Color Histogram Diffusion for Image Enhancement
NASA Technical Reports Server (NTRS)
Kim, Taemin
2011-01-01
Various color histogram equalization (CHE) methods have been proposed to extend grayscale histogram equalization (GHE) for color images. In this paper a new method called histogram diffusion that extends the GHE method to arbitrary dimensions is proposed. Ranges in a histogram are specified as overlapping bars of uniform heights and variable widths which are proportional to their frequencies. This diagram is called the vistogram. As an alternative approach to GHE, the squared error of the vistogram from the uniform distribution is minimized. Each bar in the vistogram is approximated by a Gaussian function. Gaussian particles in the vistoram diffuse as a nonlinear autonomous system of ordinary differential equations. CHE results of color images showed that the approach is effective.
Hue-preserving and saturation-improved color histogram equalization algorithm.
Song, Ki Sun; Kang, Hee; Kang, Moon Gi
2016-06-01
In this paper, an algorithm is proposed to improve contrast and saturation without color degradation. The local histogram equalization (HE) method offers better performance than the global HE method, whereas the local HE method sometimes produces undesirable results due to the block-based processing. The proposed contrast-enhancement (CE) algorithm reflects the characteristics of the global HE method in the local HE method to avoid the artifacts, while global and local contrasts are enhanced. There are two ways to apply the proposed CE algorithm to color images. One is luminance processing methods, and the other one is each channel processing methods. However, these ways incur excessive or reduced saturation and color degradation problems. The proposed algorithm solves these problems by using channel adaptive equalization and similarity of ratios between the channels. Experimental results show that the proposed algorithm enhances contrast and saturation while preserving the hue and producing better performance than existing methods in terms of objective evaluation metrics.
Information-Adaptive Image Encoding and Restoration
NASA Technical Reports Server (NTRS)
Park, Stephen K.; Rahman, Zia-ur
1998-01-01
The multiscale retinex with color restoration (MSRCR) has shown itself to be a very versatile automatic image enhancement algorithm that simultaneously provides dynamic range compression, color constancy, and color rendition. A number of algorithms exist that provide one or more of these features, but not all. In this paper we compare the performance of the MSRCR with techniques that are widely used for image enhancement. Specifically, we compare the MSRCR with color adjustment methods such as gamma correction and gain/offset application, histogram modification techniques such as histogram equalization and manual histogram adjustment, and other more powerful techniques such as homomorphic filtering and 'burning and dodging'. The comparison is carried out by testing the suite of image enhancement methods on a set of diverse images. We find that though some of these techniques work well for some of these images, only the MSRCR performs universally well oil the test set.
A Comparison of the Multiscale Retinex With Other Image Enhancement Techniques
NASA Technical Reports Server (NTRS)
Rahman, Zia-Ur; Woodell, Glenn A.; Jobson, Daniel J.
1997-01-01
The multiscale retinex with color restoration (MSRCR) has shown itself to be a very versatile automatic image enhancement algorithm that simultaneously provides dynamic range compression, color constancy, and color rendition. A number of algorithms exist that provide one or more of these features, but not all. In this paper we compare the performance of the MSRCR with techniques that are widely used for image enhancement. Specifically, we compare the MSRCR with color adjustment methods such as gamma correction and gain/offset application, histogram modification techniques such as histogram equalization and manual histogram adjustment, and other more powerful techniques such as homomorphic filtering and 'burning and dodging'. The comparison is carried out by testing the suite of image enhancement methods on a set of diverse images. We find that though some of these techniques work well for some of these images, only the MSRCR performs universally well on the test set.
Multispectral histogram normalization contrast enhancement
NASA Technical Reports Server (NTRS)
Soha, J. M.; Schwartz, A. A.
1979-01-01
A multispectral histogram normalization or decorrelation enhancement which achieves effective color composites by removing interband correlation is described. The enhancement procedure employs either linear or nonlinear transformations to equalize principal component variances. An additional rotation to any set of orthogonal coordinates is thus possible, while full histogram utilization is maintained by avoiding the reintroduction of correlation. For the three-dimensional case, the enhancement procedure may be implemented with a lookup table. An application of the enhancement to Landsat multispectral scanning imagery is presented.
Multi-stream LSTM-HMM decoding and histogram equalization for noise robust keyword spotting.
Wöllmer, Martin; Marchi, Erik; Squartini, Stefano; Schuller, Björn
2011-09-01
Highly spontaneous, conversational, and potentially emotional and noisy speech is known to be a challenge for today's automatic speech recognition (ASR) systems, which highlights the need for advanced algorithms that improve speech features and models. Histogram Equalization is an efficient method to reduce the mismatch between clean and noisy conditions by normalizing all moments of the probability distribution of the feature vector components. In this article, we propose to combine histogram equalization and multi-condition training for robust keyword detection in noisy speech. To better cope with conversational speaking styles, we show how contextual information can be effectively exploited in a multi-stream ASR framework that dynamically models context-sensitive phoneme estimates generated by a long short-term memory neural network. The proposed techniques are evaluated on the SEMAINE database-a corpus containing emotionally colored conversations with a cognitive system for "Sensitive Artificial Listening".
Content based Image Retrieval based on Different Global and Local Color Histogram Methods: A Survey
NASA Astrophysics Data System (ADS)
Suhasini, Pallikonda Sarah; Sri Rama Krishna, K.; Murali Krishna, I. V.
2017-02-01
Different global and local color histogram methods for content based image retrieval (CBIR) are investigated in this paper. Color histogram is a widely used descriptor for CBIR. Conventional method of extracting color histogram is global, which misses the spatial content, is less invariant to deformation and viewpoint changes, and results in a very large three dimensional histogram corresponding to the color space used. To address the above deficiencies, different global and local histogram methods are proposed in recent research. Different ways of extracting local histograms to have spatial correspondence, invariant colour histogram to add deformation and viewpoint invariance and fuzzy linking method to reduce the size of the histogram are found in recent papers. The color space and the distance metric used are vital in obtaining color histogram. In this paper the performance of CBIR based on different global and local color histograms in three different color spaces, namely, RGB, HSV, L*a*b* and also with three distance measures Euclidean, Quadratic and Histogram intersection are surveyed, to choose appropriate method for future research.
Hiroyasu, Tomoyuki; Hayashinuma, Katsutoshi; Ichikawa, Hiroshi; Yagi, Nobuaki
2015-08-01
A preprocessing method for endoscopy image analysis using texture analysis is proposed. In a previous study, we proposed a feature value that combines a co-occurrence matrix and a run-length matrix to analyze the extent of early gastric cancer from images taken with narrow-band imaging endoscopy. However, the obtained feature value does not identify lesion zones correctly due to the influence of noise and halation. Therefore, we propose a new preprocessing method with a non-local means filter for de-noising and contrast limited adaptive histogram equalization. We have confirmed that the pattern of gastric mucosa in images can be improved by the proposed method. Furthermore, the lesion zone is shown more correctly by the obtained color map.
Color Swapping to Enhance Breast Cancer Digital Images Qualities Using Stain Normalization
NASA Astrophysics Data System (ADS)
Muhimmah, Izzati; Puspasari Wijaya, Dhina; Indrayanti
2017-03-01
Histopathology is the disease diagnosis by means of the visual examination of tissues under the microscope. The virtually transparent tissue sections were prepared using a number of colored histochemical stains bound selectively to the cellular components. A variation of colors comes to be a problem in histopathology based upon the microscope lighting for the range of factors. This research aimed to investigate an image enhancement by applying a nonlinear mapping approach to stain normalization and histogram equalization for contrast enhancement. Validation was carried out in 59 datasets with 96.6% accordance and expert justification.
A natural-color mapping for single-band night-time image based on FPGA
NASA Astrophysics Data System (ADS)
Wang, Yilun; Qian, Yunsheng
2018-01-01
A natural-color mapping for single-band night-time image method based on FPGA can transmit the color of the reference image to single-band night-time image, which is consistent with human visual habits and can help observers identify the target. This paper introduces the processing of the natural-color mapping algorithm based on FPGA. Firstly, the image can be transformed based on histogram equalization, and the intensity features and standard deviation features of reference image are stored in SRAM. Then, the real-time digital images' intensity features and standard deviation features are calculated by FPGA. At last, FPGA completes the color mapping through matching pixels between images using the features in luminance channel.
Research of image retrieval technology based on color feature
NASA Astrophysics Data System (ADS)
Fu, Yanjun; Jiang, Guangyu; Chen, Fengying
2009-10-01
Recently, with the development of the communication and the computer technology and the improvement of the storage technology and the capability of the digital image equipment, more and more image resources are given to us than ever. And thus the solution of how to locate the proper image quickly and accurately is wanted.The early method is to set up a key word for searching in the database, but now the method has become very difficult when we search much more picture that we need. In order to overcome the limitation of the traditional searching method, content based image retrieval technology was aroused. Now, it is a hot research subject.Color image retrieval is the important part of it. Color is the most important feature for color image retrieval. Three key questions on how to make use of the color characteristic are discussed in the paper: the expression of color, the abstraction of color characteristic and the measurement of likeness based on color. On the basis, the extraction technology of the color histogram characteristic is especially discussed. Considering the advantages and disadvantages of the overall histogram and the partition histogram, a new method based the partition-overall histogram is proposed. The basic thought of it is to divide the image space according to a certain strategy, and then calculate color histogram of each block as the color feature of this block. Users choose the blocks that contain important space information, confirming the right value. The system calculates the distance between the corresponding blocks that users choosed. Other blocks merge into part overall histograms again, and the distance should be calculated. Then accumulate all the distance as the real distance between two pictures. The partition-overall histogram comprehensive utilizes advantages of two methods above, by choosing blocks makes the feature contain more spatial information which can improve performance; the distances between partition-overall histogram make rotating and translation does not change. The HSV color space is used to show color characteristic of image, which is suitable to the visual characteristic of human. Taking advance of human's feeling to color, it quantifies color sector with unequal interval, and get characteristic vector. Finally, it matches the similarity of image with the algorithm of the histogram intersection and the partition-overall histogram. Users can choose a demonstration image to show inquired vision require, and also can adjust several right value through the relevance-feedback method to obtain the best result of search.An image retrieval system based on these approaches is presented. The result of the experiments shows that the image retrieval based on partition-overall histogram can keep the space distribution information while abstracting color feature efficiently, and it is superior to the normal color histograms in precision rate while researching. The query precision rate is more than 95%. In addition, the efficient block expression will lower the complicate degree of the images to be searched, and thus the searching efficiency will be increased. The image retrieval algorithms based on the partition-overall histogram proposed in the paper is efficient and effective.
Stochastic HKMDHE: A multi-objective contrast enhancement algorithm
NASA Astrophysics Data System (ADS)
Pratiher, Sawon; Mukhopadhyay, Sabyasachi; Maity, Srideep; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.
2018-02-01
This contribution proposes a novel extension of the existing `Hyper Kurtosis based Modified Duo-Histogram Equalization' (HKMDHE) algorithm, for multi-objective contrast enhancement of biomedical images. A novel modified objective function has been formulated by joint optimization of the individual histogram equalization objectives. The optimal adequacy of the proposed methodology with respect to image quality metrics such as brightness preserving abilities, peak signal-to-noise ratio (PSNR), Structural Similarity Index (SSIM) and universal image quality metric has been experimentally validated. The performance analysis of the proposed Stochastic HKMDHE with existing histogram equalization methodologies like Global Histogram Equalization (GHE) and Contrast Limited Adaptive Histogram Equalization (CLAHE) has been given for comparative evaluation.
Thresholding histogram equalization.
Chuang, K S; Chen, S; Hwang, I M
2001-12-01
The drawbacks of adaptive histogram equalization techniques are the loss of definition on the edges of the object and overenhancement of noise in the images. These drawbacks can be avoided if the noise is excluded in the equalization transformation function computation. A method has been developed to separate the histogram into zones, each with its own equalization transformation. This method can be used to suppress the nonanatomic noise and enhance only certain parts of the object. This method can be combined with other adaptive histogram equalization techniques. Preliminary results indicate that this method can produce images with superior contrast.
Combining Vector Quantization and Histogram Equalization.
ERIC Educational Resources Information Center
Cosman, Pamela C.; And Others
1992-01-01
Discussion of contrast enhancement techniques focuses on the use of histogram equalization with a data compression technique, i.e., tree-structured vector quantization. The enhancement technique of intensity windowing is described, and the use of enhancement techniques for medical images is explained, including adaptive histogram equalization.…
Hamit, Murat; Yun, Weikang; Yan, Chuanbo; Kutluk, Abdugheni; Fang, Yang; Alip, Elzat
2015-06-01
Image feature extraction is an important part of image processing and it is an important field of research and application of image processing technology. Uygur medicine is one of Chinese traditional medicine and researchers pay more attention to it. But large amounts of Uygur medicine data have not been fully utilized. In this study, we extracted the image color histogram feature of herbal and zooid medicine of Xinjiang Uygur. First, we did preprocessing, including image color enhancement, size normalizition and color space transformation. Then we extracted color histogram feature and analyzed them with statistical method. And finally, we evaluated the classification ability of features by Bayes discriminant analysis. Experimental results showed that high accuracy for Uygur medicine image classification was obtained by using color histogram feature. This study would have a certain help for the content-based medical image retrieval for Xinjiang Uygur medicine.
Robust Face Detection from Still Images
2014-01-01
significant change in false acceptance rates. Keywords— face detection; illumination; skin color variation; Haar-like features; OpenCV I. INTRODUCTION... OpenCV and an algorithm which used histogram equalization. The test is performed against 17 subjects under 576 viewing conditions from the extended Yale...original OpenCV algorithm proved the least accurate, having a hit rate of only 75.6%. It also had the lowest FAR but only by a slight margin at 25.2
2013-01-01
Background The high variations of background luminance, low contrast and excessively enhanced contrast of hand bone radiograph often impede the bone age assessment rating system in evaluating the degree of epiphyseal plates and ossification centers development. The Global Histogram equalization (GHE) has been the most frequently adopted image contrast enhancement technique but the performance is not satisfying. A brightness and detail preserving histogram equalization method with good contrast enhancement effect has been a goal of much recent research in histogram equalization. Nevertheless, producing a well-balanced histogram equalized radiograph in terms of its brightness preservation, detail preservation and contrast enhancement is deemed to be a daunting task. Method In this paper, we propose a novel framework of histogram equalization with the aim of taking several desirable properties into account, namely the Multipurpose Beta Optimized Bi-Histogram Equalization (MBOBHE). This method performs the histogram optimization separately in both sub-histograms after the segmentation of histogram using an optimized separating point determined based on the regularization function constituted by three components. The result is then assessed by the qualitative and quantitative analysis to evaluate the essential aspects of histogram equalized image using a total of 160 hand radiographs that are implemented in testing and analyses which are acquired from hand bone online database. Result From the qualitative analysis, we found that basic bi-histogram equalizations are not capable of displaying the small features in image due to incorrect selection of separating point by focusing on only certain metric without considering the contrast enhancement and detail preservation. From the quantitative analysis, we found that MBOBHE correlates well with human visual perception, and this improvement shortens the evaluation time taken by inspector in assessing the bone age. Conclusions The proposed MBOBHE outperforms other existing methods regarding comprehensive performance of histogram equalization. All the features which are pertinent to bone age assessment are more protruding relative to other methods; this has shorten the required evaluation time in manual bone age assessment using TW method. While the accuracy remains unaffected or slightly better than using unprocessed original image. The holistic properties in terms of brightness preservation, detail preservation and contrast enhancement are simultaneous taken into consideration and thus the visual effect is contributive to manual inspection. PMID:23565999
NASA Astrophysics Data System (ADS)
Phan, Raymond; Androutsos, Dimitrios
2008-01-01
In this paper, we present a logo and trademark retrieval system for unconstrained color image databases that extends the Color Edge Co-occurrence Histogram (CECH) object detection scheme. We introduce more accurate information to the CECH, by virtue of incorporating color edge detection using vector order statistics. This produces a more accurate representation of edges in color images, in comparison to the simple color pixel difference classification of edges as seen in the CECH. Our proposed method is thus reliant on edge gradient information, and as such, we call this the Color Edge Gradient Co-occurrence Histogram (CEGCH). We use this as the main mechanism for our unconstrained color logo and trademark retrieval scheme. Results illustrate that the proposed retrieval system retrieves logos and trademarks with good accuracy, and outperforms the CECH object detection scheme with higher precision and recall.
NASA Astrophysics Data System (ADS)
Mansourian, Leila; Taufik Abdullah, Muhamad; Nurliyana Abdullah, Lili; Azman, Azreen; Mustaffa, Mas Rina
2017-02-01
Pyramid Histogram of Words (PHOW), combined Bag of Visual Words (BoVW) with the spatial pyramid matching (SPM) in order to add location information to extracted features. However, different PHOW extracted from various color spaces, and they did not extract color information individually, that means they discard color information, which is an important characteristic of any image that is motivated by human vision. This article, concatenated PHOW Multi-Scale Dense Scale Invariant Feature Transform (MSDSIFT) histogram and a proposed Color histogram to improve the performance of existing image classification algorithms. Performance evaluation on several datasets proves that the new approach outperforms other existing, state-of-the-art methods.
Image contrast enhancement using adjacent-blocks-based modification for local histogram equalization
NASA Astrophysics Data System (ADS)
Wang, Yang; Pan, Zhibin
2017-11-01
Infrared images usually have some non-ideal characteristics such as weak target-to-background contrast and strong noise. Because of these characteristics, it is necessary to apply the contrast enhancement algorithm to improve the visual quality of infrared images. Histogram equalization (HE) algorithm is a widely used contrast enhancement algorithm due to its effectiveness and simple implementation. But a drawback of HE algorithm is that the local contrast of an image cannot be equally enhanced. Local histogram equalization algorithms are proved to be the effective techniques for local image contrast enhancement. However, over-enhancement of noise and artifacts can be easily found in the local histogram equalization enhanced images. In this paper, a new contrast enhancement technique based on local histogram equalization algorithm is proposed to overcome the drawbacks mentioned above. The input images are segmented into three kinds of overlapped sub-blocks using the gradients of them. To overcome the over-enhancement effect, the histograms of these sub-blocks are then modified by adjacent sub-blocks. We pay more attention to improve the contrast of detail information while the brightness of the flat region in these sub-blocks is well preserved. It will be shown that the proposed algorithm outperforms other related algorithms by enhancing the local contrast without introducing over-enhancement effects and additional noise.
Rasta, Seyed Hossein; Partovi, Mahsa Eisazadeh; Seyedarabi, Hadi; Javadzadeh, Alireza
2015-01-01
To investigate the effect of preprocessing techniques including contrast enhancement and illumination correction on retinal image quality, a comparative study was carried out. We studied and implemented a few illumination correction and contrast enhancement techniques on color retinal images to find out the best technique for optimum image enhancement. To compare and choose the best illumination correction technique we analyzed the corrected red and green components of color retinal images statistically and visually. The two contrast enhancement techniques were analyzed using a vessel segmentation algorithm by calculating the sensitivity and specificity. The statistical evaluation of the illumination correction techniques were carried out by calculating the coefficients of variation. The dividing method using the median filter to estimate background illumination showed the lowest Coefficients of variations in the red component. The quotient and homomorphic filtering methods after the dividing method presented good results based on their low Coefficients of variations. The contrast limited adaptive histogram equalization increased the sensitivity of the vessel segmentation algorithm up to 5% in the same amount of accuracy. The contrast limited adaptive histogram equalization technique has a higher sensitivity than the polynomial transformation operator as a contrast enhancement technique for vessel segmentation. Three techniques including the dividing method using the median filter to estimate background, quotient based and homomorphic filtering were found as the effective illumination correction techniques based on a statistical evaluation. Applying the local contrast enhancement technique, such as CLAHE, for fundus images presented good potentials in enhancing the vasculature segmentation.
Motor Oil Classification using Color Histograms and Pattern Recognition Techniques.
Ahmadi, Shiva; Mani-Varnosfaderani, Ahmad; Habibi, Biuck
2018-04-20
Motor oil classification is important for quality control and the identification of oil adulteration. In thiswork, we propose a simple, rapid, inexpensive and nondestructive approach based on image analysis and pattern recognition techniques for the classification of nine different types of motor oils according to their corresponding color histograms. For this, we applied color histogram in different color spaces such as red green blue (RGB), grayscale, and hue saturation intensity (HSI) in order to extract features that can help with the classification procedure. These color histograms and their combinations were used as input for model development and then were statistically evaluated by using linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and support vector machine (SVM) techniques. Here, two common solutions for solving a multiclass classification problem were applied: (1) transformation to binary classification problem using a one-against-all (OAA) approach and (2) extension from binary classifiers to a single globally optimized multilabel classification model. In the OAA strategy, LDA, QDA, and SVM reached up to 97% in terms of accuracy, sensitivity, and specificity for both the training and test sets. In extension from binary case, despite good performances by the SVM classification model, QDA and LDA provided better results up to 92% for RGB-grayscale-HSI color histograms and up to 93% for the HSI color map, respectively. In order to reduce the numbers of independent variables for modeling, a principle component analysis algorithm was used. Our results suggest that the proposed method is promising for the identification and classification of different types of motor oils.
A flower image retrieval method based on ROI feature.
Hong, An-Xiang; Chen, Gang; Li, Jun-Li; Chi, Zhe-Ru; Zhang, Dan
2004-07-01
Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower regions from flower images. For flower retrieval, we use the color histogram of a flower region to characterize the color features of flower and two shape-based features sets, Centroid-Contour Distance (CCD) and Angle Code Histogram (ACH), to characterize the shape features of a flower contour. Experimental results showed that our flower region extraction method based on color clustering and domain knowledge can produce accurate flower regions. Flower retrieval results on a database of 885 flower images collected from 14 plant species showed that our Region-of-Interest (ROI) based retrieval approach using both color and shape features can perform better than a method based on the global color histogram proposed by Swain and Ballard (1991) and a method based on domain knowledge-driven segmentation and color names proposed by Das et al.(1999).
Using color histogram normalization for recovering chromatic illumination-changed images.
Pei, S C; Tseng, C L; Wu, C C
2001-11-01
We propose a novel image-recovery method using the covariance matrix of the red-green-blue (R-G-B) color histogram and tensor theories. The image-recovery method is called the color histogram normalization algorithm. It is known that the color histograms of an image taken under varied illuminations are related by a general affine transformation of the R-G-B coordinates when the illumination is changed. We propose a simplified affine model for application with illumination variation. This simplified affine model considers the effects of only three basic forms of distortion: translation, scaling, and rotation. According to this principle, we can estimate the affine transformation matrix necessary to recover images whose color distributions are varied as a result of illumination changes. We compare the normalized color histogram of the standard image with that of the tested image. By performing some operations of simple linear algebra, we can estimate the matrix of the affine transformation between two images under different illuminations. To demonstrate the performance of the proposed algorithm, we divide the experiments into two parts: computer-simulated images and real images corresponding to illumination changes. Simulation results show that the proposed algorithm is effective for both types of images. We also explain the noise-sensitive skew-rotation estimation that exists in the general affine model and demonstrate that the proposed simplified affine model without the use of skew rotation is better than the general affine model for such applications.
Image Enhancement via Subimage Histogram Equalization Based on Mean and Variance
2017-01-01
This paper puts forward a novel image enhancement method via Mean and Variance based Subimage Histogram Equalization (MVSIHE), which effectively increases the contrast of the input image with brightness and details well preserved compared with some other methods based on histogram equalization (HE). Firstly, the histogram of input image is divided into four segments based on the mean and variance of luminance component, and the histogram bins of each segment are modified and equalized, respectively. Secondly, the result is obtained via the concatenation of the processed subhistograms. Lastly, the normalization method is deployed on intensity levels, and the integration of the processed image with the input image is performed. 100 benchmark images from a public image database named CVG-UGR-Database are used for comparison with other state-of-the-art methods. The experiment results show that the algorithm can not only enhance image information effectively but also well preserve brightness and details of the original image. PMID:29403529
DSP+FPGA-based real-time histogram equalization system of infrared image
NASA Astrophysics Data System (ADS)
Gu, Dongsheng; Yang, Nansheng; Pi, Defu; Hua, Min; Shen, Xiaoyan; Zhang, Ruolan
2001-10-01
Histogram Modification is a simple but effective method to enhance an infrared image. There are several methods to equalize an infrared image's histogram due to the different characteristics of the different infrared images, such as the traditional HE (Histogram Equalization) method, and the improved HP (Histogram Projection) and PE (Plateau Equalization) method and so on. If to realize these methods in a single system, the system must have a mass of memory and extremely fast speed. In our system, we introduce a DSP + FPGA based real-time procession technology to do these things together. FPGA is used to realize the common part of these methods while DSP is to do the different part. The choice of methods and the parameter can be input by a keyboard or a computer. By this means, the function of the system is powerful while it is easy to operate and maintain. In this article, we give out the diagram of the system and the soft flow chart of the methods. And at the end of it, we give out the infrared image and its histogram before and after the process of HE method.
NASA Astrophysics Data System (ADS)
Wan, Minjie; Gu, Guohua; Qian, Weixian; Ren, Kan; Chen, Qian; Maldague, Xavier
2018-06-01
Infrared image enhancement plays a significant role in intelligent urban surveillance systems for smart city applications. Unlike existing methods only exaggerating the global contrast, we propose a particle swam optimization-based local entropy weighted histogram equalization which involves the enhancement of both local details and fore-and background contrast. First of all, a novel local entropy weighted histogram depicting the distribution of detail information is calculated based on a modified hyperbolic tangent function. Then, the histogram is divided into two parts via a threshold maximizing the inter-class variance in order to improve the contrasts of foreground and background, respectively. To avoid over-enhancement and noise amplification, double plateau thresholds of the presented histogram are formulated by means of particle swarm optimization algorithm. Lastly, each sub-image is equalized independently according to the constrained sub-local entropy weighted histogram. Comparative experiments implemented on real infrared images prove that our algorithm outperforms other state-of-the-art methods in terms of both visual and quantized evaluations.
Information granules in image histogram analysis.
Wieclawek, Wojciech
2018-04-01
A concept of granular computing employed in intensity-based image enhancement is discussed. First, a weighted granular computing idea is introduced. Then, the implementation of this term in the image processing area is presented. Finally, multidimensional granular histogram analysis is introduced. The proposed approach is dedicated to digital images, especially to medical images acquired by Computed Tomography (CT). As the histogram equalization approach, this method is based on image histogram analysis. Yet, unlike the histogram equalization technique, it works on a selected range of the pixel intensity and is controlled by two parameters. Performance is tested on anonymous clinical CT series. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hassanein, Mohamed; El-Sheimy, Naser
2018-01-01
Over the last decade, the use of unmanned aerial vehicle (UAV) technology has evolved significantly in different applications as it provides a special platform capable of combining the benefits of terrestrial and aerial remote sensing. Therefore, such technology has been established as an important source of data collection for different precision agriculture (PA) applications such as crop health monitoring and weed management. Generally, these PA applications depend on performing a vegetation segmentation process as an initial step, which aims to detect the vegetation objects in collected agriculture fields’ images. The main result of the vegetation segmentation process is a binary image, where vegetations are presented in white color and the remaining objects are presented in black. Such process could easily be performed using different vegetation indexes derived from multispectral imagery. Recently, to expand the use of UAV imagery systems for PA applications, it was important to reduce the cost of such systems through using low-cost RGB cameras Thus, developing vegetation segmentation techniques for RGB images is a challenging problem. The proposed paper introduces a new vegetation segmentation methodology for low-cost UAV RGB images, which depends on using Hue color channel. The proposed methodology follows the assumption that the colors in any agriculture field image can be distributed into vegetation and non-vegetations colors. Therefore, four main steps are developed to detect five different threshold values using the hue histogram of the RGB image, these thresholds are capable to discriminate the dominant color, either vegetation or non-vegetation, within the agriculture field image. The achieved results for implementing the proposed methodology showed its ability to generate accurate and stable vegetation segmentation performance with mean accuracy equal to 87.29% and standard deviation as 12.5%. PMID:29670055
Rasta, Seyed Hossein; Partovi, Mahsa Eisazadeh; Seyedarabi, Hadi; Javadzadeh, Alireza
2015-01-01
To investigate the effect of preprocessing techniques including contrast enhancement and illumination correction on retinal image quality, a comparative study was carried out. We studied and implemented a few illumination correction and contrast enhancement techniques on color retinal images to find out the best technique for optimum image enhancement. To compare and choose the best illumination correction technique we analyzed the corrected red and green components of color retinal images statistically and visually. The two contrast enhancement techniques were analyzed using a vessel segmentation algorithm by calculating the sensitivity and specificity. The statistical evaluation of the illumination correction techniques were carried out by calculating the coefficients of variation. The dividing method using the median filter to estimate background illumination showed the lowest Coefficients of variations in the red component. The quotient and homomorphic filtering methods after the dividing method presented good results based on their low Coefficients of variations. The contrast limited adaptive histogram equalization increased the sensitivity of the vessel segmentation algorithm up to 5% in the same amount of accuracy. The contrast limited adaptive histogram equalization technique has a higher sensitivity than the polynomial transformation operator as a contrast enhancement technique for vessel segmentation. Three techniques including the dividing method using the median filter to estimate background, quotient based and homomorphic filtering were found as the effective illumination correction techniques based on a statistical evaluation. Applying the local contrast enhancement technique, such as CLAHE, for fundus images presented good potentials in enhancing the vasculature segmentation. PMID:25709940
Control system of hexacopter using color histogram footprint and convolutional neural network
NASA Astrophysics Data System (ADS)
Ruliputra, R. N.; Darma, S.
2017-07-01
The development of unmanned aerial vehicles (UAV) has been growing rapidly in recent years. The use of logic thinking which is implemented into the program algorithms is needed to make a smart system. By using visual input from a camera, UAV is able to fly autonomously by detecting a target. However, some weaknesses arose as usage in the outdoor environment might change the target's color intensity. Color histogram footprint overcomes the problem because it divides color intensity into separate bins that make the detection tolerant to the slight change of color intensity. Template matching compare its detection result with a template of the reference image to determine the target position and use it to position the vehicle in the middle of the target with visual feedback control based on Proportional-Integral-Derivative (PID) controller. Color histogram footprint method localizes the target by calculating the back projection of its histogram. It has an average success rate of 77 % from a distance of 1 meter. It can position itself in the middle of the target by using visual feedback control with an average positioning time of 73 seconds. After the hexacopter is in the middle of the target, Convolutional Neural Networks (CNN) classifies a number contained in the target image to determine a task depending on the classified number, either landing, yawing, or return to launch. The recognition result shows an optimum success rate of 99.2 %.
Histogram equalization with Bayesian estimation for noise robust speech recognition.
Suh, Youngjoo; Kim, Hoirin
2018-02-01
The histogram equalization approach is an efficient feature normalization technique for noise robust automatic speech recognition. However, it suffers from performance degradation when some fundamental conditions are not satisfied in the test environment. To remedy these limitations of the original histogram equalization methods, class-based histogram equalization approach has been proposed. Although this approach showed substantial performance improvement under noise environments, it still suffers from performance degradation due to the overfitting problem when test data are insufficient. To address this issue, the proposed histogram equalization technique employs the Bayesian estimation method in the test cumulative distribution function estimation. It was reported in a previous study conducted on the Aurora-4 task that the proposed approach provided substantial performance gains in speech recognition systems based on the acoustic modeling of the Gaussian mixture model-hidden Markov model. In this work, the proposed approach was examined in speech recognition systems with deep neural network-hidden Markov model (DNN-HMM), the current mainstream speech recognition approach where it also showed meaningful performance improvement over the conventional maximum likelihood estimation-based method. The fusion of the proposed features with the mel-frequency cepstral coefficients provided additional performance gains in DNN-HMM systems, which otherwise suffer from performance degradation in the clean test condition.
Regionally adaptive histogram equalization of the chest.
Sherrier, R H; Johnson, G A
1987-01-01
Advances in the area of digital chest radiography have resulted in the acquisition of high-quality images of the human chest. With these advances, there arises a genuine need for image processing algorithms specific to the chest, in order to fully exploit this digital technology. We have implemented the well-known technique of histogram equalization, noting the problems encountered when it is adapted to chest images. These problems have been successfully solved with our regionally adaptive histogram equalization method. With this technique histograms are calculated locally and then modified according to both the mean pixel value of that region as well as certain characteristics of the cumulative distribution function. This process, which has allowed certain regions of the chest radiograph to be enhanced differentially, may also have broader implications for other image processing tasks.
NASA Astrophysics Data System (ADS)
Wang, G. H.; Wang, H. B.; Fan, W. F.; Liu, Y.; Chen, C.
2018-04-01
In view of the traditional change detection algorithm mainly depends on the spectral information image spot, failed to effectively mining and fusion of multi-image feature detection advantage, the article borrows the ideas of object oriented analysis proposed a multi feature fusion of remote sensing image change detection algorithm. First by the multi-scale segmentation of image objects based; then calculate the various objects of color histogram and linear gradient histogram; utilizes the color distance and edge line feature distance between EMD statistical operator in different periods of the object, using the adaptive weighted method, the color feature distance and edge in a straight line distance of combination is constructed object heterogeneity. Finally, the curvature histogram analysis image spot change detection results. The experimental results show that the method can fully fuse the color and edge line features, thus improving the accuracy of the change detection.
Evaluation of the effectiveness of color attributes for video indexing
NASA Astrophysics Data System (ADS)
Chupeau, Bertrand; Forest, Ronan
2001-10-01
Color features are reviewed and their effectiveness assessed in the application framework of key-frame clustering for abstracting unconstrained video. Existing color spaces and associated quantization schemes are first studied. Description of global color distribution by means of histograms is then detailed. In our work, 12 combinations of color space and quantization were selected, together with 12 histogram metrics. Their respective effectiveness with respect to picture similarity measurement was evaluated through a query-by-example scenario. For that purpose, a set of still-picture databases was built by extracting key frames from several video clips, including news, documentaries, sports and cartoons. Classical retrieval performance evaluation criteria were adapted to the specificity of our testing methodology.
Evaluation of the effectiveness of color attributes for video indexing
NASA Astrophysics Data System (ADS)
Chupeau, Bertrand; Forest, Ronan
2001-01-01
Color features are reviewed and their effectiveness assessed in the application framework of key-frame clustering for abstracting unconstrained video. Existing color spaces and associated quantization schemes are first studied. Description of global color distribution by means of histograms is then detailed. In our work, twelve combinations of color space and quantization were selected, together with twelve histogram metrics. Their respective effectiveness with respect to picture similarity measurement was evaluated through a query-be-example scenario. For that purpose, a set of still-picture databases was built by extracting key-frames from several video clips, including news, documentaries, sports and cartoons. Classical retrieval performance evaluation criteria were adapted to the specificity of our testing methodology.
Evaluation of the effectiveness of color attributes for video indexing
NASA Astrophysics Data System (ADS)
Chupeau, Bertrand; Forest, Ronan
2000-12-01
Color features are reviewed and their effectiveness assessed in the application framework of key-frame clustering for abstracting unconstrained video. Existing color spaces and associated quantization schemes are first studied. Description of global color distribution by means of histograms is then detailed. In our work, twelve combinations of color space and quantization were selected, together with twelve histogram metrics. Their respective effectiveness with respect to picture similarity measurement was evaluated through a query-be-example scenario. For that purpose, a set of still-picture databases was built by extracting key-frames from several video clips, including news, documentaries, sports and cartoons. Classical retrieval performance evaluation criteria were adapted to the specificity of our testing methodology.
Study on activity measurement of Nostoc flagelliforme cells based on color identification
NASA Astrophysics Data System (ADS)
Wang, Yizhong; Su, Jianyu; Liu, Tiegen; Kong, Fanzhi; Jia, Shiru
2008-12-01
In order to measure the activities of Nostoc flagelliforme cells, a new method based on color identification was proposed in this paper. N. flagelliforme cells were colored with fluoreseein diaeetate. Then, an image of colored N. flagelliforme cells was taken, and changed from RGB model to HIS model. Its histogram of hue H was calculated, which was used as the input of a designed BP network. The output of the BP network was the description of measured activity of N. flagelliforme cells. After training, the activity of N. flagelliforme cells was identified by the BP network according to the histogram of H of their colored image. Experiments were conducted with satisfied results to show the feasibility and usefulness of activity measurement of N. flagelliforme cells based on color identification.
Real-Time Tracking by Double Templates Matching Based on Timed Motion History Image with HSV Feature
Li, Zhiyong; Li, Pengfei; Yu, Xiaoping; Hashem, Mervat
2014-01-01
It is a challenge to represent the target appearance model for moving object tracking under complex environment. This study presents a novel method with appearance model described by double templates based on timed motion history image with HSV color histogram feature (tMHI-HSV). The main components include offline template and online template initialization, tMHI-HSV-based candidate patches feature histograms calculation, double templates matching (DTM) for object location, and templates updating. Firstly, we initialize the target object region and calculate its HSV color histogram feature as offline template and online template. Secondly, the tMHI-HSV is used to segment the motion region and calculate these candidate object patches' color histograms to represent their appearance models. Finally, we utilize the DTM method to trace the target and update the offline template and online template real-timely. The experimental results show that the proposed method can efficiently handle the scale variation and pose change of the rigid and nonrigid objects, even in illumination change and occlusion visual environment. PMID:24592185
Ghosh, Tonmoy; Fattah, Shaikh Anowarul; Wahid, Khan A
2018-01-01
Wireless capsule endoscopy (WCE) is the most advanced technology to visualize whole gastrointestinal (GI) tract in a non-invasive way. But the major disadvantage here, it takes long reviewing time, which is very laborious as continuous manual intervention is necessary. In order to reduce the burden of the clinician, in this paper, an automatic bleeding detection method for WCE video is proposed based on the color histogram of block statistics, namely CHOBS. A single pixel in WCE image may be distorted due to the capsule motion in the GI tract. Instead of considering individual pixel values, a block surrounding to that individual pixel is chosen for extracting local statistical features. By combining local block features of three different color planes of RGB color space, an index value is defined. A color histogram, which is extracted from those index values, provides distinguishable color texture feature. A feature reduction technique utilizing color histogram pattern and principal component analysis is proposed, which can drastically reduce the feature dimension. For bleeding zone detection, blocks are classified using extracted local features that do not incorporate any computational burden for feature extraction. From extensive experimentation on several WCE videos and 2300 images, which are collected from a publicly available database, a very satisfactory bleeding frame and zone detection performance is achieved in comparison to that obtained by some of the existing methods. In the case of bleeding frame detection, the accuracy, sensitivity, and specificity obtained from proposed method are 97.85%, 99.47%, and 99.15%, respectively, and in the case of bleeding zone detection, 95.75% of precision is achieved. The proposed method offers not only low feature dimension but also highly satisfactory bleeding detection performance, which even can effectively detect bleeding frame and zone in a continuous WCE video data.
Jeong, Chang Bu; Kim, Kwang Gi; Kim, Tae Sung; Kim, Seok Ki
2011-06-01
Whole-body bone scan is one of the most frequent diagnostic procedures in nuclear medicine. Especially, it plays a significant role in important procedures such as the diagnosis of osseous metastasis and evaluation of osseous tumor response to chemotherapy and radiation therapy. It can also be used to monitor the possibility of any recurrence of the tumor. However, it is a very time-consuming effort for radiologists to quantify subtle interval changes between successive whole-body bone scans because of many variations such as intensity, geometry, and morphology. In this paper, we present the most effective method of image enhancement based on histograms, which may assist radiologists in interpreting successive whole-body bone scans effectively. Forty-eight successive whole-body bone scans from 10 patients were obtained and evaluated using six methods of image enhancement based on histograms: histogram equalization, brightness-preserving bi-histogram equalization, contrast-limited adaptive histogram equalization, end-in search, histogram matching, and exact histogram matching (EHM). Comparison of the results of the different methods was made using three similarity measures peak signal-to-noise ratio, histogram intersection, and structural similarity. Image enhancement of successive bone scans using EHM showed the best results out of the six methods measured for all similarity measures. EHM is the best method of image enhancement based on histograms for diagnosing successive whole-body bone scans. The method for successive whole-body bone scans has the potential to greatly assist radiologists quantify interval changes more accurately and quickly by compensating for the variable nature of intensity information. Consequently, it can improve radiologists' diagnostic accuracy as well as reduce reading time for detecting interval changes.
Adaptive sigmoid function bihistogram equalization for image contrast enhancement
NASA Astrophysics Data System (ADS)
Arriaga-Garcia, Edgar F.; Sanchez-Yanez, Raul E.; Ruiz-Pinales, Jose; Garcia-Hernandez, Ma. de Guadalupe
2015-09-01
Contrast enhancement plays a key role in a wide range of applications including consumer electronic applications, such as video surveillance, digital cameras, and televisions. The main goal of contrast enhancement is to increase the quality of images. However, most state-of-the-art methods induce different types of distortion such as intensity shift, wash-out, noise, intensity burn-out, and intensity saturation. In addition, in consumer electronics, simple and fast methods are required in order to be implemented in real time. A bihistogram equalization method based on adaptive sigmoid functions is proposed. It consists of splitting the image histogram into two parts that are equalized independently by using adaptive sigmoid functions. In order to preserve the mean brightness of the input image, the parameter of the sigmoid functions is chosen to minimize the absolute mean brightness metric. Experiments on the Berkeley database have shown that the proposed method improves the quality of images and preserves their mean brightness. An application to improve the colorfulness of images is also presented.
Retinex based low-light image enhancement using guided filtering and variational framework
NASA Astrophysics Data System (ADS)
Zhang, Shi; Tang, Gui-jin; Liu, Xiao-hua; Luo, Su-huai; Wang, Da-dong
2018-03-01
A new image enhancement algorithm based on Retinex theory is proposed to solve the problem of bad visual effect of an image in low-light conditions. First, an image is converted from the RGB color space to the HSV color space to get the V channel. Next, the illuminations are respectively estimated by the guided filtering and the variational framework on the V channel and combined into a new illumination by average gradient. The new reflectance is calculated using V channel and the new illumination. Then a new V channel obtained by multiplying the new illumination and reflectance is processed with contrast limited adaptive histogram equalization (CLAHE). Finally, the new image in HSV space is converted back to RGB space to obtain the enhanced image. Experimental results show that the proposed method has better subjective quality and objective quality than existing methods.
Adaptive histogram equalization in digital radiography of destructive skeletal lesions.
Braunstein, E M; Capek, P; Buckwalter, K; Bland, P; Meyer, C R
1988-03-01
Adaptive histogram equalization, an image-processing technique that distributes pixel values of an image uniformly throughout the gray scale, was applied to 28 plain radiographs of bone lesions, after they had been digitized. The non-equalized and equalized digital images were compared by two skeletal radiologists with respect to lesion margins, internal matrix, soft-tissue mass, cortical breakthrough, and periosteal reaction. Receiver operating characteristic (ROC) curves were constructed on the basis of the responses. Equalized images were superior to nonequalized images in determination of cortical breakthrough and presence or absence of periosteal reaction. ROC analysis showed no significant difference in determination of margins, matrix, or soft-tissue masses.
NASA Astrophysics Data System (ADS)
Ma, Lei; Wang, Yizhong; Chen, Ning; Liu, Tiegen; Xu, Qingyang; Kong, Fanzhi
2008-12-01
In this paper, a new method for monitoring and controlling fermentation process of branched chain amino acid (BCAA) was proposed based on color identification. The color image of fermentation broth of BCAA was firstly taken by a CCD camera. Then, it was changed from RGB color model to HIS color model. Its histograms of hue H and saturation S were calculated, which were used as the input of a designed BP network. The output of the BP network was the description of the color of fermentation broth of BCAA. After training, the color of fermentation broth was identified by the BP network according to the histograms of H and S of a fermentation broth image. Along with other parameters, the fermentation process of BCAA was monitored and controlled to start the stationary phase of fermentation soon. Experiments were conducted with satisfied results to show the feasibility and usefulness of color identification of fermentation broth in fermentation process control of BCAA.
Qualitative evaluations and comparisons of six night-vision colorization methods
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Reese, Kristopher; Blasch, Erik; McManamon, Paul
2013-05-01
Current multispectral night vision (NV) colorization techniques can manipulate images to produce colorized images that closely resemble natural scenes. The colorized NV images can enhance human perception by improving observer object classification and reaction times especially for low light conditions. This paper focuses on the qualitative (subjective) evaluations and comparisons of six NV colorization methods. The multispectral images include visible (Red-Green- Blue), near infrared (NIR), and long wave infrared (LWIR) images. The six colorization methods are channel-based color fusion (CBCF), statistic matching (SM), histogram matching (HM), joint-histogram matching (JHM), statistic matching then joint-histogram matching (SM-JHM), and the lookup table (LUT). Four categries of quality measurements are used for the qualitative evaluations, which are contrast, detail, colorfulness, and overall quality. The score of each measurement is rated from 1 to 3 scale to represent low, average, and high quality, respectively. Specifically, high contrast (of rated score 3) means an adequate level of brightness and contrast. The high detail represents high clarity of detailed contents while maintaining low artifacts. The high colorfulness preserves more natural colors (i.e., closely resembles the daylight image). Overall quality is determined from the NV image compared to the reference image. Nine sets of multispectral NV images were used in our experiments. For each set, the six colorized NV images (produced from NIR and LWIR images) are concurrently presented to users along with the reference color (RGB) image (taken at daytime). A total of 67 subjects passed a screening test ("Ishihara Color Blindness Test") and were asked to evaluate the 9-set colorized images. The experimental results showed the quality order of colorization methods from the best to the worst: CBCF < SM < SM-JHM < LUT < JHM < HM. It is anticipated that this work will provide a benchmark for NV colorization and for quantitative evaluation using an objective metric such as objective evaluation index (OEI).
Ghosh, Tonmoy; Wahid, Khan A.
2018-01-01
Wireless capsule endoscopy (WCE) is the most advanced technology to visualize whole gastrointestinal (GI) tract in a non-invasive way. But the major disadvantage here, it takes long reviewing time, which is very laborious as continuous manual intervention is necessary. In order to reduce the burden of the clinician, in this paper, an automatic bleeding detection method for WCE video is proposed based on the color histogram of block statistics, namely CHOBS. A single pixel in WCE image may be distorted due to the capsule motion in the GI tract. Instead of considering individual pixel values, a block surrounding to that individual pixel is chosen for extracting local statistical features. By combining local block features of three different color planes of RGB color space, an index value is defined. A color histogram, which is extracted from those index values, provides distinguishable color texture feature. A feature reduction technique utilizing color histogram pattern and principal component analysis is proposed, which can drastically reduce the feature dimension. For bleeding zone detection, blocks are classified using extracted local features that do not incorporate any computational burden for feature extraction. From extensive experimentation on several WCE videos and 2300 images, which are collected from a publicly available database, a very satisfactory bleeding frame and zone detection performance is achieved in comparison to that obtained by some of the existing methods. In the case of bleeding frame detection, the accuracy, sensitivity, and specificity obtained from proposed method are 97.85%, 99.47%, and 99.15%, respectively, and in the case of bleeding zone detection, 95.75% of precision is achieved. The proposed method offers not only low feature dimension but also highly satisfactory bleeding detection performance, which even can effectively detect bleeding frame and zone in a continuous WCE video data. PMID:29468094
A novel parallel architecture for local histogram equalization
NASA Astrophysics Data System (ADS)
Ohannessian, Mesrob I.; Choueiter, Ghinwa F.; Diab, Hassan
2005-07-01
Local histogram equalization is an image enhancement algorithm that has found wide application in the pre-processing stage of areas such as computer vision, pattern recognition and medical imaging. The computationally intensive nature of the procedure, however, is a main limitation when real time interactive applications are in question. This work explores the possibility of performing parallel local histogram equalization, using an array of special purpose elementary processors, through an HDL implementation that targets FPGA or ASIC platforms. A novel parallelization scheme is presented and the corresponding architecture is derived. The algorithm is reduced to pixel-level operations. Processing elements are assigned image blocks, to maintain a reasonable performance-cost ratio. To further simplify both processor and memory organizations, a bit-serial access scheme is used. A brief performance assessment is provided to illustrate and quantify the merit of the approach.
Reducing Error Rates for Iris Image using higher Contrast in Normalization process
NASA Astrophysics Data System (ADS)
Aminu Ghali, Abdulrahman; Jamel, Sapiee; Abubakar Pindar, Zahraddeen; Hasssan Disina, Abdulkadir; Mat Daris, Mustafa
2017-08-01
Iris recognition system is the most secured, and faster means of identification and authentication. However, iris recognition system suffers a setback from blurring, low contrast and illumination due to low quality image which compromises the accuracy of the system. The acceptance or rejection rates of verified user depend solely on the quality of the image. In many cases, iris recognition system with low image contrast could falsely accept or reject user. Therefore this paper adopts Histogram Equalization Technique to address the problem of False Rejection Rate (FRR) and False Acceptance Rate (FAR) by enhancing the contrast of the iris image. A histogram equalization technique enhances the image quality and neutralizes the low contrast of the image at normalization stage. The experimental result shows that Histogram Equalization Technique has reduced FRR and FAR compared to the existing techniques.
Chest CT window settings with multiscale adaptive histogram equalization: pilot study.
Fayad, Laura M; Jin, Yinpeng; Laine, Andrew F; Berkmen, Yahya M; Pearson, Gregory D; Freedman, Benjamin; Van Heertum, Ronald
2002-06-01
Multiscale adaptive histogram equalization (MAHE), a wavelet-based algorithm, was investigated as a method of automatic simultaneous display of the full dynamic contrast range of a computed tomographic image. Interpretation times were significantly lower for MAHE-enhanced images compared with those for conventionally displayed images. Diagnostic accuracy, however, was insufficient in this pilot study to allow recommendation of MAHE as a replacement for conventional window display.
Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization
Chiu, Chung-Cheng; Ting, Chih-Chung
2016-01-01
Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods. PMID:27338412
Color object detection using spatial-color joint probability functions.
Luo, Jiebo; Crandall, David
2006-06-01
Object detection in unconstrained images is an important image understanding problem with many potential applications. There has been little success in creating a single algorithm that can detect arbitrary objects in unconstrained images; instead, algorithms typically must be customized for each specific object. Consequently, it typically requires a large number of exemplars (for rigid objects) or a large amount of human intuition (for nonrigid objects) to develop a robust algorithm. We present a robust algorithm designed to detect a class of compound color objects given a single model image. A compound color object is defined as having a set of multiple, particular colors arranged spatially in a particular way, including flags, logos, cartoon characters, people in uniforms, etc. Our approach is based on a particular type of spatial-color joint probability function called the color edge co-occurrence histogram. In addition, our algorithm employs perceptual color naming to handle color variation, and prescreening to limit the search scope (i.e., size and location) for the object. Experimental results demonstrated that the proposed algorithm is insensitive to object rotation, scaling, partial occlusion, and folding, outperforming a closely related algorithm based on color co-occurrence histograms by a decisive margin.
Adaptive image contrast enhancement using generalizations of histogram equalization.
Stark, J A
2000-01-01
This paper proposes a scheme for adaptive image-contrast enhancement based on a generalization of histogram equalization (HE). HE is a useful technique for improving image contrast, but its effect is too severe for many purposes. However, dramatically different results can be obtained with relatively minor modifications. A concise description of adaptive HE is set out, and this framework is used in a discussion of past suggestions for variations on HE. A key feature of this formalism is a "cumulation function," which is used to generate a grey level mapping from the local histogram. By choosing alternative forms of cumulation function one can achieve a wide variety of effects. A specific form is proposed. Through the variation of one or two parameters, the resulting process can produce a range of degrees of contrast enhancement, at one extreme leaving the image unchanged, at another yielding full adaptive equalization.
Color Retinal Image Enhancement Based on Luminosity and Contrast Adjustment.
Zhou, Mei; Jin, Kai; Wang, Shaoze; Ye, Juan; Qian, Dahong
2018-03-01
Many common eye diseases and cardiovascular diseases can be diagnosed through retinal imaging. However, due to uneven illumination, image blurring, and low contrast, retinal images with poor quality are not useful for diagnosis, especially in automated image analyzing systems. Here, we propose a new image enhancement method to improve color retinal image luminosity and contrast. A luminance gain matrix, which is obtained by gamma correction of the value channel in the HSV (hue, saturation, and value) color space, is used to enhance the R, G, and B (red, green and blue) channels, respectively. Contrast is then enhanced in the luminosity channel of L * a * b * color space by CLAHE (contrast-limited adaptive histogram equalization). Image enhancement by the proposed method is compared to other methods by evaluating quality scores of the enhanced images. The performance of the method is mainly validated on a dataset of 961 poor-quality retinal images. Quality assessment (range 0-1) of image enhancement of this poor dataset indicated that our method improved color retinal image quality from an average of 0.0404 (standard deviation 0.0291) up to an average of 0.4565 (standard deviation 0.1000). The proposed method is shown to achieve superior image enhancement compared to contrast enhancement in other color spaces or by other related methods, while simultaneously preserving image naturalness. This method of color retinal image enhancement may be employed to assist ophthalmologists in more efficient screening of retinal diseases and in development of improved automated image analysis for clinical diagnosis.
NASA Astrophysics Data System (ADS)
Win, Khin Yadanar; Choomchuay, Somsak; Hamamoto, Kazuhiko
2017-06-01
The automated segmentation of cell nuclei is an essential stage in the quantitative image analysis of cell nuclei extracted from smear cytology images of pleural fluid. Cell nuclei can indicate cancer as the characteristics of cell nuclei are associated with cells proliferation and malignancy in term of size, shape and the stained color. Nevertheless, automatic nuclei segmentation has remained challenging due to the artifacts caused by slide preparation, nuclei heterogeneity such as the poor contrast, inconsistent stained color, the cells variation, and cells overlapping. In this paper, we proposed a watershed-based method that is capable to segment the nuclei of the variety of cells from cytology pleural fluid smear images. Firstly, the original image is preprocessed by converting into the grayscale image and enhancing by adjusting and equalizing the intensity using histogram equalization. Next, the cell nuclei are segmented using OTSU thresholding as the binary image. The undesirable artifacts are eliminated using morphological operations. Finally, the distance transform based watershed method is applied to isolate the touching and overlapping cell nuclei. The proposed method is tested with 25 Papanicolaou (Pap) stained pleural fluid images. The accuracy of our proposed method is 92%. The method is relatively simple, and the results are very promising.
NASA Astrophysics Data System (ADS)
Keller, Brad M.; Gastounioti, Aimilia; Batiste, Rebecca C.; Kontos, Despina; Feldman, Michael D.
2016-03-01
Visual characterization of histologic specimens is known to suffer from intra- and inter-observer variability. To help address this, we developed an automated framework for characterizing digitized histology specimens based on a novel application of color histogram and color texture analysis. We perform a preliminary evaluation of this framework using a set of 73 trichrome-stained, digitized slides of normal breast tissue which were visually assessed by an expert pathologist in terms of the percentage of collagenous stroma, stromal collagen density, duct-lobular unit density and the presence of elastosis. For each slide, our algorithm automatically segments the tissue region based on the lightness channel in CIELAB colorspace. Within each tissue region, a color histogram feature vector is extracted using a common color palette for trichrome images generated with a previously described method. Then, using a whole-slide, lattice-based methodology, color texture maps are generated using a set of color co-occurrence matrix statistics: contrast, correlation, energy and homogeneity. The extracted features sets are compared to the visually assessed tissue characteristics. Overall, the extracted texture features have high correlations to both the percentage of collagenous stroma (r=0.95, p<0.001) and duct-lobular unit density (r=0.71, p<0.001) seen in the tissue samples, and several individual features were associated with either collagen density and/or the presence of elastosis (p<=0.05). This suggests that the proposed framework has promise as a means to quantitatively extract descriptors reflecting tissue-level characteristics and thus could be useful in detecting and characterizing histological processes in digitized histology specimens.
Sonoelastography of the plantar fascia.
Wu, Chueh-Hung; Chang, Ke-Vin; Mio, Sun; Chen, Wen-Shiang; Wang, Tyng-Guey
2011-05-01
To compare the stiffness of the plantar fascia by using sonoelastography in healthy subjects of different ages, as well as patients with plantar fasciitis. The study protocol was approved by the Research Ethics Committee of the hospital, and all of the subjects gave their informed consent. Bilateral feet of 40 healthy subjects and 13 subjects with plantar fasciitis (fasciitis group) were examined by using color-coded sonoelastography. Healthy subjects were divided into younger (18-50 years) and older (> 50 years) groups. The color scheme was red (hard), green (medium stiffness), and blue (soft). The color histogram was subsequently analyzed. Each pixel of the image was separated into red, green, and blue components (color intensity range, 0-255). The color histogram then computed the mean intensity of each color component of the pixels within a standardized area. Mixed model for repeated measurements was used for comparison of the plantar fascia thickness and the intensity of the color components on sonoelastogram. Quantitative analysis of the color histogram revealed a significantly greater intensity of blue in older healthy subjects than in younger (94.5 ± 5.6 [± standard deviation] vs 90.0 ± 4.6, P = .002) subjects. The intensity of red and green was the same between younger and older healthy subjects (P = .68 and 0.12). The intensity of red was significantly greater in older healthy subjects than in the fasciitis group (147.8 ± 10.3 vs 133.7 ± 13.4, P < .001). The intensity of green and blue was the same between older healthy subjects and those in the fasciitis group (P = .33 and .71). Sonoelastography revealed that the plantar fascia softens with age and in subjects with plantar fasciitis. RSNA, 2011
Complex adaptation-based LDR image rendering for 3D image reconstruction
NASA Astrophysics Data System (ADS)
Lee, Sung-Hak; Kwon, Hyuk-Ju; Sohng, Kyu-Ik
2014-07-01
A low-dynamic tone-compression technique is developed for realistic image rendering that can make three-dimensional (3D) images similar to realistic scenes by overcoming brightness dimming in the 3D display mode. The 3D surround provides varying conditions for image quality, illuminant adaptation, contrast, gamma, color, sharpness, and so on. In general, gain/offset adjustment, gamma compensation, and histogram equalization have performed well in contrast compression; however, as a result of signal saturation and clipping effects, image details are removed and information is lost on bright and dark areas. Thus, an enhanced image mapping technique is proposed based on space-varying image compression. The performance of contrast compression is enhanced with complex adaptation in a 3D viewing surround combining global and local adaptation. Evaluating local image rendering in view of tone and color expression, noise reduction, and edge compensation confirms that the proposed 3D image-mapping model can compensate for the loss of image quality in the 3D mode.
NASA Astrophysics Data System (ADS)
Kusyk, Janusz; Eskicioglu, Ahmet M.
2005-10-01
Digital watermarking is considered to be a major technology for the protection of multimedia data. Some of the important applications are broadcast monitoring, copyright protection, and access control. In this paper, we present a semi-blind watermarking scheme for embedding a logo in color images using the DFT domain. After computing the DFT of the luminance layer of the cover image, the magnitudes of DFT coefficients are compared, and modified. A given watermark is embedded in three frequency bands: Low, middle, and high. Our experiments show that the watermarks extracted from the lower frequencies have the best visual quality for low pass filtering, adding Gaussian noise, JPEG compression, resizing, rotation, and scaling, and the watermarks extracted from the higher frequencies have the best visual quality for cropping, intensity adjustment, histogram equalization, and gamma correction. Extractions from the fragmented and translated image are identical to extractions from the unattacked watermarked image. The collusion and rewatermarking attacks do not provide the hacker with useful tools.
Automatic discrimination of color retinal images using the bag of words approach
NASA Astrophysics Data System (ADS)
Sadek, I.; Sidibé, D.; Meriaudeau, F.
2015-03-01
Diabetic retinopathy (DR) and age related macular degeneration (ARMD) are among the major causes of visual impairment all over the world. DR is mainly characterized by small red spots, namely microaneurysms and bright lesions, specifically exudates. However, ARMD is mainly identified by tiny yellow or white deposits called drusen. Since exudates might be the only visible signs of the early diabetic retinopathy, there is an increase demand for automatic diagnosis of retinopathy. Exudates and drusen may share similar appearances; as a result discriminating between them plays a key role in improving screening performance. In this research, we investigative the role of bag of words approach in the automatic diagnosis of retinopathy diabetes. Initially, the color retinal images are preprocessed in order to reduce the intra and inter patient variability. Subsequently, SURF (Speeded up Robust Features), HOG (Histogram of Oriented Gradients), and LBP (Local Binary Patterns) descriptors are extracted. We proposed to use single-based and multiple-based methods to construct the visual dictionary by combining the histogram of word occurrences from each dictionary and building a single histogram. Finally, this histogram representation is fed into a support vector machine with linear kernel for classification. The introduced approach is evaluated for automatic diagnosis of normal and abnormal color retinal images with bright lesions such as drusen and exudates. This approach has been implemented on 430 color retinal images, including six publicly available datasets, in addition to one local dataset. The mean accuracies achieved are 97.2% and 99.77% for single-based and multiple-based dictionaries respectively.
Structure Size Enhanced Histogram
NASA Astrophysics Data System (ADS)
Wesarg, Stefan; Kirschner, Matthias
Direct volume visualization requires the definition of transfer functions (TFs) for the assignment of opacity and color. Multi-dimensional TFs are based on at least two image properties, and are specified by means of 2D histograms. In this work we propose a new type of a 2D histogram which combines gray value with information about the size of the structures. This structure size enhanced (SSE) histogram is an intuitive approach for representing anatomical features. Clinicians — the users we are focusing on — are much more familiar with selecting features by their size than by their gradient magnitude value. As a proof of concept, we employ the SSE histogram for the definition of two-dimensional TFs for the visualization of 3D MRI and CT image data.
Remote logo detection using angle-distance histograms
NASA Astrophysics Data System (ADS)
Youn, Sungwook; Ok, Jiheon; Baek, Sangwook; Woo, Seongyoun; Lee, Chulhee
2016-05-01
Among all the various computer vision applications, automatic logo recognition has drawn great interest from industry as well as various academic institutions. In this paper, we propose an angle-distance map, which we used to develop a robust logo detection algorithm. The proposed angle-distance histogram is invariant against scale and rotation. The proposed method first used shape information and color characteristics to find the candidate regions and then applied the angle-distance histogram. Experiments show that the proposed method detected logos of various sizes and orientations.
Entwistle, A
2004-06-01
A means for improving the contrast in the images produced from digital light micrographs is described that requires no intervention by the experimenter: zero-order, scaling, tonally independent, moderated histogram equalization. It is based upon histogram equalization, which often results in digital light micrographs that contain regions that appear to be saturated, negatively biased or very grainy. Here a non-decreasing monotonic function is introduced into the process, which moderates the changes in contrast that are generated. This method is highly effective for all three of the main types of contrast found in digital light micrography: bright objects viewed against a dark background, e.g. fluorescence and dark-ground or dark-field image data sets; bright and dark objects sets against a grey background, e.g. image data sets collected with phase or Nomarski differential interference contrast optics; and darker objects set against a light background, e.g. views of absorbing specimens. Moreover, it is demonstrated that there is a single fixed moderating function, whose actions are independent of the number of elements of image data, which works well with all types of digital light micrographs, including multimodal or multidimensional image data sets. The use of this fixed function is very robust as the appearance of the final image is not altered discernibly when it is applied repeatedly to an image data set. Consequently, moderated histogram equalization can be applied to digital light micrographs as a push-button solution, thereby eliminating biases that those undertaking the processing might have introduced during manual processing. Finally, moderated histogram equalization yields a mapping function and so, through the use of look-up tables, indexes or palettes, the information present in the original data file can be preserved while an image with the improved contrast is displayed on the monitor screen.
Color image segmentation to detect defects on fresh ham
NASA Astrophysics Data System (ADS)
Marty-Mahe, Pascale; Loisel, Philippe; Brossard, Didier
2003-04-01
We present in this paper the color segmentation methods that were used to detect appearance defects on 3 dimensional shape of fresh ham. The use of color histograms turned out to be an efficient solution to characterize the healthy skin, but a special care must be taken to choose the color components because of the 3 dimensional shape of ham.
Flood Detection/Monitoring Using Adjustable Histogram Equalization Technique
Riaz, Muhammad Mohsin; Ghafoor, Abdul
2014-01-01
Flood monitoring technique using adjustable histogram equalization is proposed. The technique overcomes the limitations (overenhancement, artifacts, and unnatural look) of existing technique by adjusting the contrast of images. The proposed technique takes pre- and postimages and applies different processing steps for generating flood map without user interaction. The resultant flood maps can be used for flood monitoring and detection. Simulation results show that the proposed technique provides better output quality compared to the state of the art existing technique. PMID:24558332
Sample Training Based Wildfire Segmentation by 2D Histogram θ-Division with Minimum Error
Dong, Erqian; Sun, Mingui; Jia, Wenyan; Zhang, Dengyi; Yuan, Zhiyong
2013-01-01
A novel wildfire segmentation algorithm is proposed with the help of sample training based 2D histogram θ-division and minimum error. Based on minimum error principle and 2D color histogram, the θ-division methods were presented recently, but application of prior knowledge on them has not been explored. For the specific problem of wildfire segmentation, we collect sample images with manually labeled fire pixels. Then we define the probability function of error division to evaluate θ-division segmentations, and the optimal angle θ is determined by sample training. Performances in different color channels are compared, and the suitable channel is selected. To further improve the accuracy, the combination approach is presented with both θ-division and other segmentation methods such as GMM. Our approach is tested on real images, and the experiments prove its efficiency for wildfire segmentation. PMID:23878526
Salas-Gonzalez, D; Górriz, J M; Ramírez, J; Padilla, P; Illán, I A
2013-01-01
A procedure to improve the convergence rate for affine registration methods of medical brain images when the images differ greatly from the template is presented. The methodology is based on a histogram matching of the source images with respect to the reference brain template before proceeding with the affine registration. The preprocessed source brain images are spatially normalized to a template using a general affine model with 12 parameters. A sum of squared differences between the source images and the template is considered as objective function, and a Gauss-Newton optimization algorithm is used to find the minimum of the cost function. Using histogram equalization as a preprocessing step improves the convergence rate in the affine registration algorithm of brain images as we show in this work using SPECT and PET brain images.
Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh
2017-01-01
99m Technetium-methylene diphosphonate ( 99m Tc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99m Tc-MDP-bone scan images. A set of 89 low contrast 99m Tc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t -test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful.
Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh
2017-01-01
Purpose of the Study: 99mTechnetium-methylene diphosphonate (99mTc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99mTc-MDP-bone scan images. Materials and Methods: A set of 89 low contrast 99mTc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. Results: This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t-test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. Conclusion: GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful. PMID:29142344
Content Based Image Retrieval and Information Theory: A General Approach.
ERIC Educational Resources Information Center
Zachary, John; Iyengar, S. S.; Barhen, Jacob
2001-01-01
Proposes an alternative real valued representation of color based on the information theoretic concept of entropy. A theoretical presentation of image entropy is accompanied by a practical description of the merits and limitations of image entropy compared to color histograms. Results suggest that image entropy is a promising approach to image…
Multi-scale Morphological Image Enhancement of Chest Radiographs by a Hybrid Scheme.
Alavijeh, Fatemeh Shahsavari; Mahdavi-Nasab, Homayoun
2015-01-01
Chest radiography is a common diagnostic imaging test, which contains an enormous amount of information about a patient. However, its interpretation is highly challenging. The accuracy of the diagnostic process is greatly influenced by image processing algorithms; hence enhancement of the images is indispensable in order to improve visibility of the details. This paper aims at improving radiograph parameters such as contrast, sharpness, noise level, and brightness to enhance chest radiographs, making use of a triangulation method. Here, contrast limited adaptive histogram equalization technique and noise suppression are simultaneously performed in wavelet domain in a new scheme, followed by morphological top-hat and bottom-hat filtering. A unique implementation of morphological filters allows for adjustment of the image brightness and significant enhancement of the contrast. The proposed method is tested on chest radiographs from Japanese Society of Radiological Technology database. The results are compared with conventional enhancement techniques such as histogram equalization, contrast limited adaptive histogram equalization, Retinex, and some recently proposed methods to show its strengths. The experimental results reveal that the proposed method can remarkably improve the image contrast while keeping the sensitive chest tissue information so that radiologists might have a more precise interpretation.
Multi-scale Morphological Image Enhancement of Chest Radiographs by a Hybrid Scheme
Alavijeh, Fatemeh Shahsavari; Mahdavi-Nasab, Homayoun
2015-01-01
Chest radiography is a common diagnostic imaging test, which contains an enormous amount of information about a patient. However, its interpretation is highly challenging. The accuracy of the diagnostic process is greatly influenced by image processing algorithms; hence enhancement of the images is indispensable in order to improve visibility of the details. This paper aims at improving radiograph parameters such as contrast, sharpness, noise level, and brightness to enhance chest radiographs, making use of a triangulation method. Here, contrast limited adaptive histogram equalization technique and noise suppression are simultaneously performed in wavelet domain in a new scheme, followed by morphological top-hat and bottom-hat filtering. A unique implementation of morphological filters allows for adjustment of the image brightness and significant enhancement of the contrast. The proposed method is tested on chest radiographs from Japanese Society of Radiological Technology database. The results are compared with conventional enhancement techniques such as histogram equalization, contrast limited adaptive histogram equalization, Retinex, and some recently proposed methods to show its strengths. The experimental results reveal that the proposed method can remarkably improve the image contrast while keeping the sensitive chest tissue information so that radiologists might have a more precise interpretation. PMID:25709942
Yoo, Tae Keun; Han, Sueng-Han; Han, Jinu
2017-12-01
To determine the efficacy of a biodegradable Ologen (Aeon Astron Europe BV, Leiden, The Netherlands) collagen matrix in reducing the blue color change due to exposed thinned sclera after strabismus surgery. Fourteen patients with intermittent exotropia undergoing symmetric bilateral lateral rectus recession surgery were included in this prospective, randomized, paired-eye controlled study. In each patient, Ologen was implanted at the original rectus insertion site in one randomly selected eye; the other eye underwent conventional surgery. Ologen was inserted under the conjunctiva without suturing, covering the muscle insertion site. Conjunctival color change was analyzed using computer-based image analysis immediately and 1 week, 1 month, and 3 months postoperatively. Slit-lamp photographs of each eye were evaluated using contrast limited adaptive histogram equalization (CLAHE), Canny edge, and the RGB (red-green-blue) model. Secondary outcomes were conjunctival and sclera thickness 3 months postoperatively determined by anterior segment optical coherence tomography. Immediately and 1 week postoperatively all color models showed no significant differences between Ologen-implanted and control eyes. Three months postoperatively, Ologen-implanted eyes exhibited significantly lower CLAHE (P = 0.041) and RGB model blue color (P = 0.008) values than control eyes. Canny edge (P = 0.061) and RGB model red color (P = 0.152) values did not differ between eyes. Conjunctival stroma and episcleral complex thickness was greater in Ologen-implanted eyes than in controls (P = 0.001). Blue color change was significantly less noticeable in Ologen-implanted eyes than in controls. Thus, Ologen implantation helps prevent visible blue sclera at the original rectus insertion site after lateral rectus recession. Copyright © 2017 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Shuo; Jin, Weiqi; Li, Li; Li, Yiyang
2018-05-01
Infrared thermal images can reflect the thermal-radiation distribution of a particular scene. However, the contrast of the infrared images is usually low. Hence, it is generally necessary to enhance the contrast of infrared images in advance to facilitate subsequent recognition and analysis. Based on the adaptive double plateaus histogram equalization, this paper presents an improved contrast enhancement algorithm for infrared thermal images. In the proposed algorithm, the normalized coefficient of variation of the histogram, which characterizes the level of contrast enhancement, is introduced as feedback information to adjust the upper and lower plateau thresholds. The experiments on actual infrared images show that compared to the three typical contrast-enhancement algorithms, the proposed algorithm has better scene adaptability and yields better contrast-enhancement results for infrared images with more dark areas or a higher dynamic range. Hence, it has high application value in contrast enhancement, dynamic range compression, and digital detail enhancement for infrared thermal images.
Automated Detection of Diabetic Retinopathy using Deep Learning.
Lam, Carson; Yi, Darvin; Guo, Margaret; Lindsey, Tony
2018-01-01
Diabetic retinopathy is a leading cause of blindness among working-age adults. Early detection of this condition is critical for good prognosis. In this paper, we demonstrate the use of convolutional neural networks (CNNs) on color fundus images for the recognition task of diabetic retinopathy staging. Our network models achieved test metric performance comparable to baseline literature results, with validation sensitivity of 95%. We additionally explored multinomial classification models, and demonstrate that errors primarily occur in the misclassification of mild disease as normal due to the CNNs inability to detect subtle disease features. We discovered that preprocessing with contrast limited adaptive histogram equalization and ensuring dataset fidelity by expert verification of class labels improves recognition of subtle features. Transfer learning on pretrained GoogLeNet and AlexNet models from ImageNet improved peak test set accuracies to 74.5%, 68.8%, and 57.2% on 2-ary, 3-ary, and 4-ary classification models, respectively.
Contrast-dependent saturation adjustment for outdoor image enhancement.
Wang, Shuhang; Cho, Woon; Jang, Jinbeum; Abidi, Mongi A; Paik, Joonki
2017-01-01
Outdoor images captured in bad-weather conditions usually have poor intensity contrast and color saturation since the light arriving at the camera is severely scattered or attenuated. The task of improving image quality in poor conditions remains a challenge. Existing methods of image quality improvement are usually effective for a small group of images but often fail to produce satisfactory results for a broader variety of images. In this paper, we propose an image enhancement method, which makes it applicable to enhance outdoor images by using content-adaptive contrast improvement as well as contrast-dependent saturation adjustment. The main contribution of this work is twofold: (1) we propose the content-adaptive histogram equalization based on the human visual system to improve the intensity contrast; and (2) we introduce a simple yet effective prior for adjusting the color saturation depending on the intensity contrast. The proposed method is tested with different kinds of images, compared with eight state-of-the-art methods: four enhancement methods and four haze removal methods. Experimental results show the proposed method can more effectively improve the visibility and preserve the naturalness of the images, as opposed to the compared methods.
Modifications to Improve Data Acquisition and Analysis for Camouflage Design
1983-01-01
terrains into facsimiles of the original scenes in 3, 4# or 5 colors in CIELAB notation. Tasks that were addressed included optimization of the...a histogram algorithm (HIST) was used as a first step In the clustering of the CIELAB values of the scene pixels. This algorithm Is highly efficient...however, an optimal process and the CIELAB coordinates of the final color domains can be Influenced by the color coordinate Increments used In the
An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement.
Zimmerman, J B; Pizer, S M; Staab, E V; Perry, J R; McCartney, W; Brenton, B C
1988-01-01
Adaptive histogram equalization (AHE) and intensity windowing have been compared using psychophysical observer studies. Experienced radiologists were shown clinical CT (computerized tomographic) images of the chest. Into some of the images, appropriate artificial lesions were introduced; the physicians were then shown the images processed with both AHE and intensity windowing. They were asked to assess the probability that a given image contained the artificial lesion, and their accuracy was measured. The results of these experiments show that for this particular diagnostic task, there was no significant difference in the ability of the two methods to depict luminance contrast; thus, further evaluation of AHE using controlled clinical trials is indicated.
Feature and contrast enhancement of mammographic image based on multiscale analysis and morphology.
Wu, Shibin; Yu, Shaode; Yang, Yuhan; Xie, Yaoqin
2013-01-01
A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII).
Feature and Contrast Enhancement of Mammographic Image Based on Multiscale Analysis and Morphology
Wu, Shibin; Xie, Yaoqin
2013-01-01
A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII). PMID:24416072
Teh, V; Sim, K S; Wong, E K
2016-11-01
According to the statistic from World Health Organization (WHO), stroke is one of the major causes of death globally. Computed tomography (CT) scan is one of the main medical diagnosis system used for diagnosis of ischemic stroke. CT scan provides brain images in Digital Imaging and Communication in Medicine (DICOM) format. The presentation of CT brain images is mainly relied on the window setting (window center and window width), which converts an image from DICOM format into normal grayscale format. Nevertheless, the ordinary window parameter could not deliver a proper contrast on CT brain images for ischemic stroke detection. In this paper, a new proposed method namely gamma correction extreme-level eliminating with weighting distribution (GCELEWD) is implemented to improve the contrast on CT brain images. GCELEWD is capable of highlighting the hypodense region for diagnosis of ischemic stroke. The performance of this new proposed technique, GCELEWD, is compared with four of the existing contrast enhancement technique such as brightness preserving bi-histogram equalization (BBHE), dualistic sub-image histogram equalization (DSIHE), extreme-level eliminating histogram equalization (ELEHE), and adaptive gamma correction with weighting distribution (AGCWD). GCELEWD shows better visualization for ischemic stroke detection and higher values with image quality assessment (IQA) module. SCANNING 38:842-856, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei; Wang, Ruikang K
2013-02-01
Optical microangiography is an imaging technology that is capable of providing detailed functional blood flow maps within microcirculatory tissue beds in vivo. Some practical issues however exist when displaying and quantifying the microcirculation that perfuses the scanned tissue volume. These issues include: (I) Probing light is subject to specular reflection when it shines onto sample. The unevenness of the tissue surface makes the light energy entering the tissue not uniform over the entire scanned tissue volume. (II) The biological tissue is heterogeneous in nature, meaning the scattering and absorption properties of tissue would attenuate the probe beam. These physical limitations can result in local contrast degradation and non-uniform micro-angiogram images. In this paper, we propose a post-processing method that uses Rayleigh contrast-limited adaptive histogram equalization to increase the contrast and improve the overall appearance and uniformity of optical micro-angiograms without saturating the vessel intensity and changing the physical meaning of the micro-angiograms. The qualitative and quantitative performance of the proposed method is compared with those of common histogram equalization and contrast enhancement methods. We demonstrate that the proposed method outperforms other existing approaches. The proposed method is not limited to optical microangiography and can be used in other image modalities such as photo-acoustic tomography and scanning laser confocal microscopy.
Li, Liyuan; Huang, Weimin; Gu, Irene Yu-Hua; Luo, Ruijiang; Tian, Qi
2008-10-01
Efficiency and robustness are the two most important issues for multiobject tracking algorithms in real-time intelligent video surveillance systems. We propose a novel 2.5-D approach to real-time multiobject tracking in crowds, which is formulated as a maximum a posteriori estimation problem and is approximated through an assignment step and a location step. Observing that the occluding object is usually less affected by the occluded objects, sequential solutions for the assignment and the location are derived. A novel dominant color histogram (DCH) is proposed as an efficient object model. The DCH can be regarded as a generalized color histogram, where dominant colors are selected based on a given distance measure. Comparing with conventional color histograms, the DCH only requires a few color components (31 on average). Furthermore, our theoretical analysis and evaluation on real data have shown that DCHs are robust to illumination changes. Using the DCH, efficient implementations of sequential solutions for the assignment and location steps are proposed. The assignment step includes the estimation of the depth order for the objects in a dispersing group, one-by-one assignment, and feature exclusion from the group representation. The location step includes the depth-order estimation for the objects in a new group, the two-phase mean-shift location, and the exclusion of tracked objects from the new position in the group. Multiobject tracking results and evaluation from public data sets are presented. Experiments on image sequences captured from crowded public environments have shown good tracking results, where about 90% of the objects have been successfully tracked with the correct identification numbers by the proposed method. Our results and evaluation have indicated that the method is efficient and robust for tracking multiple objects (>or= 3) in complex occlusion for real-world surveillance scenarios.
Assessing clutter reduction in parallel coordinates using image processing techniques
NASA Astrophysics Data System (ADS)
Alhamaydh, Heba; Alzoubi, Hussein; Almasaeid, Hisham
2018-01-01
Information visualization has appeared as an important research field for multidimensional data and correlation analysis in recent years. Parallel coordinates (PCs) are one of the popular techniques to visual high-dimensional data. A problem with the PCs technique is that it suffers from crowding, a clutter which hides important data and obfuscates the information. Earlier research has been conducted to reduce clutter without loss in data content. We introduce the use of image processing techniques as an approach for assessing the performance of clutter reduction techniques in PC. We use histogram analysis as our first measure, where the mean feature of the color histograms of the possible alternative orderings of coordinates for the PC images is calculated and compared. The second measure is the extracted contrast feature from the texture of PC images based on gray-level co-occurrence matrices. The results show that the best PC image is the one that has the minimal mean value of the color histogram feature and the maximal contrast value of the texture feature. In addition to its simplicity, the proposed assessment method has the advantage of objectively assessing alternative ordering of PC visualization.
Gray-level transformations for interactive image enhancement. M.S. Thesis. Final Technical Report
NASA Technical Reports Server (NTRS)
Fittes, B. A.
1975-01-01
A gray-level transformation method suitable for interactive image enhancement was presented. It is shown that the well-known histogram equalization approach is a special case of this method. A technique for improving the uniformity of a histogram is also developed. Experimental results which illustrate the capabilities of both algorithms are described. Two proposals for implementing gray-level transformations in a real-time interactive image enhancement system are also presented.
[A fast iterative algorithm for adaptive histogram equalization].
Cao, X; Liu, X; Deng, Z; Jiang, D; Zheng, C
1997-01-01
In this paper, we propose an iterative algorthm called FAHE., which is based on the relativity between the current local histogram and the one before the sliding window moving. Comparing with the basic AHE, the computing time of FAHE is decreased from 5 hours to 4 minutes on a 486dx/33 compatible computer, when using a 65 x 65 sliding window for a 512 x 512 with 8 bits gray-level range.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
False-Color-Image Map of Quadrangle 3362, Shin-Dand (415) and Tulak (416) Quadrangles, Afghanistan
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
False-Color-Image Map of Quadrangle 3670, Jarm-Keshem (223) and Zebak (224) Quadrangles, Afghanistan
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
False-Color-Image Map of Quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) Quadrangles, Afghanistan
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
False-Color-Image Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
False-Color-Image Map of Quadrangle 3364, Pasa-Band (417) and Kejran (418) Quadrangles, Afghanistan
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
False-Color-Image Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
False-Color-Image Map of Quadrangle 3266, Ourzgan (519) and Moqur (520) Quadrangles, Afghanistan
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Perceptual Contrast Enhancement with Dynamic Range Adjustment
Zhang, Hong; Li, Yuecheng; Chen, Hao; Yuan, Ding; Sun, Mingui
2013-01-01
Recent years, although great efforts have been made to improve its performance, few Histogram equalization (HE) methods take human visual perception (HVP) into account explicitly. The human visual system (HVS) is more sensitive to edges than brightness. This paper proposes to take use of this nature intuitively and develops a perceptual contrast enhancement approach with dynamic range adjustment through histogram modification. The use of perceptual contrast connects the image enhancement problem with the HVS. To pre-condition the input image before the HE procedure is implemented, a perceptual contrast map (PCM) is constructed based on the modified Difference of Gaussian (DOG) algorithm. As a result, the contrast of the image is sharpened and high frequency noise is suppressed. A modified Clipped Histogram Equalization (CHE) is also developed which improves visual quality by automatically detecting the dynamic range of the image with improved perceptual contrast. Experimental results show that the new HE algorithm outperforms several state-of-the-art algorithms in improving perceptual contrast and enhancing details. In addition, the new algorithm is simple to implement, making it suitable for real-time applications. PMID:24339452
Visual Contrast Enhancement Algorithm Based on Histogram Equalization
Ting, Chih-Chung; Wu, Bing-Fei; Chung, Meng-Liang; Chiu, Chung-Cheng; Wu, Ya-Ching
2015-01-01
Image enhancement techniques primarily improve the contrast of an image to lend it a better appearance. One of the popular enhancement methods is histogram equalization (HE) because of its simplicity and effectiveness. However, it is rarely applied to consumer electronics products because it can cause excessive contrast enhancement and feature loss problems. These problems make the images processed by HE look unnatural and introduce unwanted artifacts in them. In this study, a visual contrast enhancement algorithm (VCEA) based on HE is proposed. VCEA considers the requirements of the human visual perception in order to address the drawbacks of HE. It effectively solves the excessive contrast enhancement problem by adjusting the spaces between two adjacent gray values of the HE histogram. In addition, VCEA reduces the effects of the feature loss problem by using the obtained spaces. Furthermore, VCEA enhances the detailed textures of an image to generate an enhanced image with better visual quality. Experimental results show that images obtained by applying VCEA have higher contrast and are more suited to human visual perception than those processed by HE and other HE-based methods. PMID:26184219
a New Color Correction Method for Underwater Imaging
NASA Astrophysics Data System (ADS)
Bianco, G.; Muzzupappa, M.; Bruno, F.; Garcia, R.; Neumann, L.
2015-04-01
Recovering correct or at least realistic colors of underwater scenes is a very challenging issue for imaging techniques, since illumination conditions in a refractive and turbid medium as the sea are seriously altered. The need to correct colors of underwater images or videos is an important task required in all image-based applications like 3D imaging, navigation, documentation, etc. Many imaging enhancement methods have been proposed in literature for these purposes. The advantage of these methods is that they do not require the knowledge of the medium physical parameters while some image adjustments can be performed manually (as histogram stretching) or automatically by algorithms based on some criteria as suggested from computational color constancy methods. One of the most popular criterion is based on gray-world hypothesis, which assumes that the average of the captured image should be gray. An interesting application of this assumption is performed in the Ruderman opponent color space lαβ, used in a previous work for hue correction of images captured under colored light sources, which allows to separate the luminance component of the scene from its chromatic components. In this work, we present the first proposal for color correction of underwater images by using lαβ color space. In particular, the chromatic components are changed moving their distributions around the white point (white balancing) and histogram cutoff and stretching of the luminance component is performed to improve image contrast. The experimental results demonstrate the effectiveness of this method under gray-world assumption and supposing uniform illumination of the scene. Moreover, due to its low computational cost it is suitable for real-time implementation.
NASA Astrophysics Data System (ADS)
Liu, Changjiang; Cheng, Irene; Zhang, Yi; Basu, Anup
2017-06-01
This paper presents an improved multi-scale Retinex (MSR) based enhancement for ariel images under low visibility. For traditional multi-scale Retinex, three scales are commonly employed, which limits its application scenarios. We extend our research to a general purpose enhanced method, and design an MSR with more than three scales. Based on the mathematical analysis and deductions, an explicit multi-scale representation is proposed that balances image contrast and color consistency. In addition, a histogram truncation technique is introduced as a post-processing strategy to remap the multi-scale Retinex output to the dynamic range of the display. Analysis of experimental results and comparisons with existing algorithms demonstrate the effectiveness and generality of the proposed method. Results on image quality assessment proves the accuracy of the proposed method with respect to both objective and subjective criteria.
Wavelength-adaptive dehazing using histogram merging-based classification for UAV images.
Yoon, Inhye; Jeong, Seokhwa; Jeong, Jaeheon; Seo, Doochun; Paik, Joonki
2015-03-19
Since incoming light to an unmanned aerial vehicle (UAV) platform can be scattered by haze and dust in the atmosphere, the acquired image loses the original color and brightness of the subject. Enhancement of hazy images is an important task in improving the visibility of various UAV images. This paper presents a spatially-adaptive dehazing algorithm that merges color histograms with consideration of the wavelength-dependent atmospheric turbidity. Based on the wavelength-adaptive hazy image acquisition model, the proposed dehazing algorithm consists of three steps: (i) image segmentation based on geometric classes; (ii) generation of the context-adaptive transmission map; and (iii) intensity transformation for enhancing a hazy UAV image. The major contribution of the research is a novel hazy UAV image degradation model by considering the wavelength of light sources. In addition, the proposed transmission map provides a theoretical basis to differentiate visually important regions from others based on the turbidity and merged classification results.
Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes
Erkol, Bulent; Moss, Randy H.; Stanley, R. Joe; Stoecker, William V.; Hvatum, Erik
2011-01-01
Background Malignant melanoma has a good prognosis if treated early. Dermoscopy images of pigmented lesions are most commonly taken at × 10 magnification under lighting at a low angle of incidence while the skin is immersed in oil under a glass plate. Accurate skin lesion segmentation from the background skin is important because some of the features anticipated to be used for diagnosis deal with shape of the lesion and others deal with the color of the lesion compared with the color of the surrounding skin. Methods In this research, gradient vector flow (GVF) snakes are investigated to find the border of skin lesions in dermoscopy images. An automatic initialization method is introduced to make the skin lesion border determination process fully automated. Results Skin lesion segmentation results are presented for 70 benign and 30 melanoma skin lesion images for the GVF-based method and a color histogram analysis technique. The average errors obtained by the GVF-based method are lower for both the benign and melanoma image sets than for the color histogram analysis technique based on comparison with manually segmented lesions determined by a dermatologist. Conclusions The experimental results for the GVF-based method demonstrate promise as an automated technique for skin lesion segmentation in dermoscopy images. PMID:15691255
An adaptive enhancement algorithm for infrared video based on modified k-means clustering
NASA Astrophysics Data System (ADS)
Zhang, Linze; Wang, Jingqi; Wu, Wen
2016-09-01
In this paper, we have proposed a video enhancement algorithm to improve the output video of the infrared camera. Sometimes the video obtained by infrared camera is very dark since there is no clear target. In this case, infrared video should be divided into frame images by frame extraction, in order to carry out the image enhancement. For the first frame image, which can be divided into k sub images by using K-means clustering according to the gray interval it occupies before k sub images' histogram equalization according to the amount of information per sub image, we used a method to solve a problem that final cluster centers close to each other in some cases; and for the other frame images, their initial cluster centers can be determined by the final clustering centers of the previous ones, and the histogram equalization of each sub image will be carried out after image segmentation based on K-means clustering. The histogram equalization can make the gray value of the image to the whole gray level, and the gray level of each sub image is determined by the ratio of pixels to a frame image. Experimental results show that this algorithm can improve the contrast of infrared video where night target is not obvious which lead to a dim scene, and reduce the negative effect given by the overexposed pixels adaptively in a certain range.
Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei
2013-01-01
Optical microangiography is an imaging technology that is capable of providing detailed functional blood flow maps within microcirculatory tissue beds in vivo. Some practical issues however exist when displaying and quantifying the microcirculation that perfuses the scanned tissue volume. These issues include: (I) Probing light is subject to specular reflection when it shines onto sample. The unevenness of the tissue surface makes the light energy entering the tissue not uniform over the entire scanned tissue volume. (II) The biological tissue is heterogeneous in nature, meaning the scattering and absorption properties of tissue would attenuate the probe beam. These physical limitations can result in local contrast degradation and non-uniform micro-angiogram images. In this paper, we propose a post-processing method that uses Rayleigh contrast-limited adaptive histogram equalization to increase the contrast and improve the overall appearance and uniformity of optical micro-angiograms without saturating the vessel intensity and changing the physical meaning of the micro-angiograms. The qualitative and quantitative performance of the proposed method is compared with those of common histogram equalization and contrast enhancement methods. We demonstrate that the proposed method outperforms other existing approaches. The proposed method is not limited to optical microangiography and can be used in other image modalities such as photo-acoustic tomography and scanning laser confocal microscopy. PMID:23482880
New clinical grading scales and objective measurement for conjunctival injection.
Park, In Ki; Chun, Yeoun Sook; Kim, Kwang Gi; Yang, Hee Kyung; Hwang, Jeong-Min
2013-08-05
To establish a new clinical grading scale and objective measurement method to evaluate conjunctival injection. Photographs of conjunctival injection with variable ocular diseases in 429 eyes were reviewed. Seventy-three images with concordance by three ophthalmologists were classified into a 4-step and 10-step subjective grading scale, and used as standard photographs. Each image was quantified in four ways: the relative magnitude of the redness component of each red-green-blue (RGB) pixel; two different algorithms based on the occupied area by blood vessels (K-means clustering with LAB color model and contrast-limited adaptive histogram equalization [CLAHE] algorithm); and the presence of blood vessel edges, based on the Canny edge-detection algorithm. Area under the receiver operating characteristic curves (AUCs) were calculated to summarize diagnostic accuracies of the four algorithms. The RGB color model, K-means clustering with LAB color model, and CLAHE algorithm showed good correlation with the clinical 10-step grading scale (R = 0.741, 0.784, 0.919, respectively) and with the clinical 4-step grading scale (R = 0.645, 0.702, 0.838, respectively). The CLAHE method showed the largest AUC, best distinction power (P < 0.001, ANOVA, Bonferroni multiple comparison test), and high reproducibility (R = 0.996). CLAHE algorithm showed the best correlation with the 10-step and 4-step subjective clinical grading scales together with high distinction power and reproducibility. CLAHE algorithm can be a useful for method for assessment of conjunctival injection.
Hybrid Histogram Descriptor: A Fusion Feature Representation for Image Retrieval.
Feng, Qinghe; Hao, Qiaohong; Chen, Yuqi; Yi, Yugen; Wei, Ying; Dai, Jiangyan
2018-06-15
Currently, visual sensors are becoming increasingly affordable and fashionable, acceleratingly the increasing number of image data. Image retrieval has attracted increasing interest due to space exploration, industrial, and biomedical applications. Nevertheless, designing effective feature representation is acknowledged as a hard yet fundamental issue. This paper presents a fusion feature representation called a hybrid histogram descriptor (HHD) for image retrieval. The proposed descriptor comprises two histograms jointly: a perceptually uniform histogram which is extracted by exploiting the color and edge orientation information in perceptually uniform regions; and a motif co-occurrence histogram which is acquired by calculating the probability of a pair of motif patterns. To evaluate the performance, we benchmarked the proposed descriptor on RSSCN7, AID, Outex-00013, Outex-00014 and ETHZ-53 datasets. Experimental results suggest that the proposed descriptor is more effective and robust than ten recent fusion-based descriptors under the content-based image retrieval framework. The computational complexity was also analyzed to give an in-depth evaluation. Furthermore, compared with the state-of-the-art convolutional neural network (CNN)-based descriptors, the proposed descriptor also achieves comparable performance, but does not require any training process.
Generalized image contrast enhancement technique based on Heinemann contrast discrimination model
NASA Astrophysics Data System (ADS)
Liu, Hong; Nodine, Calvin F.
1994-03-01
This paper presents a generalized image contrast enhancement technique which equalizes perceived brightness based on the Heinemann contrast discrimination model. This is a modified algorithm which presents an improvement over the previous study by Mokrane in its mathematically proven existence of a unique solution and in its easily tunable parameterization. The model uses a log-log representation of contrast luminosity between targets and the surround in a fixed luminosity background setting. The algorithm consists of two nonlinear gray-scale mapping functions which have seven parameters, two of which are adjustable Heinemann constants. Another parameter is the background gray level. The remaining four parameters are nonlinear functions of gray scale distribution of the image, and can be uniquely determined once the previous three are given. Tests have been carried out to examine the effectiveness of the algorithm for increasing the overall contrast of images. It can be demonstrated that the generalized algorithm provides better contrast enhancement than histogram equalization. In fact, the histogram equalization technique is a special case of the proposed mapping.
ColorMoves: Optimizing Color's Potential for Exploration and Communication of Data
NASA Astrophysics Data System (ADS)
Samsel, F.
2017-12-01
Color is the most powerful perceptual channel available for exposing and communicating data. Most visualizations are rendered in one of a handful of common colormaps - the rainbow, cool-warm, heat map and viridis. These maps meet the basic criteria for encoding data - perceptual uniformity and reasonable discriminatory power. However, as the size and complexity of data grows, our need to optimize the potential of color grows. The ability to expose greater detail and differentiate between multiple variables becomes ever more important. To meet this need we have created ColorMoves, an interactive colormap construction tool that enables scientists to quickly and easily align a concentration contrast with the data ranges of interest. Perceptual research tells us that luminance is the strongest contrast and thus provides the highest degree of perceptual discrimination. However, the most commonly used colormaps contain a limited range of luminance contrast. ColorMoves enables interactive constructing colormaps enabling one to distribute the luminance where is it most needed. The interactive interface enables optimal placement of the color scales. The ability to watch the changes on ones data, in real time makes precision adjustment quick and easy. By enabling more precise placement and multiple ranges of luminance one can construct colomaps containing greater discriminatory power. By selecting from the wide range of color scale hues scientists can create colormaps intuitive to their subject. ColorMoves is comprised of four main components: a set of 40 color scales; a histogram of the data distribution; a viewing area showing the colormap on your data; and the controls section. The 40 color scales span the spectrum of hues, saturation levels and value distributions. The histogram of the data distribution enables placement of the color scales in precise locations. The viewing area show is the impact of changes on the data in real time. The controls section enables export of the constructed colormaps for use in tools such as ParaView and Matplotlib. For a clearer understanding of ColorMoves capability we recommend trying it out at SciVisColor.org.
A tone mapping operator based on neural and psychophysical models of visual perception
NASA Astrophysics Data System (ADS)
Cyriac, Praveen; Bertalmio, Marcelo; Kane, David; Vazquez-Corral, Javier
2015-03-01
High dynamic range imaging techniques involve capturing and storing real world radiance values that span many orders of magnitude. However, common display devices can usually reproduce intensity ranges only up to two to three orders of magnitude. Therefore, in order to display a high dynamic range image on a low dynamic range screen, the dynamic range of the image needs to be compressed without losing details or introducing artefacts, and this process is called tone mapping. A good tone mapping operator must be able to produce a low dynamic range image that matches as much as possible the perception of the real world scene. We propose a two stage tone mapping approach, in which the first stage is a global method for range compression based on a gamma curve that equalizes the lightness histogram the best, and the second stage performs local contrast enhancement and color induction using neural activity models for the visual cortex.
Discrete Walsh Hadamard transform based visible watermarking technique for digital color images
NASA Astrophysics Data System (ADS)
Santhi, V.; Thangavelu, Arunkumar
2011-10-01
As the size of the Internet is growing enormously the illegal manipulation of digital multimedia data become very easy with the advancement in technology tools. In order to protect those multimedia data from unauthorized access the digital watermarking system is used. In this paper a new Discrete walsh Hadamard Transform based visible watermarking system is proposed. As the watermark is embedded in transform domain, the system is robust to many signal processing attacks. Moreover in this proposed method the watermark is embedded in tiling manner in all the range of frequencies to make it robust to compression and cropping attack. The robustness of the algorithm is tested against noise addition, cropping, compression, Histogram equalization and resizing attacks. The experimental results show that the algorithm is robust to common signal processing attacks and the observed peak signal to noise ratio (PSNR) of watermarked image is varying from 20 to 30 db depends on the size of the watermark.
Mitra, Anirban; Roy, Sudipta; Roy, Somais; Setua, Sanjit Kumar
2018-03-01
Retinal fundus images are extensively used in manually or without human intervention to identify and analyze various diseases. Due to the comprehensive imaging arrangement, there is a large radiance, reflectance and contrast inconsistency within and across images. A novel method is proposed based on the cataract physical model to reduce the generated blurriness of the fundus image at the time of image acquisition through the thin layer of cataract by the fundus camera. After the blurriness reduction the method is proposed the enhancement procedure of the images with an objective on contrast perfection with no preamble of artifacts. Due to the uneven distribution of thickness of the cataract, the cataract surroundings are first predicted in the domain of frequency. Second, the resultant image of first step enhanced by the intensity histogram equalization in the adapted Hue Saturation Intensity (HSI) color image space such as the gamut problem can be avoided. The concluding image with suitable color and disparity is acquired by using the proposed max-min color correction approach. The result indicates that not only the proposed method can more effectively enhanced the non-uniform image of retina obtain through thin layer of cataract, but also the resulting image show appropriate brightness and saturation and maintain complete color space information. The projected enhancement method has been tested on the openly available datasets and the result evaluated with the standard used image enhancement algorithms and the cataract removal method. Results show noticeable development over existing methods. Cataract often prevents the clinician from objectively evaluating fundus feature. Cataract also affect subjective test. Enhancement and restoration of non-uniform illuminated Fundus Image of Retina obtained through thin layer of Cataract has shown here to be potentially beneficial. Copyright © 2018 Elsevier B.V. All rights reserved.
Lower-upper-threshold correlation for underwater range-gated imaging self-adaptive enhancement.
Sun, Liang; Wang, Xinwei; Liu, Xiaoquan; Ren, Pengdao; Lei, Pingshun; He, Jun; Fan, Songtao; Zhou, Yan; Liu, Yuliang
2016-10-10
In underwater range-gated imaging (URGI), enhancement of low-brightness and low-contrast images is critical for human observation. Traditional histogram equalizations over-enhance images, with the result of details being lost. To compress over-enhancement, a lower-upper-threshold correlation method is proposed for underwater range-gated imaging self-adaptive enhancement based on double-plateau histogram equalization. The lower threshold determines image details and compresses over-enhancement. It is correlated with the upper threshold. First, the upper threshold is updated by searching for the local maximum in real time, and then the lower threshold is calculated by the upper threshold and the number of nonzero units selected from a filtered histogram. With this method, the backgrounds of underwater images are constrained with enhanced details. Finally, the proof experiments are performed. Peak signal-to-noise-ratio, variance, contrast, and human visual properties are used to evaluate the objective quality of the global and regions of interest images. The evaluation results demonstrate that the proposed method adaptively selects the proper upper and lower thresholds under different conditions. The proposed method contributes to URGI with effective image enhancement for human eyes.
Sund, T; Olsen, J B
2006-09-01
To investigate whether sliding window adaptive histogram equalization (SWAHE) of digital mammograms improves the detection of simulated calcifications, as compared to images normalized by global histogram equalization (GHE). Direct digital mammograms were obtained from mammary tissue phantoms superimposed with different frames. Each frame was divided into forty squares by a wire mesh, and contained granular calcifications randomly positioned in about 50% of the squares. Three radiologists read the mammograms on a display monitor. They classified their confidence in the presence of microcalcifications in each square on a scale of 1 to 5. Images processed with GHE were first read and used as a reference. In a later session, the same images processed with SWAHE were read. The results were compared using ROC methodology. When the total areas AZ were compared, the results were completely equivocal. When comparing the high-specificity partial ROC area AZ,0.2 below false-positive fraction (FPF) 0.20, two of the three observers performed best with the images processed with SWAHE. The difference was not statistically significant. When the reader's confidence threshold in malignancy is set at a high level, increasing the contrast of mammograms with SWAHE may enhance the visibility of microcalcifications without adversely affecting the false-positive rate. When the reader's confidence threshold is set at a low level, the effect of SWAHE is an increase of false positives. Further investigation is needed to confirm the validity of the conclusions.
Histogram analysis for smartphone-based rapid hematocrit determination
Jalal, Uddin M.; Kim, Sang C.; Shim, Joon S.
2017-01-01
A novel and rapid analysis technique using histogram has been proposed for the colorimetric quantification of blood hematocrits. A smartphone-based “Histogram” app for the detection of hematocrits has been developed integrating the smartphone embedded camera with a microfluidic chip via a custom-made optical platform. The developed histogram analysis shows its effectiveness in the automatic detection of sample channel including auto-calibration and can analyze the single-channel as well as multi-channel images. Furthermore, the analyzing method is advantageous to the quantification of blood-hematocrit both in the equal and varying optical conditions. The rapid determination of blood hematocrits carries enormous information regarding physiological disorders, and the use of such reproducible, cost-effective, and standard techniques may effectively help with the diagnosis and prevention of a number of human diseases. PMID:28717569
Wavelength-Adaptive Dehazing Using Histogram Merging-Based Classification for UAV Images
Yoon, Inhye; Jeong, Seokhwa; Jeong, Jaeheon; Seo, Doochun; Paik, Joonki
2015-01-01
Since incoming light to an unmanned aerial vehicle (UAV) platform can be scattered by haze and dust in the atmosphere, the acquired image loses the original color and brightness of the subject. Enhancement of hazy images is an important task in improving the visibility of various UAV images. This paper presents a spatially-adaptive dehazing algorithm that merges color histograms with consideration of the wavelength-dependent atmospheric turbidity. Based on the wavelength-adaptive hazy image acquisition model, the proposed dehazing algorithm consists of three steps: (i) image segmentation based on geometric classes; (ii) generation of the context-adaptive transmission map; and (iii) intensity transformation for enhancing a hazy UAV image. The major contribution of the research is a novel hazy UAV image degradation model by considering the wavelength of light sources. In addition, the proposed transmission map provides a theoretical basis to differentiate visually important regions from others based on the turbidity and merged classification results. PMID:25808767
Segmentation by fusion of histogram-based k-means clusters in different color spaces.
Mignotte, Max
2008-05-01
This paper presents a new, simple, and efficient segmentation approach, based on a fusion procedure which aims at combining several segmentation maps associated to simpler partition models in order to finally get a more reliable and accurate segmentation result. The different label fields to be fused in our application are given by the same and simple (K-means based) clustering technique on an input image expressed in different color spaces. Our fusion strategy aims at combining these segmentation maps with a final clustering procedure using as input features, the local histogram of the class labels, previously estimated and associated to each site and for all these initial partitions. This fusion framework remains simple to implement, fast, general enough to be applied to various computer vision applications (e.g., motion detection and segmentation), and has been successfully applied on the Berkeley image database. The experiments herein reported in this paper illustrate the potential of this approach compared to the state-of-the-art segmentation methods recently proposed in the literature.
Genetics algorithm optimization of DWT-DCT based image Watermarking
NASA Astrophysics Data System (ADS)
Budiman, Gelar; Novamizanti, Ledya; Iwut, Iwan
2017-01-01
Data hiding in an image content is mandatory for setting the ownership of the image. Two dimensions discrete wavelet transform (DWT) and discrete cosine transform (DCT) are proposed as transform method in this paper. First, the host image in RGB color space is converted to selected color space. We also can select the layer where the watermark is embedded. Next, 2D-DWT transforms the selected layer obtaining 4 subband. We select only one subband. And then block-based 2D-DCT transforms the selected subband. Binary-based watermark is embedded on the AC coefficients of each block after zigzag movement and range based pixel selection. Delta parameter replacing pixels in each range represents embedded bit. +Delta represents bit “1” and -delta represents bit “0”. Several parameters to be optimized by Genetics Algorithm (GA) are selected color space, layer, selected subband of DWT decomposition, block size, embedding range, and delta. The result of simulation performs that GA is able to determine the exact parameters obtaining optimum imperceptibility and robustness, in any watermarked image condition, either it is not attacked or attacked. DWT process in DCT based image watermarking optimized by GA has improved the performance of image watermarking. By five attacks: JPEG 50%, resize 50%, histogram equalization, salt-pepper and additive noise with variance 0.01, robustness in the proposed method has reached perfect watermark quality with BER=0. And the watermarked image quality by PSNR parameter is also increased about 5 dB than the watermarked image quality from previous method.
A robust human face detection algorithm
NASA Astrophysics Data System (ADS)
Raviteja, Thaluru; Karanam, Srikrishna; Yeduguru, Dinesh Reddy V.
2012-01-01
Human face detection plays a vital role in many applications like video surveillance, managing a face image database, human computer interface among others. This paper proposes a robust algorithm for face detection in still color images that works well even in a crowded environment. The algorithm uses conjunction of skin color histogram, morphological processing and geometrical analysis for detecting human faces. To reinforce the accuracy of face detection, we further identify mouth and eye regions to establish the presence/absence of face in a particular region of interest.
Teare, Philip; Fishman, Michael; Benzaquen, Oshra; Toledano, Eyal; Elnekave, Eldad
2017-08-01
Breast cancer is the most prevalent malignancy in the US and the third highest cause of cancer-related mortality worldwide. Regular mammography screening has been attributed with doubling the rate of early cancer detection over the past three decades, yet estimates of mammographic accuracy in the hands of experienced radiologists remain suboptimal with sensitivity ranging from 62 to 87% and specificity from 75 to 91%. Advances in machine learning (ML) in recent years have demonstrated capabilities of image analysis which often surpass those of human observers. Here we present two novel techniques to address inherent challenges in the application of ML to the domain of mammography. We describe the use of genetic search of image enhancement methods, leading us to the use of a novel form of false color enhancement through contrast limited adaptive histogram equalization (CLAHE), as a method to optimize mammographic feature representation. We also utilize dual deep convolutional neural networks at different scales, for classification of full mammogram images and derivative patches combined with a random forest gating network as a novel architectural solution capable of discerning malignancy with a specificity of 0.91 and a specificity of 0.80. To our knowledge, this represents the first automatic stand-alone mammography malignancy detection algorithm with sensitivity and specificity performance similar to that of expert radiologists.
A psychophysical comparison of two methods for adaptive histogram equalization.
Zimmerman, J B; Cousins, S B; Hartzell, K M; Frisse, M E; Kahn, M G
1989-05-01
Adaptive histogram equalization (AHE) is a method for adaptive contrast enhancement of digital images. It is an automatic, reproducible method for the simultaneous viewing of contrast within a digital image with a large dynamic range. Recent experiments have shown that in specific cases, there is no significant difference in the ability of AHE and linear intensity windowing to display gray-scale contrast. More recently, a variant of AHE which limits the allowed contrast enhancement of the image has been proposed. This contrast-limited adaptive histogram equalization (CLAHE) produces images in which the noise content of an image is not excessively enhanced, but in which sufficient contrast is provided for the visualization of structures within the image. Images processed with CLAHE have a more natural appearance and facilitate the comparison of different areas of an image. However, the reduced contrast enhancement of CLAHE may hinder the ability of an observer to detect the presence of some significant gray-scale contrast. In this report, a psychophysical observer experiment was performed to determine if there is a significant difference in the ability of AHE and CLAHE to depict gray-scale contrast. Observers were presented with computed tomography (CT) images of the chest processed with AHE and CLAHE. Subtle artificial lesions were introduced into some images. The observers were asked to rate their confidence regarding the presence of the lesions; this rating-scale data was analyzed using receiver operating characteristic (ROC) curve techniques. These ROC curves were compared for significant differences in the observers' performances. In this report, no difference was found in the abilities of AHE and CLAHE to depict contrast information.
Underwater image enhancement based on the dark channel prior and attenuation compensation
NASA Astrophysics Data System (ADS)
Guo, Qingwen; Xue, Lulu; Tang, Ruichun; Guo, Lingrui
2017-10-01
Aimed at the two problems of underwater imaging, fog effect and color cast, an Improved Segmentation Dark Channel Prior (ISDCP) defogging method is proposed to solve the fog effects caused by physical properties of water. Due to mass refraction of light in the process of underwater imaging, fog effects would lead to image blurring. And color cast is closely related to different degree of attenuation while light with different wavelengths is traveling in water. The proposed method here integrates the ISDCP and quantitative histogram stretching techniques into the image enhancement procedure. Firstly, the threshold value is set during the refinement process of the transmission maps to identify the original mismatching, and to conduct the differentiated defogging process further. Secondly, a method of judging the propagating distance of light is adopted to get the attenuation degree of energy during the propagation underwater. Finally, the image histogram is stretched quantitatively in Red-Green-Blue channel respectively according to the degree of attenuation in each color channel. The proposed method ISDCP can reduce the computational complexity and improve the efficiency in terms of defogging effect to meet the real-time requirements. Qualitative and quantitative comparison for several different underwater scenes reveals that the proposed method can significantly improve the visibility compared with previous methods.
Ríos-Díaz, José; Martínez-Payá, Jacinto J; del Baño-Aledo, María Elena; de Groot-Ferrando, Ana; Botía-Castillo, Paloma; Fernández-Rodríguez, David
2015-10-01
The purpose of the work reported here was to describe the sonoelastographic appearance of the plantar fascia of healthy volunteers and patients with fasciitis. Twenty-three healthy subjects and 21 patients with plantar fasciitis were examined using B-mode and real-time sonoelastography (RTSR) scanning. B-Mode examination included fascia thickness and echotexture. Echogenicity and echovariation of the color histogram were analyzed. Fasciae were classified into type 1, blue (more elastic); type 2, blue/green (intermediate); or type 3, green (less elastic). RTSE revealed 72.7% of fasciae as type 2, with no significant association with fasciitis (χ(2) = 3.6, df = 2, p = 0.17). Quantitative analysis of the color histogram revealed a significantly greater intensity of green (mean = 77.8, 95% confidence interval [CI] = 71.9-83.6) and blue (mean = 74.2, 95% CI = 69.7-78.8) in healthy subjects. Echovariation of the color red was 33.4% higher in the fasciitis group than in the healthy group (95% CI = 16.7-50.1). Sonoelastography with quantitative analysis of echovariation can be a useful tool for evaluation of plantar fascia pathology. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Blind Channel Equalization with Colored Source Based on Constrained Optimization Methods
NASA Astrophysics Data System (ADS)
Wang, Yunhua; DeBrunner, Linda; DeBrunner, Victor; Zhou, Dayong
2008-12-01
Tsatsanis and Xu have applied the constrained minimum output variance (CMOV) principle to directly blind equalize a linear channel—a technique that has proven effective with white inputs. It is generally assumed in the literature that their CMOV method can also effectively equalize a linear channel with a colored source. In this paper, we prove that colored inputs will cause the equalizer to incorrectly converge due to inadequate constraints. We also introduce a new blind channel equalizer algorithm that is based on the CMOV principle, but with a different constraint that will correctly handle colored sources. Our proposed algorithm works for channels with either white or colored inputs and performs equivalently to the trained minimum mean-square error (MMSE) equalizer under high SNR. Thus, our proposed algorithm may be regarded as an extension of the CMOV algorithm proposed by Tsatsanis and Xu. We also introduce several methods to improve the performance of our introduced algorithm in the low SNR condition. Simulation results show the superior performance of our proposed methods.
NASA Astrophysics Data System (ADS)
Ma, Lei; Wang, Yizhong; Xu, Qingyang; Huang, Huafang; Zhang, Rui; Chen, Ning
2009-11-01
The main production method of branched chain amino acid (BCAA) is microbial fermentation. In this paper, to monitor and to control the fermentation process of BCAA, especially its logarithmic phase, parameters such as the color of fermentation broth, culture temperature, pH, revolution, dissolved oxygen, airflow rate, pressure, optical density, and residual glucose, are measured and/or controlled and/or adjusted. The color of fermentation broth is measured using the HIS color model and a BP neural network. The network's input is the histograms of hue H and saturation S, and output is the color description. Fermentation process parameters are adjusted using fuzzy reasoning, which is performed by inference rules. According to the practical situation of BCAA fermentation process, all parameters are divided into four grades, and different fuzzy rules are established.
NASA Astrophysics Data System (ADS)
Soetedjo, Aryuanto; Yamada, Koichi
This paper describes a new color segmentation based on a normalized RGB chromaticity diagram for face detection. Face skin is extracted from color images using a coarse skin region with fixed boundaries followed by a fine skin region with variable boundaries. Two newly developed histograms that have prominent peaks of skin color and non-skin colors are employed to adjust the boundaries of the skin region. The proposed approach does not need a skin color model, which depends on a specific camera parameter and is usually limited to a particular environment condition, and no sample images are required. The experimental results using color face images of various races under varying lighting conditions and complex backgrounds, obtained from four different resources on the Internet, show a high detection rate of 87%. The results of the detection rate and computation time are comparable to the well known real-time face detection method proposed by Viola-Jones [11], [12].
NASA Astrophysics Data System (ADS)
Pal, S. K.; Majumdar, T. J.; Bhattacharya, Amit K.
Fusion of optical and synthetic aperture radar data has been attempted in the present study for mapping of various lithologic units over a part of the Singhbhum Shear Zone (SSZ) and its surroundings. ERS-2 SAR data over the study area has been enhanced using Fast Fourier Transformation (FFT) based filtering approach, and also using Frost filtering technique. Both the enhanced SAR imagery have been then separately fused with histogram equalized IRS-1C LISS III image using Principal Component Analysis (PCA) technique. Later, Feature-oriented Principal Components Selection (FPCS) technique has been applied to generate False Color Composite (FCC) images, from which corresponding geological maps have been prepared. Finally, GIS techniques have been successfully used for change detection analysis in the lithological interpretation between the published geological map and the fusion based geological maps. In general, there is good agreement between these maps over a large portion of the study area. Based on the change detection studies, few areas could be identified which need attention for further detailed ground-based geological studies.
Smartphone-based colorimetric analysis for detection of saliva alcohol concentration.
Jung, Youngkee; Kim, Jinhee; Awofeso, Olumide; Kim, Huisung; Regnier, Fred; Bae, Euiwon
2015-11-01
A simple device and associated analytical methods are reported. We provide objective and accurate determination of saliva alcohol concentrations using smartphone-based colorimetric imaging. The device utilizes any smartphone with a miniature attachment that positions the sample and provides constant illumination for sample imaging. Analyses of histograms based on channel imaging of red-green-blue (RGB) and hue-saturation-value (HSV) color space provide unambiguous determination of blood alcohol concentration from color changes on sample pads. A smartphone-based sample analysis by colorimetry was developed and tested with blind samples that matched with the training sets. This technology can be adapted to any smartphone and used to conduct color change assays.
Querying Patterns in High-Dimensional Heterogenous Datasets
ERIC Educational Resources Information Center
Singh, Vishwakarma
2012-01-01
The recent technological advancements have led to the availability of a plethora of heterogenous datasets, e.g., images tagged with geo-location and descriptive keywords. An object in these datasets is described by a set of high-dimensional feature vectors. For example, a keyword-tagged image is represented by a color-histogram and a…
Color image enhancement based on particle swarm optimization with Gaussian mixture
NASA Astrophysics Data System (ADS)
Kattakkalil Subhashdas, Shibudas; Choi, Bong-Seok; Yoo, Ji-Hoon; Ha, Yeong-Ho
2015-01-01
This paper proposes a Gaussian mixture based image enhancement method which uses particle swarm optimization (PSO) to have an edge over other contemporary methods. The proposed method uses the guassian mixture model to model the lightness histogram of the input image in CIEL*a*b* space. The intersection points of the guassian components in the model are used to partition the lightness histogram. . The enhanced lightness image is generated by transforming the lightness value in each interval to appropriate output interval according to the transformation function that depends on PSO optimized parameters, weight and standard deviation of Gaussian component and cumulative distribution of the input histogram interval. In addition, chroma compensation is applied to the resulting image to reduce washout appearance. Experimental results show that the proposed method produces a better enhanced image compared to the traditional methods. Moreover, the enhanced image is free from several side effects such as washout appearance, information loss and gradation artifacts.
Slope histogram distribution-based parametrisation of Martian geomorphic features
NASA Astrophysics Data System (ADS)
Balint, Zita; Székely, Balázs; Kovács, Gábor
2014-05-01
The application of geomorphometric methods on the large Martian digital topographic datasets paves the way to analyse the Martian areomorphic processes in more detail. One of the numerous methods is the analysis is to analyse local slope distributions. To this implementation a visualization program code was developed that allows to calculate the local slope histograms and to compare them based on Kolmogorov distance criterion. As input data we used the digital elevation models (DTMs) derived from HRSC high-resolution stereo camera image from various Martian regions. The Kolmogorov-criterion based discrimination produces classes of slope histograms that displayed using coloration obtaining an image map. In this image map the distribution can be visualized by their different colours representing the various classes. Our goal is to create a local slope histogram based classification for large Martian areas in order to obtain information about general morphological characteristics of the region. This is a contribution of the TMIS.ascrea project, financed by the Austrian Research Promotion Agency (FFG). The present research is partly realized in the frames of TÁMOP 4.2.4.A/2-11-1-2012-0001 high priority "National Excellence Program - Elaborating and Operating an Inland Student and Researcher Personal Support System convergence program" project's scholarship support, using Hungarian state and European Union funds and cofinances from the European Social Fund.
Wan Ismail, W Z; Sim, K S; Tso, C P; Ting, H Y
2011-01-01
To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts. Copyright © 2011 Wiley Periodicals, Inc.
A method for normalizing pathology images to improve feature extraction for quantitative pathology.
Tam, Allison; Barker, Jocelyn; Rubin, Daniel
2016-01-01
With the advent of digital slide scanning technologies and the potential proliferation of large repositories of digital pathology images, many research studies can leverage these data for biomedical discovery and to develop clinical applications. However, quantitative analysis of digital pathology images is impeded by batch effects generated by varied staining protocols and staining conditions of pathological slides. To overcome this problem, this paper proposes a novel, fully automated stain normalization method to reduce batch effects and thus aid research in digital pathology applications. Their method, intensity centering and histogram equalization (ICHE), normalizes a diverse set of pathology images by first scaling the centroids of the intensity histograms to a common point and then applying a modified version of contrast-limited adaptive histogram equalization. Normalization was performed on two datasets of digitized hematoxylin and eosin (H&E) slides of different tissue slices from the same lung tumor, and one immunohistochemistry dataset of digitized slides created by restaining one of the H&E datasets. The ICHE method was evaluated based on image intensity values, quantitative features, and the effect on downstream applications, such as a computer aided diagnosis. For comparison, three methods from the literature were reimplemented and evaluated using the same criteria. The authors found that ICHE not only improved performance compared with un-normalized images, but in most cases showed improvement compared with previous methods for correcting batch effects in the literature. ICHE may be a useful preprocessing step a digital pathology image processing pipeline.
New color-based tracking algorithm for joints of the upper extremities
NASA Astrophysics Data System (ADS)
Wu, Xiangping; Chow, Daniel H. K.; Zheng, Xiaoxiang
2007-11-01
To track the joints of the upper limb of stroke sufferers for rehabilitation assessment, a new tracking algorithm which utilizes a developed color-based particle filter and a novel strategy for handling occlusions is proposed in this paper. Objects are represented by their color histogram models and particle filter is introduced to track the objects within a probability framework. Kalman filter, as a local optimizer, is integrated into the sampling stage of the particle filter that steers samples to a region with high likelihood and therefore fewer samples is required. A color clustering method and anatomic constraints are used in dealing with occlusion problem. Compared with the general basic particle filtering method, the experimental results show that the new algorithm has reduced the number of samples and hence the computational consumption, and has achieved better abilities of handling complete occlusion over a few frames.
Temporal analysis of regional wall motion from cine cardiac MRI
NASA Astrophysics Data System (ADS)
Ratib, Osman M.; Didier, Dominique; Chretien, Anne; Rosset, Antoine; Magnin, Isabelle E.; Ligier, Yves
1996-04-01
The purpose of this work is to develop and to evaluate an automatic analysis technique for quantitative assessment of cardiac function from cine MRI and to identify regional alterations in synchronicity based on Fourier analysis of ventricular wall motion (WM). A temporal analysis technique of left ventricular wall displacement was developed for quantitative analysis of temporal delays in wall motion and applied to gated cine 'dark blood' cardiac MRI. This imaging technique allows the user to saturate the blood both above and below the imaging slice simultaneously by using a specially designed rf presaturation pulse. The acquisition parameters are: TR equals 25 - 60 msec, TE equals 5 - 7 msec, 0 equals 25 degrees, slice thickness equals 10 mm, 16 to 32 frames/cycle. Automatic edge detection was used to outline the ventricular cavities on all frames of a cardiac cycle. Two different segmentation techniques were applied to all studies and lead to similar results. Further improvement in edge detection accuracy was achieved by temporal interpolation of individual contours on each image of the cardiac cycle. Radial analysis of the ventricular wall motion was then performed along 64 radii drawn from the center of the ventricular cavity. The first harmonic of the Fourier transform of each radial motion curve is calculated. The phase of the fundamental Fourier component is used as an index of synchrony (delay) of regional wall motion. Results are displayed in color-coded maps of regional alterations in the amplitude and synchrony of wall motion. The temporal delays measured from individual segments are evaluated through a histogram of phase distribution, where the width of the main peak is used as an index of overall synchrony of wall motion. The variability of this technique was validated in 10 normal volunteers and was used to identify regions with asynchronous WM in 15 patients with documented CAD. The standard deviation (SD) of phase distribution measured in short axis views was calculated and used to identify regions with asynchronous wall motion in patients with coronary artery disease. Results suggest that this technique is more sensitive than global functional parameters such as ejection fraction for the detection of ventricular dysfunction. Color coded parametric display offers a more convenient way for the identification and localization of regional wall motion asynchrony. Data obtained from endocardial wall motion analysis were not significantly different from wall thickening measurements. The innovative approach of evaluating the temporal behavior of regional wall motion anomalies is expected to provide clinically relevant data about subtle alteration that cannot be detected through simple analysis of the extent (amplitude) of wall motion or myocardial thickening. Temporal analysis of regional WM abnormality from cine MRI offers an innovative and promising means for objective quantitative evaluation of subtle regional abnormalities. Color coded parametric maps allowed a better identification and localization of regional WM asynchrony.
Contact-free palm-vein recognition based on local invariant features.
Kang, Wenxiong; Liu, Yang; Wu, Qiuxia; Yue, Xishun
2014-01-01
Contact-free palm-vein recognition is one of the most challenging and promising areas in hand biometrics. In view of the existing problems in contact-free palm-vein imaging, including projection transformation, uneven illumination and difficulty in extracting exact ROIs, this paper presents a novel recognition approach for contact-free palm-vein recognition that performs feature extraction and matching on all vein textures distributed over the palm surface, including finger veins and palm veins, to minimize the loss of feature information. First, a hierarchical enhancement algorithm, which combines a DOG filter and histogram equalization, is adopted to alleviate uneven illumination and to highlight vein textures. Second, RootSIFT, a more stable local invariant feature extraction method in comparison to SIFT, is adopted to overcome the projection transformation in contact-free mode. Subsequently, a novel hierarchical mismatching removal algorithm based on neighborhood searching and LBP histograms is adopted to improve the accuracy of feature matching. Finally, we rigorously evaluated the proposed approach using two different databases and obtained 0.996% and 3.112% Equal Error Rates (EERs), respectively, which demonstrate the effectiveness of the proposed approach.
Bas-relief generation using adaptive histogram equalization.
Sun, Xianfang; Rosin, Paul L; Martin, Ralph R; Langbein, Frank C
2009-01-01
An algorithm is presented to automatically generate bas-reliefs based on adaptive histogram equalization (AHE), starting from an input height field. A mesh model may alternatively be provided, in which case a height field is first created via orthogonal or perspective projection. The height field is regularly gridded and treated as an image, enabling a modified AHE method to be used to generate a bas-relief with a user-chosen height range. We modify the original image-contrast-enhancement AHE method to use gradient weights also to enhance the shape features of the bas-relief. To effectively compress the height field, we limit the height-dependent scaling factors used to compute relative height variations in the output from height variations in the input; this prevents any height differences from having too great effect. Results of AHE over different neighborhood sizes are averaged to preserve information at different scales in the resulting bas-relief. Compared to previous approaches, the proposed algorithm is simple and yet largely preserves original shape features. Experiments show that our results are, in general, comparable to and in some cases better than the best previously published methods.
A Framework for Reproducible Latent Fingerprint Enhancements.
Carasso, Alfred S
2014-01-01
Photoshop processing of latent fingerprints is the preferred methodology among law enforcement forensic experts, but that appproach is not fully reproducible and may lead to questionable enhancements. Alternative, independent, fully reproducible enhancements, using IDL Histogram Equalization and IDL Adaptive Histogram Equalization, can produce better-defined ridge structures, along with considerable background information. Applying a systematic slow motion smoothing procedure to such IDL enhancements, based on the rapid FFT solution of a Lévy stable fractional diffusion equation, can attenuate background detail while preserving ridge information. The resulting smoothed latent print enhancements are comparable to, but distinct from, forensic Photoshop images suitable for input into automated fingerprint identification systems, (AFIS). In addition, this progressive smoothing procedure can be reexamined by displaying the suite of progressively smoother IDL images. That suite can be stored, providing an audit trail that allows monitoring for possible loss of useful information, in transit to the user-selected optimal image. Such independent and fully reproducible enhancements provide a valuable frame of reference that may be helpful in informing, complementing, and possibly validating the forensic Photoshop methodology.
Contact-Free Palm-Vein Recognition Based on Local Invariant Features
Kang, Wenxiong; Liu, Yang; Wu, Qiuxia; Yue, Xishun
2014-01-01
Contact-free palm-vein recognition is one of the most challenging and promising areas in hand biometrics. In view of the existing problems in contact-free palm-vein imaging, including projection transformation, uneven illumination and difficulty in extracting exact ROIs, this paper presents a novel recognition approach for contact-free palm-vein recognition that performs feature extraction and matching on all vein textures distributed over the palm surface, including finger veins and palm veins, to minimize the loss of feature information. First, a hierarchical enhancement algorithm, which combines a DOG filter and histogram equalization, is adopted to alleviate uneven illumination and to highlight vein textures. Second, RootSIFT, a more stable local invariant feature extraction method in comparison to SIFT, is adopted to overcome the projection transformation in contact-free mode. Subsequently, a novel hierarchical mismatching removal algorithm based on neighborhood searching and LBP histograms is adopted to improve the accuracy of feature matching. Finally, we rigorously evaluated the proposed approach using two different databases and obtained 0.996% and 3.112% Equal Error Rates (EERs), respectively, which demonstrate the effectiveness of the proposed approach. PMID:24866176
A Framework for Reproducible Latent Fingerprint Enhancements
Carasso, Alfred S.
2014-01-01
Photoshop processing1 of latent fingerprints is the preferred methodology among law enforcement forensic experts, but that appproach is not fully reproducible and may lead to questionable enhancements. Alternative, independent, fully reproducible enhancements, using IDL Histogram Equalization and IDL Adaptive Histogram Equalization, can produce better-defined ridge structures, along with considerable background information. Applying a systematic slow motion smoothing procedure to such IDL enhancements, based on the rapid FFT solution of a Lévy stable fractional diffusion equation, can attenuate background detail while preserving ridge information. The resulting smoothed latent print enhancements are comparable to, but distinct from, forensic Photoshop images suitable for input into automated fingerprint identification systems, (AFIS). In addition, this progressive smoothing procedure can be reexamined by displaying the suite of progressively smoother IDL images. That suite can be stored, providing an audit trail that allows monitoring for possible loss of useful information, in transit to the user-selected optimal image. Such independent and fully reproducible enhancements provide a valuable frame of reference that may be helpful in informing, complementing, and possibly validating the forensic Photoshop methodology. PMID:26601028
Energy conservation using face detection
NASA Astrophysics Data System (ADS)
Deotale, Nilesh T.; Kalbande, Dhananjay R.; Mishra, Akassh A.
2011-10-01
Computerized Face Detection, is concerned with the difficult task of converting a video signal of a person to written text. It has several applications like face recognition, simultaneous multiple face processing, biometrics, security, video surveillance, human computer interface, image database management, digital cameras use face detection for autofocus, selecting regions of interest in photo slideshows that use a pan-and-scale and The Present Paper deals with energy conservation using face detection. Automating the process to a computer requires the use of various image processing techniques. There are various methods that can be used for Face Detection such as Contour tracking methods, Template matching, Controlled background, Model based, Motion based and color based. Basically, the video of the subject are converted into images are further selected manually for processing. However, several factors like poor illumination, movement of face, viewpoint-dependent Physical appearance, Acquisition geometry, Imaging conditions, Compression artifacts makes Face detection difficult. This paper reports an algorithm for conservation of energy using face detection for various devices. The present paper suggests Energy Conservation can be done by Detecting the Face and reducing the brightness of complete image and then adjusting the brightness of the particular area of an image where the face is located using histogram equalization.
Gao, Wei-Wei; Shen, Jian-Xin; Wang, Yu-Liang; Liang, Chun; Zuo, Jing
2013-02-01
In order to automatically detect hemorrhages in fundus images, and develop an automated diabetic retinopathy screening system, a novel algorithm named locally adaptive region growing based on multi-template matching was established and studied. Firstly, spectral signature of major anatomical structures in fundus was studied, so that the right channel among RGB channels could be selected for different segmentation objects. Secondly, the fundus image was preprocessed by means of HSV brightness correction and contrast limited adaptive histogram equalization (CLAHE). Then, seeds of region growing were founded out by removing optic disc and vessel from the resulting image of normalized cross-correlation (NCC) template matching on the previous preprocessed image with several templates. Finally, locally adaptive region growing segmentation was used to find out the exact contours of hemorrhages, and the automated detection of the lesions was accomplished. The approach was tested on 90 different resolution fundus images with variable color, brightness and quality. Results suggest that the approach could fast and effectively detect hemorrhages in fundus images, and it is stable and robust. As a result, the approach can meet the clinical demands.
ERIC Educational Resources Information Center
Conway, Lorraine
This packet of student materials contains a variety of worksheet activities dealing with science graphs and science word games. These reproducible materials deal with: (1) bar graphs; (2) line graphs; (3) circle graphs; (4) pictographs; (5) histograms; (6) artgraphs; (7) designing your own graphs; (8) medical prefixes; (9) color prefixes; (10)…
Color transfer between high-dynamic-range images
NASA Astrophysics Data System (ADS)
Hristova, Hristina; Cozot, Rémi; Le Meur, Olivier; Bouatouch, Kadi
2015-09-01
Color transfer methods alter the look of a source image with regards to a reference image. So far, the proposed color transfer methods have been limited to low-dynamic-range (LDR) images. Unlike LDR images, which are display-dependent, high-dynamic-range (HDR) images contain real physical values of the world luminance and are able to capture high luminance variations and finest details of real world scenes. Therefore, there exists a strong discrepancy between the two types of images. In this paper, we bridge the gap between the color transfer domain and the HDR imagery by introducing HDR extensions to LDR color transfer methods. We tackle the main issues of applying a color transfer between two HDR images. First, to address the nature of light and color distributions in the context of HDR imagery, we carry out modifications of traditional color spaces. Furthermore, we ensure high precision in the quantization of the dynamic range for histogram computations. As image clustering (based on light and colors) proved to be an important aspect of color transfer, we analyze it and adapt it to the HDR domain. Our framework has been applied to several state-of-the-art color transfer methods. Qualitative experiments have shown that results obtained with the proposed adaptation approach exhibit less artifacts and are visually more pleasing than results obtained when straightforwardly applying existing color transfer methods to HDR images.
Blind identification of image manipulation type using mixed statistical moments
NASA Astrophysics Data System (ADS)
Jeong, Bo Gyu; Moon, Yong Ho; Eom, Il Kyu
2015-01-01
We present a blind identification of image manipulation types such as blurring, scaling, sharpening, and histogram equalization. Motivated by the fact that image manipulations can change the frequency characteristics of an image, we introduce three types of feature vectors composed of statistical moments. The proposed statistical moments are generated from separated wavelet histograms, the characteristic functions of the wavelet variance, and the characteristic functions of the spatial image. Our method can solve the n-class classification problem. Through experimental simulations, we demonstrate that our proposed method can achieve high performance in manipulation type detection. The average rate of the correctly identified manipulation types is as high as 99.22%, using 10,800 test images and six manipulation types including the authentic image.
Comparison of algorithms for automatic border detection of melanoma in dermoscopy images
NASA Astrophysics Data System (ADS)
Srinivasa Raghavan, Sowmya; Kaur, Ravneet; LeAnder, Robert
2016-09-01
Melanoma is one of the most rapidly accelerating cancers in the world [1]. Early diagnosis is critical to an effective cure. We propose a new algorithm for more accurately detecting melanoma borders in dermoscopy images. Proper border detection requires eliminating occlusions like hair and bubbles by processing the original image. The preprocessing step involves transforming the RGB image to the CIE L*u*v* color space, in order to decouple brightness from color information, then increasing contrast, using contrast-limited adaptive histogram equalization (CLAHE), followed by artifacts removal using a Gaussian filter. After preprocessing, the Chen-Vese technique segments the preprocessed images to create a lesion mask which undergoes a morphological closing operation. Next, the largest central blob in the lesion is detected, after which, the blob is dilated to generate an image output mask. Finally, the automatically-generated mask is compared to the manual mask by calculating the XOR error [3]. Our border detection algorithm was developed using training and test sets of 30 and 20 images, respectively. This detection method was compared to the SRM method [4] by calculating the average XOR error for each of the two algorithms. Average error for test images was 0.10, using the new algorithm, and 0.99, using SRM method. In comparing the average error values produced by the two algorithms, it is evident that the average XOR error for our technique is lower than the SRM method, thereby implying that the new algorithm detects borders of melanomas more accurately than the SRM algorithm.
A method for normalizing pathology images to improve feature extraction for quantitative pathology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tam, Allison; Barker, Jocelyn; Rubin, Daniel
Purpose: With the advent of digital slide scanning technologies and the potential proliferation of large repositories of digital pathology images, many research studies can leverage these data for biomedical discovery and to develop clinical applications. However, quantitative analysis of digital pathology images is impeded by batch effects generated by varied staining protocols and staining conditions of pathological slides. Methods: To overcome this problem, this paper proposes a novel, fully automated stain normalization method to reduce batch effects and thus aid research in digital pathology applications. Their method, intensity centering and histogram equalization (ICHE), normalizes a diverse set of pathology imagesmore » by first scaling the centroids of the intensity histograms to a common point and then applying a modified version of contrast-limited adaptive histogram equalization. Normalization was performed on two datasets of digitized hematoxylin and eosin (H&E) slides of different tissue slices from the same lung tumor, and one immunohistochemistry dataset of digitized slides created by restaining one of the H&E datasets. Results: The ICHE method was evaluated based on image intensity values, quantitative features, and the effect on downstream applications, such as a computer aided diagnosis. For comparison, three methods from the literature were reimplemented and evaluated using the same criteria. The authors found that ICHE not only improved performance compared with un-normalized images, but in most cases showed improvement compared with previous methods for correcting batch effects in the literature. Conclusions: ICHE may be a useful preprocessing step a digital pathology image processing pipeline.« less
Object tracking algorithm based on the color histogram probability distribution
NASA Astrophysics Data System (ADS)
Li, Ning; Lu, Tongwei; Zhang, Yanduo
2018-04-01
In order to resolve tracking failure resulted from target's being occlusion and follower jamming caused by objects similar to target in the background, reduce the influence of light intensity. This paper change HSV and YCbCr color channel correction the update center of the target, continuously updated image threshold self-adaptive target detection effect, Clustering the initial obstacles is roughly range, shorten the threshold range, maximum to detect the target. In order to improve the accuracy of detector, this paper increased the Kalman filter to estimate the target state area. The direction predictor based on the Markov model is added to realize the target state estimation under the condition of background color interference and enhance the ability of the detector to identify similar objects. The experimental results show that the improved algorithm more accurate and faster speed of processing.
Using an image-extended relational database to support content-based image retrieval in a PACS.
Traina, Caetano; Traina, Agma J M; Araújo, Myrian R B; Bueno, Josiane M; Chino, Fabio J T; Razente, Humberto; Azevedo-Marques, Paulo M
2005-12-01
This paper presents a new Picture Archiving and Communication System (PACS), called cbPACS, which has content-based image retrieval capabilities. The cbPACS answers range and k-nearest- neighbor similarity queries, employing a relational database manager extended to support images. The images are compared through their features, which are extracted by an image-processing module and stored in the extended relational database. The database extensions were developed aiming at efficiently answering similarity queries by taking advantage of specialized indexing methods. The main concept supporting the extensions is the definition, inside the relational manager, of distance functions based on features extracted from the images. An extension to the SQL language enables the construction of an interpreter that intercepts the extended commands and translates them to standard SQL, allowing any relational database server to be used. By now, the system implemented works on features based on color distribution of the images through normalized histograms as well as metric histograms. Metric histograms are invariant regarding scale, translation and rotation of images and also to brightness transformations. The cbPACS is prepared to integrate new image features, based on texture and shape of the main objects in the image.
Nam, Hyunmoon; Song, Kyungjun; Ha, Dogyeong; Kim, Taesung
2016-08-04
Photonic crystal structures can be created to manipulate electromagnetic waves so that many studies have focused on designing photonic band-gaps for various applications including sensors, LEDs, lasers, and optical fibers. Here, we show that mono-layered, self-assembled photonic crystals (SAPCs) fabricated by using an inkjet printer exhibit extremely weak structural colors and multiple colorful holograms so that they can be utilized in anti-counterfeit measures. We demonstrate that SAPC patterns on a white background are covert under daylight, such that pattern detection can be avoided, but they become overt in a simple manner under strong illumination with smartphone flash light and/or on a black background, showing remarkable potential for anti-counterfeit techniques. Besides, we demonstrate that SAPCs yield different RGB histograms that depend on viewing angles and pattern densities, thus enhancing their cryptographic capabilities. Hence, the structural colorations designed by inkjet printers would not only produce optical holograms for the simple authentication of many items and products but also enable a high-secure anti-counterfeit technique.
Computer-assisted bladder cancer grading: α-shapes for color space decomposition
NASA Astrophysics Data System (ADS)
Niazi, M. K. K.; Parwani, Anil V.; Gurcan, Metin N.
2016-03-01
According to American Cancer Society, around 74,000 new cases of bladder cancer are expected during 2015 in the US. To facilitate the bladder cancer diagnosis, we present an automatic method to differentiate carcinoma in situ (CIS) from normal/reactive cases that will work on hematoxylin and eosin (H and E) stained images of bladder. The method automatically determines the color deconvolution matrix by utilizing the α-shapes of the color distribution in the RGB color space. Then, variations in the boundary of transitional epithelium are quantified, and sizes of nuclei in the transitional epithelium are measured. We also approximate the "nuclear to cytoplasmic ratio" by computing the ratio of the average shortest distance between transitional epithelium and nuclei to average nuclei size. Nuclei homogeneity is measured by computing the kurtosis of the nuclei size histogram. The results show that 30 out of 34 (88.2%) images were correctly classified by the proposed method, indicating that these novel features are viable markers to differentiate CIS from normal/reactive bladder.
NASA Astrophysics Data System (ADS)
Nam, Hyunmoon; Song, Kyungjun; Ha, Dogyeong; Kim, Taesung
2016-08-01
Photonic crystal structures can be created to manipulate electromagnetic waves so that many studies have focused on designing photonic band-gaps for various applications including sensors, LEDs, lasers, and optical fibers. Here, we show that mono-layered, self-assembled photonic crystals (SAPCs) fabricated by using an inkjet printer exhibit extremely weak structural colors and multiple colorful holograms so that they can be utilized in anti-counterfeit measures. We demonstrate that SAPC patterns on a white background are covert under daylight, such that pattern detection can be avoided, but they become overt in a simple manner under strong illumination with smartphone flash light and/or on a black background, showing remarkable potential for anti-counterfeit techniques. Besides, we demonstrate that SAPCs yield different RGB histograms that depend on viewing angles and pattern densities, thus enhancing their cryptographic capabilities. Hence, the structural colorations designed by inkjet printers would not only produce optical holograms for the simple authentication of many items and products but also enable a high-secure anti-counterfeit technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham, John Bishoy Sam; Pacheco, Jose L.; Aguirre, Brandon Adrian
2016-08-09
We demonstrate low energy single ion detection using a co-planar detector fabricated on a diamond substrate and characterized by ion beam induced charge collection. Histograms are taken with low fluence ion pulses illustrating quantized ion detection down to a single ion with a signal-to-noise ratio of approximately 10. We anticipate that this detection technique can serve as a basis to optimize the yield of single color centers in diamond. In conclusion, the ability to count ions into a diamond substrate is expected to reduce the uncertainty in the yield of color center formation by removing Poisson statistics from the implantationmore » process.« less
Pei Li; Jing He; A. Lynn Abbott; Daniel L. Schmoldt
1996-01-01
This paper analyses computed tomography (CT) images of hardwood logs, with the goal of locating internal defects. The ability to detect and identify defects automatically is a critical component of efficiency improvements for future sawmills and veneer mills. This paper describes an approach in which 1) histogram equalization is used during preprocessing to normalize...
Is there a preference for linearity when viewing natural images?
NASA Astrophysics Data System (ADS)
Kane, David; Bertamío, Marcelo
2015-01-01
The system gamma of the imaging pipeline, defined as the product of the encoding and decoding gammas, is typically greater than one and is stronger for images viewed with a dark background (e.g. cinema) than those viewed in lighter conditions (e.g. office displays).1-3 However, for high dynamic range (HDR) images reproduced on a low dynamic range (LDR) monitor, subjects often prefer a system gamma of less than one,4 presumably reflecting the greater need for histogram equalization in HDR images. In this study we ask subjects to rate the perceived quality of images presented on a LDR monitor using various levels of system gamma. We reveal that the optimal system gamma is below one for images with a HDR and approaches or exceeds one for images with a LDR. Additionally, the highest quality scores occur for images where a system gamma of one is optimal, suggesting a preference for linearity (where possible). We find that subjective image quality scores can be predicted by computing the degree of histogram equalization of the lightness distribution. Accordingly, an optimal, image dependent system gamma can be computed that maximizes perceived image quality.
Detection and tracking of gas plumes in LWIR hyperspectral video sequence data
NASA Astrophysics Data System (ADS)
Gerhart, Torin; Sunu, Justin; Lieu, Lauren; Merkurjev, Ekaterina; Chang, Jen-Mei; Gilles, Jérôme; Bertozzi, Andrea L.
2013-05-01
Automated detection of chemical plumes presents a segmentation challenge. The segmentation problem for gas plumes is difficult due to the diffusive nature of the cloud. The advantage of considering hyperspectral images in the gas plume detection problem over the conventional RGB imagery is the presence of non-visual data, allowing for a richer representation of information. In this paper we present an effective method of visualizing hyperspectral video sequences containing chemical plumes and investigate the effectiveness of segmentation techniques on these post-processed videos. Our approach uses a combination of dimension reduction and histogram equalization to prepare the hyperspectral videos for segmentation. First, Principal Components Analysis (PCA) is used to reduce the dimension of the entire video sequence. This is done by projecting each pixel onto the first few Principal Components resulting in a type of spectral filter. Next, a Midway method for histogram equalization is used. These methods redistribute the intensity values in order to reduce icker between frames. This properly prepares these high-dimensional video sequences for more traditional segmentation techniques. We compare the ability of various clustering techniques to properly segment the chemical plume. These include K-means, spectral clustering, and the Ginzburg-Landau functional.
A visual tracking method based on deep learning without online model updating
NASA Astrophysics Data System (ADS)
Tang, Cong; Wang, Yicheng; Feng, Yunsong; Zheng, Chao; Jin, Wei
2018-02-01
The paper proposes a visual tracking method based on deep learning without online model updating. In consideration of the advantages of deep learning in feature representation, deep model SSD (Single Shot Multibox Detector) is used as the object extractor in the tracking model. Simultaneously, the color histogram feature and HOG (Histogram of Oriented Gradient) feature are combined to select the tracking object. In the process of tracking, multi-scale object searching map is built to improve the detection performance of deep detection model and the tracking efficiency. In the experiment of eight respective tracking video sequences in the baseline dataset, compared with six state-of-the-art methods, the method in the paper has better robustness in the tracking challenging factors, such as deformation, scale variation, rotation variation, illumination variation, and background clutters, moreover, its general performance is better than other six tracking methods.
Quantification of oxidation on the surface of a polymer through photography
NASA Astrophysics Data System (ADS)
Yáñez M., J.; Estrada M., A.
2009-09-01
Oxidation in polymeric materials and special polyurethane is manifested by a yellow color, highly visible in white soles for footwear, besides presenting changes in its properties. Its importance varies according to the application of the material for which it was created. The most common way to detect this process is through a visual color change on the surface. In the present proposal we present a technique using digital photography for quantifying the color change in the polymer. The analysis of the photography is realized by means of projective geometry, since, relates the plane of the object and the one of the image of the object. This allows determining the area of the studied object, and by means of a histogram, which is determined each time for to record the progress of oxidation on the surface of the material. We present results of visual analysis and its behavior through a mathematical model.
Visibility enhancement of color images using Type-II fuzzy membership function
NASA Astrophysics Data System (ADS)
Singh, Harmandeep; Khehra, Baljit Singh
2018-04-01
Images taken in poor environmental conditions decrease the visibility and hidden information of digital images. Therefore, image enhancement techniques are necessary for improving the significant details of these images. An extensive review has shown that histogram-based enhancement techniques greatly suffer from over/under enhancement issues. Fuzzy-based enhancement techniques suffer from over/under saturated pixels problems. In this paper, a novel Type-II fuzzy-based image enhancement technique has been proposed for improving the visibility of images. The Type-II fuzzy logic can automatically extract the local atmospheric light and roughly eliminate the atmospheric veil in local detail enhancement. The proposed technique has been evaluated on 10 well-known weather degraded color images and is also compared with four well-known existing image enhancement techniques. The experimental results reveal that the proposed technique outperforms others regarding visible edge ratio, color gradients and number of saturated pixels.
Guided color consistency optimization for image mosaicking
NASA Astrophysics Data System (ADS)
Xie, Renping; Xia, Menghan; Yao, Jian; Li, Li
2018-01-01
This paper studies the problem of color consistency correction for sequential images with diverse color characteristics. Existing algorithms try to adjust all images to minimize color differences among images under a unified energy framework, however, the results are prone to presenting a consistent but unnatural appearance when the color difference between images is large and diverse. In our approach, this problem is addressed effectively by providing a guided initial solution for the global consistency optimization, which avoids converging to a meaningless integrated solution. First of all, to obtain the reliable intensity correspondences in overlapping regions between image pairs, we creatively propose the histogram extreme point matching algorithm which is robust to image geometrical misalignment to some extents. In the absence of the extra reference information, the guided initial solution is learned from the major tone of the original images by searching some image subset as the reference, whose color characteristics will be transferred to the others via the paths of graph analysis. Thus, the final results via global adjustment will take on a consistent color similar to the appearance of the reference image subset. Several groups of convincing experiments on both the synthetic dataset and the challenging real ones sufficiently demonstrate that the proposed approach can achieve as good or even better results compared with the state-of-the-art approaches.
Robust skin color-based moving object detection for video surveillance
NASA Astrophysics Data System (ADS)
Kaliraj, Kalirajan; Manimaran, Sudha
2016-07-01
Robust skin color-based moving object detection for video surveillance is proposed. The objective of the proposed algorithm is to detect and track the target under complex situations. The proposed framework comprises four stages, which include preprocessing, skin color-based feature detection, feature classification, and target localization and tracking. In the preprocessing stage, the input image frame is smoothed using averaging filter and transformed into YCrCb color space. In skin color detection, skin color regions are detected using Otsu's method of global thresholding. In the feature classification, histograms of both skin and nonskin regions are constructed and the features are classified into foregrounds and backgrounds based on Bayesian skin color classifier. The foreground skin regions are localized by a connected component labeling process. Finally, the localized foreground skin regions are confirmed as a target by verifying the region properties, and nontarget regions are rejected using the Euler method. At last, the target is tracked by enclosing the bounding box around the target region in all video frames. The experiment was conducted on various publicly available data sets and the performance was evaluated with baseline methods. It evidently shows that the proposed algorithm works well against slowly varying illumination, target rotations, scaling, fast, and abrupt motion changes.
Automatic video segmentation and indexing
NASA Astrophysics Data System (ADS)
Chahir, Youssef; Chen, Liming
1999-08-01
Indexing is an important aspect of video database management. Video indexing involves the analysis of video sequences, which is a computationally intensive process. However, effective management of digital video requires robust indexing techniques. The main purpose of our proposed video segmentation is twofold. Firstly, we develop an algorithm that identifies camera shot boundary. The approach is based on the use of combination of color histograms and block-based technique. Next, each temporal segment is represented by a color reference frame which specifies the shot similarities and which is used in the constitution of scenes. Experimental results using a variety of videos selected in the corpus of the French Audiovisual National Institute are presented to demonstrate the effectiveness of performing shot detection, the content characterization of shots and the scene constitution.
NASA Astrophysics Data System (ADS)
Moslehi, M.; de Barros, F.
2017-12-01
Complexity of hydrogeological systems arises from the multi-scale heterogeneity and insufficient measurements of their underlying parameters such as hydraulic conductivity and porosity. An inadequate characterization of hydrogeological properties can significantly decrease the trustworthiness of numerical models that predict groundwater flow and solute transport. Therefore, a variety of data assimilation methods have been proposed in order to estimate hydrogeological parameters from spatially scarce data by incorporating the governing physical models. In this work, we propose a novel framework for evaluating the performance of these estimation methods. We focus on the Ensemble Kalman Filter (EnKF) approach that is a widely used data assimilation technique. It reconciles multiple sources of measurements to sequentially estimate model parameters such as the hydraulic conductivity. Several methods have been used in the literature to quantify the accuracy of the estimations obtained by EnKF, including Rank Histograms, RMSE and Ensemble Spread. However, these commonly used methods do not regard the spatial information and variability of geological formations. This can cause hydraulic conductivity fields with very different spatial structures to have similar histograms or RMSE. We propose a vision-based approach that can quantify the accuracy of estimations by considering the spatial structure embedded in the estimated fields. Our new approach consists of adapting a new metric, Color Coherent Vectors (CCV), to evaluate the accuracy of estimated fields achieved by EnKF. CCV is a histogram-based technique for comparing images that incorporate spatial information. We represent estimated fields as digital three-channel images and use CCV to compare and quantify the accuracy of estimations. The sensitivity of CCV to spatial information makes it a suitable metric for assessing the performance of spatial data assimilation techniques. Under various factors of data assimilation methods such as number, layout, and type of measurements, we compare the performance of CCV with other metrics such as RMSE. By simulating hydrogeological processes using estimated and true fields, we observe that CCV outperforms other existing evaluation metrics.
Using color histograms and SPA-LDA to classify bacteria.
de Almeida, Valber Elias; da Costa, Gean Bezerra; de Sousa Fernandes, David Douglas; Gonçalves Dias Diniz, Paulo Henrique; Brandão, Deysiane; de Medeiros, Ana Claudia Dantas; Véras, Germano
2014-09-01
In this work, a new approach is proposed to verify the differentiating characteristics of five bacteria (Escherichia coli, Enterococcus faecalis, Streptococcus salivarius, Streptococcus oralis, and Staphylococcus aureus) by using digital images obtained with a simple webcam and variable selection by the Successive Projections Algorithm associated with Linear Discriminant Analysis (SPA-LDA). In this sense, color histograms in the red-green-blue (RGB), hue-saturation-value (HSV), and grayscale channels and their combinations were used as input data, and statistically evaluated by using different multivariate classifiers (Soft Independent Modeling by Class Analogy (SIMCA), Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA), Partial Least Squares Discriminant Analysis (PLS-DA) and Successive Projections Algorithm-Linear Discriminant Analysis (SPA-LDA)). The bacteria strains were cultivated in a nutritive blood agar base layer for 24 h by following the Brazilian Pharmacopoeia, maintaining the status of cell growth and the nature of nutrient solutions under the same conditions. The best result in classification was obtained by using RGB and SPA-LDA, which reached 94 and 100 % of classification accuracy in the training and test sets, respectively. This result is extremely positive from the viewpoint of routine clinical analyses, because it avoids bacterial identification based on phenotypic identification of the causative organism using Gram staining, culture, and biochemical proofs. Therefore, the proposed method presents inherent advantages, promoting a simpler, faster, and low-cost alternative for bacterial identification.
A novel method for the evaluation of uncertainty in dose-volume histogram computation.
Henríquez, Francisco Cutanda; Castrillón, Silvia Vargas
2008-03-15
Dose-volume histograms (DVHs) are a useful tool in state-of-the-art radiotherapy treatment planning, and it is essential to recognize their limitations. Even after a specific dose-calculation model is optimized, dose distributions computed by using treatment-planning systems are affected by several sources of uncertainty, such as algorithm limitations, measurement uncertainty in the data used to model the beam, and residual differences between measured and computed dose. This report presents a novel method to take them into account. To take into account the effect of associated uncertainties, a probabilistic approach using a new kind of histogram, a dose-expected volume histogram, is introduced. The expected value of the volume in the region of interest receiving an absorbed dose equal to or greater than a certain value is found by using the probability distribution of the dose at each point. A rectangular probability distribution is assumed for this point dose, and a formulation that accounts for uncertainties associated with point dose is presented for practical computations. This method is applied to a set of DVHs for different regions of interest, including 6 brain patients, 8 lung patients, 8 pelvis patients, and 6 prostate patients planned for intensity-modulated radiation therapy. Results show a greater effect on planning target volume coverage than in organs at risk. In cases of steep DVH gradients, such as planning target volumes, this new method shows the largest differences with the corresponding DVH; thus, the effect of the uncertainty is larger.
Enriching text with images and colored light
NASA Astrophysics Data System (ADS)
Sekulovski, Dragan; Geleijnse, Gijs; Kater, Bram; Korst, Jan; Pauws, Steffen; Clout, Ramon
2008-01-01
We present an unsupervised method to enrich textual applications with relevant images and colors. The images are collected by querying large image repositories and subsequently the colors are computed using image processing. A prototype system based on this method is presented where the method is applied to song lyrics. In combination with a lyrics synchronization algorithm the system produces a rich multimedia experience. In order to identify terms within the text that may be associated with images and colors, we select noun phrases using a part of speech tagger. Large image repositories are queried with these terms. Per term representative colors are extracted using the collected images. Hereto, we either use a histogram-based or a mean shift-based algorithm. The representative color extraction uses the non-uniform distribution of the colors found in the large repositories. The images that are ranked best by the search engine are displayed on a screen, while the extracted representative colors are rendered on controllable lighting devices in the living room. We evaluate our method by comparing the computed colors to standard color representations of a set of English color terms. A second evaluation focuses on the distance in color between a queried term in English and its translation in a foreign language. Based on results from three sets of terms, a measure of suitability of a term for color extraction based on KL Divergence is proposed. Finally, we compare the performance of the algorithm using either the automatically indexed repository of Google Images and the manually annotated Flickr.com. Based on the results of these experiments, we conclude that using the presented method we can compute the relevant color for a term using a large image repository and image processing.
Micro-Expression Recognition Using Color Spaces.
Wang, Su-Jing; Yan, Wen-Jing; Li, Xiaobai; Zhao, Guoying; Zhou, Chun-Guang; Fu, Xiaolan; Yang, Minghao; Tao, Jianhua
2015-12-01
Micro-expressions are brief involuntary facial expressions that reveal genuine emotions and, thus, help detect lies. Because of their many promising applications, they have attracted the attention of researchers from various fields. Recent research reveals that two perceptual color spaces (CIELab and CIELuv) provide useful information for expression recognition. This paper is an extended version of our International Conference on Pattern Recognition paper, in which we propose a novel color space model, tensor independent color space (TICS), to help recognize micro-expressions. In this paper, we further show that CIELab and CIELuv are also helpful in recognizing micro-expressions, and we indicate why these three color spaces achieve better performance. A micro-expression color video clip is treated as a fourth-order tensor, i.e., a four-dimension array. The first two dimensions are the spatial information, the third is the temporal information, and the fourth is the color information. We transform the fourth dimension from RGB into TICS, in which the color components are as independent as possible. The combination of dynamic texture and independent color components achieves a higher accuracy than does that of RGB. In addition, we define a set of regions of interests (ROIs) based on the facial action coding system and calculated the dynamic texture histograms for each ROI. Experiments are conducted on two micro-expression databases, CASME and CASME 2, and the results show that the performances for TICS, CIELab, and CIELuv are better than those for RGB or gray.
Nam, Hyunmoon; Song, Kyungjun; Ha, Dogyeong; Kim, Taesung
2016-01-01
Photonic crystal structures can be created to manipulate electromagnetic waves so that many studies have focused on designing photonic band-gaps for various applications including sensors, LEDs, lasers, and optical fibers. Here, we show that mono-layered, self-assembled photonic crystals (SAPCs) fabricated by using an inkjet printer exhibit extremely weak structural colors and multiple colorful holograms so that they can be utilized in anti-counterfeit measures. We demonstrate that SAPC patterns on a white background are covert under daylight, such that pattern detection can be avoided, but they become overt in a simple manner under strong illumination with smartphone flash light and/or on a black background, showing remarkable potential for anti-counterfeit techniques. Besides, we demonstrate that SAPCs yield different RGB histograms that depend on viewing angles and pattern densities, thus enhancing their cryptographic capabilities. Hence, the structural colorations designed by inkjet printers would not only produce optical holograms for the simple authentication of many items and products but also enable a high-secure anti-counterfeit technique. PMID:27487978
Efficient visibility-driven medical image visualisation via adaptive binned visibility histogram.
Jung, Younhyun; Kim, Jinman; Kumar, Ashnil; Feng, David Dagan; Fulham, Michael
2016-07-01
'Visibility' is a fundamental optical property that represents the observable, by users, proportion of the voxels in a volume during interactive volume rendering. The manipulation of this 'visibility' improves the volume rendering processes; for instance by ensuring the visibility of regions of interest (ROIs) or by guiding the identification of an optimal rendering view-point. The construction of visibility histograms (VHs), which represent the distribution of all the visibility of all voxels in the rendered volume, enables users to explore the volume with real-time feedback about occlusion patterns among spatially related structures during volume rendering manipulations. Volume rendered medical images have been a primary beneficiary of VH given the need to ensure that specific ROIs are visible relative to the surrounding structures, e.g. the visualisation of tumours that may otherwise be occluded by neighbouring structures. VH construction and its subsequent manipulations, however, are computationally expensive due to the histogram binning of the visibilities. This limits the real-time application of VH to medical images that have large intensity ranges and volume dimensions and require a large number of histogram bins. In this study, we introduce an efficient adaptive binned visibility histogram (AB-VH) in which a smaller number of histogram bins are used to represent the visibility distribution of the full VH. We adaptively bin medical images by using a cluster analysis algorithm that groups the voxels according to their intensity similarities into a smaller subset of bins while preserving the distribution of the intensity range of the original images. We increase efficiency by exploiting the parallel computation and multiple render targets (MRT) extension of the modern graphical processing units (GPUs) and this enables efficient computation of the histogram. We show the application of our method to single-modality computed tomography (CT), magnetic resonance (MR) imaging and multi-modality positron emission tomography-CT (PET-CT). In our experiments, the AB-VH markedly improved the computational efficiency for the VH construction and thus improved the subsequent VH-driven volume manipulations. This efficiency was achieved without major degradation in the VH visually and numerical differences between the AB-VH and its full-bin counterpart. We applied several variants of the K-means clustering algorithm with varying Ks (the number of clusters) and found that higher values of K resulted in better performance at a lower computational gain. The AB-VH also had an improved performance when compared to the conventional method of down-sampling of the histogram bins (equal binning) for volume rendering visualisation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of the hand vein pattern for people recognition
NASA Astrophysics Data System (ADS)
Castro-Ortega, R.; Toxqui-Quitl, C.; Cristóbal, G.; Marcos, J. Victor; Padilla-Vivanco, A.; Hurtado Pérez, R.
2015-09-01
The shape of the hand vascular pattern contains useful and unique features that can be used for identifying and authenticating people, with applications in access control, medicine and financial services. In this work, an optical system for the image acquisition of the hand vascular pattern is implemented. It consists of a CCD camera with sensitivity in the IR and a light source with emission in the 880 nm. The IR radiation interacts with the desoxyhemoglobin, hemoglobin and water present in the blood of the veins, making possible to see the vein pattern underneath skin. The segmentation of the Region Of Interest (ROI) is achieved using geometrical moments locating the centroid of an image. For enhancement of the vein pattern we use the technique of Histogram Equalization and Contrast Limited Adaptive Histogram Equalization (CLAHE). In order to remove unnecessary information such as body hair and skinfolds, a low pass filter is implemented. A method based on geometric moments is used to obtain the invariant descriptors of the input images. The classification task is achieved using Artificial Neural Networks (ANN) and K-Nearest Neighbors (K-nn) algorithms. Experimental results using our database show a percentage of correct classification, higher of 86.36% with ANN for 912 images of 38 people with 12 versions each one.
Pisano, E D; Cole, E B; Major, S; Zong, S; Hemminger, B M; Muller, K E; Johnston, R E; Walsh, R; Conant, E; Fajardo, L L; Feig, S A; Nishikawa, R M; Yaffe, M J; Williams, M B; Aylward, S R
2000-09-01
To determine the preferences of radiologists among eight different image processing algorithms applied to digital mammograms obtained for screening and diagnostic imaging tasks. Twenty-eight images representing histologically proved masses or calcifications were obtained by using three clinically available digital mammographic units. Images were processed and printed on film by using manual intensity windowing, histogram-based intensity windowing, mixture model intensity windowing, peripheral equalization, multiscale image contrast amplification (MUSICA), contrast-limited adaptive histogram equalization, Trex processing, and unsharp masking. Twelve radiologists compared the processed digital images with screen-film mammograms obtained in the same patient for breast cancer screening and breast lesion diagnosis. For the screening task, screen-film mammograms were preferred to all digital presentations, but the acceptability of images processed with Trex and MUSICA algorithms were not significantly different. All printed digital images were preferred to screen-film radiographs in the diagnosis of masses; mammograms processed with unsharp masking were significantly preferred. For the diagnosis of calcifications, no processed digital mammogram was preferred to screen-film mammograms. When digital mammograms were preferred to screen-film mammograms, radiologists selected different digital processing algorithms for each of three mammographic reading tasks and for different lesion types. Soft-copy display will eventually allow radiologists to select among these options more easily.
Automated rice leaf disease detection using color image analysis
NASA Astrophysics Data System (ADS)
Pugoy, Reinald Adrian D. L.; Mariano, Vladimir Y.
2011-06-01
In rice-related institutions such as the International Rice Research Institute, assessing the health condition of a rice plant through its leaves, which is usually done as a manual eyeball exercise, is important to come up with good nutrient and disease management strategies. In this paper, an automated system that can detect diseases present in a rice leaf using color image analysis is presented. In the system, the outlier region is first obtained from a rice leaf image to be tested using histogram intersection between the test and healthy rice leaf images. Upon obtaining the outlier, it is then subjected to a threshold-based K-means clustering algorithm to group related regions into clusters. Then, these clusters are subjected to further analysis to finally determine the suspected diseases of the rice leaf.
In blind pursuit of racial equality?
Apfelbaum, Evan P; Pauker, Kristin; Sommers, Samuel R; Ambady, Nalini
2010-11-01
Despite receiving little empirical assessment, the color-blind approach to managing diversity has become a leading institutional strategy for promoting racial equality, across domains and scales of practice. We gauged the utility of color blindness as a means to eliminating future racial inequity--its central objective--by assessing its impact on a sample of elementary-school students. Results demonstrated that students exposed to a color-blind mind-set, as opposed to a value-diversity mind-set, were actually less likely both to detect overt instances of racial discrimination and to describe such events in a manner that would prompt intervention by certified teachers. Institutional messages of color blindness may therefore artificially depress formal reporting of racial injustice. Color-blind messages may thus appear to function effectively on the surface even as they allow explicit forms of bias to persist.
The Enhancement of Group 4 Facsimile to Include Color Imagery
1990-08-01
CIELUV is about equally as good (or bad) as CIELAB . 3.3.2 Transmission Order of the Color Space Components There are at least five ways to order a color...color spaces, like XYZ, CIELUV , CIELAB , etc., could provide shorter transmission times with better equipment interoperability. If a color space...version using the XYZ, CIELAB , or CIELUV color spaces, and then encodes and transmits the selected color space’s luminance component according to the CCITT
Io Shown in Lambertian Equal Area Projection and in Approximately Natural Color
1998-06-04
NASA's Voyager 1 computer color mosaics, shown in approximately natural color and in Lambertian equal-area projections, show the Eastern (left) and Western (right) hemispheres of Io. This innermost of Jupiter's 4 major satellites is the most volcanically active object in the solar system. Io is 2263 mi (3640 km) in diameter, making it a little bigger than Earth's moon. Almost all the features visible here have volcanic origins, including several calderas and eruption plumes that were active at the time of the Voyager 1 encounter. http://photojournal.jpl.nasa.gov/catalog/PIA00318
Bigras, Gilbert
2012-06-01
Color deconvolution relies on determination of unitary optical density vectors (OD(3D)) derived from pure constituent stains initially defined as intensity vectors in RGB space. OD(3D) can be defined in polar coordinates (phi, theta, radius); always being equal to one, radius can be ignored. Easier handling of unitary optical density 2D vectors (OD(2D)) is shown. OD(2D) pure stains used in anatomical pathology were assessed as centroid values (phi, theta) with a measure of variance: inertia based on arc lengths between centroid value and sampled points. These variables were plotted on a stereographic projection plane. In order to assess pure stains OD(2D), different methods of sampling RGB pixels were tested and compared: (2) direct sampling of nuclei from preparations using (a) composite H&E and (b) hematoxylin only and (2) for any pure stain RGB image, different associated 8-bit masks (saturation, brightness and RGB average) were used for sampling and compared. Behaviors of phi, theta and inertia were obtained by moving threshold in 8-bit mask histograms. Phi and theta stability were tested against variable light intensity during image acquisition and by using 2 different image acquisition systems. The more saturated RGB pixels are, the more stable phi, theta and inertia values are obtained. Different commercial hematoxylins have distinct OD(2D) characteristics. UltraView DAB stain shows high inertia and is angularly closer to usual counterstains than ultraView Red stain, which also has a lower inertia. Superior accuracy is expected from the latter stain. Phi and theta OD(2D) values are sensitive to light intensity variation, to the used imaging system and to the used objectives. An ImageJ plugin was designed to plot and interactively modify OD(2D) values with instant update of color deconvolution allowing heuristic segmentation. Utilization of polar OD(2D) eases statistical characterization of OD(3D) vectors: conditions of optimal sampling were demonstrated and various factors influencing OD(2D) stability were explored. Stereographic projection plane allows intuitive visualization of OD(3D) vectors as well as heuristic vectorial modification. All findings are not restricted to anatomical pathology but can be applied to bright field microscopy and subtractive color applications in general.
Kaur, Ravneet; Albano, Peter P.; Cole, Justin G.; Hagerty, Jason; LeAnder, Robert W.; Moss, Randy H.; Stoecker, William V.
2015-01-01
Background/Purpose Early detection of malignant melanoma is an important public health challenge. In the USA, dermatologists are seeing more melanomas at an early stage, before classic melanoma features have become apparent. Pink color is a feature of these early melanomas. If rapid and accurate automatic detection of pink color in these melanomas could be accomplished, there could be significant public health benefits. Methods Detection of three shades of pink (light pink, dark pink, and orange pink) was accomplished using color analysis techniques in five color planes (red, green, blue, hue and saturation). Color shade analysis was performed using a logistic regression model trained with an image set of 60 dermoscopic images of melanoma that contained pink areas. Detected pink shade areas were further analyzed with regard to the location within the lesion, average color parameters over the detected areas, and histogram texture features. Results Logistic regression analysis of a separate set of 128 melanomas and 128 benign images resulted in up to 87.9% accuracy in discriminating melanoma from benign lesions measured using area under the receiver operating characteristic curve. The accuracy in this model decreased when parameters for individual shades, texture, or shade location within the lesion were omitted. Conclusion Texture, color, and lesion location analysis applied to multiple shades of pink can assist in melanoma detection. When any of these three details: color location, shade analysis, or texture analysis were omitted from the model, accuracy in separating melanoma from benign lesions was lowered. Separation of colors into shades and further details that enhance the characterization of these color shades are needed for optimal discrimination of melanoma from benign lesions. PMID:25809473
Kaur, R; Albano, P P; Cole, J G; Hagerty, J; LeAnder, R W; Moss, R H; Stoecker, W V
2015-11-01
Early detection of malignant melanoma is an important public health challenge. In the USA, dermatologists are seeing more melanomas at an early stage, before classic melanoma features have become apparent. Pink color is a feature of these early melanomas. If rapid and accurate automatic detection of pink color in these melanomas could be accomplished, there could be significant public health benefits. Detection of three shades of pink (light pink, dark pink, and orange pink) was accomplished using color analysis techniques in five color planes (red, green, blue, hue, and saturation). Color shade analysis was performed using a logistic regression model trained with an image set of 60 dermoscopic images of melanoma that contained pink areas. Detected pink shade areas were further analyzed with regard to the location within the lesion, average color parameters over the detected areas, and histogram texture features. Logistic regression analysis of a separate set of 128 melanomas and 128 benign images resulted in up to 87.9% accuracy in discriminating melanoma from benign lesions measured using area under the receiver operating characteristic curve. The accuracy in this model decreased when parameters for individual shades, texture, or shade location within the lesion were omitted. Texture, color, and lesion location analysis applied to multiple shades of pink can assist in melanoma detection. When any of these three details: color location, shade analysis, or texture analysis were omitted from the model, accuracy in separating melanoma from benign lesions was lowered. Separation of colors into shades and further details that enhance the characterization of these color shades are needed for optimal discrimination of melanoma from benign lesions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Reliability of the Raven Colored Progressive Matrices Test: Age and Ethnic Group Comparisons.
ERIC Educational Resources Information Center
Carlson, Jerry S.; Jensen, C. Mark
1981-01-01
Reliabilities for the Raven Colored Progressive Matrices Test (CPM) are reported for three age groups (ages 5 1/2- 6 1/2, 6 1/2-7 1/2, and 7 1/2-8 1/2 years) and three ethnic groups (Anglo, Black, and Hispanic). Results indicate CPM is not equally reliable for all age groups, but appears equally reliable for the three ethnic groups. (Author)
The Role of Cognition in Children's Explanations and Preferences for Skin-Color.
ERIC Educational Resources Information Center
Clark, Audrey; And Others
The purpose of this study was to measure social causality (skin-color attributions) of white children on a Skin-Color Probe, and to explore the developmental concomitants related to children's explanations of skin color. Seventy-two white children, including equal numbers of males and females, were divided into three age groupings (27-59 months,…
47 CFR 22.321 - Equal employment opportunities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... persons, and personnel must not be discriminated against in employment because of sex, race, color... qualified applicants without regard to sex, race, color, religion or national origin, and solicit their... prejudice or discrimination based upon sex, race, color, religion, or national origin, from the licensee's...
47 CFR 90.168 - Equal employment opportunities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... persons, and personnel must not be discriminated against in employment because of sex, race, color... qualified applicants without regard to sex, race, color, religion or national origin, and solicit their... prejudice or discrimination based upon sex, race, color, religion, or national origin, from the licensee's...
47 CFR 22.321 - Equal employment opportunities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... persons, and personnel must not be discriminated against in employment because of sex, race, color... qualified applicants without regard to sex, race, color, religion or national origin, and solicit their... prejudice or discrimination based upon sex, race, color, religion, or national origin, from the licensee's...
47 CFR 90.168 - Equal employment opportunities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... persons, and personnel must not be discriminated against in employment because of sex, race, color... qualified applicants without regard to sex, race, color, religion or national origin, and solicit their... prejudice or discrimination based upon sex, race, color, religion, or national origin, from the licensee's...
47 CFR 22.321 - Equal employment opportunities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... persons, and personnel must not be discriminated against in employment because of sex, race, color... qualified applicants without regard to sex, race, color, religion or national origin, and solicit their... prejudice or discrimination based upon sex, race, color, religion, or national origin, from the licensee's...
47 CFR 22.321 - Equal employment opportunities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... persons, and personnel must not be discriminated against in employment because of sex, race, color... qualified applicants without regard to sex, race, color, religion or national origin, and solicit their... prejudice or discrimination based upon sex, race, color, religion, or national origin, from the licensee's...
47 CFR 90.168 - Equal employment opportunities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... persons, and personnel must not be discriminated against in employment because of sex, race, color... qualified applicants without regard to sex, race, color, religion or national origin, and solicit their... prejudice or discrimination based upon sex, race, color, religion, or national origin, from the licensee's...
47 CFR 90.168 - Equal employment opportunities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... persons, and personnel must not be discriminated against in employment because of sex, race, color... qualified applicants without regard to sex, race, color, religion or national origin, and solicit their... prejudice or discrimination based upon sex, race, color, religion, or national origin, from the licensee's...
A multiresolution processing method for contrast enhancement in portal imaging.
Gonzalez-Lopez, Antonio
2018-06-18
Portal images have a unique feature among the imaging modalities used in radiotherapy: they provide direct visualization of the irradiated volumes. However, contrast and spatial resolution are strongly limited due to the high energy of the radiation sources. Because of this, imaging modalities using x-ray energy beams have gained importance in the verification of patient positioning, replacing portal imaging. The purpose of this work was to develop a method for the enhancement of local contrast in portal images. The method operates in the subbands of a wavelet decomposition of the image, re-scaling them in such a way that coefficients in the high and medium resolution subbands are amplified, an approach totally different of those operating on the image histogram, widely used nowadays. Portal images of an anthropomorphic phantom were acquired in an electronic portal imaging device (EPID). Then, different re-scaling strategies were investigated, studying the effects of the scaling parameters on the enhanced images. Also, the effect of using different types of transforms was studied. Finally, the implemented methods were combined with histogram equalization methods like the contrast limited adaptive histogram equalization (CLAHE), and these combinations were compared. Uniform amplification of the detail subbands shows the best results in contrast enhancement. On the other hand, linear re-escalation of the high resolution subbands increases the visibility of fine detail of the images, at the expense of an increase in noise levels. Also, since processing is applied only to detail subbands, not to the approximation, the mean gray level of the image is minimally modified and no further display adjustments are required. It is shown that re-escalation of the detail subbands of portal images can be used as an efficient method for the enhancement of both, the local contrast and the resolution of these images. © 2018 Institute of Physics and Engineering in Medicine.
Writing a Scientific Paper II. Communication by Graphics
NASA Astrophysics Data System (ADS)
Sterken, C.
2011-07-01
This paper discusses facets of visual communication by way of images, graphs, diagrams and tabular material. Design types and elements of graphical images are presented, along with advice on how to create graphs, and on how to read graphical illustrations. This is done in astronomical context, using case studies and historical examples of good and bad graphics. Design types of graphs (scatter and vector plots, histograms, pie charts, ternary diagrams and three-dimensional surface graphs) are explicated, as well as the major components of graphical images (axes, legends, textual parts, etc.). The basic features of computer graphics (image resolution, vector images, bitmaps, graphical file formats and file conversions) are explained, as well as concepts of color models and of color spaces (with emphasis on aspects of readability of color graphics by viewers suffering from color-vision deficiencies). Special attention is given to the verity of graphical content, and to misrepresentations and errors in graphics and associated basic statistics. Dangers of dot joining and curve fitting are discussed, with emphasis on the perception of linearity, the issue of nonsense correlations, and the handling of outliers. Finally, the distinction between data, fits and models is illustrated.
Acharya, U Rajendra; Bhat, Shreya; Koh, Joel E W; Bhandary, Sulatha V; Adeli, Hojjat
2017-09-01
Glaucoma is an optic neuropathy defined by characteristic damage to the optic nerve and accompanying visual field deficits. Early diagnosis and treatment are critical to prevent irreversible vision loss and ultimate blindness. Current techniques for computer-aided analysis of the optic nerve and retinal nerve fiber layer (RNFL) are expensive and require keen interpretation by trained specialists. Hence, an automated system is highly desirable for a cost-effective and accurate screening for the diagnosis of glaucoma. This paper presents a new methodology and a computerized diagnostic system. Adaptive histogram equalization is used to convert color images to grayscale images followed by convolution of these images with Leung-Malik (LM), Schmid (S), and maximum response (MR4 and MR8) filter banks. The basic microstructures in typical images are called textons. The convolution process produces textons. Local configuration pattern (LCP) features are extracted from these textons. The significant features are selected using a sequential floating forward search (SFFS) method and ranked using the statistical t-test. Finally, various classifiers are used for classification of images into normal and glaucomatous classes. A high classification accuracy of 95.8% is achieved using six features obtained from the LM filter bank and the k-nearest neighbor (kNN) classifier. A glaucoma integrative index (GRI) is also formulated to obtain a reliable and effective system. Copyright © 2017 Elsevier Ltd. All rights reserved.
23 CFR 260.115 - Equal opportunity.
Code of Federal Regulations, 2010 CFR
2010-04-01
... grounds of race, color, religion, sex, national origin, or handicap, be excluded from participation in, be... qualified handicapped individuals, so as to assure nondiscrimination on the grounds of race, color, religion...
23 CFR 260.115 - Equal opportunity.
Code of Federal Regulations, 2011 CFR
2011-04-01
... grounds of race, color, religion, sex, national origin, or handicap, be excluded from participation in, be... qualified handicapped individuals, so as to assure nondiscrimination on the grounds of race, color, religion...
23 CFR 260.115 - Equal opportunity.
Code of Federal Regulations, 2014 CFR
2014-04-01
... grounds of race, color, religion, sex, national origin, or handicap, be excluded from participation in, be... qualified handicapped individuals, so as to assure nondiscrimination on the grounds of race, color, religion...
23 CFR 260.115 - Equal opportunity.
Code of Federal Regulations, 2013 CFR
2013-04-01
... grounds of race, color, religion, sex, national origin, or handicap, be excluded from participation in, be... qualified handicapped individuals, so as to assure nondiscrimination on the grounds of race, color, religion...
23 CFR 260.115 - Equal opportunity.
Code of Federal Regulations, 2012 CFR
2012-04-01
... grounds of race, color, religion, sex, national origin, or handicap, be excluded from participation in, be... qualified handicapped individuals, so as to assure nondiscrimination on the grounds of race, color, religion...
Sliding window adaptive histogram equalization of intraoral radiographs: effect on image quality.
Sund, T; Møystad, A
2006-05-01
To investigate whether contrast enhancement by non-interactive, sliding window adaptive histogram equalization (SWAHE) can enhance the image quality of intraoral radiographs in the dental clinic. Three dentists read 22 periapical and 12 bitewing storage phosphor (SP) radiographs. For the periapical readings they graded the quality of the examination with regard to visually locating the root apex. For the bitewing readings they registered all occurrences of approximal caries on a confidence scale. Each reading was first done on an unprocessed radiograph ("single-view"), and then re-done with the image processed with SWAHE displayed beside the unprocessed version ("twin-view"). The processing parameters for SWAHE were the same for all the images. For the periapical examinations, twin-view was judged to raise the image quality for 52% of those cases where the single-view quality was below the maximum. For the bitewing radiographs, there was a change of caries classification (both positive and negative) with twin-view in 19% of the cases, but with only a 3% net increase in the total number of caries registrations. For both examinations interobserver variance was unaffected. Non-interactive SWAHE applied to dental SP radiographs produces a supplemental contrast enhanced image which in twin-view reading improves the image quality of periapical examinations. SWAHE also affects caries diagnosis of bitewing images, and further study using a gold standard is warranted.
Characterizing region of interest in image using MPEG-7 visual descriptors
NASA Astrophysics Data System (ADS)
Ryu, Min-Sung; Park, Soo-Jun; Won, Chee Sun
2005-08-01
In this paper, we propose a region-based image retrieval system using EHD (Edge Histogram Descriptor) and CLD (Color Layout Descriptor) of MPEG-7 descriptors. The combined descriptor can efficiently describe edge and color features in terms of sub-image regions. That is, the basic unit for the selection of the region-of-interest (ROI) in the image is the sub-image block of the EHD, which corresponds to 16 (i.e., 4x4) non-overlapping image blocks in the image space. This implies that, to have a one-to-one region correspondence between EHD and CLD, we need to take an 8x8 inverse DCT (IDCT) for the CLD. Experimental results show that the proposed retrieval scheme can be used for image retrieval with the ROI based image retrieval for MPEG-7 indexed images.
Quantum red-green-blue image steganography
NASA Astrophysics Data System (ADS)
Heidari, Shahrokh; Pourarian, Mohammad Rasoul; Gheibi, Reza; Naseri, Mosayeb; Houshmand, Monireh
One of the most considering matters in the field of quantum information processing is quantum data hiding including quantum steganography and quantum watermarking. This field is an efficient tool for protecting any kind of digital data. In this paper, three quantum color images steganography algorithms are investigated based on Least Significant Bit (LSB). The first algorithm employs only one of the image’s channels to cover secret data. The second procedure is based on LSB XORing technique, and the last algorithm utilizes two channels to cover the color image for hiding secret quantum data. The performances of the proposed schemes are analyzed by using software simulations in MATLAB environment. The analysis of PSNR, BER and Histogram graphs indicate that the presented schemes exhibit acceptable performances and also theoretical analysis demonstrates that the networks complexity of the approaches scales squarely.
A database system to support image algorithm evaluation
NASA Technical Reports Server (NTRS)
Lien, Y. E.
1977-01-01
The design is given of an interactive image database system IMDB, which allows the user to create, retrieve, store, display, and manipulate images through the facility of a high-level, interactive image query (IQ) language. The query language IQ permits the user to define false color functions, pixel value transformations, overlay functions, zoom functions, and windows. The user manipulates the images through generic functions. The user can direct images to display devices for visual and qualitative analysis. Image histograms and pixel value distributions can also be computed to obtain a quantitative analysis of images.
He, Xun; Witzel, Christoph; Forder, Lewis; Clifford, Alexandra; Franklin, Anna
2014-04-01
Prior claims that color categories affect color perception are confounded by inequalities in the color space used to equate same- and different-category colors. Here, we equate same- and different-category colors in the number of just-noticeable differences, and measure event-related potentials (ERPs) to these colors on a visual oddball task to establish if color categories affect perceptual or post-perceptual stages of processing. Category effects were found from 200 ms after color presentation, only in ERP components that reflect post-perceptual processes (e.g., N2, P3). The findings suggest that color categories affect post-perceptual processing, but do not affect the perceptual representation of color.
Spectral properties of the nucleus of short-period comets
NASA Astrophysics Data System (ADS)
Toth, I.; Lamy, P. L.
2000-10-01
Comets, Edgeworth-Kuiper-Belt Objects (EKBOs), Centaurs and low albedo asteroids contain a considerable amount of information regarding some of the primordial processes that governed the formation of the early Solar System planetesimals. Opportunities to determine the colors of cometary nuclei are rare and relevant ground-based observations are difficult to perform. Color diversities and similarities between different types of small bodies have already been considered ([1] and references therein). We pursue this analysis further by introducing new BVRI colors obtained from our survey of cometary nuclei with the Hubble Space Telescope [2] as well as recent data obtained on EKBOs. We present preliminary results on the distribution of the BVRI colors (histograms, two-color diagrams) and possible relationships between the colors and orbital elements as well as the determined body sizes. The mean colors of the selected sample of the short-period (s-p) comets are: < (B-V) > = 0.91, < (V-R) > = 0.52, and < (V-I) > = 0.84. Pearson's linear correlation analysis of the (B-V) versus (V-R) and (V-R) versus (V-I) colors show significant correlations for the EKBOs+Centaurs sample while the s-p sample seems to be uncorrelated, with a few outliers. The linear regression lines of the EKBOs+Centaurs sample crosses through the sample of the s-p comets. There are no correlations of the colors versus perihelion distances, effective radii and perihelion distances as well as the (a,sin(i)) diagrams. This work was supported by grants from CNRS and CNES, France and partially by the the Hungarian Research Foundation OTKA T025049. [1] Luu, J., 1993. Icarus 104, 138. [2] Lamy, P.L. et al., this conference
NASA Astrophysics Data System (ADS)
Bachche, Shivaji; Oka, Koichi
2013-06-01
This paper presents the comparative study of various color space models to determine the suitable color space model for detection of green sweet peppers. The images were captured by using CCD cameras and infrared cameras and processed by using Halcon image processing software. The LED ring around the camera neck was used as an artificial lighting to enhance the feature parameters. For color images, CieLab, YIQ, YUV, HSI and HSV whereas for infrared images, grayscale color space models were selected for image processing. In case of color images, HSV color space model was found more significant with high percentage of green sweet pepper detection followed by HSI color space model as both provides information in terms of hue/lightness/chroma or hue/lightness/saturation which are often more relevant to discriminate the fruit from image at specific threshold value. The overlapped fruits or fruits covered by leaves can be detected in better way by using HSV color space model as the reflection feature from fruits had higher histogram than reflection feature from leaves. The IR 80 optical filter failed to distinguish fruits from images as filter blocks useful information on features. Computation of 3D coordinates of recognized green sweet peppers was also conducted in which Halcon image processing software provides location and orientation of the fruits accurately. The depth accuracy of Z axis was examined in which 500 to 600 mm distance between cameras and fruits was found significant to compute the depth distance precisely when distance between two cameras maintained to 100 mm.
Effects of Age on Color Preference for Black and White by Infants and Young Children.
ERIC Educational Resources Information Center
May, Jo Whitten; May, J. Gaylord
1981-01-01
Investigators administered a toy color-preference test to 160 subjects, 6 months to 4.5 years, equally divided by sex and race. Results indicated that, as a group, age affected color preference. A pro-black bias was found for younger children (under 30 months old). (Author/SJL)
NASA Astrophysics Data System (ADS)
Lee, Feifei; Kotani, Koji; Chen, Qiu; Ohmi, Tadahiro
2010-02-01
In this paper, a fast search algorithm for MPEG-4 video clips from video database is proposed. An adjacent pixel intensity difference quantization (APIDQ) histogram is utilized as the feature vector of VOP (video object plane), which had been reliably applied to human face recognition previously. Instead of fully decompressed video sequence, partially decoded data, namely DC sequence of the video object are extracted from the video sequence. Combined with active search, a temporal pruning algorithm, fast and robust video search can be realized. The proposed search algorithm has been evaluated by total 15 hours of video contained of TV programs such as drama, talk, news, etc. to search for given 200 MPEG-4 video clips which each length is 15 seconds. Experimental results show the proposed algorithm can detect the similar video clip in merely 80ms, and Equal Error Rate (ERR) of 2 % in drama and news categories are achieved, which are more accurately and robust than conventional fast video search algorithm.
24 CFR 7.39 - Negotiated grievance, MSPB appeal and administrative grievance procedures.
Code of Federal Regulations, 2010 CFR
2010-04-01
... PROGRAMS Equal Employment Opportunity Without Regard to Race, Color Religion, Sex, National Origin, Age... alleging discrimination on basis of race, color, religion, sex, national origin, age or reprisal because of...
24 CFR 7.39 - Negotiated grievance, MSPB appeal and administrative grievance procedures.
Code of Federal Regulations, 2011 CFR
2011-04-01
... PROGRAMS Equal Employment Opportunity Without Regard to Race, Color Religion, Sex, National Origin, Age... alleging discrimination on basis of race, color, religion, sex, national origin, age or reprisal because of...
24 CFR 7.39 - Negotiated grievance, MSPB appeal and administrative grievance procedures.
Code of Federal Regulations, 2014 CFR
2014-04-01
... PROGRAMS Equal Employment Opportunity Without Regard to Race, Color Religion, Sex, National Origin, Age... alleging discrimination on basis of race, color, religion, sex, national origin, age or reprisal because of...
24 CFR 7.39 - Negotiated grievance, MSPB appeal and administrative grievance procedures.
Code of Federal Regulations, 2012 CFR
2012-04-01
... PROGRAMS Equal Employment Opportunity Without Regard to Race, Color Religion, Sex, National Origin, Age... alleging discrimination on basis of race, color, religion, sex, national origin, age or reprisal because of...
24 CFR 7.39 - Negotiated grievance, MSPB appeal and administrative grievance procedures.
Code of Federal Regulations, 2013 CFR
2013-04-01
... PROGRAMS Equal Employment Opportunity Without Regard to Race, Color Religion, Sex, National Origin, Age... alleging discrimination on basis of race, color, religion, sex, national origin, age or reprisal because of...
7 CFR 1436.19 - Equal Opportunity and Non-discrimination requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 10 2012-01-01 2012-01-01 false Equal Opportunity and Non-discrimination requirements... FACILITY LOAN PROGRAM REGULATIONS § 1436.19 Equal Opportunity and Non-discrimination requirements. (a) No... person or cause any person to be subjected to discrimination on the basis of race, religion, color...
7 CFR 1436.19 - Equal Opportunity and Non-discrimination requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 10 2014-01-01 2014-01-01 false Equal Opportunity and Non-discrimination requirements... FACILITY LOAN PROGRAM REGULATIONS § 1436.19 Equal Opportunity and Non-discrimination requirements. (a) No... person or cause any person to be subjected to discrimination on the basis of race, religion, color...
7 CFR 1436.19 - Equal Opportunity and Non-discrimination requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 10 2013-01-01 2013-01-01 false Equal Opportunity and Non-discrimination requirements... FACILITY LOAN PROGRAM REGULATIONS § 1436.19 Equal Opportunity and Non-discrimination requirements. (a) No... person or cause any person to be subjected to discrimination on the basis of race, religion, color...
NASA Astrophysics Data System (ADS)
Chang, Faliang; Liu, Chunsheng
2017-09-01
The high variability of sign colors and shapes in uncontrolled environments has made the detection of traffic signs a challenging problem in computer vision. We propose a traffic sign detection (TSD) method based on coarse-to-fine cascade and parallel support vector machine (SVM) detectors to detect Chinese warning and danger traffic signs. First, a region of interest (ROI) extraction method is proposed to extract ROIs using color contrast features in local regions. The ROI extraction can reduce scanning regions and save detection time. For multiclass TSD, we propose a structure that combines a coarse-to-fine cascaded tree with a parallel structure of histogram of oriented gradients (HOG) + SVM detectors. The cascaded tree is designed to detect different types of traffic signs in a coarse-to-fine process. The parallel HOG + SVM detectors are designed to do fine detection of different types of traffic signs. The experiments demonstrate the proposed TSD method can rapidly detect multiclass traffic signs with different colors and shapes in high accuracy.
Color Feature-Based Object Tracking through Particle Swarm Optimization with Improved Inertia Weight
Guo, Siqiu; Zhang, Tao; Song, Yulong
2018-01-01
This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios. PMID:29690610
Guo, Siqiu; Zhang, Tao; Song, Yulong; Qian, Feng
2018-04-23
This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios.
NASA Astrophysics Data System (ADS)
Aijazi, A. K.; Malaterre, L.; Tazir, M. L.; Trassoudaine, L.; Checchin, P.
2016-06-01
This work presents a new method that automatically detects and analyzes surface defects such as corrosion spots of different shapes and sizes, on large ship hulls. In the proposed method several scans from different positions and viewing angles around the ship are registered together to form a complete 3D point cloud. The R, G, B values associated with each scan, obtained with the help of an integrated camera are converted into HSV space to separate out the illumination invariant color component from the intensity. Using this color component, different surface defects such as corrosion spots of different shapes and sizes are automatically detected, within a selected zone, using two different methods depending upon the level of corrosion/defects. The first method relies on a histogram based distribution whereas the second on adaptive thresholds. The detected corrosion spots are then analyzed and quantified to help better plan and estimate the cost of repair and maintenance. Results are evaluated on real data using different standard evaluation metrics to demonstrate the efficacy as well as the technical strength of the proposed method.
NASA Astrophysics Data System (ADS)
Herman, J. R.; Marshak, A.; Szabo, A.
2015-12-01
The DSCOVR mission was launched into a Sun-Earth Lagrange-1 orbit 1.5 million kilometers from earth in February 2015 onboard a SpaceX Falcon-9 rocket. The solar wind and earth science instruments were tested during the 4.5 month journey to L-1. The first data were obtained during the June-July commissioning phase, which included the first moderate resolution (10 km) color images of the entire sunlit earth, color images of the Moon, and scientific data from 10 narrow band filters (317.5, 325, 340, 388, 443, 551, 680, 687.75, 764, and 779.5 nm). Three of these filters were used to construct the color images (443, 551, 680 nm) based on the average eye response histogram of the sunlit earth. This talk will discuss some of the issues involved in deriving science quality data for global ozone, the aerosol index (dust, smoke, and volcanic ash), cloud amounts and reflectivity, and cloud height (measured from the O2 A- and B-bands). As with most new satellites, the science data are preliminary.
Parental conflict and blue egg coloration in a seabird
NASA Astrophysics Data System (ADS)
Morales, Judith; Torres, Roxana; Velando, Alberto
2010-02-01
When both parents provide offspring care, equal sharing of costly parental duties may enhance reproductive success. This is crucial for longlived species, where increased parental effort in current reproduction profoundly affects future reproduction. Indication of reproductive value or willingness to invest in reproduction may promote matching responses by mates, thus reducing the conflict over care. In birds with biparental care, blue-green eggshell color may function as a signal of reproductive value that affects parental effort, as predicted by the signaling hypothesis of blue-green eggshell coloration. However, this hypothesis has not been explored during incubation, when the potential stimulus of egg color is present, and has been little studied in longlived birds. We experimentally studied if egg color affected incubation patterns in the blue-footed booby, a longlived species with biparental care and blue eggs. We exchanged fresh eggs between nests of the same laying date and recorded parental incubation effort on the following 4 days. Although egg color did not affect male effort, original eggshell color was correlated with pair matching in incubation. Exchanged eggshell color did not affect incubation patterns. This suggests that biliverdin-based egg coloration reflects female quality features that are associated with pair incubation effort or that blue-footed boobies mate assortatively high-quality pairs incubating more colorful clutches. An intriguing possibility is that egg coloration facilitates an equal sharing of incubation, the signal being functional only during a short period close to laying. Results also suggest that indication of reproductive value reduces the conflict over care.
Building perceptual color maps for visualizing interval data
NASA Astrophysics Data System (ADS)
Kalvin, Alan D.; Rogowitz, Bernice E.; Pelah, Adar; Cohen, Aron
2000-06-01
In visualization, a 'color map' maps a range of data values onto a scale of colors. However, unless a color map is e carefully constructed, visual artifacts can be produced. This problem has stimulated considerable interest in creating perceptually based color maps, that is, color maps where equal steps in data value are perceived as equal steps in the color map [Robertson (1988); Pizer (1981); Green (1992); Lefkowitz and Herman, 1992)]. In Rogowitz and Treinish, (1996, 1998) and in Bergman, Treinish and Rogowitz, (1995), we demonstrated that color maps based on luminance or saturation could be good candidates for satisfying this requirement. This work is based on the seminal work of S.S. Stevens (1966), who measured the perceived magnitude of different magnitudes of physical stimuli. He found that for many physical scales, including luminance (cd/m2) and saturation (the 'redness' of a long-wavelength light source), equal ratios in stimulus value produced equal ratios in perceptual magnitude. He interpreted this as indicating that there exists in human cognition a common scale for representing magnitude, and we scale the effects of different physical stimuli to this internal scale. In Rogowitz, Kalvin, Pelahb and Cohen (1999), we used a psychophysical technique to test this hypothesis as it applies to the creation of perceptually uniform color maps. We constructed color maps as trajectories through three-color spaces, a common computer graphics standard (uncalibrated HSV), a common perceptually-based engineering standard for creating visual stimuli (L*a*b*), and a space commonly used in the graphic arts (Munsell). For each space, we created color scales that varied linearly in hue, saturation, or luminance and measured the detectability of increments in hue, saturation or luminance for each of these color scales. We measured the amplitude of the just-detectable Gaussian increments at 20 different values along the range of each color map. For all three color spaces, we found that luminance-based color maps provided the most perceptually- uniform representations of the data. The just-detectable increment was constant at all points in the color map, with the exception of the lowest-luminance values, where a larger increment was required. The saturation-based color maps provided less sensitivity than the luminance-based color maps, requiring much larger increments for detection. For the hue- based color maps, the size of the increment required for detection varied across the range. For example, for the standard 'rainbow' color map (uncalibrated HSV, hue-varying map), a step in the 'green' region required an increment 16 times the size of the increment required in the 'cyan' part of the range. That is, the rainbow color map would not successfully represent changes in the data in the 'green' region of this color map. In this paper, we extend this research by studying the detectability of spatially-modulated Gabor targets based on these hue, saturation and luminance scales. Since, in visualization, the user is called upon to detect and identify patterns that vary in their spatial characteristics, it is important to study how different types of color maps represent data with varying spatial properties. To do so, we measured modulation thresholds for low-(0.2 c/deg) and high-spatial frequency (4.0 c/deg) Gabor patches and compared them with the Gaussian results. As before, we measured increment thresholds for hue, saturation, and luminance modulations. These color scales were constructed as trajectories along the three perceptual dimensions of color (hue, saturation, and luminance) in two color spaces, uncalibrated HSV and calibrated L*a*b. This allowed us to study how the three perceptual dimensions represent magnitude information for test patterns varying in spatial frequency. This design also allowed us to test the hypothesis that the luminance channel best carries high-spatial frequency information while the saturation channel best represents low spatial-frequency information (Mullen 1985; DeValois and DeValois 1988).
Communication target object recognition for D2D connection with feature size limit
NASA Astrophysics Data System (ADS)
Ok, Jiheon; Kim, Soochang; Kim, Young-hoon; Lee, Chulhee
2015-03-01
Recently, a new concept of device-to-device (D2D) communication, which is called "point-and-link communication" has attracted great attentions due to its intuitive and simple operation. This approach enables user to communicate with target devices without any pre-identification information such as SSIDs, MAC addresses by selecting the target image displayed on the user's own device. In this paper, we present an efficient object matching algorithm that can be applied to look(point)-and-link communications for mobile services. Due to the limited channel bandwidth and low computational power of mobile terminals, the matching algorithm should satisfy low-complexity, low-memory and realtime requirements. To meet these requirements, we propose fast and robust feature extraction by considering the descriptor size and processing time. The proposed algorithm utilizes a HSV color histogram, SIFT (Scale Invariant Feature Transform) features and object aspect ratios. To reduce the descriptor size under 300 bytes, a limited number of SIFT key points were chosen as feature points and histograms were binarized while maintaining required performance. Experimental results show the robustness and the efficiency of the proposed algorithm.
Hiding Information Using different lighting Color images
NASA Astrophysics Data System (ADS)
Majead, Ahlam; Awad, Rash; Salman, Salema S.
2018-05-01
The host medium for the secret message is one of the important principles for the designers of steganography method. In this study, the best color image was studied to carrying any secret image.The steganography approach based Lifting Wavelet Transform (LWT) and Least Significant Bits (LSBs) substitution. The proposed method offers lossless and unnoticeable changes in the contrast carrier color image and imperceptible by human visual system (HVS), especially the host images which was captured in dark lighting conditions. The aim of the study was to study the process of masking the data in colored images with different light intensities. The effect of the masking process was examined on the images that are classified by a minimum distance and the amount of noise and distortion in the image. The histogram and statistical characteristics of the cover image the results showed the efficient use of images taken with different light intensities in hiding data using the least important bit substitution method. This method succeeded in concealing textual data without distorting the original image (low light) Lire developments due to the concealment process.The digital image segmentation technique was used to distinguish small areas with masking. The result is that smooth homogeneous areas are less affected as a result of hiding comparing with high light areas. It is possible to use dark color images to send any secret message between two persons for the purpose of secret communication with good security.
NASA Astrophysics Data System (ADS)
Beltrame, Francesco; Diaspro, Alberto; Fato, Marco; Martin, I.; Ramoino, Paola; Sobel, Irwin E.
1995-03-01
Confocal microscopy systems can be linked to 3D data oriented devices for the interactive navigation of the operator through a 3D object space. Sometimes, such environments are named `virtual reality' or `augmented reality' systems. We consider optical confocal laser scanning microscopy images, in fluorescence with various excitations and emissions, and versus time The aim of our study has been the quantitative spatial analysis of confocal data using the false-color composition technique. Starting from three 2D confocal fluorescent images at the same slice location in a given biological specimen, a new single image representation of all three parameters has been generated by the false-color technique on a HP 9000/735 workstation, connected to the confocal microscope. The color composite result of the mapping of the three parameters is displayed using a resolution of 24 bits per pixel. The operator may independently vary the mix of each of the three components in the false-color composite via three (R, G, B) mixing sliders. Furthermore, by using the pixel data in the three fluorescent component images, a 3D space containing the density distribution of these three parameters has been constructed. The histogram has been displayed in stereo: it can be used for clustering purposes from the operator, through an original thresholding algorithm.
NASA Astrophysics Data System (ADS)
Ojima, Nobutoshi; Fujiwara, Izumi; Inoue, Yayoi; Tsumura, Norimichi; Nakaguchi, Toshiya; Iwata, Kayoko
2011-03-01
Uneven distribution of skin color is one of the biggest concerns about facial skin appearance. Recently several techniques to analyze skin color have been introduced by separating skin color information into chromophore components, such as melanin and hemoglobin. However, there are not many reports on quantitative analysis of unevenness of skin color by considering type of chromophore, clusters of different sizes and concentration of the each chromophore. We propose a new image analysis and simulation method based on chromophore analysis and spatial frequency analysis. This method is mainly composed of three techniques: independent component analysis (ICA) to extract hemoglobin and melanin chromophores from a single skin color image, an image pyramid technique which decomposes each chromophore into multi-resolution images, which can be used for identifying different sizes of clusters or spatial frequencies, and analysis of the histogram obtained from each multi-resolution image to extract unevenness parameters. As the application of the method, we also introduce an image processing technique to change unevenness of melanin component. As the result, the method showed high capabilities to analyze unevenness of each skin chromophore: 1) Vague unevenness on skin could be discriminated from noticeable pigmentation such as freckles or acne. 2) By analyzing the unevenness parameters obtained from each multi-resolution image for Japanese ladies, agerelated changes were observed in the parameters of middle spatial frequency. 3) An image processing system modulating the parameters was proposed to change unevenness of skin images along the axis of the obtained age-related change in real time.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-10
... privileges of employment on the basis of race, color, religion, sex, national origin, age, disability... basis of race, color, religion, sex, national origin, or disability, you must contact an Equal...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-18
... basis of race, color, religion, sex, or national origin. The Equal Credit Opportunity Act (15 U.S.C..., color, religion, national origin, sex, marital status, age, receipt of income from public assistance, or...
"The American Way": Resisting the Empire of Force and Color-Blind Racism
ERIC Educational Resources Information Center
Martinez, Aja Y.
2009-01-01
Students of color (in particular, those who are first-generation Chicano/a as well as first-generation college students), form a discourse community with a tendency to rely on dominant color-blind ideology concerning freedom of choice and equal opportunity to explain their positions within the academy. In this article, the author analyzes the…
Reaching across the Color Line: Margaret Mitchell and Benjamin Mays, an Uncommon Friendship
ERIC Educational Resources Information Center
Nix, Jearl; Bohan, Chara Haeussler
2013-01-01
In 1940 Atlanta, the color line between black and white citizens was clearly drawn. This color line not only kept blacks and whites apart physically, but it also prevented blacks from attaining educational opportunities, economic equality, healthcare services, and many other public amenities readily available to white citizens. Most people, black…
The Influence of Hair Color on Eliciting Help: Do Blondes Have More Fun?
ERIC Educational Resources Information Center
Juni, Samuel; Roth, Michelle M.
1985-01-01
Review of the literature suggests that hair color influences the quality of interpersonal interactions. Results of a factorially designed study show that while women helped confederates equally regardless of their gender, men helped women more than they helped men. Hair color of confederates was not shown to affect helping behavior. (Author/ABB)
Pisano, E D; Zong, S; Hemminger, B M; DeLuca, M; Johnston, R E; Muller, K; Braeuning, M P; Pizer, S M
1998-11-01
The purpose of this project was to determine whether Contrast Limited Adaptive Histogram Equalization (CLAHE) improves detection of simulated spiculations in dense mammograms. Lines simulating the appearance of spiculations, a common marker of malignancy when visualized with masses, were embedded in dense mammograms digitized at 50 micron pixels, 12 bits deep. Film images with no CLAHE applied were compared to film images with nine different combinations of clip levels and region sizes applied. A simulated spiculation was embedded in a background of dense breast tissue, with the orientation of the spiculation varied. The key variables involved in each trial included the orientation of the spiculation, contrast level of the spiculation and the CLAHE settings applied to the image. Combining the 10 CLAHE conditions, 4 contrast levels and 4 orientations gave 160 combinations. The trials were constructed by pairing 160 combinations of key variables with 40 backgrounds. Twenty student observers were asked to detect the orientation of the spiculation in the image. There was a statistically significant improvement in detection performance for spiculations with CLAHE over unenhanced images when the region size was set at 32 with a clip level of 2, and when the region size was set at 32 with a clip level of 4. The selected CLAHE settings should be tested in the clinic with digital mammograms to determine whether detection of spiculations associated with masses detected at mammography can be improved.
An analysis of automatic human detection and tracking
NASA Astrophysics Data System (ADS)
Demuth, Philipe R.; Cosmo, Daniel L.; Ciarelli, Patrick M.
2015-12-01
This paper presents an automatic method to detect and follow people on video streams. This method uses two techniques to determine the initial position of the person at the beginning of the video file: one based on optical flow and the other one based on Histogram of Oriented Gradients (HOG). After defining the initial bounding box, tracking is done using four different trackers: Median Flow tracker, TLD tracker, Mean Shift tracker and a modified version of the Mean Shift tracker using HSV color space. The results of the methods presented in this paper are then compared at the end of the paper.
An image-based automatic recognition method for the flowering stage of maize
NASA Astrophysics Data System (ADS)
Yu, Zhenghong; Zhou, Huabing; Li, Cuina
2018-03-01
In this paper, we proposed an image-based approach for automatic recognizing the flowering stage of maize. A modified HOG/SVM detection framework is first adopted to detect the ears of maize. Then, we use low-rank matrix recovery technology to precisely extract the ears at pixel level. At last, a new feature called color gradient histogram, as an indicator, is proposed to determine the flowering stage. Comparing experiment has been carried out to testify the validity of our method and the results indicate that our method can meet the demand for practical observation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 2922.802 Federal Acquisition Regulations System DEPARTMENT OF LABOR SOCIOECONOMIC PROGRAMS APPLICATION OF LABOR LAWS TO GOVERNMENT ACQUISITIONS Equal Employment Opportunity 2922.802 General. Executive... Labor promote full realization of equal opportunity for all persons regardless of race, color, religion...
An Analysis of Predator Selection to Affect Aposematic Coloration in a Poison Frog Species.
Dreher, Corinna E; Cummings, Molly E; Pröhl, Heike
2015-01-01
Natural selection is widely noted to drive divergence of phenotypic traits. Predation pressure can facilitate morphological divergence, for example the evolution of both cryptic and conspicuous coloration in animals. In this context Dendrobatid frogs have been used to study evolutionary forces inducing diversity in protective coloration. The polytypic strawberry poison frog (Oophaga pumilio) shows strong divergence in aposematic coloration among populations. To investigate whether predation pressure is important for color divergence among populations of O. pumilio we selected four mainland populations and two island populations from Costa Rica and Panama. Spectrometric measurements of body coloration were used to calculate color and brightness contrasts of frogs as an indicator of conspicuousness for the visual systems of several potential predators (avian, crab and snake) and a conspecific observer. Additionally, we conducted experiments using clay model frogs of different coloration to investigate whether the local coloration of frogs is better protected than non-local color morphs, and if predator communities vary among populations. Overall predation risk differed strongly among populations and interestingly was higher on the two island populations. Imprints on clay models indicated that birds are the main predators while attacks of other predators were rare. Furthermore, clay models of local coloration were equally likely to be attacked as those of non-local coloration. Overall conspicuousness (and brightness contrast) of local frogs was positively correlated with attack rates by birds across populations. Together with results from earlier studies we conclude that conspicuousness honestly indicates toxicity to avian predators. The different coloration patterns among populations of strawberry poison frogs in combination with behavior and toxicity might integrate into equally efficient anti-predator strategies depending on local predation and other ecological factors.
An Analysis of Predator Selection to Affect Aposematic Coloration in a Poison Frog Species
Dreher, Corinna E.; Cummings, Molly E.; Pröhl, Heike
2015-01-01
Natural selection is widely noted to drive divergence of phenotypic traits. Predation pressure can facilitate morphological divergence, for example the evolution of both cryptic and conspicuous coloration in animals. In this context Dendrobatid frogs have been used to study evolutionary forces inducing diversity in protective coloration. The polytypic strawberry poison frog (Oophaga pumilio) shows strong divergence in aposematic coloration among populations. To investigate whether predation pressure is important for color divergence among populations of O. pumilio we selected four mainland populations and two island populations from Costa Rica and Panama. Spectrometric measurements of body coloration were used to calculate color and brightness contrasts of frogs as an indicator of conspicuousness for the visual systems of several potential predators (avian, crab and snake) and a conspecific observer. Additionally, we conducted experiments using clay model frogs of different coloration to investigate whether the local coloration of frogs is better protected than non-local color morphs, and if predator communities vary among populations. Overall predation risk differed strongly among populations and interestingly was higher on the two island populations. Imprints on clay models indicated that birds are the main predators while attacks of other predators were rare. Furthermore, clay models of local coloration were equally likely to be attacked as those of non-local coloration. Overall conspicuousness (and brightness contrast) of local frogs was positively correlated with attack rates by birds across populations. Together with results from earlier studies we conclude that conspicuousness honestly indicates toxicity to avian predators. The different coloration patterns among populations of strawberry poison frogs in combination with behavior and toxicity might integrate into equally efficient anti-predator strategies depending on local predation and other ecological factors. PMID:26110826
NASA Astrophysics Data System (ADS)
Petrov, Alexander P.
1996-09-01
Classic colorimetry and the traditionally used color space do not represent all perceived colors (for example, browns look dark yellow in colorimetric conditions of observation) so, the specific goal of this work is to suggest another concept of color and to prove that the corresponding set of colors is complete. The idea of our approach attributing color to surface patches (not to the light) immediately ties all the problems of color perception and vision geometry. The equivalence relation in the linear space of light fluxes F established by a procedure of colorimetry gives us a 3D color space H. By definition we introduce a sample (sigma) (surface patch) as a linear mapping (sigma) : L yields H, where L is a subspace of F called the illumination space. A Dedekind structure of partial order can be defined in the set of the samples: two samples (alpha) and (Beta) belong to one chromatic class if ker(alpha) equals ker(Beta) and (alpha) > (Beta) if ker(alpha) ker(Beta) . The maximal elements of this chain create the chromatic class BLACK. There can be given geometrical arguments for L to be 3D and it can be proved that in this case the minimal element of the above Dedekind structure is unique and the corresponding chromatic class is called WHITE containing the samples (omega) such that ker(omega) equals {0} L. Color is defined as mapping C: H yields H and assuming color constancy the complete set of perceived colors is proved to be isomorphic to a subset C of 3 X 3 matrices. This subset is convex, limited and symmetrical with E/2 as the center of symmetry. The problem of metrization of the color space C is discussed and a color metric related to shape, i.e., to vision geometry, is suggested.
29 CFR 30.3 - Equal opportunity standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of race, color, religion, national origin, or sex; and (2) Uniformly apply rules and regulations... opportunity pledge: The recruitment, selection, employment, and training of apprentices during their apprenticeship, shall be without discrimination because of race, color, religion, national origin, or sex. The...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-26
... privileges of employment on the basis of race, color, religion, sex, national origin, age, disability... on the basis of race, color, religion, sex, national origin, or disability, you must contact an Equal...
Memari, Nogol; Ramli, Abd Rahman; Bin Saripan, M Iqbal; Mashohor, Syamsiah; Moghbel, Mehrdad
2017-01-01
The structure and appearance of the blood vessel network in retinal fundus images is an essential part of diagnosing various problems associated with the eyes, such as diabetes and hypertension. In this paper, an automatic retinal vessel segmentation method utilizing matched filter techniques coupled with an AdaBoost classifier is proposed. The fundus image is enhanced using morphological operations, the contrast is increased using contrast limited adaptive histogram equalization (CLAHE) method and the inhomogeneity is corrected using Retinex approach. Then, the blood vessels are enhanced using a combination of B-COSFIRE and Frangi matched filters. From this preprocessed image, different statistical features are computed on a pixel-wise basis and used in an AdaBoost classifier to extract the blood vessel network inside the image. Finally, the segmented images are postprocessed to remove the misclassified pixels and regions. The proposed method was validated using publicly accessible Digital Retinal Images for Vessel Extraction (DRIVE), Structured Analysis of the Retina (STARE) and Child Heart and Health Study in England (CHASE_DB1) datasets commonly used for determining the accuracy of retinal vessel segmentation methods. The accuracy of the proposed segmentation method was comparable to other state of the art methods while being very close to the manual segmentation provided by the second human observer with an average accuracy of 0.972, 0.951 and 0.948 in DRIVE, STARE and CHASE_DB1 datasets, respectively.
The Application of the Montage Image Mosaic Engine To The Visualization Of Astronomical Images
NASA Astrophysics Data System (ADS)
Berriman, G. Bruce; Good, J. C.
2017-05-01
The Montage Image Mosaic Engine was designed as a scalable toolkit, written in C for performance and portability across *nix platforms, that assembles FITS images into mosaics. This code is freely available and has been widely used in the astronomy and IT communities for research, product generation, and for developing next-generation cyber-infrastructure. Recently, it has begun finding applicability in the field of visualization. This development has come about because the toolkit design allows easy integration into scalable systems that process data for subsequent visualization in a browser or client. The toolkit it includes a visualization tool suitable for automation and for integration into Python: mViewer creates, with a single command, complex multi-color images overlaid with coordinate displays, labels, and observation footprints, and includes an adaptive image histogram equalization method that preserves the structure of a stretched image over its dynamic range. The Montage toolkit contains functionality originally developed to support the creation and management of mosaics, but which also offers value to visualization: a background rectification algorithm that reveals the faint structure in an image; and tools for creating cutout and downsampled versions of large images. Version 5 of Montage offers support for visualizing data written in HEALPix sky-tessellation scheme, and functionality for processing and organizing images to comply with the TOAST sky-tessellation scheme required for consumption by the World Wide Telescope (WWT). Four online tutorials allow readers to reproduce and extend all the visualizations presented in this paper.
Preferential Remedies for Employment Discrimination
ERIC Educational Resources Information Center
Edwards, Harry T.; Zaretsky, Barry L.
1975-01-01
An overview of the problem of preferential remedies to achieve equal employment opportunities for women and minority groups. Contends that "color blindness" will not end discrimination but that some form of "color conscious" affirmative action program must be employed. Temporary preferential treatment is justified, according to…
An Approach to Improve the Quality of Infrared Images of Vein-Patterns
Lin, Chih-Lung
2011-01-01
This study develops an approach to improve the quality of infrared (IR) images of vein-patterns, which usually have noise, low contrast, low brightness and small objects of interest, thus requiring preprocessing to improve their quality. The main characteristics of the proposed approach are that no prior knowledge about the IR image is necessary and no parameters must be preset. Two main goals are sought: impulse noise reduction and adaptive contrast enhancement technologies. In our study, a fast median-based filter (FMBF) is developed as a noise reduction method. It is based on an IR imaging mechanism to detect the noisy pixels and on a modified median-based filter to remove the noisy pixels in IR images. FMBF has the advantage of a low computation load. In addition, FMBF can retain reasonably good edges and texture information when the size of the filter window increases. The most important advantage is that the peak signal-to-noise ratio (PSNR) caused by FMBF is higher than the PSNR caused by the median filter. A hybrid cumulative histogram equalization (HCHE) is proposed for adaptive contrast enhancement. HCHE can automatically generate a hybrid cumulative histogram (HCH) based on two different pieces of information about the image histogram. HCHE can improve the enhancement effect on hot objects rather than background. The experimental results are addressed and demonstrate that the proposed approach is feasible for use as an effective and adaptive process for enhancing the quality of IR vein-pattern images. PMID:22247674
An approach to improve the quality of infrared images of vein-patterns.
Lin, Chih-Lung
2011-01-01
This study develops an approach to improve the quality of infrared (IR) images of vein-patterns, which usually have noise, low contrast, low brightness and small objects of interest, thus requiring preprocessing to improve their quality. The main characteristics of the proposed approach are that no prior knowledge about the IR image is necessary and no parameters must be preset. Two main goals are sought: impulse noise reduction and adaptive contrast enhancement technologies. In our study, a fast median-based filter (FMBF) is developed as a noise reduction method. It is based on an IR imaging mechanism to detect the noisy pixels and on a modified median-based filter to remove the noisy pixels in IR images. FMBF has the advantage of a low computation load. In addition, FMBF can retain reasonably good edges and texture information when the size of the filter window increases. The most important advantage is that the peak signal-to-noise ratio (PSNR) caused by FMBF is higher than the PSNR caused by the median filter. A hybrid cumulative histogram equalization (HCHE) is proposed for adaptive contrast enhancement. HCHE can automatically generate a hybrid cumulative histogram (HCH) based on two different pieces of information about the image histogram. HCHE can improve the enhancement effect on hot objects rather than background. The experimental results are addressed and demonstrate that the proposed approach is feasible for use as an effective and adaptive process for enhancing the quality of IR vein-pattern images.
Balance Contrast Enhancement using piecewise linear stretching
NASA Astrophysics Data System (ADS)
Rahavan, R. V.; Govil, R. C.
1993-04-01
Balance Contrast Enhancement is one of the techniques employed to produce color composites with increased color contrast. It equalizes the three images used for color composition in range and mean. This results in a color composite with large variation in hue. Here, it is shown that piecewise linear stretching can be used for performing the Balance Contrast Enhancement. In comparison with the Balance Contrast Enhancement Technique using parabolic segment as transfer function (BCETP), the method presented here is algorithmically simple, constraint-free and produces comparable results.
24 CFR 891.600 - Responsibilities of Borrower.
Code of Federal Regulations, 2011 CFR
2011-04-01
... fair housing marketing plan and all Federal, State, or local fair housing and equal opportunity... regardless of discriminatory considerations, such as their race, color, creed, religion, familial status... of capital items). All functions must be performed in compliance with equal opportunity requirements...
24 CFR 891.600 - Responsibilities of Borrower.
Code of Federal Regulations, 2014 CFR
2014-04-01
... fair housing marketing plan and all Federal, State, or local fair housing and equal opportunity... regardless of discriminatory considerations, such as their race, color, creed, religion, familial status... of capital items). All functions must be performed in compliance with equal opportunity requirements...
3D change detection in staggered voxels model for robotic sensing and navigation
NASA Astrophysics Data System (ADS)
Liu, Ruixu; Hampshire, Brandon; Asari, Vijayan K.
2016-05-01
3D scene change detection is a challenging problem in robotic sensing and navigation. There are several unpredictable aspects in performing scene change detection. A change detection method which can support various applications in varying environmental conditions is proposed. Point cloud models are acquired from a RGB-D sensor, which provides the required color and depth information. Change detection is performed on robot view point cloud model. A bilateral filter smooths the surface and fills the holes as well as keeps the edge details on depth image. Registration of the point cloud model is implemented by using Random Sample Consensus (RANSAC) algorithm. It uses surface normal as the previous stage for the ground and wall estimate. After preprocessing the data, we create a point voxel model which defines voxel as surface or free space. Then we create a color model which defines each voxel that has a color by the mean of all points' color value in this voxel. The preliminary change detection is detected by XOR subtract on the point voxel model. Next, the eight neighbors for this center voxel are defined. If they are neither all `changed' voxels nor all `no changed' voxels, a histogram of location and hue channel color is estimated. The experimental evaluations performed to evaluate the capability of our algorithm show promising results for novel change detection that indicate all the changing objects with very limited false alarm rate.
43 CFR 34.6 - Equal opportunity clause.
Code of Federal Regulations, 2010 CFR
2010-10-01
... women in its procurement practices; to assure that applicants for employment are employed, and that employees are treated during employment, without discrimination on the basis of race, creed, color, national..., financial aid, and other benefits without discrimination on the basis of race, creed, color, national origin...
Pediatric intensive care unit admission tool: a colorful approach.
Biddle, Amy
2007-12-01
This article discusses the development, implementation, and utilization of our institution's Pediatric Intensive Care Unit (PICU) Color-Coded Admission Status Tool. Rather than the historical method of identifying a maximum number of staffed beds, a tool was developed to color code the PICU's admission status. Previous methods had been ineffective and led to confusion between the PICU leadership team and the administration. The tool includes the previously missing components of staffing and acuity, which are essential in determining admission capability. The PICU tool has three colored levels: green indicates open for admissions; yellow, admission alert resulting from available beds or because staffing is not equal to the projected patient numbers or required acuity; and red, admissions on hold because only one trauma or arrest bed is available or staffing is not equal to the projected acuity. Yellow and red designations require specific actions and the medical director's approval. The tool has been highly successful and significantly impacted nursing with the inclusion of the essential component of nurse staffing necessary in determining bed availability.
Teixidó, Mercè; Font, Davinia; Pallejà, Tomàs; Tresanchez, Marcel; Nogués, Miquel; Palacín, Jordi
2012-10-22
This work proposes the development of an embedded real-time fruit detection system for future automatic fruit harvesting. The proposed embedded system is based on an ARM Cortex-M4 (STM32F407VGT6) processor and an Omnivision OV7670 color camera. The future goal of this embedded vision system will be to control a robotized arm to automatically select and pick some fruit directly from the tree. The complete embedded system has been designed to be placed directly in the gripper tool of the future robotized harvesting arm. The embedded system will be able to perform real-time fruit detection and tracking by using a three-dimensional look-up-table (LUT) defined in the RGB color space and optimized for fruit picking. Additionally, two different methodologies for creating optimized 3D LUTs based on existing linear color models and fruit histograms were implemented in this work and compared for the case of red peaches. The resulting system is able to acquire general and zoomed orchard images and to update the relative tracking information of a red peach in the tree ten times per second.
Teixidó, Mercè; Font, Davinia; Pallejà, Tomàs; Tresanchez, Marcel; Nogués, Miquel; Palacín, Jordi
2012-01-01
This work proposes the development of an embedded real-time fruit detection system for future automatic fruit harvesting. The proposed embedded system is based on an ARM Cortex-M4 (STM32F407VGT6) processor and an Omnivision OV7670 color camera. The future goal of this embedded vision system will be to control a robotized arm to automatically select and pick some fruit directly from the tree. The complete embedded system has been designed to be placed directly in the gripper tool of the future robotized harvesting arm. The embedded system will be able to perform real-time fruit detection and tracking by using a three-dimensional look-up-table (LUT) defined in the RGB color space and optimized for fruit picking. Additionally, two different methodologies for creating optimized 3D LUTs based on existing linear color models and fruit histograms were implemented in this work and compared for the case of red peaches. The resulting system is able to acquire general and zoomed orchard images and to update the relative tracking information of a red peach in the tree ten times per second. PMID:23202040
Hyperspectral imaging-based credit card verifier structure with adaptive learning.
Sumriddetchkajorn, Sarun; Intaravanne, Yuttana
2008-12-10
We propose and experimentally demonstrate a hyperspectral imaging-based optical structure for verifying a credit card. Our key idea comes from the fact that the fine detail of the embossed hologram stamped on the credit card is hard to duplicate, and therefore its key color features can be used for distinguishing between the real and counterfeit ones. As the embossed hologram is a diffractive optical element, we shine a number of broadband light sources one at a time, each at a different incident angle, on the embossed hologram of the credit card in such a way that different color spectra per incident angle beam are diffracted and separated in space. In this way, the center of mass of the histogram on each color plane is investigated by using a feed-forward backpropagation neural-network configuration. Our experimental demonstration using two off-the-shelf broadband white light emitting diodes, one digital camera, and a three-layer neural network can effectively identify 38 genuine and 109 counterfeit credit cards with false rejection rates of 5.26% and 0.92%, respectively. Key features include low cost, simplicity, no moving parts, no need of an additional decoding key, and adaptive learning.
29 CFR 1606.2 - Scope of title VII protection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations Relating to Labor (Continued) EQUAL EMPLOYMENT OPPORTUNITY COMMISSION GUIDELINES ON DISCRIMINATION... equally apply to national origin discrimination. These Guidelines apply to all entities covered by title... 1964, as amended, protects individuals against employment discrimination on the basis of race, color...
29 CFR 1606.2 - Scope of title VII protection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Regulations Relating to Labor (Continued) EQUAL EMPLOYMENT OPPORTUNITY COMMISSION GUIDELINES ON DISCRIMINATION... equally apply to national origin discrimination. These Guidelines apply to all entities covered by title... 1964, as amended, protects individuals against employment discrimination on the basis of race, color...
29 CFR 1606.2 - Scope of title VII protection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Regulations Relating to Labor (Continued) EQUAL EMPLOYMENT OPPORTUNITY COMMISSION GUIDELINES ON DISCRIMINATION... equally apply to national origin discrimination. These Guidelines apply to all entities covered by title... 1964, as amended, protects individuals against employment discrimination on the basis of race, color...
29 CFR 1606.2 - Scope of title VII protection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Regulations Relating to Labor (Continued) EQUAL EMPLOYMENT OPPORTUNITY COMMISSION GUIDELINES ON DISCRIMINATION... equally apply to national origin discrimination. These Guidelines apply to all entities covered by title... 1964, as amended, protects individuals against employment discrimination on the basis of race, color...
29 CFR 1606.2 - Scope of title VII protection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Regulations Relating to Labor (Continued) EQUAL EMPLOYMENT OPPORTUNITY COMMISSION GUIDELINES ON DISCRIMINATION... equally apply to national origin discrimination. These Guidelines apply to all entities covered by title... 1964, as amended, protects individuals against employment discrimination on the basis of race, color...
24 CFR 891.400 - Responsibilities of owner.
Code of Federal Regulations, 2011 CFR
2011-04-01
... and all Federal, State or local fair housing and equal opportunity requirements. The purpose of the... discriminatory considerations such as their race, color, creed, religion, familial status, disability, sex or... equal opportunity requirements. (c) Contracting for services. (1) With HUD approval, the Owner may...
24 CFR 891.400 - Responsibilities of owner.
Code of Federal Regulations, 2014 CFR
2014-04-01
... and all Federal, State or local fair housing and equal opportunity requirements. The purpose of the... discriminatory considerations such as their race, color, creed, religion, familial status, disability, sex or... equal opportunity requirements. (c) Contracting for services. (1) With HUD approval, the Owner may...
Color enhancement of landsat agricultural imagery: JPL LACIE image processing support task
NASA Technical Reports Server (NTRS)
Madura, D. P.; Soha, J. M.; Green, W. B.; Wherry, D. B.; Lewis, S. D.
1978-01-01
Color enhancement techniques were applied to LACIE LANDSAT segments to determine if such enhancement can assist analysis in crop identification. The procedure involved increasing the color range by removing correlation between components. First, a principal component transformation was performed, followed by contrast enhancement to equalize component variances, followed by an inverse transformation to restore familiar color relationships. Filtering was applied to lower order components to reduce color speckle in the enhanced products. Use of single acquisition and multiple acquisition statistics to control the enhancement were compared, and the effects of normalization investigated. Evaluation is left to LACIE personnel.
Design of interpolation functions for subpixel-accuracy stereo-vision systems.
Haller, Istvan; Nedevschi, Sergiu
2012-02-01
Traditionally, subpixel interpolation in stereo-vision systems was designed for the block-matching algorithm. During the evaluation of different interpolation strategies, a strong correlation was observed between the type of the stereo algorithm and the subpixel accuracy of the different solutions. Subpixel interpolation should be adapted to each stereo algorithm to achieve maximum accuracy. In consequence, it is more important to propose methodologies for interpolation function generation than specific function shapes. We propose two such methodologies based on data generated by the stereo algorithms. The first proposal uses a histogram to model the environment and applies histogram equalization to an existing solution adapting it to the data. The second proposal employs synthetic images of a known environment and applies function fitting to the resulted data. The resulting function matches the algorithm and the data as best as possible. An extensive evaluation set is used to validate the findings. Both real and synthetic test cases were employed in different scenarios. The test results are consistent and show significant improvements compared with traditional solutions. © 2011 IEEE
Management of natural resources through automatic cartographic inventory
NASA Technical Reports Server (NTRS)
Rey, P. A.; Gourinard, Y.; Cambou, F. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Significant correspondence codes relating ERTS imagery to ground truth from vegetation and geology maps have been established. The use of color equidensity and color composite methods for selecting zones of equal densitometric value on ERTS imagery was perfected. Primary interest of temporal color composite is stressed. A chain of transfer operations from ERTS imagery to the automatic mapping of natural resources was developed.
Equal-magnitude size-weight illusions experienced within and between object categories.
Buckingham, Gavin; Goodale, Melvyn A; White, Justin A; Westwood, David A
2016-01-01
In the size-weight illusion (SWI), small objects feel heavier than larger objects of the same mass. This effect is typically thought to be a consequence of the lifter's expectation that the large object will outweigh the small object, because objects of the same type typically get heavier as they get larger. Here, we show that this perceptual effect can occur across object category, where there are no strong expectations about the correspondence between size and mass. One group of participants lifted same-colored large and small cubes with the same mass as one another, while another group lifted differently-colored large and small cubes with the same mass as one another. The group who lifted the same-colored cubes experienced a robust SWI and initially lifted the large object with more force than the small object. By contrast, the group who lifted the different-colored objects did so with equal initial forces on the first trial, but experienced just as strong an illusion as those who lifted the same-colored objects. These results demonstrate that color cues can selectively influence the application of fingertip force rates while not impacting at all upon the lifter's perception of object weight, highlighting a stark dissociation in how prior information affects perception and action.
Technical Note: Gray tracking in medical color displays-A report of Task Group 196.
Badano, Aldo; Wang, Joel; Boynton, Paul; Le Callet, Patrick; Cheng, Wei-Chung; Deroo, Danny; Flynn, Michael J; Matsui, Takashi; Penczek, John; Revie, Craig; Samei, Ehsan; Steven, Peter M; Swiderski, Stan; Van Hoey, Gert; Yamaguchi, Matsuhiro; Hasegawa, Mikio; Nagy, Balázs Vince
2016-07-01
The authors discuss measurement methods and instrumentation useful for the characterization of the gray tracking performance of medical color monitors for diagnostic applications. The authors define gray tracking as the variability in the chromaticity of the gray levels in a color monitor. The authors present data regarding the capability of color measurement instruments with respect to their abilities to measure a target white point corresponding to the CIE Standard Illuminant D65 at different luminance values within the grayscale palette of a medical display. The authors then discuss evidence of significant differences in performance among color measurement instruments currently available for medical physicists to perform calibrations and image quality checks for the consistent representation of color in medical displays. In addition, the authors introduce two metrics for quantifying grayscale chromaticity consistency of gray tracking. The authors' findings show that there is an order of magnitude difference in the accuracy of field and reference instruments. The gray tracking metrics quantify how close the grayscale chromaticity is to the chromaticity of the full white point (equal amounts of red, green, and blue at maximum level) or to consecutive levels (equal values for red, green, and blue), with a lower value representing an improved grayscale tracking performance. An illustrative example of how to calculate and report the gray tracking performance according to the Task Group definitions is provided. The authors' proposed methodology for characterizing the grayscale degradation in chromaticity for color monitors that can be used to establish standards and procedures aiding in the quality control testing of color displays and color measurement instrumentation.
Histogram-based adaptive gray level scaling for texture feature classification of colorectal polyps
NASA Astrophysics Data System (ADS)
Pomeroy, Marc; Lu, Hongbing; Pickhardt, Perry J.; Liang, Zhengrong
2018-02-01
Texture features have played an ever increasing role in computer aided detection (CADe) and diagnosis (CADx) methods since their inception. Texture features are often used as a method of false positive reduction for CADe packages, especially for detecting colorectal polyps and distinguishing them from falsely tagged residual stool and healthy colon wall folds. While texture features have shown great success there, the performance of texture features for CADx have lagged behind primarily because of the more similar features among different polyps types. In this paper, we present an adaptive gray level scaling and compare it to the conventional equal-spacing of gray level bins. We use a dataset taken from computed tomography colonography patients, with 392 polyp regions of interest (ROIs) identified and have a confirmed diagnosis through pathology. Using the histogram information from the entire ROI dataset, we generate the gray level bins such that each bin contains roughly the same number of voxels Each image ROI is the scaled down to two different numbers of gray levels, using both an equal spacing of Hounsfield units for each bin, and our adaptive method. We compute a set of texture features from the scaled images including 30 gray level co-occurrence matrix (GLCM) features and 11 gray level run length matrix (GLRLM) features. Using a random forest classifier to distinguish between hyperplastic polyps and all others (adenomas and adenocarcinomas), we find that the adaptive gray level scaling can improve performance based on the area under the receiver operating characteristic curve by up to 4.6%.
Data-nonintrusive photonics-based credit card verifier with a low false rejection rate.
Sumriddetchkajorn, Sarun; Intaravanne, Yuttana
2010-02-10
We propose and experimentally demonstrate a noninvasive credit card verifier with a low false rejection rate (FRR). Our key idea is based on the use of three broadband light sources in our data-nonintrusive photonics-based credit card verifier structure, where spectral components of the embossed hologram images are registered as red, green, and blue. In this case, nine distinguishable variables are generated for a feed-forward neural network (FFNN). In addition, we investigate the center of mass of the image histogram projected onto the x axis (I(color)), making our system more tolerant of the intensity fluctuation of the light source. We also reduce the unwanted signals on each hologram image by simply dividing the hologram image into three zones and then calculating their corresponding I(color) values for red, green, and blue bands. With our proposed concepts, we implement our field test prototype in which three broadband white light light-emitting diodes (LEDs), a two-dimensional digital color camera, and a four-layer FFNN are used. Based on 249 genuine credit cards and 258 counterfeit credit cards, we find that the average of differences in I(color) values between genuine and counterfeit credit cards is improved by 1.5 times and up to 13.7 times. In this case, we can effectively verify credit cards with a very low FRR of 0.79%.
Digital image modification detection using color information and its histograms.
Zhou, Haoyu; Shen, Yue; Zhu, Xinghui; Liu, Bo; Fu, Zigang; Fan, Na
2016-09-01
The rapid development of many open source and commercial image editing software makes the authenticity of the digital images questionable. Copy-move forgery is one of the most widely used tampering techniques to create desirable objects or conceal undesirable objects in a scene. Existing techniques reported in the literature to detect such tampering aim to improve the robustness of these methods against the use of JPEG compression, blurring, noise, or other types of post processing operations. These post processing operations are frequently used with the intention to conceal tampering and reduce tampering clues. A robust method based on the color moments and other five image descriptors is proposed in this paper. The method divides the image into fixed size overlapping blocks. Clustering operation divides entire search space into smaller pieces with similar color distribution. Blocks from the tampered regions will reside within the same cluster since both copied and moved regions have similar color distributions. Five image descriptors are used to extract block features, which makes the method more robust to post processing operations. An ensemble of deep compositional pattern-producing neural networks are trained with these extracted features. Similarity among feature vectors in clusters indicates possible forged regions. Experimental results show that the proposed method can detect copy-move forgery even if an image was distorted by gamma correction, addictive white Gaussian noise, JPEG compression, or blurring. Copyright © 2016. Published by Elsevier Ireland Ltd.
NASA Astrophysics Data System (ADS)
Luo, Lin-Bo; An, Sang-Woo; Wang, Chang-Shuai; Li, Ying-Chun; Chong, Jong-Wha
2012-09-01
Digital cameras usually decrease exposure time to capture motion-blur-free images. However, this operation will generate an under-exposed image with a low-budget complementary metal-oxide semiconductor image sensor (CIS). Conventional color correction algorithms can efficiently correct under-exposed images; however, they are generally not performed in real time and need at least one frame memory if they are implemented by hardware. The authors propose a real-time look-up table-based color correction method that corrects under-exposed images with hardware without using frame memory. The method utilizes histogram matching of two preview images, which are exposed for a long and short time, respectively, to construct an improved look-up table (ILUT) and then corrects the captured under-exposed image in real time. Because the ILUT is calculated in real time before processing the captured image, this method does not require frame memory to buffer image data, and therefore can greatly save the cost of CIS. This method not only supports single image capture, but also bracketing to capture three images at a time. The proposed method was implemented by hardware description language and verified by a field-programmable gate array with a 5 M CIS. Simulations show that the system can perform in real time with a low cost and can correct the color of under-exposed images well.
2016-07-01
from unlawful discrimination based on race, color, national origin, religion, sex (including pregnancy , gender identity, and sexual orientation when...range of online resources for diversity management and equal opportunity programming. DEOMI’s Research Directorate administers a survey called the...Defense Equal Opportunity Climate Survey (DEOCS). This survey is intended to be a tool for commanders to improve their organizational culture. It
Naturalness preservation image contrast enhancement via histogram modification
NASA Astrophysics Data System (ADS)
Tian, Qi-Chong; Cohen, Laurent D.
2018-04-01
Contrast enhancement is a technique for enhancing image contrast to obtain better visual quality. Since many existing contrast enhancement algorithms usually produce over-enhanced results, the naturalness preservation is needed to be considered in the framework of image contrast enhancement. This paper proposes a naturalness preservation contrast enhancement method, which adopts the histogram matching to improve the contrast and uses the image quality assessment to automatically select the optimal target histogram. The contrast improvement and the naturalness preservation are both considered in the target histogram, so this method can avoid the over-enhancement problem. In the proposed method, the optimal target histogram is a weighted sum of the original histogram, the uniform histogram, and the Gaussian-shaped histogram. Then the structural metric and the statistical naturalness metric are used to determine the weights of corresponding histograms. At last, the contrast-enhanced image is obtained via matching the optimal target histogram. The experiments demonstrate the proposed method outperforms the compared histogram-based contrast enhancement algorithms.
Interactive Effects of Color Realism and Learners' IQ on Effectiveness of Visual Instruction.
ERIC Educational Resources Information Center
Berry, Louis H.; Dwyer, Francis M.
1982-01-01
Undergraduates of different levels of ability (IQ) profited differentially from color cueing of instructional materials pertaining to the human heart. Visualization was not equally effective in achievement of different educational objectives (drawing, identification, terminology, and comprehension tests). Delayed retention of material was not…
48 CFR 52.222-26 - Equal Opportunity.
Code of Federal Regulations, 2011 CFR
2011-10-01
... because of race, color, religion, sex, or national origin. However, it shall not be a violation of this clause for the Contractor to extend a publicly announced preference in employment to Indians living on or..., color, religion, sex, or national origin. This shall include, but not be limited to, (i) employment, (ii...
48 CFR 52.222-26 - Equal Opportunity.
Code of Federal Regulations, 2010 CFR
2010-10-01
... because of race, color, religion, sex, or national origin. However, it shall not be a violation of this clause for the Contractor to extend a publicly announced preference in employment to Indians living on or..., color, religion, sex, or national origin. This shall include, but not be limited to, (i) employment, (ii...
Saliency-Guided Detection of Unknown Objects in RGB-D Indoor Scenes.
Bao, Jiatong; Jia, Yunyi; Cheng, Yu; Xi, Ning
2015-08-27
This paper studies the problem of detecting unknown objects within indoor environments in an active and natural manner. The visual saliency scheme utilizing both color and depth cues is proposed to arouse the interests of the machine system for detecting unknown objects at salient positions in a 3D scene. The 3D points at the salient positions are selected as seed points for generating object hypotheses using the 3D shape. We perform multi-class labeling on a Markov random field (MRF) over the voxels of the 3D scene, combining cues from object hypotheses and 3D shape. The results from MRF are further refined by merging the labeled objects, which are spatially connected and have high correlation between color histograms. Quantitative and qualitative evaluations on two benchmark RGB-D datasets illustrate the advantages of the proposed method. The experiments of object detection and manipulation performed on a mobile manipulator validate its effectiveness and practicability in robotic applications.
Refining atmosphere light to improve the dark channel prior algorithm
NASA Astrophysics Data System (ADS)
Gan, Ling; Li, Dagang; Zhou, Can
2017-05-01
The defogging image gotten through dark channel prior algorithm has some shortcomings, such like color distortion, dimmer light and detail-loss near the observer. The main reasons are that the atmosphere light is estimated as one value and its change in different scene depth is not considered. So we modeled the atmosphere, one parameter of the defogging model. Firstly, we scatter the atmosphere light into equivalent point and build discrete model of the light. Secondly, we build some rough and possible models through analyzing the relationship between the atmosphere light and the medium transmission. Finally, by analyzing the results of many experiments qualitatively and quantitatively, we get the selected and optimized model. Although using this method causes the time-consuming to increase slightly, the evaluations, histogram correlation coefficient and peak signal-to-noise ratio are improved significantly and the defogging result is more conformed to human visual. And the color and the details near the observer in the defogging image are better than that achieved by the primal method.
Saliency-Guided Detection of Unknown Objects in RGB-D Indoor Scenes
Bao, Jiatong; Jia, Yunyi; Cheng, Yu; Xi, Ning
2015-01-01
This paper studies the problem of detecting unknown objects within indoor environments in an active and natural manner. The visual saliency scheme utilizing both color and depth cues is proposed to arouse the interests of the machine system for detecting unknown objects at salient positions in a 3D scene. The 3D points at the salient positions are selected as seed points for generating object hypotheses using the 3D shape. We perform multi-class labeling on a Markov random field (MRF) over the voxels of the 3D scene, combining cues from object hypotheses and 3D shape. The results from MRF are further refined by merging the labeled objects, which are spatially connected and have high correlation between color histograms. Quantitative and qualitative evaluations on two benchmark RGB-D datasets illustrate the advantages of the proposed method. The experiments of object detection and manipulation performed on a mobile manipulator validate its effectiveness and practicability in robotic applications. PMID:26343656
Gheorghe, Liana; Iacob, Speranta; Iacob, Razvan; Dumbrava, Mona; Becheanu, Gabriel; Herlea, Vlad; Gheorghe, Cristian; Lupescu, Ioana; Popescu, Irinel
2009-12-01
Small nodules (under 3 cm) detected on ultrasound (US) in cirrhotics represent the most challenging category for noninvasive diagnosis of hepatocellular carcinoma (HCC). To evaluate real-time sonoelastography as a noninvasive tool for the diagnosis of small HCC nodules in cirrhotic patients. 42 cirrhotic patients with 58 nodules (1-3 cm) were evaluated with real-time elastography (Hitachi EUB-6500); the mean intensity of colors red, blue, green were measured using a semi-quantitative method. Analysis of histograms for each color of the sonoelastography images was performed for quantifying the elasticity of nodule tissue in comparison with the cirrhotic liver tissue. AUROC curves were constructed to define the best cut-off points to distinguish malignant features of the nodules. Univariate and multivariate logistic regression analysis was performed. 595 sonoelastography images from 42 patients (25 men; 17 women) were analyzed. The mean age was 56.4 +/- 0.7 years and 69% patients were in Child-Pugh class A, 19% class B, 11% class C. For the mean intensity of green color AUROC=0.81, a cut-off value under 108.7 being diagnostic for HCC with a Sp=91.1%, Se=50%, PPV=92.1%, NPV=47.1%. Mean intensity of blue color proved to be an excellent diagnostic tool for HCC (AUROC=0.94); for a cut-off value greater than 128.9, Sp=92.2%, Se=78.9%, PPV=95.4%, NPV=68%. Independent predictive factors of HCC for a small nodule in cirrhotic patients were: blue color over 128.9 at sonoelastography and hypervascular appearance at Doppler US. US elastography is a promising method for the non-invasive diagnosis of early HCC. Blue color at elastography and hypervascular aspects are independent predictors of HCC.
Finger vein recognition based on finger crease location
NASA Astrophysics Data System (ADS)
Lu, Zhiying; Ding, Shumeng; Yin, Jing
2016-07-01
Finger vein recognition technology has significant advantages over other methods in terms of accuracy, uniqueness, and stability, and it has wide promising applications in the field of biometric recognition. We propose using finger creases to locate and extract an object region. Then we use linear fitting to overcome the problem of finger rotation in the plane. The method of modular adaptive histogram equalization (MAHE) is presented to enhance image contrast and reduce computational cost. To extract the finger vein features, we use a fusion method, which can obtain clear and distinguishable vein patterns under different conditions. We used the Hausdorff average distance algorithm to examine the recognition performance of the system. The experimental results demonstrate that MAHE can better balance the recognition accuracy and the expenditure of time compared with three other methods. Our resulting equal error rate throughout the total procedure was 3.268% in a database of 153 finger vein images.
The Path to Equal Rights in Michigan
ERIC Educational Resources Information Center
Gratz, Jennifer
2007-01-01
The litigant in a historic reverse-discrimination case against the University of Michigan, and subsequently the leader of a Michigan ballot initiative that carried the day against long odds, recounts how her simple call for equal treatment under the law persuaded the people of her state that color-conscious preferences are wrong.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Royer, Michael P.; Houser, Kevin W.
An experiment was conducted to examine the effect of tuning optical radiation on brightness perception for younger (18-25 years of age) and older (50 years of age or older) observers. Participants made forced-choice evaluations of the brightness of a full factorial of stimulus pairs selected from two groups of four metameric stimuli. The large-field stimuli were created by systematically varying either the red or the blue primary of an RGB LED mixture. The results indicate that light stimuli of equal illuminance and chromaticity do not appear equally bright to either younger or older subjects. The rank-order of brightness is notmore » predicted by any current model of human vision or theory of brightness perception including Scotopic to Photopic or Cirtopic to Photopic ratio theory, prime color theory, correlated color temperature, V(λ)-based photometry, color quality metrics, linear brightness models, or color appearance models. Age may affect brightness perception when short-wavelength primaries are used, especially those with a peak wavelength shorter than 450 nm. The results suggest further development of metrics to predict brightness perception is warranted, and that including age as a variable in predictive models may be valuable.« less
Predicting transmittance spectra of electrophotographic color prints
NASA Astrophysics Data System (ADS)
Mourad, Safer; Emmel, Patrick; Hersch, Roger D.
2000-12-01
For dry toner electrophotographic color printers, we present a numerical simulation model describing the color printer responses based on a physical characterization of the different electrophotographic process steps. The proposed model introduces a Cross Transfer Efficiency designed to predict the color transmittance spectra of multi-color prints by taking into account the transfer influence of each deposited color toner layer upon the other layers. The simulation model leads to a better understanding of the factors that have an impact on printing quality. In order to avoid the additional optical non-linearities produced by light reflection on paper, we have limited the present investigation to transparency prints. The proposed model succeeded to predict the transmittance spectra of printed wedges combining two color toner layers with a mean deviation less than CIE-LAB (Delta) E equals 2.5.
Arnold, Derek H; Wegener, Signy V; Brown, Francesca; Mattingley, Jason B
2012-10-01
Grapheme-color synesthesia is an atypical condition in which individuals experience sensations of color when reading printed graphemes such as letters and digits. For some grapheme-color synesthetes, seeing a printed grapheme triggers a sensation of color, but hearing the name of a grapheme does not. This dissociation allowed us to compare the precision with which synesthetes are able to match their color experiences triggered by visible graphemes, with the precision of their matches for recalled colors based on the same graphemes spoken aloud. In six synesthetes, color matching for printed graphemes was equally variable relative to recalled experiences. In a control experiment, synesthetes and age-matched controls either matched the color of a circular patch while it was visible on a screen, or they judged its color from memory after it had disappeared. Both synesthetes and controls were more variable when matching from memory, and the variance of synesthetes' recalled color judgments matched that associated with their synesthetic judgments for visible graphemes in the first experiment. Results suggest that synesthetic experiences of color triggered by achromatic graphemes are analogous to recollections of color.
Teichmann, A Lina; Nieuwenstein, Mark R; Rich, Anina N
2015-01-01
Digit-color synesthetes report experiencing colors when perceiving letters and digits. The conscious experience is typically unidirectional (e.g., digits elicit colors but not vice versa) but recent evidence shows subtle bidirectional effects. We examined whether short-term memory for colors could be affected by the order of presentation reflecting more or less structure in the associated digits. We presented a stream of colored squares and asked participants to report the colors in order. The colors matched each synesthete's colors for digits 1-9 and the order of the colors corresponded either to a sequence of numbers (e.g., [red, green, blue] if 1 = red, 2 = green, 3 = blue) or no systematic sequence. The results showed that synesthetes recalled sequential color sequences more accurately than pseudo-randomized colors, whereas no such effect was found for the non-synesthetic controls. Synesthetes did not differ from non-synesthetic controls in recall of color sequences overall, providing no evidence of a general advantage in memory for serial recall of colors.
McCarthy, J. Daniel; Barnes, Lianne N.; Alvarez, Bryan D.; Caplovitz, Gideon Paul
2013-01-01
In grapheme-color synesthesia, graphemes (e.g., numbers or letters) evoke color experiences. It is generally reported that the opposite is not true: colors will not generate experiences of graphemes or their associated information. However, recent research has provided evidence that colors can implicitly elicit symbolic representations of associated graphemes. Here, we examine if these representations can be cognitively accessed. Using a mathematical verification task replacing graphemes with color patches, we find that synesthetes can verify such problems with colors as accurately as with graphemes. Doing so, however, takes time: ~250ms per color. Moreover, we find minimal reaction time switch-costs for switching between computing with graphemes and colors. This demonstrates that given specific task demands, synesthetes can cognitively access numerical information elicited by physical colors, and they do so as accurately as with graphemes. We discuss these results in the context of possible cognitive strategies used to access the information. PMID:24100131
Diazo Printing of ERTS Color Composites
NASA Technical Reports Server (NTRS)
Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator); Kowalik, W. S.
1975-01-01
The author has identified the following significant results. ERTS-1 color composites were made with the help of a Diazo developer and printer. Five single channel, density standards were established, using typical ERTS images, in order to determine exposure time. These standards were used to develop a graph from which the exposure time for any transparency can be estimated. Exposure times varied from 3 to 30 minutes, and clear colored polyester sheets from two manufactures were used with slightly different, but equally successful, results.
A Unified Framework for Street-View Panorama Stitching
Li, Li; Yao, Jian; Xie, Renping; Xia, Menghan; Zhang, Wei
2016-01-01
In this paper, we propose a unified framework to generate a pleasant and high-quality street-view panorama by stitching multiple panoramic images captured from the cameras mounted on the mobile platform. Our proposed framework is comprised of four major steps: image warping, color correction, optimal seam line detection and image blending. Since the input images are captured without a precisely common projection center from the scenes with the depth differences with respect to the cameras to different extents, such images cannot be precisely aligned in geometry. Therefore, an efficient image warping method based on the dense optical flow field is proposed to greatly suppress the influence of large geometric misalignment at first. Then, to lessen the influence of photometric inconsistencies caused by the illumination variations and different exposure settings, we propose an efficient color correction algorithm via matching extreme points of histograms to greatly decrease color differences between warped images. After that, the optimal seam lines between adjacent input images are detected via the graph cut energy minimization framework. At last, the Laplacian pyramid blending algorithm is applied to further eliminate the stitching artifacts along the optimal seam lines. Experimental results on a large set of challenging street-view panoramic images captured form the real world illustrate that the proposed system is capable of creating high-quality panoramas. PMID:28025481
America's Moral Dilemma: Will It Be Color Blindness or Racial Equality?
ERIC Educational Resources Information Center
Loury, Glenn C.
2000-01-01
Contends that the nation will begin to resolve the debate over racial preferences only when public commentators begin to draw a clear distinction between the procedural morality of color blindness and the historical morality of racial justice. Explains that it matters very much how college admissions decisions are made and recommends that people…
Higher Education and the Color Line: College Access, Racial Equity, and Social Change
ERIC Educational Resources Information Center
Orfield, Gary, Ed.; Marin, Patricia, Ed.; Horn, Catherine L., Ed.
2005-01-01
"Higher Education and the Color Line" examines the role of higher education in opening up equal opportunity for mobility in American society--or in reinforcing the segregation between white and nonwhite America. In the wake of the U.S. Supreme Court's landmark decision upholding affirmative action, this comprehensive and timely book…
Increasing Women's Influence in Government and Politics: The Inclusion of Women of Color.
ERIC Educational Resources Information Center
Berry, Mary Frances
1986-01-01
Reviews the history, current status, and accomplishments of women in United States politics. Identifies opposing perspectives on such political issues as child care, abortion, and the Equal Rights Amendment, stressing the role of minority women. Concludes with strategies women of color may use to overcome the triple bind of race, sex, and economic…
Code of Federal Regulations, 2012 CFR
2012-01-01
... conditions for the availability of these loans based on a person's race, color, familial status, religion... the borrower and the contractor that is more than $10,000. The Lender is responsible for seeing that... paragraph (c)(5) of this section, is prohibited from discriminating because of race, color, religion, sex...
Code of Federal Regulations, 2014 CFR
2014-01-01
... conditions for the availability of these loans based on a person's race, color, familial status, religion... the borrower and the contractor that is more than $10,000. The Lender is responsible for seeing that... paragraph (c)(5) of this section, is prohibited from discriminating because of race, color, religion, sex...
Code of Federal Regulations, 2013 CFR
2013-01-01
... conditions for the availability of these loans based on a person's race, color, familial status, religion... the borrower and the contractor that is more than $10,000. The Lender is responsible for seeing that... paragraph (c)(5) of this section, is prohibited from discriminating because of race, color, religion, sex...
Code of Federal Regulations, 2011 CFR
2011-01-01
... conditions for the availability of these loans based on a person's race, color, familial status, religion... the borrower and the contractor that is more than $10,000. The Lender is responsible for seeing that... paragraph (c)(5) of this section, is prohibited from discriminating because of race, color, religion, sex...
From Equal Educational Opportunity to Diversity Advantaged Learning
ERIC Educational Resources Information Center
Hawley, Willis D.
2007-01-01
The case for desegregation has been based largely on research showing its contributions to the educational opportunities and life chances of students of color. However, this has led to remedies that have placed much of the burden of desegregation on people of color and has failed to develop awareness that there are substantial advantages to all…
Race-Conscious Educational Policies versus a "Color-Blind Constitution": A Historical Perspective
ERIC Educational Resources Information Center
Anderson, James D.
2007-01-01
This article examines the origins and development of citizenship and equal rights by the Reconstruction Congress (1865-1875) to determine if it created a new constitutional order that is color blind and thus prohibits the use of racial classifications by government to achieve school desegregation and affirmative action programs. The theory of…
Boosting the discriminative power of color models for feature detection
NASA Astrophysics Data System (ADS)
Stokman, Harro M. G.; Gevers, Theo
2005-01-01
We consider the well-known problem of segmenting a color image into foreground-background pixels. Such result can be obtained by segmenting the red, green and blue channels directly. Alternatively, the result may be obtained through the transformation of the color image into other color spaces, such as HSV or normalized colors. The problem then is how to select the color space or color channel that produces the best segmentation result. Furthermore, if more than one channels are equally good candidates, the next problem is how to combine the results. In this article, we investigate if the principles of the formal model for diversification of Markowitz (1952) can be applied to solve the problem. We verify, in theory and in practice, that the proposed diversification model can be applied effectively to determine the most appropriate combination of color spaces for the application at hand.
NASA Technical Reports Server (NTRS)
Thomson, F.
1972-01-01
The additional processing performed on data collected over the Rhode River Test Site and Forestry Site in November 1970 is reported. The techniques and procedures used to obtain the processed results are described. Thermal data collected over three approximately parallel lines of the site were contoured, and the results color coded, for the purpose of delineating important scene constituents and to identify trees attacked by pine bark beetles. Contouring work and histogram preparation are reviewed and the important conclusions from the spectral analysis and recognition computer (SPARC) signature extension work are summarized. The SPARC setup and processing records are presented and recommendations are made for future data collection over the site.
Web-based CERES Clouds QC Property Viewing Tool
NASA Astrophysics Data System (ADS)
Smith, R. A.; Chu, C.; Sun-Mack, S.; Chen, Y.; Heckert, E.; Minnis, P.
2014-12-01
This presentation will display the capabilities of a web-based CERES cloud property viewer. Terra data will be chosen for examples. It will demonstrate viewing of cloud properties in gridded global maps, histograms, time series displays, latitudinal zonal images, binned data charts, data frequency graphs, and ISCCP plots. Images can be manipulated by the user to narrow boundaries of the map as well as color bars and value ranges, compare datasets, view data values, and more. Other atmospheric studies groups will be encouraged to put their data into the underlying NetCDF data format and view their data with the tool. A laptop will hopefully be available to allow conference attendees to try navigating the tool.
Semi-automatic breast ultrasound image segmentation based on mean shift and graph cuts.
Zhou, Zhuhuang; Wu, Weiwei; Wu, Shuicai; Tsui, Po-Hsiang; Lin, Chung-Chih; Zhang, Ling; Wang, Tianfu
2014-10-01
Computerized tumor segmentation on breast ultrasound (BUS) images remains a challenging task. In this paper, we proposed a new method for semi-automatic tumor segmentation on BUS images using Gaussian filtering, histogram equalization, mean shift, and graph cuts. The only interaction required was to select two diagonal points to determine a region of interest (ROI) on an input image. The ROI image was shrunken by a factor of 2 using bicubic interpolation to reduce computation time. The shrunken image was smoothed by a Gaussian filter and then contrast-enhanced by histogram equalization. Next, the enhanced image was filtered by pyramid mean shift to improve homogeneity. The object and background seeds for graph cuts were automatically generated on the filtered image. Using these seeds, the filtered image was then segmented by graph cuts into a binary image containing the object and background. Finally, the binary image was expanded by a factor of 2 using bicubic interpolation, and the expanded image was processed by morphological opening and closing to refine the tumor contour. The method was implemented with OpenCV 2.4.3 and Visual Studio 2010 and tested for 38 BUS images with benign tumors and 31 BUS images with malignant tumors from different ultrasound scanners. Experimental results showed that our method had a true positive rate (TP) of 91.7%, a false positive (FP) rate of 11.9%, and a similarity (SI) rate of 85.6%. The mean run time on Intel Core 2.66 GHz CPU and 4 GB RAM was 0.49 ± 0.36 s. The experimental results indicate that the proposed method may be useful in BUS image segmentation. © The Author(s) 2014.
Anifah, Lilik; Purnama, I Ketut Eddy; Hariadi, Mochamad; Purnomo, Mauridhi Hery
2013-01-01
Localization is the first step in osteoarthritis (OA) classification. Manual classification, however, is time-consuming, tedious, and expensive. The proposed system is designed as decision support system for medical doctors to classify the severity of knee OA. A method has been proposed here to localize a joint space area for OA and then classify it in 4 steps to classify OA into KL-Grade 0, KL-Grade 1, KL-Grade 2, KL-Grade 3 and KL-Grade 4, which are preprocessing, segmentation, feature extraction, and classification. In this proposed system, right and left knee detection was performed by employing the Contrast-Limited Adaptive Histogram Equalization (CLAHE) and the template matching. The Gabor kernel, row sum graph and moment methods were used to localize the junction space area of knee. CLAHE is used for preprocessing step, i.e.to normalize the varied intensities. The segmentation process was conducted using the Gabor kernel, template matching, row sum graph and gray level center of mass method. Here GLCM (contrast, correlation, energy, and homogeinity) features were employed as training data. Overall, 50 data were evaluated for training and 258 data for testing. Experimental results showed the best performance by using gabor kernel with parameters α=8, θ=0, Ψ=[0 π/2], γ=0,8, N=4 and with number of iterations being 5000, momentum value 0.5 and α0=0.6 for the classification process. The run gave classification accuracy rate of 93.8% for KL-Grade 0, 70% for KL-Grade 1, 4% for KL-Grade 2, 10% for KL-Grade 3 and 88.9% for KL-Grade 4.
Anifah, Lilik; Purnama, I Ketut Eddy; Hariadi, Mochamad; Purnomo, Mauridhi Hery
2013-01-01
Localization is the first step in osteoarthritis (OA) classification. Manual classification, however, is time-consuming, tedious, and expensive. The proposed system is designed as decision support system for medical doctors to classify the severity of knee OA. A method has been proposed here to localize a joint space area for OA and then classify it in 4 steps to classify OA into KL-Grade 0, KL-Grade 1, KL-Grade 2, KL-Grade 3 and KL-Grade 4, which are preprocessing, segmentation, feature extraction, and classification. In this proposed system, right and left knee detection was performed by employing the Contrast-Limited Adaptive Histogram Equalization (CLAHE) and the template matching. The Gabor kernel, row sum graph and moment methods were used to localize the junction space area of knee. CLAHE is used for preprocessing step, i.e.to normalize the varied intensities. The segmentation process was conducted using the Gabor kernel, template matching, row sum graph and gray level center of mass method. Here GLCM (contrast, correlation, energy, and homogeinity) features were employed as training data. Overall, 50 data were evaluated for training and 258 data for testing. Experimental results showed the best performance by using gabor kernel with parameters α=8, θ=0, Ψ=[0 π/2], γ=0,8, N=4 and with number of iterations being 5000, momentum value 0.5 and α0=0.6 for the classification process. The run gave classification accuracy rate of 93.8% for KL-Grade 0, 70% for KL-Grade 1, 4% for KL-Grade 2, 10% for KL-Grade 3 and 88.9% for KL-Grade 4. PMID:23525188
PIRIA: a general tool for indexing, search, and retrieval of multimedia content
NASA Astrophysics Data System (ADS)
Joint, Magali; Moellic, Pierre-Alain; Hede, P.; Adam, P.
2004-05-01
The Internet is a continuously expanding source of multimedia content and information. There are many products in development to search, retrieve, and understand multimedia content. But most of the current image search/retrieval engines, rely on a image database manually pre-indexed with keywords. Computers are still powerless to understand the semantic meaning of still or animated image content. Piria (Program for the Indexing and Research of Images by Affinity), the search engine we have developed brings this possibility closer to reality. Piria is a novel search engine that uses the query by example method. A user query is submitted to the system, which then returns a list of images ranked by similarity, obtained by a metric distance that operates on every indexed image signature. These indexed images are compared according to several different classifiers, not only Keywords, but also Form, Color and Texture, taking into account geometric transformations and variance like rotation, symmetry, mirroring, etc. Form - Edges extracted by an efficient segmentation algorithm. Color - Histogram, semantic color segmentation and spatial color relationship. Texture - Texture wavelets and local edge patterns. If required, Piria is also able to fuse results from multiple classifiers with a new classification of index categories: Single Indexer Single Call (SISC), Single Indexer Multiple Call (SIMC), Multiple Indexers Single Call (MISC) or Multiple Indexers Multiple Call (MIMC). Commercial and industrial applications will be explored and discussed as well as current and future development.
Automated oil spill detection with multispectral imagery
NASA Astrophysics Data System (ADS)
Bradford, Brian N.; Sanchez-Reyes, Pedro J.
2011-06-01
In this publication we present an automated detection method for ocean surface oil, like that which existed in the Gulf of Mexico as a result of the April 20, 2010 Deepwater Horizon drilling rig explosion. Regions of surface oil in airborne imagery are isolated using red, green, and blue bands from multispectral data sets. The oil shape isolation procedure involves a series of image processing functions to draw out the visual phenomenological features of the surface oil. These functions include selective color band combinations, contrast enhancement and histogram warping. An image segmentation process then separates out contiguous regions of oil to provide a raster mask to an analyst. We automate the detection algorithm to allow large volumes of data to be processed in a short time period, which can provide timely oil coverage statistics to response crews. Geo-referenced and mosaicked data sets enable the largest identified oil regions to be mapped to exact geographic coordinates. In our simulation, multispectral imagery came from multiple sources including first-hand data collected from the Gulf. Results of the simulation show the oil spill coverage area as a raster mask, along with histogram statistics of the oil pixels. A rough square footage estimate of the coverage is reported if the image ground sample distance is available.
Web servlet-assisted, dial-in flow cytometry data analysis.
Battye, F
2001-02-01
The obvious benefits of centralized data storage notwithstanding, the size of modern flow cytometry data files discourages their transmission over commonly used telephone modem connections. The proposed solution is to install at the central location a web servlet that can extract compact data arrays, of a form dependent on the requested display type, from the stored files and transmit them to a remote client computer program for display. A client program and a web servlet, both written in the Java programming language, were designed to communicate over standard network connections. The client program creates familiar numerical and graphical display types and allows the creation of gates from combinations of user-defined regions. Data compression techniques further reduce transmission times for data arrays that are already much smaller than the data file itself. For typical data files, network transmission times were reduced more than 700-fold for extraction of one-dimensional (1-D) histograms, between 18 and 120-fold for 2-D histograms, and 6-fold for color-coded dot plots. Numerous display formats are possible without further access to the data file. This scheme enables telephone modem access to centrally stored data without restricting flexibility of display format or preventing comparisons with locally stored files. Copyright 2001 Wiley-Liss, Inc.
Rajavi, Zhale; Sabbaghi, Hamideh; Baghini, Ahmad Shojaei; Yaseri, Mehdi; Sheibani, Koroush; Norouzi, Ghazal
2015-01-01
To determine the prevalence of color vision deficiency (CVD) and its correlation with amblyopia and refractive errors among primary school children. In this population-based cross-sectional study, 2160 children were selected from 36 primary schools; 60 students were from each school (10 students in each grade), with equal sex distribution. A complete eye examination including refraction using a photorefractometer, determination of visual acuity (VA) and color vision using a Yang vision tester, and evaluation of ocular media opacity using a direct ophthalmoscope was performed. Children who could not answer at least 4 plates of the Ishihara color test were considered as color vision deficient subjects. Amblyopia was determined if pinhole VA was worse than 0.3 LogMAR (equal to 20/40). The prevalence of CVD was 2.2% (95% CI: 1.5% to 3%) which was higher in male subjects (37 [3.5%] boys vs. 11 [1.0%] girls, P < 0.001). Mean VA was lower among students with CVD as compared to normal color vision children (P = 0.035) and amblyopia was observed in 8.3% (95% CI: 0.2% to 16.4%) of patients with CVD versus 2.1% (95% CI: 1.5% to 2.08%) of children with normal color vision perception (P = 0.005). A statistically significant correlation between lower VA and CVD was observed (P = 0.023). Although CVD was correlated with lower VA and amblyopia, there was no relationship between CVD and the type of amblyopia, refractive error, anisometropia or strabismus.
Alcohol-containing mouthwasheses: effect on composite color.
Settembrini, L; Penugonda, B; Scherer, W; Strassler, H; Hittelman, E
1995-01-01
This study investigated whether commercially available mouthwashes could affect or change the color of a hybrid composite resin. Twenty-four disks were fabricated and divided into eight equal groups for testing. At baseline, six colorimetric recordings and color parameters (L*, a*, b*) were recorded for each grouping of disks using a Chroma Meter CR-300 in reflectance mode. The groups of disks were immersed in their respective mouthwashes for 2 minutes a day in a vibratory fashion over a 6-month period. At the end of 6 months, color differences, delta E, were calculated between the base line and test recordings. The results indicate that rinsing with mouthwashes for 6 months can cause a hybrid resin to undergo color variations. Except for one product the color variations were not clinically significant.
Perceptual approach for unsupervised digital color restoration of cinematographic archives
NASA Astrophysics Data System (ADS)
Chambah, Majed; Rizzi, Alessandro; Gatta, Carlo; Besserer, Bernard; Marini, Daniele
2003-01-01
The cinematographic archives represent an important part of our collective memory. We present in this paper some advances in automating the color fading restoration process, especially with regard to the automatic color correction technique. The proposed color correction method is based on the ACE model, an unsupervised color equalization algorithm based on a perceptual approach and inspired by some adaptation mechanisms of the human visual system, in particular lightness constancy and color constancy. There are some advantages in a perceptual approach: mainly its robustness and its local filtering properties, that lead to more effective results. The resulting technique, is not just an application of ACE on movie images, but an enhancement of ACE principles to meet the requirements in the digital film restoration field. The presented preliminary results are satisfying and promising.
Grubert, Anna; Eimer, Martin
2013-10-01
To find out whether attentional target selection can be effectively guided by top-down task sets for multiple colors, we measured behavioral and ERP markers of attentional target selection in an experiment where participants had to identify color-defined target digits that were accompanied by a single gray distractor object in the opposite visual field. In the One Color task, target color was constant. In the Two Color task, targets could have one of two equally likely colors. Color-guided target selection was less efficient during multiple-color relative to single-color search, and this was reflected by slower response times and delayed N2pc components. Nontarget-color items that were presented in half of all trials captured attention and gained access to working memory when participants searched for two colors, but were excluded from attentional processing in the One Color task. Results demonstrate qualitative differences in the guidance of attentional target selection between single-color and multiple-color visual search. They suggest that top-down attentional control can be applied much more effectively when it is based on a single feature-specific attentional template. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Color group selection for computer interfaces
NASA Astrophysics Data System (ADS)
Lyons, Paul; Moretti, Giovanni; Wilson, Mark
2000-06-01
We describe a low-impact method for coloring interfaces harmoniously. The method uses a model that characterizes the overall image including the need for distinguishability between interface components. The degree of visual distinction between one component and other components, and its color strength (which increases with its importance and decreases with its size and longevity), are used in generating a rigid ball-and-stick 'color molecule,' which represents the color relationships between the interface components. The shape of the color molecule is chosen to conform to standard principles of color harmony (like colors harmonize, complementary colors harmonize, cycles in the color space harmonize, and so on). The color molecule's shape is fixed, but its position and orientation within the perceptually uniform color solid are not. The end user of the application chooses a new color scheme for the complete interface by repositioning the molecule within the color space. The molecule's shape and rigidity, and the space's perceptual uniformity, ensures the distinguishability and color harmony of the components are maintained. The system produces a selection of color schemes which often include subtle 'nameless' colors that people rarely choose using conventional color controls, but which blend smoothly into a harmonious color scheme. A new set of equally harmonious color schemes only requires repositioning the color molecule within the space.
Rules infants look by: Testing the assumption of transitivity in visual salience.
Kibbe, Melissa M; Kaldy, Zsuzsa; Blaser, Erik
2018-01-01
What drives infants' attention in complex visual scenes? Early models of infant attention suggested that the degree to which different visual features were detectable determines their attentional priority. Here, we tested this by asking whether two targets - defined by different features, but each equally salient when evaluated independently - would drive attention equally when pitted head-to-head. In Experiment 1, we presented 6-month-old infants with an array of gabor patches in which a target region varied either in color or spatial frequency from the background. Using a forced-choice preferential-looking method, we measured how readily infants fixated the target as its featural difference from the background was parametrically increased. Then, in Experiment 2, we used these psychometric preference functions to choose values for color and spatial frequency targets that were equally salient (preferred), and pitted them against each other within the same display. We reasoned that, if salience is transitive, then the stimuli should be iso-salient and infants should therefore show no systematic preference for either stimulus. On the contrary, we found that infants consistently preferred the color-defined stimulus. This suggests that computing visual salience in more complex scenes needs to include factors above and beyond local salience values.
Waldenberg, Christian; Hebelka, Hanna; Brisby, Helena; Lagerstrand, Kerstin Magdalena
2018-05-01
Magnetic resonance imaging (MRI) is the best diagnostic imaging method for low back pain. However, the technique is currently not utilized in its full capacity, often failing to depict painful intervertebral discs (IVDs), potentially due to the rough degeneration classification system used clinically today. MR image histograms, which reflect the IVD heterogeneity, may offer sensitive imaging biomarkers for IVD degeneration classification. This study investigates the feasibility of using histogram analysis as means of objective and continuous grading of IVD degeneration. Forty-nine IVDs in ten low back pain patients (six males, 25-69 years) were examined with MRI (T2-weighted images and T2-maps). Each IVD was semi-automatically segmented on three mid-sagittal slices. Histogram features of the IVD were extracted from the defined regions of interest and correlated to Pfirrmann grade. Both T2-weighted images and T2-maps displayed similar histogram features. Histograms of well-hydrated IVDs displayed two separate peaks, representing annulus fibrosus and nucleus pulposus. Degenerated IVDs displayed decreased peak separation, where the separation was shown to correlate strongly with Pfirrmann grade (P < 0.05). In addition, some degenerated IVDs within the same Pfirrmann grade displayed diametrically different histogram appearances. Histogram features correlated well with IVD degeneration, suggesting that IVD histogram analysis is a suitable tool for objective and continuous IVD degeneration classification. As histogram analysis revealed IVD heterogeneity, it may be a clinical tool for characterization of regional IVD degeneration effects. To elucidate the usefulness of histogram analysis in patient management, IVD histogram features between asymptomatic and symptomatic individuals needs to be compared.
Unequal Education: Federal Loophole Enables Lower Spending on Students of Color
ERIC Educational Resources Information Center
Spatig-Amerikaner, Ary
2012-01-01
In 1954 the Supreme Court declared that public education is "a right which must be made available to all on equal terms." That landmark decision in "Brown v. Board of Education" stood for the proposition that the federal government would no longer allow states and municipalities to deny equal educational opportunity to a…
ERIC Educational Resources Information Center
Baptiste, Steffany A.
2010-01-01
Problem: Since abolition of slavery, the United States has struggled to recognize people of color, specifically African-Americans, as equal citizens worthy of equal education. For several generations, within the curriculum of American schools, students have been taught the narrative of American History with a Eurocentric perspective. However, the…
Management of natural resources through automatic cartographic inventory. [France
NASA Technical Reports Server (NTRS)
Rey, P.; Gourinard, Y.; Cambou, F. (Principal Investigator)
1974-01-01
The author has identified the following significant results. (1) Accurate recognition of previously known ground features from ERTS-1 imagery has been confirmed and a probable detection range for the major signatures can be given. (2) Unidentified elements, however, must be decoded by means of the equal densitometric value zone method. (3) Determination of these zonings involves an analogical treatment of images using the color equidensity methods (pseudo-color), color composites and especially temporal color composite (repetitive superposition). (4) After this analogical preparation, the digital equidensities can be processed by computer in the four MSS bands, according to a series of transfer operations from imagery and automatic cartography.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-18
... for all persons, to prohibit discrimination in employment because of race, color, religion, sex... Act (Title VII) (42 U.S.C. 2000e et seq.) (race, color, religion, sex, national origin), the Age Discrimination in Employment Act (ADEA) (29 U.S.C. 621 et seq.) (age), the Equal Pay Act (29 U.S.C. 206(d)) (sex...
46 CFR 160.072-3 - General performance requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
....072-3 General performance requirements. (a) Each flag must: (1) Be a square or rectangle at least 90... colored a bright red-orange color; (3) Display a black disc and a black square on the red-orange... square shall be equal, and shall each be 1/3 of the length of the longest side of the flag, or 30 cm (12...
46 CFR 160.072-3 - General performance requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
....072-3 General performance requirements. (a) Each flag must: (1) Be a square or rectangle at least 90... colored a bright red-orange color; (3) Display a black disc and a black square on the red-orange... square shall be equal, and shall each be 1/3 of the length of the longest side of the flag, or 30 cm (12...
46 CFR 160.072-3 - General performance requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
....072-3 General performance requirements. (a) Each flag must: (1) Be a square or rectangle at least 90... colored a bright red-orange color; (3) Display a black disc and a black square on the red-orange... square shall be equal, and shall each be 1/3 of the length of the longest side of the flag, or 30 cm (12...
46 CFR 160.072-3 - General performance requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
....072-3 General performance requirements. (a) Each flag must: (1) Be a square or rectangle at least 90... colored a bright red-orange color; (3) Display a black disc and a black square on the red-orange... square shall be equal, and shall each be 1/3 of the length of the longest side of the flag, or 30 cm (12...
46 CFR 160.072-3 - General performance requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
....072-3 General performance requirements. (a) Each flag must: (1) Be a square or rectangle at least 90... colored a bright red-orange color; (3) Display a black disc and a black square on the red-orange... square shall be equal, and shall each be 1/3 of the length of the longest side of the flag, or 30 cm (12...
Content Based Image Retrieval by Using Color Descriptor and Discrete Wavelet Transform.
Ashraf, Rehan; Ahmed, Mudassar; Jabbar, Sohail; Khalid, Shehzad; Ahmad, Awais; Din, Sadia; Jeon, Gwangil
2018-01-25
Due to recent development in technology, the complexity of multimedia is significantly increased and the retrieval of similar multimedia content is a open research problem. Content-Based Image Retrieval (CBIR) is a process that provides a framework for image search and low-level visual features are commonly used to retrieve the images from the image database. The basic requirement in any image retrieval process is to sort the images with a close similarity in term of visually appearance. The color, shape and texture are the examples of low-level image features. The feature plays a significant role in image processing. The powerful representation of an image is known as feature vector and feature extraction techniques are applied to get features that will be useful in classifying and recognition of images. As features define the behavior of an image, they show its place in terms of storage taken, efficiency in classification and obviously in time consumption also. In this paper, we are going to discuss various types of features, feature extraction techniques and explaining in what scenario, which features extraction technique will be better. The effectiveness of the CBIR approach is fundamentally based on feature extraction. In image processing errands like object recognition and image retrieval feature descriptor is an immense among the most essential step. The main idea of CBIR is that it can search related images to an image passed as query from a dataset got by using distance metrics. The proposed method is explained for image retrieval constructed on YCbCr color with canny edge histogram and discrete wavelet transform. The combination of edge of histogram and discrete wavelet transform increase the performance of image retrieval framework for content based search. The execution of different wavelets is additionally contrasted with discover the suitability of specific wavelet work for image retrieval. The proposed algorithm is prepared and tried to implement for Wang image database. For Image Retrieval Purpose, Artificial Neural Networks (ANN) is used and applied on standard dataset in CBIR domain. The execution of the recommended descriptors is assessed by computing both Precision and Recall values and compared with different other proposed methods with demonstrate the predominance of our method. The efficiency and effectiveness of the proposed approach outperforms the existing research in term of average precision and recall values.
Munsell color value as related to organic carbon in Devonian shale of Appalachian basin
Hosterman, J.W.; Whitlow, S.I.
1981-01-01
Comparison of Munsell color value with organic carbon content of 880 samples from 50 drill holes in Appalachian basin shows that a power curve is the best fit for the data. A color value below 3 to 3.5 indicates the presence of organic carbon but is meaningless in determining the organic carbon content because a large increase in amount of organic carbon causes only a minor decrease in color value. Above 4, the color value is one of the factors that can be used in calculating the organic content. For samples containing equal amounts of organic carbon, calcareous shale containing more than 5% calcite is darker than shale containing less than 5% calcite.-Authors
Using Three-color Single-molecule FRET to Study the Correlation of Protein Interactions.
Götz, Markus; Wortmann, Philipp; Schmid, Sonja; Hugel, Thorsten
2018-01-30
Single-molecule Förster resonance energy transfer (smFRET) has become a widely used biophysical technique to study the dynamics of biomolecules. For many molecular machines in a cell proteins have to act together with interaction partners in a functional cycle to fulfill their task. The extension of two-color to multi-color smFRET makes it possible to simultaneously probe more than one interaction or conformational change. This not only adds a new dimension to smFRET experiments but it also offers the unique possibility to directly study the sequence of events and to detect correlated interactions when using an immobilized sample and a total internal reflection fluorescence microscope (TIRFM). Therefore, multi-color smFRET is a versatile tool for studying biomolecular complexes in a quantitative manner and in a previously unachievable detail. Here, we demonstrate how to overcome the special challenges of multi-color smFRET experiments on proteins. We present detailed protocols for obtaining the data and for extracting kinetic information. This includes trace selection criteria, state separation, and the recovery of state trajectories from the noisy data using a 3D ensemble Hidden Markov Model (HMM). Compared to other methods, the kinetic information is not recovered from dwell time histograms but directly from the HMM. The maximum likelihood framework allows us to critically evaluate the kinetic model and to provide meaningful uncertainties for the rates. By applying our method to the heat shock protein 90 (Hsp90), we are able to disentangle the nucleotide binding and the global conformational changes of the protein. This allows us to directly observe the cooperativity between the two nucleotide binding pockets of the Hsp90 dimer.
Use of 3-dimensional surface acquisition to study facial morphology in 5 populations.
Kau, Chung How; Richmond, Stephen; Zhurov, Alexei; Ovsenik, Maja; Tawfik, Wael; Borbely, Peter; English, Jeryl D
2010-04-01
The aim of this study was to assess the use of 3-dimensional facial averages for determining morphologic differences from various population groups. We recruited 473 subjects from 5 populations. Three-dimensional images of the subjects were obtained in a reproducible and controlled environment with a commercially available stereo-photogrammetric camera capture system. Minolta VI-900 (Konica Minolta, Tokyo, Japan) and 3dMDface (3dMD LLC, Atlanta, Ga) systems were used. Each image was obtained as a facial mesh and orientated along a triangulated axis. All faces were overlaid, one on top of the other, and a complex mathematical algorithm was performed until average composite faces of 1 man and 1 woman were achieved for each subgroup. These average facial composites were superimposed based on a previously validated superimposition method, and the facial differences were quantified. Distinct facial differences were observed among the groups. The linear differences between surface shells ranged from 0.37 to 1.00 mm for the male groups. The linear differences ranged from 0.28 and 0.87 mm for the women. The color histograms showed that the similarities in facial shells between the subgroups by sex ranged from 26.70% to 70.39% for men and 36.09% to 79.83% for women. The average linear distance from the signed color histograms for the male subgroups ranged from -6.30 to 4.44 mm. The female subgroups ranged from -6.32 to 4.25 mm. Average faces can be efficiently and effectively created from a sample of 3-dimensional faces. Average faces can be used to compare differences in facial morphologies for various populations and sexes. Facial morphologic differences were greatest when totally different ethnic variations were compared. Facial morphologic similarities were present in comparable groups, but there were large variations in concentrated areas of the face. Copyright 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Deforestation due to Urbanization: a Case Study for Trabzon, Turkey
NASA Astrophysics Data System (ADS)
Telkenaroglu, C.; Dikmen, M.
2017-11-01
This paper inspects the deforestation of Trabzon in Turkey, due to urbanization, between 2006 and 2016. For this purpose, Landsat 7 ETM+ (Enhanced Thematic Mapper Plus) images are obtained from United States Geographical Survey (USGS) archive (USGS, 2017a) and their VNIR bands related to this study are utilized. For both years, and for each band, histograms are equalized. Finally, Normalized Difference Vegetation Index (NDVI) values are calculated as images. Resulting vegetation indexes are assessed in comparison to the binary ground truth images. A visual inspection is also done with respect to Google's Timelapse images for each year to validate and support the results.
METEOSAT studies of clouds and radiation budget
NASA Technical Reports Server (NTRS)
Saunders, R. W.
1982-01-01
Radiation budget studies of the atmosphere/surface system from Meteosat, cloud parameter determination from space, and sea surface temperature measurements from TIROS N data are all described. This work was carried out on the interactive planetary image processing system (IPIPS), which allows interactive manipulationion of the image data in addition to the conventional computational tasks. The current hardware configuration of IPIPS is shown. The I(2)S is the principal interactive display allowing interaction via a trackball, four buttons under program control, or a touch tablet. Simple image processing operations such as contrast enhancing, pseudocoloring, histogram equalization, and multispectral combinations, can all be executed at the push of a button.
Full-color laser cathode ray tube (L-CRT) projector
NASA Astrophysics Data System (ADS)
Kozlovskiy, Vladimir; Nasibov, Alexander S.; Popov, Yuri M.; Reznikov, Parvel V.; Skasyrsky, Yan K.
1995-04-01
A full color TV projector based on three laser cathode-ray tubes (L-CRT) is described. A water-cooled laser screen (LS) is the radiation element of the L-CRT. We have produced three main colors (blue, green and red) by using the LS made of three II-VI compounds: ZnSe ((lambda) equals 475 nm), CdS ((lambda) equals 530 nm) and ZnCdSe (630 nm). The total light flow reaches 1500 Lm, and the number of elements per line is not less than 1000. The LS efficiency may be about 10 Lm/W. In our experiments we have tested new electron optics: - (30 - 37) kV are applied to the cathode unit of the electron gun; the anode of the e-gun and the e-beam intensity modulator are under low potential; the LS has a potential + (30 - 37) kV. The accelerating voltage is divided into two parts, and this enables us to diminish the size and weight of the projector.
Portable sequential multicolor thermal imager based on a MCT 384 x 288 focal plane array
NASA Astrophysics Data System (ADS)
Breiter, Rainer; Cabanski, Wolfgang A.; Mauk, Karl-Heinz; Rode, Werner; Ziegler, Johann
2001-10-01
AIM has developed a sequential multicolor thermal imager to provide customers with a test system to realize real-time spectral selective thermal imaging. In contrast to existing PC based laboratory units, the system is miniaturized with integrated signal processing like non-uniformity correction and post processing functions such as image subtraction of different colors to allow field tests in military applications like detection of missile plumes or camouflaged targets as well as commercial applications like detection of chemical agents, pollution control, etc. The detection module used is a 384 X 288 mercury cadmium telluride (MCT) focal plane array (FPA) available in the mid wave (MWIR) or long wave spectral band LWIR). A compact command and control electronics (CCE) provides clock and voltage supply for the detector as well as 14 bit deep digital conversion of the analog detector output. A continuous rotating wheel with four facets for filters provides spectral selectivity. The customer can choose between various types of filter characteristics, e.g. a 4.2 micrometer bandpass filter for CO2 detection in the MWIR band. The rotating wheel can be synchronized to an external source giving the rotation speed, typical 25 l/s. A position sensor generates the four frame start signals for synchronous operation of the detector -- 100 Hz framerate for the four frames per rotation. The rotating wheel is exchangeable for different configurations and also plates for a microscanner operation to improve geometrical resolution are available instead of a multicolor operation. AIM's programmable MVIP image processing unit is used for signal processing like non- uniformity correction and controlling the detector parameters. The MVIP allows to output the four subsequent images as four quarters of the video screen to prior to any observation task set the integration time for each color individually for comparable performance in each spectral color and after that also to determine separate NUC coefficients for each filter position. This procedure allows to really evaluate the pay off of spectral selectivity in the IR. The display part of the MVIP allows linear look up tables (LUT) for dynamic reduction as well as histogram equalization for automatic LUT optimization. Parallel to the video output a digital interface is provided for digital recording of the 14 bit corrected detector data. The architecture of the thermal imager with its components is presented in this paper together with some aspects on multicolor thermal imaging.
Bin Ratio-Based Histogram Distances and Their Application to Image Classification.
Hu, Weiming; Xie, Nianhua; Hu, Ruiguang; Ling, Haibin; Chen, Qiang; Yan, Shuicheng; Maybank, Stephen
2014-12-01
Large variations in image background may cause partial matching and normalization problems for histogram-based representations, i.e., the histograms of the same category may have bins which are significantly different, and normalization may produce large changes in the differences between corresponding bins. In this paper, we deal with this problem by using the ratios between bin values of histograms, rather than bin values' differences which are used in the traditional histogram distances. We propose a bin ratio-based histogram distance (BRD), which is an intra-cross-bin distance, in contrast with previous bin-to-bin distances and cross-bin distances. The BRD is robust to partial matching and histogram normalization, and captures correlations between bins with only a linear computational complexity. We combine the BRD with the ℓ1 histogram distance and the χ(2) histogram distance to generate the ℓ1 BRD and the χ(2) BRD, respectively. These combinations exploit and benefit from the robustness of the BRD under partial matching and the robustness of the ℓ1 and χ(2) distances to small noise. We propose a method for assessing the robustness of histogram distances to partial matching. The BRDs and logistic regression-based histogram fusion are applied to image classification. The experimental results on synthetic data sets show the robustness of the BRDs to partial matching, and the experiments on seven benchmark data sets demonstrate promising results of the BRDs for image classification.
Performance of digital RGB reflectance color extraction for plaque lesion
NASA Astrophysics Data System (ADS)
Hashim, Hadzli; Taib, Mohd Nasir; Jailani, Rozita; Sulaiman, Saadiah; Baba, Roshidah
2005-01-01
Several clinical psoriasis lesion groups are been studied for digital RGB color features extraction. Previous works have used samples size that included all the outliers lying beyond the standard deviation factors from the peak histograms. This paper described the statistical performances of the RGB model with and without removing these outliers. Plaque lesion is experimented with other types of psoriasis. The statistical tests are compared with respect to three samples size; the original 90 samples, the first size reduction by removing outliers from 2 standard deviation distances (2SD) and the second size reduction by removing outliers from 1 standard deviation distance (1SD). Quantification of data images through the normal/direct and differential of the conventional reflectance method is considered. Results performances are concluded by observing the error plots with 95% confidence interval and findings of the inference T-tests applied. The statistical tests outcomes have shown that B component for conventional differential method can be used to distinctively classify plaque from the other psoriasis groups in consistent with the error plots finding with an improvement in p-value greater than 0.5.
Qiu, Wei; Hamernik, Roger P; Davis, Robert I
2013-05-01
A series of Gaussian and non-Gaussian equal energy noise exposures were designed with the objective of establishing the extent to which the kurtosis statistic could be used to grade the severity of noise trauma produced by the exposures. Here, 225 chinchillas distributed in 29 groups, with 6 to 8 animals per group, were exposed at 97 dB SPL. The equal energy exposures were presented either continuously for 5 d or on an interrupted schedule for 19 d. The non-Gaussian noises all differed in the level of the kurtosis statistic or in the temporal structure of the noise, where the latter was defined by different peak, interval, and duration histograms of the impact noise transients embedded in the noise signal. Noise-induced trauma was estimated from auditory evoked potential hearing thresholds and surface preparation histology that quantified sensory cell loss. Results indicated that the equal energy hypothesis is a valid unifying principle for estimating the consequences of an exposure if and only if the equivalent energy exposures had the same kurtosis. Furthermore, for the same level of kurtosis the detailed temporal structure of an exposure does not have a strong effect on trauma.
NASA Technical Reports Server (NTRS)
Abbott, M. R.; Zion, P. M.
1984-01-01
As part of the first Coastal Ocean Dynamics Experiment, images of ocean color were collected from late March until late July, 1981, by the Coastal Zone Color Scanner aboard Nimbus-7. Images that had sufficient cloud-free area to be of interest were processed to yield near-surface phytoplankton pigment concentrations. These images were then remapped to a fixed equal-area grid. This report contains photographs of the digital images and a brief description of the processing methods.
Color generalization across hue and saturation in chicks described by a simple (Bayesian) model.
Scholtyssek, Christine; Osorio, Daniel C; Baddeley, Roland J
2016-08-01
Color conveys important information for birds in tasks such as foraging and mate choice, but in the natural world color signals can vary substantially, so birds may benefit from generalizing responses to perceptually discriminable colors. Studying color generalization is therefore a way to understand how birds take account of suprathreshold stimulus variations in decision making. Former studies on color generalization have focused on hue variation, but natural colors often vary in saturation, which could be an additional, independent source of information. We combine behavioral experiments and statistical modeling to investigate whether color generalization by poultry chicks depends on the chromatic dimension in which colors vary. Chicks were trained to discriminate colors separated by equal distances on a hue or a saturation dimension, in a receptor-based color space. Generalization tests then compared the birds' responses to familiar and novel colors lying on the same chromatic dimension. To characterize generalization we introduce a Bayesian model that extracts a threshold color distance beyond which chicks treat novel colors as significantly different from the rewarded training color. These thresholds were the same for generalization along the hue and saturation dimensions, demonstrating that responses to novel colors depend on similarity and expected variation of color signals but are independent of the chromatic dimension.
Considerations Regarding the Optical Properties of the Composite Resin Restorative Materials
Manolea, H.; Râcă, R.; Coleş, Evantia; Preotu, Gabriela; Mărăşescu, P.
2011-01-01
The purpose of this study has been to investigate the effects of certain substances frequently used in alimentation on the color stability of the composite resin restorative materials. The research hypothesis was that color stability of the composite resin is affected by the type of composite material used and by the polishing procedure. 14 samples of 5X15X2mm have been prepared from seven universal light curing restorative composite resins. The materials have manipulated and cured using LA 500 Blue Light lamp. A first color determination was done before the introduction of the samples in the dyeing agent with the help of an Easy Shade device. The samples have been splited into two lots each with seven samples. The samples from the first lot have been sectioned into three equal segments. The samples from the second lot have also been sectioned into three equal segments, and in addition to the previous group, their exterior surfaces were processed with a diamond burr. For each type of composite we have introduced a sample in one of the three chosen dyes: red alimentary colorant, coffee and red wine. The color of the samples has been determined again using the Vita Easy Shade device. From clinical point of view the results of this study shows that there are three important factors that matter when we talk about durable aesthetic results: the type of composite resin used for the restoration, the finishing and polishing procedures and the pacients’ alimentation habits. The composite resins with a good representation of the anorganic structure are easier to be polished, therefore they have only slight color modifications. Using plastic matrixes for shaping the exterior surface of the restoration is the best solution for obtaining a very smooth surface. The most significant color modifications have been done by the red wine. Coffee and to a smaller extent the red alimentary colorant have modified the color of the restoration material in a smaller degree. PMID:24778835
Theory and Application of DNA Histogram Analysis.
ERIC Educational Resources Information Center
Bagwell, Charles Bruce
The underlying principles and assumptions associated with DNA histograms are discussed along with the characteristics of fluorescent probes. Information theory was described and used to calculate the information content of a DNA histogram. Two major types of DNA histogram analyses are proposed: parametric and nonparametric analysis. Three levels…
Keeping on Keeping on: OCR and Complaints of Racial Discrimination 50 Years after "Brown"
ERIC Educational Resources Information Center
Pollock, Mica
2005-01-01
This article, written by a former civil rights investigator in the U.S. Department of Education's Office for Civil Rights (OCR), contends that ordinary Americans advocating for equal educational opportunity for students of color might enlist OCR more actively and knowingly to help secure racial equality of opportunity 50 years after "Brown." Now a…
Securing Color Fidelity in 3D Architectural Heritage Scenarios.
Gaiani, Marco; Apollonio, Fabrizio Ivan; Ballabeni, Andrea; Remondino, Fabio
2017-10-25
Ensuring color fidelity in image-based 3D modeling of heritage scenarios is nowadays still an open research matter. Image colors are important during the data processing as they affect algorithm outcomes, therefore their correct treatment, reduction and enhancement is fundamental. In this contribution, we present an automated solution developed to improve the radiometric quality of an image datasets and the performances of two main steps of the photogrammetric pipeline (camera orientation and dense image matching). The suggested solution aims to achieve a robust automatic color balance and exposure equalization, stability of the RGB-to-gray image conversion and faithful color appearance of a digitized artifact. The innovative aspects of the article are: complete automation, better color target detection, a MATLAB implementation of the ACR scripts created by Fraser and the use of a specific weighted polynomial regression. A series of tests are presented to demonstrate the efficiency of the developed methodology and to evaluate color accuracy ('color characterization').
Securing Color Fidelity in 3D Architectural Heritage Scenarios
Apollonio, Fabrizio Ivan; Ballabeni, Andrea; Remondino, Fabio
2017-01-01
Ensuring color fidelity in image-based 3D modeling of heritage scenarios is nowadays still an open research matter. Image colors are important during the data processing as they affect algorithm outcomes, therefore their correct treatment, reduction and enhancement is fundamental. In this contribution, we present an automated solution developed to improve the radiometric quality of an image datasets and the performances of two main steps of the photogrammetric pipeline (camera orientation and dense image matching). The suggested solution aims to achieve a robust automatic color balance and exposure equalization, stability of the RGB-to-gray image conversion and faithful color appearance of a digitized artifact. The innovative aspects of the article are: complete automation, better color target detection, a MATLAB implementation of the ACR scripts created by Fraser and the use of a specific weighted polynomial regression. A series of tests are presented to demonstrate the efficiency of the developed methodology and to evaluate color accuracy (‘color characterization’). PMID:29068359
ERIC Educational Resources Information Center
Vaccaro, Annemarie
2017-01-01
A qualitative case study with 18 Women of Color at a predominantly White women's college yielded counter-narratives about racial microaggressions that challenged dominant ideologies of colorblindness, meritocracy, and equal opportunity in education. Their experiences with racial microaggressions also contrast with majoritarian narratives (i.e.,…
The role of color and attention-to-color in mirror-symmetry perception.
Gheorghiu, Elena; Kingdom, Frederick A A; Remkes, Aaron; Li, Hyung-Chul O; Rainville, Stéphane
2016-07-11
The role of color in the visual perception of mirror-symmetry is controversial. Some reports support the existence of color-selective mirror-symmetry channels, others that mirror-symmetry perception is merely sensitive to color-correlations across the symmetry axis. Here we test between the two ideas. Stimuli consisted of colored Gaussian-blobs arranged either mirror-symmetrically or quasi-randomly. We used four arrangements: (1) 'segregated' - symmetric blobs were of one color, random blobs of the other color(s); (2) 'random-segregated' - as above but with the symmetric color randomly selected on each trial; (3) 'non-segregated' - symmetric blobs were of all colors in equal proportions, as were the random blobs; (4) 'anti-symmetric' - symmetric blobs were of opposite-color across the symmetry axis. We found: (a) near-chance levels for the anti-symmetric condition, suggesting that symmetry perception is sensitive to color-correlations across the symmetry axis; (b) similar performance for random-segregated and non-segregated conditions, giving no support to the idea that mirror-symmetry is color selective; (c) highest performance for the color-segregated condition, but only when the observer knew beforehand the symmetry color, suggesting that symmetry detection benefits from color-based attention. We conclude that mirror-symmetry detection mechanisms, while sensitive to color-correlations across the symmetry axis and subject to the benefits of attention-to-color, are not color selective.
The role of color and attention-to-color in mirror-symmetry perception
Gheorghiu, Elena; Kingdom, Frederick A. A.; Remkes, Aaron; Li, Hyung-Chul O.; Rainville, Stéphane
2016-01-01
The role of color in the visual perception of mirror-symmetry is controversial. Some reports support the existence of color-selective mirror-symmetry channels, others that mirror-symmetry perception is merely sensitive to color-correlations across the symmetry axis. Here we test between the two ideas. Stimuli consisted of colored Gaussian-blobs arranged either mirror-symmetrically or quasi-randomly. We used four arrangements: (1) ‘segregated’ – symmetric blobs were of one color, random blobs of the other color(s); (2) ‘random-segregated’ – as above but with the symmetric color randomly selected on each trial; (3) ‘non-segregated’ – symmetric blobs were of all colors in equal proportions, as were the random blobs; (4) ‘anti-symmetric’ – symmetric blobs were of opposite-color across the symmetry axis. We found: (a) near-chance levels for the anti-symmetric condition, suggesting that symmetry perception is sensitive to color-correlations across the symmetry axis; (b) similar performance for random-segregated and non-segregated conditions, giving no support to the idea that mirror-symmetry is color selective; (c) highest performance for the color-segregated condition, but only when the observer knew beforehand the symmetry color, suggesting that symmetry detection benefits from color-based attention. We conclude that mirror-symmetry detection mechanisms, while sensitive to color-correlations across the symmetry axis and subject to the benefits of attention-to-color, are not color selective. PMID:27404804
NASA Astrophysics Data System (ADS)
Taylor, M. B.
2009-09-01
The new plotting functionality in version 2.0 of STILTS is described. STILTS is a mature and powerful package for all kinds of table manipulation, and this version adds facilities for generating plots from one or more tables to its existing wide range of non-graphical capabilities. 2- and 3-dimensional scatter plots and 1-dimensional histograms may be generated using highly configurable style parameters. Features include multiple dataset overplotting, variable transparency, 1-, 2- or 3-dimensional symmetric or asymmetric error bars, higher-dimensional visualization using color, and textual point labeling. Vector and bitmapped output formats are supported. The plotting options provide enough flexibility to perform meaningful visualization on datasets from a few points up to tens of millions. Arbitrarily large datasets can be plotted without heavy memory usage.
Effect of algae and water on water color shift
NASA Astrophysics Data System (ADS)
Yang, Shengguang; Xia, Daying; Yang, Xiaolong; Zhao, Jun
1991-03-01
This study showed that the combined effect of absorption of planktonic algae and water on water color shift can be simulated approximately by the exponential function: Log( E {100cm/ W }+ E {100cm/ Xch1})=0.002λ-2.5 where E {100/cm W }, E {100cm/ Xchl} are, respectively, extinction coefficients of seawater and chlorophyll—a (concentration is equal to X mg/m3), and λ (nm) is wavelength. This empirical regression equation is very useful for forecasting the relation between water color and biomass in water not affected by terrigenous material. The main factor affecting water color shift in the ocean should be the absorption of blue light by planktonic algae.
Histogram deconvolution - An aid to automated classifiers
NASA Technical Reports Server (NTRS)
Lorre, J. J.
1983-01-01
It is shown that N-dimensional histograms are convolved by the addition of noise in the picture domain. Three methods are described which provide the ability to deconvolve such noise-affected histograms. The purpose of the deconvolution is to provide automated classifiers with a higher quality N-dimensional histogram from which to obtain classification statistics.
Parameterization of the Age-Dependent Whole Brain Apparent Diffusion Coefficient Histogram
Batra, Marion; Nägele, Thomas
2015-01-01
Purpose. The distribution of apparent diffusion coefficient (ADC) values in the brain can be used to characterize age effects and pathological changes of the brain tissue. The aim of this study was the parameterization of the whole brain ADC histogram by an advanced model with influence of age considered. Methods. Whole brain ADC histograms were calculated for all data and for seven age groups between 10 and 80 years. Modeling of the histograms was performed for two parts of the histogram separately: the brain tissue part was modeled by two Gaussian curves, while the remaining part was fitted by the sum of a Gaussian curve, a biexponential decay, and a straight line. Results. A consistent fitting of the histograms of all age groups was possible with the proposed model. Conclusions. This study confirms the strong dependence of the whole brain ADC histograms on the age of the examined subjects. The proposed model can be used to characterize changes of the whole brain ADC histogram in certain diseases under consideration of age effects. PMID:26609526
76 FR 14439 - No FEAR Act Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-16
... basis of race, color, religion, sex, national origin, age, disability, marital status or political..., religion, sex, national origin or disability, you must contact an Equal Employment Opportunity (EEO...
Asem, Morteza Modarresi; Oveisi, Iman Sheikh; Janbozorgi, Mona
2018-07-01
Retinal blood vessels indicate some serious health ramifications, such as cardiovascular disease and stroke. Thanks to modern imaging technology, high-resolution images provide detailed information to help analyze retinal vascular features before symptoms associated with such conditions fully develop. Additionally, these retinal images can be used by ophthalmologists to facilitate diagnosis and the procedures of eye surgery. A fuzzy noise reduction algorithm was employed to enhance color images corrupted by Gaussian noise. The present paper proposes employing a contrast limited adaptive histogram equalization to enhance illumination and increase the contrast of retinal images captured from state-of-the-art cameras. Possessing directional properties, the multistructure elements method can lead to high-performance edge detection. Therefore, multistructure elements-based morphology operators are used to detect high-quality image ridges. Following this detection, the irrelevant ridges, which are not part of the vessel tree, were removed by morphological operators by reconstruction, attempting also to keep the thin vessels preserved. A combined method of connected components analysis (CCA) in conjunction with a thresholding approach was further used to identify the ridges that correspond to vessels. The application of CCA can yield higher efficiency when it is locally applied rather than applied on the whole image. The significance of our work lies in the way in which several methods are effectively combined and the originality of the database employed, making this work unique in the literature. Computer simulation results in wide-field retinal images with up to a 200-deg field of view are a testimony of the efficacy of the proposed approach, with an accuracy of 0.9524.
NASA Technical Reports Server (NTRS)
Pedelty, Jeffrey A.; Morisette, Jeffrey T.; Smith, James A.
2004-01-01
We compare images from the Enhanced Thematic Mapper Plus (ETM+) sensor on Landsat-7 and the Advanced Land Imager (ALI) instrument on Earth Observing One (EO-1) over a test site in Rochester, New York. The site contains a variety of features, ranging from water of varying depths, deciduous/coniferous forest, and grass fields, to urban areas. Nearly coincident cloud-free images were collected one minute apart on 25 August 2001. We also compare images of a forest site near Howland, Maine, that were collected on 7 September, 2001. We atmospherically corrected each pair of images with the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) atmosphere model, using aerosol optical thickness and water vapor column density measured by in situ Cimel sun photometers within the Aerosol Robotic Network (AERONET), along with ozone density derived from the Total Ozone Mapping Spectrometer (TOMS) on the Earth Probe satellite. We present true-color composites from each instrument that show excellent qualitative agreement between the multispectral sensors, along with grey-scale images that demonstrate a significantly improved ALI panchromatic band. We quantitatively compare ALI and ETM+ reflectance spectra of a grassy field in Rochester and find < or equal to 6% differences in the visible/near infrared and approx. 2% differences in the short wave infrared. Spectral comparisons of forest sites in Rochester and Howland yield similar percentage agreement except for band 1, which has very low reflectance. Principal component analyses and comparison of normalized difference vegetation index histograms for each sensor indicate that the ALI is able to reproduce the information content in the ETM+ but with superior signal-to-noise performance due to its increased 12-bit quantization.
Relative speed of processing determines color-word contingency learning.
Forrin, Noah D; MacLeod, Colin M
2017-10-01
In three experiments, we tested a relative-speed-of-processing account of color-word contingency learning, a phenomenon in which color identification responses to high-contingency stimuli (words that appear most often in particular colors) are faster than those to low-contingency stimuli. Experiment 1 showed equally large contingency-learning effects whether responding was to the colors or to the words, likely due to slow responding to both dimensions because of the unfamiliar mapping required by the key press responses. For Experiment 2, participants switched to vocal responding, in which reading words is considerably faster than naming colors, and we obtained a contingency-learning effect only for color naming, the slower dimension. In Experiment 3, previewing the color information resulted in a reduced contingency-learning effect for color naming, but it enhanced the contingency-learning effect for word reading. These results are all consistent with contingency learning influencing performance only when the nominally irrelevant feature is faster to process than the relevant feature, and therefore are entirely in accord with a relative-speed-of-processing explanation.
Introducing parallelism to histogramming functions for GEM systems
NASA Astrophysics Data System (ADS)
Krawczyk, Rafał D.; Czarski, Tomasz; Kolasinski, Piotr; Pozniak, Krzysztof T.; Linczuk, Maciej; Byszuk, Adrian; Chernyshova, Maryna; Juszczyk, Bartlomiej; Kasprowicz, Grzegorz; Wojenski, Andrzej; Zabolotny, Wojciech
2015-09-01
This article is an assessment of potential parallelization of histogramming algorithms in GEM detector system. Histogramming and preprocessing algorithms in MATLAB were analyzed with regard to adding parallelism. Preliminary implementation of parallel strip histogramming resulted in speedup. Analysis of algorithms parallelizability is presented. Overview of potential hardware and software support to implement parallel algorithm is discussed.
An experiment on the color rendering of different light sources
NASA Astrophysics Data System (ADS)
Fumagalli, Simonetta; Bonanomi, Cristian; Rizzi, Alessandro
2013-02-01
The color rendering index (CRI) of a light source attempts to measure how much the color appearance of objects is preserved when they are illuminated by the given light source. This problem is of great importance for various industrial and scientific fields, such as lighting architecture, design, ergonomics, etc. Usually a light source is specified through the Correlated Color Temperature or CCT. However two (or more) light sources with the same CCT but different spectral power distribution can exist. Therefore color samples viewed under two light sources with equal CCTs can appear different. Hence, the need for a method to assess the quality of a given illuminant in relation to color. Recently CRI has had a renewed interest because of the new LED-based lighting systems. They usually have a color rendering index rather low, but good preservation of color appearance and a pleasant visual appearance (visual appeal). Various attempts to develop a new color rendering index have been done so far, but still research is working for a better one. This article describes an experiment performed by human observers concerning the appearance preservation of color under some light sources, comparing it with a range of available color rendering indices.
Comparison of Histograms for Use in Cloud Observation and Modeling
NASA Technical Reports Server (NTRS)
Green, Lisa; Xu, Kuan-Man
2005-01-01
Cloud observation and cloud modeling data can be presented in histograms for each characteristic to be measured. Combining information from single-cloud histograms yields a summary histogram. Summary histograms can be compared to each other to reach conclusions about the behavior of an ensemble of clouds in different places at different times or about the accuracy of a particular cloud model. As in any scientific comparison, it is necessary to decide whether any apparent differences are statistically significant. The usual methods of deciding statistical significance when comparing histograms do not apply in this case because they assume independent data. Thus, a new method is necessary. The proposed method uses the Euclidean distance metric and bootstrapping to calculate the significance level.
Shu, Ting; Zhang, Bob; Yan Tang, Yuan
2017-04-01
Researchers have recently discovered that Diabetes Mellitus can be detected through non-invasive computerized method. However, the focus has been on facial block color features. In this paper, we extensively study the effects of texture features extracted from facial specific regions at detecting Diabetes Mellitus using eight texture extractors. The eight methods are from four texture feature families: (1) statistical texture feature family: Image Gray-scale Histogram, Gray-level Co-occurance Matrix, and Local Binary Pattern, (2) structural texture feature family: Voronoi Tessellation, (3) signal processing based texture feature family: Gaussian, Steerable, and Gabor filters, and (4) model based texture feature family: Markov Random Field. In order to determine the most appropriate extractor with optimal parameter(s), various parameter(s) of each extractor are experimented. For each extractor, the same dataset (284 Diabetes Mellitus and 231 Healthy samples), classifiers (k-Nearest Neighbors and Support Vector Machines), and validation method (10-fold cross validation) are used. According to the experiments, the first and third families achieved a better outcome at detecting Diabetes Mellitus than the other two. The best texture feature extractor for Diabetes Mellitus detection is the Image Gray-scale Histogram with bin number=256, obtaining an accuracy of 99.02%, a sensitivity of 99.64%, and a specificity of 98.26% by using SVM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comparison of a multispectral vision system and a colorimeter for the assessment of meat color.
Trinderup, Camilla H; Dahl, Anders; Jensen, Kirsten; Carstensen, Jens Michael; Conradsen, Knut
2015-04-01
The color assessment ability of a multispectral vision system is investigated by a comparison study with color measurements from a traditional colorimeter. The experiment involves fresh and processed meat samples. Meat is a complex material; heterogeneous with varying scattering and reflectance properties, so several factors can influence the instrumental assessment of meat color. In order to assess whether two methods are equivalent, the variation due to these factors must be taken into account. A statistical analysis was conducted and showed that on a calibration sheet the two instruments are equally capable of measuring color. Moreover the vision system provides a more color rich assessment of fresh meat samples with a glossier surface, than the colorimeter. Careful studies of the different sources of variation enable an assessment of the order of magnitude of the variability between methods accounting for other sources of variation leading to the conclusion that color assessment using a multispectral vision system is superior to traditional colorimeter assessments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Li, Yiming; Ishitsuka, Yuji; Hedde, Per Niklas; Nienhaus, G Ulrich
2013-06-25
In localization-based super-resolution microscopy, individual fluorescent markers are stochastically photoactivated and subsequently localized within a series of camera frames, yielding a final image with a resolution far beyond the diffraction limit. Yet, before localization can be performed, the subregions within the frames where the individual molecules are present have to be identified-oftentimes in the presence of high background. In this work, we address the importance of reliable molecule identification for the quality of the final reconstructed super-resolution image. We present a fast and robust algorithm (a-livePALM) that vastly improves the molecule detection efficiency while minimizing false assignments that can lead to image artifacts.
Automated Age-related Macular Degeneration screening system using fundus images.
Kunumpol, P; Umpaipant, W; Kanchanaranya, N; Charoenpong, T; Vongkittirux, S; Kupakanjana, T; Tantibundhit, C
2017-07-01
This work proposed an automated screening system for Age-related Macular Degeneration (AMD), and distinguishing between wet or dry types of AMD using fundus images to assist ophthalmologists in eye disease screening and management. The algorithm employs contrast-limited adaptive histogram equalization (CLAHE) in image enhancement. Subsequently, discrete wavelet transform (DWT) and locality sensitivity discrimination analysis (LSDA) were used to extract features for a neural network model to classify the results. The results showed that the proposed algorithm was able to distinguish between normal eyes, dry AMD, or wet AMD with 98.63% sensitivity, 99.15% specificity, and 98.94% accuracy, suggesting promising potential as a medical support system for faster eye disease screening at lower costs.
Free energy profiles from single-molecule pulling experiments.
Hummer, Gerhard; Szabo, Attila
2010-12-14
Nonequilibrium pulling experiments provide detailed information about the thermodynamic and kinetic properties of molecules. We show that unperturbed free energy profiles as a function of molecular extension can be obtained rigorously from such experiments without using work-weighted position histograms. An inverse Weierstrass transform is used to relate the system free energy obtained from the Jarzynski equality directly to the underlying molecular free energy surface. An accurate approximation for the free energy surface is obtained by using the method of steepest descent to evaluate the inverse transform. The formalism is applied to simulated data obtained from a kinetic model of RNA folding, in which the dynamics consists of jumping between linker-dominated folded and unfolded free energy surfaces.
Combining color and shape information for illumination-viewpoint invariant object recognition.
Diplaros, Aristeidis; Gevers, Theo; Patras, Ioannis
2006-01-01
In this paper, we propose a new scheme that merges color- and shape-invariant information for object recognition. To obtain robustness against photometric changes, color-invariant derivatives are computed first. Color invariance is an important aspect of any object recognition scheme, as color changes considerably with the variation in illumination, object pose, and camera viewpoint. These color invariant derivatives are then used to obtain similarity invariant shape descriptors. Shape invariance is equally important as, under a change in camera viewpoint and object pose, the shape of a rigid object undergoes a perspective projection on the image plane. Then, the color and shape invariants are combined in a multidimensional color-shape context which is subsequently used as an index. As the indexing scheme makes use of a color-shape invariant context, it provides a high-discriminative information cue robust against varying imaging conditions. The matching function of the color-shape context allows for fast recognition, even in the presence of object occlusion and cluttering. From the experimental results, it is shown that the method recognizes rigid objects with high accuracy in 3-D complex scenes and is robust against changing illumination, camera viewpoint, object pose, and noise.
Absolute color scale for improved diagnostics with wavefront error mapping.
Smolek, Michael K; Klyce, Stephen D
2007-11-01
Wavefront data are expressed in micrometers and referenced to the pupil plane, but current methods to map wavefront error lack standardization. Many use normalized or floating scales that may confuse the user by generating ambiguous, noisy, or varying information. An absolute scale that combines consistent clinical information with statistical relevance is needed for wavefront error mapping. The color contours should correspond better to current corneal topography standards to improve clinical interpretation. Retrospective analysis of wavefront error data. Historic ophthalmic medical records. Topographic modeling system topographical examinations of 120 corneas across 12 categories were used. Corneal wavefront error data in micrometers from each topography map were extracted at 8 Zernike polynomial orders and for 3 pupil diameters expressed in millimeters (3, 5, and 7 mm). Both total aberrations (orders 2 through 8) and higher-order aberrations (orders 3 through 8) were expressed in the form of frequency histograms to determine the working range of the scale across all categories. The standard deviation of the mean error of normal corneas determined the map contour resolution. Map colors were based on corneal topography color standards and on the ability to distinguish adjacent color contours through contrast. Higher-order and total wavefront error contour maps for different corneal conditions. An absolute color scale was produced that encompassed a range of +/-6.5 microm and a contour interval of 0.5 microm. All aberrations in the categorical database were plotted with no loss of clinical information necessary for classification. In the few instances where mapped information was beyond the range of the scale, the type and severity of aberration remained legible. When wavefront data are expressed in micrometers, this absolute scale facilitates the determination of the severity of aberrations present compared with a floating scale, particularly for distinguishing normal from abnormal levels of wavefront error. The new color palette makes it easier to identify disorders. The corneal mapping method can be extended to mapping whole eye wavefront errors. When refraction data are expressed in diopters, the previously published corneal topography scale is suggested.
Ben Chaabane, Salim; Fnaiech, Farhat
2014-01-23
Color image segmentation has been so far applied in many areas; hence, recently many different techniques have been developed and proposed. In the medical imaging area, the image segmentation may be helpful to provide assistance to doctor in order to follow-up the disease of a certain patient from the breast cancer processed images. The main objective of this work is to rebuild and also to enhance each cell from the three component images provided by an input image. Indeed, from an initial segmentation obtained using the statistical features and histogram threshold techniques, the resulting segmentation may represent accurately the non complete and pasted cells and enhance them. This allows real help to doctors, and consequently, these cells become clear and easy to be counted. A novel method for color edges extraction based on statistical features and automatic threshold is presented. The traditional edge detector, based on the first and the second order neighborhood, describing the relationship between the current pixel and its neighbors, is extended to the statistical domain. Hence, color edges in an image are obtained by combining the statistical features and the automatic threshold techniques. Finally, on the obtained color edges with specific primitive color, a combination rule is used to integrate the edge results over the three color components. Breast cancer cell images were used to evaluate the performance of the proposed method both quantitatively and qualitatively. Hence, a visual and a numerical assessment based on the probability of correct classification (PC), the false classification (Pf), and the classification accuracy (Sens(%)) are presented and compared with existing techniques. The proposed method shows its superiority in the detection of points which really belong to the cells, and also the facility of counting the number of the processed cells. Computer simulations highlight that the proposed method substantially enhances the segmented image with smaller error rates better than other existing algorithms under the same settings (patterns and parameters). Moreover, it provides high classification accuracy, reaching the rate of 97.94%. Additionally, the segmentation method may be extended to other medical imaging types having similar properties.
76 FR 31451 - Equal Credit Opportunity
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-01
... transaction on the basis of the applicant's national origin, marital status, religion, sex, color, race, age... discrimination, Sex discrimination. Authority and Issuance For the reasons set forth in the preamble, the Board...
Predicting the Valence of a Scene from Observers’ Eye Movements
R.-Tavakoli, Hamed; Atyabi, Adham; Rantanen, Antti; Laukka, Seppo J.; Nefti-Meziani, Samia; Heikkilä, Janne
2015-01-01
Multimedia analysis benefits from understanding the emotional content of a scene in a variety of tasks such as video genre classification and content-based image retrieval. Recently, there has been an increasing interest in applying human bio-signals, particularly eye movements, to recognize the emotional gist of a scene such as its valence. In order to determine the emotional category of images using eye movements, the existing methods often learn a classifier using several features that are extracted from eye movements. Although it has been shown that eye movement is potentially useful for recognition of scene valence, the contribution of each feature is not well-studied. To address the issue, we study the contribution of features extracted from eye movements in the classification of images into pleasant, neutral, and unpleasant categories. We assess ten features and their fusion. The features are histogram of saccade orientation, histogram of saccade slope, histogram of saccade length, histogram of saccade duration, histogram of saccade velocity, histogram of fixation duration, fixation histogram, top-ten salient coordinates, and saliency map. We utilize machine learning approach to analyze the performance of features by learning a support vector machine and exploiting various feature fusion schemes. The experiments reveal that ‘saliency map’, ‘fixation histogram’, ‘histogram of fixation duration’, and ‘histogram of saccade slope’ are the most contributing features. The selected features signify the influence of fixation information and angular behavior of eye movements in the recognition of the valence of images. PMID:26407322
New comparison of psychological meaning of colors in samples and objects with semantic ratings
NASA Astrophysics Data System (ADS)
Lee, Tien-Rein
2002-06-01
In color preference and color-meaning research, color chips are widely used as stimuli. Are meanings of isolated color chips generalizeable to contextualized colors? According to Taft (1996), few significant differences exist between chip and object ratings for the same color. A similar survey was performed on 192 college students. This article reports the results of the study comparing semantic rating of color applied to a variety of familiar objects. The objects were a cup, T-shirt, sofa, car, notebook, and MP3 player, all images that represent daily life familiar objects. Subjects rated a set of 16 color chips, against 6 bipolar, 7-step semantic differential scales. The scales consisted of beautiful-ugly, soft-hard, warm-cool, elegant-vulgar, loud- discreet, and masculine-feminine. Analyses performed on the data indicated that unlike Taft's findings on 1996, significant differences existed between chip and object rating for the same color in every scale. The results of the study have implications for the use of color chips in color planning which suggest they are not compatible with the generality of results of the earlier color meaning research. Generally, a color judged to be beautiful, elegant and warm when presented as a chip does not equal beautiful, elegant, and warm when applied to the surface of an object such as a cup, T-shirt, sofa, car.
Histogram analysis of T2*-based pharmacokinetic imaging in cerebral glioma grading.
Liu, Hua-Shan; Chiang, Shih-Wei; Chung, Hsiao-Wen; Tsai, Ping-Huei; Hsu, Fei-Ting; Cho, Nai-Yu; Wang, Chao-Ying; Chou, Ming-Chung; Chen, Cheng-Yu
2018-03-01
To investigate the feasibility of histogram analysis of the T2*-based permeability parameter volume transfer constant (K trans ) for glioma grading and to explore the diagnostic performance of the histogram analysis of K trans and blood plasma volume (v p ). We recruited 31 and 11 patients with high- and low-grade gliomas, respectively. The histogram parameters of K trans and v p , derived from the first-pass pharmacokinetic modeling based on the T2* dynamic susceptibility-weighted contrast-enhanced perfusion-weighted magnetic resonance imaging (T2* DSC-PW-MRI) from the entire tumor volume, were evaluated for differentiating glioma grades. Histogram parameters of K trans and v p showed significant differences between high- and low-grade gliomas and exhibited significant correlations with tumor grades. The mean K trans derived from the T2* DSC-PW-MRI had the highest sensitivity and specificity for differentiating high-grade gliomas from low-grade gliomas compared with other histogram parameters of K trans and v p . Histogram analysis of T2*-based pharmacokinetic imaging is useful for cerebral glioma grading. The histogram parameters of the entire tumor K trans measurement can provide increased accuracy with additional information regarding microvascular permeability changes for identifying high-grade brain tumors. Copyright © 2017 Elsevier B.V. All rights reserved.
Infrared image segmentation method based on spatial coherence histogram and maximum entropy
NASA Astrophysics Data System (ADS)
Liu, Songtao; Shen, Tongsheng; Dai, Yao
2014-11-01
In order to segment the target well and suppress background noises effectively, an infrared image segmentation method based on spatial coherence histogram and maximum entropy is proposed. First, spatial coherence histogram is presented by weighting the importance of the different position of these pixels with the same gray-level, which is obtained by computing their local density. Then, after enhancing the image by spatial coherence histogram, 1D maximum entropy method is used to segment the image. The novel method can not only get better segmentation results, but also have a faster computation time than traditional 2D histogram-based segmentation methods.
Automatic image equalization and contrast enhancement using Gaussian mixture modeling.
Celik, Turgay; Tjahjadi, Tardi
2012-01-01
In this paper, we propose an adaptive image equalization algorithm that automatically enhances the contrast in an input image. The algorithm uses the Gaussian mixture model to model the image gray-level distribution, and the intersection points of the Gaussian components in the model are used to partition the dynamic range of the image into input gray-level intervals. The contrast equalized image is generated by transforming the pixels' gray levels in each input interval to the appropriate output gray-level interval according to the dominant Gaussian component and the cumulative distribution function of the input interval. To take account of the hypothesis that homogeneous regions in the image represent homogeneous silences (or set of Gaussian components) in the image histogram, the Gaussian components with small variances are weighted with smaller values than the Gaussian components with larger variances, and the gray-level distribution is also used to weight the components in the mapping of the input interval to the output interval. Experimental results show that the proposed algorithm produces better or comparable enhanced images than several state-of-the-art algorithms. Unlike the other algorithms, the proposed algorithm is free of parameter setting for a given dynamic range of the enhanced image and can be applied to a wide range of image types.
ERIC Educational Resources Information Center
Vandermeulen, H.; DeWreede, R. E.
1983-01-01
Presents a histogram drawing program which sorts real numbers in up to 30 categories. Entered data are sorted and saved in a text file which is then used to generate the histogram. Complete Applesoft program listings are included. (JN)
[Atmospheric correction of visible-infrared band FY-3A/MERSI data based on 6S model].
Wu, Yong-Li; Luan, Qing; Tian, Guo-Zhen
2011-06-01
Based on the observation data from the meteorological stations in Taiyuan City and its surrounding areas of Shanxi Province, the atmosphere parameters for 6S model were supplied, and the atmospheric correction of visible-infrared band (precision 250 meters) FY-3A/MERSI data was conducted. After atmospheric correction, the range of visible-infrared band FY-3A/MERSI data was widened, reflectivity increased, high peak was higher, and distribution histogram was smoother. In the meantime, the threshold value of NDVI data reflecting vegetation condition increased, and its high peak was higher, more close to the real data. Moreover, the color synthesis image of correction data showed more abundant information, its brightness increased, contrast enhanced, and the information reflected was more close to real.
New segmentation-based tone mapping algorithm for high dynamic range image
NASA Astrophysics Data System (ADS)
Duan, Weiwei; Guo, Huinan; Zhou, Zuofeng; Huang, Huimin; Cao, Jianzhong
2017-07-01
The traditional tone mapping algorithm for the display of high dynamic range (HDR) image has the drawback of losing the impression of brightness, contrast and color information. To overcome this phenomenon, we propose a new tone mapping algorithm based on dividing the image into different exposure regions in this paper. Firstly, the over-exposure region is determined using the Local Binary Pattern information of HDR image. Then, based on the peak and average gray of the histogram, the under-exposure and normal-exposure region of HDR image are selected separately. Finally, the different exposure regions are mapped by differentiated tone mapping methods to get the final result. The experiment results show that the proposed algorithm achieve the better performance both in visual quality and objective contrast criterion than other algorithms.
12 CFR 268.102 - Board program for equal employment opportunity.
Code of Federal Regulations, 2011 CFR
2011-01-01
... candidates without regard to race, color, religion, sex, national origin, age or disability, and solicit... community level with other employers, with schools and universities and with other public and private groups...
24 CFR Appendix to Subpart M of... - Equal Housing Opportunity Insignia
Code of Federal Regulations, 2010 CFR
2010-04-01
... advertising and marketing program in which there are no barriers to obtaining housing because of race, color... HOUSING AND URBAN DEVELOPMENT GENERAL INTRODUCTION TO FHA PROGRAMS Affirmative Fair Housing Marketing...
7 CFR 1436.19 - Equal Opportunity and Non-discrimination requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., national origin, gender, or other prohibited basis. Borrowers must comply with all applicable Federal laws... discriminate against any applicant on the basis of race, color, religion, national origin, disability, sex...
7 CFR 1436.19 - Equal Opportunity and Non-discrimination requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., national origin, gender, or other prohibited basis. Borrowers must comply with all applicable Federal laws... discriminate against any applicant on the basis of race, color, religion, national origin, disability, sex...
5 CFR 2635.106 - Disciplinary and corrective action.
Code of Federal Regulations, 2011 CFR
2011-01-01
... example, an individual who alleges that an employee has failed to adhere to laws and regulations that provide equal opportunity regardless of race, color, religion, sex, national origin, age, or handicap is...
5 CFR 2635.106 - Disciplinary and corrective action.
Code of Federal Regulations, 2014 CFR
2014-01-01
... example, an individual who alleges that an employee has failed to adhere to laws and regulations that provide equal opportunity regardless of race, color, religion, sex, national origin, age, or handicap is...
5 CFR 2635.106 - Disciplinary and corrective action.
Code of Federal Regulations, 2013 CFR
2013-01-01
... example, an individual who alleges that an employee has failed to adhere to laws and regulations that provide equal opportunity regardless of race, color, religion, sex, national origin, age, or handicap is...
5 CFR 2635.106 - Disciplinary and corrective action.
Code of Federal Regulations, 2012 CFR
2012-01-01
... example, an individual who alleges that an employee has failed to adhere to laws and regulations that provide equal opportunity regardless of race, color, religion, sex, national origin, age, or handicap is...
5 CFR 2635.106 - Disciplinary and corrective action.
Code of Federal Regulations, 2010 CFR
2010-01-01
... example, an individual who alleges that an employee has failed to adhere to laws and regulations that provide equal opportunity regardless of race, color, religion, sex, national origin, age, or handicap is...
7 CFR 18.2 - Purpose, applicability and coverage.
Code of Federal Regulations, 2010 CFR
2010-01-01
... equal opportunity in employment to each individual without regard to race, color, national origin, sex... operating a Cooperative Extension Service. (c) Coverage. This part applies to all positions in all units of...
Bin recycling strategy for improving the histogram precision on GPU
NASA Astrophysics Data System (ADS)
Cárdenas-Montes, Miguel; Rodríguez-Vázquez, Juan José; Vega-Rodríguez, Miguel A.
2016-07-01
Histogram is an easily comprehensible way to present data and analyses. In the current scientific context with access to large volumes of data, the processing time for building histogram has dramatically increased. For this reason, parallel construction is necessary to alleviate the impact of the processing time in the analysis activities. In this scenario, GPU computing is becoming widely used for reducing until affordable levels the processing time of histogram construction. Associated to the increment of the processing time, the implementations are stressed on the bin-count accuracy. Accuracy aspects due to the particularities of the implementations are not usually taken into consideration when building histogram with very large data sets. In this work, a bin recycling strategy to create an accuracy-aware implementation for building histogram on GPU is presented. In order to evaluate the approach, this strategy was applied to the computation of the three-point angular correlation function, which is a relevant function in Cosmology for the study of the Large Scale Structure of Universe. As a consequence of the study a high-accuracy implementation for histogram construction on GPU is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, J; Washington University in St Louis, St Louis, MO; Li, H. Harlod
Purpose: In RT patient setup 2D images, tissues often cannot be seen well due to the lack of image contrast. Contrast enhancement features provided by image reviewing software, e.g. Mosaiq and ARIA, require manual selection of the image processing filters and parameters thus inefficient and cannot be automated. In this work, we developed a novel method to automatically enhance the 2D RT image contrast to allow automatic verification of patient daily setups as a prerequisite step of automatic patient safety assurance. Methods: The new method is based on contrast limited adaptive histogram equalization (CLAHE) and high-pass filtering algorithms. The mostmore » important innovation is to automatically select the optimal parameters by optimizing the image contrast. The image processing procedure includes the following steps: 1) background and noise removal, 2) hi-pass filtering by subtracting the Gaussian smoothed Result, and 3) histogram equalization using CLAHE algorithm. Three parameters were determined through an iterative optimization which was based on the interior-point constrained optimization algorithm: the Gaussian smoothing weighting factor, the CLAHE algorithm block size and clip limiting parameters. The goal of the optimization is to maximize the entropy of the processed Result. Results: A total 42 RT images were processed. The results were visually evaluated by RT physicians and physicists. About 48% of the images processed by the new method were ranked as excellent. In comparison, only 29% and 18% of the images processed by the basic CLAHE algorithm and by the basic window level adjustment process, were ranked as excellent. Conclusion: This new image contrast enhancement method is robust and automatic, and is able to significantly outperform the basic CLAHE algorithm and the manual window-level adjustment process that are currently used in clinical 2D image review software tools.« less
Novel Perceptually Uniform Chromatic Space.
da Fonseca, María; Samengo, Inés
2018-06-01
Chromatically perceptive observers are endowed with a sense of similarity between colors. For example, two shades of green that are only slightly discriminable are perceived as similar, whereas other pairs of colors, for example, blue and yellow, typically elicit markedly different sensations. The notion of similarity need not be shared by different observers. Dichromat and trichromat subjects perceive colors differently, and two dichromats (or two trichromats, for that matter) may judge chromatic differences inconsistently. Moreover, there is ample evidence that different animal species sense colors diversely. To capture the subjective metric of color perception, here we construct a notion of distance in color space based on the physiology of the retina, and is thereby individually tailored for different observers. By applying the Fisher metric to an analytical model of color representation, we construct a notion of distance that reproduces behavioral experiments of classical discrimination tasks. We then derive a coordinate transformation that defines a new chromatic space in which the Euclidean distance between any two colors is equal to the perceptual distance, as seen by one individual subject, endowed with an arbitrary number of color-sensitive photoreceptors, each with arbitrary absorption probability curves and appearing in arbitrary proportions.
Cross talk and diffraction efficiency in angular multiplexed memories using improved polypeptide
NASA Astrophysics Data System (ADS)
Ramenah, Harry K.; Bertrand, Paul; Soubari, E. H.; Meyrueis, Patrick
1996-12-01
We studied energy coupling between gratings and angularly multiplexed 20 gratings with a uniform diffraction efficiency within 25 micrometer layer thickness of dichromated gelatin. The dependence of diffraction efficiency on beam ratio is given. We recorded a matrix form memory of nxmxp elements, where n and m are the rows and columns and p the number of multiplexes. For indication only, n equals m equals 10, p equals 20, the surface area of the matrix is 1 cm2. Color diffractive images and digital data are illustrated as well as video, cartography and medical applications.
An Archival Search For Young Globular Clusters in Galaxies
NASA Astrophysics Data System (ADS)
Whitmore, Brad
1995-07-01
One of the most intriguing results from HST has been the discovery of ultraluminous star clusters in interacting and merging galaxies. These clusters have the luminosities, colors, and sizes that would be expected of young globular clusters produced by the interaction. We propose to use the data in the HST Archive to determine how prevalent this phenomena is, and to determine whether similar clusters are produced in other environments. Three samples will be extracted and studied in a systematic and consistent manner: 1} interacting and merging galaxies, 2} starburst galaxies, 3} a control sample of ``normal'' galaxies. A preliminary search of the archives shows that there are at least 20 galaxies in each of these samples, and the number will grow by about 50 observations become available. The data will be used to determine the luminosity function, color histogram , spatial distribution, and structural properties of the clusters using the same techniques employed in our study of NGC 7252 {``Atoms -for-Peace'' galaxy} and NGC 4038/4039 {``The Antennae''}. Our ultimate goals are: 1} to understand how globular clusters form, and 2} to use the clusters as evolutionary tracers to unravel the histories of interacting galaxies.
Recognition of skin melanoma through dermoscopic image analysis
NASA Astrophysics Data System (ADS)
Gómez, Catalina; Herrera, Diana Sofia
2017-11-01
Melanoma skin cancer diagnosis can be challenging due to the similarities of the early stage symptoms with regular moles. Standardized visual parameters can be determined and characterized to suspect a melanoma cancer type. The automation of this diagnosis could have an impact in the medical field by providing a tool to support the specialists with high accuracy. The objective of this study is to develop an algorithm trained to distinguish a highly probable melanoma from a non-dangerous mole by the segmentation and classification of dermoscopic mole images. We evaluate our approach on the dataset provided by the International Skin Imaging Collaboration used in the International Challenge Skin Lesion Analysis Towards Melanoma Detection. For the segmentation task, we apply a preprocessing algorithm and use Otsu's thresholding in the best performing color space; the average Jaccard Index in the test dataset is 70.05%. For the subsequent classification stage, we use joint histograms in the YCbCr color space, a RBF Gaussian SVM trained with five features concerning circularity and irregularity of the segmented lesion, and the Gray Level Co-occurrence matrix features for texture analysis. These features are combined to obtain an Average Classification Accuracy of 63.3% in the test dataset.
Márk, Géza I; Vértesy, Zofia; Kertész, Krisztián; Bálint, Zsolt; Biró, László P
2009-11-01
In order to study local and global order in butterfly wing scales possessing structural colors, we have developed a direct space algorithm, based on averaging the local environment of the repetitive units building up the structure. The method provides the statistical distribution of the local environments, including the histogram of the nearest-neighbor distance and the number of nearest neighbors. We have analyzed how the different kinds of randomness present in the direct space structure influence the reciprocal space structure. It was found that the Fourier method is useful in the case of a structure randomly deviating from an ordered lattice. The direct space averaging method remains applicable even for structures lacking long-range order. Based on the first Born approximation, a link is established between the reciprocal space image and the optical reflectance spectrum. Results calculated within this framework agree well with measured reflectance spectra because of the small width and moderate refractive index contrast of butterfly scales. By the analysis of the wing scales of Cyanophrys remus and Albulina metallica butterflies, we tested the methods for structures having long-range order, medium-range order, and short-range order.
NASA Astrophysics Data System (ADS)
Márk, Géza I.; Vértesy, Zofia; Kertész, Krisztián; Bálint, Zsolt; Biró, László P.
2009-11-01
In order to study local and global order in butterfly wing scales possessing structural colors, we have developed a direct space algorithm, based on averaging the local environment of the repetitive units building up the structure. The method provides the statistical distribution of the local environments, including the histogram of the nearest-neighbor distance and the number of nearest neighbors. We have analyzed how the different kinds of randomness present in the direct space structure influence the reciprocal space structure. It was found that the Fourier method is useful in the case of a structure randomly deviating from an ordered lattice. The direct space averaging method remains applicable even for structures lacking long-range order. Based on the first Born approximation, a link is established between the reciprocal space image and the optical reflectance spectrum. Results calculated within this framework agree well with measured reflectance spectra because of the small width and moderate refractive index contrast of butterfly scales. By the analysis of the wing scales of Cyanophrys remus and Albulina metallica butterflies, we tested the methods for structures having long-range order, medium-range order, and short-range order.
NASA Astrophysics Data System (ADS)
Li, Chuang; Min, Fuhong; Jin, Qiusen; Ma, Hanyuan
2017-12-01
An active charge-controlled memristive Chua's circuit is implemented, and its basic properties are analyzed. Firstly, with the system trajectory starting from an equilibrium point, the dynamic behavior of multiple coexisting attractors depending on the memristor initial value and the system parameter is studied, which shows the coexisting behaviors of point, period, chaos, and quasic-period. Secondly, with the system motion starting from a non-equilibrium point, the dynamics of extreme multistability in a wide initial value domain are easily conformed by new analytical methods. Furthermore, the simulation results indicate that some strange chaotic attractors like multi-wing type and multi-scroll type are observed when the observed signals are extended from voltage and current to power and energy, respectively. Specially, when different initial conditions are taken, the coexisting strange chaotic attractors between the power and energy signals are exhibited. Finally, the chaotic sequences of the new system are used for encrypting color image to protect image information security. The encryption performance is analyzed by statistic histogram, correlation, key spaces and key sensitivity. Simulation results show that the new memristive chaotic system has high security in color image encryption.
Clarke, Richard W; Monnier, Nilah; Li, Haitao; Zhou, Dejian; Browne, Helena; Klenerman, David
2007-08-15
We present a single virion method to determine absolute distributions of copy number in the protein composition of viruses and apply it to herpes simplex virus type 1. Using two-color coincidence fluorescence spectroscopy, we determine the virion-to-virion variability in copy numbers of fluorescently labeled tegument and envelope proteins relative to a capsid protein by analyzing fluorescence intensity ratios for ensembles of individual dual-labeled virions and fitting the resulting histogram of ratios. Using EYFP-tagged capsid protein VP26 as a reference for fluorescence intensity, we are able to calculate the mean and also, for the first time to our knowledge, the variation in numbers of gD, VP16, and VP22 tegument. The measurement of the number of glycoprotein D molecules was in good agreement with independent measurements of average numbers of these glycoproteins in bulk virus preparations, validating the method. The accuracy, straightforward data processing, and high throughput of this technique make it widely applicable to the analysis of the molecular composition of large complexes in general, and it is particularly suited to providing insights into virus structure, assembly, and infectivity.
NASA Astrophysics Data System (ADS)
Silva, Ricardo Petri; Naozuka, Gustavo Taiji; Mastelini, Saulo Martiello; Felinto, Alan Salvany
2018-01-01
The incidence of luminous reflections (LR) in captured images can interfere with the color of the affected regions. These regions tend to oversaturate, becoming whitish and, consequently, losing the original color information of the scene. Decision processes that employ images acquired from digital cameras can be impaired by the LR incidence. Such applications include real-time video surgeries, facial, and ocular recognition. This work proposes an algorithm called contrast enhancement of potential LR regions, which is a preprocessing to increase the contrast of potential LR regions, in order to improve the performance of automatic LR detectors. In addition, three automatic detectors were compared with and without the employment of our preprocessing method. The first one is a technique already consolidated in the literature called the Chang-Tseng threshold. We propose two automatic detectors called adapted histogram peak and global threshold. We employed four performance metrics to evaluate the detectors, namely, accuracy, precision, exactitude, and root mean square error. The exactitude metric is developed by this work. Thus, a manually defined reference model was created. The global threshold detector combined with our preprocessing method presented the best results, with an average exactitude rate of 82.47%.
NASA Technical Reports Server (NTRS)
Dasarathy, B. V.
1976-01-01
An algorithm is proposed for dimensionality reduction in the context of clustering techniques based on histogram analysis. The approach is based on an evaluation of the hills and valleys in the unidimensional histograms along the different features and provides an economical means of assessing the significance of the features in a nonparametric unsupervised data environment. The method has relevance to remote sensing applications.
Clinical Utility of Blood Cell Histogram Interpretation
Bhagya, S.; Majeed, Abdul
2017-01-01
An automated haematology analyser provides blood cell histograms by plotting the sizes of different blood cells on X-axis and their relative number on Y-axis. Histogram interpretation needs careful analysis of Red Blood Cell (RBC), White Blood Cell (WBC) and platelet distribution curves. Histogram analysis is often a neglected part of the automated haemogram which if interpreted well, has significant potential to provide diagnostically relevant information even before higher level investigations are ordered. PMID:29207767
Clinical Utility of Blood Cell Histogram Interpretation.
Thomas, E T Arun; Bhagya, S; Majeed, Abdul
2017-09-01
An automated haematology analyser provides blood cell histograms by plotting the sizes of different blood cells on X-axis and their relative number on Y-axis. Histogram interpretation needs careful analysis of Red Blood Cell (RBC), White Blood Cell (WBC) and platelet distribution curves. Histogram analysis is often a neglected part of the automated haemogram which if interpreted well, has significant potential to provide diagnostically relevant information even before higher level investigations are ordered.
A visual tristimulus projection colorimeter.
Valberg, A
1971-01-01
Based on the optical principle of a slide projector, a visual tristimulus projection colorimeter has been developed. The calorimeter operates with easily interchangeable sets of primary color filters placed in a frame at the objective. The apparatus has proved to be fairly accurate. The reproduction of the color matches as measured by the standard deviation is equal to the visual sensitivity to color differences for each observer. Examples of deviations in the matches among individuals as well as deviations compared with the CIE 1931 Standard Observer are given. These deviations are demonstrated to be solely due to individual differences in the perception of metameric colors. Thus, taking advantage of an objective observation (allowing all adjustments to be judged by a group of impartial observers), the colorimeter provides an excellent aid in the study of discrimination, metamerism, and related effects which are of considerable interest in current research in colorimetry and in the study of color vision tests.
A blind dual color images watermarking based on IWT and state coding
NASA Astrophysics Data System (ADS)
Su, Qingtang; Niu, Yugang; Liu, Xianxi; Zhu, Yu
2012-04-01
In this paper, a state-coding based blind watermarking algorithm is proposed to embed color image watermark to color host image. The technique of state coding, which makes the state code of data set be equal to the hiding watermark information, is introduced in this paper. When embedding watermark, using Integer Wavelet Transform (IWT) and the rules of state coding, these components, R, G and B, of color image watermark are embedded to these components, Y, Cr and Cb, of color host image. Moreover, the rules of state coding are also used to extract watermark from the watermarked image without resorting to the original watermark or original host image. Experimental results show that the proposed watermarking algorithm cannot only meet the demand on invisibility and robustness of the watermark, but also have well performance compared with other proposed methods considered in this work.
Multi-Complementary Model for Long-Term Tracking
Zhang, Deng; Zhang, Junchang; Xia, Chenyang
2018-01-01
In recent years, video target tracking algorithms have been widely used. However, many tracking algorithms do not achieve satisfactory performance, especially when dealing with problems such as object occlusions, background clutters, motion blur, low illumination color images, and sudden illumination changes in real scenes. In this paper, we incorporate an object model based on contour information into a Staple tracker that combines the correlation filter model and color model to greatly improve the tracking robustness. Since each model is responsible for tracking specific features, the three complementary models combine for more robust tracking. In addition, we propose an efficient object detection model with contour and color histogram features, which has good detection performance and better detection efficiency compared to the traditional target detection algorithm. Finally, we optimize the traditional scale calculation, which greatly improves the tracking execution speed. We evaluate our tracker on the Object Tracking Benchmarks 2013 (OTB-13) and Object Tracking Benchmarks 2015 (OTB-15) benchmark datasets. With the OTB-13 benchmark datasets, our algorithm is improved by 4.8%, 9.6%, and 10.9% on the success plots of OPE, TRE and SRE, respectively, in contrast to another classic LCT (Long-term Correlation Tracking) algorithm. On the OTB-15 benchmark datasets, when compared with the LCT algorithm, our algorithm achieves 10.4%, 12.5%, and 16.1% improvement on the success plots of OPE, TRE, and SRE, respectively. At the same time, it needs to be emphasized that, due to the high computational efficiency of the color model and the object detection model using efficient data structures, and the speed advantage of the correlation filters, our tracking algorithm could still achieve good tracking speed. PMID:29425170
Single-exposure quantitative phase imaging in color-coded LED microscopy.
Lee, Wonchan; Jung, Daeseong; Ryu, Suho; Joo, Chulmin
2017-04-03
We demonstrate single-shot quantitative phase imaging (QPI) in a platform of color-coded LED microscopy (cLEDscope). The light source in a conventional microscope is replaced by a circular LED pattern that is trisected into subregions with equal area, assigned to red, green, and blue colors. Image acquisition with a color image sensor and subsequent computation based on weak object transfer functions allow for the QPI of a transparent specimen. We also provide a correction method for color-leakage, which may be encountered in implementing our method with consumer-grade LEDs and image sensors. Most commercially available LEDs and image sensors do not provide spectrally isolated emissions and pixel responses, generating significant error in phase estimation in our method. We describe the correction scheme for this color-leakage issue, and demonstrate improved phase measurement accuracy. The computational model and single-exposure QPI capability of our method are presented by showing images of calibrated phase samples and cellular specimens.
Liang, He-Yue; Huang, Ya-Qin; Yang, Zhao-Xia; Ying-Ding; Zeng, Meng-Su; Rao, Sheng-Xiang
2016-07-01
To determine if magnetic resonance imaging (MRI) histogram analyses can help predict response to chemotherapy in patients with colorectal hepatic metastases by using response evaluation criteria in solid tumours (RECIST1.1) as the reference standard. Standard MRI including diffusion-weighted imaging (b=0, 500 s/mm(2)) was performed before chemotherapy in 53 patients with colorectal hepatic metastases. Histograms were performed for apparent diffusion coefficient (ADC) maps, arterial, and portal venous phase images; thereafter, mean, percentiles (1st, 10th, 50th, 90th, 99th), skewness, kurtosis, and variance were generated. Quantitative histogram parameters were compared between responders (partial and complete response, n=15) and non-responders (progressive and stable disease, n=38). Receiver operator characteristics (ROC) analyses were further analyzed for the significant parameters. The mean, 1st percentile, 10th percentile, 50th percentile, 90th percentile, 99th percentile of the ADC maps were significantly lower in responding group than that in non-responding group (p=0.000-0.002) with area under the ROC curve (AUCs) of 0.76-0.82. The histogram parameters of arterial and portal venous phase showed no significant difference (p>0.05) between the two groups. Histogram-derived parameters for ADC maps seem to be a promising tool for predicting response to chemotherapy in patients with colorectal hepatic metastases. • ADC histogram analyses can potentially predict chemotherapy response in colorectal liver metastases. • Lower histogram-derived parameters (mean, percentiles) for ADC tend to have good response. • MR enhancement histogram analyses are not reliable to predict response.
Using histograms to introduce randomization in the generation of ensembles of decision trees
Kamath, Chandrika; Cantu-Paz, Erick; Littau, David
2005-02-22
A system for decision tree ensembles that includes a module to read the data, a module to create a histogram, a module to evaluate a potential split according to some criterion using the histogram, a module to select a split point randomly in an interval around the best split, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method includes the steps of reading the data; creating a histogram; evaluating a potential split according to some criterion using the histogram, selecting a split point randomly in an interval around the best split, splitting the data, and combining multiple decision trees in ensembles.
12 CFR 268.102 - Board program for equal employment opportunity.
Code of Federal Regulations, 2013 CFR
2013-01-01
... sources of job candidates without regard to race, color, religion, sex, national origin, age or disability... community level with other employers, with schools and universities and with other public and private groups...
12 CFR 268.102 - Board program for equal employment opportunity.
Code of Federal Regulations, 2012 CFR
2012-01-01
... sources of job candidates without regard to race, color, religion, sex, national origin, age or disability... community level with other employers, with schools and universities and with other public and private groups...
Histogram based analysis of lung perfusion of children after congenital diaphragmatic hernia repair.
Kassner, Nora; Weis, Meike; Zahn, Katrin; Schaible, Thomas; Schoenberg, Stefan O; Schad, Lothar R; Zöllner, Frank G
2018-05-01
To investigate a histogram based approach to characterize the distribution of perfusion in the whole left and right lung by descriptive statistics and to show how histograms could be used to visually explore perfusion defects in two year old children after Congenital Diaphragmatic Hernia (CDH) repair. 28 children (age of 24.2±1.7months; all left sided hernia; 9 after extracorporeal membrane oxygenation therapy) underwent quantitative DCE-MRI of the lung. Segmentations of left and right lung were manually drawn to mask the calculated pulmonary blood flow maps and then to derive histograms for each lung side. Individual and group wise analysis of histograms of left and right lung was performed. Ipsilateral and contralateral lung show significant difference in shape and descriptive statistics derived from the histogram (Wilcoxon signed-rank test, p<0.05) on group wise and individual level. Subgroup analysis (patients with vs without ECMO therapy) showed no significant differences using histogram derived parameters. Histogram analysis can be a valuable tool to characterize and visualize whole lung perfusion of children after CDH repair. It allows for several possibilities to analyze the data, either describing the perfusion differences between the right and left lung but also to explore and visualize localized perfusion patterns in the 3D lung volume. Subgroup analysis will be possible given sufficient sample sizes. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man
2006-01-01
A new method is proposed to compare statistical differences between summary histograms, which are the histograms summed over a large ensemble of individual histograms. It consists of choosing a distance statistic for measuring the difference between summary histograms and using a bootstrap procedure to calculate the statistical significance level. Bootstrapping is an approach to statistical inference that makes few assumptions about the underlying probability distribution that describes the data. Three distance statistics are compared in this study. They are the Euclidean distance, the Jeffries-Matusita distance and the Kuiper distance. The data used in testing the bootstrap method are satellite measurements of cloud systems called cloud objects. Each cloud object is defined as a contiguous region/patch composed of individual footprints or fields of view. A histogram of measured values over footprints is generated for each parameter of each cloud object and then summary histograms are accumulated over all individual histograms in a given cloud-object size category. The results of statistical hypothesis tests using all three distances as test statistics are generally similar, indicating the validity of the proposed method. The Euclidean distance is determined to be most suitable after comparing the statistical tests of several parameters with distinct probability distributions among three cloud-object size categories. Impacts on the statistical significance levels resulting from differences in the total lengths of satellite footprint data between two size categories are also discussed.
Taylor, Chloe; Franklin, Anna
2012-04-01
Ecological valence theory (EVT; Palmer & Schloss, Proceedings of the National Academy of Sciences 107:8877-8882, 2010) proposes that color preferences are due to affective responses to color-associated objects: That is, people generally like colors to the degree that they like the objects associated with those colors. Palmer and Schloss found that the average valence of objects associated with a color, when weighted by how well the objects matched the color (weighted affective valence estimates: WAVE) explained 80% of the variation in preference across colors. Here, we replicated and extended Palmer and Schloss's investigation to establish whether color-object associations can account for sex differences in color preference and whether the relationship between associated objects and color preference is equally strong for males and females. We found some degree of sex specificity to the WAVEs, but the relationship between WAVE and color preference was significantly stronger for males than for females (74% shared variance for males, 45% for females). Furthermore, analyses identified a significant inverse relationship between the number of objects associated with a color and preference for the color. Participants generally liked colors associated with few objects and disliked colors associated with many objects. For the sample overall and for females alone, this association was not significantly weaker than the association of the WAVE and preference. The success of the WAVE at capturing color preference was partly due to the relationship between the number of associated objects and color preference. The findings identify constraints of EVT in its current form, but they also provide general support for the link between color preference and color-object associations.
NASA Astrophysics Data System (ADS)
Liu, Hong; Nodine, Calvin F.
1996-07-01
This paper presents a generalized image contrast enhancement technique, which equalizes the perceived brightness distribution based on the Heinemann contrast discrimination model. It is based on the mathematically proven existence of a unique solution to a nonlinear equation, and is formulated with easily tunable parameters. The model uses a two-step log-log representation of luminance contrast between targets and surround in a luminous background setting. The algorithm consists of two nonlinear gray scale mapping functions that have seven parameters, two of which are adjustable Heinemann constants. Another parameter is the background gray level. The remaining four parameters are nonlinear functions of the gray-level distribution of the given image, and can be uniquely determined once the previous three are set. Tests have been carried out to demonstrate the effectiveness of the algorithm for increasing the overall contrast of radiology images. The traditional histogram equalization can be reinterpreted as an image enhancement technique based on the knowledge of human contrast perception. In fact, it is a special case of the proposed algorithm.
Cost-effective forensic image enhancement
NASA Astrophysics Data System (ADS)
Dalrymple, Brian E.
1998-12-01
In 1977, a paper was presented at the SPIE conference in Reston, Virginia, detailing the computer enhancement of the Zapruder film. The forensic value of this examination in a major homicide investigation was apparent to the viewer. Equally clear was the potential for extracting evidence which is beyond the reach of conventional detection techniques. The cost of this technology in 1976, however, was prohibitive, and well beyond the means of most police agencies. Twenty-two years later, a highly efficient means of image enhancement is easily within the grasp of most police agencies, not only for homicides but for any case application. A PC workstation combined with an enhancement software package allows a forensic investigator to fully exploit digital technology. The goal of this approach is the optimization of the signal to noise ratio in images. Obstructive backgrounds may be diminished or eliminated while weak signals are optimized by the use of algorithms including Fast Fourier Transform, Histogram Equalization and Image Subtraction. An added benefit is the speed with which these processes are completed and the results known. The efficacy of forensic image enhancement is illustrated through case applications.
Low-level image properties in facial expressions.
Menzel, Claudia; Redies, Christoph; Hayn-Leichsenring, Gregor U
2018-06-04
We studied low-level image properties of face photographs and analyzed whether they change with different emotional expressions displayed by an individual. Differences in image properties were measured in three databases that depicted a total of 167 individuals. Face images were used either in their original form, cut to a standard format or superimposed with a mask. Image properties analyzed were: brightness, redness, yellowness, contrast, spectral slope, overall power and relative power in low, medium and high spatial frequencies. Results showed that image properties differed significantly between expressions within each individual image set. Further, specific facial expressions corresponded to patterns of image properties that were consistent across all three databases. In order to experimentally validate our findings, we equalized the luminance histograms and spectral slopes of three images from a given individual who showed two expressions. Participants were significantly slower in matching the expression in an equalized compared to an original image triad. Thus, existing differences in these image properties (i.e., spectral slope, brightness or contrast) facilitate emotion detection in particular sets of face images. Copyright © 2018. Published by Elsevier B.V.
SPAM- SPECTRAL ANALYSIS MANAGER (DEC VAX/VMS VERSION)
NASA Technical Reports Server (NTRS)
Solomon, J. E.
1994-01-01
The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different machine environments. There is a DEC VAX/VMS version with a central memory requirement of approximately 242K of 8 bit bytes and a machine independent UNIX 4.2 version. The display device currently supported is the Raster Technologies display processor. Other 512 x 512 resolution color display devices, such as De Anza, may be added with minor code modifications. This program was developed in 1986.
SPAM- SPECTRAL ANALYSIS MANAGER (UNIX VERSION)
NASA Technical Reports Server (NTRS)
Solomon, J. E.
1994-01-01
The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different machine environments. There is a DEC VAX/VMS version with a central memory requirement of approximately 242K of 8 bit bytes and a machine independent UNIX 4.2 version. The display device currently supported is the Raster Technologies display processor. Other 512 x 512 resolution color display devices, such as De Anza, may be added with minor code modifications. This program was developed in 1986.
Spectral colors capture and reproduction based on digital camera
NASA Astrophysics Data System (ADS)
Chen, Defen; Huang, Qingmei; Li, Wei; Lu, Yang
2018-01-01
The purpose of this work is to develop a method for the accurate reproduction of the spectral colors captured by digital camera. The spectral colors being the purest color in any hue, are difficult to reproduce without distortion on digital devices. In this paper, we attempt to achieve accurate hue reproduction of the spectral colors by focusing on two steps of color correction: the capture of the spectral colors and the color characterization of digital camera. Hence it determines the relationship among the spectral color wavelength, the RGB color space of the digital camera device and the CIEXYZ color space. This study also provides a basis for further studies related to the color spectral reproduction on digital devices. In this paper, methods such as wavelength calibration of the spectral colors and digital camera characterization were utilized. The spectrum was obtained through the grating spectroscopy system. A photo of a clear and reliable primary spectrum was taken by adjusting the relative parameters of the digital camera, from which the RGB values of color spectrum was extracted in 1040 equally-divided locations. Calculated using grating equation and measured by the spectrophotometer, two wavelength values were obtained from each location. The polynomial fitting method for the camera characterization was used to achieve color correction. After wavelength calibration, the maximum error between the two sets of wavelengths is 4.38nm. According to the polynomial fitting method, the average color difference of test samples is 3.76. This has satisfied the application needs of the spectral colors in digital devices such as display and transmission.
FPGA based charge fast histogramming for GEM detector
NASA Astrophysics Data System (ADS)
Poźniak, Krzysztof T.; Byszuk, A.; Chernyshova, M.; Cieszewski, R.; Czarski, T.; Dominik, W.; Jakubowska, K.; Kasprowicz, G.; Rzadkiewicz, J.; Scholz, M.; Zabolotny, W.
2013-10-01
This article presents a fast charge histogramming method for the position sensitive X-ray GEM detector. The energy resolved measurements are carried out simultaneously for 256 channels of the GEM detector. The whole process of histogramming is performed in 21 FPGA chips (Spartan-6 series from Xilinx) . The results of the histogramming process are stored in an external DDR3 memory. The structure of an electronic measuring equipment and a firmware functionality implemented in the FPGAs is described. Examples of test measurements are presented.
Local dynamic range compensation for scanning electron microscope imaging system.
Sim, K S; Huang, Y H
2015-01-01
This is the extended project by introducing the modified dynamic range histogram modification (MDRHM) and is presented in this paper. This technique is used to enhance the scanning electron microscope (SEM) imaging system. By comparing with the conventional histogram modification compensators, this technique utilizes histogram profiling by extending the dynamic range of each tile of an image to the limit of 0-255 range while retains its histogram shape. The proposed technique yields better image compensation compared to conventional methods. © Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afonine, Pavel V.; Moriarty, Nigel W.; Mustyakimov, Marat
A method is presented that modifies a 2 m F obs- D F modelσ A-weighted map such that the resulting map can strengthen a weak signal, if present, and can reduce model bias and noise. The method consists of first randomizing the starting map and filling in missing reflections using multiple methods. This is followed by restricting the map to regions with convincing density and the application of sharpening. The final map is then created by combining a series of histogram-equalized intermediate maps. In the test cases shown, the maps produced in this way are found to have increased interpretabilitymore » and decreased model bias compared with the starting 2 m F obs- D F modelσ A-weighted map.« less
A cost-effective line-based light-balancing technique using adaptive processing.
Hsia, Shih-Chang; Chen, Ming-Huei; Chen, Yu-Min
2006-09-01
The camera imaging system has been widely used; however, the displaying image appears to have an unequal light distribution. This paper presents novel light-balancing techniques to compensate uneven illumination based on adaptive signal processing. For text image processing, first, we estimate the background level and then process each pixel with nonuniform gain. This algorithm can balance the light distribution while keeping a high contrast in the image. For graph image processing, the adaptive section control using piecewise nonlinear gain is proposed to equalize the histogram. Simulations show that the performance of light balance is better than the other methods. Moreover, we employ line-based processing to efficiently reduce the memory requirement and the computational cost to make it applicable in real-time systems.
Recovery of Background Structures in Nanoscale Helium Ion Microscope Imaging.
Carasso, Alfred S; Vladár, András E
2014-01-01
This paper discusses a two step enhancement technique applicable to noisy Helium Ion Microscope images in which background structures are not easily discernible due to a weak signal. The method is based on a preliminary adaptive histogram equalization, followed by 'slow motion' low-exponent Lévy fractional diffusion smoothing. This combined approach is unexpectedly effective, resulting in a companion enhanced image in which background structures are rendered much more visible, and noise is significantly reduced, all with minimal loss of image sharpness. The method also provides useful enhancements of scanning charged-particle microscopy images obtained by composing multiple drift-corrected 'fast scan' frames. The paper includes software routines, written in Interactive Data Language (IDL),(1) that can perform the above image processing tasks.
Afonine, Pavel V.; Moriarty, Nigel W.; Mustyakimov, Marat; Sobolev, Oleg V.; Terwilliger, Thomas C.; Turk, Dusan; Urzhumtsev, Alexandre; Adams, Paul D.
2015-01-01
A method is presented that modifies a 2m F obs − D F model σA-weighted map such that the resulting map can strengthen a weak signal, if present, and can reduce model bias and noise. The method consists of first randomizing the starting map and filling in missing reflections using multiple methods. This is followed by restricting the map to regions with convincing density and the application of sharpening. The final map is then created by combining a series of histogram-equalized intermediate maps. In the test cases shown, the maps produced in this way are found to have increased interpretability and decreased model bias compared with the starting 2m F obs − D F model σA-weighted map. PMID:25760612
Afonine, Pavel V.; Moriarty, Nigel W.; Mustyakimov, Marat; ...
2015-02-26
A method is presented that modifies a 2 m F obs- D F modelσ A-weighted map such that the resulting map can strengthen a weak signal, if present, and can reduce model bias and noise. The method consists of first randomizing the starting map and filling in missing reflections using multiple methods. This is followed by restricting the map to regions with convincing density and the application of sharpening. The final map is then created by combining a series of histogram-equalized intermediate maps. In the test cases shown, the maps produced in this way are found to have increased interpretabilitymore » and decreased model bias compared with the starting 2 m F obs- D F modelσ A-weighted map.« less
Liu, Song; Zhang, Yujuan; Chen, Ling; Guan, Wenxian; Guan, Yue; Ge, Yun; He, Jian; Zhou, Zhengyang
2017-10-02
Whole-lesion apparent diffusion coefficient (ADC) histogram analysis has been introduced and proved effective in assessment of multiple tumors. However, the application of whole-volume ADC histogram analysis in gastrointestinal tumors has just started and never been reported in T and N staging of gastric cancers. Eighty patients with pathologically confirmed gastric carcinomas underwent diffusion weighted (DW) magnetic resonance imaging before surgery prospectively. Whole-lesion ADC histogram analysis was performed by two radiologists independently. The differences of ADC histogram parameters among different T and N stages were compared with independent-samples Kruskal-Wallis test. Receiver operating characteristic (ROC) analysis was performed to evaluate the performance of ADC histogram parameters in differentiating particular T or N stages of gastric cancers. There were significant differences of all the ADC histogram parameters for gastric cancers at different T (except ADC min and ADC max ) and N (except ADC max ) stages. Most ADC histogram parameters differed significantly between T1 vs T3, T1 vs T4, T2 vs T4, N0 vs N1, N0 vs N3, and some parameters (ADC 5% , ADC 10% , ADC min ) differed significantly between N0 vs N2, N2 vs N3 (all P < 0.05). Most parameters except ADC max performed well in differentiating different T and N stages of gastric cancers. Especially for identifying patients with and without lymph node metastasis, the ADC 10% yielded the largest area under the ROC curve of 0.794 (95% confidence interval, 0.677-0.911). All the parameters except ADC max showed excellent inter-observer agreement with intra-class correlation coefficients higher than 0.800. Whole-volume ADC histogram parameters held great potential in differentiating different T and N stages of gastric cancers preoperatively.
Gihr, Georg Alexander; Horvath-Rizea, Diana; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Henkes, Hans; Richter, Cindy; Hoffmann, Karl-Titus; Surov, Alexey; Schob, Stefan
2018-06-14
Meningiomas are the most frequently diagnosed intracranial masses, oftentimes requiring surgery. Especially procedure-related morbidity can be substantial, particularly in elderly patients. Hence, reliable imaging modalities enabling pretherapeutic prediction of tumor grade, growth kinetic, realistic prognosis, and-as a consequence-necessity of surgery are of great value. In this context, a promising diagnostic approach is advanced analysis of magnetic resonance imaging data. Therefore, our study investigated whether histogram profiling of routinely acquired postcontrast T1-weighted images is capable of separating low-grade from high-grade lesions and whether histogram parameters reflect Ki-67 expression in meningiomas. Pretreatment T1-weighted postcontrast volumes of 44 meningioma patients were used for signal intensity histogram profiling. WHO grade, tumor volume, and Ki-67 expression were evaluated. Comparative and correlative statistics investigating the association between histogram profile parameters and neuropathology were performed. None of the investigated histogram parameters revealed significant differences between low-grade and high-grade meningiomas. However, significant correlations were identified between Ki-67 and the histogram parameters skewness and entropy as well as between entropy and tumor volume. Contrary to previously reported findings, pretherapeutic postcontrast T1-weighted images can be used to predict growth kinetics in meningiomas if whole tumor histogram analysis is employed. However, no differences between distinct WHO grades were identifiable in out cohort. As a consequence, histogram analysis of postcontrast T1-weighted images is a promising approach to obtain quantitative in vivo biomarkers reflecting the proliferative potential in meningiomas. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Dose-volume histogram prediction using density estimation.
Skarpman Munter, Johanna; Sjölund, Jens
2015-09-07
Knowledge of what dose-volume histograms can be expected for a previously unseen patient could increase consistency and quality in radiotherapy treatment planning. We propose a machine learning method that uses previous treatment plans to predict such dose-volume histograms. The key to the approach is the framing of dose-volume histograms in a probabilistic setting.The training consists of estimating, from the patients in the training set, the joint probability distribution of some predictive features and the dose. The joint distribution immediately provides an estimate of the conditional probability of the dose given the values of the predictive features. The prediction consists of estimating, from the new patient, the distribution of the predictive features and marginalizing the conditional probability from the training over this. Integrating the resulting probability distribution for the dose yields an estimate of the dose-volume histogram.To illustrate how the proposed method relates to previously proposed methods, we use the signed distance to the target boundary as a single predictive feature. As a proof-of-concept, we predicted dose-volume histograms for the brainstems of 22 acoustic schwannoma patients treated with stereotactic radiosurgery, and for the lungs of 9 lung cancer patients treated with stereotactic body radiation therapy. Comparing with two previous attempts at dose-volume histogram prediction we find that, given the same input data, the predictions are similar.In summary, we propose a method for dose-volume histogram prediction that exploits the intrinsic probabilistic properties of dose-volume histograms. We argue that the proposed method makes up for some deficiencies in previously proposed methods, thereby potentially increasing ease of use, flexibility and ability to perform well with small amounts of training data.
Alightment of Spotted Wing Drosophila (Diptera: Drosophilidae) on Odorless Disks Varying in Color.
Kirkpatrick, D M; McGhee, P S; Hermann, S L; Gut, L J; Miller, J R
2016-02-01
Methods for trapping spotted wing drosophila, Drosophila suzukii (Matsmura) (Diptera: Drosophilidae), have not yet been optimized for detecting this devastating pest of soft-skinned fruits. Here, we report outcomes of choice and no-choice laboratory bioassays quantifying the rates of spotted wing drosophila alightment on 5-cm-diameter sticky disks of various colors, but no fruit odors. Red, purple, and black disks captured the most spotted wing drosophila when presented against a white background. Male and female spotted wing drosophila responded identically in these tests. Significantly more D. suzukii were captured on the red and yellow disks than those presenting the corresponding grayscale for that color, proving that D. suzukii perceives colors and not just the level of target brightness. Fluorescent red is the best candidate for trap color, while clear and white are the least desirable. However, when the background was switched to black, all nonfluorescent colors were equally acceptable to spotted wing drosophila, suggesting that background must be specified when reporting spotted wing drosophila color preference. Additional spotted wing drosophila research is justified on the effects of target color against natural backgrounds. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America.
The zebrafish world of colors and shapes: preference and discrimination.
Oliveira, Jessica; Silveira, Mayara; Chacon, Diana; Luchiari, Ana
2015-04-01
Natural environment imposes many challenges to animals, which have to use cognitive abilities to cope with and exploit it to enhance their fitness. Since zebrafish is a well-established model for cognitive studies and high-throughput screening for drugs and diseases that affect cognition, we tested their ability for ambient color preference and 3D objects discrimination to establish a protocol for memory evaluation. For the color preference test, zebrafish were observed in a multiple-chamber tank with different environmental color options. Zebrafish showed preference for blue and green, and avoided yellow and red. For the 3D objects discrimination, zebrafish were allowed to explore two equal objects and then observed in a one-trial test in which a new color, size, or shape of the object was presented. Zebrafish showed discrimination for color, shape, and color+shape combined, but not size. These results imply that zebrafish seem to use some categorical system to discriminate items, and distracters affect their ability for discrimination. The type of variables available (color and shape) may favor zebrafish objects perception and facilitate discrimination processing. We suggest that this easy and simple memory test could serve as a useful screening tool for cognitive dysfunction and neurotoxicological studies.
Fabrication of digital rainbow holograms and 3-D imaging using SEM based e-beam lithography.
Firsov, An; Firsov, A; Loechel, B; Erko, A; Svintsov, A; Zaitsev, S
2014-11-17
Here we present an approach for creating full-color digital rainbow holograms based on mixing three basic colors. Much like in a color TV with three luminescent points per single screen pixel, each color pixel of initial image is presented by three (R, G, B) distinct diffractive gratings in a hologram structure. Change of either duty cycle or area of the gratings are used to provide proper R, G, B intensities. Special algorithms allow one to design rather complicated 3D images (that might even be replacing each other with hologram rotation). The software developed ("RainBow") provides stability of colorization of rotated image by means of equalizing of angular blur from gratings responsible for R, G, B basic colors. The approach based on R, G, B color synthesis allows one to fabricate gray-tone rainbow hologram containing white color what is hardly possible in traditional dot-matrix technology. Budgetary electron beam lithography based on SEM column was used to fabricate practical examples of digital rainbow hologram. The results of fabrication of large rainbow holograms from design to imprinting are presented. Advantages of the EBL in comparison to traditional optical (dot-matrix) technology is considered.
Face recognition algorithm using extended vector quantization histogram features.
Yan, Yan; Lee, Feifei; Wu, Xueqian; Chen, Qiu
2018-01-01
In this paper, we propose a face recognition algorithm based on a combination of vector quantization (VQ) and Markov stationary features (MSF). The VQ algorithm has been shown to be an effective method for generating features; it extracts a codevector histogram as a facial feature representation for face recognition. Still, the VQ histogram features are unable to convey spatial structural information, which to some extent limits their usefulness in discrimination. To alleviate this limitation of VQ histograms, we utilize Markov stationary features (MSF) to extend the VQ histogram-based features so as to add spatial structural information. We demonstrate the effectiveness of our proposed algorithm by achieving recognition results superior to those of several state-of-the-art methods on publicly available face databases.
Xu, Yan; Ru, Tong; Zhu, Lijing; Liu, Baorui; Wang, Huanhuan; Zhu, Li; He, Jian; Liu, Song; Zhou, Zhengyang; Yang, Xiaofeng
To monitor early response for locally advanced cervical cancers undergoing concurrent chemo-radiotherapy (CCRT) by ultrasonic histogram. B-mode ultrasound examinations were performed at 4 time points in thirty-four patients during CCRT. Six ultrasonic histogram parameters were used to assess the echogenicity, homogeneity and heterogeneity of tumors. I peak increased rapidly since the first week after therapy initiation, whereas W low , W high and A high changed significantly at the second week. The average ultrasonic histogram progressively moved toward the right and converted into more symmetrical shape. Ultrasonic histogram could be served as a potential marker to monitor early response during CCRT. Copyright © 2018 Elsevier Inc. All rights reserved.
Face verification system for Android mobile devices using histogram based features
NASA Astrophysics Data System (ADS)
Sato, Sho; Kobayashi, Kazuhiro; Chen, Qiu
2016-07-01
This paper proposes a face verification system that runs on Android mobile devices. In this system, facial image is captured by a built-in camera on the Android device firstly, and then face detection is implemented using Haar-like features and AdaBoost learning algorithm. The proposed system verify the detected face using histogram based features, which are generated by binary Vector Quantization (VQ) histogram using DCT coefficients in low frequency domains, as well as Improved Local Binary Pattern (Improved LBP) histogram in spatial domain. Verification results with different type of histogram based features are first obtained separately and then combined by weighted averaging. We evaluate our proposed algorithm by using publicly available ORL database and facial images captured by an Android tablet.
Equal Opportunity and Accessibility | Oregon State University Extension
discrimination based on age, color, disability, familial or parental status, gender identity or expression inclusion for people with a wide range of needs. People who benefit include those with: Vision, hearing, or
Packard, René R Sevag; Baek, Kyung In; Beebe, Tyler; Jen, Nelson; Ding, Yichen; Shi, Feng; Fei, Peng; Kang, Bong Jin; Chen, Po-Heng; Gau, Jonathan; Chen, Michael; Tang, Jonathan Y; Shih, Yu-Huan; Ding, Yonghe; Li, Debiao; Xu, Xiaolei; Hsiai, Tzung K
2017-08-17
This study sought to develop an automated segmentation approach based on histogram analysis of raw axial images acquired by light-sheet fluorescent imaging (LSFI) to establish rapid reconstruction of the 3-D zebrafish cardiac architecture in response to doxorubicin-induced injury and repair. Input images underwent a 4-step automated image segmentation process consisting of stationary noise removal, histogram equalization, adaptive thresholding, and image fusion followed by 3-D reconstruction. We applied this method to 3-month old zebrafish injected intraperitoneally with doxorubicin followed by LSFI at 3, 30, and 60 days post-injection. We observed an initial decrease in myocardial and endocardial cavity volumes at day 3, followed by ventricular remodeling at day 30, and recovery at day 60 (P < 0.05, n = 7-19). Doxorubicin-injected fish developed ventricular diastolic dysfunction and worsening global cardiac function evidenced by elevated E/A ratios and myocardial performance indexes quantified by pulsed-wave Doppler ultrasound at day 30, followed by normalization at day 60 (P < 0.05, n = 9-20). Treatment with the γ-secretase inhibitor, DAPT, to inhibit cleavage and release of Notch Intracellular Domain (NICD) blocked cardiac architectural regeneration and restoration of ventricular function at day 60 (P < 0.05, n = 6-14). Our approach provides a high-throughput model with translational implications for drug discovery and genetic modifiers of chemotherapy-induced cardiomyopathy.
Histogram Curve Matching Approaches for Object-based Image Classification of Land Cover and Land Use
Toure, Sory I.; Stow, Douglas A.; Weeks, John R.; Kumar, Sunil
2013-01-01
The classification of image-objects is usually done using parametric statistical measures of central tendency and/or dispersion (e.g., mean or standard deviation). The objectives of this study were to analyze digital number histograms of image objects and evaluate classifications measures exploiting characteristic signatures of such histograms. Two histograms matching classifiers were evaluated and compared to the standard nearest neighbor to mean classifier. An ADS40 airborne multispectral image of San Diego, California was used for assessing the utility of curve matching classifiers in a geographic object-based image analysis (GEOBIA) approach. The classifications were performed with data sets having 0.5 m, 2.5 m, and 5 m spatial resolutions. Results show that histograms are reliable features for characterizing classes. Also, both histogram matching classifiers consistently performed better than the one based on the standard nearest neighbor to mean rule. The highest classification accuracies were produced with images having 2.5 m spatial resolution. PMID:24403648
Shin, Young Gyung; Yoo, Jaeheung; Kwon, Hyeong Ju; Hong, Jung Hwa; Lee, Hye Sun; Yoon, Jung Hyun; Kim, Eun-Kyung; Moon, Hee Jung; Han, Kyunghwa; Kwak, Jin Young
2016-08-01
The objective of the study was to evaluate whether texture analysis using histogram and gray level co-occurrence matrix (GLCM) parameters can help clinicians diagnose lymphocytic thyroiditis (LT) and differentiate LT according to pathologic grade. The background thyroid pathology of 441 patients was classified into no evidence of LT, chronic LT (CLT), and Hashimoto's thyroiditis (HT). Histogram and GLCM parameters were extracted from the regions of interest on ultrasound. The diagnostic performances of the parameters for diagnosing and differentiating LT were calculated. Of the histogram and GLCM parameters, the mean on histogram had the highest Az (0.63) and VUS (0.303). As the degrees of LT increased, the mean decreased and the standard deviation and entropy increased. The mean on histogram from gray-scale ultrasound showed the best diagnostic performance as a single parameter in differentiating LT according to pathologic grade as well as in diagnosing LT. Copyright © 2016 Elsevier Ltd. All rights reserved.
Guan, Yue; Shi, Hua; Chen, Ying; Liu, Song; Li, Weifeng; Jiang, Zhuoran; Wang, Huanhuan; He, Jian; Zhou, Zhengyang; Ge, Yun
2016-01-01
The aim of this study was to explore the application of whole-lesion histogram analysis of apparent diffusion coefficient (ADC) values of cervical cancer. A total of 54 women (mean age, 53 years) with cervical cancers underwent 3-T diffusion-weighted imaging with b values of 0 and 800 s/mm prospectively. Whole-lesion histogram analysis of ADC values was performed. Paired sample t test was used to compare differences in ADC histogram parameters between cervical cancers and normal cervical tissues. Receiver operating characteristic curves were constructed to identify the optimal threshold of each parameter. All histogram parameters in this study including ADCmean, ADCmin, ADC10%-ADC90%, mode, skewness, and kurtosis of cervical cancers were significantly lower than those of normal cervical tissues (all P < 0.0001). ADC90% had the largest area under receiver operating characteristic curve of 0.996. Whole-lesion histogram analysis of ADC maps is useful in the assessment of cervical cancer.
NASA Technical Reports Server (NTRS)
Seze, Genevieve; Rossow, William B.
1991-01-01
The spatial and temporal stability of the distributions of satellite-measured visible and infrared radiances, caused by variations in clouds and surfaces, are investigated using bidimensional and monodimensional histograms and time-composite images. Similar analysis of the histograms of the original and time-composite images provides separation of the contributions of the space and time variations to the total variations. The variability of both the surfaces and clouds is found to be larger at scales much larger than the minimum resolved by satellite imagery. This study shows that the shapes of these histograms are distinctive characteristics of the different climate regimes and that particular attributes of these histograms can be related to several general, though not universal, properties of clouds and surface variations at regional and synoptic scales. There are also significant exceptions to these relationships in particular climate regimes. The characteristics of these radiance histograms provide a stable well defined descriptor of the cloud and surface properties.
Meng, Jie; Zhu, Lijing; Zhu, Li; Wang, Huanhuan; Liu, Song; Yan, Jing; Liu, Baorui; Guan, Yue; Ge, Yun; He, Jian; Zhou, Zhengyang; Yang, Xiaofeng
2016-10-22
To explore the role of apparent diffusion coefficient (ADC) histogram shape related parameters in early assessment of treatment response during the concurrent chemo-radiotherapy (CCRT) course of advanced cervical cancers. This prospective study was approved by the local ethics committee and informed consent was obtained from all patients. Thirty-two patients with advanced cervical squamous cell carcinomas underwent diffusion weighted magnetic resonance imaging (b values, 0 and 800 s/mm 2 ) before CCRT, at the end of 2nd and 4th week during CCRT and immediately after CCRT completion. Whole lesion ADC histogram analysis generated several histogram shape related parameters including skewness, kurtosis, s-sD av , width, standard deviation, as well as first-order entropy and second-order entropies. The averaged ADC histograms of 32 patients were generated to visually observe dynamic changes of the histogram shape following CCRT. All parameters except width and standard deviation showed significant changes during CCRT (all P < 0.05), and their variation trends fell into four different patterns. Skewness and kurtosis both showed high early decline rate (43.10 %, 48.29 %) at the end of 2nd week of CCRT. All entropies kept decreasing significantly since 2 weeks after CCRT initiated. The shape of averaged ADC histogram also changed obviously following CCRT. ADC histogram shape analysis held the potential in monitoring early tumor response in patients with advanced cervical cancers undergoing CCRT.
[Clinical application of MRI histogram in evaluation of muscle fatty infiltration].
Zheng, Y M; Du, J; Li, W Z; Wang, Z X; Zhang, W; Xiao, J X; Yuan, Y
2016-10-18
To describe a method based on analysis of the histogram of intensity values produced from the magnetic resonance imaging (MRI) for quantifying the degree of fatty infiltration. The study included 25 patients with dystrophinopathy. All the subjects underwent muscle MRI test at thigh level. The histogram M values of 250 muscles adjusted for subcutaneous fat, representing the degree of fatty infiltration, were compared with the expert visual reading using the modified Mercuri scale. There was a significant positive correlation between the histogram M values and the scores of visual reading (r=0.854, P<0.001). The distinct pattern of muscle involvement detected in the patients with dystrophinopathy in our study of histogram M values was similar to that of visual reading and results in literature. The histogram M values had stronger correlations with the clinical data than the scores of visual reading as follows: the correlations with age (r=0.730, P<0.001) and (r=0.753, P<0.001); with strength of knee extensor (r=-0.468, P=0.024) and (r=-0.460, P=0.027) respectively. Meanwhile, the histogram M values analysis had better repeatability than visual reading with the interclass correlation coefficient was 0.998 (95% CI: 0.997-0.998, P<0.001) and 0.958 (95% CI: 0.946-0.967, P<0.001) respectively. Histogram M values analysis of MRI with the advantages of repeatability and objectivity can be used to evaluate the degree of muscle fatty infiltration.
Dissimilarity representations in lung parenchyma classification
NASA Astrophysics Data System (ADS)
Sørensen, Lauge; de Bruijne, Marleen
2009-02-01
A good problem representation is important for a pattern recognition system to be successful. The traditional approach to statistical pattern recognition is feature representation. More specifically, objects are represented by a number of features in a feature vector space, and classifiers are built in this representation. This is also the general trend in lung parenchyma classification in computed tomography (CT) images, where the features often are measures on feature histograms. Instead, we propose to build normal density based classifiers in dissimilarity representations for lung parenchyma classification. This allows for the classifiers to work on dissimilarities between objects, which might be a more natural way of representing lung parenchyma. In this context, dissimilarity is defined between CT regions of interest (ROI)s. ROIs are represented by their CT attenuation histogram and ROI dissimilarity is defined as a histogram dissimilarity measure between the attenuation histograms. In this setting, the full histograms are utilized according to the chosen histogram dissimilarity measure. We apply this idea to classification of different emphysema patterns as well as normal, healthy tissue. Two dissimilarity representation approaches as well as different histogram dissimilarity measures are considered. The approaches are evaluated on a set of 168 CT ROIs using normal density based classifiers all showing good performance. Compared to using histogram dissimilarity directly as distance in a emph{k} nearest neighbor classifier, which achieves a classification accuracy of 92.9%, the best dissimilarity representation based classifier is significantly better with a classification accuracy of 97.0% (text{emph{p" border="0" class="imgtopleft"> = 0.046).
ERIC Educational Resources Information Center
Gratzer, William; Carpenter, James E.
2008-01-01
This article demonstrates an alternative approach to the construction of histograms--one based on the notion of using area to represent relative density in intervals of unequal length. The resulting histograms illustrate the connection between the area of the rectangles associated with particular outcomes and the relative frequency (probability)…
Investigating Student Understanding of Histograms
ERIC Educational Resources Information Center
Kaplan, Jennifer J.; Gabrosek, John G.; Curtiss, Phyllis; Malone, Chris
2014-01-01
Histograms are adept at revealing the distribution of data values, especially the shape of the distribution and any outlier values. They are included in introductory statistics texts, research methods texts, and in the popular press, yet students often have difficulty interpreting the information conveyed by a histogram. This research identifies…
Single-wavelength based rice leaf color analyzer for nitrogen status estimation
NASA Astrophysics Data System (ADS)
Sumriddetchkajorn, Sarun; Intaravanne, Yuttana
2014-02-01
With the need of a tool for efficient nitrogen (N) fertilizer management in the rice field, this paper proposes a low-cost compact single-wavelength based colorimeter that can be used to indicate the specified six color levels of a rice leaf associated with the desired amount of N fertilizer for the rice field. Our key design is in a reflective optical architecture that allows us to investigate the amount of light scattered from only one side of the rice leaf. We also show how we implement this needed rice leaf color analyzer by integrating an off-the-shelf 562-nm wavelength light emitting diode (LED), a silicon photodiode, an 8-bit microcontroller, and a 6×1 LED panel in a compact plastic package. Field test results in rice fields confirm that leaf color levels of 1, 2, 3, 5, and 6 are effectively identified and their corresponding amount of N fertilizer can be determined. For the leaf color level of 4, our single-wavelength based rice leaf color analyzer sometimes indicates a higher color level of 5 whose suggested amount of N fertilizer is equal to that for the leaf color level of 4. Other key features include ease of use and upgradability for different color levels.
Color-blind racial ideology: theory, training, and measurement implications in psychology.
Neville, Helen A; Awad, Germine H; Brooks, James E; Flores, Michelle P; Bluemel, Jamie
2013-09-01
Synthesizing the interdisciplinary literature, we characterize color-blind racial ideology (CBRI) as consisting of two interrelated domains: color-evasion (i.e., denial of racial differences by emphasizing sameness) and power-evasion (i.e., denial of racism by emphasizing equal opportunities). Mounting empirical data suggest that the color-evasion dimension is ineffective and in fact promotes interracial tension and potential inequality. CBRI may be conceived as an ultramodern or contemporary form of racism and a legitimizing ideology used to justify the racial status quo. Four types of CBRI are described: denial of (a) race, (b) blatant racial issues, (c) institutional racism, and (d) White privilege. We discuss empirical findings suggesting a relationship between CBRI and increased racial prejudice, racial anger, and racial fear. Implications for education, training, and research are provided. © 2013 APA, all rights reserved.
Metameric MIMO-OOK transmission scheme using multiple RGB LEDs.
Bui, Thai-Chien; Cusani, Roberto; Scarano, Gaetano; Biagi, Mauro
2018-05-28
In this work, we propose a novel visible light communication (VLC) scheme utilizing multiple different red green and blue triplets each with a different emission spectrum of red, green and blue for mitigating the effect of interference due to different colors using spatial multiplexing. On-off keying modulation is considered and its effect on light emission in terms of flickering, dimming and color rendering is discussed so as to demonstrate how metameric properties have been considered. At the receiver, multiple photodiodes with color filter-tuned on each transmit light emitting diode (LED) are employed. Three different detection mechanisms of color zero forcing, minimum mean square error estimation and minimum mean square error equalization are then proposed. The system performance of the proposed scheme is evaluated both with computer simulations and tests with an Arduino board implementation.
NASA Astrophysics Data System (ADS)
Galich, Nikolay E.
2008-07-01
Communication contains the description of the immunology data treatment. New nonlinear methods of immunofluorescence statistical analysis of peripheral blood neutrophils have been developed. We used technology of respiratory burst reaction of DNA fluorescence in the neutrophils cells nuclei due to oxidative activity. The histograms of photon count statistics the radiant neutrophils populations' in flow cytometry experiments are considered. Distributions of the fluorescence flashes frequency as functions of the fluorescence intensity are analyzed. Statistic peculiarities of histograms set for women in the pregnant period allow dividing all histograms on the three classes. The classification is based on three different types of smoothing and long-range scale averaged immunofluorescence distributions, their bifurcation and wavelet spectra. Heterogeneity peculiarities of long-range scale immunofluorescence distributions and peculiarities of wavelet spectra allow dividing all histograms on three groups. First histograms group belongs to healthy donors. Two other groups belong to donors with autoimmune and inflammatory diseases. Some of the illnesses are not diagnosed by standards biochemical methods. Medical standards and statistical data of the immunofluorescence histograms for identifications of health and illnesses are interconnected. Peculiarities of immunofluorescence for women in pregnant period are classified. Health or illness criteria are connected with statistics features of immunofluorescence histograms. Neutrophils populations' fluorescence presents the sensitive clear indicator of health status.
Complexity of possibly gapped histogram and analysis of histogram.
Fushing, Hsieh; Roy, Tania
2018-02-01
We demonstrate that gaps and distributional patterns embedded within real-valued measurements are inseparable biological and mechanistic information contents of the system. Such patterns are discovered through data-driven possibly gapped histogram, which further leads to the geometry-based analysis of histogram (ANOHT). Constructing a possibly gapped histogram is a complex problem of statistical mechanics due to the ensemble of candidate histograms being captured by a two-layer Ising model. This construction is also a distinctive problem of Information Theory from the perspective of data compression via uniformity. By defining a Hamiltonian (or energy) as a sum of total coding lengths of boundaries and total decoding errors within bins, this issue of computing the minimum energy macroscopic states is surprisingly resolved by applying the hierarchical clustering algorithm. Thus, a possibly gapped histogram corresponds to a macro-state. And then the first phase of ANOHT is developed for simultaneous comparison of multiple treatments, while the second phase of ANOHT is developed based on classical empirical process theory for a tree-geometry that can check the authenticity of branches of the treatment tree. The well-known Iris data are used to illustrate our technical developments. Also, a large baseball pitching dataset and a heavily right-censored divorce data are analysed to showcase the existential gaps and utilities of ANOHT.
Morikawa, Kei; Kurimoto, Noriaki; Inoue, Takeo; Mineshita, Masamichi; Miyazawa, Teruomi
2015-01-01
Endobronchial ultrasonography using a guide sheath (EBUS-GS) is an increasingly common bronchoscopic technique, but currently, no methods have been established to quantitatively evaluate EBUS images of peripheral pulmonary lesions. The purpose of this study was to evaluate whether histogram data collected from EBUS-GS images can contribute to the diagnosis of lung cancer. Histogram-based analyses focusing on the brightness of EBUS images were retrospectively conducted: 60 patients (38 lung cancer; 22 inflammatory diseases), with clear EBUS images were included. For each patient, a 400-pixel region of interest was selected, typically located at a 3- to 5-mm radius from the probe, from recorded EBUS images during bronchoscopy. Histogram height, width, height/width ratio, standard deviation, kurtosis and skewness were investigated as diagnostic indicators. Median histogram height, width, height/width ratio and standard deviation were significantly different between lung cancer and benign lesions (all p < 0.01). With a cutoff value for standard deviation of 10.5, lung cancer could be diagnosed with an accuracy of 81.7%. Other characteristics investigated were inferior when compared to histogram standard deviation. Histogram standard deviation appears to be the most useful characteristic for diagnosing lung cancer using EBUS images. © 2015 S. Karger AG, Basel.
Complexity of possibly gapped histogram and analysis of histogram
Roy, Tania
2018-01-01
We demonstrate that gaps and distributional patterns embedded within real-valued measurements are inseparable biological and mechanistic information contents of the system. Such patterns are discovered through data-driven possibly gapped histogram, which further leads to the geometry-based analysis of histogram (ANOHT). Constructing a possibly gapped histogram is a complex problem of statistical mechanics due to the ensemble of candidate histograms being captured by a two-layer Ising model. This construction is also a distinctive problem of Information Theory from the perspective of data compression via uniformity. By defining a Hamiltonian (or energy) as a sum of total coding lengths of boundaries and total decoding errors within bins, this issue of computing the minimum energy macroscopic states is surprisingly resolved by applying the hierarchical clustering algorithm. Thus, a possibly gapped histogram corresponds to a macro-state. And then the first phase of ANOHT is developed for simultaneous comparison of multiple treatments, while the second phase of ANOHT is developed based on classical empirical process theory for a tree-geometry that can check the authenticity of branches of the treatment tree. The well-known Iris data are used to illustrate our technical developments. Also, a large baseball pitching dataset and a heavily right-censored divorce data are analysed to showcase the existential gaps and utilities of ANOHT. PMID:29515829
Complexity of possibly gapped histogram and analysis of histogram
NASA Astrophysics Data System (ADS)
Fushing, Hsieh; Roy, Tania
2018-02-01
We demonstrate that gaps and distributional patterns embedded within real-valued measurements are inseparable biological and mechanistic information contents of the system. Such patterns are discovered through data-driven possibly gapped histogram, which further leads to the geometry-based analysis of histogram (ANOHT). Constructing a possibly gapped histogram is a complex problem of statistical mechanics due to the ensemble of candidate histograms being captured by a two-layer Ising model. This construction is also a distinctive problem of Information Theory from the perspective of data compression via uniformity. By defining a Hamiltonian (or energy) as a sum of total coding lengths of boundaries and total decoding errors within bins, this issue of computing the minimum energy macroscopic states is surprisingly resolved by applying the hierarchical clustering algorithm. Thus, a possibly gapped histogram corresponds to a macro-state. And then the first phase of ANOHT is developed for simultaneous comparison of multiple treatments, while the second phase of ANOHT is developed based on classical empirical process theory for a tree-geometry that can check the authenticity of branches of the treatment tree. The well-known Iris data are used to illustrate our technical developments. Also, a large baseball pitching dataset and a heavily right-censored divorce data are analysed to showcase the existential gaps and utilities of ANOHT.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Judicial Administration DEPARTMENT OF JUSTICE NONDISCRIMINATION; EQUAL EMPLOYMENT OPPORTUNITY; POLICIES AND PROCEDURES Coordination of Enforcement of Non-discrimination in Federally Assisted Programs § 42.402... other federal statutes to the extent that they prohibit discrimination on the ground of race, color or...
Code of Federal Regulations, 2011 CFR
2011-01-01
... processing or servicing activity conducted pursuant to this part involving authorized assistance to Agency... equal application of outreach activities of Field Offices. (e) Federal statutes provide for extending the Agency financial programs without regard to race, color, religion, sex, national origin, marital...
Code of Federal Regulations, 2013 CFR
2013-01-01
... processing or servicing activity conducted pursuant to this part involving authorized assistance to Agency... equal application of outreach activities of Field Offices. (e) Federal statutes provide for extending the Agency financial programs without regard to race, color, religion, sex, national origin, marital...
Code of Federal Regulations, 2014 CFR
2014-01-01
... processing or servicing activity conducted pursuant to this part involving authorized assistance to Agency... equal application of outreach activities of Field Offices. (e) Federal statutes provide for extending the Agency financial programs without regard to race, color, religion, sex, national origin, marital...
Code of Federal Regulations, 2012 CFR
2012-01-01
... processing or servicing activity conducted pursuant to this part involving authorized assistance to Agency... equal application of outreach activities of Field Offices. (e) Federal statutes provide for extending the Agency financial programs without regard to race, color, religion, sex, national origin, marital...
Visual Data Analysis for Satellites
NASA Technical Reports Server (NTRS)
Lau, Yee; Bhate, Sachin; Fitzpatrick, Patrick
2008-01-01
The Visual Data Analysis Package is a collection of programs and scripts that facilitate visual analysis of data available from NASA and NOAA satellites, as well as dropsonde, buoy, and conventional in-situ observations. The package features utilities for data extraction, data quality control, statistical analysis, and data visualization. The Hierarchical Data Format (HDF) satellite data extraction routines from NASA's Jet Propulsion Laboratory were customized for specific spatial coverage and file input/output. Statistical analysis includes the calculation of the relative error, the absolute error, and the root mean square error. Other capabilities include curve fitting through the data points to fill in missing data points between satellite passes or where clouds obscure satellite data. For data visualization, the software provides customizable Generic Mapping Tool (GMT) scripts to generate difference maps, scatter plots, line plots, vector plots, histograms, timeseries, and color fill images.
Web-based CERES Clouds QC Property Viewing Tool
NASA Astrophysics Data System (ADS)
Smith, R. A.
2015-12-01
Churngwei Chu1, Rita Smith1, Sunny Sun-Mack1, Yan Chen1, Elizabeth Heckert1, Patrick Minnis21 Science Systems and Applications, Inc., Hampton, Virginia2 NASA Langley Research Center, Hampton, Virginia This presentation will display the capabilities of a web-based CERES cloud property viewer. Aqua/Terra/NPP data will be chosen for examples. It will demonstrate viewing of cloud properties in gridded global maps, histograms, time series displays, latitudinal zonal images, binned data charts, data frequency graphs, and ISCCP plots. Images can be manipulated by the user to narrow boundaries of the map as well as color bars and value ranges, compare datasets, view data values, and more. Other atmospheric studies groups will be encouraged to put their data into the underlying NetCDF data format and view their data with the tool.
Deep HST imaging of distant weak radio and field galaxies
NASA Technical Reports Server (NTRS)
Windhorst, R. A.; Gordon, J. M.; Pascarelle, S. M.; Schmidtke, P. C.; Keel, W. C.; Burkey, J. M.; Dunlop, J. S.
1994-01-01
We present deep Hubble Space Telescope (HST) Wide-Field Camera (WFC) V- and I-band images of three distant weak radio galaxies with z = 0.311-2.390 and seven field galaxies with z = 0.131-0.58. The images were deconvolved with both the Lucy and multiresolution CLEAN methods, which yield a restoring Full Width at Half Maximum (FWHM) of less than or equal to 0.2 sec, (nearly) preserve photons and signal-to-noise ratio at low spatial frequencies, and produce consistent light profiles down to our 2 sigma surface brightness sensitivity limit of V approximately 27.2 and I approximately 25.9 mag/sq arcsec. Multi-component image modeling was used to provide deconvolution-independent estimates of structural parameters for symmetric galaxies. We present 12-band (m(sub 2750) UBVRIgriJHK) photometry for a subset of the galaxies and bootstrap the unknown FOC/48 zero point at 2750 A in three independent ways (yielding m(sub 2750) = 21.34 +/- 0.09 mag for 1.0 e(-)/s). Two radio galaxies with z = 0.311 and 0.528, as well as one field galaxy with z = 0.58, have the colors and spectra of early-type galaxies, and a(exp 1/4)-like light profiles in the HST images. The two at z greater than 0.5 have little or no color gradients in V - I and are likely giant ellipticals, while the z = 0.311 radio galaxy has a dim exponential disk and is likely an S0. Six of the seven field galaxies have light profiles that indicate (small) inner bulges following a(exp 1/4) laws and outer exponential disks, both with little or no color gradients. These are (early-type) spiral galaxies with z = 0.131-0.528. About half have faint companions or bars. One shows lumpy structure, possibly a merger. The compact narrow-line galaxy 53W002 at z = 2.390 has less than or = 30% +/- 10% of its HST V and I flux in the central kiloparsec (due to its weak Active Galactic Nucleus (AGN)). Most of its light (V approximately equal to 23.3) occurs in a symmetric envelope with a regular a(exp 1/4)-like profile of effective radius a approximately equal to 1.1 sec (approximately equal to 12 kpc for H(sub 0) = 50, q(sub 0) = 0.1. Its (HST) V - I color varies at most from approximately 0.3 mag at a approximately equal to 0.2 sec to approximately 1.2 mag at a approximately greater than 0.4 sec, and possibly to approximately greater than 2.2 mag at a approximately greater than 1.2 sec. Together with its I - K color (approximately equal to 2.5 mag for a approximately greater than 1.0 sec-2.0 sec), this is consistent with an aging stellar population approximately 0.3-0.5 Gyr old in the galaxy center (a approx. less than 2 kpc radius), and possibly approximately 0.5-1.0 Gyr old at a approximately greater than 10 kpc radius. While its outer part may thus have started to collapse at z = 2.5-4, its inner part still is aligned with its redshifted Ly(alpha) cloud and its radio axis, possibly caused by star formation associated with the radio jet, or by reflection from its AGN cone.
da Silva, Vanessa Priscilla Martins; Ikino, Juliana Kida; Sens, Mariana Mazzochi; Nunes, Daniel Holthausen; Di Giunta, Gabriella
2013-01-01
BACKGROUND Dermoscopy allows the early detection of melanomas. The preoperative determination of Breslow index by dermoscopy could be useful in planning the surgical approach and in selecting patients for sentinel lymph node biopsy. OBJECTIVES This study aims at describing the dermoscopic features of thin melanomas and comparing melanomas in situ with invasive melanomas less than or equal to 1 mm thick. METHODS This was an observational retrospective study in which the dermoscopy photographs of 41 thin melanomas were evaluated. Three observers evaluated together 14 dermoscopic criteria. RESULTS Among thin melanomas, the most frequent criteria were presence of asymmetry in two axes in 95% of cases (39 cases), 3 or more colors in 80.4% of cases (33 cases), atypical dots or globules in 58.5% of cases (24 cases) and atypical network or streaks in 53.6% of cases (22 cases). The group of invasive melanomas presented with a higher frequency and statistical significance (p <0.05) 3 or more colors (OR: 16.1), milky red areas (OR: 4.8) and blue-white veil (OR: 20.4), and a greater tendency to have streaks or atypical network (OR: 3.66). CONCLUSIONS Thin melanomas tend to have asymmetry in the two axes, 3 or more colors, atypical dots or globules and atypical network or streaks. Melanomas in situ tend to have up to 2 colors, no blue-white veil and no milky red area. Invasive melanomas tend to have 3 or more colors, a milky red area, blue-white veil, and atypical network or streaks. Further studies are needed to confirm these findings. PMID:24173175
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simard, Luc; McConnachie, Alan W.; Trevor Mendel, J.
We perform two-dimensional, point-spread-function-convolved, bulge+disk decompositions in the g and r bandpasses on a sample of 1,123,718 galaxies from the Legacy area of the Sloan Digital Sky Survey Data Release Seven. Four different decomposition procedures are investigated which make improvements to sky background determinations and object deblending over the standard SDSS procedures that lead to more robust structural parameters and integrated galaxy magnitudes and colors, especially in crowded environments. We use a set of science-based quality assurance metrics, namely, the disk luminosity-size relation, the galaxy color-magnitude diagram, and the galaxy central (fiber) colors to show the robustness of our structuralmore » parameters. The best procedure utilizes simultaneous, two-bandpass decompositions. Bulge and disk photometric errors remain below 0.1 mag down to bulge and disk magnitudes of g {approx_equal} 19 and r {approx_equal} 18.5. We also use and compare three different galaxy fitting models: a pure Sersic model, an n{sub b} = 4 bulge + disk model, and a Sersic (free n{sub b}) bulge + disk model. The most appropriate model for a given galaxy is determined by the F-test probability. All three catalogs of measured structural parameters, rest-frame magnitudes, and colors are publicly released here. These catalogs should provide an extensive comparison set for a wide range of observational and theoretical studies of galaxies.« less
Kim, Ji Youn; Kim, Hai-Joong; Hahn, Meong Hi; Jeon, Hye Jin; Cho, Geum Joon; Hong, Sun Chul; Oh, Min Jeong
2013-09-01
Our aim was to figure out whether volumetric gray-scale histogram difference between anterior and posterior cervix can indicate the extent of cervical consistency. We collected data of 95 patients who were appropriate for vaginal delivery with 36th to 37th weeks of gestational age from September 2010 to October 2011 in the Department of Obstetrics and Gynecology, Korea University Ansan Hospital. Patients were excluded who had one of the followings: Cesarean section, labor induction, premature rupture of membrane. Thirty-four patients were finally enrolled. The patients underwent evaluation of the cervix through Bishop score, cervical length, cervical volume, three-dimensional (3D) cervical volumetric gray-scale histogram. The interval days from the cervix evaluation to the delivery day were counted. We compared to 3D cervical volumetric gray-scale histogram, Bishop score, cervical length, cervical volume with interval days from the evaluation of the cervix to the delivery. Gray-scale histogram difference between anterior and posterior cervix was significantly correlated to days to delivery. Its correlation coefficient (R) was 0.500 (P = 0.003). The cervical length was significantly related to the days to delivery. The correlation coefficient (R) and P-value between them were 0.421 and 0.013. However, anterior lip histogram, posterior lip histogram, total cervical volume, Bishop score were not associated with days to delivery (P >0.05). By using gray-scale histogram difference between anterior and posterior cervix and cervical length correlated with the days to delivery. These methods can be utilized to better help predict a cervical consistency.
Lightness, chroma, and hue distributions of a shade guide as measured by a spectroradiometer.
Lee, Yong-Keun; Yu, Bin; Lim, Ho-Nam
2010-09-01
The color attributes of commercially available shade guides have been measured by spectrophotometers (SP), which are designed to measure flat surfaces. However, there is limited information on the color distribution of shade guides as measured by spectroradiometers (SR), which are capable of measuring the color of curved surfaces. The purpose of this study was to determine the distributions of lightness (CIE L*) and chroma (C*(ab)) step intervals between adjacent shade tabs of a shade guide based on the lightness, chroma, and hue attributes measured by an SR. Lightness, chroma, hue angle, and CIE a* and b* values of the shade tabs (n=26) from a shade guide (Vitapan 3D-Master) were measured by an SR under daylight conditions. The distributions of the ratios in lightness and chroma of each tab compared with the lowest lightness tab or the lowest chroma tab were determined. The values for each color parameter were analyzed by a 3-way ANOVA with the factors of lightness, chroma, and hue designations of the shade tabs (alpha=.05). The chroma and CIE a* and b* values were influenced by the lightness, chroma, and hue designations of the shade tabs (P<.001); however, the lightness and hue angle were influenced by the lightness and hue designations, but not by the chroma designation. Distributions for the CIE a* and b* values, in each lightness group, corresponded with the chroma designation. However, the intervals in the lightness and chroma scales between adjacent tabs were not uniform. The intervals in the color parameters between adjacent shade tabs were not uniform based on SR measurements. Therefore, a shade guide in which shade tabs are more equally spaced by the color attributes, based on the values as measured by an SR along with observers' responses with respect to the equality of the intervals, should be devised. Copyright © 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Do graphemes attract spatial attention in grapheme-color synesthesia?
Volberg, G; Chockley, A S; Greenlee, M W
2017-05-01
Grapheme-color synesthetes perceive concurrent colors for some objectively achromatic graphemes (inducers). Using oscillatory responses in the electroencephalogram, we tested the hypothesis that inducers automatically attract spatial attention and, thus, favor a conscious experience of color. Achromatic inducers and real-colored non-inducers were presented to the left or to the right visual hemifield and orientation judgments were required for subsequently presented Gabor patches. The graphemes were irrelevant for the task so that the related brain response was purely stimulus-driven. Synesthetes (n =12), but not an equal number of controls, showed an early theta power increase for inducers presented to the right compared to the left hemifield, with sources in left fusiform gyrus. Alpha power asymmetries indicative of shifts of spatial attention were not observed. Together, synesthetes showed an increased responsiveness to inducers in grapheme processing areas. However, contrary to our hypothesis, inducers did not attract spatial attention in synesthetes. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Golden, D. C.; Ming, D. W.; Lauer, H. V., Jr.
1991-01-01
Magnetite, when present as fine particles, is soluble in acid ammonium oxalate (pH equals 3). However, the commonly used extractant for free iron oxides (i.e., citrate dithionite-bicarbonate (CDB) is not very effective in dissolving magnetite in soils and geologic materials. Upon oxidation, magnetite transforms to maghemite; at elevated temperatures, maghemite inverts to hematite. This transformation causes a change in color from black to red and may affect the reductant solubility as well. The objectives here were to examine the color and reflectance spectral characteristics of products during the transformation of magnetite to maghemite to hematite and to study the effect of Al-substitution in magnetite on the above process. Reductant solubility of Al-substituted magnetite, maghemite, and hematite was also studied. In summary, the transformation of magnetite to maghemite was accompanied by a change in color from black to red because of the oxidation of Fe2(+) to Fe3(+). The phase change maghemite to hematite had a relatively minor effect on the color and the reflectance spectra.
Temporal enhancement of two-dimensional color doppler echocardiography
NASA Astrophysics Data System (ADS)
Terentjev, Alexey B.; Settlemier, Scott H.; Perrin, Douglas P.; del Nido, Pedro J.; Shturts, Igor V.; Vasilyev, Nikolay V.
2016-03-01
Two-dimensional color Doppler echocardiography is widely used for assessing blood flow inside the heart and blood vessels. Currently, frame acquisition time for this method varies from tens to hundreds of milliseconds, depending on Doppler sector parameters. This leads to low frame rates of resulting video sequences equal to tens of Hz, which is insufficient for some diagnostic purposes, especially in pediatrics. In this paper, we present a new approach for reconstruction of 2D color Doppler cardiac images, which results in the frame rate being increased to hundreds of Hz. This approach relies on a modified method of frame reordering originally applied to real-time 3D echocardiography. There are no previous publications describing application of this method to 2D Color Doppler data. The approach has been tested on several in-vivo cardiac 2D color Doppler datasets with approximate duration of 30 sec and native frame rate of 15 Hz. The resulting image sequences had equivalent frame rates to 500Hz.
NASA Astrophysics Data System (ADS)
Laher, Russ R.; Gorjian, Varoujan; Rebull, Luisa M.; Masci, Frank J.; Fowler, John W.; Helou, George; Kulkarni, Shrinivas R.; Law, Nicholas M.
2012-07-01
Aperture Photometry Tool (APT) is software for astronomers and students interested in manually exploring the photometric qualities of astronomical images. It is a graphical user interface (GUI) designed to allow the image data associated with aperture photometry calculations for point and extended sources to be visualized and, therefore, more effectively analyzed. The finely tuned layout of the GUI, along with judicious use of color-coding and alerting, is intended to give maximal user utility and convenience. Simply mouse-clicking on a source in the displayed image will instantly draw a circular or elliptical aperture and sky annulus around the source and will compute the source intensity and its uncertainty, along with several commonly used measures of the local sky background and its variability. The results are displayed and can be optionally saved to an aperture-photometry-table file and plotted on graphs in various ways using functions available in the software. APT is geared toward processing sources in a small number of images and is not suitable for bulk processing a large number of images, unlike other aperture photometry packages (e.g., SExtractor). However, APT does have a convenient source-list tool that enables calculations for a large number of detections in a given image. The source-list tool can be run either in automatic mode to generate an aperture photometry table quickly or in manual mode to permit inspection and adjustment of the calculation for each individual detection. APT displays a variety of useful graphs with just the push of a button, including image histogram, x and y aperture slices, source scatter plot, sky scatter plot, sky histogram, radial profile, curve of growth, and aperture-photometry-table scatter plots and histograms. APT has many functions for customizing the calculations, including outlier rejection, pixel “picking” and “zapping,” and a selection of source and sky models. The radial-profile-interpolation source model, which is accessed via the radial-profile-plot panel, allows recovery of source intensity from pixels with missing data and can be especially beneficial in crowded fields.
Construction and Evaluation of Histograms in Teacher Training
ERIC Educational Resources Information Center
Bruno, A.; Espinel, M. C.
2009-01-01
This article details the results of a written test designed to reveal how education majors construct and evaluate histograms and frequency polygons. Included is a description of the mistakes made by the students which shows how they tend to confuse histograms with bar diagrams, incorrectly assign data along the Cartesian axes and experience…
Empirical Histograms in Item Response Theory with Ordinal Data
ERIC Educational Resources Information Center
Woods, Carol M.
2007-01-01
The purpose of this research is to describe, test, and illustrate a new implementation of the empirical histogram (EH) method for ordinal items. The EH method involves the estimation of item response model parameters simultaneously with the approximation of the distribution of the random latent variable (theta) as a histogram. Software for the EH…
Yang, Su
2005-02-01
A new descriptor for symbol recognition is proposed. 1) A histogram is constructed for every pixel to figure out the distribution of the constraints among the other pixels. 2) All the histograms are statistically integrated to form a feature vector with fixed dimension. The robustness and invariance were experimentally confirmed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-01-01
This volume contains geology of the Durango D detail area, radioactive mineral occurrences in Colorado, and geophysical data interpretation. Eight appendices provide: stacked profiles, geologic histograms, geochemical histograms, speed and altitude histograms, geologic statistical tables, geochemical statistical tables, magnetic and ancillary profiles, and test line data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-01-01
Geology of Durango C detail area, radioactive mineral occurrences in Colorado, and geophysical data interpretation are included in this report. Eight appendices provide: stacked profiles, geologic histograms, geochemical histograms, speed and altitude histograms, geologic statistical tables, magnetic and ancillary profiles, and test line data.
On the malleability of ideology: motivated construals of color blindness.
Knowles, Eric D; Lowery, Brian S; Hogan, Caitlin M; Chow, Rosalind M
2009-04-01
The authors propose that the content of certain sociopolitical ideologies can be shaped by individuals in ways that satisfy their social motivations. This notion was tested in the context of color-blind ideology. Color blindness, when construed as a principle of distributive justice, is an egalitarian stance concerned with reducing discrepancies between groups' outcomes; as a principle of procedural justice, however, color blindness can function as a legitimizing ideology that entrenches existing inequalities. In Study 1, White people high in antiegalitarian sentiment were found to shift their construal of color blindness from a distributive to a procedural principle when exposed to intergroup threat. In Studies 2, 3A, and 3B, the authors used manipulations and a measure of threat to show that antiegalitarian White people endorse color blindness to legitimize the racial status quo. In Study 3B, participants' endorsement of color-blind ideology was mediated by increases in their preference for equal treatment (i.e., procedural justice) as a response to threat. In the Discussion section, the authors examine implications of the present perspective for understanding the manner in which individuals compete over the meaning of crucial ideologies. (c) 2009 APA, all rights reserved.
The color red attracts attention in an emotional context. An ERP study.
Kuniecki, Michał; Pilarczyk, Joanna; Wichary, Szymon
2015-01-01
The color red is known to influence psychological functioning, having both negative (e.g., blood, fire, danger), and positive (e.g., sex, food) connotations. The aim of our study was to assess the attentional capture by red-colored images, and to explore the modulatory role of the emotional valence in this process, as postulated by Elliot and Maier (2012) color-in-context theory. Participants completed a dot-probe task with each cue comprising two images of equal valence and arousal, one containing a prominent red object and the other an object of different coloration. Reaction times were measured, as well as the event-related lateralizations of the EEG. Modulation of the lateralized components revealed that the color red captured and later held the attention in both positive and negative conditions, but not in a neutral condition. An overt motor response to the target stimulus was affected mainly by attention lingering over the visual field where the red cue had been flashed. However, a weak influence of the valence could still be detected in reaction times. Therefore, red seems to guide attention, specifically in emotionally-valenced circumstances, indicating that an emotional context can alter color's impact both on attention and motor behavior.
Action recognition via cumulative histogram of multiple features
NASA Astrophysics Data System (ADS)
Yan, Xunshi; Luo, Yupin
2011-01-01
Spatial-temporal interest points (STIPs) are popular in human action recognition. However, they suffer from difficulties in determining size of codebook and losing much information during forming histograms. In this paper, spatial-temporal interest regions (STIRs) are proposed, which are based on STIPs and are capable of marking the locations of the most ``shining'' human body parts. In order to represent human actions, the proposed approach takes great advantages of multiple features, including STIRs, pyramid histogram of oriented gradients and pyramid histogram of oriented optical flows. To achieve this, cumulative histogram is used to integrate dynamic information in sequences and to form feature vectors. Furthermore, the widely used nearest neighbor and AdaBoost methods are employed as classification algorithms. Experiments on public datasets KTH, Weizmann and UCF sports show that the proposed approach achieves effective and robust results.
29 CFR 1603.102 - Filing a complaint.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Regulations Relating to Labor (Continued) EQUAL EMPLOYMENT OPPORTUNITY COMMISSION PROCEDURES FOR PREVIOUSLY EXEMPT STATE AND LOCAL GOVERNMENT EMPLOYEE COMPLAINTS OF EMPLOYMENT DISCRIMINATION UNDER SECTION 304 OF... discriminated against on the basis of race, color, religion, sex, national origin, age, disability, or genetic...
29 CFR 1603.102 - Filing a complaint.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations Relating to Labor (Continued) EQUAL EMPLOYMENT OPPORTUNITY COMMISSION PROCEDURES FOR PREVIOUSLY EXEMPT STATE AND LOCAL GOVERNMENT EMPLOYEE COMPLAINTS OF EMPLOYMENT DISCRIMINATION UNDER SECTION 304 OF... discriminated against on the basis of race, color, religion, sex, national origin, age, disability, or genetic...
29 CFR 1603.102 - Filing a complaint.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Regulations Relating to Labor (Continued) EQUAL EMPLOYMENT OPPORTUNITY COMMISSION PROCEDURES FOR PREVIOUSLY EXEMPT STATE AND LOCAL GOVERNMENT EMPLOYEE COMPLAINTS OF EMPLOYMENT DISCRIMINATION UNDER SECTION 304 OF... discriminated against on the basis of race, color, religion, sex, national origin, age, disability, or genetic...
29 CFR 1603.102 - Filing a complaint.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Regulations Relating to Labor (Continued) EQUAL EMPLOYMENT OPPORTUNITY COMMISSION PROCEDURES FOR PREVIOUSLY EXEMPT STATE AND LOCAL GOVERNMENT EMPLOYEE COMPLAINTS OF EMPLOYMENT DISCRIMINATION UNDER SECTION 304 OF... discriminated against on the basis of race, color, religion, sex, national origin, age, disability, or genetic...
29 CFR 1603.102 - Filing a complaint.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Regulations Relating to Labor (Continued) EQUAL EMPLOYMENT OPPORTUNITY COMMISSION PROCEDURES FOR PREVIOUSLY EXEMPT STATE AND LOCAL GOVERNMENT EMPLOYEE COMPLAINTS OF EMPLOYMENT DISCRIMINATION UNDER SECTION 304 OF... discriminated against on the basis of race, color, religion, sex, national origin, age, disability, or genetic...
28 CFR 42.401 - Purpose and application.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 42.401 Judicial Administration DEPARTMENT OF JUSTICE NONDISCRIMINATION; EQUAL EMPLOYMENT OPPORTUNITY; POLICIES AND PROCEDURES Coordination of Enforcement of Non-discrimination in Federally Assisted Programs... extent that they relate to prohibiting discrimination on the ground of race, color or national origin in...
Code of Federal Regulations, 2010 CFR
2010-07-01
... on race, color, national origin, religion, sex, age, or disability. Equal Employment Opportunity (EEO... characteristics of a national origin group. People with disabilities. People who have physical or mental..., such as mental retardation, organic brain syndrome, emotional or mental illness, and specific learning...
Meng, Jie; Zhu, Lijing; Zhu, Li; Ge, Yun; He, Jian; Zhou, Zhengyang; Yang, Xiaofeng
2017-11-01
Background Apparent diffusion coefficient (ADC) histogram analysis has been widely used in determining tumor prognosis. Purpose To investigate the dynamic changes of ADC histogram parameters during concurrent chemo-radiotherapy (CCRT) in patients with advanced cervical cancers. Material and Methods This prospective study enrolled 32 patients with advanced cervical cancers undergoing CCRT who received diffusion-weighted (DW) magnetic resonance imaging (MRI) before CCRT, at the end of the second and fourth week during CCRT and one month after CCRT completion. The ADC histogram for the entire tumor volume was generated, and a series of histogram parameters was obtained. Dynamic changes of those parameters in cervical cancers were investigated as early biomarkers for treatment response. Results All histogram parameters except AUC low showed significant changes during CCRT (all P < 0.05). There were three variable trends involving different parameters. The mode, 5th, 10th, and 25th percentiles showed similar early increase rates (33.33%, 33.99%, 34.12%, and 30.49%, respectively) at the end of the second week of CCRT. The pre-CCRT 5th and 25th percentiles of the complete response (CR) group were significantly lower than those of the partial response (PR) group. Conclusion A series of ADC histogram parameters of cervical cancers changed significantly at the early stage of CCRT, indicating their potential in monitoring early tumor response to therapy.
Schob, Stefan; Münch, Benno; Dieckow, Julia; Quäschling, Ulf; Hoffmann, Karl-Titus; Richter, Cindy; Garnov, Nikita; Frydrychowicz, Clara; Krause, Matthias; Meyer, Hans-Jonas; Surov, Alexey
2018-04-01
Diffusion weighted imaging (DWI) quantifies motion of hydrogen nuclei in biological tissues and hereby has been used to assess the underlying tissue microarchitecture. Histogram-profiling of DWI provides more detailed information on diffusion characteristics of a lesion than the standardly calculated values of the apparent diffusion coefficient (ADC)-minimum, mean and maximum. Hence, the aim of our study was to investigate, which parameters of histogram-profiling of DWI in primary central nervous system lymphoma can be used to specifically predict features like cellular density, chromatin content and proliferative activity. Pre-treatment ADC maps of 21 PCNSL patients (8 female, 13 male, 28-89 years) from a 1.5T system were used for Matlab-based histogram profiling. Results of histopathology (H&E staining) and immunohistochemistry (Ki-67 expression) were quantified. Correlations between histogram-profiling parameters and neuropathologic examination were calculated using SPSS 23.0. The lower percentiles (p10 and p25) showed significant correlations with structural parameters of the neuropathologic examination (cellular density, chromatin content). The highest percentile, p90, correlated significantly with Ki-67 expression, resembling proliferative activity. Kurtosis of the ADC histogram correlated significantly with cellular density. Histogram-profiling of DWI in PCNSL provides a comprehensible set of parameters, which reflect distinct tumor-architectural and tumor-biological features, and hence, are promising biomarkers for treatment response and prognosis. Copyright © 2018. Published by Elsevier Inc.
ADC histogram analysis of muscle lymphoma - Correlation with histopathology in a rare entity.
Meyer, Hans-Jonas; Pazaitis, Nikolaos; Surov, Alexey
2018-06-21
Diffusion weighted imaging (DWI) is able to reflect histopathology architecture. A novel imaging approach, namely histogram analysis, is used to further characterize lesion on MRI. The purpose of this study is to correlate histogram parameters derived from apparent diffusion coefficient- (ADC) maps with histopathology parameters in muscle lymphoma. Eight patients (mean age 64.8 years, range 45-72 years) with histopathologically confirmed muscle lymphoma were retrospectively identified. Cell count, total nucleic and average nucleic areas were estimated using ImageJ. Additionally, Ki67-index was calculated. DWI was obtained on a 1.5T scanner by using the b values of 0 and 1000 s/mm2. Histogram analysis was performed as a whole lesion measurement by using a custom-made Matlabbased application. The correlation analysis revealed statistically significant correlation between cell count and ADCmean (p=-0.76, P=0.03) as well with ADCp75 (p=-0.79, P=0.02). Kurtosis and entropy correlated with average nucleic area (p=-0.81, P=0.02, p=0.88, P=0.007, respectively). None of the analyzed ADC parameters correlated with total nucleic area and with Ki67-index. This study identified significant correlations between cellularity and histogram parameters derived from ADC maps in muscle lymphoma. Thus, histogram analysis parameters reflect histopathology in muscle tumors. Advances in knowledge: Whole lesion ADC histogram analysis is able to reflect histopathology parameters in muscle lymphomas.
NASA Astrophysics Data System (ADS)
Galich, Nikolay E.; Filatov, Michael V.
2008-07-01
Communication contains the description of the immunology experiments and the experimental data treatment. New nonlinear methods of immunofluorescence statistical analysis of peripheral blood neutrophils have been developed. We used technology of respiratory burst reaction of DNA fluorescence in the neutrophils cells nuclei due to oxidative activity. The histograms of photon count statistics the radiant neutrophils populations' in flow cytometry experiments are considered. Distributions of the fluorescence flashes frequency as functions of the fluorescence intensity are analyzed. Statistic peculiarities of histograms set for healthy and unhealthy donors allow dividing all histograms on the three classes. The classification is based on three different types of smoothing and long-range scale averaged immunofluorescence distributions and their bifurcation. Heterogeneity peculiarities of long-range scale immunofluorescence distributions allow dividing all histograms on three groups. First histograms group belongs to healthy donors. Two other groups belong to donors with autoimmune and inflammatory diseases. Some of the illnesses are not diagnosed by standards biochemical methods. Medical standards and statistical data of the immunofluorescence histograms for identifications of health and illnesses are interconnected. Possibilities and alterations of immunofluorescence statistics in registration, diagnostics and monitoring of different diseases in various medical treatments have been demonstrated. Health or illness criteria are connected with statistics features of immunofluorescence histograms. Neutrophils populations' fluorescence presents the sensitive clear indicator of health status.