various features of the solar wind irregularities and their influence on the EM wave characteristic parameters is studied and discussed. Finally, we study the phase fluctuations of typical cases in order to better understand the impact of phase fluctuations in future deep space communication scenarios during solar conjunction periods.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Hengxiao; Gu, Minfeng, E-mail: hxguo@shao.ac.cn, E-mail: gumf@shao.ac.cn

    We investigated the optical/ultraviolet (UV) color variations for a sample of 2169 quasars based on multi-epoch spectroscopy in the Sloan Digital Sky Survey data releases seven (DR7) and nine (DR9). To correct the systematic difference between DR7 and DR9 due to the different instrumental setup, we produced a correction spectrum by using a sample of F-stars observed in both DR7 and DR9. The correction spectrum was then applied to quasars when comparing the spectra of DR7 with DR9. In each object, the color variation was explored by comparing the spectral index of the continuum power-law fit on the brightest spectrummore » with the faintest one, and also by the shape of their difference spectrum. In 1876 quasars with consistent color variations from two methods, we found that most sources (1755, ∼94%) show the bluer-when-brighter (BWB) trend, and the redder-when-brighter (RWB) trend is detected in only 121 objects (∼6%). The common BWB trend is supported by the composite spectrum constructed from bright spectra, which is bluer than that from faint spectra, and also by the blue composite difference spectrum. The correction spectrum is proven to be highly reliable by comparing the composite spectrum from corrected DR9 and original DR7 spectra. Assuming that the optical/UV variability is triggered by fluctuations, the RWB trend can likely be explained if the fluctuations occur first in the outer disk region, and the inner disk region has not yet fully responded when the fluctuations are being propagated inward. In contrast, the common BWB trend implies that the fluctuations likely more often happen first in the inner disk region.« less

  4. Effect of gold wire bonding process on angular correlated color temperature uniformity of white light-emitting diode.

    PubMed

    Wu, Bulong; Luo, Xiaobing; Zheng, Huai; Liu, Sheng

    2011-11-21

    Gold wire bonding is an important packaging process of lighting emitting diode (LED). In this work, we studied the effect of gold wire bonding on the angular uniformity of correlated color temperature (CCT) in white LEDs whose phosphor layers were coated by freely dispersed coating process. Experimental study indicated that different gold wire bonding impacts the geometry of phosphor layer, and it results in different fluctuation trends of angular CCT at different spatial planes in one LED sample. It also results in various fluctuating amplitudes of angular CCT distributions at the same spatial plane for samples with different wire bonding angles. The gold wire bonding process has important impact on angular uniformity of CCT in LED package. © 2011 Optical Society of America

  5. Fluctuation instability of the Dirac Sea in quark models of strong interactions

    NASA Astrophysics Data System (ADS)

    Zinovjev, G. M.; Molodtsov, S. V.

    2016-03-01

    A number of exactly integrable (quark) models of quantum field theory that feature an infinite correlation length are considered. An instability of the standard vacuum quark ensemble, a Dirac sea (in spacetimes of dimension higher than three), is highlighted. It is due to a strong ground-state degeneracy, which, in turn, stems from a special character of the energy distribution. In the case where the momentumcutoff parameter tends to infinity, this distribution becomes infinitely narrow and leads to large (unlimited) fluctuations. A comparison of the results for various vacuum ensembles, including a Dirac sea, a neutral ensemble, a color superconductor, and a Bardeen-Cooper-Schrieffer (BCS) state, was performed. In the presence of color quark interaction, a BCS state is unambiguously chosen as the ground state of the quark ensemble.

  6. Path coloring on the Mesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabani, Y.

    In the minimum path coloring problem, we are given a list of pairs of vertices of a graph. We are asked to connect each pair by a colored path. Paths of the same color must be edge disjoint. Our objective is to minimize the number of colors used. This problem was raised by Aggarwal et al and Raghavan and Upfal as a model for routing in all-optical networks. It is also related to questions in circuit routing. In this paper, we improve the O (ln N) approximation result of Kleinberg and Tardos for path coloring on the N x Nmore » mesh. We give an O(1) approximation algorithm to the number of colors needed, and a poly(ln ln N) approximation algorithm to the choice of paths and colors. To the best of our knowledge, these are the first sub-logarithmic bounds for any network other than trees, rings, or trees of rings. Our results are based on developing new techniques for randomized rounding. These techniques iteratively improve a fractional solution until it approaches integrality. They are motivated by the method used by Leighton, Maggs, and Rao for packet routing.« less

  7. Observation of a rapid decrease in the brightness of the coma of 2060 Chiron in 1990 January

    NASA Technical Reports Server (NTRS)

    Buratti, Bonnie J.; Dunbar, R. Scott

    1991-01-01

    Photometric observations of 2060 Chiron in the V and R filters were obtained with the 1.5-m telescope on Palomar Mountain during a 7-hr period on January 20, 1990 (UT). A general decrease of about 10 percent in integrated brightness occurred in both filters. No color dependence to the decrease was observed. A small (about 0.02 mag) rotational light curve, far smaller than the 0.09 mag (peak-to-peak) one observed by Bus et al. (1989) is superposed on the general decrease. On January 29, 1990, Luu and Jewitt (1990) observed an impulsive brightening of Chiron of approximately the same magnitude and time scale as the presently observed decrease in brightness. The combined results provide evidence that Chiron is currently exhibiting short-term fluctuations in the brightness of its coma, in addition to its well-established general decrease in brightness.

  8. Large-angle cosmic microwave background anisotropies in an open universe

    NASA Technical Reports Server (NTRS)

    Kamionkowski, Marc; Spergel, David N.

    1994-01-01

    If the universe is open, scales larger than the curvature scale may be probed by observation of large-angle fluctuations in the cosmic microwave background (CMB). We consider primordial adiabatic perturbations and discuss power spectra that are power laws in volume, wavelength, and eigenvalue of the Laplace operator. Such spectra may have arisen if, for example, the universe underwent a period of `frustated' inflation. The resulting large-angle anisotropies of the CMB are computed. The amplitude generally increases as Omega is decreased but decreases as h is increased. Interestingly enough, for all three Ansaetze, anisotropies on angular scales larger than the curvature scale are suppressed relative to the anisotropies on scales smaller than the curvature scale, but cosmic variance makes discrimination between various models difficult. Models with 0.2 approximately less than Omega h approximately less than 0.3 appear compatible with CMB fluctuations detected by Cosmic Background Explorer Satellite (COBE) and the Tenerife experiment and with the amplitude and spectrum of fluctuations of galaxy counts in the APM, CfA, and 1.2 Jy IRAS surveys. COBE normalization for these models yields sigma(sub 8) approximately = 0.5 - 0.7. Models with smaller values of Omega h when normalized to COBE require bias factors in excess of 2 to be compatible with the observed galaxy counts on the 8/h Mpc scale. Requiring that the age of the universe exceed 10 Gyr implies that Omega approximately greater than 0.25, while requiring that from the last-scattering term in the Sachs-Wolfe formula, large-angle anisotropies come primarily from the decay of potential fluctuations at z approximately less than 1/Omega. Thus, if the universe is open, COBE has been detecting temperature fluctuations produced at moderate redshift rather than at z approximately 1300.

  9. Eccentricity fluctuation effects on elliptic flow in relativistic heavy ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Tetsufumi; Nara, Yasushi

    2009-06-15

    We study effects of eccentricity fluctuations on the elliptic flow coefficient v{sub 2} at midrapidity in both Au+Au and Cu+Cu collisions at {radical}(s{sub NN})=200 GeV by using a hybrid model that combines ideal hydrodynamics for space-time evolution of the quark gluon plasma phase and a hadronic transport model for the hadronic matter. For initial conditions in hydrodynamic simulations, both the Glauber model and the color glass condensate model are employed to demonstrate the effect of initial eccentricity fluctuations originating from the nucleon position inside a colliding nucleus. The effect of eccentricity fluctuations is modest in semicentral Au+Au collisions, but significantlymore » enhances v{sub 2} in Cu+Cu collisions.« less

  10. Mean-field dynamo in a turbulence with shear and kinetic helicity fluctuations.

    PubMed

    Kleeorin, Nathan; Rogachevskii, Igor

    2008-03-01

    We study the effects of kinetic helicity fluctuations in a turbulence with large-scale shear using two different approaches: the spectral tau approximation and the second-order correlation approximation (or first-order smoothing approximation). These two approaches demonstrate that homogeneous kinetic helicity fluctuations alone with zero mean value in a sheared homogeneous turbulence cannot cause a large-scale dynamo. A mean-field dynamo is possible when the kinetic helicity fluctuations are inhomogeneous, which causes a nonzero mean alpha effect in a sheared turbulence. On the other hand, the shear-current effect can generate a large-scale magnetic field even in a homogeneous nonhelical turbulence with large-scale shear. This effect was investigated previously for large hydrodynamic and magnetic Reynolds numbers. In this study we examine the threshold required for the shear-current dynamo versus Reynolds number. We demonstrate that there is no need for a developed inertial range in order to maintain the shear-current dynamo (e.g., the threshold in the Reynolds number is of the order of 1).

  11. Fluctuation instability of the Dirac Sea in quark models of strong interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinovjev, G. M., E-mail: Gennady.Zinovjev@cern.ch; Molodtsov, S. V.

    A number of exactly integrable (quark) models of quantum field theory that feature an infinite correlation length are considered. An instability of the standard vacuum quark ensemble, a Dirac sea (in spacetimes of dimension higher than three), is highlighted. It is due to a strong ground-state degeneracy, which, in turn, stems from a special character of the energy distribution. In the case where the momentumcutoff parameter tends to infinity, this distribution becomes infinitely narrow and leads to large (unlimited) fluctuations. A comparison of the results for various vacuum ensembles, including a Dirac sea, a neutral ensemble, a color superconductor, andmore » a Bardeen–Cooper–Schrieffer (BCS) state, was performed. In the presence of color quark interaction, a BCS state is unambiguously chosen as the ground state of the quark ensemble.« less

  12. Mapping color fluctuations in the photon in ultraperipheral heavy ion collisions at the Large Hadron Collider

    DOE PAGES

    Alvioli, M.; Frankfurt, L.; Guzey, V.; ...

    2017-02-20

    Here, we model effects of color fluctuations (CFs) in the light-cone photon wave function and for the first time make predictions for the distribution over the number of wounded nucleons ν in the inelastic photon–nucleus scattering. We show that CFs lead to a dramatic enhancement of this distribution at ν=1 and large ν>10. We also study the implications of different scales and CFs in the photon wave function on the total transverse energy ΣE T and other observables in inelastic γA scattering with different triggers. Our predictions can be tested in proton–nucleus and nucleus–nucleus ultraperipheral collisions at the LHC andmore » will help to map CFs, whose first indications have already been observed at the LHC.« less

  13. Color moiré simulations in contact-type 3-D displays.

    PubMed

    Lee, B-R; Son, J-Y; Chernyshov, O O; Lee, H; Jeong, I-K

    2015-06-01

    A new method of color moiré fringe simulation in the contact-type 3-D displays is introduced. The method allows simulating color moirés appearing in the displays, which cannot be approximated by conventional cosine approximation of a line grating. The color moirés are mainly introduced by the line width of the boundary lines between the elemental optics in and plate thickness of viewing zone forming optics. This is because the lines are hiding some parts of pixels under the viewing zone forming optics, and the plate thickness induces a virtual contraction of the pixels. The simulated color moiré fringes are closely matched with those appearing at the displays.

  14. [Study on the matching of the shade between beverage and modifying porcelain shade guide].

    PubMed

    Yao, Jiang-wu; Li, Shui-gen; Lin, Jin-ying

    2007-10-01

    To evaluate the matching of the shade between beverage and modifying porcelain shade guide according to Munsell color order system, thus to provide the reference basis for selecting modifying porcelain to mimic the stain of natural tooth by technician. The shade of Vita Akzent, Vita Interno, Shofu Vintage & Unibond and Noritake Super Porcelain EX-3 shade tabs as well as 15 kinds of beverage were measured according to Munsell color order system on Color-Eye 7000A spectrophotometer. The difference of the frequency of approximate hue, value, and chroma between shade tabs and beverage were compared by calculating the Fisher exact probabilities. The frequency of approximate hue between 4 kinds of shade tabs and 15 kinds of bev-erage was significant different (P<0.05), while the frequency of approximate value, and chroma was not significant different (P>0.05). Except the hue, the color distribution of 4 kinds of shade tabs was similar to that of 15 kinds of beverage. But the color of beverage also can be approximately matched by any kind of modifying porcelain by mixing porcelain powder of appropriate hue, value, and chroma.

  15. Thermal Density Functional Theory: Time-Dependent Linear Response and Approximate Functionals from the Fluctuation-Dissipation Theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron

    We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.

  16. Thermal Density Functional Theory: Time-Dependent Linear Response and Approximate Functionals from the Fluctuation-Dissipation Theorem

    DOE PAGES

    Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron

    2016-06-08

    We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.

  17. Background magnetic spectra - Approximately 10 to the -5th to approximately 10 to the 5th Hz

    NASA Astrophysics Data System (ADS)

    Lanzerotti, L. J.; Maclennan, C. G.; Fraser-Smith, A. C.

    1990-09-01

    The determination of the amplitude and functional form of the geomagnetic fluctuations measured at the Arrival Heights area of the Hut Point Peninsula on Ross Island in June 1986 is presented. The frequency range covered is from approximately 10 to the -5th to approximately 10 to the 5th Hz, with a gap between 0.1 and 10 Hz due to instrumentation limitations. In spite of this gap, it is thought that these magnetic fluctuation spectra, obtained from data acquired simultaneously with two instruments, cover the broadest frequency range to date. Schematic spectra derived from the data obtained are provided.

  18. Effects of laser phase fluctuations on squeezing in intracavity second-harmonic generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, T. A. B.; Anderson, T. B.; Walls, D. F.

    1989-08-01

    Excellent squeezing in intracavity second-harmonic generation has been predicted to occur on cavity resonance in the output intensity fluctuations. Cavity detunings cause laser phase noise to couple in and reduce the squeezing observable. Here we consider the effects of laser phase fluctuations on the output-squeezing spectrum. Laser phase noise is modeled as an Ornstein-Uhlenbeck (colored-noise) Gaussian stochastic process and its effects are compared with the white-noise limit. This indicates that the white-noise model may qualitatively overestimate the deleterious effects of laser fluctuations on sideband squeezing. We compare our results with the recently reported experiment of Pereira /ital et/ /ital al/.more » (Phys. Rev. A 38, 4931 (1988)) and present an analysis of the empty cavity for comparison.« less

  19. The Next Generation Virgo Cluster Survey (NGVS). XVIII. Measurement and Calibration of Surface Brightness Fluctuation Distances for Bright Galaxies in Virgo (and Beyond)

    NASA Astrophysics Data System (ADS)

    Cantiello, Michele; Blakeslee, John P.; Ferrarese, Laura; Côté, Patrick; Roediger, Joel C.; Raimondo, Gabriella; Peng, Eric W.; Gwyn, Stephen; Durrell, Patrick R.; Cuillandre, Jean-Charles

    2018-04-01

    We describe a program to measure surface brightness fluctuation (SBF) distances to galaxies observed in the Next Generation Virgo Cluster Survey (NGVS), a photometric imaging survey covering 104 deg2 of the Virgo cluster in the u*, g, i, and z bandpasses with the Canada–France–Hawaii Telescope. We describe the selection of the sample galaxies, the procedures for measuring the apparent i-band SBF magnitude {\\overline{m}}i, and the calibration of the absolute Mibar as a function of observed stellar population properties. The multiband NGVS data set provides multiple options for calibrating the SBF distances, and we explore various calibrations involving individual color indices as well as combinations of two different colors. Within the color range of the present sample, the two-color calibrations do not significantly improve the scatter with respect to wide-baseline, single-color calibrations involving u*. We adopt the ({u}* -z) calibration as a reference for the present galaxy sample, with an observed scatter of 0.11 mag. For a few cases that lack good u* photometry, we use an alternative relation based on a combination of (g-i) and (g-z) colors, with only a slightly larger observed scatter of 0.12 mag. The agreement of our measurements with the best existing distance estimates provides confidence that our measurements are accurate. We present a preliminary catalog of distances for 89 galaxies brighter than B T ≈ 13.0 mag within the survey footprint, including members of the background M and W Clouds at roughly twice the distance of the main body of the Virgo cluster. The extension of the present work to fainter and bluer galaxies is in progress.

  20. Portrait of Pluto and Charon

    NASA Image and Video Library

    2015-07-17

    These two images of Pluto and Charon were collected separately by NASA New Horizons during approach on July 13 and July 14, 2015. The relative reflectivity, size, separation, and orientations, and colors are approximated in this composite image, and they are shown in approximate true color. http://photojournal.jpl.nasa.gov/catalog/PIA19717

  1. Evidence for x -dependent proton color fluctuations in p A collisions at the CERN Large Hadron Collider

    DOE PAGES

    Alvioli, M.; Cole, B. A.; Frankfurt, L.; ...

    2016-01-21

    The centrality dependence of forward jet production in pA collisions at the Large Hadron Collider (LHC) has been found to grossly violate the Glauber model prediction in a way that depends on the x in the proton. In this paper, we argue that this modification pattern provides the first experimental evidence for x-dependent proton color fluctuation effects. On average, parton configurations in the projectile proton containing a parton with large x interact with a nuclear target with a significantly smaller than average cross section and have smaller than average size. We implement the effects of fluctuations of the interaction strengthmore » and, using the ATLAS analysis of how hadron production at backward rapidities depends on the number of wounded nucleons, make quantitative predictions for the centrality dependence of the jet production rate as a function of the x-dependent interaction strength σ(x). We find that σ(x) ~ 0.6(σ) gives a good description of the data at x = 0.6. Finally, these findings support an explanation of the European Muon Collaboration effect as arising from the suppression of small-size nucleon configurations in the nucleus.« less

  2. Fluctuations in the quark-meson model for QCD with isospin chemical potential

    NASA Astrophysics Data System (ADS)

    Kamikado, Kazuhiko; Strodthoff, Nils; von Smekal, Lorenz; Wambach, Jochen

    2013-01-01

    We study the two-flavor quark-meson (QM) model with the functional renormalization group (FRG) to describe the effects of collective mesonic fluctuations on the phase diagram of QCD at finite baryon and isospin chemical potentials, μB and μI. With only isospin chemical potential there is a precise equivalence between the competing dynamics of chiral versus pion condensation and that of collective mesonic and baryonic fluctuations in the quark-meson-diquark model for two-color QCD at finite baryon chemical potential. Here, finite μB = 3 μ introduces an additional dimension to the phase diagram as compared to two-color QCD, however. At zero temperature, the (μI, μ) plane of this phase diagram is strongly constrained by the "Silver Blaze problem." In particular, the onset of pion condensation must occur at μI =mπ / 2, independent of μ as long as μ +μI stays below the constituent quark mass of the QM model or the liquid-gas transition line of nuclear matter in QCD. In order to maintain this relation beyond mean field it is crucial to compute the pion mass from its timelike correlator with the FRG in a consistent way.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yu-Han; Wang, Jun-Xian; Chen, Xiao-Yang

    Quasars are variable on timescales from days to years in UV/optical and generally appear bluer while they brighten. The physics behind the variations in fluxes and colors remains unclear. Using Sloan Digital Sky Survey g- and r-band photometric monitoring data for quasars in Stripe 82, we find that although the flux variation amplitude increases with timescale, the color variability exhibits the opposite behavior. The color variability of quasars is prominent at timescales as short as ∼10 days, but gradually reduces toward timescales up to years. In other words, the variable emission at shorter timescales is bluer than that at longermore » timescales. This timescale dependence is clearly and consistently detected at all redshifts from z = 0 to 3.5; thus, it cannot be due to contamination to broadband photometry from emission lines that do not respond to fast continuum variations. The discovery directly rules out the possibility that simply attributes the color variability to contamination from a non-variable redder component such as the host galaxy. It cannot be interpreted as changes in global accretion rate either. The thermal accretion disk fluctuation model is favored in the sense that fluctuations in the inner, hotter region of the disk are responsible for short-term variations, while longer-term and stronger variations are expected from the larger and cooler disk region. An interesting implication is that one can use quasar variations at different timescales to probe disk emission at different radii.« less

  4. Super-Resolution Optical Fluctuation Bio-Imaging with Dual-Color Carbon Nanodots.

    PubMed

    Chizhik, Anna M; Stein, Simon; Dekaliuk, Mariia O; Battle, Christopher; Li, Weixing; Huss, Anja; Platen, Mitja; Schaap, Iwan A T; Gregor, Ingo; Demchenko, Alexander P; Schmidt, Christoph F; Enderlein, Jörg; Chizhik, Alexey I

    2016-01-13

    Success in super-resolution imaging relies on a proper choice of fluorescent probes. Here, we suggest novel easily produced and biocompatible nanoparticles-carbon nanodots-for super-resolution optical fluctuation bioimaging (SOFI). The particles revealed an intrinsic dual-color fluorescence, which corresponds to two subpopulations of particles of different electric charges. The neutral nanoparticles localize to cellular nuclei suggesting their potential use as an inexpensive, easily produced nucleus-specific label. The single particle study revealed that the carbon nanodots possess a unique hybrid combination of fluorescence properties exhibiting characteristics of both dye molecules and semiconductor nanocrystals. The results suggest that charge trapping and redistribution on the surface of the particles triggers their transitions between emissive and dark states. These findings open up new possibilities for the utilization of carbon nanodots in the various super-resolution microscopy methods based on stochastic optical switching.

  5. Natural selection and the predictability of evolution in Timema stick insects.

    PubMed

    Nosil, Patrik; Villoutreix, Romain; de Carvalho, Clarissa F; Farkas, Timothy E; Soria-Carrasco, Víctor; Feder, Jeffrey L; Crespi, Bernard J; Gompert, Zach

    2018-02-16

    Predicting evolution remains difficult. We studied the evolution of cryptic body coloration and pattern in a stick insect using 25 years of field data, experiments, and genomics. We found that evolution is more difficult to predict when it involves a balance between multiple selective factors and uncertainty in environmental conditions than when it involves feedback loops that cause consistent back-and-forth fluctuations. Specifically, changes in color-morph frequencies are modestly predictable through time ( r 2 = 0.14) and driven by complex selective regimes and yearly fluctuations in climate. In contrast, temporal changes in pattern-morph frequencies are highly predictable due to negative frequency-dependent selection ( r 2 = 0.86). For both traits, however, natural selection drives evolution around a dynamic equilibrium, providing some predictability to the process. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. Diagnostics of transparent polymer coatings of metal items

    NASA Astrophysics Data System (ADS)

    Varepo, L. G.; Ermakova, I. N.; Nagornova, I. V.; Kondratov, A. P.

    2017-08-01

    The methods of visual and instrumental express diagnostics of safety critical defects and non-uniform thickness of transparent mono- and multilayer polyolefin surface coating of metal items are analyzed in the paper. The instrumental diagnostics method relates to colorimetric measuring based on effects, which appear in the polarized light for extrusion polymer coatings. A color coordinates dependence (in the color system CIE La*b*) on both HDPE / PVC coating thickness fluctuation values (from average ones) and coating interlayer or adhesion layer delaminating is shown. A variation of color characteristics in the polarized light at a liquid penetration into delaminated polymer layers is found. Measuring parameters and critical uncertainties are defined.

  7. Daytime Changes of Skin Biophysical Characteristics: A Study of Hydration, Transepidermal Water Loss, pH, Sebum, Elasticity, Erythema, and Color Index on Middle Eastern Skin.

    PubMed

    Firooz, Alireza; Zartab, Hamed; Sadr, Bardia; Bagherpour, Leili Naraghi; Masoudi, Aidin; Fanian, Ferial; Dowlati, Yahya; Ehsani, Amir Hooshang; Samadi, Aniseh

    2016-01-01

    The exposure of skin to ultraviolet radiation and temperature differs significantly during the day. It is reasonable that biophysical parameters of human skin have periodic daily fluctuation. The objective of this study was to study the fluctuations of various biophysical characteristics of Middle Eastern skin in standardized experimental conditions. Seven biophysical parameters of skin including stratum corneum hydration, transepidermal water loss, pH, sebum, elasticity, skin color, and erythema index were measured at three time points (8 a.m., 12 p.m. and 4 p.m.) on the forearm of 12 healthy participants (mean age of 28.4 years) without any ongoing skin disease using the CK MPA 580 device in standard temperature and humidity conditions. A significant difference was observed between means of skin color index at 8 a.m. (175.42 ± 13.92) and 4 p.m. (164.44 ± 13.72, P = 0.025), between the pH at 8 a.m. (5.72 ± 0.48) and 4 p.m. (5.33 ± 0.55, P = 0.001) and pH at 12 p.m. (5.60 ± 0.48) and 4 p.m. (5.33 ± 0.55, P = 0.001). Other comparisons between the means of these parameters at different time points resulted in nonsignificant P values. There are daytime changes in skin color index and pH. Skin color index might be higher and cutaneous pH more basic in the early morning compared to later of the day.

  8. Linear flavor-wave theory for fully antisymmetric SU(N ) irreducible representations

    NASA Astrophysics Data System (ADS)

    Kim, Francisco H.; Penc, Karlo; Nataf, Pierre; Mila, Frédéric

    2017-11-01

    The extension of the linear flavor-wave theory to fully antisymmetric irreducible representations (irreps) of SU (N ) is presented in order to investigate the color order of SU (N ) antiferromagnetic Heisenberg models in several two-dimensional geometries. The square, triangular, and honeycomb lattices are considered with m fermionic particles per site. We present two different methods: the first method is the generalization of the multiboson spin-wave approach to SU (N ) which consists of associating a Schwinger boson to each state on a site. The second method adopts the Read and Sachdev bosons which are an extension of the Schwinger bosons that introduces one boson for each color and each line of the Young tableau. The two methods yield the same dispersing modes, a good indication that they properly capture the semiclassical fluctuations, but the first one leads to spurious flat modes of finite frequency not present in the second one. Both methods lead to the same physical conclusions otherwise: long-range Néel-type order is likely for the square lattice for SU(4) with two particles per site, but quantum fluctuations probably destroy order for more than two particles per site, with N =2 m . By contrast, quantum fluctuations always lead to corrections larger than the classical order parameter for the tripartite triangular lattice (with N =3 m ) or the bipartite honeycomb lattice (with N =2 m ) for more than one particle per site, m >1 , making the presence of color very unlikely except maybe for m =2 on the honeycomb lattice, for which the correction is only marginally larger than the classical order parameter.

  9. The effect of aperture averaging upon tropospheric delay fluctuations seen with a DSN antenna

    NASA Technical Reports Server (NTRS)

    Linfield, R.

    1996-01-01

    The spectrum of tropospheric delay fluctuations expected for a DSN antenna at time scales less than 100 s has been calculated. A new feature included in these calculations is the effect of aperture averaging, which causes a reduction in delay fluctuations on time scales less than the antenna wind speed crossing time, approximately equal to 5-10 s. On time scales less than a few seconds, the Allan deviation sigma(sub y)(Delta(t)) varies as (Delta(t))(sup +1), rather than sigma(sub y)(Delta(t)) varies as (Delta(t))(exp -1/6) without aperture averaging. Due to thermal radiometer noise, calibration of tropospheric delay fluctuations with water vapor radiometers will not be possible on time scales less than approximately 10 s. However, the tropospheric fluctuation level will be small enough that radio science measurements with a spacecraft on time scales less than a few seconds will be limited by the stability of frequency standards and/or other nontropospheric effects.

  10. Can Coloring Mandalas Reduce Anxiety?

    ERIC Educational Resources Information Center

    Curry, Nancy A.; Kasser, Tim

    2005-01-01

    This study examined the effectiveness of different types of art activities in the reduction of anxiety. After undergoing a brief anxiety-induction, 84 undergraduate students were randomly assigned to color a mandala, to color a plaid form, or to color on a blank piece of paper. Results demonstrated that anxiety levels declined approximately the…

  11. The Earth's Seasons in 3-D--Part 1.

    ERIC Educational Resources Information Center

    Eckroth, Charles A.

    1993-01-01

    This article describes a teaching aid made from four colored foam balls mounted on a stiff wire circle used to teach about the changing seasons and earth temperature fluctuations. The spheres represent the Earth at the solstice and equinox positions. (MVL)

  12. Independent, Synchronous Access to Color and Motion Features

    ERIC Educational Resources Information Center

    Holcombe, Alex O.; Cavanagh, Patrick

    2008-01-01

    We investigated the role of attention in pairing superimposed visual features. When moving dots alternate in color and in motion direction, reports of the perceived color and motion reveal an asynchrony: the most accurate reports occur when the motion change precedes the associated color change by approximately 100ms [Moutoussis, K., & Zeki,…

  13. Application of ERTS-1 imagery in the fields of geology, agriculture, forestry, and hydrology to selected test sites in Iran

    NASA Technical Reports Server (NTRS)

    Ebtehadj, K.

    1973-01-01

    The preliminary study of the ERTS-1 imagery coverage of Iran, commenced on October 26, 1972. All of the images were carefully examined, and a photomosaic covering approximately ninety-five per cent of the country was prepared. A number of images of selected areas were studied in detail. In the field of geology, a number of large scale faults were identified, which do not figure on geological maps. Furthermore, a preliminary study was carried out on the recent sediments, their possible sources, and origin. A limited number of geological work maps were prepared as well. In the fields of agriculture and forestry, studies based on color composite prints of certain areas were undertaken, with a purpose of identifying potential arable areas. Investigations in the field of water resources resulted in the discovery of a number of small lakes, and streams. Furthermore, fluctuations of the water level in some lakes were observed.

  14. Observation of a rapid decrease in the brightness of the coma of 2060 Chiron in 1990 January

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buratti, B.J.; Dunbar, R.S.

    Photometric observations of 2060 Chiron in the V and R filters were obtained with the 1.5-m telescope on Palomar Mountain during a 7-hr period on January 20, 1990 (UT). A general decrease of about 10 percent in integrated brightness occurred in both filters. No color dependence to the decrease was observed. A small (about 0.02 mag) rotational light curve, far smaller than the 0.09 mag (peak-to-peak) one observed by Bus et al. (1989) is superposed on the general decrease. On January 29, 1990, Luu and Jewitt (1990) observed an impulsive brightening of Chiron of approximately the same magnitude and timemore » scale as the presently observed decrease in brightness. The combined results provide evidence that Chiron is currently exhibiting short-term fluctuations in the brightness of its coma, in addition to its well-established general decrease in brightness. 14 refs.« less

  15. Increased confinement and beta by inductive poloidal current drive in the RFP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarff, J.S.; Lanier, N.E.; Prager, S.C.

    1996-10-01

    Progress in understanding magnetic-fluctuation-induced transport in the reversed field pinch (RFP) has led to the idea of current profile control to reduce fluctuations and transport. With the addition of inductive poloidal current drive in the Madison Symmetric Torus (MST), the magnetic fluctuation amplitude is halved, leading to a four- to five-fold increase in the energy confinement time to {tau}{sub E}{approximately}5 ms as a result of both decreased plasma resistance and increased stored thermal energy. The record low fluctuation amplitude coincides with a record high electron temperature of {approximately}600 eV (for MST), and beta {beta} = 2{mu}{sub 0} / B(a){sup 2}more » increases from 6% to 8% compared with conventional MST RFP plasmas. Other improvements include increased particle confinement and impurity reduction. 19 refs., 4 figs., 1 tab.« less

  16. Infinite order quantum-gravitational correlations

    NASA Astrophysics Data System (ADS)

    Knorr, Benjamin

    2018-06-01

    A new approximation scheme for nonperturbative renormalisation group equations for quantum gravity is introduced. Correlation functions of arbitrarily high order can be studied by resolving the full dependence of the renormalisation group equations on the fluctuation field (graviton). This is reminiscent of a local potential approximation in O(N)-symmetric field theories. As a first proof of principle, we derive the flow equation for the ‘graviton potential’ induced by a conformal fluctuation and corrections induced by a gravitational wave fluctuation. Indications are found that quantum gravity might be in a non-metric phase in the deep ultraviolet. The present setup significantly improves the quality of previous fluctuation vertex studies by including infinitely many couplings, thereby testing the reliability of schemes to identify different couplings to close the equations, and represents an important step towards the resolution of the Nielsen identity. The setup further allows one, in principle, to address the question of putative gravitational condensates.

  17. [Color selection of ultrathin veneers in clinic].

    PubMed

    Feng, Sun

    2016-12-01

    Ultrathin veneer is a new therapeutic technology developed from minimally invasive theories. Ultrathin veneer alters the unwanted shape and color of a tooth through minimal or lack of preparation. The color of tooth after restoration is mixed with the natural color of tooth, the original color of veneer, and the color of bonding material because of ultrathin (approximately 0.2 mm) veneer. Thus, the color is affected by numerous variations. Full considerations are required for creating designs. The author summarizes clinical points and provides suggestions for ultrathin veneer in color.

  18. Determining the mean hydraulic gradient of ground water affected by tidal fluctuations

    USGS Publications Warehouse

    Serfes, Michael E.

    1991-01-01

    Tidal fluctuations in surface-water bodies produce progressive pressure waves in adjacent aquifers. As these pressure waves propagate inland, ground-water levels and hydraulic gradients continuously fluctuate, creating a situation where a single set of water-level measurements cannot be used to accurately characterize ground-water flow. For example, a time series of water levels measured in a confined aquifer in Atlantic City, New Jersey, showed that the hydraulic gradient ranged from .01 to .001 with a 22-degree change in direction during a tidal day of approximately 25 hours. At any point where ground water tidally fluctuates, the magnitude and direction of the hydraulic gradient fluctuates about the mean or regional hydraulic gradient. The net effect of these fluctuations on ground-water flow can be determined using the mean hydraulic gradient, which can be calculated by comparing mean ground- and surface-water elevations. Filtering methods traditionally used to determine daily mean sea level can be similarly applied to ground water to determine mean levels. Method (1) uses 71 consecutive hourly water-level observations to accurately determine the mean level. Method (2) approximates the mean level using only 25 consecutive hourly observations; however, there is a small error associated with this method.

  19. The Timescale-dependent Color Variability of Quasars Viewed with /GALEX

    NASA Astrophysics Data System (ADS)

    Zhu, Fei-Fan; Wang, Jun-Xian; Cai, Zhen-Yi; Sun, Yu-Han

    2016-11-01

    In a recent work by Sun et al., the color variation of quasars, namely the bluer-when-brighter trend, was found to be timescale dependent using the SDSS g/r band light curves in Stripe 82. Such timescale dependence, I.e., bluer variation at shorter timescales, supports the thermal fluctuation origin of the UV/optical variation in quasars, and can be modeled well with the inhomogeneous accretion disk model. In this paper, we extend the study to much shorter wavelengths in the rest frame (down to extreme UV) using GALaxy Evolution eXplorer (GALEX) photometric data of quasars collected in two ultraviolet bands (near-UV and far-UV). We develop Monte Carlo simulations to correct for possible biases due to the considerably larger photometric uncertainties in the GALEX light curves (particularly in the far-UV, compared with the SDSS g/r bands), which otherwise could produce artificial results. We securely confirm the previously discovered timescale dependence of the color variability with independent data sets and at shorter wavelengths. We further find that the slope of the correlation between the amplitude of the color variation and timescale appears even steeper than predicted by the inhomogeneous disk model, which assumes that disk fluctuations follow a damped random walk (DRW) process. The much flatter structure function observed in the far-UV compared with that at longer wavelengths implies deviation from the DRW process in the inner disk, where rest-frame extreme UV radiation is produced.

  20. The Resolved Stellar Population in 50 Regions of M83 from HST/WFC3 Early Release Science Observations

    NASA Technical Reports Server (NTRS)

    Kim, Hwihyun; Whitmore, Bradley C.; Chandar, Rupali; Saha, Abhijit; Kaleida, Catherine C.; Mutchler, Max; Cohen, Seth H.; Calzetti, Daniela; O’Connell, Robert W.; Windhorst, Rogier A.; hide

    2012-01-01

    We present a multi-wavelength photometric study of approximately 15,000 resolved stars in the nearby spiral galaxy M83 (NGC 5236, D = 4.61 Mpc) based on Hubble Space Telescope Wide Field Camera 3 observations using four filters: F336W, F438W, F555W, and F814W. We select 50 regions (an average size of 260 pc by 280 pc) in the spiral arm and inter-arm areas of M83 and determine the age distribution of the luminous stellar populations in each region. This is accomplished by correcting for extinction toward each individual star by comparing its colors with predictions from stellar isochrones.We compare the resulting luminosity-weighted mean ages of the luminous stars in the 50 regions with those determined from several independent methods, including the number ratio of red-to-blue supergiants, morphological appearance of the regions, surface brightness fluctuations, and the ages of clusters in the regions. We find reasonably good agreement between these methods. We also find that young stars are much more likely to be found in concentrated aggregates along spiral arms, while older stars are more dispersed. These results are consistent with the scenario that star formation is associated with the spiral arms, and stars form primarily in star clusters and then disperse on short timescales to form the field population. The locations ofWolf-Rayet stars are found to correlate with the positions of many of the youngest regions, providing additional support for our ability to accurately estimate ages. We address the effects of spatial resolution on the measured colors, magnitudes, and age estimates. While individual stars can occasionally show measurable differences in the colors and magnitudes, the age estimates for entire regions are only slightly affected.

  1. A correlation electron cyclotron emission diagnostic and the importance of multifield fluctuation measurements for testing nonlinear gyrokinetic turbulence simulations.

    PubMed

    White, A E; Schmitz, L; Peebles, W A; Carter, T A; Rhodes, T L; Doyle, E J; Gourdain, P A; Hillesheim, J C; Wang, G; Holland, C; Tynan, G R; Austin, M E; McKee, G R; Shafer, M W; Burrell, K H; Candy, J; DeBoo, J C; Prater, R; Staebler, G M; Waltz, R E; Makowski, M A

    2008-10-01

    A correlation electron cyclotron emission (CECE) diagnostic has been used to measure local, turbulent fluctuations of the electron temperature in the core of DIII-D plasmas. This paper describes the hardware and testing of the CECE diagnostic and highlights the importance of measurements of multifield fluctuation profiles for the testing and validation of nonlinear gyrokinetic codes. The process of testing and validating such codes is critical for extrapolation to next-step fusion devices. For the first time, the radial profiles of electron temperature and density fluctuations are compared to nonlinear gyrokinetic simulations. The CECE diagnostic at DIII-D uses correlation radiometry to measure the rms amplitude and spectrum of the electron temperature fluctuations. Gaussian optics are used to produce a poloidal spot size with w(o) approximately 1.75 cm in the plasma. The intermediate frequency filters and the natural linewidth of the EC emission determine the radial resolution of the CECE diagnostic, which can be less than 1 cm. Wavenumbers resolved by the CECE diagnostic are k(theta) < or = 1.8 cm(-1) and k(r) < or = 4 cm(-1), relevant for studies of long-wavelength turbulence associated with the trapped electron mode and the ion temperature gradient mode. In neutral beam heated L-mode plasmas, core electron temperature fluctuations in the region 0.5 < r/a < 0.9, increase with radius from approximately 0.5% to approximately 2%, similar to density fluctuations that are measured simultaneously with beam emission spectroscopy. After incorporating "synthetic diagnostics" to effectively filter the code output, the simulations reproduce the characteristics of the turbulence and transport at one radial location r/a = 0.5, but not at a second location, r/a = 0.75. These results illustrate that measurements of the profiles of multiple fluctuating fields can provide a significant constraint on the turbulence models employed by the code.

  2. Daytime Changes of Skin Biophysical Characteristics: A Study of Hydration, Transepidermal Water Loss, pH, Sebum, Elasticity, Erythema, and Color Index on Middle Eastern Skin

    PubMed Central

    Firooz, Alireza; Zartab, Hamed; Sadr, Bardia; Bagherpour, Leili Naraghi; Masoudi, Aidin; Fanian, Ferial; Dowlati, Yahya; Ehsani, Amir Hooshang; Samadi, Aniseh

    2016-01-01

    Background: The exposure of skin to ultraviolet radiation and temperature differs significantly during the day. It is reasonable that biophysical parameters of human skin have periodic daily fluctuation. The objective of this study was to study the fluctuations of various biophysical characteristics of Middle Eastern skin in standardized experimental conditions. Materials and Methods: Seven biophysical parameters of skin including stratum corneum hydration, transepidermal water loss, pH, sebum, elasticity, skin color, and erythema index were measured at three time points (8 a.m., 12 p.m. and 4 p.m.) on the forearm of 12 healthy participants (mean age of 28.4 years) without any ongoing skin disease using the CK MPA 580 device in standard temperature and humidity conditions. Results: A significant difference was observed between means of skin color index at 8 a.m. (175.42 ± 13.92) and 4 p.m. (164.44 ± 13.72, P = 0.025), between the pH at 8 a.m. (5.72 ± 0.48) and 4 p.m. (5.33 ± 0.55, P = 0.001) and pH at 12 p.m. (5.60 ± 0.48) and 4 p.m. (5.33 ± 0.55, P = 0.001). Other comparisons between the means of these parameters at different time points resulted in nonsignificant P values. Conclusion: There are daytime changes in skin color index and pH. Skin color index might be higher and cutaneous pH more basic in the early morning compared to later of the day. PMID:27904203

  3. An intramolecular charge transfer process based fluorescent probe for monitoring subtle pH fluctuation in living cells.

    PubMed

    Sun, Mingtai; Du, Libo; Yu, Huan; Zhang, Kui; Liu, Yang; Wang, Suhua

    2017-01-01

    It is crucial to monitor intracellular pH values and their fluctuation since the organelles of cells have different pH distribution. Herein we construct a new small molecule fluorescent probe HBT-O for monitoring the subtle pH values within the scope of neutral to acid in living cells. The probe exhibited good water solubility, a marked turquoise to olivine emission color change in response to pH, and tremendous fluorescence hypochromatic shift of ∼50nm (1718cm -1 ) as well as the increased fluorescence intensity when the pH value changed from neutral to acid. Thus, the probe HBT-O can distinguish the subtle changes in the range of normal pH values from neutral to acid with significant fluorescence changes. These properties can be attributed to the intramolecular charge transfer (ICT) process of the probe upon protonation in buffer solutions at varied pH values. Moreover, the probe was reversible and nearly non-toxic for living cells. Then the probe was successfully used to detect pH fluctuation in living cells by exhibiting different fluorescence colors and intensity. These findings demonstrate that the probe will find useful applications in biology and biomedical research. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Quasi-linear theory via the cumulant expansion approach

    NASA Technical Reports Server (NTRS)

    Jones, F. C.; Birmingham, T. J.

    1974-01-01

    The cumulant expansion technique of Kubo was used to derive an intergro-differential equation for f , the average one particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the f equation degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory for this limited class of fluctuations. For more physically realistic fluctuations, however, quasi-linear theory is at best approximate.

  5. Millennial Teachers of Color

    ERIC Educational Resources Information Center

    Dilworth, Mary E., Ed.

    2018-01-01

    "Millennial Teachers of Color" explores the opportunities and challenges for creating and sustaining a healthy teaching force in the United States. Millennials are the largest generational cohort in American history, with approximately ninety million members and, of these, roughly 43 percent are people of color. This book, edited by…

  6. Color fluctuations in hadrons and proton coherent diffractive dissociation on helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strikman, M.; Guzey, V.

    The differential cross section of inelastic coherent diffractive dissociation off nuclei {ital p}+{sup 4}He {r_arrow}{ital X}+{sup 4}He is expressed in terms of the relative cumulants of the cross-section distribution {ital P}{sub {ital N}}({sigma}). The theoretical result for the ratio {ital r}=({ital d}{sigma}{sub diff}/{ital dt}){sub {ital t}=0}{sup {ital p}He}/({ital d}{sigma}{sub diff}/{ital dt}) {sub {ital t}=0}{sup {ital pp}}=6.8--7.6 is close to the value {ital r}=7.1{plus_minus}0.7 which we extracted from the FNAL data. These are the only {ital A}{gt}2 data of this kind. The comparison provides the first confirmation of the color/cross-section fluctuation approach to the description of the absolute value of themore » inelastic diffraction cross section off nuclei. It provides also a new constraint on the first four cumulants of the cross-section distribution.« less

  7. ARC-1989-AC89-7046

    NASA Image and Video Library

    1989-08-25

    P-34764 Voyager 2 obtained this high resolution color image of Neptune's large satellite Triton during its close flyby. Approximately a dozen individual images were combined to produce this comprehensive view of the Neptune-facing hemisphere of Triton. Fine detail is provided by high resolution, clear-filter images, with color information added from lower resolution frames. The large south polar cap at the bottom of the image is highly refective and slightly pink in color , and may consist of a slowly evaporating layer of nitrogen ice deposited during the previous winter. From the ragged edge of the polar cap northward the satellite's face is generously darker and redder in color. This coloring may be produced by the action of ultraviolet light and magnetospheric radiation upon methane in the atmosphere and surface. Running across this darker region , approximately parallel to the edge of the polar cap, is a band of brighter white material that is almost bluish in color. The underlying topography in this bright band is similiar, however to that in the darker, redder regions surrounding it.

  8. Testing approximate theories of first-order phase transitions on the two-dimensional Potts model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, C.; Pandit, R.

    The two-dimensional, q-state (q > 4) Potts model is used as a testing ground for approximate theories of first-order phase transitions. In particular, the predictions of a theory analogous to the Ramakrishnan-Yussouff theory of freezing are compared with those of ordinary mean-field (Curie-Wiess) theory. It is found that the Curie-Weiss theory is a better approximation than the Ramakrishnan-Yussouff theory, even though the former neglects all fluctuations. It is shown that the Ramakrishnan-Yussouff theory overestimates the effects of fluctuations in this system. The reasons behind the failure of the Ramakrishnan-Yussouff approximation and the suitability of using the two-dimensional Potts model asmore » a testing ground for these theories are discussed.« less

  9. Io Shown in Lambertian Equal Area Projection and in Approximately Natural Color

    NASA Image and Video Library

    1998-06-04

    NASA's Voyager 1 computer color mosaics, shown in approximately natural color and in Lambertian equal-area projections, show the Eastern (left) and Western (right) hemispheres of Io. This innermost of Jupiter's 4 major satellites is the most volcanically active object in the solar system. Io is 2263 mi (3640 km) in diameter, making it a little bigger than Earth's moon. Almost all the features visible here have volcanic origins, including several calderas and eruption plumes that were active at the time of the Voyager 1 encounter. http://photojournal.jpl.nasa.gov/catalog/PIA00318

  10. The hierarchically organized splitting of chromosome bands into sub-bands analyzed by multicolor banding (MCB).

    PubMed

    Lehrer, H; Weise, A; Michel, S; Starke, H; Mrasek, K; Heller, A; Kuechler, A; Claussen, U; Liehr, T

    2004-01-01

    To clarify the nature of chromosome sub-bands in more detail, the multicolor banding (MCB) probe-set for chromosome 5 was hybridized to normal metaphase spreads of GTG band levels at approximately 850, approximately 550, approximately 400 and approximately 300. It could be observed that as the chromosomes became shorter, more of the initial 39 MCB pseudo-colors disappeared, ending with 18 MCB pseudo-colored bands at the approximately 300-band level. The hierarchically organized splitting of bands into sub-bands was analyzed by comparing the disappearance or appearance of pseudo-color bands of the four different band levels. The regions to split first are telomere-near, centromere-near and in 5q23-->q31, followed by 5p15, 5p14, and all GTG dark bands in 5q apart from 5q12 and 5q32 and finalized by sub-band building in 5p15.2, 5q21.2-->q21.3, 5q23.1 and 5q34. The direction of band splitting towards the centromere or the telomere could be assigned to each band separately. Pseudo-colors assigned to GTG-light bands were resistant to band splitting. These observations are in concordance with the recently proposed concept of chromosome region-specific protein swelling. Copyright 2003 S. Karger AG, Basel

  11. Effective equilibrium states in the colored-noise model for active matter I. Pairwise forces in the Fox and unified colored noise approximations

    NASA Astrophysics Data System (ADS)

    Wittmann, René; Maggi, C.; Sharma, A.; Scacchi, A.; Brader, J. M.; Marini Bettolo Marconi, U.

    2017-11-01

    The equations of motion of active systems can be modeled in terms of Ornstein-Uhlenbeck processes (OUPs) with appropriate correlators. For further theoretical studies, these should be approximated to yield a Markovian picture for the dynamics and a simplified steady-state condition. We perform a comparative study of the unified colored noise approximation (UCNA) and the approximation scheme by Fox recently employed within this context. We review the approximations necessary to define effective interaction potentials in the low-density limit and study the conditions for which these represent the behavior observed in two-body simulations for the OUPs model and active Brownian particles. The demonstrated limitations of the theory for potentials with a negative slope or curvature can be qualitatively corrected by a new empirical modification. In general, we find that in the presence of translational white noise the Fox approach is more accurate. Finally, we examine an alternative way to define a force-balance condition in the limit of small activity.

  12. A new fast two-color interferometer at Alcator C-Mod for turbulence measurements and comparison with phase contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasten, C. P., E-mail: ckasten@alum.mit.edu; White, A. E.; Irby, J. H.

    2014-04-15

    Accurately predicting the turbulent transport properties of magnetically confined plasmas is a major challenge of fusion energy research. Validation of transport models is typically done by applying so-called “synthetic diagnostics” to the output of nonlinear gyrokinetic simulations, and the results are compared to experimental data. As part of the validation process, comparing two independent turbulence measurements to each other provides the opportunity to test the synthetic diagnostics themselves; a step which is rarely possible due to limited availability of redundant fluctuation measurements on magnetic confinement experiments. At Alcator C-Mod, phase-contrast imaging (PCI) is a commonly used turbulence diagnostic. PCI measuresmore » line-integrated electron density fluctuations with high sensitivity and wavenumber resolution (1.6 cm{sup −1}≲|k{sub R}|≲11 cm{sup −1}). A new fast two-color interferometry (FTCI) diagnostic on the Alcator C-Mod tokamak measures long-wavelength (|k{sub R}|≲3.0 cm{sup −1}) line-integrated electron density fluctuations. Measurements of coherent and broadband fluctuations made by PCI and FTCI are compared here for the first time. Good quantitative agreement is found between the two measurements. This provides experimental validation of the low-wavenumber region of the PCI calibration, and also helps validate the low-wavenumber portions of the synthetic PCI diagnostic that has been used in gyrokinetic model validation work in the past. We discuss possibilities to upgrade FTCI, so that a similar comparison could be done at higher wavenumbers in the future.« less

  13. Quark and gluon production from a boost-invariantly expanding color electric field

    NASA Astrophysics Data System (ADS)

    Taya, Hidetoshi

    2017-07-01

    Particle production from an expanding classical color electromagnetic field is extensively studied, motivated by the early stage dynamics of ultrarelativistic heavy ion collisions. We develop a formalism at one-loop order to compute the particle spectra by canonically quantizing quark, gluon, and ghost fluctuations under the presence of such an expanding classical color background field; the canonical quantization is done in the τ -η coordinates in order to take into account manifestly the expanding geometry. As a demonstration, we model the expanding classical color background field by a boost-invariantly expanding homogeneous color electric field with lifetime T , for which we obtain analytically the quark and gluon production spectra by solving the equations of motion of QCD nonperturbatively with respect to the color electric field. In this paper we study (i) the finite lifetime effect, which is found to modify significantly the particle spectra from those expected from the Schwinger formula; (ii) the difference between the quark and gluon production; and (iii) the quark mass dependence of the production spectra. Implications of these results to ultrarelativistic heavy ion collisions are also discussed.

  14. Simulating glories and cloudbows in color.

    PubMed

    Gedzelman, Stanley D

    2003-01-20

    Glories and cloudbows are simulated in color by use of the Mie scattering theory of light upwelling from small-droplet clouds of finite optical thickness embedded in a Rayleigh scattering atmosphere. Glories are generally more distinct for clouds of droplets of as much as approximately 10 microm in radius. As droplet radius increases, the glory shrinks and becomes less prominent, whereas the cloudbow becomes more distinct and eventually colorful. Cloudbows typically consist of a broad, almost white band with a slightly orange outer edge and a dark inner band. Multiple light and dark bands that are related to supernumerary rainbows first appear inside the cloudbow as droplet radius increases above approximately 10 microm and gradually become more prominent when all droplets are the same size. Bright glories with multiple rings and high color purity are simulated when all droplets are the same size and every light beam is scattered just once. Color purity decreases and outer rings fade as the range of droplet sizes widens and when skylight, reflected light from the ground or background, and multiply scattered light from the cloud are included. Consequently, the brightest and most colorful glories and bows are seen when the observer is near a cloud or a rain swath with optical thickness of approximately 0.25 that consists of uniform-sized drops and when a dark or shaded background lies a short distance behind the cloud.

  15. ARC-1990-AC91-2009

    NASA Image and Video Library

    1990-12-08

    Range : 35,000 miles plus. This color image of the Simpson Desert in Australia was obtained by the Galileo spacecraft at aboaut 2:30 pm PST. The color composite was made from images taken through the red, green and violet filters. The area shown, about 280 miles wide by about 340 miles north-to-south, is southeast of Alice Springs. At lower left is Lake Eyre, a salt lake below sea level, subject to seasonal water-level fluctuations; when this image was acquired the lake was nearly dry. At lower right is the greenish Lake Blanche. Fields of linear sand dunes stretch north and east of Lake Eyre, shaped by prevailing winds from the south and showing, in different colors, the various sources and/or ages of their sands.

  16. Climatic, eustatic, and tectnoic controls on Quarternary deposits and landforms, Red Sea coast, Egypt

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond; Becker, Richard; Shanabrook, Amy; Luo, Wei; Sturchio, Neil; Sultan, Mohamed; Lofty, Zakaria; Mahmood, Abdel Moneim; El Alfy, Zeinhom

    1994-01-01

    The degree to which local climatic variations, eustatic sea level fluctuations, and tectonic uplift have influenced the development of Quaternary marine and fluvial landforms and deposits along the Red Sea coast, Eastern Desert, was investigated using a combination of remote sensing and field data, age determinations of corals, and numerical simulations. False color composites generated from Landsat Thematic Mapper and SPOT image data, digital elevation models derived from sterophotogrammetric analysis of SPOT data, and field observations document that a approximately 10-km wide swath inland from the coast is covered in many places with coalescing alluvial fans of Quaternary age. Wadis cutting through the fans exhibit several pairs of fluvial terraces, and wadi walls expose alluvium interbedded with corraline limestone deposits Further, three distinct coral terraces are evident along the coatline. Climatic, eustatic, and tectonic uplift controls on the overall system were simulated using a cellular automata algorithm with the following characteristics: (1) uplift as a function of position and time, as defined by the elevations and ages of corals; (2) climatic variations driven by insolation changes associated with Milankovitch cycles; (3) sea level fluctuations based on U/Th ages of coral terraces and eustatic data; and (4) parametrized fluvial erosion and deposition. Results imply that the fans and coralline limestones were generated in a setting in which the tectonic uplift rate decreased over the Quarternary to negligible values at present. Coralline limestones formed furing eustatic highstands when alluvium was trapped uspstream and wadis filled with debris. During lowstands, wadis cut into sedimentary deposits; coupled with continuing uplift, fans were dissected, leaving remnant surfaces, and wadi-related terraces were generated by down cutting. Only landforms from the past three to four eustatic sea level cycles (i.e., approximately 300 to 400 kyr) are likely to have survived erosion and deposition associated with fluvial processes.

  17. Climatic, eustatic, and tectonic controls on Quaternary deposits and landforms, Red Sea coast, Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arvidson, R.; Becker, R.; Shanabrook, A.

    1994-06-10

    The degree to which local climatic variations, eustatic sea level fluctuations, and tectonic uplift have influenced the development of Quaternary marine and fluvial landforms and deposits along the Red Sea coast, Eastern Desert, Egypt was investigated using a combination of remote sensing and field data, age determinations of corals, and numerical simulations. False color composites generated from Landsat Thematic Mapper and SPOT image data, digital elevation models derived from stereophotogrammetric analysis of SPOT data, and field observations document that a {approximately}10-km-wide swath inland from the coast is covered in many places with coalescing alluvial fans of Quaternary age. Wadis cuttingmore » through the fans exhibit several pairs of fluvial terraces, and wadi walls expose alluvium interbedded with coralline limestone deposits. Further, three distinct coral terraces are evident along the coastline. Climatic, eustatic, and tectonic uplift controls on the overall system were simulated using a cellular automata algorithm with the following characteristics: (1) uplift as a function of position and time, as defined by the elevations and ages of corals; (2) climatic variations driven by insolation changes associated with Milankovitch cycles; (3) sea level fluctuations based on U/Th ages of coral terraces and eustatic data; and (4) parameterized fluvial erosion and deposition. Results imply that the fans and coralline limestones were generated in a setting in which the tectonic uplift rate decreased over the Quaternary to negligible values at present. During lowstands, wadis cut into sedimentary deposits; coupled with continuing uplift, fans were dissected, leaving remnant surfaces, and wadi-related terraces were generated by down cutting. Only landforms from the past three to four eustatic sea level cycles (i.e., {approximately} 300 to 400 kyr) are likely to have survived erosion and deposition associated with fluvial processes. 33 refs., 18 figs., 2 tabs.« less

  18. Genetic evolution, plasticity, and bet-hedging as adaptive responses to temporally autocorrelated fluctuating selection: A quantitative genetic model.

    PubMed

    Tufto, Jarle

    2015-08-01

    Adaptive responses to autocorrelated environmental fluctuations through evolution in mean reaction norm elevation and slope and an independent component of the phenotypic variance are analyzed using a quantitative genetic model. Analytic approximations expressing the mutual dependencies between all three response modes are derived and solved for the joint evolutionary outcome. Both genetic evolution in reaction norm elevation and plasticity are favored by slow temporal fluctuations, with plasticity, in the absence of microenvironmental variability, being the dominant evolutionary outcome for reasonable parameter values. For fast fluctuations, tracking of the optimal phenotype through genetic evolution and plasticity is limited. If residual fluctuations in the optimal phenotype are large and stabilizing selection is strong, selection then acts to increase the phenotypic variance (bet-hedging adaptive). Otherwise, canalizing selection occurs. If the phenotypic variance increases with plasticity through the effect of microenvironmental variability, this shifts the joint evolutionary balance away from plasticity in favor of genetic evolution. If microenvironmental deviations experienced by each individual at the time of development and selection are correlated, however, more plasticity evolves. The adaptive significance of evolutionary fluctuations in plasticity and the phenotypic variance, transient evolution, and the validity of the analytic approximations are investigated using simulations. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  19. Magnetic spectral signatures in the Earth's magnetosheath and plasma depletion layer

    NASA Technical Reports Server (NTRS)

    Anderson, Brian J.; Fuselier, Stephen A.; Gary, S. Peter; Denton, Richard E.

    1994-01-01

    Correlations between plasma properties and magnetic fluctuations in the sub-solar magnetosheath downstream of a quasi-perpendicular shock have been found and indicate that mirror and ion cyclotronlike fluctuations correlate with the magnetosheath proper and plasma depletion layer, respectively (Anderson and Fueselier, 1993). We explore the entire range of magnetic spectral signatures observed from the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer (AMPTE/CCE)spacecraft in the magnetosheath downstream of a quasi-perpendicular shock. The magnetic spectral signatures typically progress from predominantly compressional fluctuations,delta B(sub parallel)/delta B perpendicular to approximately 3, with F/F (sub p) less than 0.2 (F and F (sub p) are the wave frequency and proton gyrofrequency, respectively) to predominantly transverse fluctuations, delta B(sub parallel)/delta B perpendicular to approximately 0.3, extending up to F(sub p). The compressional fluctuations are characterized by anticorrelation between the field magnitude and electron density, n(sub e), and by a small compressibility, C(sub e) identically equal to (delta n(sub e)/n(sub e)) (exp 2) (B/delta B(sub parallel)) (exp 2) approximately 0.13, indicative of mirror waves. The spectral characteristics of the transverse fluctuations are in agreement with predictions of linear Vlasov theory for the H(+) and He(2+) cyclotron modes. The power spectra and local plasma parameters are found to vary in concert: mirror waves occur for beta(s ub parallel p) (beta (sub parallel p) identically = 2 mu(sub zero) n(sub p) kT (sub parallel p) / B(exp 2) approximately = 2, A(sub p) indentically = T(sub perpendicular to p)/T(sub parallel p) - 1 approximately = 0.4, whereas cyclotron waves occur for beta (sub parallel p) approximately = 0.2 and A(sub p) approximately = 2. The transition from mirror to cyclotron modes is predicted by linear theory. The spectral characteristics overlap for intermediate plasma parameters. The plasma observations are described by A(sub p) = 0.85 beta(sub parallel P) (exp - 0.48) with a log regression coefficient of -0.74. This inverse A(sub p) - beta(sub parallel p) correlation corresponds closely to the isocontours of maximum ion anisotropy instability growth, gamma (sub m)/omega(sub p) = 0.01, for the mirror and cyclotron modes. The agreement of observed properties and predictions of local theory suggests that the spectral signatures reflect the local plasma environment and that the anisotropy instabilities regulate A(sub p). We suggest that the spectral characteristics may provide a useful basis for ordering observations in the magnetosheath and that the A(sub p) - beta(sub parallel p) inverse correlation may be used as a beta-dependent upper limit on the proton anisotropy to represent kinetic effects.

  20. Transforming reflectance spectra into Munsell color space by using prime colors.

    PubMed

    Romney, A Kimball; Fulton, James T

    2006-10-17

    Independent researchers have proved mathematically that, given a set of color-matching functions, there exists a unique set of three monochromatic spectral lights that optimizes luminous efficiency and color gamut. These lights are called prime colors. We present a method for transforming reflectance spectra into Munsell color space by using hypothetical absorbance curves based on Gaussian approximations of the prime colors and a simplified version of opponent process theory. The derived color appearance system is represented as a 3D color system that is qualitatively similar to a conceptual representation of the Munsell color system. We illustrate the application of the model and compare it with existing models by using reflectance spectra obtained from 1,269 Munsell color samples.

  1. An Exact Form of Lilley's Equation with a Velocity Quadrupole/Temperature Dipole Source Term

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.

    2001-01-01

    There have been several attempts to introduce approximations into the exact form of Lilley's equation in order to express the source term as the sum of a quadrupole whose strength is quadratic in the fluctuating velocities and a dipole whose strength is proportional to the temperature fluctuations. The purpose of this note is to show that it is possible to choose the dependent (i.e., the pressure) variable so that this type of result can be derived directly from the Euler equations without introducing any additional approximations.

  2. Dynamical cluster approximation plus semiclassical approximation study for a Mott insulator and d-wave pairing

    NASA Astrophysics Data System (ADS)

    Kim, SungKun; Lee, Hunpyo

    2017-06-01

    Via a dynamical cluster approximation with N c = 4 in combination with a semiclassical approximation (DCA+SCA), we study the doped two-dimensional Hubbard model. We obtain a plaquette antiferromagnetic (AF) Mott insulator, a plaquette AF ordered metal, a pseudogap (or d-wave superconductor) and a paramagnetic metal by tuning the doping concentration. These features are similar to the behaviors observed in copper-oxide superconductors and are in qualitative agreement with the results calculated by the cluster dynamical mean field theory with the continuous-time quantum Monte Carlo (CDMFT+CTQMC) approach. The results of our DCA+SCA differ from those of the CDMFT+CTQMC approach in that the d-wave superconducting order parameters are shown even in the high doped region, unlike the results of the CDMFT+CTQMC approach. We think that the strong plaquette AF orderings in the dynamical cluster approximation (DCA) with N c = 4 suppress superconducting states with increasing doping up to strongly doped region, because frozen dynamical fluctuations in a semiclassical approximation (SCA) approach are unable to destroy those orderings. Our calculation with short-range spatial fluctuations is initial research, because the SCA can manage long-range spatial fluctuations in feasible computational times beyond the CDMFT+CTQMC tool. We believe that our future DCA+SCA calculations should supply information on the fully momentum-resolved physical properties, which could be compared with the results measured by angle-resolved photoemission spectroscopy experiments.

  3. Two-color above-threshold and two-photon sequential double ionization beyond the dipole approximation

    NASA Astrophysics Data System (ADS)

    Grum-Grzhimailo, A. N.; Gryzlova, E. V.; Kuzmina, E. I.; Chetverkina, A. S.; Strakhova, S. I.

    2015-04-01

    Two nonlinear atomic photoprocesses are theoretically considered with the emphasis on the photoelectron angular distributions and their modifications due to violation of the dipole approximation: sequential two-photon double ionization and two-color above threshold ionization. These reactions are now accessible with X-ray free electron lasers. Both processes are exemplified by the ionization of krypton: from the 4p shell in the sequential two-photon double ionization and from the 2s shell in the two-color above-threshold ionization, which are compared to the Ar(3p) and Ne(1s) ionization, respectively. Noticeable nondipole effects are predicted.

  4. Biomimetics, color, and the arts

    NASA Astrophysics Data System (ADS)

    Schenk, Franziska

    2015-03-01

    Color as dramatic, dynamic and dazzling as the iridescent hues on the wings of certain butterflies has never been encountered in the art world. Unlike and unmatched by the chemical pigments of the artists' palette, this changeable color is created by transparent, colorless nanostructures that, as with prisms, diffract and reflect light to render spectral color visible. Until now, iridescent colors, by their very nature, have defied artists' best efforts to fully capture these rainbow hues. Now, for the first time, the artist and researcher Franziska Schenk employs latest nature-inspired color-shift technology to actually simulate the iridescence of butterflies and beetles on canvas. Crucially, studying the ingenious ways in which a range of such displays are created by insects has provided the artist with vital clues on how to adapt and adopt these challenging optical nano-materials for painting. And indeed, after years of meticulous and painstaking research both in the lab and studio, the desired effect is achieved. The resulting paintings, like an iridescent insect, do in fact fluctuate in perceived color - depending on the light and viewing angle. In tracing the artist's respective biomimetic approach, the paper not only provides an insight into the new color technology's evolution and innovative artistic possibilities, but also suggests what artists can learn from nature.

  5. New Measurements of the Cosmic Infrared Background Fluctuations in Deep SpitzerllRAC Survey Data and their Cosmological Implications

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.; Arendt, R. G.; Ashby, M. L. N.; Fazio, G. G.; Mather, J.; Moseley, S. H.

    2012-01-01

    We extend the previous measurements of CIB fluctuations to angular scales of less than or equal to 1 degree new data obtained in the course of the 2,000+ hour Spitzer Extended Deep Survey. Two fields with completed observations of approximately equal to 12 hr/pixel are analyzed for source-subtracted CIB fluctuations at 3.6 and 4.5 micrometers. The fields, EGS and UDS, cover a total area of approximately 0.25 deg and lie at high Galactic and Ecliptic latitudes, thus minimizing cirrus and zodiacal light contributions to the fluctuations. The observations have been conducted at 3 distinct epochs separated by about 6 months. As in our previous studies, the fields were assembled using the self-calibration method which is uniquely suitable for probing faint diffuse backgrounds. The assembled fields were cleaned off the bright sources down to the low shot noise levels corresponding to AB mag approximately equal to 25, Fourier-transformed and their power spectra evaluated. The noise was estimated from the time-differenced data and subtracted from the signal isolating the fluctuations remaining above the noise levels. The power spectra of the source-subtracted fields remain identical (within the observational uncertainties) for the three epochs of observations indicating that zodiacal light contributes negligibly to the fluctuations. By comparing to the measurements for the same regions at 8 micrometers we demonstrate that Galactic cirrus cannot account for the levels of the fluctuations either. The signal appears isotropically distributed on the sky as required by its origin in the CIB fluctuations. This measurement thus extends our earlier results to the important range of sub-degree scales. We find that the CIB fluctuations continue to diverge to more than 10 times those of known galaxy populations on angular scales out to less than or equal to 1 degree. The low shot noise levels remaining in the diffuse maps indicate that the large scale fluctuations arise from spatial clustering of faint sources well within the confusion noise. The spatial spectrum of these fluctuations is in reasonable agreement with simple fitting assuming that they originate in early populations spatially distributed according to the standard cosmological model (ACDM) at epochs coinciding with the first stars era. The alternative to this identification would require a new population never observed before, nor expected on theoretical grounds, but if true this would represent an important discovery in its own right.

  6. When red lights look yellow.

    PubMed

    Wood, Joanne M; Atchison, David A; Chaparro, Alex

    2005-11-01

    Red signals are typically used to signify danger. This study was conducted to investigate a situation identified by train drivers in which red signals appear yellow when viewed at long distances (approximately 900 m) through progressive-addition lenses. A laboratory study was conducted to investigate the effects of defocus, target size, ambient illumination, and surround characteristics on the extent of the color misperception of train signals by nine visually normal participants. The data from the laboratory study were validated in a field study by measuring the amounts of defocus and the distances at which the misperception of the color of train signals was apparent and whether these distances varied as a function of time of day. The laboratory study demonstrated that small red targets (approximately 1 min arc) can appear yellow when viewed through small amounts of defocus (approximately +0.75 D) under bright illumination (1910 cd/m(2)). In the field study, the defocus needed to produce the color misperception was similar to that found in the laboratory study. Time of day affected the color misperception, and there was no misperception at night. The color misperception is not solely associated with progressive-addition lenses, but occurs in the presence of small amounts of positive defocus. The potential for the misperception to result in collisions and fatalities presents a major safety concern.

  7. Low Mach number fluctuating hydrodynamics for electrolytes

    NASA Astrophysics Data System (ADS)

    Péraud, Jean-Philippe; Nonaka, Andy; Chaudhri, Anuj; Bell, John B.; Donev, Aleksandar; Garcia, Alejandro L.

    2016-11-01

    We formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids [A. Donev et al., Phys. Fluids 27, 037103 (2015), 10.1063/1.4913571], we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the mass and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. We demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm is second order in the deterministic setting and for length scales much greater than the Debye length gives results consistent with an electroneutral approximation. In the stochastic setting, our model captures the predicted dynamics of equilibrium and nonequilibrium fluctuations. We also identify and model an instability that appears when diffusive mixing occurs in the presence of an applied electric field.

  8. A Model for the Quiescent Phase of the Recurrent Nova U Scorpii.

    PubMed

    Hachisu; Kato; Kato; Matsumoto; Nomoto

    2000-05-10

    A theoretical light curve is constructed for the quiescent phase of the recurrent nova U Scorpii in order to resolve the existing distance discrepancy between the outbursts (d approximately 6 kpc) and the quiescences (d approximately 14 kpc). Our U Sco model consists of a very massive white dwarf (WD), an accretion disk (ACDK) with a flaring-up rim, and a lobe-filling, slightly evolved, main-sequence star (MS). The model properly includes an accretion luminosity of the WD, a viscous luminosity of the ACDK, and a reflection effect of the MS and the ACDK irradiated by the WD photosphere. The B light curve is well reproduced by a model of 1.37 M middle dot in circle WD + 1.5 M middle dot in circle MS (0.8-2.0 M middle dot in circle MS is acceptable) with an ACDK having a flaring-up rim and the inclination angle of the orbit i approximately 80&j0;. The calculated color is rather blue (B-V approximately 0.0) for a suggested mass accretion rate of 2.5x10-7 M middle dot in circle yr-1, thus indicating a large color excess of E(B-V) approximately 0.56 with the observational color of B-V=0.56 in quiescence. Such a large color excess corresponds to an absorption of AV approximately 1.8 and AB approximately 2.3, which reduces the distance to 6-8 kpc. This is in good agreement with the distance estimation of 4-6 kpc for the latest outburst. Such a large intrinsic absorption is very consistent with the recently detected period change of U Sco, which is indicating a mass outflow of approximately 3x10-7 M middle dot in circle yr-1 through the outer Lagrangian points in quiescence.

  9. Coastal zone color scanner 'system calibration': A retrospective examination

    NASA Technical Reports Server (NTRS)

    Evans, Robert H.; Gordon, Howard R.

    1994-01-01

    During its lifetime the Coastal Zone Color Scanner (CZCS) produced approximately 66,000 images. These have been placed in an archive of 'raw' radiance (sensor counts) in a subsampled format that is easily accessible. They have also been processed to form global fields, at reduced resolution, of normalized water-leaving radiance, phytoplankton pigments, and diffuse attenuation coefficient. Using this archive, we have tried to characterize some aspects of the 'system calibration' for the 8-year lifetime of CZCS. Specifically, we have assumed that the sensitivity of the red band decayed in a simple manner similar to the well-known long-term degradation of the shorter-wavelength bands, and we examined the sensitivity of the green and yellow bands by computing the globally averaged water-leaving radiance, over 10-day periods, for all of the imagery. The results provided evidence that in addition to the long-term degradation, short-term (2 weeks to 1 month) variations in the radiometric sensitivity of these bands started in early fall 1981 and continued for the rest of the mission. In contrast, the data suggested the absence of such variations prior to August 1981. It is reasonable to believe that the sensitivity of the blue (and probably the red) band underwent such variations as well; however our methodology cannot be used to study the other bands. Thus, after these fluctuations began, the actual values of CZCS - estimated pigment concentrations at a given location should be viewed with skepticism; however, the global patterns of derived pigment concentrations should be valid. Had an extensive set of surface measurements of water-leaving radiance, e.r., from moored buoyes or drifters, had been available during the CZCS mission, these fluctuations could have been removed from the data set, and this would have greatly increased its value. The lessons learned from CZCS that is, the requirement of good radiometric calibration and stability and the necessity of 'sea truth' stations to monitor the performance of the system (sensor plus algorithms), are being applied to the sea-viewing wide-field-of-view senso (Sea WiFS) scheduled for launch in August 1993.

  10. Coastal zone color scanner ``system calibration'': A retrospective examination

    NASA Astrophysics Data System (ADS)

    Evans, Robert H.; Gordon, Howard R.

    1994-04-01

    During its lifetime the coastal zone color scanner (CZCS) produced approximately 66,000 images. These have been placed in an archive of "raw" radiance (sensor counts) in a subsampled format that is easily accessible. They have also been processed to form global fields, at reduced resolution, of normalized water-leaving radiance, phytoplankton pigments, and diffuse attenuation coefficient. Using this archive, we have tried to characterize some aspects of the "system calibration" for the 8-year lifetime of CZCS. Specifically, we have assumed that the sensitivity of the red band decayed in a simple manner similar to the well-known long-term degradation of the shorter-wavelength bands, and we examined the sensitivity of the green and yellow bands by computing the globally averaged water-leaving radiance, over 10-day periods, for all of the imagery. The results provide evidence that in addition to the long-term degradation, short-term (2 weeks to 1 month) variations in the radiometric sensitivity of these bands started in early fall 1981 and continued for the rest of the mission. In contrast, the data suggest the absence of such variations prior to August 1981. It is reasonable to believe that the sensitivity of the blue (and probably the red) band underwent such variations as well; however, our methodology cannot be used to study the other bands. Thus after these fluctuations began, the actual values of CZCS-estimated pigment concentrations at a given location should be viewed with skepticism; however, the global patterns of derived pigment concentration should be valid. Had an extensive set of surface measurements of water-leaving radiance, e.g., from moored buoys or drifters, been available during the CZCS mission, these fluctuations could have been removed from the data set, and this would have greatly increased its value. The lessons learned from CZCS, that is, the requirement of good radiometric calibration and stability and the necessity of "sea truth" stations to monitor the performance of the system (sensor plus algorithms), are being applied to the seaviewing wide-field-of-view sensor (SeaWiFS) scheduled for launch in August 1993.

  11. Thermal and quantum fluctuations of confined Bose–Einstein condensate beyond the Bogoliubov approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Y., E-mail: yusuke.n@asagi.waseda.jp; Nagano Prefectural Kiso Seiho High School, Nagano 397-8571; Kawaguchi, T., E-mail: pionelish30@toki.waseda.jp

    The formulation for zero mode of a Bose–Einstein condensate beyond the Bogoliubov approximation at zero temperature [Y. Nakamura et al., Phys. Rev. A 89 (2014) 013613] is extended to finite temperature. Both thermal and quantum fluctuations are considered in a manner consistent with a concept of spontaneous symmetry breakdown for a finite-size system. Therefore, we need a proper treatment of the zero mode operators, which invoke non-trivial enhancements in depletion condensate and thermodynamical quantities such as the specific heat. The enhancements are visible in the weak interaction case. Our approach reproduces the results of a homogeneous system in the Bogoliubovmore » approximation in a large particle number limit.« less

  12. Slip-rate measurements on the Karakorum Fault may imply secular variations in fault motion.

    PubMed

    Chevalier, M-L; Ryerson, F J; Tapponnier, P; Finkel, R C; Van Der Woerd, J; Haibing, Li; Qing, Liu

    2005-01-21

    Beryllium-10 surface exposure dating of offset moraines on one branch of the Karakorum Fault west of the Gar basin yields a long-term (140- to 20-thousand-year) right-lateral slip rate of approximately 10.7 +/- 0.7 millimeters per year. This rate is 10 times larger than that inferred from recent InSAR analyses ( approximately 1 +/- 3 millimeters per year) that span approximately 8 years and sample all branches of the fault. The difference in slip-rate determinations suggests that large rate fluctuations may exist over centennial or millennial time scales. Such fluctuations would be consistent with mechanical coupling between the seismogenic, brittle-creep, and ductile shear sections of faults that reach deep into the crust.

  13. Statistical and molecular analyses of evolutionary significance of red-green color vision and color blindness in vertebrates.

    PubMed

    Yokoyama, Shozo; Takenaka, Naomi

    2005-04-01

    Red-green color vision is strongly suspected to enhance the survival of its possessors. Despite being red-green color blind, however, many species have successfully competed in nature, which brings into question the evolutionary advantage of achieving red-green color vision. Here, we propose a new method of identifying positive selection at individual amino acid sites with the premise that if positive Darwinian selection has driven the evolution of the protein under consideration, then it should be found mostly at the branches in the phylogenetic tree where its function had changed. The statistical and molecular methods have been applied to 29 visual pigments with the wavelengths of maximal absorption at approximately 510-540 nm (green- or middle wavelength-sensitive [MWS] pigments) and at approximately 560 nm (red- or long wavelength-sensitive [LWS] pigments), which are sampled from a diverse range of vertebrate species. The results show that the MWS pigments are positively selected through amino acid replacements S180A, Y277F, and T285A and that the LWS pigments have been subjected to strong evolutionary conservation. The fact that these positively selected M/LWS pigments are found not only in animals with red-green color vision but also in those with red-green color blindness strongly suggests that both red-green color vision and color blindness have undergone adaptive evolution independently in different species.

  14. True Colors Shining Through

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image mosaic illustrates how scientists use the color calibration targets (upper left) located on both Mars Exploration Rovers to fine-tune the rovers' sense of color. In the center, spectra, or light signatures, acquired in the laboratory of the colored chips on the targets are shown as lines. Actual data from Mars Exploration Rover Spirit's panoramic camera is mapped on top of these lines as dots. The plot demonstrates that the observed colors of Mars match the colors of the chips, and thus approximate the red planet's true colors. This finding is further corroborated by the picture taken on Mars of the calibration target, which shows the colored chips as they would appear on Earth.

  15. Upper bound on the Abelian gauge coupling from asymptotic safety

    NASA Astrophysics Data System (ADS)

    Eichhorn, Astrid; Versteegen, Fleur

    2018-01-01

    We explore the impact of asymptotically safe quantum gravity on the Abelian gauge coupling in a model including a charged scalar, confirming indications that asymptotically safe quantum fluctuations of gravity could trigger a power-law running towards a free fixed point for the gauge coupling above the Planck scale. Simultaneously, quantum gravity fluctuations balance against matter fluctuations to generate an interacting fixed point, which acts as a boundary of the basin of attraction of the free fixed point. This enforces an upper bound on the infrared value of the Abelian gauge coupling. In the regime of gravity couplings which in our approximation also allows for a prediction of the top quark and Higgs mass close to the experimental value [1], we obtain an upper bound approximately 35% above the infrared value of the hypercharge coupling in the Standard Model.

  16. Observation of magnetic fluctuations and rapid density decay of magnetospheric plasma in Ring Trap 1

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Yoshida, Z.; Morikawa, J.; Yano, Y.; Mikami, H.; Kasaoka, N.; Sakamoto, W.

    2012-06-01

    The Ring Trap 1 device, a magnetospheric configuration generated by a levitated dipole field magnet, has created high-β (local β ˜ 70%) plasma by using electron cyclotron resonance heating (ECH). When a large population of energetic electrons is generated at low neutral gas pressure operation, high frequency magnetic fluctuations are observed. When the fluctuations are strongly excited, rapid loss of plasma was simultaneously observed especially in a quiet decay phase after the ECH microwave power is turned off. Although the plasma is confined in a strongly inhomogeneous dipole field configuration, the frequency spectra of the fluctuations have sharp frequency peaks, implying spatially localized sources of the fluctuations. The fluctuations are stabilized by decreasing the hot electron component below approximately 40%, realizing stable high-β confinement.

  17. Event-by-Event Fluctuations of Azimuthal Particle Anisotropy in Au+Au Collisions at sNN=200GeV

    NASA Astrophysics Data System (ADS)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2010-04-01

    This Letter presents the first measurement of event-by-event fluctuations of the elliptic flow parameter v2 in Au+Au collisions at sNN=200GeV as a function of collision centrality. The relative nonstatistical fluctuations of the v2 parameter are found to be approximately 40%. The results, including contributions from event-by-event elliptic flow fluctuations and from azimuthal correlations that are unrelated to the reaction plane (nonflow correlations), establish an upper limit on the magnitude of underlying elliptic flow fluctuations. This limit is consistent with predictions based on spatial fluctuations of the participating nucleons in the initial nuclear overlap region. These results provide important constraints on models of the initial state and hydrodynamic evolution of relativistic heavy ion collisions.

  18. Dosimeter Badge Detects Hydrazines

    NASA Technical Reports Server (NTRS)

    Young, Rebecca C.; Travis, Joshua C.; Moore, Gerald; Rose-Pehrsson, Susan; Carver, Patricia; Brenner, Karen

    1993-01-01

    Disposable dosimeter badge indicates approximate cumulative exposure to hydrazine or monomethyl hydrazine in air. Indication is change in colors of both paper tapes; one coated with para-N, N-dimethylaminobenzaldehyde. Colors of exposed tapes compared with colors on two preprinted color wheels to obtain estimate of exposure. Badges help minimize risks associated with exposure of personnel to hydrazine or monomethyl hydrazine, or suspected carcinogens. Also used as stationary monitors by taping them on walls or equipment at strategic locations.

  19. A robust color signal processing with wide dynamic range WRGB CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Kawada, Shun; Kuroda, Rihito; Sugawa, Shigetoshi

    2011-01-01

    We have developed a robust color reproduction methodology by a simple calculation with a new color matrix using the formerly developed wide dynamic range WRGB lateral overflow integration capacitor (LOFIC) CMOS image sensor. The image sensor was fabricated through a 0.18 μm CMOS technology and has a 45 degrees oblique pixel array, the 4.2 μm effective pixel pitch and the W pixels. A W pixel was formed by replacing one of the two G pixels in the Bayer RGB color filter. The W pixel has a high sensitivity through the visible light waveband. An emerald green and yellow (EGY) signal is generated from the difference between the W signal and the sum of RGB signals. This EGY signal mainly includes emerald green and yellow lights. These colors are difficult to be reproduced accurately by the conventional simple linear matrix because their wave lengths are in the valleys of the spectral sensitivity characteristics of the RGB pixels. A new linear matrix based on the EGY-RGB signal was developed. Using this simple matrix, a highly accurate color processing with a large margin to the sensitivity fluctuation and noise has been achieved.

  20. Can we see photosynthesis? Magnifying the tiny color changes of plant green leaves using Eulerian video magnification

    NASA Astrophysics Data System (ADS)

    Taj-Eddin, Islam A. T. F.; Afifi, Mahmoud; Korashy, Mostafa; Ahmed, Ali H.; Cheng, Ng Yoke; Hernandez, Evelyng; Abdel-Latif, Salma M.

    2017-11-01

    Plant aliveness is proven through laboratory experiments and special scientific instruments. We aim to detect the degree of animation of plants based on the magnification of the small color changes in the plant's green leaves using the Eulerian video magnification. Capturing the video under a controlled environment, e.g., using a tripod and direct current light sources, reduces camera movements and minimizes light fluctuations; we aim to reduce the external factors as much as possible. The acquired video is then stabilized and a proposed algorithm is used to reduce the illumination variations. Finally, the Euler magnification is utilized to magnify the color changes on the light invariant video. The proposed system does not require any special purpose instruments as it uses a digital camera with a regular frame rate. The results of magnified color changes on both natural and plastic leaves show that the live green leaves have color changes in contrast to the plastic leaves. Hence, we can argue that the color changes of the leaves are due to biological operations, such as photosynthesis. To date, this is possibly the first work that focuses on interpreting visually, some biological operations of plants without any special purpose instruments.

  1. Stereo matching image processing by synthesized color and the characteristic area by the synthesized color

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Mutoh, Eiichiro; Kumagai, Hideo

    2014-09-01

    We have developed the stereo matching image processing by synthesized color and the corresponding area by the synthesized color for ranging the object and image recognition. The typical images from a pair of the stereo imagers may have some image disagreement each other due to the size change, missed place, appearance change and deformation of characteristic area. We constructed the synthesized color and corresponding color area with the same synthesized color to make the distinct stereo matching. We constructed the synthesized color and corresponding color area with the same synthesized color by the 3 steps. The first step is making binary edge image by differentiating the focused image from each imager and verifying that differentiated image has normal density of frequency distribution to find the threshold level of binary procedure. We used Daubechies wavelet transformation for the procedures of differentiating in this study. The second step is deriving the synthesized color by averaging color brightness between binary edge points with respect to horizontal direction and vertical direction alternatively. The averaging color procedure was done many times until the fluctuation of averaged color become negligible with respect to 256 levels in brightness. The third step is extracting area with same synthesized color by collecting the pixel of same synthesized color and grouping these pixel points by 4 directional connectivity relations. The matching areas for the stereo matching are determined by using synthesized color areas. The matching point is the center of gravity of each synthesized color area. The parallax between a pair of images is derived by the center of gravity of synthesized color area easily. The experiment of this stereo matching was done for the object of the soccer ball toy. From this experiment we showed that stereo matching by the synthesized color technique are simple and effective.

  2. Fluctuation scaling in the visual cortex at threshold

    NASA Astrophysics Data System (ADS)

    Medina, José M.; Díaz, José A.

    2016-05-01

    Fluctuation scaling relates trial-to-trial variability to the average response by a power function in many physical processes. Here we address whether fluctuation scaling holds in sensory psychophysics and its functional role in visual processing. We report experimental evidence of fluctuation scaling in human color vision and form perception at threshold. Subjects detected thresholds in a psychophysical masking experiment that is considered a standard reference for studying suppression between neurons in the visual cortex. For all subjects, the analysis of threshold variability that results from the masking task indicates that fluctuation scaling is a global property that modulates detection thresholds with a scaling exponent that departs from 2, β =2.48 ±0.07 . We also examine a generalized version of fluctuation scaling between the sample kurtosis K and the sample skewness S of threshold distributions. We find that K and S are related and follow a unique quadratic form K =(1.19 ±0.04 ) S2+(2.68 ±0.06 ) that departs from the expected 4/3 power function regime. A random multiplicative process with weak additive noise is proposed based on a Langevin-type equation. The multiplicative process provides a unifying description of fluctuation scaling and the quadratic S -K relation and is related to on-off intermittency in sensory perception. Our findings provide an insight into how the human visual system interacts with the external environment. The theoretical methods open perspectives for investigating fluctuation scaling and intermittency effects in a wide variety of natural, economic, and cognitive phenomena.

  3. Ongoing activity in temporally coherent networks predicts intra-subject fluctuation of response time to sporadic executive control demands.

    PubMed

    Nozawa, Takayuki; Sugiura, Motoaki; Yokoyama, Ryoichi; Ihara, Mizuki; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Kanno, Akitake; Kawashima, Ryuta

    2014-01-01

    Can ongoing fMRI BOLD signals predict fluctuations in swiftness of a person's response to sporadic cognitive demands? This is an important issue because it clarifies whether intrinsic brain dynamics, for which spatio-temporal patterns are expressed as temporally coherent networks (TCNs), have effects not only on sensory or motor processes, but also on cognitive processes. Predictivity has been affirmed, although to a limited extent. Expecting a predictive effect on executive performance for a wider range of TCNs constituting the cingulo-opercular, fronto-parietal, and default mode networks, we conducted an fMRI study using a version of the color-word Stroop task that was specifically designed to put a higher load on executive control, with the aim of making its fluctuations more detectable. We explored the relationships between the fluctuations in ongoing pre-trial activity in TCNs and the task response time (RT). The results revealed the existence of TCNs in which fluctuations in activity several seconds before the onset of the trial predicted RT fluctuations for the subsequent trial. These TCNs were distributed in the cingulo-opercular and fronto-parietal networks, as well as in perceptual and motor networks. Our results suggest that intrinsic brain dynamics in these networks constitute "cognitive readiness," which plays an active role especially in situations where information for anticipatory attention control is unavailable. Fluctuations in these networks lead to fluctuations in executive control performance.

  4. A novel Cs-(129)Xe atomic spin gyroscope with closed-loop Faraday modulation.

    PubMed

    Fang, Jiancheng; Wan, Shuangai; Qin, Jie; Zhang, Chen; Quan, Wei; Yuan, Heng; Dong, Haifeng

    2013-08-01

    We report a novel Cs-(129)Xe atomic spin gyroscope (ASG) with closed-loop Faraday modulation method. This ASG requires approximately 30 min to start-up and 110 °C to operate. A closed-loop Faraday modulation method for measurement of the optical rotation was used in this ASG. This method uses an additional Faraday modulator to suppress the laser intensity fluctuation and Faraday modulator thermal induced fluctuation. We theoretically and experimentally validate this method in the Cs-(129)Xe ASG and achieved a bias stability of approximately 3.25 °∕h.

  5. Depth-color fusion strategy for 3-D scene modeling with Kinect.

    PubMed

    Camplani, Massimo; Mantecon, Tomas; Salgado, Luis

    2013-12-01

    Low-cost depth cameras, such as Microsoft Kinect, have completely changed the world of human-computer interaction through controller-free gaming applications. Depth data provided by the Kinect sensor presents several noise-related problems that have to be tackled to improve the accuracy of the depth data, thus obtaining more reliable game control platforms and broadening its applicability. In this paper, we present a depth-color fusion strategy for 3-D modeling of indoor scenes with Kinect. Accurate depth and color models of the background elements are iteratively built, and used to detect moving objects in the scene. Kinect depth data is processed with an innovative adaptive joint-bilateral filter that efficiently combines depth and color by analyzing an edge-uncertainty map and the detected foreground regions. Results show that the proposed approach efficiently tackles main Kinect data problems: distance-dependent depth maps, spatial noise, and temporal random fluctuations are dramatically reduced; objects depth boundaries are refined, and nonmeasured depth pixels are interpolated. Moreover, a robust depth and color background model and accurate moving objects silhouette are generated.

  6. UIT: Ultraviolet surface photometry of the spiral galaxy M74 (NGC 628)

    NASA Technical Reports Server (NTRS)

    Cornett, Robert H.; O'Connell, Robert W.; Greason, Michael R.; Offenberg, Joel D.; Angione, Ronald J.; Bohlin, Ralph C.; Cheng, K. P.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.

    1994-01-01

    Ultraviolet photometry, obtained from Ultraviolet Imaging Telescope (UIT) images at 1520 A (far-UV; magnitudes m(152)) and 2490 A (near-UV; magnitudes m(249)), of the spiral galaxy M74 (NGC 628) is compared with H-alpha, R, V, and B surface photometry and with models. M74's surface brightness profiles have a central peak with an exponential falloff; the exponential scale lengths of the profiles increase with decreasing wavelength for the broad-band images. The slope of the continuum-subtracted H-alpha profile is intermediate between those of far-UV and near-UV profiles, consistent with the related origins of H-alpha and UV emission in extreme Population I material. M74's color profiles all become bluer with increasing radius. The (m(152) - m(249)) color as measured by UIT averages near 0.0 (the color of an A0 star) over the central 20 sec radius and decreases from approximately -0.2 to approximately -0.4 from 20 sec to 200 sec. The spiral arms are the dominant component of the surface photometry colors; interarm regions are slightly redder. In the UV, M74's nuclear region resembles its disk/spiral arm material in colors and morphology, unlike galaxies such as M81. No UV 'bulge' is apparent. The m(152) - m(249) colors and models of M74's central region clearly demonstrate that there is no significant population of O or B stars present in the central 10 sec. M74's UV morphology and (m(152) - m(249)) color profiles are similar to those of M33, although M74 is approximately 0.5 mag redder. M81 has a smooth UV bulge which is much redder than the nuclear regions of M74 and M33. M74 is approximately 0.4 mag bluer than M81 in its outer disk, although M81 has bright UV sources only in spiral arms more than 5 kpc from its center. We investigate possible explanations for the color profiles of the galaxies and the differences among the galaxies: abundances; reddening due to internal dust; interplanetary magnetic field (IMF) variations, and the history of formation of the dominant generations of stars. Abundance and IMF variations do not produce large enough m(152) - m(249) or UV - V color differences. Comparing model UV/optical colors with those of M74 shows that M74's disk has undergone significant star formation over the past 500 Myr, and that either the star-formation history or the extinction varies systematically across M74's disk. Comparison of M74, M33, and M81 (UV - V) colors shows that M74 colors range from the bluest of M33's colors to the bluest of M81's. The failure of reddening models to cover the range of colors, and the known abundance range in such material, leads to the conclusion that star-formation history varies significantly as a function of radius in these galaxies, and that such variation is required to explain the range of colors observed in M74, M33, and M81.

  7. Seasonal and diurnal patterns of soil water potential in the rhizosphere of blue oaks: evidence for hydraulic lift.

    PubMed

    Ishikawa, C Millikin; Bledsoe, C S

    2000-12-01

    In a 3-year study, seasonal and daily soil water fluctuations in a California blue oak woodland were investigated by measuring soil water potential (Ψ s ) at hourly intervals. Soil water potential remained relatively high well into the annual summer drought, with values above -0.5 MPa until June even in a dry year. As drought progressed, Ψ s (at 25, 50, 75, and 100 cm depth) decreased to less than -3 MPa, providing evidence for continued blue oak root activity throughout the summer. We observed diurnal Ψ s fluctuations (gradual increase at night and rapid decrease during daytime) characteristic of hydraulic lift, a process by which plant roots redistribute water from wet to dry soil layers. These diurnal fluctuations were observed at all four soil depths and began to appear when Ψ s reached approximately -0.3 MPa. When Ψ s reached approximately -3 MPa, fluctuations became "offset" from those typical of hydraulic lift. These offset fluctuations (apparent at low water potentials when temperature fluctuations were large) closely followed diurnal fluctuations in soil temperature. We propose that these offset patterns resulted from a combination of hydraulic lift cessation and an over-correction for temperature in the model used to calculate Ψ s from raw sensor data. The appearance and disappearance of hydraulic lift fluctuations seemed to depend on Ψ s . While soil temperatures and dates at which hydraulic lift appeared (and disappeared) were significantly different between wet and dry years, Ψ s values associated with hydraulic lift appearance were not significantly different. Hydraulic lift occurred too late in summer to benefit annual forage grasses. However, water released by blue oak trees at night could slow the rate of soil water depletion and extend blue oaks' growing season.

  8. Fluctuating Pressure Analysis of a 2-D SSME Nozzle Air Flow Test

    NASA Technical Reports Server (NTRS)

    Reed, Darren; Hidalgo, Homero

    1996-01-01

    To better understand the Space Shuttle Main Engine (SSME) startup/shutdown tansients, an airflow test of a two dimensional nozzle was conducted at Marshall Space Flight Center's trisonic wind tunnel. Photographic and other instrumentation show during an SSME start large nozzle shell distortions occur as the Mach disk is passing through the nozzle. During earlier develop of the SSME, this startup transient resulted in low cycle fatigue failure of one of the LH2 feedlines. The two dimensional SSME nozzle test was designed to measure the static and fluctuating pressure environment and color Schlieren video during the startup and shutdown phases of the run profile.

  9. Non-Gaussian Analysis of Turbulent Boundary Layer Fluctuating Pressure on Aircraft Skin Panels

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Steinwolf, Alexander

    2005-01-01

    The purpose of the study is to investigate the probability density function (PDF) of turbulent boundary layer fluctuating pressures measured on the outer sidewall of a supersonic transport aircraft and to approximate these PDFs by analytical models. Experimental flight results show that the fluctuating pressure PDFs differ from the Gaussian distribution even for standard smooth surface conditions. The PDF tails are wider and longer than those of the Gaussian model. For pressure fluctuations in front of forward-facing step discontinuities, deviations from the Gaussian model are more significant and the PDFs become asymmetrical. There is a certain spatial pattern of the skewness and kurtosis behavior depending on the distance upstream from the step. All characteristics related to non-Gaussian behavior are highly dependent upon the distance from the step and the step height, less dependent on aircraft speed, and not dependent on the fuselage location. A Hermite polynomial transform model and a piecewise-Gaussian model fit the flight data well both for the smooth and stepped conditions. The piecewise-Gaussian approximation can be additionally regarded for convenience in usage after the model is constructed.

  10. Higher-order correlations for fluctuations in the presence of fields.

    PubMed

    Boer, A; Dumitru, S

    2002-10-01

    The higher-order moments of the fluctuations for thermodynamic systems in the presence of fields are investigated in the framework of a theoretical method. The method uses a generalized statistical ensemble consistent with an adequate expression for the internal energy. The applications refer to the case of a system in a magnetoquasistatic field. In the case of linear magnetic media, one finds that, for the description of the magnetic induction fluctuations, the Gaussian approximation is satisfactory. For nonlinear media, the corresponding fluctuations are non-Gaussian, having a non-null asymmetry. Furthermore, the respective fluctuations have characteristics of leptokurtic, mesokurtic and platykurtic type, depending on the value of the magnetic field strength as compared with a scaling factor of the magnetization curve.

  11. Diurnal changes in ocean color in coastal waters

    NASA Astrophysics Data System (ADS)

    Arnone, Robert; Vandermeulen, Ryan; Ladner, Sherwin; Ondrusek, Michael; Kovach, Charles; Yang, Haoping; Salisbury, Joseph

    2016-05-01

    Coastal processes can change on hourly time scales in response to tides, winds and biological activity, which can influence the color of surface waters. These temporal and spatial ocean color changes require satellite validation for applications using bio-optical products to delineate diurnal processes. The diurnal color change and capability for satellite ocean color response were determined with in situ and satellite observations. Hourly variations in satellite ocean color are dependent on several properties which include: a) sensor characterization b) advection of water masses and c) diurnal response of biological and optical water properties. The in situ diurnal changes in ocean color in a dynamic turbid coastal region in the northern Gulf of Mexico were characterized using above water spectral radiometry from an AErosol RObotic NETwork (AERONET -WavCIS CSI-06) site that provides up to 8-10 observations per day (in 15-30 minute increments). These in situ diurnal changes were used to validate and quantify natural bio-optical fluctuations in satellite ocean color measurements. Satellite capability to detect changes in ocean color was characterized by using overlapping afternoon orbits of the VIIRS-NPP ocean color sensor within 100 minutes. Results show the capability of multiple satellite observations to monitor hourly color changes in dynamic coastal regions that are impacted by tides, re-suspension, and river plume dispersion. Hourly changes in satellite ocean color were validated with in situ observation on multiple occurrences during different times of the afternoon. Also, the spatial variability of VIIRS diurnal changes shows the occurrence and displacement of phytoplankton blooms and decay during the afternoon period. Results suggest that determining the temporal and spatial changes in a color / phytoplankton bloom from the morning to afternoon time period will require additional satellite coverage periods in the coastal zone.

  12. Low Mach number fluctuating hydrodynamics for electrolytes

    DOE PAGES

    Péraud, Jean-Philippe; Nonaka, Andy; Chaudhri, Anuj; ...

    2016-11-18

    Here, we formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are also interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids (A. Donev, et al., Physics of Fluids, 27, 3, 2015), we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the massmore » and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. Furthermore, we demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm is second-order in the deterministic setting, and for length scales much greater than the Debye length gives results consistent with an electroneutral/ambipolar approximation. In the stochastic setting, our model captures the predicted dynamics of equilibrium and nonequilibrium fluctuations. We also identify and model an instability that appears when diffusive mixing occurs in the presence of an applied electric field.« less

  13. Plasma Turbulence Imaging via Beam Emission Spectroscopy in the Core of the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    McKee, George R.; Fonck, Raymond J.; Gupta, Deepak K.; Schlossberg, David J.; Shafer, Morgan W.; Boivin, Réjean L.; Solomon, Wayne

    Beam Emission Spectroscopy (BES), a high-sensitivity, good spatial resolution imaging diagnostic system, has been deployed and recently upgraded and expanded at the DIII-D tokamak to better understand density fluctuations arising from plasma turbulence. The currently deployed system images density fluctuations over an approximately 5 × 7 cm region at the plasma mid-plane (radially scannable over 0.2 < r/a ≤ 1) with a 5 × 6 (radial × poloidal) grid of rectangular detection channels, with one microsecond time resolution. BES observes collisionally-induced, Doppler-shifted Dα fluorescence (λ = 652-655 nm) of injected deuterium neutral beam atoms. The diagnostic wavenumber sensitivity is approximately k⊥ < 2.5 cm-1, allowing measurement of longwavelength (k⊥ρI < 1) density fluctuations. The recent upgrade includes expanded fiber optics bundles, customdesigned high-transmission, sharp-edge interference filters, ultra fast collection optics, and enlarged photodiode detectors that together provide nearly an order of magnitude increase in sensitivity relative to an earlier generation BES system. The high sensitivity allows visualization of turbulence at normalized density fluctuation amplitudes of ‾n/n < 1%, typical of fluctuation levels in the core region. The imaging array allows for sampling over 2-3 turbulent eddy scale lengths, which captures the essential dynamics of eddy evolution, interaction and shearing.

  14. Sharing Our Unheard Voices: Perceptions of the Lived Experience of Teachers of Color

    ERIC Educational Resources Information Center

    Berrios, Darline

    2016-01-01

    In public education, approximately 80% of teachers in the United States are White, yet close to half of the student population are students of color (U.S. Department of Education, 2011). Gaps in teacher diversity compared with students of color are found in every state across the country (Center for American Progress, 2011). In 2004, the National…

  15. Differences between the insulating limit quasiparticles of one-band and three-band cuprate models

    NASA Astrophysics Data System (ADS)

    Ebrahimnejad, H.; Sawatzky, G. A.; Berciu, M.

    2016-03-01

    We study the charge dynamics of the quasiparticle that forms when a single hole is doped in a two-dimensional antiferromagnet as described by the one-band t-{{t}\\prime} -{{t}\\prime \\prime} -J model, using a variational approximation that includes spin fluctuations in the vicinity of the hole. We explain why the spin fluctuations and the longer range hopping have complementary contributions to the quasiparticle dynamics, and thus why both are essential to obtain a dispersion in agreement with that measured experimentally. This is very different from the three-band Emery model in the strongly-correlated limit, where the same variational approximation shows that spin fluctuations have a minor effect on the quasiparticle dynamics. This difference proves that these one-band and three-band models describe qualitatively different quasiparticles in the insulating limit, and therefore that they cannot both be suitable to describe the physics of very underdoped cuprates.

  16. Stochastic transport in the presence of spatial disorder: Fluctuation-induced corrections to homogenization

    NASA Astrophysics Data System (ADS)

    Russell, Matthew J.; Jensen, Oliver E.; Galla, Tobias

    2016-10-01

    Motivated by uncertainty quantification in natural transport systems, we investigate an individual-based transport process involving particles undergoing a random walk along a line of point sinks whose strengths are themselves independent random variables. We assume particles are removed from the system via first-order kinetics. We analyze the system using a hierarchy of approaches when the sinks are sparsely distributed, including a stochastic homogenization approximation that yields explicit predictions for the extrinsic disorder in the stationary state due to sink strength fluctuations. The extrinsic noise induces long-range spatial correlations in the particle concentration, unlike fluctuations due to the intrinsic noise alone. Additionally, the mean concentration profile, averaged over both intrinsic and extrinsic noise, is elevated compared with the corresponding profile from a uniform sink distribution, showing that the classical homogenization approximation can be a biased estimator of the true mean.

  17. Effect of Contraction on Turbulence and Temperature Fluctuations Generated by a Warm Grid

    NASA Technical Reports Server (NTRS)

    Mills, Robert R., Jr.; Corrsin, Stanley

    1959-01-01

    Hot-wire anemometer measurements were made of several statistical properties of approximately homogeneous and isotropic fields of turbulence and temperature fluctuations generated by a warm grid in a uniform airstream sent through a 4-to-1 contraction. These measurements were made both in the contraction and in the axisymmetric domain farther downstream. In addition to confirming the well-known turbulence anisotropy induced by strain, the data show effects on the skewnesses of both longitudinal velocity fluctuation (which has zero skewness in isotropic turbulence) and its derivative. The concomitant anisotropy in the temperature field accelerates the decay of temperature fluctuations.

  18. Capturing the Large Scale Behavior of Many Particle Systems Through Coarse-Graining

    NASA Astrophysics Data System (ADS)

    Punshon-Smith, Samuel

    This dissertation is concerned with two areas of investigation: the first is understanding the mathematical structures behind the emergence of macroscopic laws and the effects of small scales fluctuations, the second involves the rigorous mathematical study of such laws and related questions of well-posedness. To address these areas of investigation the dissertation involves two parts: Part I concerns the theory of coarse-graining of many particle systems. We first investigate the mathematical structure behind the Mori-Zwanzig (projection operator) formalism by introducing two perturbative approaches to coarse-graining of systems that have an explicit scale separation. One concerns systems with little dissipation, while the other concerns systems with strong dissipation. In both settings we obtain an asymptotic series of `corrections' to the limiting description which are small with respect to the scaling parameter, these corrections represent the effects of small scales. We determine that only certain approximations give rise to dissipative effects in the resulting evolution. Next we apply this framework to the problem of coarse-graining the locally conserved quantities of a classical Hamiltonian system. By lumping conserved quantities into a collection of mesoscopic cells, we obtain, through a series of approximations, a stochastic particle system that resembles a discretization of the non-linear equations of fluctuating hydrodynamics. We study this system in the case that the transport coefficients are constant and prove well-posedness of the stochastic dynamics. Part II concerns the mathematical description of models where the underlying characteristics are stochastic. Such equations can model, for instance, the dynamics of a passive scalar in a random (turbulent) velocity field or the statistical behavior of a collection of particles subject to random environmental forces. First, we study general well-posedness properties of stochastic transport equation with rough diffusion coefficients. Our main result is strong existence and uniqueness under certain regularity conditions on the coefficients, and uses the theory of renormalized solutions of transport equations adapted to the stochastic setting. Next, in a work undertaken with collaborator Scott-Smith we study the Boltzmann equation with a stochastic forcing. The noise describing the forcing is white in time and colored in space and describes the effects of random environmental forces on a rarefied gas undergoing instantaneous, binary collisions. Under a cut-off assumption on the collision kernel and a coloring hypothesis for the noise coefficients, we prove the global existence of renormalized (DiPerna/Lions) martingale solutions to the Boltzmann equation for large initial data with finite mass, energy, and entropy. Our analysis includes a detailed study of weak martingale solutions to a class of linear stochastic kinetic equations. Tightness of the appropriate quantities is proved by an extension of the Skorohod theorem to non-metric spaces.

  19. Efficient image projection by Fourier electroholography.

    PubMed

    Makowski, Michał; Ducin, Izabela; Kakarenko, Karol; Kolodziejczyk, Andrzej; Siemion, Agnieszka; Siemion, Andrzej; Suszek, Jaroslaw; Sypek, Maciej; Wojnowski, Dariusz

    2011-08-15

    An improved efficient projection of color images is presented. It uses a phase spatial light modulator with three iteratively optimized Fourier holograms displayed simultaneously--each for one primary color. This spatial division instead of time division provides stable images. A pixelated structure of the modulator and fluctuations of liquid crystal molecules cause a zeroth-order peak, eliminated by additional wavelength-dependent phase factors shifting it before the image plane, where it is blocked with a matched filter. Speckles are suppressed by time integration of variable speckle patterns generated by additional randomizations of an initial phase and minor changes of the signal. © 2011 Optical Society of America

  20. The effect of the dynamic wet troposphere on VLBI measurements

    NASA Technical Reports Server (NTRS)

    Treuhaft, R. N.; Lanyi, G. E.

    1986-01-01

    Calculations using a statistical model of water vapor fluctuations yield the effect of the dynamic wet troposphere on Very Long Baseline Interferometry (VLBI) measurements. The statistical model arises from two primary assumptions: (1) the spatial structure of refractivity fluctuations can be closely approximated by elementary (Kolmogorov) turbulence theory, and (2) temporal fluctuations are caused by spatial patterns which are moved over a site by the wind. The consequences of these assumptions are outlined for the VLBI delay and delay rate observables. For example, wet troposphere induced rms delays for Deep Space Network (DSN) VLBI at 20-deg elevation are about 3 cm of delay per observation, which is smaller, on the average, than other known error sources in the current DSN VLBI data set. At 20-deg elevation for 200-s time intervals, water vapor induces approximately 1.5 x 10 to the minus 13th power s/s in the Allan standard deviation of interferometric delay, which is a measure of the delay rate observable error. In contrast to the delay error, the delay rate measurement error is dominated by water vapor fluctuations. Water vapor induced VLBI parameter errors and correlations are calculated. For the DSN, baseline length parameter errors due to water vapor fluctuations are in the range of 3 to 5 cm. The above physical assumptions also lead to a method for including the water vapor fluctuations in the parameter estimation procedure, which is used to extract baseline and source information from the VLBI observables.

  1. White Dwarfs in the GALEX Survey

    NASA Technical Reports Server (NTRS)

    Kawka, Adela; Vennes, Stephane

    2007-01-01

    We have cross-correlated the 2dF QSO Redshift Survey (2QZ) white dwarf catalog with the GALEX 2nd Data Release and the Sloan Digital Sky Survey (SDSS) data release 5 to obtain ultraviolet photometry (FUV, NUV) for approximately 700 objects and optical photometry (ugriz) for approximately 800 objects. We have compared the optical-ultraviolet colors to synthetic white dwarf colors to obtain temperature estimates for approximately 250 of these objects. These white dwarfs have effective temperatures ranging from 10 000 K (cooling age of about 1Gyr) up to about 40000 K (cooling age of about 3 Myrs), with a few that have even higher temperatures. We found that to distinguish white dwarfs from other stellar luminosity classes both optical and ultraviolet colors are necessary, in particular for the hotter objects where there is contamination from B and 0 main-sequence stars. Using this sample we build a luminosity function for the DA white dwarfs with Mv < 12 mag.

  2. Fabrication of Ordered Blue Nanostructure by Anodization of an Aluminum Plate

    NASA Astrophysics Data System (ADS)

    Kurashima, Yuichi; Yokota, Yoshihiko; Miyamoto, Iwao; Itatani, Taro

    2007-03-01

    Colors in organisms are created by chemical interactions of molecular pigments and by optical interactions of incident light with biological nanostructures. The latter classes are called structural colors and form an important component of the phenotypes of many animals and even some plants. In this paper, we report on the fabrication of an ordered blue nanostructure by the anodization of an Al plate. In the fabrication of such an ordered nanostructure by the anodization of an Al plate, ordered nanostructures with a pitch and an alumina thickness of approximately 100 nm were produced on the Al plate. The ordered nanostructures on the Al plate showed no colors. However, an ordered nanostructure deposited with a Pt thin film with a thickness of approximately 10 nm showed a blue reflection with a peak reflectivity of approximately 370 nm. We conclude that this blue nanostructure on the Al plate is caused by an interference between the Al surface and the Pt surface.

  3. 16 CFR 301.19 - Pointing, dyeing, bleaching or otherwise artificially coloring.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... bleaching means the process for producing a lighter shade of a fur, or removing off-color spots and stains... approximately .1000 grams of mink hair into a beaker with 20 ml. concentrated nitric acid. Evaporate just to...

  4. 16 CFR 301.19 - Pointing, dyeing, bleaching or otherwise artificially coloring.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... bleaching means the process for producing a lighter shade of a fur, or removing off-color spots and stains... approximately .1000 grams of mink hair into a beaker with 20 ml. concentrated nitric acid. Evaporate just to...

  5. 16 CFR 301.19 - Pointing, dyeing, bleaching or otherwise artificially coloring.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... bleaching means the process for producing a lighter shade of a fur, or removing off-color spots and stains... approximately .1000 grams of mink hair into a beaker with 20 ml. concentrated nitric acid. Evaporate just to...

  6. 16 CFR 301.19 - Pointing, dyeing, bleaching or otherwise artificially coloring.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... bleaching means the process for producing a lighter shade of a fur, or removing off-color spots and stains... approximately .1000 grams of mink hair into a beaker with 20 ml. concentrated nitric acid. Evaporate just to...

  7. 16 CFR 301.19 - Pointing, dyeing, bleaching or otherwise artificially coloring.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... bleaching means the process for producing a lighter shade of a fur, or removing off-color spots and stains... approximately .1000 grams of mink hair into a beaker with 20 ml. concentrated nitric acid. Evaporate just to...

  8. Age of Onset of Blindness and the Development of the Semantics of Color Names.

    ERIC Educational Resources Information Center

    Marmor, Gloria Strauss

    The relationship between age of onset of blindness and development of knowledge of color relations was examined with 16 college students who had been born totally blind, 16 who had been blinded totally at approximately 15 years of age, and 16 who had normal vision. Ss were asked to judge the similarities between color names, and judgments were…

  9. Phase Fluctuations and a Negative U Hubbard Model: Single-Particle and Thermodyanic Properties in a Conserving Approximation

    NASA Astrophysics Data System (ADS)

    Serene, J. W.; Deisz, J. J.; Hess, D. W.

    1997-03-01

    Calculations performed in the fluctuation exchange approximation for the single-band 2D Hubbard model on a cylinder and threaded by a flux, show the appearance of a finite superfluid density below T ~ 0.13t, for U=-4t and at three-eighths filling.(J.J. Deisz, D.W. Hess, Bull. Am. Phys. Soc. 41, 239 (1996); J.J. Deisz, D.W. Hess, and J.W. Serene, in preparation.) We show the evolution, with decreasing temperature, of the single-particle spectral function, the self-energy, the particle-particle T-matrix, and thermodynamic properties as the superfluid state is approached and entered.

  10. Environment of Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Hou, K.-c.; Chen, L.-w.

    2013-10-01

    To study the environment of high-redshift star-forming galaxies — submillimeter galaxies (SMGs) — and their role during large-scale structure formation, we have estimated the galaxy number density fluctuations around SMGs, and analyzed their cross correlation functions with Lyman alpha emitters (LAEs), and optical-selected galaxies with photometric redshift in the COSMOS and ECDFS fields. Only a marginal cross-correlation between SMGs and optical-selected galaxies at most redshifts intervals is found in our results, except a relatively strong correlation detected in the cases of AzTEC-detected SMGs with galaxies at z ˜2.6 and 3.6. The density fluctuations around SMGs with redshift estimated show most SMGs located in a high-density region. There is no correlation signal between LAEs and SMGs, and the galaxy density fluctuations indicate a slightly anti-correlation on a scale smaller than 2 Mpc. Furthermore, we also investigate the density fluctuations of passive and starforming galaxies selected by optical and near infrared colors at similar redshift around SMGs. Finally the implication from our results to the interconnection between high-redshift galaxy populations is discussed.

  11. Color design model of high color rendering index white-light LED module.

    PubMed

    Ying, Shang-Ping; Fu, Han-Kuei; Hsieh, Hsin-Hsin; Hsieh, Kun-Yang

    2017-05-10

    The traditional white-light light-emitting diode (LED) is packaged with a single chip and a single phosphor but has a poor color rendering index (CRI). The next-generation package comprises two chips and a single phosphor, has a high CRI, and retains high luminous efficacy. This study employs two chips and two phosphors to improve the diode's color tunability with various proportions of two phosphors and various densities of phosphor in the silicone used. A color design model is established for color fine-tuning of the white-light LED module. The maximum difference between the measured and color-design-model simulated CIE 1931 color coordinates is approximately 0.0063 around a correlated color temperature (CCT) of 2500 K. This study provides a rapid method to obtain the color fine-tuning of a white-light LED module with a high CRI and luminous efficacy.

  12. Ion heating and short wavelength fluctuations in a helicon plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scime, E. E.; Carr, J. Jr.; Galante, M.

    2013-03-15

    For typical helicon source parameters, the driving antenna can couple to two plasma modes; the weakly damped 'helicon' wave, and the strongly damped, short wavelength, slow wave. Here, we present direct measurements, obtained with two different techniques, of few hundred kHz, short wavelength fluctuations that are parametrically driven by the primary antenna and localized to the edge of the plasma. The short wavelength fluctuations appear for plasma source parameters such that the driving frequency is approximately equal to the lower hybrid frequency. Measurements of the steady-state ion temperature and fluctuation amplitude radial profiles suggest that the anomalously high ion temperaturesmore » observed at the edge of helicon sources result from damping of the short wavelength fluctuations. Additional measurements of the time evolution of the ion temperature and fluctuation profiles in pulsed helicon source plasmas support the same conclusion.« less

  13. Deep HST imaging of distant weak radio and field galaxies

    NASA Technical Reports Server (NTRS)

    Windhorst, R. A.; Gordon, J. M.; Pascarelle, S. M.; Schmidtke, P. C.; Keel, W. C.; Burkey, J. M.; Dunlop, J. S.

    1994-01-01

    We present deep Hubble Space Telescope (HST) Wide-Field Camera (WFC) V- and I-band images of three distant weak radio galaxies with z = 0.311-2.390 and seven field galaxies with z = 0.131-0.58. The images were deconvolved with both the Lucy and multiresolution CLEAN methods, which yield a restoring Full Width at Half Maximum (FWHM) of less than or equal to 0.2 sec, (nearly) preserve photons and signal-to-noise ratio at low spatial frequencies, and produce consistent light profiles down to our 2 sigma surface brightness sensitivity limit of V approximately 27.2 and I approximately 25.9 mag/sq arcsec. Multi-component image modeling was used to provide deconvolution-independent estimates of structural parameters for symmetric galaxies. We present 12-band (m(sub 2750) UBVRIgriJHK) photometry for a subset of the galaxies and bootstrap the unknown FOC/48 zero point at 2750 A in three independent ways (yielding m(sub 2750) = 21.34 +/- 0.09 mag for 1.0 e(-)/s). Two radio galaxies with z = 0.311 and 0.528, as well as one field galaxy with z = 0.58, have the colors and spectra of early-type galaxies, and a(exp 1/4)-like light profiles in the HST images. The two at z greater than 0.5 have little or no color gradients in V - I and are likely giant ellipticals, while the z = 0.311 radio galaxy has a dim exponential disk and is likely an S0. Six of the seven field galaxies have light profiles that indicate (small) inner bulges following a(exp 1/4) laws and outer exponential disks, both with little or no color gradients. These are (early-type) spiral galaxies with z = 0.131-0.528. About half have faint companions or bars. One shows lumpy structure, possibly a merger. The compact narrow-line galaxy 53W002 at z = 2.390 has less than or = 30% +/- 10% of its HST V and I flux in the central kiloparsec (due to its weak Active Galactic Nucleus (AGN)). Most of its light (V approximately equal to 23.3) occurs in a symmetric envelope with a regular a(exp 1/4)-like profile of effective radius a approximately equal to 1.1 sec (approximately equal to 12 kpc for H(sub 0) = 50, q(sub 0) = 0.1. Its (HST) V - I color varies at most from approximately 0.3 mag at a approximately equal to 0.2 sec to approximately 1.2 mag at a approximately greater than 0.4 sec, and possibly to approximately greater than 2.2 mag at a approximately greater than 1.2 sec. Together with its I - K color (approximately equal to 2.5 mag for a approximately greater than 1.0 sec-2.0 sec), this is consistent with an aging stellar population approximately 0.3-0.5 Gyr old in the galaxy center (a approx. less than 2 kpc radius), and possibly approximately 0.5-1.0 Gyr old at a approximately greater than 10 kpc radius. While its outer part may thus have started to collapse at z = 2.5-4, its inner part still is aligned with its redshifted Ly(alpha) cloud and its radio axis, possibly caused by star formation associated with the radio jet, or by reflection from its AGN cone.

  14. Hazardous Waste Cleanup: Buffalo Color Corporation in Buffalo, New York

    EPA Pesticide Factsheets

    Buffalo Color Corporation, located in an industrial area in Buffalo, New York, occupies approximately 42 acres adjacent to the Buffalo River, along Elk and Lee streets. The plant has produced dyestuffs and organic chemicals since 1879, when it was built by

  15. A root-mean-square pressure fluctuations model for internal flow applications

    NASA Technical Reports Server (NTRS)

    Chen, Y. S.

    1985-01-01

    A transport equation for the root-mean-square pressure fluctuations of turbulent flow is derived from the time-dependent momentum equation for incompressible flow. Approximate modeling of this transport equation is included to relate terms with higher order correlations to the mean quantities of turbulent flow. Three empirical constants are introduced in the model. Two of the empirical constants are estimated from homogeneous turbulence data and wall pressure fluctuations measurements. The third constant is determined by comparing the results of large eddy simulations for a plane channel flow and an annulus flow.

  16. Entropic Repulsion Between Fluctuating Surfaces

    NASA Astrophysics Data System (ADS)

    Janke, W.

    The statistical mechanics of fluctuating surfaces plays an important role in a variety of physical systems, ranging from biological membranes to world sheets of strings in theories of fundamental interactions. In many applications it is a good approximation to assume that the surfaces possess no tension. Their statistical properties are then governed by curvature energies only, which allow for gigantic out-of-plane undulations. These fluctuations are the “entropic” origin of long-range repulsive forces in layered surface systems. Theoretical estimates of these forces for simple model surfaces are surveyed and compared with recent Monte Carlo simulations.

  17. Three Fresh Exposures, Enhanced Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This enhanced-color panoramic camera image from the Mars Exploration Rover Opportunity features three holes created by the rock abrasion tool between sols 143 and 148 (June 18 and June 23, 2004) inside 'Endurance Crater.' The enhanced image makes the red colors a little redder and blue colors a little bluer, allowing viewers to see differences too subtle to be seen without the exaggeration. When compared with an approximately true color image, the tailings from the rock abrasion tool and the interior of the abraded holes are more prominent in this view. Being able to discriminate color variations helps scientists determine rocks' compositional differences and texture variations. This image was created using the 753-, 535- and 432-nanometer filters.

  18. When can time-dependent currents be reproduced by the Landauer steady-state approximation?

    NASA Astrophysics Data System (ADS)

    Carey, Rachel; Chen, Liping; Gu, Bing; Franco, Ignacio

    2017-05-01

    We establish well-defined limits in which the time-dependent electronic currents across a molecular junction subject to a fluctuating environment can be quantitatively captured via the Landauer steady-state approximation. For this, we calculate the exact time-dependent non-equilibrium Green's function (TD-NEGF) current along a model two-site molecular junction, in which the site energies are subject to correlated noise, and contrast it with that obtained from the Landauer approach. The ability of the steady-state approximation to capture the TD-NEGF behavior at each instant of time is quantified via the same-time correlation function of the currents obtained from the two methods, while their global agreement is quantified by examining differences in the average currents. The Landauer steady-state approach is found to be a useful approximation when (i) the fluctuations do not disrupt the degree of delocalization of the molecular eigenstates responsible for transport and (ii) the characteristic time for charge exchange between the molecule and leads is fast with respect to the molecular correlation time. For resonant transport, when these conditions are satisfied, the Landauer approach is found to accurately describe the current, both on average and at each instant of time. For non-resonant transport, we find that while the steady-state approach fails to capture the time-dependent transport at each instant of time, it still provides a good approximation to the average currents. These criteria can be employed to adopt effective modeling strategies for transport through molecular junctions in interaction with a fluctuating environment, as is necessary to describe experiments.

  19. Probing subnucleon scale fluctuations in ultraperipheral heavy ion collisions

    DOE PAGES

    Mantysaari, Heikki; Schenke, Bjorn

    2017-08-02

    We show that introducing subnucleon scale fluctuations constrained by HERA diffractive J/Ψ production data significantly affects the incoherent diffractive J/Ψ production cross section in ul-traperipheral heavy ion collisions. We find that the inclusion of the additional fluctuations increases the ratio of the incoherent to the coherent cross section approximately by a factor of 2, and modifies the transverse momentum spectra of the produced J/Ψ at momenta larger than the scale that corresponds to the distance scale of the subnucleonic fluctuations. We present predictions for J/Ψ production in ultraperipheral heavy ion collisions at √sNN = 5.02 TeV at the LHC andmore » 200 GeV at RHIC.« less

  20. Viking S-band Doppler RMS phase fluctuations used to calibrate the mean 1976 equatorial corona

    NASA Technical Reports Server (NTRS)

    Berman, A. L.; Wackley, J. A.

    1977-01-01

    Viking S-band Doppler RMS phase fluctuations (noise) and comparisons of Viking Doppler noise to Viking differenced S-X range measurements are used to construct a mean equatorial electron density model for 1976. Using Pioneer Doppler noise results (at high heliographic latitudes, also from 1976), an equivalent nonequatorial electron density model is approximated.

  1. A Heliosphere Buffeted by Interstellar Turbulence?

    NASA Astrophysics Data System (ADS)

    Jokipii, J. R.; Giacalone, J.

    2014-12-01

    Recent observations from IBEX combined with previous measurements from other sources suggest new, local, effects of interstellar turbulence. Observations of various interstellar parameters such as the magnetic field, fluid velocity and electron density, over large spatial scales, have revealed a broadband Kolmogorov spectrum of interstellar turbulence which pervades most of interstellar space. The outer scale (or coherence scale of this turbulence) is found to be approximately 10^19 cm and the inner cutoff scale is less than 1000 km. The root-mean-square relative fluctuation in the fluid and the magnetic-field parameters is of order unity. If this turbulence exists at the heliosphere, the root-mean-square relative fluctuations at 100 (heliospheric) AU scales is approximately 0.1. The recently published value for the change In observed velocity direction for the interstellar flow relative to the heliosphere (Frisch, etal, 2014)is consistent with this. Similarly, interpreting the width of the IBEX ribbon in terms of a fluctuating magnetic field also is in agreement with this picture. Observations of TeV cosmic rays can also be explained. Potential effects of these fluctuations in the interstellar medium on the heliosphere will be discussed. Reference: Frisch, etal, Science, 341, 480

  2. Stochastic transport models for mixing in variable-density turbulence

    NASA Astrophysics Data System (ADS)

    Bakosi, J.; Ristorcelli, J. R.

    2011-11-01

    In variable-density (VD) turbulent mixing, where very-different- density materials coexist, the density fluctuations can be an order of magnitude larger than their mean. Density fluctuations are non-negligible in the inertia terms of the Navier-Stokes equation which has both quadratic and cubic nonlinearities. Very different mixing rates of different materials give rise to large differential accelerations and some fundamentally new physics that is not seen in constant-density turbulence. In VD flows material mixing is active in a sense far stronger than that applied in the Boussinesq approximation of buoyantly-driven flows: the mass fraction fluctuations are coupled to each other and to the fluid momentum. Statistical modeling of VD mixing requires accounting for basic constraints that are not important in the small-density-fluctuation passive-scalar-mixing approximation: the unit-sum of mass fractions, bounded sample space, and the highly skewed nature of the probability densities become essential. We derive a transport equation for the joint probability of mass fractions, equivalent to a system of stochastic differential equations, that is consistent with VD mixing in multi-component turbulence and consistently reduces to passive scalar mixing in constant-density flows.

  3. Dynamical Vertex Approximation for the Hubbard Model

    NASA Astrophysics Data System (ADS)

    Toschi, Alessandro

    A full understanding of correlated electron systems in the physically relevant situations of three and two dimensions represents a challenge for the contemporary condensed matter theory. However, in the last years considerable progress has been achieved by means of increasingly more powerful quantum many-body algorithms, applied to the basic model for correlated electrons, the Hubbard Hamiltonian. Here, I will review the physics emerging from studies performed with the dynamical vertex approximation, which includes diagrammatic corrections to the local description of the dynamical mean field theory (DMFT). In particular, I will first discuss the phase diagram in three dimensions with a special focus on the commensurate and incommensurate magnetic phases, their (quantum) critical properties, and the impact of fluctuations on electronic lifetimes and spectral functions. In two dimensions, the effects of non-local fluctuations beyond DMFT grow enormously, determining the appearance of a low-temperature insulating behavior for all values of the interaction in the unfrustrated model: Here the prototypical features of the Mott-Hubbard metal-insulator transition, as well as the existence of magnetically ordered phases, are completely overwhelmed by antiferromagnetic fluctuations of exponentially large extension, in accordance with the Mermin-Wagner theorem. Eventually, by a fluctuation diagnostics analysis of cluster DMFT self-energies, the same magnetic fluctuations are identified as responsible for the pseudogap regime in the holed-doped frustrated case, with important implications for the theoretical modeling of the cuprate physics.

  4. Chester Lake Bedrock on Rim of Endeavour Crater

    NASA Image and Video Library

    2011-09-14

    The view of Chester Lake from NASA Mars rover Opportunity is presented in approximate true color. This natural color is the rover team best estimate of what the scene would look like if humans were there and able to see it with their own eyes.

  5. The study of RMB exchange rate complex networks based on fluctuation mode

    NASA Astrophysics Data System (ADS)

    Yao, Can-Zhong; Lin, Ji-Nan; Zheng, Xu-Zhou; Liu, Xiao-Feng

    2015-10-01

    In the paper, we research on the characteristics of RMB exchange rate time series fluctuation with methods of symbolization and coarse gaining. First, based on fluctuation features of RMB exchange rate, we define the first type of fluctuation mode as one specific foreign currency against RMB in four days' fluctuating situations, and the second type as four different foreign currencies against RMB in one day's fluctuating situation. With the transforming method, we construct the unique-currency and multi-currency complex networks. Further, through analyzing the topological features including out-degree, betweenness centrality and clustering coefficient of fluctuation-mode complex networks, we find that the out-degree distribution of both types of fluctuation mode basically follows power-law distributions with exponents between 1 and 2. The further analysis reveals that the out-degree and the clustering coefficient generally obey the approximated negative correlation. With this result, we confirm previous observations showing that the RMB exchange rate exhibits a characteristic of long-range memory. Finally, we analyze the most probable transmission route of fluctuation modes, and provide probability prediction matrix. The transmission route for RMB exchange rate fluctuation modes exhibits the characteristics of partially closed loop, repeat and reversibility, which lays a solid foundation for predicting RMB exchange rate fluctuation patterns with large volume of data.

  6. A physiologically-based model for simulation of color vision deficiency.

    PubMed

    Machado, Gustavo M; Oliveira, Manuel M; Fernandes, Leandro A F

    2009-01-01

    Color vision deficiency (CVD) affects approximately 200 million people worldwide, compromising the ability of these individuals to effectively perform color and visualization-related tasks. This has a significant impact on their private and professional lives. We present a physiologically-based model for simulating color vision. Our model is based on the stage theory of human color vision and is derived from data reported in electrophysiological studies. It is the first model to consistently handle normal color vision, anomalous trichromacy, and dichromacy in a unified way. We have validated the proposed model through an experimental evaluation involving groups of color vision deficient individuals and normal color vision ones. Our model can provide insights and feedback on how to improve visualization experiences for individuals with CVD. It also provides a framework for testing hypotheses about some aspects of the retinal photoreceptors in color vision deficient individuals.

  7. Colored-noise-induced discontinuous transitions in symbiotic ecosystems.

    PubMed

    Mankin, Romi; Sauga, Ako; Ainsaar, Ain; Haljas, Astrid; Paunel, Kristiina

    2004-06-01

    A symbiotic ecosystem is studied by means of the Lotka-Volterra stochastic model, using the generalized Verhulst self-regulation. The effect of fluctuating environment on the carrying capacity of a population is taken into account as dichotomous noise. The study is a follow-up of our investigation of symbiotic ecosystems subjected to three-level (trichotomous) noise [Phys. Rev. E 65, 051108 (2002)

  8. Modeling the color of natural dyes

    NASA Astrophysics Data System (ADS)

    Ge, Xiaochuan; Calzolari, Arrigo; Binnie, Simon; Baroni, Stefano

    2013-03-01

    We report on a theoretical study, based on time-dependent density-functional theory, of various factors affecting the optical properties of a few representative anthocyanins, a class of molecules responsible for the color of many fruits, flowers, and leaves, which have also aroused some interest for photovoltaic applications. We first address the influence of substituting different side groups in the phenyl ring of flavylium dyes. We find that these dyes can be classified into three broad classes, according to the number of peaks (1, 2, or 3) featured in the visible range, and give a rationale to this finding. We then examine the effects of solvent-induced thermal fluctuations and dielectric screening, by calculating the spectrum of a representative molecule in solution, for each one these classes. This is achieved by first running an ab initio molecular dynamics simulation of an explicit model for the water-solvated molecule, and then accumulating time averages of the optical spectra calculated on the fly. The effects of thermal fluctuations are shown to overshadow those of dielectric screening, and more dramatic the larger the number of peaks in the gas phase. The effects of different functionals (GGA vs. hybrids) on the calculated spectra are also addressed.

  9. Digital color analysis of color-ratio composite LANDSAT scenes. [Nevada

    NASA Technical Reports Server (NTRS)

    Raines, G. L.

    1977-01-01

    A method is presented that can be used to calculate approximate Munsell coordinates of the colors produced by making a color composite from three registered images. Applied to the LANDSAT MSS data of the Goldfield, Nevada, area, this method permits precise and quantitative definition of the limonitic areas originally observed in a LANDSAT color ratio composite. In addition, areas of transported limonite can be discriminated from the limonite in the hydrothermally altered areas of the Goldfield mining district. From the analysis, the numerical distinction between limonitic and nonlimonitic ground is generally less than 3% using the LANDSAT bands and as much as 8% in ratios of LANDSAT MSS bands.

  10. Reducing and measuring fluctuations in the MST RFP: Enhancement of energy confinement and measurement of the MHD dynamo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Den Hartog, D.J.; Almagri, A.F.; Cekic, M.

    1996-09-01

    A three- to five-fold enhancement of the energy confinement time in a reversed-field pinch (RFP) has been achieved in the Madison Symmetric Torus (MST) by reducing the amplitude of tearing mode fluctuations responsible for anomalous transport in the core of the RFP. By applying a transient poloidal inductive electric field to flatten the current density profile, the fluctuation amplitude {tilde b}/B decreases from 1.5% to 0.8%, the electron temperature T{sub e0} increases from 250 eV to 370 eV, the ohmic input power decreases from 4.5 MW to approximately 1.5 MW, the poloidal beta {beta}{sub 0} increases from 6% to 9%,more » and the energy confinement time {tau}{sub E} increases from 1 ms to {approximately}5 ms in I{sub {phi}} = 340 kA plasmas with density {tilde n} = 1 {times} 10{sup 19} m{sup -3}. Current profile control methods are being developed for the RFP in a program to eliminate transport associated with these current-gradient-driven fluctuations. In addition to controlling the amplitude of the tearing modes, we are vigorously pursuing an understanding of the physics of these fluctuations. In particular, plasma flow, both equilibrium and fluctuating, plays a critical role in a diversity of physical phenomena in MST. The key results: 1) Edge probe measurements show that the MHD dynamo is active in low collisionality plasmas, while at high collisionality a new mechanism, the `electron diamagnetic dynamo,` is observed. 2) Core spectroscopic measurements show that the toroidal velocity fluctuations of the plasma are coherent with the large-scale magnetic tearing modes; the scalar product of these two fluctuating quantities is similar to that expected for the MHD dynamo electromotive force. 3) Toroidal plasma flow in MST exhibits large radial shear and can be actively controlled, including unlocking locked discharges, by modifying E{sub r} with a robust biased probe. 24 refs.« less

  11. Weight Vector Fluctuations in Adaptive Antenna Arrays Tuned Using the Least-Mean-Square Error Algorithm with Quadratic Constraint

    NASA Astrophysics Data System (ADS)

    Zimina, S. V.

    2015-06-01

    We present the results of statistical analysis of an adaptive antenna array tuned using the least-mean-square error algorithm with quadratic constraint on the useful-signal amplification with allowance for the weight-coefficient fluctuations. Using the perturbation theory, the expressions for the correlation function and power of the output signal of the adaptive antenna array, as well as the formula for the weight-vector covariance matrix are obtained in the first approximation. The fluctuations are shown to lead to the signal distortions at the antenna-array output. The weight-coefficient fluctuations result in the appearance of additional terms in the statistical characteristics of the antenna array. It is also shown that the weight-vector fluctuations are isotropic, i.e., identical in all directions of the weight-coefficient space.

  12. Influence of color word availability on the Stroop color-naming effect.

    PubMed

    Kim, Hyosun; Cho, Yang Seok; Yamaguchi, Motonori; Proctor, Robert W

    2008-11-01

    Three experiments tested whether the Stroop color-naming effect is a consequence of word recognition's being automatic or of the color word's capturing visual attention. In Experiment 1, a color bar was presented at fixation as the color carrier, with color and neutral words presented in locations above or below the color bar; Experiment 2 was similar, except that the color carrier could occur in one of the peripheral locations and the color word at fixation. The Stroop effect increased as display duration increased, and the Stroop dilution effect (a reduced Stroop effect when a neutral word is also present) was an approximately constant proportion of the Stroop effect at all display durations, regardless of whether the color bar or color word was at fixation. In Experiment 3, the interval between the onsets of the to-be-named color and the color word was manipulated. The Stroop effect decreased with increasing delay of the color word onset, but the absolute amount of Stroop dilution produced by the neutral word increased. This study's results imply that an attention shift from the color carrier to the color word is an important factor modulating the size of the Stroop effect.

  13. The MV model of the color glass condensate for a finite number of sources including Coulomb interactions

    DOE PAGES

    McLerran, Larry; Skokov, Vladimir V.

    2016-09-19

    We modify the McLerran–Venugopalan model to include only a finite number of sources of color charge. In the effective action for such a system of a finite number of sources, there is a point-like interaction and a Coulombic interaction. The point interaction generates the standard fluctuation term in the McLerran–Venugopalan model. The Coulomb interaction generates the charge screening originating from well known evolution in x. Such a model may be useful for computing angular harmonics of flow measured in high energy hadron collisions for small systems. In this study we provide a basic formulation of the problem on a lattice.

  14. Quark ensembles with the infinite correlation length

    NASA Astrophysics Data System (ADS)

    Zinov'ev, G. M.; Molodtsov, S. V.

    2015-01-01

    A number of exactly integrable (quark) models of quantum field theory with the infinite correlation length have been considered. It has been shown that the standard vacuum quark ensemble—Dirac sea (in the case of the space-time dimension higher than three)—is unstable because of the strong degeneracy of a state, which is due to the character of the energy distribution. When the momentum cutoff parameter tends to infinity, the distribution becomes infinitely narrow, leading to large (unlimited) fluctuations. Various vacuum ensembles—Dirac sea, neutral ensemble, color superconductor, and BCS state—have been compared. In the case of the color interaction between quarks, the BCS state has been certainly chosen as the ground state of the quark ensemble.

  15. Fluctuation conductivity of oxygen underdoped YBa2Cu3O7-δ single crystals

    NASA Astrophysics Data System (ADS)

    Vovk, R. V.; Khadzhai, G. Ya.; Goulatis, I. L.; Chroneos, A.

    2014-03-01

    The electrical resistance in the range of ТC-300 K in the layer planes of YВа2Сu3О7-δ single crystals with a range of oxygen deficiency (providing a range of TC from 78 to 92 K) was investigated. The experimental data is approximated by an expression that accounts for the scattering of electrons on phonons, as well as on defects and the fluctuation conductivity in a 3-D model of the Aslamazov-Larkin theory. According to this approximation, depending upon the oxygen deficiency, the Debye temperature varies from 245 to 400 K, coherence length ξС(0)≈0.5 Å.

  16. Experimental Investigation of Triplet Correlation Approximations for Fluid Water.

    PubMed

    Pallewela, Gayani N; Ploetz, Elizabeth A; Smith, Paul E

    2018-08-25

    Triplet correlations play a central role in our understanding of fluids and their properties. Of particular interest is the relationship between the pair and triplet correlations. Here we use a combination of Fluctuation Solution Theory and experimental pair radial distribution functions to investigate the accuracy of the Kirkwood Superposition Approximation (KSA), as given by integrals over the relevant pair and triplet correlation functions, at a series of state points for pure water using only experimental quantities. The KSA performs poorly, in agreement with a variety of other studies. Several additional approximate relationships between the pair and triplet correlations in fluids are also investigated and generally provide good agreement for the fluid thermodynamics for regions of the phase diagram where the compressibility is small. A simple power law relationship between the pair and triplet fluctuations is particularly successful for state points displaying low to moderately high compressibilities.

  17. Paraconductivity of pseudogapped superconductors

    NASA Astrophysics Data System (ADS)

    Poboiko, Igor; Feigel'man, Mikhail

    2018-01-01

    We calculate Aslamazov-Larkin (AL) paraconductity σAL(T ) for a model of strongly disordered superconductors (dimensions d =2 ,3 ) with a large pseudogap whose magnitude strongly exceeds transition temperature Tc. We show that, within Gaussian approximation over Cooper-pair fluctuations, paraconductivity is just twice larger that the classical AL result at the same ɛ =(T -Tc) /Tc . Upon decreasing ɛ , Gaussian approximation is violated due to local fluctuations of pairing fields that become relevant at ɛ ≤ɛ1≪1 . Characteristic scale ɛ1 is much larger than the width ɛ2 of the thermodynamical critical region, that is determined via the Ginzburg criterion, ɛ2≈ɛ1d . We argue that in the intermediate region ɛ2≤ɛ ≤ɛ1 , paraconductivity follows the same AL power law, albeit with another (yet unknown) numerical prefactor. At further decrease of the temperature, all kinds of fluctuational corrections become strong at ɛ ≤ɛ2 ; in particular, conductivity occurs to be strongly inhomogeneous in real space.

  18. Color reproducibility and dyestuff concentration

    NASA Astrophysics Data System (ADS)

    Csanyi, Sandor

    2002-06-01

    The purpose of this study was to develop a new sensitivity index connected with color matching, which makes it possible to investigate the effects of dyestuff concentration deviations in a larger part of the color space in a comprehensive manner. By the help of computer simulation and experimental design, we examined the color differences resulting from minor concentration changes in approximately 500 formulas of different compositions, altering their total concentration and the proportion of the individual dyes in them. The new sensitivity index makes it possible for the colorist to select the recipe that is the least sensitive to concentration deviations from among the computer color formulas, as well as to add a new aspect to the ranking applied in color matching so far.

  19. Testing approximations for non-linear gravitational clustering

    NASA Technical Reports Server (NTRS)

    Coles, Peter; Melott, Adrian L.; Shandarin, Sergei F.

    1993-01-01

    The accuracy of various analytic approximations for following the evolution of cosmological density fluctuations into the nonlinear regime is investigated. The Zel'dovich approximation is found to be consistently the best approximation scheme. It is extremely accurate for power spectra characterized by n = -1 or less; when the approximation is 'enhanced' by truncating highly nonlinear Fourier modes the approximation is excellent even for n = +1. The performance of linear theory is less spectrum-dependent, but this approximation is less accurate than the Zel'dovich one for all cases because of the failure to treat dynamics. The lognormal approximation generally provides a very poor fit to the spatial pattern.

  20. The contribution of transient counterion imbalances to DNA bending fluctuations.

    PubMed

    Manning, Gerald S

    2006-05-01

    A two-sided model for DNA is employed to analyze fluctuations of the spatial distribution of condensed counterions and the effect of these fluctuations on transient bending. We analyze two classes of fluctuations. In the first, the number of condensed counterions on one side of the DNA remains at its average value, while on the other side, counterions are lost to bulk solution or gained from it. The second class of fluctuations is characterized by movement of some counterions from one side of the DNA to the other. The root-mean-square fluctuation for each class is calculated from counterion condensation theory. The amplitude of the root-mean-square fluctuation depends on the ionic strength as well as the length of the segment considered and is of the order 5-10%. Both classes of fluctuation result in transient bends toward the side of greater counterion density. The bending amplitudes are approximately 15% of the total root-mean-square bends associated with the persistence length of DNA. We are thus led to suggest that asymmetric fluctuations of counterion density contribute modestly but significantly toward the aggregate of thermalized solvent fluctuations that cause bending deformations of DNA free in solution. The calculations support the idea that counterions may exert some modulating influence on the fine structure of DNA.

  1. Space Environmental Effects on Colored Coatings and Anodizes

    NASA Technical Reports Server (NTRS)

    Kamenetzky, Rachel R.; Finckenor, Miria M.; Vaughn, Jason A.

    1999-01-01

    Colored coatings and anodizes are used on spacecraft as markers and astronaut visual aids. These materials must be stable in the space environment and withstand atomic oxygen, ultraviolet radiation, particulate radiation, thermal cycling, and high vacuum without significant change in optical and mechanical properties. A variety of colored coatings and anodizes have been exposed to simulated space environments at Marshall Space Flight Center and also actual space environment as part of the Passive Optical Sample Assembly (POSA) - I flight experiment. Colored coatings were developed by AZ Technology, Huntsville, AL, under a NASA contract for International Space Station (ISS). These include yellow, red, blue, and black paints suitable for Extra-Vehicular Activity (EVA) visual aids and ISS emblems. AaChron, Inc., Minneapolis, MN, developed stable colored anodizes, also in yellow, red, blue, and black, for astronaut visual aids. These coatings were exposed in the laboratory to approximately 550 equivalent sun-hours of solar ultraviolet radiation and approximately 1 x 10(exp 21) atoms/sq cm of atomic oxygen in vacuum. The AZ Technology yellow colored coating, designated TMS800IY, and all four AaChron colored anodizes were flown on POSA-I. POSA-I was a Risk Mitigation Experiment for ISS. It was attached to the exterior of the Mir space station docking module by EVA and was exposed for 18 months. The laboratory-simulated space environment, the natural space environment and the unique environment of an orbiting, active space station and their effects on these developmental materials are discussed.

  2. Drift of Phase Fluctuations in the ABC Model

    NASA Astrophysics Data System (ADS)

    Bertini, Lorenzo; Buttà, Paolo

    2013-07-01

    In a recent work, Bodineau and Derrida analyzed the phase fluctuations in the ABC model. In particular, they computed the asymptotic variance and, on the basis of numerical simulations, they conjectured the presence of a drift, which they guessed to be an antisymmetric function of the three densities. By assuming the validity of the fluctuating hydrodynamic approximation, we prove the presence of such a drift, providing an analytical expression for it. This expression is then shown to be an antisymmetric function of the three densities. The antisymmetry of the drift can also be inferred from a symmetry property of the underlying microscopic dynamics.

  3. Preliminary Analysis of Fluctuations in the Received Uplink-Beacon-Power Data Obtained From the GOLD Experiments

    NASA Technical Reports Server (NTRS)

    Jeganathan, M.; Wilson, K. E.; Lesh, J. R.

    1996-01-01

    Uplink data from recent free-space optical communication experiments carried out between the Table Mountain Facility and the Japanese Engineering Test Satellite are used to study fluctuations caused by beam propagation through the atmosphere. The influence of atmospheric scintillation, beam wander and jitter, and multiple uplink beams on the statistics of power received by the satellite is analyzed and compared to experimental data. Preliminary analysis indicates the received signal obeys an approximate lognormal distribution, as predicted by the weak-turbulence model, but further characterization of other sources of fluctuations is necessary for accurate link predictions.

  4. The pressure and entropy of a unitary Fermi gas with particle-hole fluctuation

    NASA Astrophysics Data System (ADS)

    Gong, Hao; Ruan, Xiao-Xia; Zong, Hong-Shi

    2018-01-01

    We calculate the pressure and entropy of a unitary Fermi gas based on universal relations combined with our previous prediction of energy which was calculated within the framework of the non-self-consistent T-matrix approximation with particle-hole fluctuation. The resulting entropy and pressure are compared with the experimental data and the theoretical results without induced interaction. For entropy, we find good agreement between our results with particle-hole fluctuation and the experimental measurements reported by ENS group and MIT experiment. For pressure, our results suffer from a systematic upshift compared to MIT data.

  5. Preliminary analysis of fluctuations in the received uplink-beacon-power data obtained from the GOLD experiments

    NASA Technical Reports Server (NTRS)

    Jeganathan, M.; Wilson, K. E.; Lesh, J. R.

    1996-01-01

    Uplink data from recent free-space optical communication experiments carried out between the Table Mountain Facility and the Japanese Engineering Test Satellite are used to study fluctuations caused by beam propagation through the atmosphere. The influence of atmospheric scintillation, beam wander and jitter, and multiple uplink beams on the statistics of power received by the satellite is analyzed and compared to experimental data. Preliminary analysis indicates the received signal obeys an approximate lognormal distribution, as predicted by the weak-turbulence model, but further characterization of other sources of fluctuations is necessary for accurate link predictions.

  6. A review of color blindness for microscopists: guidelines and tools for accommodating and coping with color vision deficiency.

    PubMed

    Keene, Douglas R

    2015-04-01

    "Color blindness" is a variable trait, including individuals with just slight color vision deficiency to those rare individuals with a complete lack of color perception. Approximately 75% of those with color impairment are green diminished; most of those remaining are red diminished. Red-Green color impairment is sex linked with the vast majority being male. The deficiency results in reds and greens being perceived as shades of yellow; therefore red-green images presented to the public will not illustrate regions of distinction to these individuals. Tools are available to authors wishing to accommodate those with color vision deficiency; most notable are components in FIJI (an extension of ImageJ) and Adobe Photoshop. Using these tools, hues of magenta may be substituted for red in red-green images resulting in striking definition for both the color sighted and color impaired. Web-based tools may be used (importantly) by color challenged individuals to convert red-green images archived in web-accessible journal articles into two-color images, which they may then discern.

  7. Color constancy in 3D-2D face recognition

    NASA Astrophysics Data System (ADS)

    Meyer, Manuel; Riess, Christian; Angelopoulou, Elli; Evangelopoulos, Georgios; Kakadiaris, Ioannis A.

    2013-05-01

    Face is one of the most popular biometric modalities. However, up to now, color is rarely actively used in face recognition. Yet, it is well-known that when a person recognizes a face, color cues can become as important as shape, especially when combined with the ability of people to identify the color of objects independent of illuminant color variations. In this paper, we examine the feasibility and effect of explicitly embedding illuminant color information in face recognition systems. We empirically examine the theoretical maximum gain of including known illuminant color to a 3D-2D face recognition system. We also investigate the impact of using computational color constancy methods for estimating the illuminant color, which is then incorporated into the face recognition framework. Our experiments show that under close-to-ideal illumination estimates, one can improve face recognition rates by 16%. When the illuminant color is algorithmically estimated, the improvement is approximately 5%. These results suggest that color constancy has a positive impact on face recognition, but the accuracy of the illuminant color estimate has a considerable effect on its benefits.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechant, Lawrence J.

    Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler,more » closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.« less

  9. Charged particle dynamics in the presence of non-Gaussian Lévy electrostatic fluctuations

    DOE PAGES

    Del-Castillo-Negrete, Diego B.; Moradi, Sara; Anderson, Johan

    2016-09-01

    Full orbit dynamics of charged particles in a 3-dimensional helical magnetic field in the presence of -stable Levy electrostatic fluctuations and linear friction modeling collisional Coulomb drag is studied via Monte Carlo numerical simulations. The Levy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space resulting from intermittent electrostatic turbulence. The probability distribution functions of energy, particle displacements, and Larmor radii are computed and showed to exhibit a transition from exponential decay, in the case of Gaussian fluctuations, to power law decay in the case of Levy fluctuations. The absolute value ofmore » the power law decay exponents are linearly proportional to the Levy index. Furthermore, the observed anomalous non-Gaussian statistics of the particles' Larmor radii (resulting from outlier transport events) indicate that, when electrostatic turbulent fluctuations exhibit non-Gaussian Levy statistics, gyro-averaging and guiding centre approximations might face limitations and full particle orbit effects should be taken into account.« less

  10. Non-flow correlations and elliptic flow fluctuations in Au+Au collisions at sNN=200 GeV

    NASA Astrophysics Data System (ADS)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2010-03-01

    This article presents results on event-by-event elliptic flow fluctuations in Au+Au collisions at sNN= 200 GeV, where the contribution from non-flow correlations has been subtracted. An analysis method is introduced to measure non-flow correlations, relying on the assumption that non-flow correlations are most prominent at short ranges (|Δη|<2). Assuming that non-flow correlations are of the order that is observed in p+p collisions for long-range correlations (|Δη|>2), relative elliptic flow fluctuations of approximately 30-40% are observed. These results are consistent with predictions based on spatial fluctuations of the participating nucleons in the initial nuclear overlap region. It is found that the long-range non-flow correlations in Au+Au collisions would have to be more than an order of magnitude stronger compared to the p+p data to lead to the observed azimuthal anisotropy fluctuations with no intrinsic elliptic flow fluctuations.

  11. Mechanism of Superconductivity in Quasi-Two-Dimensional Organic Conductor β-(BDA-TTP) Salts

    NASA Astrophysics Data System (ADS)

    Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu; Ito, Hiroshi

    2008-09-01

    We investigate theoretically the superconductivity of two-dimensional organic conductors, β-(BDA-TTP)2SbF6 and β-(BDA-TTP)2AsF6, to understand the role of the spin and charge fluctuations. The transition temperature is estimated by applying random phase approximation to an extended Hubbard model wherein realistic transfer energies are estimated by extended Hückel calculation. We find a gapless superconducting state with a dxy-like symmetry, which is consistent with the experimental results obtained by specific heat and scanning tunneling microscope. In the present model with an effectively half-filled triangular lattice, spin fluctuation competes with charge fluctuation as a mechanism of pairing interaction since both fluctuations have the same characteristic momentum q=(π,0) for V being smaller than U. This is in contrast to a model with a quarter-filled square lattice, wherein both fluctuations contribute cooperatively to pairing interaction due to fluctuations having different characteristic momenta. The resultant difference in the superconductivity of these two materials is also discussed.

  12. Giant current fluctuations in an overheated single-electron transistor

    NASA Astrophysics Data System (ADS)

    Laakso, M. A.; Heikkilä, T. T.; Nazarov, Yuli V.

    2010-11-01

    Interplay of cotunneling and single-electron tunneling in a thermally isolated single-electron transistor leads to peculiar overheating effects. In particular, there is an interesting crossover interval where the competition between cotunneling and single-electron tunneling changes to the dominance of the latter. In this interval, the current exhibits anomalous sensitivity to the effective electron temperature of the transistor island and its fluctuations. We present a detailed study of the current and temperature fluctuations at this interesting point. The methods implemented allow for a complete characterization of the distribution of the fluctuating quantities, well beyond the Gaussian approximation. We reveal and explore the parameter range where, for sufficiently small transistor islands, the current fluctuations become gigantic. In this regime, the optimal value of the current, its expectation value, and its standard deviation differ from each other by parametrically large factors. This situation is unique for transport in nanostructures and for electron transport in general. The origin of this spectacular effect is the exponential sensitivity of the current to the fluctuating effective temperature.

  13. Charged particle dynamics in the presence of non-Gaussian Lévy electrostatic fluctuations

    NASA Astrophysics Data System (ADS)

    Moradi, Sara; del-Castillo-Negrete, Diego; Anderson, Johan

    2016-09-01

    Full orbit dynamics of charged particles in a 3-dimensional helical magnetic field in the presence of α-stable Lévy electrostatic fluctuations and linear friction modeling collisional Coulomb drag is studied via Monte Carlo numerical simulations. The Lévy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space resulting from intermittent electrostatic turbulence. The probability distribution functions of energy, particle displacements, and Larmor radii are computed and showed to exhibit a transition from exponential decay, in the case of Gaussian fluctuations, to power law decay in the case of Lévy fluctuations. The absolute value of the power law decay exponents is linearly proportional to the Lévy index α. The observed anomalous non-Gaussian statistics of the particles' Larmor radii (resulting from outlier transport events) indicate that, when electrostatic turbulent fluctuations exhibit non-Gaussian Lévy statistics, gyro-averaging and guiding centre approximations might face limitations and full particle orbit effects should be taken into account.

  14. Quantifying fluctuations in market liquidity: analysis of the bid-ask spread.

    PubMed

    Plerou, Vasiliki; Gopikrishnan, Parameswaran; Stanley, H Eugene

    2005-04-01

    Quantifying the statistical features of the bid-ask spread offers the possibility of understanding some aspects of market liquidity. Using quote data for the 116 most frequently traded stocks on the New York Stock Exchange over the two-year period 1994-1995, we analyze the fluctuations of the average bid-ask spread S over a time interval deltat. We find that S is characterized by a distribution that decays as a power law P[S>x] approximately x(-zeta(S) ), with an exponent zeta(S) approximately = 3 for all 116 stocks analyzed. Our analysis of the autocorrelation function of S shows long-range power-law correlations, (S(t)S(t + tau)) approximately tau(-mu(s)), similar to those previously found for the volatility. We next examine the relationship between the bid-ask spread and the volume Q, and find that S approximately ln Q; we find that a similar logarithmic relationship holds between the transaction-level bid-ask spread and the trade size. We then study the relationship between S and other indicators of market liquidity such as the frequency of trades N and the frequency of quote updates U, and find S approximately ln N and S approximately ln U. Lastly, we show that the bid-ask spread and the volatility are also related logarithmically.

  15. Introduction to Design and Analysis of High Speed Pumps

    DTIC Science & Technology

    2006-11-01

    for public release, distribution unlimited 13 . SUPPLEMENTARY NOTES See also ADM002051., The original document contains color images. 14. ABSTRACT 15...fluctuations in the pump and the installation, vibration and noise). Figure ( 13 ) presents schematically, for a meridional section in a radial flow pump...impeller. Figure (14) illustrates what can be observed in different types of pumps when recirculation is present. Figure 13 : Schematic Illustration

  16. Aspects of the color flavor locking phase of QCD in the Nambu Jona-Lasinio approximation

    NASA Astrophysics Data System (ADS)

    Casalbuoni, R.; Gatto, R.; Nardulli, G.; Ruggieri, M.

    2003-08-01

    We study two aspects of the color flavor locked phase of QCD in the Nambu Jona-Lasinio approximation. The first one is the issue of the dependence on μ of the ultraviolet cutoff in the gap equation, which is solved by allowing for a running coupling constant. The second one is the dependence of the gap on the strange quark mass; using high density effective theory we perform an expansion in the parameter (ms/μ)2 after checking that its numerical validity is already very good at first order.

  17. Martian Microscope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The microscopic imager (circular device in center) is in clear view above the surface at Meridiani Planum, Mars, in this approximate true-color image taken by the panoramic camera on the Mars Exploration Rover Opportunity. The image was taken on the 9th sol of the rover's journey. The microscopic imager is located on the rover's instrument deployment device, or arm. The arrow is pointing to the lens of the instrument. Note the dust cover, which flips out to the left of the lens, is open. This approximated color image was created using the camera's violet and infrared filters as blue and red.

  18. Metallic-thin-film instability with spatially correlated thermal noise.

    PubMed

    Diez, Javier A; González, Alejandro G; Fernández, Roberto

    2016-01-01

    We study the effects of stochastic thermal fluctuations on the instability of the free surface of a flat liquid metallic film on a solid substrate. These fluctuations are represented by a stochastic noise term added to the deterministic equation for the film thickness within the long-wave approximation. Unlike the case of polymeric films, we find that this noise, while remaining white in time, must be colored in space, at least in some regimes. The corresponding noise term is characterized by a nonzero correlation length, ℓ_{c}, which, combined with the size of the system, leads to a dimensionless parameter β that accounts for the relative importance of the spatial correlation (β∼ℓ_{c}^{-1}). We perform the linear stability analysis (LSA) of the film both with and without the noise term and find that for ℓ_{c} larger than some critical value (depending on the system size), the wavelength of the peak of the spectrum is larger than that corresponding to the deterministic case, while for smaller ℓ_{c} this peak corresponds to smaller wavelength than the latter. Interestingly, whatever the value of ℓ_{c}, the peak always approaches the deterministic one for larger times. We compare LSA results with the numerical simulations of the complete nonlinear problem and find a good agreement in the power spectra for early times at different values of β. For late times, we find that the stochastic LSA predicts well the position of the dominant wavelength, showing that nonlinear interactions do not modify the trends of the early linear stages. Finally, we fit the theoretical spectra to experimental data from a nanometric laser-melted copper film and find that at later times, the adjustment requires smaller values of β (larger space correlations).

  19. Metallic-thin-film instability with spatially correlated thermal noise

    NASA Astrophysics Data System (ADS)

    Diez, Javier A.; González, Alejandro G.; Fernández, Roberto

    2016-01-01

    We study the effects of stochastic thermal fluctuations on the instability of the free surface of a flat liquid metallic film on a solid substrate. These fluctuations are represented by a stochastic noise term added to the deterministic equation for the film thickness within the long-wave approximation. Unlike the case of polymeric films, we find that this noise, while remaining white in time, must be colored in space, at least in some regimes. The corresponding noise term is characterized by a nonzero correlation length, ℓc, which, combined with the size of the system, leads to a dimensionless parameter β that accounts for the relative importance of the spatial correlation (β ˜ℓc-1 ). We perform the linear stability analysis (LSA) of the film both with and without the noise term and find that for ℓc larger than some critical value (depending on the system size), the wavelength of the peak of the spectrum is larger than that corresponding to the deterministic case, while for smaller ℓc this peak corresponds to smaller wavelength than the latter. Interestingly, whatever the value of ℓc, the peak always approaches the deterministic one for larger times. We compare LSA results with the numerical simulations of the complete nonlinear problem and find a good agreement in the power spectra for early times at different values of β . For late times, we find that the stochastic LSA predicts well the position of the dominant wavelength, showing that nonlinear interactions do not modify the trends of the early linear stages. Finally, we fit the theoretical spectra to experimental data from a nanometric laser-melted copper film and find that at later times, the adjustment requires smaller values of β (larger space correlations).

  20. Comprehensive stellar population models and the disentanglement of age and metallicity effects

    NASA Technical Reports Server (NTRS)

    Worthey, Guy

    1994-01-01

    The construction of detailed models for intermediate and old stellar populations is described. Input parameters include metallicity (-2 less than (Fe/H) less than 0.5), single-burst age (between 1.5 and 17 Gyr), and initial mass function (IMF) exponent. Quantities output include broadband magnitudes, spectral energy distributions, surface brightness fluctuation magnitudes, and a suite of 21 absorption feature indices. The models are checked against a wide variety of available observations. Examinations of model output yield the following conclusions. (1) If the percentage change delta age/delta Z approximately equals 3/2 for two populations, they will appear almost identical in most indices. A few indices break this degeneracy by being either more abundance sensitive (Fe4668, Fe5015, Fe5709, and Fe5782) or more age sensitive (G4300, H beta, and presumably higher order Balmer lines) than usual. (2) Present uncertainties in stellar evolution are of the same magnitude as the effects of IMF and Y in the indices studied. (3) Changes in abundance ratios (like (Mg/Fe)) are predicted to be readily apparent in the spectra of old stellar populations. (4) The I-band flux of a stellar population is predicted to be nearly independent of metallicity and only modestly sensitive to age. The I band is therefore recommended for standard candle work or studies of M/L in galaxies. Other conclusions stem from this work. (1) Intercomparison of models and observations of two TiO indices seem to indicate variation of the (V/Ti) ratio among galaxies, but it is not clear how this observation ties into the standard picture of chemical enrichment. (2) Current estimates of (Fe/H) for the most metal-rich globulars that are based on integrated indices are probably slightly too high. (3) Colors of population models from different authors exhibit a substantial range. At solar metallicity and 13 Gyr, this range corresponds to an age error of roughly +/- 7 Gyr. Model colors from different authors applied in a differential sense have smaller uncertainties. (4) In the present models the dominant error for colors is probably the transformation from stellar atmospheric parameters to stellar colors. (5) Stellar B - V is difficult to model, and current spreads among different authors can reach 0.2 mag. (6) If known defects in the stellar flux library are corrected, the population model colors of this work in passbands redder than U would be accurate to roughly 0.03 mag in an absolute sense. These corrections are not made in the tables of model output.

  1. Noise induced oscillations and coherence resonance in a generic model of the nonisothermal chemical oscillator

    PubMed Central

    Simakov, David S. A.; Pérez-Mercader, Juan

    2013-01-01

    Oscillating chemical reactions are common in biological systems and they also occur in artificial non-biological systems. Generally, these reactions are subject to random fluctuations in environmental conditions which translate into fluctuations in the values of physical variables, for example, temperature. We formulate a mathematical model for a nonisothermal minimal chemical oscillator containing a single negative feedback loop and study numerically the effects of stochastic fluctuations in temperature in the absence of any deterministic limit cycle or periodic forcing. We show that noise in temperature can induce sustained limit cycle oscillations with a relatively narrow frequency distribution and some characteristic frequency. These properties differ significantly depending on the noise correlation. Here, we have explored white and colored (correlated) noise. A plot of the characteristic frequency of the noise induced oscillations as a function of the correlation exponent shows a maximum, therefore indicating the existence of autonomous stochastic resonance, i.e. coherence resonance. PMID:23929212

  2. Nonequilibrium Langevin dynamics: A demonstration study of shear flow fluctuations in a simple fluid

    NASA Astrophysics Data System (ADS)

    Belousov, Roman; Cohen, E. G. D.; Rondoni, Lamberto

    2017-08-01

    The present paper is based on a recent success of the second-order stochastic fluctuation theory in describing time autocorrelations of equilibrium and nonequilibrium physical systems. In particular, it was shown to yield values of the related deterministic parameters of the Langevin equation for a Couette flow in a microscopic molecular dynamics model of a simple fluid. In this paper we find all the remaining constants of the stochastic dynamics, which then is simulated numerically and compared directly with the original physical system. By using these data, we study in detail the accuracy and precision of a second-order Langevin model for nonequilibrium physical systems theoretically and computationally. We find an intriguing relation between an applied external force and cumulants of the resulting flow fluctuations. This is characterized by a linear dependence of an athermal cumulant ratio, an apposite quantity introduced here. In addition, we discuss how the order of a given Langevin dynamics can be raised systematically by introducing colored noise.

  3. Ceres in Color

    NASA Image and Video Library

    2016-11-18

    This image of Ceres approximates how the dwarf planet's colors would appear to the eye. This view of Ceres, produced by the German Aerospace Center in Berlin, combines images taken during Dawn's first science orbit in 2015 using the framing camera's red, green and blue spectral filters. The color was calculated using a reflectance spectrum, which is based on the way that Ceres reflects different wavelengths of light and the solar wavelengths that illuminate Ceres. http://photojournal.jpl.nasa.gov/catalog/PIA21079

  4. Periodic and stochastic thermal modulation of protein folding kinetics.

    PubMed

    Platkov, Max; Gruebele, Martin

    2014-07-21

    Chemical reactions are usually observed either by relaxation of a bulk sample after applying a sudden external perturbation, or by intrinsic fluctuations of a few molecules. Here we show that the two ideas can be combined to measure protein folding kinetics, either by periodic thermal modulation, or by creating artificial thermal noise that greatly exceeds natural thermal fluctuations. We study the folding reaction of the enzyme phosphoglycerate kinase driven by periodic temperature waveforms. As the temperature waveform unfolds and refolds the protein, its fluorescence color changes due to FRET (Förster resonant Energy Transfer) of two donor/acceptor fluorophores labeling the protein. We adapt a simple model of periodically driven kinetics that nicely fits the data at all temperatures and driving frequencies: The phase shifts of the periodic donor and acceptor fluorescence signals as a function of driving frequency reveal reaction rates. We also drive the reaction with stochastic temperature waveforms that produce thermal fluctuations much greater than natural fluctuations in the bulk. Such artificial thermal noise allows the recovery of weak underlying signals due to protein folding kinetics. This opens up the possibility for future detection of a stochastic resonance for protein folding subject to noise with controllable amplitude.

  5. Spin-density fluctuations and the fluctuation-dissipation theorem in 3 d ferromagnetic metals

    DOE PAGES

    Wysocki, Alex L.; Valmispild, V. N.; Kutepov, A.; ...

    2017-11-15

    Spatial and time scales of spin-density fluctuations (SDFs) were analyzed in 3d ferromagnets using ab initio linear-response calculations of complete wave-vector and energy dependence of the dynamic spin susceptibility tensor. We demonstrate that SDFs are spread continuously over the entire Brillouin zone and while the majority of them reside within the 3d bandwidth, a significant amount comes from much higher energies. A validity of the adiabatic approximation in spin dynamics is discussed. The SDF spectrum is shown to have two main constituents: a minor low-energy spin-wave contribution and a much larger high-energy component from more localized excitations. Furthermore, using themore » fluctuation-dissipation theorem, the on-site spin correlator and the related effective fluctuating moment were properly evaluated and their universal dependence on the 3d band population is further discussed.« less

  6. Dynamical transition, hydrophobic interface, and the temperature dependence of electrostatic fluctuations in proteins.

    PubMed

    Lebard, David N; Matyushov, Dmitry V

    2008-12-01

    Molecular dynamics simulations have revealed a dramatic increase, with increasing temperature, of the amplitude of electrostatic fluctuations caused by water at the active site of metalloprotein plastocyanin. The increased breadth of electrostatic fluctuations, expressed in terms of the reorganization energy of changing the redox state of the protein, is related to the formation of the hydrophobic protein-water interface, allowing large-amplitude collective fluctuations of the water density in the protein's first solvation shell. On top of the monotonic increase of the reorganization energy with increasing temperature, we have observed a spike at approximately 220 K also accompanied by a significant slowing of the exponential collective Stokes shift dynamics. In contrast to the local density fluctuations of the hydration-shell waters, these spikes might be related to the global property of the water solvent crossing the Widom line or undergoing a weak first-order transition.

  7. Origin of Stability in Particle Sedimentation

    NASA Technical Reports Server (NTRS)

    Segre, Philip N.

    2003-01-01

    Particle Image Velocimetry (PIV) is used to study the slow settling motions of spheres in suspensions ranging from dilute to highly concentrated, 0.0001 less than phi less than 0.50. During sedimentation, particle velocity fluctuations are found to be organized into regions of characteristic size xi approximately 11 a phi (exp -1/3). A simple model, based upon buoyant mass fluctuations DELTAm given by random density fluctuations in a region of size xi, accurately predicts the magnitudes of the velocity fluctuations DELTAV. We also find a new universal relation for particle diffusion during sedimentation. It can be written in a Stokes-Einstein form as Dapproximately(DELTAmxi)/(6pietaxi), where the effective temperature DELTAmgxi is the gravitational potential energy of density fluctuations. In addition related experiments examining inertial effects and transient states, that are aimed at uncovering the origin of the new lengthscale xi, will also be given.

  8. Fully Quantum Fluctuation Theorems

    NASA Astrophysics Data System (ADS)

    Åberg, Johan

    2018-02-01

    Systems that are driven out of thermal equilibrium typically dissipate random quantities of energy on microscopic scales. Crooks fluctuation theorem relates the distribution of these random work costs to the corresponding distribution for the reverse process. By an analysis that explicitly incorporates the energy reservoir that donates the energy and the control system that implements the dynamic, we obtain a quantum generalization of Crooks theorem that not only includes the energy changes in the reservoir but also the full description of its evolution, including coherences. Moreover, this approach opens up the possibility for generalizations of the concept of fluctuation relations. Here, we introduce "conditional" fluctuation relations that are applicable to nonequilibrium systems, as well as approximate fluctuation relations that allow for the analysis of autonomous evolution generated by global time-independent Hamiltonians. We furthermore extend these notions to Markovian master equations, implicitly modeling the influence of the heat bath.

  9. Spin-density fluctuations and the fluctuation-dissipation theorem in 3 d ferromagnetic metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wysocki, Alex L.; Valmispild, V. N.; Kutepov, A.

    Spatial and time scales of spin-density fluctuations (SDFs) were analyzed in 3d ferromagnets using ab initio linear-response calculations of complete wave-vector and energy dependence of the dynamic spin susceptibility tensor. We demonstrate that SDFs are spread continuously over the entire Brillouin zone and while the majority of them reside within the 3d bandwidth, a significant amount comes from much higher energies. A validity of the adiabatic approximation in spin dynamics is discussed. The SDF spectrum is shown to have two main constituents: a minor low-energy spin-wave contribution and a much larger high-energy component from more localized excitations. Furthermore, using themore » fluctuation-dissipation theorem, the on-site spin correlator and the related effective fluctuating moment were properly evaluated and their universal dependence on the 3d band population is further discussed.« less

  10. Random phase approximation and cluster mean field studies of hard core Bose Hubbard model

    NASA Astrophysics Data System (ADS)

    Alavani, Bhargav K.; Gaude, Pallavi P.; Pai, Ramesh V.

    2018-04-01

    We investigate zero temperature and finite temperature properties of the Bose Hubbard Model in the hard core limit using Random Phase Approximation (RPA) and Cluster Mean Field Theory (CMFT). We show that our RPA calculations are able to capture quantum and thermal fluctuations significantly better than CMFT.

  11. Wave fluctuations in the system with some Yang-Mills condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokhorov, G., E-mail: zhoraprox@yandex.ru; Pasechnik, R., E-mail: Roman.Pasechnik@thep.lu.se; Vereshkov, G., E-mail: gveresh@gmail.com

    2016-12-15

    Self-consistent dynamics of non-homogeneous fluctuations and homogeneous and isotropic condensate of Yang–Mills fields was investigated in zero, linear and quasilinear approximations over the wave modes in the framework of N = 4 supersymmetric model in Hamilton gauge in quasiclassical theory. The models with SU(2), SU(3) and SU(4) gauge groups were considered. Particle production effect and effect of generation of longitudinal oscillations were obtained.

  12. Appropriate indices for color rendition and their recommended values for UHDTV production using white LED lighting.

    PubMed

    Hayashida, Tetsuya; Iwasaki, Hiroaki; Masaoka, Kenichiro; Shimizu, Masanori; Yamashita, Takayuki; Iwai, Wataru

    2017-06-26

    We selected appropriate indices for color rendition and determined their recommended values for ultra-high-definition television (UHDTV) production using white LED lighting. Since the spectral sensitivities of UHDTV cameras can be designed to approximate the ideal spectral sensitivities of UHDTV colorimetry, they have more accurate color reproduction than HDTV cameras, and thus the color-rendering properties of the lighting are critical. Comparing images taken under white LEDs with conventional color rendering indices (R a , R 9-14 ) and recently proposed methods for evaluating color rendition of CQS, TM-30, Q a , and SSI, we found the combination of R a and R 9 appropriate. For white LED lighting, R a ≥ 90 and R 9 ≥ 80 are recommended for UHDTV production.

  13. Quality evaluation of onion bulbs during low temperature drying

    NASA Astrophysics Data System (ADS)

    Djaeni, M.; Asiah, N.; Wibowo, Y. P.; Yusron, D. A. A.

    2016-06-01

    A drying technology must be designed carefully by evaluating the foods' final quality properties as a dried material. Thermal processing should be operated with the minimum chance of substantial flavour, taste, color and nutrient loss. The main objective of this research was to evaluate the quality parameters of quercetin content, color, non-enzymatic browning and antioxidant activity. The experiments showed that heating at different temperatures for several drying times resulted in a percentage of quercetin being generally constant. The quercetin content maintained at the value of ±1.2 % (dry basis). The color of onion bulbs was measured by CIE standard illuminant C. The red color (a*) of the outer layer of onion bulbs changed significantly when the drying temperature was increased. However the value of L* and b* changed in a fluctuating way based on the temperature. The change of onion colors was influenced by temperature and moisture content during the drying process. The higher the temperature, the higher it affects the rate of non-enzymatic browning reaction. The correlation between temperature and reaction rate constant was described as Arrhenius equation. The rate of non-enzymatic browning increases along with the increase of drying temperature. The results showed that higher drying temperatures were followed by a lower IC10. This condition indicated the increase of antioxidant activity after the drying process.

  14. Quantum dynamics in strong fluctuating fields

    NASA Astrophysics Data System (ADS)

    Goychuk, Igor; Hänggi, Peter

    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems, such as e.g. nonadiabatic electron transfer in proteins, can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. This may occur, for example, for the tunnelling coupling between the donor and acceptor states of the transferring electron, or for the corresponding energy difference between electronic states which assume via the coupling to the fluctuating environment an explicit stochastic or deterministic time-dependence. Here, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis, the influence of nonequilibrium fluctuations and periodic electrical fields on those already mentioned dynamics and related quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.ContentsPAGE1. Introduction5262. Quantum dynamics in stochastic fields531 2.1. Stochastic Liouville equation531 2.2. Non-Markovian vs. Markovian discrete state fluctuations531 2.3. Averaging the quantum propagator533  2.3.1. Kubo oscillator535  2.3.2. Averaged dynamics of two-level quantum systems exposed to two-state stochastic fields537 2.4. Projection operator method: a primer5403. Two-state quantum dynamics in periodic fields542 3.1. Coherent destruction of tunnelling542 3.2. Driving-induced tunnelling oscillations (DITO)5434. Dissipative quantum dynamics in strong time-dependent fields544 4.1. General formalism544  4.1.1. Weak-coupling approximation545  4.1.2. Markovian approximation: Generalised Redfield Equations5475. Application I: Quantum relaxation in driven, dissipative two-level systems548 5.1. Decoupling approximation for fast fluctuating energy levels550  5.1.1. Control of quantum rates551  5.1.2. Stochastic cooling and inversion of level populations552  5.1.3. Emergence of an effective energy bias553 5.2. Quantum relaxation in strong periodic fields554 5.3. Approximation of time-dependent rates554 5.4. Exact averaging for dichotomous Markovian fluctuations5556. Application II: Driven electron transfer within a spin-boson description557 6.1. Curve-crossing problems with dissipation558 6.2. Weak system-bath coupling559 6.3. Beyond weak-coupling theory: Strong system-bath coupling563  6.3.1. Fast fluctuating energy levels565  6.3.2. Exact averaging over dichotomous fluctuations of the energy levels566  6.3.3. Electron transfer in fast oscillating periodic fields567  6.3.4. Dichotomously fluctuating tunnelling barrier5687. Quantum transport in dissipative tight-binding models subjected tostrong external fields569 7.1. Noise-induced absolute negative mobility571 7.2. Dissipative quantum rectifiers573 7.3. Limit of vanishing dissipation575 7.4. Case of harmonic mixing drive5758. Summary576Acknowledgements578References579

  15. Dynamics of the Ili delta with consideration of fluctuations of the level of Lake Balkhash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdrasilov, S.A.; Tulebaeva, K.A.

    1995-02-01

    This article examines the dynamics of the Ili delta region of Russia, with consideration of the fluctuations of the level of Lake Balkhash. Level fluctuations over a period of approximately 700 years are reviewed, and numerical data is presented. It is shown that the dynamics of the delta region affect both the amplitude and duration of the cycle of fluctuations of the lake level. In particular, the phase of the delta cycle that started cuts off the peak of the maximum ordinate of the level at the end of the tranasgressive period reduces still more the minimum elevations of themore » lake level at the end of the regressive period. It also accelerates the time of occurence of individual phases of the intrasecular cycle.« less

  16. The effect of the dynamic wet troposphere on radio interferometric measurements

    NASA Technical Reports Server (NTRS)

    Treuhaft, R. N.; Lanyi, G. E.

    1987-01-01

    A statistical model of water vapor fluctuations is used to describe the effect of the dynamic wet troposphere on radio interferometric measurements. It is assumed that the spatial structure of refractivity is approximated by Kolmogorov turbulence theory, and that the temporal fluctuations are caused by spatial patterns moved over a site by the wind, and these assumptions are examined for the VLBI delay and delay rate observables. The results suggest that the delay rate measurement error is usually dominated by water vapor fluctuations, and water vapor induced VLBI parameter errors and correlations are determined as a function of the delay observable errors. A method is proposed for including the water vapor fluctuations in the parameter estimation method to obtain improved parameter estimates and parameter covariances.

  17. Photographic copy of computer enhanced color photographic image. Photographer and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of computer enhanced color photographic image. Photographer and computer draftsman unknown. Original photographic image located in the office of Modjeski and Masters, Consulting Engineers at 1055 St. Charles Avenue, New Orleans, LA 70130. COMPUTER ENHANCED COLOR PHOTOGRAPH SHOWING THE PROPOSED HUEY P. LONG BRIDGE WIDENING LOOKING FROM THE WEST BANK TOWARD THE EAST BANK. - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA

  18. The research of statistical properties of colorimetric features of screens with a three-component color formation principle

    NASA Astrophysics Data System (ADS)

    Zharinov, I. O.; Zharinov, O. O.

    2017-12-01

    The problem of the research is concerned with quantitative analysis of influence of technological variation of the screen color profile parameters on chromaticity coordinates of the displayed image. Some mathematical expressions which approximate the two-dimensional distribution of chromaticity coordinates of an image, which is displayed on the screen with a three-component color formation principle were proposed. Proposed mathematical expressions show the way to development of correction techniques to improve reproducibility of the colorimetric features of displays.

  19. Variability and mass loss in IA O-B-A supergiants

    NASA Technical Reports Server (NTRS)

    Schild, R. E.; Garrison, R. F.; Hiltner, W. A.

    1983-01-01

    Recently completed catalogs of MK spectral types and UBV photometry of 1227 OB stars in the southern Milky Way have been analyzed to investigate brightness and color variability among the Ia supergiants. It is found that brightness variability is common among the O9-B1 supergiants with typical amplitudes about 0.1 and time scales longer than a week and shorter than 1000 days. Among the A supergiants fluctuations in U-B color are found on similar time scales and with amplitude about 0.1. For many early Ia supergiants there is a poor correlation between Balmer jump and spectral type, as had been known previously. An attempt to correlate the Balmer jump deficiency with mass loss rate yielded uncertain results.

  20. Evidence for the onset of color transparency in ρ0 electroproduction off nuclei

    NASA Astrophysics Data System (ADS)

    CLAS Collaboration; El Fassi, L.; Zana, L.; Hafidi, K.; Holtrop, M.; Mustapha, B.; Brooks, W. K.; Hakobyan, H.; Zheng, X.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anghinolfi, M.; Arrington, J.; Avakian, H.; Baghdasaryan, H.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Bookwalter, C.; Branford, D.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Dey, B.; Dickson, R.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Gabrielyan, M. Y.; Garçon, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hanretty, C.; Heddle, D.; Hicks, K.; Holt, R. J.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jawalkar, S. S.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Kuznetsov, V.; Laget, J. M.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Markov, N.; Mayer, M.; McAndrew, J.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Moreno, B.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Anefalos Pereira, S.; Phelps, E.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Raue, B. A.; Reimer, P. E.; Ricco, G.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tedeschi, D. J.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vineyard, M. F.; Voskanyan, H.; Voutier, E.; Watts, D.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zhao, B.; Zhao, Z. W.

    2012-06-01

    We have measured the nuclear transparency of the incoherent diffractive A(e,e‧ρ0) process in 12C and 56Fe targets relative to 2H using a 5 GeV electron beam. The nuclear transparency, the ratio of the produced ρ0's on a nucleus relative to deuterium, which is sensitive to ρA interaction, was studied as function of the coherence length (lc), a lifetime of the hadronic fluctuation of the virtual photon, and the four-momentum transfer squared (Q2). While the transparency for both 12C and 56Fe showed no lc dependence, a significant Q2 dependence was measured, which is consistent with calculations that included the color transparency effects.

  1. Theoretical and experimental analyses of the performance of two-color laser ranging systems

    NASA Technical Reports Server (NTRS)

    Im, K. E.; Gardner, C. S.

    1985-01-01

    The statistical properties of the signals reflected from the retroreflector equipped satellites were studied. It is found that coherence interference between pulse reflections from retroreflectors of different ranges on the array platform is the primary cause of signal fluctuations. The performance of a cross-correlation technique to estimate the differential propagation time is analyzed by considering both shot noise and speckle. For the retroreflector arrays, timing performance is dominated by interference induced speckle, and the differential propagation time cannot be resolved to better than the pulse widths of the received signals. The differential timing measurements obtained over a horizontal path are analyzed. The ocean-reflected pulse measurements obtained from the airborne two-color laser altimeter experiment are presented.

  2. Mechanism of the greening color formation of "laba" garlic, a traditional homemade chinese food product.

    PubMed

    Bai, Bing; Chen, Fang; Wang, Zhengfu; Liao, Xiaojun; Zhao, Guanghua; Hu, Xiaosong

    2005-09-07

    While green discoloration during garlic processing is of a major concern, this greening is desirable and required for the traditional homemade Chinese "Laba" garlic. To obtain insights into the mechanism of color formation, simulation of the greening of "Laba" garlic was carried out in the laboratory by soaking aged garlic in 5% (v/v, pH 2.33) acetic acid solution. After 2 days, the garlic cloves turned green. Up to 4 days, pigment(s) diffused from garlic cloves to the pickling solution. The solution exhibits two maximal absorbances at approximately 440 and approximately 590 nm, corresponding to yellow and blue species, respectively, the combination of which creates the green coloration. With increasing time from 4 to 25 days, the concentration of both yellow and blue species increases at nearly the same rate, while after 25 days, the concentration of the yellow species increases faster than that of the blue species. Interestingly, most thiosulfinates ( approximately 85%) in garlic cloves were converted within 4 days, suggesting that thiosulfinate conversion is proportional to the formation of the pigments. Consistent with this conclusion, alliinase and acetic acid were required for the color formation. UV-vis spectral measurements and pH results suggest that the color formation occurs by two kinds of processes: one enzymatic and the other nonenzymatic. Low pH (2.0-3.0) favors nonenzymatic reactions, while high pH (6.0 or above) is conducive to enzymatic reactions. Thus, the ideal pH for the entire process of garlic greening is between 4.0 and 5.0, which is a compromise of the optimal pH of both the enzymatic and nonenzymatic reactions.

  3. Synaptic shot noise and conductance fluctuations affect the membrane voltage with equal significance.

    PubMed

    Richardson, Magnus J E; Gerstner, Wulfram

    2005-04-01

    The subthreshold membrane voltage of a neuron in active cortical tissue is a fluctuating quantity with a distribution that reflects the firing statistics of the presynaptic population. It was recently found that conductance-based synaptic drive can lead to distributions with a significant skew. Here it is demonstrated that the underlying shot noise caused by Poissonian spike arrival also skews the membrane distribution, but in the opposite sense. Using a perturbative method, we analyze the effects of shot noise on the distribution of synaptic conductances and calculate the consequent voltage distribution. To first order in the perturbation theory, the voltage distribution is a gaussian modulated by a prefactor that captures the skew. The gaussian component is identical to distributions derived using current-based models with an effective membrane time constant. The well-known effective-time-constant approximation can therefore be identified as the leading-order solution to the full conductance-based model. The higher-order modulatory prefactor containing the skew comprises terms due to both shot noise and conductance fluctuations. The diffusion approximation misses these shot-noise effects implying that analytical approaches such as the Fokker-Planck equation or simulation with filtered white noise cannot be used to improve on the gaussian approximation. It is further demonstrated that quantities used for fitting theory to experiment, such as the voltage mean and variance, are robust against these non-Gaussian effects. The effective-time-constant approximation is therefore relevant to experiment and provides a simple analytic base on which other pertinent biological details may be added.

  4. Phenomenological picture of fluctuations in branching random walks

    NASA Astrophysics Data System (ADS)

    Mueller, A. H.; Munier, S.

    2014-10-01

    We propose a picture of the fluctuations in branching random walks, which leads to predictions for the distribution of a random variable that characterizes the position of the bulk of the particles. We also interpret the 1 /√{t } correction to the average position of the rightmost particle of a branching random walk for large times t ≫1 , computed by Ebert and Van Saarloos, as fluctuations on top of the mean-field approximation of this process with a Brunet-Derrida cutoff at the tip that simulates discreteness. Our analytical formulas successfully compare to numerical simulations of a particular model of a branching random walk.

  5. Macroscopic behavior and fluctuation-dissipation response of stochastic ecohydrological systems

    NASA Astrophysics Data System (ADS)

    Porporato, A. M.

    2017-12-01

    The coupled dynamics of water, carbon and nutrient cycles in ecohydrological systems is forced by unpredictable and intermittent hydroclimatic fluctuations at different time scales. While modeling and long-term prediction of these complex interactions often requires a probabilistic approach, the resulting stochastic equations however are only solvable in special cases. To obtain information on the behavior of the system one typically has to resort to approximation methods. Here we discuss macroscopic equations for the averages and fluctuation-dissipation estimates for the general correlations between the forcing and the ecohydrological response for the soil moisture-plant biomass interaction and the problem of primary salinization and nitrogen retention in soils.

  6. Predictability of tick-borne encephalitis fluctuations.

    PubMed

    Zeman, P

    2017-10-01

    Tick-borne encephalitis is a serious arboviral infection with unstable dynamics and profound inter-annual fluctuations in case numbers. A dependable predictive model has been sought since the discovery of the disease. The present study demonstrates that four superimposed cycles, approximately 2·4, 3, 5·4, and 10·4 years long, can account for three-fifths of the variation in the disease fluctuations over central Europe. Using harmonic regression, these cycles can be projected into the future, yielding forecasts of sufficient accuracy for up to 4 years ahead. For the years 2016-2018, this model predicts elevated incidence levels in most parts of the region.

  7. Coexistence of Velocity Renormalization and Ferrimagnetic Fluctuation in the Organic Dirac Electron System α-(BEDT-TTF)2I3

    NASA Astrophysics Data System (ADS)

    Matsuno, Genki; Kobayashi, Akito

    2018-05-01

    We evaluate the uniform spin susceptibility in an extended Hubbard model describing α-(BEDT-TTF)2I3. Employing the Fock-type self-energy with the long-range Coulomb interaction and the random phase approximation with the on-site Coulomb interaction, it is clarified that the characteristic energy scales at which ferrimagnetic fluctuation and velocity renormalization emerge are different. This is why these phenomena coexist while the ferrimagnetic fluctuation is disturbed by the velocity renormalization. In addition, it is found that screening effect to the self-energy is irrelevant in the presence of a strong on-site Coulomb interaction U.

  8. Multiscale weighted colored graphs for protein flexibility and rigidity analysis

    NASA Astrophysics Data System (ADS)

    Bramer, David; Wei, Guo-Wei

    2018-02-01

    Protein structural fluctuation, measured by Debye-Waller factors or B-factors, is known to correlate to protein flexibility and function. A variety of methods has been developed for protein Debye-Waller factor prediction and related applications to domain separation, docking pose ranking, entropy calculation, hinge detection, stability analysis, etc. Nevertheless, none of the current methodologies are able to deliver an accuracy of 0.7 in terms of the Pearson correlation coefficients averaged over a large set of proteins. In this work, we introduce a paradigm-shifting geometric graph model, multiscale weighted colored graph (MWCG), to provide a new generation of computational algorithms to significantly change the current status of protein structural fluctuation analysis. Our MWCG model divides a protein graph into multiple subgraphs based on interaction types between graph nodes and represents the protein rigidity by generalized centralities of subgraphs. MWCGs not only predict the B-factors of protein residues but also accurately analyze the flexibility of all atoms in a protein. The MWCG model is validated over a number of protein test sets and compared with many standard methods. An extensive numerical study indicates that the proposed MWCG offers an accuracy of over 0.8 and thus provides perhaps the first reliable method for estimating protein flexibility and B-factors. It also simultaneously predicts all-atom flexibility in a molecule.

  9. Effects of multiple scattering in cold nuclear matter on J / ψ suppression and in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Glenn, A. M.; Nagle, J. L.; Molnar, Denes

    2007-01-01

    Coherent multiple scatterings of ccbar quark pairs in the environment of heavy ion collisions have been used in a previous work by Qiu et al. [J. Qiu, J.P. Vary, X. Zhang, Phys. Rev. Lett. 88 (2002) 232301; J. Qiu, J.P. Vary, X. Zhang, Nucl. Phys. A 698 (2002) 571, nucl-th/0106040] to study J / ψ suppression. That model suggests that heavy quark re-scatterings in a cold nuclear medium can completely explain the centrality dependence of the observed J / ψ suppression in Pb + Pb collisions at the SPS [M.C. Abreu, et al., NA50 Collaboration, Phys. Lett. B 521 (2001) 195]. Their calculations also revealed significant differences under the assumptions of a color singlet or color octet production mechanism. A more recent analytic calculation [H. Fujii, Phys. Rev. C 67 (2003) 031901], which includes incoherent final-state re-scatterings with explicit momentum transfer fluctuations in three dimensions, indicates much less suppression and little sensitivity to the production mechanism. In this Letter, we study simultaneously both the J / ψ suppression and pT modifications, at SPS and RHIC energies. We mainly focus on incoherent momentum transfer fluctuations in two dimensions, which is more appropriate for the heavy-ion collision kinematics. Our analytic and Monte Carlo calculations reinforce the analytic results in [H. Fujii, Phys. Rev. C 67 (2003) 031901]. Additionally, we find that the experimental J / ψ suppression and from nucleus-nucleus collisions at the SPS or RHIC cannot simultaneously be described in this incoherent multiple scattering framework for any value of the fluctuation strength parameter .

  10. The Other Red Planet Animation

    NASA Image and Video Library

    2015-07-03

    What color is Pluto? The answer, revealed in the first maps made from New Horizons data, turns out to be shades of reddish brown. The mission's first map of Pluto is in approximate true color -- that is, the color you would see if you were riding on New Horizons. At left, a map of Pluto's northern hemisphere composed using high-resolution black-and-white images from New Horizons LORRI instrument. At right is a map of Pluto's colors created using data from the Ralph instrument. In the center is the combined map, produced by merging the LORRI and Ralph data. http://photojournal.jpl.nasa.gov/catalog/PIA19697

  11. Earth observation (Australia) taken by Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Earth observation of Australia was taken by Galileo Spacecraft after completing its first Earth Gravity Assist. Color image of the Simpson Desert in Australia was obtained by Galileo at about 2:30 pm Pacific Standard Time (PST), 12-08-90, at a range of more than 35,000 miles. The color composite was made from images taken through the red, green, and violet filters. The area shown, about 280 miles wide by about 340 miles north-to-south, is southeast of Alice Springs. At lower left is Lake Eyre, a salt lake below sea level, subject to seasonal water-level fluctuations; when this image was acquired the lake was nearly dry. At lower right is the greenish Lake Blanche. Fields of linear sand dunes stretch north and east of Lake Eyre, shaped by prevailing winds from the south and showing, in different colors, the various sources and/or ages of their sands. Photo provided by Jet Propulsion Laboratory (JPL) with alternate number P-37331, 12-19-90.

  12. Advanced treatment technique for swine wastewater using two agents: Thermally polymerized amorphous silica and hydrated lime for color and phosphorus removal and sulfur for nitrogen removal.

    PubMed

    Hasegawa, Teruaki; Kurose, Yohei; Tanaka, Yasuo

    2017-10-01

    The efficacy of advanced treatment of swine wastewater using thermally polymerized, modified amorphous silica and hydrated lime (M-CSH-lime) for color and phosphorus removal and sulfur for nitrogen removal was examined with a demonstration-scale treatment plant. The color removal rate was approximately 78% at M-CSH-lime addition rates of > 0.055 wt/v%. The PO43--P removal rate exceeded 99.9% with > 0.023 wt/v%. pH of the effluent from the M-CSH-lime reactor increased with the addition rate till a maximum value of 12.7, which was effective in disinfection. The recovered M-CSH-lime would be suitable as a phosphorus fertilizer because the total P 2 O 5 content was approximately 10%. The nitrogen oxide (NOx-N) removal rate by sulfur denitrification increased to approximately 80% when the NOx-N loading rate was around 0.1 kg-N/ton-S/day. It was suggested that the combination of the two processes would be effective in the advanced treatment of swine wastewater. © 2017 Japanese Society of Animal Science.

  13. Reionization and the cosmic microwave background in an open universe

    NASA Technical Reports Server (NTRS)

    Persi, Fred M.

    1995-01-01

    If the universe was reionized at high reshift (z greater than or approximately equal to 30) or never recombined, then photon-electron scattering can erase fluctuations in the cosmic microwave background at scales less than or approximately equal to 1 deg. Peculiar motion at the surface of last scattering will then have given rise to new anisotropy at the 1 min level through the Vishniac effect. Here the observed fluctuations in galaxy counts are extrapolated to high redshifts using linear theory, and the expected anisotropy is computed. The predicted level of anisotropies is a function of Omega(sub 0) and the ratio of the density in ionized baryons to the critical density and is shown to depend strongly on the large- and small-scale power. It is not possible to make general statements about the viability of all reionized models based on current observations, but it is possible to rule out specific models for structure formation, particularly those with high baryonic content or small-scale power. The induced fluctuations are shown to scale with cosmological parameters and optical depth.

  14. Evaluation of the table Mountain Ronchi telescope for angular tracking

    NASA Technical Reports Server (NTRS)

    Lanyi, G.; Purcell, G.; Treuhaft, R.; Buffington, A.

    1992-01-01

    The performance of the University of California at San Diego (UCSD) Table Mountain telescope was evaluated to determine the potential of such an instrument for optical angular tracking. This telescope uses a Ronchi ruling to measure differential positions of stars at the meridian. The Ronchi technique is summarized and the operational features of the Table Mountain instrument are described. Results from an analytic model, simulations, and actual data are presented that characterize the telescope's current performance. For a star pair of visual magnitude 7, the differential uncertainty of a 5-min observation is about 50 nrad (10 marcsec), and tropospheric fluctuations are the dominant error source. At magnitude 11, the current differential uncertainty is approximately 800 nrad (approximately 170 marcsec). This magnitude is equivalent to that of a 2-W laser with a 0.4-m aperture transmitting to Earth from a spacecraft at Saturn. Photoelectron noise is the dominant error source for stars of visual magnitude 8.5 and fainter. If the photoelectron noise is reduced, ultimately tropospheric fluctuations will be the limiting source of error at an average level of 35 nrad (7 marcsec) for stars approximately 0.25 deg apart. Three near-term strategies are proposed for improving the performance of the telescope to the 10-nrad level: improving the efficiency of the optics, masking background starlight, and averaging tropospheric fluctuations over multiple observations.

  15. Rhus copallinum L.

    Treesearch

    K.F Connor

    2004-01-01

    Shining sumac is an upright, deciduous, clonal shrub or (rarely) small tree from 3 to 6 m tall. Bark ranges in color from light brown to gray to reddish-brown. Shoots and twigs are hairy and reddish in color. Twigs have conspicuous lenticels. The sparsely branched, flat crown is composed of alternate, pinnately compound leaves approximately 15 to 30 cm long, with wings...

  16. Raceblindness in Mexico: Implications for Teacher Education in the United States

    ERIC Educational Resources Information Center

    Sue, Christina A.

    2011-01-01

    The demographic make-up of US public schools indicates an increasing divergence between the racial background of teachers and that of their students: Whites represent approximately 90% of all public school teachers whereas 40% of students are of color. Further complicating the situation is the fact that many of the students of color are…

  17. Evolution of pressures and correlations in the glasma produced in high energy nuclear collisions

    NASA Astrophysics Data System (ADS)

    Ruggieri, M.; Liu, J. H.; Oliva, L.; Peng, G. X.; Greco, V.

    2018-04-01

    We consider the SU(2) glasma with Gaussian fluctuations and study its evolution by means of classical Yang-Mills equations solved numerically on a lattice. Neglecting in this first study the longitudinal expansion, we follow the evolution of the pressures of the system and compute the effect of the fluctuations in the early stage up to t ≈2 fm /c , that is the time range in which the glasma is relevant for high energy collisions. We measure the ratio of the longitudinal over the transverse pressure, PL/PT, and we find that unless the fluctuations carry a substantial amount of the energy density at the initial time, they do not change significantly the evolution of PL/PT in the early stage and that the system remains quite anisotropic. We also measure the longitudinal fields correlators both in the transverse plane and along the longitudinal direction: while at initial time fields appear to be anticorrelated in the transverse plane, this anticorrelation disappears in the very early stage, and the correlation length in the transverse plane increases. On the other hand, we find a dependence of the gauge invariant correlator on the longitudinal coordinate, which we interpret as a partial loss of correlation induced by the dynamics that we dub the gauge invariant string breaking. We finally study the effect of fluctuations on the longitudinal correlations: we find that string breaking is accelerated by the fluctuations and waiting for a sufficiently long time fluctuations lead to the complete breaking of the color strings.

  18. Testing the Ginzburg-Landau approximation for three-flavor crystalline color superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mannarelli, Massimo; Sharma, Rishi; Rajagopal, Krishna

    2006-06-01

    It is an open challenge to analyze the crystalline color superconducting phases that may arise in cold dense, but not asymptotically dense, three-flavor quark matter. At present the only approximation within which it seems possible to compare the free energies of the myriad possible crystal structures is the Ginzburg-Landau approximation. Here, we test this approximation on a particularly simple 'crystal' structure in which there are only two condensates {approx}{delta}exp(iq{sub 2}{center_dot}r) and {approx}{delta}exp(iq{sub 3}{center_dot}r) whose position-space dependence is that of two plane waves with wave vectors q{sub 2} and q{sub 3} at arbitrary angles. For this case, we are able tomore » solve the mean-field gap equation without making a Ginzburg-Landau approximation. We find that the Ginzburg-Landau approximation works in the {delta}{yields}0 limit as expected, find that it correctly predicts that {delta} decreases with increasing angle between q{sub 2} and q{sub 3} meaning that the phase with q{sub 2} parallel q{sub 3} has the lowest free energy, and find that the Ginzburg-Landau approximation is conservative in the sense that it underestimates {delta} at all values of the angle between q{sub 2} and q{sub 3}.« less

  19. Fluctuations of the gluon distribution from the small- x effective action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumitru, Adrian; Skokov, Vladimir

    The computation of observables in high-energy QCD involves an average over stochastic semiclassical small-x gluon fields. The weight of various configurations is determined by the effective action. We introduce a method to study fluctuations of observables, functionals of the small-x fields, which does not explicitly involve dipoles. We integrate out those fluctuations of the semiclassical gluon field under which a given observable is invariant. Thereby we obtain the effective potential for that observable describing its fluctuations about the average. Here, we determine explicitly the effective potential for the covariant gauge gluon distribution both for the McLerran-Venugopalan (MV) model and formore » a (nonlocal) Gaussian approximation for the small-x effective action. This provides insight into the correlation of fluctuations of the number of hard gluons versus their typical transverse momentum. We find that the spectral shape of the fluctuations of the gluon distribution is fundamentally different in the MV model, where there is a pileup of gluons near the saturation scale, versus the solution of the small-x JIMWLK renormalization group, which generates essentially scale-invariant fluctuations above the absorptive boundary set by the saturation scale.« less

  20. Fluctuations of the gluon distribution from the small- x effective action

    DOE PAGES

    Dumitru, Adrian; Skokov, Vladimir

    2017-09-29

    The computation of observables in high-energy QCD involves an average over stochastic semiclassical small-x gluon fields. The weight of various configurations is determined by the effective action. We introduce a method to study fluctuations of observables, functionals of the small-x fields, which does not explicitly involve dipoles. We integrate out those fluctuations of the semiclassical gluon field under which a given observable is invariant. Thereby we obtain the effective potential for that observable describing its fluctuations about the average. Here, we determine explicitly the effective potential for the covariant gauge gluon distribution both for the McLerran-Venugopalan (MV) model and formore » a (nonlocal) Gaussian approximation for the small-x effective action. This provides insight into the correlation of fluctuations of the number of hard gluons versus their typical transverse momentum. We find that the spectral shape of the fluctuations of the gluon distribution is fundamentally different in the MV model, where there is a pileup of gluons near the saturation scale, versus the solution of the small-x JIMWLK renormalization group, which generates essentially scale-invariant fluctuations above the absorptive boundary set by the saturation scale.« less

  1. Fluctuations of radio occultation signals in sounding the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Kan, Valery; Gorbunov, Michael E.; Sofieva, Viktoria F.

    2018-02-01

    We discuss the relationships that link the observed fluctuation spectra of the amplitude and phase of signals used for the radio occultation sounding of the Earth's atmosphere, with the spectra of atmospheric inhomogeneities. Our analysis employs the approximation of the phase screen and of weak fluctuations. We make our estimates for the following characteristic inhomogeneity types: (1) the isotropic Kolmogorov turbulence and (2) the anisotropic saturated internal gravity waves. We obtain the expressions for the variances of the amplitude and phase fluctuations of radio occultation signals as well as their estimates for the typical parameters of inhomogeneity models. From the GPS/MET observations, we evaluate the spectra of the amplitude and phase fluctuations in the altitude interval from 4 to 25 km in the middle and polar latitudes. As indicated by theoretical and experimental estimates, the main contribution into the radio signal fluctuations comes from the internal gravity waves. The influence of the Kolmogorov turbulence is negligible. We derive simple relationships that link the parameters of internal gravity waves and the statistical characteristics of the radio signal fluctuations. These results may serve as the basis for the global monitoring of the wave activity in the stratosphere and upper troposphere.

  2. Statistics of velocity fluctuations of Geldart A particles in a circulating fluidized bed riser

    DOE PAGES

    Vaidheeswaran, Avinash; Shaffer, Franklin; Gopalan, Balaji

    2017-11-21

    Here, the statistics of fluctuating velocity components are studied in the riser of a closed-loop circulating fluidized bed with fluid catalytic cracking catalyst particles. Our analysis shows distinct similarities as well as deviations compared to existing theories and bench-scale experiments. The study confirms anisotropic and non-Maxwellian distribution of fluctuating velocity components. The velocity distribution functions (VDFs) corresponding to transverse fluctuations exhibit symmetry, and follow a stretched-exponential behavior up to three standard deviations. The form of the transverse VDF is largely determined by interparticle interactions. The tails become more overpopulated with an increase in particle loading. The observed deviations from themore » Gaussian distribution are represented using the leading order term in the Sonine expansion, which is commonly used to approximate the VDFs in kinetic theory for granular flows. The vertical fluctuating VDFs are asymmetric and the skewness shifts as the wall is approached. In comparison to transverse fluctuations, the vertical VDF is determined by the local hydrodynamics. This is an observation of particle velocity fluctuations in a large-scale system and their quantitative comparison with the Maxwell-Boltzmann statistics.« less

  3. Rising relative fluctuation as a warning indicator of discontinuous transitions in symbiotic metapopulations

    NASA Astrophysics Data System (ADS)

    Lumi, Neeme; Laas, Katrin; Mankin, Romi

    2015-11-01

    The long-time limit behavior of the stochastic Lotka-Volterra model of a symbiotic metapopulation subjected to generalized Verhulst self-regulation is considered. The influence of a time-variable environment on the carrying capacities of subpopulations is modeled as a periodic deterministic part and a symmetric dichotomous noise. Relying on the mean-field approach it is established that at certain parameter regimes the mean field (average subpopulations size) exhibits hysteresis in respect to the noise correlation time, manifested in the appearance of colored-noise-induced discontinuous transitions. Especially, it is shown that the relative fluctuation of the subpopulation sizes exhibits accelerated increase prior to abrupt transitions of the metapopulation state. Moreover, in certain cases the autocorrelation function of the population sizes demonstrates anticorrelation at some values of the lag time.

  4. Survey of the BY Draconis syndrome among dMe stars. [BVr photometry search for slow quasisinusoidal light variations

    NASA Technical Reports Server (NTRS)

    Bopp, B. W.; Espenak, F.

    1977-01-01

    Results are reported for a BVr photometric survey of 22 dK, dKe, dM, and dMe stars conducted to search for slow quasi-sinusoidal fluctuations in V (the BY Draconis syndrome). The (B-V) and (V-r) color indices are determined in an attempt to detect wavelength-dependent color changes produced by starspots and to infer starspot temperatures. It is found that nine of the stars exhibit variations in V of the order of 0.05 to 0.10 magnitude on a time scale of days or weeks, that at least three more display changes in mean light level over a period of years, that the stars generally tend to become redder at minimum light, and that some of the stars show no detectable color changes over their photometric cycle. The color data are taken to suggest a probable temperature difference of about 200 to 500 K between the stellar photospheres and starspots if the V variations are attributed to dark spots. It is concluded that the BY Draconis syndrome is clearly a very common occurrence among dMe stars.

  5. Dual-Color Monitoring Overcomes the Limitations of Single Bioluminescent Reporters in Fast-Growing Microbes and Reveals Phase-Dependent Protein Productivity during the Metabolic Rhythms of Saccharomyces cerevisiae

    PubMed Central

    Krishnamoorthy, Archana

    2015-01-01

    Luciferase is a useful, noninvasive reporter of gene regulation that can be continuously monitored over long periods of time; however, its use is problematic in fast-growing microbes like bacteria and yeast because rapidly changing cell numbers and metabolic states also influence bioluminescence, thereby confounding the reporter's signal. Here we show that these problems can be overcome in the budding yeast Saccharomyces cerevisiae by simultaneously monitoring bioluminescence from two different colors of beetle luciferase, where one color (green) reports activity of a gene of interest, while a second color (red) is stably expressed and used to continuously normalize green bioluminescence for fluctuations in signal intensity that are unrelated to gene regulation. We use this dual-luciferase strategy in conjunction with a light-inducible promoter system to test whether different phases of yeast respiratory oscillations are more suitable for heterologous protein production than others. By using pulses of light to activate production of a green luciferase while normalizing signal variation to a red luciferase, we show that the early reductive phase of the yeast metabolic cycle produces more luciferase than other phases. PMID:26162874

  6. Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics.

    PubMed

    Holm, Darryl D.

    2002-06-01

    We begin by placing the generalized Lagrangian mean (GLM) equations for a compressible adiabatic fluid into the Euler-Poincare (EP) variational framework of fluid dynamics, for an averaged Lagrangian. This is the Lagrangian averaged Euler-Poincare (LAEP) theorem. Next, we derive a set of approximate small amplitude GLM equations (glm equations) at second order in the fluctuating displacement of a Lagrangian trajectory from its mean position. These equations express the linear and nonlinear back-reaction effects on the Eulerian mean fluid quantities by the fluctuating displacements of the Lagrangian trajectories in terms of their Eulerian second moments. The derivation of the glm equations uses the linearized relations between Eulerian and Lagrangian fluctuations, in the tradition of Lagrangian stability analysis for fluids. The glm derivation also uses the method of averaged Lagrangians, in the tradition of wave, mean flow interaction. Next, the new glm EP motion equations for incompressible ideal fluids are compared with the Euler-alpha turbulence closure equations. An alpha model is a GLM (or glm) fluid theory with a Taylor hypothesis closure. Such closures are based on the linearized fluctuation relations that determine the dynamics of the Lagrangian statistical quantities in the Euler-alpha equations. Thus, by using the LAEP theorem, we bridge between the GLM equations and the Euler-alpha closure equations, through the small-amplitude glm approximation in the EP variational framework. We conclude by highlighting a new application of the GLM, glm, and alpha-model results for Lagrangian averaged ideal magnetohydrodynamics. (c) 2002 American Institute of Physics.

  7. Non-Gaussian microwave background fluctuations from nonlinear gravitational effects

    NASA Technical Reports Server (NTRS)

    Salopek, D. S.; Kunstatter, G. (Editor)

    1991-01-01

    Whether the statistics of primordial fluctuations for structure formation are Gaussian or otherwise may be determined if the Cosmic Background Explorer (COBE) Satellite makes a detection of the cosmic microwave-background temperature anisotropy delta T(sub CMB)/T(sub CMB). Non-Gaussian fluctuations may be generated in the chaotic inflationary model if two scalar fields interact nonlinearly with gravity. Theoretical contour maps are calculated for the resulting Sachs-Wolfe temperature fluctuations at large angular scales (greater than 3 degrees). In the long-wavelength approximation, one can confidently determine the nonlinear evolution of quantum noise with gravity during the inflationary epoch because: (1) different spatial points are no longer in causal contact; and (2) quantum gravity corrections are typically small-- it is sufficient to model the system using classical random fields. If the potential for two scalar fields V(phi sub 1, phi sub 2) possesses a sharp feature, then non-Gaussian fluctuations may arise. An explicit model is given where cold spots in delta T(sub CMB)/T(sub CMB) maps are suppressed as compared to the Gaussian case. The fluctuations are essentially scale-invariant.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaidheeswaran, Avinash; Shaffer, Franklin; Gopalan, Balaji

    Here, the statistics of fluctuating velocity components are studied in the riser of a closed-loop circulating fluidized bed with fluid catalytic cracking catalyst particles. Our analysis shows distinct similarities as well as deviations compared to existing theories and bench-scale experiments. The study confirms anisotropic and non-Maxwellian distribution of fluctuating velocity components. The velocity distribution functions (VDFs) corresponding to transverse fluctuations exhibit symmetry, and follow a stretched-exponential behavior up to three standard deviations. The form of the transverse VDF is largely determined by interparticle interactions. The tails become more overpopulated with an increase in particle loading. The observed deviations from themore » Gaussian distribution are represented using the leading order term in the Sonine expansion, which is commonly used to approximate the VDFs in kinetic theory for granular flows. The vertical fluctuating VDFs are asymmetric and the skewness shifts as the wall is approached. In comparison to transverse fluctuations, the vertical VDF is determined by the local hydrodynamics. This is an observation of particle velocity fluctuations in a large-scale system and their quantitative comparison with the Maxwell-Boltzmann statistics.« less

  9. Solutions of the chemical kinetic equations for initially inhomogeneous mixtures.

    NASA Technical Reports Server (NTRS)

    Hilst, G. R.

    1973-01-01

    Following the recent discussions by O'Brien (1971) and Donaldson and Hilst (1972) of the effects of inhomogeneous mixing and turbulent diffusion on simple chemical reaction rates, the present report provides a more extensive analysis of when inhomogeneous mixing has a significant effect on chemical reaction rates. The analysis is then extended to the development of an approximate chemical sub-model which provides much improved predictions of chemical reaction rates over a wide range of inhomogeneities and pathological distributions of the concentrations of the reacting chemical species. In particular, the development of an approximate representation of the third-order correlations of the joint concentration fluctuations permits closure of the chemical sub-model at the level of the second-order moments of these fluctuations and the mean concentrations.

  10. Nonequilibrium Fluctuations and Enhanced Diffusion of a Driven Particle in a Dense Environment

    NASA Astrophysics Data System (ADS)

    Illien, Pierre; Bénichou, Olivier; Oshanin, Gleb; Sarracino, Alessandro; Voituriez, Raphaël

    2018-05-01

    We study the diffusion of a tracer particle driven out of equilibrium by an external force and traveling in a dense environment of arbitrary density. The system evolves on a discrete lattice and its stochastic dynamics is described by a master equation. Relying on a decoupling approximation that goes beyond the naive mean-field treatment of the problem, we calculate the fluctuations of the position of the tracer around its mean value on a lattice of arbitrary dimension, and with different boundary conditions. We reveal intrinsically nonequilibrium effects, such as enhanced diffusivity of the tracer induced by both the crowding interactions and the external driving. We finally consider the high-density and low-density limits of the model and show that our approximation scheme becomes exact in these limits.

  11. Superconductivity in 2D and nearly 2D: A Conserving Description

    NASA Astrophysics Data System (ADS)

    Deisz, John; Hess, Daryl; Serene, Joe

    1998-03-01

    In a previous work,(J.J. Deisz, D.W. Hess, and J.W. Serene, Phys. Rev. Lett., to appear.) we used a 2D Hubbard model with an attractive interaction to explicitly show that a superconducting state in the fluctuation exchange approximation (FEA) could be detected from self-consistent calculations of the internal energy and free energy as a function of a threaded flux. The FEA is a conserving approximation beyond mean field theory that includes the exchange of Cooper pair, density, and spin fluctuations. Here, we present extensions of our previous calculations and show a phase diagram as a function of interaction strength and density. We discuss the nature of the FEA phase transition in 2D and focus on how it changes with increasing coupling between planes.

  12. Analysis of Numerical Simulation Database for Pressure Fluctuations Induced by High-Speed Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.

    2014-01-01

    Direct numerical simulations (DNS) of Mach 6 turbulent boundary layer with nominal freestream Mach number of 6 and Reynolds number of Re(sub T) approximately 460 are conducted at two wall temperatures (Tw/Tr = 0.25, 0.76) to investigate the generated pressure fluctuations and their dependence on wall temperature. Simulations indicate that the influence of wall temperature on pressure fluctuations is largely limited to the near-wall region, with the characteristics of wall-pressure fluctuations showing a strong temperature dependence. Wall temperature has little influence on the propagation speed of the freestream pressure signal. The freestream radiation intensity compares well between wall-temperature cases when normalized by the local wall shear; the propagation speed of the freestream pressure signal and the orientation of the radiation wave front show little dependence on the wall temperature.

  13. Buckling of stiff polymers: Influence of thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Emanuel, Marc; Mohrbach, Hervé; Sayar, Mehmet; Schiessel, Helmut; Kulić, Igor M.

    2007-12-01

    The buckling of biopolymers is a frequently studied phenomenon The influence of thermal fluctuations on the buckling transition is, however, often ignored and not completely understood. A quantitative theory of the buckling of a wormlike chain based on a semiclassical approximation of the partition function is presented. The contribution of thermal fluctuations to the force-extension relation that allows one to go beyond the classical Euler buckling is derived in the linear and nonlinear regimes as well. It is shown that the thermal fluctuations in the nonlinear buckling regime increase the end-to-end distance of the semiflexible rod if it is confined to two dimensions as opposed to the three-dimensional case. The transition to a buckled state softens at finite temperature. We derive the scaling behavior of the transition shift with increasing ratio of contour length versus persistence length.

  14. Color Algebras

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.

  15. Exposure fluctuations of astronauts due to orientation

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Nealy, John E.; Wood, James S.; Qualls, Gary; Atwell, William; Shinn, Judy L.; Simonsen, Lisa C.

    1993-01-01

    The dose incurred in an anisotropic environment depends on the orientation of the astronaut's body relative to the direction of the radiation field. The fluctuations in exposure of specific organs due to astronaut orientation are found to be a factor of 2 or more in a typical space habitation module and typical space radiations. An approximation function is found that overestimates astronaut exposure in most cases studied and is recommended as a shield design guide for future space missions.

  16. The effect of density fluctuations on electron cyclotron beam broadening and implications for ITER

    NASA Astrophysics Data System (ADS)

    Snicker, A.; Poli, E.; Maj, O.; Guidi, L.; Köhn, A.; Weber, H.; Conway, G.; Henderson, M.; Saibene, G.

    2018-01-01

    We present state-of-the-art computations of propagation and absorption of electron cyclotron waves, retaining the effects of scattering due to electron density fluctuations. In ITER, injected microwaves are foreseen to suppress neoclassical tearing modes (NTMs) by driving current at the q=2 and q=3/2 resonant surfaces. Scattering of the beam can spoil the good localization of the absorption and thus impair NTM control capabilities. A novel tool, the WKBeam code, has been employed here in order to investigate this issue. The code is a Monte Carlo solver for the wave kinetic equation and retains diffraction, full axisymmetric tokamak geometry, determination of the absorption profile and an integral form of the scattering operator which describes the effects of turbulent density fluctuations within the limits of the Born scattering approximation. The approach has been benchmarked against the paraxial WKB code TORBEAM and the full-wave code IPF-FDMC. In particular, the Born approximation is found to be valid for ITER parameters. In this paper, we show that the radiative transport of EC beams due to wave scattering in ITER is diffusive unlike in present experiments, thus causing up to a factor of 2-4 broadening in the absorption profile. However, the broadening depends strongly on the turbulence model assumed for the density fluctuations, which still has large uncertainties.

  17. Role of magnetic fluctuations in mode selection of magnetically driven instabilities

    NASA Astrophysics Data System (ADS)

    Dan, Jia-Kun; Ren, Xiao-Dong; Huang, Xian-Bin; Ouyang, Kai; Chen, Guang-Hua

    2014-12-01

    The influences of magnetic fluctuations on quasiperiodic structure formation and fundamental wavelength selection of the instability have been studied using two 25-μm-diameter tungsten wires on a 100 ns rise time, 220 kA pulsed power facility. Two different load configurations were adopted to make end surfaces of electrodes approximately satisfy reflecting and absorbing boundary conditions, respectively. The experimental results that the fundamental wavelength in the case of absorbing boundary condition is about one half of that in the case of reflecting boundary condition have demonstrated that magnetic fluctuations appear to play a key role in mode selection of magnetically driven instabilities. The dominant wavelength should be proportional to magnetic field and inversely proportional to square root of mass density, provided that the magnetosonic wave propagating perpendicular to magnetic fields provides a leading candidate for magnetic fluctuations. Therefore, magnetic fluctuation is one of the three key perturbations, along with surface contaminants and surface roughness, that seeds magnetically driven instabilities.

  18. Origin of the Anomalous Color of Egyptian and Han Blue Historical Pigments: Going beyond the Complex Approximation in Ligand Field Theory

    ERIC Educational Resources Information Center

    García-Fernandez, Pablo; Moreno, Miguel; Aramburu, José Antonio

    2016-01-01

    The complex approximation is widely used in the framework of the Ligand Field Theory for explaining the optical properties of crystalline coordination compounds. Here, we show that there are essential features of these systems that cannot be understood with the usual approximation that only considers an isolated complex at the correct equilibrium…

  19. Variable coloration is associated with dampened population fluctuations in noctuid moths

    PubMed Central

    Forsman, Anders; Betzholtz, Per-Eric; Franzén, Markus

    2015-01-01

    Theory and recent reviews state that greater genetic and phenotypic variation should be beneficial for population abundance and stability. Experimental evaluations of this prediction are rare, of short duration and conducted under controlled environmental settings. The question whether greater diversity in functionally important traits stabilizes populations under more complex ecological conditions in the wild has not been systematically evaluated. Moths are mainly nocturnal, with a large variation in colour patterns among species, and constitute an important food source for many types of organisms. Here, we report the results of a long-term (2003–2013) monitoring study of 115 100 noctuid moths from 246 species. Analysis of time-series data provide rare evidence that species with higher levels of inter-individual variation in colour pattern have higher average abundances and undergo smaller between-year fluctuations compared with species having less variable colour patterns. The signature of interspecific temporal synchronization of abundance fluctuations was weak, suggesting that the dynamics were driven by species-specific biotic interactions rather than by some common, density-independent factor(s). We conclude that individual variation in colour patterns dampens population abundance fluctuations, and suggest that this may partly reflect that colour pattern polymorphism provides protection from visually oriented predators and parasitoids. PMID:25972462

  20. Memory effects on stochastic resonance

    NASA Astrophysics Data System (ADS)

    Neiman, Alexander; Sung, Wokyung

    1996-02-01

    We study the phenomenon of stochastic resonance (SR) in a bistable system with internal colored noise. In this situation the system possesses time-dependent memory friction connected with noise via the fluctuation-dissipation theorem, so that in the absence of periodic driving the system approaches the thermodynamic equilibrium state. For this non-Markovian case we find that memory usually suppresses stochastic resonance. However, for a large memory time SR can be enhanced by the memory.

  1. Metachromasy: An Experimental and Theoretical Reevaluation

    PubMed Central

    Bergeron, John A.; Singer, Marcus

    1958-01-01

    Non-chromotropic substances such as fibrin and gelatin and most tissue and cellular structures stain orthochromatically with internal dye concentrations of such metachromatic dyes as methylene blue and toluidine blue which, if in solution, would be metachromatic. Therefore, at ordinary levels of staining these substances depress the natural tendency of these dyes to change color. However, at elevated levels of dye-binding metachromasy eventually occurs. This phenomenon is explained on the basis of the distribution of dye-binding sites. In these substrates, by contrast with chromotropic substances, many binding sites are too far removed for dye interaction, consequently the interaction frequency can become high enough to produce a color change only as saturation of the available sites is approached. It is also shown that the destruction of color is a characteristic of metachromasy and that water molecules intercalated between approximated dye ions are responsible for the loss and change of color. A concept of metachromasy is proposed in which the interaction between water molecules and suitably approximated dye ions plays an essential role. The experimental studies are described against a background of the history and evolution of ideas on metachromasy. The literature is reviewed and reassessed particularly from the physicochemical viewpoint. PMID:13563551

  2. Large-scale anisotropy of the cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Silk, J.; Wilson, M. L.

    1981-01-01

    Inhomogeneities in the large-scale distribution of matter inevitably lead to the generation of large-scale anisotropy in the cosmic background radiation. The dipole, quadrupole, and higher order fluctuations expected in an Einstein-de Sitter cosmological model have been computed. The dipole and quadrupole anisotropies are comparable to the measured values, and impose important constraints on the allowable spectrum of large-scale matter density fluctuations. A significant dipole anisotropy is generated by the matter distribution on scales greater than approximately 100 Mpc. The large-scale anisotropy is insensitive to the ionization history of the universe since decoupling, and cannot easily be reconciled with a galaxy formation theory that is based on primordial adiabatic density fluctuations.

  3. Evidence for the onset of color transparency in ρ 0 electroproduction off nuclei

    DOE PAGES

    Guo, L.; Hanretty, C.; Hicks, K.; ...

    2012-05-11

    We have measured the nuclear transparency of the incoherent diffractive A(e,e'ρ 0) process in 12C and 56Fe targets relative to 2H using a 5 GeV electron beam. The nuclear transparency, the ratio of the produced {rho}{sup 0}'s on a nucleus relative to deuterium, which is sensitive to ρA interaction, was studied as function of the coherence length (I c), a lifetime of the hadronic fluctuation of the virtual photon, and the four-momentum transfer squared (Q 2). Thus, while the transparency for both 12C and 56Fe showed no I c dependence, a significant Q 2 dependence was measured, which is consistentmore » with calculations that included the color transparency effects.« less

  4. Finite numbers of sources, particle correlations and the Color Glass Condensate

    DOE PAGES

    McLerran, Larry; Skokov, Vladimir V.

    2015-12-23

    Here, we show that for a finite number of emitting sources, the Color Glass Condensate produces substantial elliptic azimuthal anisotropy, characterized by v 2, for two and four particle correlations for momentum greater than or of the order of the saturation momentum. The flow produced has the correct semi-quantitative features to describe flow seen in the LHC experiments with p–Pb and pp collisions. This flow is induced by quantum mechanical interference between the waves of produced particles, and the flow itself is coupled to fluctuations in the positions of emitting sources. We shortly discuss generalizing these results to odd vmore » n, to correlations involving larger number of particles, and to transverse momentum scales ΛQCD << p T << Q sat.« less

  5. Patterns, Instabilities, Colors, and Flows in Vertical Foam Films

    NASA Astrophysics Data System (ADS)

    Yilixiati, Subinuer; Wojcik, Ewelina; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek

    2015-03-01

    Foams find use in many applications in daily life, industry and biology. Examples include beverages, firefighting foam, cosmetics, foams for oil recovery and foams formed by pollutants. Foams are collection of bubbles separated by thin liquid films that are stabilized against drainage by the presence of surfactant molecules. Drainage kinetics and stability of the foam are strongly influenced by surfactant type, addition of particles, proteins and polymers. In this study, we utilize the thin film interference colors as markers for identifying patterns, instabilities and flows within vertical foam films. We experimentally study the emergence of thickness fluctuations near the borders and within thinning films, and study how buoyancy, capillarity and gravity driven instabilities and flows, are affected by variation in bulk and interfacial physicochemical properties dependent on the choice of constituents.

  6. The bright future of single-molecule fluorescence imaging

    PubMed Central

    Juette, Manuel F.; Terry, Daniel S.; Wasserman, Michael R.; Zhou, Zhou; Altman, Roger B.; Zheng, Qinsi; Blanchard, Scott C.

    2014-01-01

    Single-molecule Förster resonance energy transfer (smFRET) is an essential and maturing tool to probe biomolecular interactions and conformational dynamics in vitro and, increasingly, in living cells. Multi-color smFRET enables the correlation of multiple such events and the precise dissection of their order and timing. However, the requirements for good spectral separation, high time resolution, and extended observation times place extraordinary demands on the fluorescent labels used in such experiments. Together with advanced experimental designs and data analysis, the development of long-lasting, non-fluctuating fluorophores is therefore proving key to progress in the field. Recently developed strategies for obtaining ultra-stable organic fluorophores spanning the visible spectrum are underway that will enable multi-color smFRET studies to deliver on their promise of previously unachievable biological insights. PMID:24956235

  7. Methods for computing color anaglyphs

    NASA Astrophysics Data System (ADS)

    McAllister, David F.; Zhou, Ya; Sullivan, Sophia

    2010-02-01

    A new computation technique is presented for calculating pixel colors in anaglyph images. The method depends upon knowing the RGB spectral distributions of the display device and the transmission functions of the filters in the viewing glasses. It requires the solution of a nonlinear least-squares program for each pixel in a stereo pair and is based on minimizing color distances in the CIEL*a*b* uniform color space. The method is compared with several techniques for computing anaglyphs including approximation in CIE space using the Euclidean and Uniform metrics, the Photoshop method and its variants, and a method proposed by Peter Wimmer. We also discuss the methods of desaturation and gamma correction for reducing retinal rivalry.

  8. ASTER First Views of Rift Valley, Ethiopia - Thermal-Infrared TIR Image color

    NASA Image and Video Library

    2000-03-11

    This image is a color composite covering the Rift Valley inland area of Ethiopia (south of the region shown in PIA02452). The color difference of this image reflects the distribution of different rocks with different amounts of silicon dioxide. It is inferred that the area with whitish color is covered with basalt and the pinkish area in the center contain sandesite. This is the first spaceborne, multi-band TIR image in history that enables geologists to distinguish between rocks with similar compositions. The size of image: 60 km x 60 km approx., ground resolution 90 m x 90 m approximately. http://photojournal.jpl.nasa.gov/catalog/PIA02453

  9. Effect of algae and water on water color shift

    NASA Astrophysics Data System (ADS)

    Yang, Shengguang; Xia, Daying; Yang, Xiaolong; Zhao, Jun

    1991-03-01

    This study showed that the combined effect of absorption of planktonic algae and water on water color shift can be simulated approximately by the exponential function: Log( E {100cm/ W }+ E {100cm/ Xch1})=0.002λ-2.5 where E {100/cm W }, E {100cm/ Xchl} are, respectively, extinction coefficients of seawater and chlorophyll—a (concentration is equal to X mg/m3), and λ (nm) is wavelength. This empirical regression equation is very useful for forecasting the relation between water color and biomass in water not affected by terrigenous material. The main factor affecting water color shift in the ocean should be the absorption of blue light by planktonic algae.

  10. Color Histogram Diffusion for Image Enhancement

    NASA Technical Reports Server (NTRS)

    Kim, Taemin

    2011-01-01

    Various color histogram equalization (CHE) methods have been proposed to extend grayscale histogram equalization (GHE) for color images. In this paper a new method called histogram diffusion that extends the GHE method to arbitrary dimensions is proposed. Ranges in a histogram are specified as overlapping bars of uniform heights and variable widths which are proportional to their frequencies. This diagram is called the vistogram. As an alternative approach to GHE, the squared error of the vistogram from the uniform distribution is minimized. Each bar in the vistogram is approximated by a Gaussian function. Gaussian particles in the vistoram diffuse as a nonlinear autonomous system of ordinary differential equations. CHE results of color images showed that the approach is effective.

  11. Age-related impairment in choroidal blood flow compensation for arterial blood pressure fluctuation in pigeons.

    PubMed

    Reiner, Anton; Del Mar, Nobel; Zagvazdin, Yuri; Li, Chunyan; Fitzgerald, Malinda E C

    2011-09-14

    Choroidal vessels compensate for changes in systemic blood pressure (BP) so that choroidal blood flow (ChBF) remains stable over a BP range of approximately 40 mm Hg above and below basal. Because of the presumed importance of ChBF regulation for maintenance of retinal health, we investigated if ChBF compensation for BP fluctuation in pigeons fails with age. Transcleral laser Doppler flowmetry was used to measure ChBF during spontaneous BP fluctuation in anesthetized pigeons ranging in age from 0.5 to 17 years (pigeons can live approximately 20 years in captivity). ChBF in <8-year-old pigeons remained near 100% of basal ChBF at BPs ranging 40 mm Hg above and below basal BP (95 mm Hg). Baroregulation failed below approximately 50 mm Hg BP. In ≥8-year-old pigeons, ChBF compensation was absent at >90 mm Hg BP, with ChBF linearly following BP. Over the 60 to 90 mm Hg range, ChBF in ≥8-year-old pigeons was maintained at 60-70% of young basal ChBF. Below approximately 55 mm Hg, baroregulation again followed BP linearly. Age-related ChBF baroregulatory impairment occurs in pigeons, with ChBF linear with above-basal BP, and ChBF failing to adequately maintain ChBF during below-basal BP. Defective autonomic sympathetic and parasympathetic neurogenic control, or defective myogenic control, may cause these baroregulatory defects. In either case, overperfusion during high BP may cause oxidative injury to the outer retina, whereas underperfusion during low BP may result in deficient nutrient supply and waste removal, with both abnormalities contributing to age-related retinal pathology and vision loss.

  12. Auxiliary-fermion approach to critical fluctuations in the two-dimensional quantum antiferromagnetic Heisenberg model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinckmann, Jan; Woelfle, Peter

    2004-11-01

    The nearest-neighbor quantum antiferromagnetic (AF) Heisenberg model for spin-1/2 on a two-dimensional square lattice is studied in the auxiliary-fermion representation. Expressing spin operators by canonical fermionic particles requires a constraint on the fermion charge Q{sub i}=1 on each lattice site i, which is imposed approximately through the thermal average. The resulting interacting fermion system is first treated in mean-field theory (MFT), which yields an AF ordered ground state and spin waves in quantitative agreement with conventional spin-wave theory. At finite temperature a self-consistent approximation beyond mean field is required in order to fulfill the Mermin-Wagner theorem. We first discuss amore » fully self-consistent approximation, where fermions are renormalized due to fluctuations of their spin density, in close analogy to FLEX. While static properties like the correlation length, {xi}(T){proportional_to}exp(aJ/T), come out correctly, the dynamical response lacks the magnon-like peaks which would reflect the appearance of short-range order at low T. This drawback, which is caused by overdamping, is overcome in a 'minimal self-consistent approximation' (MSCA), which we derive from the equations of motion. The MSCA features dynamical scaling at small energy and temperature and is qualitatively correct both in the regime of order-parameter relaxation at long wavelengths {lambda}>{xi} and in the short-range-order regime at {lambda}<{xi}. We also discuss the impact of vertex corrections and the problem of pseudo-gap formation in the single-particle density of states due to long-range fluctuations. Finally we show that the (short-range) magnetic order in MFT and MSCA helps to fulfill the constraint on the local fermion occupancy.« less

  13. Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics.

    PubMed

    Ivanov, Plamen Ch; Hu, Kun; Hilton, Michael F; Shea, Steven A; Stanley, H Eugene

    2007-12-26

    The endogenous circadian pacemaker influences key physiologic functions, such as body temperature and heart rate, and is normally synchronized with the sleep/wake cycle. Epidemiological studies demonstrate a 24-h pattern in adverse cardiovascular events with a peak at approximately 10 a.m. It is unknown whether this pattern in cardiac risk is caused by a day/night pattern of behaviors, including activity level and/or influences from the internal circadian pacemaker. We recently found that a scaling index of cardiac vulnerability has an endogenous circadian peak at the circadian phase corresponding to approximately 10 a.m., which conceivably could contribute to the morning peak in cardiac risk. Here, we test whether this endogenous circadian influence on cardiac dynamics is caused by circadian-mediated changes in motor activity or whether activity and heart rate dynamics are decoupled across the circadian cycle. We analyze high-frequency recordings of motion from young healthy subjects during two complementary protocols that decouple the sleep/wake cycle from the circadian cycle while controlling scheduled behaviors. We find that static activity properties (mean and standard deviation) exhibit significant circadian rhythms with a peak at the circadian phase corresponding to 5-9 p.m. ( approximately 9 h later than the peak in the scale-invariant index of heartbeat fluctuations). In contrast, dynamic characteristics of the temporal scale-invariant organization of activity fluctuations (long-range correlations) do not exhibit a circadian rhythm. These findings suggest that endogenous circadian-mediated activity variations are not responsible for the endogenous circadian rhythm in the scale-invariant structure of heartbeat fluctuations and likely do not contribute to the increase in cardiac risk at approximately 10 a.m.

  14. Beyond interference control impairment in ADHD: evidence from increased intraindividual variability in the color-stroop test.

    PubMed

    Borella, Erika; de Ribaupierre, Anik; Cornoldi, Cesare; Chicherio, Christian

    2013-09-01

    The present study investigates intraindividual variability (IIV) in the Color-Stroop test and in a simple reaction time (SRT) task. Performance level and variability in reaction times (RTs)-quantified with different measures such as individual standard deviation (ISD) and coefficient of variation (ICV), as well as ex-Gaussian parameters (mu, sigma, tau)-were analyzed in 24 children with attention deficit/hyperactivity disorder (ADHD) and 24 typically developing children (TDC). Children with ADHD and TDC presented equivalent Color-Stroop interference effects when mean RTs were considered, and the two groups did not differ in the SRT task. Interestingly, compared to TDC, children with ADHD were more variable in their responses, showing increased ISD and ICV in the Color-Stroop interference condition and in the SRT task. Moreover, children with ADHD exhibited higher tau values-that is, more frequent abnormally long RTs-in the Color-Stroop interference condition than did the TDC, but comparable tau values in the SRT, suggesting more variable responses. These results speak in favor of a general deficit in more basic and central processes that only secondarily may affect the efficiency of inhibitory processes in children with ADHD. Overall the present findings confirm the role of IIV as a cornerstone in the ADHD cognitive profile and support the search for fine-grained analysis of performance fluctuations.

  15. Study of chromatic adaptation using memory color matches, Part I: neutral illuminants.

    PubMed

    Smet, Kevin A G; Zhai, Qiyan; Luo, Ming R; Hanselaer, Peter

    2017-04-03

    Twelve corresponding color data sets have been obtained using the long-term memory colors of familiar objects as target stimuli. Data were collected for familiar objects with neutral, red, yellow, green and blue hues under 4 approximately neutral illumination conditions on or near the blackbody locus. The advantages of the memory color matching method are discussed in light of other more traditional asymmetric matching techniques. Results were compared to eight corresponding color data sets available in literature. The corresponding color data was used to test several linear (von Kries, RLAB, etc.) and nonlinear (Hunt & Nayatani) chromatic adaptation transforms (CAT). It was found that a simple two-step von Kries, whereby the degree of adaptation D is optimized to minimize the DEu'v' prediction errors, outperformed all other tested models for both memory color and literature corresponding color sets, whereby prediction errors were lower for the memory color sets. The predictive errors were substantially smaller than the standard uncertainty on the average observer and were comparable to what are considered just-noticeable-differences in the CIE u'v' chromaticity diagram, supporting the use of memory color based internal references to study chromatic adaptation mechanisms.

  16. Evaluation of color encodings for high dynamic range pixels

    NASA Astrophysics Data System (ADS)

    Boitard, Ronan; Mantiuk, Rafal K.; Pouli, Tania

    2015-03-01

    Traditional Low Dynamic Range (LDR) color spaces encode a small fraction of the visible color gamut, which does not encompass the range of colors produced on upcoming High Dynamic Range (HDR) displays. Future imaging systems will require encoding much wider color gamut and luminance range. Such wide color gamut can be represented using floating point HDR pixel values but those are inefficient to encode. They also lack perceptual uniformity of the luminance and color distribution, which is provided (in approximation) by most LDR color spaces. Therefore, there is a need to devise an efficient, perceptually uniform and integer valued representation for high dynamic range pixel values. In this paper we evaluate several methods for encoding colour HDR pixel values, in particular for use in image and video compression. Unlike other studies we test both luminance and color difference encoding in a rigorous 4AFC threshold experiments to determine the minimum bit-depth required. Results show that the Perceptual Quantizer (PQ) encoding provides the best perceptual uniformity in the considered luminance range, however the gain in bit-depth is rather modest. More significant difference can be observed between color difference encoding schemes, from which YDuDv encoding seems to be the most efficient.

  17. Effect of glucuronosylation on anthocyanin color stability.

    PubMed

    Osmani, Sarah Anne; Hansen, Esben Halkjaer; Malien-Aubert, Céline; Olsen, Carl-Erik; Bak, Søren; Møller, Birger Lindberg

    2009-04-22

    The effect of glucuronosylation on the color stability of anthocyanins was investigated using glucuronosylated anthocyanins isolated from the flower petals of the red daisy (Bellis perennis) or obtained by enzymatic in vitro synthesis using heterologously expressed red daisy glucuronosyltransferase BpUGT94B1. Color stability toward light and heat stress was assessed by monitoring CIELAB color coordinates and stability at pH 7.0 by A(550). Cyanidin-3-O-2''-O-glucuronosylglucoside showed improved color stability in response to light compared to both cyanidin 3-O-glucoside and cyanidin 3-O-2''-O-diglucoside. A similar increase in color stability was not observed following heat treatment. Glucuronosylation did not increase the stability of anthocyanins at pH 7.0 as determined by A(550). To test for a possible effect of glucuronosylation on the color stability of anthocyanins in plant extracts used for food coloration, an elderberry (Sambucus nigra) extract was glucuronosylated in vitro. Glucuronosylation of approximately 50% of total anthocyanins proceeded fast and resulted in increased color stability in response to both heat and light. The data show that glucuronosylation may be used to stabilize industrially used extracts of natural colorants.

  18. Perceptual asynchrony between color and motion with a single direction change.

    PubMed

    Linares, Daniel; López-Moliner, Joan

    2006-08-23

    When a stimulus repeatedly and rapidly changes color (e.g., between red and green) and motion direction (e.g., upwards and downwards) with the same frequency, it was found that observers were most likely to pair colors and motion directions when the direction changes lead the color changes by approximately 80 ms. This is the color-motion asynchrony illusion. According to the differential processing time model, the illusion is explained because the neural activity leading to the perceptual experience of motion requires more time than that of color. Alternatively, the time marker model attributes the misbinding to a failure in matching different sorts of changes at rapid alternations. Here, running counter to the time marker model, we demonstrate that the illusion can arise with a single direction change. Using this simplified version of the illusion we also show that, although some form of visual masking takes place between colors, the measured asynchrony genuinely reflects processing time differences.

  19. Dehazed Image Quality Assessment by Haze-Line Theory

    NASA Astrophysics Data System (ADS)

    Song, Yingchao; Luo, Haibo; Lu, Rongrong; Ma, Junkai

    2017-06-01

    Images captured in bad weather suffer from low contrast and faint color. Recently, plenty of dehazing algorithms have been proposed to enhance visibility and restore color. However, there is a lack of evaluation metrics to assess the performance of these algorithms or rate them. In this paper, an indicator of contrast enhancement is proposed basing on the newly proposed haze-line theory. The theory assumes that colors of a haze-free image are well approximated by a few hundred distinct colors, which form tight clusters in RGB space. The presence of haze makes each color cluster forms a line, which is named haze-line. By using these haze-lines, we assess performance of dehazing algorithms designed to enhance the contrast by measuring the inter-cluster deviations between different colors of dehazed image. Experimental results demonstrated that the proposed Color Contrast (CC) index correlates well with human judgments of image contrast taken in a subjective test on various scene of dehazed images and performs better than state-of-the-art metrics.

  20. Hot spots in the microwave sky

    NASA Technical Reports Server (NTRS)

    Vittorio, Nicola; Juszkiewicz, Roman

    1987-01-01

    Tha assumption that the cosmic background fluctuations can be approximated as a random Gaussian field implies specific predictions for the radiation temperature pattern. Using this assumption, the abundances and angular sizes are calculated for regions of various levels of brightness expected to appear in the sky. Different observational strategies are assessed in the context of these results. Calculations for both large-angle and small-angle anisotropy generated by scale-invariant fluctuations in a flat universe are presented. Also discussed are simple generalizations to open cosmological models.

  1. Statistical properties and correlation functions for drift waves

    NASA Technical Reports Server (NTRS)

    Horton, W.

    1986-01-01

    The dissipative one-field drift wave equation is solved using the pseudospectral method to generate steady-state fluctuations. The fluctuations are analyzed in terms of space-time correlation functions and modal probability distributions. Nearly Gaussian statistics and exponential decay of the two-time correlation functions occur in the presence of electron dissipation, while in the absence of electron dissipation long-lived vortical structures occur. Formulas from renormalized, Markovianized statistical turbulence theory are given in a local approximation to interpret the dissipative turbulence.

  2. Mutual friction in a cold color-flavor-locked superfluid and r-mode instabilities in compact stars.

    PubMed

    Mannarelli, Massimo; Manuel, Cristina; Sa'd, Basil A

    2008-12-12

    Dissipative processes acting in rotating neutron stars are essential in preventing the growth of the r-mode instability. We estimate the damping time of r modes of a hypothetical compact quark star made up by color-flavor-locked quark matter at a temperature T < or approximately 0.01 MeV. The dissipation that we consider is due to the mutual friction force between the normal and the superfluid component arising from the elastic scattering of phonons with quantized vortices. This process is the dominant one for temperatures T < or approximately 0.01 MeV, where the mean free path of phonons due to their self-interactions is larger than the radius of the star. We find that r-mode oscillations are efficiently damped by this mechanism for pulsars rotating at frequencies of the order of 1 Hz at most. Our analysis rules out the possibility that cold pulsars rotating at higher frequencies are entirely made up by color-flavor-locked quark matter.

  3. Mars Under the Microscope (color)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This magnified look at the martian soil near the Mars Exploration Rover Opportunity's landing site, Meridiani Planum, shows coarse grains sprinkled over a fine layer of sand. The image was captured by the rover's microscopic imager on the 10th day, or sol, of its mission and roughly approximates the color a human eye would see. Scientists are intrigued by the spherical rocks, which can be formed by a variety of geologic processes, including cooling of molten lava droplets and accretion of concentric layers of material around a particle or 'seed.'

    The examined patch of soil is 3 centimeters (1.2 inches) across. The circular grain in the lower left corner is approximately 3 millimeters (.12 inches) across, or about the size of a sunflower seed.

    This color composite was obtained by merging images acquired with the orange-tinted dust cover in both its open and closed positions. The blue tint at the lower right corner is a tag used by scientists to indicate that the dust cover is closed.

  4. Self-assessment of color categories and its relationship with HLA profiling in Brazilian bone marrow donors.

    PubMed

    Boquett, Juliano; Schüler-Faccini, Lavínia; Jobim, Luis Fernando; Jobim, Mariana; Fagundes, Nelson Jurandi Rosa; Hünemeier, Tábita

    2015-06-01

    The Brazil Ministry of Health maintains a Registry of Bone Marrow Donors that corresponds to approximately 12% of the Bone Marrow Donors Worldwide registry. This registry contains information on ethnicity (by self-assessment of color) and HLA-A, -B, and -DRB1 type. The self-assessment of color tool has been extensively used for admixed population characterization. In this context, Brazil represents a highly admixed population, resulting from 5 centuries of colonization and interbreeding, mainly, but not exclusively, among Native Americans, Europeans, and Africans. Here we evaluated self-assessed skin color and HLA genetic information from 71,291 bone marrow donors of southern Brazil to verify how likely is the HLA profiling correspondence within and between self-assessed color groups. We found that HLA itself was a better ancestry indicator than was self-assessed color. Therefore, self-assessment of color in highly admixed populations, such as that of Brazil, is not indicative of higher correspondence in the HLA profiles within skin color groups. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  5. Photoemission spectrum and effect of inhomogeneous pairing fluctuations in the BCS-BEC crossover regime of an ultracold Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuchiya, Shunji; Ohashi, Yoji; CREST

    2010-09-15

    We investigate the photoemission-type spectrum in a cold Fermi gas which was recently measured by the JILA group [Stewart et al., Nature (London) 454, 744 (2008)]. This quantity gives us very useful information about single-particle properties in the BCS-BEC crossover. In this paper, including pairing fluctuations within a T-matrix theory, as well as effects of a harmonic trap within the local density approximation, we show that spatially inhomogeneous pairing fluctuations due to the trap potential are an important key to understanding the observed spectrum. In the crossover region, while strong pairing fluctuations lead to the so-called pseudogap phenomenon in themore » trap center, such strong-coupling effects are found to be weak around the edge of the gas. Our results including this effect are shown to agree well with the recent photoemission data of the JILA group.« less

  6. Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence

    DOE PAGES

    Squire, J.; Bhattacharjee, A.

    2015-11-02

    Here, this article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of alpha effects in the stratified regions of disks gives the puzzling result that there is nomore » strong prediction for a sign of alpha, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.« less

  7. Deviations from uniform power law scaling in nonstationary time series

    NASA Technical Reports Server (NTRS)

    Viswanathan, G. M.; Peng, C. K.; Stanley, H. E.; Goldberger, A. L.

    1997-01-01

    A classic problem in physics is the analysis of highly nonstationary time series that typically exhibit long-range correlations. Here we test the hypothesis that the scaling properties of the dynamics of healthy physiological systems are more stable than those of pathological systems by studying beat-to-beat fluctuations in the human heart rate. We develop techniques based on the Fano factor and Allan factor functions, as well as on detrended fluctuation analysis, for quantifying deviations from uniform power-law scaling in nonstationary time series. By analyzing extremely long data sets of up to N = 10(5) beats for 11 healthy subjects, we find that the fluctuations in the heart rate scale approximately uniformly over several temporal orders of magnitude. By contrast, we find that in data sets of comparable length for 14 subjects with heart disease, the fluctuations grow erratically, indicating a loss of scaling stability.

  8. Evaluation of a reflectance model used in the SeaWiFS ocean color algorithm: implications for chlorophyll concentration retrievals

    NASA Astrophysics Data System (ADS)

    Yan, Banghua; Stamnes, Knut; Toratani, Mitsuhiro; Li, Wei; Stamnes, Jakob J.

    2002-10-01

    For the atmospheric correction of ocean-color imagery obtained over Case I waters with the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) instrument the method currently used to relax the black-pixel assumption in the near infrared (NIR) relies on (1) an approximate model for the nadir NIR remote-sensing reflectance and (2) an assumption that the water-leaving radiance is isotropic over the upward hemisphere. Radiance simulations based on a comprehensive radiative-transfer model for the coupled atmosphere-ocean system and measurements of the nadir remote-sensing reflectance at 670 nm compiled in the SeaWiFS Bio-optical Algorithm Mini-Workshop (SeaBAM) database are used to assess the validity of this method. The results show that (1) it is important to improve the flexibility of the reflectance model to provide more realistic predictions of the nadir NIR water-leaving reflectance for different ocean regions and (2) the isotropic assumption should be avoided in the retrieval of ocean color, if the chlorophyll concentration is larger than approximately 6, 10, and 40 mg m-3 when the aerosol optical depth is approximately 0.05, 0.1, and 0.3, respectively. Finally, we extend our scope to Case II ocean waters to gain insight and enhance our understanding of the NIR aspects of ocean color. The results show that the isotropic assumption is invalid in a wider range than in Case I waters owing to the enhanced water-leaving reflectance resulting from oceanic sediments in the NIR wavelengths.

  9. CBR anisotropy from primordial gravitational waves in inflationary cosmologies

    NASA Astrophysics Data System (ADS)

    Allen, Bruce; Koranda, Scott

    1994-09-01

    We examine stochastic temperature fluctuations of the cosmic background radiation (CBR) arising via the Sachs-Wolfe effect from gravitational wave perturbations produced in the early Universe. These temperature fluctuations are described by an angular correlation function C(γ). A new (more concise and general) derivation of C(γ) is given, and evaluated for inflationary-universe cosmologies. This yields standard results for angles γ greater than a few degrees, but new results for smaller angles, because we do not make standard long-wavelength approximations to the gravitational wave mode functions. The function C(γ) may be expanded in a series of Legendre polynomials; we use numerical methods to compare the coefficients of the resulting expansion in our exact calculation with standard (approximate) results. We also report some progress towards finding a closed form expression for C(γ).

  10. Strongly Correlated Electron Systems: An Operatorial Perspective

    NASA Astrophysics Data System (ADS)

    Di Ciolo, Andrea; Avella, Adolfo

    2018-05-01

    We discuss the operatorial approach to the study of strongly correlated electron systems and show how the exact solution of target models on small clusters chosen ad-hoc (minimal models) can suggest very efficient bulk approximations. We use the Hubbard model as case study (target model) and we analyze and discuss the crucial role of spin fluctuations in its 2-site realization (minimal model). Accordingly, we devise a novel three-pole approximation for the 2D case, including in the basic field an operator describing the dressing of the electronic one by the nearest-neighbor spin-fluctuations. Such a solution is in very good agreement with the exact one in the minimal model (2-site case) and performs very well once compared to advanced (semi-)numerical methods in the 2D case, being by far less computational-resource demanding.

  11. Nonuniform fluids in the grand canonical ensemble

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Percus, J.K.

    1982-01-01

    Nonuniform simple classical fluids are considered quite generally. The grand canonical ensemble is particularly suitable, conceptually, in the leading approximation of local thermodynamics, which figuratively divides the system into approximately uniform spatial subsystems. The procedure is reviewed by which this approach is systematically corrected for slowly varying density profiles, and a model is suggested that carries the correction into the domain of local fluctuations. The latter is assessed for substrate bounded fluids, as well as for two-phase interfaces. The peculiarities of the grand ensemble in a two-phase region stem from the inherent very large number fluctuations. A primitive model showsmore » how these are quenched in the canonical ensemble. This is taken advantage of by applying the Kac-Siegert representation of the van der Waals decomposition with petit canonical corrections, to the two-phase regime.« less

  12. Superfluid density and condensate fraction in the BCS-BEC crossover regime at finite temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukushima, N.; Ohashi, Y.; Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223

    2007-03-15

    The superfluid density is a fundamental quantity describing the response to a rotation as well as in two-fluid collisional hydrodynamics. We present extensive calculations of the superfluid density {rho}{sub s} in the BCS-BEC crossover regime of a uniform superfluid Fermi gas at finite temperatures. We include strong-coupling or fluctuation effects on these quantities within a Gaussian approximation. We also incorporate the same fluctuation effects into the BCS single-particle excitations described by the superfluid order parameter {delta} and Fermi chemical potential {mu}, using the Nozieres-Schmitt-Rink approximation. This treatment is shown to be necessary for consistent treatment of {rho}{sub s} over themore » entire BCS-BEC crossover. We also calculate the condensate fraction N{sub c} as a function of the temperature, a quantity which is quite different from the superfluid density {rho}{sub s}. We show that the mean-field expression for the condensate fraction N{sub c} is a good approximation even in the strong-coupling BEC regime. Our numerical results show how {rho}{sub s} and N{sub c} depend on temperature, from the weak-coupling BCS region to the BEC region of tightly bound Cooper pair molecules. In a companion paper [Phys. Rev. A 74, 063626 (2006)], we derive an equivalent expression for {rho}{sub s} from the thermodynamic potential, which exhibits the role of the pairing fluctuations in a more explicit manner.« less

  13. Brain hyperthermia and temperature fluctuations during sexual interaction in female rats.

    PubMed

    Mitchum, Robert D; Kiyatkin, Eugene A

    2004-03-12

    Since the metabolic activity of neural cells is accompanied by heat release, brain temperature monitoring provides insight into behavior-associated changes in neural activity. In the present study, local temperatures were continuously recorded in several brain structures (nucleus accumbens, medial-preoptic hypothalamus and hippocampus) and a non-locomotor head muscle (musculus temporalis) in a receptive female rat during sexually arousing stimulation and subsequent copulatory behavior with an experienced male. Placement of the male into a neighboring compartment increased the female's temperature (approximately 0.8 degrees C) and additional, transient increases (approximately 0.2 degrees C) occurred when the rats were allowed to see and smell each other through a transparent barrier. Temperatures gradually increased further as the male repeatedly mounted and achieved intromissions, peaked 2-3 min after male's ejaculation (0.2-0.4 degrees C), and abruptly dropped until the male initiated a new copulatory cycle. Similar biphasic fluctuations accompanied subsequent copulatory cycles. Although both arousal-related temperature increases and biphasic fluctuations associated with copulatory cycles were evident in each recording location, brain sites showed consistently faster and stronger increases than the muscle, suggesting metabolic brain activation as the primary source of brain temperature fluctuations and a force behind associated changes in brain temperature. Robust brain hyperthermia and the generally similar pattern of phasic temperature fluctuations associated with individual events of sexual interaction found in males and females suggest widespread neural activation (motivational arousal) as a driving force underlying this cooperative motivated behavior in animals of both sexes. Females, however, showed different temperature changes in association with the initial (first mount or intromission) and final (ejaculation) events of each copulatory cycle, suggesting sex-specific differences in neural activity associated with the initiation and regulation of sexual behavior.

  14. NLO evolution of color dipole

    DOE PAGES

    Balitsky, Ian; Chirilli, Giovanni A.

    2008-09-01

    The small-x deep inelastic scattering in the saturation region is governed by the non-linear evolution of Wilson-line operators. In the leading logarithmic approximation it is given by the BK equation for the evolution of color dipoles. In the next-to-leading order the BK equation gets contributions from quark and gluon loops as well as from the tree gluon diagrams with quadratic and cubic nonlinearities.

  15. Application Principles for Multicolored Displays: A Workshop Report

    DTIC Science & Technology

    1990-01-01

    Currently two systems, CIELUV and CIELAB , are recommended by the CIE for preliminary trials. Both systems start with measurement of the CIE chromaticity...difficulties in the extrapolation. In order to predict color appearance and take into account color constancy, both the CIELUV and CIELAB systems...both CIELUV and CIELAB it is possible to calculate approximate correlates of the perceived attributes of lightness, hue, saturation, and perceived

  16. When Being Deaf Is Centered: d/Deaf Women of Color's Experiences with Racial/Ethnic and d/Deaf Identities in College

    ERIC Educational Resources Information Center

    Stapleton, Lissa

    2015-01-01

    Approximately 30% of d/Deaf students are successfully completing college; the reasons for such a low graduation rate is unknown (Destler & Buckly, 2011). Most research on d/Deaf college students lack racial/ethnic diversity within the study; thus, it is unclear how d/Deaf Students of Color are faring in higher education or what experiences…

  17. Inertial effects of a small Brownian particle cause a colored power spectral density of thermal noise.

    PubMed

    Jannasch, Anita; Mahamdeh, Mohammed; Schäffer, Erik

    2011-11-25

    The random thermal force acting on Brownian particles is often approximated in Langevin models by a "white-noise" process. However, fluid entrainment results in a frequency dependence of this thermal force giving it a "color." While theoretically well understood, direct experimental evidence for this colored nature of the noise term and how it is influenced by a nearby wall is lacking. Here, we directly measured the color of the thermal noise intensity by tracking a particle strongly confined in an ultrastable optical trap. All our measurements are in quantitative agreement with the theoretical predictions. Since Brownian motion is important for microscopic, in particular, biological systems, the colored nature of the noise and its distance dependence to nearby objects need to be accounted for and may even be utilized for advanced sensor applications.

  18. A method for evaluating image quality of monochrome and color displays based on luminance by use of a commercially available color digital camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokurei, Shogo, E-mail: shogo.tokurei@gmail.com, E-mail: junjim@med.kyushu-u.ac.jp; Morishita, Junji, E-mail: shogo.tokurei@gmail.com, E-mail: junjim@med.kyushu-u.ac.jp

    Purpose: The aim of this study is to propose a method for the quantitative evaluation of image quality of both monochrome and color liquid-crystal displays (LCDs) using a commercially available color digital camera. Methods: The intensities of the unprocessed red (R), green (G), and blue (B) signals of a camera vary depending on the spectral sensitivity of the image sensor used in the camera. For consistent evaluation of image quality for both monochrome and color LCDs, the unprocessed RGB signals of the camera were converted into gray scale signals that corresponded to the luminance of the LCD. Gray scale signalsmore » for the monochrome LCD were evaluated by using only the green channel signals of the camera. For the color LCD, the RGB signals of the camera were converted into gray scale signals by employing weighting factors (WFs) for each RGB channel. A line image displayed on the color LCD was simulated on the monochrome LCD by using a software application for subpixel driving in order to verify the WF-based conversion method. Furthermore, the results obtained by different types of commercially available color cameras and a photometric camera were compared to examine the consistency of the authors’ method. Finally, image quality for both the monochrome and color LCDs was assessed by measuring modulation transfer functions (MTFs) and Wiener spectra (WS). Results: The authors’ results demonstrated that the proposed method for calibrating the spectral sensitivity of the camera resulted in a consistent and reliable evaluation of the luminance of monochrome and color LCDs. The MTFs and WS showed different characteristics for the two LCD types owing to difference in the subpixel structure. The MTF in the vertical direction of the color LCD was superior to that of the monochrome LCD, although the WS in the vertical direction of the color LCD was inferior to that of the monochrome LCD as a result of luminance fluctuations in RGB subpixels. Conclusions: The authors’ method based on the use of a commercially available color camera is useful to evaluate and understand the display performances of both monochrome and color LCDs in radiology departments.« less

  19. Distinguishing between perceiver and wearer effects in clothing color-associated attributions.

    PubMed

    Roberts, S Craig; Owen, Roy C; Havlicek, Jan

    2010-07-14

    Recent studies have noted positive effects of red clothing on success in competitive sports, perhaps arising from an evolutionary predisposition to associate the color red with dominance status. Red may also enhance judgments of women's attractiveness by men, perhaps through a similar association with fertility. Here we extend these studies by investigating attractiveness judgments of both sexes and by contrasting attributions based on six different colors. Furthermore, by photographing targets repeatedly in different colors, we could investigate whether color effects are due to influences on raters or clothing wearers, by either withholding from raters information about clothing color or holding it constant via digital manipulation, while retaining color-associated variation in wearer's expression and posture. When color cues were available, we found color-attractiveness associations when males were judged by either sex, or when males judged females, but not when females judged female images. Both red and black were associated with higher attractiveness judgments and had approximately equivalent effects. Importantly, we also detected significant clothing color-attractiveness associations even when clothing color was obscured from raters and when color was held constant by digital manipulation. These results suggest that clothing color has a psychological influence on wearers at least as much as on raters, and that this ultimately influences attractiveness judgments by others. Our results lend support for the idea that evolutionarily-derived color associations can bias interpersonal judgments, although these are limited neither to effects on raters nor to the color red.

  20. Langevin equation versus kinetic equation: Subdiffusive behavior of charged particles in a stochastic magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balescu, R.; Wang, H.; Misguich, J.H.

    1994-12-01

    The running diffusion coefficient [ital D]([ital t]) is evaluated for a system of charged particles undergoing the effect of a fluctuating magnetic field and of their mutual collisions. The latter coefficient can be expressed either in terms of the mean square displacement (MSD) of a test particle, or in terms of a correlation between a fluctuating distribution function and the magnetic field fluctuation. In the first case a stochastic differential equation of Langevin type for the position of a test particle must be solved; the second problem requires the determination of the distribution function from a kinetic equation. Using suitablemore » simplifications, both problems are amenable to exact analytic solution. The conclusion is that the equivalence of the two approaches is by no means automatically guaranteed. A new type of object, the hybrid kinetic equation'' is constructed: it automatically ensures the equivalence with the Langevin results. The same conclusion holds for the generalized Fokker--Planck equation. The (Bhatnagar--Gross--Krook) (BGK) model for the collisions yields a completely wrong result. A linear approximation to the hybrid kinetic equation yields an inexact behavior, but represents an acceptable approximation in the strongly collisional limit.« less

  1. Observations of the interplanetary magnetic field between 0.46 and 1 A.U. by the Mariner 10 spacecraft. Ph.D. Thesis - Catholic Univ. of Am.

    NASA Technical Reports Server (NTRS)

    Behannon, K. W.

    1976-01-01

    Almost continuous measurement of the interplanetary magnetic field (IMF) at a sampling rate of 25 vectors/sec was performed by the magnetic field experiment onboard the Mariner 10 spacecraft during the period November 3, 1973 to April 14, 1974, comprising approximately 5-2/3 solar rotations and extending in radial distance from the sun from 1 to 0.46 AU. A clearly discernible two-sector pattern of field polarity was observed during the last 3-1/2 months of the period, with the dominant polarity toward the sun below the solar equatorial plane. Two compound high-speed solar wind streams were also present during this period, one in each magnetic field sector. Relative fluctuations of the field in magnitude and direction were found to have large time variations, but on average the relative magnitude fluctuations were approximately constant over the range of heliocentric distance covered while the relative directional fluctuations showed a slight decrease on average with increasing distance. The occurrence rate of directional discontinuities was also found to decrease with increasing radial distance from the sun.

  2. STEADY-STATE MODEL OF SOLAR WIND ELECTRONS REVISITED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Peter H.; Kim, Sunjung; Choe, G. S., E-mail: yoonp@umd.edu

    2015-10-20

    In a recent paper, Kim et al. put forth a steady-state model for the solar wind electrons. The model assumed local equilibrium between the halo electrons, characterized by an intermediate energy range, and the whistler-range fluctuations. The basic wave–particle interaction is assumed to be the cyclotron resonance. Similarly, it was assumed that a dynamical steady state is established between the highly energetic superhalo electrons and high-frequency Langmuir fluctuations. Comparisons with the measured solar wind electron velocity distribution function (VDF) during quiet times were also made, and reasonable agreements were obtained. In such a model, however, only the steady-state solution for themore » Fokker–Planck type of electron particle kinetic equation was considered. The present paper complements the previous analysis by considering both the steady-state particle and wave kinetic equations. It is shown that the model halo and superhalo electron VDFs, as well as the assumed wave intensity spectra for the whistler and Langmuir fluctuations, approximately satisfy the quasi-linear wave kinetic equations in an approximate sense, thus further validating the local equilibrium model constructed in the paper by Kim et al.« less

  3. Local self-energies for V and Pd emergent from a nonlocal LDA+FLEX implementation

    NASA Astrophysics Data System (ADS)

    Savrasov, Sergey Y.; Resta, Giacomo; Wan, Xiangang

    2018-04-01

    In the spirit of recently developed LDA+U and LDA+DMFT methods, we implement a combination of density functional theory in its local density approximation (LDA) with a k - and ω -dependent self-energy found from diagrammatic fluctuational exchange (FLEX) approximation. The active Hilbert space here is described by the correlated subset of electrons which allows one to tremendously reduce the sizes of the matrices needed to represent charge and spin susceptibilities. The method is perturbative in nature but accounts for both bubble and ladder diagrams and accumulates the physics of momentum-resolved spin fluctuations missing in such popular approach as GW. As an application, we study correlation effects on band structures in V and Pd. The d -electron self-energies emergent from this calculation are found to be remarkably k independent. However, when we compare our calculated electronic mass enhancements against LDA+DMFT, we find that for the longstanding problem of spin fluctuations in Pd, LDA+FLEX delivers a better agreement with experiment, although this conclusion depends on a particular value of the Hubbard U used in the simulation. We also discuss outcomes of a recently proposed combination of k -dependent FLEX with dynamical mean-field theory (DMFT).

  4. Detecting the chaotic nature in a transitional boundary layer using symbolic information-theory quantifiers.

    PubMed

    Zhang, Wen; Liu, Peiqing; Guo, Hao; Wang, Jinjun

    2017-11-01

    The permutation entropy and the statistical complexity are employed to study the boundary-layer transition induced by the surface roughness. The velocity signals measured in the transition process are analyzed with these symbolic quantifiers, as well as the complexity-entropy causality plane, and the chaotic nature of the instability fluctuations is identified. The frequency of the dominant fluctuations has been found according to the time scales corresponding to the extreme values of the symbolic quantifiers. The laminar-turbulent transition process is accompanied by the evolution in the degree of organization of the complex eddy motions, which is also characterized with the growing smaller and flatter circles in the complexity-entropy causality plane. With the help of the permutation entropy and the statistical complexity, the differences between the chaotic fluctuations detected in the experiments and the classical Tollmien-Schlichting wave are shown and discussed. It is also found that the chaotic features of the instability fluctuations can be approximated with a number of regular sine waves superimposed on the fluctuations of the undisturbed laminar boundary layer. This result is related to the physical mechanism in the generation of the instability fluctuations, which is the noise-induced chaos.

  5. Detecting the chaotic nature in a transitional boundary layer using symbolic information-theory quantifiers

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Liu, Peiqing; Guo, Hao; Wang, Jinjun

    2017-11-01

    The permutation entropy and the statistical complexity are employed to study the boundary-layer transition induced by the surface roughness. The velocity signals measured in the transition process are analyzed with these symbolic quantifiers, as well as the complexity-entropy causality plane, and the chaotic nature of the instability fluctuations is identified. The frequency of the dominant fluctuations has been found according to the time scales corresponding to the extreme values of the symbolic quantifiers. The laminar-turbulent transition process is accompanied by the evolution in the degree of organization of the complex eddy motions, which is also characterized with the growing smaller and flatter circles in the complexity-entropy causality plane. With the help of the permutation entropy and the statistical complexity, the differences between the chaotic fluctuations detected in the experiments and the classical Tollmien-Schlichting wave are shown and discussed. It is also found that the chaotic features of the instability fluctuations can be approximated with a number of regular sine waves superimposed on the fluctuations of the undisturbed laminar boundary layer. This result is related to the physical mechanism in the generation of the instability fluctuations, which is the noise-induced chaos.

  6. Simulated color: a diagnostic tool for skin lesions like port-wine stain

    NASA Astrophysics Data System (ADS)

    Randeberg, Lise L.; Svaasand, Lars O.

    2001-05-01

    A device independent method for skin color visualization has been developed. Colors reconstructed from a reflectance spectrum are presented on a computer screen by sRGB (standard Red Green Blue) color coordinates. The colors are presented as adjacent patches surrounded by a medium grey border. CIELAB color coordinates and CIE (International Commission on Illumination) color difference (Delta) E are computed. The change in skin color due to a change in average blood content or scattering properties in dermis is investigated. This is done by analytical simulations based on the diffusion approximation. It is found that an 11% change in average blood content and a 15% change in scattering properties will give a visible color change. A supposed visibility limit for (Delta) E is given. This value is based on experimental testing and the known properties of the human visual system. This limit value can be used as a tool to determine when to terminate laser treatment of port- wine stain due to low treatment response, i.e. low (Delta) E between treatments. The visualization method presented seems promising for medical applications as port-wine stain diagnostics. The method gives good possibilities for electronic transfer of data between clinics because it is device independent.

  7. Smoothing data series by means of cubic splines: quality of approximation and introduction of a repeating spline approach

    NASA Astrophysics Data System (ADS)

    Wüst, Sabine; Wendt, Verena; Linz, Ricarda; Bittner, Michael

    2017-09-01

    Cubic splines with equidistant spline sampling points are a common method in atmospheric science, used for the approximation of background conditions by means of filtering superimposed fluctuations from a data series. What is defined as background or superimposed fluctuation depends on the specific research question. The latter also determines whether the spline or the residuals - the subtraction of the spline from the original time series - are further analysed.Based on test data sets, we show that the quality of approximation of the background state does not increase continuously with an increasing number of spline sampling points and/or decreasing distance between two spline sampling points. Splines can generate considerable artificial oscillations in the background and the residuals.We introduce a repeating spline approach which is able to significantly reduce this phenomenon. We apply it not only to the test data but also to TIMED-SABER temperature data and choose the distance between two spline sampling points in a way that is sensitive for a large spectrum of gravity waves.

  8. Fermi-Compton scattering due to magnetopause surface fluctuations in Jupiter's magnetospheric cavity

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1981-01-01

    The effects of boundary surface fluctuations on a spectrum of electromagnetic radiation trapped in a high Q (quality) cavity are considered. Undulating walls introduce small frequency shifts at reflection to the radiation, and it is argued that the process is entirely analogous to both Fermi (particle) acceleration and inverse Compton scattering. A Fokker-Planck formalism is pursued; it yields a diffusion equation in frequency for which the Green's function and steady-state solutions are found. Applying this analysis to the Jovian continuum radiation discovered by Voyager spacecraft, it is suggested that characteristic diffusion times are greater than 1 year, and that in order to account for the steep frequency spectra observed, an unidentified loss mechanism must operate in the cavity with a decay time constant approximately equal to the characteristic diffusion time divided by 28. A radiator-reactor model of the cavity is investigated to provide an estimate for the intrinsic luminosity of the low frequency (approximately 100 Hz) continuum source whose power is approximately 7 x 10 to the 6th W.

  9. The Extended Parabolic Equation Method and Implication of Results for Atmospheric Millimeter-Wave and Optical Propagation

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2004-01-01

    The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the -correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.

  10. The Relative Importance of Sexual Dimorphism, Fluctuating Asymmetry, and Color Cues to Health during Evaluation of Potential Partners' Facial Photographs : A Conjoint Analysis Study.

    PubMed

    Mogilski, Justin K; Welling, Lisa L M

    2017-03-01

    Sexual dimorphism, symmetry, and coloration in human faces putatively signal information relevant to mate selection and reproduction. Although the independent contributions of these characteristics to judgments of attractiveness are well established, relatively few studies have examined whether individuals prioritize certain features over others. Here, participants (N = 542, 315 female) ranked six sets of facial photographs (3 male, 3 female) by their preference for starting long- and short-term romantic relationships with each person depicted. Composite-based digital transformations were applied such that each image set contained 11 different versions of the same identity. Each photograph in each image set had a unique combination of three traits: sexual dimorphism, symmetry, and color cues to health. Using conjoint analysis to evaluate participants' ranking decisions, we found that participants prioritized cues to sexual dimorphism over symmetry and color cues to health. Sexual dimorphism was also found to be relatively more important for the evaluation of male faces than for female faces, whereas symmetry and color cues to health were relatively more important for the evaluation of female faces than for male faces. Symmetry and color cues to health were more important for long-term versus short-term evaluations for female faces, but not male faces. Analyses of utility estimates reveal that our data are consistent with research showing that preferences for facial masculinity and femininity in male and female faces vary according to relationship context. These findings are interpreted in the context of previous work examining the influence of these facial attributes on romantic partner perception.

  11. A feedback control strategy for the airfoil system under non-Gaussian colored noise excitation.

    PubMed

    Huang, Yong; Tao, Gang

    2014-09-01

    The stability of a binary airfoil with feedback control under stochastic disturbances, a non-Gaussian colored noise, is studied in this paper. First, based on some approximated theories and methods the non-Gaussian colored noise is simplified to an Ornstein-Uhlenbeck process. Furthermore, via the stochastic averaging method and the logarithmic polar transformation, one dimensional diffusion process can be obtained. At last by applying the boundary conditions, the largest Lyapunov exponent which can determine the almost-sure stability of the system and the effective region of control parameters is calculated.

  12. A feedback control strategy for the airfoil system under non-Gaussian colored noise excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yong, E-mail: hy@njust.edu.cn, E-mail: taogang@njust.edu.cn; Tao, Gang, E-mail: hy@njust.edu.cn, E-mail: taogang@njust.edu.cn

    2014-09-01

    The stability of a binary airfoil with feedback control under stochastic disturbances, a non-Gaussian colored noise, is studied in this paper. First, based on some approximated theories and methods the non-Gaussian colored noise is simplified to an Ornstein-Uhlenbeck process. Furthermore, via the stochastic averaging method and the logarithmic polar transformation, one dimensional diffusion process can be obtained. At last by applying the boundary conditions, the largest Lyapunov exponent which can determine the almost-sure stability of the system and the effective region of control parameters is calculated.

  13. Color universal design: analysis of color category dependency on color vision type (3)

    NASA Astrophysics Data System (ADS)

    Kojima, Natsuki; Ichihara, Yasuyo G.; Ikeda, Tomohiro; Kamachi, Miyuki G.; Ito, Kei

    2012-01-01

    We report on the results of a study investigating the color perception characteristics of people with red-green color confusion. We believe that this is an important step towards achieving Color Universal Design. In Japan, approximately 5% of men and 0.2% of women have red-green confusion. The percentage for men is higher in Europe and the United States; up to 8% in some countries. Red-green confusion involves a perception of colors different from normal color vision. Colors are used as a means of disseminating clear information to people; however, it may be difficult to convey the correct information to people who have red-green confusion. Consequently, colors should be chosen that minimize accidents and that promote more effective communication. In a previous survey, we investigated color categories common to each color vision type, trichromat (C-type color vision), protan (P-type color vision) and deuteran (D-type color vision). In the present study, first, we conducted experiments in order to verify a previous survey of C-type color vision and P-type color vision. Next, we investigated color difference levels within "CIE 1976 L*a*b*" (the CIELAB uniform color space), where neither C-type nor P-type color vision causes accidents under certain conditions (rain maps/contour line levels and graph color legend levels). As a result, we propose a common chromaticity of colors that the two color vision types are able to categorize by means of color names common to C-type color vision. We also offer a proposal to explain perception characteristics of color differences with normal color vision and red-green confusion using the CIELAB uniform color space. This report is a follow-up to SPIE-IS & T / Vol. 7528 7528051-8 and SPIE-IS & T /vol. 7866 78660J-1-8.

  14. Renormalization-group theory of plasma microturbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carati, D.; Chriaa, K.; Balescu, R.

    1994-08-01

    The dynamical renormalization-group methods are applied to the gyrokinetic equation describing drift-wave turbulence in plasmas. As in both magnetohydrodynamic and neutral turbulence, small-scale fluctuations appear to act as effective dissipative processes on large-scale phenomena. A linear renormalized gyrokinetic equation is derived. No artificial forcing is introduced into the equations and all the renormalized corrections are expressed in terms of the fluctuating electric potential. The link with the quasilinear limit and the direct interaction approximation is investigated. Simple analytical expressions for the anomalous transport coefficients are derived by using the linear renormalized gyrokinetic equation. Examples show that both quasilinear and Bohmmore » scalings can be recovered depending on the spectral amplitude of the electric potential fluctuations.« less

  15. Ferroelectric hydration shells around proteins: electrostatics of the protein-water interface.

    PubMed

    LeBard, David N; Matyushov, Dmitry V

    2010-07-22

    Numerical simulations of hydrated proteins show that protein hydration shells are polarized into a ferroelectric layer with large values of the average dipole moment magnitude and the dipole moment variance. The emergence of the new polarized mesophase dramatically alters the statistics of electrostatic fluctuations at the protein-water interface. The linear response relation between the average electrostatic potential and its variance breaks down, with the breadth of the electrostatic fluctuations far exceeding the expectations of the linear response theories. The dynamics of these non-Gaussian electrostatic fluctuations are dominated by a slow (approximately = 1 ns) component that freezes in at the temperature of the dynamical transition of proteins. The ferroelectric shell propagates 3-5 water diameters into the bulk.

  16. Conductance fluctuation of edge-disordered graphene nanoribbons: Crossover from diffusive transport to Anderson localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takashima, Kengo; Yamamoto, Takahiro, E-mail: takahiro@rs.tus.ac.jp; Department of Liberal Arts

    Conductance fluctuation of edge-disordered graphene nanoribbons (ED-GNRs) is examined using the non-equilibrium Green's function technique combined with the extended Hückel approximation. The mean free path λ and the localization length ξ of the ED-GNRs are determined to classify the quantum transport regimes. In the diffusive regime where the length L{sub c} of the ED-GNRs is much longer than λ and much shorter than ξ, the conductance histogram is given by a Gaussian distribution function with universal conductance fluctuation. In the localization regime where L{sub c}≫ξ, the histogram is no longer the universal Gaussian distribution but a lognormal distribution that characterizesmore » Anderson localization.« less

  17. Blue-green eggshell coloration is not a sexually selected signal of female quality in an open-nesting polygynous passerine.

    PubMed

    Honza, Marcel; Požgayová, Milica; Procházka, Petr; Cherry, Michael I

    2011-06-01

    It has been proposed that blue-green egg colours have evolved as a post-mating signal of female quality, selected by males allocating their parental effort in response to the strength of this signal. We tested two main assumptions of the sexually selected egg coloration hypothesis: (1) whether the intensity of eggshell blue-green chroma (BGC) reflects female quality; and (2) whether males make their decisions on the level of parental care that they provide according to the intensity of eggshell BGC. As a model species, we chose the facultatively polygynous great reed warbler (Acrocephalus arundinaceus). In this species, females simultaneously paired with the same male, compete for his nest attendance and could benefit from signalling their quality through egg coloration. However, we found no association between the variation in eggshell BGC and the measures of female quality (physical condition, mean egg volume and age). Moreover, great reed warbler males did not adjust their investment (as measured in terms of nest defence against a brood parasite) in relation to the eggshell BGC. We conclude that blue-green egg coloration in this open-nesting passerine is unlikely to have a signalling function. Rather, the large colour variation among clutches of individual females may depend on yearly fluctuations in environmental conditions.

  18. Rapid evolution of fire melanism in replicated populations of pygmy grasshoppers.

    PubMed

    Forsman, Anders; Karlsson, Magnus; Wennersten, Lena; Johansson, Jenny; Karpestam, Einat

    2011-09-01

    Evolutionary theory predicts an interactive process whereby spatiotemporal environmental heterogeneity will maintain genetic variation, while genetic and phenotypic diversity will buffer populations against stress and allow for fast adaptive evolution in rapidly changing environments. Here, we study color polymorphism patterns in pygmy grasshoppers (Tetrix subulata) and show that the frequency of the melanistic (black) color variant was higher in areas that had been ravaged by fires the previous year than in nonburned habitats, that, in burned areas, the frequency of melanistic grasshoppers dropped from ca. 50% one year after a fire to 30% after four years, and that the variation in frequencies of melanistic individuals among and within populations was genetically based on and represented evolutionary modifications. Dark coloration may confer a selective benefit mediated by enhanced camouflage in recently fire-ravaged areas characterized by blackened visual backgrounds before vegetation has recovered. These findings provide rare evidence for unusually large, extremely rapid adaptive contemporary evolution in replicated natural populations in response to divergent and fluctuating selection associated with spatiotemporal environmental changes. © 2011 The Author(s).

  19. Composition-dependent emission linewidth broadening in lead bromide perovskite (APbBr3, A = Cs and CH3NH3) nanoparticles.

    PubMed

    Ham, Sujin; Chung, Heejae; Kim, Tae-Woo; Kim, Jiwon; Kim, Dongho

    2018-02-01

    Lead halide perovskite nanoparticles (NPs) are attractive as they exhibit excellent color purity and have a tunable band gap, and can thus be applied in highly efficient photovoltaic and light-emitting diodes. Fundamental studies of emission linewidth broadening due to spectral shifts in perovskite NPs may suggest a way to improve their color purity. However, the carrier-induced Stark shift that causes spectral diffusion still requires investigation. In this study, we explore composition-related emission linewidth broadening by comparing CsPbBr3 and CH 3 NH 3 PbBr 3 (MAPbBr3) perovskite NPs. We find that the MAPbBr3 NPs are more sensitive to fluctuations in the local electric fields than the CsPbBr3 NPs due to an intrinsic difference in the dipole moment between the two A cations (Cs and MA), which shows a carrier-induced Stark shift. The results indicate that the compositions of perovskite NPs are closely associated with emission linewidth broadening and they also provide insights into the development of NP-based devices with high color purity.

  20. Direct quantitative evaluation of disease symptoms on living plant leaves growing under natural light.

    PubMed

    Matsunaga, Tomoko M; Ogawa, Daisuke; Taguchi-Shiobara, Fumio; Ishimoto, Masao; Matsunaga, Sachihiro; Habu, Yoshiki

    2017-06-01

    Leaf color is an important indicator when evaluating plant growth and responses to biotic/abiotic stress. Acquisition of images by digital cameras allows analysis and long-term storage of the acquired images. However, under field conditions, where light intensity can fluctuate and other factors (shade, reflection, and background, etc.) vary, stable and reproducible measurement and quantification of leaf color are hard to achieve. Digital scanners provide fixed conditions for obtaining image data, allowing stable and reliable comparison among samples, but require detached plant materials to capture images, and the destructive processes involved often induce deformation of plant materials (curled leaves and faded colors, etc.). In this study, by using a lightweight digital scanner connected to a mobile computer, we obtained digital image data from intact plant leaves grown in natural-light greenhouses without detaching the targets. We took images of soybean leaves infected by Xanthomonas campestris pv. glycines , and distinctively quantified two disease symptoms (brown lesions and yellow halos) using freely available image processing software. The image data were amenable to quantitative and statistical analyses, allowing precise and objective evaluation of disease resistance.

  1. 2-COLOR Pupil Imaging Method to Detect Stellar Oscillations

    NASA Astrophysics Data System (ADS)

    Costantino, Sigismondi; Alessandro, Cacciani; Mauro, Dolci; Stuart, Jeffries; Eric, Fossat; Ludovico, Cesario; Paolo, Rapex; Luca, Bertello; Ferenc, Varadi; Wolfgang, Finsterle

    Stellar intensity oscillations from the ground are strongly affected by atmospheric noise. For solar-type stars even Antarctic scintillation noise is still overwhelming. We proposed and tested a differential method that images on the same CCD detector two-color pupils of the telescope in order to compensate for intensity sky fluctuations guiding and saturation problems. SOHO data reveal that our method has an efficiency of 70% respect to the absolute amplitude variations. Using two instruments at Dome C and South Pole we can further minimize atmospheric color noise with cross-spectrum methods. This way we also decrease the likelihood of gaps in the data string due to bad weather. Observationally while waiting for the South Pole/Dome-C sites we are carrying on tests from available telescopes and Big Bear Mt. Wilson Teramo Milano. On the data analysis side we use the Random Lag Singular Cross-Spectrum Analysis which eliminates noise from the observed signal better than traditional Fourier transform. This method is also well-suited for extracting common oscillatory components from two or more observations including their relative phases as we are planning to do

  2. Statistical properties of fluctuations of time series representing appearances of words in nationwide blog data and their applications: An example of modeling fluctuation scalings of nonstationary time series.

    PubMed

    Watanabe, Hayafumi; Sano, Yukie; Takayasu, Hideki; Takayasu, Misako

    2016-11-01

    To elucidate the nontrivial empirical statistical properties of fluctuations of a typical nonsteady time series representing the appearance of words in blogs, we investigated approximately 3×10^{9} Japanese blog articles over a period of six years and analyze some corresponding mathematical models. First, we introduce a solvable nonsteady extension of the random diffusion model, which can be deduced by modeling the behavior of heterogeneous random bloggers. Next, we deduce theoretical expressions for both the temporal and ensemble fluctuation scalings of this model, and demonstrate that these expressions can reproduce all empirical scalings over eight orders of magnitude. Furthermore, we show that the model can reproduce other statistical properties of time series representing the appearance of words in blogs, such as functional forms of the probability density and correlations in the total number of blogs. As an application, we quantify the abnormality of special nationwide events by measuring the fluctuation scalings of 1771 basic adjectives.

  3. Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions

    NASA Astrophysics Data System (ADS)

    Netz, R. R.; Orland, H.

    2000-02-01

    We formulate the exact non-linear field theory for a fluctuating counter-ion distribution in the presence of a fixed, arbitrary charge distribution. The Poisson-Boltzmann equation is obtained as the saddle-point of the field-theoretic action, and the effects of counter-ion fluctuations are included by a loop-wise expansion around this saddle point. The Poisson equation is obeyed at each order in this loop expansion. We explicitly give the expansion of the Gibbs potential up to two loops. We then apply our field-theoretic formalism to the case of a single impenetrable wall with counter ions only (in the absence of salt ions). We obtain the fluctuation corrections to the electrostatic potential and the counter-ion density to one-loop order without further approximations. The relative importance of fluctuation corrections is controlled by a single parameter, which is proportional to the cube of the counter-ion valency and to the surface charge density. The effective interactions and correlation functions between charged particles close to the charged wall are obtained on the one-loop level.

  4. Magnetic Field Effects on the Fluctuation Corrections to the Sound Attenuation in Liquid ^3He

    NASA Astrophysics Data System (ADS)

    Zhao, Erhai; Sauls, James A.

    2002-03-01

    We investigated the effect of a magnetic field on the excess sound attenuation due to order parameter fluctuations in bulk liquid ^3He and liquid ^3He in aerogel for temperatures just above the corresponding superfluid transition temperatures. The fluctuation corrections to the acoustic attenuation are sensitive to magnetic field pairbreaking, aerogel scattering as well as the spin correlations of fluctuating pairs. Calculations of the corrections to the zero sound velocity, δ c_0, and attenuation, δα_0, are carried out in the ladder approximation for the singular part of the quasiparticle-quasiparticle scattering amplitude(V. Samalam and J. W. Serene, Phys. Rev. Lett. \\underline41), 497 (1978). as a function of frequency, temperature, impurity scattering and magnetic field strength. The magnetic field suppresses the fluctuation contributions to the attenuation of zero sound. With increasing magnetic field the temperature dependence of δα_0(t) crosses over from δα_0(t) ~√ t to δα_0(t) ~ t, where t=T/Tc -1 is the reduced temperature.

  5. Determination of the weak phase γ from color-allowed B+/-u-->DK+/- decays

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-Zhong

    1998-11-01

    We show that it is possible to determine the weak phase γ≡arg(-V*ubVud/V*cbVcd) of the Cabibbo-Kobayashi-Maskawa flavor mixing matrix only from the measurement of the color-allowed B+/-u-->DK+/- decay rates. The uncertainty of this method, arising mainly from the factorization approximation for two tree-level spectator quark transitions, may be well controlled.

  6. The use of Kodak aerochrome infrared color film, type 2443, as a remote sensing tool

    NASA Technical Reports Server (NTRS)

    Cooper, G. R.; Bowen, R. L.; Gausman, H. W.

    1972-01-01

    An infrared color film, Kodak Aerochrome, type 2443, has replaced the 8443 film. The 2443 has lower contrast than the 8443 film, and allows deeper probing into areas that appear as solid black shadows on the 8443 film. The cyan layer of 2443 is approximately 1 1/2 stops slower, at a density of 1.4, than the yellow and magenta emulsion layers.

  7. Visual working memory capacity for color is independent of representation resolution.

    PubMed

    Ye, Chaoxiong; Zhang, Lingcong; Liu, Taosheng; Li, Hong; Liu, Qiang

    2014-01-01

    The relationship between visual working memory (VWM) capacity and resolution of representation have been extensively investigated. Several recent ERP studies using orientation (or arrow) stimuli suggest that there is an inverse relationship between VWM capacity and representation resolution. However, different results have been obtained in studies using color stimuli. This could be due to important differences in the experimental paradigms used in previous studies. We examined whether the same relationship between capacity and resolution holds for color information. Participants performed a color change detection task while their electroencephalography was recorded. We manipulated representation resolution by asking participants to detect either a salient change (low-resolution) or a subtle change (high-resolution) in color. We used an ERP component known as contralateral delay activity (CDA) to index the amount of information maintained in VWM. The result demonstrated the same pattern for both low- and high-resolution conditions, with no difference between conditions. This result suggests that VWM always represents a fixed number of approximately 3-4 colors regardless of the resolution of representation.

  8. Spatial optical crosstalk in CMOS image sensors integrated with plasmonic color filters.

    PubMed

    Yu, Yan; Chen, Qin; Wen, Long; Hu, Xin; Zhang, Hui-Fang

    2015-08-24

    Imaging resolution of complementary metal oxide semiconductor (CMOS) image sensor (CIS) keeps increasing to approximately 7k × 4k. As a result, the pixel size shrinks down to sub-2μm, which greatly increases the spatial optical crosstalk. Recently, plasmonic color filter was proposed as an alternative to conventional colorant pigmented ones. However, there is little work on its size effect and the spatial optical crosstalk in a model of CIS. By numerical simulation, we investigate the size effect of nanocross array plasmonic color filters and analyze the spatial optical crosstalk of each pixel in a Bayer array of a CIS with a pixel size of 1μm. It is found that the small pixel size deteriorates the filtering performance of nanocross color filters and induces substantial spatial color crosstalk. By integrating the plasmonic filters in the low Metal layer in standard CMOS process, the crosstalk reduces significantly, which is compatible to pigmented filters in a state-of-the-art backside illumination CIS.

  9. Detail on Dione False color

    NASA Image and Video Library

    2006-01-27

    The leading hemisphere of Dione displays subtle variations in color across its surface in this false color view. To create this view, ultraviolet, green and infrared images were combined into a single black and white picture that isolates and maps regional color differences. This "color map" was then superposed over a clear-filter image. The origin of the color differences is not yet understood, but may be caused by subtle differences in the surface composition or the sizes of grains making up the icy soil. Terrain visible here is on the moon's leading hemisphere. North on Dione (1,126 kilometers, or 700 miles across) is up and rotated 17 degrees to the right. All images were acquired with the Cassini spacecraft narrow-angle camera on Dec. 24, 2005 at a distance of approximately 597,000 kilometers (371,000 miles) from Dione and at a Sun-Dione-spacecraft, or phase, angle of 21 degrees. Image scale is 4 kilometers (2 miles) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA07688

  10. Color calibration and color-managed medical displays: does the calibration method matter?

    NASA Astrophysics Data System (ADS)

    Roehrig, Hans; Rehm, Kelly; Silverstein, Louis D.; Dallas, William J.; Fan, Jiahua; Krupinski, Elizabeth A.

    2010-02-01

    Our laboratory has investigated the efficacy of a suite of color calibration and monitor profiling packages which employ a variety of color measurement sensors. Each of the methods computes gamma correction tables for the red, green and blue color channels of a monitor that attempt to: a) match a desired luminance range and tone reproduction curve; and b) maintain a target neutral point across the range of grey values. All of the methods examined here produce International Color Consortium (ICC) profiles that describe the color rendering capabilities of the monitor after calibration. Color profiles incorporate a transfer matrix that establishes the relationship between RGB driving levels and the International Commission on Illumination (CIE) XYZ (tristimulus) values of the resulting on-screen color; the matrix is developed by displaying color patches of known RGB values on the monitor and measuring the tristimulus values with a sensor. The number and chromatic distribution of color patches varies across methods and is usually not under user control. In this work we examine the effect of employing differing calibration and profiling methods on rendition of color images. A series of color patches encoded in sRGB color space were presented on the monitor using color-management software that utilized the ICC profile produced by each method. The patches were displayed on the calibrated monitor and measured with a Minolta CS200 colorimeter. Differences in intended and achieved luminance and chromaticity were computed using the CIE DE2000 color-difference metric, in which a value of ▵E = 1 is generally considered to be approximately one just noticeable difference (JND) in color. We observed between one and 17 JND's for individual colors, depending on calibration method and target.

  11. Lip boundary detection techniques using color and depth information

    NASA Astrophysics Data System (ADS)

    Kim, Gwang-Myung; Yoon, Sung H.; Kim, Jung H.; Hur, Gi Taek

    2002-01-01

    This paper presents our approach to using a stereo camera to obtain 3-D image data to be used to improve existing lip boundary detection techniques. We show that depth information as provided by our approach can be used to significantly improve boundary detection systems. Our system detects the face and mouth area in the image by using color, geometric location, and additional depth information for the face. Initially, color and depth information can be used to localize the face. Then we can determine the lip region from the intensity information and the detected eye locations. The system has successfully been used to extract approximate lip regions using RGB color information of the mouth area. Merely using color information is not robust because the quality of the results may vary depending on light conditions, background, and the human race. To overcome this problem, we used a stereo camera to obtain 3-D facial images. 3-D data constructed from the depth information along with color information can provide more accurate lip boundary detection results as compared to color only based techniques.

  12. Color Richness in Cephalopod Chromatophores Originating from High Refractive Index Biomolecules.

    PubMed

    Dinneen, Sean R; Osgood, Richard M; Greenslade, Margaret E; Deravi, Leila F

    2017-01-05

    Cephalopods are arguably one of the most photonically sophisticated marine animals, as they can rapidly adapt their dermal color and texture to their surroundings using both structural and pigmentary coloration. Their chromatophore organs facilitate this process, but the molecular mechanism potentiating color change is not well understood. We hypothesize that the pigments, which are localized within nanostructured granules in the chromatophore, enhance the scattering of light within the dermal tissue. To test this, we extracted the phenoxazone-based pigments from the chromatophore and extrapolated their complex refractive index (RI) from experimentally determined real and approximated imaginary portions of the RI. Mie theory was used to calculate the absorbance and scattering cross sections (cm 2 /particle) across a broad diameter range at λ = 589 nm. We observed that the pigments were more likely to scatter attenuated light than absorb it and that these characteristics may contribute to the color richness of cephalopods.

  13. Blue Orb on the Horizon

    NASA Image and Video Library

    2014-05-01

    This view from NASA's Cassini spacecraft features a blue planet, imaged by Cassini for the first time. Uranus is a pale blue in this natural color image because its visible atmosphere contains methane gas and few aerosols or clouds. Methane on Uranus -- and its sapphire-colored sibling, Neptune -- absorbs red wavelengths of incoming sunlight, but allows blue wavelengths to escape back into space, resulting in the predominantly bluish color seen here. Cassini imaging scientists combined red, green and blue spectral filter images to create a final image that represents what human eyes might see from the vantage point of the spacecraft. Uranus has been brightened by a factor of 4.5 to make it more easily visible. The outer portion of Saturn's A ring, seen at bottom right, has been brightened by a factor of two. The bright ring cutting across the image center is Saturn's narrow F ring. Uranus was approximately 28.6 astronomical units from Cassini and Saturn when this view was obtained. An astronomical unit is the average distance from Earth to the sun, equal to 93,000,000 miles (150,000,000 kilometers). This view was acquired by the Cassini narrow-angle camera at a distance of approximately 614,300 miles (988,600 kilometers) from Saturn on April 11, 2014. Image scale at Uranus is approximately 16,000 miles (25,700 kilometers) per pixel. Image scale at Saturn's rings is approximately 4 miles (6 kilometers) per pixel. In the image, the disk of Uranus is just barely resolved. The solar phase angle at Uranus, seen from Cassini, is 11.9 degrees. http://photojournal.jpl.nasa.gov/catalog/PIA17178

  14. The visible ear simulator: a public PC application for GPU-accelerated haptic 3D simulation of ear surgery based on the visible ear data.

    PubMed

    Sorensen, Mads Solvsten; Mosegaard, Jesper; Trier, Peter

    2009-06-01

    Existing virtual simulators for middle ear surgery are based on 3-dimensional (3D) models from computed tomographic or magnetic resonance imaging data in which image quality is limited by the lack of detail (maximum, approximately 50 voxels/mm3), natural color, and texture of the source material.Virtual training often requires the purchase of a program, a customized computer, and expensive peripherals dedicated exclusively to this purpose. The Visible Ear freeware library of digital images from a fresh-frozen human temporal bone was segmented, and real-time volume rendered as a 3D model of high-fidelity, true color, and great anatomic detail and realism of the surgically relevant structures. A haptic drilling model was developed for surgical interaction with the 3D model. Realistic visualization in high-fidelity (approximately 125 voxels/mm3) and true color, 2D, or optional anaglyph stereoscopic 3D was achieved on a standard Core 2 Duo personal computer with a GeForce 8,800 GTX graphics card, and surgical interaction was provided through a relatively inexpensive (approximately $2,500) Phantom Omni haptic 3D pointing device. This prototype is published for download (approximately 120 MB) as freeware at http://www.alexandra.dk/ves/index.htm.With increasing personal computer performance, future versions may include enhanced resolution (up to 8,000 voxels/mm3) and realistic interaction with deformable soft tissue components such as skin, tympanic membrane, dura, and cholesteatomas-features some of which are not possible with computed tomographic-/magnetic resonance imaging-based systems.

  15. Searching for Young Stars in Cepheus C

    NASA Astrophysics Data System (ADS)

    Evans, Sam; Rebull, Luisa; Rutherford, Thomas; Stalnaker, Olivia; Taylor, John; Efsits, Gabriel; Harl, Linda; Keil, Shayna; Learman, Duncan; Leonard, Liam; Russell, Aaron

    2018-01-01

    We used archival Herschel Space Observatory data to search for young stellar objects (YSOs) in the Cepheus C region of the molecular cloud Cepheus OB3. Previous work by Gutermuth et al. (2009) identified 114 YSO candidates in this region based on Spitzer/IRAC data. Work by Orr et al. (2016) refined a list of approximately 300 young star candidates to 245 likely YSOs. Our initial search focused on longer infrared wavelength data – Herschel (70, 160, 250, 350, 500 μm) archival data and SCUBA (450, 850 μm) data from the literature (DiFrancesco et al. 2008). Through image inspection and catalog matching, we assembled a list of 54 candidate YSOs detected at wavelengths longer than 22 μm. For each source, we constructed a spectral energy distribution (SED) by aggregating available shorter wavelength data from the literature and assembling photometry from released PACS catalogs, preliminary SPIRE catalogs, and our own photometric measurements. We also created color-color and color-magnitude diagrams to see how these sources compared to each other, other populations of YSOs, and objects in extragalactic regions. Each source was then classified based on its SED shape and its locations on color-color and color-magnitude diagrams. From the initial list of 54 candidates, we suspect all are likely YSOs, some of which are very embedded; ~40% are likely SED Class I or 0. Approximately 20% of the 54 sources have not been previously identified. By beginning the investigation of YSOs in this region, we are adding to the body of YSO knowledge which can be used to understand the process of star formation. This research was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

  16. [Establishment of background color to discriminate among tablets: sharper and more feasible with color-weak simulation as access to safe medication].

    PubMed

    Ishizaki, Makiko; Maeda, Hatsuo; Okamoto, Ikuko

    2014-01-01

    Color-weak persons, who in Japan represent approximately 5% of male and 0.2% of female population, may not be able to discriminate among colors of tablets. Thus using color-weak simulation by Variantor™ we evaluated the effects of background colors (light, medium, and dark gray, purple, blue, and blue green) on discrimination among yellow, yellow red, red, and mixed group tablets by our established method. In addition, the influence of white 10-mm ruled squares on background sheets was examined, and the change in color of the tablets and background sheets through the simulation measured. Variance analysis of the data obtained from 42 volunteers demonstrated that with color-weak vision, the best discrimination among yellow, yellow red, or mixed group tablets was achieved on a dark gray background sheet, and a blue background sheet was useful to discriminate among each tablet group in all colors including red. These results were compared with those previously obtained with healthy and cataractous vision, suggesting that gap in color hue and chroma as well as value between background sheets and tablets affects discrimination with color-weak vision. The observed positive effects of white ruled squares, in contrast to those observed on healthy and cataractous vision, demonstrate that a background sheet arranged by two colors allows color-weak persons to discriminate among all sets of tablets in a sharp and feasible manner.

  17. CSO CONSIDERATIONS

    EPA Science Inventory

    Over the years, estimates of the number of CSS and CSO discharge points have fluctuated as communities changed their systems and more information became available. Early research by the US Environmental Protection Agency (US EPA) estimated that approximately 15,000 overflow poin...

  18. Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models

    DOE PAGES

    Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M. N.

    2018-01-09

    Generalized extended Lagrangian Born−Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential tomore » any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.« less

  19. Approximate bilateral symmetry in evaporation-induced polycrystalline structures from droplets of wheat grain leakages and fluctuating asymmetry as quality indicator

    NASA Astrophysics Data System (ADS)

    Kokornaczyk, Maria Olga; Dinelli, Giovanni; Betti, Lucietta

    2013-01-01

    The present paper reports on an observation that dendrite-like polycrystalline structures from evaporating droplets of wheat grain leakages exhibit bilateral symmetry. The exactness of this symmetry, measured by means of fluctuating asymmetry, varies depending on the cultivar and stress factor influence, and seems to correspond to the seed germination rate. In the bodies of plants, animals, and humans, the exactness of bilateral symmetry is known to reflect the environmental conditions of an organism's growth, its health, and its success in sexual selection. In polycrystalline structures, formed under the same conditions, the symmetry exactness depends on the properties of the crystallizing solution such as the composition and viscosity; however, it has never been associated with sample quality. We hypothesize here that, as in living nature, the exactness of approximate bilateral symmetry might be considered a quality indicator also in crystallographic methods applied to food quality analysis.

  20. Imaging the Formation of High-Energy Dispersion Anomalies in the Actinide UCoGa5

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Durakiewicz, Tomasz; Zhu, Jian-Xin; Joyce, John J.; Sarrao, John L.; Graf, Matthias J.

    2012-10-01

    We use angle-resolved photoemission spectroscopy to image the emergence of substantial dispersion and spectral-weight anomalies in the electronic renormalization of the actinide compound UCoGa5 that was presumed to belong to a conventional Fermi-liquid family. Kinks or abrupt breaks in the slope of the quasiparticle dispersion are detected both at low (approximately 130 meV) and high (approximately 1 eV) binding energies below the Fermi energy, ruling out any significant contribution of phonons. We perform numerical calculations to demonstrate that the anomalies are adequately described by coupling between itinerant fermions and spin fluctuations arising from the particle-hole continuum of the spin-orbit-split 5f states of uranium. These anomalies resemble the “waterfall” phenomenon of the high-temperature copper-oxide superconductors, suggesting that spin fluctuations are a generic route toward multiform electronic phases in correlated materials as different as high-temperature superconductors and actinides.

  1. Higher-Order Extended Lagrangian Born-Oppenheimer Molecular Dynamics for Classical Polarizable Models.

    PubMed

    Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M N

    2018-02-13

    Generalized extended Lagrangian Born-Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate "shadow" potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential to any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.

  2. Tree-level correlations in the strong field regime

    NASA Astrophysics Data System (ADS)

    Gelis, François

    2017-09-01

    We consider the correlation function of an arbitrary number of local observables in quantum field theory, in situations where the field amplitude is large. Using a quasi-classical approximation (valid for a highly occupied initial mixed state, or for a coherent initial state if the classical dynamics has instabilities), we show that at tree level these correlations are dominated by fluctuations at the initial time. We obtain a general expression of the correlation functions in terms of the classical solution of the field equation of motion and its derivatives with respect to its initial conditions, that can be arranged graphically as the sum of labeled trees where the nodes are the individual observables, and the links are pairs of derivatives acting on them. For 3-point (and higher) correlation functions, there are additional tree-level terms beyond the quasi-classical approximation, generated by fluctuations in the bulk.

  3. Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M. N.

    Generalized extended Lagrangian Born−Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential tomore » any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.« less

  4. Data collection strategies for time-resolved X-ray free-electron laser diffraction, and 2-color methods

    PubMed Central

    Li, Chufeng; Schmidt, Kevin; Spence, John C.

    2015-01-01

    We compare three schemes for time-resolved X-ray diffraction from protein nanocrystals using an X-ray free-electron laser. We find expressions for the errors in structure factor measurement using the Monte Carlo pump-probe method of data analysis with a liquid jet, the fixed sample pump-probe (goniometer) method (both diffract-and-destroy, and below the safe damage dose), and a proposed two-color method. Here, an optical pump pulse arrives between X-ray pulses of slightly different energies which hit the same nanocrystal, using a weak first X-ray pulse which does not damage the sample. (Radiation damage is outrun in the other cases.) This two-color method, in which separated Bragg spots are impressed on the same detector readout, eliminates stochastic fluctuations in crystal size, shape, and orientation and is found to require two orders of magnitude fewer diffraction patterns than the currently used Monte Carlo liquid jet method, for 1% accuracy. Expressions are given for errors in structure factor measurement for the four approaches, and detailed simulations provided for cathepsin B and IC3 crystals. While the error is independent of the number of shots for the dose-limited goniometer method, it falls off inversely as the square root of the number of shots for the two-color and Monte Carlo methods, with a much smaller pre-factor for the two-color mode, when the first shot is below the damage threshold. PMID:26798813

  5. Axion inflation, proton decay, and leptogenesis in S U (5 )×U (1 )P Q

    NASA Astrophysics Data System (ADS)

    Boucenna, Sofiane M.; Shafi, Qaisar

    2018-04-01

    We implement inflation in a nonsupersymmetric S U (5 ) model based on a nonminimal coupling of the axion field to gravity. The isocurvature fluctuations are adequately suppressed, axions comprise the dark matter, proton lifetime estimates are of order 8 ×1034- 3 ×1035 yr , and the observed baryon asymmetry arises via nonthermal leptogenesis. The presence of low-scale colored scalars ensures unification of the Standard Model gauge couplings and also helps in stabilizing the electroweak vacuum.

  6. PRIMUS: Galaxy clustering as a function of luminosity and color at 0.2 < z < 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skibba, Ramin A.; Smith, M. Stephen M.; Coil, Alison L.

    2014-04-01

    We present measurements of the luminosity and color-dependence of galaxy clustering at 0.2 < z < 1.0 in the Prism Multi-object Survey. We quantify the clustering with the redshift-space and projected two-point correlation functions, ξ(r{sub p} , π) and w{sub p} (r{sub p} ), using volume-limited samples constructed from a parent sample of over ∼130, 000 galaxies with robust redshifts in seven independent fields covering 9 deg{sup 2} of sky. We quantify how the scale-dependent clustering amplitude increases with increasing luminosity and redder color, with relatively small errors over large volumes. We find that red galaxies have stronger small-scale (0.1more » Mpc h {sup –1} < r{sub p} < 1 Mpc h {sup –1}) clustering and steeper correlation functions compared to blue galaxies, as well as a strong color dependent clustering within the red sequence alone. We interpret our measured clustering trends in terms of galaxy bias and obtain values of b {sub gal} ≈ 0.9-2.5, quantifying how galaxies are biased tracers of dark matter depending on their luminosity and color. We also interpret the color dependence with mock catalogs, and find that the clustering of blue galaxies is nearly constant with color, while redder galaxies have stronger clustering in the one-halo term due to a higher satellite galaxy fraction. In addition, we measure the evolution of the clustering strength and bias, and we do not detect statistically significant departures from passive evolution. We argue that the luminosity- and color-environment (or halo mass) relations of galaxies have not significantly evolved since z ∼ 1. Finally, using jackknife subsampling methods, we find that sampling fluctuations are important and that the COSMOS field is generally an outlier, due to having more overdense structures than other fields; we find that 'cosmic variance' can be a significant source of uncertainty for high-redshift clustering measurements.« less

  7. PRIMUS: Galaxy Clustering as a Function of Luminosity and Color at 0.2 < z < 1

    NASA Astrophysics Data System (ADS)

    Skibba, Ramin A.; Smith, M. Stephen M.; Coil, Alison L.; Moustakas, John; Aird, James; Blanton, Michael R.; Bray, Aaron D.; Cool, Richard J.; Eisenstein, Daniel J.; Mendez, Alexander J.; Wong, Kenneth C.; Zhu, Guangtun

    2014-04-01

    We present measurements of the luminosity and color-dependence of galaxy clustering at 0.2 < z < 1.0 in the Prism Multi-object Survey. We quantify the clustering with the redshift-space and projected two-point correlation functions, ξ(rp , π) and wp (rp ), using volume-limited samples constructed from a parent sample of over ~130, 000 galaxies with robust redshifts in seven independent fields covering 9 deg2 of sky. We quantify how the scale-dependent clustering amplitude increases with increasing luminosity and redder color, with relatively small errors over large volumes. We find that red galaxies have stronger small-scale (0.1 Mpc h -1 < rp < 1 Mpc h -1) clustering and steeper correlation functions compared to blue galaxies, as well as a strong color dependent clustering within the red sequence alone. We interpret our measured clustering trends in terms of galaxy bias and obtain values of b gal ≈ 0.9-2.5, quantifying how galaxies are biased tracers of dark matter depending on their luminosity and color. We also interpret the color dependence with mock catalogs, and find that the clustering of blue galaxies is nearly constant with color, while redder galaxies have stronger clustering in the one-halo term due to a higher satellite galaxy fraction. In addition, we measure the evolution of the clustering strength and bias, and we do not detect statistically significant departures from passive evolution. We argue that the luminosity- and color-environment (or halo mass) relations of galaxies have not significantly evolved since z ~ 1. Finally, using jackknife subsampling methods, we find that sampling fluctuations are important and that the COSMOS field is generally an outlier, due to having more overdense structures than other fields; we find that "cosmic variance" can be a significant source of uncertainty for high-redshift clustering measurements.

  8. Intermittent electron density and temperature fluctuations and associated fluxes in the Alcator C-Mod scrape-off layer

    NASA Astrophysics Data System (ADS)

    Kube, R.; Garcia, O. E.; Theodorsen, A.; Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.

    2018-06-01

    The Alcator C-Mod mirror Langmuir probe system has been used to sample data time series of fluctuating plasma parameters in the outboard mid-plane far scrape-off layer. We present a statistical analysis of one second long time series of electron density, temperature, radial electric drift velocity and the corresponding particle and electron heat fluxes. These are sampled during stationary plasma conditions in an ohmically heated, lower single null diverted discharge. The electron density and temperature are strongly correlated and feature fluctuation statistics similar to the ion saturation current. Both electron density and temperature time series are dominated by intermittent, large-amplitude burst with an exponential distribution of both burst amplitudes and waiting times between them. The characteristic time scale of the large-amplitude bursts is approximately 15 μ {{s}}. Large-amplitude velocity fluctuations feature a slightly faster characteristic time scale and appear at a faster rate than electron density and temperature fluctuations. Describing these time series as a superposition of uncorrelated exponential pulses, we find that probability distribution functions, power spectral densities as well as auto-correlation functions of the data time series agree well with predictions from the stochastic model. The electron particle and heat fluxes present large-amplitude fluctuations. For this low-density plasma, the radial electron heat flux is dominated by convection, that is, correlations of fluctuations in the electron density and radial velocity. Hot and dense blobs contribute only a minute fraction of the total fluctuation driven heat flux.

  9. Estimation of composition of cosmic rays with E sub zero approximately equals 10(17) - 10(18) eV

    NASA Technical Reports Server (NTRS)

    Glushkov, A. V.; Efimov, N. N.; Efremov, N. N.; Makarov, I. T.; Pravdin, M. I.; Dedenko, L. I.

    1985-01-01

    Fluctuations of the shower maximum depth obtained from analysis of electron and muon fluctuations and the extensive air showers (EAS) Cerenkov light on the Yakutsk array data and data of other arrays are considered. On the basis of these the estimation of composition of primaries with E sub 0 = 5.10 to the 17th power eV is received. Estimation of gamma-quanta flux with E sub 0 10 to the 17th power eV is given on the poor-muon showers.

  10. Suppression of MHD fluctuations leading to improved confinement in a gun-driven spheromak.

    PubMed

    McLean, H S; Woodruff, S; Hooper, E B; Bulmer, R H; Hill, D N; Holcomb, C; Moller, J; Stallard, B W; Wood, R D; Wang, Z

    2002-03-25

    Magnetic fluctuations have been reduced to approximately 1% during discharges on the Sustained Spheromak Physics Experiment by shaping the spatial distribution of the bias magnetic flux in the device. In the resulting quiescent regime, the safety factor profile is nearly flat in the plasma and the dominant ideal and resistive MHD modes are greatly reduced. During this period, the temperature profile is peaked at the magnetic axis and maps onto magnetic flux contours. Energy confinement time is improved over previous reports in a driven spheromak.

  11. Growth histories in bimetric massive gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Marcus; Buchberger, Igor; Enander, Jonas

    2012-12-01

    We perform cosmological perturbation theory in Hassan-Rosen bimetric gravity for general homogeneous and isotropic backgrounds. In the de Sitter approximation, we obtain decoupled sets of massless and massive scalar gravitational fluctuations. Matter perturbations then evolve like in Einstein gravity. We perturb the future de Sitter regime by the ratio of matter to dark energy, producing quasi-de Sitter space. In this more general setting the massive and massless fluctuations mix. We argue that in the quasi-de Sitter regime, the growth of structure in bimetric gravity differs from that of Einstein gravity.

  12. Superconductivity under uniaxial compression in β-(BDA-TTP) salts

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Onari, S.; Ito, H.; Tanaka, Y.

    2009-10-01

    In order to clarify the mechanism of organic superconductor β-(BDA-TTP) salts. We study the superconductivity under uniaxial compression with non-dimerized two-band Hubbard model. We have calculated the uniaxial compression dependence of T c by solving the Eliashberg’s equation using the fluctuation exchange (FLEX) approximation. The transfer integral under the uniaxial compression was estimated by the extended Huckel method. We have found that non-monotonic behaviors of T c in experimental results under uniaxial compression are understood taking the spin frustration and spin fluctuation into account.

  13. Experimental studies of toroidal correlations of plasma density fluctuations along the magnetic field lines in the T-10 tokamak and first results of numerical modeling

    NASA Astrophysics Data System (ADS)

    Buldakov, M. A.; Vershkov, V. A.; Isaev, M. Yu; Shelukhin, D. A.

    2017-10-01

    The antenna system of reflectometry diagnostics at the T-10 tokamak allows to study long-range toroidal correlations of plasma density fluctuations along the magnetic field lines. The antenna systems are installed in two poloidal cross-sections of the vacuum chamber separated by a 90° angle in the toroidal direction. The experiments, which were conducted at the low field side, showed that the high level of toroidal correlations is observed only for quasi-coherent fluctuations. However, broadband and stochastic low frequency fluctuations are not correlated. Numerical modeling of the plasma turbulence structure in the T-10 tokamak was conducted to interpret the experimental results and take into account non-locality of reflectometry measurements. In the model used, it was assumed that the magnitudes of density fluctuations are constant along the magnetic field lines. The 2D full-wave Tamic-RTH code was used to model the reflectometry signals. High level of correlations for quasi-coherent fluctuations was obtained during the modeling, which agrees with the experimental observations. However, the performed modeling also predicts high level of correlations for broadband fluctuations, which contradicts the experimental data. The modeling showed that the effective reflection radius, from which the information on quasi-coherent plasma turbulence is obtained, is shifted outwards from the reflection radius by approximately 7 mm.

  14. Numerical Study of Pressure Fluctuations due to High-Speed Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.; Wu, Minwei

    2012-01-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by fully developed turbulence in supersonic turbulent boundary layers with an emphasis on both pressure fluctuations at the wall and the acoustic fluctuations radiated into the freestream. The wall and freestream pressure fields are first analyzed for a zero pressure gradient boundary layer with Mach 2.5 and Reynolds number based on momentum thickness of approximately 2835. The single and multi-point statistics reported include the wall pressure fluctuation intensities, frequency spectra, space-time correlations, and convection velocities. Single and multi-point statistics of surface pressure fluctuations show good agreement with measured data and previously published simulations of turbulent boundary layers under similar flow conditions. Spectral analysis shows that the acoustic fluctuations outside the boundary layer region have much lower energy content within the high-frequency region. The space-time correlations reflect the convective nature of the pressure field both at the wall and in the freestream, which is characterized by the downstream propagation of pressure-carrying eddies. Relative to those at the wall, the pressure-carrying eddies associated with the freestream signal are larger and convect at a significantly lower speed. The preliminary DNS results of a Mach 6 boundary layer show that the pressure rms in the freestream region is significantly higher than that of the lower Mach number case.

  15. Dynamic properties of small-scale solar wind plasma fluctuations.

    PubMed

    Riazantseva, M O; Budaev, V P; Zelenyi, L M; Zastenker, G N; Pavlos, G P; Safrankova, J; Nemecek, Z; Prech, L; Nemec, F

    2015-05-13

    The paper presents the latest results of the studies of small-scale fluctuations in a turbulent flow of solar wind (SW) using measurements with extremely high temporal resolution (up to 0.03 s) of the bright monitor of SW (BMSW) plasma spectrometer operating on astrophysical SPECTR-R spacecraft at distances up to 350,000 km from the Earth. The spectra of SW ion flux fluctuations in the range of scales between 0.03 and 100 s are systematically analysed. The difference of slopes in low- and high-frequency parts of spectra and the frequency of the break point between these two characteristic slopes was analysed for different conditions in the SW. The statistical properties of the SW ion flux fluctuations were thoroughly analysed on scales less than 10 s. A high level of intermittency is demonstrated. The extended self-similarity of SW ion flux turbulent flow is constantly observed. The approximation of non-Gaussian probability distribution function of ion flux fluctuations by the Tsallis statistics shows the non-extensive character of SW fluctuations. Statistical characteristics of ion flux fluctuations are compared with the predictions of a log-Poisson model. The log-Poisson parametrization of the structure function scaling has shown that well-defined filament-like plasma structures are, as a rule, observed in the turbulent SW flows. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Effect of static porosity fluctuations on reactive transport in a porous medium

    NASA Astrophysics Data System (ADS)

    L'Heureux, Ivan

    2018-02-01

    Reaction-diffusive transport phenomena in porous media are ubiquitous in engineering applications, biological and geochemical systems. The porosity field is usually random in space, but most models consider the porosity field as a well-defined deterministic function of space and time and ignore the porosity fluctuations. They use a reaction-diffusion equation written in terms of an average porosity and average concentration fields. In this contribution, we treat explicitly the effect of spatial porosity fluctuations on the dynamics of a concentration field for the case of a one-dimensional reaction-transport system with nonlinear kinetics. Three basic assumptions are considered. (i) The porosity fluctuations are assumed to have Gaussian properties and an arbitrary variance; (ii) we assume that the noise correlation length is small compared to the relevant macroscopic length scale; (iii) and we assume that the kinetics of the reactive term in the equations for the fluctuations is a self-consistently determined constant. Elimination of the fluctuating part of the concentration field from the dynamics leads to a renormalized equation involving the average concentration field. It is shown that the noise leads to a renormalized (generally smaller) diffusion coefficient and renormalized kinetics. Within the framework of the approximations used, numerical simulations are in agreement with our theory. We show that the porosity fluctuations may have a significant effect on the transport of a reactive species, even in the case of a homogeneous average porosity.

  17. Influence of the Basset force on the resonant behavior of an oscillator with fluctuating frequency

    NASA Astrophysics Data System (ADS)

    Rekker, A.; Mankin, R.

    2015-10-01

    The influence of hydrodynamic interactions, such as Stokes and Basset forces, on the dynamics of a harmonically trapped Brownian tracer is considered. A generalized Langevin equation is used to describe the tracer's response to an external periodic force and to dichotomous fluctuations of the stiffness of the trapping potential. Relying on the Shapiro-Loginov formula, exact expressions for the complex susceptibility and for the response function are presented. On the basis of these exact formulas, it is demonstrated that interplay of a multiplicative colored noise and the Basset force induced memory effects can generate a variety of cooperation effects, such as multiresonance versus the driving frequency, as well as stochastic resonance versus noise parameters. In particular, in certain parameter regions the response function exhibits a resonance-like enhancement at intermediate values of the intensity of the Basset force. Conditions for the appearance of these effects are also discussed.

  18. Characteristics of an axisymmetric sudden expansion flow

    NASA Technical Reports Server (NTRS)

    Stevenson, W. H.; Thompson, H. D.

    1985-01-01

    A two-color, two component Laser Doppler Velocimeter (LDV) system operating in forward scatter has been developed in order to make simultaneous measurements of the axial and radial velocity components in an axisymmetric sudden expansion flow with and without combustion. The LDV system includes Bragg cell modulators in the four beam paths to allow a net frequency shift of 5MHz in both the green and blue beams. This permits an unambiguous measurement of negative velocities and also eliminates incomplete signal bias. The green beam probe volume has a waist diameter of 0.200 mm and is approximately 2mm long. The blue beam has a probe volume waist of 0.250 mm and is approximately 1 mm long. The scattered light from the probe volume is separated so that approximately 80% of each color passes to its respective photomultiplier tube by using a dichroic filter. Narrow bandpass filters are used to further filter unwanted signals before they are detected. A schematic diagram of the LDV system is shown.

  19. Massive black holes and light-element nucleosynthesis in a baryonic universe

    NASA Technical Reports Server (NTRS)

    Gnedin, Nickolay Y.; Ostriker, Jeremiah P.; Rees, Martin J.

    1995-01-01

    We reexamine the model proposed by Gnedin & Ostriker (1992) in which Jeans mass black holes (M(sub BH) approximately = 10(exp 6) solar mass) form shortly after decoupling. There is no nonbaryonic dark matter in this model, but we examine the possibility that Omega(sub b) is considerably larger than given by normal nucleosynthesis. Here we allow for the fact that much of the high baryon-to-photon ratio material will collapse leaving the universe of remaining material with light-element abundances more in accord with the residual baryonic density (approximately = 10(exp -2)) than with Omega(sub 0) and the initial baryonic density (approximately = 10(exp -1)). We find that no reasonable model can be made with random-phase density fluctuations, if the power on scales smaller than 10(exp 6) solar mass is as large as expected. However, phase-correlated models of the type that might occur in connection with topological singularities can be made with Omega(sub b) h(exp 2) = 0.013 +/- 0.001, 0.15 approximately less than Omega(sub 0) approximately less than 0.4, which are either flat (Omega(sub lambda) = 1 - Omega(sub 0)) or open (Omega(sub lambda) = 0) and which satisfy all the observational constraints which we apply, including the large baryon-to-total mass ratio found in the X-ray clusters. The remnant baryon density is thus close to that obtained in the standard picture (Omega(sub b) h(exp 2) = 0.0125 +/- 0.0025; Walker et al. 1991). The spectral index implied for fluctuations in the baryonic isocurvature scenario, -1 less than m less than 0, is in the range expected by other arguments based on large-scale structure and microwave fluctuation constraints. The dark matter in this picture is in the form of massive black holes. Accretion onto them at early epochs releases high-energy photons which significantly heat and reionize the universe. But photodissociation does not materially change light-element abundances. A typical model gives bar-y approximately = 1 x 10(exp -5), n(sub e)/n(sub H)(z = 30) approximately = 0.1, and a diffuse gamma-ray background at 100 keV near the Cosmic Background Explorer Satellite (COBE) limit of the order of 10% of that observed which originates from high-redshift quasars. Reionization in this model occurs at redshift 600 and reaches (H II/H(sub tot) approximately = 0.1-0.2.

  20. Color Coherent Radiation in Multi - Jet Events from $$p\\overline{p}$$ Collisions at $$\\sqrt{s}$$ = 1.8-TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullen-Vidal, David Edward

    1997-01-01

    Results from a study of color coherence phenomena in multi-jet events produced bymore » $$p\\overline{p}$$ collisions are presented. Approximately 13 $$pb^{-1}$$ of data were collected by the D0 detector during the 1992-1993 run of the Fermilab Tevatron $$p\\overline{p}$$ collider at a center of mass energy of $$\\sqrt{s}$$ = 1.8 TeV. Demonstration of initial-to-final state color interference effects is done by measuring spatial correlations between the softer third jet and the second leading-$$E_{\\tau}$$ jet in the events. The data are compared to several Monte Carlo simulations with different color coherence implementations and to the predictions of a Next-to-Leading Order parton level calculation.« less

  1. Accurate chromatic control and color rendering optimization in LED lighting systems using junction temperature feedback

    NASA Astrophysics Data System (ADS)

    Sisto, Marco Michele; Gauvin, Jonny

    2014-09-01

    Accurate color control of LED lighting systems is a challenging task: noticeable chromaticity shifts are commonly observed in mixed-color and phosphor converted LEDs due to intensity dimming. Furthermore, the emitted color varies with the LED temperature. We present a novel color control method for tri-chromatic and tetra-chromatic LEDs, which enable to set and maintain the LED emission at a target color, or combination of correlated color temperature (CCT) and intensity. The LED color point is maintained over variations in the LED junctions' temperatures and intensity dimming levels. The method does not require color feedback sensors, so to minimize system complexity and cost, but relies on estimation of the LED junctions' temperatures from the junction voltages. If operated with tetra-chromatic LEDs, the method allows meeting an additional optimization criterion: for example, the maximization of a color rendering metric like the Color Rendering Index (CRI) or the Color Quality Scale (CQS), thus providing a high quality and clarity of colors on the surface illuminated by the LED. We demonstrate the control of a RGBW LED at target D65 white point with CIELAB color difference metric triangle;a,bE < 1 for simultaneous variations of flux from approximately 30 lm to 100 lm and LED heat sink temperature from 25°C to 58°C. In the same conditions, we demonstrate a CCT error <1%. Furthermore, the method allows varying the LED CCT from 5500K to 8000K while maintaining luminance within 1% of target. Further work is ongoing to evaluate the stability of the method over LED aging.

  2. Does red noise increase or decrease extinction risk? Single extreme events versus series of unfavorable conditions.

    PubMed

    Schwager, Monika; Johst, Karin; Jeltsch, Florian

    2006-06-01

    Recent theoretical studies have shown contrasting effects of temporal correlation of environmental fluctuations (red noise) on the risk of population extinction. It is still debated whether and under which conditions red noise increases or decreases extinction risk compared with uncorrelated (white) noise. Here, we explain the opposing effects by introducing two features of red noise time series. On the one hand, positive autocorrelation increases the probability of series of poor environmental conditions, implying increasing extinction risk. On the other hand, for a given time period, the probability of at least one extremely bad year ("catastrophe") is reduced compared with white noise, implying decreasing extinction risk. Which of these two features determines extinction risk depends on the strength of environmental fluctuations and the sensitivity of population dynamics to these fluctuations. If extreme (catastrophic) events can occur (strong noise) or sensitivity is high (overcompensatory density dependence), then temporal correlation decreases extinction risk; otherwise, it increases it. Thus, our results provide a simple explanation for the contrasting previous findings and are a crucial step toward a general understanding of the effect of noise color on extinction risk.

  3. Inverse Diffusion Curves Using Shape Optimization.

    PubMed

    Zhao, Shuang; Durand, Fredo; Zheng, Changxi

    2018-07-01

    The inverse diffusion curve problem focuses on automatic creation of diffusion curve images that resemble user provided color fields. This problem is challenging since the 1D curves have a nonlinear and global impact on resulting color fields via a partial differential equation (PDE). We introduce a new approach complementary to previous methods by optimizing curve geometry. In particular, we propose a novel iterative algorithm based on the theory of shape derivatives. The resulting diffusion curves are clean and well-shaped, and the final image closely approximates the input. Our method provides a user-controlled parameter to regularize curve complexity, and generalizes to handle input color fields represented in a variety of formats.

  4. Comprehensive description of J / ψ production in proton-proton collisions at collider energies

    DOE PAGES

    Ma, Yan -Qing; Venugopalan, Raju

    2014-11-04

    We employ a small x Color Glass Condensate + Non-Relativistic QCD (NRQCD) formalism to compute J/ψ production at low p⊥ in proton-proton collisions at collider energies. Very good agreement is obtained for total cross-sections, rapidity distributions and low momentum p⊥ distributions. Similar agreement is obtained for ψ' production. We observe an overlap region in p⊥ where our results match smoothly to those obtained in a next-to-leading order (NLO) collinearly factorized NRQCD formalism. The relative contribution of color singlet and color octet contributions can be quantified in the CGC+NRQCD framework, with the former contributing approximately 10% of the total cross-section.

  5. Assessment of aquifer properties, evapotranspiration, and the effects of ditching in the Stoney Brook watershed, Fond du Lac Reservation, Minnesota, 2006-9

    USGS Publications Warehouse

    Jones, Perry M.; Tomasek, Abigail A.

    2015-01-01

    Daily fluctuations in water levels in two wells indicated that the evapotranspiration extinction depth in the Stoney Brook watershed is approximately 4.6 to 6 feet below the land surface. A polynomial regression fit of the daily evapotranspiration rates during 2006–9 for well 1 produced a total evapotranspiration estimate of 16.1 inches from June 26 to October 6 for every year. Evapotranspiration estimated from daily water-level fluctuations in wells near ditches is relatively high. The ditch-water surface allowed for relatively high evaporation compared to the land surface, which, with a good hydraulic connection to surrounding groundwater, resulted in relatively high fluctuations in daily groundwater levels near ditches, resulting in high evapotranspiration estimates.

  6. Quantitative characterization of color Doppler images: reproducibility, accuracy, and limitations.

    PubMed

    Delorme, S; Weisser, G; Zuna, I; Fein, M; Lorenz, A; van Kaick, G

    1995-01-01

    A computer-based quantitative analysis for color Doppler images of complex vascular formations is presented. The red-green-blue-signal from an Acuson XP10 is frame-grabbed and digitized. By matching each image pixel with the color bar, color pixels are identified and assigned to the corresponding flow velocity (color value). Data analysis consists of delineation of a region of interest and calculation of the relative number of color pixels in this region (color pixel density) as well as the mean color value. The mean color value was compared to flow velocities in a flow phantom. The thyroid and carotid artery in a volunteer were repeatedly examined by a single examiner to assess intra-observer variability. The thyroids in five healthy controls were examined by three experienced physicians to assess the extent of inter-observer variability and observer bias. The correlation between the mean color value and flow velocity ranged from 0.94 to 0.96 for a range of velocities determined by pulse repetition frequency. The average deviation of the mean color value from the flow velocity was 22% to 41%, depending on the selected pulse repetition frequency (range of deviations, -46% to +66%). Flow velocity was underestimated with inadequately low pulse repetition frequency, or inadequately high reject threshold. An overestimation occurred with inadequately high pulse repetition frequency. The highest intra-observer variability was 22% (relative standard deviation) for the color pixel density, and 9.1% for the mean color value. The inter-observer variation was approximately 30% for the color pixel density, and 20% for the mean color value. In conclusion, computer assisted image analysis permits an objective description of color Doppler images. However, the user must be aware that image acquisition under in vivo conditions as well as physical and instrumental factors may considerably influence the results.

  7. Model selection for identifying power-law scaling.

    PubMed

    Ton, Robert; Daffertshofer, Andreas

    2016-08-01

    Long-range temporal and spatial correlations have been reported in a remarkable number of studies. In particular power-law scaling in neural activity raised considerable interest. We here provide a straightforward algorithm not only to quantify power-law scaling but to test it against alternatives using (Bayesian) model comparison. Our algorithm builds on the well-established detrended fluctuation analysis (DFA). After removing trends of a signal, we determine its mean squared fluctuations in consecutive intervals. In contrast to DFA we use the values per interval to approximate the distribution of these mean squared fluctuations. This allows for estimating the corresponding log-likelihood as a function of interval size without presuming the fluctuations to be normally distributed, as is the case in conventional DFA. We demonstrate the validity and robustness of our algorithm using a variety of simulated signals, ranging from scale-free fluctuations with known Hurst exponents, via more conventional dynamical systems resembling exponentially correlated fluctuations, to a toy model of neural mass activity. We also illustrate its use for encephalographic signals. We further discuss confounding factors like the finite signal size. Our model comparison provides a proper means to identify power-law scaling including the range over which it is present. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Field observation of diurnal dissolved oxygen fluctuations in shallow groundwater.

    PubMed

    Schilling, Keith E; Jacobson, Peter

    2015-01-01

    Dissolved oxygen (DO) concentrations influence many biogeochemical processes in groundwater systems but studies of temporal variability in DO are lacking. In this study, we used an optical DO probe to measure rapid changes in concentration due to plant-groundwater interaction at an alluvial aquifer field site in Iowa. Diurnal DO concentrations were observed during mid- to late-summer when soil conditions were dry, fluctuating approximately 0.2 to 0.3 mg/L on a daily basis. DO fluctuations in groundwater were out-of-phase with diurnal water table fluctuations, increasing during the day and decreasing at night. DO consumption at night is likely due to increased soil autotrophic and heterotrophic respiration linked with patterns of carbon supply derived from daytime photosynthetic activity, and consistent with available literature on diurnal soil respiration patterns. Although more work is needed to quantify specific processes, our results indicate the potential usefulness of the new optical DO technology to reveal insights regarding many ecohydrological processes. © 2014, National Ground Water Association.

  9. Spherical harmonics analysis of surface density fluctuations of spherical ionic SDS and nonionic C12E8 micelles: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Yoshii, Noriyuki; Nimura, Yuki; Fujimoto, Kazushi; Okazaki, Susumu

    2017-07-01

    The surface structure and its fluctuation of spherical micelles were investigated using a series of density correlation functions newly defined by spherical harmonics and Legendre polynomials based on the molecular dynamics calculations. To investigate the influence of head-group charges on the micelle surface structure, ionic sodium dodecyl sulfate and nonionic octaethyleneglycol monododecylether (C12E8) micelles were investigated as model systems. Large-scale density fluctuations were observed for both micelles in the calculated surface static structure factor. The area compressibility of the micelle surface evaluated by the surface static structure factor was tens-of-times larger than a typical value of a lipid membrane surface. The structural relaxation time, which was evaluated from the surface intermediate scattering function, indicates that the relaxation mechanism of the long-range surface structure can be well described by the hydrostatic approximation. The density fluctuation on the two-dimensional micelle surface has similar characteristics to that of three-dimensional fluids near the critical point.

  10. Spherical harmonics analysis of surface density fluctuations of spherical ionic SDS and nonionic C12E8 micelles: A molecular dynamics study.

    PubMed

    Yoshii, Noriyuki; Nimura, Yuki; Fujimoto, Kazushi; Okazaki, Susumu

    2017-07-21

    The surface structure and its fluctuation of spherical micelles were investigated using a series of density correlation functions newly defined by spherical harmonics and Legendre polynomials based on the molecular dynamics calculations. To investigate the influence of head-group charges on the micelle surface structure, ionic sodium dodecyl sulfate and nonionic octaethyleneglycol monododecylether (C 12 E 8 ) micelles were investigated as model systems. Large-scale density fluctuations were observed for both micelles in the calculated surface static structure factor. The area compressibility of the micelle surface evaluated by the surface static structure factor was tens-of-times larger than a typical value of a lipid membrane surface. The structural relaxation time, which was evaluated from the surface intermediate scattering function, indicates that the relaxation mechanism of the long-range surface structure can be well described by the hydrostatic approximation. The density fluctuation on the two-dimensional micelle surface has similar characteristics to that of three-dimensional fluids near the critical point.

  11. Spin-state transfer in laterally coupled quantum-dot chains with disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Song; Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026; Bayat, Abolfazl

    2010-08-15

    Quantum dot arrays are a promising medium for transferring quantum information between two distant points without resorting to mobile qubits. Here we study the two most common disorders, namely hyperfine interaction and exchange coupling fluctuations, in quantum dot arrays and their effects on quantum communication through these chains. Our results show that the hyperfine interaction is more destructive than the exchange coupling fluctuations. The average optimal time for communication is not affected by any disorder in the system and our simulations show that antiferromagnetic chains are much more resistive than the ferromagnetic ones against both kind of disorders. Even whenmore » time modulation of a coupling and optimal control is employed to improve the transmission, the antiferromagnetic chain performs much better. We have assumed the quasistatic approximation for hyperfine interaction and time-dependent fluctuations in the exchange couplings. Particularly for studying exchange coupling fluctuations we have considered the static disorder, white noise, and 1/f noise.« less

  12. Large amplitude MHD waves upstream of the Jovian bow shock

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Smith, C. W.; Matthaeus, W. H.

    1983-01-01

    Observations of large amplitude magnetohydrodynamics (MHD) waves upstream of Jupiter's bow shock are analyzed. The waves are found to be right circularly polarized in the solar wind frame which suggests that they are propagating in the fast magnetosonic mode. A complete spectral and minimum variance eigenvalue analysis of the data was performed. The power spectrum of the magnetic fluctuations contains several peaks. The fluctuations at 2.3 mHz have a direction of minimum variance along the direction of the average magnetic field. The direction of minimum variance of these fluctuations lies at approximately 40 deg. to the magnetic field and is parallel to the radial direction. We argue that these fluctuations are waves excited by protons reflected off the Jovian bow shock. The inferred speed of the reflected protons is about two times the solar wind speed in the plasma rest frame. A linear instability analysis is presented which suggests an explanation for many of the observed features of the observations.

  13. Spatial filtering, color constancy, and the color-changing dress.

    PubMed

    Dixon, Erica L; Shapiro, Arthur G

    2017-03-01

    The color-changing dress is a 2015 Internet phenomenon in which the colors in a picture of a dress are reported as blue-black by some observers and white-gold by others. The standard explanation is that observers make different inferences about the lighting (is the dress in shadow or bright yellow light?); based on these inferences, observers make a best guess about the reflectance of the dress. The assumption underlying this explanation is that reflectance is the key to color constancy because reflectance alone remains invariant under changes in lighting conditions. Here, we demonstrate an alternative type of invariance across illumination conditions: An object that appears to vary in color under blue, white, or yellow illumination does not change color in the high spatial frequency region. A first approximation to color constancy can therefore be accomplished by a high-pass filter that retains enough low spatial frequency content so as to not to completely desaturate the object. We demonstrate the implications of this idea on the Rubik's cube illusion; on a shirt placed under white, yellow, and blue illuminants; and on spatially filtered images of the dress. We hypothesize that observer perceptions of the dress's color vary because of individual differences in how the visual system extracts high and low spatial frequency color content from the environment, and we demonstrate cross-group differences in average sensitivity to low spatial frequency patterns.

  14. 76 FR 73658 - Notice of Intent to Repatriate Cultural Items: Tennessee Valley Authority and the University of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... deer metapodial bone; approximately 18,444 glass beads of varying size and color; and 36 beads made... bone fragments; one bone comb; one pottery sherd; approximately 10,748 glass beads of various sizes and... razors, ``C'' bracelets, cones used as tinklers, finger rings, a knife, an awl with a bone handle and an...

  15. Landing Trail in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    A three-dimensional color model created using data from the Mars Exploration Rover's panoramic camera shows images of airbag drag marks on the martian surface. The triangular rock in the upper left corner is approximately 20 centimeters (8 inches) tall. The meatball-shaped rock in the upper right corner is approximately 10 centimeters (4 inches) tall. The dark portion of the surface, or 'trough' is approximately 1 centimeter (0.4 inches) deep at its deepest point. This model is displayed using software developed by NASA's Ames Research Center.

  16. Model reduction for stochastic chemical systems with abundant species.

    PubMed

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2015-12-07

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.

  17. Model reduction for stochastic chemical systems with abundant species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2015-12-07

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equationmore » which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.« less

  18. One-dimensional model of interacting-step fluctuations on vicinal surfaces: Analytical formulas and kinetic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Patrone, Paul N.; Einstein, T. L.; Margetis, Dionisios

    2010-12-01

    We study analytically and numerically a one-dimensional model of interacting line defects (steps) fluctuating on a vicinal crystal. Our goal is to formulate and validate analytical techniques for approximately solving systems of coupled nonlinear stochastic differential equations (SDEs) governing fluctuations in surface motion. In our analytical approach, the starting point is the Burton-Cabrera-Frank (BCF) model by which step motion is driven by diffusion of adsorbed atoms on terraces and atom attachment-detachment at steps. The step energy accounts for entropic and nearest-neighbor elastic-dipole interactions. By including Gaussian white noise to the equations of motion for terrace widths, we formulate large systems of SDEs under different choices of diffusion coefficients for the noise. We simplify this description via (i) perturbation theory and linearization of the step interactions and, alternatively, (ii) a mean-field (MF) approximation whereby widths of adjacent terraces are replaced by a self-consistent field but nonlinearities in step interactions are retained. We derive simplified formulas for the time-dependent terrace-width distribution (TWD) and its steady-state limit. Our MF analytical predictions for the TWD compare favorably with kinetic Monte Carlo simulations under the addition of a suitably conservative white noise in the BCF equations.

  19. Mass fluctuation kinetics: Capturing stochastic effects in systems of chemical reactions through coupled mean-variance computations

    NASA Astrophysics Data System (ADS)

    Gómez-Uribe, Carlos A.; Verghese, George C.

    2007-01-01

    The intrinsic stochastic effects in chemical reactions, and particularly in biochemical networks, may result in behaviors significantly different from those predicted by deterministic mass action kinetics (MAK). Analyzing stochastic effects, however, is often computationally taxing and complex. The authors describe here the derivation and application of what they term the mass fluctuation kinetics (MFK), a set of deterministic equations to track the means, variances, and covariances of the concentrations of the chemical species in the system. These equations are obtained by approximating the dynamics of the first and second moments of the chemical master equation. Apart from needing knowledge of the system volume, the MFK description requires only the same information used to specify the MAK model, and is not significantly harder to write down or apply. When the effects of fluctuations are negligible, the MFK description typically reduces to MAK. The MFK equations are capable of describing the average behavior of the network substantially better than MAK, because they incorporate the effects of fluctuations on the evolution of the means. They also account for the effects of the means on the evolution of the variances and covariances, to produce quite accurate uncertainty bands around the average behavior. The MFK computations, although approximate, are significantly faster than Monte Carlo methods for computing first and second moments in systems of chemical reactions. They may therefore be used, perhaps along with a few Monte Carlo simulations of sample state trajectories, to efficiently provide a detailed picture of the behavior of a chemical system.

  20. Dynamic Coupling of Quasi-Electrostatic Thundercloud Fields to the Mesosphere and Lower Ionosphere: Sprites and Jets

    NASA Technical Reports Server (NTRS)

    Pasko, Victor Petrovich

    1996-01-01

    Red Sprites and Blue Jets are two different types of recently discovered optical flashes ob- served above large thunderstorm systems. Sprites are luminous glows occurring at altitudes typically ranging from approximately 50 to 90 km. In video they exhibit a red color at their top which gradually changes to blue at lower altitudes. Sprites may occur singly or in clusters of two or more. The lateral extent of "unit" sprites is typically 5-10 km and they endure for several milliseconds. Jets are upward moving (approximately 100 km/s) highly collimated beams of luminosity, emanating from the tops of thunderclouds, extending up to approximately 50 km altitude and exhibiting a primarily blue color. We propose that sprites result from large electric field transients capable of causing electron heating, breakdown ionization and excitation of optical emissions at mesospheric altitudes following the removal of thundercloud charge by a cloud-to-ground discharge. Depending on the history of charge accumulation and removal, and the distribution of ambient atmospheric conductivity, the breakdown region may have the shape of vertically oriented ionization column(s). Results of a two-dimensional and self consistent quasi-electrostatic (QE) model indicate that most of the observed features of sprites can be explained in terms of the formation and self-driven propagation of streamer type channels of breakdown ionization. Comparison of the optical emission intensities of the 1st and 2nd positive bands of N2, Meinel and 1st negative bands of N2(+) and the 1st negative band of O2(+) demonstrates that the 1st positive band of N2 is the dominant optical emission in the altitude range approximately 50-90 km, which accounts for the observed red color of sprites. Optical emissions of the 1st and 2nd positive bands of N2 occur in carrot-like vertical structures with typical transverse dimension approximately 5-10 km which can span an altitude range from approximately 80 km to well below approximately 50 km. The appearance of optical emissions associated with sprites can be delayed in time (approximately 1-20 ms) with respect to the causative cloud to ground discharge. Theoretical model results are found to be in good agreement with recent video, photometric and spectral measurements of sprites.

  1. Effect of different pretreatments on dried chilli (Capsicum annum L.) quality

    NASA Astrophysics Data System (ADS)

    Anoraga, S. B.; Sabarisman, I.; Ainuri, M.

    2018-03-01

    Chilli (Capsicum annum L.) has significant price fluctuation. When the chilli price is declined, it causes food waste from unsold chilli. Therefore, drying chilli is a solution for this condition. Futhermore, it can be processed for various product like chilli powder, chilli sauce, etc. The aim of this study was to investigate the effect of different pretreatments on dried chilli quality. Chilli was blenched with hot water and steam before drying. The purpose of this pretreatments is to inactivate enzyme that prevents color and vitamin C losses. The quality parameters were moisture content, colour, vitamin C content, and capsaicin. Changes were observed by gravimetri method for moisture content, chromameter in L* a * b * colour model, and iodine titration for vitamin C. After drying for 20 hours at 60°C, chilli with steam blanching pretreatment dried rapidly than other samples. Unpretreated chilli had higher vitamin C content and better color than blanched chilli.

  2. Dielectric and thermal effects on the optical properties of natural dyes: a case study on solvated cyanin.

    PubMed

    Malcıoğlu, Osman Bariş; Calzolari, Arrigo; Gebauer, Ralph; Varsano, Daniele; Baroni, Stefano

    2011-10-05

    The optical properties of the flavylium state of the cyanin dye are simulated numerically by combining Car-Parrinello molecular dynamics and linear-response time-dependent density functional theory calculations. The spectrum of the dye calculated in the gas phase is characterized by two peaks in the yellow and in the blue (green and violet), using a GGA-PBE (hybrid-B3LYP) DFT functional, which would bring about a greenish (bright orange) color incompatible with the dark purple hue observed in nature. Describing the effect of the water solvent through a polarizable continuum model does not modify qualitatively the resulting picture. An explicit simulation of both solvent and thermal effects using ab initio molecular dynamics results instead in a spectrum that is compatible with the observed coloration. This result is analyzed in terms of the spectroscopic effects of the molecular distortions induced by thermal fluctuations.

  3. Relaxometry imaging of superparamagnetic magnetite nanoparticles at ambient conditions

    NASA Astrophysics Data System (ADS)

    Finkler, Amit; Schmid-Lorch, Dominik; Häberle, Thomas; Reinhard, Friedemann; Zappe, Andrea; Slota, Michael; Bogani, Lapo; Wrachtrup, Jörg

    We present a novel technique to image superparamagnetic iron oxide nanoparticles via their fluctuating magnetic fields. The detection is based on the nitrogen-vacancy (NV) color center in diamond, which allows optically detected magnetic resonance (ODMR) measurements on its electron spin structure. In combination with an atomic-force-microscope, this atomic-sized color center maps ambient magnetic fields in a wide frequency range from DC up to several GHz, while retaining a high spatial resolution in the sub-nanometer range. We demonstrate imaging of single 10 nm sized magnetite nanoparticles using this spin noise detection technique. By fitting simulations (Ornstein-Uhlenbeck process) to the data, we are able to infer additional information on such a particle and its dynamics, like the attempt frequency and the anisotropy constant. This is of high interest to the proposed application of magnetite nanoparticles as an alternative MRI contrast agent or to the field of particle-aided tumor hyperthermia.

  4. Mean-field theory of baryonic matter for QCD in the large Nc and heavy quark mass limits

    NASA Astrophysics Data System (ADS)

    Adhikari, Prabal; Cohen, Thomas D.

    2013-11-01

    We discuss theoretical issues pertaining to baryonic matter in the combined heavy-quark and large Nc limits of QCD. Witten's classic argument that baryons and interacting systems of baryons can be described in a mean-field approximation with each of the quarks moving in an average potential due to the remaining quarks is heuristic. It is important to justify this heuristic description for the case of baryonic matter since systems of interacting baryons are intrinsically more complicated than single baryons due to the possibility of hidden color states—states in which the subsystems making up the entire baryon crystal are not color-singlet nucleons but rather colorful states coupled together to make a color-singlet state. In this work, we provide a formal justification of this heuristic prescription. In order to do this, we start by taking the heavy quark limit, thus effectively reducing the problem to a many-body quantum mechanical system. This problem can be formulated in terms of integrals over coherent states, which for this problem are simple Slater determinants. We show that for the many-body problem, the support region for these integrals becomes narrow at large Nc, yielding an energy which is well approximated by a single coherent state—that is a mean-field description. Corrections to the energy are of relative order 1/Nc. While hidden color states are present in the exact state of the heavy quark system, they only influence the interaction energy below leading order in 1/Nc.

  5. A diagrammatic formulation of the kinetic theory of fluctuations in equilibrium classical fluids. VI. Binary collision approximations for the memory function for self-correlation functions

    NASA Astrophysics Data System (ADS)

    Noah-Vanhoucke, Joyce E.; Andersen, Hans C.

    2007-08-01

    We use computer simulation results for a dense Lennard-Jones fluid for a range of temperatures to test the accuracy of various binary collision approximations for the memory function for density fluctuations in liquids. The approximations tested include the moderate density approximation of the generalized Boltzmann-Enskog memory function (MGBE) of Mazenko and Yip [Statistical Mechanics. Part B. Time-Dependent Processes, edited by B. J. Berne (Plenum, New York, 1977)], the binary collision approximation (BCA) and the short time approximation (STA) of Ranganathan and Andersen [J. Chem. Phys. 121, 1243 (2004); J. Phys. Chem. 109, 21437 (2005)] and various other approximations we derived by using diagrammatic methods. The tests are of two types. The first is a comparison of the correlation functions predicted by each approximate memory function with the simulation results, especially for the self-longitudinal current correlation (SLCC) function. The second is a direct comparison of each approximate memory function with a memory function numerically extracted from the correlation function data. The MGBE memory function is accurate at short times but decays to zero too slowly and gives a poor description of the correlation function at intermediate times. The BCA is exact at zero time, but it predicts a correlation function that diverges at long times. The STA gives a reasonable description of the SLCC but does not predict the correct temperature dependence of the negative dip in the function that is associated with caging at low temperatures. None of the other binary collision approximations is a systematic improvement on the STA. The extracted memory functions have a rapidly decaying short time part, much like the STA, and a much smaller, more slowly decaying part of the type predicted by a mode coupling theory. Theories that use mode coupling commonly include a binary collision term in the memory function but do not discuss in detail the nature of that term. It is clear from the present work that the short time part of the memory function has a behavior associated with brief binary repulsive collisions, such as those described by the STA. Collisions that include attractive as well as repulsive interactions, such as those of the MGBE, have a much longer duration, and theories that include them have memory functions that decay to zero much too slowly to provide a good first approximation of the correlation function. This leads us to speculate that the memory function for density fluctuations can be usefully regarded as a sum of at least three parts: a contribution from repulsive binary collisions (the STA or something similar to it), another short time part that is related to all the other interactions (but whose nature is not understood), and a longer time slowly decaying part that describes caging (of the type predicted by the mode coupling theory).

  6. The evolution of structure in the universe from axions

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Shafi, Q.

    1982-01-01

    A scenario where axions provide the dark matter in the universe is considered. Fluctuations in the axion field density produced by domain walls and strings cause the appearance of axion clumps of masses of order 10 to the 6th power solar mass which most likely collapse to black holes by or at the time that the universe becomes axion dominated at T is approximately 10 eV. These objects form the building blocks for a clustering hierarchy theory of galaxy and supercluster formation on scales up to approximately 10 Mpc and approximately 10 to the 15th power solar mass.

  7. DNA-DNA interaction beyond the ground state

    NASA Astrophysics Data System (ADS)

    Lee, D. J.; Wynveen, A.; Kornyshev, A. A.

    2004-11-01

    The electrostatic interaction potential between DNA duplexes in solution is a basis for the statistical mechanics of columnar DNA assemblies. It may also play an important role in recombination of homologous genes. We develop a theory of this interaction that includes thermal torsional fluctuations of DNA using field-theoretical methods and Monte Carlo simulations. The theory extends and rationalizes the earlier suggested variational approach which was developed in the context of a ground state theory of interaction of nonhomologous duplexes. It shows that the heuristic variational theory is equivalent to the Hartree self-consistent field approximation. By comparison of the Hartree approximation with an exact solution based on the QM analogy of path integrals, as well as Monte Carlo simulations, we show that this easily analytically-tractable approximation works very well in most cases. Thermal fluctuations do not remove the ability of DNA molecules to attract each other at favorable azimuthal conformations, neither do they wash out the possibility of electrostatic “snap-shot” recognition of homologous sequences, considered earlier on the basis of ground state calculations. At short distances DNA molecules undergo a “torsional alignment transition,” which is first order for nonhomologous DNA and weaker order for homologous sequences.

  8. Progressive low-bitrate digital color/monochrome image coding by neuro-fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Mitra, Sunanda; Meadows, Steven

    1997-10-01

    Color image coding at low bit rates is an area of research that is just being addressed in recent literature since the problems of storage and transmission of color images are becoming more prominent in many applications. Current trends in image coding exploit the advantage of subband/wavelet decompositions in reducing the complexity in optimal scalar/vector quantizer (SQ/VQ) design. Compression ratios (CRs) of the order of 10:1 to 20:1 with high visual quality have been achieved by using vector quantization of subband decomposed color images in perceptually weighted color spaces. We report the performance of a recently developed adaptive vector quantizer, namely, AFLC-VQ for effective reduction in bit rates while maintaining high visual quality of reconstructed color as well as monochrome images. For 24 bit color images, excellent visual quality is maintained upto a bit rate reduction to approximately 0.48 bpp (for each color plane or monochrome 0.16 bpp, CR 50:1) by using the RGB color space. Further tuning of the AFLC-VQ, and addition of an entropy coder module after the VQ stage results in extremely low bit rates (CR 80:1) for good quality, reconstructed images. Our recent study also reveals that for similar visual quality, RGB color space requires less bits/pixel than either the YIQ, or HIS color space for storing the same information when entropy coding is applied. AFLC-VQ outperforms other standard VQ and adaptive SQ techniques in retaining visual fidelity at similar bit rate reduction.

  9. Initial angular momentum and flow in high energy nuclear collisions

    NASA Astrophysics Data System (ADS)

    Fries, Rainer J.; Chen, Guangyao; Somanathan, Sidharth

    2018-03-01

    We study the transfer of angular momentum in high energy nuclear collisions from the colliding nuclei to the region around midrapidity, using the classical approximation of the color glass condensate (CGC) picture. We find that the angular momentum shortly after the collision (up to times ˜1 /Qs , where Qs is the saturation scale) is carried by the "β -type" flow of the initial classical gluon field, introduced by some of us earlier. βi˜μ1∇iμ2-μ2∇iμ1 (i =1 ,2 ) describes the rapidity-odd transverse energy flow and emerges from Gauss's law for gluon fields. Here μ1 and μ2 are the averaged color charge fluctuation densities in the two nuclei, respectively. Interestingly, strong coupling calculations using anti-de Sitter/conformal field theory (AdS/CFT) techniques also find an energy flow term featuring this particular combination of nuclear densities. In classical CGC the order of magnitude of the initial angular momentum per rapidity in the reaction plane, at a time 1 /Qs , is |d L2/d η |≈ RAQs-3ɛ¯0/2 at midrapidity, where RA is the nuclear radius, and ɛ¯0 is the average initial energy density. This result emerges as a cancellation between a vortex of energy flow in the reaction plane aligned with the total angular momentum, and energy shear flow opposed to it. We discuss in detail the process of matching classical Yang-Mills results to fluid dynamics. We will argue that dissipative corrections should not be discarded to ensure that macroscopic conservation laws, e.g., for angular momentum, hold. Viscous fluid dynamics tends to dissipate the shear flow contribution that carries angular momentum in boost-invariant fluid systems. This leads to small residual angular momentum around midrapidity at late times for collisions at high energies.

  10. Nondestructive spot test method for magnesium and magnesium alloys

    NASA Technical Reports Server (NTRS)

    Wilson, M. L. (Inventor)

    1973-01-01

    A method for spot test identification of magnesium and various magnesium alloys commonly used in aerospace applications is described. The spot test identification involves color codes obtained when several drops of 3 M hydrochloric acid are placed on the surface to be tested. After approximately thirty seconds, two drops of this reacted acid is transferred to each of two depressions in a spot plate for additions of other chemicals with subsequent color changes indicating magnesium or its alloy.

  11. Antiferromagnetism and DX2-Y2-WAVE Pairing in the Colored Hubbard Model

    NASA Astrophysics Data System (ADS)

    Baier, Tobias; Bick, Eike

    2001-08-01

    We introduce a new formulation of the 2d Hubbard model on a square lattice (the "colored" Hubbard model). In this formulation interesting physical nonlocal properties as antiferromagnetic or dx2-y2-wave superconducting behavior are included in an explicit way. Analyzing the phase diagram in a mean field approximation numerically, we show that our approach yields results which are in qualitative agreement with experiment.

  12. Astronaut John Young displays drawing of Snoopy

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut John W. Young, Apollo 10 command module pilot, displays drawing of Snoopy in this color reproduction taken from the fourth telecast made by the color television camera aboard the Apollo 10 spacecraft. When this picture was made the Apollo 10 spacecraft was about half-way to the moon, or approximately 112,000 nautical miles from the earth. Snoopy will be the code name of the Lunar Module (LM) during Apollo 10 operations when the LM and CM are separated.

  13. Measurement of laser quantum frequency fluctuations using a Pound-Drever stabilization system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Y.J.; Mussche, P.L.; Siegman, A.E.

    1994-06-01

    The authors describe a method for measuring the frequency fluctuation spectrum of a laser oscillator, especially the weak noise contributions in the wings of the spectrum, and apply this method to confirm the existence of large excess quantum frequency fluctuations in a laser oscillator using an unstable optical resonator. The measurement apparatus uses the Pound-Drever technique, which employs an RF phase modulator and a Fabry-Perot cavity to produce a sensitive high-speed frequency discrimination signal. The authors show that this signal can also be used to measure the quantum noise contributions to the frequency spectrum of a laser oscillator. Experimental measurementsmore » on a miniature diode-pumped Nd:YAG laser using a stable optical cavity closely match the predictions of the usual Schawlow-Townes theory, while the frequency fluctuations in a nearly identical laser employing an unstable optical resonator are approximately 1,300 times larger. These much larger fluctuations arise in part from the larger output coupling and cavity bandwidth of the unstable cavity, but they also appear to confirm a predicted excess spontaneous emission factor (Petermann excess noise factor) of [approx]180 times arising from the nonorthogonal transverse mode properties of the unstable cavity.« less

  14. Ionization balance of impurities in turbulent scrape-off layer plasmas I: local ionization-recombination equilibrium

    NASA Astrophysics Data System (ADS)

    Guzman, F.; Marandet, Y.; Tamain, P.; Bufferand, H.; Ciraolo, G.; Ghendrih, Ph; Guirlet, R.; Rosato, J.; Valentinuzzi, M.

    2015-12-01

    In magnetized fusion devices, cross field impurity transport is often dominated by turbulence, in particular in the scrape-off layer. In these outer regions of the plasma, fluctuations of plasma parameters can be comparable to mean values, and the way ionization and recombination sources are treated in transport codes becomes questionnable. In fact, sources are calculated using the mean density and temperature values, with no account of fluctuations. In this work we investigate the modeling uncertainties introduced by this approximation, both qualitatively and quantitatively for the local ionization equilibrium. As a first step transport effects are neglected, and their role will be discussed in a companion paper. We show that temperature fluctuations shift the ionization balance towards lower temperatures, essentially because of the very steep temperature dependence of the ionization rate coefficients near the threshold. To reach this conclusion, a thorough analysis of the time scales involved is carried out, in order to devise a proper way of averaging over fluctuations. The effects are found to be substantial only for fairly large relative fluctuation levels for temperature, that is of the order of a few tens of percents.

  15. Data-nonintrusive photonics-based credit card verifier with a low false rejection rate.

    PubMed

    Sumriddetchkajorn, Sarun; Intaravanne, Yuttana

    2010-02-10

    We propose and experimentally demonstrate a noninvasive credit card verifier with a low false rejection rate (FRR). Our key idea is based on the use of three broadband light sources in our data-nonintrusive photonics-based credit card verifier structure, where spectral components of the embossed hologram images are registered as red, green, and blue. In this case, nine distinguishable variables are generated for a feed-forward neural network (FFNN). In addition, we investigate the center of mass of the image histogram projected onto the x axis (I(color)), making our system more tolerant of the intensity fluctuation of the light source. We also reduce the unwanted signals on each hologram image by simply dividing the hologram image into three zones and then calculating their corresponding I(color) values for red, green, and blue bands. With our proposed concepts, we implement our field test prototype in which three broadband white light light-emitting diodes (LEDs), a two-dimensional digital color camera, and a four-layer FFNN are used. Based on 249 genuine credit cards and 258 counterfeit credit cards, we find that the average of differences in I(color) values between genuine and counterfeit credit cards is improved by 1.5 times and up to 13.7 times. In this case, we can effectively verify credit cards with a very low FRR of 0.79%.

  16. Amine-derived synthetic approach to color-tunable InP/ZnS quantum dots with high fluorescent qualities

    NASA Astrophysics Data System (ADS)

    Song, Woo-Seuk; Lee, Hye-Seung; Lee, Ju Chul; Jang, Dong Seon; Choi, Yoonyoung; Choi, Moongoo; Yang, Heesun

    2013-06-01

    High-quality, Cd-free InP quantum dots (QDs) have been conventionally synthesized by exclusively selecting tris(trimethylsilyl)phosphine (P(TMS)3) as a phosphorus (P) precursor, which is problematic from the standpoint of green and economic chemistry. Thus, other synthetic chemistries adopting alternative P sources to P(TMS)3 have been introduced, however, they could not guarantee the production of satisfactorily fluorescence-efficient, color-pure InP QDs. In this study, the unprecedented controlled synthesis of a series of band-gap-tuned InP QDs is demonstrated through a hot-injection of a far safer and cheaper tris(dimethylamino)phosphine in the presence of a key coordinating solvent of oleylamine that enables successful QD nucleation/growth. Effects of the co-existence of Zn additive, the core growth temperature, and the amount of P source injected on the growth behaviors of InP QD are investigated. After ZnS overcoating by a successive injection of 1-dodecanethiol only, high-fluorescence-quality, green-to-red color emission-tunable core/shell QDs of InP/ZnS are obtained. The fluorescent characteristics of different color-emitting QDs desirably exhibit little fluctuations in quantum yield and emission bandwidth, specifically ranging 51-53 % and 60-64 nm, respectively. Lastly, the utility of the introduction of a secondary shelling process in rendering the QDs are more bright, photostable is also proved.

  17. A Closer Look at Telesto False-Color

    NASA Image and Video Library

    2006-02-08

    These views show surface features and color variation on the Trojan moon Telesto. The smooth surface of this moon suggests that, like Pandora, it is covered with a mantle of fine, dust-sized icy material. The monochrome image was taken in visible light (see PIA07696). To create the false-color view, ultraviolet, green and infrared images were combined into a single black and white picture that isolates and maps regional color differences. This "color map" was then superposed over a clear-filter image. The origin of the color differences is not yet understood, but may be caused by subtle differences in the surface composition or the sizes of grains making up the icy soil. Tiny Telesto is a mere 24 kilometers (15 miles) wide. The image was acquired with the Cassini spacecraft narrow-angle camera on Dec. 25, 2005 at a distance of approximately 20,000 kilometers (12,000 miles) from Telesto and at a Sun-Telesto-spacecraft, or phase, angle of 58 degrees. Image scale is 118 meters (387 feet) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA07697

  18. Non-invasive characterization of colorants by portable diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Manfredi, Marcello; Barberis, Elettra; Aceto, Maurizio; Marengo, Emilio

    2017-06-01

    During the last years the need for non-invasive and non-destructive analytical methods brought to the development and application of new instrumentation and analytical methods for the in-situ analysis of cultural heritage objects. In this work we present the application of a portable diffuse reflectance infrared Fourier transform (DRIFT) method for the non-invasive characterization of colorants prepared according to ancient recipes and using egg white and Gum Arabic as binders. Approximately 50 colorants were analyzed with the DRIFT spectroscopy: we were able to identify and discriminate the most used yellow (i.e. yellow ochres, Lead-tin Yellow, Orpiment, etc.), red (i.e. red ochres, Hematite) and blue (i.e. Lapis Lazuli, Azurite, indigo) colorants, creating a complete DRIFT spectral library. The Principal Component Analysis-Discriminant Analysis (PCA-DA) was then employed for the colorants classification according to the chemical/mineralogical composition. The DRIFT analysis was also performed on a gouache painting of the artist Sutherland; and the colorants used by the painter were identified directly in-situ and in a non-invasive manner.

  19. Cost-effective poster and print production with digital camera and computer technology.

    PubMed

    Chen, M Y; Ott, D J; Rohde, R P; Henson, E; Gelfand, D W; Boehme, J M

    1997-10-01

    The purpose of this report is to describe a cost-effective method for producing black-and-white prints and color posters within a radiology department. Using a high-resolution digital camera, personal computer, and color printer, the average cost of a 5 x 7 inch (12.5 x 17.5 cm) black-and-white print may be reduced from $8.50 to $1 each in our institution. The average cost for a color print (8.5 x 14 inch [21.3 x 35 cm]) varies from $2 to $3 per sheet depending on the selection of ribbons for a color-capable laser printer and the paper used. For a 30-panel, 4 x 8 foot (1.2 x 2.4 m) standard-sized poster, the cost for materials and construction is approximately $100.

  20. Assessment of performance validity in the Stroop Color and Word Test in mild traumatic brain injury patients: a criterion-groups validation design.

    PubMed

    Guise, Brian J; Thompson, Matthew D; Greve, Kevin W; Bianchini, Kevin J; West, Laura

    2014-03-01

    The current study assessed performance validity on the Stroop Color and Word Test (Stroop) in mild traumatic brain injury (TBI) using criterion-groups validation. The sample consisted of 77 patients with a reported history of mild TBI. Data from 42 moderate-severe TBI and 75 non-head-injured patients with other clinical diagnoses were also examined. TBI patients were categorized on the basis of Slick, Sherman, and Iverson (1999) criteria for malingered neurocognitive dysfunction (MND). Classification accuracy is reported for three indicators (Word, Color, and Color-Word residual raw scores) from the Stroop across a range of injury severities. With false-positive rates set at approximately 5%, sensitivity was as high as 29%. The clinical implications of these findings are discussed. © 2012 The British Psychological Society.

  1. Iapetus: unique surface properties and a global color dichotomy from Cassini imaging.

    PubMed

    Denk, Tilmann; Neukum, Gerhard; Roatsch, Thomas; Porco, Carolyn C; Burns, Joseph A; Galuba, Götz G; Schmedemann, Nico; Helfenstein, Paul; Thomas, Peter C; Wagner, Roland J; West, Robert A

    2010-01-22

    Since 2004, Saturn's moon Iapetus has been observed repeatedly with the Imaging Science Subsystem of the Cassini spacecraft. The images show numerous impact craters down to the resolution limit of approximately 10 meters per pixel. Small, bright craters within the dark hemisphere indicate a dark blanket thickness on the order of meters or less. Dark, equator-facing and bright, poleward-facing crater walls suggest temperature-driven water-ice sublimation as the process responsible for local albedo patterns. Imaging data also reveal a global color dichotomy, wherein both dark and bright materials on the leading side have a substantially redder color than the respective trailing-side materials. This global pattern indicates an exogenic origin for the redder leading-side parts and suggests that the global color dichotomy initiated the thermal formation of the global albedo dichotomy.

  2. False-color composite image of Raco, Michigan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This image is a false color composite of Raco, Michigan, centered at 46.39 north latitude and 84.88 east longitude. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on the 20th orbit of the Shuttle Endeavour. The area shown is approximately 20 kilometers by 50 kilometers. Raco is located at the eastern end of Michigan's upper peninsula, west of Sault Ste. Marie and south of Whitefish Bay on Lake Superior. In this color representation, darker areas in the image are smooth surfaces such as frozen lakes and other non-forested areas. The colors are related to the types of trees and the brightness is related to the amount of plant material covering the surface, called forest biomass. The Jet Propulsion Laboratory alternative photo number is P-43882.

  3. Effects of intrafractional motion on water equivalent pathlength in respiratory-gated heavy charged particle beam radiotherapy.

    PubMed

    Mori, Shinichiro; Chen, George T Y; Endo, Masahiro

    2007-09-01

    To analyze the water equivalent pathlength (WEL) fluctuations resulting from cardiac motion and display these variations on a beam's-eye-view image; the analysis provides insight into the accuracy of lung tumor irradiation with heavy charged particle beams. Volumetric cine computed tomography (CT) images were obtained on 7 lung cancer patients under free-breathing conditions with a 256-multislice CT scanner. Cardiac phase was determined by selecting systole and diastole. A WEL difference image (DeltaWEL) was calculated by subtracting the WEL image at end-systole from that at end-diastole at respiratory exhalation phase. Two calculation regions were defined: Region 1 was limited to the volume defined by planes bounding the heart; Region 2 included the entire body thickness for a given beam's-eye-view angle. The DeltaWEL values observed in Region 1 showed fluctuations at the periphery of the heart that varied from 20.4 (SD, 5.2) mm WEL to -15.6 (3.2) mm WEL. The areas over which these range perturbation values were observed were 36.8 (32.4) mm(2) and 6.0 (2.8) mm(2) for positive and negative WEL, respectively. The WEL fluctuations in Region 2 increased by approximately 3-4 mm WEL, whereas negative WEL fluctuations changed by approximately -4 to -5 mm WEL, compared with WEL for Region 1; areas over 20 mm WEL changes in Region 2 increased by 9 mm(2) for positive DeltaWEL and 2 mm(2) for negative DeltaWEL. Cine CT with a 256-multislice CT scanner captures both volumetric cardiac and respiratory motion with a temporal resolution sufficient to estimate range fluctuations by these motions. This information can be used to assess the range perturbations that charged particle beams may experience in irradiation of lung or esophageal tumors adjacent to the heart.

  4. Impact of storage on dark chocolate: texture and polymorphic changes.

    PubMed

    Nightingale, Lia M; Lee, Soo-Yeun; Engeseth, Nicki J

    2011-01-01

    Chocolate storage is critical to final product quality. Inadequate storage, especially with temperature fluctuations, may lead to rearrangement of triglycerides that make up the bulk of the chocolate matrix; this rearrangement may lead to fat bloom. Bloom is the main cause of quality loss in the chocolate industry. The effect of storage conditions leading to bloom formation on texture and flavor attributes by human and instrumental measures has yet to be reported. Therefore, the impact of storage conditions on the quality of dark chocolate by sensory and instrumental measurements was determined. Dark chocolate was kept under various conditions and analyzed at 0, 4, and 8 wk of storage. Ten members of a descriptive panel analyzed texture and flavor. Instrumental methods included texture analysis, color measurement, lipid polymorphism by X-ray diffraction and differential scanning calorimetry, triglyceride concentration by gas chromatography, and surface properties by atomic force microscopy. Results were treated by analysis of variance, cluster analysis, principal component analysis, and linear partial least squares regression analysis. Chocolate stored 8 wk at high temperature without fluctuations and 4 wk with fluctuations transitioned from form V to VI. Chocolates stored at high temperature with and without fluctuations were harder, more fracturable, more toothpacking, had longer melt time, were less sweet, and had less cream flavor. These samples had rougher surfaces, fewer but larger grains, and a heterogeneous surface. Overall, all stored dark chocolate experienced instrumental or perceptual changes attributed to storage condition. Chocolates stored at high temperature with and without fluctuations were most visually and texturally compromised. Practical Application: Many large chocolate companies do their own "in-house" unpublished research and smaller confectionery facilities do not have the means to conduct their own research. Therefore, this study relating sensory and instrumental data provides published evidence available for application throughout the confectionery industry.

  5. Computing molecular fluctuations in biochemical reaction systems based on a mechanistic, statistical theory of irreversible processes.

    PubMed

    Kulasiri, Don

    2011-01-01

    We discuss the quantification of molecular fluctuations in the biochemical reaction systems within the context of intracellular processes associated with gene expression. We take the molecular reactions pertaining to circadian rhythms to develop models of molecular fluctuations in this chapter. There are a significant number of studies on stochastic fluctuations in intracellular genetic regulatory networks based on single cell-level experiments. In order to understand the fluctuations associated with the gene expression in circadian rhythm networks, it is important to model the interactions of transcriptional factors with the E-boxes in the promoter regions of some of the genes. The pertinent aspects of a near-equilibrium theory that would integrate the thermodynamical and particle dynamic characteristics of intracellular molecular fluctuations would be discussed, and the theory is extended by using the theory of stochastic differential equations. We then model the fluctuations associated with the promoter regions using general mathematical settings. We implemented ubiquitous Gillespie's algorithms, which are used to simulate stochasticity in biochemical networks, for each of the motifs. Both the theory and the Gillespie's algorithms gave the same results in terms of the time evolution of means and variances of molecular numbers. As biochemical reactions occur far away from equilibrium-hence the use of the Gillespie algorithm-these results suggest that the near-equilibrium theory should be a good approximation for some of the biochemical reactions. © 2011 Elsevier Inc. All rights reserved.

  6. The Speed of Serial Attention Shifts in Visual Search: Evidence from the N2pc Component.

    PubMed

    Grubert, Anna; Eimer, Martin

    2016-02-01

    Finding target objects among distractors in visual search display is often assumed to be based on sequential movements of attention between different objects. However, the speed of such serial attention shifts is still under dispute. We employed a search task that encouraged the successive allocation of attention to two target objects in the same search display and measured N2pc components to determine how fast attention moved between these objects. Each display contained one digit in a known color (fixed-color target) and another digit whose color changed unpredictably across trials (variable-color target) together with two gray distractor digits. Participants' task was to find the fixed-color digit and compare its numerical value with that of the variable-color digit. N2pc components to fixed-color targets preceded N2pc components to variable-color digits, demonstrating that these two targets were indeed selected in a fixed serial order. The N2pc to variable-color digits emerged approximately 60 msec after the N2pc to fixed-color digits, which shows that attention can be reallocated very rapidly between different target objects in the visual field. When search display durations were increased, thereby relaxing the temporal demands on serial selection, the two N2pc components to fixed-color and variable-color targets were elicited within 90 msec of each other. Results demonstrate that sequential shifts of attention between different target locations can operate very rapidly at speeds that are in line with the assumptions of serial selection models of visual search.

  7. Evidence for a Cosmological Phase Transition on the TeVScale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindesay, James V.; Noyes, H.Pierre; /SLAC

    Examining the reverse evolution of the universe from the present, long before reaching Planck density dynamics one expects major modifications from the de-coherent thermal equations of state, suggesting a prior phase that has macroscopic coherence properties. The assumption that the phase transition occurs during the radiation dominated epoch, and that zero-point motions drive the fluctuations associated with this transition, specifies a class of cosmological models in which the cosmic microwave background fluctuation amplitude at last scattering is approximately 10{sup -5}. Quantum measurability constraints (e.g. uncertainly relations) define cosmological scales whose expansion rates can be at most luminal.

  8. New Model for Ionospheric Irregularities at Mars

    NASA Astrophysics Data System (ADS)

    Keskinen, M. J.

    2018-03-01

    A new model for ionospheric irregularities at Mars is presented. It is shown that wind-driven currents in the dynamo region of the Martian ionosphere can be unstable to the electromagnetic gradient drift instability. This plasma instability can generate ionospheric density and magnetic field irregularities with scale sizes of approximately 15-20 km down to a few kilometers. We show that the instability-driven magnetic field fluctuation amplitudes relative to background are correlated with the ionospheric density fluctuation amplitudes relative to background. Our results can explain recent observations made by the Mars Atmosphere and Volatile EvolutioN spacecraft in the Martian ionosphere dynamo region.

  9. Generating the curvature perturbation at the end of inflation in string theory.

    PubMed

    Lyth, David H; Riotto, Antonio

    2006-09-22

    In brane inflationary scenarios, the cosmological perturbations are supposed to originate from the vacuum fluctuations of the inflaton field corresponding to the position of the brane. We show that a significant, and possibly dominant, contribution to the curvature perturbation is generated at the end of inflation through the vacuum fluctuations of fields, other than the inflaton, which are light during the inflationary trajectory and become heavy at the brane-antibrane annihilation. These fields appear generically in string compactifications where the background geometry has exact or approximate isometries and parametrize the internal angular directions of the brane.

  10. FIBER OPTICS: Schrödinger soliton in a fiber waveguide exhibiting both gain and losses: squeezed states and growth of noise in the linear approximation

    NASA Astrophysics Data System (ADS)

    Belinskiĭ, A. V.

    1992-09-01

    An investigation is made of the evolution of quantum fluctuations of a fundamental soliton in the course of its propagation in a nonlinear fiber waveguide characterized by losses and compensated by amplification. Simple relationships are obtained for the amplitude and phase noise, quantum uncertainty of the position and momentum, and also fluctuations of the quadrature components of the radiation field. Numerical estimates are obtained. It is shown that loss-compensating amplification is unnecessary for efficient formation of squeezed states of a soliton.

  11. Use of dirichlet distributions and orthogonal projection techniques for the fluctuation analysis of steady-state multivariate birth-death systems

    NASA Astrophysics Data System (ADS)

    Palombi, Filippo; Toti, Simona

    2015-05-01

    Approximate weak solutions of the Fokker-Planck equation represent a useful tool to analyze the equilibrium fluctuations of birth-death systems, as they provide a quantitative knowledge lying in between numerical simulations and exact analytic arguments. In this paper, we adapt the general mathematical formalism known as the Ritz-Galerkin method for partial differential equations to the Fokker-Planck equation with time-independent polynomial drift and diffusion coefficients on the simplex. Then, we show how the method works in two examples, namely the binary and multi-state voter models with zealots.

  12. Using Massive Star Clusters in Merger Remnants To Provide Reference Colors of Intermediate-Age Stellar Populations

    NASA Astrophysics Data System (ADS)

    Goudfrooij, Paul

    2009-07-01

    Much current research in cosmology and galaxy formation relies on an accurate interpretation of colors of galaxies in terms of their evolutionary state, i.e., in terms of ages and metallicities. One particularly important topic is the ability to identify early-type galaxies at "intermediate" ages { 500 Myr - 5 Gyr}, i.e., the period between the end of star formation and half the age of the universe. Currently, integrated-light studies must rely on population synthesis models which rest upon spectral libraries of stars in the solar neighborhood. These models have a difficult time correctly incorporating short-lived evolutionary phases such as thermally pulsing AGB stars, which produce up to 80% of the flux in the near-IR in this age range. Furthermore, intermediate-age star clusters in the Local Group do not represent proper templates against which to calibrate population synthesis models in this age range, because their masses are too low to render the effect of stochastic fluctuations due to the number of bright RGB and AGB stars negligible. As a consequence, current population synthesis models have trouble reconciling the evolutionary state of high-redshift galaxies from optical versus near-IR colors. We propose a simple and effective solution to this issue, namely obtaining high-quality EMPIRICAL colors of massive globular clusters in galaxy merger remnants which span this important age range. These colors should serve as relevant references, both to identify intermediate-age objects in the local and distant universe and as calibrators for population synthesis modellers.

  13. Full-color stereoscopic single-pixel camera based on DMD technology

    NASA Astrophysics Data System (ADS)

    Salvador-Balaguer, Eva; Clemente, Pere; Tajahuerce, Enrique; Pla, Filiberto; Lancis, Jesús

    2017-02-01

    Imaging systems based on microstructured illumination and single-pixel detection offer several advantages over conventional imaging techniques. They are an effective method for imaging through scattering media even in the dynamic case. They work efficiently under low light levels, and the simplicity of the detector makes it easy to design imaging systems working out of the visible spectrum and to acquire multidimensional information. In particular, several approaches have been proposed to record 3D information. The technique is based on sampling the object with a sequence of microstructured light patterns codified onto a programmable spatial light modulator while light intensity is measured with a single-pixel detector. The image is retrieved computationally from the photocurrent fluctuations provided by the detector. In this contribution we describe an optical system able to produce full-color stereoscopic images by using few and simple optoelectronic components. In our setup we use an off-the-shelf digital light projector (DLP) based on a digital micromirror device (DMD) to generate the light patterns. To capture the color of the scene we take advantage of the codification procedure used by the DLP for color video projection. To record stereoscopic views we use a 90° beam splitter and two mirrors, allowing us two project the patterns form two different viewpoints. By using a single monochromatic photodiode we obtain a pair of color images that can be used as input in a 3-D display. To reduce the time we need to project the patterns we use a compressive sampling algorithm. Experimental results are shown.

  14. The interplay of holistic shape, local feature and color information in object categorization.

    PubMed

    Rokszin, Adrienn Aranka; Győri-Dani, Dóra; Linnert, Szilvia; Krajcsi, Attila; Tompa, Tamás; Csifcsák, Gábor

    2015-07-01

    Although it is widely accepted that colors facilitate object and scene recognition under various circumstances, several studies found no effects of color removal in tasks requiring categorization of briefly presented animals in natural scenes. In this study, three experiments were performed to test the assumption that the discrepancy between empirical data is related to variations of the available meaningful global information such as object shapes and contextual cues. Sixty-one individuals categorized chromatic and achromatic versions of intact and scrambled images containing either cars or birds. While color removal did not affect the classification of intact stimuli, the recognition of moderately scrambled achromatic images was more difficult. This effect was accompanied by amplitude modulations of occipital event-related potentials emerging from approximately 150ms post-stimulus. Our results indicate that colors facilitate stimulus classification, but this effect becomes prominent only in cases when holistic processing is not sufficient for stimulus recognition. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Temporal enhancement of two-dimensional color doppler echocardiography

    NASA Astrophysics Data System (ADS)

    Terentjev, Alexey B.; Settlemier, Scott H.; Perrin, Douglas P.; del Nido, Pedro J.; Shturts, Igor V.; Vasilyev, Nikolay V.

    2016-03-01

    Two-dimensional color Doppler echocardiography is widely used for assessing blood flow inside the heart and blood vessels. Currently, frame acquisition time for this method varies from tens to hundreds of milliseconds, depending on Doppler sector parameters. This leads to low frame rates of resulting video sequences equal to tens of Hz, which is insufficient for some diagnostic purposes, especially in pediatrics. In this paper, we present a new approach for reconstruction of 2D color Doppler cardiac images, which results in the frame rate being increased to hundreds of Hz. This approach relies on a modified method of frame reordering originally applied to real-time 3D echocardiography. There are no previous publications describing application of this method to 2D Color Doppler data. The approach has been tested on several in-vivo cardiac 2D color Doppler datasets with approximate duration of 30 sec and native frame rate of 15 Hz. The resulting image sequences had equivalent frame rates to 500Hz.

  16. Effect of the collective motions of molecules inside a condensed phase on fluctuations in the density of small bodies

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2017-11-01

    An approach to calculating the effects of fluctuations in density that considers the collective motions of molecules in small condensed phases (e.g., droplets, microcrystals, adsorption at microcrystal faces) is proposed. Statistical sums of the vibrational, rotational, and translational motions of molecules are of a collective character expressed in the dependences of these statistical sums on the local configurations of neighboring molecules. This changes their individual contributions to the free energy and modifies fluctuations in density in the inner homogeneous regions of small bodies. Interactions between nearest neighbors are considered in a quasi-chemical approximation that reflects the effects of short-range direct correlations. Expressions for isotherms relating the densities of mixture components to the chemical potentials in a thermostat are obtained, along with equations for pair distribution functions.

  17. Color blindness and contrast perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor assay.

    PubMed

    Mäthger, Lydia M; Barbosa, Alexandra; Miner, Simon; Hanlon, Roger T

    2006-05-01

    We tested color perception based upon a robust behavioral response in which cuttlefish (Sepia officinalis) respond to visual stimuli (a black and white checkerboard) with a quantifiable, neurally controlled motor response (a body pattern). In the first experiment, we created 16 checkerboard substrates in which 16 grey shades (from white to black) were paired with one green shade (matched to the maximum absorption wavelength of S. officinalis' sole visual pigment, 492 nm), assuming that one of the grey shades would give a similar achromatic signal to the tested green. In the second experiment, we created a checkerboard using one blue and one yellow shade whose intensities were matched to the cuttlefish's visual system. In both assays it was tested whether cuttlefish would show disruptive coloration on these checkerboards, indicating their ability to distinguish checkers based solely on wavelength (i.e., color). Here, we show clearly that cuttlefish must be color blind, as they showed non-disruptive coloration on the checkerboards whose color intensities were matched to the Sepia visual system, suggesting that the substrates appeared to their eyes as uniform backgrounds. Furthermore, we show that cuttlefish are able to perceive objects in their background that differ in contrast by approximately 15%. This study adds support to previous reports that S. officinalis is color blind, yet the question of how cuttlefish achieve "color-blind camouflage" in chromatically rich environments still remains.

  18. Hippo in Super Resolution from Super Panorama

    NASA Image and Video Library

    1998-07-03

    This view of the "Hippo," 25 meters to the west of the lander, was produced by combining the "Super Panorama" frames from the IMP camera. Super resolution was applied to help to address questions about the texture of this rock and what it might tell us about its mode of origin. The composite color frames that make up this anaglyph were produced for both the right and left eye of the IMP. These composites consist of more than 15 frames per eye (because multiple sequences covered the same area), taken with different color filters that were enlarged by 500% and then co-added using Adobe Photoshop to produce, in effect, a super-resolution panchromatic frame that is sharper than an individual frame would be. These panchromatic frames were then colorized with the red, green, and blue filtered images from the same sequence. The color balance was adjusted to approximate the true color of Mars. The anaglyph view was produced by combining the left with the right eye color composite frames by assigning the left eye composite view to the red color plane and the right eye composite view to the green and blue color planes (cyan), to produce a stereo anaglyph mosaic. This mosaic can be viewed in 3-D on your computer monitor or in color print form by wearing red-blue 3-D glasses. http://photojournal.jpl.nasa.gov/catalog/PIA01421

  19. Uranus Rings in False Color

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This false-color view of the rings of Uranus was made from images taken by Voyager 2 on Jan. 21, 1986, from a distance of 4.17 million kilometers (2.59 million miles). All nine known rings are visible here; the somewhat fainter, pastel lines seen between them are contributed by the computer enhancement. Six 15-second narrow-angle images were used to extract color information from the extremely dark and faint rings. Two images each in the green, clear and violet filters were added together and averaged to find the proper color differences between the rings. The final image was made from these three color averages and represents an enhanced, false-color view. The image shows that the brightest, or epsilon, ring at top is neutral in color, with the fainter eight other rings showing color differences between them. Moving down, toward Uranus, we see the delta, gamma and eta rings in shades of blue and green; the beta and alpha rings in somewhat lighter tones; and then a final set of three, known simply as the 4, 5 and 6 rings, in faint off-white tones. Scientists will use this color information to try to understand the nature and origin of the ring material. The resolution of this image is approximately 40 km (25 mi). The Voyager project is managed for NASA by the Jet Propulsion Laboratory.

  20. 'Fram' in Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Click on the image for 'Fram' in Color (QTVR)

    This view in approximately true color reveals details in an impact crater informally named 'Fram' in the Meridian Planum region of Mars. The picture is a mosaic of frames taken by the panoramic camera on NASA's Mars Exploration Rover Opportunity during the rover's 88th martian day on Mars, on April 23, 2004. The crater spans about 8 meters (26 feet) in diameter. Opportunity paused beside it while traveling from the rover's landing site toward a larger crater farther east. This view combines images taken using three of the camera's filters for different wavelengths of light: 750 nanometers, 530 nanometers and 430 nanometers.

  1. NLO evolution of color dipoles in N=4 SYM

    DOE PAGES

    Chirilli, Giovanni A.; Balitsky, Ian

    2009-07-04

    Here, high-energy behavior of amplitudes in a gauge theory can be reformulated in terms of the evolution of Wilson-line operators. In the leading logarithmic approximation it is given by the conformally invariant BK equation for the evolution of color dipoles. In QCD, the next-to-leading order BK equation has both conformal and non-conformal parts, the latter providing the running of the coupling constant. To separate the conformally invariant effects from the running-coupling effects, we calculate the NLO evolution of the color dipoles in the conformalmore » $${\\cal N}$$=4 SYM theory. We define the "composite dipole operator" with the rapidity cutoff preserving conformal invariance.« less

  2. Simulated annealing in networks for computing possible arrangements for red and green cones

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.

    1987-01-01

    Attention is given to network models in which each of the cones of the retina is given a provisional color at random, and then the cones are allowed to determine the colors of their neighbors through an iterative process. A symmetric-structure spin-glass model has allowed arrays to be generated from completely random arrangements of red and green to arrays with approximately as much disorder as the parafoveal cones. Simulated annealing has also been added to the process in an attempt to generate color arrangements with greater regularity and hence more revealing moirepatterns than than the arrangements yielded by quenched spin-glass processes. Attention is given to the perceptual implications of these results.

  3. Calculating the Sachs-Wolfe Effect from Solutions of Null Geodesics in Perturbed FRW Spacetime

    NASA Astrophysics Data System (ADS)

    Arroyo-Cárdenas, C. A.; Muñoz-Cuartas, J. C.

    2017-07-01

    In the upcoming precision era in cosmology, fine grained effects will be measured accurately. In particular, the late integrated Sachs-Wolfe (ISW) effect measurements will be improved to levels of unprecedented precision. The ISW consists on temperature fluctuations in the CMB due to gravitational redshift induced by the evolving potential well of large scale structure in the Universe. Currently there is large controversy related to the actual observability of the ISW effect. In principle, it is expected that, as an effect of the late accelerated expansion of the universe motivated by the current amount of dark energy, large scale structures may evolve rapidly, inducing an observable signature in the CMB photons in the way of a ISW anisotropy in the CMB. Tension arises since using galaxy redshift surveys some works report a temperature fluctuations with amplitude smaller than predicted by the Lambda-CDM. We argue that these discrepancies may be originated in the approximation that one has to make to get the classic Sachs-Wolfe effect. In this work, we compare the classic Sachs-Wolfe approximation with an exact solution to the propagation of photons in a dynamical background. We solve numerically the null geodesics on a perturbed FRW spacetime in the Newtonian gauge. From null geodesics, temperature fluctuations in the CMB due to the evolving potential has been calculated. Since solving geodesics accounts for more terms than solving the Sachs-Wolfe (approximated) integral, our results are more accurate. We have been able to substract the background cosmological redshift with the information provided by null geodesics, which allows to get an estimate of the integrated Sachs-Wolfe effect contribution to the temperature of the CMB.

  4. Endeavour on the Horizon

    NASA Image and Video Library

    2010-04-30

    NASA Mars Exploration Rover Opportunity used its panoramic camera Pancam to capture this view approximately true-color view of the rim of Endeavour crater, the rover destination in a multi-year traverse along the sandy Martian landscape.

  5. Design and optimization of color lookup tables on a simplex topology.

    PubMed

    Monga, Vishal; Bala, Raja; Mo, Xuan

    2012-04-01

    An important computational problem in color imaging is the design of color transforms that map color between devices or from a device-dependent space (e.g., RGB/CMYK) to a device-independent space (e.g., CIELAB) and vice versa. Real-time processing constraints entail that such nonlinear color transforms be implemented using multidimensional lookup tables (LUTs). Furthermore, relatively sparse LUTs (with efficient interpolation) are employed in practice because of storage and memory constraints. This paper presents a principled design methodology rooted in constrained convex optimization to design color LUTs on a simplex topology. The use of n simplexes, i.e., simplexes in n dimensions, as opposed to traditional lattices, recently has been of great interest in color LUT design for simplex topologies that allow both more analytically tractable formulations and greater efficiency in the LUT. In this framework of n-simplex interpolation, our central contribution is to develop an elegant iterative algorithm that jointly optimizes the placement of nodes of the color LUT and the output values at those nodes to minimize interpolation error in an expected sense. This is in contrast to existing work, which exclusively designs either node locations or the output values. We also develop new analytical results for the problem of node location optimization, which reduces to constrained optimization of a large but sparse interpolation matrix in our framework. We evaluate our n -simplex color LUTs against the state-of-the-art lattice (e.g., International Color Consortium profiles) and simplex-based techniques for approximating two representative multidimensional color transforms that characterize a CMYK xerographic printer and an RGB scanner, respectively. The results show that color LUTs designed on simplexes offer very significant benefits over traditional lattice-based alternatives in improving color transform accuracy even with a much smaller number of nodes.

  6. Analog model for quantum gravity effects: phonons in random fluids.

    PubMed

    Krein, G; Menezes, G; Svaiter, N F

    2010-09-24

    We describe an analog model for quantum gravity effects in condensed matter physics. The situation discussed is that of phonons propagating in a fluid with a random velocity wave equation. We consider that there are random fluctuations in the reciprocal of the bulk modulus of the system and study free phonons in the presence of Gaussian colored noise with zero mean. We show that, in this model, after performing the random averages over the noise function a free conventional scalar quantum field theory describing free phonons becomes a self-interacting model.

  7. Red Eccrine Chromhidrosis with Review of Literature

    PubMed Central

    Jaiswal, Ashok Kumar; Ravikiran, Shilpashree P; Roy, Prasoon Kumar

    2017-01-01

    A 22-year-old male presented with reddish discoloration of the vest following perspiration for 6 months. He was a habituated consumer of cranberry juice. The peak absorption on spectrophotometric analysis of the extracted sweat coincided approximately with the peak absorption of diluted distillate of the juice. A diagnosis of eccrine chromhidrosis, probably due to the coloring agents in the juice, was considered. This rare case report emphasizes the possible side effect of the various coloring agents used as food additives. PMID:29263551

  8. Lunar Samples - Apollo 12

    NASA Image and Video Library

    1969-11-26

    S69-60294 (26 Nov. 1969) --- One of the first views of the Apollo 12 lunar rocks is this photograph of the open sample return container. The large rock is approximately 7 1/2 inches across and is larger than any rock brought back to Earth by the crew of the Apollo 11 lunar landing mission. Two of the rocks in the first container are crystalline and generally lighter in color than those returned on the first lunar landing. The rocks in this box are medium charcoal brown/gray in color.

  9. Photometric behavior and general characteristics of the nova HR Delphini

    NASA Astrophysics Data System (ADS)

    Raikova, D.

    The light curve and the B-V color-index curve of HR Del were constructed on the basis of published UBV observations. From the normal color indices, the effective photosphere temperature and radius were determined using calibrations for normal stars. As the brightness reached its peak, the effective photosphere was expanding with a velocity of approximately 23 km/s, which is more than 10 times less than the gas velocity. This phenomenon is explained by decreasing continuous opacity as the ejected gas expands.

  10. Mars Rover Studies Soil on Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Both out on the plains of Gusev Crater and in the 'Columbia Hills,' NASA's Mars Exploration Rover Spirit has encountered a thin (approximately 1 millimeter or 0.04 inch thick), light-colored, fine-grained layer of material on top of a dark-colored, coarser layer of soil. In the hills, Spirit stopped to take a closer look at soil compacted by one of the rover's wheels. Spirit took this image with the front hazard-avoidance camera during the rover's 314th martian day, or sol (Nov. 19, 2004).

  11. Advanced first-principles theory of superconductivity including both lattice vibrations and spin fluctuations: The case of FeB4

    NASA Astrophysics Data System (ADS)

    Bekaert, J.; Aperis, A.; Partoens, B.; Oppeneer, P. M.; Milošević, M. V.

    2018-01-01

    We present an advanced method to study spin fluctuations in superconductors quantitatively and entirely from first principles. This method can be generally applied to materials where electron-phonon coupling and spin fluctuations coexist. We employ it here to examine the recently synthesized superconductor iron tetraboride (FeB4) with experimental Tc˜2.4 K [H. Gou et al., Phys. Rev. Lett. 111, 157002 (2013), 10.1103/PhysRevLett.111.157002]. We prove that FeB4 is particularly prone to ferromagnetic spin fluctuations due to the presence of iron, resulting in a large Stoner interaction strength, I =1.5 eV, as calculated from first principles. The other important factor is its Fermi surface that consists of three separate sheets, among which two are nested ellipsoids. The resulting susceptibility has a ferromagnetic peak around q =0 , from which we calculated the repulsive interaction between Cooper pair electrons using the random phase approximation. Subsequently, we combined the electron-phonon interaction calculated from first principles with the spin fluctuation interaction in fully anisotropic Eliashberg theory calculations. We show that the resulting superconducting gap spectrum is conventional, yet very strongly depleted due to coupling to the spin fluctuations. The critical temperature decreases from Tc=41 K, if they are not taken into account, to Tc=1.7 K, in good agreement with the experimental value.

  12. Laboratory Study of Airborne Fallout Particles and Their Time Distribution.

    ERIC Educational Resources Information Center

    Smith, H. A., Jr.; And Others

    1979-01-01

    Samples of filtered airborne particulate, collected daily for the first month after the September 18, 1977 Chinese nuclear detonation, showed fourteen fission products. Fluctuations in the daily fallout activity levels suggested a global fallout orbit time of approximately twenty days. (Author/BB)

  13. NONLINEAR-APPROXIMATION TECHNIQUE FOR DETERMINING VERTICAL OZONE-CONCENTRATION PROFILES WITH A DIFFERENTIAL-ABSORPTION LIDAR

    EPA Science Inventory

    A new technique is presented for the retrieval of ozone concentration profiles from backscattered signals obtained by a multi-wavelength differential-absorption lidar (DIAL). The technique makes it possible to reduce erroneous local fluctuations induced in the ozone-concentration...

  14. Persistent and energetic bottom-trapped topographic Rossby waves observed in the southern South China Sea.

    PubMed

    Shu, Yeqiang; Xue, Huijie; Wang, Dongxiao; Chai, Fei; Xie, Qiang; Cai, Shuqun; Chen, Rongyu; Chen, Ju; Li, Jian; He, Yunkai

    2016-04-14

    Energetic fluctuations with periods of 9-14 days below a depth of 1400 m were observed in the southern South China Sea (SCS) from 5 years of direct measurements. We interpreted such fluctuations as topographic Rossby waves (TRWs) because they obey the dispersion relation. The TRWs persisted from May 24, 2009 to August 23, 2013, and their bottom current speed with a maximum of ~10 cm/s was one order of magnitude greater than the mean current and comparable to the tidal currents near the bottom. The bottom-trapped TRWs had an approximate trapping depth of 325 m and reference wavelength of ~82 km, which were likely excited by eddies above. Upper layer current speed that peaked approximately every 2 months could offer the energy sources for the persistent TRWs in the southern SCS. Energetic bottom-trapped TRWs may have a comparable role in deep circulation to tides in areas with complex topography.

  15. Persistent and energetic bottom-trapped topographic Rossby waves observed in the southern South China Sea

    PubMed Central

    Shu, Yeqiang; Xue, Huijie; Wang, Dongxiao; Chai, Fei; Xie, Qiang; Cai, Shuqun; Chen, Rongyu; Chen, Ju; Li, Jian; He, Yunkai

    2016-01-01

    Energetic fluctuations with periods of 9–14 days below a depth of 1400 m were observed in the southern South China Sea (SCS) from 5 years of direct measurements. We interpreted such fluctuations as topographic Rossby waves (TRWs) because they obey the dispersion relation. The TRWs persisted from May 24, 2009 to August 23, 2013, and their bottom current speed with a maximum of ~10 cm/s was one order of magnitude greater than the mean current and comparable to the tidal currents near the bottom. The bottom-trapped TRWs had an approximate trapping depth of 325 m and reference wavelength of ~82 km, which were likely excited by eddies above. Upper layer current speed that peaked approximately every 2 months could offer the energy sources for the persistent TRWs in the southern SCS. Energetic bottom-trapped TRWs may have a comparable role in deep circulation to tides in areas with complex topography. PMID:27075644

  16. Dissipation of Turbulence in the Solar Wind as Measured by Cluster

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn

    2012-01-01

    Turbulence in fluids and plasmas is a scale-dependent process that generates fluctuations towards ever-smaller scales until dissipation occurs. Recent Cluster observations in the solar wind demonstrate the existence of a cascade of magnetic energy from the scale of the proton Larmor radius, where kinetic properties of ions invalidate fluid approximations, down to the electron Larmor radius, where electrons become demagnetized. The cascade is quasi-two-dimensional and has been interpreted as consisting of highly oblique kinetic Alfvenic fluctuations that dissipate near at the electron gyroradius scale via proton and electron Landau damping. Here we investigate for the first time the spatial properties of the turbulence at these scales. We report the presence of thin current sheets and discontinuities with spatial sizes greater than or approximately equal to the proton Larmor radius. These isolated structures may be manifestations of intermittency, and such would localize sites of turbulent dissipation. Studying the relationship between turbulent dissipation, reconnection and intermittency is crucial for understanding the dynamics of laboratory and astrophysical plasmas.

  17. Improved key-rate bounds for practical decoy-state quantum-key-distribution systems

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Zhao, Qi; Razavi, Mohsen; Ma, Xiongfeng

    2017-01-01

    The decoy-state scheme is the most widely implemented quantum-key-distribution protocol in practice. In order to account for the finite-size key effects on the achievable secret key generation rate, a rigorous statistical fluctuation analysis is required. Originally, a heuristic Gaussian-approximation technique was used for this purpose, which, despite its analytical convenience, was not sufficiently rigorous. The fluctuation analysis has recently been made rigorous by using the Chernoff bound. There is a considerable gap, however, between the key-rate bounds obtained from these techniques and that obtained from the Gaussian assumption. Here we develop a tighter bound for the decoy-state method, which yields a smaller failure probability. This improvement results in a higher key rate and increases the maximum distance over which secure key exchange is possible. By optimizing the system parameters, our simulation results show that our method almost closes the gap between the two previously proposed techniques and achieves a performance similar to that of conventional Gaussian approximations.

  18. Digit-color synaesthesia only enhances memory for colors in a specific context: A new method of duration thresholds to measure serial recall.

    PubMed

    Teichmann, A Lina; Nieuwenstein, Mark R; Rich, Anina N

    2017-08-01

    For digit-color synaesthetes, digits elicit vivid experiences of color that are highly consistent for each individual. The conscious experience of synaesthesia is typically unidirectional: Digits evoke colors but not vice versa. There is an ongoing debate about whether synaesthetes have a memory advantage over non-synaesthetes. One key question in this debate is whether synaesthetes have a general superiority or whether any benefit is specific to a certain type of material. Here, we focus on immediate serial recall and ask digit-color synaesthetes and controls to memorize digit and color sequences. We developed a sensitive staircase method manipulating presentation duration to measure participants' serial recall of both overlearned and novel sequences. Our results show that synaesthetes can activate digit information to enhance serial memory for color sequences. When color sequences corresponded to ascending or descending digit sequences, synaesthetes encoded these sequences at a faster rate than their non-synaesthetes counterparts and faster than non-structured color sequences. However, encoding color sequences is approximately 200 ms slower than encoding digit sequences directly, independent of group and condition, which shows that the translation process is time consuming. These results suggest memory advantages in synaesthesia require a modified dual-coding account, in which secondary (synaesthetically linked) information is useful only if it is more memorable than the primary information to be recalled. Our study further shows that duration thresholds are a sensitive method to measure subtle differences in serial recall performance. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Global and system-specific resting-state fMRI fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks.

    PubMed

    Carbonell, Felix; Bellec, Pierre; Shmuel, Amir

    2011-01-01

    The influence of the global average signal (GAS) on functional-magnetic resonance imaging (fMRI)-based resting-state functional connectivity is a matter of ongoing debate. The global average fluctuations increase the correlation between functional systems beyond the correlation that reflects their specific functional connectivity. Hence, removal of the GAS is a common practice for facilitating the observation of network-specific functional connectivity. This strategy relies on the implicit assumption of a linear-additive model according to which global fluctuations, irrespective of their origin, and network-specific fluctuations are super-positioned. However, removal of the GAS introduces spurious negative correlations between functional systems, bringing into question the validity of previous findings of negative correlations between fluctuations in the default-mode and the task-positive networks. Here we present an alternative method for estimating global fluctuations, immune to the complications associated with the GAS. Principal components analysis was applied to resting-state fMRI time-series. A global-signal effect estimator was defined as the principal component (PC) that correlated best with the GAS. The mean correlation coefficient between our proposed PC-based global effect estimator and the GAS was 0.97±0.05, demonstrating that our estimator successfully approximated the GAS. In 66 out of 68 runs, the PC that showed the highest correlation with the GAS was the first PC. Since PCs are orthogonal, our method provides an estimator of the global fluctuations, which is uncorrelated to the remaining, network-specific fluctuations. Moreover, unlike the regression of the GAS, the regression of the PC-based global effect estimator does not introduce spurious anti-correlations beyond the decrease in seed-based correlation values allowed by the assumed additive model. After regressing this PC-based estimator out of the original time-series, we observed robust anti-correlations between resting-state fluctuations in the default-mode and the task-positive networks. We conclude that resting-state global fluctuations and network-specific fluctuations are uncorrelated, supporting a Resting-State Linear-Additive Model. In addition, we conclude that the network-specific resting-state fluctuations of the default-mode and task-positive networks show artifact-free anti-correlations.

  20. Nucleation theory - Is replacement free energy needed?. [error analysis of capillary approximation

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1982-01-01

    It has been suggested that the classical theory of nucleation of liquid from its vapor as developed by Volmer and Weber (1926) needs modification with a factor referred to as the replacement free energy and that the capillary approximation underlying the classical theory is in error. Here, the classical nucleation equation is derived from fluctuation theory, Gibb's result for the reversible work to form a critical nucleus, and the rate of collision of gas molecules with a surface. The capillary approximation is not used in the derivation. The chemical potential of small drops is then considered, and it is shown that the capillary approximation can be derived from thermodynamic equations. The results show that no corrections to Volmer's equation are needed.

  1. MaNGA: Target selection and Optimization

    NASA Astrophysics Data System (ADS)

    Wake, David

    2015-01-01

    The 6-year SDSS-IV MaNGA survey will measure spatially resolved spectroscopy for 10,000 nearby galaxies using the Sloan 2.5m telescope and the BOSS spectrographs with a new fiber arrangement consisting of 17 individually deployable IFUs. We present the simultaneous design of the target selection and IFU size distribution to optimally meet our targeting requirements. The requirements for the main samples were to use simple cuts in redshift and magnitude to produce an approximately flat number density of targets as a function of stellar mass, ranging from 1x109 to 1x1011 M⊙, and radial coverage to either 1.5 (Primary sample) or 2.5 (Secondary sample) effective radii, while maximizing S/N and spatial resolution. In addition we constructed a 'Color-Enhanced' sample where we required 25% of the targets to have an approximately flat number density in the color and mass plane. We show how these requirements are met using simple absolute magnitude (and color) dependent redshift cuts applied to an extended version of the NASA Sloan Atlas (NSA), how this determines the distribution of IFU sizes and the resulting properties of the MaNGA sample.

  2. MaNGA: Target selection and Optimization

    NASA Astrophysics Data System (ADS)

    Wake, David

    2016-01-01

    The 6-year SDSS-IV MaNGA survey will measure spatially resolved spectroscopy for 10,000 nearby galaxies using the Sloan 2.5m telescope and the BOSS spectrographs with a new fiber arrangement consisting of 17 individually deployable IFUs. We present the simultaneous design of the target selection and IFU size distribution to optimally meet our targeting requirements. The requirements for the main samples were to use simple cuts in redshift and magnitude to produce an approximately flat number density of targets as a function of stellar mass, ranging from 1x109 to 1x1011 M⊙, and radial coverage to either 1.5 (Primary sample) or 2.5 (Secondary sample) effective radii, while maximizing S/N and spatial resolution. In addition we constructed a "Color-Enhanced" sample where we required 25% of the targets to have an approximately flat number density in the color and mass plane. We show how these requirements are met using simple absolute magnitude (and color) dependent redshift cuts applied to an extended version of the NASA Sloan Atlas (NSA), how this determines the distribution of IFU sizes and the resulting properties of the MaNGA sample.

  3. HIV testing patterns among urban YMSM of color.

    PubMed

    Leonard, Noelle R; Rajan, Sonali; Gwadz, Marya V; Aregbesola, Temi

    2014-12-01

    The heightened level of risk for HIV infection among Black and Latino young men who have sex with men (YMSM) is driven by multilevel influences. Using cross-sectional data, we examined HIV testing patterns among urban YMSM of color in a high-HIV seroprevalence area (ages 16 to 21 years). Self-reported frequency of testing was high, with 42% of youth reporting testing at a greater frequency than recommended guidelines. There were no differences between less frequent and more frequent testers on sexual risk behaviors. Most (80%) youth cited reassurance of HIV-negative status as a reason for testing. Further, over half of the sample reported numerous other reasons for HIV testing, which spanned individual, partner, social, and structural levels of influence. Approximately half of respondents indicated that peers, family members, and counselors influenced their motivation to get tested. Of concern, their first HIV test occurred approximately 2 years after their first sexual experience with another male. These results indicate the need to consider developmental issues as well as comprehensive, multilevel efforts to ensure that YMSM of color test at the Centers for Disease Control and Prevention-recommended frequency but not less than this or too frequently. © 2014 Society for Public Health Education.

  4. HIV Testing Patterns Among Urban YMSM of Color

    PubMed Central

    Leonard, Noelle R.; Ragan, Sonali; Gwadz, Marya V.; Aregbesola, Temi

    2015-01-01

    The heightened level of risk for HIV infection among African-American and Latino young men who have sex with men (YMSM) is driven by multi-level influences. Using cross-sectional data, we examined HIV testing patterns among urban YMSM of color in a high HIV sero-prevalence area (ages 16 to 21 years). Self-reported frequency of testing was high with 42% of youth reporting testing at a greater frequency than recommended guidelines. There were no differences between less frequent and high frequent testers on sexual risk behaviors. Most (80%) youth cited reassurance of HIV-negative status as a reason for testing. Further, over half of the sample reported numerous other reasons for HIV testing, which spanned individual, partner, social, and structural levels of influence. Approximately half of respondents indicated that peers, family members, and counselors influenced their motivation to get tested. Of concern, youths’ first HIV test occurred approximately two years after their first sexual experience with another male. These results indicate the need to consider developmental issues as well as for comprehensive, multi-level efforts to ensure that YMSM of color test at the CDC-recommended frequency, but not less than this or too frequently. PMID:24973260

  5. Citrus Chlorophyllase Dynamics at Ethylene-Induced Fruit Color-Break: A Study of Chlorophyllase Expression, Posttranslational Processing Kinetics, and in Situ Intracellular Localization1[OA

    PubMed Central

    Azoulay Shemer, Tamar; Harpaz-Saad, Smadar; Belausov, Eduard; Lovat, Nicole; Krokhin, Oleg; Spicer, Victor; Standing, Kenneth G.; Goldschmidt, Eliezer E.; Eyal, Yoram

    2008-01-01

    Fruit color-break is the visual manifestation of the developmentally regulated transition of chloroplasts to chromoplasts during fruit ripening and often involves biosynthesis of copious amounts of carotenoids concomitant with massive breakdown of chlorophyll. Regulation of chlorophyll breakdown at different physiological and developmental stages of the plant life cycle, particularly at fruit color-break, is still not well understood. Here, we present the dynamics of native chlorophyllase (Chlase) and chlorophyll breakdown in lemon (Citrus limon) fruit during ethylene-induced color-break. We show, using in situ immunofluorescence on ethylene-treated fruit peel (flavedo) tissue, that citrus Chlase is located in the plastid, in contrast to recent reports suggesting cytoplasmic localization of Arabidopsis (Arabidopsis thaliana) Chlases. At the intra-organellar level, Chlase signal was found to overlap mostly with chlorophyll fluorescence, suggesting association of most of the Chlase protein with the photosynthetic membranes. Confocal microscopy analysis showed that the kinetics of chlorophyll breakdown was not uniform in the flavedo cells. Chlorophyll quantity at the cellular level was negatively correlated with plastid Chlase accumulation; plastids with reduced chlorophyll content were found by in situ immunofluorescence to contain significant levels of Chlase, while plastids containing still-intact chlorophyll lacked any Chlase signal. Immunoblot and protein-mass spectrometry analyses were used to demonstrate that citrus Chlase initially accumulates as an approximately 35-kD precursor, which is subsequently N-terminally processed to approximately 33-kD mature forms by cleavage at either of three consecutive amino acid positions. Chlase plastid localization, expression kinetics, and the negative correlation with chlorophyll levels support the central role of the enzyme in chlorophyll breakdown during citrus fruit color-break. PMID:18633118

  6. Role of fluctuations in random compressible systems at marginal dimensionality

    NASA Astrophysics Data System (ADS)

    Meissner, G.; Sasvári, L.; Tadić, B.

    1986-07-01

    In a unified treatment we have studied the role of fluctuations in uniaxial random systems at marginal dimensionality d*=4 with the n=1 component order parameter being coupled to elastic degrees of freedom. Depending on the ratio of the nonuniversal parameters of quenched disorder Δ0 and of elastic fluctuations v~0, a first- or second-order phase transition is found to occur, separated by a tricritical point. A complete account of critical properties and of macroscopic as well as of microscopic elastic stability is given for temperatures T>Tc. Universal singularities of thermodynamic functions are determined for t=(T-Tc)/Tc-->0 including the tricritical point: for v~0/Δ0>-2, they are the same as in a rigid random system; for v~0/Δ0=-2, they are different due to lattice compressibility being related, however, to the former by Fisher renormalization. Fluctuation corrections in one-loop approximation have been evaluated in a nonuniversal critical temperature range, tx<

  7. Effects of sedimenting particles on the turbulence structure in a horizontal channel flow

    NASA Astrophysics Data System (ADS)

    Tay, Godwin F. K.; Kuhn, David C. S.; Tachie, Mark F.

    2015-02-01

    This work presents the results of experiments conducted in a horizontal channel to characterize low Reynolds number turbulent flows in the presence of small solid particles. The particle diameter relative to the integral length scale, dp/Λx, is approximately 0.02. Particles and fluid turbulence characteristics are measured for three average solid volume fractions of approximately ϕv = 2.0 × 10-4, 4.0 × 10-4, and 8.0 × 10-4 under conditions where the particle number density is evolving due to deposition. The results indicate that the mean slip between particles and the fluid is important only close to the wall. Away from the wall, the particles and unladen fluid mean velocities are similar. Differences between particles and the unladen fluid statistics are more pronounced in the wall-normal velocity fluctuations than the streamwise velocity fluctuations and Reynolds shear stress due to the stronger effect of the gravitational force in the wall-normal direction. The fluid turbulent intensities show no dependency on loading, but the peak Reynolds shear stress is significantly reduced. A quadrant decomposition of the Reynolds shear stress revealed a corresponding reduction in the ejections and sweeps for the laden flow in comparison with the unladen flow. Swirling strength and vorticity root-mean-square fluctuations decayed due to the damping effect of particles. The influence of particles on the turbulence structure was examined using two-point correlations of the velocity fluctuations and swirling strength, where it was demonstrated that the wall structures are attached eddies which are more extensive (much larger) in the particle-laden flow compared to the unladen flow.

  8. Hypersonic Boundary Layer Transition Measurements Using NO2 approaches NO Photo-dissociation Tagging Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Johansen, Craig T.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Goyne, Christopher P.

    2011-01-01

    Measurements of instantaneous and mean streamwise velocity profiles in a hypersonic laminar boundary layer as well as a boundary layer undergoing laminar-to-turbulent transition were obtained over a 10-degree half-angle wedge model. A molecular tagging velocimetry technique consisting of a NO2 approaches?NO photo-dissociation reaction and two subsequent excitations of NO was used. The measurement of the transitional boundary layer velocity profiles was made downstream of a 1-mm tall, 4-mm diameter cylindrical trip along several lines lying within a streamwise measurement plane normal to the model surface and offset 6-mm from the model centerline. For laminar and transitional boundary layer measurements, the magnitudes of streamwise velocity fluctuations are compared. In the transitional boundary layer the fluctuations were, in general, 2-4 times larger than those in the laminar boundary layer. Of particular interest were fluctuations corresponding to a height of approximately 50% of the laminar boundary layer thickness having a magnitude of nearly 30% of the mean measured velocity. For comparison, the measured fluctuations in the laminar boundary layer were approximately 5% of the mean measured velocity at the same location. For the highest 10% signal-to-noise ratio data, average single-shot uncertainties using a 1 ?Es and 50 ?Es interframe delay were 115 m/s and 3 m/s, respectively. By averaging single-shot measurements of the transitional boundary layer, uncertainties in mean velocity as low as 39 m/s were obtained in the wind tunnel. The wall-normal and streamwise spatial resolutions were 0.14-mm (2 pixel) and 0.82-mm (11 pixels), respectively. These measurements were performed in the 31-inch Mach 10 Air Wind Tunnel at the NASA Langley Research Center.

  9. A Unified Methodology for Computing Accurate Quaternion Color Moments and Moment Invariants.

    PubMed

    Karakasis, Evangelos G; Papakostas, George A; Koulouriotis, Dimitrios E; Tourassis, Vassilios D

    2014-02-01

    In this paper, a general framework for computing accurate quaternion color moments and their corresponding invariants is proposed. The proposed unified scheme arose by studying the characteristics of different orthogonal polynomials. These polynomials are used as kernels in order to form moments, the invariants of which can easily be derived. The resulted scheme permits the usage of any polynomial-like kernel in a unified and consistent way. The resulted moments and moment invariants demonstrate robustness to noisy conditions and high discriminative power. Additionally, in the case of continuous moments, accurate computations take place to avoid approximation errors. Based on this general methodology, the quaternion Tchebichef, Krawtchouk, Dual Hahn, Legendre, orthogonal Fourier-Mellin, pseudo Zernike and Zernike color moments, and their corresponding invariants are introduced. A selected paradigm presents the reconstruction capability of each moment family, whereas proper classification scenarios evaluate the performance of color moment invariants.

  10. Eigenvectors of optimal color spectra.

    PubMed

    Flinkman, Mika; Laamanen, Hannu; Tuomela, Jukka; Vahimaa, Pasi; Hauta-Kasari, Markku

    2013-09-01

    Principal component analysis (PCA) and weighted PCA were applied to spectra of optimal colors belonging to the outer surface of the object-color solid or to so-called MacAdam limits. The correlation matrix formed from this data is a circulant matrix whose biggest eigenvalue is simple and the corresponding eigenvector is constant. All other eigenvalues are double, and the eigenvectors can be expressed with trigonometric functions. Found trigonometric functions can be used as a general basis to reconstruct all possible smooth reflectance spectra. When the spectral data are weighted with an appropriate weight function, the essential part of the color information is compressed to the first three components and the shapes of the first three eigenvectors correspond to one achromatic response function and to two chromatic response functions, the latter corresponding approximately to Munsell opponent-hue directions 9YR-9B and 2BG-2R.

  11. Perceptual Color Characterization of Cameras

    PubMed Central

    Vazquez-Corral, Javier; Connah, David; Bertalmío, Marcelo

    2014-01-01

    Color camera characterization, mapping outputs from the camera sensors to an independent color space, such as XY Z, is an important step in the camera processing pipeline. Until now, this procedure has been primarily solved by using a 3 × 3 matrix obtained via a least-squares optimization. In this paper, we propose to use the spherical sampling method, recently published by Finlayson et al., to perform a perceptual color characterization. In particular, we search for the 3 × 3 matrix that minimizes three different perceptual errors, one pixel based and two spatially based. For the pixel-based case, we minimize the CIE ΔE error, while for the spatial-based case, we minimize both the S-CIELAB error and the CID error measure. Our results demonstrate an improvement of approximately 3% for the ΔE error, 7% for the S-CIELAB error and 13% for the CID error measures. PMID:25490586

  12. Screening in ionic systems: simulations for the Lebowitz length.

    PubMed

    Kim, Young C; Luijten, Erik; Fisher, Michael E

    2005-09-30

    Simulations of the Lebowitz length, xiL (T, rho), are reported for the restricted primitive model hard-core (diameter a) 1:1 electrolyte for densities rho approximately < 4rho(c) and T(c) approximately < T approximately < 40T(c). Finite-size effects are elucidated for the charge fluctuations in various subdomains that serve to evaluate xiL. On extrapolation to the bulk limit for T approximately > 10T(c) the exact low-density expansions are seen to fail badly when rho > 1/10 rho(c) (with rho(c)a3 approximately = 0.08). At higher densities xiL rises above the Debye length, xiD proportional to square root(T/rho), by 10%-30% (up to rho approximately =1.3rho(c)); the variation is portrayed fairly well by the generalized Debye-Hückel theory. On approaching criticality at fixed rho or fixed T, xiL (T, rho) remains finite with xiL(c) approximately = 0.30a approximately = 1.3xiD(c) but displays a weak entropylike singularity.

  13. Kinetic evolution and correlation of fluctuations in an expanding quark gluon plasma

    NASA Astrophysics Data System (ADS)

    Sarwar, Golam; Alam, Jan-E.

    2018-03-01

    Evolution of spatially anisotropic perturbation created in the system formed after Relativistic Heavy Ion Collisions has been studied. The microscopic evolution of the fluctuations has been examined within the ambit of Boltzmann Transport Equation (BTE) in a hydrodynamically expanding background. The expansion of the background composed of quark gluon plasma (QGP) is treated within the framework of relativistic hydrodynamics. Spatial anisotropic fluctuations with different geometries have been evolved through Boltzmann equation. It is observed that the trace of such fluctuation survives the evolution. Within the relaxation time approximation, analytical results have been obtained for the evolution of these anisotropies. Explicit relations between fluctuations and transport coefficients have been derived. The mixing of various Fourier (or k) modes of the perturbations during the evolution of the system has been explicitly demonstrated. This study is very useful in understanding the presumption that the measured anisotropies in the data from heavy ion collisions at relativistic energies imitate the initial state effects. The evolution of correlation function for the perturbation in pressure has been studied and shows that the initial correlation between two neighbouring points in real space evolves to a constant value at later time which gives rise to Dirac delta function for the correlation function in Fourier space. The power spectrum of the fluctuation in thermodynamic quantities (like temperature estimated in this work) can be connected to the fluctuation in transverse momentum of the thermal hadrons measured experimentally. The bulk viscous coefficient of the QGP has been estimated by using correlations of pressure fluctuation with the help of Green-Kubo relation. Angular power spectrum of the anisotropies has been estimated in the appendix.

  14. Short-term microbial dynamics in a drinking water plant treating groundwater with occasional high microbial loads.

    PubMed

    Besmer, Michael D; Hammes, Frederik

    2016-12-15

    Short-term fluctuations in bacterial concentrations in drinking water systems, occurring on time scales of hours-to-weeks, are essentially unexplored due to a lack of microbial monitoring tools that allow high frequency measurements. Here, we applied fully automated online flow cytometry to measure the total cell concentrations (TCC) in both raw water (karstic groundwater) and treated water (flocculation - ultrafiltration (UF) - ozonation - granular active carbon (GAC) filtration) during a period of 70 days at high temporal resolution (n > 4000 for both water types). We detected and characterized in considerable detail aperiodic fluctuations in the raw water following regional precipitation, with TCC increasing up to 50-fold from a dry weather baseline of approximately 120 cells μl -1 to an event peak of > 5000 cells μl -1 . Moreover, we observed the buffering of the treatment plant against these fluctuations, but in addition we recorded a completely unexpected periodic fluctuation of TCC in the treated water after GAC filtration. We concluded that the latter was the result of fluctuating water abstraction from the treatment plant reservoir by two connected water utilities, which resulted in variations in water throughput in the plant. This in turn influenced bacterial detachment and dilution in the GAC filter. This study provides strong evidence of multiple different microbial dynamics occurring in a drinking water treatment system. Given numerous possible sources of natural and operational fluctuations in raw water and drinking water treatment plants, such microbial fluctuations should be expected in many systems. The high-frequency monitoring approach presented herein can improve the understanding and eventual mitigation of such fluctuations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Observation of Kilohertz Quasiperiodic Oscillations from the Atoll Source 4U 1702-429 by RXTE

    NASA Technical Reports Server (NTRS)

    Markwardt, C. B.; Strohmayer, Tod E.; Swank, Jean H.

    1998-01-01

    We present results of Rossi X-Ray Timing Explorer (RXTE) observations of the atoll source 4U 1702-429 in the middle of its luminosity range. Kilohertz-range quasiperiodic oscillations (QPOS) were observed first as a narrow (FWHM approximately 7 Hz) peak near 900 Hz, and later as a pair consisting of a narrow peak in the range 625 825 Hz and a faint broad (FWHM 91 Hz) peak. When the two peaks appeared simultaneously the separation was 333 +/- 5 Hz. Six type I thermonuclear bursts were detected, of which five exhibited almost coherent oscillations near 330 Hz, which makes 4U 1702-429 only the second source to show burst oscillations very close to the kilohertz QPO separation frequency. The energy spectrum and color-color diagram indicate that the source executed variations in the range between the "island" and "lower banana" atoll states. In addition to the kilohertz variability, oscillations at approximately 10, approximately 35, and 80 Hz were also detected at various times, superimposed on a red noise continuum. The centroid of the approximately 35 Hz QPO tracks the frequency of the kilohertz oscillation when they were both present. A Lense-Thirring gravitomagnetic precession interpretation appears more plausible in this case, compared to other atoll sources with low frequency QPOs.

  16. Influence of helium-ion bombardment on the optical properties of ZnO nanorods/p-GaN light-emitting diodes.

    PubMed

    Alvi, Naveed Ul Hassan; Hussain, Sajjad; Jensen, Jen; Nur, Omer; Willander, Magnus

    2011-12-12

    Light-emitting diodes (LEDs) based on zinc oxide (ZnO) nanorods grown by vapor-liquid-solid catalytic growth method were irradiated with 2-MeV helium (He+) ions. The fabricated LEDs were irradiated with fluencies of approximately 2 × 1013 ions/cm2 and approximately 4 × 1013 ions/cm2. Scanning electron microscopy images showed that the morphology of the irradiated samples is not changed. The as-grown and He+-irradiated LEDs showed rectifying behavior with the same I-V characteristics. Photoluminescence (PL) measurements showed that there is a blue shift of approximately 0.0347 and 0.082 eV in the near-band emission (free exciton) and green emission of the irradiated ZnO nanorods, respectively. It was also observed that the PL intensity of the near-band emission was decreased after irradiation of the samples. The electroluminescence (EL) measurements of the fabricated LEDs showed that there is a blue shift of 0.125 eV in the broad green emission after irradiation and the EL intensity of violet emission approximately centered at 398 nm nearly disappeared after irradiations. The color-rendering properties show a small decrease in the color-rendering indices of 3% after 2 MeV He+ ions irradiation.

  17. Host-pathogen interactions and bacterial survival under phage fluctuations

    NASA Astrophysics Data System (ADS)

    Skanata, Antun; Kussell, Edo

    Environmental changes can have profound effects on ecosystems, leading to drastic outcomes such as extinction and desertification. Quantifying, predicting, and ultimately preventing those transitions is a key problem in the field. Our previous work in microbial systems has shown that fluctuations in environments drive transitions to alternate evolutionary optima, which can be either smooth or abrupt. The long term growth rate, an analog of free energy for population dynamics, has been used to distinguish under what conditions those transitions will occur. Our framework, which uses the mean field approximation to compute the long term growth rate in fluctuating environments, is uniquely positioned to treat more complex dependencies that allow coexistence among species sharing resources or infected by common pathogens. Here we present a simple model of a bacterial community subjected to fluctuating phage infections that outlines the regimes where species diversity results in long-term stability. We identify prevalent, but often counter-intuitive, strategies that bacteria use to protect against infection, and find a new general principle in the evolution of phage resistance. Our results, which predict the transition regimes, have implications for a broad range of ecological models.

  18. ''1/f noise'' in music: Music from 1/f noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voss, R.F.; Clarke, J.

    1978-01-01

    The spectral density of fluctuations in the audio power of many musical selections and of English speech varies approximately as 1/f (f is the frequency) down to a frequency of 5 x 10/sup -4/ Hz. This result implies that the audio-power fluctuations are correlated over all times in the same manner as ''1/f noise'' in electronic components. The frequency fluctuations of music also have a 1/f spectral density at frequencies down to the inverse of the length of the piece of music. The frequency fluctuations of English speech have a quite different behavior, with a single characteristic time of aboutmore » 0.1 s, the average length of a syllable. The observations on music suggest that 1/f noise is a good choice for stochastic composition. Compositions in which the frequency and duration of each note were determined by 1/f noise sources sounded pleasing. Those generated by white-noise sources sounded too random, while those generated by 1/f/sup 2/ noise sounded too correlated.« less

  19. High accurate interpolation of NURBS tool path for CNC machine tools

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Liu, Huan; Yuan, Songmei

    2016-09-01

    Feedrate fluctuation caused by approximation errors of interpolation methods has great effects on machining quality in NURBS interpolation, but few methods can efficiently eliminate or reduce it to a satisfying level without sacrificing the computing efficiency at present. In order to solve this problem, a high accurate interpolation method for NURBS tool path is proposed. The proposed method can efficiently reduce the feedrate fluctuation by forming a quartic equation with respect to the curve parameter increment, which can be efficiently solved by analytic methods in real-time. Theoretically, the proposed method can totally eliminate the feedrate fluctuation for any 2nd degree NURBS curves and can interpolate 3rd degree NURBS curves with minimal feedrate fluctuation. Moreover, a smooth feedrate planning algorithm is also proposed to generate smooth tool motion with considering multiple constraints and scheduling errors by an efficient planning strategy. Experiments are conducted to verify the feasibility and applicability of the proposed method. This research presents a novel NURBS interpolation method with not only high accuracy but also satisfying computing efficiency.

  20. Sawtooth-cycle variation of electron temperature in MST, and prospects for improvement of fast Thomson scattering measurements

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.

    2005-10-01

    Initial measurements with the new Thomson scattering diagnostic on MST show a flattening of the Te profile during a sawtooth crash. These measurements were made in standard sawtoothing reversed-field pinch discharges, and show the core temperature dropping from 400 to approximately 150 eV, while the edge rises several-fold. Measurement of Te time dynamics in MST will be advanced by further development of the Thomson scattering diagnostic. In the near term, two independently triggerable lasers will be used to make two Te profile measurements separated by greater than or equal to 100 ns. By varying this separation time over the course of a data ensemble, an initial Te fluctuation spectrum will be produced. In the longer term, a third ``pulse-burst'' laser will be added to the diagnostic system. This laser will produce a burst of 10-30 approximately 1 J Q-switched pulses at repetition frequencies 5-250 kHz. The planned laser system will operate at 1064 nm and is based on existing Nd:YAG systems used to study fluid dynamics [Brian Thurow et al., Appl. Opt. 43, 5064 (2004)]. The burst train of laser pulses will enable the study of Te and ne dynamics in a single MST shot, and with ensembling, will enable correlation of Te and ne fluctuations with other fluctuating quantities.

  1. Cosmic Infrared Background Fluctuations and Zodiacal Light

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.; Mather, J.

    2017-01-01

    We performed a specific observational test to measure the effect that the zodiacal light can have on measurements of the spatial fluctuations of the near-IR (near-infrared)background. Previous estimates of possible fluctuations caused by zodiacal light have often been extrapolated from observations of the thermal emission at longer wavelengths and low angular resolution or from IRAC (Infrared Array Camera) observations of high-latitude fields where zodiacal light is faint and not strongly varying with time. The new observations analyzed here target the COSMOS (Cosmic Evolution Survey) field at low ecliptic latitude where the zodiacal light intensity varies by factors of approximately 2 over the range of solar elongations at which the field can be observed. We find that the white-noise component of the spatial power spectrum of the background is correlated with the modeled zodiacal light intensity. Roughly half of the measured white noise is correlated with the zodiacal light, but a more detailed interpretation of the white noise is hampered by systematic uncertainties that are evident in the zodiacal light model. At large angular scales (greater than or approximately equal to 100 arcseconds) where excess power above the white noise is observed, we find no correlation of the power with the modeled intensity of the zodiacal light. This test clearly indicates that the large-scale power in the infrared background is not being caused by the zodiacal light.

  2. Effect of Sweep on Cavity Flow Fields at Subsonic and Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Tracy, Maureen B.; Plentovich, Elizabeth B.; Hemsch, Michael J.; Wilcox, Floyd J.

    2012-01-01

    An experimental investigation was conducted in the NASA Langley 7 x 10-Foot High Speed Tunnel (HST) to study the effect of leading- and trailing-edge sweep on cavity flow fields for a range of cavity length-to-height (l/h) ratios. The free-stream Mach number was varied from 0.2 to 0.8. The cavity had a depth of 0.5 inches, a width of 2.5 inches, and a maximum length of 12.0 inches. The leading- and trailing-edge sweep was adjusted using block inserts to achieve leading edge sweep angles of 65 deg, 55 deg, 45 deg, 35 deg, and 0 deg. The fore and aft cavity walls were always parallel. The aft wall of the cavity was remotely positioned to achieve a range of length-to-depth ratios. Fluctuating- and static-pressure data were obtained on the floor of the cavity. The fluctuating pressure data were used to determine whether or not resonance occurred in the cavity rather than to provide a characterization of the fluctuating pressure field. Qualitative surface flow visualization was obtained using a technique in which colored water was introduced into the model through static-pressure orifices. A complete tabulation of the mean static-pressure data for the swept leading edge cavities is included.

  3. The association of color memory and the enumeration of multiple spatially overlapping sets.

    PubMed

    Poltoratski, Sonia; Xu, Yaoda

    2013-07-09

    Using dot displays, Halberda, Sires, and Feigenson (2006) showed that observers could simultaneously encode the numerosity of two spatially overlapping sets and the superset of all items at a glance. With the brief display and the masking used in Halberda et al., the task required observers to encode the colors of each set in order to select and enumerate all the dots in that set. As such, the observed capacity limit for set enumeration could reflect a limit in visual short-term memory (VSTM) capacity for the set color rather than a limit in set enumeration per se. Here, we largely replicated Halberda et al. and found successful enumeration of approximately two sets (the superset was not probed). We also found that only about two and a half colors could be remembered from the colored dot displays whether or not the enumeration task was performed concurrently with the color VSTM task. Because observers must remember the color of a set prior to enumerating it, the under three-item VSTM capacity for color necessarily dictates that set enumeration capacity in this paradigm could not exceed two sets. Thus, the ability to enumerate multiple spatially overlapping sets is likely limited by VSTM capacity to retain the discriminating feature of these sets. This relationship suggests that the capacity for set enumeration cannot be considered independently from the capacity for the set's defining features.

  4. Universal Behavior of Extreme Price Movements in Stock Markets

    PubMed Central

    Fuentes, Miguel A.; Gerig, Austin; Vicente, Javier

    2009-01-01

    Many studies assume stock prices follow a random process known as geometric Brownian motion. Although approximately correct, this model fails to explain the frequent occurrence of extreme price movements, such as stock market crashes. Using a large collection of data from three different stock markets, we present evidence that a modification to the random model—adding a slow, but significant, fluctuation to the standard deviation of the process—accurately explains the probability of different-sized price changes, including the relative high frequency of extreme movements. Furthermore, we show that this process is similar across stocks so that their price fluctuations can be characterized by a single curve. Because the behavior of price fluctuations is rooted in the characteristics of volatility, we expect our results to bring increased interest to stochastic volatility models, and especially to those that can produce the properties of volatility reported here. PMID:20041178

  5. Boundary layer transition detection on the X-15 vertical fin using surface-pressure-fluctuation measurements

    NASA Technical Reports Server (NTRS)

    Lewis, T. L.; Banner, R. D.

    1971-01-01

    A flush-mounted microphone on the vertical fin of an X-15 airplane was used to investigate boundary layer transition phenomenon during flights to peak altitudes of approximately 70,000 meters. The flight results were compared with those from wind tunnel studies, skin temperature measurements, and empirical prediction data. The Reynolds numbers determined for the end of transition were consistent with those obtained from wind tunnel studies. Maximum surface-pressure-fluctuation coefficients in the transition region were about an order of magnitude greater than those for fully developed turbulent flow. This was also consistent with wind tunnel data. It was also noted that the power-spectral-density estimates of the surface-pressure fluctuations were characterized by a shift in power from high frequencies to low frequencies as the boundary layer changed from turbulent to laminar flow. Large changes in power at the lowest frequencies appeared to mark the beginning of transition.

  6. Phase diagram of the frustrated J 1 ‑ J 2 transverse field Ising model on the square lattice

    NASA Astrophysics Data System (ADS)

    Sadrzadeh, M.; Langari, A.

    2018-03-01

    We study the zero-temperature phase diagram of transverse field Ising model on the J 1 ‑ J 2 square lattice. In zero magnetic field, the model has a classical Néel phase for J 2/J 1 < 0.5 and an antiferromagnetic collinear phase for J 2/J 1 > 0.5. We incorporate harmonic fluctuations by using linear spin wave theory (LSWT) with single spin flip excitations above a magnetic order background and obtain the phase diagram of the model in this approximation. We find that harmonic quantum fluctuations of LSWT fail to lift the large degeneracy at J 2/J 1 = 0.5 and exhibit some inconsistent regions on the phase diagram. However, we show that anharmonic fluctuations of cluster operator approach (COA) resolve the inconsistency of the LSWT, which reveals a string-valence bond solid ordered phase for the highly frustrated region.

  7. Finding new superconductors: the spin-fluctuation gateway to high Tc and possible room temperature superconductivity.

    PubMed

    Pines, David

    2013-10-24

    We propose an experiment-based strategy for finding new high transition temperature superconductors that is based on the well-established spin fluctuation magnetic gateway to superconductivity in which the attractive quasiparticle interaction needed for superconductivity comes from their coupling to dynamical spin fluctuations originating in the proximity of the material to an antiferromagnetic state. We show how lessons learned by combining the results of almost three decades of intensive experimental and theoretical study of the cuprates with those found in the decade-long study of a strikingly similar family of unconventional heavy electron superconductors, the 115 materials, can prove helpful in carrying out that search. We conclude that, since Tc in these materials scales approximately with the strength of the interaction, J, between the nearest neighbor local moments in their parent antiferromagnetic state, there may not be a magnetic ceiling that would prevent one from discovering a room temperature superconductor.

  8. Validating simple dynamical simulations of the unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Forbes, Michael McNeil; Sharma, Rishi

    2014-10-01

    We present a comparison between simulated dynamics of the unitary fermion gas using the superfluid local density approximation (SLDA) and a simplified bosonic model, the extended Thomas-Fermi (ETF) with a unitary equation of state. Small-amplitude fluctuations have similar dynamics in both theories for frequencies far below the pair-breaking threshold and wave vectors much smaller than the Fermi momentum. The low-frequency linear responses in both match well for surprisingly large wave vectors, even up to the Fermi momentum. For nonlinear dynamics such as vortex generation, the ETF provides a semiquantitative description of SLDA dynamics as long as the fluctuations do not have significant power near the pair-breaking threshold; otherwise the dynamics of the ETF cannot be trusted. Nonlinearities in the ETF tend to generate high-frequency fluctuations, and with no normal component to remove this energy from the superfluid, features such as vortex lattices cannot relax and crystallize as they do in the SLDA.

  9. Stochastic heating of a single Brownian particle by charge fluctuations in a radio-frequency produced plasma sheath

    NASA Astrophysics Data System (ADS)

    Schmidt, Christian; Piel, Alexander

    2015-10-01

    The Brownian motion of a single particle in the plasma sheath is studied to separate the effect of stochastic heating by charge fluctuations from heating by collective effects. By measuring the particle velocities in the ballistic regime and by carefully determining the particle mass from the Epstein drag it is shown that for a pressure of 10 Pa, which is typical of many experiments, the proper kinetic temperature of the Brownian particle remains close to the gas temperature and rises only slightly with particle size. This weak effect is confirmed by a detailed model for charging and charge fluctuations in the sheath. A substantial temperature rise is found for decreasing pressure, which approximately shows the expected scaling with p-2. The system under study is an example for non-equilibrium Brownian motion under the influence of white noise without corresponding dissipation.

  10. Reply to ``Comment on `Relative locality and the soccer ball problem'''

    NASA Astrophysics Data System (ADS)

    Amelino-Camelia, Giovanni; Freidel, Laurent; Kowalski-Glikman, Jerzy; Smolin, Lee

    2013-07-01

    In a Comment [S. Hossenfelder Phys. Rev. D 88, 028701 (2013)], Hossenfelder proposes a generalization of the results we reported in [Phys. Rev. D 84, 087702 (2011)] and argues that thermal fluctuations introduce incurable pathologies for the description of macroscopic bodies in the relative-locality framework. We here show that Hossenfelder’s analysis, while raising a very interesting point, is incomplete and leads to incorrect conclusions. Her estimate for the fluctuations did not take into account some contributions from the geometry of momentum space, which must be included at the relevant order of approximation. Using the full expression here derived, one finds that thermal fluctuations are not, in general, large for macroscopic bodies in the relative-locality framework. We find that such corrections can be unexpectedly large only for some choices of momentum-space geometry, and we comment on the possibility of developing a phenomenology suitable for possibly ruling out such geometries of momentum space.

  11. Elsaesser variable analysis of fluctuations in the ion foreshock and undisturbed solar wind

    NASA Technical Reports Server (NTRS)

    Labelle, James; Treumann, Rudolf A.; Marsch, Eckart

    1994-01-01

    Magnetohydrodynamics (MHD) fluctuations in the solar wind have been investigated previously by use of Elsaesser variables. In this paper, we present a comparison of the spectra of Elsaesser variables in the undisturbed solar wind at 1 AU and in the ion foreshock in front of the Earth. Both observations take place under relatively strong solar wind flow speed conditions (approximately equal 600 km/s). In the undisturbed solar wind we find that outward propagating Alfven waves dominate, as reported by other observers. In the ion foreshock the situation is more complex, with neither outward nor inward propagation dominating over the entire range investigated (1-10 mHz). Measurements of the Poynting vectors associated with the fluctuations are consistent with the Elsaesser variable analysis. These results generally support interpretations of the Elsaesser variables which have been made based strictly on solar wind data and provide additional insight into the nature of the ion foreshock turbulence.

  12. How to Define the Mean Square Amplitude of Solar Wind Fluctuations With Respect to the Local Mean Magnetic Field

    NASA Astrophysics Data System (ADS)

    Podesta, John J.

    2017-12-01

    Over the last decade it has become popular to analyze turbulent solar wind fluctuations with respect to a coordinate system aligned with the local mean magnetic field. This useful analysis technique has provided new information and new insights about the nature of solar wind fluctuations and provided some support for phenomenological theories of MHD turbulence based on the ideas of Goldreich and Sridhar. At the same time it has drawn criticism suggesting that the use of a scale-dependent local mean field is somehow inconsistent or irreconcilable with traditional analysis techniques based on second-order structure functions and power spectra that, for stationary time series, are defined with respect to the constant (scale-independent) ensemble average magnetic field. Here it is shown that for fluctuations with power law spectra, such as those observed in solar wind turbulence, it is possible to define the local mean magnetic field in a special way such that the total mean square amplitude (trace amplitude) of turbulent fluctuations is approximately the same, scale by scale, as that obtained using traditional second-order structure functions or power spectra. This fact should dispel criticism concerning the physical validity or practical usefulness of the local mean magnetic field in these applications.

  13. Centrality dependence of chemical freeze-out parameters from net-proton and net-charge fluctuations using a hadron resonance gas model

    NASA Astrophysics Data System (ADS)

    Adak, Rama Prasad; Das, Supriya; Ghosh, Sanjay K.; Ray, Rajarshi; Samanta, Subhasis

    2017-07-01

    We estimate chemical freeze-out parameters in Hadron Resonance Gas (HRG) and Excluded Volume HRG (EVHRG) models by fitting the experimental information of net-proton and net-charge fluctuations measured in Au + Au collisions by the STAR Collaboration at the BNL Relativistic Heavy Ion Collider (RHIC). We observe that chemical freeze-out parameters obtained from lower and higher order fluctuations are almost the same for √{sNN}>27 GeV, but tend to deviate from each other at lower √{sNN}. Moreover, these separations increase with decrease of √{sNN}, and for a fixed √{sNN} increase towards central collisions. Furthermore, we observe an approximate scaling behavior of (μB/T ) /(μB/T)central with (Npart) /(Npart)central for the parameters estimated from lower order fluctuations for 11.5 ≤√{sNN}≤200 GeV. Scaling is violated for the parameters estimated from higher order fluctuations for √{sNN}=11.5 and 19.6 GeV. It is observed that the chemical freeze-out parameter, which can describe σ2/M of net protons very well in all energies and centralities, cannot describe the s σ equally well, and vice versa.

  14. The impact of fluctuations in boat velocity during the rowing cycle on race time.

    PubMed

    Hill, H; Fahrig, S

    2009-08-01

    In competitive rowing, the fluctuations in boat velocity during the rowing cycle are associated with an increased water resistance of the boat as compared with a boat moving at a constant velocity. We aimed to quantify the influence of the increased water resistance on race time using a mathematical approximation, based on the increase in physiological power being proportional to the 2nd power of boat speed. Biomechanical data (oar force, rowing angle, boat velocity, and boat acceleration) were measured when eight elite coxless pair crews performed a rowing test with a stepwise increasing stroke rate (SR: 20, 24, 28, and 32 min(-1)) that successively increased the mean boat speed. The results revealed a +4.59 s (SR 24.2) to +5.05 s (SR 31.5) 2000-m race-time difference compared with a boat hypothetically moving without velocity fluctuations. Velocity fluctuations were highly correlated with SR (r=0.93) because the accelerations of the rowers' body mass and the mass of the counteracting boat increase with SR. The possibilities to reduce velocity fluctuations and therefore race time are limited. For elite rowers, race time may be slightly reduced by a moderate reduction in SR that is compensated by an increased force output for each stroke.

  15. A method of reducing background fluctuation in tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Rendi; Dong, Xiaozhou; Bi, Yunfeng; Lv, Tieliang

    2018-03-01

    Optical interference fringe is the main factor that leads to background fluctuation in gas concentration detection based on tunable diode laser absorption spectroscopy. The interference fringes are generated by multiple reflections or scatterings upon optical surfaces in optical path and make the background signal present an approximated sinusoidal oscillation. To reduce the fluctuation of the background, a method that combines dual tone modulation (DTM) with vibration reflector (VR) is proposed in this paper. The combination of DTM and VR can make the unwanted periodic interference fringes to be averaged out and the effectiveness of the method in reducing background fluctuation has been verified by simulation and real experiments in this paper. In the detection system based on the proposed method, the standard deviation (STD) value of the background signal is decreased to 0.0924 parts per million (ppm), which is reduced by a factor of 16 compared with that of wavelength modulation spectroscopy. The STD value of 0.0924 ppm corresponds to the absorption of 4 . 328 × 10-6Hz - 1 / 2 (with effective optical path length of 4 m and integral time of 0.1 s). Moreover, the proposed method presents a better stable performance in reducing background fluctuation in long time experiments.

  16. Noise in pressure transducer readings produced by variations in solar radiation

    USGS Publications Warehouse

    Cain, S. F.; Davis, G.A.; Loheide, Steven P.; Butler, J.J.

    2004-01-01

    Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.

  17. Noise in pressure transducer readings produced by variations in solar radiation.

    PubMed

    Cain, Samuel F; Davis, Gregory A; Loheide, Steven P; Butler, James J

    2004-01-01

    Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.

  18. Gravity's Rainbow

    NASA Image and Video Library

    2018-04-23

    Saturn's rings display their subtle colors in this view captured on Aug. 22, 2009, by NASA's Cassini spacecraft. The particles that make up the rings range in size from smaller than a grain of sand to as large as mountains, and are mostly made of water ice. The exact nature of the material responsible for bestowing color on the rings remains a matter of intense debate among scientists. Images taken using red, green and blue spectral filters were combined to create this natural color view. Cassini's narrow-angle camera took the images at a distance of approximately 1.27 million miles (2.05 million kilometers) from the center of the rings. The Cassini spacecraft ended its mission on Sept. 15, 2017 https://photojournal.jpl.nasa.gov/catalog/PIA22418

  19. The colors of biomass burning aerosols in the atmosphere.

    PubMed

    Liu, Chao; Chung, Chul Eddy; Zhang, Feng; Yin, Yan

    2016-06-16

    Biomass burning aerosols mainly consist of black carbon (BC) and organic aerosols (OAs), and some of OAs are brown carbon (BrC). This study simulates the colors of BrC, BC and their mixture with scattering OAs in the ambient atmosphere by using a combination of light scattering simulations, a two-stream radiative transfer model and a RGB (Red, Green, Blue) color model. We find that both BCs and tar balls (a class of BrC) appear brownish at small particle sizes and blackish at large sizes. This is because the aerosol absorption Ångström exponent (AAE) largely controls the color and larger particles give smaller AAE values. At realistic size distributions, BCs look more blackish than tar balls, but still exhibit some brown color. However, when the absorptance of aerosol layer at green wavelength becomes larger than approximately 0.8, all biomass burning aerosols look blackish. The colors for mixture of purely scattering and absorptive carbonaceous aerosol layers in the atmosphere are also investigated. We suggest that the brownishness of biomass burning aerosols indicates the amount of BC/BrC as well as the ratio of BC to BrC.

  20. Tooth shade measurements under standard and nonstandard illumination and their agreement with skin color.

    PubMed

    Al-Dwairi, Ziad; Shaweesh, Ashraf; Kamkarfar, Sohrab; Kamkarfar, Shahrzad; Borzabadi-Farahani, Ali; Lynch, Edward

    2014-01-01

    The purpose of this study was to examine the relationship between skin color (shade) and tooth shade under standard and nonstandard illumination sources. Four hundred Jordanian participants (200 males, 200 females, 20 to 50 years of age) were studied. Skin colors were assessed and categorized using the L'Oreal and Revlon foundation shade guides (light, medium, dark). The Vita Pan Classical Shade Guide (VPCSG; Vident) and digital Vita EasyShade Intraoral Dental Spectrophotometer (VESIDS; Vident) were used to select shades in the middle thirds of maxillary central incisors; tooth shades were classified into four categories (highest, high, medium, low). Significant gender differences were observed for skin colors (P = .000) and tooth shade guide systems (P = .001 and .050 for VPCSG and VESIDS, respectively). The observed agreement was 100% and 93% for skin and tooth shade guides, respectively. The corresponding kappa statistic values were 1.00 and 0.79, respectively (substantial agreement, P < .001). The observed agreement between skin color and tooth shades (VPCSG and VESIDS) was approximately 50%. The digital tooth shade guide system can be a satisfactory substitute for classical tooth shade guides and clinical shade matching. There was only moderate agreement between skin color and tooth shade.

  1. A new orange emitting luciferase from the Southern-Amazon Pyrophorus angustus (Coleoptera: Elateridae) click-beetle: structure and bioluminescence color relationship, evolutional and ecological considerations.

    PubMed

    Amaral, Danilo T; Oliveira, Gabriela; Silva, Jaqueline R; Viviani, Vadim R

    2016-08-31

    Bioluminescent click-beetles display a wide variation of bioluminescence colors ranging from green to orange, including an unusual intra-specific color variation in the Jamaican Pyrophorus plagiophthalamus. Recently, we collected individuals of the Pyrophorus angustus species from the Southern Amazon forest, in Brazil, which displays an orange light emitting abdominal lantern. This species was also previously described from Central America, but displaying a bioluminescence spectrum from 536 nm (dorsal) to 578 nm (ventral). The biogeographic variation of the bioluminescence color in this species could be an adaptation to environmental reflectance and inter/intraspecific sexual competition. Here, we cloned, sequenced, characterized and performed site-direct mutagenesis of this new orange emitting luciferase. The in vitro luciferase spectrum displayed a peak at 594 nm, KM values for ATP and d-luciferin of 160 μM and 17 μM, respectively, and an optimum pH of approximately 8.5. Comparative multialignment and site-directed mutagenesis using different color emitting click-beetle luciferases from P. angustus, Fulgeochlizus bruchi and Pyrearinus termitilluminans luciferases cloned by our group showed an integral role of residue 247 in bioluminescence color modulation.

  2. An Operator Method for Field Moments from the Extended Parabolic Wave Equation and Analytical Solutions of the First and Second Moments for Atmospheric Electromagnetic Wave Propagation

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2004-01-01

    The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the delta-correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The comprehensive operator solution also allows one to obtain expressions for the longitudinal (generalized) second order moment. This is also considered and the solution for the atmospheric case is obtained and discussed. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.

  3. Implications of Pulser Voltage Ripple

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnard, J J

    In a recent set of measurements obtained by G. Kamin, W. Manning, A. Molvik, and J. Sullivan, the voltage waveform of the diode pulser had a ripple of approximately {+-}1.3% of the 65 kV flattop voltage, and the beam current had a larger corresponding ripple of approximately {+-}8.4% of the 1.5 mA average current at the location of the second Faraday cup, approximately 1.9 m downstream from the ion source. The period of the ripple was about 1 {mu}s. It was initially unclear whether this large current ripple was in fact a true measurement of the current or a spuriousmore » measurement of noise produced by the pulser electronics. The purpose of this note is to provide simulations which closely match the experimental results and thereby corroborate the physical nature of those measurements, and to provide predictions of the amplitude of the current ripples as they propagate to the end of linear transport section. Additionally analytic estimates are obtained which lend some insight into the nature of the current fluctuations and to provide an estimate of what the maximum amplitude of the current fluctuations are expected to be, and conversely what initial ripple in the voltage source is allowed, given a smaller acceptable tolerance on the line charge density.« less

  4. Spirit Scans Winter Haven

    NASA Image and Video Library

    2006-04-24

    This approximately true-color image shows paper-thin layers of light-toned, jagged-edged rocks; a light gray rock with smooth, rounded edges atop and drifts; and several dark gray to black, angular rocks with vesicles typical of hardened lava

  5. 9 CFR 2.75 - Records: Dealers and exhibitors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE ANIMAL WELFARE REGULATIONS Records § 2.75 Records: Dealers and exhibitors. (a)(1) Each dealer... breed or type; (B) The sex; (C) The date of birth or approximate age; and (D) The color and any...

  6. Unified TeV scale picture of baryogenesis and dark matter.

    PubMed

    Babu, K S; Mohapatra, R N; Nasri, Salah

    2007-04-20

    We present a simple extension of the minimal supersymmetric standard model which provides a unified picture of cosmological baryon asymmetry and dark matter. Our model introduces a gauge singlet field N and a color triplet field X which couple to the right-handed quark fields. The out-of-equilibrium decay of the Majorana fermion N mediated by the exchange of the scalar field X generates adequate baryon asymmetry for MN approximately 100 GeV and MX approximately TeV. The scalar partner of N (denoted N1) is naturally the lightest SUSY particle as it has no gauge interactions and plays the role of dark matter. The model is experimentally testable in (i) neutron-antineutron oscillations with a transition time estimated to be around 10(10)sec, (ii) discovery of colored particles X at LHC with mass of order TeV, and (iii) direct dark matter detection with a predicted cross section in the observable range.

  7. Time-dependent broken-symmetry density functional theory simulation of the optical response of entangled paramagnetic defects: Color centers in lithium fluoride

    NASA Astrophysics Data System (ADS)

    Janesko, Benjamin G.

    2018-02-01

    Parameter-free atomistic simulations of entangled solid-state paramagnetic defects may aid in the rational design of devices for quantum information science. This work applies time-dependent density functional theory (TDDFT) embedded-cluster simulations to a prototype entangled-defect system, namely two adjacent singlet-coupled F color centers in lithium fluoride. TDDFT calculations accurately reproduce the experimental visible absorption of both isolated and coupled F centers. The most accurate results are obtained by combining spin symmetry breaking to simulate strong correlation, a large fraction of exact (Hartree-Fock-like) exchange to minimize the defect electrons' self-interaction error, and a standard semilocal approximation for dynamical correlations between the defect electrons and the surrounding ionic lattice. These results motivate application of two-reference correlated ab initio approximations to the M-center, and application of TDDFT in parameter-free simulations of more complex entangled paramagnetic defect architectures.

  8. Final state interactions and the transverse structure of the pion using non-perturbative eikonal methods

    DOE PAGES

    Gamberg, Leonard; Schlegel, Marc

    2010-01-18

    In the factorized picture of semi-inclusive hadronic processes the naive time reversal-odd parton distributions exist by virtue of the gauge link which renders it color gauge invariant. The link characterizes the dynamical effect of initial/final-state interactions of the active parton due soft gluon exchanges with the target remnant. Though these interactions are non-perturbative, studies of final-state interaction have been approximated by perturbative one-gluon approximation in Abelian models. We include higher-order contributions by applying non-perturbative eikonal methods incorporating color degrees of freedom in a calculation of the Boer-Mulders function of the pion. Lastly, using this framework we explore under what conditionsmore » the Boer Mulders function can be described in terms of factorization of final state interactions and a spatial distribution in impact parameter space.« less

  9. Chaos Versus Noisy Periodicity: Alternative Hypotheses for Childhood Epidemics

    NASA Astrophysics Data System (ADS)

    Olsen, L. F.; Schaffer, W. M.

    1990-08-01

    Whereas case rates for some childhood diseases (chickenpox) often vary according to an almost regular annual cycle, the incidence of more efficiently transmitted infections such as measles is more variable. Three hypotheses have been proposed to account for such fluctuations. (i) Irregular dynamics result from random shocks to systems with stable equilibria. (ii) The intrinsic dynamics correspond to biennial cycles that are subject to stochastic forcing. (iii) Aperiodic fluctuations are intrinsic to the epidemiology. Comparison of real world data and epidemiological models suggests that measles epidemics are inherently chaotic. Conversely, the extent to which chickenpox outbreaks approximate a yearly cycle depends inversely on the population size.

  10. Cycles, scaling and crossover phenomenon in length of the day (LOD) time series

    NASA Astrophysics Data System (ADS)

    Telesca, Luciano

    2007-06-01

    The dynamics of the temporal fluctuations of the length of the day (LOD) time series from January 1, 1962 to November 2, 2006 were investigated. The power spectrum of the whole time series has revealed annual, semi-annual, decadal and daily oscillatory behaviors, correlated with oceanic-atmospheric processes and interactions. The scaling behavior was analyzed by using the detrended fluctuation analysis (DFA), which has revealed two different scaling regimes, separated by a crossover timescale at approximately 23 days. Flicker-noise process can describe the dynamics of the LOD time regime involving intermediate and long timescales, while Brownian dynamics characterizes the LOD time series for small timescales.

  11. Extending color primary set in spectral vector error diffusion by multilevel halftoning

    NASA Astrophysics Data System (ADS)

    Norberg, Ole; Nyström, Daniel

    2013-02-01

    Ever since its origin in the late 19th century, a color reproduction technology has relied on a trichromatic color reproduction approach. This has been a very successful method and also fundamental for the development of color reproduction devices. Trichromatic color reproduction is sufficient to approximate the range of colors perceived by the human visual system. However, tricromatic systems only have the ability to match colors when the viewing illumination for the reproduction matches that of the original. Furthermore, the advancement of digital printing technology has introduced printing systems with additional color channels. These additional color channels are used to extend the tonal range capabilities in light and dark regions and to increase color gamut. By an alternative approach the addition color channels can also be used to reproduce the spectral information of the original color. A reproduced spectral match will always correspond to original independent of lighting situation. On the other hand, spectral color reproductions also introduce a more complex color processing by spectral color transfer functions and spectral gamut mapping algorithms. In that perspective, spectral vector error diffusion (sVED) look like a tempting approach with a simple workflow where the inverse color transfer function and halftoning is performed simultaneously in one single operation. Essential for the sVED method are the available color primaries, created by mixing process colors. Increased numbers of as well as optimal spectral characteristics of color primaries are expected to significantly improve the color accuracy of the spectral reproduction. In this study, sVED in combination with multilevel halftoning has been applied on a ten channel inkjet system. The print resolution has been reduced and the underlying physical high resolution of the printer has been used to mix additional primaries. With ten ink channels and halfton cells built-up by 2x2 micro dots where each micro dot can be a combination of all ten inks the number of possible ink combinations gets huge. Therefore, the initial study has been focused on including lighter colors to the intrinsic primary set. Results from this study shows that by this approach the color reproduction accuracy increases significantly. The RMS spectral difference to target color for multilevel halftoning is less than 1/6 of the difference achieved by binary halftoning.

  12. Financial time series: A physics perspective

    NASA Astrophysics Data System (ADS)

    Gopikrishnan, Parameswaran; Plerou, Vasiliki; Amaral, Luis A. N.; Rosenow, Bernd; Stanley, H. Eugene

    2000-06-01

    Physicists in the last few years have started applying concepts and methods of statistical physics to understand economic phenomena. The word ``econophysics'' is sometimes used to refer to this work. One reason for this interest is the fact that Economic systems such as financial markets are examples of complex interacting systems for which a huge amount of data exist and it is possible that economic problems viewed from a different perspective might yield new results. This article reviews the results of a few recent phenomenological studies focused on understanding the distinctive statistical properties of financial time series. We discuss three recent results-(i) The probability distribution of stock price fluctuations: Stock price fluctuations occur in all magnitudes, in analogy to earthquakes-from tiny fluctuations to very drastic events, such as market crashes, eg., the crash of October 19th 1987, sometimes referred to as ``Black Monday''. The distribution of price fluctuations decays with a power-law tail well outside the Lévy stable regime and describes fluctuations that differ by as much as 8 orders of magnitude. In addition, this distribution preserves its functional form for fluctuations on time scales that differ by 3 orders of magnitude, from 1 min up to approximately 10 days. (ii) Correlations in financial time series: While price fluctuations themselves have rapidly decaying correlations, the magnitude of fluctuations measured by either the absolute value or the square of the price fluctuations has correlations that decay as a power-law and persist for several months. (iii) Correlations among different companies: The third result bears on the application of random matrix theory to understand the correlations among price fluctuations of any two different stocks. From a study of the eigenvalue statistics of the cross-correlation matrix constructed from price fluctuations of the leading 1000 stocks, we find that the largest 5-10% of the eigenvalues and the corresponding eigenvectors show systematic deviations from the predictions for a random matrix, whereas the rest of the eigenvalues conform to random matrix behavior-suggesting that these 5-10% of the eigenvalues contain system-specific information about correlated behavior. .

  13. Development of softcopy environment for primary color banding visibility assessment

    NASA Astrophysics Data System (ADS)

    Min, Byungseok; Pizlo, Zygmunt; Allebach, Jan P.

    2008-01-01

    Fine-pitch banding is one of the most unwanted artifacts in laser electrophotographic (EP) printers. It is perceived as a quasiperiodic fluctuation in the process direction. Therefore, it is essential for printer vendors to know how banding is perceived by humans in order to improve print quality. Monochrome banding has been analyzed and assessed by many researchers; but there is no literature that deals with the banding of color laser printers as measured from actual prints. The study of color banding is complicated by the fact that the color banding signal is physically defined in a three-dimensional color space, while banding perception is described in a one-dimensional sense such as more banding or less banding. In addition, the color banding signal arises from the independent contributions of the four primary colorant banding signals. It is not known how these four distinct signals combine to give rise to the perception of color banding. In this paper, we develop a methodology to assess the banding visibility of the primary colorant cyan based on human visual perception. This is our first step toward studying the more general problem of color banding in combinations of two or more colorants. According to our method, we print and scan the cyan test patch, and extract the banding profile as a one dimensional signal so that we can freely adjust the intensity of banding. Thereafter, by exploiting the pulse width modulation capability of the laser printer, the extracted banding profile is used to modulate a pattern consisting of periodic lines oriented in the process direction, to generate extrinsic banding. This avoids the effect of the halftoning algorithm on the banding. Furthermore, to conduct various banding assessments more efficiently, we also develop a softcopy environment that emulates a hardcopy image on a calibrated monitor, which requires highly accurate device calibration throughout the whole system. To achieve the same color appearance as the hardcopy, we perform haploscopic matching experiments that allow each eye to independently adapt to different viewing conditions; and we find an appearance mapping function in the adapted XYZ space. Finally, to validate the accuracy of the softcopy environment, we conduct a banding matching experiment at three different banding levels by the memory matching method, and confirm that our softcopy environment produces the same banding perception as the hardcopy. In addition, we perform two more separate psychophysical experiments to measure the differential threshold of the intrinsic banding in both the hardcopy and softcopy environments, and confirm that the two thresholds are statistically identical. The results show that with our target printer, human subjects can see a just noticeable difference with a 9% reduction in the banding magnitude for the cyan colorant.

  14. Alternatives to Pyrotechnic Distress Signals; Additional Signal Evaluation

    DTIC Science & Technology

    2017-06-01

    conducted a series of laboratory experiments designed to determine the optimal signal color and temporal pattern for identification against a variety of...practice” trials at approximately 2030 local time and began the actual Test 1 observation trials at approximately 2130. The series of trials finished at...Lewandowski , 860-271-2692, email: M.J.Lewandowski@uscg.mil 16. Abstract (MAXIMUM 200 WORDS) This report is the fourth in a series that details work

  15. Evaluation of satellite remote sensing and automatic data techniques for characterization of wetlands and marshlands

    NASA Technical Reports Server (NTRS)

    Cartmill, R. H. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Using the 12S Digicol color additive viewer and eight color classification map has been produced of a portion of the study area. Channel 3 of the MSS produced the best map. Enlargements of the MSS data have been accomplished by using the Data Analysis Station. The attached film recorder has three color guns which are capable of placing 2400 square elements across a 9 inch film. It has been found that by repeating ERTS element 9 times and each scan line 13 times that a map of a scale approximately 1:62,000 can be produced as a color negative film strip. This can be contact printed to produce a color map of the scale. As yet this procedure does not correct for image skew caused by rotation which is believed to be the major source of distortion and blockiness in the image. However, the final product which has not undergone any photographic enlargement is superior to photographically enlarged maps of the same scale.

  16. The blue lizard spandrel and the island syndrome.

    PubMed

    Raia, Pasquale; Guarino, Fabio M; Turano, Mimmo; Polese, Gianluca; Rippa, Daniela; Carotenuto, Francesco; Monti, Daria M; Cardi, Manuela; Fulgione, Domenico

    2010-09-20

    Many small vertebrates on islands grow larger, mature later, lay smaller clutches/litters, and are less sexually dimorphic and aggressive than their mainland relatives. This set of observations is referred to as the 'Island Syndrome'. The syndrome is linked to high population density on islands. We predicted that when population density is low and/or fluctuating insular vertebrates may evolve correlated trait shifts running opposite to the Island Syndrome, which we collectively refer to as the 'reversed island syndrome' (RIS) hypothesis. On the proximate level, we hypothesized that RIS is caused by increased activity levels in melanocortin receptors. Melanocortins are postranslational products of the proopiomelanocortin gene, which controls pleiotropically pigmentation, aggressiveness, sexual activity, and food intake in vertebrates. We tested the RIS hypothesis performing a number of behavioral, genetic, and ontogenetic tests on a blue colored insular variant of the Italian Wall lizard Podarcis sicula, living on a small island off the Southern Italian coast. The population density of this blue-colored variant was generally low and highly fluctuating from one year to the next.In keeping with our predictions, insular lizards were more aggressive and sexually dimorphic than their mainland relatives. Insular males had wide, peramorphic heads. The growth rate of insular females was slower than growth rates of mainland individuals of both sexes, and of insular males. Consequently, size and shape dimorphism are higher on the Island. As predicted, melanocortin receptors were much more active in individuals of the insular population. Insular lizards have a higher food intake rate than mainland individuals, which is consistent with the increased activity of melanocortin receptors. This may be adaptive in an unpredictable environment such as Licosa Island. Insular lizards of both sexes spent less time basking than their mainland relatives. We suspect this is a by-product (spandrel) of the positive selection for increased activity of melanocortins receptors. We contend that when population density is either low or fluctuating annually as a result of environmental unpredictability, it may be advantageous to individuals to behave more aggressively, to raise their rate of food intake, and allocate more energy into reproduction.

  17. The blue lizard spandrel and the island syndrome

    PubMed Central

    2010-01-01

    Background Many small vertebrates on islands grow larger, mature later, lay smaller clutches/litters, and are less sexually dimorphic and aggressive than their mainland relatives. This set of observations is referred to as the 'Island Syndrome'. The syndrome is linked to high population density on islands. We predicted that when population density is low and/or fluctuating insular vertebrates may evolve correlated trait shifts running opposite to the Island Syndrome, which we collectively refer to as the 'reversed island syndrome' (RIS) hypothesis. On the proximate level, we hypothesized that RIS is caused by increased activity levels in melanocortin receptors. Melanocortins are postranslational products of the proopiomelanocortin gene, which controls pleiotropically pigmentation, aggressiveness, sexual activity, and food intake in vertebrates. Results We tested the RIS hypothesis performing a number of behavioral, genetic, and ontogenetic tests on a blue colored insular variant of the Italian Wall lizard Podarcis sicula, living on a small island off the Southern Italian coast. The population density of this blue-colored variant was generally low and highly fluctuating from one year to the next. In keeping with our predictions, insular lizards were more aggressive and sexually dimorphic than their mainland relatives. Insular males had wide, peramorphic heads. The growth rate of insular females was slower than growth rates of mainland individuals of both sexes, and of insular males. Consequently, size and shape dimorphism are higher on the Island. As predicted, melanocortin receptors were much more active in individuals of the insular population. Insular lizards have a higher food intake rate than mainland individuals, which is consistent with the increased activity of melanocortin receptors. This may be adaptive in an unpredictable environment such as Licosa Island. Insular lizards of both sexes spent less time basking than their mainland relatives. We suspect this is a by-product (spandrel) of the positive selection for increased activity of melanocortins receptors. Conclusions We contend that when population density is either low or fluctuating annually as a result of environmental unpredictability, it may be advantageous to individuals to behave more aggressively, to raise their rate of food intake, and allocate more energy into reproduction. PMID:20854657

  18. Quantum corrections of the truncated Wigner approximation applied to an exciton transport model.

    PubMed

    Ivanov, Anton; Breuer, Heinz-Peter

    2017-04-01

    We modify the path integral representation of exciton transport in open quantum systems such that an exact description of the quantum fluctuations around the classical evolution of the system is possible. As a consequence, the time evolution of the system observables is obtained by calculating the average of a stochastic difference equation which is weighted with a product of pseudoprobability density functions. From the exact equation of motion one can clearly identify the terms that are also present if we apply the truncated Wigner approximation. This description of the problem is used as a basis for the derivation of a new approximation, whose validity goes beyond the truncated Wigner approximation. To demonstrate this we apply the formalism to a donor-acceptor transport model.

  19. Coordinated X-ray and optical observations of Scorpius X-1

    NASA Technical Reports Server (NTRS)

    Augusteijn, T.; Karatasos, K.; Papadakis, M.; Paterakis, G.; Kikuchi, S.; Brosch, N.; Leibowitz, E.; Hertz, P.; Mitsuda, K.; Dotani, T.

    1992-01-01

    We present the results of coordinated, partly simultaneous, optical and X-ray (Ginga) observations of the low-mass X-ray binary Sco X-1. We find that the division between the optically bright and faint state, at a blue magnitude B = 12.8, corresponds to the change from the normal to the flaring branch in the X-ray color-color diagram as proposed by Priedhorsky et al. (1986). From archival Walraven data we find that in both optical states the orbital light curve is approximately sinusoidal, and have a similar amplitudes.

  20. INFLIGHT - APOLLO 10 (CREW ACTIVITIES)

    NASA Image and Video Library

    1969-05-20

    S69-34313 (20 May 1969) --- Astronaut Eugene A. Cernan is shown spinning a water bag to demonstrate the collection of hydrogen bubbles in this color reproduction taken from the fifth telecast made by the color television camera aboard the Apollo 10 spacecraft. When this picture was made the Apollo 10 spacecraft was approximately 175,300 nautical miles from Earth, and only 43,650 nautical miles from the moon. Cernan is the Apollo 10 lunar module pilot. Also, aboard Apollo 10 were astronauts Thomas P. Stafford, commander; and John W. Young, command module pilot.

Top