GREAT: a gradient-based color-sampling scheme for Retinex.
Lecca, Michela; Rizzi, Alessandro; Serapioni, Raul Paolo
2017-04-01
Modeling the local color spatial distribution is a crucial step for the algorithms of the Milano Retinex family. Here we present GREAT, a novel, noise-free Milano Retinex implementation based on an image-aware spatial color sampling. For each channel of a color input image, GREAT computes a 2D set of edges whose magnitude exceeds a pre-defined threshold. Then GREAT re-scales the channel intensity of each image pixel, called target, by the average of the intensities of the selected edges weighted by a function of their positions, gradient magnitudes, and intensities relative to the target. In this way, GREAT enhances the input image, adjusting its brightness, contrast and dynamic range. The use of the edges as pixels relevant to color filtering is justified by the importance that edges play in human color sensation. The name GREAT comes from the expression "Gradient RElevAnce for ReTinex," which refers to the threshold-based definition of a gradient relevance map for edge selection and thus for image color filtering.
Demography of SDSS Early-type Galaxies from the Perspective of Radial Color Gradients
NASA Astrophysics Data System (ADS)
Suh, Hyewon; Jeong, H.; Oh, K.; Yi, S. K.; Ferreras, I.; Schawinski, K.
2010-01-01
We have investigated the radial g-r color gradients of early-type galaxies in the Sloan Digital Sky Survey (SDSS) DR6 in the redshift range 0.00 < z < 0.06. The majority of massive early-type galaxies show a negative color gradient (centers being redder). On the other hand, roughly 30 percent of the galaxies in this sample show positive color gradients (centers being bluer). These positive-gradient galaxies often show strong Hβ absorption line strengths and/or emission line ratios that are consistent with containing young stellar populations. Combining the optical data with Galaxy Evolution Explorer (GALEX) UV photometry, we find that all positive-gradient galaxies show blue UV-optical colors. This implies that the residual star formation in early-type galaxies is centrally concentrated. These positive-gradient galaxies tend to live in lower density regions. They are also a bit more likely to have a late-type companion galaxy, hinting at a possible role of interactions with a gas-rich companion. A simplistic population analysis shows that these positive color gradients are visible only for half a billion years after a star burst. Moreover, the positive-gradient galaxies occupy different regions in the fundamental planes from the outnumbering negative-gradient galaxies. However, the positions of the positive-gradient galaxies on the fundamental planes cannot be attributed to any reasonable amount of recent star formation alone but require substantially lower velocity dispersions to begin with. Our results based on the optical data are consistent with the residual star formation interpretation which was based on the GALEX UV data. A low-level residual star formation seems continuing in most of the less-massive early-type galaxies in their centers.
NASA Astrophysics Data System (ADS)
Phan, Raymond; Androutsos, Dimitrios
2008-01-01
In this paper, we present a logo and trademark retrieval system for unconstrained color image databases that extends the Color Edge Co-occurrence Histogram (CECH) object detection scheme. We introduce more accurate information to the CECH, by virtue of incorporating color edge detection using vector order statistics. This produces a more accurate representation of edges in color images, in comparison to the simple color pixel difference classification of edges as seen in the CECH. Our proposed method is thus reliant on edge gradient information, and as such, we call this the Color Edge Gradient Co-occurrence Histogram (CEGCH). We use this as the main mechanism for our unconstrained color logo and trademark retrieval scheme. Results illustrate that the proposed retrieval system retrieves logos and trademarks with good accuracy, and outperforms the CECH object detection scheme with higher precision and recall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, F. S.; Jiang, Dongfei; Li, Yao
The rest-frame UV–optical (i.e., NUV − B ) color index is sensitive to the low-level recent star formation and dust extinction, but it is insensitive to the metallicity. In this Letter, we have measured the rest-frame NUV − B color gradients in ∼1400 large ( r {sub e} > 0.″18), nearly face-on ( b / a > 0.5) main sequence star-forming galaxies (SFGs) between redshift 0.5 and 1.5 in the CANDELS/GOODS-S and UDS fields. With this sample, we study the origin of UV–optical color gradients in the SFGs at z ∼ 1 and discuss their link with the buildup ofmore » stellar mass. We find that the more massive, centrally compact, and more dust extinguished SFGs tend to have statistically more negative raw color gradients (redder centers) than the less massive, centrally diffuse, and less dusty SFGs. After correcting for dust reddening based on optical-spectral energy distribution fitting, the color gradients in the low-mass ( M {sub *} < 10{sup 10} M {sub ⊙}) SFGs generally become quite flat, while most of the high-mass ( M {sub *} > 10{sup 10.5} M {sub ⊙}) SFGs still retain shallow negative color gradients. These findings imply that dust reddening is likely the principal cause of negative color gradients in the low-mass SFGs, while both increased central dust reddening and buildup of compact old bulges are likely the origins of negative color gradients in the high-mass SFGs. These findings also imply that at these redshifts the low-mass SFGs buildup their stellar masses in a self-similar way, while the high-mass SFGs grow inside out.« less
Segmentation of human face using gradient-based approach
NASA Astrophysics Data System (ADS)
Baskan, Selin; Bulut, M. Mete; Atalay, Volkan
2001-04-01
This paper describes a method for automatic segmentation of facial features such as eyebrows, eyes, nose, mouth and ears in color images. This work is an initial step for wide range of applications based on feature-based approaches, such as face recognition, lip-reading, gender estimation, facial expression analysis, etc. Human face can be characterized by its skin color and nearly elliptical shape. For this purpose, face detection is performed using color and shape information. Uniform illumination is assumed. No restrictions on glasses, make-up, beard, etc. are imposed. Facial features are extracted using the vertically and horizontally oriented gradient projections. The gradient of a minimum with respect to its neighbor maxima gives the boundaries of a facial feature. Each facial feature has a different horizontal characteristic. These characteristics are derived by extensive experimentation with many face images. Using fuzzy set theory, the similarity between the candidate and the feature characteristic under consideration is calculated. Gradient-based method is accompanied by the anthropometrical information, for robustness. Ear detection is performed using contour-based shape descriptors. This method detects the facial features and circumscribes each facial feature with the smallest rectangle possible. AR database is used for testing. The developed method is also suitable for real-time systems.
Merging Features and Optical-Near Infrared Color Gradients of Early-type Galaxies
NASA Astrophysics Data System (ADS)
Kim, Duho; Im, M.
2012-01-01
It has been suggested that merging plays an important role in the formation and the evolution of early-type galaxies (ETGs). Optical-NIR color gradients of ETGs in high density environments are found to be less steep than those of ETGs in low density environments, hinting frequent merger activities in ETGs in high density environments. In order to examine if the flat color gradients are the result of dry mergers, we studied the relations between merging features, color gradient, and environments of 198 low redshift ETGs selected from Sloan Digital Sky Survey (SDSS) Stripe82. Near Infrared (NIR) images are taken from UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). Color(r-K) gradients of ETGs with tidal features are a little flatter than relaxed ETGs, but not significant. We found that massive (>1011.3 M⊙) relaxed ETGs have 2.5 times less scattered color gradients than less massive ETGs. The less scattered color gradients of massive ETGs could be evidence of dry merger processes in the evolution of massive ETGs. We found no relation between color gradients of ETGs and their environments.
NASA Astrophysics Data System (ADS)
Liu, F. S.; Jiang, Dongfei; Faber, S. M.; Koo, David C.; Yesuf, Hassen M.; Tacchella, Sandro; Mao, Shude; Wang, Weichen; Guo, Yicheng; Fang, Jerome J.; Barro, Guillermo; Zheng, Xianzhong; Jia, Meng; Tong, Wei; Liu, Lu; Meng, Xianmin
2017-07-01
The rest-frame UV-optical (I.e., NUV - B) color is sensitive to both low-level recent star formation (specific star formation rate—sSFR) and dust. In this Letter, we extend our previous work on the origins of NUV - B color gradients in star-forming galaxies (SFGs) at z˜ 1 to those at z˜ 2. We use a sample of 1335 large (semimajor axis radius {R}{SMA}> 0\\buildrel{\\prime\\prime}\\over{.} 18) SFGs with extended UV emission out to 2{R}{SMA} in the mass range {M}* ={10}9{--}{10}11 {M}⊙ at 1.5< z< 2.8 in the CANDELS/GOODS-S and UDS fields. We show that these SFGs generally have negative NUV - B color gradients (redder centers), and their color gradients strongly increase with galaxy mass. We also show that the global rest-frame FUV - NUV color is approximately linear with {A}{{V}}, which is derived by modeling the observed integrated FUV to NIR spectral energy distributions of the galaxies. Applying this integrated calibration to our spatially resolved data, we find a negative dust gradient (more dust extinguished in the centers), which steadily becomes steeper with galaxy mass. We further find that the NUV - B color gradients become nearly zero after correcting for dust gradients regardless of galaxy mass. This indicates that the sSFR gradients are negligible and dust reddening is likely the principal cause of negative UV-optical color gradients in these SFGs. Our findings support that the buildup of the stellar mass in SFGs at Cosmic Noon is self-similar inside 2{R}{SMA}.
Clumpy Galaxies in CANDELS. II. Physical Properties of UV-bright Clumps at 0.5 ≤ z < 3
NASA Astrophysics Data System (ADS)
Guo, Yicheng; Rafelski, Marc; Bell, Eric F.; Conselice, Christopher J.; Dekel, Avishai; Faber, S. M.; Giavalisco, Mauro; Koekemoer, Anton M.; Koo, David C.; Lu, Yu; Mandelker, Nir; Primack, Joel R.; Ceverino, Daniel; de Mello, Duilia F.; Ferguson, Henry C.; Hathi, Nimish; Kocevski, Dale; Lucas, Ray A.; Pérez-González, Pablo G.; Ravindranath, Swara; Soto, Emmaris; Straughn, Amber; Wang, Weichen
2018-02-01
Studying giant star-forming clumps in distant galaxies is important to understand galaxy formation and evolution. At present, however, observers and theorists have not reached a consensus on whether the observed “clumps” in distant galaxies are the same phenomenon that is seen in simulations. In this paper, as a step to establish a benchmark of direct comparisons between observations and theories, we publish a sample of clumps constructed to represent the commonly observed “clumps” in the literature. This sample contains 3193 clumps detected from 1270 galaxies at 0.5≤slant z< 3.0. The clumps are detected from rest-frame UV images, as described in our previous paper. Their physical properties (e.g., rest-frame color, stellar mass ({M}* ), star formation rate (SFR), age, and dust extinction) are measured by fitting the spectral energy distribution (SED) to synthetic stellar population models. We carefully test the procedures of measuring clump properties, especially the method of subtracting background fluxes from the diffuse component of galaxies. With our fiducial background subtraction, we find a radial clump U ‑ V color variation, where clumps close to galactic centers are redder than those in outskirts. The slope of the color gradient (clump color as a function of their galactocentric distance scaled by the semimajor axis of galaxies) changes with redshift and {M}* of the host galaxies: at a fixed {M}* , the slope becomes steeper toward low redshift, and at a fixed redshift, it becomes slightly steeper with {M}* . Based on our SED fitting, this observed color gradient can be explained by a combination of a negative age gradient, a negative E(B ‑ V) gradient, and a positive specific SFR gradient of the clumps. We also find that the color gradients of clumps are steeper than those of intra-clump regions. Correspondingly, the radial gradients of the derived physical properties of clumps are different from those of the diffuse component or intra-clump regions.
Physical Properties of UV-bright Clumps in Star-forming Galaxies at 0.5 ≤ z < 3
NASA Astrophysics Data System (ADS)
Guo, Yicheng; Rafelski, Marc; Bell, Eric F.; Dekel, Avishai; Mandelker, Nir; Primack, Joel R.; CANDELS
2018-06-01
Studying giant star-forming clumps in distant galaxies is important to understand galaxy formation and evolution. At present, however, observers and theorists have not reached a consensus on whether the observed “clumps” in distant galaxies are the same phenomenon that is seen in simulations. As a step to establish a benchmark of direct comparisons between observations and theories, we publish a sample of clumps constructed to represent the commonly observed “clumps” in the literature. This sample contains 3193 clumps detected from the rest-frame images of 1270 galaxies at 0.5≤z<3.0. The physical properties of clumps (e.g., rest-frame color, stellar mass, star formation rate, age, and dust extinction) are measured by fitting the spectral energy distribution (SED) to synthetic stellar population models. We carefully test the procedures of measuring clump properties, especially the method of subtracting background fluxes from the diffuse component of galaxies. With our fiducial background subtraction, we find a radial clump U-V color variation, where clumps close to galactic centers are redder than those in outskirts. The slope of the color gradient (clump color as a function of their galactocentric distance scaled by the semimajor axis of galaxies) changes with redshift and stellar mass of the host galaxies: at a fixed stellar mass, the slope becomes steeper toward low redshift, and at a fixed redshift, it becomes slightly steeper with stellar mass. Based on our SED fitting, this observed color gradient can be explained by a combination of a negative age gradient, a negative E(B-V) gradient, and a positive specific star formation rate gradient of the clumps. We also find that the color gradients of clumps are steeper than those of intra-clump regions. Correspondingly, the radial gradients of the derived physical properties of clumps are different from those of the diffuse component or intra-clump regions.
Enviromental Effects on Internal Color Gradients of Early-Type Galaxies
NASA Astrophysics Data System (ADS)
La Barbera, F.; de Carvalho, R. R.; Gal, R. R.; Busarello, G.; Haines, C. P.; Mercurio, A.; Merluzzi, P.; Capaccioli, M.; Djorgovski, S. G.
2007-05-01
One of the most debated issues of observational and theoretical cosmology is that of how the environment affects the formation and evolution of galaxies. To gain new insight into this subject, we have derived surface photometry for a sample of 3,000 early-type galaxies belonging to 163 clusters with different richness, spanning a redshift range of 0.05 to 0.25. This large data-set is used to analyze how the color distribution inside galaxies depends on several parameters, such as cluster richness, local galaxy density, galaxy luminosity and redshift. We find that the internal color profile of galaxies strongly depends on the environment where galaxies reside. Galaxies in poor and rich clusters are found to follow two distinct trends in the color gradient vs. redshift diagram, with color gradients beeing less steep in rich rather than in poor clusters. No dependence of color gradients on galaxy luminosity is detected both for poor and rich clusters. We find that color gradients strongly depend on local galaxy density, with more shallow gradients in high density regions. Interestingly, this result holds only for low richness clusters, with color gradients of galaxies in rich clusters showing no dependence on local galaxy density. Our results support a reasonable picture whereby young early-type galaxies form in a dissipative collapse process, and then undergo increased (either major or minor) merging activity in richer rather than in poor clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Barbera, F.; De Carvalho, R. R.; De La Rosa, I. G.
2010-11-15
We present an analysis of stellar population gradients in 4546 early-type galaxies (ETGs) with photometry in grizYHJK along with optical spectroscopy. ETGs were selected as bulge-dominated systems, displaying passive spectra within the SDSS fibers. A new approach is described which utilizes color information to constrain age and metallicity gradients. Defining an effective color gradient, {nabla}{sub *}, which incorporates all of the available color indices, we investigate how {nabla}{sub *} varies with galaxy mass proxies, i.e., velocity dispersion, stellar (M{sub *}) and dynamical (M{sub dyn}) masses, as well as age, metallicity, and [{alpha}/Fe]. ETGs with M{sub dyn} larger than 8.5 xmore » 10{sup 10} M{sub sun} have increasing age gradients and decreasing metallicity gradients with respect to mass, metallicity, and enhancement. We find that velocity dispersion and [{alpha}/Fe] are the main drivers of these correlations. ETGs with 2.5 x 10{sup 10} M{sub sun} {<=} M{sub dyn} {<=} 8.5 x 10{sup 10} M{sub sun} show no correlation of age, metallicity, and color gradients with respect to mass, although color gradients still correlate with stellar population parameters, and these correlations are independent of each other. In both mass regimes, the striking anti-correlation between color gradient and {alpha}-enhancement is significant at {approx}5{sigma} and results from the fact that metallicity gradient decreases with [{alpha}/Fe]. This anti-correlation may reflect the fact that star formation and metallicity enrichment are regulated by the interplay between the energy input from supernovae, and the temperature and pressure of the hot X-ray gas in ETGs. For all mass ranges, positive age gradients are associated with old galaxies (>5-7 Gyr). For galaxies younger than {approx}5 Gyr, mostly at low mass, the age gradient tends to be anti-correlated with the Age parameter, with more positive gradients at younger ages.« less
Gradient approach to quantify the gradation smoothness for output media
NASA Astrophysics Data System (ADS)
Kim, Youn Jin; Bang, Yousun; Choh, Heui-Keun
2010-01-01
We aim to quantify the perception of color gradation smoothness using objectively measurable properties. We propose a model to compute the smoothness of hardcopy color-to-color gradations. It is a gradient-based method that can be determined as a function of the 95th percentile of second derivative for the tone-jump estimator and the fifth percentile of first derivative for the tone-clipping estimator. Performance of the model and a previously suggested method were psychophysically appreciated, and their prediction accuracies were compared to each other. Our model showed a stronger Pearson correlation to the corresponding visual data, and the magnitude of the Pearson correlation reached up to 0.87. Its statistical significance was verified through analysis of variance. Color variations of the representative memory colors-blue sky, green grass and Caucasian skin-were rendered as gradational scales and utilized as the test stimuli.
Chromatic Properties of Index of Refraction Gradients in Glass.
NASA Astrophysics Data System (ADS)
Ryan-Howard, Danette Patrice
The chromatic properties of index of refraction gradients have been predicted theoretically and verified experimentally. The use of these materials in the design of color corrected optical systems has been investigated and confirmed by the evaluation of two fabricated lenses. A model for the chromatic properties of gradient index materials has been developed. The index of refraction is calculated based on the composition of the material. Since the index of refraction and the conventional Abbe number change as a function of the composition of the glass, a gradient Abbe number and a partial dispersion are defined. Analysis of combinations of ion exchange pairs and glasses result in a wide range of gradient Abbe numbers and partial dispersions. These ranges can be further extended by using glasses which contain more than one exchange ion or by using mixed salt baths. The chromatic properties were measured with a multiple wavelength A.C. interferometer. The gradient Abbe numbers and partial dispersions for a number of samples were calculated. Evaluation of the samples showed that the index and dispersion data correlated well with that predicted by the model. Thin lens formulae for the paraxial axial color and secondary spectrum of a radial gradient singlet with curves were examined. The design of a single element 10x microscope objective verified the applicability of these formulae. The design of a two element 40x microscope objective showed that a six element diffraction limited 40x objective can be replaced with a two element system composed of one homogeneous lens and one gradient lens without sacrificing either monochromatic performance or color correction. A previously fabricated axial gradient collimator and a fabricated Wood element were evaluated. Correlation of the directly measured quantities, paraxial axial color, secondary spectrum and spherochromatism with the values predicted by the model verified that the predicted superior performance of gradient-index lenses can be obtained.
Multi-color incomplete Cholesky conjugate gradient methods for vector computers. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Poole, E. L.
1986-01-01
In this research, we are concerned with the solution on vector computers of linear systems of equations, Ax = b, where A is a larger, sparse symmetric positive definite matrix. We solve the system using an iterative method, the incomplete Cholesky conjugate gradient method (ICCG). We apply a multi-color strategy to obtain p-color matrices for which a block-oriented ICCG method is implemented on the CYBER 205. (A p-colored matrix is a matrix which can be partitioned into a pXp block matrix where the diagonal blocks are diagonal matrices). This algorithm, which is based on a no-fill strategy, achieves O(N/p) length vector operations in both the decomposition of A and in the forward and back solves necessary at each iteration of the method. We discuss the natural ordering of the unknowns as an ordering that minimizes the number of diagonals in the matrix and define multi-color orderings in terms of disjoint sets of the unknowns. We give necessary and sufficient conditions to determine which multi-color orderings of the unknowns correpond to p-color matrices. A performance model is given which is used both to predict execution time for ICCG methods and also to compare an ICCG method to conjugate gradient without preconditioning or another ICCG method. Results are given from runs on the CYBER 205 at NASA's Langley Research Center for four model problems.
Spectral edge: gradient-preserving spectral mapping for image fusion.
Connah, David; Drew, Mark S; Finlayson, Graham D
2015-12-01
This paper describes a novel approach to image fusion for color display. Our goal is to generate an output image whose gradient matches that of the input as closely as possible. We achieve this using a constrained contrast mapping paradigm in the gradient domain, where the structure tensor of a high-dimensional gradient representation is mapped exactly to that of a low-dimensional gradient field which is then reintegrated to form an output. Constraints on output colors are provided by an initial RGB rendering. Initially, we motivate our solution with a simple "ansatz" (educated guess) for projecting higher-D contrast onto color gradients, which we expand to a more rigorous theorem to incorporate color constraints. The solution to these constrained optimizations is closed-form, allowing for simple and hence fast and efficient algorithms. The approach can map any N-D image data to any M-D output and can be used in a variety of applications using the same basic algorithm. In this paper, we focus on the problem of mapping N-D inputs to 3D color outputs. We present results in five applications: hyperspectral remote sensing, fusion of color and near-infrared or clear-filter images, multilighting imaging, dark flash, and color visualization of magnetic resonance imaging diffusion-tensor imaging.
A new region-edge based level set model with applications to image segmentation
NASA Astrophysics Data System (ADS)
Zhi, Xuhao; Shen, Hong-Bin
2018-04-01
Level set model has advantages in handling complex shapes and topological changes, and is widely used in image processing tasks. The image segmentation oriented level set models can be grouped into region-based models and edge-based models, both of which have merits and drawbacks. Region-based level set model relies on fitting to color intensity of separated regions, but is not sensitive to edge information. Edge-based level set model evolves by fitting to local gradient information, but can get easily affected by noise. We propose a region-edge based level set model, which considers saliency information into energy function and fuses color intensity with local gradient information. The evolution of the proposed model is implemented by a hierarchical two-stage protocol, and the experimental results show flexible initialization, robust evolution and precise segmentation.
Ding, Shiming; Wang, Yan; Xu, Di; Zhu, Chungang; Zhang, Chaosheng
2013-07-16
We report a highly promising technique for the high-resolution imaging of labile phosphorus (P) in sediments and soils in combination with the diffusive gradients in thin films (DGT). This technique was based on the surface coloration of the Zr-oxide binding gel using the conventional molybdenum blue method following the DGT uptake of P to this gel. The accumulated mass of the P in the gel was then measured according to the grayscale intensity on the gel surface using computer-imaging densitometry. A pretreatment of the gel in hot water (85 °C) for 5 d was required to immobilize the phosphate and the formed blue complex in the gel during the color development. The optimal time required for a complete color development was determined to be 45 min. The appropriate volume of the coloring reagent added was 200 times of that of the gel. A calibration equation was established under the optimized conditions, based on which a quantitative measurement of P was obtained when the concentration of P in solutions ranged from 0.04 mg L(-1) to 4.1 mg L(-1) for a 24 h deployment of typical DGT devices at 25 °C. The suitability of the coloration technique was well demonstrated by the observation of small, discrete spots with elevated P concentrations in a sediment profile.
Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis.
Ba, Yan; Liu, Haihu; Sun, Jinju; Zheng, Rongye
2013-10-01
Lattice Boltzmann method (LBM) is an effective tool for simulating the contact-line motion due to the nature of its microscopic dynamics. In contact-line motion, contact-angle hysteresis is an inherent phenomenon, but it is neglected in most existing color-gradient based LBMs. In this paper, a color-gradient based multiphase LBM is developed to simulate the contact-line motion, particularly with the hysteresis of contact angle involved. In this model, the perturbation operator based on the continuum surface force concept is introduced to model the interfacial tension, and the recoloring operator proposed by Latva-Kokko and Rothman is used to produce phase segregation and resolve the lattice pinning problem. At the solid surface, the color-conserving wetting boundary condition [Hollis et al., IMA J. Appl. Math. 76, 726 (2011)] is applied to improve the accuracy of simulations and suppress spurious currents at the contact line. In particular, we present a numerical algorithm to allow for the effect of the contact-angle hysteresis, in which an iterative procedure is used to determine the dynamic contact angle. Numerical simulations are conducted to verify the developed model, including the droplet partial wetting process and droplet dynamical behavior in a simple shear flow. The obtained results are compared with theoretical solutions and experimental data, indicating that the model is able to predict the equilibrium droplet shape as well as the dynamic process of partial wetting and thus permits accurate prediction of contact-line motion with the consideration of contact-angle hysteresis.
Diffusion Tensor Magnetic Resonance Imaging Strategies for Color Mapping of Human Brain Anatomy
Boujraf, Saïd
2018-01-01
Background: A color mapping of fiber tract orientation using diffusion tensor imaging (DTI) can be prominent in clinical practice. The goal of this paper is to perform a comparative study of visualized diffusion anisotropy in the human brain anatomical entities using three different color-mapping techniques based on diffusion-weighted imaging (DWI) and DTI. Methods: The first technique is based on calculating a color map from DWIs measured in three perpendicular directions. The second technique is based on eigenvalues derived from the diffusion tensor. The last technique is based on three eigenvectors corresponding to sorted eigenvalues derived from the diffusion tensor. All magnetic resonance imaging measurements were achieved using a 1.5 Tesla Siemens Vision whole body imaging system. A single-shot DW echoplanar imaging sequence used a Stejskal–Tanner approach. Trapezoidal diffusion gradients are used. The slice orientation was transverse. The basic measurement yielded a set of 13 images. Each series consists of a single image without diffusion weighting, besides two DWIs for each of the next six noncollinear magnetic field gradient directions. Results: The three types of color maps were calculated consequently using the DWI obtained and the DTI. Indeed, we established an excellent similarity between the image data in the color maps and the fiber directions of known anatomical structures (e.g., corpus callosum and gray matter). Conclusions: In the meantime, rotationally invariant quantities such as the eigenvectors of the diffusion tensor reflected better, the real orientation found in the studied tissue. PMID:29928631
Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes
Erkol, Bulent; Moss, Randy H.; Stanley, R. Joe; Stoecker, William V.; Hvatum, Erik
2011-01-01
Background Malignant melanoma has a good prognosis if treated early. Dermoscopy images of pigmented lesions are most commonly taken at × 10 magnification under lighting at a low angle of incidence while the skin is immersed in oil under a glass plate. Accurate skin lesion segmentation from the background skin is important because some of the features anticipated to be used for diagnosis deal with shape of the lesion and others deal with the color of the lesion compared with the color of the surrounding skin. Methods In this research, gradient vector flow (GVF) snakes are investigated to find the border of skin lesions in dermoscopy images. An automatic initialization method is introduced to make the skin lesion border determination process fully automated. Results Skin lesion segmentation results are presented for 70 benign and 30 melanoma skin lesion images for the GVF-based method and a color histogram analysis technique. The average errors obtained by the GVF-based method are lower for both the benign and melanoma image sets than for the color histogram analysis technique based on comparison with manually segmented lesions determined by a dermatologist. Conclusions The experimental results for the GVF-based method demonstrate promise as an automated technique for skin lesion segmentation in dermoscopy images. PMID:15691255
NASA Astrophysics Data System (ADS)
Yu, Xuelian; Chen, Qian; Gu, Guohua; Ren, Jianle; Sui, Xiubao
2015-02-01
Designing objective quality assessment of color-fused image is a very demanding and challenging task. We propose four no-reference metrics based on human visual system characteristics for objectively evaluating the quality of false color fusion image. The perceived edge metric (PEM) is defined based on visual perception model and color image gradient similarity between the fused image and the source images. The perceptual contrast metric (PCM) is established associating multi-scale contrast and varying contrast sensitivity filter (CSF) with color components. The linear combination of the standard deviation and mean value over the fused image construct the image colorfulness metric (ICM). The color comfort metric (CCM) is designed by the average saturation and the ratio of pixels with high and low saturation. The qualitative and quantitative experimental results demonstrate that the proposed metrics have a good agreement with subjective perception.
Design of LED projector based on gradient-index lens
NASA Astrophysics Data System (ADS)
Qian, Liyong; Zhu, Xiangbing; Cui, Haitian; Wang, Yuanhang
2018-01-01
In this study, a new type of projector light path is designed to eliminate the deficits of existing projection systems, such as complex structure and low collection efficiency. Using a three-color LED array as the lighting source, by means of the special optical properties of a gradient-index lens, the complex structure of the traditional projector is simplified. Traditional components, such as the color wheel, relay lens, and mirror, become unnecessary. In this way, traditional problems, such as low utilization of light energy and loss of light energy, are solved. With the help of Zemax software, the projection lens is optimized. The optimized projection lens, LED, gradient-index lens, and digital micromirror device are imported into Tracepro. The ray tracing results show that both the utilization of light energy and the uniformity are improved significantly.
}table#result-list{font-family:arial;background-color:#fff;margin:10px 0 0 0;width:100%;text-align:left }table#result-list tr{cursor:pointer}table#result-list tr:hover{background-color:#eee}table#result-list -gradient{color:#fff;background:#6bad40;background:-moz-linear-gradient(top,#6bad40 0,#146c32 100
NASA Astrophysics Data System (ADS)
Solli, Martin; Lenz, Reiner
In this paper we describe how to include high level semantic information, such as aesthetics and emotions, into Content Based Image Retrieval. We present a color-based emotion-related image descriptor that can be used for describing the emotional content of images. The color emotion metric used is derived from psychophysical experiments and based on three variables: activity, weight and heat. It was originally designed for single-colors, but recent research has shown that the same emotion estimates can be applied in the retrieval of multi-colored images. Here we describe a new approach, based on the assumption that perceived color emotions in images are mainly affected by homogenous regions, defined by the emotion metric, and transitions between regions. RGB coordinates are converted to emotion coordinates, and for each emotion channel, statistical measurements of gradient magnitudes within a stack of low-pass filtered images are used for finding interest points corresponding to homogeneous regions and transitions between regions. Emotion characteristics are derived for patches surrounding each interest point, and saved in a bag-of-emotions, that, for instance, can be used for retrieving images based on emotional content.
GALEX studies on UV properties of Nearby Early-type Galaxies
NASA Astrophysics Data System (ADS)
Rhee, J.; Rich, R. M.; Sohn, Y.-J.; Lee, Y.-W.; Gil de Paz, A.; Deharveng, J.-M.; Donas, J.; Boselli, A.; Rey, S.-C.; Yi, S. K.; GALEX Team
2005-12-01
We present the results of surface photometry on the far-UV (FUV) and near-UV (NUV) images of 23 nearby elliptical galaxies and spiral bulges taken from the GALEX (Galaxy Evolution Explorer). Surface brightness profiles of most galaxies are consistent with de Vaucouleurs' r1/4 law except for some cases more consistent with exponential profiles. We analyze the radial profiles of UV color, (FUV - NUV), and Mg2 line index to investigate a correlation between the gradients of UV color and metal abundance for early-type galaxies. UV color gradients are calculated by applying least square fitting to UV color profile up to effective radius, while Mg2 line strength gradients are compiled for 12 galaxies from previous works. For the 12 early-type galaxies, we find that UV color profiles have a trend to become bluer inward and there is a weak correlation between the gradients of UV color and Mg2 line strength in the sense that galaxies with larger UV color gradients tend to have stronger metal abundance gradients. We also explore the properties of the GALEX-measured ultraviolet rising flux in 96 nearby elliptical galaxies, as a function Lick Mg2 index and velocity dispersion. We include 36 galaxies in the Virgo cluster from the sample of Boselli et al (2005). We find no correlation between the Mg2 index, and log σ and FUV-r. This confirms the findings of Rich et al (2005) for a sample of GALEX/SDSS quiescent early-type galaxies. This is true both for the integrated light, and for nuclear colors. We find a weak correlation between Mg2 and FUV-NUV. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission, developed in cooperation with the Centre National d'Etudes Spatiales of France and the Korean Ministry of Science and Technology.
Optical-Near-infrared Color Gradients and Merging History of Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Kim, Duho; Im, Myungshin
2013-04-01
It has been suggested that merging plays an important role in the formation and the evolution of elliptical galaxies. While gas dissipation by star formation is believed to steepen metallicity and color gradients of the merger products, mixing of stars through dissipation-less merging (dry merging) is believed to flatten them. In order to understand the past merging history of elliptical galaxies, we studied the optical-near-infrared (NIR) color gradients of 204 elliptical galaxies. These galaxies are selected from the overlap region of the Sloan Digital Sky Survey (SDSS) Stripe 82 and the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). The use of optical and NIR data (g, r, and K) provides large wavelength baselines, and breaks the age-metallicity degeneracy, allowing us to derive age and metallicity gradients. The use of the deep SDSS Stripe 82 images makes it possible for us to examine how the color/age/metallicity gradients are related to merging features. We find that the optical-NIR color and the age/metallicity gradients of elliptical galaxies with tidal features are consistent with those of relaxed ellipticals, suggesting that the two populations underwent a similar merging history on average and that mixing of stars was more or less completed before the tidal features disappeared. Elliptical galaxies with dust features have steeper color gradients than the other two types, even after masking out dust features during the analysis, which can be due to a process involving wet merging. More importantly, we find that the scatter in the color/age/metallicity gradients of the relaxed and merging feature types decreases as their luminosities (or masses) increase at M > 1011.4 M ⊙ but stays large at lower luminosities. Mean metallicity gradients appear nearly constant over the explored mass range, but a possible flattening is observed at the massive end. According to our toy model that predicts how the distribution of metallicity gradients changes as a result of major dry merging, the mean metallicity gradient should flatten by 40% and its scatter becomes smaller by 80% per a mass-doubling scale if ellipticals evolve only through major dry merger. Our result, although limited by a number statistics at the massive end, is consistent with the picture that major dry merging is an important mechanism for the evolution for ellipticals at M > 1011.4 M ⊙, but is less important at the lower mass range.
OPTICAL-NEAR-INFRARED COLOR GRADIENTS AND MERGING HISTORY OF ELLIPTICAL GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Duho; Im, Myungshin
2013-04-01
It has been suggested that merging plays an important role in the formation and the evolution of elliptical galaxies. While gas dissipation by star formation is believed to steepen metallicity and color gradients of the merger products, mixing of stars through dissipation-less merging (dry merging) is believed to flatten them. In order to understand the past merging history of elliptical galaxies, we studied the optical-near-infrared (NIR) color gradients of 204 elliptical galaxies. These galaxies are selected from the overlap region of the Sloan Digital Sky Survey (SDSS) Stripe 82 and the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Surveymore » (LAS). The use of optical and NIR data (g, r, and K) provides large wavelength baselines, and breaks the age-metallicity degeneracy, allowing us to derive age and metallicity gradients. The use of the deep SDSS Stripe 82 images makes it possible for us to examine how the color/age/metallicity gradients are related to merging features. We find that the optical-NIR color and the age/metallicity gradients of elliptical galaxies with tidal features are consistent with those of relaxed ellipticals, suggesting that the two populations underwent a similar merging history on average and that mixing of stars was more or less completed before the tidal features disappeared. Elliptical galaxies with dust features have steeper color gradients than the other two types, even after masking out dust features during the analysis, which can be due to a process involving wet merging. More importantly, we find that the scatter in the color/age/metallicity gradients of the relaxed and merging feature types decreases as their luminosities (or masses) increase at M > 10{sup 11.4} M{sub Sun} but stays large at lower luminosities. Mean metallicity gradients appear nearly constant over the explored mass range, but a possible flattening is observed at the massive end. According to our toy model that predicts how the distribution of metallicity gradients changes as a result of major dry merging, the mean metallicity gradient should flatten by 40% and its scatter becomes smaller by 80% per a mass-doubling scale if ellipticals evolve only through major dry merger. Our result, although limited by a number statistics at the massive end, is consistent with the picture that major dry merging is an important mechanism for the evolution for ellipticals at M > 10{sup 11.4} M{sub Sun }, but is less important at the lower mass range.« less
Method for simulating paint mixing on computer monitors
NASA Astrophysics Data System (ADS)
Carabott, Ferdinand; Lewis, Garth; Piehl, Simon
2002-06-01
Computer programs like Adobe Photoshop can generate a mixture of two 'computer' colors by using the Gradient control. However, the resulting colors diverge from the equivalent paint mixtures in both hue and value. This study examines why programs like Photoshop are unable to simulate paint or pigment mixtures, and offers a solution using Photoshops existing tools. The article discusses how a library of colors, simulating paint mixtures, is created from 13 artists' colors. The mixtures can be imported into Photoshop as a color swatch palette of 1248 colors and as 78 continuous or stepped gradient files, all accessed in a new software package, Chromafile.
Focus measure method based on the modulus of the gradient of the color planes for digital microscopy
NASA Astrophysics Data System (ADS)
Hurtado-Pérez, Román; Toxqui-Quitl, Carina; Padilla-Vivanco, Alfonso; Aguilar-Valdez, J. Félix; Ortega-Mendoza, Gabriel
2018-02-01
The modulus of the gradient of the color planes (MGC) is implemented to transform multichannel information to a grayscale image. This digital technique is used in two applications: (a) focus measurements during autofocusing (AF) process and (b) extending the depth of field (EDoF) by means of multifocus image fusion. In the first case, the MGC procedure is based on an edge detection technique and is implemented in over 15 focus metrics that are typically handled in digital microscopy. The MGC approach is tested on color images of histological sections for the selection of in-focus images. An appealing attribute of all the AF metrics working in the MGC space is their monotonic behavior even up to a magnification of 100×. An advantage of the MGC method is its computational simplicity and inherent parallelism. In the second application, a multifocus image fusion algorithm based on the MGC approach has been implemented on graphics processing units (GPUs). The resulting fused images are evaluated using a nonreference image quality metric. The proposed fusion method reveals a high-quality image independently of faulty illumination during the image acquisition. Finally, the three-dimensional visualization of the in-focus image is shown.
"Dip-and-read" paper-based analytical devices using distance-based detection with color screening.
Yamada, Kentaro; Citterio, Daniel; Henry, Charles S
2018-05-15
An improved paper-based analytical device (PAD) using color screening to enhance device performance is described. Current detection methods for PADs relying on the distance-based signalling motif can be slow due to the assay time being limited by capillary flow rates that wick fluid through the detection zone. For traditional distance-based detection motifs, analysis can take up to 45 min for a channel length of 5 cm. By using a color screening method, quantification with a distance-based PAD can be achieved in minutes through a "dip-and-read" approach. A colorimetric indicator line deposited onto a paper substrate using inkjet-printing undergoes a concentration-dependent colorimetric response for a given analyte. This color intensity-based response has been converted to a distance-based signal by overlaying a color filter with a continuous color intensity gradient matching the color of the developed indicator line. As a proof-of-concept, Ni quantification in welding fume was performed as a model assay. The results of multiple independent user testing gave mean absolute percentage error and average relative standard deviations of 10.5% and 11.2% respectively, which were an improvement over analysis based on simple visual color comparison with a read guide (12.2%, 14.9%). In addition to the analytical performance comparison, an interference study and a shelf life investigation were performed to further demonstrate practical utility. The developed system demonstrates an alternative detection approach for distance-based PADs enabling fast (∼10 min), quantitative, and straightforward assays.
Photonic Multitasking Interleaved Si Nanoantenna Phased Array.
Lin, Dianmin; Holsteen, Aaron L; Maguid, Elhanan; Wetzstein, Gordon; Kik, Pieter G; Hasman, Erez; Brongersma, Mark L
2016-12-14
Metasurfaces provide unprecedented control over light propagation by imparting local, space-variant phase changes on an incident electromagnetic wave. They can improve the performance of conventional optical elements and facilitate the creation of optical components with new functionalities and form factors. Here, we build on knowledge from shared aperture phased array antennas and Si-based gradient metasurfaces to realize various multifunctional metasurfaces capable of achieving multiple distinct functions within a single surface region. As a key point, we demonstrate that interleaving multiple optical elements can be accomplished without reducing the aperture of each subelement. Multifunctional optical elements constructed from Si-based gradient metasurface are realized, including axial and lateral multifocus geometric phase metasurface lenses. We further demonstrate multiwavelength color imaging with a high spatial resolution. Finally, optical imaging functionality with simultaneous color separation has been obtained by using multifunctional metasurfaces, which opens up new opportunities for the field of advanced imaging and display.
Cai, Lile; Tay, Wei-Liang; Nguyen, Binh P; Chui, Chee-Kong; Ong, Sim-Heng
2013-01-01
Transfer functions play a key role in volume rendering of medical data, but transfer function manipulation is unintuitive and can be time-consuming; achieving an optimal visualization of patient anatomy or pathology is difficult. To overcome this problem, we present a system for automatic transfer function design based on visibility distribution and projective color mapping. Instead of assigning opacity directly based on voxel intensity and gradient magnitude, the opacity transfer function is automatically derived by matching the observed visibility distribution to a target visibility distribution. An automatic color assignment scheme based on projective mapping is proposed to assign colors that allow for the visual discrimination of different structures, while also reflecting the degree of similarity between them. When our method was tested on several medical volumetric datasets, the key structures within the volume were clearly visualized with minimal user intervention. Copyright © 2013 Elsevier Ltd. All rights reserved.
Perreira, Krista M.; Telles, Edward E.
2014-01-01
Latin America is one of the most ethnoracially heterogeneous regions of the world. Despite this, health disparities research in Latin America tends to focus on gender, class and regional health differences while downplaying ethnoracial differences. Few scholars have conducted studies of ethnoracial identification and health disparities in Latin America. Research that examines multiple measures of ethnoracial identification is rarer still. Official data on race/ethnicity in Latin America are based on self-identification which can differ from interviewer-ascribed or phenotypic classification based on skin color. We use data from Brazil, Colombia, Mexico, and Peru to examine associations of interviewer-ascribed skin color, interviewer-ascribed race/ethnicity, and self-reported race/ethnicity with self-rated health among Latin American adults (ages 18-65). We also examine associations of observer-ascribed skin color with three additional correlates of health – skin color discrimination, class discrimination, and socio-economic status. We find a significant gradient in self-rated health by skin color. Those with darker skin colors report poorer health. Darker skin color influences self-rated health primarily by increasing exposure to class discrimination and low socio-economic status. PMID:24957692
Perreira, Krista M; Telles, Edward E
2014-09-01
Latin America is one of the most ethnoracially heterogeneous regions of the world. Despite this, health disparities research in Latin America tends to focus on gender, class and regional health differences while downplaying ethnoracial differences. Few scholars have conducted studies of ethnoracial identification and health disparities in Latin America. Research that examines multiple measures of ethnoracial identification is rarer still. Official data on race/ethnicity in Latin America are based on self-identification which can differ from interviewer-ascribed or phenotypic classification based on skin color. We use data from Brazil, Colombia, Mexico, and Peru to examine associations of interviewer-ascribed skin color, interviewer-ascribed race/ethnicity, and self-reported race/ethnicity with self-rated health among Latin American adults (ages 18-65). We also examine associations of observer-ascribed skin color with three additional correlates of health - skin color discrimination, class discrimination, and socio-economic status. We find a significant gradient in self-rated health by skin color. Those with darker skin colors report poorer health. Darker skin color influences self-rated health primarily by increasing exposure to class discrimination and low socio-economic status. Copyright © 2014 Elsevier Ltd. All rights reserved.
Minimized-Laplacian residual interpolation for color image demosaicking
NASA Astrophysics Data System (ADS)
Kiku, Daisuke; Monno, Yusuke; Tanaka, Masayuki; Okutomi, Masatoshi
2014-03-01
A color difference interpolation technique is widely used for color image demosaicking. In this paper, we propose a minimized-laplacian residual interpolation (MLRI) as an alternative to the color difference interpolation, where the residuals are differences between observed and tentatively estimated pixel values. In the MLRI, we estimate the tentative pixel values by minimizing the Laplacian energies of the residuals. This residual image transfor- mation allows us to interpolate more easily than the standard color difference transformation. We incorporate the proposed MLRI into the gradient based threshold free (GBTF) algorithm, which is one of current state-of- the-art demosaicking algorithms. Experimental results demonstrate that our proposed demosaicking algorithm can outperform the state-of-the-art algorithms for the 30 images of the IMAX and the Kodak datasets.
NASA Astrophysics Data System (ADS)
Leclaire, Sébastien; Parmigiani, Andrea; Malaspinas, Orestis; Chopard, Bastien; Latt, Jonas
2017-03-01
This article presents a three-dimensional numerical framework for the simulation of fluid-fluid immiscible compounds in complex geometries, based on the multiple-relaxation-time lattice Boltzmann method to model the fluid dynamics and the color-gradient approach to model multicomponent flow interaction. New lattice weights for the lattices D3Q15, D3Q19, and D3Q27 that improve the Galilean invariance of the color-gradient model as well as for modeling the interfacial tension are derived and provided in the Appendix. The presented method proposes in particular an approach to model the interaction between the fluid compound and the solid, and to maintain a precise contact angle between the two-component interface and the wall. Contrarily to previous approaches proposed in the literature, this method yields accurate solutions even in complex geometries and does not suffer from numerical artifacts like nonphysical mass transfer along the solid wall, which is crucial for modeling imbibition-type problems. The article also proposes an approach to model inflow and outflow boundaries with the color-gradient method by generalizing the regularized boundary conditions. The numerical framework is first validated for three-dimensional (3D) stationary state (Jurin's law) and time-dependent (Washburn's law and capillary waves) problems. Then, the usefulness of the method for practical problems of pore-scale flow imbibition and drainage in porous media is demonstrated. Through the simulation of nonwetting displacement in two-dimensional random porous media networks, we show that the model properly reproduces three main invasion regimes (stable displacement, capillary fingering, and viscous fingering) as well as the saturating zone transition between these regimes. Finally, the ability to simulate immiscible two-component flow imbibition and drainage is validated, with excellent results, by numerical simulations in a Berea sandstone, a frequently used benchmark case used in this field, using a complex geometry that originates from a 3D scan of a porous sandstone. The methods presented in this article were implemented in the open-source PALABOS library, a general C++ matrix-based library well adapted for massive fluid flow parallel computation.
NASA Astrophysics Data System (ADS)
Wang, G. H.; Wang, H. B.; Fan, W. F.; Liu, Y.; Chen, C.
2018-04-01
In view of the traditional change detection algorithm mainly depends on the spectral information image spot, failed to effectively mining and fusion of multi-image feature detection advantage, the article borrows the ideas of object oriented analysis proposed a multi feature fusion of remote sensing image change detection algorithm. First by the multi-scale segmentation of image objects based; then calculate the various objects of color histogram and linear gradient histogram; utilizes the color distance and edge line feature distance between EMD statistical operator in different periods of the object, using the adaptive weighted method, the color feature distance and edge in a straight line distance of combination is constructed object heterogeneity. Finally, the curvature histogram analysis image spot change detection results. The experimental results show that the method can fully fuse the color and edge line features, thus improving the accuracy of the change detection.
family:arial;width:100%;background-color:#fff;margin:0}form{margin:0;padding:0 %);background:-webkit-gradient(linear,left top,left bottom,color-stop(0%,#00527f),color-stop(100%,#00324d :16px;line-height:36px;color:white;font-weight:bold}#outer{width:100%;background-color:#eee;margin:0
Conjugate gradient method for phase retrieval based on the Wirtinger derivative.
Wei, Zhun; Chen, Wen; Qiu, Cheng-Wei; Chen, Xudong
2017-05-01
A conjugate gradient Wirtinger flow (CG-WF) algorithm for phase retrieval is proposed in this paper. It is shown that, compared with recently reported Wirtinger flow and its modified methods, the proposed CG-WF algorithm is able to dramatically accelerate the convergence rate while keeping the dominant computational cost of each iteration unchanged. We numerically illustrate the effectiveness of our method in recovering 1D Gaussian signals and 2D natural color images under both Gaussian and coded diffraction pattern models.
NASA Astrophysics Data System (ADS)
Peltoniemi, Mikko; Aurela, Mika; Böttcher, Kristin; Kolari, Pasi; Loehr, John; Karhu, Jouni; Kubin, Eero; Linkosalmi, Maiju; Melih Tanis, Cemal; Nadir Arslan, Ali
2017-04-01
Ecosystems' potential to provide services, e.g. to sequester carbon is largely driven by the phenological cycle of vegetation. Timing of phenological events is required for understanding and predicting the influence of climate change on ecosystems and to support various analyses of ecosystem functioning. We established a network of cameras for automated monitoring of phenological activity of vegetation in boreal ecosystems of Finland. Cameras were mounted on 14 sites, each site having 1-3 cameras. In this study, we used cameras at 11 of these sites to investigate how well networked cameras detect phenological development of birches (Betula spp.) along the latitudinal gradient. Birches are interesting focal species for the analyses as they are common throughout Finland. In our cameras they often appear in smaller quantities within dominant species in the images. Here, we tested whether small scattered birch image elements allow reliable extraction of color indices and changes therein. We compared automatically derived phenological dates from these birch image elements to visually determined dates from the same image time series, and to independent observations recorded in the phenological monitoring network from the same region. Automatically extracted season start dates based on the change of green color fraction in the spring corresponded well with the visually interpreted start of season, and field observed budburst dates. During the declining season, red color fraction turned out to be superior over green color based indices in predicting leaf yellowing and fall. The latitudinal gradients derived using automated phenological date extraction corresponded well with gradients based on phenological field observations from the same region. We conclude that already small and scattered birch image elements allow reliable extraction of key phenological dates for birch species. Devising cameras for species specific analyses of phenological timing will be useful for explaining variation of time series of satellite based indices, and it will also benefit models describing ecosystem functioning at species or plant functional type level. With the contribution of the LIFE+ financial instrument of the European Union (LIFE12 ENV/FI/000409 Monimet, http://monimet.fmi.fi)
NASA Astrophysics Data System (ADS)
Huang, Wei; Chen, Xiu; Wang, Yueyun
2018-03-01
Landsat data are widely used in various earth observations, but the clouds interfere with the applications of the images. This paper proposes a weighted variational gradient-based fusion method (WVGBF) for high-fidelity thin cloud removal of Landsat images, which is an improvement of the variational gradient-based fusion (VGBF) method. The VGBF method integrates the gradient information from the reference band into visible bands of cloudy image to enable spatial details and remove thin clouds. The VGBF method utilizes the same gradient constraints to the entire image, which causes the color distortion in cloudless areas. In our method, a weight coefficient is introduced into the gradient approximation term to ensure the fidelity of image. The distribution of weight coefficient is related to the cloud thickness map. The map is built on Independence Component Analysis (ICA) by using multi-temporal Landsat images. Quantitatively, we use R value to evaluate the fidelity in the cloudless regions and metric Q to evaluate the clarity in the cloud areas. The experimental results indicate that the proposed method has the better ability to remove thin cloud and achieve high fidelity.
Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology
NASA Astrophysics Data System (ADS)
Ba, Yan; Wang, Ningning; Liu, Haihu; Li, Qiang; He, Guoqiang
2018-03-01
In this work, a regularized lattice Boltzmann color-gradient model is developed for the simulation of immiscible two-phase flows with power-law rheology. This model is as simple as the Bhatnagar-Gross-Krook (BGK) color-gradient model except that an additional regularization step is introduced prior to the collision step. In the regularization step, the pseudo-inverse method is adopted as an alternative solution for the nonequilibrium part of the total distribution function, and it can be easily extended to other discrete velocity models no matter whether a forcing term is considered or not. The obtained expressions for the nonequilibrium part are merely related to macroscopic variables and velocity gradients that can be evaluated locally. Several numerical examples, including the single-phase and two-phase layered power-law fluid flows between two parallel plates, and the droplet deformation and breakup in a simple shear flow, are conducted to test the capability and accuracy of the proposed color-gradient model. Results show that the present model is more stable and accurate than the BGK color-gradient model for power-law fluids with a wide range of power-law indices. Compared to its multiple-relaxation-time counterpart, the present model can increase the computing efficiency by around 15%, while keeping the same accuracy and stability. Also, the present model is found to be capable of reasonably predicting the critical capillary number of droplet breakup.
SIGNATURES OF LONG-LIVED SPIRAL PATTERNS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Garcia, Eric E.; Gonzalez-Lopezlira, Rosa A., E-mail: ericmartinez@inaoep.mx, E-mail: martinez@astro.unam.mx, E-mail: r.gonzalez@crya.unam.mx
2013-03-10
Azimuthal age/color gradients across spiral arms are a signature of long-lived spirals. From a sample of 19 normal (or weakly barred) spirals where we have previously found azimuthal age/color gradient candidates, 13 objects were further selected if a two-armed grand-design pattern survived in a surface density stellar mass map. Mass maps were obtained from optical and near-infrared imaging, by comparison with a Monte Carlo library of stellar population synthesis models that allowed us to obtain the mass-to-light ratio in the J band, (M/L){sub J}, as a function of (g - i) versus (i - J) color. The selected spirals weremore » analyzed with Fourier methods in search of other signatures of long-lived modes related to the gradients, such as the gradient divergence toward corotation, and the behavior of the phase angle of the two-armed spiral in different wavebands, as expected from theory. The results show additional signatures of long-lived spirals in at least 50% of the objects.« less
THE EFFECTS OF EPISODIC STAR FORMATION ON THE FUV-NUV COLORS OF STAR FORMING REGIONS IN OUTER DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Kate L.; Van Zee, Liese; Dowell, Jayce D., E-mail: barneskl@astro.indiana.edu, E-mail: vanzee@astro.indiana.edu, E-mail: jdowell@unm.edu
2013-09-20
We run stellar population synthesis models to examine the effects of a recently episodic star formation history (SFH) on UV and Hα colors of star forming regions. Specifically, the SFHs we use are an episodic sampling of an exponentially declining star formation rate (SFR; τ model) and are intended to simulate the SFHs in the outer disks of spiral galaxies. To enable comparison between our models and observational studies of star forming regions in outer disks, we include in our models sensitivity limits that are based on recent deep UV and Hα observations in the literature. We find significant dispersionmore » in the FUV-NUV colors of simulated star forming regions with frequencies of star formation episodes of 1 × 10{sup –8} to 4 × 10{sup –9} yr{sup –1}. The dispersion in UV colors is similar to that found in the outer disk of nearby spiral galaxies. As expected, we also find large variations in L{sub H{sub α}}/L{sub FUV}. We interpret our models within the context of inside-out disk growth, and find that a radially increasing τ and decreasing metallicity with an increasing radius will only produce modest FUV-NUV color gradients, which are significantly smaller than what is found for some nearby spiral galaxies. However, including moderate extinction gradients with our models can better match the observations with steeper UV color gradients. We estimate that the SFR at which the number of stars emitting FUV light becomes stochastic is ∼2 × 10{sup –6} M{sub ☉} yr{sup –1}, which is substantially lower than the SFR of many star forming regions in outer disks. Therefore, we conclude that stochasticity in the upper end of the initial mass function is not likely to be the dominant cause of dispersion in the FUV-NUV colors of star forming regions in outer disks. Finally, we note that if outer disks have had an episodic SFH similar to that used in this study, this should be taken into account when estimating gas depletion timescales and modeling chemical evolution of spiral galaxies.« less
Semiquantitative color profiling of soils over a land degradation gradient in Sakaerat, Thailand.
Doi, Ryoichi; Wachrinrat, Chongrak; Teejuntuk, Sakhan; Sakurai, Katsutoshi; Sahunalu, Pongsak
2010-11-01
In this study, we attempted multivariate color profiling of soils over a land degradation gradient represented by dry evergreen forest (original vegetation), dry deciduous forest (moderately disturbed by fire), and bare ground (severely degraded) in Sakaerat, Thailand. The soils were sampled in a dry-to-wet seasonal transition. Values of the red-green-blue (RGB), cyan-magenta-yellow-key black (CMYK), L*a*b*, and hue-intensity-saturation (HIS) color models were determined using the digital software Adobe Photoshop. Land degradation produced significant variations (p<0.05) in R, C, Y, L*, a*, b*, S, and I values (p<0.05). The seasonal transition produced significant variations (p<0.05) in R, G, B, C, M, K, L*, b*, and I values. In discriminating the soils, the color models did not differ in discriminatory power, while discriminatory power was affected by seasonal changes. Most color variation patterns had nonlinear relationships with the intensity of the land degradation gradient, due to effects of fire that darkened the deciduous forest soil, masking the nature of the soil as the intermediate between the evergreen forest and the bare ground soils. Taking these findings into account, the utilization of color profiling of soils in land conservation and rehabilitation is discussed.
Yi, Chucai; Tian, Yingli
2012-09-01
In this paper, we propose a novel framework to extract text regions from scene images with complex backgrounds and multiple text appearances. This framework consists of three main steps: boundary clustering (BC), stroke segmentation, and string fragment classification. In BC, we propose a new bigram-color-uniformity-based method to model both text and attachment surface, and cluster edge pixels based on color pairs and spatial positions into boundary layers. Then, stroke segmentation is performed at each boundary layer by color assignment to extract character candidates. We propose two algorithms to combine the structural analysis of text stroke with color assignment and filter out background interferences. Further, we design a robust string fragment classification based on Gabor-based text features. The features are obtained from feature maps of gradient, stroke distribution, and stroke width. The proposed framework of text localization is evaluated on scene images, born-digital images, broadcast video images, and images of handheld objects captured by blind persons. Experimental results on respective datasets demonstrate that the framework outperforms state-of-the-art localization algorithms.
Image defog algorithm based on open close filter and gradient domain recursive bilateral filter
NASA Astrophysics Data System (ADS)
Liu, Daqian; Liu, Wanjun; Zhao, Qingguo; Fei, Bowen
2017-11-01
To solve the problems of fuzzy details, color distortion, low brightness of the image obtained by the dark channel prior defog algorithm, an image defog algorithm based on open close filter and gradient domain recursive bilateral filter, referred to as OCRBF, was put forward. The algorithm named OCRBF firstly makes use of weighted quad tree to obtain more accurate the global atmospheric value, then exploits multiple-structure element morphological open and close filter towards the minimum channel map to obtain a rough scattering map by dark channel prior, makes use of variogram to correct the transmittance map,and uses gradient domain recursive bilateral filter for the smooth operation, finally gets recovery images by image degradation model, and makes contrast adjustment to get bright, clear and no fog image. A large number of experimental results show that the proposed defog method in this paper can be good to remove the fog , recover color and definition of the fog image containing close range image, image perspective, the image including the bright areas very well, compared with other image defog algorithms,obtain more clear and natural fog free images with details of higher visibility, what's more, the relationship between the time complexity of SIDA algorithm and the number of image pixels is a linear correlation.
Visibility enhancement of color images using Type-II fuzzy membership function
NASA Astrophysics Data System (ADS)
Singh, Harmandeep; Khehra, Baljit Singh
2018-04-01
Images taken in poor environmental conditions decrease the visibility and hidden information of digital images. Therefore, image enhancement techniques are necessary for improving the significant details of these images. An extensive review has shown that histogram-based enhancement techniques greatly suffer from over/under enhancement issues. Fuzzy-based enhancement techniques suffer from over/under saturated pixels problems. In this paper, a novel Type-II fuzzy-based image enhancement technique has been proposed for improving the visibility of images. The Type-II fuzzy logic can automatically extract the local atmospheric light and roughly eliminate the atmospheric veil in local detail enhancement. The proposed technique has been evaluated on 10 well-known weather degraded color images and is also compared with four well-known existing image enhancement techniques. The experimental results reveal that the proposed technique outperforms others regarding visible edge ratio, color gradients and number of saturated pixels.
Lakewide monitoring of suspended solids using satellite data. [Lake Superior water reclamation
NASA Technical Reports Server (NTRS)
Sydor, M. (Principal Investigator)
1981-01-01
In anticipation of using LANDSAT and Nimbus 7 coastal zone color scanner data to observe the decrease in suspended solids in Lake Superior following cessation of the dumping of taconite tailings, a series of lakewide sampling cruises was conducted to make radiometric measurements at a lake level. A means for identifying particulates and measuring their concentration from LANDSAT data was developed. The initial distribution of chemical parameters in the extreme western arm of the lake, where the concentration gradients are high, is to be based on the LANDSAT data. Subsequent lakewide dispersal and distribution is to be based on the coastal zone color scanner data.
Multi-color incomplete Cholesky conjugate gradient methods for vector computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poole, E.L.
1986-01-01
This research is concerned with the solution on vector computers of linear systems of equations. Ax = b, where A is a large, sparse symmetric positive definite matrix with non-zero elements lying only along a few diagonals of the matrix. The system is solved using the incomplete Cholesky conjugate gradient method (ICCG). Multi-color orderings are used of the unknowns in the linear system to obtain p-color matrices for which a no-fill block ICCG method is implemented on the CYBER 205 with O(N/p) length vector operations in both the decomposition of A and, more importantly, in the forward and back solvesmore » necessary at each iteration of the method. (N is the number of unknowns and p is a small constant). A p-colored matrix is a matrix that can be partitioned into a p x p block matrix where the diagonal blocks are diagonal matrices. The matrix is stored by diagonals and matrix multiplication by diagonals is used to carry out the decomposition of A and the forward and back solves. Additionally, if the vectors across adjacent blocks line up, then some of the overhead associated with vector startups can be eliminated in the matrix vector multiplication necessary at each conjugate gradient iteration. Necessary and sufficient conditions are given to determine which multi-color orderings of the unknowns correspond to p-color matrices, and a process is indicated for choosing multi-color orderings.« less
AGN Unification at z ~ 1: u - R Colors and Gradients in X-Ray AGN Hosts
NASA Astrophysics Data System (ADS)
Ammons, S. Mark; Rosario, David J. V.; Koo, David C.; Dutton, Aaron A.; Melbourne, Jason; Max, Claire E.; Mozena, Mark; Kocevski, Dale D.; McGrath, Elizabeth J.; Bouwens, Rychard J.; Magee, Daniel K.
2011-10-01
We present uncontaminated rest-frame u - R colors of 78 X-ray-selected active galactic nucleus (AGN) hosts at 0.5 < z < 1.5 in the Chandra Deep Fields measured with Hubble Space Telescope (HST)/Advanced Camera for Surveys/NICMOS and Very Large Telescope/ISAAC imaging. We also present spatially resolved NUV - R color gradients for a subsample of AGN hosts imaged by HST/Wide Field Camera 3 (WFC3). Integrated, uncorrected photometry is not reliable for comparing the mean properties of soft and hard AGN host galaxies at z ~ 1 due to color contamination from point-source AGN emission. We use a cloning simulation to develop a calibration between concentration and this color contamination and use this to correct host galaxy colors. The mean u - R color of the unobscured/soft hosts beyond ~6 kpc is statistically equivalent to that of the obscured/hard hosts (the soft sources are 0.09 ± 0.16 mag bluer). Furthermore, the rest-frame V - J colors of the obscured and unobscured hosts beyond ~6 kpc are statistically equivalent, suggesting that the two populations have similar distributions of dust extinction. For the WFC3/infrared sample, the mean NUV - R color gradients of unobscured and obscured sources differ by less than ~0.5 mag for r > 1.1 kpc. These three observations imply that AGN obscuration is uncorrelated with the star formation rate beyond ~1 kpc. These observations favor a unification scenario for intermediate-luminosity AGNs in which obscuration is determined geometrically. Scenarios in which the majority of intermediate-luminosity AGNs at z ~ 1 are undergoing rapid, galaxy-wide quenching due to AGN-driven feedback processes are disfavored.
AGN UNIFICATION AT z {approx} 1: u - R COLORS AND GRADIENTS IN X-RAY AGN HOSTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark Ammons, S.; Rosario, David J. V.; Koo, David C., E-mail: ammons@as.arizona.edu, E-mail: rosario@ucolick.org, E-mail: koo@ucolick.org
2011-10-10
We present uncontaminated rest-frame u - R colors of 78 X-ray-selected active galactic nucleus (AGN) hosts at 0.5 < z < 1.5 in the Chandra Deep Fields measured with Hubble Space Telescope (HST)/Advanced Camera for Surveys/NICMOS and Very Large Telescope/ISAAC imaging. We also present spatially resolved NUV - R color gradients for a subsample of AGN hosts imaged by HST/Wide Field Camera 3 (WFC3). Integrated, uncorrected photometry is not reliable for comparing the mean properties of soft and hard AGN host galaxies at z {approx} 1 due to color contamination from point-source AGN emission. We use a cloning simulation tomore » develop a calibration between concentration and this color contamination and use this to correct host galaxy colors. The mean u - R color of the unobscured/soft hosts beyond {approx}6 kpc is statistically equivalent to that of the obscured/hard hosts (the soft sources are 0.09 {+-} 0.16 mag bluer). Furthermore, the rest-frame V - J colors of the obscured and unobscured hosts beyond {approx}6 kpc are statistically equivalent, suggesting that the two populations have similar distributions of dust extinction. For the WFC3/infrared sample, the mean NUV - R color gradients of unobscured and obscured sources differ by less than {approx}0.5 mag for r > 1.1 kpc. These three observations imply that AGN obscuration is uncorrelated with the star formation rate beyond {approx}1 kpc. These observations favor a unification scenario for intermediate-luminosity AGNs in which obscuration is determined geometrically. Scenarios in which the majority of intermediate-luminosity AGNs at z {approx} 1 are undergoing rapid, galaxy-wide quenching due to AGN-driven feedback processes are disfavored.« less
Egg discrimination along a gradient of natural variation in eggshell coloration.
Hanley, Daniel; Grim, Tomáš; Igic, Branislav; Samaš, Peter; López, Analía V; Shawkey, Matthew D; Hauber, Mark E
2017-02-08
Accurate recognition of salient cues is critical for adaptive responses, but the underlying sensory and cognitive processes are often poorly understood. For example, hosts of avian brood parasites have long been assumed to reject foreign eggs from their nests based on the total degree of dissimilarity in colour to their own eggs, regardless of the foreign eggs' colours. We tested hosts' responses to gradients of natural (blue-green to brown) and artificial (green to purple) egg colours, and demonstrate that hosts base rejection decisions on both the direction and degree of colour dissimilarity along the natural, but not artificial, gradient of egg colours. Hosts rejected brown eggs and accepted blue-green eggs along the natural egg colour gradient, irrespective of the total perceived dissimilarity from their own egg's colour. By contrast, their responses did not vary along the artificial colour gradient. Our results demonstrate that egg recognition is specifically tuned to the natural gradient of avian eggshell colour and suggest a novel decision rule. These results highlight the importance of considering sensory reception and decision rules when studying perception, and illustrate that our understanding of recognition processes benefits from examining natural variation in phenotypes. © 2017 The Authors.
Egg discrimination along a gradient of natural variation in eggshell coloration
Grim, Tomáš; Igic, Branislav; Samaš, Peter; López, Analía V.; Shawkey, Matthew D.; Hauber, Mark E.
2017-01-01
Accurate recognition of salient cues is critical for adaptive responses, but the underlying sensory and cognitive processes are often poorly understood. For example, hosts of avian brood parasites have long been assumed to reject foreign eggs from their nests based on the total degree of dissimilarity in colour to their own eggs, regardless of the foreign eggs' colours. We tested hosts' responses to gradients of natural (blue-green to brown) and artificial (green to purple) egg colours, and demonstrate that hosts base rejection decisions on both the direction and degree of colour dissimilarity along the natural, but not artificial, gradient of egg colours. Hosts rejected brown eggs and accepted blue-green eggs along the natural egg colour gradient, irrespective of the total perceived dissimilarity from their own egg's colour. By contrast, their responses did not vary along the artificial colour gradient. Our results demonstrate that egg recognition is specifically tuned to the natural gradient of avian eggshell colour and suggest a novel decision rule. These results highlight the importance of considering sensory reception and decision rules when studying perception, and illustrate that our understanding of recognition processes benefits from examining natural variation in phenotypes. PMID:28179521
Willink, Beatriz; Brenes-Mora, Esteban; Bolaños, Federico; Pröhl, Heike
2013-10-01
Aposematism and crypsis are often viewed as two extremes of a continuum of visual conspicuousness to predators. Theory predicts that behavioral and coloration conspicuousness should vary in tandem along the conspicuousness spectrum for antipredator strategies to be effective. Here we used visual modeling of contrast and behavioral observations to examine the conspicuousness of four populations of the granular poison frog, Oophaga granulifera, which exhibits almost continuous variation in dorsal color. The patterns of geographic variation in color, visual contrast, and behavior support a gradient of overall conspicuousness along the distribution of O. granulifera. Red and green populations, at the extremes of the color distribution, differ in all elements of color, contrast, and behavior, strongly reflecting aposematic and cryptic strategies. However, there is no smooth cline in any elements of behavior or coloration between the two extremes. Instead populations of intermediate colors attain intermediate conspicuousness by displaying different combinations of aposematic and cryptic traits. We argue that coloration divergence among populations may be linked to the evolution of a gradient of strategies to balance the costs of detection by predators and the benefits of learned aversion. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Lafeuille, Jean-Louis; Lefèvre, Stéphane; Lebuhotel, Julie
2014-02-26
Chlorophylls and their green and olive-brown derivatives were successfully separated from culinary herb extracts by HPLC with photodiode-array and mass spectrometry detection. The method involved a ternary gradient elution and reverse-phase separation conditions capable of resolving 24 different pigments (2 chlorophylls and 22 of their derivatives) of different polarities within 28 min. The method was applied to monitor color changes in 50 samples of culinary aromatic herbs subjected to five different drying treatments. Of the 24 pigments, 14 were key to understanding the differences between the primary degradation pathways of chlorophyll a and chlorophyll b in culinary herbs during drying processes. A color degradation ladder based on the total molar percentage of all the remaining green pigments was also proposed as a tool to measure the impact of drying treatments on aromatic herb visual aspects.
Otaki, Joji M
2008-07-01
A mechanistic understanding of the butterfly wing color-pattern determination can be facilitated by experimental pattern changes. Here I review physiologically induced color-pattern changes in nymphalid butterflies and their mechanistic and evolutionary implications. A type of color-pattern change can be elicited by elemental changes in size and position throughout the wing, as suggested by the nymphalid groundplan. These changes of pattern elements are bi-directional and bi-sided dislocation toward or away from eyespot foci and in both proximal and distal sides of the foci. The peripheral elements are dislocated even in the eyespot-less compartments. Anterior spots are more severely modified, suggesting the existence of an anterior-posterior gradient. In one species, eyespots are transformed into white spots with remnant-like orange scales, and such patterns emerge even at the eyespot-less "imaginary" foci. A series of these color-pattern modifications probably reveal "snap-shots" of a dynamic morphogenic signal due to heterochronic uncoupling between the signaling and reception steps. The conventional gradient model can be revised to account for these observed color-pattern changes.
Data Images and Other Graphical Displays for Directional Data
NASA Technical Reports Server (NTRS)
Morphet, Bill; Symanzik, Juergen
2005-01-01
Vectors, axes, and periodic phenomena have direction. Directional variation can be expressed as points on a unit circle and is the subject of circular statistics, a relatively new application of statistics. An overview of existing methods for the display of directional data is given. The data image for linear variables is reviewed, then extended to directional variables by displaying direction using a color scale composed of a sequence of four or more color gradients with continuity between sequences and ordered intuitively in a color wheel such that the color of the 0deg angle is the same as the color of the 360deg angle. Cross over, which arose in automating the summarization of historical wind data, and color discontinuity resulting from the use a single color gradient in computational fluid dynamics visualization are eliminated. The new method provides for simultaneous resolution of detail on a small scale and overall structure on a large scale. Example circular data images are given of a global view of average wind direction of El Nino periods, computed rocket motor internal combustion flow, a global view of direction of the horizontal component of earth's main magnetic field on 9/15/2004, and Space Shuttle solid rocket motor nozzle vectoring.
NASA Astrophysics Data System (ADS)
Akai, Takashi; Bijeljic, Branko; Blunt, Martin J.
2018-06-01
In the color gradient lattice Boltzmann model (CG-LBM), a fictitious-density wetting boundary condition has been widely used because of its ease of implementation. However, as we show, this may lead to inaccurate results in some cases. In this paper, a new scheme for the wetting boundary condition is proposed which can handle complicated 3D geometries. The validity of our method for static problems is demonstrated by comparing the simulated results to analytical solutions in 2D and 3D geometries with curved boundaries. Then, capillary rise simulations are performed to study dynamic problems where the three-phase contact line moves. The results are compared to experimental results in the literature (Heshmati and Piri, 2014). If a constant contact angle is assumed, the simulations agree with the analytical solution based on the Lucas-Washburn equation. However, to match the experiments, we need to implement a dynamic contact angle that varies with the flow rate.
Circumstellar disks revealed by H/K flux variation gradients
NASA Astrophysics Data System (ADS)
Pozo Nuñez, F.; Haas, M.; Chini, R.; Ramolla, M.; Westhues, C.; Hodapp, K.-W.
2015-06-01
The variability of young stellar objects (YSO) changes their brightness and color preventing a proper classification in traditional color-color and color magnitude diagrams. We have explored the feasibility of the flux variation gradient (FVG) method for YSOs, using H and K band monitoring data of the star forming region RCW 38 obtained at the University Observatory Bochum in Chile. Simultaneous multi-epoch flux measurements follow a linear relation FH = α + β·FK for almost all YSOs with large variability amplitude. The slope β gives the mean HK color temperature Tvar of the varying component. Because Tvar is hotter than the dust sublimation temperature, we have tentatively assigned it to stellar variations. If the gradient does not meet the origin of the flux-flux diagram, an additional non- or less-varying component may be required. If the variability amplitude is larger at the shorter wavelength, e.g. α< 0, this component is cooler than the star (e.g. a circumstellar disk); vice versa, if α> 0, the component is hotter like a scattering halo or even a companion star. We here present examples of two YSOs, where the HK FVG implies the presence of a circumstellar disk; this finding is consistent with additional data at J and L. One YSO shows a clear K-band excess in the JHK color-color diagram, while the significance of a K-excess in the other YSO depends on the measurement epoch. Disentangling the contributions of star and disk it turns out that the two YSOs have huge variability amplitudes (~3-5 mag). The HK FVG analysis is a powerful complementary tool to analyze the varying components of YSOs and worth further exploration of monitoring data at other wavelengths.
Travassos, Claudia; Laguardia, Josué; Marques, Priscilla M; Mota, Jurema C; Szwarcwald, Celia L
2011-08-25
This paper aims to compare the classification of race/skin color based on the discrete categories used by the Demographic Census of the Brazilian Institute of Geography and Statistics (IBGE) and a skin color scale with values ranging from 1 (lighter skin) to 10 (darker skin), examining whether choosing one alternative or the other can influence measures of self-evaluation of health status, health care service utilization and discrimination in the health services. This is a cross-sectional study based on data from the World Health Survey carried out in Brazil in 2003 with a sample of 5000 individuals older than 18 years. Similarities between the two classifications were evaluated by means of correspondence analysis. The effect of the two classifications on health outcomes was tested through logistic regression models for each sex, using age, educational level and ownership of consumer goods as covariables. Both measures of race/skin color represent the same race/skin color construct. The results show a tendency among Brazilians to classify their skin color in shades closer to the center of the color gradient. Women tend to classify their race/skin color as a little lighter than men in the skin color scale, an effect not observed when IBGE categories are used. With regard to health and health care utilization, race/skin color was not relevant in explaining any of them, regardless of the race/skin color classification. Lack of money and social class were the most prevalent reasons for discrimination in healthcare reported in the survey, suggesting that in Brazil the discussion about discrimination in the health care must not be restricted to racial discrimination and should also consider class-based discrimination. The study shows that the differences of the two classifications of race/skin color are small. However, the interval scale measure appeared to increase the freedom of choice of the respondent.
2011-01-01
Background This paper aims to compare the classification of race/skin color based on the discrete categories used by the Demographic Census of the Brazilian Institute of Geography and Statistics (IBGE) and a skin color scale with values ranging from 1 (lighter skin) to 10 (darker skin), examining whether choosing one alternative or the other can influence measures of self-evaluation of health status, health care service utilization and discrimination in the health services. Methods This is a cross-sectional study based on data from the World Health Survey carried out in Brazil in 2003 with a sample of 5000 individuals older than 18 years. Similarities between the two classifications were evaluated by means of correspondence analysis. The effect of the two classifications on health outcomes was tested through logistic regression models for each sex, using age, educational level and ownership of consumer goods as covariables. Results Both measures of race/skin color represent the same race/skin color construct. The results show a tendency among Brazilians to classify their skin color in shades closer to the center of the color gradient. Women tend to classify their race/skin color as a little lighter than men in the skin color scale, an effect not observed when IBGE categories are used. With regard to health and health care utilization, race/skin color was not relevant in explaining any of them, regardless of the race/skin color classification. Lack of money and social class were the most prevalent reasons for discrimination in healthcare reported in the survey, suggesting that in Brazil the discussion about discrimination in the health care must not be restricted to racial discrimination and should also consider class-based discrimination. The study shows that the differences of the two classifications of race/skin color are small. However, the interval scale measure appeared to increase the freedom of choice of the respondent. PMID:21867522
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rofouie, P.; Rey, A. D., E-mail: alejandro.rey@mail.mcgill.ca; Pasini, D.
Periodic surface nano-wrinkling is found throughout biological liquid crystalline materials, such as collagen films, spider silk gland ducts, exoskeleton of beetles, and flower petals. These surface ultrastructures are responsible for structural colors observed in some beetles and plants that can dynamically respond to external conditions, such as humidity and temperature. In this paper, the formation of the surface undulations is investigated through the interaction of anisotropic interfacial tension, swelling through hydration, and capillarity at free surfaces. Focusing on the cellulosic cholesteric liquid crystal (CCLC) material model, the generalized shape equation for anisotropic interfaces using the Cahn-Hoffman capillarity vector and themore » Rapini-Papoular anchoring energy are applied to analyze periodic nano-wrinkling in plant-based plywood free surfaces with water-induced cholesteric pitch gradients. Scaling is used to derive the explicit relations between the undulations’ amplitude expressed as a function of the anchoring strength and the spatially varying pitch. The optical responses of the periodic nano-structured surfaces are studied through finite difference time domain simulations indicating that CCLC surfaces with spatially varying pitch reflect light in a wavelength higher than that of a CCLC’s surface with constant pitch. This structural color change is controlled by the pitch gradient through hydration. All these findings provide a foundation to understand structural color phenomena in nature and for the design of optical sensor devices.« less
Water Detection Based on Color Variation
NASA Technical Reports Server (NTRS)
Rankin, Arturo L.
2012-01-01
This software has been designed to detect water bodies that are out in the open on cross-country terrain at close range (out to 30 meters), using imagery acquired from a stereo pair of color cameras mounted on a terrestrial, unmanned ground vehicle (UGV). This detector exploits the fact that the color variation across water bodies is generally larger and more uniform than that of other naturally occurring types of terrain, such as soil and vegetation. Non-traversable water bodies, such as large puddles, ponds, and lakes, are detected based on color variation, image intensity variance, image intensity gradient, size, and shape. At ranges beyond 20 meters, water bodies out in the open can be indirectly detected by detecting reflections of the sky below the horizon in color imagery. But at closer range, the color coming out of a water body dominates sky reflections, and the water cue from sky reflections is of marginal use. Since there may be times during UGV autonomous navigation when a water body does not come into a perception system s field of view until it is at close range, the ability to detect water bodies at close range is critical. Factors that influence the perceived color of a water body at close range are the amount and type of sediment in the water, the water s depth, and the angle of incidence to the water body. Developing a single model of the mixture ratio of light reflected off the water surface (to the camera) to light coming out of the water body (to the camera) for all water bodies would be fairly difficult. Instead, this software detects close water bodies based on local terrain features and the natural, uniform change in color that occurs across the surface from the leading edge to the trailing edge.
NASA Astrophysics Data System (ADS)
Yang, Tingting; Zhong, Yujia; Tao, Dashuai; Li, Xinming; Zang, Xiaobei; Lin, Shuyuan; Jiang, Xin; Li, Zhihong; Zhu, Hongwei
2017-09-01
In nature, some animals change their deceptive coloration for camouflage, temperature preservation or communication. This astonishing function has inspired scientists to replicate the color changing abilities of animals with artificial skin. Recently, some studies have focused on the smart materials and devices with reversible color changing or light-emitting properties for instantaneous strain visualization. However, most of these works only show eye-detectable appearance change when subjected to large mechanical deformation (100%-500% strain), and conspicuous color change at small strain remains rarely explored. In the present study, we developed a user-interactive electronic skin with human-readable optical output by assembling a highly sensitive resistive strain sensor with a stretchable organic electrochromic device (ECD) together. We explored the substrate effect on the electromechanical behavior of graphene and designed a strategy of modulus-gradient structure to employ graphene as both the highly sensitive strain sensing element and the insensitive stretchable electrode of the ECD layer. Subtle strain (0-10%) was enough to evoke an obvious color change, and the RGB value of the color quantified the magnitude of the applied strain. Such high sensitivity to smaller strains (0-10%) with color changing capability will potentially enhance the function of wearable devices, robots and prosthetics in the future.
Gedzelman, Stanley David
2017-07-01
Three scenarios that produce colored thunderstorms are simulated. In Scenario #1, the thunderstorm's sunlit face exhibits a color gradient from white or yellow at top to red at base when the sun is near the horizon. It is simulated with a second-order scattering model as a combination of sunlight and skylight reflected from the cloud face that is attenuated and reddened by Rayleigh and Mie scattering over the long optical path near sunset that increases from cloud top to base. In Scenario #2, the base of the precipitation shaft appears luminous green-blue when surrounded by a much darker arcus cloud. It is simulated as multiply scattered light transmitted through the precipitation shaft using a Monte Carlo model that includes absorption by liquid water and ice. The color occurs over a wide range of solar zenith angles with large liquid water content, but the precipitation shaft is only bright when hydrometeors are large. Attenuation of the light by Rayleigh and Mie scattering outside the precipitation shaft shifts the spectrum to green when viewed from a distance of several kilometers. In Scenario #3, the shaded cloud face exhibits a "sickly" yellow-green color. It is simulated with a second-order scattering model as the result of distant skylight that originates in the sunlit region beyond an opaque anvil of order 40 km wide but is attenuated by Rayleigh and Mie scattering in its path to the cloud and observer.
NASA Technical Reports Server (NTRS)
Wu, Jie; Yu, Sheng-Tao; Jiang, Bo-nan
1996-01-01
In this paper a numerical procedure for simulating two-fluid flows is presented. This procedure is based on the Volume of Fluid (VOF) method proposed by Hirt and Nichols and the continuum surface force (CSF) model developed by Brackbill, et al. In the VOF method fluids of different properties are identified through the use of a continuous field variable (color function). The color function assigns a unique constant (color) to each fluid. The interfaces between different fluids are distinct due to sharp gradients of the color function. The evolution of the interfaces is captured by solving the convective equation of the color function. The CSF model is used as a means to treat surface tension effect at the interfaces. Here a modified version of the CSF model, proposed by Jacqmin, is used to calculate the tension force. In the modified version, the force term is obtained by calculating the divergence of a stress tensor defined by the gradient of the color function. In its analytical form, this stress formulation is equivalent to the original CSF model. Numerically, however, the use of the stress formulation has some advantages over the original CSF model, as it bypasses the difficulty in approximating the curvatures of the interfaces. The least-squares finite element method (LSFEM) is used to discretize the governing equation systems. The LSFEM has proven to be effective in solving incompressible Navier-Stokes equations and pure convection equations, making it an ideal candidate for the present applications. The LSFEM handles all the equations in a unified manner without any additional special treatment such as upwinding or artificial dissipation. Various bench mark tests have been carried out for both two dimensional planar and axisymmetric flows, including a dam breaking, oscillating and stationary bubbles and a conical liquid sheet in a pressure swirl atomizer.
Outer-disk reddening and gas-phase metallicities: The CALIFA connection
NASA Astrophysics Data System (ADS)
Marino, R. A.; Gil de Paz, A.; Sánchez, S. F.; Sánchez-Blázquez, P.; Cardiel, N.; Castillo-Morales, A.; Pascual, S.; Vílchez, J.; Kehrig, C.; Mollá, M.; Mendez-Abreu, J.; Catalán-Torrecilla, C.; Florido, E.; Perez, I.; Ruiz-Lara, T.; Ellis, S.; López-Sánchez, A. R.; González Delgado, R. M.; de Lorenzo-Cáceres, A.; García-Benito, R.; Galbany, L.; Zibetti, S.; Cortijo, C.; Kalinova, V.; Mast, D.; Iglesias-Páramo, J.; Papaderos, P.; Walcher, C. J.; Bland-Hawthorn, J.
2016-01-01
We study, for the first time in a statistically significant and well-defined sample, the relation between the outer-disk ionized-gas metallicity gradients and the presence of breaks in the surface brightness profiles of disk galaxies. Sloan Digital Sky Survey (SDSS) g'- and r'-band surface brightness, (g' - r') color, and ionized-gasoxygen abundance profiles for 324 galaxies within the Calar Alto Legacy Integral Field Area (CALIFA) survey are used for this purpose. We perform a detailed light-profile classification, finding that 84% of our disks show down- or up-bending profiles (Type II and Type III, respectively), while the remaining 16% are well fitted by one single exponential (Type I). The analysis of the color gradients at both sides of this break shows a U-shaped profile for most Type II galaxies with an average minimum (g' - r') color of ~0.5 mag and an ionized-gas metallicity flattening associated with it only in the case of low-mass galaxies. Comparatively, more massive systems show a rather uniform negative metallicity gradient. The correlation between metallicity flattening and stellar mass for these systems results in p-values as low as 0.01. Independent of the mechanism having shaped the outer light profiles of these galaxies, stellar migration or a previous episode of star formation in a shrinking star-forming disk, it is clear that the imprint in their ionized-gas metallicity was different for low- and high-mass Type II galaxies. In the case of Type III disks, a positive correlation between the change in color and abundance gradient is found (the null hypothesis is ruled out with a p-value of 0.02), with the outer disks of Type III galaxies with masses ≤1010 M⊙ showing a weak color reddening or even a bluing. This is interpreted as primarily due to a mass downsizing effect on the population of Type III galaxies that recently experienced an enhanced inside-out growth.
An improved silver staining procedure for schizodeme analysis in polyacrylamide gradient gels.
Gonçalves, A M; Nehme, N S; Morel, C M
1990-01-01
A simple protocol is described for the silver staining of polyacrylamide gradient gels used for the separation of restriction fragments of kinetoplast DNA [schizodeme analysis of trypanosomatids (Morel et al., 1980)]. The method overcomes the problems of non-uniform staining and strong background color which are frequently encountered when conventional protocols for silver staining of linear gels are applied to gradient gels. The method described has proven to be of general applicability for DNA, RNA and protein separations in gradient gels.
Photometric Detection of Multiple Populations in Globular Clusters Using Integrated Light
NASA Astrophysics Data System (ADS)
Bowman, William P.; Pilachowski, Catherine A.; van Zee, Liese; Winans, Amanda; Ciardullo, Robin; Gronwall, Caryl
2017-10-01
We investigate the multiple stellar populations of the globular clusters (GCs) M3, M5, M13, and M71 using {g}{\\prime } and intermediate-band CN-λ 3883 photometry obtained with the WIYN 0.9 m telescope on Kitt Peak. We find a strong correlation between red giant stars’ CN-{g}{\\prime } colors and their spectroscopic sodium abundances, thus demonstrating the efficacy of the two-filter system for stellar population studies. In all four clusters, the observed spread in red giant branch CN-{g}{\\prime } colors is wider than that expected from photometric uncertainty, confirming the well-known chemical inhomogeneity of these systems. M3 and M13 show clear evidence for a radial dependence in the CN-band strengths of its red giants, while the evidence for such a radial dependence of CN strengths in M5 is ambiguous. Our data suggest that the dynamically old, relatively metal-rich M71 system is well mixed, as it shows no evidence for chemical segregation. Finally, we measure the radial gradients in the integrated CN-{g}{\\prime } color of the clusters and find that such gradients are easily detectable in the integrated light. We suggest that photometric observations of color gradients within GCs throughout the Local Group can be used to characterize their multiple populations, and thereby constrain the formation history of GCs in different galactic environments.
A CCD Color Comparison of Seyfert 1 and 2 Host Galaxies
NASA Astrophysics Data System (ADS)
Virani, S. N.; De Robertis, M. M.
2001-05-01
Wide-field, R-band CCD data of 15 Seyfert 1 and 15 Seyfert 2 galaxies taken from the CfA survey were analysed in order to compare the properties of their host galaxies. Also, B-band images for a subset of 12 Seyfert 1s and 7 Seyfert 2s were acquired and analysed in the same way. The nuclear contribution of the Seyfert host galaxies was modeled and removed empirically by using a robust technique for decomposing the nucleus, bulge and disk components (see Virani et al. 2000, De Robertis and Virani, 2001). Profile fits to the remaining bulge+disk light were then performed. Of the many B-R color comparisons that were performed (i.e., component colors, color gradient, etc.) between Seyfert 1s and 2s, only two distributions differed at greater than the 95% confidence level for the K-S test: the magnitude of the nuclear component, and the radial color gradient outside the nucleus. The former is expected. The latter could be consistent with some proposed evolutionary models. There is some suggestion that other parameters may differ, but at a lower confidence level. Color contour maps and results from all tests performed (K-S test and Wilcoxon-Rank Sum Test) are presented.
Tunable nano-wrinkling of chiral surfaces: Structure and diffraction optics
NASA Astrophysics Data System (ADS)
Rofouie, P.; Pasini, D.; Rey, A. D.
2015-09-01
Periodic surface nano-wrinkling is found throughout biological liquid crystalline materials, such as collagen films, spider silk gland ducts, exoskeleton of beetles, and flower petals. These surface ultrastructures are responsible for structural colors observed in some beetles and plants that can dynamically respond to external conditions, such as humidity and temperature. In this paper, the formation of the surface undulations is investigated through the interaction of anisotropic interfacial tension, swelling through hydration, and capillarity at free surfaces. Focusing on the cellulosic cholesteric liquid crystal (CCLC) material model, the generalized shape equation for anisotropic interfaces using the Cahn-Hoffman capillarity vector and the Rapini-Papoular anchoring energy are applied to analyze periodic nano-wrinkling in plant-based plywood free surfaces with water-induced cholesteric pitch gradients. Scaling is used to derive the explicit relations between the undulations' amplitude expressed as a function of the anchoring strength and the spatially varying pitch. The optical responses of the periodic nano-structured surfaces are studied through finite difference time domain simulations indicating that CCLC surfaces with spatially varying pitch reflect light in a wavelength higher than that of a CCLC's surface with constant pitch. This structural color change is controlled by the pitch gradient through hydration. All these findings provide a foundation to understand structural color phenomena in nature and for the design of optical sensor devices.
Designing Image Operators for MRI-PET Image Fusion of the Brain
NASA Astrophysics Data System (ADS)
Márquez, Jorge; Gastélum, Alfonso; Padilla, Miguel A.
2006-09-01
Our goal is to obtain images combining in a useful and precise way the information from 3D volumes of medical imaging sets. We address two modalities combining anatomy (Magnetic Resonance Imaging or MRI) and functional information (Positron Emission Tomography or PET). Commercial imaging software offers image fusion tools based on fixed blending or color-channel combination of two modalities, and color Look-Up Tables (LUTs), without considering the anatomical and functional character of the image features. We used a sensible approach for image fusion taking advantage mainly from the HSL (Hue, Saturation and Luminosity) color space, in order to enhance the fusion results. We further tested operators for gradient and contour extraction to enhance anatomical details, plus other spatial-domain filters for functional features corresponding to wide point-spread-function responses in PET images. A set of image-fusion operators was formulated and tested on PET and MRI acquisitions.
Atmospheric scattering effects on ground-based measurements of thermospheric winds
NASA Technical Reports Server (NTRS)
Abreu, V. J.; Schmitt, G. A.; Hays, P. B.; Meriwether, J. W., Jr.; Tepley, C. A.; Cogger, L. L.
1983-01-01
Convergent or divergent thermospheric wind patterns detected by ground-based Fabry-Perot interferometric measurements of the Doppler shifts of atomic lines are demonstrated to occur in the presence of strong intensity gradients and a scattering atmosphere. Consideration is given to the color shifts observed when sighting to the north or the south, and a numerical model is developed to describe the wind patterns which produce the recorded shifts. An account is taken of the direct and scattered components of the brightness, with the atmosphere treated as a single scattering layer with a reflecting surface underneath. A scattering coefficient is calculated, together with the line shape of the wavelength shifts. The scattered light is demonstrated, both through simulations and measurements taken near Calgary, Alberta, to produce convergence or divergence of the color shifts, depending on the line-of-sight of the viewing.
Separation of carbon nanotubes into chirally enriched fractions
Doorn, Stephen K [Los Alamos, NM; Niyogi, Sandip [Los Alamos, NM
2012-04-10
A mixture of single-walled carbon nanotubes ("SWNTs") is separated into fractions of enriched chirality by preparing an aqueous suspension of a mixture of SWNTs and a surfactant, injecting a portion of the suspension on a column of separation medium having a density gradient, and centrifuging the column. In some embodiments, salt is added prior to centrifugation. In other embodiments, the centrifugation is performed at a temperature below room temperature. Fractions separate as colored bands in the column. The diameter of the separated SWNTs decreases with increasing density along the gradient of the column. The colored bands can be withdrawn separately from the column.
Optical and Near-Infrared Structural Properties of Cluster Galaxies at z ~ 0.3
NASA Astrophysics Data System (ADS)
La Barbera, F.; Busarello, G.; Merluzzi, P.; Massarotti, M.; Capaccioli, M.
2002-06-01
Structural parameters (half-light radius re, mean effective surface brightness <μ>e, and Sersic index n, parameterizing the light profile shape) are derived for a sample of galaxies in the rich cluster AC 118 at z=0.31, so far the largest (N=93) sample of galaxies at intermediate redshift with structural parameters measured in the near-infrared. The parameters are obtained in two optical wavebands (V and R) and in the K band, corresponding approximately to the B, V, and H rest frame. The distributions of re at z=0.31 match those for the Coma Cluster (i.e., for the local universe) both in the optical and in the NIR. The K-band distribution is of particular interest, since the NIR light mimics the mass distribution of galaxies. The similarity of the distributions for the two clusters (AC 118 and Coma) proves that the galaxies at the bright end of the luminosity function did not significantly change their sizes since z~0.3 to the present epoch. The ratio of the optical to the NIR half-light radius shows a marked trend with the shape of the light profile (Sersic index n). In galaxies with n>~4 (typical bright ellipticals) re,NIR~0.6re,opt, while the average ratio is 0.8 for galaxies with lower n (typical disk systems). Moreover, the NIR Sersic index is systematically larger than in the optical for n<~4. These results, translated into optical and optical-NIR color gradients, imply that the optical color gradients at z~0.3 are similar to those of nearby galaxies. The optical-NIR color gradients are in the average larger, ranging from -0.73 mag dex-1 for n<~4 to -0.35 mag dex-1 for n>~4. Models with ``pure age'' or ``pure metallicity'' gradients are unable to reconcile our color gradients estimates with observations at z~0, but we argue that the combined effects of age and metallicity might explain consistently the observed data: passive evolution (plus the possible effect of dust absorption) may account for the differences between the optical and NIR structural properties. The lack of any major change in re,NIR since z~0.3 suggests that merging involving bright galaxies did not play a significant role in the last ~4.4 Gyr (ΩM=0.3, ΩΛ=0, H0=50 km s-1 Mpc-1). The results of the present paper will be applied to the study of the scaling laws in subsequent works. Based on observations collected at European Southern Observatory (ESO 62.O-0369, 63.O-0257, 64.O-0236) and on data from the STScI Science Archive.
Generation of coherent two-color pulses at two adjacent harmonics in a seeded free-electron laser
NASA Astrophysics Data System (ADS)
Zhao, Zhouyu; Li, Heting; Jia, Qika
2018-02-01
The growing requirements of pump-probe techniques and nonlinear optics experiments greatly promote the studies of two-color free-electron lasers (FELs). We propose a new method to generate coherent two-color pulses in a high-gain harmonic generation (HGHG) FEL. In this scheme, an initial tilted electron beam is sent though the modulator and dispersive section of an HGHG FEL to generate the bunching at harmonics of the seed laser. Then a transverse gradient undulator (TGU) is adopted as the radiator and in such radiator, only two separated fractions of the tilted beam will resonate at two adjacent harmonics of the seed laser and are enabled to emit the coherent two-color pulses simultaneously. The time separation between the two pulses are on the order of hundreds of femtoseconds, and can be precisely controlled by varying the tilted amplitude of the electron beam and/or the transverse gradient of the TGU radiator. Numerical simulations confirm the validity and feasibility of this scheme in the extreme ultraviolet waveband.
High dynamic range image acquisition based on multiplex cameras
NASA Astrophysics Data System (ADS)
Zeng, Hairui; Sun, Huayan; Zhang, Tinghua
2018-03-01
High dynamic image is an important technology of photoelectric information acquisition, providing higher dynamic range and more image details, and it can better reflect the real environment, light and color information. Currently, the method of high dynamic range image synthesis based on different exposure image sequences cannot adapt to the dynamic scene. It fails to overcome the effects of moving targets, resulting in the phenomenon of ghost. Therefore, a new high dynamic range image acquisition method based on multiplex cameras system was proposed. Firstly, different exposure images sequences were captured with the camera array, using the method of derivative optical flow based on color gradient to get the deviation between images, and aligned the images. Then, the high dynamic range image fusion weighting function was established by combination of inverse camera response function and deviation between images, and was applied to generated a high dynamic range image. The experiments show that the proposed method can effectively obtain high dynamic images in dynamic scene, and achieves good results.
Altered spatial profile of distraction in people with schizophrenia.
Leonard, Carly J; Robinson, Benjamin M; Hahn, Britta; Luck, Steven J; Gold, James M
2017-11-01
Attention is critical for effective processing of incoming information and has long been identified as a potential area of dysfunction in people with schizophrenia (PSZ). In the realm of visual processing, both spatial attention and feature-based attention are involved in biasing selection toward task-relevant stimuli and avoiding distraction. Evidence from multiple paradigms has suggested that PSZ may hyperfocus and have a narrower "spotlight" of spatial attention. In contrast, feature-based attention seems largely preserved, with some suggestion of increased processing of stimuli sharing the target-defining feature. In the current study, we examined the spatial profile of feature-based distraction using a task in which participants searched for a particular color target and attempted to ignore distractors that varied in distance from the target location and either matched or mismatched the target color. PSZ differed from healthy controls in terms of interference from peripheral distractors that shared the target-color presented 200 ms before a central target. Specifically, PSZ showed an amplified gradient of spatial attention, with increased distraction to near distractors and less interference to far distractors. Moreover, consistent with hyperfocusing, individual differences in this spatial profile were correlated with positive symptoms, such that those with greater positive symptoms showed less distraction by target-colored distractors near the task-relevant location. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Grouping normal type Ia supernovae by UV to optical color differences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milne, Peter A.; Brown, Peter J.; Roming, Peter W. A.
2013-12-10
Observations of many Type Ia supernovae (SNe Ia) for multiple epochs per object with the Swift Ultraviolet Optical Telescope instrument have revealed that there exists order to the differences in the UV-optical colors of optically normal supernovae (SNe). We examine UV-optical color curves for 23 SNe Ia, dividing the SNe into four groups, and find that roughly one-third of 'NUV-blue' SNe Ia have bluer UV-optical colors than the larger 'NUV-red' group. Two minor groups are recognized, 'MUV-blue' and 'irregular' SNe Ia. While we conclude that the latter group is a subset of the NUV-red group, containing the SNe with themore » broadest optical peaks, we conclude that the 'MUV-blue' group is a distinct group. Separating into the groups and accounting for the time evolution of the UV-optical colors lowers the scatter in two NUV-optical colors (e.g., u – v and uvw1 – v) to the level of the scatter in b – v. This finding is promising for extending the cosmological utilization of SNe Ia into the NUV. We generate spectrophotometry of 33 SNe Ia and determine the correct grouping for each. We argue that there is a fundamental spectral difference in the 2900-3500 Å wavelength range, a region suggested to be dominated by absorption from iron-peak elements. The NUV-blue SNe Ia feature less absorption than the NUV-red SNe Ia. We show that all NUV-blue SNe Ia in this sample also show evidence of unburned carbon in optical spectra, whereas only one NUV-red SN Ia features that absorption line. Every NUV-blue event also exhibits a low gradient of the Si II λ6355 absorption feature. Many NUV-red events also exhibit a low gradient, perhaps suggestive that NUV-blue events are a subset of the larger low-velocity gradient group.« less
Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change.
Mills, L Scott; Bragina, Eugenia V; Kumar, Alexander V; Zimova, Marketa; Lafferty, Diana J R; Feltner, Jennifer; Davis, Brandon M; Hackländer, Klaus; Alves, Paulo C; Good, Jeffrey M; Melo-Ferreira, José; Dietz, Andreas; Abramov, Alexei V; Lopatina, Natalia; Fay, Kairsten
2018-03-02
Maintenance of biodiversity in a rapidly changing climate will depend on the efficacy of evolutionary rescue, whereby population declines due to abrupt environmental change are reversed by shifts in genetically driven adaptive traits. However, a lack of traits known to be under direct selection by anthropogenic climate change has limited the incorporation of evolutionary processes into global conservation efforts. In 21 vertebrate species, some individuals undergo a seasonal color molt from summer brown to winter white as camouflage against snow, whereas other individuals remain brown. Seasonal snow duration is decreasing globally, and fitness is lower for winter white animals on snowless backgrounds. Based on 2713 georeferenced samples of known winter coat color-from eight species across trophic levels-we identify environmentally driven clinal gradients in winter coat color, including polymorphic zones where winter brown and white morphs co-occur. These polymorphic zones, underrepresented by existing global protected area networks, indicate hot spots for evolutionary rescue in a changing climate. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Lei, M H; Chen, J J; Ko, Y L; Cheng, J J; Kuan, P; Lien, W P
1995-01-01
This study assessed the usefulness of continuous wave Doppler echocardiography and color flow mapping in evaluating pulmonary regurgitation (PR) and estimating pulmonary artery (PA) pressure. Forty-three patients were examined, and high quality Doppler spectral recordings of PR were obtained in 32. All patients underwent cardiac catheterization, and simultaneous PA and right ventricular (RV) pressures were recorded in 17. Four Doppler regurgitant flow velocity patterns were observed: pandiastolic plateau, biphasic, peak and plateau, and early diastolic triangular types. The peak diastolic and end-diastolic PA-to-RV pressure gradients derived from the Doppler flow profiles correlated well with the catheter measurements (r = 0.95 and r = 0.95, respectively). As PA pressure increased, the PR flow velocity became higher; a linear relationship between either systolic or mean PA pressure and Doppler-derived peak diastolic pressure gradient was noted (r = 0.90 and 0.94, respectively). Based on peak diastolic gradients of < 15, 15-30 or > 30 mm Hg, patients could be separated as those with mild, moderate or severe pulmonary hypertension, respectively (p < 0.05). A correlation was also observed between PA diastolic pressure and Doppler-derived end-diastolic pressure gradient (r = 0.91). Moreover, the Doppler velocity decay slope of PR closely correlated with that derived from the catheter method (r = 0.98). The decay slope tended to be steeper with the increment in regurgitant jet area and length obtained from color flow mapping. In conclusion, continuous wave Doppler evaluation of PR is a useful means for noninvasive estimation of PA pressure, and the Doppler velocity decay slope seems to reflect the severity of PR.
Supernova 2010ev: A reddened high velocity gradient type Ia supernova
NASA Astrophysics Data System (ADS)
Gutiérrez, Claudia P.; González-Gaitán, Santiago; Folatelli, Gastón; Pignata, Giuliano; Anderson, Joseph P.; Hamuy, Mario; Morrell, Nidia; Stritzinger, Maximilian; Taubenberger, Stefan; Bufano, Filomena; Olivares E., Felipe; Haislip, Joshua B.; Reichart, Daniel E.
2016-05-01
Aims: We present and study the spectroscopic and photometric evolution of the type Ia supernova (SN Ia) 2010ev. Methods: We obtain and analyze multiband optical light curves and optical/near-infrared spectroscopy at low and medium resolution spanning -7 days to +300 days from the B-band maximum. Results: A photometric analysis shows that SN 2010ev is a SN Ia of normal brightness with a light-curve shape of Δm15(B) = 1.12 ± 0.02 and a stretch s = 0.94 ± 0.01 suffering significant reddening. From photometric and spectroscopic analysis, we deduce a color excess of E(B - V) = 0.25 ± 0.05 and a reddening law of Rv = 1.54 ± 0.65. Spectroscopically, SN 2010ev belongs to the broad-line SN Ia group, showing stronger than average Si IIλ6355 absorption features. We also find that SN 2010ev is a high velocity gradient SN with v˙Si = 164 ± 7 km s-1 d-1. The photometric and spectral comparison with other supernovae shows that SN 2010ev has similar colors and velocities to SN 2002bo and SN 2002dj. The analysis of the nebular spectra indicates that the [Fe II]λ7155 and [Ni II]λ7378 lines are redshifted, as expected for a high velocity gradient supernova. All these common intrinsic and extrinsic properties of the high velocity gradient (HVG) group are different from the low velocity gradient (LVG) normal SN Ia population and suggest significant variety in SN Ia explosions. This paper includes data gathered with the Du Pont Telescope at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS-2010A-Q-14). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programme 085.D-0577).
Retinex based low-light image enhancement using guided filtering and variational framework
NASA Astrophysics Data System (ADS)
Zhang, Shi; Tang, Gui-jin; Liu, Xiao-hua; Luo, Su-huai; Wang, Da-dong
2018-03-01
A new image enhancement algorithm based on Retinex theory is proposed to solve the problem of bad visual effect of an image in low-light conditions. First, an image is converted from the RGB color space to the HSV color space to get the V channel. Next, the illuminations are respectively estimated by the guided filtering and the variational framework on the V channel and combined into a new illumination by average gradient. The new reflectance is calculated using V channel and the new illumination. Then a new V channel obtained by multiplying the new illumination and reflectance is processed with contrast limited adaptive histogram equalization (CLAHE). Finally, the new image in HSV space is converted back to RGB space to obtain the enhanced image. Experimental results show that the proposed method has better subjective quality and objective quality than existing methods.
ERIC Educational Resources Information Center
Strauss, Helen; Lewin, Isaac
1982-01-01
Analyzed the Weigl-Goldstein-Scheerer Color-Form Test using a sample of Danish children. Distinguished three dimensions: configuration of sorting, verbalization of the sorting principle, and the flexibility of switching sorting principle. The three dimensions proved themselves to constitute the a-priori-defined gradients. Results indicated a…
ERIC Educational Resources Information Center
Schonborn, Konrad; Host, Gunnar; Palmerius, Karljohan
2010-01-01
To help in interpreting the polarity of a molecule, charge separation can be visualized by mapping the electrostatic potential at the van der Waals surface using a color gradient or by indicating positive and negative regions of the electrostatic potential using different colored isosurfaces. Although these visualizations capture the molecular…
NASA Astrophysics Data System (ADS)
Lecoeur, Jérémy; Ferré, Jean-Christophe; Collins, D. Louis; Morrisey, Sean P.; Barillot, Christian
2009-02-01
A new segmentation framework is presented taking advantage of multimodal image signature of the different brain tissues (healthy and/or pathological). This is achieved by merging three different modalities of gray-level MRI sequences into a single RGB-like MRI, hence creating a unique 3-dimensional signature for each tissue by utilising the complementary information of each MRI sequence. Using the scale-space spectral gradient operator, we can obtain a spatial gradient robust to intensity inhomogeneity. Even though it is based on psycho-visual color theory, it can be very efficiently applied to the RGB colored images. More over, it is not influenced by the channel assigment of each MRI. Its optimisation by the graph cuts paradigm provides a powerful and accurate tool to segment either healthy or pathological tissues in a short time (average time about ninety seconds for a brain-tissues classification). As it is a semi-automatic method, we run experiments to quantify the amount of seeds needed to perform a correct segmentation (dice similarity score above 0.85). Depending on the different sets of MRI sequences used, this amount of seeds (expressed as a relative number in pourcentage of the number of voxels of the ground truth) is between 6 to 16%. We tested this algorithm on brainweb for validation purpose (healthy tissue classification and MS lesions segmentation) and also on clinical data for tumours and MS lesions dectection and tissues classification.
UGC 8508 - A dwarf galaxy associated with the M 101 group
NASA Technical Reports Server (NTRS)
Mould, J. R.; Schneider, D. P.; Harding, P.; Bothun, G. D.
1986-01-01
Two-color CCD photometry of UGC 8508 has resolved the system into stars. The color-magnitude diagram shows blue and red supergiants, the apparent magnitudes of the brightest stars indicate that UGC 8508 lies within 2 Mpc of the adopted 6 Mpc distance of the M 101 group. The galaxy contains a significant color gradient; star formation is confined to the central 1.5 scale lengths (0.8 kpc). UGC 8508 has a central surface brightness intermediate between bursting and quiescent dwarf irregular galaxies.
Anti-iridescent colloidal photonic nanostructure from thermal gradients and polymeric brush effects
NASA Astrophysics Data System (ADS)
Lee, Seung Yeol; Kim, Hyoungsoo; Kim, Shin-Hyun; Stone, Howard
2017-11-01
Colloidal nanostructures induced by self-assembly are important in reflective displays, plasmonic or photonic sensors, and color pigments. During the evaporation of droplets of colloidal suspension, due to the non-uniform evaporation rate along the droplet interface, a radially outward flow is created and it carries colloidal particles to the pinned contact line of the droplet. We document that the packing at the contact line is a face-center-cubic (fcc) colloidal nanostructure in a ring shape. The fcc structure of the colloidal nanoparticles exhibits angle-dependent color. In particular, we introduce a novel method to suppress the familiar coffee-ring effect and modify colloidal nanostructures to exhibit angle-independent optical properties. A suspension of polyethylene oxide (PEO)-coated silica nanoparticles dispersed in ethanol-water mixture is prepared. The droplet containing the nanoparticles dries on a heated substrate, which creates a thermal gradient along the interface of the droplet. This thermal gradient induces thermal-Marangoni stresses that suppress the coffee-ring effects. PEO adsorbed on the surface of silica nanoparticles produces an additional interaction between colloidal nanoparticles, which makes the final structure disordered. The disordered photonic nanostructures in our experiments exhibit angle-independent structural color. This technique can be applied to printing or optical filtering systems.
A Statistical Approach to Identify Superluminous Supernovae and Probe Their Diversity
NASA Astrophysics Data System (ADS)
Inserra, C.; Prajs, S.; Gutierrez, C. P.; Angus, C.; Smith, M.; Sullivan, M.
2018-02-01
We investigate the identification of hydrogen-poor superluminous supernovae (SLSNe I) using a photometric analysis, without including an arbitrary magnitude threshold. We assemble a homogeneous sample of previously classified SLSNe I from the literature, and fit their light curves using Gaussian processes. From the fits, we identify four photometric parameters that have a high statistical significance when correlated, and combine them in a parameter space that conveys information on their luminosity and color evolution. This parameter space presents a new definition for SLSNe I, which can be used to analyze existing and future transient data sets. We find that 90% of previously classified SLSNe I meet our new definition. We also examine the evidence for two subclasses of SLSNe I, combining their photometric evolution with spectroscopic information, namely the photospheric velocity and its gradient. A cluster analysis reveals the presence of two distinct groups. “Fast” SLSNe show fast light curves and color evolution, large velocities, and a large velocity gradient. “Slow” SLSNe show slow light curve and color evolution, small expansion velocities, and an almost non-existent velocity gradient. Finally, we discuss the impact of our analyses in the understanding of the powering engine of SLSNe, and their implementation as cosmological probes in current and future surveys.
Water color and circulation southern Chesapeake Bay, part 1
NASA Technical Reports Server (NTRS)
Nichols, M. M.; Gordon, H. H.
1975-01-01
Satellite imagery from two EREP passes over the Rappahannock Estuary of the Chesapeake region is analyzed to chart colored water types, to delineate color boundaries and define circulatory patterns. Surface observations from boats and helicopters concurrent with Skylab overpass define the distributions of suspended sediment, transparency, temperature, salinity, phytoplankton, color of suspended material and optical ratio. Important features recorded by the imagery are a large-scale turbidity maximum and massive red tide blooms. Water movement is revealed by small-scale mixing patterns and tidal plumes of apparent sediment-laden water. The color patterns broadly reflect the bottom topography and the seaward gradient of suspended material between the river and the bay. Analyses of red, green and natural color photos by microdensitometry demonstrate the utility of charting water color types of potential use for managing estuarine water quality. The Skylab imagery is superior to aerial photography and surface observations for charting water color.
Optical classification for quality and defect analysis of train brakes
NASA Astrophysics Data System (ADS)
Glock, Stefan; Hausmann, Stefan; Gerke, Sebastian; Warok, Alexander; Spiess, Peter; Witte, Stefan; Lohweg, Volker
2009-06-01
In this paper we present an optical measurement system approach for quality analysis of brakes which are used in high-speed trains. The brakes consist of the so called brake discs and pads. In a deceleration process the discs will be heated up to 500°C. The quality measure is based on the fact that the heated brake discs should not generate hot spots inside the brake material. Instead, the brake disc should be heated homogeneously by the deceleration. Therefore, it makes sense to analyze the number of hot spots and their relative gradients to create a quality measure for train brakes. In this contribution we present a new approach for a quality measurement system which is based on an image analysis and classification of infra-red based heat images. Brake images which are represented in pseudo-color are first transformed in a linear grayscale space by a hue-saturation-intensity (HSI) space. This transform is necessary for the following gradient analysis which is based on gray scale gradient filters. Furthermore, different features based on Haralick's measures are generated from the gray scale and gradient images. A following Fuzzy-Pattern-Classifier is used for the classification of good and bad brakes. It has to be pointed out that the classifier returns a score value for each brake which is between 0 and 100% good quality. This fact guarantees that not only good and bad bakes can be distinguished, but also their quality can be labeled. The results show that all critical thermal patterns of train brakes can be sensed and verified.
NASA Astrophysics Data System (ADS)
Dunckel, Anne E.; Cardenas, M. Bayani; Sawyer, Audrey H.; Bennett, Philip C.
2009-12-01
Microbial mats have spatially heterogeneous structured communities that manifest visually through vibrant color zonation often associated with environmental gradients. We report the first use of high-resolution thermal infrared imaging to map temperature at four hot springs within the El Tatio Geyser Field, Chile. Thermal images with millimeter resolution show drastic variability and pronounced patterning in temperature, with changes on the order of 30°C within a square decimeter. Paired temperature and visual images show that zones with specific coloration occur within distinct temperature ranges. Unlike previous studies where maximum, minimum, and optimal temperatures for microorganisms are based on isothermally-controlled laboratory cultures, thermal imaging allows for mapping thousands of temperature values in a natural setting. This allows for efficiently constraining natural temperature bounds for visually distinct mat zones. This approach expands current understanding of thermophilic microbial communities and opens doors for detailed analysis of biophysical controls on microbial ecology.
Monnat, Shannon M
2014-02-01
Using three years (2006, 2008, 2010) of nationally representative data from the Behavioral Risk Factor Surveillance System, I assessed the socioeconomic status (SES) gradient for odds of receiving a mammogram in the past two years and a Pap test in the past three years among White, Black, Hispanic, and Asian women living in the U.S. Mammogram and Pap test utilization were less likely among low-SES women. However, women of color experience less benefit than Whites from increasing SES for both screenings; as income and education increased, White women experienced more pronounced increases in the likelihood of being screened than did women of color. In what might be referred to as paradoxical returns, Asian women actually experienced a decline in the likelihood of obtaining a recent Pap test at higher levels of education. My findings suggest that women of color differ from Whites in the extent to which increasing socioeconomic resources is associated with increasing cancer screening utilization.
NASA Technical Reports Server (NTRS)
Nicholas, Stephanie
2016-01-01
A recent study conducted by the Commercial Aviation Safety Team (CAST) determined 40 percent of all fixed-wing fatal accidents, between 2001 and 2011, were caused by Loss-of-Control (LOC) in flight (National Transportation Safety Board, 2015). Based on their findings, CAST recommended manufacturers develop and implement virtual day-visual meteorological conditions (VMC) display systems, such as synthetic vision or equivalent systems (CAST, 2016). In a 2015 simulation study conducted at NASA Langley Research Center (LaRC), researchers gathered to test and evaluate virtual day-VMC displays under realistic flight operation scenarios capable of inducing reduced attention states in pilots. Each display concept was evaluated to determine its efficacy to improve attitude awareness. During the experiment, Evaluation Pilots (EPs) were shown the following three display concepts on the Primary Flight Display (PFD): Baseline, Synthetic Vision (SV) with color gradient, and SV with texture. The baseline configuration was a standard, conventional 'blue over brown' display. Experiment scenarios were simulated over water to evaluate Unusual Attitude (UA) recovery over 'featureless terrain' environments. Thus, the SV with color gradient configuration presented a 'blue over blue' display with a linear blue color progression, to differentiate attitude changes between sky and ocean. The SV with texture configuration presented a 'blue over blue' display with a black checkerboard texture atop a synthetic ocean. These displays were paired with a Background Attitude Indicator (BAI) concept. The BAI was presented across all four Head-Down Displays (HDDs), displaying a wide field-of-view blue-over-blue attitude indicator. The BAI aligned with the PFD and showed through the background of the navigation displays with opaque transparency. Each EP participated in a two-part experiment series with a total seventy-five trial runs: Part I included a set of twenty-five Unusual Attitude Recovery (UAR) scenarios; Part II included a set of fifty Attitude Memory Recall Tasks (AMRT). At the conclusion of each trial, EPs were asked to complete a set post-run questionnaires. Quantitative results showed that there were no significant statistical effects on UA recovery times when utilizing SV with or without the presence of a BAI. Qualitative results show the SV displays (color, texture) with BAI On are most preferred for both UA recognition and recovery when compared with the baseline display. When only comparing SV display concepts, EPs performed better when using the SV with texture, BAI On, than any other display configuration. This is an interesting find considering most EPs noted their preference towards the SV with color gradient when the BAI was on.
A unifying retinex model based on non-local differential operators
NASA Astrophysics Data System (ADS)
Zosso, Dominique; Tran, Giang; Osher, Stanley
2013-02-01
In this paper, we present a unifying framework for retinex that is able to reproduce many of the existing retinex implementations within a single model. The fundamental assumption, as shared with many retinex models, is that the observed image is a multiplication between the illumination and the true underlying reflectance of the object. Starting from Morel's 2010 PDE model for retinex, where illumination is supposed to vary smoothly and where the reflectance is thus recovered from a hard-thresholded Laplacian of the observed image in a Poisson equation, we define our retinex model in similar but more general two steps. First, look for a filtered gradient that is the solution of an optimization problem consisting of two terms: The first term is a sparsity prior of the reflectance, such as the TV or H1 norm, while the second term is a quadratic fidelity prior of the reflectance gradient with respect to the observed image gradients. In a second step, since this filtered gradient almost certainly is not a consistent image gradient, we then look for a reflectance whose actual gradient comes close. Beyond unifying existing models, we are able to derive entirely novel retinex formulations by using more interesting non-local versions for the sparsity and fidelity prior. Hence we define within a single framework new retinex instances particularly suited for texture-preserving shadow removal, cartoon-texture decomposition, color and hyperspectral image enhancement.
Bibliography of In-House and Contract Reports. Supplement 16
1989-10-01
Differences from ETL-71-CR-10 1971 Grav,t% and Gravity Gradients 54 TiLE REPORT NO. YEAR Determination of Level Sensitivity (Field ETL-RN-74-4 1974...Data Base Study, Phase II ETL-0360 1984 High Resolution Optical Power Spectrum Analyzer ETL-0127 1978 High Resolution Orthophoto Output Table (HIROOT...AD 856 731L 1969 High Resolution Orthophoto Output Table ETL-ETR-72-3 1972 High Speed Disc Memory and a Color Image AD 878 975L 1970 Display for a
Automatic discrimination of color retinal images using the bag of words approach
NASA Astrophysics Data System (ADS)
Sadek, I.; Sidibé, D.; Meriaudeau, F.
2015-03-01
Diabetic retinopathy (DR) and age related macular degeneration (ARMD) are among the major causes of visual impairment all over the world. DR is mainly characterized by small red spots, namely microaneurysms and bright lesions, specifically exudates. However, ARMD is mainly identified by tiny yellow or white deposits called drusen. Since exudates might be the only visible signs of the early diabetic retinopathy, there is an increase demand for automatic diagnosis of retinopathy. Exudates and drusen may share similar appearances; as a result discriminating between them plays a key role in improving screening performance. In this research, we investigative the role of bag of words approach in the automatic diagnosis of retinopathy diabetes. Initially, the color retinal images are preprocessed in order to reduce the intra and inter patient variability. Subsequently, SURF (Speeded up Robust Features), HOG (Histogram of Oriented Gradients), and LBP (Local Binary Patterns) descriptors are extracted. We proposed to use single-based and multiple-based methods to construct the visual dictionary by combining the histogram of word occurrences from each dictionary and building a single histogram. Finally, this histogram representation is fed into a support vector machine with linear kernel for classification. The introduced approach is evaluated for automatic diagnosis of normal and abnormal color retinal images with bright lesions such as drusen and exudates. This approach has been implemented on 430 color retinal images, including six publicly available datasets, in addition to one local dataset. The mean accuracies achieved are 97.2% and 99.77% for single-based and multiple-based dictionaries respectively.
An analysis of automatic human detection and tracking
NASA Astrophysics Data System (ADS)
Demuth, Philipe R.; Cosmo, Daniel L.; Ciarelli, Patrick M.
2015-12-01
This paper presents an automatic method to detect and follow people on video streams. This method uses two techniques to determine the initial position of the person at the beginning of the video file: one based on optical flow and the other one based on Histogram of Oriented Gradients (HOG). After defining the initial bounding box, tracking is done using four different trackers: Median Flow tracker, TLD tracker, Mean Shift tracker and a modified version of the Mean Shift tracker using HSV color space. The results of the methods presented in this paper are then compared at the end of the paper.
An image-based automatic recognition method for the flowering stage of maize
NASA Astrophysics Data System (ADS)
Yu, Zhenghong; Zhou, Huabing; Li, Cuina
2018-03-01
In this paper, we proposed an image-based approach for automatic recognizing the flowering stage of maize. A modified HOG/SVM detection framework is first adopted to detect the ears of maize. Then, we use low-rank matrix recovery technology to precisely extract the ears at pixel level. At last, a new feature called color gradient histogram, as an indicator, is proposed to determine the flowering stage. Comparing experiment has been carried out to testify the validity of our method and the results indicate that our method can meet the demand for practical observation.
EFFECTS OF NON-CIRCULAR MOTIONS ON AZIMUTHAL COLOR GRADIENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Garcia, Eric E.; Gonzalez-Lopezlira, Rosa A.; Gomez, Gilberto C., E-mail: emartinez@cida.v, E-mail: r.gonzalez@crya.unam.m, E-mail: g.gomez@crya.unam.m
2009-12-20
Assuming that density waves trigger star formation, and that young stars preserve the velocity components of the molecular gas where they are born, we analyze the effects that non-circular gas orbits have on color gradients across spiral arms. We try two approaches, one involving semianalytical solutions for spiral shocks, and another with magnetohydrodynamic (MHD) numerical simulation data. We find that, if non-circular motions are ignored, the comparison between observed color gradients and stellar population synthesis models would in principle yield pattern speed values that are systematically too high for regions inside corotation, with the difference between the real and themore » measured pattern speeds increasing with decreasing radius. On the other hand, image processing and pixel averaging result in systematically lower measured spiral pattern speed values, regardless of the kinematics of stellar orbits. The net effect is that roughly the correct pattern speeds are recovered, although the trend of higher measured OMEGA{sub p} at lower radii (as expected when non-circular motions exist but are neglected) should still be observed. We examine the MartInez-GarcIa et al. photometric data and confirm that this is indeed the case. The comparison of the size of the systematic pattern speed offset in the data with the predictions of the semianalytical and MHD models corroborates that spirals are more likely to end at outer Lindblad resonance, as these authors had already found.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargis, Jonathan R.; Rhode, Katherine L., E-mail: jhargis@astro.indiana.edu, E-mail: rhode@astro.indiana.edu
This paper presents results from wide-field imaging of the globular cluster (GC) systems of five intermediate-luminosity (M{sub V} {approx} -21 to -22) early-type galaxies. The aim is to accurately quantify the global properties of the GC systems by measuring them out to large radii. We obtained BVR imaging of four lenticular galaxies (NGC 5866, NGC 4762, NGC 4754, NGC 3384) and one elliptical galaxy (NGC 5813) using the KPNO 4 m telescope and Mosaic imager and traced the GC population to projected galactocentric radii ranging from {approx}20 kpc to 120 kpc. We combine our imaging with Hubble Space Telescope datamore » to measure the GC surface density close to the galaxy center. We calculate the total number of GCs (N{sub GC}) from the integrated radial profile and find N{sub GC} = 340 {+-} 80 for NGC 5866, N{sub GC} = 2900 {+-} 400 for NGC 5813, N{sub GC} = 270 {+-} 30 for NGC 4762, N{sub GC} = 115 {+-} 15 for NGC 4754, and N{sub GC} = 120 {+-} 30 for NGC 3384. The measured GC specific frequencies are S{sub N} between 0.6 and 3.6 and T in the range 0.9-4.2. These values are consistent with the mean specific frequencies for the galaxies' morphological types found by our survey and other published data. Three galaxies (NGC 5866, NGC 5813, and NGC 4762) had sufficient numbers of GC candidates to investigate color bimodality and color gradients in the GC systems. NGC 5813 shows strong evidence (>3{sigma}) for bimodality and a B - R color gradient resulting from a more centrally concentrated red (metal-rich) GC subpopulation. We find no evidence for statistically significant color gradients in the other two galaxies.« less
A hand tracking algorithm with particle filter and improved GVF snake model
NASA Astrophysics Data System (ADS)
Sun, Yi-qi; Wu, Ai-guo; Dong, Na; Shao, Yi-zhe
2017-07-01
To solve the problem that the accurate information of hand cannot be obtained by particle filter, a hand tracking algorithm based on particle filter combined with skin-color adaptive gradient vector flow (GVF) snake model is proposed. Adaptive GVF and skin color adaptive external guidance force are introduced to the traditional GVF snake model, guiding the curve to quickly converge to the deep concave region of hand contour and obtaining the complex hand contour accurately. This algorithm realizes a real-time correction of the particle filter parameters, avoiding the particle drift phenomenon. Experimental results show that the proposed algorithm can reduce the root mean square error of the hand tracking by 53%, and improve the accuracy of hand tracking in the case of complex and moving background, even with a large range of occlusion.
Sohaib, Ali; Farooq, Abdul R; Atkinson, Gary A; Smith, Lyndon N; Smith, Melvyn L; Warr, Robert
2013-03-01
This paper proposes and describes an implementation of a photometric stereo-based technique for in vivo assessment of three-dimensional (3D) skin topography in the presence of interreflections. The proposed method illuminates skin with red, green, and blue colored lights and uses the resulting variation in surface gradients to mitigate the effects of interreflections. Experiments were carried out on Caucasian, Asian, and African American subjects to demonstrate the accuracy of our method and to validate the measurements produced by our system. Our method produced significant improvement in 3D surface reconstruction for all Caucasian, Asian, and African American skin types. The results also illustrate the differences in recovered skin topography due to the nondiffuse bidirectional reflectance distribution function (BRDF) for each color illumination used, which also concur with the existing multispectral BRDF data available for skin.
NASA Technical Reports Server (NTRS)
Giulianelli, J.
1984-01-01
In order to predict the thermal efficiency of a solar pond it is necessary to know total average solar energy reaching the storage layer. One method for determining this energy for water containing dissolved colored species is based upon spectral transmission measurements using a laboratory spectrophotometer. This method is examined and some of the theoretical ground work needed to discuss the measurement of transmission of light water. Results of in situ irradiance measurements from oceanography research are presented and the difficulties inherent in extrapolating laboratory data obtained with ten centimeter cells to real three dimensional pond situations is discussed. Particular emphasis is put on the need to account for molecular and particulate scattering in measurements done on low absorbing solutions. Despite these considerations it is expected that attenuation calculations based upon careful measurements using a dual beam spectrophotometer technique combined with known attenuation coefficients will be useful in solar pond modeling and monitoring for color buildup. Preliminary results using the CSM method are presented.
Fuzzy Filtering Method for Color Videos Corrupted by Additive Noise
Ponomaryov, Volodymyr I.; Montenegro-Monroy, Hector; Nino-de-Rivera, Luis
2014-01-01
A novel method for the denoising of color videos corrupted by additive noise is presented in this paper. The proposed technique consists of three principal filtering steps: spatial, spatiotemporal, and spatial postprocessing. In contrast to other state-of-the-art algorithms, during the first spatial step, the eight gradient values in different directions for pixels located in the vicinity of a central pixel as well as the R, G, and B channel correlation between the analogous pixels in different color bands are taken into account. These gradient values give the information about the level of contamination then the designed fuzzy rules are used to preserve the image features (textures, edges, sharpness, chromatic properties, etc.). In the second step, two neighboring video frames are processed together. Possible local motions between neighboring frames are estimated using block matching procedure in eight directions to perform interframe filtering. In the final step, the edges and smoothed regions in a current frame are distinguished for final postprocessing filtering. Numerous simulation results confirm that this novel 3D fuzzy method performs better than other state-of-the-art techniques in terms of objective criteria (PSNR, MAE, NCD, and SSIM) as well as subjective perception via the human vision system in the different color videos. PMID:24688428
Implementation of neural network for color properties of polycarbonates
NASA Astrophysics Data System (ADS)
Saeed, U.; Ahmad, S.; Alsadi, J.; Ross, D.; Rizvi, G.
2014-05-01
In present paper, the applicability of artificial neural networks (ANN) is investigated for color properties of plastics. The neural networks toolbox of Matlab 6.5 is used to develop and test the ANN model on a personal computer. An optimal design is completed for 10, 12, 14,16,18 & 20 hidden neurons on single hidden layer with five different algorithms: batch gradient descent (GD), batch variable learning rate (GDX), resilient back-propagation (RP), scaled conjugate gradient (SCG), levenberg-marquardt (LM) in the feed forward back-propagation neural network model. The training data for ANN is obtained from experimental measurements. There were twenty two inputs including resins, additives & pigments while three tristimulus color values L*, a* and b* were used as output layer. Statistical analysis in terms of Root-Mean-Squared (RMS), absolute fraction of variance (R squared), as well as mean square error is used to investigate the performance of ANN. LM algorithm with fourteen neurons on hidden layer in Feed Forward Back-Propagation of ANN model has shown best result in the present study. The degree of accuracy of the ANN model in reduction of errors is proven acceptable in all statistical analysis and shown in results. However, it was concluded that ANN provides a feasible method in error reduction in specific color tristimulus values.
Chastain, R.A.; Struckhoff, M.A.; He, H.S.; Larsen, D.R.
2008-01-01
A vegetation community map was produced for the Ozark National Scenic Riverways consistent with the association level of the National Vegetation Classification System. Vegetation communities were differentiated using a large array of variables derived from remote sensing and topographic data, which were fused into independent mathematical functions using a discriminant analysis classification approach. Remote sensing data provided variables that discriminated vegetation communities based on differences in color, spectral reflectance, greenness, brightness, and texture. Topographic data facilitated differentiation of vegetation communities based on indirect gradients (e.g., landform position, slope, aspect), which relate to variations in resource and disturbance gradients. Variables derived from these data sources represent both actual and potential vegetation community patterns on the landscape. A hybrid combination of statistical and photointerpretation methods was used to obtain an overall accuracy of 63 percent for a map with 49 vegetation community and land-cover classes, and 78 percent for a 33-class map of the study area.
Joint Smoothed l₀-Norm DOA Estimation Algorithm for Multiple Measurement Vectors in MIMO Radar.
Liu, Jing; Zhou, Weidong; Juwono, Filbert H
2017-05-08
Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint smoothed l 0 -norm algorithm, is proposed for multiple measurement vectors in multiple-input multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method first obtains a low-complexity high-order cumulants based data matrix. Then, the proposed algorithm designs a joint smoothed function tailored for the MMV case, based on which joint smoothed l 0 -norm sparse representation framework is constructed. Finally, for the MMV-based joint smoothed function, the corresponding gradient-based sparse signal reconstruction is designed, thus the DOA estimation can be achieved. The proposed method is a fast sparse representation algorithm, which can solve the MMV problem and perform well for both white and colored Gaussian noises. The proposed joint algorithm is about two orders of magnitude faster than the l 1 -norm minimization based methods, such as l 1 -SVD (singular value decomposition), RV (real-valued) l 1 -SVD and RV l 1 -SRACV (sparse representation array covariance vectors), and achieves better DOA estimation performance.
NASA Astrophysics Data System (ADS)
Chang, Faliang; Liu, Chunsheng
2017-09-01
The high variability of sign colors and shapes in uncontrolled environments has made the detection of traffic signs a challenging problem in computer vision. We propose a traffic sign detection (TSD) method based on coarse-to-fine cascade and parallel support vector machine (SVM) detectors to detect Chinese warning and danger traffic signs. First, a region of interest (ROI) extraction method is proposed to extract ROIs using color contrast features in local regions. The ROI extraction can reduce scanning regions and save detection time. For multiclass TSD, we propose a structure that combines a coarse-to-fine cascaded tree with a parallel structure of histogram of oriented gradients (HOG) + SVM detectors. The cascaded tree is designed to detect different types of traffic signs in a coarse-to-fine process. The parallel HOG + SVM detectors are designed to do fine detection of different types of traffic signs. The experiments demonstrate the proposed TSD method can rapidly detect multiclass traffic signs with different colors and shapes in high accuracy.
Pressure Gradient Effects on Hypersonic Cavity Flow Heating
NASA Technical Reports Server (NTRS)
Everhart, Joel L.; Alter, Stephen J.; Merski, N. Ronald; Wood, William A.; Prabhu, Ramadas K.
2006-01-01
The effect of a pressure gradient on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated in support of the Space Shuttle Return-To-Flight Program. Two blunted-nose test surface geometries were developed, including an expansion plate test surface with nearly constant negative pressure gradient and a flat plate surface with nearly zero pressure gradient. The test surface designs and flow characterizations were performed using two-dimensional laminar computational methods, while the experimental boundary layer state conditions were inferred using the measured heating distributions. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process. Both open-flow and closed-flow cavities were tested on each test surface. The cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary conclusions based on an analysis of only the cavity centerline data indicate that the presence of the pressure gradient did not alter the open cavity heating for laminar-entry/laminar-exit flows, but did raise the average floor heating for closed cavities. The results of these risk-reduction studies will be used to formulate a heating assessment of potential damage scenarios occurring during future Space Shuttle flights.
Pressure Gradient Effects on Hypersonic Cavity Flow Heating
NASA Technical Reports Server (NTRS)
Everhart, Joel L.; Alter, Stephen J.; Merski, N. Ronald; Wood, William A.; Prabhu, Ramdas K.
2007-01-01
The effect of a pressure gradient on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated in support of the Space Shuttle Return-To-Flight Program. Two blunted-nose test surface geometries were developed, including an expansion plate test surface with nearly constant negative pressure gradient and a flat plate surface with nearly zero pressure gradient. The test surface designs and flow characterizations were performed using two-dimensional laminar computational methods, while the experimental boundary layer state conditions were inferred using the measured heating distributions. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process. Both open-flow and closed-flow cavities were tested on each test surface. The cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary conclusions based on an analysis of only the cavity centerline data indicate that the presence of the pressure gradient did not alter the open cavity heating for laminar-entry/laminar-exit flows, but did raise the average floor heating for closed cavities. The results of these risk-reduction studies will be used to formulate a heating assessment of potential damage scenarios occurring during future Space Shuttle flights.
NASA Technical Reports Server (NTRS)
Romanishin, W.
1988-01-01
Preliminary results are given for a program to measure color gradients in the central galaxies in clusters with a variety of cooling flow rates. The objectives are to search for extended blue continuum regions indicative of star formation, to study the spatial distribution of star formation, and to make a quantitative measure of the amount of light from young stars, which can lead to a measure of the star formation rate (for an assumed initial mass function). Four clusters with large masses and large cluster H-alpha emission fluxes are found to have an excess of blue light concentrated to the centers of the cluster central galaxy. Assumption of a disk IMF leads to the conclusion that the starlight might play a major role in ionizing the emission line gas in these clusters.
Globular cluster systems and their host galaxies: comparison of spatial distributions and colors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargis, Jonathan R.; Rhode, Katherine L., E-mail: jhargis@haverford.edu
2014-11-20
We present a study of the spatial and color distributions of four early-type galaxies and their globular cluster (GC) systems observed as part of our ongoing wide-field imaging survey. We use BVR KPNO 4 m+MOSAIC imaging data to characterize the galaxies' GC populations, perform surface photometry of the galaxies, and compare the projected two-dimensional shape of the host galaxy light to that of the GC population. The GC systems of the ellipticals NGC 4406 and NGC 5813 both show an elliptical distribution consistent with that of the host galaxy light. Our analysis suggests a similar result for the giant ellipticalmore » NGC 4472, but a smaller GC candidate sample precludes a definite conclusion. For the S0 galaxy NGC 4594, the GCs have a circular projected distribution, in contrast to the host galaxy light, which is flattened in the inner regions. For NGC 4406 and NGC 5813, we also examine the projected shapes of the metal-poor and metal-rich GC subpopulations and find that both subpopulations have elliptical shapes that are consistent with those of the host galaxy light. Lastly, we use integrated colors and color profiles to compare the stellar populations of the galaxies to their GC systems. For each galaxy, we explore the possibility of color gradients in the individual metal-rich and metal-poor GC subpopulations. We find statistically significant color gradients in both GC subpopulations of NGC 4594 over the inner ∼5 effective radii (∼20 kpc). We compare our results to scenarios for the formation and evolution of giant galaxies and their GC systems.« less
Harvey, E Therese; Kratzer, Susanne; Andersson, Agneta
2015-06-01
Due to high terrestrial runoff, the Baltic Sea is rich in dissolved organic carbon (DOC), the light-absorbing fraction of which is referred to as colored dissolved organic matter (CDOM). Inputs of DOC and CDOM are predicted to increase with climate change, affecting coastal ecosystems. We found that the relationships between DOC, CDOM, salinity, and Secchi depth all differed between the two coastal areas studied; the W Gulf of Bothnia with high terrestrial input and the NW Baltic Proper with relatively little terrestrial input. The CDOM:DOC ratio was higher in the Gulf of Bothnia, where CDOM had a greater influence on the Secchi depth, which is used as an indicator of eutrophication and hence important for Baltic Sea management. Based on the results of this study, we recommend regular CDOM measurements in monitoring programmes, to increase the value of concurrent Secchi depth measurements.
Real-Time Detection and Measurement of Eye Features from Color Images
Borza, Diana; Darabant, Adrian Sergiu; Danescu, Radu
2016-01-01
The accurate extraction and measurement of eye features is crucial to a variety of domains, including human-computer interaction, biometry, and medical research. This paper presents a fast and accurate method for extracting multiple features around the eyes: the center of the pupil, the iris radius, and the external shape of the eye. These features are extracted using a multistage algorithm. On the first stage the pupil center is localized using a fast circular symmetry detector and the iris radius is computed using radial gradient projections, and on the second stage the external shape of the eye (of the eyelids) is determined through a Monte Carlo sampling framework based on both color and shape information. Extensive experiments performed on a different dataset demonstrate the effectiveness of our approach. In addition, this work provides eye annotation data for a publicly-available database. PMID:27438838
Behavior of Explosives Under Pressure in a Diamond Anvil Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foltz, M F
2006-06-20
Diamond anvil cell (DAC) studies can yield information about the pressure dependence of materials and reactions under conditions comparable to shock loading. The pressure gradient across the face of the diamonds is often deliberately minimized to create uniform pressure over much of the sample and a simplified data set. To reach very high pressures (30-40 GPa), however, it may be necessary to use ''softer'', high nitrogen content diamonds that are more susceptible to bending under pressure. The resulting enhanced pressure gradient then provides a view of high-pressure behavior under anisotropic conditions similar to those found at the burn front inmore » a bulk sample. We discuss visual observations of pressure-induced changes relative to variations in burn rate of several explosives (Triaminotrinitrobenzene, Nitromethane, CL-20) in the DAC. The burn rate behavior of both Nitromethane (NM) and Triaminotrinitrobenzene (TATB) were previously reported for pressures up to {approx}40 GPa. Nitromethane showed a near monotonic increase in burn rate to a maximum at {approx}30 GPa after which the burn rate decreased, all without color change. At higher pressures, the TATB samples had shiny (metallic) polycrystalline zones or inclusions where the pressure was highest in the sample. Around the shiny zones was a gradation of color (red to yellow) that appeared to follow the pressure gradient. The color changes are believed related to disturbances in the resonance structure of this explosive as the intermolecular separations decrease with pressure. The color and type of residue found in unvented gaskets after the burn was complete also varied with pressure. The four polymorphs of CL-20 ({alpha}, {beta}, {gamma}, {var_epsilon}-Hexanitrohexaazaisowurtzitane, HNIW) did not change color up to the highest pressure applied ({approx}30 GPa), and each polymorph demonstrated a distinctly different burn rate signature. One polymorph {beta} was so sensitive to laser ignition over a narrow pressure range that the sample could not be aligned with a low power laser without ignition. The burn rate for that one polymorph could only be measured at pressures above and below that unique pressure. This anomalous ignition threshold is discussed with respect to the matrix of possible polymorphs, most of which have not been isolated in the laboratory. The changes in behavior, color and reaction rates of all samples are discussed with respect to possible implications to chemistry at high pressure.« less
Wang, Rongming; Yang, Wantai; Song, Yuanjun; Shen, Xiaomiao; Wang, Junmei; Zhong, Xiaodi; Li, Shuai; Song, Yujun
2015-01-01
A new methodology based on core alloying and shell gradient-doping are developed for the synthesis of nanohybrids, realized by coupled competitive reactions, or sequenced reducing-nucleation and co-precipitation reaction of mixed metal salts in a microfluidic and batch-cooling process. The latent time of nucleation and the growth of nanohybrids can be well controlled due to the formation of controllable intermediates in the coupled competitive reactions. Thus, spatiotemporal-resolved synthesis can be realized by the hybrid process, which enables us to investigate nanohybrid formation at each stage through their solution color changes and TEM images. By adjusting the bi-channel solvents and kinetic parameters of each stage, the primary components of alloyed cores and the second components of transition metal doping ZnO or Al2O3 as surface coatings can be successively formed. The core alloying and shell gradient-doping strategy can efficiently eliminate the crystal lattice mismatch in different components. Consequently, varieties of gradient core-shell nanohybrids can be synthesized using CoM, FeM, AuM, AgM (M = Zn or Al) alloys as cores and transition metal gradient-doping ZnO or Al2O3 as shells, endowing these nanohybrids with unique magnetic and optical properties (e.g., high temperature ferromagnetic property and enhanced blue emission). PMID:25818342
ERIC Educational Resources Information Center
Gilbert, George L., Ed.
1985-01-01
Background information, procedures, and typical results obtained are provided for two demonstrations. The first involves the colorful complexes of copper(II). The second involves reverse-phase separation of Food, Drug, and Cosmetic (FD & C) dyes using a solvent gradient. (JN)
NASA Astrophysics Data System (ADS)
Chan, Jeffrey C. C.; Beifiori, Alessandra; Saglia, Roberto P.; Mendel, J. Trevor; Stott, John P.; Bender, Ralf; Galametz, Audrey; Wilman, David J.; Cappellari, Michele; Davies, Roger L.; Houghton, Ryan C. W.; Prichard, Laura J.; Lewis, Ian J.; Sharples, Ray; Wegner, Michael
2018-03-01
We present results on the structural properties of massive passive galaxies in three clusters at 1.39 < z < 1.61 from the KMOS Cluster Survey. We measure light-weighted and mass-weighted sizes from optical and near-infrared Hubble Space Telescope imaging and spatially resolved stellar mass maps. The rest-frame R-band sizes of these galaxies are a factor of ∼2–3 smaller than their local counterparts. The slopes of the relation between the stellar mass and the light-weighted size are consistent with recent studies in clusters and the field. Their mass-weighted sizes are smaller than the rest-frame R-band sizes, with an average mass-weighted to light-weighted size ratio that varies between ∼0.45 and 0.8 among the clusters. We find that the median light-weighted size of the passive galaxies in the two more evolved clusters is ∼24% larger than that for field galaxies, independent of the use of circularized effective radii or semimajor axes. These two clusters also show a smaller size ratio than the less evolved cluster, which we investigate using color gradients to probe the underlying {M}* /{L}{{{H}}160} gradients. The median color gradients are ∇z ‑ H ∼ ‑0.4 mag dex‑1, twice the local value. Using stellar populations models, these gradients are best reproduced by a combination of age and metallicity gradients. Our results favor the minor merger scenario as the dominant process responsible for the observed galaxy properties and the environmental differences at this redshift. The environmental differences support that clusters experience accelerated structural evolution compared to the field, likely via an epoch of enhanced minor merger activity during cluster assembly. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO; program IDs: 092.A-0210; 093.A-0051; 094.A-0578; 095.A-0137(A); 096.A-0189(A); 097.A-0332(A)). This work is based on observations made with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO 13687, as well as with the CANDELS Multi-Cycle Treasury Program and the 3D-HST Treasury Program (GO 12177 and 12328).
Color constancy in natural scenes explained by global image statistics
Foster, David H.; Amano, Kinjiro; Nascimento, Sérgio M. C.
2007-01-01
To what extent do observers' judgments of surface color with natural scenes depend on global image statistics? To address this question, a psychophysical experiment was performed in which images of natural scenes under two successive daylights were presented on a computer-controlled high-resolution color monitor. Observers reported whether there was a change in reflectance of a test surface in the scene. The scenes were obtained with a hyperspectral imaging system and included variously trees, shrubs, grasses, ferns, flowers, rocks, and buildings. Discrimination performance, quantified on a scale of 0 to 1 with a color-constancy index, varied from 0.69 to 0.97 over 21 scenes and two illuminant changes, from a correlated color temperature of 25,000 K to 6700 K and from 4000 K to 6700 K. The best account of these effects was provided by receptor-based rather than colorimetric properties of the images. Thus, in a linear regression, 43% of the variance in constancy index was explained by the log of the mean relative deviation in spatial cone-excitation ratios evaluated globally across the two images of a scene. A further 20% was explained by including the mean chroma of the first image and its difference from that of the second image and a further 7% by the mean difference in hue. Together, all four global color properties accounted for 70% of the variance and provided a good fit to the effects of scene and of illuminant change on color constancy, and, additionally, of changing test-surface position. By contrast, a spatial-frequency analysis of the images showed that the gradient of the luminance amplitude spectrum accounted for only 5% of the variance. PMID:16961965
Color constancy in natural scenes explained by global image statistics.
Foster, David H; Amano, Kinjiro; Nascimento, Sérgio M C
2006-01-01
To what extent do observers' judgments of surface color with natural scenes depend on global image statistics? To address this question, a psychophysical experiment was performed in which images of natural scenes under two successive daylights were presented on a computer-controlled high-resolution color monitor. Observers reported whether there was a change in reflectance of a test surface in the scene. The scenes were obtained with a hyperspectral imaging system and included variously trees, shrubs, grasses, ferns, flowers, rocks, and buildings. Discrimination performance, quantified on a scale of 0 to 1 with a color-constancy index, varied from 0.69 to 0.97 over 21 scenes and two illuminant changes, from a correlated color temperature of 25,000 K to 6700 K and from 4000 K to 6700 K. The best account of these effects was provided by receptor-based rather than colorimetric properties of the images. Thus, in a linear regression, 43% of the variance in constancy index was explained by the log of the mean relative deviation in spatial cone-excitation ratios evaluated globally across the two images of a scene. A further 20% was explained by including the mean chroma of the first image and its difference from that of the second image and a further 7% by the mean difference in hue. Together, all four global color properties accounted for 70% of the variance and provided a good fit to the effects of scene and of illuminant change on color constancy, and, additionally, of changing test-surface position. By contrast, a spatial-frequency analysis of the images showed that the gradient of the luminance amplitude spectrum accounted for only 5% of the variance.
3D Rainbow Particle Tracking Velocimetry
NASA Astrophysics Data System (ADS)
Aguirre-Pablo, Andres A.; Xiong, Jinhui; Idoughi, Ramzi; Aljedaani, Abdulrahman B.; Dun, Xiong; Fu, Qiang; Thoroddsen, Sigurdur T.; Heidrich, Wolfgang
2017-11-01
A single color camera is used to reconstruct a 3D-3C velocity flow field. The camera is used to record the 2D (X,Y) position and colored scattered light intensity (Z) from white polyethylene tracer particles in a flow. The main advantage of using a color camera is the capability of combining different intensity levels for each color channel to obtain more depth levels. The illumination system consists of an LCD projector placed perpendicularly to the camera. Different intensity colored level gradients are projected onto the particles to encode the depth position (Z) information of each particle, benefiting from the possibility of varying the color profiles and projected frequencies up to 60 Hz. Chromatic aberrations and distortions are estimated and corrected using a 3D laser engraved calibration target. The camera-projector system characterization is presented considering size and depth position of the particles. The use of these components reduces dramatically the cost and complexity of traditional 3D-PTV systems.
Michelland, Sylvie; Bourgoin-Voillard, Sandrine; Cunin, Valérie; Tollance, Axel; Bertolino, Pascal; Slais, Karel; Seve, Michel
2017-08-01
High-throughput mass spectrometry-based proteomic analysis requires peptide fractionation to simplify complex biological samples and increase proteome coverage. OFFGEL fractionation technology became a common method to separate peptides or proteins using isoelectric focusing in an immobilized pH gradient. However, the OFFGEL focusing process may be further optimized and controlled in terms of separation time and pI resolution. Here we evaluated OFFGEL technology to separate peptides from different samples in the presence of low-molecular-weight (LMW) color pI markers to visualize the focusing process. LMW color pI markers covering a large pH range were added to the peptide mixture before OFFGEL fractionation using a 24-wells device encompassing the pH range 3-10. We also explored the impact of LMW color pI markers on peptide fractionation labeled previously for iTRAQ. Then, fractionated peptides were separated by RP_HPLC prior to MS analysis using MALDI-TOF/TOF mass spectrometry in MS and MS/MS modes. Here we report the performance of the peptide focusing process in the presence of LMW color pI markers as on-line trackers during the OFFGEL process and the possibility to use them as pI controls for peptide focusing. This method improves the workflow for peptide fractionation in a bottom-up proteomic approach with or without iTRAQ labeling. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Color pattern analysis of nymphalid butterfly wings: revision of the nymphalid groundplan.
Otaki, Joji M
2012-09-01
To better understand the developmental mechanisms of color pattern variation in butterfly wings, it is important to construct an accurate representation of pattern elements, known as the "nymphalid groundplan". However, some aspects of the current groundplan remain elusive. Here, I examined wing-wide elemental patterns of various nymphalid butterflies and confirmed that wing-wide color patterns are composed of the border, central, and basal symmetry systems. The central and basal symmetry systems can express circular patterns resembling eyespots, indicating that these systems have developmental mechanisms similar to those of the border symmetry system. The wing root band commonly occurs as a distinct symmetry system independent from the basal symmetry system. In addition, the marginal and submarginal bands are likely generated as a single system, referred to as the "marginal band system". Background spaces between two symmetry systems are sometimes light in coloration and can produce white bands, contributing significantly to color pattern diversity. When an element is enlarged with a pale central area, a visually similar (yet developmentally distinct) white band is produced. Based on the symmetric relationships of elements, I propose that both the central and border symmetry systems are comprised of "core elements" (the discal spot and the border ocelli, respectively) and a pair of "paracore elements" (the distal and proximal bands and the parafocal elements, respectively). Both core and paracore elements can be doubled, or outlined. Developmentally, this system configuration is consistent with the induction model, but not with the concentration gradient model for positional information.
Coastal Zone Color Scanner studies
NASA Technical Reports Server (NTRS)
Elrod, J.
1988-01-01
Activities over the past year have included cooperative work with a summer faculty fellow using the Coastal Zone Color Scanner (CZCS) imagery to study the effects of gradients in trophic resources on coral reefs in the Caribbean. Other research included characterization of ocean radiances specific to an acid-waste plume. Other activities include involvement in the quality control of imagery produced in the processing of the global CZCS data set, the collection of various other data global sets, and the subsequent data comparison and analysis.
NASA Astrophysics Data System (ADS)
Saraceno, Martin; Provost, Christine; Piola, Alberto R.
2005-11-01
The time-space distribution of chlorophyll a in the southwestern Atlantic is examined using 6 years (1998-2003) of sea surface color images from Sea-viewing Wide Field of View Sensor (SeaWiFS). Chlorophyll a (chl a) distribution is confronted with sea surface temperature (SST) fronts retrieved from satellite imagery. Histogram analysis of the color, SST, and SST gradient data sets provides a simple procedure for pixel classification from which eight biophysical regions in the SWA are identified, including three new regions with regard to Longhurst (1998) work: Patagonian Shelf Break (PSB), Brazil Current Overshoot, and Zapiola Rise region. In the PSB region, coastal-trapped waves are suggested as a possible mechanism leading to the intraseasonal frequencies observed in SST and chl a. Mesoscale activity associated with the Brazil Current Front and, in particular, eddies drifting southward is probably responsible for the high chl a values observed throughout the Brazil Current Overshoot region. The Zapiola Rise is characterized by a local minimum in SST gradient magnitudes and shows chl a maximum values in February, 3 months later than the austral spring bloom of the surroundings. Significant interannual variability is present in the color imagery. In the PSB, springs and summers with high chl a concentrations seem associated with stronger local northerly wind speed, and possible mechanisms are discussed. Finally, the Brazil-Malvinas front is detected using both SST gradient and SeaWiFS images. The time-averaged position of the front at 54.2°W is estimated at 38.9°S and its alongshore migration of about 300 km.
NASA Astrophysics Data System (ADS)
Martínez-González, A.; Moreno-Hernández, D.; Monzón-Hernández, D.; León-Rodríguez, M.
2017-06-01
In the schlieren method, the deflection of light by the presence of an inhomogeneous medium is proportional to the gradient of its refractive index. Such deflection, in a schlieren system, is represented by light intensity variations on the observation plane. Then, for a digital camera, the intensity level registered by each pixel depends mainly on the variation of the medium refractive index and the status of the digital camera settings. Therefore, in this study, we regulate the intensity value of each pixel by controlling the camera settings such as exposure time, gamma and gain values in order to calibrate the image obtained to the actual temperature values of a particular medium. In our approach, we use a color digital camera. The images obtained with a color digital camera can be separated on three different color-channels. Each channel corresponds to red, green, and blue color, moreover, each one has its own sensitivity. The differences in sensitivity allow us to obtain a range of temperature values for each color channel. Thus, high, medium and low sensitivity correspond to green, blue, and red color channel respectively. Therefore, by adding up the temperature contribution of each color channel we obtain a wide range of temperature values. Hence, the basic idea in our approach to measure temperature, using a schlieren system, is to relate the intensity level of each pixel in a schlieren image to the corresponding knife-edge position measured at the exit focal plane of the system. Our approach was applied to the measurement of instantaneous temperature fields of the air convection caused by a heated rectangular metal plate and a candle flame. We found that for the metal plate temperature measurements only the green and blue color-channels were required to sense the entire phenomena. On the other hand, for the candle case, the three color-channels were needed to obtain a complete measurement of temperature. In our study, the candle temperature was took as reference and it was found that the maximum temperature value obtained for green, blue and red color-channel was ∼275.6, ∼412.9, and ∼501.3 °C, respectively.
Retinal Microaneurysms Detection Using Gradient Vector Analysis and Class Imbalance Classification.
Dai, Baisheng; Wu, Xiangqian; Bu, Wei
2016-01-01
Retinal microaneurysms (MAs) are the earliest clinically observable lesions of diabetic retinopathy. Reliable automated MAs detection is thus critical for early diagnosis of diabetic retinopathy. This paper proposes a novel method for the automated MAs detection in color fundus images based on gradient vector analysis and class imbalance classification, which is composed of two stages, i.e. candidate MAs extraction and classification. In the first stage, a candidate MAs extraction algorithm is devised by analyzing the gradient field of the image, in which a multi-scale log condition number map is computed based on the gradient vectors for vessel removal, and then the candidate MAs are localized according to the second order directional derivatives computed in different directions. Due to the complexity of fundus image, besides a small number of true MAs, there are also a large amount of non-MAs in the extracted candidates. Classifying the true MAs and the non-MAs is an extremely class imbalanced classification problem. Therefore, in the second stage, several types of features including geometry, contrast, intensity, edge, texture, region descriptors and other features are extracted from the candidate MAs and a class imbalance classifier, i.e., RUSBoost, is trained for the MAs classification. With the Retinopathy Online Challenge (ROC) criterion, the proposed method achieves an average sensitivity of 0.433 at 1/8, 1/4, 1/2, 1, 2, 4 and 8 false positives per image on the ROC database, which is comparable with the state-of-the-art approaches, and 0.321 on the DiaRetDB1 V2.1 database, which outperforms the state-of-the-art approaches.
Spectral Models of Kuiper Belt Objects and Centaurs
NASA Technical Reports Server (NTRS)
Cruikshank, Dale; Ore, Christina M. Dalle
2003-01-01
We present models of the spectral reflectances of groups of outer Solar System objects defined primarily by their colors in the spectral region 0.4 -1.2 microns, and which have geometric albedo 0.04 at wavelength 0.55 microns. Our models of the groups with the strongest reflectance gradients (reddest colors) use combinations of organic tholins. We test the hypothesis that metal-reddened igneous rock-forming minerals contribute to the red colors of Centaurs and KBOs by using the space-weathered lunar soil as one of the components of our models. We find that our models can admit the presence of moderate amounts of space-weathered (metal-reddened) minerals, but that they do not require this material to achieve the red colors of the reddest outer Solar System bodies. Our models with organic tholins are consistent with the results of other investigators.
Lin, Weixuan; Sun, Xingquan; Zhao, Xuerong; Xu, Wei; Guo, Guiyuan
2012-05-01
A method of high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) has been established for the simultaneous determination of six forbidden colorants including Sudan IV, Acid Violet 49, Sudan Blue 2, Solvent Red 49, Basic Violet 1 and Pigment Orange 5 in cream and powdery matrix cosmetics. The samples were extracted with ethanol-acetonitrile (3:2, v/v) solution by ultrasonic technique for 20 min, then centrifuged for purification and enriched by nitrogen blowing sequentially. The analytes were isolated on a Luna C18 column (150 mm x 2.1 mm, 5 microm) by gradient elution with methanol and 10 mmol/L ammonium acetate as the mobile phases, and detected by MS/MS in the multiple reaction monitoring (MRM) mode. The qualitative analysis was based on the retention time and the relative abundance ratio of the characteristic ions, and the quantitative analysis on calibration curve method. The results showed that the limits of quantification (LOQ, S/N= 10) of the six colorants ranged from 0.1 to 10 microg/kg and the average recoveries were from 86.67% to 98.22% with the relative standard deviations (RSDs) from 4.01% to 7.01%. The method is simple and rapid with high sensitivity and good reproducibility, and suitable for the determination of the six forbidden colorants in cosmetics.
[Measurement of chromaticity of five hued zirconia].
Wen, Ning; Shao, Long-quan; Yi, Yuan-fu; Deng, Bin; Liu, Hong-chen
2009-05-01
To determine the chroma value of sintered IL1-IL5 zirconia materials in comparison with the Vita In-Ceram YZ color shade. Five types of shading dental zirconia ceramics with color gradient were prepared by adding Fe2O3, CeO2, and Bi2O3 to the zirconia powder, and their chroma values were determined using a spectrophotometer and the color difference was calculated. The chroma value ranges were L: 67.76-77.78, a: -2.19-3.80, and b: 12.13-25.01. Slight deltaE was found between IL1 and LL1, IL2 and LL2, and IL3 and LL3. The deltaE between IL4 and LL4 could be compensated by veneering porcelain, whereas deltaL between IL5 and LL5 could not be compensated in this manner. Shading dental zirconia ceramics can be prepared by addition of metal oxides with color similar to the Vita In-Ceram YZ color shades to match that of the veneering porcelain in clinical practice.
TESTING GALAXY FORMATION MODELS WITH THE GHOSTS SURVEY: THE COLOR PROFILE OF M81's STELLAR HALO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monachesi, Antonela; Bell, Eric F.; Bailin, Jeremy
2013-04-01
We study the properties of the stellar populations in M81's outermost part, which hereafter we will call the stellar halo, using Hubble Space Telescope (HST) Advanced Camera for Surveys observations of 19 fields from the GHOSTS survey. The observed fields probe the stellar halo out to a projected distance of {approx}50 kpc from the galactic center. Each field was observed in both F606W and F814W filters. The 50% completeness levels of the color-magnitude diagrams (CMDs) are typically at 2 mag below the tip of the red giant branch (TRGB). Fields at distances closer than 15 kpc show evidence of disk-dominatedmore » populations whereas fields at larger distances are mostly populated by halo stars. The red giant branch (RGB) of the M81's halo CMDs is well matched with isochrones of {approx}10 Gyr and metallicities [Fe/H] {approx} - 1.2 dex, suggesting that the dominant stellar population of M81's halo has a similar age and metallicity. The halo of M81 is characterized by a color distribution of width {approx}0.4 mag and an approximately constant median value of (F606W - F814W) {approx}1 mag measured using stars within the magnitude range 23.7 {approx}< F814W {approx}< 25.5. When considering only fields located at galactocentric radius R > 15 kpc, we detect no color gradient in the stellar halo of M81. We place a limit of 0.03 {+-} 0.11 mag difference between the median color of RGB M81 halo stars at {approx}15 and at 50 kpc, corresponding to a metallicity difference of 0.08 {+-} 0.35 dex over that radial range for an assumed constant age of 10 Gyr. We compare these results with model predictions for the colors of stellar halos formed purely via accretion of satellite galaxies. When we analyze the cosmologically motivated models in the same way as the HST data, we find that they predict no color gradient for the stellar halos, in good agreement with the observations.« less
Images of the 10-micron source in the Cygnus 'Egg'
NASA Technical Reports Server (NTRS)
Jaye, D.; Fienberg, R. Tresch; Fazio, G. G.; Gezari, D. Y.; Lamb, G. M.; Shu, P. K.; Hoffmann, W. F.; Mccreight, C. R.
1989-01-01
Mid-IR images of AFGL 2688, the Egg nebula, obtained with a 16 x 16 pixel array camera (field of view 12.5 x 12.5 arcsec) resolve the central source. It appears as a centrally peaked ellipsoid with major axis of symmetry parallel to the axis of the visible nebulosity. This is contrary to the expected extension perpendicular to this axis implied by proposed dust-toroid models of the IR source. Maps of the spatial distribution of 8-13 micron color temperature and warm dust opacity derived from the multiwavelength images further characterize the IR emission. The remarkable flatness of the color temperature conflicts with the radial temperature gradient expected across a thick shell of material with a single heat source at its center. The new data suggest instead that the source consists of a central star surrounded by a dust shell that is too thin to provide a detectable temperature gradient and too small to permit the resolution of limb brightening.
Galderisi, Maurizio; Mele, Donato; Marino, Paolo Nicola
2005-01-01
Tissue Doppler (TD) is an ultrasound tool providing a quantitative agreement of left ventricular regional myocardial function in different modalities. Spectral pulsed wave (PW) TD, performed online during the examination, measures instantaneous myocardial velocities. By means of color TD, velocity images are digitally stored for subsequent off-line analysis and mean myocardial velocities are measured. An implementation of color TD includes strain rate imaging (SRI), based on post-processing conversion of regional velocities in local myocardial deformation rate (strain rate) and percent deformation (strain). These three modalities have been applied to stress echocardiography for quantitative evaluation of regional left ventricular function and detection of ischemia and viability. They present advantages and limitations. PWTD does not permit the simultaneous assessment of multiple walls and therefore is not compatible with clinical stress echocardiography while it could be used in a laboratory setting. Color TD provides a spatial map of velocity throughout the myocardium but its results are strongly affected by the frame rate. Both color TD and PWTD are also influenced by overall cardiac motion and tethering from adjacent segments and require reference velocity values for interpretation of regional left ventricular function. High frame rate (i.e. > 150 ms) post-processing-derived SRI can potentially overcome these limitations, since measurements of myocardial deformation have not any significant apex-to-base gradient. Preliminary studies have shown encouraging results about the ability of SRI to detect ischemia and viability, in terms of both strain rate changes and/or evidence of post-systolic thickening. SRI is, however, Doppler-dependent and time-consuming. Further technical refinements are needed to improve its application and introduce new ultrasound modalities to overcome the limitations of the Doppler-derived deformation analysis.
Joint optic disc and cup boundary extraction from monocular fundus images.
Chakravarty, Arunava; Sivaswamy, Jayanthi
2017-08-01
Accurate segmentation of optic disc and cup from monocular color fundus images plays a significant role in the screening and diagnosis of glaucoma. Though optic cup is characterized by the drop in depth from the disc boundary, most existing methods segment the two structures separately and rely only on color and vessel kink based cues due to the lack of explicit depth information in color fundus images. We propose a novel boundary-based Conditional Random Field formulation that extracts both the optic disc and cup boundaries in a single optimization step. In addition to the color gradients, the proposed method explicitly models the depth which is estimated from the fundus image itself using a coupled, sparse dictionary trained on a set of image-depth map (derived from Optical Coherence Tomography) pairs. The estimated depth achieved a correlation coefficient of 0.80 with respect to the ground truth. The proposed segmentation method outperformed several state-of-the-art methods on five public datasets. The average dice coefficient was in the range of 0.87-0.97 for disc segmentation across three datasets and 0.83 for cup segmentation on the DRISHTI-GS1 test set. The method achieved a good glaucoma classification performance with an average AUC of 0.85 for five fold cross-validation on RIM-ONE v2. We propose a method to jointly segment the optic disc and cup boundaries by modeling the drop in depth between the two structures. Since our method requires a single fundus image per eye during testing it can be employed in the large-scale screening of glaucoma where expensive 3D imaging is unavailable. Copyright © 2017 Elsevier B.V. All rights reserved.
All Fiber-Coupled OH Planar Laser-Induced-Fluorescence (OH-PLIF)-Based Two-Dimensional Thermometry.
Hsu, Paul S; Jiang, Naibo; Patnaik, Anil K; Katta, Vish; Roy, Sukesh; Gord, James R
2018-04-01
Two-color, planar laser-induced fluorescence (PLIF)-based two-dimensional (2D) thermometry techniques for reacting flows, which are typically developed in the laboratory conditions, face a stiff challenge in their practical implementation in harsh environments such as combustion rigs. In addition to limited optical access, the critical experimental conditions (i.e., uncontrolled humidity, vibration, and large thermal gradients) often restrict sensitive laser system operation and cause difficulties maintaining beam-overlap. Thus, an all fiber-coupled, two-color OH-PLIF system has been developed, employing two long optical fibers allowing isolation of the laser and signal-collection systems. Two OH-excitation laser beams (∼283 nm and ∼286 nm) are delivered through a common 6 m long, 400 µm core, deep ultraviolet (UV)-enhanced multimode fiber. The fluorescence signal (∼310 nm) is collected by a 3 m long, UV-grade imaging fiber. Proof-of-principle temperature measurements are demonstrated in atmospheric pressure, near adiabatic, CH 4 /O 2 /N 2 jet flames. The effects of the excitation pulse interval on fiber transmission are investigated. The proof-of-principle measurements show significant promise for thermometry in harsh environments such as gas turbine engine tests.
McPherson, B.F.; Miller, R.L.
1987-01-01
The relative contribution of different components to the attenuation of photosynthetically active radiation was determined in the Charlotte Harbor estuarine system based on laboratory and in situ measurements. Agreement between laboratory and in situ measurements of the attenuation coefficient (kt) was good (r2 = 0??92). For all in situ measurements (n = 100), suspended, non-chlorophyll matter accounted for an average of 72% of kt, dissolved matter accounted for 21%, suspended chlorophyll for 4%, and water for the remaining 3%. For individual determinations, suspended non-chlorophyll matter, dissolved matter, suspended chlorophyll, and water, each accounted for as much as 99%, 79%, 21%, and 18% of kt. Attenuation by suspended matter was greatest near the mouth of the northern tidal rivers and was variable over the rest of the estuarine system. Attenuation by dissolved matter was greatest in the brackish tidal rivers and decreased with increasing salinity. Attenuation due to dissolved matter was positively correlated with water color. The source of the color was basin runoff. Wavelength transmittance changed along the salinity gradient. Maximum transmittance shifted from 500 to 600 nm in gulf waters to 650 to 700 nm in colored, brackish waters. Dissolved matter was primarily responsible for the large attenuation at short wavelengths (400-500 nm). ?? 1987.
Iwata, Masaki; Otaki, Joji M
2016-02-01
Complex butterfly wing color patterns are coordinated throughout a wing by unknown mechanisms that provide undifferentiated immature scale cells with positional information for scale color. Because there is a reasonable level of correspondence between the color pattern element and scale size at least in Junonia orithya and Junonia oenone, a single morphogenic signal may contain positional information for both color and size. However, this color-size relationship has not been demonstrated in other species of the family Nymphalidae. Here, we investigated the distribution patterns of scale size in relation to color pattern elements on the hindwings of the peacock pansy butterfly Junonia almana, together with other nymphalid butterflies, Vanessa indica and Danaus chrysippus. In these species, we observed a general decrease in scale size from the basal to the distal areas, although the size gradient was small in D. chrysippus. Scales of dark color in color pattern elements, including eyespot black rings, parafocal elements, and submarginal bands, were larger than those of their surroundings. Within an eyespot, the largest scales were found at the focal white area, although there were exceptional cases. Similarly, ectopic eyespots that were induced by physical damage on the J. almana background area had larger scales than in the surrounding area. These results are consistent with the previous finding that scale color and size coordinate to form color pattern elements. We propose a ploidy hypothesis to explain the color-size relationship in which the putative morphogenic signal induces the polyploidization (genome amplification) of immature scale cells and that the degrees of ploidy (gene dosage) determine scale color and scale size simultaneously in butterfly wings. Copyright © 2015 Elsevier Ltd. All rights reserved.
Colors of Inner Disk Classical Kuiper Belt Objects
NASA Astrophysics Data System (ADS)
Romanishin, W.; Tegler, S. C.; Consolmagno, G. J.
2010-07-01
We present new optical broadband colors, obtained with the Keck 1 and Vatican Advanced Technology telescopes, for six objects in the inner classical Kuiper Belt. Objects in the inner classical Kuiper Belt are of interest as they may represent the surviving members of the primordial Kuiper Belt that formed interior to the current position of the 3:2 resonance with Neptune, the current position of the plutinos, or, alternatively, they may be objects formed at a different heliocentric distance that were then moved to their present locations. The six new colors, combined with four previously published, show that the ten inner belt objects with known colors form a neutral clump and a reddish clump in B-R color. Nonparametric statistical tests show no significant difference between the B-R color distribution of the inner disk objects compared to the color distributions of Centaurs, plutinos, or scattered disk objects. However, the B-R color distribution of the inner classical Kuiper Belt Objects does differ significantly from the distribution of colors in the cold (low inclination) main classical Kuiper Belt. The cold main classical objects are predominately red, while the inner classical belt objects are a mixture of neutral and red. The color difference may reveal the existence of a gradient in the composition and/or surface processing history in the primordial Kuiper Belt, or indicate that the inner disk objects are not dynamically analogous to the cold main classical belt objects.
COLORS OF INNER DISK CLASSICAL KUIPER BELT OBJECTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanishin, W.; Tegler, S. C.; Consolmagno, G. J., E-mail: wromanishin@ou.ed, E-mail: Stephen.Tegler@nau.ed, E-mail: gjc@specola.v
2010-07-15
We present new optical broadband colors, obtained with the Keck 1 and Vatican Advanced Technology telescopes, for six objects in the inner classical Kuiper Belt. Objects in the inner classical Kuiper Belt are of interest as they may represent the surviving members of the primordial Kuiper Belt that formed interior to the current position of the 3:2 resonance with Neptune, the current position of the plutinos, or, alternatively, they may be objects formed at a different heliocentric distance that were then moved to their present locations. The six new colors, combined with four previously published, show that the ten innermore » belt objects with known colors form a neutral clump and a reddish clump in B-R color. Nonparametric statistical tests show no significant difference between the B-R color distribution of the inner disk objects compared to the color distributions of Centaurs, plutinos, or scattered disk objects. However, the B-R color distribution of the inner classical Kuiper Belt Objects does differ significantly from the distribution of colors in the cold (low inclination) main classical Kuiper Belt. The cold main classical objects are predominately red, while the inner classical belt objects are a mixture of neutral and red. The color difference may reveal the existence of a gradient in the composition and/or surface processing history in the primordial Kuiper Belt, or indicate that the inner disk objects are not dynamically analogous to the cold main classical belt objects.« less
Circular Data Images for Directional Data
NASA Technical Reports Server (NTRS)
Morpet, William J.
2004-01-01
Directional data includes vectors, points on a unit sphere, axis orientation, angular direction, and circular or periodic data. The theoretical statistics for circular data (random points on a unit circle) or spherical data (random points on a unit sphere) are a recent development. An overview of existing graphical methods for the display of directional data is given. Cross-over occurs when periodic data are measured on a scale for the measurement of linear variables. For example, if angle is represented by a linear color gradient changing uniformly from dark blue at -180 degrees to bright red at +180 degrees, the color image will be discontinuous at +180 degrees and -180 degrees, which are the same location. The resultant color would depend on the direction of approach to the cross-over point. A new graphical method for imaging directional data is described, which affords high resolution without color discontinuity from "cross-over". It is called the circular data image. The circular data image uses a circular color scale in which colors repeat periodically. Some examples of the circular data image include direction of earth winds on a global scale, rocket motor internal flow, earth global magnetic field direction, and rocket motor nozzle vector direction vs. time.
Sreenath, Kesavapillai; Clark, Ronald J; Zhu, Lei
2012-09-21
The internal charge transfer (ICT) type fluoroionophore arylvinyl-bipy (bipy = 2,2'-bipyridyl) is covalently tethered to the spirolactam form of rhodamine to afford fluorescent heteroditopic ligand 4. Compound 4 can be excited in the visible region, the emission of which undergoes sequential bathochromic shifts over an increasing concentration gradient of Zn(ClO(4))(2) in acetonitrile. Coordination of Zn(2+) stabilizes the ICT excited state of the arylvinyl-bipy component of 4, leading to the first emission color shift from blue to green. At sufficiently high concentrations of Zn(ClO(4))(2), the nonfluorescent spirolactam component of 4 is transformed to the fluorescent rhodamine, which turns the emission color from green to orange via intramolecular fluorescence resonance energy transfer (FRET) from the Zn(2+)-bound arylvinyl-bipy fluorophore to rhodamine. While this work offers a new design of ratiometric chemosensors, in which sequential analyte-induced emission band shifts result in the sampling of multiple colors at different concentration ranges (i.e., from blue to green to orange as [Zn(2+)] increases in the current case), it also reveals the nuances of rhodamine spirolactam chemistry that have not been sufficiently addressed in the published literature. These issues include the ability of rhodamine spirolactam as a fluorescence quencher via electron transfer, and the slow kinetics of spirolactam ring-opening effected by Zn(2+) coordination under pH neutral aqueous conditions.
Blair, R.W.; Yager, D.B.; Church, S.E.
2002-01-01
This product consists of Adobe Acrobat .PDF format documents for 10 surficial geologic strip maps along the Animas River watershed from its major headwater tributaries, south to Durango, Colorado. The Animas River originates in the San Juan Mountains north of the historic mining town of Silverton, Colorado. The surficial geologic maps identify surficial deposits, such as flood-plain and terrace gravels, alluvial fans, glacial till, talus, colluvium, landslides, and bogs. Sixteen primary units were mapped that included human-related deposits and structures, eight alluvial, four colluvial, one glacial, travertine deposits, and undifferentiated bedrock. Each of the surficial geologic strip maps has .PDF links to surficial geology photographs, which enable the user to take a virtual tour of these deposits. Geochemical data collected from mapped surficial deposits that pre- and postdate mining activity have aided in determining the geochemical baseline in the watershed. Several photographs with their corresponding geochemical baseline profiles are accessible through .PDF links from several of the maps. A single coverage for all surficial deposits mapped is included as an ArcInfo shape file as an Arc Export format .e00 file. A gradient map for major headwater tributary streams to the Animas River is also included. The gradient map has stream segments that are color-coded based on relative variations in slope and .PDF format links to each stream gradient profile. Stream gradients were derived from U.S. Geological Survey 10-m digital elevation model data. This project was accomplished in support of the U.S. Geological Survey's Abandoned Mine Lands Initiative in the San Juan Mountains, Colorado.
Environmental Effects on Evolution of Cluster Galaxies in a Λ-dominated Cold Dark Matter Universe
NASA Astrophysics Data System (ADS)
Okamoto, Takashi; Nagashima, Masahiro
2003-04-01
We investigate environmental effects on evolution of bright cluster galaxies (L>L*) in a Λ-dominated cold dark matter universe using a combination of dissipationless N-body simulations and a semianalytic galaxy formation model. The N-body simulations enable us to calculate orbits of galaxies in simulated clusters. Therefore, we can incorporate stripping of cold gas from galactic disks by ram pressure (RP) from the intracluster medium into our model. In this paper we study how ram pressure stripping (RPS) and small starburst induced by a minor merger affect colors, star formation rates (SFRs), and morphologies of cluster galaxies. These processes are new ingredients in our model and have not been studied sufficiently. We find that the RPS is not important for colors and SFRs of galaxies in the cluster core if the star formation timescale is properly chosen, because the star formation is sufficiently suppressed by consumption of the cold gas in the disks. Then observed color and SFR gradients can be reproduced without the RPS. The small starburst triggered by a minor merger hardly affects the SFRs and colors of the galaxies as well. We also examine whether these two processes can resolve the known problem that the hierarchical clustering models based on the major merger-driven bulge formation scenario predict too few galaxies of intermediate bulge-to-total luminosity ratio (B/T) in clusters. When the minor burst is taken into account, the intermediate B/T population is increased, and the observed morphology gradients in clusters are successfully reproduced. Without the minor burst, the RPS cannot increase the intermediate B/T population. On the other hand, when the minor burst is considered, the RPS also plays an important role in formation of the intermediate B/T galaxies. We present redshift evolution of morphological fractions predicted by our models. The predicted number ratios of the intermediate B/T galaxies to the bulge-dominated galaxies show nearly flat or slightly increasing trends with increasing redshift. We conclude that these trends are inevitable when bulges are formed through mergers. We discuss whether our results conflict with observationally suggested NS0/NE evolution in clusters, which is a decreasing function of redshift.
Wetting in Color: Designing a colorometric indicator for wettability
NASA Astrophysics Data System (ADS)
Raymond, Kevin; Burgess, Ian B.; Koay, Natalie; Kolle, Mathias; Loncar, Marko; Aizenberg, Joanna
2012-02-01
Colorimetric litmus tests such as pH paper have enjoyed wide commercial success due to their inexpensive production and exceptional ease of use. While such indicators commonly rely on a specific photochemical response to an analyte, we exploit structural color, derived from coherent scattering from wavelength-scale porosity rather than molecular absorption or luminescence, to create a Wetting-in-Color-Kit (WICK). This inexpensive and highly selective colorimetric indicator for organic liquids employs chemically encoded inverse-opal photonic crystals to translate minute differences in liquids' wettability to macroscopically distinct, easy-to-visualize color patterns. The highly symmetric re-entrant inter-pore geometry imparts a highly specific wetting threshold for liquids. We developed surface modification techniques to generate built-in chemistry gradients within the porous network. These let us tailor the wettability threshold to specific liquids across a continuous range. As wetting is a generic fluidic phenomenon, we envision that WICK could be suitable for applications in authentication or identification of unknown liquids across a broad range of industries.
NASA Technical Reports Server (NTRS)
Edwards, C. L. W.; Meissner, F. T.; Hall, J. B.
1979-01-01
Color computer graphics techniques were investigated as a means of rapidly scanning and interpreting large sets of transient heating data. The data presented were generated to support the conceptual design of a heat-sink thermal protection system (TPS) for a hypersonic research airplane. Color-coded vector and raster displays of the numerical geometry used in the heating calculations were employed to analyze skin thicknesses and surface temperatures of the heat-sink TPS under a variety of trajectory flight profiles. Both vector and raster displays proved to be effective means for rapidly identifying heat-sink mass concentrations, regions of high heating, and potentially adverse thermal gradients. The color-coded (raster) surface displays are a very efficient means for displaying surface-temperature and heating histories, and thereby the more stringent design requirements can quickly be identified. The related hardware and software developments required to implement both the vector and the raster displays for this application are also discussed.
NASA Technical Reports Server (NTRS)
Petty, S. M.; Neill, J. D.; Jarrett, T. H.; Blain, A. W.; Farrah, D. G.; Rich, R. M.; Tsai, C.-W.; Benford, D. J.; Bridge, C. R.; Lake, S. E.;
2013-01-01
In the local universe, 10% of massive elliptical galaxies are observed to exhibit a peculiar property: a substantial excess of ultraviolet emission than what is expected from their old, red stellar populations. Several origins for this ultraviolet excess (UVX) have been proposed including a population of hot young stars and a population of old, blue horizontal branch or extended horizontal branch (BHB or EHB) stars that have undergone substantial mass loss from their outer atmospheres. We explore the radial distribution of UVX in a selection of 49 nearby E/S0-type galaxies by measuring their extended photometry in the UV through mid-infrared (mid-IR) with the Galaxy Evolution Explorer (GALEX), the Sloan Digital Sky Survey, and the Wide-field Infrared Survey Explorer (WISE). We compare UV/optical and UV/mid-IR colors with the Flexible Stellar Population Synthesis models, which allow for the inclusion of EHB stars. We find that combined WISE mid-IR and GALEX UV colors are more effective in distinguishing models than optical colors, and that the UV/mid-IR combination is sensitive to the EHB fraction. There are strong color gradients, with the outer radii bluer than the inner half-light radii by approx.1 mag. This color difference is easily accounted for with an increase in the BHB fraction of 0.25 with radius. We estimated that the average ages for the inner and outer radii are 7.0 +/- 0.3 Gyr, and 6.2 +/- 0.2 Gyr, respectively, with the implication that the outer regions are likely to have formed approx. 1 Gyr after the inner regions. Additionally, we find that metallicity gradients are likely not a significant factor in the color difference. The separation of color between the inner and outer regions, which agrees with a specific stellar population difference (e.g., higher EHB populations), and the approx. 0.5-2 Gyr age difference suggests multi-stage formation. Our results are best explained by inside-out formation: rapid star formation within the core at early epochs (>4 Gyr ago) and at least one later stage starburst event coinciding with z approx. 1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petty, S. M.; Farrah, D. G.; Neill, J. D.
2013-10-01
In the local universe, 10% of massive elliptical galaxies are observed to exhibit a peculiar property: a substantial excess of ultraviolet emission than what is expected from their old, red stellar populations. Several origins for this ultraviolet excess (UVX) have been proposed including a population of hot young stars and a population of old, blue horizontal branch or extended horizontal branch (BHB or EHB) stars that have undergone substantial mass loss from their outer atmospheres. We explore the radial distribution of UVX in a selection of 49 nearby E/S0-type galaxies by measuring their extended photometry in the UV through mid-infraredmore » (mid-IR) with the Galaxy Evolution Explorer (GALEX), the Sloan Digital Sky Survey, and the Wide-field Infrared Survey Explorer (WISE). We compare UV/optical and UV/mid-IR colors with the Flexible Stellar Population Synthesis models, which allow for the inclusion of EHB stars. We find that combined WISE mid-IR and GALEX UV colors are more effective in distinguishing models than optical colors, and that the UV/mid-IR combination is sensitive to the EHB fraction. There are strong color gradients, with the outer radii bluer than the inner half-light radii by {approx}1 mag. This color difference is easily accounted for with an increase in the BHB fraction of 0.25 with radius. We estimated that the average ages for the inner and outer radii are 7.0 {+-} 0.3 Gyr, and 6.2 {+-} 0.2 Gyr, respectively, with the implication that the outer regions are likely to have formed {approx}1 Gyr after the inner regions. Additionally, we find that metallicity gradients are likely not a significant factor in the color difference. The separation of color between the inner and outer regions, which agrees with a specific stellar population difference (e.g., higher EHB populations), and the {approx}0.5-2 Gyr age difference suggests multi-stage formation. Our results are best explained by inside-out formation: rapid star formation within the core at early epochs (>4 Gyr ago) and at least one later stage starburst event coinciding with z {approx} 1.« less
A color gradient in the soft X-ray diffuse background
NASA Technical Reports Server (NTRS)
Snowden, S. L.; Schmitt, J. H. M. M.; Edwards, B. C.
1990-01-01
It is shown that the deviations of the soft X-ray diffuse background B band to C band intensity ratio from a constant value can be described as a simple dipole-like variation across the sky. In terms of the observed Wisconsin B/C band intensity ratio, the mean value is 0.355, the dipole magnitude is 0.106, and the positive dipole axis points toward l = 168.7 deg, b = 11.2 deg, almost in the galactic anticenter direction. This gradient in the spectral hardness can be due to several causes; the simplest is a temperature gradient in the X-ray emitting plasma of the local cavity from about 10 exp 6.2 K toward the galactic center to about 10 exp 5.9 K in the anticenter direction. While the physical origin of such a temperature gradient is uncertain, the alignment of the dipole with the higher temperature (and absorbed) Loop I region may be significant.
NASA Technical Reports Server (NTRS)
Windhorst, R. A.; Schmidtke, P. C.; Pascarelle, S. M.; Gordon, J. M.; Griffiths, R. E.; Ratnatunga, K. U.; Neuschaefer, L. W.; Ellis, R. S.; Gilmore, G.; Glazebrook, K.
1994-01-01
We present isophotal profiles of six faint field galaxies from some of the first deep images taken for the Hubble Space Telescope (HST) Medium Deep Survey (MDS). These have redshifts in the range z = 0.126 to 0.402. The images were taken with the Wide Field Camera (WFC) in `parallel mode' and deconvolved with the Lucy method using as the point-spread function nearby stars in the image stack. The WFC deconvolutions have a dynamic range of 16 to 20 dB (4 to 5 mag) and an effective resolution approximately less than 0.2 sec (FWHM). The multiorbit HST images allow us to trace the morphology, light profiles, and color gradients of faint field galaxies down to V approximately equal to 22 to 23 mag at sub-kpc resolution, since the redshift range covered is z = 0.1 to 0.4. The goals of the MDS are to study the sub-kpc scale morphology, light profiles, and color gradients for a large samole of faint field galaxies down to V approximately equal to 23 mag, and to trace the fraction of early to late-type galaxies as function of cosmic time. In this paper we study the brighter MDS galaxies in the 13 hour + 43 deg MDS field in detail, and investigate to what extent model fits with pure exponential disks or a(exp 1/4) bulges are justified at V approximately less than 22 mag. Four of the six field galaxies have light profiles that indicate (small) inner bulges following r(exp 1/4) laws down to 0.2 sec resolution, plus a dominant surrounding exponential disk with little or no color gradients. Two occur in a group at z = 0.401, two are barred spiral galaxies at z = 0.179 and z = 0.302, and two are rather subluminous (and edge-on) disk galaxies at z = 0.126 and z = 0.179. Our deep MDS images can detect galaxies down to V, I approximately less than 25 to 26 mag, and demonstrate the impressive potential of HST--even with its pre-refurbished optics--to resolve morphological details in galaxies at cosmologically significant distances (v approximately less than 23 mag). Since the median redshift of these galaxies is approximately less than 0.4, the HST resolution allows us to study sub kpc size scales at the galaxy, which cannot be done with stable images over wide fields from the best ground-based sites.
NASA Technical Reports Server (NTRS)
Hill, Jesse K.; Bohlin, Ralph C.; Cheng, Kwang-Ping; Hintzen, Paul M. N.; Landsman, Wayne B.; Neff, Susan G.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.
1992-01-01
The study employs UV images of M81 obtained by the Ultraviolet Imaging Telescope (UIT) during the December 1990 Astro-1 spacelab mission to determine 2490- and 1520-A fluxes from 46 H II regions and global surface brightness profiles. Comparison photometry in the V band is obtained from a ground-based CCD image. UV radial profiles show bulge and exponential disk components, with a local decrease in disk surface brightness inside the inner Lindblad Resonance about 4 arcmin from the nucleus. The V profile shows typical bulge plus exponential disk structure, with no local maximum in the disk. There is little change of UV color across the disk, although there is a strong gradient in the bulge. Observed m152-V colors of the H II regions are consistent with model spectra for young clusters, after dereddening using Av determined from m249-V and the Galactic extinction curve. The value of Av, so determined, is 0.4 mag greater on the average than Av derived from radio continuum and H-alpha fluxes.
Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings
NASA Astrophysics Data System (ADS)
Kats, Mikhail A.; Byrnes, Steven J.; Blanchard, Romain; Kolle, Mathias; Genevet, Patrice; Aizenberg, Joanna; Capasso, Federico
2013-09-01
Recently a new class of optical interference coatings was introduced which comprises ultra-thin, highly absorbing dielectric layers on metal substrates. We show that these lossy coatings can be augmented by an additional transparent subwavelength layer. We fabricated a sample comprising a gold substrate, an ultra-thin film of germanium with a thickness gradient, and several alumina films. The experimental reflectivity spectra showed that the additional alumina layer increases the color range that can be obtained, in agreement with calculations. More generally, this transparent layer can be used to enhance optical absorption, protect against erosion, or as a transparent electrode for optoelectronic devices.
Castillo Cajas, Ruth F.; Selz, Oliver M.; Ripmeester, Erwin A. P.; Seehausen, Ole; Maan, Martine E.
2012-01-01
Environmental variation in signalling conditions affects animal communication traits, with possible consequences for sexual selection and reproductive isolation. Using spectrophotometry, we studied how male coloration within and between populations of two closely related Lake Victoria cichlid species (Pundamilia pundamilia and P. nyererei) covaries with water transparency. Focusing on coloration patches implicated in sexual selection, we predicted that in clear waters, with broad-spectrum light, (1) colours should become more saturated and (2) shift in hue away from the dominant ambient wavelengths, compared to more turbid waters. We found support for these predictions for the red and yellow coloration of P. nyererei but not the blue coloration of P. pundamilia. This may be explained by the species difference in depth distribution, which generates a steeper gradient in visual conditions for P. nyererei compared to P. pundamilia. Alternatively, the importance of male coloration in intraspecific sexual selection may differ between the species. We also found that anal fin spots, that is, the orange spots on male haplochromine anal fins that presumably mimic eggs, covaried with water transparency in a similar way for both species. This is in contrast to the other body regions studied and suggests that, while indeed functioning as signals, these spots may not play a role in species differentiation. PMID:22888462
Fabrication of gradient optical filter containing anisotropic Bragg nanostructure.
Cho, Bomin; Um, Sungyong; Woo, Hee-Gweon; Sohn, Honglae
2011-08-01
New gradient optical filters containing asymmetric Bragg structure were prepared from the distributed Bragg reflector (DBR) porous silicon (PSi). Anisotropic DBR PSi displaying a rainbow-colored reflection was generated by using an asymmetric etching configuration. Flexible anisotropic DBR PSi composite films were obtained by casting of polymer solution onto anisotropic DBR PSi thin films. The surface and cross-sectional images images of anisotropic DBR PSi composite films obtained with cold field emission scanning electron microscope indicated that the average pore size and the thickness of porous layer decreased as the lateral distance increased. As lateral distance increased, the reflection resonance shifted to shorter wavelength.
A new optimal seam method for seamless image stitching
NASA Astrophysics Data System (ADS)
Xue, Jiale; Chen, Shengyong; Cheng, Xu; Han, Ying; Zhao, Meng
2017-07-01
A novel optimal seam method which aims to stitch those images with overlapping area more seamlessly has been propos ed. Considering the traditional gradient domain optimal seam method and fusion algorithm result in bad color difference measurement and taking a long time respectively, the input images would be converted to HSV space and a new energy function is designed to seek optimal stitching path. To smooth the optimal stitching path, a simplified pixel correction and weighted average method are utilized individually. The proposed methods exhibit performance in eliminating the stitching seam compared with the traditional gradient optimal seam and high efficiency with multi-band blending algorithm.
Bridgman growth of lead potassium niobate crystals
NASA Astrophysics Data System (ADS)
Fan, Shiji; Sun, Renying; Lin, Yafang; Wu, Jindi
1999-03-01
Lead potassium niobate Pb 2KNb 5O 15 (PKN) crystals with tetragonal tungsten bronze (TTB) structure have been grown by the modified Bridgman (BR) method. Nearly sealed Pt crucibles and small temperature gradients in the Bridgman furnace can limit volatilization of PbO and cracking of as-grown PKN crystals. Transparent PKN crystals of 1 inch diameter by ˜2 inch length with brownish color have been grown successfully at a crucible lowering rate <0.5 mm/h and a temperature gradient of 10-15°C/cm across the solid-liquid interface. Coupling between twins and growth directions of the crystal is also discussed.
NASA Astrophysics Data System (ADS)
Schlueter, Kristy; Dabiri, John
2016-11-01
Coherent structure identification is important in many fluid dynamics applications, including transport phenomena in ocean flows and mixing and diffusion in turbulence. However, many of the techniques currently available for measuring such flows, including ocean drifter datasets and particle tracking velocimetry, only result in sparse velocity data. This is often insufficient for the use of current coherent structure detection algorithms based on analysis of the deformation gradient. Here, we present a frame-invariant method for detecting coherent structures from Lagrangian flow trajectories that can be sparse in number. The method, based on principles used in graph coloring algorithms, examines a measure of the kinematic dissimilarity of all pairs of flow trajectories, either measured experimentally, e.g. using particle tracking velocimetry; or numerically, by advecting fluid particles in the Eulerian velocity field. Coherence is assigned to groups of particles whose kinematics remain similar throughout the time interval for which trajectory data is available, regardless of their physical proximity to one another. Through the use of several analytical and experimental validation cases, this algorithm is shown to robustly detect coherent structures using significantly less flow data than is required by existing methods. This research was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
Structure of the Helminth Assemblage of and Endemic Madtom Catfish (Noturus Lachneri)
Riccardo A. Fiorillo; R. Brent Thomas; Melvin L. Warren; Christopher M. Taylor
1999-01-01
The Ouachita madtom, Noturus lachneri, is a small, uniformly-colored catfish endemic to the upper Saline and Ouachita river drainages in central Arkansas (Robison and Buchanan, 1988), where it is often found in shallow pools associated with clear, high gradient, rock-bottomed streams (Robison and Harp, 1985). Distribution, habitat, diet, and conservation status of...
NASA Astrophysics Data System (ADS)
Glover, David M.; Doney, Scott C.; Oestreich, William K.; Tullo, Alisdair W.
2018-01-01
Mesoscale (10-300 km, weeks to months) physical variability strongly modulates the structure and dynamics of planktonic marine ecosystems via both turbulent advection and environmental impacts upon biological rates. Using structure function analysis (geostatistics), we quantify the mesoscale biological signals within global 13 year SeaWiFS (1998-2010) and 8 year MODIS/Aqua (2003-2010) chlorophyll a ocean color data (Level-3, 9 km resolution). We present geographical distributions, seasonality, and interannual variability of key geostatistical parameters: unresolved variability or noise, resolved variability, and spatial range. Resolved variability is nearly identical for both instruments, indicating that geostatistical techniques isolate a robust measure of biophysical mesoscale variability largely independent of measurement platform. In contrast, unresolved variability in MODIS/Aqua is substantially lower than in SeaWiFS, especially in oligotrophic waters where previous analysis identified a problem for the SeaWiFS instrument likely due to sensor noise characteristics. Both records exhibit a statistically significant relationship between resolved mesoscale variability and the low-pass filtered chlorophyll field horizontal gradient magnitude, consistent with physical stirring acting on large-scale gradient as an important factor supporting observed mesoscale variability. Comparable horizontal length scales for variability are found from tracer-based scaling arguments and geostatistical decorrelation. Regional variations between these length scales may reflect scale dependence of biological mechanisms that also create variability directly at the mesoscale, for example, enhanced net phytoplankton growth in coastal and frontal upwelling and convective mixing regions. Global estimates of mesoscale biophysical variability provide an improved basis for evaluating higher resolution, coupled ecosystem-ocean general circulation models, and data assimilation.
Structure Size Enhanced Histogram
NASA Astrophysics Data System (ADS)
Wesarg, Stefan; Kirschner, Matthias
Direct volume visualization requires the definition of transfer functions (TFs) for the assignment of opacity and color. Multi-dimensional TFs are based on at least two image properties, and are specified by means of 2D histograms. In this work we propose a new type of a 2D histogram which combines gray value with information about the size of the structures. This structure size enhanced (SSE) histogram is an intuitive approach for representing anatomical features. Clinicians — the users we are focusing on — are much more familiar with selecting features by their size than by their gradient magnitude value. As a proof of concept, we employ the SSE histogram for the definition of two-dimensional TFs for the visualization of 3D MRI and CT image data.
VizieR Online Data Catalog: CALIFA color/metallicity gradients connections (Marino+, 2016)
NASA Astrophysics Data System (ADS)
Marino, R. A.; Gil de Paz, A.; Sanchez, S. F.; Sanchez-Blazquez, P.; Cardiel, N.; Castillo-Morales, A.; Pascual, S.; Vilchez, J.; Kehrig, C.; Molla, M.; Mendez-Abreu, J.; Catalan-Torrecilla, C.; Florido, E.; Perez, I.; Ruiz-Lara, T.; Ellis, S.; Lopez-Sanchez, A. R.; Gonzalez Delgado, R. M.; de Lorenzo-Caceres, A.; Garcia-Benito, R.; Galbany, L.; Zibetti, S.; Cortijo, C.; Kalinova, V.; Mast, D.; Iglesias-Paramo, J.; Papaderos, P.; Walcher, C. J.; Bland-Hawthorn, J.
2016-03-01
We have selected the 350 galaxies observed by the CALIFA survey (Sanchez et al., 2012A&A...538A...8S) at the CAHA 3.5m telescope with Potsdam Multi Aperture Spectrograph (PMAS) in the PPak mode and processed by the CALIFA v1.5 pipeline up to September 2014. The SDSS g' and r' SB and (g'-r') color profiles were derived using the DR10 data products, in particular, we used the swarp mosaicking code (Ahn et al., 2014ApJS..211...17A). We obtain spectroscopic information for ~15130 HII regions (or complexes) from our 324 CALIFA data cubes using HII explorer. (2 data files).
The Cool Stellar Populations of Early-Type Galaxies and the Galactic Bulge
NASA Astrophysics Data System (ADS)
Houdashelt, Mark Lee
1995-01-01
Red (6800-9200 A) and near-infrared (K-band) spectra have been obtained for 34 early-type galaxies in the Virgo cluster, the Coma cluster and the field. The strengths of the Ca II triplet (lambdalambda 8498, 8542, 8662 A), the Na I doublet ( lambdalambda8183, 8195 A), the Mg I lambda8807 A line, and molecular bands of TiO and VO were measured from the red spectra. Absorption due to the CO band with bandhead at 2.29 mu m was measured from the near-infrared spectra. The behavior of the spectral indices was examined for the Virgo galaxy nuclei as functions of luminosity and color. Overall, the CO, TiO and Na I indices were found to be stronger in redder and brighter galaxies. The Mg I and the Ca II triplet lines did not vary significantly among galaxies of different color or brightness. These trends are consistent with a change in chemical composition producing the well-known color-magnitude relation for early -type galaxies. No significant differences were detected among galaxies of similar luminosity in the Virgo cluster, the Coma cluster and the field. To simulate the stellar population changes implied by the radial color gradients observed in early-type galaxies, models were constructed to represent the integrated light of the Galactic bulge as a function of latitude. A field in Baade's Window (BW) was studied first and the stellar population there was found to be quite inhomogeneous. The BW model indicated that the integrated light of BW is giant -dominated, and the BW spectral energy distribution is very similar to that of the nucleus of a low-luminosity early -type galaxy. From models of BW and a field at b = -8^circ, radial gradients were estimated for the Galactic bulge and compared to the changes which occur along a luminosity sequence of early -type galaxies in the Virgo cluster. This comparison showed that: (1) the Na I and I(8197) indices increase steeply with redder colors in the Virgo galaxies but appear to decrease with color in the Galactic bulge; this effect is not understood but may be caused by some deficiency in the modelling; and (2) differences in the slopes of the TiO-color trends in E/S0 galaxies and in the Galactic bulge may indicate that the (Ti/Fe) ratio is changing differently in these two instances.
NASA Technical Reports Server (NTRS)
Cohen, M.; Kuhi, L. V.
1980-01-01
Optical scanner spectra are presented for ten positions in the lobes of GL 2688. Color gradients exist across the nebulae, probably due to systematic variations in the sizes of typical scattering grains. Molecular emissions C2, C3, and SiC2 are found, similar to the spectra of comets. Resonance fluorescence seems to be indicated.
ERIC Educational Resources Information Center
Milligan, Tonya; Howley, Craig
2015-01-01
This study explores how 10 principals in mostly-Black U.S. urban elementary schools staffed by mostly-White faculty understood and experienced the manifestations of racial differences. Narrative inquiry with nearly 700 pages of transcript data yielded three themes: (1) gradients of color-conscious leadership, (2) principals as moral agents, and…
The VMC Survey. XI. Radial Stellar Population Gradients in the Galactic Globular Cluster 47 Tucanae
NASA Astrophysics Data System (ADS)
Li, Chengyuan; de Grijs, Richard; Deng, Licai; Rubele, Stefano; Wang, Chuchu; Bekki, Kenji; Cioni, Maria-Rosa L.; Clementini, Gisella; Emerson, Jim; For, Bi-Qing; Girardi, Leo; Groenewegen, Martin A. T.; Guandalini, Roald; Gullieuszik, Marco; Marconi, Marcella; Piatti, Andrés E.; Ripepi, Vincenzo; van Loon, Jacco Th.
2014-07-01
We present a deep near-infrared color-magnitude diagram of the Galactic globular cluster 47 Tucanae, obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA) as part of the VISTA near-infrared Y, J, K s survey of the Magellanic System (VMC). The cluster stars comprising both the subgiant and red giant branches exhibit apparent, continuous variations in color-magnitude space as a function of radius. Subgiant branch stars at larger radii are systematically brighter than their counterparts closer to the cluster core; similarly, red-giant-branch stars in the cluster's periphery are bluer than their more centrally located cousins. The observations can very well be described by adopting an age spread of ~0.5 Gyr as well as radial gradients in both the cluster's helium abundance (Y) and metallicity (Z), which change gradually from (Y = 0.28, Z = 0.005) in the cluster core to (Y = 0.25, Z = 0.003) in its periphery. We conclude that the cluster's inner regions host a significant fraction of second-generation stars, which decreases with increasing radius; the stellar population in the 47 Tuc periphery is well approximated by a simple stellar population.
Radial Stellar Population Gradients in the Galactic Globular Cluster 47 Tucanae
NASA Astrophysics Data System (ADS)
de Grijs, Richard; Li, Chengyuan; Deng, Licai
2015-01-01
We present a deep near-infrared color-magnitude diagram of the Galactic globular cluster 47 Tucanae, obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA) as part of the VISTA near-infrared Y, J, Ks survey of the Magellanic System (VMC). The cluster stars comprising both the subgiant and red-giant branches exhibit apparent, continuous variations in color-magnitude space as a function of radius. Subgiant-branch stars at larger radii are systematically brighter than their counterparts closer to the cluster core; similarly, red-giant-branch stars in the cluster's periphery are bluer than their more centrally located cousins. The observations can very well be described by adopting an age spread of ~0.5 Gyr as well as radial gradients in both the cluster's helium abundance (Y) and metallicity (Z), which change gradually from Y = 0.28, Z = 0.005 in the cluster core to Y = 0.25, Z = 0.003 in its periphery. We conclude that the cluster's inner regions host a significant fraction of second-generation stars, which decreases with increasing radius; the stellar population in the 47 Tuc periphery is well approximated by a simple stellar population.
The VMC survey. XI. Radial stellar population gradients in the galactic globular cluster 47 Tucanae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chengyuan; De Grijs, Richard; Deng, Licai
2014-07-20
We present a deep near-infrared color-magnitude diagram of the Galactic globular cluster 47 Tucanae, obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA) as part of the VISTA near-infrared Y, J, K{sub s} survey of the Magellanic System (VMC). The cluster stars comprising both the subgiant and red giant branches exhibit apparent, continuous variations in color-magnitude space as a function of radius. Subgiant branch stars at larger radii are systematically brighter than their counterparts closer to the cluster core; similarly, red-giant-branch stars in the cluster's periphery are bluer than their more centrally located cousins. The observations can verymore » well be described by adopting an age spread of ∼0.5 Gyr as well as radial gradients in both the cluster's helium abundance (Y) and metallicity (Z), which change gradually from (Y = 0.28, Z = 0.005) in the cluster core to (Y = 0.25, Z = 0.003) in its periphery. We conclude that the cluster's inner regions host a significant fraction of second-generation stars, which decreases with increasing radius; the stellar population in the 47 Tuc periphery is well approximated by a simple stellar population.« less
Du, Feng; Jiao, Jun
2016-04-01
The present study used a spatial blink task and a cuing task to examine the boundary between feature-based capture and relation-based capture. Feature-based capture occurs when distractors match the target feature such as target color. The occurrence of relation-based capture is contingent upon the feature relation between target and distractor (e.g., color relation). The results show that color distractors that match the target-nontarget color relation do not consistently capture attention when they appear outside of the attentional window, but distractors appearing outside the attentional window that match the target color consistently capture attention. In contrast, color distractors that best match the target-nontarget color relation but not the target color, are more likely to capture attention when they appear within the attentional window. Consistently, color cues that match the target-nontarget color relation produce a cuing effect when they appear within the attentional window, while target-color matched cues do not. Such a double dissociation between color-based capture and color-relation-based capture indicates functionally distinct mechanisms for these 2 types of attentional selection. This also indicates that the spatial blink task and the uninformative cuing task are measuring distinctive aspects of involuntary attention. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
A visual tracking method based on deep learning without online model updating
NASA Astrophysics Data System (ADS)
Tang, Cong; Wang, Yicheng; Feng, Yunsong; Zheng, Chao; Jin, Wei
2018-02-01
The paper proposes a visual tracking method based on deep learning without online model updating. In consideration of the advantages of deep learning in feature representation, deep model SSD (Single Shot Multibox Detector) is used as the object extractor in the tracking model. Simultaneously, the color histogram feature and HOG (Histogram of Oriented Gradient) feature are combined to select the tracking object. In the process of tracking, multi-scale object searching map is built to improve the detection performance of deep detection model and the tracking efficiency. In the experiment of eight respective tracking video sequences in the baseline dataset, compared with six state-of-the-art methods, the method in the paper has better robustness in the tracking challenging factors, such as deformation, scale variation, rotation variation, illumination variation, and background clutters, moreover, its general performance is better than other six tracking methods.
Detection of maize kernels breakage rate based on K-means clustering
NASA Astrophysics Data System (ADS)
Yang, Liang; Wang, Zhuo; Gao, Lei; Bai, Xiaoping
2017-04-01
In order to optimize the recognition accuracy of maize kernels breakage detection and improve the detection efficiency of maize kernels breakage, this paper using computer vision technology and detecting of the maize kernels breakage based on K-means clustering algorithm. First, the collected RGB images are converted into Lab images, then the original images clarity evaluation are evaluated by the energy function of Sobel 8 gradient. Finally, the detection of maize kernels breakage using different pixel acquisition equipments and different shooting angles. In this paper, the broken maize kernels are identified by the color difference between integrity kernels and broken kernels. The original images clarity evaluation and different shooting angles are taken to verify that the clarity and shooting angles of the images have a direct influence on the feature extraction. The results show that K-means clustering algorithm can distinguish the broken maize kernels effectively.
Otaki, Joji M
2011-06-01
Butterfly wing color patterns consist of many color-pattern elements such as eyespots. It is believed that eyespot patterns are determined by a concentration gradient of a single morphogen species released by diffusion from the prospective eyespot focus in conjunction with multiple thresholds in signal-receiving cells. As alternatives to this single-morphogen model, more flexible multiple-morphogen model and induction model can be proposed. However, the relevance of these conceptual models to actual eyespots has not been examined systematically. Here, representative eyespots from nymphalid butterflies were analyzed morphologically to determine if they are consistent with these models. Measurement of ring widths of serial eyespots from a single wing surface showed that the proportion of each ring in an eyespot is quite different among homologous rings of serial eyespots of different sizes. In asymmetric eyespots, each ring is distorted to varying degrees. In extreme cases, only a portion of rings is expressed remotely from the focus. Similarly, there are many eyespots where only certain rings are deleted, added, or expanded. In an unusual case, the central area of an eyespot is composed of multiple "miniature eyespots," but the overall macroscopic eyespot structure is maintained. These results indicate that each eyespot ring has independence and flexibility to a certain degree, which is less consistent with the single-morphogen model. Considering a "periodic eyespot", which has repeats of a set of rings, damage-induced eyespots in mutants, and a scale-size distribution pattern in an eyespot, the induction model is the least incompatible with the actual eyespot diversity.
Nguyen, Cuong V.; Vrebalov, Julia T.; Gapper, Nigel E.; Zheng, Yi; Zhong, Silin; Fei, Zhangjun; Giovannoni, James J.
2014-01-01
Fruit ripening is the summation of changes rendering fleshy fruit tissues attractive and palatable to seed dispersing organisms. For example, sugar content is influenced by plastid numbers and photosynthetic activity in unripe fruit and later by starch and sugar catabolism during ripening. Tomato fruit are sinks of photosynthate, yet unripe green fruit contribute significantly to the sugars that ultimately accumulate in the ripe fruit. Plastid numbers and chlorophyll content are influenced by numerous environmental and genetic factors and are positively correlated with photosynthesis and photosynthate accumulation. GOLDEN2-LIKE (GLK) transcription factors regulate plastid and chlorophyll levels. Tomato (Solanum lycopersicum), like most plants, contains two GLKs (i.e., GLK1 and GLK2/UNIFORM). Mutant and transgene analysis demonstrated that these genes encode functionally similar peptides, though differential expression renders GLK1 more important in leaves, while GLK2 is predominant in fruit. A latitudinal gradient of GLK2 expression influences the typical uneven coloration of green and ripe wild-type fruit. Transcriptome profiling revealed a broader fruit gene expression gradient throughout development. The gradient influenced general ripening activities beyond plastid development and was consistent with the easily observed yet poorly studied ripening gradient present in tomato and many fleshy fruits. PMID:24510723
NASA Technical Reports Server (NTRS)
Ortega, J. M.
1986-01-01
Various graduate research activities in the field of computer science are reported. Among the topics discussed are: (1) failure probabilities in multi-version software; (2) Gaussian Elimination on parallel computers; (3) three dimensional Poisson solvers on parallel/vector computers; (4) automated task decomposition for multiple robot arms; (5) multi-color incomplete cholesky conjugate gradient methods on the Cyber 205; and (6) parallel implementation of iterative methods for solving linear equations.
A Radial Age Gradient in the Geometrically Thick Disk of the Milky Way
NASA Astrophysics Data System (ADS)
Martig, Marie; Minchev, Ivan; Ness, Melissa; Fouesneau, Morgan; Rix, Hans-Walter
2016-11-01
In the Milky Way, the thick disk can be defined using individual stellar abundances, kinematics, or age, or geometrically, as stars high above the midplane. In nearby galaxies, where only a geometric definition can be used, thick disks appear to have large radial scale lengths, and their red colors suggest that they are uniformly old. The Milky Way’s geometrically thick disk is also radially extended, but it is far from chemically uniform: α-enhanced stars are confined within the inner Galaxy. In simulated galaxies, where old stars are centrally concentrated, geometrically thick disks are radially extended, too. Younger stellar populations flare in the simulated disks’ outer regions, bringing those stars high above the midplane. The resulting geometrically thick disks therefore show a radial age gradient, from old in their central regions to younger in their outskirts. Based on our age estimates for a large sample of giant stars in the APOGEE survey, we can now test this scenario for the Milky Way. We find that the geometrically defined thick disk in the Milky Way has indeed a strong radial age gradient: the median age for red clump stars goes from ∼9 Gyr in the inner disk to 5 Gyr in the outer disk. We propose that at least some nearby galaxies could also have thick disks that are not uniformly old, and that geometrically thick disks might be complex structures resulting from different formation mechanisms in their inner and outer parts.
Real-Time View Correction for Mobile Devices.
Schops, Thomas; Oswald, Martin R; Speciale, Pablo; Yang, Shuoran; Pollefeys, Marc
2017-11-01
We present a real-time method for rendering novel virtual camera views from given RGB-D (color and depth) data of a different viewpoint. Missing color and depth information due to incomplete input or disocclusions is efficiently inpainted in a temporally consistent way. The inpainting takes the location of strong image gradients into account as likely depth discontinuities. We present our method in the context of a view correction system for mobile devices, and discuss how to obtain a screen-camera calibration and options for acquiring depth input. Our method has use cases in both augmented and virtual reality applications. We demonstrate the speed of our system and the visual quality of its results in multiple experiments in the paper as well as in the supplementary video.
Skylab investigation of the upwelling off the Northwest coast of Africa
NASA Technical Reports Server (NTRS)
Szekielda, K. H.; Suszkowski, D. J.; Tabor, P. S.
1975-01-01
The upwelling off the NW coast of Africa in the vicinity of Cape Blanc was studied in February - March 1974 from aircraft and in September 1973 from Skylab. The aircraft study was designed to determine the effectiveness of a differential radiometer in quantifying surface chlorophyll concentrations. Photographic images of the S190A Multispectral Camera and the S190B Earth Terrain Camera from Skylab were used to study distributional patterns of suspended material and to locate ocean color boundaries. The thermal channel of the S192 Multispectral Scanner was used to map sea-surface temperature distributions offshore of Cape Blanc. Correlating ocean color changes with temperature gradients is an effective method of qualitatively estimating biological productivity in the upwelling region off Africa.
NASA Astrophysics Data System (ADS)
Sun, Wenqing; Zheng, Bin; Huang, Xia; Qian, Wei
2017-03-01
Deep learning is a trending promising method in medical image analysis area, but how to efficiently prepare the input image for the deep learning algorithms remains a challenge. In this paper, we introduced a novel artificial multichannel region of interest (ROI) generation procedure for convolutional neural networks (CNN). From LIDC database, we collected 54880 benign nodule samples and 59848 malignant nodule samples based on the radiologists' annotations. The proposed CNN consists of three pairs of convolutional layers and two fully connected layers. For each original ROI, two new ROIs were generated: one contains the segmented nodule which highlighted the nodule shape, and the other one contains the gradient of the original ROI which highlighted the textures. By combining the three channel images into a pseudo color ROI, the CNN was trained and tested on the new multichannel ROIs (multichannel ROI II). For the comparison, we generated another type of multichannel image by replacing the gradient image channel with a ROI contains whitened background region (multichannel ROI I). With the 5-fold cross validation evaluation method, the CNN using multichannel ROI II achieved the ROI based area under the curve (AUC) of 0.8823+/-0.0177, compared to the AUC of 0.8484+/-0.0204 generated by the original ROI. By calculating the average of ROI scores from one nodule, the lesion based AUC using multichannel ROI was 0.8793+/-0.0210. By comparing the convolved features maps from CNN using different types of ROIs, it can be noted that multichannel ROI II contains more accurate nodule shapes and surrounding textures.
A low-cost, computer-interfaced drawing pad for FMRI studies of dysgraphia and dyslexia.
Reitz, Frederick; Richards, Todd; Wu, Kelvin; Boord, Peter; Askren, Mary; Lewis, Thomas; Berninger, Virginia
2013-04-17
We have developed a pen and writing tablet for use by subjects during fMRI scanning. The pen consists of two jacketed, multi-mode optical fibers routed to the tip of a hollowed-out ball-point pen. The pen has been further modified by addition of a plastic plate to maintain a perpendicular pen-tablet orientation. The tablet is simply a non-metallic frame holding a paper print of continuously varying color gradients. The optical fibers are routed out of the MRI bore to a light-tight box in an adjacent control room. Within the box, light from a high intensity LED is coupled into one of the fibers, while the other fiber abuts a color sensor. Light from the LED exits the pen tip, illuminating a small spot on the tablet, and the resulting reflected light is routed to the color sensor. Given a lookup table of position for each color on the tablet, the coordinates of the pen on the tablet may be displayed and digitized in real-time. While simple and inexpensive, the system achieves sufficient resolution to grade writing tasks testing dysgraphic and dyslexic phenomena.
Color Sparse Representations for Image Processing: Review, Models, and Prospects.
Barthélemy, Quentin; Larue, Anthony; Mars, Jérôme I
2015-11-01
Sparse representations have been extended to deal with color images composed of three channels. A review of dictionary-learning-based sparse representations for color images is made here, detailing the differences between the models, and comparing their results on the real and simulated data. These models are considered in a unifying framework that is based on the degrees of freedom of the linear filtering/transformation of the color channels. Moreover, this allows it to be shown that the scalar quaternionic linear model is equivalent to constrained matrix-based color filtering, which highlights the filtering implicitly applied through this model. Based on this reformulation, the new color filtering model is introduced, using unconstrained filters. In this model, spatial morphologies of color images are encoded by atoms, and colors are encoded by color filters. Color variability is no longer captured in increasing the dictionary size, but with color filters, this gives an efficient color representation.
One-shot 3D scanning by combining sparse landmarks with dense gradient information
NASA Astrophysics Data System (ADS)
Di Martino, Matías; Flores, Jorge; Ferrari, José A.
2018-06-01
Scene understanding is one of the most challenging and popular problems in the field of robotics and computer vision and the estimation of 3D information is at the core of most of these applications. In order to retrieve the 3D structure of a test surface we propose a single shot approach that combines dense gradient information with sparse absolute measurements. To that end, we designed a colored pattern that codes fine horizontal and vertical fringes, with sparse corners landmarks. By measuring the deformation (bending) of horizontal and vertical fringes, we are able to estimate surface local variations (i.e. its gradient field). Then corner sparse landmarks are detected and matched to infer spare absolute information about the test surface height. Local gradient information is combined with the sparse absolute values which work as anchors to guide the integration process. We show that this can be mathematically done in a very compact and intuitive way by properly defining a Poisson-like partial differential equation. Then we address in detail how the problem can be formulated in a discrete domain and how it can be practically solved by straight forward linear numerical solvers. Finally, validation experiment are presented.
NASA Astrophysics Data System (ADS)
Yan, Dan; Bai, Lianfa; Zhang, Yi; Han, Jing
2018-02-01
For the problems of missing details and performance of the colorization based on sparse representation, we propose a conceptual model framework for colorizing gray-scale images, and then a multi-sparse dictionary colorization algorithm based on the feature classification and detail enhancement (CEMDC) is proposed based on this framework. The algorithm can achieve a natural colorized effect for a gray-scale image, and it is consistent with the human vision. First, the algorithm establishes a multi-sparse dictionary classification colorization model. Then, to improve the accuracy rate of the classification, the corresponding local constraint algorithm is proposed. Finally, we propose a detail enhancement based on Laplacian Pyramid, which is effective in solving the problem of missing details and improving the speed of image colorization. In addition, the algorithm not only realizes the colorization of the visual gray-scale image, but also can be applied to the other areas, such as color transfer between color images, colorizing gray fusion images, and infrared images.
Computer Software Management and Information Center
NASA Technical Reports Server (NTRS)
1983-01-01
Computer programs for passive anti-roll tank, earth resources laboratory applications, the NIMBUS-7 coastal zone color scanner derived products, transportable applications executive, plastic and failure analysis of composites, velocity gradient method for calculating velocities in an axisymmetric annular duct, an integrated procurement management system, data I/O PRON for the Motorola exorcisor, aerodynamic shock-layer shape, kinematic modeling, hardware library for a graphics computer, and a file archival system are documented.
Text String Detection from Natural Scenes by Structure-based Partition and Grouping
Yi, Chucai; Tian, YingLi
2012-01-01
Text information in natural scene images serves as important clues for many image-based applications such as scene understanding, content-based image retrieval, assistive navigation, and automatic geocoding. However, locating text from complex background with multiple colors is a challenging task. In this paper, we explore a new framework to detect text strings with arbitrary orientations in complex natural scene images. Our proposed framework of text string detection consists of two steps: 1) Image partition to find text character candidates based on local gradient features and color uniformity of character components. 2) Character candidate grouping to detect text strings based on joint structural features of text characters in each text string such as character size differences, distances between neighboring characters, and character alignment. By assuming that a text string has at least three characters, we propose two algorithms of text string detection: 1) adjacent character grouping method, and 2) text line grouping method. The adjacent character grouping method calculates the sibling groups of each character candidate as string segments and then merges the intersecting sibling groups into text string. The text line grouping method performs Hough transform to fit text line among the centroids of text candidates. Each fitted text line describes the orientation of a potential text string. The detected text string is presented by a rectangle region covering all characters whose centroids are cascaded in its text line. To improve efficiency and accuracy, our algorithms are carried out in multi-scales. The proposed methods outperform the state-of-the-art results on the public Robust Reading Dataset which contains text only in horizontal orientation. Furthermore, the effectiveness of our methods to detect text strings with arbitrary orientations is evaluated on the Oriented Scene Text Dataset collected by ourselves containing text strings in non-horizontal orientations. PMID:21411405
Text string detection from natural scenes by structure-based partition and grouping.
Yi, Chucai; Tian, YingLi
2011-09-01
Text information in natural scene images serves as important clues for many image-based applications such as scene understanding, content-based image retrieval, assistive navigation, and automatic geocoding. However, locating text from a complex background with multiple colors is a challenging task. In this paper, we explore a new framework to detect text strings with arbitrary orientations in complex natural scene images. Our proposed framework of text string detection consists of two steps: 1) image partition to find text character candidates based on local gradient features and color uniformity of character components and 2) character candidate grouping to detect text strings based on joint structural features of text characters in each text string such as character size differences, distances between neighboring characters, and character alignment. By assuming that a text string has at least three characters, we propose two algorithms of text string detection: 1) adjacent character grouping method and 2) text line grouping method. The adjacent character grouping method calculates the sibling groups of each character candidate as string segments and then merges the intersecting sibling groups into text string. The text line grouping method performs Hough transform to fit text line among the centroids of text candidates. Each fitted text line describes the orientation of a potential text string. The detected text string is presented by a rectangle region covering all characters whose centroids are cascaded in its text line. To improve efficiency and accuracy, our algorithms are carried out in multi-scales. The proposed methods outperform the state-of-the-art results on the public Robust Reading Dataset, which contains text only in horizontal orientation. Furthermore, the effectiveness of our methods to detect text strings with arbitrary orientations is evaluated on the Oriented Scene Text Dataset collected by ourselves containing text strings in nonhorizontal orientations.
Comparing Stellar Populations Across the Hubble Sequence
NASA Astrophysics Data System (ADS)
Loeffler, Shane; Kaleida, Catherine C.; Parkash, Vaishali
2015-01-01
Previous work (Jansen et al., 2000, Taylor et al., 2005) has revealed trends in the optical wavelength radial profiles of galaxies across the Hubble Sequence. Radial profiles offer insight into stellar populations, metallicity, and dust concentrations, aspects which are deeply tied to the individual evolution of a galaxy. The Nearby Field Galaxy Survey (NFGS) provides a sampling of nearby galaxies that spans the range of morphological types, luminosities, and masses. Currently available NFGS data includes optical radial surface profiles and spectra of 196 nearby galaxies. We aim to look for trends in the infrared portion of the spectrum for these galaxies, but find that existing 2MASS data is not sufficiently deep. Herein, we expand the available data for the NGFS galaxy IC1639 deeper into the infrared using new data taken with the Infrared Sideport Imager (ISPI) on the 4-m Blanco Telescope at the Cerro Tololo Inter-American Observatory (CTIO) in Chile. Images taken in J, H, and Ks were reduced using standard IRAF and IDL procedures. Photometric calibrations were completed by using the highest quality (AAA) 2MASS stars in the field. Aperture photometry was then performed on the galaxy and radial profiles of surface brightness, J-H color, and H-Ks color were produced. For IC1639, the new ISPI data reveals flat color gradients and surface brightness gradients that decrease with radius. These trends reveal an archetypal elliptical galaxy, with a relatively homogeneous stellar population, stellar density decreasing with radius, and little-to-no obscuration by dust. We have obtained ISPI images for an additional 8 galaxies, and further reduction and analysis of these data will allow for investigation of radial trends in the infrared for galaxies across the Hubble Sequence.
Flowers help bees cope with uncertainty: signal detection and the function of floral complexity
Leonard, Anne S.; Dornhaus, Anna; Papaj, Daniel R.
2011-01-01
Plants often attract pollinators with floral displays composed of visual, olfactory, tactile and gustatory stimuli. Since pollinators' responses to each of these stimuli are usually studied independently, the question of why plants produce multi-component floral displays remains relatively unexplored. Here we used signal detection theory to test the hypothesis that complex displays reduce a pollinator's uncertainty about the floral signal. Specifically, we asked whether one component of the floral display, scent, improved a bee's certainty about the value of another component, color hue. We first trained two groups of bumble bees (Bombus impatiens Cresson) to discriminate between rewarding and unrewarding artificial flowers of slightly different hues in the presence vs absence of scent. In a test phase, we presented these bees with a gradient of floral hues and assessed their ability to identify the hue rewarded during training. We interpreted the extent to which bees' preferences were biased away from the unrewarding hue (‘peak shift’) as an indicator of uncertainty in color discrimination. Our data show that the presence of an olfactory signal reduces uncertainty regarding color: not only was color learning facilitated on scented flowers but also bees showed a lower amount of peak shift in the presence of scent. We explore potential mechanisms by which scent might reduce uncertainty about color, and discuss the broader significance of our results for our understanding of signal evolution. PMID:21147975
Zimmer, Claudia; Bierbach, David; Arias-Rodriguez, Lenin; Plath, Martin
2018-01-01
Divergent selection between ecologically dissimilar habitats promotes local adaptation, which can lead to reproductive isolation (RI). Populations in the Poecilia mexicana species complex have independently adapted to toxic hydrogen sulfide and show varying degrees of RI. Here, we examined the variation in the mate choice component of prezygotic RI. Mate choice tests across drainages (with stimulus males from another drainage) suggest that specific features of the males coupled with a general female preference for yellow color patterns explain the observed variation. Analyses of male body coloration identified the intensity of yellow fin coloration as a strong candidate to explain this pattern, and common-garden rearing suggested heritable population differences. Male sexual ornamentation apparently evolved differently across sulfide-adapted populations, for example because of differences in natural counterselection via predation. The ubiquitous preference for yellow color ornaments in poeciliid females likely undermines the emergence of strong RI, as female discrimination in favor of own males becomes weaker when yellow fin coloration in the respective sulfide ecotype increases. Our study illustrates the complexity of the (partly non-parallel) pathways to divergence among replicated ecological gradients. We suggest that future work should identify the genomic loci involved in the pattern reported here, making use of the increasing genomic and transcriptomic datasets available for our study system. PMID:29724050
Seamline Determination Based on PKGC Segmentation for Remote Sensing Image Mosaicking
Dong, Qiang; Liu, Jinghong
2017-01-01
This paper presents a novel method of seamline determination for remote sensing image mosaicking. A two-level optimization strategy is applied to determine the seamline. Object-level optimization is executed firstly. Background regions (BRs) and obvious regions (ORs) are extracted based on the results of parametric kernel graph cuts (PKGC) segmentation. The global cost map which consists of color difference, a multi-scale morphological gradient (MSMG) constraint, and texture difference is weighted by BRs. Finally, the seamline is determined in the weighted cost from the start point to the end point. Dijkstra’s shortest path algorithm is adopted for pixel-level optimization to determine the positions of seamline. Meanwhile, a new seamline optimization strategy is proposed for image mosaicking with multi-image overlapping regions. The experimental results show the better performance than the conventional method based on mean-shift segmentation. Seamlines based on the proposed method bypass the obvious objects and take less time in execution. This new method is efficient and superior for seamline determination in remote sensing image mosaicking. PMID:28749446
The Art and Science of Snow Microbiology: Data Paintings of the Finnish Arctic
NASA Astrophysics Data System (ADS)
Reasor, K.; Lipson, D.
2017-12-01
A challenge in science-art collaborations is to create artwork that accurately represents scientific results while standing as an independent art object. Art associated with science may merely be illustrative, serving to decorate a scientific study, or conversely, science-art may only superficially derive from data without addressing its broader scientific meaning. A fully integrated work of science-art requires copious communication between the scientist and artist. Here we present the results of a collaboration between a microbial ecologist and a painter, to study and depict the nature of microbial communities in the snowpack of the Finnish Arctic around Lake Kilpisjärvi. Snow profiles were studied along an altitudinal gradient that spanned the lake, a mountain birch forest, the transitional forest near tree line, and the alpine above tree line on the fell, Saana. Snow from the top, middle and bottom of each profile was characterized physically, chemically and microbiologically. The snowpack provided an insulating layer such that temperatures close to 0°C were found at the base of the snowpack. Windblown areas outside the protective influence of the forest (lake, alpine) had thinner, denser snowpacks. Bacterial cell counts (performed by flow cytometry) were highest in the protected area at the base of the snowpack, lowest in the middle and intermediate at the snow surface. Sequencing of the 16S rRNA gene showed a diverse assemblage of bacteria on the surface that resembled typical soil species, while the base harbored a community dominated by Gammaproteobacteria. The artist chose to depict the results using four pairs of paintings, corresponding to the four elevations. The pairs consist of a landscape oil painting of the site and a "data painting," in which a simplified version of the landscape is shown in grayscale and snow characteristics are overlaid in color. Snow density is shown using value (the lightness or darkness of a color) and temperature is coded in hue (warm to cold colors). Bacterial populations are shown as bright points, with density, color/shape and size indicative of population size, diversity and metabolic activity. The result is a set of paintings that capture the sense of the landscape while also revealing the hidden world where bacterial communities thrive under an insulative blanket of snow.
Stachová, Ivana; Lhotská, Ivona; Solich, Petr; Šatínský, Dalibor
2016-07-01
Beer is one of the most popular alcoholic beverages worldwide. For consumer acceptance, significant factors are its taste, flavour and colour. This study determines selected synthetic green, blue and yellow food colorants in popular Easter herb-coloured green beers on tap produced in breweries on Holy Thursday. The abuse of beer colouring with Tartrazine (E 102), Quinoline yellow (E 104), Sunset yellow (E 110), Patent blue (E 131), Indigo carmine (E 132), Brilliant blue FCF (E 133), Green S (E 142) and Fast green FCF (E 143) was assessed in 11 green beer samples purchased in local restaurants. HPLC was used for the separation and detection of artificial colorants with diode-array detection and a Chromolith Performance CN 100 × 4.6 mm column with guard pre-column Chromolith CN 5 × 4.6 mm. Separation was performed in gradient elution with mobile phase containing methanol-aqueous 2% ammonium acetate at pH 7.0. The study showed that eight beers (70%) marketed in the Czech Republic contained artificial colorants (Tartrazine and Brilliant blue FCF). The concentration of colorants found in analysed green herb-coloured beers ranged from 1.58 to 3.49 mg l(-)(1) for Tartrazine, 0.45-2.18 mg l(-)(1) for Brilliant blue, while Indigo carmine was detected only once at concentration 2.36 mg l(-)(1). Only three beers showed no addition of the synthetic colorants. However, the levels of artificial colorants found in beers marketed in the Czech region were very low and did not show a serious risk for consumers' health.
Preparative free-flow electrophoresis as a method of fractionation of natural organic materials
Leenheer, J.A.; Malcolm, R.L.
1973-01-01
Preparative free-flow electrophoresis was found to be an efficient method of conducting large-scale fractionations of the natural organic polyelectrolytes occurring in many surface waters and soils. The method of free-flow electrophoresis obviates, the problem of adsorption upon a supporting medium and permits the use of high potential gradients and currents because of an efficient cooling system. Separations were monitored by determining organic carbon concentration with a dissolved carbon analyzer, and color was measured by absorbance at 400 nanometers. Organic materials from waters and soils were purified by filtration, hydrogen exchange, and dialysis and were concentrated by freeze drying or freeze concentration. In electrophoretic fractionations of natural organic materials typically found in surface waters and soils, color was found to increase with the charge of the fraction.
NASA Astrophysics Data System (ADS)
Li, Bocong; Huang, Qingmei; Lu, Yan; Chen, Songhe; Liang, Rong; Wang, Zhaoping
Objective tongue color analysis is an important research point for tongue diagnosis in Traditional Chinese Medicine. In this paper a research based on the clinical process of diagnosing tongue color is reported. The color data in RGB color space were first transformed into the data in CIELAB color space, and the color gamut of the displayed tongue was obtained. Then a numerical method of tongue color classification based on the Traditional Chinese Medicine (for example: light white tongue, light red tongue, red tongue) was developed. The conclusion is that this research can give the description and classification of the tongue color close to those given by human vision and may be carried out in clinical diagnosis.
Color reproduction system based on color appearance model and gamut mapping
NASA Astrophysics Data System (ADS)
Cheng, Fang-Hsuan; Yang, Chih-Yuan
2000-06-01
By the progress of computer, computer peripherals such as color monitor and printer are often used to generate color image. However, cross media color reproduction by human perception is usually different. Basically, the influence factors are device calibration and characterization, viewing condition, device gamut and human psychology. In this thesis, a color reproduction system based on color appearance model and gamut mapping is proposed. It consists of four parts; device characterization, color management technique, color appearance model and gamut mapping.
21 CFR 73.350 - Mica-based pearlescent pigments.
Code of Federal Regulations, 2012 CFR
2012-04-01
... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.350 Mica-based pearlescent pigments. (a... the requirements of § 73.1496(a)(1). (2) Color additive mixtures for food use made with mica-based... color additive mixtures for coloring food. (b) Specifications. Mica-based pearlescent pigments shall...
21 CFR 73.350 - Mica-based pearlescent pigments.
Code of Federal Regulations, 2010 CFR
2010-04-01
... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.350 Mica-based pearlescent pigments. (a... the requirements of § 73.1496(a)(1). (2) Color additive mixtures for food use made with mica-based... color additive mixtures for coloring food. (b) Specifications. Mica-based pearlescent pigments shall...
21 CFR 73.350 - Mica-based pearlescent pigments.
Code of Federal Regulations, 2011 CFR
2011-04-01
... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.350 Mica-based pearlescent pigments. (a... the requirements of § 73.1496(a)(1). (2) Color additive mixtures for food use made with mica-based... color additive mixtures for coloring food. (b) Specifications. Mica-based pearlescent pigments shall...
21 CFR 73.350 - Mica-based pearlescent pigments.
Code of Federal Regulations, 2014 CFR
2014-04-01
... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.350 Mica-based pearlescent pigments. (a... the requirements of § 73.1496(a)(1). (2) Color additive mixtures for food use made with mica-based... color additive mixtures for coloring food. (b) Specifications. Mica-based pearlescent pigments shall...
21 CFR 73.350 - Mica-based pearlescent pigments.
Code of Federal Regulations, 2013 CFR
2013-04-01
... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.350 Mica-based pearlescent pigments. (a... the requirements of § 73.1496(a)(1). (2) Color additive mixtures for food use made with mica-based... color additive mixtures for coloring food. (b) Specifications. Mica-based pearlescent pigments shall...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lentine, Anthony L.; Nielson, Gregory N.; Cruz-Campa, Jose Luis
A photovoltaic module includes colorized reflective photovoltaic cells that act as pixels. The colorized reflective photovoltaic cells are arranged so that reflections from the photovoltaic cells or pixels visually combine into an image on the photovoltaic module. The colorized photovoltaic cell or pixel is composed of a set of 100 to 256 base color sub-pixel reflective segments or sub-pixels. The color of each pixel is determined by the combination of base color sub-pixels forming the pixel. As a result, each pixel can have a wide variety of colors using a set of base colors, which are created, from sub-pixel reflectivemore » segments having standard film thicknesses.« less
NASA Technical Reports Server (NTRS)
Firstenberg, M. S.; Vandervoort, P. M.; Greenberg, N. L.; Smedira, N. G.; McCarthy, P. M.; Garcia, M. J.; Thomas, J. D.
2000-01-01
OBJECTIVES: We hypothesized that color M-mode (CMM) images could be used to solve the Euler equation, yielding regional pressure gradients along the scanline, which could then be integrated to yield the unsteady Bernoulli equation and estimate noninvasively both the convective and inertial components of the transmitral pressure difference. BACKGROUND: Pulsed and continuous wave Doppler velocity measurements are routinely used clinically to assess severity of stenotic and regurgitant valves. However, only the convective component of the pressure gradient is measured, thereby neglecting the contribution of inertial forces, which may be significant, particularly for nonstenotic valves. Color M-mode provides a spatiotemporal representation of flow across the mitral valve. METHODS: In eight patients undergoing coronary artery bypass grafting, high-fidelity left atrial and ventricular pressure measurements were obtained synchronously with transmitral CMM digital recordings. The instantaneous diastolic transmitral pressure difference was computed from the M-mode spatiotemporal velocity distribution using the unsteady flow form of the Bernoulli equation and was compared to the catheter measurements. RESULTS: From 56 beats in 16 hemodynamic stages, inclusion of the inertial term ([deltapI]max = 1.78+/-1.30 mm Hg) in the noninvasive pressure difference calculation significantly increased the temporal correlation with catheter-based measurement (r = 0.35+/-0.24 vs. 0.81+/-0.15, p< 0.0001). It also allowed an accurate approximation of the peak pressure difference ([deltapc+I]max = 0.95 [delta(p)cathh]max + 0.24, r = 0.96, p<0.001, error = 0.08+/-0.54 mm Hg). CONCLUSIONS: Inertial forces are significant components of the maximal pressure drop across the normal mitral valve. These can be accurately estimated noninvasively using CMM recordings of transmitral flow, which should improve the understanding of diastolic filling and function of the heart.
Hierarchical colorant-based direct binary search halftoning.
He, Zhen
2010-07-01
Colorant-based direct binary search (CB-DBS) halftoning proposed in provides an image quality benchmark for dispersed-dot halftoning algorithms. The objective of this paper is to further push the image quality limit. An algorithm called hierarchical colorant-based direct binary search (HCB-DBS) is developed in this paper. By appropriately integrating yellow colorant into dot-overlapping and dot-positioning controls, it is demonstrated that HCB-DBS can achieve better halftone texture of both individual and joint dot-color planes, without compromising the dot distribution of more visible halftone of cyan and magenta colorants. The input color specification is first converted from colorant space to dot-color space with minimum brightness variation principle for full dot-overlapping control. The dot-colors are then split into groups based upon dot visibility. Hierarchical monochrome DBS halftoning is applied to make dot-positioning decision for each group, constrained on the already generated halftone of the groups with higher priority. And dot-coloring is decided recursively with joint monochrome DBS halftoning constrained on the related total dot distribution. Experiments show HCB-DBS improves halftone texture for both individual and joint dot-color planes. And it reduces the halftone graininess and free of color mottle artifacts, comparing to CB-DBS.
Model-based color halftoning using direct binary search.
Agar, A Ufuk; Allebach, Jan P
2005-12-01
In this paper, we develop a model-based color halftoning method using the direct binary search (DBS) algorithm. Our method strives to minimize the perceived error between the continuous tone original color image and the color halftone image. We exploit the differences in how the human viewers respond to luminance and chrominance information and use the total squared error in a luminance/chrominance based space as our metric. Starting with an initial halftone, we minimize this error metric using the DBS algorithm. Our method also incorporates a measurement based color printer dot interaction model to prevent the artifacts due to dot overlap and to improve color texture quality. We calibrate our halftoning algorithm to ensure accurate colorant distributions in resulting halftones. We present the color halftones which demonstrate the efficacy of our method.
Drew, Trafton; Stothart, Cary
2016-12-01
How is feature-based attention distributed when engaged in a challenging attentional task? Thanks to formative electrophysiological and psychophysical work, we know a great deal about the spatial distribution of attention, but much less is known about how feature-based attention is allocated. In a large-scale online study, we investigated the distribution of attention to color space using a sustained inattentional blindness task. In order to query what parts of color space were being attended or inhibited, we varied the color of an unexpected stimulus on the final trial. Noticing rates for this stimulus indicate that when engaged in a difficult task that involves tracking items of one color and ignoring items of two different colors, observers attend the target color and inhibit the to-be ignored colors. Further, similarity to the target drives detection such that colors more similar to the target are more likely to be detected. Finally, our data suggest that when possible, observers inhibit regions of color space rather than individuating specific colors and adjusting the level of inhibition for a particular color accordingly. Together, our data support the notion of feature-based suppression for task relevant (to-be ignored) information, but we found no evidence of an inhibitory surround based on target color similarity.
A Novel BA Complex Network Model on Color Template Matching
Han, Risheng; Yue, Guangxue; Ding, Hui
2014-01-01
A novel BA complex network model of color space is proposed based on two fundamental rules of BA scale-free network model: growth and preferential attachment. The scale-free characteristic of color space is discovered by analyzing evolving process of template's color distribution. And then the template's BA complex network model can be used to select important color pixels which have much larger effects than other color pixels in matching process. The proposed BA complex network model of color space can be easily integrated into many traditional template matching algorithms, such as SSD based matching and SAD based matching. Experiments show the performance of color template matching results can be improved based on the proposed algorithm. To the best of our knowledge, this is the first study about how to model the color space of images using a proper complex network model and apply the complex network model to template matching. PMID:25243235
A novel BA complex network model on color template matching.
Han, Risheng; Shen, Shigen; Yue, Guangxue; Ding, Hui
2014-01-01
A novel BA complex network model of color space is proposed based on two fundamental rules of BA scale-free network model: growth and preferential attachment. The scale-free characteristic of color space is discovered by analyzing evolving process of template's color distribution. And then the template's BA complex network model can be used to select important color pixels which have much larger effects than other color pixels in matching process. The proposed BA complex network model of color space can be easily integrated into many traditional template matching algorithms, such as SSD based matching and SAD based matching. Experiments show the performance of color template matching results can be improved based on the proposed algorithm. To the best of our knowledge, this is the first study about how to model the color space of images using a proper complex network model and apply the complex network model to template matching.
Direct Volume Rendering with Shading via Three-Dimensional Textures
NASA Technical Reports Server (NTRS)
VanGelder, Allen; Kim, Kwansik
1996-01-01
A new and easy-to-implement method for direct volume rendering that uses 3D texture maps for acceleration, and incorporates directional lighting, is described. The implementation, called Voltx, produces high-quality images at nearly interactive speeds on workstations with hardware support for three-dimensional texture maps. Previously reported methods did not incorporate a light model, and did not address issues of multiple texture maps for large volumes. Our research shows that these extensions impact performance by about a factor of ten. Voltx supports orthographic, perspective, and stereo views. This paper describes the theory and implementation of this technique, and compares it to the shear-warp factorization approach. A rectilinear data set is converted into a three-dimensional texture map containing color and opacity information. Quantized normal vectors and a lookup table provide efficiency. A new tesselation of the sphere is described, which serves as the basis for normal-vector quantization. A new gradient-based shading criterion is described, in which the gradient magnitude is interpreted in the context of the field-data value and the material classification parameters, and not in isolation. In the rendering phase, the texture map is applied to a stack of parallel planes, which effectively cut the texture into many slabs. The slabs are composited to form an image.
SWT voting-based color reduction for text detection in natural scene images
NASA Astrophysics Data System (ADS)
Ikica, Andrej; Peer, Peter
2013-12-01
In this article, we propose a novel stroke width transform (SWT) voting-based color reduction method for detecting text in natural scene images. Unlike other text detection approaches that mostly rely on either text structure or color, the proposed method combines both by supervising text-oriented color reduction process with additional SWT information. SWT pixels mapped to color space vote in favor of the color they correspond to. Colors receiving high SWT vote most likely belong to text areas and are blocked from being mean-shifted away. Literature does not explicitly address SWT search direction issue; thus, we propose an adaptive sub-block method for determining correct SWT direction. Both SWT voting-based color reduction and SWT direction determination methods are evaluated on binary (text/non-text) images obtained from a challenging Computer Vision Lab optical character recognition database. SWT voting-based color reduction method outperforms the state-of-the-art text-oriented color reduction approach.
Convergent evolution and divergent selection: lizards at the White Sands ecotone.
Rosenblum, Erica Bree
2006-01-01
Ecological transition zones, where organismal phenotypes result from a delicate balance between selection and migration, highlight the interplay of local adaptation and gene flow. Here, I study the response of an entire species assemblage to natural selection across a common ecotone. Three lizard species, distributed along a dramatic environmental gradient in substrate color, display convergent adaptation of blanched coloration on the gypsum dunes of White Sands National Monument. I investigate the role of gene flow in modulating phenotypic response to selection by quantifying color variation and genetic variation across the ecotone. I find species differences in degree of background matching and in genetic connectivity of populations across the ecotone. Differences among species in phenotypic response to selection scale precisely to levels of genetic isolation. Species with higher levels of gene flow across the ecotone exhibit less dramatic responses to selection. Results also reveal a strong signal of ecologically mediated divergence for White Sands lizards. For all species, phenotypic variation is better explained by habitat similarity than genetic similarity. Convergent evolution of blanched coloration at White Sands clearly reflects the action of strong divergent selection; however, adaptive response appears to be modulated by gene flow and demographic history and can be predicted by divergence-with-gene-flow models.
Blind color isolation for color-channel-based fringe pattern profilometry using digital projection
NASA Astrophysics Data System (ADS)
Hu, Yingsong; Xi, Jiangtao; Chicharo, Joe; Yang, Zongkai
2007-08-01
We present an algorithm for estimating the color demixing matrix based on the color fringe patterns captured from the reference plane or the surface of the object. The advantage of this algorithm is that it is a blind approach to calculating the demixing matrix in the sense that no extra images are required for color calibration before performing profile measurement. Simulation and experimental results convince us that the proposed algorithm can significantly reduce the influence of the color cross talk and at the same time improve the measurement accuracy of the color-channel-based phase-shifting profilometry.
Joint sparse coding based spatial pyramid matching for classification of color medical image.
Shi, Jun; Li, Yi; Zhu, Jie; Sun, Haojie; Cai, Yin
2015-04-01
Although color medical images are important in clinical practice, they are usually converted to grayscale for further processing in pattern recognition, resulting in loss of rich color information. The sparse coding based linear spatial pyramid matching (ScSPM) and its variants are popular for grayscale image classification, but cannot extract color information. In this paper, we propose a joint sparse coding based SPM (JScSPM) method for the classification of color medical images. A joint dictionary can represent both the color information in each color channel and the correlation between channels. Consequently, the joint sparse codes calculated from a joint dictionary can carry color information, and therefore this method can easily transform a feature descriptor originally designed for grayscale images to a color descriptor. A color hepatocellular carcinoma histological image dataset was used to evaluate the performance of the proposed JScSPM algorithm. Experimental results show that JScSPM provides significant improvements as compared with the majority voting based ScSPM and the original ScSPM for color medical image classification. Copyright © 2014 Elsevier Ltd. All rights reserved.
Han, J Y; Kim, E J; Lee, H K; Kim, M J; Nam, G W
2015-08-01
This study was conducted to define yellowish skin color, which is a major concern of Asian women, and to develop a 3D skin-pigment color model. A total of 22 Korean females were enrolled in this study. These women were asked to use a functional cosmetic product with whitening agents for 8 weeks. We photographed the subsurface reflection of each subject's face using polarized light. The color of the subsurface reflection is a result of diffusive light transports that are attenuated by various skin pigments such as melanin, hemoglobin, and skin base colors. In this subsurface photo image, we eliminated the color effects of melanin and hemoglobin distribution by skin color analysis resulting in skin base color. Based on a variety of observed skin base colors from which the melanin and hemoglobin pigments have been removed, we defined a standard skin color for the entire subject group, and then, we gained a particular yellowish skin color by excluding the standard skin color from the skin base color again. After applying whitening cosmetic products, the amount of melanin and hemoglobin was reduced by 7.3% and 18.6%, respectively. Also, through using our new analysis method, yellowish skin color has been improved by 2.8%. We showed the improvement on 3D Skin Chroma Diagram(™) three-dimensionally. It became possible to diagnose yellowish color on human skin and to analyze the improvement in skin tone both quantitatively and visually. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Music Retrieval Based on the Relation between Color Association and Lyrics
NASA Astrophysics Data System (ADS)
Nakamur, Tetsuaki; Utsumi, Akira; Sakamoto, Maki
Various methods for music retrieval have been proposed. Recently, many researchers are tackling developing methods based on the relationship between music and feelings. In our previous psychological study, we found that there was a significant correlation between colors evoked from songs and colors evoked only from lyrics, and showed that the music retrieval system using lyrics could be developed. In this paper, we focus on the relationship among music, lyrics and colors, and propose a music retrieval method using colors as queries and analyzing lyrics. This method estimates colors evoked from songs by analyzing lyrics of the songs. On the first step of our method, words associated with colors are extracted from lyrics. We assumed two types of methods to extract words associated with colors. In the one of two methods, the words are extracted based on the result of a psychological experiment. In the other method, in addition to the words extracted based on the result of the psychological experiment, the words from corpora for the Latent Semantic Analysis are extracted. On the second step, colors evoked from the extracted words are compounded, and the compounded colors are regarded as those evoked from the song. On the last step, colors as queries are compared with colors estimated from lyrics, and the list of songs is presented based on similarities. We evaluated the two methods described above and found that the method based on the psychological experiment and corpora performed better than the method only based on the psychological experiment. As a result, we showed that the method using colors as queries and analyzing lyrics is effective for music retrieval.
Adaptive Residual Interpolation for Color and Multispectral Image Demosaicking †
Kiku, Daisuke; Okutomi, Masatoshi
2017-01-01
Color image demosaicking for the Bayer color filter array is an essential image processing operation for acquiring high-quality color images. Recently, residual interpolation (RI)-based algorithms have demonstrated superior demosaicking performance over conventional color difference interpolation-based algorithms. In this paper, we propose adaptive residual interpolation (ARI) that improves existing RI-based algorithms by adaptively combining two RI-based algorithms and selecting a suitable iteration number at each pixel. These are performed based on a unified criterion that evaluates the validity of an RI-based algorithm. Experimental comparisons using standard color image datasets demonstrate that ARI can improve existing RI-based algorithms by more than 0.6 dB in the color peak signal-to-noise ratio and can outperform state-of-the-art algorithms based on training images. We further extend ARI for a multispectral filter array, in which more than three spectral bands are arrayed, and demonstrate that ARI can achieve state-of-the-art performance also for the task of multispectral image demosaicking. PMID:29194407
Adaptive Residual Interpolation for Color and Multispectral Image Demosaicking.
Monno, Yusuke; Kiku, Daisuke; Tanaka, Masayuki; Okutomi, Masatoshi
2017-12-01
Color image demosaicking for the Bayer color filter array is an essential image processing operation for acquiring high-quality color images. Recently, residual interpolation (RI)-based algorithms have demonstrated superior demosaicking performance over conventional color difference interpolation-based algorithms. In this paper, we propose adaptive residual interpolation (ARI) that improves existing RI-based algorithms by adaptively combining two RI-based algorithms and selecting a suitable iteration number at each pixel. These are performed based on a unified criterion that evaluates the validity of an RI-based algorithm. Experimental comparisons using standard color image datasets demonstrate that ARI can improve existing RI-based algorithms by more than 0.6 dB in the color peak signal-to-noise ratio and can outperform state-of-the-art algorithms based on training images. We further extend ARI for a multispectral filter array, in which more than three spectral bands are arrayed, and demonstrate that ARI can achieve state-of-the-art performance also for the task of multispectral image demosaicking.
Illuminant color estimation based on pigmentation separation from human skin color
NASA Astrophysics Data System (ADS)
Tanaka, Satomi; Kakinuma, Akihiro; Kamijo, Naohiro; Takahashi, Hiroshi; Tsumura, Norimichi
2015-03-01
Human has the visual system called "color constancy" that maintains the perceptive colors of same object across various light sources. The effective method of color constancy algorithm was proposed to use the human facial color in a digital color image, however, this method has wrong estimation results by the difference of individual facial colors. In this paper, we present the novel color constancy algorithm based on skin color analysis. The skin color analysis is the method to separate the skin color into the components of melanin, hemoglobin and shading. We use the stationary property of Japanese facial color, and this property is calculated from the components of melanin and hemoglobin. As a result, we achieve to propose the method to use subject's facial color in image and not depend on the individual difference among Japanese facial color.
Vikan, Johan Reinert; Fossøy, Frode; Huhta, Esa; Moksnes, Arne; Røskaft, Eivin; Stokke, Bård Gunnar
2011-01-01
Background Antagonistic species often interact via matching of phenotypes, and interactions between brood parasitic common cuckoos (Cuculus canorus) and their hosts constitute classic examples. The outcome of a parasitic event is often determined by the match between host and cuckoo eggs, giving rise to potentially strong associations between fitness and egg phenotype. Yet, empirical efforts aiming to document and understand the resulting evolutionary outcomes are in short supply. Methods/Principal Findings We used avian color space models to analyze patterns of egg color variation within and between the cuckoo and two closely related hosts, the nomadic brambling (Fringilla montifringilla) and the site fidelic chaffinch (F. coelebs). We found that there is pronounced opportunity for disruptive selection on brambling egg coloration. The corresponding cuckoo host race has evolved egg colors that maximize fitness in both sympatric and allopatric brambling populations. By contrast, the chaffinch has a more bimodal egg color distribution consistent with the evolutionary direction predicted for the brambling. Whereas the brambling and its cuckoo host race show little geographical variation in their egg color distributions, the chaffinch's distribution becomes increasingly dissimilar to the brambling's distribution towards the core area of the brambling cuckoo host race. Conclusion High rates of brambling gene flow is likely to cool down coevolutionary hot spots by cancelling out the selection imposed by a patchily distributed cuckoo host race, thereby promoting a matching equilibrium. By contrast, the site fidelic chaffinch is more likely to respond to selection from adapting cuckoos, resulting in a markedly more bimodal egg color distribution. The geographic variation in the chaffinch's egg color distribution could reflect a historical gradient in parasitism pressure. Finally, marked cuckoo egg polymorphisms are unlikely to evolve in these systems unless the hosts evolve even more exquisite egg recognition capabilities than currently possessed. PMID:21559400
Enriching text with images and colored light
NASA Astrophysics Data System (ADS)
Sekulovski, Dragan; Geleijnse, Gijs; Kater, Bram; Korst, Jan; Pauws, Steffen; Clout, Ramon
2008-01-01
We present an unsupervised method to enrich textual applications with relevant images and colors. The images are collected by querying large image repositories and subsequently the colors are computed using image processing. A prototype system based on this method is presented where the method is applied to song lyrics. In combination with a lyrics synchronization algorithm the system produces a rich multimedia experience. In order to identify terms within the text that may be associated with images and colors, we select noun phrases using a part of speech tagger. Large image repositories are queried with these terms. Per term representative colors are extracted using the collected images. Hereto, we either use a histogram-based or a mean shift-based algorithm. The representative color extraction uses the non-uniform distribution of the colors found in the large repositories. The images that are ranked best by the search engine are displayed on a screen, while the extracted representative colors are rendered on controllable lighting devices in the living room. We evaluate our method by comparing the computed colors to standard color representations of a set of English color terms. A second evaluation focuses on the distance in color between a queried term in English and its translation in a foreign language. Based on results from three sets of terms, a measure of suitability of a term for color extraction based on KL Divergence is proposed. Finally, we compare the performance of the algorithm using either the automatically indexed repository of Google Images and the manually annotated Flickr.com. Based on the results of these experiments, we conclude that using the presented method we can compute the relevant color for a term using a large image repository and image processing.
Proximate bases of silver color in anhinga (Anhinga anhinga) feathers.
Shawkey, Matthew D; Maia, Rafael; D'Alba, Liliana
2011-11-01
Colors of living organisms are produced by selective light absorption from pigments and/or by light scattering from highly ordered nanostructures (i.e., structural color). While the physical bases of metallic colors of arthropods and fish are fairly well-known, those of birds are not. Here we examine structurally based silver color and its production in feathers of the waterbird species Anhinga. This achromatic color is distinguished from grey by high specular reflectance, from white by low diffuse reflectance, and from both by high gloss. Light and electron microscopy revealed three modifications of feathers likely leading to silver color. First, proximal barbules were highly elongated and contained glossy black color at their base and white color at their pennulum. Second, this glossy black portion contained a single outer layer of keratin weakly bounded by melanosomes. Finally, the white portion contained a disordered amorphous matrix of keratin and air. Optical analyzes suggest that these structures produce, respectively, glossy black color through thin-film interference and white color through incoherent light scattering. Silver color likely results from the combined reflectance of these adjacent structures. This represents a distinct mechanism for attaining silver colors that may have been partially derived through selection for display, thermoregulation or decreased hydrophobicity. Copyright © 2011 Wiley-Liss, Inc.
Gray-world-assumption-based illuminant color estimation using color gamuts with high and low chroma
NASA Astrophysics Data System (ADS)
Kawamura, Harumi; Yonemura, Shunichi; Ohya, Jun; Kojima, Akira
2013-02-01
A new approach is proposed for estimating illuminant colors from color images under an unknown scene illuminant. The approach is based on a combination of a gray-world-assumption-based illuminant color estimation method and a method using color gamuts. The former method, which is one we had previously proposed, improved on the original method that hypothesizes that the average of all the object colors in a scene is achromatic. Since the original method estimates scene illuminant colors by calculating the average of all the image pixel values, its estimations are incorrect when certain image colors are dominant. Our previous method improves on it by choosing several colors on the basis of an opponent-color property, which is that the average color of opponent colors is achromatic, instead of using all colors. However, it cannot estimate illuminant colors when there are only a few image colors or when the image colors are unevenly distributed in local areas in the color space. The approach we propose in this paper combines our previous method and one using high chroma and low chroma gamuts, which makes it possible to find colors that satisfy the gray world assumption. High chroma gamuts are used for adding appropriate colors to the original image and low chroma gamuts are used for narrowing down illuminant color possibilities. Experimental results obtained using actual images show that even if the image colors are localized in a certain area in the color space, the illuminant colors are accurately estimated, with smaller estimation error average than that generated in the conventional method.
Mesoscale Simulations of Coastal Circulations Evaluated Using Measurements from a Dense MESO Network
2013-03-01
latent heat fluxes at the coast (left) and inland (right) color coded by each day (legend in MFL) in case #1 and #2 to show temporal error variances...the coast . This gradient is the main mechanism which drives sea breeze circulations. Numerous studies correlating SHF to sea breeze (Miao et al 2003...calculate. Abbs (1986) argues that water body dimensions play an important factor for sea breezes associated with semi-enclosed bays and lagoons
Luider, C.D.; Crusius, John; Playle, R.C.; Curtis, P.J.
2004-01-01
Rainbow trout (Oncorhynchus mykiss, 2 g) were exposed to 0−5 μM total copper in ion-poor water for 3 h in the presence or absence of 10 mg C/L of qualitatively different natural organic matter (NOM) derived from water spanning a large gradient in hydrologic residence time. Accumulation of Cu by trout gills was compared to Cu speciation determined by ion selective electrode (ISE) and by diffusive gradients in thin films (DGT) gel sampler technology. The presence of NOM decreased Cu uptake by trout gills as well as Cu concentrations determined by ISE and DGT. Furthermore, the source of NOM influenced Cu binding by trout gills with high-color, allochthonous NOM decreasing Cu accumulation by the gills more than low-color autochthonous NOM. The pattern of Cu binding to the NOM measured by Cu ISE and by Cu accumulation by DGT samplers was similar to the fish gill results. A simple Cu−gill binding model required an NOM Cu-binding factor (F) that depended on NOM quality to account for observed Cu accumulation by trout gills; values of F varied by a factor of 2. Thus, NOM metal-binding quality, as well as NOM quantity, are both important when assessing the bioavailability of metals such as Cu to aquatic organisms.
NASA Astrophysics Data System (ADS)
Ba, Yan; Liu, Haihu; Li, Qing; Kang, Qinjun; Sun, Jinju
2016-08-01
In this paper we propose a color-gradient lattice Boltzmann (LB) model for simulating two-phase flows with high density ratio and high Reynolds number. The model applies a multirelaxation-time (MRT) collision operator to enhance the stability of the simulation. A source term, which is derived by the Chapman-Enskog analysis, is added into the MRT LB equation so that the Navier-Stokes equations can be exactly recovered. Also, a form of the equilibrium density distribution function is used to simplify the source term. To validate the proposed model, steady flows of a static droplet and the layered channel flow are first simulated with density ratios up to 1000. Small values of spurious velocities and interfacial tension errors are found in the static droplet test, and improved profiles of velocity are obtained by the present model in simulating channel flows. Then, two cases of unsteady flows, Rayleigh-Taylor instability and droplet splashing on a thin film, are simulated. In the former case, the density ratio of 3 and Reynolds numbers of 256 and 2048 are considered. The interface shapes and spike and bubble positions are in good agreement with the results of previous studies. In the latter case, the droplet spreading radius is found to obey the power law proposed in previous studies for the density ratio of 100 and Reynolds number up to 500.
Video compression via log polar mapping
NASA Astrophysics Data System (ADS)
Weiman, Carl F. R.
1990-09-01
A three stage process for compressing real time color imagery by factors in the range of 1600-to-i is proposed for remote driving'. The key is to match the resolution gradient of human vision and preserve only those cues important for driving. Some hardware components have been built and a research prototype is planned. Stage 1 is log polar mapping, which reduces peripheral image sampling resolution to match the peripheral gradient in human visual acuity. This can yield 25-to-i compression. Stage 2 partitions color and contrast into separate channels. This can yield 8-to-i compression. Stage 3 is conventional block data compression such as hybrid DCT/DPCM which can yield 8-to-i compression. The product of all three stages is i600-to-i data compression. The compressed signal can be transmitted over FM bands which do not require line-of-sight, greatly increasing the range of operation and reducing the topographic exposure of teleoperated vehicles. Since the compressed channel data contains the essential constituents of human visual perception, imagery reconstructed by inverting each of the three compression stages is perceived as complete, provided the operator's direction of gaze is at the center of the mapping. This can be achieved by eye-tracker feedback which steers the center of log polar mapping in the remote vehicle to match the teleoperator's direction of gaze.
Imaging tristimulus colorimeter for the evaluation of color in printed textiles
NASA Astrophysics Data System (ADS)
Hunt, Martin A.; Goddard, James S., Jr.; Hylton, Kathy W.; Karnowski, Thomas P.; Richards, Roger K.; Simpson, Marc L.; Tobin, Kenneth W., Jr.; Treece, Dale A.
1999-03-01
The high-speed production of textiles with complicated printed patterns presents a difficult problem for a colorimetric measurement system. Accurate assessment of product quality requires a repeatable measurement using a standard color space, such as CIELAB, and the use of a perceptually based color difference formula, e.g. (Delta) ECMC color difference formula. Image based color sensors used for on-line measurement are not colorimetric by nature and require a non-linear transformation of the component colors based on the spectral properties of the incident illumination, imaging sensor, and the actual textile color. This research and development effort describes a benchtop, proof-of-principle system that implements a projection onto convex sets (POCS) algorithm for mapping component color measurements to standard tristimulus values and incorporates structural and color based segmentation for improved precision and accuracy. The POCS algorithm consists of determining the closed convex sets that describe the constraints on the reconstruction of the true tristimulus values based on the measured imperfect values. We show that using a simulated D65 standard illuminant, commercial filters and a CCD camera, accurate (under perceptibility limits) per-region based (Delta) ECMC values can be measured on real textile samples.
A flower image retrieval method based on ROI feature.
Hong, An-Xiang; Chen, Gang; Li, Jun-Li; Chi, Zhe-Ru; Zhang, Dan
2004-07-01
Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower regions from flower images. For flower retrieval, we use the color histogram of a flower region to characterize the color features of flower and two shape-based features sets, Centroid-Contour Distance (CCD) and Angle Code Histogram (ACH), to characterize the shape features of a flower contour. Experimental results showed that our flower region extraction method based on color clustering and domain knowledge can produce accurate flower regions. Flower retrieval results on a database of 885 flower images collected from 14 plant species showed that our Region-of-Interest (ROI) based retrieval approach using both color and shape features can perform better than a method based on the global color histogram proposed by Swain and Ballard (1991) and a method based on domain knowledge-driven segmentation and color names proposed by Das et al.(1999).
Abbas, Amr E; Franey, Laura M; Lester, Steven; Raff, Gilbert; Gallagher, Michael J; Hanzel, George; Safian, Robert D; Pibarot, Philippe
2015-02-01
In patients with aortic stenosis (AS) and eccentric transaortic flow, greater pressure loss occurs as the jet collides with the aortic wall together with delayed and diminished pressure recovery. This leads to the elevated transaortic valve pressure gradients noted on both Doppler and cardiac catheterization. Such situations may present a diagnostic dilemma where traditional measures of stenosis severity indicate severe AS, while imaging modalities of the aortic valve geometric aortic valve area (GOA) suggest less than severe stenosis. In this study, we present a series of cases exemplifying this clinical dilemma and demonstrate how color M-mode, 2D and 3D transthoracic (TTE) and transesophageal (TEE) echocardiography, cardiac computed tomography angiography (CTA), and magnetic resonance imaging (MRI), may be used to resolve such discrepancies. © 2014, Wiley Periodicals, Inc.
Hunter versus CIE color measurement systems for analysis of milk-based beverages.
Cheng, Ni; Barbano, David M; Drake, Mary Anne
2018-06-01
The objective of our work was to determine the differences in sensitivity of Hunter and International Commission on Illumination (CIE) methods at 2 different viewer angles (2 and 10°) for measurement of whiteness, red/green, and blue/yellow color of milk-based beverages over a range of composition. Sixty combinations of milk-based beverages were formulated (2 replicates) with a range of fat level from 0.2 to 2%, true protein level from 3 to 5%, and casein as a percent of true protein from 5 to 80% to provide a wide range of milk-based beverage color. In addition, commercial skim, 1 and 2% fat high-temperature, short-time pasteurized fluid milks were analyzed. All beverage formulations were HTST pasteurized and cooled to 4°C before analysis. Color measurement viewer angle (2 vs. 10°) had very little effect on objective color measures of milk-based beverages with a wide range of composition for either the Hunter or CIE color measurement system. Temperature (4, 20, and 50°C) of color measurement had a large effect on the results of color measurement in both the Hunter and CIE measurement systems. The effect of milk beverage temperature on color measurement results was the largest for skim milk and the least for 2% fat milk. This highlights the need for proper control of beverage serving temperature for sensory panel analysis of milk-based beverages with very low fat content and for control of milk temperature when doing objective color analysis for quality control in manufacture of milk-based beverages. The Hunter system of color measurement was more sensitive to differences in whiteness among milk-based beverages than the CIE system, whereas the CIE system was much more sensitive to differences in yellowness among milk-based beverages. There was little difference between the Hunter and CIE system in sensitivity to green/red color of milk-based beverages. In defining milk-based beverage product specifications for objective color measures for dairy product manufacturers, the viewer angle, color measurement system (CIE vs. Hunter), and sample measurement temperature should be specified along with type of illuminant. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Visconti, Anthony Joseph
The fabrication of gradient-index (GRIN) optical elements is quite challenging, which has traditionally restricted their use in many imaging systems; consequently, commercial-level GRIN components usually exist in one particular market or niche application space. One such fabrication technique, ion exchange, is a well-known process used in the chemical strengthening of glass, the fabrication of waveguide devices, and the production of small diameter GRIN optical relay systems. However, the manufacturing of large diameter ion-exchanged GRIN elements has historically been limited by long diffusion times. For example, the diffusion time for a 20 mm diameter radial GRIN lens in commercially available ion exchange glass for small diameter relays, is on the order of a year. The diffusion time can be dramatically reduced by addressing three key ion exchange process parameters; the composition of the glass, the diffusion temperature, and the composition of the salt bath. Experimental work throughout this thesis aims to (1) scale up the ion exchange diffusion process to 20 mm diameters for a fast-diffusing titania silicate glass family in both (2) sodium ion for lithium ion (Na+ for Li+) and lithium ion for sodium ion (Li+ for Na+) exchange directions, while (3) utilizing manufacturing friendly salt bath compositions. In addition, optical design studies have demonstrated that an important benefit of gradient-index elements in imaging systems is the added degree of freedom introduced with a gradient's optical power. However, these studies have not investigated the potential usefulness of GRIN materials in dual-band visible to short-wave infrared (vis-SWIR) imaging systems. The unique chromatic properties of the titania silicate ion exchange glass become a significant degree of freedom in the design process for these color-limited, broadband imaging applications. A single GRIN element can replace a cemented doublet or even a cemented triplet, without loss in overall system performance. In this work, a polychromatic vis-SWIR gradient-index design model is constructed based on the homogeneous material properties of the titania silicate ion exchange glass. This model is verified by measuring the dispersion of fabricated GRIN profiles across the vis-SWIR spectrum. Finally, the polychromatic GRIN design model is implemented into commercial design software and several design studies are presented which validate the beneficial chromatic properties of the titania silicate GRIN material. In addition, system-level tolerancing with gradient-index elements is a largely unexplored area. This work introduces new methods and techniques for incorporating GRIN manufacturing errors directly into the design and tolerancing analysis of a multi-element optical system. These methods allow for the optical engineer to utilize manufacturable GRIN profiles throughout the design process and to better predict the final performance of an as-built system. Based on these techniques, a true design-for-manufacture high-performance eyepiece, utilizing a spherical gradient-index element, is designed, toleranced, and commissioned for build.
Faruq, Samia; McOwan, Peter W; Chittka, Lars
2013-08-20
The perceived color of an object depends on its spectral reflectance and the spectral composition of the illuminant. Thus when the illumination changes, the light reflected from the object also varies. This would result in a different color sensation if no color constancy mechanism is put in place-that is, the ability to form consistent representation of colors across various illuminants and background scenes. We explore the quantitative benefits of various color constancy algorithms in an agent-based model of foraging bees, where agents select flower color based on reward. Each simulation is based on 100 "meadows" with five randomly selected flower species with empirically determined spectral reflectance properties, and each flower species is associated with realistic distributions of nectar rewards. Simulated foraging bees memorize the colors of flowers that they have experienced as most rewarding, and their task is to discriminate against other flower colors with lower rewards, even in the face of changing illumination conditions. We compared the performance of von Kries, White Patch, and Gray World constancy models with (hypothetical) bees with perfect color constancy, and color-blind bees. A bee equipped with trichromatic color vision but no color constancy performed only ∼20% better than a color-blind bee (relative to a maximum improvement at 100% for perfect color constancy), whereas the most powerful recovery of reflectance in the face of changing illumination was generated by a combination of von Kries photoreceptor adaptation and a White Patch calibration (∼30% improvement relative to a bee without color constancy). However, none of the tested algorithms generated perfect color constancy.
NASA Astrophysics Data System (ADS)
Deng, Shuang; Xiang, Wenting; Tian, Yangge
2009-10-01
Map coloring is a hard task even to the experienced map experts. In the GIS project, usually need to color map according to the customer, which make the work more complex. With the development of GIS, more and more programmers join the project team, which lack the training of cartology, their coloring map are harder to meet the requirements of customer. From the experience, customers with similar background usually have similar tastes for coloring map. So, we developed a GIS color scheme decision-making system which can select color schemes of similar customers from case base for customers to select and adjust. The system is a BS/CS mixed system, the client side use JSP and make it possible for the system developers to go on remote calling of the colors scheme cases in the database server and communicate with customers. Different with general case-based reasoning, even the customers are very similar, their selection may have difference, it is hard to provide a "best" option. So, we select the Simulated Annealing Algorithm (SAA) to arrange the emergence order of different color schemes. Customers can also dynamically adjust certain features colors based on existing case. The result shows that the system can facilitate the communication between the designers and the customers and improve the quality and efficiency of coloring map.
NASA Technical Reports Server (NTRS)
Zepf, Stephen E.; Ashman, Keith M.; Geisler, Doug
1995-01-01
We present a study of the colors of globular clusters associated with the elliptical galaxy NGC 3923. Our final sample consists of Wasington system C and T(sub 1) photometry for 143 globular cluster candidates with an expected contamination of no more than 10%. We find that the color distribution of the NGC 3923 globular cluster system (GCS) is broad and appears to have at least two peaks. A mixture modeling analysis of the color distribution indicates that a two-component model is favored over a single-component one at a high level of confidence (greater than 99%). This evidence for more than one population in the GCS of NGC 3923 is similar to that previously noted for the four other elliptical galaxies for which similar data have been published. Furthermore, we find that the NGC 3923 GCS is redder than the GCSs of previously studed elliptical galaxies of similar luminosity. The median metallicity inferred from our (C-(T(sub 1)))(sub 0) colors is (Fe/H)(sub med) = -0.56, with an uncertainty of 0.14 dex arising from all sources of uncertainty in the mean color. This is more metal rich than the median metallicity found for the GCS of M87 using the same method, (Fe/H)(sub med) = -0.94. Since M87 is more luminous than NGC 3923, this result points to significant scatter about any trend of higher GCS metallicity with increasing galaxy luminosity. We also show that there is a color gradient in the NGC 3923 GCS corresponding to about -0.5 dex in Delta(Fe/H)/Delta(log r). We conclude that the shape of the color distribution of individual GCSs and the variation in mean color among the GCSs of ellipticals are difficult to understand if elliptical galaxies are formed in a single protogalactic collapse. Models in which ellipticals and their globular clusters are formed in more than one event, such as a merger scenario, are more successful in accounting for these observations.
A physiologically-based model for simulation of color vision deficiency.
Machado, Gustavo M; Oliveira, Manuel M; Fernandes, Leandro A F
2009-01-01
Color vision deficiency (CVD) affects approximately 200 million people worldwide, compromising the ability of these individuals to effectively perform color and visualization-related tasks. This has a significant impact on their private and professional lives. We present a physiologically-based model for simulating color vision. Our model is based on the stage theory of human color vision and is derived from data reported in electrophysiological studies. It is the first model to consistently handle normal color vision, anomalous trichromacy, and dichromacy in a unified way. We have validated the proposed model through an experimental evaluation involving groups of color vision deficient individuals and normal color vision ones. Our model can provide insights and feedback on how to improve visualization experiences for individuals with CVD. It also provides a framework for testing hypotheses about some aspects of the retinal photoreceptors in color vision deficient individuals.
Roushdy, Alaa; Abd El Razek, Yasmeen; Mamdouh Tawfik, Ahmed
2018-01-01
To determine anatomic and hemodynamic echocardiographic predictors for patent ductus arteriosus (PDA) device vs coil closure. Seventy-six patients who were referred for elective transcatheter PDA closure were enrolled in the study. All patients underwent full echocardiogram including measurement of the PDA pulmonary end diameter, color flow width and extent, peak and end-diastolic Doppler gradients across the duct, diastolic flow reversal, left atrial dimensions and volume, left ventricular sphericity index, and volumes. The study group was subdivided into 2 subgroups based on the mode of PDA closure whether by coil (n = 42) or device (n = 34). Using univariate analysis there was a highly significant difference between the 2 groups as regard the pulmonary end diameter measured in both the suprasternal and parasternal short-axis views as well as the color flow width and color flow extent (P < .0001). The device closure group had statistically significant higher end-systolic and end-diastolic volumes indexed, left atrial volume, and diastolic flow reversal. Receiver operating characteristic curve analysis showed a pulmonary end diameter cutoff point from the suprasternal view > 2.5 mm and from parasternal short-axis view > 2.61 mm to have the highest balanced sensitivity and specificity to predict the likelihood for device closure (AUC 0.971 and 0.979 respectively). The pulmonary end diameter measured from the suprasternal view was the most independent predictor of device closure. The selection between PDA coil or device closure can be done on the basis of multiple anatomic and hemodynamic echocardiographic variables. © 2017 Wiley Periodicals, Inc.
A Low-Cost Inkjet-Printed Glucose Test Strip System for Resource-Poor Settings.
Gainey Wilson, Kayla; Ovington, Patrick; Dean, Delphine
2015-06-12
The prevalence of diabetes is increasing in low-resource settings; however, accessing glucose monitoring is extremely difficult and expensive in these regions. Work is being done to address the multitude of issues surrounding diabetes care in low-resource settings, but an affordable glucose monitoring solution has yet to be presented. An inkjet-printed test strip solution is being proposed as a solution to this problem. The use of a standard inkjet printer is being proposed as a manufacturing method for low-cost glucose monitoring test strips. The printer cartridges are filled with enzyme and dye solutions that are printed onto filter paper. The result is a colorimetric strip that turns a blue/green color in the presence of blood glucose. Using a light-based spectroscopic reading, the strips show a linear color change with an R(2) = .99 using glucose standards and an R(2) = .93 with bovine blood. Initial testing with bovine blood indicates that the strip accuracy is comparable to the International Organization for Standardization (ISO) standard 15197 for glucose testing in the 0-350 mg/dL range. However, further testing with human blood will be required to confirm this. A visible color gradient was observed with both the glucose standard and bovine blood experiment, which could be used as a visual indicator in cases where an electronic glucose meter was unavailable. These results indicate that an inkjet-printed filter paper test strip is a feasible method for monitoring blood glucose levels. The use of inkjet printers would allow for local manufacturing to increase supply in remote regions. This system has the potential to address the dire need for glucose monitoring in low-resource settings. © 2015 Diabetes Technology Society.
Parts-based stereoscopic image assessment by learning binocular manifold color visual properties
NASA Astrophysics Data System (ADS)
Xu, Haiyong; Yu, Mei; Luo, Ting; Zhang, Yun; Jiang, Gangyi
2016-11-01
Existing stereoscopic image quality assessment (SIQA) methods are mostly based on the luminance information, in which color information is not sufficiently considered. Actually, color is part of the important factors that affect human visual perception, and nonnegative matrix factorization (NMF) and manifold learning are in line with human visual perception. We propose an SIQA method based on learning binocular manifold color visual properties. To be more specific, in the training phase, a feature detector is created based on NMF with manifold regularization by considering color information, which not only allows parts-based manifold representation of an image, but also manifests localized color visual properties. In the quality estimation phase, visually important regions are selected by considering different human visual attention, and feature vectors are extracted by using the feature detector. Then the feature similarity index is calculated and the parts-based manifold color feature energy (PMCFE) for each view is defined based on the color feature vectors. The final quality score is obtained by considering a binocular combination based on PMCFE. The experimental results on LIVE I and LIVE Π 3-D IQA databases demonstrate that the proposed method can achieve much higher consistency with subjective evaluations than the state-of-the-art SIQA methods.
Automatic PSO-Based Deformable Structures Markerless Tracking in Laparoscopic Cholecystectomy
NASA Astrophysics Data System (ADS)
Djaghloul, Haroun; Batouche, Mohammed; Jessel, Jean-Pierre
An automatic and markerless tracking method of deformable structures (digestive organs) during laparoscopic cholecystectomy intervention that uses the (PSO) behavour and the preoperative a priori knowledge is presented. The associated shape to the global best particles of the population determines a coarse representation of the targeted organ (the gallbladder) in monocular laparoscopic colored images. The swarm behavour is directed by a new fitness function to be optimized to improve the detection and tracking performance. The function is defined by a linear combination of two terms, namely, the human a priori knowledge term (H) and the particle's density term (D). Under the limits of standard (PSO) characteristics, experimental results on both synthetic and real data show the effectiveness and robustness of our method. Indeed, it outperforms existing methods without need of explicit initialization (such as active contours, deformable models and Gradient Vector Flow) on accuracy and convergence rate.
Longitudinal dynamics of twin electron bunches in the Linac Coherent Light Source
Zhang, Zhen; Ding, Yuantao; Marinelli, Agostino; ...
2015-03-02
The recent development of two-color x-ray free-electron lasers, as well as the successful demonstration of high-gradient witness bunch acceleration in a plasma, have generated strong interest in electron bunch trains, where two or more electron bunches are generated, accelerated and compressed in the same accelerating bucket. In this paper we give a detailed analysis of a twin-bunch technique in a high-energy linac. This method allows the generation of two electron bunches with high peak current and independent control of time delay and energy separation. We find that the wakefields in the accelerator structures play an important role in the twin-bunchmore » compression, and through analysis show that they can be used to extend the available time delay range. As a result, based on the theoretical model and simulations we propose several methods to achieve larger time delay.« less
Risk of Skin Cancer from Space Radiation. Chapter 11
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Kim, Myung-Hee Y.; George, Kerry A.; Wu, Hong-Lu
2003-01-01
We review the methods for estimating the probability of increased incidence of skin cancers from space radiation exposure, and describe some of the individual factors that may contribute to risk projection models, including skin pigment, and synergistic effects of combined ionizing and UV exposure. The steep dose gradients from trapped electrons, protons, and heavy ions radiation during EVA and limitations in EVA dosimetry are important factors for projecting skin cancer risk of astronauts. We estimate that the probability of increased skin cancer risk varies more than 10-fold for individual astronauts and that the risk of skin cancer could exceed 1 % for future lunar base operations for astronauts with light skin color and hair. Limitations in physical dosimetry in estimating the distribution of dose at the skin suggest that new biodosimetry methods be developed for responding to accidental overexposure of the skin during future space missions.
Structural color printing based on plasmonic metasurfaces of perfect light absorption
Cheng, Fei; Gao, Jie; Luk, Ting S.; Yang, Xiaodong
2015-01-01
Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfect light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage. PMID:26047486
Structural color printing based on plasmonic metasurfaces of perfect light absorption
Cheng, Fei; Gao, Jie; Luk, Ting S.; ...
2015-06-05
Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfectmore » light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.« less
Luo, Qiang; Yan, Zhuangzhi; Gu, Dongxing; Cao, Lei
This paper proposed an image interpolation algorithm based on bilinear interpolation and a color correction algorithm based on polynomial regression on FPGA, which focused on the limited number of imaging pixels and color distortion of the ultra-thin electronic endoscope. Simulation experiment results showed that the proposed algorithm realized the real-time display of 1280 x 720@60Hz HD video, and using the X-rite color checker as standard colors, the average color difference was reduced about 30% comparing with that before color correction.
Image masking using polygon fills and morphological transformations
NASA Technical Reports Server (NTRS)
Simpson, James J.
1992-01-01
Polygon-fill operations and morphological transformations are effective computational tools for the land-masking and coastline-correction preprocessing operations often applied to AVHRR data prior to oceanographic applications. These masking operations, in conjunction with cloud-screening techniques, can be used on such other oceanographically significant remote-sensing data as those of the Coastal Zone Color Scanner, GOES, and Landsat. The sensitivity of the methods to regional variations in atmospheric conditions and land-ocean temperature gradients is assessed for tropical, midlatitude, and high latitude regions.
Supersymmetric oscillator in optics
NASA Technical Reports Server (NTRS)
Chumakov, Sergey M.; Wolf, Kurt Bernardo
1995-01-01
We show that the supersymmetric structure (in the sense of supersymmetric quantum mechanics) appears in Helmholtz optics describing light propagation in waveguides. For the case of elliptical waveguides, with the accuracy of paraxial approximation it admits a simple physical interpretation. The supersymmetry connects light beams of different colors. The difference in light frequencies for the supersymmetric beams is determined by the transverse gradient of the refractive index. These beams have the save wavelength in the propagation direction and can form a stable interference pattern.
Multi-Wavelength Interferometric Observations of YSO Disks
NASA Astrophysics Data System (ADS)
Ragland, Sam; Akeson, R.; Armandroff, T.; Colavita, M.; Cotton, W.; Danchi, W.; Hillenbrand, L.; Millan-Gabet, R.; Ridgway, S. T.; Traub, W.; Wizinowich, P.
2010-01-01
We initiated a multi-color interferometric study of YSO disks in the K, L and N bands using the Keck Interferometer. The initial results on two Herbig Ae/Be stars will be presented. Our observations are sensitive to the radial distribution of temperature in the inner region of the YSO disks. The geometric models show that the apparent size increases linearly with wavelength, suggesting that the disk is extended with a temperature gradient. We will discuss our results in conjunction with the previous measurements of these targets.
Dynamics of plankton populations in upwelling areas
NASA Technical Reports Server (NTRS)
Szekielda, K. H. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Spectral properties of the upwelled waters off the NW coast of Africa were studied with observations derived from aircraft and Skylab. Results indicate that the two-channel, ratio approach is ineffective in determining surface chlorophyll concentrations. Ocean color boundaries and temperature gradients were found to be directly correlated with each other and also with fishing effort in the upwelling region. Photographic and scanner data derived from Skylab were effective in locating ocean boundaries and mapping temperature distributions.
NASA Astrophysics Data System (ADS)
Bi, Ke; Wang, Dan; Wang, Peng; Duan, Bin; Zhang, Tieqiang; Wang, Yinghui; Zhang, Hanzhuang; Zhang, Yu
2017-05-01
White light-emitting diodes (WLEDs) were fabricated by employing a combination of a commercial yellow emission Ce3+-doped Y3Al5O12 (YAG:Ce)-based phosphor and all-inorganic perovskite quantum dots pumped with blue LED chip. Perovskite quantum dot solution was used as the color conversion layer with liquid-type structure. Red-emitting materials based on cesium lead halide (CsPb(X)3) perovskite quantum dots were introduced to generate WLEDs with high efficacy and high color rendering index through compensating the red emission of the YAG:Ce phosphor-based commercialized WLEDs. The experimental results suggested that the luminous efficiency and color rendering index of the as-prepared WLED device could reach up to 84.7 lm/W and 89, respectively. The characteristics of those devices including correlated color temperature (CCT), color rendering index (CRI), and color coordinates were observed under different forward currents. The as-fabricated warm WLEDs showed excellent color stability against the increasing current, while the color coordinates shifted slightly from (0.3837, 0.3635) at 20 mA to (0.3772, 0.3592) at 120 mA and color temperature tuned from 3803 to 3953 K.
[Web-based analysis of Stilling's color plates].
Kuchenbecker, J
2014-12-01
Color vision tests with pseudoisochromatic plates currently represent the most common procedure for the screening of congenital color vision deficiencies. By means of a web-based color vision test, new and old color plates can be tested for diagnostic quality without major effort. A total of 16 digitized Stilling's color plates of the 11th edition from 1907 were included in a web-based color vision test (http://www.farbsehtest.de). The χ(2)-test was used to check whether the Stilling color plates showed similar results to the nine previously evaluated Ishihara color plates. A total of 518 subjects including101 (19.5 %) female subjects with a mean age of 34.6 ± 17 years, took the web-based test with the 25 plates. For all participants the range for the correctly recognized plates was between 5.2 % (n = 27) and 97.7 % (n = 506) for the Stilling color plates and between 64.9 % (n = 336) and 100 % (n = 518) for the Ishihara color plates. For participants with more than 5 errors (n = 247), the range for correctly recognized plates was between 2.0 % (n = 5) and 98.0 % (n = 242) for the Stilling plates and between 42.5 % (n = 105) and 100 % (n = 247) for the Ishihara plates. Taking all color plates and all participants into account there was a significantly higher incidence of erroneous recognition of the Stilling color plates (3038 false and 5250 true answers) compared to the Ishihara color plates (1511 false and 3151 true answers) (p < 0.001, χ(2)-test). The diagnostic quality of the tested Stilling color pates was very variable. Some of the plates could be used for the test edition of the Velhagen/Broschmann/Kuchenbecker color plates from 2014. Overall, the Stilling color plates were recognized with a higher incidence of error by all participants in the web-based test compared to the utilized Ishihara color plates, which in most cases was attributable to ambiguity of some symbols.
Two-out-of-two color matching based visual cryptography schemes.
Machizaud, Jacques; Fournel, Thierry
2012-09-24
Visual cryptography which consists in sharing a secret message between transparencies has been extended to color prints. In this paper, we propose a new visual cryptography scheme based on color matching. The stacked printed media reveal a uniformly colored message decoded by the human visual system. In contrast with the previous color visual cryptography schemes, the proposed one enables to share images without pixel expansion and to detect a forgery as the color of the message is kept secret. In order to correctly print the colors on the media and to increase the security of the scheme, we use spectral models developed for color reproduction describing printed colors from an optical point of view.
Content based Image Retrieval based on Different Global and Local Color Histogram Methods: A Survey
NASA Astrophysics Data System (ADS)
Suhasini, Pallikonda Sarah; Sri Rama Krishna, K.; Murali Krishna, I. V.
2017-02-01
Different global and local color histogram methods for content based image retrieval (CBIR) are investigated in this paper. Color histogram is a widely used descriptor for CBIR. Conventional method of extracting color histogram is global, which misses the spatial content, is less invariant to deformation and viewpoint changes, and results in a very large three dimensional histogram corresponding to the color space used. To address the above deficiencies, different global and local histogram methods are proposed in recent research. Different ways of extracting local histograms to have spatial correspondence, invariant colour histogram to add deformation and viewpoint invariance and fuzzy linking method to reduce the size of the histogram are found in recent papers. The color space and the distance metric used are vital in obtaining color histogram. In this paper the performance of CBIR based on different global and local color histograms in three different color spaces, namely, RGB, HSV, L*a*b* and also with three distance measures Euclidean, Quadratic and Histogram intersection are surveyed, to choose appropriate method for future research.
Building perceptual color maps for visualizing interval data
NASA Astrophysics Data System (ADS)
Kalvin, Alan D.; Rogowitz, Bernice E.; Pelah, Adar; Cohen, Aron
2000-06-01
In visualization, a 'color map' maps a range of data values onto a scale of colors. However, unless a color map is e carefully constructed, visual artifacts can be produced. This problem has stimulated considerable interest in creating perceptually based color maps, that is, color maps where equal steps in data value are perceived as equal steps in the color map [Robertson (1988); Pizer (1981); Green (1992); Lefkowitz and Herman, 1992)]. In Rogowitz and Treinish, (1996, 1998) and in Bergman, Treinish and Rogowitz, (1995), we demonstrated that color maps based on luminance or saturation could be good candidates for satisfying this requirement. This work is based on the seminal work of S.S. Stevens (1966), who measured the perceived magnitude of different magnitudes of physical stimuli. He found that for many physical scales, including luminance (cd/m2) and saturation (the 'redness' of a long-wavelength light source), equal ratios in stimulus value produced equal ratios in perceptual magnitude. He interpreted this as indicating that there exists in human cognition a common scale for representing magnitude, and we scale the effects of different physical stimuli to this internal scale. In Rogowitz, Kalvin, Pelahb and Cohen (1999), we used a psychophysical technique to test this hypothesis as it applies to the creation of perceptually uniform color maps. We constructed color maps as trajectories through three-color spaces, a common computer graphics standard (uncalibrated HSV), a common perceptually-based engineering standard for creating visual stimuli (L*a*b*), and a space commonly used in the graphic arts (Munsell). For each space, we created color scales that varied linearly in hue, saturation, or luminance and measured the detectability of increments in hue, saturation or luminance for each of these color scales. We measured the amplitude of the just-detectable Gaussian increments at 20 different values along the range of each color map. For all three color spaces, we found that luminance-based color maps provided the most perceptually- uniform representations of the data. The just-detectable increment was constant at all points in the color map, with the exception of the lowest-luminance values, where a larger increment was required. The saturation-based color maps provided less sensitivity than the luminance-based color maps, requiring much larger increments for detection. For the hue- based color maps, the size of the increment required for detection varied across the range. For example, for the standard 'rainbow' color map (uncalibrated HSV, hue-varying map), a step in the 'green' region required an increment 16 times the size of the increment required in the 'cyan' part of the range. That is, the rainbow color map would not successfully represent changes in the data in the 'green' region of this color map. In this paper, we extend this research by studying the detectability of spatially-modulated Gabor targets based on these hue, saturation and luminance scales. Since, in visualization, the user is called upon to detect and identify patterns that vary in their spatial characteristics, it is important to study how different types of color maps represent data with varying spatial properties. To do so, we measured modulation thresholds for low-(0.2 c/deg) and high-spatial frequency (4.0 c/deg) Gabor patches and compared them with the Gaussian results. As before, we measured increment thresholds for hue, saturation, and luminance modulations. These color scales were constructed as trajectories along the three perceptual dimensions of color (hue, saturation, and luminance) in two color spaces, uncalibrated HSV and calibrated L*a*b. This allowed us to study how the three perceptual dimensions represent magnitude information for test patterns varying in spatial frequency. This design also allowed us to test the hypothesis that the luminance channel best carries high-spatial frequency information while the saturation channel best represents low spatial-frequency information (Mullen 1985; DeValois and DeValois 1988).
Evaluating the uniformity of color spaces and performance of color difference formulae
NASA Astrophysics Data System (ADS)
Lian, Yusheng; Liao, Ningfang; Wang, Jiajia; Tan, Boneng; Liu, Zilong
2010-11-01
Using small color difference data sets (Macadam ellipses dataset and RIT-DuPont suprathreshold color difference ellipses dataset), and large color difference data sets (Munsell Renovation Data and OSA Uniform Color Scales dataset), the uniformity of several color spaces and performance of color difference formulae based on these color spaces are evaluated. The color spaces used are CIELAB, DIN99d, IPT, and CIECAM02-UCS. It is found that the uniformity of lightness is better than saturation and hue. Overall, for all these color spaces, the uniformity in the blue area is inferior to the other area. The uniformity of CIECAM02-UCS is superior to the other color spaces for the whole color-difference range from small to large. The uniformity of CIELAB and IPT for the large color difference data sets is better than it for the small color difference data sets, but the DIN99d is opposite. Two common performance factors (PF/3 and STRESS) and the statistical F-test are calculated to test the performance of color difference formula. The results show that the performance of color difference formulae based on these four color spaces is consistent with the uniformity of these color spaces.
Improving the FLORIS wind plant model for compatibility with gradient-based optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Jared J.; Gebraad, Pieter MO; Ning, Andrew
The FLORIS (FLOw Redirection and Induction in Steady-state) model, a parametric wind turbine wake model that predicts steady-state wake characteristics based on wind turbine position and yaw angle, was developed for optimization of control settings and turbine locations. This article provides details on changes made to the FLORIS model to make the model more suitable for gradient-based optimization. Changes to the FLORIS model were made to remove discontinuities and add curvature to regions of non-physical zero gradient. Exact gradients for the FLORIS model were obtained using algorithmic differentiation. A set of three case studies demonstrate that using exact gradients withmore » gradient-based optimization reduces the number of function calls by several orders of magnitude. The case studies also show that adding curvature improves convergence behavior, allowing gradient-based optimization algorithms used with the FLORIS model to more reliably find better solutions to wind farm optimization problems.« less
NASA Astrophysics Data System (ADS)
Burgess, Ian Bruce
Colorimetric litmus tests such as pH paper have enjoyed wide commercial success due to their inexpensive production and exceptional ease of use. However, expansion of colorimetry to new sensing paradigms is challenging because macroscopic color changes are seldom coupled to arbitrary differences in the physical/chemical properties of a system. In this thesis I present in detail the development of Wetting in Color Technology, focusing primarily on its application as an inexpensive and highly selective colorimetric indicator for organic liquids. The technology exploits chemically-encoded inverse-opal photonic crystals to control the infiltration of fluids to liquid-specific spatial patterns, projecting minute differences in liquids' wettability to macroscopically distinct, easy-to-visualize structural color patterns. It is shown experimentally and corroborated with theoretical modeling using percolation theory that the high selectivity of wetting, upon-which the sensitivity of the indicator relies, is caused by the highly symmetric structure of our large-area, defect-free SiO2 inverse-opals. The regular structure also produces a bright iridescent color, which disappears when infiltrated with liquid - naturally coupling the optical and fluidic responses. Surface modification protocols are developed, requiring only silanization and selective oxidation, to facilitate the deterministic design of an indicator that differentiates a broad range of liquids. The resulting tunable, built-in horizontal and vertical chemistry gradients allow the wettability threshold to be tailored to specific liquids across a continuous range, and make the readout rely only on countable color differences. As wetting is a generic fluidic phenomenon, Wetting in Color technology could be suitable for applications in authentication or identification of unknown liquids across a broad range of industries. However, the generic nature of the response also ensures chemical non-specificity. It is shown that combinatorial measurements from an array of indicators add a degree of chemical specificity to the platform, which can be further improved by monitoring the drying of the inverse-opal films. While colorimetry is the central focus of this thesis, applications of this platform in encryption, fluidics and nanofabrication are also briefly explored.
NASA Astrophysics Data System (ADS)
Wu, Guangyuan; Niu, Shijun; Li, Xiaozhou; Hu, Guichun
2018-04-01
Due to the increasing globalization of printing industry, remoting proofing will become the inevitable development trend. Cross-media color reproduction will occur in different color gamuts using remote proofing technologies, which usually leads to the problem of incompatible color gamut. In this paper, to achieve equivalent color reproduction between a monitor and a printer, a frequency-based spatial gamut mapping algorithm is proposed for decreasing the loss of visual color information. The design of algorithm is based on the contrast sensitivity functions (CSF), which exploited CSF spatial filter to preserve luminance of the high spatial frequencies and chrominance of the low frequencies. First we show a general framework for how to apply CSF spatial filter in retention of relevant visual information. Then we compare the proposed framework with HPMINDE, CUSP, Bala's algorithm. The psychophysical experimental results indicated the good performance of the proposed algorithm.
The effects of kinesio taping on the color intensity of superficial skin hematomas: A pilot study.
Vercelli, Stefano; Colombo, Claudio; Tolosa, Francesca; Moriondo, Andrea; Bravini, Elisabetta; Ferriero, Giorgio; Francesco, Sartorio
2017-01-01
To analyze the effects of kinesio taping (KT) -applied with three different strains that induced or not the formation of skin creases (called convolutions)- on color intensity of post-surgical superficial hematomas. Single-blind paired study. Rehabilitation clinic. A convenience sample of 13 inpatients with post-surgical superficial hematomas. The tape was applied for 24 consecutive hours. Three tails of KT were randomly applied with different degrees of strain: none (SN); light (SL); and full longitudinal stretch (SF). We expected to obtain correct formation of convolutions with SL, some convolutions with SN, and no convolutions with SF. The change in color intensity of hematomas, measured by means of polar coordinates CIE L*a*b* using a validated and standardized digital images system. Applying KT to hematomas did not significantly change the color intensity in the central area under the tape (p > 0.05). There was a significant treatment effect (p < 0.05) under the edges of the tape, independently of the formation of convolutions (p > 0.05). The changes observed along the edges of the tape could be related to the formation of a pressure gradient between the KT and the adjacent area, but were not dependent on the formation of skin convolutions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Color as a language in architecture
NASA Astrophysics Data System (ADS)
Smedal, Grete
2002-06-01
This paper takes into consideration the role of color as a non-verbal language between human beings and the environment. The communication is based on the function of the color vision to separate and identify. A language about color can be based on the same. The concept behind the Natural Color System is color differentiation and color identification, which I find very useful both in color education of design students and in environmental color design work. A commission to plan the exterior use of color for a whole mining town on 78 degree(s) North in Longyearbyen, Spitsbergen, will illustrate my ideas. This will serve as an example of how these different 'languages' can work together. After a twenty years ongoing process this work is now almost fulfilled and the result will be shown in the presentation.
Color Restoration of RGBN Multispectral Filter Array Sensor Images Based on Spectral Decomposition.
Park, Chulhee; Kang, Moon Gi
2016-05-18
A multispectral filter array (MSFA) image sensor with red, green, blue and near-infrared (NIR) filters is useful for various imaging applications with the advantages that it obtains color information and NIR information simultaneously. Because the MSFA image sensor needs to acquire invisible band information, it is necessary to remove the IR cut-offfilter (IRCF). However, without the IRCF, the color of the image is desaturated by the interference of the additional NIR component of each RGB color channel. To overcome color degradation, a signal processing approach is required to restore natural color by removing the unwanted NIR contribution to the RGB color channels while the additional NIR information remains in the N channel. Thus, in this paper, we propose a color restoration method for an imaging system based on the MSFA image sensor with RGBN filters. To remove the unnecessary NIR component in each RGB color channel, spectral estimation and spectral decomposition are performed based on the spectral characteristics of the MSFA sensor. The proposed color restoration method estimates the spectral intensity in NIR band and recovers hue and color saturation by decomposing the visible band component and the NIR band component in each RGB color channel. The experimental results show that the proposed method effectively restores natural color and minimizes angular errors.
Color Restoration of RGBN Multispectral Filter Array Sensor Images Based on Spectral Decomposition
Park, Chulhee; Kang, Moon Gi
2016-01-01
A multispectral filter array (MSFA) image sensor with red, green, blue and near-infrared (NIR) filters is useful for various imaging applications with the advantages that it obtains color information and NIR information simultaneously. Because the MSFA image sensor needs to acquire invisible band information, it is necessary to remove the IR cut-offfilter (IRCF). However, without the IRCF, the color of the image is desaturated by the interference of the additional NIR component of each RGB color channel. To overcome color degradation, a signal processing approach is required to restore natural color by removing the unwanted NIR contribution to the RGB color channels while the additional NIR information remains in the N channel. Thus, in this paper, we propose a color restoration method for an imaging system based on the MSFA image sensor with RGBN filters. To remove the unnecessary NIR component in each RGB color channel, spectral estimation and spectral decomposition are performed based on the spectral characteristics of the MSFA sensor. The proposed color restoration method estimates the spectral intensity in NIR band and recovers hue and color saturation by decomposing the visible band component and the NIR band component in each RGB color channel. The experimental results show that the proposed method effectively restores natural color and minimizes angular errors. PMID:27213381
Layman, Craig A.
2017-01-01
Natural selection plays an important role in the evolution of sexual communication systems. Here, we assess the effect of two well-known selection agents, transmission environment and predation, on interpopulation variation in sexual signals. Our model system is a series of 21 populations of Bahamian mosquitofish subjected to independent variation in optical conditions and predation risk. We show that optically diverse environments, caused by locally variable dissolved organic carbon concentrations, rather than spatial variation in predation, drove divergence in fin coloration (fin redness). We found a unimodal pattern of phenotypic variation along the optical gradient indicating a threshold-type response of visual signals to broad variation in optical conditions. We discuss evolutionary and ecological mechanisms that may drive such a pattern as well as the implications of non-monotonic clines for evolutionary differentiation. PMID:28381625
Fox, P R; Miller, M W; Liu, S K
1992-11-15
Mitral stenosis was diagnosed noninvasively by echocardiography and Doppler imaging in 2 Bull Terriers. Two-dimensional echocardiography revealed severe atrial and moderate left ventricular dilatation; severely reduced mitral valve opening excursion; doming of the cranial mitral valve leaflet into the left ventricle during diastole; thickened, nodular cranial mitral valve leaflets; and reduced mitral valve orifice. M-mode echocardiographic findings additionally indicated greatly diminished mitral valve E to F slope and abnormal caudal mitral valve leaflet motion. Color flow Doppler imaging revealed bright bursts of color with aliasing originating from the stenotic mitral valve orifice, extending into the left atrium during systole, and into the left atrium during diastole. Spectral Doppler recordings revealed transvalvular mitral valve gradients and prolonged pressure half-times. Necropsy performed on 1 dog revealed extremely thickened, nodular, and stiff mitral valves with short, thickened, and fused chordae tendineae. The diagnosis of mitral valve stenosis was easily facilitated with diagnostic ultrasonography.
Giery, Sean T; Layman, Craig A
2017-04-12
Natural selection plays an important role in the evolution of sexual communication systems. Here, we assess the effect of two well-known selection agents, transmission environment and predation, on interpopulation variation in sexual signals. Our model system is a series of 21 populations of Bahamian mosquitofish subjected to independent variation in optical conditions and predation risk. We show that optically diverse environments, caused by locally variable dissolved organic carbon concentrations, rather than spatial variation in predation, drove divergence in fin coloration (fin redness). We found a unimodal pattern of phenotypic variation along the optical gradient indicating a threshold-type response of visual signals to broad variation in optical conditions. We discuss evolutionary and ecological mechanisms that may drive such a pattern as well as the implications of non-monotonic clines for evolutionary differentiation. © 2017 The Author(s).
An optical study of stars and dust in the Andromeda galaxy
NASA Technical Reports Server (NTRS)
Walterbos, R. A. M.; Kennicutt, R. C., Jr.
1988-01-01
The distribution of light in M 31 is characterized on the basis of the UBVR surface photometry reported by Walterbos and Kennicutt (1987). The results of the data analysis are presented in extensive graphs, maps, and tables and discussed in detail, considering the outer disk regions, the decomposition into bulge and disk, the global disk and bulge colors, and dust and gas in two spiral arms. Principal findings examined include: (1) position-angle changes at radial distances beyond about 18 kpc (consistent with SW disk warping); (2) a bulge profile well described by an r exp 1/4 power law; (3) a bulge contribution to total light of about 40 percent; (4) increasing blueness in the outer disk (color gradient 0.02 mag/kpc in B-R); (5) an extinction law similar to that for the Galaxy; and (6) a significant correlation between dust and H I distributions.
Quantum critical phase with infinite projected entangled paired states
NASA Astrophysics Data System (ADS)
Poilblanc, Didier; Mambrini, Matthieu
2017-07-01
A classification of SU(2)-invariant projected entangled paired states (PEPS) on the square lattice, based on a unique site tensor, has been recently introduced by Mambrini et al. [M. Mambrini, R. Orús, and D. Poilblanc, Phys. Rev. B 94, 205124 (2016), 10.1103/PhysRevB.94.205124]. It is not clear whether such SU(2)-invariant PEPS can either (i) exhibit long-range magnetic order (such as in the Néel phase) or (ii) describe a genuine quantum critical point (QCP) or quantum critical phase (QCPh) separating two ordered phases. Here, we identify a specific family of SU(2)-invariant PEPS of the classification which provides excellent variational energies for the J1-J2 frustrated Heisenberg model, especially at J2=0.5 , corresponding to the approximate location of the QCP or QCPh separating the Néel phase from a dimerized phase. The PEPS are built from virtual states belonging to the 1/2⊗N⊕0 SU(2) representation, i.e., with N "colors" of virtual spin-1/2 . Using a full-update infinite-PEPS approach directly in the thermodynamic limit, based on the corner transfer matrix renormalization algorithm supplemented by a conjugate gradient optimization scheme, we provide evidence of (i) the absence of magnetic order and of (ii) diverging correlation lengths (i.e., showing no sign of saturation with increasing environment dimension) in both the singlet and triplet channels, when the number of colors N ≥3 . We argue that such a PEPS gives a qualitative description of the QCP or QCPh of the J1-J2 model.
InxAl1-xN chiral nanorods mimicking the polarization features of scarab beetles
NASA Astrophysics Data System (ADS)
Magnusson, R.; Birch, J.; Hsiao, C.-L.; Sandström, P.; Arwin, H.; Järrendahl, K.
2015-03-01
The scarab beetle Cetonia aurata is known to reflect light with brilliant colors and a high degree of circular polarization. Both color and polarization effects originate from the beetles exoskeleton and have been attributed to a Bragg reflection of the incident light due to a twisted laminar structure. Our strategy for mimicking the optical properties of the Cetonia aurata was therefore to design and fabricate transparent, chiral films. A series of films with tailored transparent structures of helicoidal InxAl1-xN nanorods were grown on sapphire substrates using UHV magnetron sputtering. The value of x is tailored to gradually decrease from one side to the other in each nanorod normal to its growth direction. This introduces an in-plane anisotropy with different refractive indices in the direction of the gradient and perpendicular to it. By rotating the sample during film growth the in-plane optical axis will be rotated from bottom to top and thereby creating a chiral film. Based on Muellermatrix ellipsometry, optical modeling has been done suggesting that both the exoskeleton of Cetonia aurata and our artificial material can be modeled by an anisotropic film made up of a stack of thin layers, each one with its in-plane optical axis slightly rotated with respect to the previous layer. Simulations based on the optical modeling were used to investigate how pitch and thickness of the film together with the optical properties of the constitutive materials affects the width and spectral position of the Bragg reflection band.
Linear solvation energy relationships in normal phase chromatography based on gradient separations.
Wu, Di; Lucy, Charles A
2017-09-22
Coupling the modified Soczewiñski model and one gradient run, a gradient method was developed to build a linear solvation energy relationship (LSER) for normal phase chromatography. The gradient method was tested on dinitroanilinopropyl (DNAP) and silica columns with hexane/dichloromethane (DCM) mobile phases. LSER models built based on the gradient separation agree with those derived from a series of isocratic separations. Both models have similar LSER coefficients and comparable goodness of fit, but the LSER model based on gradient separation required fewer trial and error experiments. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gong, Li-Hua; He, Xiang-Tao; Tan, Ru-Chao; Zhou, Zhi-Hong
2018-01-01
In order to obtain high-quality color images, it is important to keep the hue component unchanged while emphasize the intensity or saturation component. As a public color model, Hue-Saturation Intensity (HSI) model is commonly used in image processing. A new single channel quantum color image encryption algorithm based on HSI model and quantum Fourier transform (QFT) is investigated, where the color components of the original color image are converted to HSI and the logistic map is employed to diffuse the relationship of pixels in color components. Subsequently, quantum Fourier transform is exploited to fulfill the encryption. The cipher-text is a combination of a gray image and a phase matrix. Simulations and theoretical analyses demonstrate that the proposed single channel quantum color image encryption scheme based on the HSI model and quantum Fourier transform is secure and effective.
Visual generalization in honeybees: evidence of peak shift in color discrimination.
Martínez-Harms, J; Márquez, N; Menzel, R; Vorobyev, M
2014-04-01
In the present study, we investigated color generalization in the honeybee Apis mellifera after differential conditioning. In particular, we evaluated the effect of varying the position of a novel color along a perceptual continuum relative to familiar colors on response biases. Honeybee foragers were differentially trained to discriminate between rewarded (S+) and unrewarded (S-) colors and tested on responses toward the former S+ when presented against a novel color. A color space based on the receptor noise-limited model was used to evaluate the relationship between colors and to characterize a perceptual continuum. When S+ was tested against a novel color occupying a locus in the color space located in the same direction from S- as S+, but further away, the bees shifted their stronger response away from S- toward the novel color. These results reveal the occurrence of peak shift in the color vision of honeybees and indicate that honeybees can learn color stimuli in relational terms based on chromatic perceptual differences.
Gradient metasurfaces: a review of fundamentals and applications
NASA Astrophysics Data System (ADS)
Ding, Fei; Pors, Anders; Bozhevolnyi, Sergey I.
2018-02-01
In the wake of intense research on metamaterials the two-dimensional analogue, known as metasurfaces, has attracted progressively increasing attention in recent years due to the ease of fabrication and smaller insertion losses, while enabling an unprecedented control over spatial distributions of transmitted and reflected optical fields. Metasurfaces represent optically thin planar arrays of resonant subwavelength elements that can be arranged in a strictly or quasi periodic fashion, or even in an aperiodic manner, depending on targeted optical wavefronts to be molded with their help. This paper reviews a broad subclass of metasurfaces, viz. gradient metasurfaces, which are devised to exhibit spatially varying optical responses resulting in spatially varying amplitudes, phases and polarizations of scattered fields. Starting with introducing the concept of gradient metasurfaces, we present classification of different metasurfaces from the viewpoint of their responses, differentiating electrical-dipole, geometric, reflective and Huygens’ metasurfaces. The fundamental building blocks essential for the realization of metasurfaces are then discussed in order to elucidate the underlying physics of various physical realizations of both plasmonic and purely dielectric metasurfaces. We then overview the main applications of gradient metasurfaces, including waveplates, flat lenses, spiral phase plates, broadband absorbers, color printing, holograms, polarimeters and surface wave couplers. The review is terminated with a short section on recently developed nonlinear metasurfaces, followed by the outlook presenting our view on possible future developments and perspectives for future applications.
Sea surface salinity fronts in the Tropical Atlantic Ocean
NASA Astrophysics Data System (ADS)
Ruiz-Etcheverry, L.; Maximenko, N. A.; Melnichenko, O.
2016-12-01
Marine fronts are narrow boundaries that separate water masses of different properties. These fronts are caused by various forcing and believed to be an important component of the coupled ocean-atmosphere system, particularly in the tropical oceans. In this study, we use sea surface salinity (SSS) observations from Aquarius satellite to investigate the spatial structure and temporal variability of SSS fronts in the tropical Atlantic. A number of frontal features have been identified. The mean magnitude of the SSS gradient is maximum near the mouth of the Congo River (0.3-0.4 psu/100km). Relative maxima are also observed in the Inter Tropical Convergence Zone (ITCZ), the Gulf of Guinea, and the mouth of the Amazon River. The pattern of the magnitude of the SSS anomaly gradient revealed that the interaction between river plumes and saltier interior water is complex and highly variable during the three-year observation period. The variability of the magnitude of the density anomaly gradient computed from Aquarius SSS and Reynolds SST is also discussed. Images of the ocean color are utilized to trace the movement of the Congo and Amazon River plumes and compare them with the magnitude of the SSS gradient. Additionally, we analyze de circulation associated with the Amazon plume with altimetry data, and the vertical structure and its changes in time through Argo profiles.
Gradient metasurfaces: a review of fundamentals and applications.
Ding, Fei; Pors, Anders; Bozhevolnyi, Sergey I
2018-02-01
In the wake of intense research on metamaterials the two-dimensional analogue, known as metasurfaces, has attracted progressively increasing attention in recent years due to the ease of fabrication and smaller insertion losses, while enabling an unprecedented control over spatial distributions of transmitted and reflected optical fields. Metasurfaces represent optically thin planar arrays of resonant subwavelength elements that can be arranged in a strictly or quasi periodic fashion, or even in an aperiodic manner, depending on targeted optical wavefronts to be molded with their help. This paper reviews a broad subclass of metasurfaces, viz. gradient metasurfaces, which are devised to exhibit spatially varying optical responses resulting in spatially varying amplitudes, phases and polarizations of scattered fields. Starting with introducing the concept of gradient metasurfaces, we present classification of different metasurfaces from the viewpoint of their responses, differentiating electrical-dipole, geometric, reflective and Huygens' metasurfaces. The fundamental building blocks essential for the realization of metasurfaces are then discussed in order to elucidate the underlying physics of various physical realizations of both plasmonic and purely dielectric metasurfaces. We then overview the main applications of gradient metasurfaces, including waveplates, flat lenses, spiral phase plates, broadband absorbers, color printing, holograms, polarimeters and surface wave couplers. The review is terminated with a short section on recently developed nonlinear metasurfaces, followed by the outlook presenting our view on possible future developments and perspectives for future applications.
Brock, Chad D; Cummings, Molly E; Bolnick, Daniel I
2017-08-01
Signal evolution is thought to depend on both a signal's detectability or conspicuousness (signal design) as well as any extractable information it may convey to a potential receiver (signal content). While theoretical and empirical work in sexual selection has largely focused on signal content, there has been a steady accrual of evidence that signal design is also important for trait evolution. Despite this, relatively little attention has been paid to spatial variation in the conspicuousness of a given signal, especially over small spatial scales (relative to an organism's dispersal distance). Here, we show that visual signals of male threespine stickleback vary in conspicuousness, depending on a male's nest depth within a given lake. Deeper nesting males were typically more chromatically conspicuous than shallow nesting males. This trend is partly because all male stickleback are more conspicuous in deep optical environments. However, deep males are even more conspicuous than environmentally driven null expectations, while shallow males tend to be disproportionally cryptic. Experimental manipulation of male nesting depth induced plastic changes in nuptial color that replicated the natural gradients in conspicuousness. We discuss a number of potential mechanisms that could produce depth gradients in conspicuousness in male stickleback, including concomitant depth gradients in diet, predation pressure, male/female density, female preference, and opportunity for sexual selection. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Beauty in abstract paintings: perceptual contrast and statistical properties
Mallon, Birgit; Redies, Christoph; Hayn-Leichsenring, Gregor U.
2014-01-01
In this study, we combined the behavioral and objective approach in the field of empirical aesthetics. First, we studied the perception of beauty by investigating shifts in evaluation on perceived beauty of abstract artworks (Experiment 1). Because the participants showed heterogeneous individual preferences for the paintings, we divided them into seven clusters for the test. The experiment revealed a clear pattern of perceptual contrast. The perceived beauty of abstract paintings increased after exposure to paintings that were rated as less beautiful, and it decreased after exposure to paintings that were rated as more beautiful. Next, we searched for correlations of beauty ratings and perceptual contrast with statistical properties of abstract artworks (Experiment 2). The participants showed significant preferences for particular image properties. These preferences differed between the clusters of participants. Strikingly, next to color measures like hue, saturation, value and lightness, the recently described Pyramid of Histograms of Orientation Gradients (PHOG) self-similarity value seems to be a predictor for aesthetic appreciation of abstract artworks. We speculate that the shift in evaluation in Experiment 1 was, at least in part, based on low-level adaptation to some of the statistical image properties analyzed in Experiment 2. In conclusion, our findings demonstrate that the perception of beauty in abstract artworks is altered after exposure to beautiful or non-beautiful images and correlates with particular image properties, especially color measures and self-similarity. PMID:24711791
Timing and duration of autumn leaf development in Sweden
NASA Astrophysics Data System (ADS)
Bolmgren, Kjell
2014-05-01
The growing season is changing in both ends and autumn phases seem to be responding in more diverse ways than spring events. Indeed, we know little about autumn leaf phenological strategies and how they are correlated with fitness components or ecosystem properties, and how they vary between species and over bioclimatic gradients. In this study more than 10 000 students were involved in observing autumn leaf development at 378 sites all over Sweden (55-68°N). They followed an image based observation protocol classifying autumn leaf development into five levels, from summer green (level 0) to 100% autumn leaf colored (level 4) canopy. In total, they submitted almost 12 000 observations between August 9 and November 15. 75% of the observations were made on the common species of Populus tremula, Betula pendula/pubescens and Sorbus aucuparia. The expected (negative) correlation between latitude and start of leaf senescence (level 2) was found in Populus and Betula, but not in Sorbus. The duration of the leaf senescence period, defined as the period between 1/3 (level 2) and 100% (level 4) of the canopy autumn leaf colored, was negatively correlated with latitude in Populus and Betula, but not in Sorbus. There was also a strong (negative) correlation of the start (level 2) and the duration of the leaf senescence in the early senescing Sorbus and Betula, while this effect was weaker in the late senescing Populus.
Garrison, Presley; Yue, Shanna; Hanson, Jeffrey; Baron, Jeffrey; Lui, Julian C.
2017-01-01
Articular and growth plate cartilage both arise from condensations of mesenchymal cells, but ultimately develop important histological and functional differences. Each is composed of three layers—the superficial, mid and deep zones of articular cartilage and the resting, proliferative and hypertrophic zones of growth plate cartilage. The bone morphogenetic protein (BMP) system plays an important role in cartilage development. A gradient in expression of BMP-related genes has been observed across growth plate cartilage, likely playing a role in zonal differentiation. To investigate the presence of a similar expression gradient in articular cartilage, we used laser capture microdissection (LCM) to separate murine growth plate and articular cartilage from the proximal tibia into their six constituent zones, and used a solution hybridization assay with color-coded probes (nCounter) to quantify mRNAs for 30 different BMP-related genes in each zone. In situ hybridization and immunohistochemistry were then used to confirm spatial expression patterns. Expression gradients for Bmp2 and 6 were observed across growth plate cartilage with highest expression in hypertrophic zone. However, intracellular BMP signaling, assessed by phospho-Smad1/5/8 immunohistochemical staining, appeared to be higher in the proliferative zone and prehypertrophic area than in hypertrophic zone, possibly due to high expression of Smad7, an inhibitory Smad, in the hypertrophic zone. We also found BMP expression gradients across the articular cartilage with BMP agonists primarily expressed in the superficial zone and BMP functional antagonists primarily expressed in the deep zone. Phospho-Smad1/5/8 immunohistochemical staining showed a similar gradient. In combination with previous evidence that BMPs regulate chondrocyte proliferation and differentiation, the current findings suggest that BMP signaling gradients exist across both growth plate and articular cartilage and that these gradients may contribute to the spatial differentiation of chondrocytes in the postnatal endochondral skeleton. PMID:28467498
Ni, Zhigang; Mou, Shenghong; Zhou, Tong; Cheng, Zhiyuan
2018-05-01
A color-modulating optical coating display based on phase change materials (PCM) and indium tin oxide (ITO) is fabricated and analyzed. We demonstrate that altering the thickness of top-ITO in this PCM-based display device can effectively change color. The significant role of the top-ITO layer in the thin-film interference in this multilayer system is confirmed by experiment as well as simulation. The ternary-color modulation of devices with only 5 nano thin layer of phase change material is achieved. Furthermore, simulation work demonstrates that a stirringly broader color gamut can be obtained by introducing the control of the top-ITO thickness.
Huang, Wen-Shyan; Wang, Yi-Wen; Hung, Kun-Che; Hsieh, Pai-Shan; Fu, Keng-Yen; Dai, Lien-Guo; Liou, Nien-Hsien; Ma, Kuo-Hsing; Liu, Jiang-Chuan; Dai, Niann-Tzyy
2018-01-01
To treat skin color disorders, such as vitiligo or burns, melanocytes are transplanted for tissue regeneration. However, melanocyte distribution in the human body varies with age and location, making it difficult to select the optimal donor skin to achieve a desired color match. Determining the correlations with the desired skin color measurement based on CIELAB color, epidermal melanocyte numbers, and melanin content of individual melanocytes is critical for clinical application. Fifteen foreskin samples from Asian young adults were analyzed for skin color, melanocyte ratio (melanocyte proportion in the epidermis), and melanin concentration. Furthermore, an equation was developed based on CIELAB color with melanocyte ratio, melanin concentration, and the product of melanocyte ratio and melanin concentration. The equation was validated by seeding different ratios of keratinocytes and melanocytes in tissue-engineered skin substitutes, and the degree of fitness in expected skin color was confirmed. Linear regression analysis revealed a significant strong negative correlation ( r = - 0.847, R 2 = 0.717) between CIELAB L * value and the product of the epidermal melanocyte ratio and cell-based melanin concentration. Furthermore, the results showed that an optimal skin color match was achieved by the formula. We found that L * value was correlated with the value obtained from multiplying the epidermal melanocyte ratio (R) and melanin content (M) and that this correlation was more significant than either L * vs M or L * vs R. This suggests that more accurate prediction of skin color can be achieved by considering both R and M. Therefore, precise skin color match in treating vitiligo or burn patients would be potentially achievable based on extensive collection of skin data from people of Asian descent.
Sansanaphongpricha, Kanokwan; DeSantis, Michael C; Chen, Hongwei; Cheng, Wei; Sun, Kai; Wen, Bo; Sun, Duxin
2017-02-01
The asymmetrical features and unique properties of multibuilding block Janus nanostructures (JNSs) provide superior functions for biomedical applications. However, their production process is very challenging. This problem has hampered the progress of JNS research and the exploration of their applications. In this study, an asymmetrical multibuilding block gold/iron oxide JNS has been generated to enhance photothermal effects and display colored Brownian motion in an optical trap. JNS is formed by seed-mediated self-assembly of nanoparticle-loaded thermocleavable micelles, where the hydrophobic backbones of the polymer are disrupted at high temperatures, resulting in secondary self-assembly and structural rearrangement. The JNS significantly enhances photothermal effects compared to their homogeneous counterpart after near-infrared (NIR) light irradiation. The asymmetrical distribution of gold and iron oxide within JNS also generates uneven thermophoretic force to display active colored Brownian rotational motion in a single-beam gradient optical trap. These properties indicate that the asymmetrical JNS could be employed as a strong photothermal therapy mediator and a fuel-free nanoscale Janus motor under NIR light. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mid-IR Atmospheric Tracers of Jupiter's Storm Oval BA
NASA Astrophysics Data System (ADS)
Shannon, Matthew J.; Orton, G.; Fletcher, L.
2010-10-01
The 2005-2006 reddening of a major anticyclonic storm, known as Oval BA, in Jupiter's turbulent atmosphere may well be a paradigm for the formation of red-colored vortices on the giant planets, including Jupiters Great Red Spot. Mid-infrared observations can be effectively used to determine physical and chemical properties of the atmosphere, and we present the results of mid-infrared thermal imaging observations, collected from NASAs Infrared Telescope Facility (IRTF) in Hawaii, ESOs Very Large Telescope (VLT) in Chile and the NAOJ Subaru Telescope in Hawaii between spring of 2005 and summer of 2006. These address the role of atmospheric tracers, including cloud opacity, the ammonia gas content, and the variation of the fraction of para- to ortho-hydrogen from local thermal equilibrium in assessing the rate of upwelling. These properties were retrieved with the Oxford-developed code, Nemesis, with the purpose of providing constraints on dynamical models in an effort to identify the mechanism for the color change. The most obvious change is that the temperature gradient from the inner to the outer part of Oval BA increased over the time of the color change, indicating a strengthening of the intensity of the vortex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ba, Yan; Liu, Haihu; Li, Qing
2016-08-15
In this paper, we propose a color-gradient lattice Boltzmann (LB) model for simulating two-phase flows with high density ratio and high Reynolds number. The model applies a multi-relaxation-time (MRT) collision operator to enhance the stability of the simulation. A source term, which is derived by the Chapman-Enskog analysis, is added into the MRT LB equation so that the Navier-Stokes equations can be exactly recovered. Also, a new form of the equilibrium density distribution function is used to simplify the source term. To validate the proposed model, steady flows of a static droplet and the layered channel flow are first simulatedmore » with density ratios up to 1000. Small values of spurious velocities and interfacial tension errors are found in the static droplet test, and improved profiles of velocity are obtained by the present model in simulating channel flows. Then, two cases of unsteady flows, Rayleigh-Taylor instability and droplet splashing on a thin film, are simulated. In the former case, the density ratio of 3 and Reynolds numbers of 256 and 2048 are considered. The interface shapes and spike/bubble positions are in good agreement with the results of previous studies. In the latter case, the droplet spreading radius is found to obey the power law proposed in previous studies for the density ratio of 100 and Reynolds number up to 500.« less
UIT Observations of Early-Type Galaxies and Analysis of the FUSE Spectrum of a Subdwarf B Star
NASA Technical Reports Server (NTRS)
Ohl, Raymond G.; Krebs, Carolyn (Technical Monitor)
2001-01-01
This work covers Ultraviolet Imaging Telescope (UIT) observations of early-type galaxies (155 nm) and Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of a Galactic subdwarf B star (sdB). Early UV space astronomy missions revealed that early-type galaxies harbor a population of stars with effective temperatures greater than that of the main sequence turn-off (about 6,000 K) and UV emission that is very sensitive to characteristics of the stellar population. We present UV (155 nm) surface photometry and UV-B color profiles for 8 E and SO galaxies observed by UIT. Some objects have de Vaucouleurs surface brightness profiles, while others have disk-like profiles, but we find no other evidence for the presence of a disk or young, massive stars. There is a wide range of UV-B color gradients, but there is no correlation with metallicity gradients. SdB stars are the leading candidate UV emitters in old, high metallicity stellar populations (e.g., early-type galaxies). We observed the Galactic sdB star PG0749+658 with FUSE and derived abundances with the aim of constraining models of the heavy element distribution in sdB atmospheres. All of the elements measured are depleted with respect to solar, except for Cr and Mn, which are about solar, and Ni, which is enhanced. This work was supported in part by NASA grants NAG5-700 and NAG5-6403 to the University of Virginia and NAS5-32985 to Johns Hopkins University.
Allen, Cerisse E; Beldade, Patrícia; Zwaan, Bas J; Brakefield, Paul M
2008-03-26
There is spectacular morphological diversity in nature but lineages typically display a limited range of phenotypes. Because developmental processes generate the phenotypic variation that fuels natural selection, they are a likely source of evolutionary biases, facilitating some changes and limiting others. Although shifts in developmental regulation are associated with morphological differences between taxa, it is unclear how underlying mechanisms affect the rate and direction of evolutionary change within populations under selection. Here we focus on two ecologically relevant features of butterfly wing color patterns, eyespot size and color composition, which are similarly and strongly correlated across the serially repeated eyespots. Though these two characters show similar patterns of standing variation and covariation within a population, they differ in key features of their underlying development. We targeted pairs of eyespots with artificial selection for coordinated (concerted selection) versus independent (antagonistic selection) change in their color composition and size and compared evolutionary responses of the two color pattern characters. The two characters respond to selection in strikingly different ways despite initially similar patterns of variation in all directions present in the starting population. Size (determined by local properties of a diffusing inductive signal) evolves flexibly in all selected directions. However, color composition (determined by a tissue-level response to the signal concentration gradient) evolves only in the direction of coordinated change. There was no independent evolutionary change in the color composition of two eyespots in response to antagonistic selection. Moreover, these differences in the directions of short-term evolutionary change in eyespot size and color composition within a single species are consistent with the observed wing pattern diversity in the genus. Both characters respond rapidly to selection for coordinated change, but there are striking differences in their response to selection for antagonistic, independent change across eyespots. While many additional factors may contribute to both short- and long-term evolutionary response, we argue that the compartmentalization of developmental processes can influence the diversification of serial repeats such as butterfly eyespots, even under strong selection.
Porwal, Anand; Khandelwal, Meenakshi; Punia, Vikas; Sharma, Vivek
2017-01-01
Aim: The purpose of this study was to evaluate the effect of different denture cleansers on the color stability, surface hardness, and roughness of different denture base resins. Materials and Methods: Three denture base resin materials (conventional heat cure resin, high impact resin, and polyamide denture base resin) were immersed for 180 days in commercially available two denture cleansers (sodium perborate and sodium hypochlorite). Color, surface roughness, and hardness were measured for each sample before and after immersion procedure. Statistical Analysis: One-way analysis of variance and Tukey's post hoc honestly significant difference test were used to evaluate color, surface roughness, and hardness data before and after immersion in denture cleanser (α =0.05). Results: All denture base resins tested exhibited a change in color, surface roughness, and hardness to some degree in both denture cleansers. Polyamides resin immersed in sodium perborate showed a maximum change in color after immersion for 180 days. Conventional heat cure resin immersed in sodium hypochlorite showed a maximum change in surface roughness and conventional heat cure immersed in sodium perborate showed a maximum change in hardness. Conclusion: Color changes of all denture base resins were within the clinically accepted range for color difference. Surface roughness change of conventional heat cure resin was not within the clinically accepted range of surface roughness. The choice of denture cleanser for different denture base resins should be based on the chemistry of resin and cleanser, denture cleanser concentration, and duration of immersion. PMID:28216847
Oleari, Claudio; Melgosa, Manuel; Huertas, Rafael
2011-11-01
The most widely used color-difference formulas are based on color-difference data obtained under D65 illumination or similar and for a 10° visual field; i.e., these formulas hold true for the CIE 1964 observer adapted to D65 illuminant. This work considers the psychometric color-vision model based on the Optical Society of America-Uniform Color Scales (OSA-UCS) system previously published by the first author [J. Opt. Soc. Am. A 21, 677 (2004); Color Res. Appl. 30, 31 (2005)] with the additional hypothesis that complete illuminant adaptation with perfect color constancy exists in the visual evaluation of color differences. In this way a computational procedure is defined for color conversion between different illuminant adaptations, which is an alternative to the current chromatic adaptation transforms. This color conversion allows the passage between different observers, e.g., CIE 1964 and CIE 1931. An application of this color conversion is here made in the color-difference evaluation for any observer and in any illuminant adaptation: these transformations convert tristimulus values related to any observer and illuminant adaptation to those related to the observer and illuminant adaptation of the definition of the color-difference formulas, i.e., to the CIE 1964 observer adapted to the D65 illuminant, and then the known color-difference formulas can be applied. The adaptations to the illuminants A, C, F11, D50, Planckian and daylight at any color temperature and for CIE 1931 and CIE 1964 observers are considered as examples, and all the corresponding transformations are given for practical use.
Development of a novel 2D color map for interactive segmentation of histological images.
Chaudry, Qaiser; Sharma, Yachna; Raza, Syed H; Wang, May D
2012-05-01
We present a color segmentation approach based on a two-dimensional color map derived from the input image. Pathologists stain tissue biopsies with various colored dyes to see the expression of biomarkers. In these images, because of color variation due to inconsistencies in experimental procedures and lighting conditions, the segmentation used to analyze biological features is usually ad-hoc. Many algorithms like K-means use a single metric to segment the image into different color classes and rarely provide users with powerful color control. Our 2D color map interactive segmentation technique based on human color perception information and the color distribution of the input image, enables user control without noticeable delay. Our methodology works for different staining types and different types of cancer tissue images. Our proposed method's results show good accuracy with low response and computational time making it a feasible method for user interactive applications involving segmentation of histological images.
Thermocapillary motion of deformable drops
NASA Technical Reports Server (NTRS)
Haj-Hariri, Hossein; Shi, Qingping; Borhan, Ali
1994-01-01
The thermocapillary motion of initially spherical drops/bubbles driven by a constant temperature gradient in an unbounded liquid medium is simulated numerically. Effects of convection of momentum and energy, as well as shape deformations, are addressed. The method used is based on interface tracking on a base cartesian grid, and uses a smeared color or indicator function for the determination of the surface topology. Quad-tree adaptive refinement of the cartesian grid is implemented to enhance the fidelity of the surface tracking. It is shown that convection of energy results in a slowing of the drop, as the isotherms get wrapped around the front of the drop. Shape deformation resulting from inertial effects affect the migration velocity. The physical results obtained are in agreement with the existing literature. Furthermore, remarks are made on the sensitivity of the calculated solutions to the smearing of the fluid properties. Analysis and simulations show that the migration velocity depends very strongly on the smearing of the interfacial force whereas it is rather insensitive to the smearing of other properties, hence the adaptive grid.
Example-Based Image Colorization Using Locality Consistent Sparse Representation.
Bo Li; Fuchen Zhao; Zhuo Su; Xiangguo Liang; Yu-Kun Lai; Rosin, Paul L
2017-11-01
Image colorization aims to produce a natural looking color image from a given gray-scale image, which remains a challenging problem. In this paper, we propose a novel example-based image colorization method exploiting a new locality consistent sparse representation. Given a single reference color image, our method automatically colorizes the target gray-scale image by sparse pursuit. For efficiency and robustness, our method operates at the superpixel level. We extract low-level intensity features, mid-level texture features, and high-level semantic features for each superpixel, which are then concatenated to form its descriptor. The collection of feature vectors for all the superpixels from the reference image composes the dictionary. We formulate colorization of target superpixels as a dictionary-based sparse reconstruction problem. Inspired by the observation that superpixels with similar spatial location and/or feature representation are likely to match spatially close regions from the reference image, we further introduce a locality promoting regularization term into the energy formulation, which substantially improves the matching consistency and subsequent colorization results. Target superpixels are colorized based on the chrominance information from the dominant reference superpixels. Finally, to further improve coherence while preserving sharpness, we develop a new edge-preserving filter for chrominance channels with the guidance from the target gray-scale image. To the best of our knowledge, this is the first work on sparse pursuit image colorization from single reference images. Experimental results demonstrate that our colorization method outperforms the state-of-the-art methods, both visually and quantitatively using a user study.
Cross-modal Associations between Real Tastes and Colors.
Saluja, Supreet; Stevenson, Richard J
2018-06-02
People make reliable and consistent matches between taste and color. However, in contrast to other cross-modal correspondences, all of the research to date has used only taste words (and often color words too), potentially limiting our understanding of how taste-color matches arise. Here, participants sampled the five basic tastes, at three concentration steps, and selected their best matching color from a color-wheel. This test was repeated, and in addition, participants evaluated the valence of the taste and their color choice, as well as the qualities/intensities of the taste stimuli. Participants were then presented with taste names and asked to generate the best matching color name, as well as reporting how they made their earlier choices. Color selections were reliable and consistent, and closely followed those based on taste word matches obtained in this and prior studies. Most participants reported basing their color choices on their associated taste-object (often foods). There was marked similarity in valence between taste and color choices, and the saturation of color choices was related to tastant concentration. We discuss what drives color-taste pairings, with learning suggested as one possible mechanism.
Multiple Auto-Adapting Color Balancing for Large Number of Images
NASA Astrophysics Data System (ADS)
Zhou, X.
2015-04-01
This paper presents a powerful technology of color balance between images. It does not only work for small number of images but also work for unlimited large number of images. Multiple adaptive methods are used. To obtain color seamless mosaic dataset, local color is adjusted adaptively towards the target color. Local statistics of the source images are computed based on the so-called adaptive dodging window. The adaptive target colors are statistically computed according to multiple target models. The gamma function is derived from the adaptive target and the adaptive source local stats. It is applied to the source images to obtain the color balanced output images. Five target color surface models are proposed. They are color point (or single color), color grid, 1st, 2nd and 3rd 2D polynomials. Least Square Fitting is used to obtain the polynomial target color surfaces. Target color surfaces are automatically computed based on all source images or based on an external target image. Some special objects such as water and snow are filtered by percentage cut or a given mask. Excellent results are achieved. The performance is extremely fast to support on-the-fly color balancing for large number of images (possible of hundreds of thousands images). Detailed algorithm and formulae are described. Rich examples including big mosaic datasets (e.g., contains 36,006 images) are given. Excellent results and performance are presented. The results show that this technology can be successfully used in various imagery to obtain color seamless mosaic. This algorithm has been successfully using in ESRI ArcGis.
A dual-channel fusion system of visual and infrared images based on color transfer
NASA Astrophysics Data System (ADS)
Pei, Chuang; Jiang, Xiao-yu; Zhang, Peng-wei; Liang, Hao-cong
2013-09-01
A dual-channel fusion system of visual and infrared images based on color transfer The increasing availability and deployment of imaging sensors operating in multiple spectrums has led to a large research effort in image fusion, resulting in a plethora of pixel-level image fusion algorithms. However, most of these algorithms have gray or false color fusion results which are not adapt to human vision. Transfer color from a day-time reference image to get natural color fusion result is an effective way to solve this problem, but the computation cost of color transfer is expensive and can't meet the request of real-time image processing. We developed a dual-channel infrared and visual images fusion system based on TMS320DM642 digital signal processing chip. The system is divided into image acquisition and registration unit, image fusion processing unit, system control unit and image fusion result out-put unit. The image registration of dual-channel images is realized by combining hardware and software methods in the system. False color image fusion algorithm in RGB color space is used to get R-G fused image, then the system chooses a reference image to transfer color to the fusion result. A color lookup table based on statistical properties of images is proposed to solve the complexity computation problem in color transfer. The mapping calculation between the standard lookup table and the improved color lookup table is simple and only once for a fixed scene. The real-time fusion and natural colorization of infrared and visual images are realized by this system. The experimental result shows that the color-transferred images have a natural color perception to human eyes, and can highlight the targets effectively with clear background details. Human observers with this system will be able to interpret the image better and faster, thereby improving situational awareness and reducing target detection time.
Distance preservation in color image transforms
NASA Astrophysics Data System (ADS)
Santini, Simone
1999-12-01
Most current image processing systems work on color images, and color is a precious perceptual clue for determining image similarity. Working with color images, however, is not the sam thing as working with images taking values in a 3D Euclidean space. Not only are color spaces bounded, but the characteristics of the observer endow the space with a 'perceptual' metric that in general does not correspond to the metric naturally inherited from R3. This paper studies the problem of filtering color images abstractly. It begins by determining the properties of the color sum and color product operations such that he desirable properties of orthonormal bases will be preserved. The paper then defines a general scheme, based on the action of the additive group on the color space, by which operations that satisfy the required properties can be defined.
NASA Astrophysics Data System (ADS)
Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan
2016-06-01
Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed “digital color fusion microscopy” (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available.
Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan
2016-01-01
Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed “digital color fusion microscopy” (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available. PMID:27283459
Reconstructing Carotenoid-Based and Structural Coloration in Fossil Skin.
McNamara, Maria E; Orr, Patrick J; Kearns, Stuart L; Alcalá, Luis; Anadón, Pere; Peñalver, Enrique
2016-04-25
Evidence of original coloration in fossils provides insights into the visual communication strategies used by ancient animals and the functional evolution of coloration over time [1-7]. Hitherto, all reconstructions of the colors of reptile integument and the plumage of fossil birds and feathered dinosaurs have been of melanin-based coloration [1-6]. Extant animals also use other mechanisms for producing color [8], but these have not been identified in fossils. Here we report the first examples of carotenoid-based coloration in the fossil record, and of structural coloration in fossil integument. The fossil skin, from a 10 million-year-old colubrid snake from the Late Miocene Libros Lagerstätte (Teruel, Spain) [9, 10], preserves dermal pigment cells (chromatophores)-xanthophores, iridophores, and melanophores-in calcium phosphate. Comparison with chromatophore abundance and position in extant reptiles [11-15] indicates that the fossil snake was pale-colored in ventral regions; dorsal and lateral regions were green with brown-black and yellow-green transverse blotches. Such coloration most likely functioned in substrate matching and intraspecific signaling. Skin replicated in authigenic minerals is not uncommon in exceptionally preserved fossils [16, 17], and dermal pigment cells generate coloration in numerous reptile, amphibian, and fish taxa today [18]. Our discovery thus represents a new means by which to reconstruct the original coloration of exceptionally preserved fossil vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan
2016-06-10
Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed "digital color fusion microscopy" (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available.
A complete passive blind image copy-move forensics scheme based on compound statistics features.
Peng, Fei; Nie, Yun-ying; Long, Min
2011-10-10
Since most sensor pattern noise based image copy-move forensics methods require a known reference sensor pattern noise, it generally results in non-blinded passive forensics, which significantly confines the application circumstances. In view of this, a novel passive-blind image copy-move forensics scheme is proposed in this paper. Firstly, a color image is transformed into a grayscale one, and wavelet transform based de-noising filter is used to extract the sensor pattern noise, then the variance of the pattern noise, the signal noise ratio between the de-noised image and the pattern noise, the information entropy and the average energy gradient of the original grayscale image are chosen as features, non-overlapping sliding window operations are done to the images to divide them into different sub-blocks. Finally, the tampered areas are detected by analyzing the correlation of the features between the sub-blocks and the whole image. Experimental results and analysis show that the proposed scheme is completely passive-blind, has a good detection rate, and is robust against JPEG compression, noise, rotation, scaling and blurring. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Performance analysis of multi-primary color display based on OLEDs/PLEDs
NASA Astrophysics Data System (ADS)
Xiong, Yan; Deng, Fei; Xu, Shan; Gao, Shufang
2017-09-01
A multi-primary color display, such as the six-primary color format, is a solution in expanding the color gamut of a full-color flat panel display. The performance of a multi-primary color display based on organic/polymer light-emitting diodes was analyzed in this study using the fitting curves of the characteristics of devices (i.e., current density, voltage, luminance). A white emitter was introduced into a six-primary color format to form a seven-primary color format that contributes to energy saving, and the ratio of power efficiency of a seven-primary color display to that of a six-primary color display would increase from 1.027 to 1.061 by using emitting diodes with different electroluminescent efficiencies. Different color matching schemes of the seven-primary color format display were compared in a uniform color space, and the scheme of the color reproduction did not significantly affect the display performance. Although seven- and six-primary color format displays benefit a full-color display with higher quality, they are less efficient than three-primary (i.e., red (R), green (G), and blue (B), RGB) and four-primary (i.e., RGB+white, RGBW) color format displays. For the seven-primary color formats considered in this study, the advantages of white-primary-added display with efficiently developed light-emitting devices were more evident than the format without a white primary.
Object-color-signal prediction using wraparound Gaussian metamers.
Mirzaei, Hamidreza; Funt, Brian
2014-07-01
Alexander Logvinenko introduced an object-color atlas based on idealized reflectances called rectangular metamers in 2009. For a given color signal, the atlas specifies a unique reflectance that is metameric to it under the given illuminant. The atlas is complete and illuminant invariant, but not possible to implement in practice. He later introduced a parametric representation of the object-color atlas based on smoother "wraparound Gaussian" functions. In this paper, these wraparound Gaussians are used in predicting illuminant-induced color signal changes. The method proposed in this paper is based on computationally "relighting" that reflectance to determine what its color signal would be under any other illuminant. Since that reflectance is in the metamer set the prediction is also physically realizable, which cannot be guaranteed for predictions obtained via von Kries scaling. Testing on Munsell spectra and a multispectral image shows that the proposed method outperforms the predictions of both those based on von Kries scaling and those based on the Bradford transform.
Real reproduction and evaluation of color based on BRDF method
NASA Astrophysics Data System (ADS)
Qin, Feng; Yang, Weiping; Yang, Jia; Li, Hongning; Luo, Yanlin; Long, Hongli
2013-12-01
It is difficult to reproduce the original color of targets really in different illuminating environment using the traditional methods. So a function which can reconstruct the characteristics of reflection about every point on the surface of target is required urgently to improve the authenticity of color reproduction, which known as the Bidirectional Reflectance Distribution Function(BRDF). A method of color reproduction based on the BRDF measurement is introduced in this paper. Radiometry is combined with the colorimetric theories to measure the irradiance and radiance of GretagMacbeth 24 ColorChecker by using PR-715 Radiation Spectrophotometer of PHOTO RESEARCH, Inc, USA. The BRDF and BRF (Bidirectional Reflectance Factor) values of every color piece corresponding to the reference area are calculated according to irradiance and radiance, thus color tristimulus values of 24 ColorChecker are reconstructed. The results reconstructed by BRDF method are compared with values calculated by the reflectance using PR-715, at last, the chromaticity coordinates in color space and color difference between each other are analyzed. The experimental result shows average color difference and sample standard deviation between the method proposed in this paper and traditional reconstruction method depended on reflectance are 2.567 and 1.3049 respectively. The conclusion indicates that the method of color reproduction based on BRDF has the more obvious advantages to describe the color information of object than the reflectance in hemisphere space through the theoretical and experimental analysis. This method proposed in this paper is effective and feasible during the research of reproducing the chromaticity.
A natural-color mapping for single-band night-time image based on FPGA
NASA Astrophysics Data System (ADS)
Wang, Yilun; Qian, Yunsheng
2018-01-01
A natural-color mapping for single-band night-time image method based on FPGA can transmit the color of the reference image to single-band night-time image, which is consistent with human visual habits and can help observers identify the target. This paper introduces the processing of the natural-color mapping algorithm based on FPGA. Firstly, the image can be transformed based on histogram equalization, and the intensity features and standard deviation features of reference image are stored in SRAM. Then, the real-time digital images' intensity features and standard deviation features are calculated by FPGA. At last, FPGA completes the color mapping through matching pixels between images using the features in luminance channel.
Shi, Ce; Qian, Jianping; Han, Shuai; Fan, Beilei; Yang, Xinting; Wu, Xiaoming
2018-03-15
The study assessed the feasibility of developing a machine vision system based on pupil and gill color changes in tilapia for simultaneous prediction of total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA) and total viable counts (TVC) during storage at 4°C. The pupils and gills were chosen and color space conversion among RGB, HSI and L ∗ a ∗ b ∗ color spaces was performed automatically by an image processing algorithm. Multiple regression models were established by correlating pupil and gill color parameters with TVB-N, TVC and TBA (R 2 =0.989-0.999). However, assessment of freshness based on gill color is destructive and time-consuming because gill cover must be removed before images are captured. Finally, visualization maps of spoilage based on pupil color were achieved using image algorithms. The results show that assessment of tilapia pupil color parameters using machine vision can be used as a low-cost, on-line method for predicting freshness during 4°C storage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fabrication of digital rainbow holograms and 3-D imaging using SEM based e-beam lithography.
Firsov, An; Firsov, A; Loechel, B; Erko, A; Svintsov, A; Zaitsev, S
2014-11-17
Here we present an approach for creating full-color digital rainbow holograms based on mixing three basic colors. Much like in a color TV with three luminescent points per single screen pixel, each color pixel of initial image is presented by three (R, G, B) distinct diffractive gratings in a hologram structure. Change of either duty cycle or area of the gratings are used to provide proper R, G, B intensities. Special algorithms allow one to design rather complicated 3D images (that might even be replacing each other with hologram rotation). The software developed ("RainBow") provides stability of colorization of rotated image by means of equalizing of angular blur from gratings responsible for R, G, B basic colors. The approach based on R, G, B color synthesis allows one to fabricate gray-tone rainbow hologram containing white color what is hardly possible in traditional dot-matrix technology. Budgetary electron beam lithography based on SEM column was used to fabricate practical examples of digital rainbow hologram. The results of fabrication of large rainbow holograms from design to imprinting are presented. Advantages of the EBL in comparison to traditional optical (dot-matrix) technology is considered.
Pérez, María M; Ghinea, Razvan; Ugarte-Alván, Laura I; Pulgar, Rosa; Paravina, Rade D
2010-01-01
The purpose of this study was to determine the optical properties, color and translucency, of the new silorane-based resin composite and to compare it to universal dimethacrylate-based composites. Six dimethacrylate-based resin composites and one silorane-based resin composite (all A2 shade) were studied. Color of non-polymerized and polymerized composites was measured against white and black backgrounds using a spectroradiometer. Changes in color (ΔE*(ab)), translucency (ΔTP) and color coordinates (ΔL*, Δa* and Δb*) were calculated for each resin composite. Results were evaluated using a one-way ANOVA, a Tukey's test and a t-test. The polymerization-dependent ΔE*(ab) ranged from 4.7 to 9.1, with the smallest difference for the silorane-based resin composite. The color changes of silorane-based composite were due to the changes of coordinates Δa* and Δb*. However, for the dimethacrylate-based composites, the color changes mainly originated by ΔL*and Δb*. The silorane composite exhibited the smallest TP values. Tukey's test confirmed significant statistical differences (p<0.05) between mean TP values of Filtek Silorane and each brand of dimethacrylate-based composites before and after polymerization. The new silorane-based restorative system showed different optical properties compared to clinically successful dimethacrylate composites. The silorane composite exhibited better polymerization-dependent chromatic stability, and a lower translucency compared to other tested products. Copyright © 2010 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Color measurements of cotton fiber and cotton textile products are important quality parameters. The Uster® High Volume Instrument (HVI) is an instrument used globally to classify cotton quality, including cotton color. Cotton color by HVI is based on two cotton-specific color parameters—Rd (diffuse...
Case studies in forensic soil examinations.
Petraco, Nicholas; Kubic, Thomas A; Petraco, Nicholas D K
2008-07-04
The examination and comparison of forensic soil samples is discussed. The origin of a simple and easy to learn procedure used and modified by the authors is reviewed. The process begins with a preliminary observation, removal of artifacts, and sieving of each specimen. A specific size fraction is split into three fractions for color matching, polarized light microscopy (PLM) examination (particle counting) and optional gradient comparison. Next, several cases are reviewed in which the modified method was used to evaluate the likelihood of common origin for questioned and known specimens.
Properties of the outer regions of spiral disks: abundances, colors and ages
NASA Astrophysics Data System (ADS)
Mollá, Mercedes; Díaz, Angeles I.; Gibson, Brad K.; Cavichia, Oscar; López-Sánchez, Ángel-R.
2017-03-01
We summarize the results obtained from our suite of chemical evolution models for spiral disks, computed for different total masses and star formation efficiencies. Once the gas, stars and star formation radial distributions are reproduced, we analyze the Oxygen abundances radial profiles for gas and stars, in addition to stellar averaged ages and global metallicity. We examine scenarios for the potential origin of the apparent flattening of abundance gradients in the outskirts of disk galaxies, in particular the role of molecular gas formation prescriptions.
2006-11-01
color images. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18 . NUMBER OF PAGES 8 19a. NAME OF...Std Z39- 18 small problem domain can require millions of solution vari- ables solved repeatedly for tens of thousands of time steps. Finally, the...terms of vector and scalar potentials, A and ψ respec- tively. E = − ( ∂A ∂t +∇ψ ) = Erot + Eirr (5) Since the curl of a gradient is always zero, ∇ψ
Study on activity measurement of Nostoc flagelliforme cells based on color identification
NASA Astrophysics Data System (ADS)
Wang, Yizhong; Su, Jianyu; Liu, Tiegen; Kong, Fanzhi; Jia, Shiru
2008-12-01
In order to measure the activities of Nostoc flagelliforme cells, a new method based on color identification was proposed in this paper. N. flagelliforme cells were colored with fluoreseein diaeetate. Then, an image of colored N. flagelliforme cells was taken, and changed from RGB model to HIS model. Its histogram of hue H was calculated, which was used as the input of a designed BP network. The output of the BP network was the description of measured activity of N. flagelliforme cells. After training, the activity of N. flagelliforme cells was identified by the BP network according to the histogram of H of their colored image. Experiments were conducted with satisfied results to show the feasibility and usefulness of activity measurement of N. flagelliforme cells based on color identification.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-06
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 73 [Docket No. FDA-2012-C-0224] Listing of Color Additives Exempt From Certification; Mica-Based Pearlescent Pigments...). The final rule amended the color additive regulations to provide for the safe use of mica-based...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Fei; Gao, Jie; Luk, Ting S.
Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfectmore » light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.« less
NASA Astrophysics Data System (ADS)
Shakespeare, Tarja Tuulikki
Traditionally, single constant Kubelka-Munk type colorant formulation algorithms have been used for color control in the paper industry. Tuning data is derived from colored handsheets representing dyeing of a particular color grade, applicable to a substrate of similar properties. Due to furnish variation and changes in the chemical environment, such tuning data is of limited accuracy in practice. Kubelka-Munk approaches have numerous other limitations, in part due to their physically unrealistic assumptions. In particular, they neglect fluorescence phenomena, the interdependence of absorption and scattering, and nonlinearities due to colorant interactions. This thesis addresses those problems. A set of colored handsheets was made, employing several anionic direct dyes and fluorescent colorants, individually and in various combinations. Both a spectrophotometer and a spectrofluorimeter were used for measuring color properties. An extended Langmuir adsorption isotherm was used in modelling the dye-on- fiber in each dyeing. Kubelka-Munk absorption and scattering coefficients were then modelled based on dye- on-fiber, and a number of the limitations of the Kubelka- Munk approach were clearly demonstrated. An extended phenomenological model was derived, incorporating fluorescence and interdependence of absorption and scattering. This model predicts illuminator-independent radiance transfer factors based on dye-on-fiber, from which total radiance factor responses under arbitrary illumination can be computed. It requires spectrofluorometric measurements to characterize the coloring process. A new reflectance factor model, based on the same adsorption isotherm approach, was derived for non- fluorescent colorants. A corresponding total radiance factor model, which is illuminator-dependent, was derived for fluorescent colorants. These models have provision for phenomena such as broadening of absorption and scattering bands, which are encountered in practice. Being based on spectrophotometric measurements, they are directly applicable in industrial settings, and predict colorant responses reliably under wider ranges of conditions than the Kubelka-Munk approach.
Niu, Zengyuan; Luo, Xin; Ye, Xiwen; Wang, Huihui; Li, Jingying
2014-01-01
A study for the simultaneous determination of 21 primary aromatic amines derived from the reduction of the azo colorants in plastic components of electrical and electronic products was conducted. Organic solvents were used to dissolve or swell the plastics to release the azo dyes existing in the plastic components. The azo colorants were reduced to aromatic amines under strong reducing condition of dithionite. Aromatic amines were extracted with methyl tert-butyl ether. Methanol-water (1: 1, v/v) was used to concentrate the extract to constant-volume for HPLC-MS analysis. The analytes were separated on a ZORBAX Eclipse XDB C18 column using the gradient elution with acetonitrile and 0.1% (v/v) formic acid aqueous solution at a flow rate of 0.6 mL/min. The analyte confirmation was performed using retention time and characteristic ions in selected ion monitoring (SIM) mode. The correlation coefficients (r) of all the standard curves were more than 0.998, and the limits of quantification of the analytes were 0.5 mg/kg. The recoveries were 60.1% - 129.5% for the 21 aromatic amines with the RSDs not more than 14.0% except for a few compounds. The results showed that the banned azo colorants in the plastic products can be analyzed qualitatively and quantitatively through reductive conversion into aromatic amines. In addition, this method has high accuracy and good precision.
Color reproduction for advanced manufacture of soft tissue prostheses.
Xiao, Kaida; Zardawi, Faraedon; van Noort, Richard; Yates, Julian M
2013-11-01
The objectives of this study were to develop a color reproduction system in advanced manufacture technology for accurate and automatic processing of soft tissue prostheses. The manufacturing protocol was defined to effectively and consistently produce soft tissue prostheses using a 3D printing system. Within this protocol printer color profiles were developed using a number of mathematical models for the proposed 3D color printing system based on 240 training colors. On this basis, the color reproduction system was established and their system errors including accuracy of color reproduction, performance of color repeatability and color gamut were evaluated using 14 known human skin shades. The printer color profile developed using the third-order polynomial regression based on least-square fitting provided the best model performance. The results demonstrated that by using the proposed color reproduction system, 14 different skin colors could be reproduced and excellent color reproduction performance achieved. Evaluation of the system's color repeatability revealed a demonstrable system error and this highlighted the need for regular evaluation. The color gamut for the proposed 3D printing system was simulated and it was demonstrated that the vast majority of skin colors can be reproduced with the exception of extreme dark or light skin color shades. This study demonstrated that the proposed color reproduction system can be effectively used to reproduce a range of human skin colors for application in advanced manufacture of soft tissue prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.
Color Reproduction System Based on Color Appearance Model and Gamut Mapping
2000-07-01
and Gamut Mapping DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Input/Output...report: ADP011333 thru ADP011362 UNCLASSIFIED Color reproduction system based on color appearance model and gamut mapping Fang-Hsuan Cheng, Chih-Yuan...perception is usually different. Basically, the influence factors are device calibration and characterization, viewing condition, device gamut and human
Barbosa, Paulo José Bastos; Lessa, Ines; Almeida Filho, Naomar de; Magalhães, Lucélia Batista N Cunha; Araújo, Jenny
2010-01-01
The metabolic syndrome (MS) has a high prevalence in different parts of the world, with variations between different ethnic groups. This study aims at exploring the influence of the self-reported skin color on the prevalence of MS Methods: Cross-sectional study, carried out in a population subgroup (n=1,439 adults) in Salvador, Brazil. The self-reported skin color (white, mulatto or black) was used as well as the MS criterion of ATP-III. The Chi-square test for tendency was used to analyze the prevalence gradient between the groups and logistic regression, for association analysis. The general prevalence of MS, adjusted for potentially confounder variables, did not differ among whites (23.3%), mulattos (23.3%) and blacks (23.4%). The analysis by sex showed, among men, a reduction in the MS prevalence of whites (26.2%, 95%CI: 20.7-31.7), in comparison to blacks (17.5%, 95%CI: 12.3-22.8) and an intermediate prevalence among mulattos, 21.9%, 95%CI: 18.6-25.1, p tend. = 0.002. Among the women, the tendency was the opposite, being higher among the blacks, 27.0%, 95%CI: 22.2-31.8, and lower among the whites, 20.5%, 95%CI: 15.6-25.4, p tend. = 0.02. The multivariate analysis of the association between skin color and MS (white = group of reference) showed that the black color of the skin was a protective factor among black men, with a prevalence ratio (PR) = 0.60 (0.36-0.97), whereas it tended to be a risk factor among black women, with a PR = 1.33 (0.94-1.78). The prevalence of MA presented an inverse variation according to the color of skin between men and women. To be black was a protective factor among men and a risk factor among women.
Bürger, Kai; Krüger, Jens; Westermann, Rüdiger
2011-01-01
In this paper, we present a sample-based approach for surface coloring, which is independent of the original surface resolution and representation. To achieve this, we introduce the Orthogonal Fragment Buffer (OFB)—an extension of the Layered Depth Cube—as a high-resolution view-independent surface representation. The OFB is a data structure that stores surface samples at a nearly uniform distribution over the surface, and it is specifically designed to support efficient random read/write access to these samples. The data access operations have a complexity that is logarithmic in the depth complexity of the surface. Thus, compared to data access operations in tree data structures like octrees, data-dependent memory access patterns are greatly reduced. Due to the particular sampling strategy that is employed to generate an OFB, it also maintains sample coherence, and thus, exhibits very good spatial access locality. Therefore, OFB-based surface coloring performs significantly faster than sample-based approaches using tree structures. In addition, since in an OFB, the surface samples are internally stored in uniform 2D grids, OFB-based surface coloring can efficiently be realized on the GPU to enable interactive coloring of high-resolution surfaces. On the OFB, we introduce novel algorithms for color painting using volumetric and surface-aligned brushes, and we present new approaches for particle-based color advection along surfaces in real time. Due to the intermediate surface representation we choose, our method can be used to color polygonal surfaces as well as any other type of surface that can be sampled. PMID:20616392
Fuzzy-based simulation of real color blindness.
Lee, Jinmi; dos Santos, Wellington P
2010-01-01
About 8% of men are affected by color blindness. That population is at a disadvantage since they cannot perceive a substantial amount of the visual information. This work presents two computational tools developed to assist color blind people. The first one tests color blindness and assess its severity. The second tool is based on Fuzzy Logic, and implements a method proposed to simulate real red and green color blindness in order to generate synthetic cases of color vision disturbance in a statistically significant amount. Our purpose is to develop correction tools and obtain a deeper understanding of the accessibility problems faced by people with chromatic visual impairment.
NASA Astrophysics Data System (ADS)
Leclaire, Sarah; White, Joël; Arnoux, Emilie; Faivre, Bruno; Vetter, Nathanaël; Hatch, Scott A.; Danchin, Étienne
2011-09-01
Carotenoid pigments are important for immunity and as antioxidants, and carotenoid-based colors are believed to provide honest signals of individual quality. Other colorless but more efficient antioxidants such as vitamins A and E may protect carotenoids from bleaching. Carotenoid-based colors have thus recently been suggested to reflect the concentration of such colorless antioxidants, but this has rarely been tested. Furthermore, although evidence is accruing for multiple genetic criteria for mate choice, carotenoid-based colors have rarely been shown to reflect both phenotypic and genetic quality. In this study, we investigated whether gape, tongue, eye-ring, and bill coloration of chick-rearing black-legged kittiwakes Rissa tridactyla reflected circulating levels of carotenoids and vitamins A and E. We further investigated whether integument coloration reflected phenotypic (body condition and fledging success) and genetic quality (heterozygosity). We found that the coloration of fleshy integuments was correlated with carotenoid and vitamin A levels and fledging success but only in males. Furthermore, the coloration of tongue and eye-ring was correlated with heterozygosity in both males and females. Integument colors might therefore be reliable signals of individual quality used by birds to adjust their parental care during the chick-rearing period.
Category learning in the color-word contingency learning paradigm.
Schmidt, James R; Augustinova, Maria; De Houwer, Jan
2018-04-01
In the typical color-word contingency learning paradigm, participants respond to the print color of words where each word is presented most often in one color. Learning is indicated by faster and more accurate responses when a word is presented in its usual color, relative to another color. To eliminate the possibility that this effect is driven exclusively by the familiarity of item-specific word-color pairings, we examine whether contingency learning effects can be observed also when colors are related to categories of words rather than to individual words. To this end, the reported experiments used three categories of words (animals, verbs, and professions) that were each predictive of one color. Importantly, each individual word was presented only once, thus eliminating individual color-word contingencies. Nevertheless, for the first time, a category-based contingency effect was observed, with faster and more accurate responses when a category item was presented in the color in which most of the other items of that category were presented. This finding helps to constrain episodic learning models and sets the stage for new research on category-based contingency learning.
Kumar, S Chaitanya; Casals, J Canals; Wei, Junxiong; Ebrahim-Zadeh, M
2015-10-19
We report a systematic study on the performance characteristics of a high-power, high-repetition-rate, picosecond ultraviolet (UV) source at 266 nm based on β-BaB2O4 (BBO). The source, based on single-pass fourth harmonic generation (FHG) of a compact Yb-fiber laser in a two-crystal spatial walk-off compensation scheme, generates up to 2.9 W of average power at 266 nm at a pulse repetition rate of ~80 MHz with a single-pass FHG efficiency of 35% from the green to UV. Detrimental issues such as thermal effects have been studied and confirmed by performing relevant measurements. Angular and temperature acceptance bandwidths in BBO for FHG to 266 nm are experimentally determined, indicating that the effective interaction length is limited by spatial walk-off and thermal gradients under high-power operation. The origin of dynamic color center formation due to two-photon absorption in BBO is investigated by measurements of intensity-dependent transmission at 266 nm. Using a suitable theoretical model, two-photon absorption coefficients as well as the color center densities have been estimated at different temperatures. The measurements show that the two-photon absorption coefficient in BBO at 266 nm is ~3.5 times lower at 200°C compared to that at room temperature. The long-term power stability as well as beam pointing stability is analyzed at different output power levels and focusing conditions. Using cylindrical optics, we have circularized the generated elliptic UV beam to a circularity of >90%. To our knowledge, this is the first time such high average powers and temperature-dependent two-photon absorption measurements at 266 nm are reported at repetition rates as high as ~80 MHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-12-01
Research on inequality or stratification in science and engineering tends to concentrate on black/white or male/female difference; very few studies have discussions of both race and gender. Consequently, very little is known about the exact course that women of color take in science-based education and employment or about the course that steers them out of science-based careers. Questions abound: What are the environmental factors that affect the choices in education and science-based careers of women of color? What has influenced women of color who currently are in science-based careers? Is critical mass important and, if so, what are the keysmore » to increasing it? What recommendations can be made to colleges and universities, faculty members, employers, the federal government, women of color themselves, and to improve the conditions and numbers of women of color in science-based careers? These questions prompted the National Research Council`s Committee on Women in Science and Engineering (CWSE) to convene a conference on Diversity in Science: Perspectives on the Retention of Minority Women in Science, Engineering, and Health-Care Professions, held on October 21--23, 1995. Confronting the problem of the lack of knowledge about the journey of women of color in science-based education and career, the conference offered opportunities for these women to describe the paths that they have taken and to identify strategies for success. Their perspectives ground this report. For purposes of this document, women of color include women in the following racial or ethnic groups: Hispanics, African-Americans, Asian and Pacific Islanders, and American Indians and Alaskan Natives. Science-based careers include those in the physical sciences and mathematics, life sciences, social sciences, and engineering.« less
Color normalization of histology slides using graph regularized sparse NMF
NASA Astrophysics Data System (ADS)
Sha, Lingdao; Schonfeld, Dan; Sethi, Amit
2017-03-01
Computer based automatic medical image processing and quantification are becoming popular in digital pathology. However, preparation of histology slides can vary widely due to differences in staining equipment, procedures and reagents, which can reduce the accuracy of algorithms that analyze their color and texture information. To re- duce the unwanted color variations, various supervised and unsupervised color normalization methods have been proposed. Compared with supervised color normalization methods, unsupervised color normalization methods have advantages of time and cost efficient and universal applicability. Most of the unsupervised color normaliza- tion methods for histology are based on stain separation. Based on the fact that stain concentration cannot be negative and different parts of the tissue absorb different stains, nonnegative matrix factorization (NMF), and particular its sparse version (SNMF), are good candidates for stain separation. However, most of the existing unsupervised color normalization method like PCA, ICA, NMF and SNMF fail to consider important information about sparse manifolds that its pixels occupy, which could potentially result in loss of texture information during color normalization. Manifold learning methods like Graph Laplacian have proven to be very effective in interpreting high-dimensional data. In this paper, we propose a novel unsupervised stain separation method called graph regularized sparse nonnegative matrix factorization (GSNMF). By considering the sparse prior of stain concentration together with manifold information from high-dimensional image data, our method shows better performance in stain color deconvolution than existing unsupervised color deconvolution methods, especially in keeping connected texture information. To utilized the texture information, we construct a nearest neighbor graph between pixels within a spatial area of an image based on their distances using heat kernal in lαβ space. The representation of a pixel in the stain density space is constrained to follow the feature distance of the pixel to pixels in the neighborhood graph. Utilizing color matrix transfer method with the stain concentrations found using our GSNMF method, the color normalization performance was also better than existing methods.
[Calculation of optic system of superfine medical endoscopes based on gradient elements].
Díakonov, S Iu; Korolev, A V
1994-01-01
The application of gradient optic elements to rigid endoscopes decreases their diameter to 1.5-2.0 mm. The given mathematical dependences determine aperture and field characteristics, focus and focal segments, resolution of the optic systems based on gradient optics. Parameters of the gradient optic systems for superfine medical endoscopes are characterized and their practical application is shown.
Makeeva, I M; Moskalev, E E; Kuz'ko, E I
2010-01-01
A new method of color quality control based on spectrophotometry has been developed for dental restoration. A comparative analysis of quality of subjective color control by trained and non-trained observers has been made. Based on comparative analysis of the results of subjective color-control and spectrophotometry the maximum amount of allowed color difference has been set (dE=2.8).
Color in Computer-Assisted Instruction.
ERIC Educational Resources Information Center
Steinberg, Esther R.
Color monitors are in wide use in computer systems. Thus, it is important to understand how to apply color effectively in computer assisted instruction (CAI) and computer based training (CBT). Color can enhance learning, but it does not automatically do so. Indiscriminate application of color can mislead a student and thereby even interfere with…
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Color. 52.3760 Section 52.3760 Agriculture Regulations... § 52.3760 Color. (a) General. The evaluation of color shall be determined within five minutes after the olives are removed from the container and is based upon the uniformity of the exterior color or general...
World Color Survey color naming reveals universal motifs and their within-language diversity
Lindsey, Delwin T.; Brown, Angela M.
2009-01-01
We analyzed the color terms in the World Color Survey (WCS) (www.icsi.berkeley.edu/wcs/), a large color-naming database obtained from informants of mostly unwritten languages spoken in preindustrialized cultures that have had limited contact with modern, industrialized society. The color naming idiolects of 2,367 WCS informants fall into three to six “motifs,” where each motif is a different color-naming system based on a subset of a universal glossary of 11 color terms. These motifs are universal in that they occur worldwide, with some individual variation, in completely unrelated languages. Strikingly, these few motifs are distributed across the WCS informants in such a way that multiple motifs occur in most languages. Thus, the culture a speaker comes from does not completely determine how he or she will use color terms. An analysis of the modern patterns of motif usage in the WCS languages, based on the assumption that they reflect historical patterns of color term evolution, suggests that color lexicons have changed over time in a complex but orderly way. The worldwide distribution of the motifs and the cooccurrence of multiple motifs within languages suggest that universal processes control the naming of colors. PMID:19901327
Color regeneration from reflective color sensor using an artificial intelligent technique.
Saracoglu, Ömer Galip; Altural, Hayriye
2010-01-01
A low-cost optical sensor based on reflective color sensing is presented. Artificial neural network models are used to improve the color regeneration from the sensor signals. Analog voltages of the sensor are successfully converted to RGB colors. The artificial intelligent models presented in this work enable color regeneration from analog outputs of the color sensor. Besides, inverse modeling supported by an intelligent technique enables the sensor probe for use of a colorimetric sensor that relates color changes to analog voltages.
Optimized computational imaging methods for small-target sensing in lens-free holographic microscopy
NASA Astrophysics Data System (ADS)
Xiong, Zhen; Engle, Isaiah; Garan, Jacob; Melzer, Jeffrey E.; McLeod, Euan
2018-02-01
Lens-free holographic microscopy is a promising diagnostic approach because it is cost-effective, compact, and suitable for point-of-care applications, while providing high resolution together with an ultra-large field-of-view. It has been applied to biomedical sensing, where larger targets like eukaryotic cells, bacteria, or viruses can be directly imaged without labels, and smaller targets like proteins or DNA strands can be detected via scattering labels like micro- or nano-spheres. Automated image processing routines can count objects and infer target concentrations. In these sensing applications, sensitivity and specificity are critically affected by image resolution and signal-to-noise ratio (SNR). Pixel super-resolution approaches have been shown to boost resolution and SNR by synthesizing a high-resolution image from multiple, partially redundant, low-resolution images. However, there are several computational methods that can be used to synthesize the high-resolution image, and previously, it has been unclear which methods work best for the particular case of small-particle sensing. Here, we quantify the SNR achieved in small-particle sensing using regularized gradient-descent optimization method, where the regularization is based on cardinal-neighbor differences, Bayer-pattern noise reduction, or sparsity in the image. In particular, we find that gradient-descent with sparsity-based regularization works best for small-particle sensing. These computational approaches were evaluated on images acquired using a lens-free microscope that we assembled from an off-the-shelf LED array and color image sensor. Compared to other lens-free imaging systems, our hardware integration, calibration, and sample preparation are particularly simple. We believe our results will help to enable the best performance in lens-free holographic sensing.
Identification and classification of similar looking food grains
NASA Astrophysics Data System (ADS)
Anami, B. S.; Biradar, Sunanda D.; Savakar, D. G.; Kulkarni, P. V.
2013-01-01
This paper describes the comparative study of Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers by taking a case study of identification and classification of four pairs of similar looking food grains namely, Finger Millet, Mustard, Soyabean, Pigeon Pea, Aniseed, Cumin-seeds, Split Greengram and Split Blackgram. Algorithms are developed to acquire and process color images of these grains samples. The developed algorithms are used to extract 18 colors-Hue Saturation Value (HSV), and 42 wavelet based texture features. Back Propagation Neural Network (BPNN)-based classifier is designed using three feature sets namely color - HSV, wavelet-texture and their combined model. SVM model for color- HSV model is designed for the same set of samples. The classification accuracies ranging from 93% to 96% for color-HSV, ranging from 78% to 94% for wavelet texture model and from 92% to 97% for combined model are obtained for ANN based models. The classification accuracy ranging from 80% to 90% is obtained for color-HSV based SVM model. Training time required for the SVM based model is substantially lesser than ANN for the same set of images.
Oh, Paul; Lee, Sukho; Kang, Moon Gi
2017-01-01
Recently, several RGB-White (RGBW) color filter arrays (CFAs) have been proposed, which have extra white (W) pixels in the filter array that are highly sensitive. Due to the high sensitivity, the W pixels have better SNR (Signal to Noise Ratio) characteristics than other color pixels in the filter array, especially, in low light conditions. However, most of the RGBW CFAs are designed so that the acquired RGBW pattern image can be converted into the conventional Bayer pattern image, which is then again converted into the final color image by using conventional demosaicing methods, i.e., color interpolation techniques. In this paper, we propose a new RGBW color filter array based on a totally different color interpolation technique, the colorization algorithm. The colorization algorithm was initially proposed for colorizing a gray image into a color image using a small number of color seeds. Here, we adopt this algorithm as a color interpolation technique, so that the RGBW color filter array can be designed with a very large number of W pixels to make the most of the highly sensitive characteristics of the W channel. The resulting RGBW color filter array has a pattern with a large proportion of W pixels, while the small-numbered RGB pixels are randomly distributed over the array. The colorization algorithm makes it possible to reconstruct the colors from such a small number of RGB values. Due to the large proportion of W pixels, the reconstructed color image has a high SNR value, especially higher than those of conventional CFAs in low light condition. Experimental results show that many important information which are not perceived in color images reconstructed with conventional CFAs are perceived in the images reconstructed with the proposed method. PMID:28657602
Oh, Paul; Lee, Sukho; Kang, Moon Gi
2017-06-28
Recently, several RGB-White (RGBW) color filter arrays (CFAs) have been proposed, which have extra white (W) pixels in the filter array that are highly sensitive. Due to the high sensitivity, the W pixels have better SNR (Signal to Noise Ratio) characteristics than other color pixels in the filter array, especially, in low light conditions. However, most of the RGBW CFAs are designed so that the acquired RGBW pattern image can be converted into the conventional Bayer pattern image, which is then again converted into the final color image by using conventional demosaicing methods, i.e., color interpolation techniques. In this paper, we propose a new RGBW color filter array based on a totally different color interpolation technique, the colorization algorithm. The colorization algorithm was initially proposed for colorizing a gray image into a color image using a small number of color seeds. Here, we adopt this algorithm as a color interpolation technique, so that the RGBW color filter array can be designed with a very large number of W pixels to make the most of the highly sensitive characteristics of the W channel. The resulting RGBW color filter array has a pattern with a large proportion of W pixels, while the small-numbered RGB pixels are randomly distributed over the array. The colorization algorithm makes it possible to reconstruct the colors from such a small number of RGB values. Due to the large proportion of W pixels, the reconstructed color image has a high SNR value, especially higher than those of conventional CFAs in low light condition. Experimental results show that many important information which are not perceived in color images reconstructed with conventional CFAs are perceived in the images reconstructed with the proposed method.
Contourlet domain multiband deblurring based on color correlation for fluid lens cameras.
Tzeng, Jack; Liu, Chun-Chen; Nguyen, Truong Q
2010-10-01
Due to the novel fluid optics, unique image processing challenges are presented by the fluidic lens camera system. Developed for surgical applications, unique properties, such as no moving parts while zooming and better miniaturization than traditional glass optics, are advantages of the fluid lens. Despite these abilities, sharp color planes and blurred color planes are created by the nonuniform reaction of the liquid lens to different color wavelengths. Severe axial color aberrations are caused by this reaction. In order to deblur color images without estimating a point spread function, a contourlet filter bank system is proposed. Information from sharp color planes is used by this multiband deblurring method to improve blurred color planes. Compared to traditional Lucy-Richardson and Wiener deconvolution algorithms, significantly improved sharpness and reduced ghosting artifacts are produced by a previous wavelet-based method. Directional filtering is used by the proposed contourlet-based system to adjust to the contours of the image. An image is produced by the proposed method which has a similar level of sharpness to the previous wavelet-based method and has fewer ghosting artifacts. Conditions for when this algorithm will reduce the mean squared error are analyzed. While improving the blue color plane by using information from the green color plane is the primary focus of this paper, these methods could be adjusted to improve the red color plane. Many multiband systems such as global mapping, infrared imaging, and computer assisted surgery are natural extensions of this work. This information sharing algorithm is beneficial to any image set with high edge correlation. Improved results in the areas of deblurring, noise reduction, and resolution enhancement can be produced by the proposed algorithm.
Fauteux, Lisa; Cottrell, Matthew T.; Kirchman, David L.; Borrego, Carles M.; Garcia-Chaves, Maria Carolina; del Giorgio, Paul A.
2015-01-01
There is now evidence that aerobic anoxygenic phototrophic (AAP) bacteria are widespread across aquatic systems, yet the factors that determine their abundance and activity are still not well understood, particularly in freshwaters. Here we describe the patterns in AAP abundance, cell size and pigment content across wide environmental gradients in 43 temperate and boreal lakes of Québec. AAP bacterial abundance varied from 1.51 to 5.49 x 105 cells mL-1, representing <1 to 37% of total bacterial abundance. AAP bacteria were present year-round, including the ice-cover period, but their abundance relative to total bacterial abundance was significantly lower in winter than in summer (2.6% and 7.7%, respectively). AAP bacterial cells were on average two-fold larger than the average bacterial cell size, thus AAP cells made a greater relative contribution to biomass than to abundance. Bacteriochlorophyll a (BChla) concentration varied widely across lakes, and was not related to AAP bacterial abundance, suggesting a large intrinsic variability in the cellular pigment content. Absolute and relative AAP bacterial abundance increased with dissolved organic carbon (DOC), whereas cell-specific BChla content was negatively related to chlorophyll a (Chla). As a result, both the contribution of AAP bacteria to total prokaryotic abundance, and the cell-specific BChla pigment content were positively correlated with the DOC:Chla ratio, both peaking in highly colored, low-chlorophyll lakes. Our results suggest that photoheterotrophy might represent a significant ecological advantage in highly colored, low-chlorophyll lakes, where DOC pool is chemically and structurally more complex. PMID:25927833
Fauteux, Lisa; Cottrell, Matthew T; Kirchman, David L; Borrego, Carles M; Garcia-Chaves, Maria Carolina; Del Giorgio, Paul A
2015-01-01
There is now evidence that aerobic anoxygenic phototrophic (AAP) bacteria are widespread across aquatic systems, yet the factors that determine their abundance and activity are still not well understood, particularly in freshwaters. Here we describe the patterns in AAP abundance, cell size and pigment content across wide environmental gradients in 43 temperate and boreal lakes of Québec. AAP bacterial abundance varied from 1.51 to 5.49 x 105 cells mL-1, representing <1 to 37% of total bacterial abundance. AAP bacteria were present year-round, including the ice-cover period, but their abundance relative to total bacterial abundance was significantly lower in winter than in summer (2.6% and 7.7%, respectively). AAP bacterial cells were on average two-fold larger than the average bacterial cell size, thus AAP cells made a greater relative contribution to biomass than to abundance. Bacteriochlorophyll a (BChla) concentration varied widely across lakes, and was not related to AAP bacterial abundance, suggesting a large intrinsic variability in the cellular pigment content. Absolute and relative AAP bacterial abundance increased with dissolved organic carbon (DOC), whereas cell-specific BChla content was negatively related to chlorophyll a (Chla). As a result, both the contribution of AAP bacteria to total prokaryotic abundance, and the cell-specific BChla pigment content were positively correlated with the DOC:Chla ratio, both peaking in highly colored, low-chlorophyll lakes. Our results suggest that photoheterotrophy might represent a significant ecological advantage in highly colored, low-chlorophyll lakes, where DOC pool is chemically and structurally more complex.
Efficient color correction method for smartphone camera-based health monitoring application.
Duc Dang; Chae Ho Cho; Daeik Kim; Oh Seok Kwon; Jo Woon Chong
2017-07-01
Smartphone health monitoring applications are recently highlighted due to the rapid development of hardware and software performance of smartphones. However, color characteristics of images captured by different smartphone models are dissimilar each other and this difference may give non-identical health monitoring results when the smartphone health monitoring applications monitor physiological information using their embedded smartphone cameras. In this paper, we investigate the differences in color properties of the captured images from different smartphone models and apply a color correction method to adjust dissimilar color values obtained from different smartphone cameras. Experimental results show that the color corrected images using the correction method provide much smaller color intensity errors compared to the images without correction. These results can be applied to enhance the consistency of smartphone camera-based health monitoring applications by reducing color intensity errors among the images obtained from different smartphones.
Zhao, Jiancun; Yu, Xiaochang; Yang, Xiaoming; Xiang, Quan; Duan, Huigao; Yu, Yiting
2017-09-18
Structural color printing based on plasmonic metasurfaces has been recognized as a promising alternative to the conventional dye colorants, though the color brightness and polarization tolerance are still a great challenge for practical applications. In this work, we report a novel plasmonic metasurface for subtractive color printing employing the ultrathin hexagonal nanodisk-nanohole hybrid structure arrays. Through both the experimental and numerical investigations, the subtractive color thus generated taking advantages of extraordinary low transmission (ELT) exhibits high brightness, polarization independence and wide color tunability by varying key geometrical parameters. In addition, other regular patterns including square, pentagonal and circular shapes are also surveyed, and reveal a high color brightness, wide gamut and polarization independence as well. These results indicate that the demonstrated plasmonic metasurface has various potential applications in high-definition displays, high-density optical data storage, imaging and filtering technologies.
NASA Astrophysics Data System (ADS)
Karlsteen, M.; Willander, M.
1993-11-01
In this paper the total switch time for a transistor in a Direct Coupled Transistor Logic (DCTL) circuit is simulated by using Laplace transformations of the Ebers-Moll equations. The influence of doping gradients and germanium gradients in the base is investigated and their relative importance and their limitations are established. In a well designed bipolar transistor only a minor enhancement of the total switch time is obtained with the use of a doping gradient in the base. However, for bipolar transistors with base thickness over 500 Å, an improperly selected doping profile could be devastating for the total switch time. For a bipolar transistor the improvement of the total switch time due to a linear germanium gradient in the base could be up to about 30% compared with an ordinary silicon bipolar transistor. Still, a too high germanium gradient forces the normal transistor current gain (α N) to grow and the total switch time is thereby increased. Further enhancement could be achieved by the use of a second degree polynomial germanium profile in the base. Also in this case, care must be taken not to enlarge the germanium gradient too much as the total switch time then starts to increase. In all cases the betterment of the base transit time that is introduced by the electric field will not be directly used to reduce the base transit time. Instead the improvement is mostly used to lower the emitter transition charging time. However, the most important parameter to control is the normal transistor current gain (α N) that has to be kept within a narrow range to keep the total switch time low.
Rubio-Fernández, Paula
2016-01-01
Color adjectives tend to be used redundantly in referential communication. I propose that redundant color adjectives (RCAs) are often intended to exploit a color contrast in the visual context and hence facilitate object identification, despite not being necessary to establish unique reference. Two language-production experiments investigated two types of factors that may affect the use of RCAs: factors related to the efficiency of color in the visual context and factors related to the semantic category of the noun. The results of Experiment 1 confirmed that people produce RCAs when color may facilitate object recognition; e.g., they do so more often in polychrome displays than in monochrome displays, and more often in English (pre-nominal position) than in Spanish (post-nominal position). RCAs are also used when color is a central property of the object category; e.g., people referred to the color of clothes more often than to the color of geometrical figures (Experiment 1), and they overspecified atypical colors more often than variable and stereotypical colors (Experiment 2). These results are relevant for pragmatic models of referential communication based on Gricean pragmatics and informativeness. An alternative analysis is proposed, which focuses on the efficiency and pertinence of color in a given referential situation. PMID:26924999
Deep g'r'i'z' GMOS Imaging of the Dwarf Irregular Galaxy Kar 50
NASA Astrophysics Data System (ADS)
Davidge, T. J.
2002-11-01
Images obtained with the Gemini Multi-Object Spectrograph (GMOS) are used to investigate the stellar content and distance of the dwarf irregular galaxy Kar 50. The brightest object is an H II region, and the bright stellar content is dominated by stars with g'-r'<0. The tips of the main sequence and the red giant branch (RGB) are tentatively identified near r'=24.9 and i'=25.5, respectively. The galaxy has a blue integrated color and no significant color gradient, and we conclude that Kar 50 has experienced a recent galaxy-wide episode of star formation. The distance estimated from the brightest blue stars indicates that Kar 50 is behind the M81 group, and this is consistent with the tentative RGB-tip brightness. Kar 50 has a remarkably flat central surface brightness profile, even at wavelengths approaching 1 μm, although there is no evidence of a bar. In the absence of another large star-forming episode, Kar 50 will evolve into a very low surface brightness galaxy. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council of Canada (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina).
Multi-band transmission color filters for multi-color white LEDs based visible light communication
NASA Astrophysics Data System (ADS)
Wang, Qixia; Zhu, Zhendong; Gu, Huarong; Chen, Mengzhu; Tan, Qiaofeng
2017-11-01
Light-emitting diodes (LEDs) based visible light communication (VLC) can provide license-free bands, high data rates, and high security levels, which is a promising technique that will be extensively applied in future. Multi-band transmission color filters with enough peak transmittance and suitable bandwidth play a pivotal role for boosting signal-noise-ratio in VLC systems. In this paper, multi-band transmission color filters with bandwidth of dozens nanometers are designed by a simple analytical method. Experiment results of one-dimensional (1D) and two-dimensional (2D) tri-band color filters demonstrate the effectiveness of the multi-band transmission color filters and the corresponding analytical method.
Color accuracy and reproducibility in whole slide imaging scanners
Shrestha, Prarthana; Hulsken, Bas
2014-01-01
Abstract We propose a workflow for color reproduction in whole slide imaging (WSI) scanners, such that the colors in the scanned images match to the actual slide color and the inter-scanner variation is minimum. We describe a new method of preparation and verification of the color phantom slide, consisting of a standard IT8-target transmissive film, which is used in color calibrating and profiling the WSI scanner. We explore several International Color Consortium (ICC) compliant techniques in color calibration/profiling and rendering intents for translating the scanner specific colors to the standard display (sRGB) color space. Based on the quality of the color reproduction in histopathology slides, we propose the matrix-based calibration/profiling and absolute colorimetric rendering approach. The main advantage of the proposed workflow is that it is compliant to the ICC standard, applicable to color management systems in different platforms, and involves no external color measurement devices. We quantify color difference using the CIE-DeltaE2000 metric, where DeltaE values below 1 are considered imperceptible. Our evaluation on 14 phantom slides, manufactured according to the proposed method, shows an average inter-slide color difference below 1 DeltaE. The proposed workflow is implemented and evaluated in 35 WSI scanners developed at Philips, called the Ultra Fast Scanners (UFS). The color accuracy, measured as DeltaE between the scanner reproduced colors and the reference colorimetric values of the phantom patches, is improved on average to 3.5 DeltaE in calibrated scanners from 10 DeltaE in uncalibrated scanners. The average inter-scanner color difference is found to be 1.2 DeltaE. The improvement in color performance upon using the proposed method is apparent with the visual color quality of the tissue scans. PMID:26158041
Long-term scale adaptive tracking with kernel correlation filters
NASA Astrophysics Data System (ADS)
Wang, Yueren; Zhang, Hong; Zhang, Lei; Yang, Yifan; Sun, Mingui
2018-04-01
Object tracking in video sequences has broad applications in both military and civilian domains. However, as the length of input video sequence increases, a number of problems arise, such as severe object occlusion, object appearance variation, and object out-of-view (some portion or the entire object leaves the image space). To deal with these problems and identify the object being tracked from cluttered background, we present a robust appearance model using Speeded Up Robust Features (SURF) and advanced integrated features consisting of the Felzenszwalb's Histogram of Oriented Gradients (FHOG) and color attributes. Since re-detection is essential in long-term tracking, we develop an effective object re-detection strategy based on moving area detection. We employ the popular kernel correlation filters in our algorithm design, which facilitates high-speed object tracking. Our evaluation using the CVPR2013 Object Tracking Benchmark (OTB2013) dataset illustrates that the proposed algorithm outperforms reference state-of-the-art trackers in various challenging scenarios.
NASA Astrophysics Data System (ADS)
Gupta, Mousumi; Chatterjee, Somenath
2018-04-01
Surface texture is an important issue to realize the nature (crest and trough) of surfaces. Atomic force microscopy (AFM) image is a key analysis for surface topography. However, in nano-scale, the nature (i.e., deflection or crack) as well as quantification (i.e., height or depth) of deposited layers is essential information for material scientist. In this paper, a gradient-based K-means algorithm is used to differentiate the layered surfaces depending on their color contrast of as-obtained from AFM images. A transformation using wavelet decomposition is initiated to extract the information about deflection or crack on the material surfaces from the same images. Z-axis depth analysis from wavelet coefficients provides information about the crack present in the material. Using the above method corresponding surface information for the material is obtained. In addition, the Gaussian filter is applied to remove the unwanted lines, which occurred during AFM scanning. Few known samples are taken as input, and validity of the above approaches is shown.
Research of image retrieval technology based on color feature
NASA Astrophysics Data System (ADS)
Fu, Yanjun; Jiang, Guangyu; Chen, Fengying
2009-10-01
Recently, with the development of the communication and the computer technology and the improvement of the storage technology and the capability of the digital image equipment, more and more image resources are given to us than ever. And thus the solution of how to locate the proper image quickly and accurately is wanted.The early method is to set up a key word for searching in the database, but now the method has become very difficult when we search much more picture that we need. In order to overcome the limitation of the traditional searching method, content based image retrieval technology was aroused. Now, it is a hot research subject.Color image retrieval is the important part of it. Color is the most important feature for color image retrieval. Three key questions on how to make use of the color characteristic are discussed in the paper: the expression of color, the abstraction of color characteristic and the measurement of likeness based on color. On the basis, the extraction technology of the color histogram characteristic is especially discussed. Considering the advantages and disadvantages of the overall histogram and the partition histogram, a new method based the partition-overall histogram is proposed. The basic thought of it is to divide the image space according to a certain strategy, and then calculate color histogram of each block as the color feature of this block. Users choose the blocks that contain important space information, confirming the right value. The system calculates the distance between the corresponding blocks that users choosed. Other blocks merge into part overall histograms again, and the distance should be calculated. Then accumulate all the distance as the real distance between two pictures. The partition-overall histogram comprehensive utilizes advantages of two methods above, by choosing blocks makes the feature contain more spatial information which can improve performance; the distances between partition-overall histogram make rotating and translation does not change. The HSV color space is used to show color characteristic of image, which is suitable to the visual characteristic of human. Taking advance of human's feeling to color, it quantifies color sector with unequal interval, and get characteristic vector. Finally, it matches the similarity of image with the algorithm of the histogram intersection and the partition-overall histogram. Users can choose a demonstration image to show inquired vision require, and also can adjust several right value through the relevance-feedback method to obtain the best result of search.An image retrieval system based on these approaches is presented. The result of the experiments shows that the image retrieval based on partition-overall histogram can keep the space distribution information while abstracting color feature efficiently, and it is superior to the normal color histograms in precision rate while researching. The query precision rate is more than 95%. In addition, the efficient block expression will lower the complicate degree of the images to be searched, and thus the searching efficiency will be increased. The image retrieval algorithms based on the partition-overall histogram proposed in the paper is efficient and effective.
Exploring Stellar Populations in the Tidal Tails of NGC3256
NASA Astrophysics Data System (ADS)
Rodruck, Michael; Konstantopoulos, Iraklis; Charlton, Jane C.
2015-01-01
Galaxy interactions can inject material into the intergalactic medium via violent gravitational dynamics, often visualized in tidal tails. The composition of these tails has remained a mystery, as previous studies have focused on detecting tidal features, rather than the composite material itself. With this in mind, we have developed an observing program using deep, multiband imaging to probe the chaotic regions of tidal tails in search for an underlying stellar population. NGC3256's Western and Eastern tidal tails serve as a case study for this new technique. Our results show median color values of u - g = 1.12 and r - i = 0.09 for the Western tail, and u - g = 1.29 and r - i = 0.21 for the Eastern tail, corresponding to ages of approximately 450 Myr and 900 Myr for the tails, respectively. A u - g color gradient is seen in the Western tail as well, running from 1.32 to 1.08 (~2000 Myr to 400 Myr), suggesting ages inside tidal tails can have significant variations.
Functional Analysis of Internal Moving Organs Using Super-Resolution Echography
NASA Astrophysics Data System (ADS)
Masuda, Kohji; Ishihara, Ken; Nagakura, Toshiaki; Tsuda, Takao; Furukawa, Toshiyuki; Maeda, Hajime; Kumagai, Sadatoshi; Kodama, Shinzo
1994-05-01
We have developed super-resolution echography to visualize instantaneous velocity and acceleration of internal organs from time-series echograms recorded by a high-frame-rate echograph. The algorithm for this method involves subtraction of two echograms, dividing the difference by the brightness gradient of the first echogram, and normalization of that result by the time interval between the two echograms. Velocity or acceleration is classified into some suitable colors and superimposed on the original B-mode image. Functional diagnosis of moving organs can be made by visualizing instantaneous velocity. In the case of the heart, hypokinesis can be distinguished from a normal heart by the value and the variation of colored parts representing instantaneous velocity. This can also be applied to the liver to observe pulsatile motion. By visualizing instantaneous acceleration, increase or decrease of velocity can be detected. Throb timing and the location of arrhythmia in a heart can be observed. This method has the possibility of contributing to noninvasive functional and characteristic evaluation.
Different effects of color-based and location-based selection on visual working memory.
Li, Qi; Saiki, Jun
2015-02-01
In the present study, we investigated how feature- and location-based selection influences visual working memory (VWM) encoding and maintenance. In Experiment 1, cue type (color, location) and cue timing (precue, retro-cue) were manipulated in a change detection task. The stimuli were color-location conjunction objects, and binding memory was tested. We found a significantly greater effect for color precues than for either color retro-cues or location precues, but no difference between location pre- and retro-cues, consistent with previous studies (e.g., Griffin & Nobre in Journal of Cognitive Neuroscience, 15, 1176-1194, 2003). We also found no difference between location and color retro-cues. Experiment 2 replicated the color precue advantage with more complex color-shape-location conjunction objects. Only one retro-cue effect was different from that in Experiment 1: Color retro-cues were significantly less effective than location retro-cues in Experiment 2, which may relate to a structural property of multidimensional VWM representations. In Experiment 3, a visual search task was used, and the result of a greater location than color precue effect suggests that the color precue advantage in a memory task is related to the modulation of VWM encoding rather than of sensation and perception. Experiment 4, using a task that required only memory for individual features but not for feature bindings, further confirmed that the color precue advantage is specific to binding memory. Together, these findings reveal new aspects of the interaction between attention and VWM and provide potentially important implications for the structural properties of VWM representations.
Food product design: emerging evidence for food policy.
Al-Hamdani, Mohammed; Smith, Steven
2017-03-01
The research on the impact of specific brand elements such as food descriptors and package colors is underexplored. We tested whether a "light" color and a "low-calorie" descriptor on food packages gain favorable consumer perception ratings as compared with regular packages. Our online experiment recruited 406 adults in a 3 (product type: Chips versus Juice versus Yoghurt) × 2 (descriptor type: regular versus low-calorie) × 2 (color type: regular versus light) mixed design. Dependent variables were sensory (evaluations of the product's nutritional value and quality), product-based (evaluations of the product's physical appeal), and consumer-based (evaluations of the potential consumers of the product) scales. "Low-calorie" descriptors were found to increase sensory ratings as compared with regular descriptors and light-colored packages received higher product-based ratings as compared with their regular-colored counterparts. Food package color and descriptors present a promising venue for understanding preventative measures against obesity.[Formula: see text].
Dorofeeva, A A; Khrustalev, A V; Krylov, Iu V; Bocharov, D A; Negasheva, M A
2010-01-01
Digital images of the iris were received for study peculiarities of the iris color during the anthropological examination of 578 students aged 16-24 years. Simultaneously with the registration of the digital images, the visual assessment of the eye color was carried out using the traditional scale of Bunak, based on 12 ocular prostheses. Original software for automatic determination of the iris color based on 12 classes scale of Bunak was designed, and computer version of that scale was developed. The software proposed allows to conduct the determination of the iris color with high validity based on numerical evaluation; its application may reduce the bias due to subjective assessment and methodological divergences of the different researchers. The software designed for automatic determination of the iris color may help develop both theoretical and applied anthropology, it may be used in forensic and emergency medicine, sports medicine, medico-genetic counseling and professional selection.
Siefferman, Lynn; Hill, Geoffrey E
2005-08-01
Although the function of ornamental traits in males has been the focus of intensive research for decades, expression of such traits in females has received much less study. Eastern bluebirds (Sialia sialis) display structurally based ultraviolet/blue and melanin-based chestnut plumage, and in males this plumage coloration is related to both reproductive success and competitive ability. Compared to males, female bluebirds show a subdued expression of blue and chestnut ornamental coloration, and we used a combination of an aviary nutritional-stress experiment and four years of field data to test the hypothesis that coloration functions as a signal of female quality. First, we tested the effect of food intake on expression of structural and melanin coloration in female eastern bluebirds to determine whether structural or melanin coloration are condition-dependent traits. Females that were given ad libitum access to food displayed more ornamented structural coloration than females on a food-restricted diet, but there was no effect of the experiment on melanin ornamentation. Second, we used field data to assess whether female ornamentation correlated with measures of mate quality and parental effort. The structural coloration of females predicted first egg date, maternal provisioning rates, and measures of reproductive success. These data indicate that structural coloration is dependent on nutritional condition and suggest that sexual selection is acting on structurally based plumage coloration in female eastern bluebirds.
The role of lightness, hue and saturation in feature-based visual attention.
Stuart, Geoffrey W; Barsdell, Wendy N; Day, Ross H
2014-03-01
Visual attention is used to select part of the visual array for higher-level processing. Visual selection can be based on spatial location, but it has also been demonstrated that multiple locations can be selected simultaneously on the basis of a visual feature such as color. One task that has been used to demonstrate feature-based attention is the judgement of the symmetry of simple four-color displays. In a typical task, when symmetry is violated, four squares on either side of the display do not match. When four colors are involved, symmetry judgements are made more quickly than when only two of the four colors are involved. This indicates that symmetry judgements are made one color at a time. Previous studies have confounded lightness, hue, and saturation when defining the colors used in such displays. In three experiments, symmetry was defined by lightness alone, lightness plus hue, or by hue or saturation alone, with lightness levels randomised. The difference between judgements of two- and four-color asymmetry was maintained, showing that hue and saturation can provide the sole basis for feature-based attentional selection. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Melanin-based color of plumage: role of condition and of feathers' microstructure
D'Alba, Liliana; Van Hemert, Caroline R.; Spencer, Karen A.; Heidinger, Britt J.; Gill, Lisa; Evans, Neil P.; Monaghan, Pat; Handel, Colleen M.; Shawkey, Matthew D.
2014-01-01
Whether melanin-based colors honestly signal a bird's condition during the growth of feathers is controversial, and it is unclear if or how the physiological processes underlying melanogenesis or color-imparting structural feather microstructure may be adversely affected by condition. Here we report results from two experiments designed to measure the effect of condition on expression of eumelanic and pheomelanic coloration in black-capped chickadees (Poecile atricapillus) and zebra finches (Taeniopygia guttata), respectively. In chickadees, we compared feathers of birds affected and unaffected by avian keratin disorder, while in zebra finches we compared feathers of controls with feathers of those subjected to an unpredictable food supply during development. In both cases we found that control birds had brighter feathers (higher total reflectance) and more barbules, but similar densities of melanosomes. In addition, the microstructure of the feathers explained variation in color more strongly than did melanosome density. Together, these results suggest that melanin-based coloration may in part be condition-dependent, but that this may be driven by changes in keratin and feather development, rather than melanogenesis itself. Researchers should be cautious when assigning variation in melanin-based color to melanin alone and microstructure of the feather should be taken into account.
Pires-de-Souza, Fernanda de Carvalho Panzeri; Garcia, Lucas da Fonseca Roberti; Roselino, Lourenço de Moraes Rego; Naves, Lucas Zago
2011-07-01
To assess the in situ color stability, surface and the tooth/restoration interface degradation of a silorane-based composite (P90, 3M ESPE) after accelerated artificial ageing (AAA), in comparison with other dimethacrylate monomer-based composites (Z250/Z350, 3M ESPE and Esthet-X, Dentsply). Class V cavities (25 mm(2) × 2 mm deep) were prepared in 48 bovine incisors, which were randomly allocated into 4 groups of 12 specimens each, according to the type of restorative material used. After polishing, 10 specimens were submitted to initial color readings (Easyshade, Vita) and 2 to analysis by scanning electronic microscopy (SEM). Afterwards, the teeth were submitted to AAA for 384 h, which corresponds to 1 year of clinical use, after which new color readings and microscopic images were obtained. The values obtained for the color analysis were submitted to statistical analysis (1-way ANOVA, Tukey, p<0.05). With regard to color stability, it was verified that all the composites showed color alteration above the clinically acceptable levels (ΔE ≥ 3.3), and that the silorane-based composite showed higher ΔE (18.6), with a statistically significant difference in comparison with the other composites (p<0.05). The SEM images showed small alterations for the dimethacrylate-based composites after AAA and extensive degradation for the silorane-based composite with a rupture at the interface between the matrix/particle. It may be concluded that the silorane-based composite underwent greater alteration with regard to color stability and greater surface and tooth/restoration interface degradation after AAA. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schmit, Joanna; Novak, Matt; Bui, Son
2015-09-01
3D microscopes based on white light interference (WLI) provide precise measurement for the topography of engineering surfaces. However, the display of an object in its true colors as observed under white illumination is often desired; this traditionally has presented a challenge for WLI-based microscopes. Such 3D color display is appealing to the eye and great for presentations, and also provides fast evaluation of certain characteristics like defects, delamination, or deposition of different materials. Determination of color as observed by interferometric objectives is not straightforward; we will present how color imaging capabilities similar to an ordinary microscope can be obtained in interference microscopes based on WLI and we will give measurement and imaging examples of a few industrial samples.
Fetterman, Adam K.; Liu, Tianwei; Robinson, Michael D.
2014-01-01
Objective The color psychology literature has made a convincing case that color is not just about aesthetics, but also about meaning. This work has involved situational manipulations of color, rendering it uncertain as to whether color-meaning associations can be used to characterize how people differ from each other. The present research focuses on the idea that the color red is linked to, or associated with, individual differences in interpersonal hostility. Method Across four studies (N = 376), red preferences and perceptual biases were measured along with individual differences in interpersonal hostility. Results It was found that: (a) a preference for the color red was higher as interpersonal hostility increased, (b) hostile people were biased to see the color red more frequently than non-hostile people, and (c) there was a relationship between a preference for the color red and hostile social decision-making. Conclusions These studies represent an important extension of the color psychology literature, highlighting the need to attend to person-based, as well as situation-based, factors. PMID:24393102
Fetterman, Adam K; Liu, Tianwei; Robinson, Michael D
2015-02-01
The color psychology literature has made a convincing case that color is not just about aesthetics, but also about meaning. This work has involved situational manipulations of color, rendering it uncertain as to whether color-meaning associations can be used to characterize how people differ from each other. The present research focuses on the idea that the color red is linked to, or associated with, individual differences in interpersonal hostility. Across four studies (N = 376 undergraduates), red preferences and perceptual biases were measured along with individual differences in interpersonal hostility. It was found that (a) a preference for the color red was higher as interpersonal hostility increased, (b) hostile people were biased to see the color red more frequently than nonhostile people, and (c) there was a relationship between a preference for the color red and hostile social decision making. These studies represent an important extension of the color psychology literature, highlighting the need to attend to person-based, as well as situation-based, factors. © 2014 Wiley Periodicals, Inc.
ALON GRIN optics for visible-MWIR applications
NASA Astrophysics Data System (ADS)
Nag, Nagendra; Jha, Santosh; Sastri, Suri; Goldman, Lee M.; McCarthy, Peter; Schmidt, Greg R.; Bentley, Julie L.; Moore, Duncan T.
2016-05-01
Surmet continuously strives to develop novel, advanced optical ceramics products for current and future defense and commercial systems. Using conventional powder processing techniques, Surmet has made substantial progress in its ability to manufacture large ALON® sensor windows, lenses, domes and transparent armor. In addition to transparency, Surmet has demonstrated the ability to incorporate other capabilities into its optical ceramic components, including: EMI shielding, heating, internal antennas and cooling channels. Working closely with the University of Rochester, Surmet has developed gradient index (GRIN) optics in ALON for use in the visible through the MWIR applications. Surmet has demonstrated the ability to tailor the refractive index of ALON® Optical Ceramic by either varying its composition or through the addition of dopants. Smooth axial and radial gradient profiles with ~0.055 change in refractive index, over depths of 1-8 mm (axial) and over 20 mm radius (radial) have been demonstrated. Initial design studies have shown that such elements provide unique capabilities. Radial gradients in particular, with their optical power contribution, provide additional degrees of freedom for color correction in broadband imaging systems. Surmet continues to mature ALON® GRIN technology along with the associated metrology. Surmet is committed to the development of its ALON® GRIN capability as well as finding insertion opportunities in novel imaging solutions for military and other commercial systems.
Leclaire, S.; White, J.; Arnoux, E.; Faivre, B.; Vetter, N.; Hatch, Shyla A.; Danchin, E.
2011-01-01
Carotenoid pigments are important for immunity and as antioxidants, and carotenoid-based colors are believed to provide honest signals of individual quality. Other colorless but more efficient antioxidants such as vitamins A and E may protect carotenoids from bleaching. Carotenoid-based colors have thus recently been suggested to reflect the concentration of such colorless antioxidants, but this has rarely been tested. Furthermore, although evidence is accruing for multiple genetic criteria for mate choice, carotenoid-based colors have rarely been shown to reflect both phenotypic and genetic quality. In this study, we investigated whether gape, tongue, eye-ring, and bill coloration of chick-rearing black-legged kittiwakes Rissa tridactyla reflected circulating levels of carotenoids and vitamins A and E. We further investigated whether integument coloration reflected phenotypic (body condition and fledging success) and genetic quality (heterozygosity). We found that the coloration of fleshy integuments was correlated with carotenoid and vitamin A levels and fledging success but only in males. Furthermore, the coloration of tongue and eye-ring was correlated with heterozygosity in both males and females. Integument colors might therefore be reliable signals of individual quality used by birds to adjust their parental care during the chick-rearing period. ?? Springer-Verlag 2011.
Single-wavelength based rice leaf color analyzer for nitrogen status estimation
NASA Astrophysics Data System (ADS)
Sumriddetchkajorn, Sarun; Intaravanne, Yuttana
2014-02-01
With the need of a tool for efficient nitrogen (N) fertilizer management in the rice field, this paper proposes a low-cost compact single-wavelength based colorimeter that can be used to indicate the specified six color levels of a rice leaf associated with the desired amount of N fertilizer for the rice field. Our key design is in a reflective optical architecture that allows us to investigate the amount of light scattered from only one side of the rice leaf. We also show how we implement this needed rice leaf color analyzer by integrating an off-the-shelf 562-nm wavelength light emitting diode (LED), a silicon photodiode, an 8-bit microcontroller, and a 6×1 LED panel in a compact plastic package. Field test results in rice fields confirm that leaf color levels of 1, 2, 3, 5, and 6 are effectively identified and their corresponding amount of N fertilizer can be determined. For the leaf color level of 4, our single-wavelength based rice leaf color analyzer sometimes indicates a higher color level of 5 whose suggested amount of N fertilizer is equal to that for the leaf color level of 4. Other key features include ease of use and upgradability for different color levels.
Robust photometric invariant features from the color tensor.
van de Weijer, Joost; Gevers, Theo; Smeulders, Arnold W M
2006-01-01
Luminance-based features are widely used as low-level input for computer vision applications, even when color data is available. The extension of feature detection to the color domain prevents information loss due to isoluminance and allows us to exploit the photometric information. To fully exploit the extra information in the color data, the vector nature of color data has to be taken into account and a sound framework is needed to combine feature and photometric invariance theory. In this paper, we focus on the structure tensor, or color tensor, which adequately handles the vector nature of color images. Further, we combine the features based on the color tensor with photometric invariant derivatives to arrive at photometric invariant features. We circumvent the drawback of unstable photometric invariants by deriving an uncertainty measure to accompany the photometric invariant derivatives. The uncertainty is incorporated in the color tensor, hereby allowing the computation of robust photometric invariant features. The combination of the photometric invariance theory and tensor-based features allows for detection of a variety of features such as photometric invariant edges, corners, optical flow, and curvature. The proposed features are tested for noise characteristics and robustness to photometric changes. Experiments show that the proposed features are robust to scene incidental events and that the proposed uncertainty measure improves the applicability of full invariants.
Attention-based long-lasting sensitization and suppression of colors.
Tseng, Chia-Huei; Vidnyanszky, Zoltan; Papathomas, Thomas; Sperling, George
2010-02-22
In contrast to the short-duration and quick reversibility of attention, a long-term sensitization to color based on protracted attention in a visual search task was reported by Tseng, Gobell, and Sperling (2004). When subjects were trained for a few hours to search for a red object among colored distracters, sensitivity to red was increased for weeks. This sensitization was quantified using ambiguous motion displays containing isoluminant red-green and texture-contrast gratings, in which the perceived motion-direction depended both on the attended color and on the relative red-green saturation. Such long-term effects could result from either sensitization of the attended color, or suppression of unattended colors, or a combination of the two. Here we unconfound these effects by eliminating one of the paired colors of the motion display from the search task. The other paired color in the motion display can then be either a target or a distracter in the search task. Thereby, we separately measure the effect of attention on sensitizing the target color or suppressing distracter colors. The results indicate that only sensitization of the target color in the search task is statistically significant for the present experimental conditions. We conclude that selective attention to a color in our visual search task caused long-term sensitization to the attended color but not significant long-term suppression of the unattended color. Copyright 2009 Elsevier Ltd. All rights reserved.
ON A POSSIBLE SIZE/COLOR RELATIONSHIP IN THE KUIPER BELT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pike, R. E.; Kavelaars, J. J., E-mail: repike@uvic.ca
2013-10-01
Color measurements and albedo distributions introduce non-intuitive observational biases in size-color relationships among Kuiper Belt Objects (KBOs) that cannot be disentangled without a well characterized sample population with systematic photometry. Peixinho et al. report that the form of the KBO color distribution varies with absolute magnitude, H. However, Tegler et al. find that KBO color distributions are a property of object classification. We construct synthetic models of observed KBO colors based on two B-R color distribution scenarios: color distribution dependent on H magnitude (H-Model) and color distribution based on object classification (Class-Model). These synthetic B-R color distributions were modified tomore » account for observational flux biases. We compare our synthetic B-R distributions to the observed ''Hot'' and ''Cold'' detected objects from the Canada-France Ecliptic Plane Survey and the Meudon Multicolor Survey. For both surveys, the Hot population color distribution rejects the H-Model, but is well described by the Class-Model. The Cold objects reject the H-Model, but the Class-Model (while not statistically rejected) also does not provide a compelling match for data. Although we formally reject models where the structure of the color distribution is a strong function of H magnitude, we also do not find that a simple dependence of color distribution on orbit classification is sufficient to describe the color distribution of classical KBOs.« less
MR-based field-of-view extension in MR/PET: B0 homogenization using gradient enhancement (HUGE).
Blumhagen, Jan O; Ladebeck, Ralf; Fenchel, Matthias; Scheffler, Klaus
2013-10-01
In whole-body MR/PET, the human attenuation correction can be based on the MR data. However, an MR-based field-of-view (FoV) is limited due to physical restrictions such as B0 inhomogeneities and gradient nonlinearities. Therefore, for large patients, the MR image and the attenuation map might be truncated and the attenuation correction might be biased. The aim of this work is to explore extending the MR FoV through B0 homogenization using gradient enhancement in which an optimal readout gradient field is determined to locally compensate B0 inhomogeneities and gradient nonlinearities. A spin-echo-based sequence was developed that computes an optimal gradient for certain regions of interest, for example, the patient's arms. A significant distortion reduction was achieved outside the normal MR-based FoV. This FoV extension was achieved without any hardware modifications. In-plane distortions in a transaxially extended FoV of up to 600 mm were analyzed in phantom studies. In vivo measurements of the patient's arms lying outside the normal specified FoV were compared with and without the use of B0 homogenization using gradient enhancement. In summary, we designed a sequence that provides data for reducing the image distortions due to B0 inhomogeneities and gradient nonlinearities and used the data to extend the MR FoV. Copyright © 2011 Wiley Periodicals, Inc.
Effects of buoyancy-driven convection on nucleation and growth of protein crystals.
Nanev, Christo N; Penkova, Anita; Chayen, Naomi
2004-11-01
Protein crystallization has been studied in presence or absence of buoyancy-driven convection. Gravity-driven flow was created, or suppressed, in protein solutions by means of vertically directed density gradients that were caused by generating suitable temperature gradients. The presence of enhanced mixing was demonstrated directly by experiments with crustacyanin, a blue-colored protein, and other materials. Combined with the vertical tube position the enhanced convection has two main effects. First, it reduces the number of nucleated hen-egg-white lysozyme (HEWL) crystals, as compared with those in a horizontal capillary. By enabling better nutrition from the protein in the solution, convection results in growth of fewer larger HEWL crystals. Second, we observe that due to convection, trypsin crystals grow faster. Suppression of convection, achieved by decreasing solution density upward in the capillary, can to some extent mimic conditions of growth in microgravity. Thus, impurity supply, which may have a detrimental effect on crystal quality, was avoided.
[Spatiotemporal characteristics of urban land expansion in central area of Shanghai, China].
Hu, Han-Wen; Wei, Ben-Sheng; Shen, Xing-Hua; Li, Jun-Xiang
2013-12-01
Using the high spatial resolution (2.5 m) color-infrared aerial photos acquired in 1989, 1994, 2000 and 2005, this paper analyzed the spatiotemporal characteristics of rapid urban expansion in central Shanghai with urban expansion intensity index and gradient analysis. Results showed that urban land use in Shanghai increased rapidly in a "pancake" style during the study period, and the anisotropic urban expansion moved the urban center 2.62 km toward southwest. The urban land use expansion intensity doubled and showed a rural-urban gradient. The most intensive urban expansion zone fell in the rural-urban transition zone, indicating the dominance of peripheral expansion as the primary urban expansion mode in Shanghai. However, the urban land use intensity decreased with time at the urban center. The primary driving forces of urban expansion included support from government policies and decision-making, enhanced economic activities, societal fixed assets investment, urban infrastructure investment, extension of transportation routes, as well as increase in urban population.
High gradient RF test results of S-band and C-band cavities for medical linear accelerators
NASA Astrophysics Data System (ADS)
Degiovanni, A.; Bonomi, R.; Garlasché, M.; Verdú-Andrés, S.; Wegner, R.; Amaldi, U.
2018-05-01
TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structures to direct the design of medical accelerators based on high gradient linacs. This paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.
Evaluation of parameters of color profile models of LCD and LED screens
NASA Astrophysics Data System (ADS)
Zharinov, I. O.; Zharinov, O. O.
2017-12-01
The purpose of the research relates to the problem of parametric identification of the color profile model of LCD (liquid crystal display) and LED (light emitting diode) screens. The color profile model of a screen is based on the Grassmann’s Law of additive color mixture. Mathematically the problem is to evaluate unknown parameters (numerical coefficients) of the matrix transformation between different color spaces. Several methods of evaluation of these screen profile coefficients were developed. These methods are based either on processing of some colorimetric measurements or on processing of technical documentation data.
A Low-Cost Real Color Picker Based on Arduino
Agudo, Juan Enrique; Pardo, Pedro J.; Sánchez, Héctor; Pérez, Ángel Luis; Suero, María Isabel
2014-01-01
Color measurements have traditionally been linked to expensive and difficult to handle equipment. The set of mathematical transformations that are needed to transfer a color that we observe in any object that doesn't emit its own light (which is usually called a color-object) so that it can be displayed on a computer screen or printed on paper is not at all trivial. This usually requires a thorough knowledge of color spaces, colorimetric transformations and color management systems. The TCS3414CS color sensor (I2C Sensor Color Grove), a system for capturing, processing and color management that allows the colors of any non-self-luminous object using a low-cost hardware based on Arduino, is presented in this paper. Specific software has been developed in Matlab and a study of the linearity of chromatic channels and accuracy of color measurements for this device has been undertaken. All used scripts (Arduino and Matlab) are attached as supplementary material. The results show acceptable accuracy values that, although obviously do not reach the levels obtained with the other scientific instruments, for the price difference they present a good low cost option. PMID:25004152
Color reproduction and processing algorithm based on real-time mapping for endoscopic images.
Khan, Tareq H; Mohammed, Shahed K; Imtiaz, Mohammad S; Wahid, Khan A
2016-01-01
In this paper, we present a real-time preprocessing algorithm for image enhancement for endoscopic images. A novel dictionary based color mapping algorithm is used for reproducing the color information from a theme image. The theme image is selected from a nearby anatomical location. A database of color endoscopy image for different location is prepared for this purpose. The color map is dynamic as its contents change with the change of the theme image. This method is used on low contrast grayscale white light images and raw narrow band images to highlight the vascular and mucosa structures and to colorize the images. It can also be applied to enhance the tone of color images. The statistic visual representation and universal image quality measures show that the proposed method can highlight the mucosa structure compared to other methods. The color similarity has been verified using Delta E color difference, structure similarity index, mean structure similarity index and structure and hue similarity. The color enhancement was measured using color enhancement factor that shows considerable improvements. The proposed algorithm has low and linear time complexity, which results in higher execution speed than other related works.
A low-cost real color picker based on Arduino.
Agudo, Juan Enrique; Pardo, Pedro J; Sánchez, Héctor; Pérez, Ángel Luis; Suero, María Isabel
2014-07-07
Color measurements have traditionally been linked to expensive and difficult to handle equipment. The set of mathematical transformations that are needed to transfer a color that we observe in any object that doesn't emit its own light (which is usually called a color-object) so that it can be displayed on a computer screen or printed on paper is not at all trivial. This usually requires a thorough knowledge of color spaces, colorimetric transformations and color management systems. The TCS3414CS color sensor (I2C Sensor Color Grove), a system for capturing, processing and color management that allows the colors of any non-self-luminous object using a low-cost hardware based on Arduino, is presented in this paper. Specific software has been developed in Matlab and a study of the linearity of chromatic channels and accuracy of color measurements for this device has been undertaken. All used scripts (Arduino and Matlab) are attached as supplementary material. The results show acceptable accuracy values that, although obviously do not reach the levels obtained with the other scientific instruments, for the price difference they present a good low cost option.
Number of perceptually distinct surface colors in natural scenes.
Marín-Franch, Iván; Foster, David H
2010-09-30
The ability to perceptually identify distinct surfaces in natural scenes by virtue of their color depends not only on the relative frequency of surface colors but also on the probabilistic nature of observer judgments. Previous methods of estimating the number of discriminable surface colors, whether based on theoretical color gamuts or recorded from real scenes, have taken a deterministic approach. Thus, a three-dimensional representation of the gamut of colors is divided into elementary cells or points which are spaced at one discrimination-threshold unit intervals and which are then counted. In this study, information-theoretic methods were used to take into account both differing surface-color frequencies and observer response uncertainty. Spectral radiances were calculated from 50 hyperspectral images of natural scenes and were represented in a perceptually almost uniform color space. The average number of perceptually distinct surface colors was estimated as 7.3 × 10(3), much smaller than that based on counting methods. This number is also much smaller than the number of distinct points in a scene that are, in principle, available for reliable identification under illuminant changes, suggesting that color constancy, or the lack of it, does not generally determine the limit on the use of color for surface identification.
NASA Astrophysics Data System (ADS)
Lee, Kyung Jae
2005-03-01
As an investigation of color categorization in language and perception, this research intends to study the affective associations between certain colors and different media content (i.e., movie genres). Compared to non-entertainment graphics (medical imaging and engineering graphics), entertainment graphics (video games and movies) are designed to deliver emotionally stimulating content to audiences. Based on an online color survey of 19 subjects, this study investigated whether or not subjects had different color preferences on diverse movie genres. Instead of providing predefined limited number of color chips (or pictures) as stimuli, this study was conducted by asking the subjects to visualize their own images of movie genres and to select their preferred colors through an online RGB color palette. By providing a combined application interface of three color slides (red, green, blue) and 216 digital color cells, the subjects were interactively able to select their preferred colors of different movie genres. To compare the distribution of movie genres, the user selected colors were mapped on CIE chromaticity diagram. This study also investigated preferred color naming of different movie genres as well as three primary color names of the subjects" most favorite genre. The results showed that the subjects had different color associations with specific movie genres as well as certain genres showed higher individual differences. Regardless of genre differences, the subjects selected blue, red or green as their three primary color names that represent their favorite movie genres. Also, the results supports Berlin & Kay"s eleven color terms.
NASA Technical Reports Server (NTRS)
Morrison, John R.; Sosik, Heidi M.
2003-01-01
Fronts in the coastal ocean describe areas of strong horizontal gradients in both physical and biological properties associated with tidal mixing and freshwater estuarine output (e.g. Simpson, 1981 and O Donnell, 1993). Related gradients in optically important constituents mean that fronts can be observed from space as changes in ocean color as well as sea surface temperature (e.g., Dupouy et al., 1986). This research program is designed to determine which processes and optically important constituents must be considered to explain ocean color variations associated with coastal fronts on the New England continental shelf, in particular the National Ocean Partnership Program (NOPP) Front Resolving Observational Network with Telemetry (FRONT) site. This site is located at the mouth of Long Island sound and was selected after the analysis of 12 years of AVHRR data showed the region to be an area of strong frontal activity (Ullman and Cornillon, 1999). FRONT consists of a network of modem nodes that link bottom mounted Acoustic Doppler Current Profilers (ADCPs) and profiling arrays. At the center of the network is the Autonomous Vertically Profiling Plankton Observatory (AVPPO) (Thwaites et al. 1998). The AVPPO consists of buoyant sampling vehicle and a trawl-resistant bottom-mounted enclosure, which holds a winch, the vehicle (when not sampling), batteries, and controller. Three sampling systems are present on the vehicle, a video plankton recorder, a CTD with accessory sensors, and a suite of bio-optical sensors including Satlantic OCI-200 and OCR-200 spectral radiometers and a WetLabs ac-9 dual path absorption and attenuation meter. At preprogrammed times the vehicle is released, floats to the surface, and is then winched back into the enclosure with power and data connection maintained through the winch cable. Communication to shore is possible through a bottom cable and nearby surface telemetry buoy, equipped with a mobile modem, giving the capability for near-real time data transmission and interactive sampling control.
Perceptual issues for color helmet-mounted displays: luminance and color contrast requirements
NASA Astrophysics Data System (ADS)
Harding, Thomas H.; Rash, Clarence E.; Lattimore, Morris R.; Statz, Jonathan; Martin, John S.
2016-05-01
Color is one of the latest design characteristics of helmet-mounted displays (HMDs). It's inclusion in design specifications is based on two suppositions: 1) color provides an additional method of encoding information, and 2) color provides a more realistic, and hence more intuitive, presentation of information, especially pilotage imagery. To some degree, these two perceived advantages have been validated with head-down panel-mounted displays, although not without a few problems associated with visual physiology and perception. These problems become more prevalent when the user population expands beyond military aviators to a general user population, of which a significant portion may have color vision deficiencies. When color is implemented in HMDs, which are eyes-out, see-through displays, visual perception issues become an increased concern. A major confound with HMDs is their inherent see-through (transparent) property. The result is color in the displayed image combines with color from the outside (or in-cockpit) world, possibly producing a false perception of either or both images. While human-factors derived guidelines based on trial and error have been developed, color HMD systems still place more emphasis on colorimetric than perceptual standards. This paper identifies the luminance and color contrast requirements for see-through HMDs. Also included is a discussion of ambient scene metrics and the choice of symbology color.
Brown, Angela M; Lindsey, Delwin T; Guckes, Kevin M
2011-01-01
The relation between colors and their names is a classic case-study for investigating the Sapir-Whorf hypothesis that categorical perception is imposed on perception by language. Here, we investigate the Sapir-Whorf prediction that visual search for a green target presented among blue distractors (or vice versa) should be faster than search for a green target presented among distractors of a different color of green (or for a blue target among different blue distractors). Gilbert, Regier, Kay & Ivry (2006) reported that this Sapir-Whorf effect is restricted to the right visual field (RVF), because the major brain language centers are in the left cerebral hemisphere. We found no categorical effect at the Green|Blue color boundary, and no categorical effect restricted to the RVF. Scaling of perceived color differences by Maximum Likelihood Difference Scaling (MLDS) also showed no categorical effect, including no effect specific to the RVF. Two models fit the data: a color difference model based on MLDS and a standard opponent-colors model of color discrimination based on the spectral sensitivities of the cones. Neither of these models, nor any of our data, suggested categorical perception of colors at the Green|Blue boundary, in either visual field. PMID:21980188
Implementation of a watershed algorithm on FPGAs
NASA Astrophysics Data System (ADS)
Zahirazami, Shahram; Akil, Mohamed
1998-10-01
In this article we present an implementation of a watershed algorithm on a multi-FPGA architecture. This implementation is based on an hierarchical FIFO. A separate FIFO for each gray level. The gray scale value of a pixel is taken for the altitude of the point. In this way we look at the image as a relief. We proceed by a flooding step. It's like as we immerse the relief in a lake. The water begins to come up and when the water of two different catchment basins reach each other, we will construct a separator or a `Watershed'. This approach is data dependent, hence the process time is different for different images. The H-FIFO is used to guarantee the nature of immersion, it means that we need two types of priority. All the points of an altitude `n' are processed before any point of altitude `n + 1'. And inside an altitude water propagates with a constant velocity in all directions from the source. This operator needs two images as input. An original image or it's gradient and the marker image. A classic way to construct the marker image is to build an image of minimal regions. Each minimal region has it's unique label. This label is the color of the water and will be used to see whether two different water touch each other. The algorithm at first fill the hierarchy FIFO with neighbors of all the regions who are not colored. Next it fetches the first pixel from the first non-empty FIFO and treats this pixel. This pixel will take the color of its neighbor, and all the neighbors who are not already in the H-FIFO are put in their correspondent FIFO. The process is over when the H-FIFO is empty. The result is a segmented and labeled image.
M Dwarfs from Hubble Space Telescope Star Counts. IV.
NASA Astrophysics Data System (ADS)
Zheng, Zheng; Flynn, Chris; Gould, Andrew; Bahcall, John N.; Salim, Samir
2001-07-01
We study a sample of about 1400 disk M dwarfs that are found in 148 fields observed with the Wide Field Camera 2 (WFC2) on the Hubble Space Telescope and 162 fields observed with pre-repair Planetary Camera 1 (PC1), of which 95 of the WFC2 fields are newly analyzed. The method of maximum likelihood is applied to derive the luminosity function and the Galactic disk parameters. At first, we use a local color-magnitude relation and a locally determined mass-luminosity relation in our analysis. The results are consistent with those of previous work but with considerably reduced statistical errors. These small statistical errors motivate us to investigate the systematic uncertainties. Considering the metallicity gradient above the Galactic plane, we introduce a modified color-magnitude relation that is a function of Galactic height. The resultant M dwarf luminosity function has a shape similar to that derived using the local color-magnitude relation but with a higher peak value. The peak occurs at MV~12, and the luminosity function drops sharply toward MV~14. We then apply a height-dependent mass-luminosity function interpolated from theoretical models with different metallicities to calculate the mass function. Unlike the mass function obtained using local relations, which has a power-law index α=0.47, the one derived from the height-dependent relations tends to be flat (α=-0.10). The resultant local surface density of disk M dwarfs (12.2+/-1.6 Msolar pc-2) is somewhat smaller than the one obtained using local relations (14.3+/-1.3 Msolar pc-2). Our measurement favors a short disk scale length, H=2.75+/-0.16 (statistical)+/-0.25 (systematic) kpc. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.
Gradient waveform pre-emphasis based on the gradient system transfer function.
Stich, Manuel; Wech, Tobias; Slawig, Anne; Ringler, Ralf; Dewdney, Andrew; Greiser, Andreas; Ruyters, Gudrun; Bley, Thorsten A; Köstler, Herbert
2018-02-25
The gradient system transfer function (GSTF) has been used to describe the distorted k-space trajectory for image reconstruction. The purpose of this work was to use the GSTF to determine the pre-emphasis for an undistorted gradient output and intended k-space trajectory. The GSTF of the MR system was determined using only standard MR hardware without special equipment such as field probes or a field camera. The GSTF was used for trajectory prediction in image reconstruction and for a gradient waveform pre-emphasis. As test sequences, a gradient-echo sequence with phase-encoding gradient modulation and a gradient-echo sequence with a spiral read-out trajectory were implemented and subsequently applied on a structural phantom and in vivo head measurements. Image artifacts were successfully suppressed by applying the GSTF-based pre-emphasis. Equivalent results are achieved with images acquired using GSTF-based post-correction of the trajectory as a part of image reconstruction. In contrast, the pre-emphasis approach allows reconstruction using the initially intended trajectory. The artifact suppression shown for two sequences demonstrates that the GSTF can serve for a novel pre-emphasis. A pre-emphasis based on the GSTF information can be applied to any arbitrary sequence type. © 2018 International Society for Magnetic Resonance in Medicine.
USDA-ARS?s Scientific Manuscript database
ABSTRACT The effect of vacuum-tumbling marination on meat color and pH was evaluated in early-deboned chicken breast fillets with different color attributes or color lightness. Broiler breast fillets deboned at 2 h postmortem (PM) were collected from a commercial processing plant based on visual c...
Is crypsis a common defensive strategy in plants?
2010-01-01
Color is a common feature of animal defense. Herbivorous insects are often colored in shades of green similar to their preferred food plants, making them difficult for predators to locate. Other insects advertise their presence with bright colors after they sequester enough toxins from their food plants to make them unpalatable. Some insects even switch between cryptic and aposomatic coloration during development.1 Although common in animals, quantitative evidence for color-based defense in plants is rare. After all, the primary function of plant leaves is to absorb light for photosynthesis, rather than reflect light in ways that alter their appearance to herbivores. However, recent research is beginning to challenge the notion that color-based defence is restricted to animals. PMID:20592801
NASA Astrophysics Data System (ADS)
Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan
2017-03-01
Digital pathology and telepathology require imaging tools with high-throughput, high-resolution and accurate color reproduction. Lens-free on-chip microscopy based on digital in-line holography is a promising technique towards these needs, as it offers a wide field of view (FOV >20 mm2) and high resolution with a compact, low-cost and portable setup. Color imaging has been previously demonstrated by combining reconstructed images at three discrete wavelengths in the red, green and blue parts of the visible spectrum, i.e., the RGB combination method. However, this RGB combination method is subject to color distortions. To improve the color performance of lens-free microscopy for pathology imaging, here we present a wavelet-based color fusion imaging framework, termed "digital color fusion microscopy" (DCFM), which digitally fuses together a grayscale lens-free microscope image taken at a single wavelength and a low-resolution and low-magnification color-calibrated image taken by a lens-based microscope, which can simply be a mobile phone based cost-effective microscope. We show that the imaging results of an H&E stained breast cancer tissue slide with the DCFM technique come very close to a color-calibrated microscope using a 40x objective lens with 0.75 NA. Quantitative comparison showed 2-fold reduction in the mean color distance using the DCFM method compared to the RGB combination method, while also preserving the high-resolution features of the lens-free microscope. Due to the cost-effective and field-portable nature of both lens-free and mobile-phone microscopy techniques, their combination through the DCFM framework could be useful for digital pathology and telepathology applications, in low-resource and point-of-care settings.
Kim, Jin-Cheol; Yu, Bin; Lee, Yong-Keun
2008-12-01
To determine the changes in color parameters of Vitapan 3D-Master shade guide tabs by a spectrophotometer (SP) or a spectroradiometer (SR), and by the removal of the surface layer of the tabs that was performed to make a flat measuring surface for the SP color measurement. Color of the shade tabs was measured before and after removing the surface layer of the tabs using SP and SR. Correlations between the color parameters between the original (OR) and the surface layer removed (RM) tabs and between the SP and the SR measurements were determined (alpha=0.05). Based on SP, the lightness, chroma, CIE a* and b* values measured after the surface layer removal were higher than those of the original tabs except a few cases. Based on SR, the chroma and CIE a* and b* values measured after surface layer removal were higher than those of the original tabs except a few cases; however, in case of the lightness, the changes varied by the shade designation. Type of instrument influenced the changes in color parameters based on paired t-test (p<0.05). The color parameters of the OR and RM tabs showed correlations based on both SP and SR measurements (r=0.952-0.997 and p<0.01); however, color difference between the SP-RM and SR-OR tabs was in the range of 18.1-27.0 DeltaE(ab)(*) units (mean: 23.3+/-2.2). When the color of tooth-shaped objects is measured with a spectrophotometer or a spectroradiometer, measurement protocols should be specified because color difference by the surface layer removal and the instrument was high.
Preference for Color and Form in Preschoolers as Related to Color and Form Differentiation
ERIC Educational Resources Information Center
Melkman, Rachel; And Others
1976-01-01
The preference for color or form as bases for similarity judgments among preschoolers (ages 2-5) and its relationship to the differentiation of form and color concepts as indexed by discrimination, identification, and labeling were investigated. (SB)
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Color. 29.1005 Section 29.1005 Agriculture Regulations... Type 92) § 29.1005 Color. The third factor of a grade based on the relative hues, saturations or chromas, and color values common to the type. ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Color. 29.3508 Section 29.3508 Agriculture Regulations... Type 95) § 29.3508 Color. The third factor of a grade based on the relative hues, saturations or chromas, and color values common to the type. ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Color. 29.1005 Section 29.1005 Agriculture Regulations... Type 92) § 29.1005 Color. The third factor of a grade based on the relative hues, saturations or chromas, and color values common to the type. ...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Color. 29.3508 Section 29.3508 Agriculture Regulations... Type 95) § 29.3508 Color. The third factor of a grade based on the relative hues, saturations or chromas, and color values common to the type. ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Color. 29.3508 Section 29.3508 Agriculture Regulations... Type 95) § 29.3508 Color. The third factor of a grade based on the relative hues, saturations or chromas, and color values common to the type. ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Color. 29.3508 Section 29.3508 Agriculture Regulations... Type 95) § 29.3508 Color. The third factor of a grade based on the relative hues, saturations or chromas, and color values common to the type. ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Color. 29.1005 Section 29.1005 Agriculture Regulations... Type 92) § 29.1005 Color. The third factor of a grade based on the relative hues, saturations or chromas, and color values common to the type. ...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Color. 29.1005 Section 29.1005 Agriculture Regulations... Type 92) § 29.1005 Color. The third factor of a grade based on the relative hues, saturations or chromas, and color values common to the type. ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Color. 29.3508 Section 29.3508 Agriculture Regulations... Type 95) § 29.3508 Color. The third factor of a grade based on the relative hues, saturations or chromas, and color values common to the type. ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Color. 29.1005 Section 29.1005 Agriculture Regulations... Type 92) § 29.1005 Color. The third factor of a grade based on the relative hues, saturations or chromas, and color values common to the type. ...
Near-Infrared Coloring via a Contrast-Preserving Mapping Model.
Chang-Hwan Son; Xiao-Ping Zhang
2017-11-01
Near-infrared gray images captured along with corresponding visible color images have recently proven useful for image restoration and classification. This paper introduces a new coloring method to add colors to near-infrared gray images based on a contrast-preserving mapping model. A naive coloring method directly adds the colors from the visible color image to the near-infrared gray image. However, this method results in an unrealistic image because of the discrepancies in the brightness and image structure between the captured near-infrared gray image and the visible color image. To solve the discrepancy problem, first, we present a new contrast-preserving mapping model to create a new near-infrared gray image with a similar appearance in the luminance plane to the visible color image, while preserving the contrast and details of the captured near-infrared gray image. Then, we develop a method to derive realistic colors that can be added to the newly created near-infrared gray image based on the proposed contrast-preserving mapping model. Experimental results show that the proposed new method not only preserves the local contrast and details of the captured near-infrared gray image, but also transfers the realistic colors from the visible color image to the newly created near-infrared gray image. It is also shown that the proposed near-infrared coloring can be used effectively for noise and haze removal, as well as local contrast enhancement.
Eye guidance during real-world scene search: The role color plays in central and peripheral vision.
Nuthmann, Antje; Malcolm, George L
2016-01-01
The visual system utilizes environmental features to direct gaze efficiently when locating objects. While previous research has isolated various features' contributions to gaze guidance, these studies generally used sparse displays and did not investigate how features facilitated search as a function of their location on the visual field. The current study investigated how features across the visual field--particularly color--facilitate gaze guidance during real-world search. A gaze-contingent window followed participants' eye movements, restricting color information to specified regions. Scene images were presented in full color, with color in the periphery and gray in central vision or gray in the periphery and color in central vision, or in grayscale. Color conditions were crossed with a search cue manipulation, with the target cued either with a word label or an exact picture. Search times increased as color information in the scene decreased. A gaze-data based decomposition of search time revealed color-mediated effects on specific subprocesses of search. Color in peripheral vision facilitated target localization, whereas color in central vision facilitated target verification. Picture cues facilitated search, with the effects of cue specificity and scene color combining additively. When available, the visual system utilizes the environment's color information to facilitate different real-world visual search behaviors based on the location within the visual field.
Generation of double pulses at the Shanghai soft X-ray free electron laser facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhen; Feng, Chao; Gu, Qiang
2017-01-28
In this paper, we present the promise of a new method generating double electron pulses with the picosecond-scale pulse length and the tunable interpulse spacing at several picoseconds, which has been witnessed an impressive potential of application in pump-probe techniques, two-color X-ray free electron laser (FEL), high-gradient witness bunch acceleration in a plasma, etc. Three-dimensional simulations are carried out to analyze the dynamic of the electron beam in the linear accelerator. Some comparisons have been made between the new method and the existing ways as well.
Cho, Hui Hun; Kim, Si Hyun; Heo, Jun Hyuk; Moon, Young Eel; Choi, Young Hun; Lim, Dong Cheol; Han, Kwon-Hoon; Lee, Jung Heon
2016-06-21
We report the development of a colorimetric sensor that allows for the quantitative measurement of the acid content via acid-base titration in a single-step. In order to create the sensor, we used a cobalt coordination system (Co-complex sensor) that changes from greenish blue colored Co(H2O)4(OH)2 to pink colored Co(H2O)6(2+) after neutralization. Greenish blue and pink are two complementary colors with a strong contrast. As a certain amount of acid is introduced to the Co-complex sensor, a portion of greenish blue colored Co(H2O)4(OH)2 changes to pink colored Co(H2O)6(2+), producing a different color. As the ratio of greenish blue and pink in the Co-complex sensor is determined by the amount of neutralization reaction occurring between Co(H2O)4(OH)2 and an acid, the sensor produced a spectrum of green, yellow green, brown, orange, and pink colors depending on the acid content. In contrast, the color change appeared only beyond the end point for normal acid-base titration. When we mixed this Co-complex sensor with different concentrations of citric acid, tartaric acid, and malic acid, three representative organic acids in fruits, we observed distinct color changes for each sample. This color change could also be observed in real fruit juice. When we treated the Co-complex sensor with real tangerine juice, it generated diverse colors depending on the concentration of citric acid in each sample. These results provide a new angle on simple but quantitative measurements of analytes for on-site usage in various applications, such as in food, farms, and the drug industry.
Abed Kahnamouei, Mehdi; Gholizadeh, Sarah; Rikhtegaran, Sahand; Daneshpooy, Mehdi; Kimyai, Soodabeh; Alizadeh Oskoee, Parnian; Rezaei, Yashar
2017-01-01
Background. The aim of this study was to investigate the effect of preheating methacrylate- and silorane-based composite resins on their color stability up to 40 times at 55‒60°C. Methods. Seventy-six methacrylate and silorane-based composite resin samples, with a diameter of 10 mm and a height of 2 mm, were divided into 4 groups (n=19). After the samples were prepared, their color parameters were determined using a reflective spectrophotometer. The composite resin samples were separately stored in a solution of tea for 40 consecutive days. Then the samples underwent a color determination procedure again using a spectrophotometer and color changes were recorded. Finally two-way ANOVA was used to study the effect of composite temperature on its staining (P<0.05). Independent-samples t-test was used to evaluate changes in conversion rates of preheated composite resin samples compared to non-heated samples at P=0.005 and P=0.029 for silorane-based and Z250 composite resin samples, respectively. Results. Both composite resin type (P=0.014) and preheating (P<0.001) had significant effects on ΔE. Conclusion. Repeated preheating of methacrylate- and silorane-based composite resin samples, up to 55‒60°C for 40 rounds, resulted in more color changes compared with unheated composite resin samples. After storage in a solution of tea the color change rate in the composite resin samples of silorane-based was higher than the Z250 composite resin samples.
A new computer-based Farnsworth Munsell 100-hue test for evaluation of color vision.
Ghose, Supriyo; Parmar, Twinkle; Dada, Tanuj; Vanathi, Murugesan; Sharma, Sourabh
2014-08-01
To evaluate a computer-based Farnsworth-Munsell (FM) 100-hue test and compare it with a manual FM 100-hue test in normal and congenital color-deficient individuals. Fifty color defective subjects and 200 normal subjects with a best-corrected visual acuity ≥ 6/12 were compared using a standard manual FM 100-hue test and a computer-based FM 100-hue test under standard operating conditions as recommended by the manufacturer after initial trial testing. Parameters evaluated were total error scores (TES), type of defect and testing time. Pearson's correlation coefficient was used to determine the relationship between the test scores. Cohen's kappa was used to assess agreement of color defect classification between the two tests. A receiver operating characteristic curve was used to determine the optimal cut-off score for the computer-based FM 100-hue test. The mean time was 16 ± 1.5 (range 6-20) min for the manual FM 100-hue test and 7.4 ± 1.4 (range 5-13) min for the computer-based FM 100-hue test, thus reducing testing time to <50 % (p < 0.05). For grading color discrimination, Pearson's correlation coefficient for TES between the two tests was 0.91 (p < 0.001). For color defect classification, Cohen's agreement coefficient was 0.98 (p < 0.01). The computer-based FM 100-hue is an effective and rapid method for detecting, classifying and grading color vision anomalies.
Effect of preheat repetition on color stability of methacrylate- and silorane-based composite resins
Abed Kahnamouei, Mehdi; Gholizadeh, Sarah; Rikhtegaran, Sahand; Daneshpooy, Mehdi; Kimyai, Soodabeh; Alizadeh Oskoee, Parnian; Rezaei, Yashar
2017-01-01
Background. The aim of this study was to investigate the effect of preheating methacrylate- and silorane-based composite resins on their color stability up to 40 times at 55‒60°C. Methods. Seventy-six methacrylate and silorane-based composite resin samples, with a diameter of 10 mm and a height of 2 mm, were divided into 4 groups (n=19). After the samples were prepared, their color parameters were determined using a reflective spectrophotometer. The composite resin samples were separately stored in a solution of tea for 40 consecutive days. Then the samples underwent a color determination procedure again using a spectrophotometer and color changes were recorded. Finally two-way ANOVA was used to study the effect of composite temperature on its staining (P<0.05). Independent-samples t-test was used to evaluate changes in conversion rates of preheated composite resin samples compared to non-heated samples at P=0.005 and P=0.029 for silorane-based and Z250 composite resin samples, respectively. Results. Both composite resin type (P=0.014) and preheating (P<0.001) had significant effects on ΔE. Conclusion. Repeated preheating of methacrylate- and silorane-based composite resin samples, up to 55‒60°C for 40 rounds, resulted in more color changes compared with unheated composite resin samples. After storage in a solution of tea the color change rate in the composite resin samples of silorane-based was higher than the Z250 composite resin samples. PMID:29354248
High gradient RF test results of S-band and C-band cavities for medical linear accelerators
Degiovanni, A.; Bonomi, R.; Garlasche, M.; ...
2018-02-09
TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structuresmore » to direct the design of medical accelerators based on high gradient linacs. Lastly, this paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.« less
High gradient RF test results of S-band and C-band cavities for medical linear accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degiovanni, A.; Bonomi, R.; Garlasche, M.
TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structuresmore » to direct the design of medical accelerators based on high gradient linacs. Lastly, this paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.« less
Transforming reflectance spectra into Munsell color space by using prime colors.
Romney, A Kimball; Fulton, James T
2006-10-17
Independent researchers have proved mathematically that, given a set of color-matching functions, there exists a unique set of three monochromatic spectral lights that optimizes luminous efficiency and color gamut. These lights are called prime colors. We present a method for transforming reflectance spectra into Munsell color space by using hypothetical absorbance curves based on Gaussian approximations of the prime colors and a simplified version of opponent process theory. The derived color appearance system is represented as a 3D color system that is qualitatively similar to a conceptual representation of the Munsell color system. We illustrate the application of the model and compare it with existing models by using reflectance spectra obtained from 1,269 Munsell color samples.
Volumetric display containing multiple two-dimensional color motion pictures
NASA Astrophysics Data System (ADS)
Hirayama, R.; Shiraki, A.; Nakayama, H.; Kakue, T.; Shimobaba, T.; Ito, T.
2014-06-01
We have developed an algorithm which can record multiple two-dimensional (2-D) gradated projection patterns in a single three-dimensional (3-D) object. Each recorded pattern has the individual projected direction and can only be seen from the direction. The proposed algorithm has two important features: the number of recorded patterns is theoretically infinite and no meaningful pattern can be seen outside of the projected directions. In this paper, we expanded the algorithm to record multiple 2-D projection patterns in color. There are two popular ways of color mixing: additive one and subtractive one. Additive color mixing used to mix light is based on RGB colors and subtractive color mixing used to mix inks is based on CMY colors. We made two coloring methods based on the additive mixing and subtractive mixing. We performed numerical simulations of the coloring methods, and confirmed their effectiveness. We also fabricated two types of volumetric display and applied the proposed algorithm to them. One is a cubic displays constructed by light-emitting diodes (LEDs) in 8×8×8 array. Lighting patterns of LEDs are controlled by a microcomputer board. The other one is made of 7×7 array of threads. Each thread is illuminated by a projector connected with PC. As a result of the implementation, we succeeded in recording multiple 2-D color motion pictures in the volumetric displays. Our algorithm can be applied to digital signage, media art and so forth.
Stork Color Proofing Technology
NASA Astrophysics Data System (ADS)
Ekman, C. Frederick
1989-04-01
For the past few years, Stork Colorproofing B.V. has been marketing an analog color proofing system in Europe based on electrophoto-graphic technology it pioneered for the purpose of high resolution, high fidelity color imaging in the field of the Graphic Arts. Based in part on this technology, it will make available on a commercial basis a digital color proofing system in 1989. Proofs from both machines will provide an exact reference for the user and will look, feel, and behave in a reproduction sense like the printed press sheet.
A deblocking algorithm based on color psychology for display quality enhancement
NASA Astrophysics Data System (ADS)
Yeh, Chia-Hung; Tseng, Wen-Yu; Huang, Kai-Lin
2012-12-01
This article proposes a post-processing deblocking filter to reduce blocking effects. The proposed algorithm detects blocking effects by fusing the results of Sobel edge detector and wavelet-based edge detector. The filtering stage provides four filter modes to eliminate blocking effects at different color regions according to human color vision and color psychology analysis. Experimental results show that the proposed algorithm has better subjective and objective qualities for H.264/AVC reconstructed videos when compared to several existing methods.
A conflict-based model of color categorical perception: evidence from a priming study.
Hu, Zhonghua; Hanley, J Richard; Zhang, Ruiling; Liu, Qiang; Roberson, Debi
2014-10-01
Categorical perception (CP) of color manifests as faster or more accurate discrimination of two shades of color that straddle a category boundary (e.g., one blue and one green) than of two shades from within the same category (e.g., two different shades of green), even when the differences between the pairs of colors are equated according to some objective metric. The results of two experiments provide new evidence for a conflict-based account of this effect, in which CP is caused by competition between visual and verbal/categorical codes on within-category trials. According to this view, conflict arises because the verbal code indicates that the two colors are the same, whereas the visual code indicates that they are different. In Experiment 1, two shades from the same color category were discriminated significantly faster when the previous trial also comprised a pair of within-category colors than when the previous trial comprised a pair from two different color categories. Under the former circumstances, the CP effect disappeared. According to the conflict-based model, response conflict between visual and categorical codes during discrimination of within-category pairs produced an adjustment of cognitive control that reduced the weight given to the categorical code relative to the visual code on the subsequent trial. Consequently, responses on within-category trials were facilitated, and CP effects were reduced. The effectiveness of this conflict-based account was evaluated in comparison with an alternative view that CP reflects temporary warping of perceptual space at the boundaries between color categories.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Color. 29.3010 Section 29.3010 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Color. The third factor of a grade, based on the relative hues, saturations or chroma, and color values...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Color. 29.3010 Section 29.3010 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Color. The third factor of a grade, based on the relative hues, saturations or chroma, and color values...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Color. 29.3010 Section 29.3010 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Color. The third factor of a grade, based on the relative hues, saturations or chroma, and color values...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Color. 29.3010 Section 29.3010 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Color. The third factor of a grade, based on the relative hues, saturations or chroma, and color values...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Color. 29.3010 Section 29.3010 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Color. The third factor of a grade, based on the relative hues, saturations or chroma, and color values...
Pressure gradients fail to predict diffusio-osmosis
NASA Astrophysics Data System (ADS)
Liu, Yawei; Ganti, Raman; Frenkel, Daan
2018-05-01
We present numerical simulations of diffusio-osmotic flow, i.e. the fluid flow generated by a concentration gradient along a solid-fluid interface. In our study, we compare a number of distinct approaches that have been proposed for computing such flows and compare them with a reference calculation based on direct, non-equilibrium molecular dynamics simulations. As alternatives, we consider schemes that compute diffusio-osmotic flow from the gradient of the chemical potentials of the constituent species and from the gradient of the component of the pressure tensor parallel to the interface. We find that the approach based on treating chemical potential gradients as external forces acting on various species agrees with the direct simulations, thereby supporting the approach of Marbach et al (2017 J. Chem. Phys. 146 194701). In contrast, an approach based on computing the gradients of the microscopic pressure tensor does not reproduce the direct non-equilibrium results.
New Windows based Color Morphological Operators for Biomedical Image Processing
NASA Astrophysics Data System (ADS)
Pastore, Juan; Bouchet, Agustina; Brun, Marcel; Ballarin, Virginia
2016-04-01
Morphological image processing is well known as an efficient methodology for image processing and computer vision. With the wide use of color in many areas, the interest on the color perception and processing has been growing rapidly. Many models have been proposed to extend morphological operators to the field of color images, dealing with some new problems not present previously in the binary and gray level contexts. These solutions usually deal with the lattice structure of the color space, or provide it with total orders, to be able to define basic operators with required properties. In this work we propose a new locally defined ordering, in the context of window based morphological operators, for the definition of erosions-like and dilation-like operators, which provides the same desired properties expected from color morphology, avoiding some of the drawbacks of the prior approaches. Experimental results show that the proposed color operators can be efficiently used for color image processing.
Impact of background on color, transmittance, and fluorescence of leucite based ceramics.
Rafael, Caroline Freitas; Güth, Jan-Frederik; Kauling, Ana Elisa Colle; Cesar, Paulo Francisco; Volpato, Claudia Angelo Mazieiro; Liebermann, Anja
2017-07-26
This study evaluated the impact of tooth shade on differences in color (∆E), lightness (∆L), chromaticity coordinates a*/b* (∆a and ∆b), transmittance and the degree of fluorescence of CAD/CAM leucite based ceramic (LBC). Ten disks were fabricated of LBC; Empress CAD, A2, thickness of 1.5 mm and eight disks of resin-nano-ceramic (RNC; Lava Ultimate) in different colors to simulate variations in substrate shade. The associations of LBC disks with different color substrates were analyzed with a spectrophotometer; ∆E, ∆L*, ∆a*, ∆b*, and transmittance were measured and calculated. Fluorescence was evaluated with a fluorescence system (Fluorescence System, Biopdi). All substrate shades influenced the optical properties of LBC, with regard to color, luminosity, coordinate a* and b*, transmittance, and fluorescence (p<0.001). Substrate colors with high saturation (A3.5 and C2) presented highest impact, whereas colors with lowest saturations (BL, B1) showed less impact. Substrate color influenced the optical properties of ceramic restorations.
NASA Astrophysics Data System (ADS)
Jovanović, J.; Petronijević, R. B.; Lukić, M.; Karan, D.; Parunović, N.; Branković-Lazić, I.
2017-09-01
During the previous development of a chemometric method for estimating the amount of added colorant in meat products, it was noticed that the natural colorant most commonly added to boiled sausages, E 120, has different CIE-LAB behavior compared to artificial colors that are used for the same purpose. This has opened the possibility of transforming the developed method into a method for identifying the addition of natural or synthetic colorants in boiled sausages based on the measurement of the color of the cross-section. After recalibration of the CIE-LAB method using linear discriminant analysis, verification was performed on 76 boiled sausages, of either frankfurters or Parisian sausage types. The accuracy and reliability of the classification was confirmed by comparison with the standard HPLC method. Results showed that the LDA + CIE-LAB method can be applied with high accuracy, 93.42 %, to estimate food color type in boiled sausages. Natural orange colors can give false positive results. Pigments from spice mixtures had no significant effect on CIE-LAB results.
Single-shot real-time three dimensional measurement based on hue-height mapping
NASA Astrophysics Data System (ADS)
Wan, Yingying; Cao, Yiping; Chen, Cheng; Fu, Guangkai; Wang, Yapin; Li, Chengmeng
2018-06-01
A single-shot three-dimensional (3D) measurement based on hue-height mapping is proposed. The color fringe pattern is encoded by three sinusoidal fringes with the same frequency but different shifting phase into red (R), green (G) and blue (B) color channels, respectively. It is found that the hue of the captured color fringe pattern on the reference plane maintains monotonic in one period even it has the color crosstalk. Thus, unlike the traditional color phase shifting technique, the hue information is utilized to decode the color fringe pattern and map to the pixels of the fringe displacement in the proposed method. Because the monotonicity of the hue is limited within one period, displacement unwrapping is proposed to obtain the continuous displacement that is finally used to map to the height distribution. This method directly utilizes the hue under the effect of color crosstalk for mapping the height so that no color calibration is involved. Also, as it requires only single shot deformed color fringe pattern, this method can be applied into the real-time or dynamic 3D measurements.
Westfall, Alexandra; Giusti, Mónica
Cosmetics, such as lipstick, can affect an individual's perception of attractiveness and morale. Consumer concern with the safety of synthetic colorants has made the need for alternative natural color sources increasingly urgent. Our goal was to evaluate the feasibility of anthocyanin (ACN) extracts as colorants in lipstick formulations. Lipstick formulations were colored with ACN-rich materials. Accelerated environmental testing typical of the cosmetic industry were used: incubation at 20°, 37°, and 45°C for 12 weeks and temperature abuse cycles between 20°/37°C or -20°/20°C. Color (CIELab) and total monomeric ACN (pH-differential) changes were monitored to determine shelf stability of the product. All formulations exhibited acceptable color for lipsticks. Shelf stability was determined to exceed 2 year based on the accelerated testing conditions. Formulations containing cyanidin as their main ACN were the most stable (elderberry, purple corn, and purple sweet potato). ACNs could be used as suitable alternatives to synthetic colorants in lipid-based topical formulations.
Factors affecting the estimate of primary production from space
NASA Technical Reports Server (NTRS)
Balch, W. M.; Byrne, C. F.
1994-01-01
Remote sensing of primary production in the euphotic zone has been based mostly on visible-band and water-leaving radiance measured with the coastal zone color scanner. There are some robust, simple relationships for calculating integral production based on surface measurements, but they also require knowledge for photoadaptive parameters such as maximum photosynthesis which currently cannot be obtained from spave. A 17,000-station data set is used to show that space-based estimates of maximum photosynthesis could improve predictions of psi, the water column light utiliztion index, which is an important term in many primary productivity models. Temperature is also examined as a factor for predicting hydrographic structure and primary production. A simple model is used to relate temperature and maximum photosynthesis; the model incorporates (1) the positive relationship between maximum photosynthesis and temperature and (2) the strongly negative relationship between temperature and nitrate in the ocean (which directly affects maximum growth rates via nitrogen limitation). Since these two factors relate to carbon and nitrogen, 'balanced carbon/nitrogen assimilation' was calculated using the Redfield ratio, It is expected that the relationship between maximum balanced carbon assimilation versus temperature is concave-down, with the peak dependent on nitrate uptake kinetics, temperature-nitrate relationships,a nd the carbon chlorophyll ration. These predictions were compared with the sea truth data. The minimum turnover time for nitrate was also calculated using this approach. Lastly, sea surface temperature gradients were used to predict the slope of isotherms (a proxy for the slope of isopycnals in many waters). Sea truth data show that at size scales of several hundred kilometers, surface temperature gradients can provide information on the slope of isotherms in the top 200 m of the water column. This is directly relevant to the supply of nutrients into the surface mixed layer, which is useful for predicting integral biomass and primary production.
NASA Astrophysics Data System (ADS)
Sakamoto, Takashi
2015-01-01
This study describes a color enhancement method that uses a color palette especially designed for protan and deutan defects, commonly known as red-green color blindness. The proposed color reduction method is based on a simple color mapping. Complicated computation and image processing are not required by using the proposed method, and the method can replace protan and deutan confusion (p/d-confusion) colors with protan and deutan safe (p/d-safe) colors. Color palettes for protan and deutan defects proposed by previous studies are composed of few p/d-safe colors. Thus, the colors contained in these palettes are insufficient for replacing colors in photographs. Recently, Ito et al. proposed a p/dsafe color palette composed of 20 particular colors. The author demonstrated that their p/d-safe color palette could be applied to image color reduction in photographs as a means to replace p/d-confusion colors. This study describes the results of the proposed color reduction in photographs that include typical p/d-confusion colors, which can be replaced. After the reduction process is completed, color-defective observers can distinguish these confusion colors.
A model for prediction of color change after tooth bleaching based on CIELAB color space
NASA Astrophysics Data System (ADS)
Herrera, Luis J.; Santana, Janiley; Yebra, Ana; Rivas, María. José; Pulgar, Rosa; Pérez, María. M.
2017-08-01
An experimental study aiming to develop a model based on CIELAB color space for prediction of color change after a tooth bleaching procedure is presented. Multivariate linear regression models were obtained to predict the L*, a*, b* and W* post-bleaching values using the pre-bleaching L*, a*and b*values. Moreover, univariate linear regression models were obtained to predict the variation in chroma (C*), hue angle (h°) and W*. The results demonstrated that is possible to estimate color change when using a carbamide peroxide tooth-bleaching system. The models obtained can be applied in clinic to predict the colour change after bleaching.
ERIC Educational Resources Information Center
Wade, T. Joel; Bielitz, Sara
2005-01-01
Skin color in relation to perceived attractiveness, personality ratings, and perceived life success of African Americans was investigated in a 2 (sex of participant) 2 (skin color of stimulus person) 2 (sex of stimulus person) design. Based on prior research, Skin Color Sex of Stimulus Person and Sex of Participant Skin Color interactions were…
Feature-based attention elicits surround suppression in feature space.
Störmer, Viola S; Alvarez, George A
2014-09-08
It is known that focusing attention on a particular feature (e.g., the color red) facilitates the processing of all objects in the visual field containing that feature [1-7]. Here, we show that such feature-based attention not only facilitates processing but also actively inhibits processing of similar, but not identical, features globally across the visual field. We combined behavior and electrophysiological recordings of frequency-tagged potentials in human observers to measure this inhibitory surround in feature space. We found that sensory signals of an attended color (e.g., red) were enhanced, whereas sensory signals of colors similar to the target color (e.g., orange) were suppressed relative to colors more distinct from the target color (e.g., yellow). Importantly, this inhibitory effect spreads globally across the visual field, thus operating independently of location. These findings suggest that feature-based attention comprises an excitatory peak surrounded by a narrow inhibitory zone in color space to attenuate the most distracting and potentially confusable stimuli during visual perception. This selection profile is akin to what has been reported for location-based attention [8-10] and thus suggests that such center-surround mechanisms are an overarching principle of attention across different domains in the human brain. Copyright © 2014 Elsevier Ltd. All rights reserved.
Robust skin color-based moving object detection for video surveillance
NASA Astrophysics Data System (ADS)
Kaliraj, Kalirajan; Manimaran, Sudha
2016-07-01
Robust skin color-based moving object detection for video surveillance is proposed. The objective of the proposed algorithm is to detect and track the target under complex situations. The proposed framework comprises four stages, which include preprocessing, skin color-based feature detection, feature classification, and target localization and tracking. In the preprocessing stage, the input image frame is smoothed using averaging filter and transformed into YCrCb color space. In skin color detection, skin color regions are detected using Otsu's method of global thresholding. In the feature classification, histograms of both skin and nonskin regions are constructed and the features are classified into foregrounds and backgrounds based on Bayesian skin color classifier. The foreground skin regions are localized by a connected component labeling process. Finally, the localized foreground skin regions are confirmed as a target by verifying the region properties, and nontarget regions are rejected using the Euler method. At last, the target is tracked by enclosing the bounding box around the target region in all video frames. The experiment was conducted on various publicly available data sets and the performance was evaluated with baseline methods. It evidently shows that the proposed algorithm works well against slowly varying illumination, target rotations, scaling, fast, and abrupt motion changes.
Carded Tow Real-Time Color Assessment: A Spectral Camera-Based System.
Furferi, Rocco; Governi, Lapo; Volpe, Yary; Carfagni, Monica
2016-08-31
One of the most important parameters to be controlled during the production of textile yarns obtained by mixing pre-colored fibers, is the color correspondence between the manufactured yarn and a given reference, usually provided by a designer or a customer. Obtaining yarns from raw pre-colored fibers is a complex manufacturing process entailing a number of steps such as laboratory sampling, color recipe corrections, blowing, carding and spinning. Carding process is the one devoted to transform a "fuzzy mass" of tufted fibers into a regular mass of untwisted fibers, named "tow". During this process, unfortunately, the correspondence between the color of the tow and the target one cannot be assured, thus leading to yarns whose color differs from the one used for reference. To solve this issue, the main aim of this work is to provide a system able to perform a spectral camera-based real-time measurement of a carded tow, to assess its color correspondence with a reference carded fabric and, at the same time, to monitor the overall quality of the tow during the carding process. Tested against a number of differently colored carded fabrics, the proposed system proved its effectiveness in reliably assessing color correspondence in real-time.
Color object detection using spatial-color joint probability functions.
Luo, Jiebo; Crandall, David
2006-06-01
Object detection in unconstrained images is an important image understanding problem with many potential applications. There has been little success in creating a single algorithm that can detect arbitrary objects in unconstrained images; instead, algorithms typically must be customized for each specific object. Consequently, it typically requires a large number of exemplars (for rigid objects) or a large amount of human intuition (for nonrigid objects) to develop a robust algorithm. We present a robust algorithm designed to detect a class of compound color objects given a single model image. A compound color object is defined as having a set of multiple, particular colors arranged spatially in a particular way, including flags, logos, cartoon characters, people in uniforms, etc. Our approach is based on a particular type of spatial-color joint probability function called the color edge co-occurrence histogram. In addition, our algorithm employs perceptual color naming to handle color variation, and prescreening to limit the search scope (i.e., size and location) for the object. Experimental results demonstrated that the proposed algorithm is insensitive to object rotation, scaling, partial occlusion, and folding, outperforming a closely related algorithm based on color co-occurrence histograms by a decisive margin.
Gaudio, Jennifer L; Snowdon, Charles T
2008-11-01
Animals living in stable home ranges have many potential cues to locate food. Spatial and color cues are important for wild Callitrichids (marmosets and tamarins). Field studies have assigned the highest priority to distal spatial cues for determining the location of food resources with color cues serving as a secondary cue to assess relative ripeness, once a food source is located. We tested two hypotheses with captive cotton-top tamarins: (a) Tamarins will demonstrate higher rates of initial learning when rewarded for attending to spatial cues versus color cues. (b) Tamarins will show higher rates of correct responses when transferred from color cues to spatial cues than from spatial cues to color cues. The results supported both hypotheses. Tamarins rewarded based on spatial location made significantly more correct choices and fewer errors than tamarins rewarded based on color cues during initial learning. Furthermore, tamarins trained on color cues showed significantly increased correct responses and decreased errors when cues were reversed to reward spatial cues. Subsequent reversal to color cues induced a regression in performance. For tamarins spatial cues appear more salient than color cues in a foraging task. (PsycINFO Database Record (c) 2008 APA, all rights reserved).
Daytime Water Detection Based on Sky Reflections
NASA Technical Reports Server (NTRS)
Rankin, Arturo; Matthies, Larry; Bellutta, Paolo
2011-01-01
A water body s surface can be modeled as a horizontal mirror. Water detection based on sky reflections and color variation are complementary. A reflection coefficient model suggests sky reflections dominate the color of water at ranges > 12 meters. Water detection based on sky reflections: (1) geometrically locates the pixel in the sky that is reflecting on a candidate water pixel on the ground (2) predicts if the ground pixel is water based on color similarity and local terrain features. Water detection has been integrated on XUVs.
Development of a large color range for a paint company
NASA Astrophysics Data System (ADS)
McGinley, Peter
2002-06-01
Experience with the Master Palette system of 6000 colors lead to a specification for a new color range where the primary design feature is the control of the paint tint formula. This design approach met a market-derived requirement for sample pots and fractional-strength colors. The layout process employed was able to display the color capability of the paint system and generate an array of colors with controlled spacing similar to Master Palette. Updated pigment selections and the introduction of additional colored bases completed the system specification of improved opacity and every color being exterior durable.
Remote detection of insect epidemics in conifers
NASA Technical Reports Server (NTRS)
Heller, R. C.
1970-01-01
With properly exposed color or infrared color film, discolored foliage caused by insect infestations in ponderosa pine is detectable on moderately small-scale photographs with acceptable accuracies. Black and white photographs which matched the wavebands of the ERTS multispectral scanner were combined into one additive color photo. This imagery was not as useful as photographs taken on color, color infrared, or color film with a minus blue filter. Based on the high-altitude color and color infrared photos obtained, it is concluded that only insect infestations larger than 100 meters in diameter are detectable on ERTS imagery.
Dey, C J; Valcu, M; Kempenaers, B; Dale, J
2015-01-01
Many animals use coloration to communicate with other individuals. Although the signalling role of avian plumage colour is relatively well studied, there has been much less research on coloration in avian bare parts. However, bare parts could be highly informative signals as they can show rapid changes in coloration. We measured bill colour (a ubiquitous bare part) in over 1600 passerine species and tested whether interspecific variation in carotenoid-based coloration is consistent with signalling to potential mates or signalling to potential rivals in a competitive context. Our results suggest that carotenoid bill coloration primarily evolved as a signal of dominance, as this type of coloration is more common in species that live in social groups in the nonbreeding season, and species that nest in colonies; two socio-ecological conditions that promote frequent agonistic interactions with numerous and/or unfamiliar individuals. Additionally, our study suggests that carotenoid bill coloration is independent of the intensity of past sexual selection, as it is not related to either sexual dichromatism or sexual size dimorphism. These results pose a significant challenge to the conventional view that carotenoid-based avian coloration has evolved as a developmentally costly, condition-dependent sexual signal. We also suggest that bare part ornamentation may often signal different information than plumage ornaments. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Nagahara, Yasuo; Nishida, Yuichi; Isoda, Masanori; Yamagata, Yoshifumi; Nishikawa, Naoki; Takada, Koji
2007-01-01
In recent years, hair coloring gains popularity as a trend of consumer's hair care. This coloring frequently damages hair. In response to this, a new shampoo-base was developed for repairing hair damaged by coloring. The new shampoo-base was prepared by dispersing cationic assembly in a solution of amphoteric surfactants. The mixture of behenyl trimethyl ammonium chloride (C22TAC) and behenyl alcohol (C22OH) was applied as the cationic assembly, which are dispersed in amido propyl betaine laurate (LPB) solution. LPB, which behaves as an amphoteric surfactant, was used as the wash-base. It was verified from the results on the measurements of DSC, calorimeter polarization, cryo-SEM and X-ray diffraction that the cationic assembly has a crystalline structure in the LPB solution. The new shampoo-base was highly efficient to change the color-damaged hair from hydrophilic to hydrophobic. The friction level of the hair washed with the new shampoo-base recovered to the same state as that of healthy hair. The exfoliation of cuticle was reduced after washing with the new shampoo-base.
Karulin, Alexey Y; Megyesi, Zoltán; Caspell, Richard; Hanson, Jodi; Lehmann, Paul V
2018-01-01
Over the past decade, ELISPOT has become a highly implemented mainstream assay in immunological research, immune monitoring, and vaccine development. Unique single cell resolution along with high throughput potential sets ELISPOT apart from flow cytometry, ELISA, microarray- and bead-based multiplex assays. The necessity to unambiguously identify individual T and B cells that do, or do not co-express certain analytes, including polyfunctional cytokine producing T cells has stimulated the development of multi-color ELISPOT assays. The success of these assays has also been driven by limited sample/cell availability and resource constraints with reagents and labor. There are few commercially available test kits and instruments available at present for multi-color FLUOROSPOT. Beyond commercial descriptions of competing systems, little is known about their accuracy in experimental settings detecting individual cells that secrete multiple analytes vs. random overlays of spots. Here, we present a theoretical and experimental validation study for three and four color T- and B-cell FLUOROSPOT data analysis. The ImmunoSpot ® Fluoro-X™ analysis system we used includes an automatic image acquisition unit that generates individual color images free of spectral overlaps and multi-color spot counting software based on the maximal allowed distance between centers of spots of different colors or Center of Mass Distance (COMD). Using four color B-cell FLUOROSPOT for IgM, IgA, IgG1, IgG3; and three/four color T-cell FLUOROSPOT for IL-2, IFN-γ, TNF-α, and GzB, in serial dilution experiments, we demonstrate the validity and accuracy of Fluoro-X™ multi-color spot counting algorithms. Statistical predictions based on the Poisson spatial distribution, coupled with scrambled image counting, permit objective correction of true multi-color spot counts to exclude randomly overlaid spots.
Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths.
von Arx, Martin; Goyret, Joaquín; Davidowitz, Goggy; Raguso, Robert A
2012-06-12
Most research on plant-pollinator communication has focused on sensory and behavioral responses to relatively static cues. Floral rewards such as nectar, however, are dynamic, and foraging animals will increase their energetic profit if they can make use of floral cues that more accurately indicate nectar availability. Here we document such a cue--transient humidity gradients--using the night blooming flowers of Oenothera cespitosa (Onagraceae). The headspace of newly opened flowers reaches levels of about 4% above ambient relative humidity due to additive evapotranspirational water loss through petals and water-saturated air from the nectar tube. Floral humidity plumes differ from ambient levels only during the first 30 min after anthesis (before nectar is depleted in wild populations), whereas other floral traits (scent, shape, and color) persist for 12-24 h. Manipulative experiments indicated that floral humidity gradients are mechanistically linked to nectar volume and therefore contain information about energy rewards to floral visitors. Behavioral assays with Hyles lineata (Sphingidae) and artificial flowers with appropriate humidity gradients suggest that these hawkmoth pollinators distinguish between subtle differences in relative humidity when other floral cues are held constant. Moths consistently approached and probed flowers with elevated humidity over those with ambient humidity levels. Because floral humidity gradients are largely produced by the evaporation of nectar itself, they represent condition-informative cues that facilitate remote sensing of floral profitability by discriminating foragers. In a xeric environment, this level of honest communication should be adaptive when plant reproductive success is pollinator limited, due to intense competition for the attention of a specialized pollinator.
[Research on developping the spectral dataset for Dunhuang typical colors based on color constancy].
Liu, Qiang; Wan, Xiao-Xia; Liu, Zhen; Li, Chan; Liang, Jin-Xing
2013-11-01
The present paper aims at developping a method to reasonably set up the typical spectral color dataset for different kinds of Chinese cultural heritage in color rendering process. The world famous wall paintings dating from more than 1700 years ago in Dunhuang Mogao Grottoes was taken as typical case in this research. In order to maintain the color constancy during the color rendering workflow of Dunhuang culture relics, a chromatic adaptation based method for developping the spectral dataset of typical colors for those wall paintings was proposed from the view point of human vision perception ability. Under the help and guidance of researchers in the art-research institution and protection-research institution of Dunhuang Academy and according to the existing research achievement of Dunhuang Research in the past years, 48 typical known Dunhuang pigments were chosen and 240 representative color samples were made with reflective spectral ranging from 360 to 750 nm was acquired by a spectrometer. In order to find the typical colors of the above mentioned color samples, the original dataset was devided into several subgroups by clustering analysis. The grouping number, together with the most typical samples for each subgroup which made up the firstly built typical color dataset, was determined by wilcoxon signed rank test according to the color inconstancy index comprehensively calculated under 6 typical illuminating conditions. Considering the completeness of gamut of Dunhuang wall paintings, 8 complementary colors was determined and finally the typical spectral color dataset was built up which contains 100 representative spectral colors. The analytical calculating results show that the median color inconstancy index of the built dataset in 99% confidence level by wilcoxon signed rank test was 3.28 and the 100 colors are distributing in the whole gamut uniformly, which ensures that this dataset can provide reasonable reference for choosing the color with highest color constancy during the color rendering process of Dunhuang cultural heritage.
Dave, Pujan; Villarreal, Guadalupe; Friedman, David S.; Kahook, Malik Y.; Ramulu, Pradeep Y.
2015-01-01
Objective To determine the accuracy of patient-physician communication regarding topical ophthalmic medication use based on bottle cap color, particularly amongst individuals who may have acquired color vision deficiency from glaucoma. Design Cross-sectional, clinical study. Participants Patients ≥ 18 years old with primary open-angle, primary angle-closure, pseudoexfoliation, or pigment dispersion glaucoma, bilateral visual acuity of 20/400 or better, and no concurrent conditions that may affect color vision. Methods One hundred patients provided color descriptions of 11 distinct medication bottle caps. Patient-produced color descriptors were then presented to three physicians. Each physician matched each color descriptor to the medication they thought the descriptor was describing. Main Outcome Measures Frequency of patient-physician agreement, occurring when all three physicians accurately matched the patient-produced color descriptor to the correct medication. Multivariate regression models evaluated whether patient-physician agreement decreased with degree of better-eye visual field (VF) damage, color descriptor heterogeneity, and/or color vision deficiency, as determined by Hardy-Rand-Rittler (HRR) score and the Lanthony D15 testing index (D15 CCI). Results Subjects had a mean age of 69 (±11) years, with mean VF mean deviation of −4.7 (±6.0) and −10.9 (±8.4) dB in the better- and worse-seeing eyes, respectively. Patients produced 102 unique color descriptors to describe the colors of the 11 tested bottle caps. Among individual patients, the mean number of medications demonstrating patient-physician agreement was 6.1/11 (55.5%). Agreement was less than 15% for 4 medications (prednisolone acetate [generic], betaxolol HCl [Betoptic], brinzolamide/brimonidine [Simbrinza], and latanoprost [Xalatan]). Lower HRR scores and higher D15 CCI (both indicating worse color vision) were associated with greater VF damage (p<0.001). Extent of color vision deficiency and color descriptor heterogeneity were the only significant predictors of patient-physician agreement in multivariate models (odds of agreement = 0.90 per 1 point decrement in HRR score, p<0.001; odds of agreement = 0.30 for medications exhibiting high heterogeneity [≥ 11 descriptors], p=0.007). Conclusions Physician understanding of patient medication usage based solely on bottle cap color is frequently incorrect, particularly in glaucoma patients who may have color vision deficiency. Errors based on communication using bottle cap color alone may be common and could lead to confusion and harm. PMID:26260280
An implicit numerical scheme for the simulation of internal viscous flows on unstructured grids
NASA Technical Reports Server (NTRS)
Jorgenson, Philip C. E.; Pletcher, Richard H.
1994-01-01
The Navier-Stokes equations are solved numerically for two-dimensional steady viscous laminar flows. The grids are generated based on the method of Delaunay triangulation. A finite-volume approach is used to discretize the conservation law form of the compressible flow equations written in terms of primitive variables. A preconditioning matrix is added to the equations so that low Mach number flows can be solved economically. The equations are time marched using either an implicit Gauss-Seidel iterative procedure or a solver based on a conjugate gradient like method. A four color scheme is employed to vectorize the block Gauss-Seidel relaxation procedure. This increases the memory requirements minimally and decreases the computer time spent solving the resulting system of equations substantially. A factor of 7.6 speed up in the matrix solver is typical for the viscous equations. Numerical results are obtained for inviscid flow over a bump in a channel at subsonic and transonic conditions for validation with structured solvers. Viscous results are computed for developing flow in a channel, a symmetric sudden expansion, periodic tandem cylinders in a cross-flow, and a four-port valve. Comparisons are made with available results obtained by other investigators.
NASA Astrophysics Data System (ADS)
Mori, Kensaku; Suenaga, Yasuhito; Toriwaki, Jun-ichiro
2003-05-01
This paper describes a software-based fast volume rendering (VolR) method on a PC platform by using multimedia instructions, such as SIMD instructions, which are currently available in PCs' CPUs. This method achieves fast rendering speed through highly optimizing software rather than an improved rendering algorithm. In volume rendering using a ray casting method, the system requires fast execution of the following processes: (a) interpolation of voxel or color values at sample points, (b) computation of normal vectors (gray-level gradient vectors), (c) calculation of shaded values obtained by dot-products of normal vectors and light source direction vectors, (d) memory access to a huge area, and (e) efficient ray skipping at translucent regions. The proposed software implements these fundamental processes in volume rending by using special instruction sets for multimedia processing. The proposed software can generate virtual endoscopic images of a 3-D volume of 512x512x489 voxel size by volume rendering with perspective projection, specular reflection, and on-the-fly normal vector computation on a conventional PC without any special hardware at thirteen frames per second. Semi-translucent display is also possible.
[Glossary of terms used by radiologists in image processing].
Rolland, Y; Collorec, R; Bruno, A; Ramée, A; Morcet, N; Haigron, P
1995-01-01
We give the definition of 166 words used in image processing. Adaptivity, aliazing, analog-digital converter, analysis, approximation, arc, artifact, artificial intelligence, attribute, autocorrelation, bandwidth, boundary, brightness, calibration, class, classification, classify, centre, cluster, coding, color, compression, contrast, connectivity, convolution, correlation, data base, decision, decomposition, deconvolution, deduction, descriptor, detection, digitization, dilation, discontinuity, discretization, discrimination, disparity, display, distance, distorsion, distribution dynamic, edge, energy, enhancement, entropy, erosion, estimation, event, extrapolation, feature, file, filter, filter floaters, fitting, Fourier transform, frequency, fusion, fuzzy, Gaussian, gradient, graph, gray level, group, growing, histogram, Hough transform, Houndsfield, image, impulse response, inertia, intensity, interpolation, interpretation, invariance, isotropy, iterative, JPEG, knowledge base, label, laplacian, learning, least squares, likelihood, matching, Markov field, mask, matching, mathematical morphology, merge (to), MIP, median, minimization, model, moiré, moment, MPEG, neural network, neuron, node, noise, norm, normal, operator, optical system, optimization, orthogonal, parametric, pattern recognition, periodicity, photometry, pixel, polygon, polynomial, prediction, pulsation, pyramidal, quantization, raster, reconstruction, recursive, region, rendering, representation space, resolution, restoration, robustness, ROC, thinning, transform, sampling, saturation, scene analysis, segmentation, separable function, sequential, smoothing, spline, split (to), shape, threshold, tree, signal, speckle, spectrum, spline, stationarity, statistical, stochastic, structuring element, support, syntaxic, synthesis, texture, truncation, variance, vision, voxel, windowing.
Correction of clipped pixels in color images.
Xu, Di; Doutre, Colin; Nasiopoulos, Panos
2011-03-01
Conventional images store a very limited dynamic range of brightness. The true luma in the bright area of such images is often lost due to clipping. When clipping changes the R, G, B color ratios of a pixel, color distortion also occurs. In this paper, we propose an algorithm to enhance both the luma and chroma of the clipped pixels. Our method is based on the strong chroma spatial correlation between clipped pixels and their surrounding unclipped area. After identifying the clipped areas in the image, we partition the clipped areas into regions with similar chroma, and estimate the chroma of each clipped region based on the chroma of its surrounding unclipped region. We correct the clipped R, G, or B color channels based on the estimated chroma and the unclipped color channel(s) of the current pixel. The last step involves smoothing of the boundaries between regions of different clipping scenarios. Both objective and subjective experimental results show that our algorithm is very effective in restoring the color of clipped pixels. © 2011 IEEE
Single underwater image enhancement based on color cast removal and visibility restoration
NASA Astrophysics Data System (ADS)
Li, Chongyi; Guo, Jichang; Wang, Bo; Cong, Runmin; Zhang, Yan; Wang, Jian
2016-05-01
Images taken under underwater condition usually have color cast and serious loss of contrast and visibility. Degraded underwater images are inconvenient for observation and analysis. In order to address these problems, an underwater image-enhancement method is proposed. A simple yet effective underwater image color cast removal algorithm is first presented based on the optimization theory. Then, based on the minimum information loss principle and inherent relationship of medium transmission maps of three color channels in an underwater image, an effective visibility restoration algorithm is proposed to recover visibility, contrast, and natural appearance of degraded underwater images. To evaluate the performance of the proposed method, qualitative comparison, quantitative comparison, and color accuracy test are conducted. Experimental results demonstrate that the proposed method can effectively remove color cast, improve contrast and visibility, and recover natural appearance of degraded underwater images. Additionally, the proposed method is comparable to and even better than several state-of-the-art methods.
Burns, Kevin C
2010-01-01
Color is a common feature of animal defense. Herbivorous insects are often colored in shades of green similar to their preferred food plants, making them difficult for predators to locate. Other insects advertise their presence with bright colors after they sequester enough toxins from their food plants to make them unpalatable. Some insects even switch between cryptic and aposomatic coloration during development. Although common in animals, quantitative evidence for color-based defense in plants is rare. After all, the primary function of plant leaves is to absorb light for photosynthesis, rather than reflect light in ways that alter their appearance to herbivores. However, recent research is beginning to challenge the notion that color-based defence is restricted to animals.
[Coloration of mica glass ceramic for use in dental CAD/CAM system].
Sun, Ying; Wang, Zhong-yi; Tian, Jie-mo; Cao, Xiao-gang
2003-03-01
An intrinsically colored machinable glass-ceramic containing tetrasilicic fluormica as the predominant crystal phase was studied, which was used in molar crown in dental CAD/CAM system. Orthogonal design analysis was used to select appropriate base formula, coloration and heat treatment process. Factors influencing the color appearance of mica glass ceramic were nucleation agent and the ratio of Mg(2+) to K(+) in base formula; Cerium oxide (CeO(2)) was used as the main coloration; The preferred heat treatment was 650 degrees C for 1 h and 1,000 degrees C or 1,050 degrees C for 3 h - 4 h. This mica glass-ceramic could provide 4 to 5 color appearance for dental use, it showed excellent machinability which was eminently suitable for use in dental CAD/CAM system.
Perceptual approach for unsupervised digital color restoration of cinematographic archives
NASA Astrophysics Data System (ADS)
Chambah, Majed; Rizzi, Alessandro; Gatta, Carlo; Besserer, Bernard; Marini, Daniele
2003-01-01
The cinematographic archives represent an important part of our collective memory. We present in this paper some advances in automating the color fading restoration process, especially with regard to the automatic color correction technique. The proposed color correction method is based on the ACE model, an unsupervised color equalization algorithm based on a perceptual approach and inspired by some adaptation mechanisms of the human visual system, in particular lightness constancy and color constancy. There are some advantages in a perceptual approach: mainly its robustness and its local filtering properties, that lead to more effective results. The resulting technique, is not just an application of ACE on movie images, but an enhancement of ACE principles to meet the requirements in the digital film restoration field. The presented preliminary results are satisfying and promising.
Full color organic light-emitting devices with microcavity structure and color filter.
Zhang, Weiwei; Liu, Hongyu; Sun, Runguang
2009-05-11
This letter demonstrated the fabrication of the full color passive matrix organic light-emitting devices based on the combination of the microcavity structure, color filter and a common white polymeric OLED. In the microcavity structure, patterned ITO terraces with different thickness were used as the anode as well as cavity spacer. The primary color emitting peaks were originally generated by the microcavity and then the second resonance peak was absorbed by the color filter.
Westley, Peter A H; Stanley, Ryan; Fleming, Ian A
2013-01-01
The success of invasive species is frequently attributed to phenotypic plasticity, which facilitates persistence in novel environments. Here we report on experimental tests to determine whether the intensity of cryptic coloration patterns in a global invader (brown trout, Salmo trutta) was primarily the result of plasticity or heritable variation. Juvenile F1 offspring were created through experimental crosses of wild-caught parents and reared for 30 days in the laboratory in a split-brood design on either light or dark-colored gravel substrate. Skin and fin coloration quantified with digital photography and image analysis indicated strong plastic effects in response to substrate color; individuals reared on dark substrate had both darker melanin-based skin color and carotenoid-based fin colors than other members of their population reared on light substrate. Slopes of skin and fin color reaction norms were parallel between environments, which is not consistent with heritable population-level plasticity to substrate color. Similarly, we observed weak differences in population-level color within an environment, again suggesting little genetic control on the intensity of skin and fin colors. Taken as whole, our results are consistent with the hypothesis that phenotypic plasticity may have facilitated the success of brown trout invasions and suggests that plasticity is the most likely explanation for the variation in color intensity observed among these populations in nature.
Perspectives in flow-based microfluidic gradient generators for characterizing bacterial chemotaxis
Wolfram, Christopher J.; Rubloff, Gary W.; Luo, Xiaolong
2016-01-01
Chemotaxis is a phenomenon which enables cells to sense concentrations of certain chemical species in their microenvironment and move towards chemically favorable regions. Recent advances in microbiology have engineered the chemotactic properties of bacteria to perform novel functions, but traditional methods of characterizing chemotaxis do not fully capture the associated cell motion, making it difficult to infer mechanisms that link the motion to the microbiology which induces it. Microfluidics offers a potential solution in the form of gradient generators. Many of the gradient generators studied to date for this application are flow-based, where a chemical species diffuses across the laminar flow interface between two solutions moving through a microchannel. Despite significant research efforts, flow-based gradient generators have achieved mixed success at accurately capturing the highly subtle chemotactic responses exhibited by bacteria. Here we present an analysis encompassing previously published versions of flow-based gradient generators, the theories that govern their gradient-generating properties, and new, more practical considerations that result from experimental factors. We conclude that flow-based gradient generators present a challenge inherent to their design in that the residence time and gradient decay must be finely balanced, and that this significantly narrows the window for reliable observation and quantification of chemotactic motion. This challenge is compounded by the effects of shear on an ellipsoidal bacterium that causes it to preferentially align with the direction of flow and subsequently suppresses the cross-flow chemotactic response. These problems suggest that a static, non-flowing gradient generator may be a more suitable platform for chemotaxis studies in the long run, despite posing greater difficulties in design and fabrication. PMID:27917249
Perspectives in flow-based microfluidic gradient generators for characterizing bacterial chemotaxis.
Wolfram, Christopher J; Rubloff, Gary W; Luo, Xiaolong
2016-11-01
Chemotaxis is a phenomenon which enables cells to sense concentrations of certain chemical species in their microenvironment and move towards chemically favorable regions. Recent advances in microbiology have engineered the chemotactic properties of bacteria to perform novel functions, but traditional methods of characterizing chemotaxis do not fully capture the associated cell motion, making it difficult to infer mechanisms that link the motion to the microbiology which induces it. Microfluidics offers a potential solution in the form of gradient generators. Many of the gradient generators studied to date for this application are flow-based, where a chemical species diffuses across the laminar flow interface between two solutions moving through a microchannel. Despite significant research efforts, flow-based gradient generators have achieved mixed success at accurately capturing the highly subtle chemotactic responses exhibited by bacteria. Here we present an analysis encompassing previously published versions of flow-based gradient generators, the theories that govern their gradient-generating properties, and new, more practical considerations that result from experimental factors. We conclude that flow-based gradient generators present a challenge inherent to their design in that the residence time and gradient decay must be finely balanced, and that this significantly narrows the window for reliable observation and quantification of chemotactic motion. This challenge is compounded by the effects of shear on an ellipsoidal bacterium that causes it to preferentially align with the direction of flow and subsequently suppresses the cross-flow chemotactic response. These problems suggest that a static, non-flowing gradient generator may be a more suitable platform for chemotaxis studies in the long run, despite posing greater difficulties in design and fabrication.
Shang, Shang; Bai, Jing; Song, Xiaolei; Wang, Hongkai; Lau, Jaclyn
2007-01-01
Conjugate gradient method is verified to be efficient for nonlinear optimization problems of large-dimension data. In this paper, a penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography (FMT) is presented. The algorithm combines the linear conjugate gradient method and the nonlinear conjugate gradient method together based on a restart strategy, in order to take advantage of the two kinds of conjugate gradient methods and compensate for the disadvantages. A quadratic penalty method is adopted to gain a nonnegative constraint and reduce the illposedness of the problem. Simulation studies show that the presented algorithm is accurate, stable, and fast. It has a better performance than the conventional conjugate gradient-based reconstruction algorithms. It offers an effective approach to reconstruct fluorochrome information for FMT.
Color Change After Paramedical Pigmentation of the Nipple-Areola Complex.
Tomita, Shoichi; Mori, Katsuya; Miyawaki, Takeshi
2018-06-01
Reconstruction of the nipple-areola complex is the final process in breast reconstruction. Local flaps and paramedical pigmentation is one of the major procedures for this. However, fading after paramedical pigmentation leads to a color difference between the selected pigment and its color in the skin. The aim of this study is to make a proposition in color choice of paramedical pigmentation for nipple-areola complex. Our research focused on investigating the color changes over time after unilateral nipple-areola complex reconstruction using paramedical pigmentation in 25 patients to propose suitable color selections. We measured the color by spectrometer and conducted comparisons using the hue, saturation, and value (HSV) color space and the color space defined by the Commission International de L'eclairage based on one channel for luminance (lightness) (L) and two color channels (a and b) (L*a*b*). A comparison of the hue, value, and saturation of the reconstructed areola compared to the normal areolae was conducted using HSV color space; the value and saturation were satisfactory after 3 months and beyond, but the reconstructed areola tended to have stronger red hues. The color difference (ΔE 00 ) calculated in L*a*b* color space showed slow fading after the scab was peeled off. This result indicates that a color with less redness and more yellowness, particularly 4-5 degrees of yellowness on the color wheel, than the normal side is the most appropriate color selection for this technique. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Chetverikov, Andrey; Campana, Gianluca; Kristjánsson, Árni
2017-10-01
Colors are rarely uniform, yet little is known about how people represent color distributions. We introduce a new method for studying color ensembles based on intertrial learning in visual search. Participants looked for an oddly colored diamond among diamonds with colors taken from either uniform or Gaussian color distributions. On test trials, the targets had various distances in feature space from the mean of the preceding distractor color distribution. Targets on test trials therefore served as probes into probabilistic representations of distractor colors. Test-trial response times revealed a striking similarity between the physical distribution of colors and their internal representations. The results demonstrate that the visual system represents color ensembles in a more detailed way than previously thought, coding not only mean and variance but, most surprisingly, the actual shape (uniform or Gaussian) of the distribution of colors in the environment.
Nisa Khan, M
2017-09-20
We present measurement and analysis of color stability over time for two categories of white LED lamps based on their thermal management scheme, which also affects their transient lumen depreciation. We previously reported that lumen depreciation in LED lamps can be minimized by properly designing the heat sink configuration that allows lamps to reach a thermal equilibrium condition quickly. Although it is well known that lumen depreciation degrades color stability of white light since color coordinates vary with total lumen power by definition, quantification and characterization of color shifts based on thermal transient behavior have not been previously reported in literature for LED lamps. Here we provide experimental data and analysis of transient color shifts for two categories of household LED lamps (from a total of six lamps in two categories) and demonstrate that reaching thermal equilibrium more quickly provides better stability for color rendering, color temperature, and less deviation of color coordinates from the Planckian blackbody locus line, which are all very important characterization parameters of color for white light. We report for the first time that a lamp's color degradation from the turn-on time primarily depends on thermal transient behavior of the semiconductor LED chip, which experiences a wavelength shift as well as a decrease in its dominant wavelength peak value with time, which in turn degrades the phosphor conversion. For the first time, we also provide a comprehensive quantitative analysis that differentiates color degradation due to the heat rise in GaN/GaInN LED chips and subsequently the boards these chips are mounted on-from that caused by phosphor heating in a white LED module. Finally, we briefly discuss why there are some inevitable trade-offs between omnidirectionality and color and luminous output stability in current household LED lamps and what will help eliminate these trade-offs in future lamp designs.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Color. 29.2257 Section 29.2257 Agriculture Regulations... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2257 Color. The third factor of a grade based on the relative hues, saturation or chroma, and color values common...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Color. 29.2507 Section 29.2507 Agriculture Regulations...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2507 Color. The third factor of a grade based on the relative hues, saturation or chroma, and color values common to the type. ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Color. 29.2257 Section 29.2257 Agriculture Regulations... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2257 Color. The third factor of a grade based on the relative hues, saturation or chroma, and color values common...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Color. 29.2507 Section 29.2507 Agriculture Regulations...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2507 Color. The third factor of a grade based on the relative hues, saturation or chroma, and color values common to the type. ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Color. 29.2257 Section 29.2257 Agriculture Regulations... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2257 Color. The third factor of a grade based on the relative hues, saturation or chroma, and color values common...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Color. 29.2257 Section 29.2257 Agriculture Regulations... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2257 Color. The third factor of a grade based on the relative hues, saturation or chroma, and color values common...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Color. 29.2507 Section 29.2507 Agriculture Regulations...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2507 Color. The third factor of a grade based on the relative hues, saturation or chroma, and color values common to the type. ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Color. 29.2507 Section 29.2507 Agriculture Regulations...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2507 Color. The third factor of a grade based on the relative hues, saturation or chroma, and color values common to the type. ...
Adaptive Ambient Illumination Based on Color Harmony Model
NASA Astrophysics Data System (ADS)
Kikuchi, Ayano; Hirai, Keita; Nakaguchi, Toshiya; Tsumura, Norimichi; Miyake, Yoichi
We investigated the relationship between ambient illumination and psychological effect by applying a modified color harmony model. We verified the proposed model by analyzing correlation between psychological value and modified color harmony score. Experimental results showed the possibility to obtain the best color for illumination using this model.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Color. 29.2257 Section 29.2257 Agriculture Regulations... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2257 Color. The third factor of a grade based on the relative hues, saturation or chroma, and color values common...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Color. 29.2507 Section 29.2507 Agriculture Regulations...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2507 Color. The third factor of a grade based on the relative hues, saturation or chroma, and color values common to the type. ...
New Constraints on a Complex Relation between Globular Cluster Colors and Environment
NASA Astrophysics Data System (ADS)
Powalka, Mathieu; Puzia, Thomas H.; Lançon, Ariane; Peng, Eric W.; Schönebeck, Frederik; Alamo-Martínez, Karla; Ángel, Simón; Blakeslee, John P.; Côté, Patrick; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Durrell, Patrick; Ferrarese, Laura; Grebel, Eva K.; Guhathakurta, Puragra; Gwyn, S. D. J.; Kuntschner, Harald; Lim, Sungsoon; Liu, Chengze; Lyubenova, Mariya; Mihos, J. Christopher; Muñoz, Roberto P.; Ordenes-Briceño, Yasna; Roediger, Joel; Sánchez-Janssen, Rubén; Spengler, Chelsea; Toloba, Elisa; Zhang, Hongxin
2016-09-01
We present an analysis of high-quality photometry for globular clusters (GCs) in the Virgo cluster core region, based on data from the Next Generation Virgo Cluster Survey (NGVS) pilot field, and in the Milky Way (MW), based on Very Large Telescope/X-Shooter spectrophotometry. We find significant discrepancies in color-color diagrams between sub-samples from different environments, confirming that the environment has a strong influence on the integrated colors of GCs. GC color distributions along a single color are not sufficient to capture the differences we observe in color-color space. While the average photometric colors become bluer with increasing radial distance to the cD galaxy M87, we also find a relation between the environment and the slope and intercept of the color-color relations. A denser environment seems to produce a larger dynamic range in certain color indices. We argue that these results are not due solely to differential extinction, Initial Mass Function variations, calibration uncertainties, or overall age/metallicity variations. We therefore suggest that the relation between the environment and GC colors is, at least in part, due to chemical abundance variations, which affect stellar spectra and stellar evolution tracks. Our results demonstrate that stellar population diagnostics derived from model predictions which are calibrated on one particular sample of GCs may not be appropriate for all extragalactic GCs. These results advocate a more complex model of the assembly history of GC systems in massive galaxies that goes beyond the simple bimodality found in previous decades.
Visual color matching system based on RGB LED light source
NASA Astrophysics Data System (ADS)
Sun, Lei; Huang, Qingmei; Feng, Chen; Li, Wei; Wang, Chaofeng
2018-01-01
In order to study the property and performance of LED as RGB primary color light sources on color mixture in visual psychophysical experiments, and to find out the difference between LED light source and traditional light source, a visual color matching experiment system based on LED light sources as RGB primary colors has been built. By simulating traditional experiment of metameric color matching in CIE 1931 RGB color system, it can be used for visual color matching experiments to obtain a set of the spectral tristimulus values which we often call color-matching functions (CMFs). This system consists of three parts: a monochromatic light part using blazed grating, a light mixing part where the summation of 3 LED illuminations are to be visually matched with a monochromatic illumination, and a visual observation part. The three narrow band LEDs used have dominant wavelengths of 640 nm (red), 522 nm (green) and 458 nm (blue) respectively and their intensities can be controlled independently. After the calibration of wavelength and luminance of LED sources with a spectrophotometer, a series of visual color matching experiments have been carried out by 5 observers. The results are compared with those from CIE 1931 RGB color system, and have been used to compute an average locus for the spectral colors in the color triangle, with white at the center. It has been shown that the use of LED is feasible and has the advantages of easy control, good stability and low cost.
Color planner for designers based on color emotions
NASA Astrophysics Data System (ADS)
Cheng, Ka-Man; Xin, John H.; Taylor, Gail
2002-06-01
During the color perception process, an associated feeling or emotion is induced in our brains, and this kind of emotion is termed as 'color emotion.' The researchers in the field of color emotions have put many efforts in quantifying color emotions with the standard color specifications and evaluating the influence of hue, lightness and chroma to the color emotions of human beings. In this study, a color planner was derived according to these findings so that the correlation of color emotions and standard color specifications was clearly indicated. Since people of different nationalities usually have different color emotions as different cultural and traditional backgrounds, the subjects in this study were all native Hong Kong Chinese and the color emotion words were all written in Chinese language in the visual assessments. Through the color planner, the designers from different areas, no matter fashion, graphic, interior or web site etc., can select suitable colors for inducing target color emotions to the customers or product-users since different colors convey different meanings to them. In addition, the designers can enhance the functionality and increase the attractiveness of their designed products by selecting suitable colors.
Color standardization and optimization in whole slide imaging.
Yagi, Yukako
2011-03-30
Standardization and validation of the color displayed by digital slides is an important aspect of digital pathology implementation. While the most common reason for color variation is the variance in the protocols and practices in the histology lab, the color displayed can also be affected by variation in capture parameters (for example, illumination and filters), image processing and display factors in the digital systems themselves. We have been developing techniques for color validation and optimization along two paths. The first was based on two standard slides that are scanned and displayed by the imaging system in question. In this approach, one slide is embedded with nine filters with colors selected especially for H&E stained slides (looking like tiny Macbeth color chart); the specific color of the nine filters were determined in our previous study and modified for whole slide imaging (WSI). The other slide is an H&E stained mouse embryo. Both of these slides were scanned and the displayed images were compared to a standard. The second approach was based on our previous multispectral imaging research. As a first step, the two slide method (above) was used to identify inaccurate display of color and its cause, and to understand the importance of accurate color in digital pathology. We have also improved the multispectral-based algorithm for more consistent results in stain standardization. In near future, the results of the two slide and multispectral techniques can be combined and will be widely available. We have been conducting a series of researches and developing projects to improve image quality to establish Image Quality Standardization. This paper discusses one of most important aspects of image quality - color.
Color model and method for video fire flame and smoke detection using Fisher linear discriminant
NASA Astrophysics Data System (ADS)
Wei, Yuan; Jie, Li; Jun, Fang; Yongming, Zhang
2013-02-01
Video fire detection is playing an increasingly important role in our life. But recent research is often based on a traditional RGB color model used to analyze the flame, which may be not the optimal color space for fire recognition. It is worse when we research smoke simply using gray images instead of color ones. We clarify the importance of color information for fire detection. We present a fire discriminant color (FDC) model for flame or smoke recognition based on color images. The FDC models aim to unify fire color image representation and fire recognition task into one framework. With the definition of between-class scatter matrices and within-class scatter matrices of Fisher linear discriminant, the proposed models seek to obtain one color-space-transform matrix and a discriminate projection basis vector by maximizing the ratio of these two scatter matrices. First, an iterative basic algorithm is designed to get one-component color space transformed from RGB. Then, a general algorithm is extended to generate three-component color space for further improvement. Moreover, we propose a method for video fire detection based on the models using the kNN classifier. To evaluate the recognition performance, we create a database including flame, smoke, and nonfire images for training and testing. The test experiments show that the proposed model achieves a flame verification rate receiver operating characteristic (ROC I) of 97.5% at a false alarm rate (FAR) of 1.06% and a smoke verification rate (ROC II) of 91.5% at a FAR of 1.2%, and lots of fire video experiments demonstrate that our method reaches a high accuracy for fire recognition.
NASA Astrophysics Data System (ADS)
Seol, Daun; Moon, Jong-Sik; Lee, Yujin; Han, Jiye; Jang, Daeil; Kang, Dong-Jin; Moon, Jiyoung; Jang, Eunjin; Oh, Jin-Woo; Chung, Hoeil
2018-05-01
An M13 bacteriophage-based color sensor, which can change its structural color upon interaction with a gaseous molecule, was evaluated as a screening tool for the discrimination of the geographical origins of three different agricultural products (garlic, onion, and perilla). Exposure of the color sensor to sample odors induced the self-assembled M13 bacteriophage bundles to swell by the interaction of amino acid residues (repeating units of four glutamates) on the bacteriophage with the odor components, resulting in a change in the structural color of the sensor. When the sensor was exposed to the odors of garlic and onion samples, the RGB color changes were considerable because of the strong interactions of the odor components such as disulfides with the glutamate residues on the sensor. Although the patterns of the color variations were generally similar between the domestic and imported samples, some degrees of dissimilarities in their intensities were also observed. Although the magnitude of color change decreased for perilla, the color change patterns between the two groups were somewhat different. With the acquired RGB data, a support vector machine was employed to distinguish the domestic and imported samples, and the resulting accuracies in the measurements of garlic, onion, and perilla samples were 94.1, 88.7, and 91.6%, respectively. The differences in the concentrations of the odor components between both groups and/or the presence of specific components exclusively in the odor of one group allowed the color sensor-based discrimination. The demonstrated color sensor was thus shown to be a potentially versatile and simple as an on-site screening tool. Strategies able to further improve the sensor performance were also discussed.
Seol, Daun; Moon, Jong-Sik; Lee, Yujin; Han, Jiye; Jang, Daeil; Kang, Dong-Jin; Moon, Jiyoung; Jang, Eunjin; Oh, Jin-Woo; Chung, Hoeil
2018-05-15
An M13 bacteriophage-based color sensor, which can change its structural color upon interaction with a gaseous molecule, was evaluated as a screening tool for the discrimination of the geographical origins of three different agricultural products (garlic, onion, and perilla). Exposure of the color sensor to sample odors induced the self-assembled M13 bacteriophage bundles to swell by the interaction of amino acid residues (repeating units of four glutamates) on the bacteriophage with the odor components, resulting in a change in the structural color of the sensor. When the sensor was exposed to the odors of garlic and onion samples, the RGB color changes were considerable because of the strong interactions of the odor components such as disulfides with the glutamate residues on the sensor. Although the patterns of the color variations were generally similar between the domestic and imported samples, some degrees of dissimilarities in their intensities were also observed. Although the magnitude of color change decreased for perilla, the color change patterns between the two groups were somewhat different. With the acquired RGB data, a support vector machine was employed to distinguish the domestic and imported samples, and the resulting accuracies in the measurements of garlic, onion, and perilla samples were 94.1, 88.7, and 91.6%, respectively. The differences in the concentrations of the odor components between both groups and/or the presence of specific components exclusively in the odor of one group allowed the color sensor-based discrimination. The demonstrated color sensor was thus shown to be a potentially versatile and simple as an on-site screening tool. Strategies able to further improve the sensor performance were also discussed. Copyright © 2018. Published by Elsevier B.V.
Kuchenbecker, J; Blum, M; Paul, F
2016-03-01
In acute unilateral optic neuritis (ON) color vision defects combined with a decrease in visual acuity and contrast sensitivity frequently occur. This study investigated whether a web-based color vision test is a reliable detector of acquired color vision defects in ON and, if so, which charts are particularly suitable. In 12 patients with acute unilateral ON, a web-based color vision test ( www.farbsehtest.de ) with 25 color plates (16 Velhagen/Broschmann and 9 Ishihara color plates) was performed. For each patient the affected eye was tested first and then the unaffected eye. The mean best-corrected distance visual acuity (BCDVA) in the ON eye was 0.36 ± 0.20 and 1.0 ± 0.1 in the contralateral eye. The number of incorrectly read plates correlated with the visual acuity. For the ON eye a total of 134 plates were correctly identified and 166 plates were incorrectly identified, while for the disease-free fellow eye, 276 plates were correctly identified and 24 plates were incorrectly identified. Both of the blue/yellow plates were identified correctly 14 times and incorrectly 10 times using the ON eye and exclusively correctly (24 times) using the fellow eye. The Velhagen/Broschmann plates were incorrectly identified significantly more frequently in comparison with the Ishihara plates. In 4 out of 16 Velhagen/Broschmann plates and 5 out of 9 Ishihara plates, no statistically significant differences between the ON eye and the fellow eye could be detected. The number of incorrectly identified plates correlated with a decrease in visual acuity. Red/green and blue/yellow plates were incorrectly identified significantly more frequently with the ON eye, while the Velhagen/Broschmann color plates were incorrectly identified significantly more frequently than the Ishihara color plates. Thus, under defined test conditions the web-based color vision test can also be used to detect acquired color vision defects, such as those caused by ON. Optimization of the test by altering the combination of plates may be a useful next step.
Microsphere-based gradient implants for osteochondral regeneration: a long-term study in sheep
Mohan, Neethu; Gupta, Vineet; Sridharan, Banu Priya; Mellott, Adam J; Easley, Jeremiah T; Palmer, Ross H; Galbraith, Richard A; Key, Vincent H; Berkland, Cory J; Detamore, Michael S
2015-01-01
Background: The microfracture technique for cartilage repair has limited ability to regenerate hyaline cartilage. Aim: The current study made a direct comparison between microfracture and an osteochondral approach with microsphere-based gradient plugs. Materials & methods: The PLGA-based scaffolds had opposing gradients of chondroitin sulfate and β-tricalcium phosphate. A 1-year repair study in sheep was conducted. Results: The repair tissues in the microfracture were mostly fibrous and had scattered fissures with degenerative changes. Cartilage regenerated with the gradient plugs had equal or superior mechanical properties; had lacunated cells and stable matrix as in hyaline cartilage. Conclusion: This first report of gradient scaffolds in a long-term, large animal, osteochondral defect demonstrated potential for equal or better cartilage repair than microfracture. PMID:26418471
Aluminum plasmonic metamaterials for structural color printing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Fei; Gao, Jie; Stan, Liliana
2015-01-01
We report a structural color printing platform based on aluminum plasmonic metamaterials supporting near perfect light absorption and narrow-band spectral response tunable across the visible spectrum to realize high-resolution, angle-insensitive color printing with high color purity and saturation. Additionally, the fabricated metamaterials can be protected by a transparent polymer thin layer for ambient use with further improved color performance. The demonstrated structural color printing with aluminum plasmonic metamaterials offers great potential for relevant applications such as security marking and information storage.
Discovering complementary colors from the perspective of steam education
NASA Astrophysics Data System (ADS)
Karabey, Burak; Yigit Koyunkaya, Melike; Enginoglu, Turan; Yurumezoglu, Kemal
2018-05-01
This study explored the theory and applications of complementary colors using a technology-based activity designed from the perspective of STEAM education. Complementary colors and their areas of use were examined from the perspective of physics, mathematics and art, respectively. The study, which benefits from technology, makes the theory of complementary colors accessible to all through practical applications and provides a multidisciplinary, integrated and innovative technique of teaching the subject of colors, which could be used to teach complementary colors.
Aluminum plasmonic metamaterials for structural color printing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Fei; Gao, Jie; Stan, Liliana
2015-05-26
We report a structural color printing platform based on aluminum plasmonic metamaterials supporting near perfect light absorption and narrow-band spectral response tunable across the visible spectrum to realize high-resolution, angle-insensitive color printing with high color purity and saturation. Additionally, the fabricated metamaterials can be protected by a transparent polymer thin layer for ambient use with further improved color performance. The demonstrated structural color printing with aluminum plasmonic metamaterials offers great potential for relevant applications such as security marking and information storage.
Color dithering methods for LEGO-like 3D printing
NASA Astrophysics Data System (ADS)
Sun, Pei-Li; Sie, Yuping
2015-01-01
Color dithering methods for LEGO-like 3D printing are proposed in this study. The first method is work for opaque color brick building. It is a modification of classic error diffusion. Many color primaries can be chosen. However, RGBYKW is recommended as its image quality is good and the number of color primary is limited. For translucent color bricks, multi-layer color building can enhance the image quality significantly. A LUT-based method is proposed to speed the dithering proceeding and make the color distribution even smoother. Simulation results show the proposed multi-layer dithering method can really improve the image quality of LEGO-like 3D printing.
NASA Astrophysics Data System (ADS)
Chung, Kunook; Sui, Jingyang; Demory, Brandon; Ku, Pei-Cheng
2017-07-01
Additive color mixing across the visible spectrum was demonstrated from an InGaN based light-emitting diode (LED) pixel comprising red, green, and blue subpixels monolithically integrated and enabled by local strain engineering. The device was fabricated using a top-down approach on a metal-organic chemical vapor deposition-grown sample consisting of a typical LED epitaxial stack. The three color subpixels were defined in a single lithographic step. The device was characterized for its electrical properties and emission spectra under an uncooled condition, which is desirable in practical applications. The color mixing was controlled by pulse-width modulation, and the degree of color control was also characterized.
Effective and Accurate Colormap Selection
NASA Astrophysics Data System (ADS)
Thyng, K. M.; Greene, C. A.; Hetland, R. D.; Zimmerle, H.; DiMarco, S. F.
2016-12-01
Science is often communicated through plots, and design choices can elucidate or obscure the presented data. The colormap used can honestly and clearly display data in a visually-appealing way, or can falsely exaggerate data gradients and confuse viewers. Fortunately, there is a large resource of literature in color science on how color is perceived which we can use to inform our own choices. Following this literature, colormaps can be designed to be perceptually uniform; that is, so an equally-sized jump in the colormap at any location is perceived by the viewer as the same size. This ensures that gradients in the data are accurately percieved. The same colormap is often used to represent many different fields in the same paper or presentation. However, this can cause difficulty in quick interpretation of multiple plots. For example, in one plot the viewer may have trained their eye to recognize that red represents high salinity, and therefore higher density, while in the subsequent temperature plot they need to adjust their interpretation so that red represents high temperature and therefore lower density. In the same way that a single Greek letter is typically chosen to represent a field for a paper, we propose to choose a single colormap to represent a field in a paper, and use multiple colormaps for multiple fields. We have created a set of colormaps that are perceptually uniform, and follow several other design guidelines. There are 18 colormaps to give options to choose from for intuitive representation. For example, a colormap of greens may be used to represent chlorophyll concentration, or browns for turbidity. With careful consideration of human perception and design principles, colormaps may be chosen which faithfully represent the data while also engaging viewers.
NASA Astrophysics Data System (ADS)
Pirpinia, Kleopatra; Bosman, Peter A. N.; Sonke, Jan-Jakob; van Herk, Marcel; Alderliesten, Tanja
2015-03-01
The use of gradient information is well-known to be highly useful in single-objective optimization-based image registration methods. However, its usefulness has not yet been investigated for deformable image registration from a multi-objective optimization perspective. To this end, within a previously introduced multi-objective optimization framework, we use a smooth B-spline-based dual-dynamic transformation model that allows us to derive gradient information analytically, while still being able to account for large deformations. Within the multi-objective framework, we previously employed a powerful evolutionary algorithm (EA) that computes and advances multiple outcomes at once, resulting in a set of solutions (a so-called Pareto front) that represents efficient trade-offs between the objectives. With the addition of the B-spline-based transformation model, we studied the usefulness of gradient information in multiobjective deformable image registration using three different optimization algorithms: the (gradient-less) EA, a gradientonly algorithm, and a hybridization of these two. We evaluated the algorithms to register highly deformed images: 2D MRI slices of the breast in prone and supine positions. Results demonstrate that gradient-based multi-objective optimization significantly speeds up optimization in the initial stages of optimization. However, allowing sufficient computational resources, better results could still be obtained with the EA. Ultimately, the hybrid EA found the best overall approximation of the optimal Pareto front, further indicating that adding gradient-based optimization for multiobjective optimization-based deformable image registration can indeed be beneficial
Color-Space-Based Visual-MIMO for V2X Communication †
Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo
2016-01-01
In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance. PMID:27120603
NASA Astrophysics Data System (ADS)
Dafu, Shen; Leihong, Zhang; Dong, Liang; Bei, Li; Yi, Kang
2017-07-01
The purpose of this study is to improve the reconstruction precision and better copy the color of spectral image surfaces. A new spectral reflectance reconstruction algorithm based on an iterative threshold combined with weighted principal component space is presented in this paper, and the principal component with weighted visual features is the sparse basis. Different numbers of color cards are selected as the training samples, a multispectral image is the testing sample, and the color differences in the reconstructions are compared. The channel response value is obtained by a Mega Vision high-accuracy, multi-channel imaging system. The results show that spectral reconstruction based on weighted principal component space is superior in performance to that based on traditional principal component space. Therefore, the color difference obtained using the compressive-sensing algorithm with weighted principal component analysis is less than that obtained using the algorithm with traditional principal component analysis, and better reconstructed color consistency with human eye vision is achieved.
Color-Space-Based Visual-MIMO for V2X Communication.
Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo
2016-04-23
In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance.
A novel weighted-direction color interpolation
NASA Astrophysics Data System (ADS)
Tao, Jin-you; Yang, Jianfeng; Xue, Bin; Liang, Xiaofen; Qi, Yong-hong; Wang, Feng
2013-08-01
A digital camera capture images by covering the sensor surface with a color filter array (CFA), only get a color sample at pixel location. Demosaicking is a process by estimating the missing color components of each pixel to get a full resolution image. In this paper, a new algorithm based on edge adaptive and different weighting factors is proposed. Our method can effectively suppress undesirable artifacts. Experimental results based on Kodak images show that the proposed algorithm obtain higher quality images compared to other methods in numerical and visual aspects.
Dave, Pujan; Villarreal, Guadalupe; Friedman, David S; Kahook, Malik Y; Ramulu, Pradeep Y
2015-12-01
To determine the accuracy of patient-physician communication regarding topical ophthalmic medication use based on bottle cap color, particularly among individuals who may have acquired color vision deficiency from glaucoma. Cross-sectional, clinical study. Patients aged ≥18 years with primary open-angle, primary angle-closure, pseudoexfoliation, or pigment dispersion glaucoma, bilateral visual acuity of ≥20/400, and no concurrent conditions that may affect color vision. A total of 100 patients provided color descriptions of 11 distinct medication bottle caps. Color descriptors were then presented to 3 physicians. Physicians matched each color descriptor to the medication they thought the descriptor was describing. Frequency of patient-physician agreement, occurring when all 3 physicians accurately matched the color descriptor to the correct medication. Multivariate regression models evaluated whether patient-physician agreement decreased with degree of better-eye visual field (VF) damage, color descriptor heterogeneity, or color vision deficiency, as determined by the Hardy-Rand-Rittler (HRR) score and Lanthony D15 color confusion index (D15 CCI). Subjects had a mean age of 69 (±11) years, with VF mean deviation of -4.7 (±6.0) and -10.9 (±8.4) decibels (dB) in the better- and worse-seeing eyes, respectively. Patients produced 102 unique color descriptors to describe the colors of the 11 bottle caps. Among individual patients, the mean number of medications demonstrating agreement was 6.1/11 (55.5%). Agreement was less than 15% for 4 medications (prednisolone acetate [generic], betaxolol HCl [Betoptic; Alcon Laboratories Inc., Fort Worth, TX], brinzolamide/brimonidine [Simbrinza; Alcon Laboratories Inc.], and latanoprost [Xalatan; Pfizer, Inc., New York, NY]). Lower HRR scores and higher D15 CCI (both indicating worse color vision) were associated with greater VF damage (P < 0.001). Extent of color vision deficiency and color descriptor heterogeneity significantly predicted agreement in multivariate models (odds of agreement = 0.90 per 1 point decrement in HRR score, P < 0.001; odds of agreement = 0.30 for medications exhibiting high heterogeneity [≥11 descriptors], P = 0.007). Physician understanding of patient medication use based solely on bottle cap color is frequently incorrect, particularly in patients with glaucoma who may have color vision deficiency. Errors based on communication using bottle cap color alone may be common and could lead to confusion and harm. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Simone, Gabriele; Cordone, Roberto; Serapioni, Raul Paolo; Lecca, Michela
2017-05-01
Retinex theory estimates the human color sensation at any observed point by correcting its color based on the spatial arrangement of the colors in proximate regions. We revise two recent path-based, edge-aware Retinex implementations: Termite Retinex (TR) and Energy-driven Termite Retinex (ETR). As the original Retinex implementation, TR and ETR scan the neighborhood of any image pixel by paths and rescale their chromatic intensities by intensity levels computed by reworking the colors of the pixels on the paths. Our interest in TR and ETR is due to their unique, content-based scanning scheme, which uses the image edges to define the paths and exploits a swarm intelligence model for guiding the spatial exploration of the image. The exploration scheme of ETR has been showed to be particularly effective: its paths are local minima of an energy functional, designed to favor the sampling of image pixels highly relevant to color sensation. Nevertheless, since its computational complexity makes ETR poorly practicable, here we present a light version of it, named Light Energy-driven TR, and obtained from ETR by implementing a modified, optimized minimization procedure and by exploiting parallel computing.
Digital camera auto white balance based on color temperature estimation clustering
NASA Astrophysics Data System (ADS)
Zhang, Lei; Liu, Peng; Liu, Yuling; Yu, Feihong
2010-11-01
Auto white balance (AWB) is an important technique for digital cameras. Human vision system has the ability to recognize the original color of an object in a scene illuminated by a light source that has a different color temperature from D65-the standard sun light. However, recorded images or video clips, can only record the original information incident into the sensor. Therefore, those recorded will appear different from the real scene observed by the human. Auto white balance is a technique to solve this problem. Traditional methods such as gray world assumption, white point estimation, may fail for scenes with large color patches. In this paper, an AWB method based on color temperature estimation clustering is presented and discussed. First, the method gives a list of several lighting conditions that are common for daily life, which are represented by their color temperatures, and thresholds for each color temperature to determine whether a light source is this kind of illumination; second, an image to be white balanced are divided into N blocks (N is determined empirically). For each block, the gray world assumption method is used to calculate the color cast, which can be used to estimate the color temperature of that block. Third, each calculated color temperature are compared with the color temperatures in the given illumination list. If the color temperature of a block is not within any of the thresholds in the given list, that block is discarded. Fourth, the remaining blocks are given a majority selection, the color temperature having the most blocks are considered as the color temperature of the light source. Experimental results show that the proposed method works well for most commonly used light sources. The color casts are removed and the final images look natural.
2006-06-01
Base Deficit and Alveolar–Arterial Gradient During Resuscitation Contribute Independently But Modestly to the Prediction of Mortality After Burn...alveolar-arterial gradient (AaDO2), AGE, % burn, full-thickness burn size, INHAL, and with decreased pH and base excess. LRA of % burn, AGE, INHAL, and...not BE predicted earlier death in those who died. Measured during resuscitation, metabolic acidosis (ie, a base deficit) and oxygenation failure (ie
The fate of task-irrelevant visual motion: perceptual load versus feature-based attention.
Taya, Shuichiro; Adams, Wendy J; Graf, Erich W; Lavie, Nilli
2009-11-18
We tested contrasting predictions derived from perceptual load theory and from recent feature-based selection accounts. Observers viewed moving, colored stimuli and performed low or high load tasks associated with one stimulus feature, either color or motion. The resultant motion aftereffect (MAE) was used to evaluate attentional allocation. We found that task-irrelevant visual features received less attention than co-localized task-relevant features of the same objects. Moreover, when color and motion features were co-localized yet perceived to belong to two distinct surfaces, feature-based selection was further increased at the expense of object-based co-selection. Load theory predicts that the MAE for task-irrelevant motion would be reduced with a higher load color task. However, this was not seen for co-localized features; perceptual load only modulated the MAE for task-irrelevant motion when this was spatially separated from the attended color location. Our results suggest that perceptual load effects are mediated by spatial selection and do not generalize to the feature domain. Feature-based selection operates to suppress processing of task-irrelevant, co-localized features, irrespective of perceptual load.
Identification of pavement marking colors.
DOT National Transportation Integrated Search
2002-04-01
Current pavement marking color specifications are given in terms of a single color with no indication of acceptable tolerances. Recently proposed standards include tolerances, but neither current nor proposed standards are based on psychophysical dat...
Replication of Optical Microstructures of Papilio palinurus through Biomimicry
NASA Astrophysics Data System (ADS)
Srinivasarao, Mohan; Crne, Matija; Sharma, Vivek; Blair, John; Park, Jung Ok; Summers, Christopher J.
2009-03-01
The coloration of animals in nature is sometimes based on their structure rather than pigments. Structural coloration based on diffraction, multilayer reflection, cholesteric analogues or photonic crystal-like structures is pervasive especially in the world of insects. The color of Papilio palinurus results from microbowl lined with a multilayer of air and chitin. The green color is the result of color mixing of the yellow light reflecting from the bottom of the bowl and the blue light reflecting from the sides of the bowl. We have used breath figure templated assembly as the starting point to mimic the structure of Papilio palinurus. We were able to produce microbowls which were then coated with a multilayer of alternating titanium oxide and aluminum oxide. The resulting structure exhibits the same color mixing as the original butterfly structure does.
Glossiness of Colored Papers based on Computer Graphics Model and Its Measuring Method
NASA Astrophysics Data System (ADS)
Aida, Teizo
In the case of colored papers, the color of surface effects strongly upon the gloss of its paper. The new glossiness for such a colored paper is suggested in this paper. First, using the Achromatic and Chromatic Munsell colored chips, the author obtained experimental equation which represents the relation between lightness V ( or V and saturation C ) and psychological glossiness Gph of these chips. Then, the author defined a new glossiness G for the colored papers, based on the above mentioned experimental equations Gph and Cook-Torrance's reflection model which are widely used in the filed of Computer Graphics. This new glossiness is shown to be nearly proportional to the psychological glossiness Gph. The measuring system for the new glossiness G is furthermore descrived. The measuring time for one specimen is within 1 minute.
Subsurface temperatures and geothermal gradients on the north slope of Alaska
Collett, T.S.; Bird, K.J.; Magoon, L.B.
1993-01-01
On the North Slope of Alaska, geothermal gradient data are available from high-resolution, equilibrated well-bore surveys and from estimates based on well-log identification of the base of ice-bearing permafrost. A total of 46 North Slope wells, considered to be in or near thermal equilibrium, have been surveyed with high-resolution temperatures devices and geothermal gradients can be interpreted directly from these recorded temperature profiles. To augment the limited North Slope temperature data base, a new method of evaluating local geothermal gradients has been developed. In this method, a series of well-log picks for the base of the ice-bearing permafrost from 102 wells have been used, along with regional temperature constants derived from the high-resolution stabilized well-bore temperature surveys, to project geothermal gradients. Geothermal gradients calculated from the high-resolution temperature surveys generally agree with those projected from known ice-bearing permafrost depths over most of the North Slope. Values in the ice-bearing permafrost range from ??? 1.5??C 100 m in the Prudhoe Bay area to ??? 4.5??C 100 m in the east-central portion of the National Petroleum Reserve in Alaska. Geothermal gradients below the ice-bearing permafrost sequence range from ??? 1.6??C 100 m to ??? 5.2??C 100 m. ?? 1993.
Long-term memory color investigation: culture effect and experimental setting factors.
Zhu, Yuteng; Luo, Ming Ronnier; Fischer, Sebastian; Bodrogi, Peter; Khanh, Tran Quoc
2017-10-01
Memory colors generated continuous interest in the color community. Previous studies focused on reflecting color chips and color samples in real scenes or on monitors. The cognitive effect of culture was rarely considered. In this paper, we performed a comprehensive investigation of the long-term memory colors of 26 familiar objects using the asymmetric color matching method among Chinese and German observers on a display. Three experiments were conducted to evaluate the variations introduced by culture, context-based gray image, and initial matching color. Memory colors of important objects were collected and representative memory colors were quantified in terms of CIELAB L * , a * , and b * values. The intra- and inter-observer variations were analyzed by mean-color-difference-from-mean values and chromatic ellipses. The effects of different cultural groups and experimental settings were also shown.
Chen, Hui; Swan, Garrett; Wyble, Brad
2016-02-01
Conventional theories of cognition focus on attention as the primary determinant of working memory contents. However, here we show that about one third of observers could not report the color of a ball that they had just been specifically attending for 5-59 s. This counterintuitive result was obtained when observers repeatedly counted the passes of one of two different colored balls among actors in a video and were then unexpectedly asked to report the color of the ball that they had just tracked. Control trials demonstrated that observers' color report performance increased dramatically once they had an expectation to do so. Critically, most of the incorrect color responses were the distractor ball color, which suggested memory storage without binding. Therefore, these results, together with other recent findings argued against two opposing theories: object-based encoding and feature-based encoding. Instead, we propose a new hypothesis by suggesting that the failure to report color is because participants might only activate the color representation in long-term memory without binding it to object representation in working memory. Copyright © 2015 Elsevier B.V. All rights reserved.
Color rendering indices in global illumination methods
NASA Astrophysics Data System (ADS)
Geisler-Moroder, David; Dür, Arne
2009-02-01
Human perception of material colors depends heavily on the nature of the light sources used for illumination. One and the same object can cause highly different color impressions when lit by a vapor lamp or by daylight, respectively. Based on state-of-the-art colorimetric methods we present a modern approach for calculating color rendering indices (CRI), which were defined by the International Commission on Illumination (CIE) to characterize color reproduction properties of illuminants. We update the standard CIE method in three main points: firstly, we use the CIELAB color space, secondly, we apply a Bradford transformation for chromatic adaptation, and finally, we evaluate color differences using the CIEDE2000 total color difference formula. Moreover, within a real-world scene, light incident on a measurement surface is composed of a direct and an indirect part. Neumann and Schanda1 have shown for the cube model that interreflections can influence the CRI of an illuminant. We analyze how color rendering indices vary in a real-world scene with mixed direct and indirect illumination and recommend the usage of a spectral rendering engine instead of an RGB based renderer for reasons of accuracy of CRI calculations.
Simulated color: a diagnostic tool for skin lesions like port-wine stain
NASA Astrophysics Data System (ADS)
Randeberg, Lise L.; Svaasand, Lars O.
2001-05-01
A device independent method for skin color visualization has been developed. Colors reconstructed from a reflectance spectrum are presented on a computer screen by sRGB (standard Red Green Blue) color coordinates. The colors are presented as adjacent patches surrounded by a medium grey border. CIELAB color coordinates and CIE (International Commission on Illumination) color difference (Delta) E are computed. The change in skin color due to a change in average blood content or scattering properties in dermis is investigated. This is done by analytical simulations based on the diffusion approximation. It is found that an 11% change in average blood content and a 15% change in scattering properties will give a visible color change. A supposed visibility limit for (Delta) E is given. This value is based on experimental testing and the known properties of the human visual system. This limit value can be used as a tool to determine when to terminate laser treatment of port- wine stain due to low treatment response, i.e. low (Delta) E between treatments. The visualization method presented seems promising for medical applications as port-wine stain diagnostics. The method gives good possibilities for electronic transfer of data between clinics because it is device independent.
Improved compression technique for multipass color printers
NASA Astrophysics Data System (ADS)
Honsinger, Chris
1998-01-01
A multipass color printer prints a color image by printing one color place at a time in a prescribed order, e.g., in a four-color systems, the cyan plane may be printed first, the magenta next, and so on. It is desirable to discard the data related to each color plane once it has been printed, so that data from the next print may be downloaded. In this paper, we present a compression scheme that allows the release of a color plane memory, but still takes advantage of the correlation between the color planes. The compression scheme is based on a block adaptive technique for decorrelating the color planes followed by a spatial lossy compression of the decorrelated data. A preferred method of lossy compression is the DCT-based JPEG compression standard, as it is shown that the block adaptive decorrelation operations can be efficiently performed in the DCT domain. The result of the compression technique are compared to that of using JPEG on RGB data without any decorrelating transform. In general, the technique is shown to improve the compression performance over a practical range of compression ratios by at least 30 percent in all images, and up to 45 percent in some images.
Modeling of salt and pH gradient elution in ion-exchange chromatography.
Schmidt, Michael; Hafner, Mathias; Frech, Christian
2014-01-01
The separation of proteins by internally and externally generated pH gradients in chromatofocusing on ion-exchange columns is a well-established analytical method with a large number of applications. In this work, a stoichiometric displacement model was used to describe the retention behavior of lysozyme on SP Sepharose FF and a monoclonal antibody on Fractogel SO3 (S) in linear salt and pH gradient elution. The pH dependence of the binding charge B in the linear gradient elution model is introduced using a protein net charge model, while the pH dependence of the equilibrium constant is based on a thermodynamic approach. The model parameter and pH dependences are calculated from linear salt gradient elutions at different pH values as well as from linear pH gradient elutions at different fixed salt concentrations. The application of the model for the well-characterized protein lysozyme resulted in almost identical model parameters based on either linear salt or pH gradient elution data. For the antibody, only the approach based on linear pH gradients is feasible because of the limited pH range useful for salt gradient elution. The application of the model for the separation of an acid variant of the antibody from the major monomeric form is discussed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carded Tow Real-Time Color Assessment: A Spectral Camera-Based System
Furferi, Rocco; Governi, Lapo; Volpe, Yary; Carfagni, Monica
2016-01-01
One of the most important parameters to be controlled during the production of textile yarns obtained by mixing pre-colored fibers, is the color correspondence between the manufactured yarn and a given reference, usually provided by a designer or a customer. Obtaining yarns from raw pre-colored fibers is a complex manufacturing process entailing a number of steps such as laboratory sampling, color recipe corrections, blowing, carding and spinning. Carding process is the one devoted to transform a “fuzzy mass” of tufted fibers into a regular mass of untwisted fibers, named “tow”. During this process, unfortunately, the correspondence between the color of the tow and the target one cannot be assured, thus leading to yarns whose color differs from the one used for reference. To solve this issue, the main aim of this work is to provide a system able to perform a spectral camera-based real-time measurement of a carded tow, to assess its color correspondence with a reference carded fabric and, at the same time, to monitor the overall quality of the tow during the carding process. Tested against a number of differently colored carded fabrics, the proposed system proved its effectiveness in reliably assessing color correspondence in real-time. PMID:27589765