Iwata, Masaki; Otaki, Joji M
2016-02-01
Complex butterfly wing color patterns are coordinated throughout a wing by unknown mechanisms that provide undifferentiated immature scale cells with positional information for scale color. Because there is a reasonable level of correspondence between the color pattern element and scale size at least in Junonia orithya and Junonia oenone, a single morphogenic signal may contain positional information for both color and size. However, this color-size relationship has not been demonstrated in other species of the family Nymphalidae. Here, we investigated the distribution patterns of scale size in relation to color pattern elements on the hindwings of the peacock pansy butterfly Junonia almana, together with other nymphalid butterflies, Vanessa indica and Danaus chrysippus. In these species, we observed a general decrease in scale size from the basal to the distal areas, although the size gradient was small in D. chrysippus. Scales of dark color in color pattern elements, including eyespot black rings, parafocal elements, and submarginal bands, were larger than those of their surroundings. Within an eyespot, the largest scales were found at the focal white area, although there were exceptional cases. Similarly, ectopic eyespots that were induced by physical damage on the J. almana background area had larger scales than in the surrounding area. These results are consistent with the previous finding that scale color and size coordinate to form color pattern elements. We propose a ploidy hypothesis to explain the color-size relationship in which the putative morphogenic signal induces the polyploidization (genome amplification) of immature scale cells and that the degrees of ploidy (gene dosage) determine scale color and scale size simultaneously in butterfly wings. Copyright © 2015 Elsevier Ltd. All rights reserved.
Otaki, Joji M
2008-07-01
A mechanistic understanding of the butterfly wing color-pattern determination can be facilitated by experimental pattern changes. Here I review physiologically induced color-pattern changes in nymphalid butterflies and their mechanistic and evolutionary implications. A type of color-pattern change can be elicited by elemental changes in size and position throughout the wing, as suggested by the nymphalid groundplan. These changes of pattern elements are bi-directional and bi-sided dislocation toward or away from eyespot foci and in both proximal and distal sides of the foci. The peripheral elements are dislocated even in the eyespot-less compartments. Anterior spots are more severely modified, suggesting the existence of an anterior-posterior gradient. In one species, eyespots are transformed into white spots with remnant-like orange scales, and such patterns emerge even at the eyespot-less "imaginary" foci. A series of these color-pattern modifications probably reveal "snap-shots" of a dynamic morphogenic signal due to heterochronic uncoupling between the signaling and reception steps. The conventional gradient model can be revised to account for these observed color-pattern changes.
Color pattern analysis of nymphalid butterfly wings: revision of the nymphalid groundplan.
Otaki, Joji M
2012-09-01
To better understand the developmental mechanisms of color pattern variation in butterfly wings, it is important to construct an accurate representation of pattern elements, known as the "nymphalid groundplan". However, some aspects of the current groundplan remain elusive. Here, I examined wing-wide elemental patterns of various nymphalid butterflies and confirmed that wing-wide color patterns are composed of the border, central, and basal symmetry systems. The central and basal symmetry systems can express circular patterns resembling eyespots, indicating that these systems have developmental mechanisms similar to those of the border symmetry system. The wing root band commonly occurs as a distinct symmetry system independent from the basal symmetry system. In addition, the marginal and submarginal bands are likely generated as a single system, referred to as the "marginal band system". Background spaces between two symmetry systems are sometimes light in coloration and can produce white bands, contributing significantly to color pattern diversity. When an element is enlarged with a pale central area, a visually similar (yet developmentally distinct) white band is produced. Based on the symmetric relationships of elements, I propose that both the central and border symmetry systems are comprised of "core elements" (the discal spot and the border ocelli, respectively) and a pair of "paracore elements" (the distal and proximal bands and the parafocal elements, respectively). Both core and paracore elements can be doubled, or outlined. Developmentally, this system configuration is consistent with the induction model, but not with the concentration gradient model for positional information.
Distal-less induces elemental color patterns in Junonia butterfly wings.
Dhungel, Bidur; Ohno, Yoshikazu; Matayoshi, Rie; Iwasaki, Mayo; Taira, Wataru; Adhikari, Kiran; Gurung, Raj; Otaki, Joji M
2016-01-01
The border ocellus, or eyespot, is a conspicuous color pattern element in butterfly wings. For two decades, it has been hypothesized that transcription factors such as Distal-less (Dll) are responsible for eyespot pattern development in butterfly wings, based on their expression in the prospective eyespots. In particular, it has been suggested that Dll is a determinant for eyespot size. However, functional evidence for this hypothesis has remained incomplete, due to technical difficulties. Here, we show that ectopically expressed Dll induces ectopic elemental color patterns in the adult wings of the blue pansy butterfly, Junonia orithya (Lepidoptera, Nymphalidae). Using baculovirus-mediated gene transfer, we misexpressed Dll protein fused with green fluorescent protein (GFP) in pupal wings, resulting in ectopic color patterns, but not the formation of intact eyespots. Induced changes included clusters of black and orange scales (a basic feature of eyespot patterns), black and gray scales, and inhibition of cover scale development. In contrast, ectopic expression of GFP alone did not induce any color pattern changes using the same baculovirus-mediated gene transfer system. These results suggest that Dll plays an instructive role in the development of color pattern elements in butterfly wings, although Dll alone may not be sufficient to induce a complete eyespot. This study thus experimentally supports the hypothesis of Dll function in eyespot development.
Genetic Basis of Melanin Pigmentation in Butterfly Wings
Zhang, Linlin; Martin, Arnaud; Perry, Michael W.; van der Burg, Karin R. L.; Matsuoka, Yuji; Monteiro, Antónia; Reed, Robert D.
2017-01-01
Despite the variety, prominence, and adaptive significance of butterfly wing patterns, surprisingly little is known about the genetic basis of wing color diversity. Even though there is intense interest in wing pattern evolution and development, the technical challenge of genetically manipulating butterflies has slowed efforts to functionally characterize color pattern development genes. To identify candidate wing pigmentation genes, we used RNA sequencing to characterize transcription across multiple stages of butterfly wing development, and between different color pattern elements, in the painted lady butterfly Vanessa cardui. This allowed us to pinpoint genes specifically associated with red and black pigment patterns. To test the functions of a subset of genes associated with presumptive melanin pigmentation, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in four different butterfly genera. pale, Ddc, and yellow knockouts displayed reduction of melanin pigmentation, consistent with previous findings in other insects. Interestingly, however, yellow-d, ebony, and black knockouts revealed that these genes have localized effects on tuning the color of red, brown, and ochre pattern elements. These results point to previously undescribed mechanisms for modulating the color of specific wing pattern elements in butterflies, and provide an expanded portrait of the insect melanin pathway. PMID:28193726
Kusaba, Kiseki; Otaki, Joji M
2009-02-01
Butterfly wing color-patterns are a phenotypically coordinated array of scales whose color is determined as cellular interpretation outputs for morphogenic signals. Here we investigated distribution patterns of scale shape and size in relation to position and coloration on the hindwings of a nymphalid butterfly Junonia orithya. Most scales had a smooth edge but scales at and near the natural and ectopic eyespot foci and in the postbasal area were jagged. Scale size decreased regularly from the postbasal to distal areas, and eyespots occasionally had larger scales than the background. Reasonable correlations were obtained between the eyespot size and focal scale size in females. Histological and real-time individual observations of the color-pattern developmental sequence showed that the background brown and blue colors expanded from the postbasal to distal areas independently from the color-pattern elements such as eyespots. These data suggest that morphogenic signals for coloration directly or indirectly influence the scale shape and size and that the blue "background" is organized by a long-range signal from an unidentified organizing center in J. orithya.
Color pattern evolution in Vanessa butterflies (Nymphalidae: Nymphalini): non-eyespot characters.
Abbasi, Roohollah; Marcus, Jeffrey M
2015-01-01
A phylogenetic approach was used to study color pattern evolution in Vanessa butterflies. Twenty-four color pattern elements from the Nymphalid ground plan were identified on the dorsal and ventral surfaces of the fore- and hind wings. Eyespot characters were excluded and will be examined elsewhere. The evolution of each character was traced over a Bayesian phylogeny of Vanessa reconstructed from 7750 DNA base pairs from 10 genes. Generally, the correspondence between character states on the same surface of the two wings is stronger on the ventral side compared to the dorsal side. The evolution of character states on both sides of a wing correspond with each other in most extant species, but the correspondence between dorsal and ventral character states is much stronger in the forewing than in the hindwing. The dorsal hindwing of many species of Vanessa is covered with an extended Basal Symmetry System and the Discalis I pattern element is highly variable between species, making this wing surface dissimilar to the other wing surfaces. The Basal Symmetry System and Discalis I may contribute to behavioral thermoregulation in Vanessa. Overall, interspecific directional character state evolution of non-eyespot color patterns is relatively rare in Vanessa, with a majority of color pattern elements showing non-variable, non-directional, or ambiguous character state evolution. The ease with which the development of color patterns can be modified, including character state reversals, has likely made important contributions to the production of color pattern diversity in Vanessa and other butterfly groups. © 2014 Wiley Periodicals, Inc.
Genetic Basis of Melanin Pigmentation in Butterfly Wings.
Zhang, Linlin; Martin, Arnaud; Perry, Michael W; van der Burg, Karin R L; Matsuoka, Yuji; Monteiro, Antónia; Reed, Robert D
2017-04-01
Despite the variety, prominence, and adaptive significance of butterfly wing patterns, surprisingly little is known about the genetic basis of wing color diversity. Even though there is intense interest in wing pattern evolution and development, the technical challenge of genetically manipulating butterflies has slowed efforts to functionally characterize color pattern development genes. To identify candidate wing pigmentation genes, we used RNA sequencing to characterize transcription across multiple stages of butterfly wing development, and between different color pattern elements, in the painted lady butterfly Vanessa cardui This allowed us to pinpoint genes specifically associated with red and black pigment patterns. To test the functions of a subset of genes associated with presumptive melanin pigmentation, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in four different butterfly genera. pale , Ddc , and yellow knockouts displayed reduction of melanin pigmentation, consistent with previous findings in other insects. Interestingly, however, yellow-d , ebony , and black knockouts revealed that these genes have localized effects on tuning the color of red, brown, and ochre pattern elements. These results point to previously undescribed mechanisms for modulating the color of specific wing pattern elements in butterflies, and provide an expanded portrait of the insect melanin pathway. Copyright © 2017 by the Genetics Society of America.
Hotta, Fumika; Imai, Shoji; Miyamoto, Tatsuro; Mitamura-Aizawa, Sayaka; Mitamura, Yoshinori
2015-01-01
Objective: To investigate the surfaces and principal elements of the colorants of cosmetically tinted contact lenses (Cos-CLs). Methods: We analyzed the surfaces and principal elements of the colorants of five commercially available Cos-CLs using scanning electron microscopy with energy-dispersive x-ray analysis. Results: In two Cos-CLs, the anterior and posterior surfaces were smooth, and colorants were found inside the lens. One lens showed colorants located to a depth of 8 to 14 μm from the anterior side of the lens. In the other lens, colorants were found in the most superficial layer on the posterior surface, although a coated layer was observed. The colorants in the other three lenses were deposited on either lens surface. Although a print pattern was uniform in embedded type lenses, uneven patterns were apparent in dot-matrix design lenses. Colorants used in all lenses contained chlorine, iron, and titanium. In the magnified scanning electron microscopy images of a certain lens, chlorine is exuded and spread. Conclusions: Cosmetically tinted contact lenses have a wide variety of lens surfaces and colorants. Colorants may be deposited on the lens surface and consist of an element that has tissue toxicity. PMID:25799458
Hybrid chip-on-board LED module with patterned encapsulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soer, Wouter Anthon; Helbing, Rene; Huang, Guan
Different wavelength conversion materials, or different concentrations of a wavelength conversion material are used to encapsulate the light emitting elements of different colors of a hybrid light emitting module. In an embodiment of this invention, second light emitting elements (170) of a particular color are encapsulated with a transparent second encapsulant (120;420;520), while first light emitting elements (160) of a different color are encapsulated with a wavelength conversion first encapsulant (110;410;510). In another embodiment of this invention, a particular second set of second and third light emitting elements (170,580) of different colors is encapsulated with a different encapsulant than anothermore » first set of first light emitting elements (160).« less
Dhungel, Bidur; Otaki, Joji M
2009-11-01
Butterfly wing color patterns can be changed by the application of a temperature shock or pharmacological agents such as tungstate, producing a distinctive type of elemental modification called the TS (temperature shock) type. Heterochronic uncoupling between the signaling and reception steps during the color-pattern determination process has been proposed as a mechanism for TS-type changes. As an extension of this hypothesis, both the parafocal element (PFE) and the eyespot in the same wing compartment are considered to be determined by morphogenic signal(s) emitted from the same eyespot focus. However, these models need to be examined with additional experimental data. Furthermore, there is controversy as to whether the action of tungstate on wing color patterns is direct or Indirect. Using a species of nymphalid butterfly (Junonia orithya), we have devised a simple method for the local application of pharmacological agents directly on developing wings of pupae. Local tungstate application resulted in reduced eyespots and circular dislocated PFEs in the eyespot-less compartments only on the treated wing, demonstrating that tungstate directly induces color-pattern changes on wings. We further examined the eyespot-PFE relationship in normal and cold-shocked Individuals, showing that an eyespot can be superimposed on a PFE and vice versa, probably depending on the timing of their fate determination. Taken together, we propose a two-morphogen model for the normal color-pattern determination, in which the morphogenic signals for the eyespot and PFE are different from each other despite their Identical origin. This two-morphogen model is compatible with the heterochronic uncoupling model for TS-type changes.
Iwata, Masaki; Taira, Wataru; Hiyama, Atsuki; Otaki, Joji M
2015-06-01
The nymphalid groundplan has been proposed to explain diverse butterfly wing color patterns. In this model, each symmetry system is composed of a core element and a pair of paracore elements. The development of this elemental configuration has been explained by the induction model for positional information. However, the diversity of color patterns in other butterfly families in relation to the nymphalid groundplan has not been thoroughly examined. Here, we examined aberrant color pattern phenotypes of a lycaenid butterfly, Zizeeria maha, from mutagenesis and plasticity studies as well as from field surveys. In several mutants, the third and fourth spot arrays were coordinately positioned much closer to the discal spot in comparison to the normal phenotype. In temperature-shock types, the third and fourth array spots were elongated inwardly or outwardly from their normal positions. In field-caught spontaneous mutants, small black spots were located adjacent to normal black spots. Analysis of these aberrant phenotypes indicated that the spots belonging to the third and fourth arrays are synchronously changeable in position and shape around the discal spot. Thus, these arrays constitute paracore elements of the central symmetry system of the lycaenid butterflies, and the discal spot comprises the core element. These aberrant phenotypes can be explained by the black-inducing signals that propagate from the prospective discal spot, as predicted by the induction model. These results suggest the existence of long-range developmental signals that cover a large area of a wing not only in nymphalid butterflies, but also in lycaenid butterflies.
Variable environmental effects on a multicomponent sexually selected trait.
Cole, Gemma L; Endler, John A
2015-04-01
Multicomponent signals are made up of interacting elements that generate a functional signaling unit. The interactions between signal components and their effects on individual fitness are not well understood, and the effect of environment is even less so. It is usually assumed that color patterns appear the same in all light environments and that the effects of each color are additive. Using guppies, Poecilia reticulata, we investigated the effect of water color on the interactions between components of sexually selected male coloration. Through behavioral mate choice trials in four different water colors, we estimated the attractiveness of male color patterns, using multivariate fitness estimates and overall signal contrast. Our results show that females exhibit preferences that favor groups of colors rather than individual colors independently and that each environment favors different color combinations. We found that these effects are consistent with female guppies selecting entire color patterns on the basis of overall visual contrast. This suggests that both individuals and populations inhabiting different light environments will be subject to divergent, multivariate selection. Although the appearance of color patterns changes with light environment, achromatic components change little, suggesting that these could function in species recognition or other aspects of communication that must work across environments. Consequently, we predict different phylogenetic patterns between chromatic and achromatic signals within the same clades.
Rhen, Turk; Simmons, Rebecca B.
2016-01-01
Butterfly eyespots are complex morphological traits that can vary in size, shape and color composition even on the same wing surface. Homology among eyespots suggests they share a common developmental basis and function as an integrated unit in response to selection. Despite strong evidence of genetic integration, eyespots can also exhibit modularity or plasticity, indicating an underlying flexibility in pattern development. The extent to which particular eyespots or eyespot color elements exhibit modularity or integration is poorly understood, particularly following exposure to novel conditions. We used perturbation experiments to explore phenotypic correlations among different eyespots and their color elements on the ventral hindwing of V. cardui. Specifically, we identified which eyespots and eyespot features are most sensitive to perturbation by heat shock and injection of heparin—a cold shock mimic. For both treatments, the two central eyespots (3 + 4) were most affected by the experimental perturbations, whereas the outer eyespot border was more resistant to modification than the interior color elements. Overall, the individual color elements displayed a similar response to heat shock across all eyespots, but varied in their response to each other. Graphical modeling also revealed that although eyespots differ morphologically, regulation of eyespot size and colored elements appear to be largely integrated across the wing. Patterns of integration, however, were disrupted following heat shock, revealing that the strength of integration varies across the wing and is strongest between the two central eyespots. These findings support previous observations that document coupling between eyespots 3 + 4 in other nymphalid butterflies. PMID:27560365
Connahs, Heidi; Rhen, Turk; Simmons, Rebecca B
2016-01-01
Butterfly eyespots are complex morphological traits that can vary in size, shape and color composition even on the same wing surface. Homology among eyespots suggests they share a common developmental basis and function as an integrated unit in response to selection. Despite strong evidence of genetic integration, eyespots can also exhibit modularity or plasticity, indicating an underlying flexibility in pattern development. The extent to which particular eyespots or eyespot color elements exhibit modularity or integration is poorly understood, particularly following exposure to novel conditions. We used perturbation experiments to explore phenotypic correlations among different eyespots and their color elements on the ventral hindwing of V. cardui. Specifically, we identified which eyespots and eyespot features are most sensitive to perturbation by heat shock and injection of heparin-a cold shock mimic. For both treatments, the two central eyespots (3 + 4) were most affected by the experimental perturbations, whereas the outer eyespot border was more resistant to modification than the interior color elements. Overall, the individual color elements displayed a similar response to heat shock across all eyespots, but varied in their response to each other. Graphical modeling also revealed that although eyespots differ morphologically, regulation of eyespot size and colored elements appear to be largely integrated across the wing. Patterns of integration, however, were disrupted following heat shock, revealing that the strength of integration varies across the wing and is strongest between the two central eyespots. These findings support previous observations that document coupling between eyespots 3 + 4 in other nymphalid butterflies.
Chromatic induction in space and time.
Coia, Andrew J; Shevell, Steven K
2018-04-01
The color appearance of a light depends on variation in the complete visual field over both space and time. In the spatial domain, a chromatic stimulus within a patterned chromatic surround can appear a different hue than the same stimulus within a uniform surround. In the temporal domain, a stimulus presented as an element of a continuously changing chromaticity can appear a different color compared to the identical stimulus, presented simultaneously but viewed alone. This is the flash-lag effect for color, which has an analog in the domain of motion: a pulsed object seen alone can appear to lag behind an identical pulsed object that is an element of a motion sequence. Studies of the flash-lag effect for motion have considered whether it is mediated by a neural representation for the moving physical stimulus or, alternatively, for the perceived motion. The current study addresses this question for the flash-lag effect for color by testing whether the color flash lag depends on a representation of only the changing chromatic stimulus or, alternatively, its color percept, which can be altered by chromatic induction. baseline measurements for spatial chromatic induction determined the chromaticity of a flashed ring within a uniform surround that matched a flashed ring within a patterned surround. Baseline measurements for the color flash-lag effect determined the chromaticity of a pulsed ring presented alone (within a uniform surround) that matched a pulsed ring presented in a sequence of changing chromaticity over time (also within a uniform surround). Finally, the main experiments combined chromatic induction from a patterned surround and the flash-lag effect, in three conditions: (1) both the changing and pulsed rings were within a patterned chromatic surround; (2) the changing ring was within a patterned surround and the pulsed ring within a uniform surround; and (3) the changing ring was within a uniform surround and the pulsed ring within a patterned surround. the flash-lag measurements for a changing chromaticity were affected by perceptual changes induced by the surrounding chromatic pattern. Thus, the color shifts induced by a chromatic surround are incorporated in the neural representation mediating the flash-lag effect for color.
Global control of colored moiré pattern in layered optical structures
NASA Astrophysics Data System (ADS)
Li, Kunyang; Zhou, Yangui; Pan, Di; Ma, Xueyan; Ma, Hongqin; Liang, Haowen; Zhou, Jianying
2018-05-01
Accurate description of visual effect of colored moiré pattern caused by layered optical structures consisting of gratings and Fresnel lens is proposed in this work. The colored moiré arising from the periodic and quasi-periodic structures is numerically simulated and experimentally verified. It is found that the visibility of moiré pattern generated by refractive optical elements is related to not only the spatial structures of gratings but also the viewing angles. To effectively control the moiré visibility, two constituting gratings are slightly separated. Such scheme is proved to be effective to globally eliminate moiré pattern for displays containing refractive optical films with quasi-periodic structures.
A Repeat Look at Repeating Patterns
ERIC Educational Resources Information Center
Markworth, Kimberly A.
2016-01-01
A "repeating pattern" is a cyclical repetition of an identifiable core. Children in the primary grades usually begin pattern work with fairly simple patterns, such as AB, ABC, or ABB patterns. The unique letters represent unique elements, whereas the sequence of letters represents the core that is repeated. Based on color, shape,…
2013-01-01
Background Color traits in animals play crucial roles in thermoregulation, photoprotection, camouflage, and visual communication, and are amenable to objective quantification and modeling. However, the extensive variation in non-melanic pigments and structural colors in squamate reptiles has been largely disregarded. Here, we used an integrated approach to investigate the morphological basis and physical mechanisms generating variation in color traits in tropical day geckos of the genus Phelsuma. Results Combining histology, optics, mass spectrometry, and UV and Raman spectroscopy, we found that the extensive variation in color patterns within and among Phelsuma species is generated by complex interactions between, on the one hand, chromatophores containing yellow/red pteridine pigments and, on the other hand, iridophores producing structural color by constructive interference of light with guanine nanocrystals. More specifically, we show that 1) the hue of the vivid dorsolateral skin is modulated both by variation in geometry of structural, highly ordered narrowband reflectors, and by the presence of yellow pigments, and 2) that the reflectivity of the white belly and of dorsolateral pigmentary red marks, is increased by underlying structural disorganized broadband reflectors. Most importantly, these interactions require precise colocalization of yellow and red chromatophores with different types of iridophores, characterized by ordered and disordered nanocrystals, respectively. We validated these results through numerical simulations combining pigmentary components with a multilayer interferential optical model. Finally, we show that melanophores form dark lateral patterns but do not significantly contribute to variation in blue/green or red coloration, and that changes in the pH or redox state of pigments provide yet another source of color variation in squamates. Conclusions Precisely colocalized interacting pigmentary and structural elements generate extensive variation in lizard color patterns. Our results indicate the need to identify the developmental mechanisms responsible for the control of the size, shape, and orientation of nanocrystals, and the superposition of specific chromatophore types. This study opens up new perspectives on Phelsuma lizards as models in evolutionary developmental biology. PMID:24099066
Neighboring genes shaping a single adaptive mimetic trait.
Pardo-Diaz, Carolina; Jiggins, Chris D
2014-01-01
The colorful wing patterns of Heliconius butterflies represent an excellent system in which to study the genetic and developmental control of adaptation and convergence. Using qRT-PCR and in situ hybridization on developing wings of the co-mimic species Heliconius melpomene and Heliconius erato, we have profiled the expression of three candidate genes located in the genomic locus controlling red color pattern variation. We found convergent domains of gene expression in H. melpomene and H. erato associated with red wing elements in the two genes optix and kinesin. During early pupal development of both species, the expression of optix perfectly associated with all red pattern elements whereas that of kinesin was specifically correlated with the presence of the red forewing band. These results provide evidence for the use of these two tightly linked patterning genes, acting together to create convergent wing phenotypes in Heliconius and constituting a hotspot of adaptation. © 2013 Wiley Periodicals, Inc.
The marginal band system in nymphalid butterfly wings.
Taira, Wataru; Kinjo, Seira; Otaki, Joji M
2015-01-01
Butterfly wing color patterns are highly complex and diverse, but they are believed to be derived from the nymphalid groundplan, which is composed of several color pattern systems. Among these pattern systems, the marginal band system, including marginal and submarginal bands, has rarely been studied. Here, we examined the color pattern diversity of the marginal band system among nymphalid butterflies. Marginal and submarginal bands are usually expressed as a pair of linear bands aligned with the wing margin. However, a submarginal band can be expressed as a broken band, an elongated oval, or a single dot. The marginal focus, usually a white dot at the middle of a wing compartment along the wing edge, corresponds to the pupal edge spot, one of the pupal cuticle spots that signify the locations of color pattern organizing centers. A marginal band can be expressed as a semicircle, an elongated oval, or a pair of eyespot-like structures, which suggest the organizing activity of the marginal focus. Physical damage at the pupal edge spot leads to distal dislocation of the submarginal band in Junonia almana and in Vanessa indica, suggesting that the marginal focus functions as an organizing center for the marginal band system. Taken together, we conclude that the marginal band system is developmentally equivalent to other symmetry systems. Additionally, the marginal band is likely a core element and the submarginal band a paracore element of the marginal band system, and both bands are primarily specified by the marginal focus organizing center.
The Importance of Interior Design Elements as They Relate to Student Outcomes.
ERIC Educational Resources Information Center
Tanner, C. Kenneth; Langford, Ann
This study investigated the following questions: (1) "What are the perceptions that elementary school principals have concerning the influence of interior design elements such as floor and wall coverings, lighting, flexibility, acoustics, color, texture, patterns, cleanliness, and maintenance on student achievement, teacher retention, and student…
Scattering and/or diffusing elements in a variety of recently completed music auditoria
NASA Astrophysics Data System (ADS)
McKay, Ronald L.
2002-11-01
Architectural elements which provide effective acoustic scattering and/or diffusion in a variety of recently completed auditoria for music performance will be presented. Color slides depicting the various elements will be shown. Each will be discussed with respect to its acoustic performance and architectural logic. Measured time-energy reflection patterns will be presented in many cases.
Supersymmetry For Cognitive Science
NASA Astrophysics Data System (ADS)
Flanagan, Brian J.
1989-03-01
Machine vision may be understood as an attempt to replicate natural vision. The latter process is associated with neural networks. Light enters the eye and sets in motion processes which culminate in observed patterns of color. Light is, of course, an electromagnetic phenomenon. Our nerve cells communicate with each other via electrochemical means. To say that a process is electrochemical is to say that it is electromagnetic, involving the exchange of photons among electrons. It seems, therefore, that we ought to be able to understand vision in terms of the physical theory of electromagnetism. Historically, however, it has been held that such properties as color do not belong to the physical world. Color has long been considered to be a mental effect of physical stimuli. Nevertheless, it is generally understood that color is related to the energy, wavelength, and frequency of the photons which give rise to the "mental" impression of hue and intensity and so forth. Similar arguments and propositions can be made for all of the sensory modalities, but we will restrict our attention to vision for the time being. If, with Mach, we accept that colors are physical objects, we are obliged to seek a suitable place for them within the body of physical theory. Where should we locate them? Colors are given to us as simple entities, having no parts: We can point to an object that is blue, but we cannot say what blue is. Color is given to us as elemental. In a formal theory, we have a number of elements, rules for joining them, well-formed formulae, and methods of proof. It seems to make good sense to place color among the elements of a formal theory (T). If our mind/brains can be modelled by a formal theory, it follows logically that we should not be able to define our elements - i.e., if we could define our elements, they would not be elements.
Saiki, Jun; Holcombe, Alex O
2012-03-06
Sudden change of every object in a display is typically conspicuous. We find however that in the presence of a secondary task, with a display of moving dots, it can be difficult to detect a sudden change in color of all the dots. A field of 200 dots, half red and half green, half moving rightward and half moving leftward, gave the appearance of two surfaces. When all 200 dots simultaneously switched color between red and green, performance in detecting the switch was very poor. A key display characteristic was that the color proportions on each surface (summary statistics) were not affected by the color switch. When the color switch is accompanied by a change in these summary statistics, people perform well in detecting the switch, suggesting that the secondary task does not disrupt the availability of this statistical information. These findings suggest that when the change is missed, the old and new colors were represented, but the color-location pattern (binding of colors to locations) was not represented or not compared. Even after extended viewing, changes to the individual color-location pattern are not available, suggesting that the feeling of seeing these details is misleading.
An introgressed wing pattern acts as a mating cue.
Sánchez, Angela P; Pardo-Diaz, Carolina; Enciso-Romero, Juan; Muñoz, Astrid; Jiggins, Chris D; Salazar, Camilo; Linares, Mauricio
2015-06-01
Heliconius butterflies provide good examples of both homoploid hybrid speciation and ecological speciation. In particular, examples of adaptive introgression have been detected among the subspecies of Heliconius timareta, which acquired red color pattern elements from H. melpomene. We tested whether the introgression of red wing pattern elements into H. timareta florencia might also be associated with incipient reproductive isolation (RI) from its close relative, H. timareta subsp. nov., found in the eastern Andes. No choice experiments show a 50% reduction in mating between females of H. t. subsp. nov. and males of H .t. florencia, but not in the reciprocal direction. In choice experiments using wing models, males of H. timareta subsp. nov. approach and court red phenotypes less than their own, whereas males of H. t. florencia prefer models with a red phenotype. Intrinsic postzygotic isolation was not detected in crosses between these H. timareta races. These results suggest that a color pattern trait gained by introgression is triggering RI between H. timareta subsp. nov. and H. t. florencia. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Willink, Beatriz; Brenes-Mora, Esteban; Bolaños, Federico; Pröhl, Heike
2013-10-01
Aposematism and crypsis are often viewed as two extremes of a continuum of visual conspicuousness to predators. Theory predicts that behavioral and coloration conspicuousness should vary in tandem along the conspicuousness spectrum for antipredator strategies to be effective. Here we used visual modeling of contrast and behavioral observations to examine the conspicuousness of four populations of the granular poison frog, Oophaga granulifera, which exhibits almost continuous variation in dorsal color. The patterns of geographic variation in color, visual contrast, and behavior support a gradient of overall conspicuousness along the distribution of O. granulifera. Red and green populations, at the extremes of the color distribution, differ in all elements of color, contrast, and behavior, strongly reflecting aposematic and cryptic strategies. However, there is no smooth cline in any elements of behavior or coloration between the two extremes. Instead populations of intermediate colors attain intermediate conspicuousness by displaying different combinations of aposematic and cryptic traits. We argue that coloration divergence among populations may be linked to the evolution of a gradient of strategies to balance the costs of detection by predators and the benefits of learned aversion. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Full-color OLED on silicon microdisplay
NASA Astrophysics Data System (ADS)
Ghosh, Amalkumar P.
2002-02-01
eMagin has developed numerous enhancements to organic light emitting diode (OLED) technology, including a unique, up- emitting structure for OLED-on-silicon microdisplay devices. Recently, eMagin has fabricated full color SVGA+ resolution OLED microdisplays on silicon, with over 1.5 million color elements. The display is based on white light emission from OLED followed by LCD-type red, green and blue color filters. The color filters are patterned directly on OLED devices following suitable thin film encapsulation and the drive circuits are built directly on single crystal silicon. The resultant color OLED technology, with hits high efficiency, high brightness, and low power consumption, is ideally suited for near to the eye applications such as wearable PCS, wireless Internet applications and mobile phone, portable DVD viewers, digital cameras and other emerging applications.
NASA Astrophysics Data System (ADS)
Lingham-Soliar, Theagarten; Plodowski, Gerhard
2010-05-01
Preserved skin of small dinosaurs is rare. Here, a specimen of the ceratopsian dinosaur, Psittacosaurus, presents some of the best preserved epidermal scales observed to date in a relatively small dinosaur, over wide areas extending from the head to the tail. We study the preserved epidermis of SMF R 4970, the different types of scales, color, and patterns, and their respective locations in the body. We use modern application of high-power digital imaging for close-up analysis of the tubercles and fragments of preserved color. Three types of scales are preserved, large plate-like scales, smaller polygonal scales or tubercles, and round pebble-like scales. The sizes of the plate-like scales vary in different parts of the body and vanish altogether posteriorly. Light and dark cryptic patterns are created by the associations of the tubercle and plate-like scales, and there is also evidence of countershading in the proximal caudal region, the body darker dorsally and lighter ventrally. Perhaps most impressive are the distinctive pigmented impressions of scales over most of the skeletal elements. The pigmentation follows the curvature of the bones implying that when it was deposited, the skin was still pliable and able to wrap around the visible parts of the elements. The present record of color is the first in a non-theropod dinosaur and only the second record in a non-avian dinosaur. Because of its resistance to degradation and ability to produce various color tones from yellows to blacks, we suggest that melanin was the dominant chemical involved in the coloration of Psittacosaurus. The data here enable us to reconstruct the colors of Psittacosaurus as predominantly black and amber/brown, in cryptic patterns, somewhat dull, but useful to a prey animal. Indeed, skin pigment within a partially degraded bone indicates that Psittacosaurus was scavenged shortly after death. The theropod dinosaur Sinosauropteryx has recently been reported to have naturally pigmented integumental structures, which the authors interpret as proof that they are protofeathers and not support fibers of collagen. Our findings in Psittacosaurus, on the other hand, indicate a more parsimonious and less profound alternative explanation, i.e., decomposition of the skin releases pigments that readily permeate underlying structures.
Wnt signaling underlies evolution and development of the butterfly wing pattern symmetry systems.
Martin, Arnaud; Reed, Robert D
2014-11-15
Most butterfly wing patterns are proposed to be derived from a set of conserved pattern elements known as symmetry systems. Symmetry systems are so-named because they are often associated with parallel color stripes mirrored around linear organizing centers that run between the anterior and posterior wing margins. Even though the symmetry systems are the most prominent and diverse wing pattern elements, their study has been confounded by a lack of knowledge regarding the molecular basis of their development, as well as the difficulty of drawing pattern homologies across species with highly derived wing patterns. Here we present the first molecular characterization of symmetry system development by showing that WntA expression is consistently associated with the major basal, discal, central, and external symmetry system patterns of nymphalid butterflies. Pharmacological manipulations of signaling gradients using heparin and dextran sulfate showed that pattern organizing centers correspond precisely with WntA, wingless, Wnt6, and Wnt10 expression patterns, thus suggesting a role for Wnt signaling in color pattern induction. Importantly, this model is supported by recent genetic and population genomic work identifying WntA as the causative locus underlying wing pattern variation within several butterfly species. By comparing the expression of WntA between nymphalid butterflies representing a range of prototypical symmetry systems, slightly deviated symmetry systems, and highly derived wing patterns, we were able to infer symmetry system homologies in several challenging cases. Our work illustrates how highly divergent morphologies can be derived from modifications to a common ground plan across both micro- and macro-evolutionary time scales. Copyright © 2014 Elsevier Inc. All rights reserved.
Genomic architecture of adaptive color pattern divergence and convergence in Heliconius butterflies
Supple, Megan A.; Hines, Heather M.; Dasmahapatra, Kanchon K.; Lewis, James J.; Nielsen, Dahlia M.; Lavoie, Christine; Ray, David A.; Salazar, Camilo; McMillan, W. Owen; Counterman, Brian A.
2013-01-01
Identifying the genetic changes driving adaptive variation in natural populations is key to understanding the origins of biodiversity. The mosaic of mimetic wing patterns in Heliconius butterflies makes an excellent system for exploring adaptive variation using next-generation sequencing. In this study, we use a combination of techniques to annotate the genomic interval modulating red color pattern variation, identify a narrow region responsible for adaptive divergence and convergence in Heliconius wing color patterns, and explore the evolutionary history of these adaptive alleles. We use whole genome resequencing from four hybrid zones between divergent color pattern races of Heliconius erato and two hybrid zones of the co-mimic Heliconius melpomene to examine genetic variation across 2.2 Mb of a partial reference sequence. In the intergenic region near optix, the gene previously shown to be responsible for the complex red pattern variation in Heliconius, population genetic analyses identify a shared 65-kb region of divergence that includes several sites perfectly associated with phenotype within each species. This region likely contains multiple cis-regulatory elements that control discrete expression domains of optix. The parallel signatures of genetic differentiation in H. erato and H. melpomene support a shared genetic architecture between the two distantly related co-mimics; however, phylogenetic analysis suggests mimetic patterns in each species evolved independently. Using a combination of next-generation sequencing analyses, we have refined our understanding of the genetic architecture of wing pattern variation in Heliconius and gained important insights into the evolution of novel adaptive phenotypes in natural populations. PMID:23674305
Color constancy in a scene with bright colors that do not have a fully natural surface appearance.
Fukuda, Kazuho; Uchikawa, Keiji
2014-04-01
Theoretical and experimental approaches have proposed that color constancy involves a correction related to some average of stimulation over the scene, and some of the studies showed that the average gives greater weight to surrounding bright colors. However, in a natural scene, high-luminance elements do not necessarily carry information about the scene illuminant when the luminance is too high for it to appear as a natural object color. The question is how a surrounding color's appearance mode influences its contribution to the degree of color constancy. Here the stimuli were simple geometric patterns, and the luminance of surrounding colors was tested over the range beyond the luminosity threshold. Observers performed perceptual achromatic setting on the test patch in order to measure the degree of color constancy and evaluated the surrounding bright colors' appearance mode. Broadly, our results support the assumption that the visual system counts only the colors in the object-color appearance for color constancy. However, detailed analysis indicated that surrounding colors without a fully natural object-color appearance had some sort of influence on color constancy. Consideration of this contribution of unnatural object color might be important for precise modeling of human color constancy.
Robust pattern decoding in shape-coded structured light
NASA Astrophysics Data System (ADS)
Tang, Suming; Zhang, Xu; Song, Zhan; Song, Lifang; Zeng, Hai
2017-09-01
Decoding is a challenging and complex problem in a coded structured light system. In this paper, a robust pattern decoding method is proposed for the shape-coded structured light in which the pattern is designed as grid shape with embedded geometrical shapes. In our decoding method, advancements are made at three steps. First, a multi-template feature detection algorithm is introduced to detect the feature point which is the intersection of each two orthogonal grid-lines. Second, pattern element identification is modelled as a supervised classification problem and the deep neural network technique is applied for the accurate classification of pattern elements. Before that, a training dataset is established, which contains a mass of pattern elements with various blurring and distortions. Third, an error correction mechanism based on epipolar constraint, coplanarity constraint and topological constraint is presented to reduce the false matches. In the experiments, several complex objects including human hand are chosen to test the accuracy and robustness of the proposed method. The experimental results show that our decoding method not only has high decoding accuracy, but also owns strong robustness to surface color and complex textures.
Investigation of gunshot residue patterns using milli-XRF-techniques: first experiences in casework
NASA Astrophysics Data System (ADS)
Schumacher, Rüdiger; Barth, Martin; Neimke, Dieter; Niewöhner, Ludwig
2010-06-01
The investigation of gunshot residue (GSR) patterns for shooting range estimation is usually based on visualizing the lead, copper, or nitrocellulose distributions on targets like fabric or adhesive tape by chemographic color tests. The method usually provides good results but has its drawbacks when it comes to the examination of ammunition containing lead-free primers or bloody clothing. A milli-X-ray fluorescence (m-XRF) spectrometer with a large motorized stage can help to circumvent these problems allowing the acquisition of XRF mappings of relatively large areas (up to 20 x 20 cm) in millimeter resolution within reasonable time (2-10 hours) for almost all elements. First experiences in GSR casework at the Forensic Science Institute of the Bundeskriminalamt (BKA) have shown, that m-XRF is a useful supplementation for conventional methods in shooting ranges estimation, which helps if there are problems in transferring a GSR pattern to secondary targets (e.g. bloody or stained garments) or if there is no suitable color test available for the element of interest. The resulting elemental distributions are a good estimate for the shooting range and can be evaluated by calculating radial distributions or integrated count rates of irregular shaped regions like pieces of human skin which are too small to be investigated with a conventional WD-XRF spectrometer. Beside a mapping mode the milli-XRF offers also point and line scan modes which can also be utilized in gunshot crime investigations as a quick survey tool to identify bullet holes based on the elements present in the wipe ring.
NASA Technical Reports Server (NTRS)
Eyre, L. A.
1972-01-01
High altitude color and color infrared photography of the tri-county region of southeast Florida made it feasible to evaluate its potential for quantifying the dimensions of regional change. Attention was focused upon three main aspects of change in the region, which in fact overlap. These were; (1) the transformation of the southeast Florida wetlands; (2) the expansion of agriculture; and (3) the growth of the urbanized area. The development analyzed covered the period of thirteen years from 1956 to 1969. Results using this new 18 km photography were superior because of the degree of resolution, the combined power of color and color infrared interpretation, and the large area covered by each frame. The greatest advantage of high altitude imagery is the time-saving element, since it is possible to delineate and identify major geographic patterns over thousands of sq km very rapidly.
Connahs, Heidi; Rhen, Turk; Simmons, Rebecca B
2016-03-31
Butterfly wing color patterns are an important model system for understanding the evolution and development of morphological diversity and animal pigmentation. Wing color patterns develop from a complex network composed of highly conserved patterning genes and pigmentation pathways. Patterning genes are involved in regulating pigment synthesis however the temporal expression dynamics of these interacting networks is poorly understood. Here, we employ next generation sequencing to examine expression patterns of the gene network underlying wing development in the nymphalid butterfly, Vanessa cardui. We identified 9, 376 differentially expressed transcripts during wing color pattern development, including genes involved in patterning, pigmentation and gene regulation. Differential expression of these genes was highest at the pre-ommochrome stage compared to early pupal and late melanin stages. Overall, an increasing number of genes were down-regulated during the progression of wing development. We observed dynamic expression patterns of a large number of pigment genes from the ommochrome, melanin and also pteridine pathways, including contrasting patterns of expression for paralogs of the yellow gene family. Surprisingly, many patterning genes previously associated with butterfly pattern elements were not significantly up-regulated at any time during pupation, although many other transcription factors were differentially expressed. Several genes involved in Notch signaling were significantly up-regulated during the pre-ommochrome stage including slow border cells, bunched and pebbles; the function of these genes in the development of butterfly wings is currently unknown. Many genes involved in ecdysone signaling were also significantly up-regulated during early pupal and late melanin stages and exhibited opposing patterns of expression relative to the ecdysone receptor. Finally, a comparison across four butterfly transcriptomes revealed 28 transcripts common to all four species that have no known homologs in other metazoans. This study provides a comprehensive list of differentially expressed transcripts during wing development, revealing potential candidate genes that may be involved in regulating butterfly wing patterns. Some differentially expressed genes have no known homologs possibly representing genes unique to butterflies. Results from this study also indicate that development of nymphalid wing patterns may arise not only from melanin and ommochrome pigments but also the pteridine pigment pathway.
NASA Astrophysics Data System (ADS)
Wan, Xiazi; Kobayashi, Hiroyuki; Aoki, Naokazu
2015-03-01
In a preceding study, we investigated the effects of image noise on the perception of image sharpness using white noise, and one- and two-dimensional single-frequency sinusoidal patterns as stimuli. This study extends our preceding study by evaluating natural color images, rather than black-and-white patterns. The results showed that the effect of noise in improving image sharpness perception is more evident in blurred images than in sharp images. This is consistent with the results of the preceding study. In another preceding study, we proposed "memory texture" to explain the preferred granularity of images, as a concept similar to "memory color" for preferred color reproduction. We observed individual differences in type of memory texture for each object, that is, white or 1/f noise. This study discusses the relationship between improvement of sharpness perception by adding noise, and the memory texture, following its individual differences. We found that memory texture is one of the elements that affect sharpness perception.
The perception of subjective contours and neon color spreading figures in young infants.
Kavsek, Michael
2009-02-01
The goal of the present habituation-dishabituation study was to explore sensitivity to subjective contours and neon color spreading patterns in infants. The first experiment was a replication of earlier investigations that showed evidence that even young infants are capable of perceiving subjective contours. Participants 4 months of age were habituated to a subjective Kanizsa square and were tested afterward for their ability to differentiate between the subjective square and a nonsubjective pattern that was constructed by rotating some of the inducing elements. Data analysis indicated a significant preference for the nonsubjective pattern. A control condition ensured that this result was not generated by the difference in figural symmetry or by the local differences between the test displays. In the second experiment, infant perception of a neon color spreading display was analyzed. Again, 4-month-old infants could discriminate between the illusory figure and a nonillusory pattern. Furthermore, infants in a control group did not respond to the difference in symmetry and the local differences between two nonillusory targets. Overall, the results show that young infants respond to illusory figures that are generated by either implicit T-junctions (Experiment 1) or implicit X-junctions (Experiment 2). The findings are interpreted against the background of the neurophysiological model proposed by Grossberg and Mingolla (1985).
Otaki, Joji M; Ogasawara, Tsuyoshi; Yamamoto, Haruhiko
2005-06-01
Systemic injections of sodium tungstate, a protein-tyrosine phosphatase (PTPase) inhibitor, to pupae immediately after pupation have been shown to efficiently produce characteristic color-pattern modifications on the wings of many species of butterflies. Here we demonstrated that the tungstate-induced modification pattern was entirely different from other chemically-induced ones in a species of nymphalid butterfly Junonia (Precis) orithya. In this species, the systemic injections of tungstate produced characteristic expansion of black area and shrinkage of white area together with the move of parafocal elements toward the wing base. Overall, pattern boundaries became obscure. In contrast, an entirely different modification pattern, overall darkening of wings, was observed by the injections of stress-inducing chemicals, thapsigargin, ionomycin, or geldanamycin, to pupae under the rearing conditions for the adult summer form. On the ventral wings, this darkening was due to an increase of the proportion of peppered dark scales, which was reminiscent of the natural fall form of this species. Under the same rearing conditions, the injections of ecdysteroid, which is a well-known hormone being responsible for the seasonal polyphenism of nymphalid butterflies, yielded overall expansion of orange area especially around eyespots. Taken together, we conclude that the tungstate-induced modifications are clearly distinguishable from those of stress response and ecdysteroid effect. This conclusion then suggests that the putative PTPase signaling pathway that is sensitive to tungstate uniquely contributes to the wing-wide color-pattern development in butterflies.
NASA Astrophysics Data System (ADS)
Lushnikov, D. S.; Zherdev, A. Y.; Odinokov, S. B.; Markin, V. V.; Smirnov, A. V.
2017-05-01
Visual security elements used in color holographic stereograms - three-dimensional colored security holograms - and methods their production is describes in this article. These visual security elements include color micro text, color-hidden image, the horizontal and vertical flip - flop effects by change color and image. The article also presents variants of optical systems that allow record the visual security elements as part of the holographic stereograms. The methods for solving of the optical problems arising in the recording visual security elements are presented. Also noted perception features of visual security elements for verification of security holograms by using these elements. The work was partially funded under the Agreement with the RF Ministry of Education and Science № 14.577.21.0197, grant RFMEFI57715X0197.
The Optical Janus Effect: Asymmetric Structural Color Reflection Materials.
England, Grant T; Russell, Calvin; Shirman, Elijah; Kay, Theresa; Vogel, Nicolas; Aizenberg, Joanna
2017-08-01
Structurally colored materials are often used for their resistance to photobleaching and their complex viewing-direction-dependent optical properties. Frequently, absorption has been added to these types of materials in order to improve the color saturation by mitigating the effects of nonspecific scattering that is present in most samples due to imperfect manufacturing procedures. The combination of absorbing elements and structural coloration often yields emergent optical properties. Here, a new hybrid architecture is introduced that leads to an interesting, highly directional optical effect. By localizing absorption in a thin layer within a transparent, structurally colored multilayer material, an optical Janus effect is created, wherein the observed reflected color is different on one side of the sample than on the other. A systematic characterization of the optical properties of these structures as a function of their geometry and composition is performed. The experimental studies are coupled with a theoretical analysis that enables a precise, rational design of various optical Janus structures with highly controlled color, pattern, and fabrication approaches. These asymmetrically colored materials will open applications in art, architecture, semitransparent solar cells, and security features in anticounterfeiting materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Revelation of `Hidden' Balinese Geospatial Heritage on A Map
NASA Astrophysics Data System (ADS)
Soeria Atmadja, Dicky A. S.; Wikantika, Ketut; Budi Harto, Agung; Putra, Daffa Gifary M.
2018-05-01
Bali is not just about beautiful nature. It also has a unique and interesting cultural heritage, including `hidden' geospatial heritage. Tri Hita Karana is a Hinduism concept of life consisting of human relation to God, to other humans and to the nature (Parahiyangan, Pawongan and Palemahan), Based on it, - in term of geospatial aspect - the Balinese derived its spatial orientation, spatial planning & lay out, measurement as well as color and typography. Introducing these particular heritage would be a very interesting contribution to Bali tourism. As a respond to these issues, a question arise on how to reveal these unique and highly valuable geospatial heritage on a map which can be used to introduce and disseminate them to the tourists. Symbols (patterns & colors), orientation, distance, scale, layout and toponimy have been well known as elements of a map. There is an chance to apply Balinese geospatial heritage in representing these map elements.
Grid point extraction and coding for structured light system
NASA Astrophysics Data System (ADS)
Song, Zhan; Chung, Ronald
2011-09-01
A structured light system simplifies three-dimensional reconstruction by illuminating a specially designed pattern to the target object, thereby generating a distinct texture on it for imaging and further processing. Success of the system hinges upon what features are to be coded in the projected pattern, extracted in the captured image, and matched between the projector's display panel and the camera's image plane. The codes have to be such that they are largely preserved in the image data upon illumination from the projector, reflection from the target object, and projective distortion in the imaging process. The features also need to be reliably extracted in the image domain. In this article, a two-dimensional pseudorandom pattern consisting of rhombic color elements is proposed, and the grid points between the pattern elements are chosen as the feature points. We describe how a type classification of the grid points plus the pseudorandomness of the projected pattern can equip each grid point with a unique label that is preserved in the captured image. We also present a grid point detector that extracts the grid points without the need of segmenting the pattern elements, and that localizes the grid points in subpixel accuracy. Extensive experiments are presented to illustrate that, with the proposed pattern feature definition and feature detector, more features points in higher accuracy can be reconstructed in comparison with the existing pseudorandomly encoded structured light systems.
Rotary motion impairs attention to color change in 4-month-old infants.
Kavšek, Michael
2013-06-01
Continuous color changes of an array of elements appear to stop changing if the array undergoes a coherent motion. This silencing illusion was demonstrated for adults by Suchow and Alvarez (Current Biology, 2011, vol. 21, pp. 140-143). The current forced-choice preferential looking study examined 4-month-old infants' sensitivity to the silencing illusion. Two experimental conditions were conducted. In the dynamic condition, infants were tested with two rotating rings of circular different-colored dots. In one of these rings the dots continuously changed color, whereas in the other ring the dots did not change color. In the static condition, the global rotary motion was eliminated from the targets. Infants preferred looking at the color-changing target in the static condition but not in the dynamic condition; they attended to the color changes in the static condition but failed to detect them in the dynamic condition. This differential looking pattern is consistent with the hypothesis that the silencing illusion can be established during early infancy. A control group of adults also responded to the silencing phenomenon. This substantiates that the stimuli generate a robust illusory effect. Copyright © 2013 Elsevier Inc. All rights reserved.
Fan, J R; Wu, W G; Chen, Z J; Zhu, J; Li, J
2017-03-09
As plasmonic antennas for surface-plasmon-assisted control of optical fields at specific frequencies, metallic nanostructures have recently emerged as crucial optical components for fascinating plasmonic color engineering. Particularly, plasmonic resonant nanocavities can concentrate lightwave energy to strongly enhance light-matter interactions, making them ideal candidates as optical elements for fine-tuning color displays. Inspired by the color mixing effect found on butterfly wings, a new type of plasmonic, multiresonant, narrow-band (the minimum is about 45 nm), high-reflectance (the maximum is about 95%), and dynamic color-tuning reflector is developed. This is achieved from periodic patterns of plasmonic resonant nanocavities in free-standing capped-pillar nanostructure arrays. Such cavity-coupling structures exhibit multiple narrow-band selective and continuously tunable reflections via plasmon standing-wave resonances. Consequently, they can produce a variety of dark-field vibrant reflective colors with good quality, strong color signal and fine tonal variation at the optical diffraction limit. This proposed multicolor scheme provides an elegant strategy for realizing personalized and customized applications in ultracompact photonic data storage and steganography, colorimetric sensing, 3D holograms and other plasmon-assisted photonic devices.
Color filter array pattern identification using variance of color difference image
NASA Astrophysics Data System (ADS)
Shin, Hyun Jun; Jeon, Jong Ju; Eom, Il Kyu
2017-07-01
A color filter array is placed on the image sensor of a digital camera to acquire color images. Each pixel uses only one color, since the image sensor can measure only one color per pixel. Therefore, empty pixels are filled using an interpolation process called demosaicing. The original and the interpolated pixels have different statistical characteristics. If the image is modified by manipulation or forgery, the color filter array pattern is altered. This pattern change can be a clue for image forgery detection. However, most forgery detection algorithms have the disadvantage of assuming the color filter array pattern. We present an identification method of the color filter array pattern. Initially, the local mean is eliminated to remove the background effect. Subsequently, the color difference block is constructed to emphasize the difference between the original pixel and the interpolated pixel. The variance measure of the color difference image is proposed as a means of estimating the color filter array configuration. The experimental results show that the proposed method is effective in identifying the color filter array pattern. Compared with conventional methods, our method provides superior performance.
Comparative population genetics of a mimicry locus among hybridizing Heliconius butterfly species.
Chamberlain, N L; Hill, R I; Baxter, S W; Jiggins, C D; Kronforst, M R
2011-09-01
The comimetic Heliconius butterfly species pair, H. erato and H. melpomene, appear to use a conserved Mendelian switch locus to generate their matching red wing patterns. Here we investigate whether H. cydno and H. pachinus, species closely related to H. melpomene, use this same switch locus to generate their highly divergent red and brown color pattern elements. Using an F2 intercross between H. cydno and H. pachinus, we first map the genomic positions of two novel red/brown wing pattern elements; the G locus, which controls the presence of red vs brown at the base of the ventral wings, and the Br locus, which controls the presence vs absence of a brown oval pattern on the ventral hind wing. The results reveal that the G locus is tightly linked to markers in the genomic interval that controls red wing pattern elements of H. erato and H. melpomene. Br is on the same linkage group but approximately 26 cM away. Next, we analyze fine-scale patterns of genetic differentiation and linkage disequilibrium throughout the G locus candidate interval in H. cydno, H. pachinus and H. melpomene, and find evidence for elevated differentiation between H. cydno and H. pachinus, but no localized signature of association. Overall, these results indicate that the G locus maps to the same interval as the locus controlling red patterning in H. melpomene and H. erato. This, in turn, suggests that the genes controlling red pattern elements may be homologous across Heliconius, supporting the hypothesis that Heliconius butterflies use a limited suite of conserved genetic switch loci to generate both convergent and divergent wing patterns.
NASA Astrophysics Data System (ADS)
Fukai, Hironobu; Mitsukura, Yasue
We propose a new design support system that can color illustrations according to a person's color preferences that are determined on the basis of the color patterns of illustrations prepared by that person. Recently, many design tools for promoting free design have been developed. However, preferences for various colors differ depending on individual personality. Therefore, a system that can automatically color various designs on the basis of human preference is required. In this study, we propose an automatic modeling system that can be used to model illustrations. To verify the effectiveness of the proposed system, we simulate a coloring design experiment to determine the color patterns preferred by some subjects by using various design data. By using the design data, we determine each subjects preferred color pattern, and send feedback on these individual color patterns to the proposed system.
Scientific and Graphic Design Foundations for C2
2007-06-01
the elements in the composition. This section presents a summary of the concepts in graphic design layout, typography , color, and data graphics...assist the users in perceiving and recognizing patterns in information. Typography Typography is the art and technique of designing textual...Principles of typography for user interface design, interactions, Vol 5, pp. 15, Nov/Dec 1998 Kahneman, D., & Henik, A. 1981. Perceptual organization and
Otaki, Joji M
2011-06-01
Butterfly wing color patterns consist of many color-pattern elements such as eyespots. It is believed that eyespot patterns are determined by a concentration gradient of a single morphogen species released by diffusion from the prospective eyespot focus in conjunction with multiple thresholds in signal-receiving cells. As alternatives to this single-morphogen model, more flexible multiple-morphogen model and induction model can be proposed. However, the relevance of these conceptual models to actual eyespots has not been examined systematically. Here, representative eyespots from nymphalid butterflies were analyzed morphologically to determine if they are consistent with these models. Measurement of ring widths of serial eyespots from a single wing surface showed that the proportion of each ring in an eyespot is quite different among homologous rings of serial eyespots of different sizes. In asymmetric eyespots, each ring is distorted to varying degrees. In extreme cases, only a portion of rings is expressed remotely from the focus. Similarly, there are many eyespots where only certain rings are deleted, added, or expanded. In an unusual case, the central area of an eyespot is composed of multiple "miniature eyespots," but the overall macroscopic eyespot structure is maintained. These results indicate that each eyespot ring has independence and flexibility to a certain degree, which is less consistent with the single-morphogen model. Considering a "periodic eyespot", which has repeats of a set of rings, damage-induced eyespots in mutants, and a scale-size distribution pattern in an eyespot, the induction model is the least incompatible with the actual eyespot diversity.
A Computer System to Rate the Variety of Color in Drawings
ERIC Educational Resources Information Center
Kim, Seong-in; Hameed, Ibrahim A.
2009-01-01
For mental health professionals, art assessment is a useful tool for patient evaluation and diagnosis. Consideration of various color-related elements is important in art assessment. This correlational study introduces the concept of variety of color as a new color-related element of an artwork. This term represents a comprehensive use of color,…
Land classification of south-central Iowa from computer enhanced images
NASA Technical Reports Server (NTRS)
Lucas, J. R.; Taranik, J. V.; Billingsley, F. C. (Principal Investigator)
1977-01-01
The author has identified the following significant results. Enhanced LANDSAT imagery was most useful for land classification purposes, because these images could be photographically printed at large scales such as 1:63,360. The ability to see individual picture elements was no hindrance as long as general image patterns could be discerned. Low cost photographic processing systems for color printings have proved to be effective in the utilization of computer enhanced LANDSAT products for land classification purposes. The initial investment for this type of system was very low, ranging from $100 to $200 beyond a black and white photo lab. The technical expertise can be acquired from reading a color printing and processing manual.
Romanian traditional motif - element of modernity in clothing
NASA Astrophysics Data System (ADS)
Doble, L.; Stan, O.; Suteu, M. D.; Albu, A.; Bohm, G.; Tsatsarou-Michalaki, A.; Gialinou, E.
2017-10-01
In this paper are presented the phases for improving from an aesthetic point of view a clothing item, the jacket respectively, with a straight cut for women using software design patterns, computerised graphics and textile different modern technologies including: industrial embroidery, digital printing, sublimation. In the first phase a documentation was prepared in the Ethnographic Museum of Transylvania from Cluj Napoca where more traditional motifs were selected specific to Transylvania etnographic region and were reintepreted and stylized whilst preserving the symbolism and color range specified to the area. For the styling phase was used CorelDraw vector graphics program that allows changing the shape, size and color of the drawings without affecting the identity of the pattern. In the patterns design phase Gemini CAD software was used and for the modeling and model development Optitex software was used. The part for garnishing the model was performed using Embrodery machine software reproducing the stylized motif identically. In order to obtain a significantly improved aesthetic look and an added artistic value the pattern chosen for the jacket was done using a combination of modern textile technologies. This has allowed the realization of a particular texture on the surface of the designed product, demonstrating that traditional patterns can be reintepreted in modern clothing
Giery, Sean T; Layman, Craig A; Langerhans, R Brian
2015-08-01
When confronted with similar environmental challenges, different organisms can exhibit dissimilar phenotypic responses. Therefore, understanding patterns of phenotypic divergence for closely related species requires considering distinct evolutionary histories. Here, we investigated how a common form of human-induced environmental alteration, habitat fragmentation, may drive phenotypic divergence among three closely related species of Bahamian mosquitofish (Gambusia spp.). Focusing on one phenotypic trait (male coloration), having a priori predictions of divergence, we tested whether populations persisting in fragmented habitats differed from those inhabiting unfragmented habitats and examined the consistency of the pattern across species. Species exhibited both shared and unique patterns of phenotypic divergence between the two types of habitats, with shared patterns representing the stronger effect. For all species, populations in fragmented habitats had fewer dorsal-fin spots. In contrast, the magnitude and trajectory of divergence in dorsal-fin color, a sexually selected trait, differed among species. We identified fragmentation-mediated increased turbidity as a possible driver of these trait shifts. These results suggest that even closely related species can exhibit diverse phenotypic responses when encountering similar human-mediated selection regimes. This element of unpredictability complicates forecasting the phenotypic responses of wild organisms faced with anthropogenic change - an important component of biological conservation and ecosystem management.
Giery, Sean T; Layman, Craig A; Langerhans, R Brian
2015-01-01
When confronted with similar environmental challenges, different organisms can exhibit dissimilar phenotypic responses. Therefore, understanding patterns of phenotypic divergence for closely related species requires considering distinct evolutionary histories. Here, we investigated how a common form of human-induced environmental alteration, habitat fragmentation, may drive phenotypic divergence among three closely related species of Bahamian mosquitofish (Gambusia spp.). Focusing on one phenotypic trait (male coloration), having a priori predictions of divergence, we tested whether populations persisting in fragmented habitats differed from those inhabiting unfragmented habitats and examined the consistency of the pattern across species. Species exhibited both shared and unique patterns of phenotypic divergence between the two types of habitats, with shared patterns representing the stronger effect. For all species, populations in fragmented habitats had fewer dorsal-fin spots. In contrast, the magnitude and trajectory of divergence in dorsal-fin color, a sexually selected trait, differed among species. We identified fragmentation-mediated increased turbidity as a possible driver of these trait shifts. These results suggest that even closely related species can exhibit diverse phenotypic responses when encountering similar human-mediated selection regimes. This element of unpredictability complicates forecasting the phenotypic responses of wild organisms faced with anthropogenic change – an important component of biological conservation and ecosystem management. PMID:26240605
Color relations increase the capacity of visual short-term memory.
Sanocki, Thomas; Sulman, Noah
2011-01-01
Do color relations such as similarity or harmony influence the ease with which colored patterns can be perceived and held in mind? We tested the influence of a relation supported in research on color harmony--similarity of hue--on the capacity of visual short-term memory (VSTM) for colors in patterns. Palettes of 4 similar-hue colors were rated as more pleasant (harmonious) than dissimilar-color palettes. The palettes were used in a VSTM color task. Patterns of 9 to 15 colored squares were presented, and accuracy of color change detection was measured. Memory performance was higher overall for similar-color palettes than for dissimilar-color palettes (experiments 1 and 3). Is this due to color similarity per se, or due to the harmony between colors in similar palettes? A final experiment provided strong support for the importance of color similarity as opposed to harmony. Overall, the advantages for color similarity, in terms of number of color squares held in memory (memory capacity) were 26% to 45% over dissimilar colors. The results indicate that color relations can have a strong impact on the capacity for perceiving and retaining color patterns.
Zduniak, Piotr; Surmacki, Adrian; Erciyas-Yavuz, Kiraz; Chudzińska, Maria; Barałkiewicz, Danuta
2014-09-01
Melanin is the most common pigment in animal integuments including bird plumage. It has been shown that several trace elements may play roles in the production and signaling function of melanin-colored plumage. We investigated coloration and content of various metal elements in the rectrices of two insectivorous passerines, Common Redstarts (Phoenicurus phoenicurus) and Blackcaps (Sylvia atricapilla), which have eumelanin- and pheomelanin-based coloration, respectively. We hypothesized that 1) the two species would differ in concentrations of metals important in melanin synthesis (Ca, Fe, Cu, Zn), 2) differences in metal concentration levels would be related to feather coloration. Our study confirmed the first prediction and provides the first evidence that selected elements may play a greater role in pheomelanin than in eumelanin synthesis. Concentrations of three elements considered as important in melanin synthesis (Ca, Fe, Zn) were 52% to 93% higher in rusty colored Common Redstart feathers compared to the dark gray Blackcap feathers. However, element concentrations were not correlated with feather coloration or sex in either species. Our study suggests that, of the two melanin forms, pheomelanin synthesis may bear higher costs associated with the acquisition of specific elements or limited elements may create trade-offs between ornamentation and other physiological functions. Our findings warrant further investigations designed to better understand the roles of macro- and microelements in the synthesis of both forms of melanin. Copyright © 2014 Elsevier Inc. All rights reserved.
Local Material as a Character of Contemporary Interior Design in Indonesia
NASA Astrophysics Data System (ADS)
Susanto, Dalhar; Puti Angelia, Dini; Ningsih, Tria Amalia
2017-12-01
Excellent design needs to fulfill universal requirements (utility, aesthetic, ergonomic, durability, and safe). Besides of all the requirements, an excellent design has to be shown its distinctiveness, uniqueness, and identity. To create an excellent design, we can use one of locality approach, it means local material utilization. From time to time, the material is linking each other in unity with environment context, human, knowledge, culture, social, economy, user needs and material availability. The aspects are the important part to get the reflective identity and local values in architecture and interior design work in Indonesia. It can be proofed by some of the architecture and interior work precedent, like traditional or vernacular in Nusantara or contemporary interior design work from Indonesian designer who has recognized to promote the locality value. However interior design works in Indonesia cannot be shown the characteristic of Indonesia identity and locality currently, it is different than another country work, like Japan, Italy, or Scandinavia. Interior design work from these countries can be easily known with accentuating of characteristic their places, such as material, color, detail, or geometry pattern in the product that has been produced. Meanwhile, some of the region in Indonesia are tropical climate and brought about much of local material and it has potential to make a unique work which has the local identity. This paper will discuss the result of a searching potential of local material usefulness as interior design identity in Indonesia. This research is done by typology method, which means discover the presence of some of the architecture elements appears to be related material. The elements are the pattern, color, craftsmanship, building element, object, and type of material in some of the contemporary interior design work in Indonesia were considered superior and capable of lifting elements recognized locality.
Modeling apparent color for visual evaluation of camouflage fabrics
NASA Astrophysics Data System (ADS)
Ramsey, S.; Mayo, T.; Shabaev, A.; Lambrakos, S. G.
2017-08-01
As the U.S. Navy, Army, and Special Operations Forces progress towards fielding more advanced uniforms with multi-colored and highly detailed camouflage patterning, additional test methodologies are necessary in evaluating color in these types of camouflage textiles. The apparent color is the combination of all visible wavelengths (380-760 nm) of light reflected from large (>=1m2 ) fabric sample sizes for a given standoff distance (10-25ft). Camouflage patterns lose resolution with increasing standoff distance, and eventually all colors within the pattern appear monotone (the "apparent color" of the pattern). This paper presents an apparent color prediction model that can be used for evaluation of camouflage fabrics.
Kim, Hana; Youk, Ji Hyun; Gweon, Hye Mi; Kim, Jeong-Ah; Son, Eun Ju
2013-08-01
To compare the diagnostic performance of qualitative shear-wave elastography (SWE) according to three different color map opacities for breast masses 101 patients aged 21-77 years with 113 breast masses underwent B-mode US and SWE under three different color map opacities (50%, 19% and 100%) before biopsy or surgery. Following SWE features were reviewed: visual pattern classification (pattern 1-4), color homogeneity (Ehomo) and six-point color score of maximum elasticity (Ecol). Combined with B-mode US and SWE, the likelihood of malignancy (LOM) was also scored. The area under the curve (AUC) was obtained by ROC curve analysis to assess the diagnostic performance under each color opacity. A visual color pattern, Ehomo, Ecol and LOM scoring were significantly different between benign and malignant lesions under all color opacities (P<0.001). For 50% opacity, AUCs of visual color pattern, Ecol, Ehomo and LOM scoring were 0.902, 0.951, 0.835 and 0.975. But, for each SWE feature, there was no significant difference in the AUC among three different color opacities. For all color opacities, visual color pattern and Ecol showed significantly higher AUC than Ehomo. In addition, a combined set of B-mode US and SWE showed significantly higher AUC than SWE alone for color patterns, Ehomo, but no significant difference was found in Ecol. Qualitative SWE was useful to differentiate benign from malignant breast lesion under all color opacities. The difference in color map opacity did not significantly influence diagnostic performance of SWE. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Imitation Learning Errors Are Affected by Visual Cues in Both Performance and Observation Phases.
Mizuguchi, Takashi; Sugimura, Ryoko; Shimada, Hideaki; Hasegawa, Takehiro
2017-08-01
Mechanisms of action imitation were examined. Previous studies have suggested that success or failure of imitation is determined at the point of observing an action. In other words, cognitive processing after observation is not related to the success of imitation; 20 university students participated in each of three experiments in which they observed a series of object manipulations consisting of four elements (hands, tools, object, and end points) and then imitated the manipulations. In Experiment 1, a specific intially observed element was color coded, and the specific manipulated object at the imitation stage was identically color coded; participants accurately imitated the color coded element. In Experiment 2, a specific element was color coded at the observation but not at the imitation stage, and there were no effects of color coding on imitation. In Experiment 3, participants were verbally instructed to attend to a specific element at the imitation stage, but the verbal instructions had no effect. Thus, the success of imitation may not be determined at the stage of observing an action and color coding can provide a clue for imitation at the imitation stage.
Adhikari, Kiran; Otaki, Joji M
2016-02-01
It is often desirable but difficult to retrieve information on the mature phenotype of an immature tissue sample that has been subjected to gene expression analysis. This problem cannot be ignored when individual variation within a species is large. To circumvent this problem in the butterfly wing system, we developed a new surgical method for removing a single forewing from a pupa using Junonia orithya; the operated pupa was left to develop to an adult without eclosion. The removed right forewing was subjected to gene expression analysis, whereas the non-removed left forewing was examined for color patterns. As a test case, we focused on Distal-less (Dll), which likely plays an active role in inducing elemental patterns, including eyespots. The Dll expression level in forewings was paired with eyespot size data from the same individual. One third of the operated pupae survived and developed wing color patterns. Dll expression levels were significantly higher in males than in females, although male eyespots were smaller in size than female eyespots. Eyespot size data showed weak but significant correlations with the Dll expression level in females. These results demonstrate that a single-wing removal method was successfully applied to the butterfly wing system and suggest the weak and non-exclusive contribution of Dll to eyespot size determination in this butterfly. Our novel methodology for establishing correspondence between gene expression and phenotype can be applied to other candidate genes for color pattern development in butterflies. Conceptually similar methods may also be applicable in other developmental systems.
Cong, Rui; Li, Jing; Guo, Song
2017-02-01
To examine the efficacy of qualitative shear wave elastography (SWE) in the classification and evaluation of solid breast masses, and to compare this method with conventional ultrasonograghy (US), quantitative SWE parameters and qualitative SWE classification proposed before. From April 2015 to March 2016, 314 consecutive females with 325 breast masses who decided to undergo core needle biopsy and/or surgical biopsy were enrolled. Conventional US and SWE were previously performed in all enrolled subjects. Each mass was classified by two different qualitative classifications. One was established in our study, herein named the Qual1. Qual1 could classify the SWE images into five color patterns by the visual evaluations: Color pattern 1 (homogeneous pattern); Color pattern 2 (comparative homogeneous pattern); Color pattern 3 (irregularly heterogeneous pattern); Color pattern 4 (intralesional echo pattern); and Color pattern 5 (the stiff rim sign pattern). The second qualitative classification was named Qual2 here, and included a four-color overlay pattern classification (Tozaki and Fukuma, Acta Radiologica, 2011). The Breast Imaging Reporting and Data System (BI-RADS) assessment and quantitative SWE parameters were recorded. Diagnostic performances of conventional US, SWE parameters, and combinations of US and SWE parameters were compared. With pathological results as the gold standard, of the 325 examined breast masses, 139 (42.77%) samples were malignant and 186 (57.23%) were benign. The Qual1 showed a higher Az value than the Qual2 and quantitative SWE parameters (all P<0.05). When applying Qual1=Color pattern 1 for downgrading and Qual1=Color pattern 5 for upgrading the BI-RADS categories, we obtained the highest Az value (0.951), and achieved a significantly higher specificity (86.56%, P=0.002) than that of the US (81.18%) with the same sensitivity (94.96%). The qualitative classification proposed in this study may be representative of SWE parameters and has potential to be relevant assistance in breast mass diagnoses. Copyright © 2016. Published by Elsevier B.V.
Keren-Rotem, Tammy; Levy, Noga; Wolf, Lior; Bouskila, Amos; Geffen, Eli
2016-01-01
Alternative mating tactics in males of various taxa are associated with body color, body size, and social status. Chameleons are known for their ability to change body color following immediate environmental or social stimuli. In this study, we examined whether the differential appearance of male common chameleon during the breeding season is indeed an expression of alternative mating tactics. We documented body color of males and used computer vision techniques to classify images of individuals into discrete color patterns associated with seasons, individual characteristics, and social contexts. Our findings revealed no differences in body color and color patterns among males during the non-breeding season. However, during the breeding season males appeared in several color displays, which reflected body size, social status, and behavioral patterns. Furthermore, smaller and younger males resembled the appearance of small females. Consequently, we suggest that long-term color change in males during the breeding season reflects male alternative mating tactics. Upon encounter with a receptive female, males rapidly alter their appearance to that of a specific brief courtship display, which reflects their social status. The females, however, copulated indiscriminately in respect to male color patterns. Thus, we suggest that the differential color patterns displayed by males during the breeding season are largely aimed at inter-male signaling. PMID:27409771
Statistical simplex approach to primary and secondary color correction in thick lens assemblies
NASA Astrophysics Data System (ADS)
Ament, Shelby D. V.; Pfisterer, Richard
2017-11-01
A glass selection optimization algorithm is developed for primary and secondary color correction in thick lens systems. The approach is based on the downhill simplex method, and requires manipulation of the surface color equations to obtain a single glass-dependent parameter for each lens element. Linear correlation is used to relate this parameter to all other glass-dependent variables. The algorithm provides a statistical distribution of Abbe numbers for each element in the system. Examples of several lenses, from 2-element to 6-element systems, are performed to verify this approach. The optimization algorithm proposed is capable of finding glass solutions with high color correction without requiring an exhaustive search of the glass catalog.
NASA Astrophysics Data System (ADS)
Besson, Marc; Salis, Pauline; Laudet, Vincent; Lecchini, David
2018-03-01
Color polymorphism is widespread in animals and can be associated with temporary adjustments to environmental variables (phenotypic plasticity). In teleost fishes, one of the most remarkable examples of color plasticity is background adaptation in flatfishes. However, such rapid and complete changes in body color and pattern remain relatively unreported in other species. The convict surgeonfish Acanthurus triostegus is a gregarious species whose body color pattern consists of black vertical bars on a whitish body. Here, we describe an entirely reverse body color pattern (white vertical bars on a blackish body) that we observed in some A. triostegus juveniles in a nursery area at Moorea Island, French Polynesia. In aquaria, we determined that change from one color pattern to the other is rapid, reversible, and corresponds to phenotypic plasticity associated with aggressive behavior.
Clothing Matching for Visually Impaired Persons
Yuan, Shuai; Tian, YingLi; Arditi, Aries
2012-01-01
Matching clothes is a challenging task for many blind people. In this paper, we present a proof of concept system to solve this problem. The system consists of 1) a camera connected to a computer to perform pattern and color matching process; 2) speech commands for system control and configuration; and 3) audio feedback to provide matching results for both color and patterns of clothes. This system can handle clothes in deficient color without any pattern, as well as clothing with multiple colors and complex patterns to aid both blind and color deficient people. Furthermore, our method is robust to variations of illumination, clothing rotation and wrinkling. To evaluate the proposed prototype, we collect two challenging databases including clothes without any pattern, or with multiple colors and different patterns under different conditions of lighting and rotation. Results reported here demonstrate the robustness and effectiveness of the proposed clothing matching system. PMID:22523465
Clothing Matching for Visually Impaired Persons.
Yuan, Shuai; Tian, Yingli; Arditi, Aries
2011-01-01
Matching clothes is a challenging task for many blind people. In this paper, we present a proof of concept system to solve this problem. The system consists of 1) a camera connected to a computer to perform pattern and color matching process; 2) speech commands for system control and configuration; and 3) audio feedback to provide matching results for both color and patterns of clothes. This system can handle clothes in deficient color without any pattern, as well as clothing with multiple colors and complex patterns to aid both blind and color deficient people. Furthermore, our method is robust to variations of illumination, clothing rotation and wrinkling. To evaluate the proposed prototype, we collect two challenging databases including clothes without any pattern, or with multiple colors and different patterns under different conditions of lighting and rotation. Results reported here demonstrate the robustness and effectiveness of the proposed clothing matching system.
Exploring Race Based Differences in Patterns of Life-Course Criminality
Markowitz, Michael W.; Salvatore, Christopher
2013-01-01
A persistent issue facing criminologists is the challenge of developing theoretical models that provide comprehensive explanations of the onset and persistence of criminality. One promising theory to develop over the last 30 years has been life-course theory. Using multivariate analysis of variance the main question posed in this research, do elements of social development shape the trajectory of persistent offending in a race-neutral fashion, or are the dynamics shaping life-course criminality unique for people of color, was examined. The results provide a number of useful insights into the relationship between race, life-course transition factors, and longitudinal patterns of criminality. PMID:23436952
Molecular patterns of X chromosome-linked color vision genes among 134 men of European ancestry.
Drummond-Borg, M; Deeb, S S; Motulsky, A G
1989-01-01
We used Southern blot hybridization to study X chromosome-linked color vision genes encoding the apoproteins of red and green visual pigments in 134 unselected Caucasian men. One hundred and thirteen individuals (84.3%) had a normal arrangement of their color vision pigment genes. All had one red pigment gene; the number of green pigment genes ranged from one to five with a mode of two. The frequency of molecular genotypes indicative of normal color vision (84.3%) was significantly lower than had been observed in previous studies of color vision phenotypes. Color vision defects can be due to deletions of red or green pigment genes or due to formation of hybrid genes comprising portions of both red and green pigment genes [Nathans, J., Piantanida, T.P., Eddy, R.L., Shows, T.B., Jr., & Hogness, D.S. (1986) Science 232, 203-210]. Characteristic anomalous patterns were seen in 15 (11.2%) individuals: 7 (5.2%) had patterns characteristic of deuteranomaly (mild defect in green color perception), 2 (1.5%) had patterns characteristic of deuteranopia (severe defect in green color perception), and 6 (4.5%) had protan patterns (the red perception defects protanomaly and protanopia cannot be differentiated by current molecular methods). Previously undescribed hybrid gene patterns consisting of both green and red pigment gene fragments in addition to normal red and green genes were observed in another 6 individuals (4.5%). Only 2 of these patterns were considered as deuteranomalous. Thus, DNA testing detected anomalous color vision pigment genes at a higher frequency than expected from phenotypic color vision tests. Some color vision gene arrays associated with hybrid genes are likely to mediate normal color vision. Images PMID:2915991
Using the Colored Eco-Genetic Relationship Map with children.
Driessnack, Martha
2009-01-01
The Colored Eco-Genetic Relationship Map (CEGRM) is a hybridized assessment tool that combines the ecomap, the family genogram, and the genetic pedigree to produce a unique, participant-generated picture of an individual's social networks, information exchange patterns, and sources of support. To date, the CEGRM has been used successfully with adults, providing insights into their social networks and the communication patterns they use in the update and exchange of health-related information. To explore the feasibility and the utility of adapting elements of the CEGRM for use with children. Twenty children, 7 to 10 years of age, distributed by gender, socioeconomic status, and geographic heritage, participated in one-on-one sessions in which they created modified CEGRMs using adapted art directives. A qualitative descriptive design and approach to analysis were used. Children were able to create a modified CEGRM, and resultant discussions provided considerable insights. A focused analysis revealed a kaleidoscope of social networks being accessed by today's children as well as surprising information exchange sources and patterns. Although all the children included one parent, family composition varied. Extended family, other adults, peers, and media sources were not only prevalent but also often preferred over the nuclear family as sources of health information. Of particular interest, mothers were rarely identified as children's primary source of health-related information. Elements of the CEGRM are adapted easily for use with children using children's drawings and may prove to be an effective, adjunctive assessment and interventional tool for parents, researchers, educators, and providers working with young children.
Nurses' uniform color and feelings/emotions in school-aged children receiving health care.
Albert, Nancy M; Burke, Jane; Bena, James F; Morrison, Shannon M; Forney, Jennifer; Krajewski, Susan
2013-04-01
Children may fear nurses wearing white uniforms. When emotions and uniform color were studied in 233 children, many positive emotions were most often associated with blue, bold pink-patterned, or yellow-patterned tops (all p ≤ .002). Negative emotions were not associated with uniform top colors (all p < .001). However, after excluding "uniform color does not matter," 8 negative emotions were most often associated with white uniform color (p < .001-.04), and 2 others were most often associated with the yellow-patterned top. Bold pink-patterned and solid blue uniform tops were preferred. In conclusion, children's emotions were associated with nurse uniform color. Copyright © 2013 Elsevier Inc. All rights reserved.
Stable structural color patterns displayed on transparent insect wings.
Shevtsova, Ekaterina; Hansson, Christer; Janzen, Daniel H; Kjærandsen, Jostein
2011-01-11
Color patterns play central roles in the behavior of insects, and are important traits for taxonomic studies. Here we report striking and stable structural color patterns--wing interference patterns (WIPs)--in the transparent wings of small Hymenoptera and Diptera, patterns that have been largely overlooked by biologists. These extremely thin wings reflect vivid color patterns caused by thin film interference. The visibility of these patterns is affected by the way the insects display their wings against various backgrounds with different light properties. The specific color sequence displayed lacks pure red and matches the color vision of most insects, strongly suggesting that the biological significance of WIPs lies in visual signaling. Taxon-specific color patterns are formed by uneven membrane thickness, pigmentation, venation, and hair placement. The optically refracted pattern is also stabilized by microstructures of the wing such as membrane corrugations and spherical cell structures that reinforce the pattern and make it essentially noniridescent over a large range of light incidences. WIPs can be applied to map the micromorphology of wings through direct observation and are useful in several fields of biology. We demonstrate their usefulness as identification patterns to solve cases of cryptic species complexes in tiny parasitic wasps, and indicate their potentials for research on the genetic control of wing development through direct links between the transregulatory wing landscape and interference patterns we observe in Drosophila model species. Some species display sexually dimorphic WIPs, suggesting sexual selection as one of the driving forces for their evolution.
Wing patterning gene redefines the mimetic history of Heliconius butterflies.
Hines, Heather M; Counterman, Brian A; Papa, Riccardo; Albuquerque de Moura, Priscila; Cardoso, Marcio Z; Linares, Mauricio; Mallet, James; Reed, Robert D; Jiggins, Chris D; Kronforst, Marcus R; McMillan, W Owen
2011-12-06
The mimetic butterflies Heliconius erato and Heliconius melpomene have undergone parallel radiations to form a near-identical patchwork of over 20 different wing-pattern races across the Neotropics. Previous molecular phylogenetic work on these radiations has suggested that similar but geographically disjunct color patterns arose multiple times independently in each species. The neutral markers used in these studies, however, can move freely across color pattern boundaries, and therefore might not represent the history of the adaptive traits as accurately as markers linked to color pattern genes. To assess the evolutionary histories across different loci, we compared relationships among races within H. erato and within H. melpomene using a series of unlinked genes, genes linked to color pattern loci, and optix, a gene recently shown to control red color-pattern variation. We found that although unlinked genes partition populations by geographic region, optix had a different history, structuring lineages by red color patterns and supporting a single origin of red-rayed patterns within each species. Genes closely linked (80-250 kb) to optix exhibited only weak associations with color pattern. This study empirically demonstrates the necessity of examining phenotype-determining genomic regions to understand the history of adaptive change in rapidly radiating lineages. With these refined relationships, we resolve a long-standing debate about the origins of the races within each species, supporting the hypothesis that the red-rayed Amazonian pattern evolved recently and expanded, causing disjunctions of more ancestral patterns.
Stable structural color patterns displayed on transparent insect wings
Shevtsova, Ekaterina; Hansson, Christer; Janzen, Daniel H.; Kjærandsen, Jostein
2011-01-01
Color patterns play central roles in the behavior of insects, and are important traits for taxonomic studies. Here we report striking and stable structural color patterns—wing interference patterns (WIPs)—in the transparent wings of small Hymenoptera and Diptera, patterns that have been largely overlooked by biologists. These extremely thin wings reflect vivid color patterns caused by thin film interference. The visibility of these patterns is affected by the way the insects display their wings against various backgrounds with different light properties. The specific color sequence displayed lacks pure red and matches the color vision of most insects, strongly suggesting that the biological significance of WIPs lies in visual signaling. Taxon-specific color patterns are formed by uneven membrane thickness, pigmentation, venation, and hair placement. The optically refracted pattern is also stabilized by microstructures of the wing such as membrane corrugations and spherical cell structures that reinforce the pattern and make it essentially noniridescent over a large range of light incidences. WIPs can be applied to map the micromorphology of wings through direct observation and are useful in several fields of biology. We demonstrate their usefulness as identification patterns to solve cases of cryptic species complexes in tiny parasitic wasps, and indicate their potentials for research on the genetic control of wing development through direct links between the transregulatory wing landscape and interference patterns we observe in Drosophila model species. Some species display sexually dimorphic WIPs, suggesting sexual selection as one of the driving forces for their evolution. PMID:21199954
Momose, Masaki; Itoh, Yoshio; Umemoto, Naoyuki; Nakayama, Masayoshi; Ozeki, Yoshihiro
2013-01-01
A glutathione S-transferase-like gene, DcGSTF2, is responsible for carnation (Dianthus caryophyllus L.) flower color intensity. Two defective genes, DcGSTF2mu with a nonsense mutation and DcGSTF2-dTac1 containing a transposable element dTac1, have been characterized in detail in this report. dTac1 is an active element that produces reverted functional genes by excision of the element. A pale-pink cultivar ‘Daisy’ carries both defective genes, whereas a spontaneous deep-colored mutant ‘Daisy-VPR’ lost the element from DcGSTF2-dTac1. This finding confirmed that dTac1 is active and that the resulting reverted gene, DcGSTF2rev1, missing the element is responsible for this color change. Crosses between the pale-colored cultivar ‘06-LA’ and a deep-colored cultivar ‘Spectrum’ produced segregating progeny. Only the deep-colored progeny had DcGSTF2rev2 derived from the ‘Spectrum’ parent, whereas progeny with pale-colored flowers had defective forms from both parents, DcGSTF2mu and DcGSTF2-dTac1. Thus, DcGSTF2rev2 had functional activity and likely originated from excision of dTac1 since there was a footprint sequence at the vacated site of the dTac1 insertion. Characterizing the DcGSTF2 genes in several cultivars revealed that the two functional genes, DcGSTF2rev1 and DcGSTF2rev2, have been used for some time in carnation breeding with the latter in use for more than half a century. PMID:24399917
Momose, Masaki; Itoh, Yoshio; Umemoto, Naoyuki; Nakayama, Masayoshi; Ozeki, Yoshihiro
2013-12-01
A glutathione S-transferase-like gene, DcGSTF2, is responsible for carnation (Dianthus caryophyllus L.) flower color intensity. Two defective genes, DcGSTF2mu with a nonsense mutation and DcGSTF2-dTac1 containing a transposable element dTac1, have been characterized in detail in this report. dTac1 is an active element that produces reverted functional genes by excision of the element. A pale-pink cultivar 'Daisy' carries both defective genes, whereas a spontaneous deep-colored mutant 'Daisy-VPR' lost the element from DcGSTF2-dTac1. This finding confirmed that dTac1 is active and that the resulting reverted gene, DcGSTF2rev1, missing the element is responsible for this color change. Crosses between the pale-colored cultivar '06-LA' and a deep-colored cultivar 'Spectrum' produced segregating progeny. Only the deep-colored progeny had DcGSTF2rev2 derived from the 'Spectrum' parent, whereas progeny with pale-colored flowers had defective forms from both parents, DcGSTF2mu and DcGSTF2-dTac1. Thus, DcGSTF2rev2 had functional activity and likely originated from excision of dTac1 since there was a footprint sequence at the vacated site of the dTac1 insertion. Characterizing the DcGSTF2 genes in several cultivars revealed that the two functional genes, DcGSTF2rev1 and DcGSTF2rev2, have been used for some time in carnation breeding with the latter in use for more than half a century.
Ennen, Joshua R.; Lindeman, Peter V.; Lovich, Jeffrey E.
2015-01-01
Coloration can play critical roles in a species' biology. The allometry of color patterns may be useful for elucidating the evolutionary mechanisms responsible for shaping the traits. We measured characteristics relating to eight aspects of color patterns from Graptemys oculifera and G. flavimaculata to investigate the allometric differences among male, female, and unsexed juvenile specimens. Additionally, we investigated ontogenetic shifts by incorporating the unsexed juveniles into the male and female datasets. In general, male color traits were isometric (i.e., color scaled with body size), while females and juvenile color traits were hypoallometric, growing in size more slowly than the increase in body size. When we included unsexed juveniles in our male and female datasets, our linear regression analyses found all relationships to be hypoallometric and our model selection analysis found support for nonlinear models describing the relationship between body size and color patterns, suggestive of an ontogenetic shift in coloration traits for both sexes at maturity. Although color is critical for many species' biology and therefore under strong selective pressure in many other species, our results are likely explained by an epiphenomenon related to the different selection pressures on body size and growth rates between juveniles and adults and less attributable to the evolution of color patterns themselves.
Volumetric display containing multiple two-dimensional color motion pictures
NASA Astrophysics Data System (ADS)
Hirayama, R.; Shiraki, A.; Nakayama, H.; Kakue, T.; Shimobaba, T.; Ito, T.
2014-06-01
We have developed an algorithm which can record multiple two-dimensional (2-D) gradated projection patterns in a single three-dimensional (3-D) object. Each recorded pattern has the individual projected direction and can only be seen from the direction. The proposed algorithm has two important features: the number of recorded patterns is theoretically infinite and no meaningful pattern can be seen outside of the projected directions. In this paper, we expanded the algorithm to record multiple 2-D projection patterns in color. There are two popular ways of color mixing: additive one and subtractive one. Additive color mixing used to mix light is based on RGB colors and subtractive color mixing used to mix inks is based on CMY colors. We made two coloring methods based on the additive mixing and subtractive mixing. We performed numerical simulations of the coloring methods, and confirmed their effectiveness. We also fabricated two types of volumetric display and applied the proposed algorithm to them. One is a cubic displays constructed by light-emitting diodes (LEDs) in 8×8×8 array. Lighting patterns of LEDs are controlled by a microcomputer board. The other one is made of 7×7 array of threads. Each thread is illuminated by a projector connected with PC. As a result of the implementation, we succeeded in recording multiple 2-D color motion pictures in the volumetric displays. Our algorithm can be applied to digital signage, media art and so forth.
Human preferences for colorful birds: Vivid colors or pattern?
Lišková, Silvie; Landová, Eva; Frynta, Daniel
2015-04-29
In a previous study, we found that the shape of a bird, rather than its color, plays a major role in the determination of human preferences. Thus, in the present study, we asked whether the preferences of human respondents towards uniformly shaped, colorful birds are determined by pattern rather than color. The experimental stimuli were pictures of small passerine birds of the family Pittidae possessing uniform shape but vivid coloration. We asked 200 participants to rank 43 colored and 43 identical, but grayscaled, pictures of birds. To find the traits determining human preferences, we performed GLM analysis in which we tried to explain the mean preference ranks and PC axes by the following explanatory variables: the overall lightness and saturation, edges (pattern), and the portion of each of the basic color hues. The results showed that the mean preference ranks of the grayscale set is explained mostly by the birds' pattern, whereas the colored set ranking is mostly determined by the overall lightness. The effect of colors was weaker, but still significant, and revealed that people liked blue and green birds. We found no significant role of the color red, the perception of which was acquired relatively recently in evolution.
Koch, P Bernhardt; Nijhout, H Frederik
1990-05-01
A set of stage specific proteins of approximally 86 to 90 kDal are synthesized by isolated wings ofPrecis coenia on day 5 of the pupal stage. They are named "B proteins". They are synthesized in presumptive black wing areas in higher amounts than in presumptive white wing areas and are the major proteins synthesized on day 5. Wings from 5 days old pupae, which were incubated with 35 S-methionine for 2 or 4 hours, incorporate radiolabel into presumptive black pattern elements. This is probably due to the localized synthesis of the above mentioned proteins. Injection of 35 S-methionine into whole pupae on day 5 resulted in the labelling of the mature black and grey scales but not white scales. This radiolabel incorporation pattern corresponds exactly to the incorporation of the melanin precursor 14 C-tyrosine into the scales. The results indicate that the "B proteins" are specifically related to the formation of black and grey portions of thePrecis wing pattern. Injection of 35 S-methionine into whole pupae on day 6 resulted in the labelling of the mature red scales probably due to labelling of "R proteins", which may be involved in the formation of red pattern elements.
Shang, Shenglong; Zhang, Qinghong; Wang, Hongzhi; Li, Yaogang
2017-01-01
A flexible, magnetic field induced structurally colored films with brilliant colors and high physical rigidity were reported in this article. Using an external magnetic field, the photocurable colloidal suspensions that containing superparamagnetic Fe 3 O 4 @C colloidal nanocrystal clusters (CNCs) could polymerize under UV light. After polymerization, the films with different colors (red, green, blue) were obtained. Through combination of suspensions which contains Fe 3 O 4 @C CNCs with different sizes, a series of multi-colored films were obtained. Moreover, these structural colors can be patterned easily by photolithography and various structural colored patterns were shown in the article. The structural colored patterns could conceal or display its color according to the changing of background which makes them hold significant potential applications for security materials. Copyright © 2016 Elsevier Inc. All rights reserved.
Molecular patterns of X chromosome-linked color vision genes among 134 menof European ancestry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drummond-Borg, M.; Deeb, S.S.; Motulsky, A.G.
1989-02-01
The authors used Southern blot hybridization to study X chromosome-linked color vision genes encoding the apoproteins of red and green visual pigments in 134 unselected Caucasian men. One hundred and thirteen individuals (84.3%) had a normal arrangement of their color vision pigment genes. All had one red pigment gene; the number of green pigment genes ranged from one to five with a mode of two. The frequency of molecular genotypes indicative of normal color vision (84.3%) was significantly lower than had been observed in previous studies of color vision phenotypes. Color vision defects can be due to deletions of redmore » or green pigment genes or due to formation of hybrid genes comprising portions of both red and green pigment genes. Characteristic anomalous patterns were seen in 15 (11.2%) individuals: 7 (5.2%) had patterns characteristic of deuteranomaly, 2 (1.5%) had patterns characteristic of deuteranopia, and 6 (4.5%) had protan patterns. Previously undescribed hybrid gene patterns consisting of both green and red pigment gene fragments in addition to normal red and green genes were observed in another 6 individuals (4.5%). Thus, DNA testing detected anomalous color vision pigment genes at a higher frequency than expected from phenotypic color vision tests.« less
Oh, Paul; Lee, Sukho; Kang, Moon Gi
2017-01-01
Recently, several RGB-White (RGBW) color filter arrays (CFAs) have been proposed, which have extra white (W) pixels in the filter array that are highly sensitive. Due to the high sensitivity, the W pixels have better SNR (Signal to Noise Ratio) characteristics than other color pixels in the filter array, especially, in low light conditions. However, most of the RGBW CFAs are designed so that the acquired RGBW pattern image can be converted into the conventional Bayer pattern image, which is then again converted into the final color image by using conventional demosaicing methods, i.e., color interpolation techniques. In this paper, we propose a new RGBW color filter array based on a totally different color interpolation technique, the colorization algorithm. The colorization algorithm was initially proposed for colorizing a gray image into a color image using a small number of color seeds. Here, we adopt this algorithm as a color interpolation technique, so that the RGBW color filter array can be designed with a very large number of W pixels to make the most of the highly sensitive characteristics of the W channel. The resulting RGBW color filter array has a pattern with a large proportion of W pixels, while the small-numbered RGB pixels are randomly distributed over the array. The colorization algorithm makes it possible to reconstruct the colors from such a small number of RGB values. Due to the large proportion of W pixels, the reconstructed color image has a high SNR value, especially higher than those of conventional CFAs in low light condition. Experimental results show that many important information which are not perceived in color images reconstructed with conventional CFAs are perceived in the images reconstructed with the proposed method. PMID:28657602
Oh, Paul; Lee, Sukho; Kang, Moon Gi
2017-06-28
Recently, several RGB-White (RGBW) color filter arrays (CFAs) have been proposed, which have extra white (W) pixels in the filter array that are highly sensitive. Due to the high sensitivity, the W pixels have better SNR (Signal to Noise Ratio) characteristics than other color pixels in the filter array, especially, in low light conditions. However, most of the RGBW CFAs are designed so that the acquired RGBW pattern image can be converted into the conventional Bayer pattern image, which is then again converted into the final color image by using conventional demosaicing methods, i.e., color interpolation techniques. In this paper, we propose a new RGBW color filter array based on a totally different color interpolation technique, the colorization algorithm. The colorization algorithm was initially proposed for colorizing a gray image into a color image using a small number of color seeds. Here, we adopt this algorithm as a color interpolation technique, so that the RGBW color filter array can be designed with a very large number of W pixels to make the most of the highly sensitive characteristics of the W channel. The resulting RGBW color filter array has a pattern with a large proportion of W pixels, while the small-numbered RGB pixels are randomly distributed over the array. The colorization algorithm makes it possible to reconstruct the colors from such a small number of RGB values. Due to the large proportion of W pixels, the reconstructed color image has a high SNR value, especially higher than those of conventional CFAs in low light condition. Experimental results show that many important information which are not perceived in color images reconstructed with conventional CFAs are perceived in the images reconstructed with the proposed method.
Estimation of color modification in digital images by CFA pattern change.
Choi, Chang-Hee; Lee, Hae-Yeoun; Lee, Heung-Kyu
2013-03-10
Extensive studies have been carried out for detecting image forgery such as copy-move, re-sampling, blurring, and contrast enhancement. Although color modification is a common forgery technique, there is no reported forensic method for detecting this type of manipulation. In this paper, we propose a novel algorithm for estimating color modification in images acquired from digital cameras when the images are modified. Most commercial digital cameras are equipped with a color filter array (CFA) for acquiring the color information of each pixel. As a result, the images acquired from such digital cameras include a trace from the CFA pattern. This pattern is composed of the basic red green blue (RGB) colors, and it is changed when color modification is carried out on the image. We designed an advanced intermediate value counting method for measuring the change in the CFA pattern and estimating the extent of color modification. The proposed method is verified experimentally by using 10,366 test images. The results confirmed the ability of the proposed method to estimate color modification with high accuracy. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Single-shot real-time three dimensional measurement based on hue-height mapping
NASA Astrophysics Data System (ADS)
Wan, Yingying; Cao, Yiping; Chen, Cheng; Fu, Guangkai; Wang, Yapin; Li, Chengmeng
2018-06-01
A single-shot three-dimensional (3D) measurement based on hue-height mapping is proposed. The color fringe pattern is encoded by three sinusoidal fringes with the same frequency but different shifting phase into red (R), green (G) and blue (B) color channels, respectively. It is found that the hue of the captured color fringe pattern on the reference plane maintains monotonic in one period even it has the color crosstalk. Thus, unlike the traditional color phase shifting technique, the hue information is utilized to decode the color fringe pattern and map to the pixels of the fringe displacement in the proposed method. Because the monotonicity of the hue is limited within one period, displacement unwrapping is proposed to obtain the continuous displacement that is finally used to map to the height distribution. This method directly utilizes the hue under the effect of color crosstalk for mapping the height so that no color calibration is involved. Also, as it requires only single shot deformed color fringe pattern, this method can be applied into the real-time or dynamic 3D measurements.
Color filter array design based on a human visual model
NASA Astrophysics Data System (ADS)
Parmar, Manu; Reeves, Stanley J.
2004-05-01
To reduce cost and complexity associated with registering multiple color sensors, most consumer digital color cameras employ a single sensor. A mosaic of color filters is overlaid on a sensor array such that only one color channel is sampled per pixel location. The missing color values must be reconstructed from available data before the image is displayed. The quality of the reconstructed image depends fundamentally on the array pattern and the reconstruction technique. We present a design method for color filter array patterns that use red, green, and blue color channels in an RGB array. A model of the human visual response for luminance and opponent chrominance channels is used to characterize the perceptual error between a fully sampled and a reconstructed sparsely-sampled image. Demosaicking is accomplished using Wiener reconstruction. To ensure that the error criterion reflects perceptual effects, reconstruction is done in a perceptually uniform color space. A sequential backward selection algorithm is used to optimize the error criterion to obtain the sampling arrangement. Two different types of array patterns are designed: non-periodic and periodic arrays. The resulting array patterns outperform commonly used color filter arrays in terms of the error criterion.
Chiao, Chuan-Chin; Wickiser, J Kenneth; Allen, Justine J; Genter, Brock; Hanlon, Roger T
2011-05-31
Camouflage is a widespread phenomenon throughout nature and an important antipredator tactic in natural selection. Many visual predators have keen color perception, and thus camouflage patterns should provide some degree of color matching in addition to other visual factors such as pattern, contrast, and texture. Quantifying camouflage effectiveness in the eyes of the predator is a challenge from the perspectives of both biology and optical imaging technology. Here we take advantage of hyperspectral imaging (HSI), which records full-spectrum light data, to simultaneously visualize color match and pattern match in the spectral and the spatial domains, respectively. Cuttlefish can dynamically camouflage themselves on any natural substrate and, despite their colorblindness, produce body patterns that appear to have high-fidelity color matches to the substrate when viewed directly by humans or with RGB images. Live camouflaged cuttlefish on natural backgrounds were imaged using HSI, and subsequent spectral analysis revealed that most reflectance spectra of individual cuttlefish and substrates were similar, rendering the color match possible. Modeling color vision of potential di- and trichromatic fish predators of cuttlefish corroborated the spectral match analysis and demonstrated that camouflaged cuttlefish show good color match as well as pattern match in the eyes of fish predators. These findings (i) indicate the strong potential of HSI technology to enhance studies of biological coloration and (ii) provide supporting evidence that cuttlefish can produce color-coordinated camouflage on natural substrates despite lacking color vision.
Facial Recognition in a Discus Fish (Cichlidae): Experimental Approach Using Digital Models
Satoh, Shun; Tanaka, Hirokazu; Kohda, Masanori
2016-01-01
A number of mammals and birds are known to be capable of visually discriminating between familiar and unfamiliar individuals, depending on facial patterns in some species. Many fish also visually recognize other conspecifics individually, and previous studies report that facial color patterns can be an initial signal for individual recognition. For example, a cichlid fish and a damselfish will use individual-specific color patterns that develop only in the facial area. However, it remains to be determined whether the facial area is an especially favorable site for visual signals in fish, and if so why? The monogamous discus fish, Symphysopdon aequifasciatus (Cichlidae), is capable of visually distinguishing its pair-partner from other conspecifics. Discus fish have individual-specific coloration patterns on entire body including the facial area, frontal head, trunk and vertical fins. If the facial area is an inherently important site for the visual cues, this species will use facial patterns for individual recognition, but otherwise they will use patterns on other body parts as well. We used modified digital models to examine whether discus fish use only facial coloration for individual recognition. Digital models of four different combinations of familiar and unfamiliar fish faces and bodies were displayed in frontal and lateral views. Focal fish frequently performed partner-specific displays towards partner-face models, and did aggressive displays towards models of non-partner’s faces. We conclude that to identify individuals this fish does not depend on frontal color patterns but does on lateral facial color patterns, although they have unique color patterns on the other parts of body. We discuss the significance of facial coloration for individual recognition in fish compared with birds and mammals. PMID:27191162
Facial Recognition in a Discus Fish (Cichlidae): Experimental Approach Using Digital Models.
Satoh, Shun; Tanaka, Hirokazu; Kohda, Masanori
2016-01-01
A number of mammals and birds are known to be capable of visually discriminating between familiar and unfamiliar individuals, depending on facial patterns in some species. Many fish also visually recognize other conspecifics individually, and previous studies report that facial color patterns can be an initial signal for individual recognition. For example, a cichlid fish and a damselfish will use individual-specific color patterns that develop only in the facial area. However, it remains to be determined whether the facial area is an especially favorable site for visual signals in fish, and if so why? The monogamous discus fish, Symphysopdon aequifasciatus (Cichlidae), is capable of visually distinguishing its pair-partner from other conspecifics. Discus fish have individual-specific coloration patterns on entire body including the facial area, frontal head, trunk and vertical fins. If the facial area is an inherently important site for the visual cues, this species will use facial patterns for individual recognition, but otherwise they will use patterns on other body parts as well. We used modified digital models to examine whether discus fish use only facial coloration for individual recognition. Digital models of four different combinations of familiar and unfamiliar fish faces and bodies were displayed in frontal and lateral views. Focal fish frequently performed partner-specific displays towards partner-face models, and did aggressive displays towards models of non-partner's faces. We conclude that to identify individuals this fish does not depend on frontal color patterns but does on lateral facial color patterns, although they have unique color patterns on the other parts of body. We discuss the significance of facial coloration for individual recognition in fish compared with birds and mammals.
Analysis of the skin transcriptome in two oujiang color varieties of common carp.
Wang, Chenghui; Wachholtz, Michael; Wang, Jun; Liao, Xiaolin; Lu, Guoqing
2014-01-01
Body color and coloration patterns are important phenotypic traits to maintain survival and reproduction activities. The Oujiang color varieties of common carp (Cyprinus carpio var. color), with a narrow distribution in Zhejiang Province of China and a history of aquaculture for over 1,200 years, consistently exhibit a variety of body color patterns. The molecular mechanism underlying diverse color patterns in these variants is unknown. To the practical end, it is essential to develop molecular markers that can distinguish different phenotypes and assist selective breeding. In this exploratory study, we conducted Roche 454 transcriptome sequencing of two pooled skin tissue samples of Oujiang common carp, which correspond to distinct color patterns, red with big black spots (RB) and whole white (WW), and a total of 737,525 sequence reads were generated. The reads obtained in this study were co-assembled jointly with common carp Roche 454 sequencing reads downloaded from NCBI SRA database, resulting in 43,923 isotigs and 546,676 singletons. Over 31 thousand (31,445; 71.6%) isotigs were found with significant BLAST matches (E<1e-10) to the nr protein database, which corresponds to 12,597 annotated zebrafish genes. A total of 70,947 isotigs and singletons (transcripts) were annotated with Gene Ontology, and 60,221 transcripts were found with corresponding EC numbers. Out of 145 zebrafish pigmentation genes, orthologs for 117 were recovered in Oujiang color carp transcriptome, including 18 found only among singletons. Our transcriptome analysis revealed over 52,902 SNPs in Oujiang common carp, and identified 63 SNP markers that are putatively unique either for RB or WW. The transcriptome of Oujiang color varieties of common carp obtained through this study, along with the pigmentation genes recovered and the color pattern-specific molecular markers developed, will facilitate future research on the molecular mechanism of color patterns and promote aquaculture of Oujiang color varieties of common carp through molecular marker assisted-selective breeding.
Stitch overlap via coloring technique enables maskless via
NASA Astrophysics Data System (ADS)
Civay, D.; Laffosse, E.
2017-03-01
Lithographic patterning limits can be a cost-barrier that delays advancement to new nodes. This paper introduces a cost-saving design method that enables a maskless via. Multi-patterning or coloring of a design is a technique that is used at advanced nodes to aid in patterning. Coloring allows designers to designate different patterns on one level to be printed with different masks. Stitch overlap via (SOV) is a coloring technique introduced herein. SOV utilizes via-aware coloring and a unique process flow to print a maskless via. Identification of qualifying design structures is achieved through a custom program. The program inputs the design level of the multipatterned layer and the via levels above and below to determine the coloring decomposition. Vias are a particularly challenging layer to print due to the dimensions required for these pillars. SOV is a methodology for identifying qualifying multi-patterned layouts and replacing them with a new design that enables a maskless via layer.
ERIC Educational Resources Information Center
Williams, Carrick C.; Pollatsek, Alexander; Cave, Kyle R.; Stroud, Michael J.
2009-01-01
In 2 experiments, eye movements were examined during searches in which elements were grouped into four 9-item clusters. The target (a red or blue "T") was known in advance, and each cluster contained different numbers of target-color elements. Rather than color composition of a cluster invariantly guiding the order of search though…
Spatial transform coding of color images.
NASA Technical Reports Server (NTRS)
Pratt, W. K.
1971-01-01
The application of the transform-coding concept to the coding of color images represented by three primary color planes of data is discussed. The principles of spatial transform coding are reviewed and the merits of various methods of color-image representation are examined. A performance analysis is presented for the color-image transform-coding system. Results of a computer simulation of the coding system are also given. It is shown that, by transform coding, the chrominance content of a color image can be coded with an average of 1.0 bits per element or less without serious degradation. If luminance coding is also employed, the average rate reduces to about 2.0 bits per element or less.
NASA Astrophysics Data System (ADS)
Xie, Y.; Wilson, A. M.
2017-12-01
Plant phenology studies typically focus on the beginning and end of the growing season in temperate forests. We know too little about fall foliage peak coloration, which is a bioindicator of plant response in autumn to environmental changes, an important visual cue in fall associated with animal activities, and a key element in fall foliage ecotourism. Spatiotemporal changes in timing of fall foliage peak coloration of temperate forests and the associated environmental controls are not well understood. In this study, we examined multiple color indices to estimate Land Surface Phenology (LSP) of fall foliage peak coloration of deciduous forest in the northeastern USA using Moderate Resolution Imaging Spectroradiometer (MODIS) daily imagery from 2000 to 2015. We used long term phenology ground observations to validate our estimated LSP, and found that Visible Atmospherically Resistant Index (VARI) and Plant Senescence Reflectance Index (PSRI) were good metrics to estimate peak and end of leaf coloration period of deciduous forest. During the past 16 years, the length of period with peak fall foliage color of deciduous forest at southern New England and northern Appalachian forests regions became longer (0.3 7.7 days), mainly driven by earlier peak coloration. Northern New England, southern Appalachian forests and Ozark and Ouachita mountains areas had shorter period (‒0.2 ‒9.2 days) mainly due to earlier end of leaf coloration. Changes in peak and end of leaf coloration not only were associated with changing temperature in spring and fall, but also to drought and heat in summer, and heavy precipitation in both summer and fall. The associations between leaf peak coloration phenology and climatic variations were not consistent among ecoregions. Our findings suggested divergent change patterns in fall foliage peak coloration phenology in deciduous forests, and improved our understanding in the environmental control on timing of fall foliage color change.
Finding your innovation sweet spot.
Goldenberg, Jacob; Horowitz, Roni; Levav, Amnon; Mazursky, David
2003-03-01
Most new product ideas are either uninspired or impractical. So how can developers hit the innovation sweet spot--far enough from existing products to attract real interest but close enough that they are feasible to make and market? They can apply five innovation patterns that manipulate existing components of a product and its immediate environment to come up with something both ingenious and viable, say the authors. The subtraction pattern works by removing product components, particularly those that seem desirable or indispensable. Think of the legless high chair that attaches to the kitchen table. The multiplication pattern makes one or more copies of an existing component, then alters those copies in some important way. For example, the Gillette double-bladed razor features a second blade that cuts whiskers at a slightly different angle. By dividing an existing product into its component parts--the division pattern--you can see something that was an integrated whole in an entirely different light. Think of the modern home stereo--it has modular speakers, tuners, and CD and tape players, which allow users to customize their sound systems. The task unification pattern involves assigning a new task to an existing product element or environmental attribute, thereby unifying two tasks in a single component. An example is the defrosting filament in an automobile windshield that also serves as a radio antenna. Finally, the attribute dependency pattern alters or creates the dependent relationships between a product and its environment. For example, by creating a dependent relationship between lens color and external lighting conditions, eyeglass developers came up with a lens that changes color when exposed to sunlight.
Water color and circulation southern Chesapeake Bay, part 1
NASA Technical Reports Server (NTRS)
Nichols, M. M.; Gordon, H. H.
1975-01-01
Satellite imagery from two EREP passes over the Rappahannock Estuary of the Chesapeake region is analyzed to chart colored water types, to delineate color boundaries and define circulatory patterns. Surface observations from boats and helicopters concurrent with Skylab overpass define the distributions of suspended sediment, transparency, temperature, salinity, phytoplankton, color of suspended material and optical ratio. Important features recorded by the imagery are a large-scale turbidity maximum and massive red tide blooms. Water movement is revealed by small-scale mixing patterns and tidal plumes of apparent sediment-laden water. The color patterns broadly reflect the bottom topography and the seaward gradient of suspended material between the river and the bay. Analyses of red, green and natural color photos by microdensitometry demonstrate the utility of charting water color types of potential use for managing estuarine water quality. The Skylab imagery is superior to aerial photography and surface observations for charting water color.
Dai, Meiling; Yang, Fujun; He, Xiaoyuan
2012-04-20
A simple but effective fringe projection profilometry is proposed to measure 3D shape by using one snapshot color sinusoidal fringe pattern. One color fringe pattern encoded with a sinusoidal fringe (as red component) and one uniform intensity pattern (as blue component) is projected by a digital video projector, and the deformed fringe pattern is recorded by a color CCD camera. The captured color fringe pattern is separated into its RGB components and division operation is applied to red and blue channels to reduce the variable reflection intensity. Shape information of the tested object is decoded by applying an arcsine algorithm on the normalized fringe pattern with subpixel resolution. In the case of fringe discontinuities caused by height steps, or spatially isolated surfaces, the separated blue component is binarized and used for correcting the phase demodulation. A simple and robust method is also introduced to compensate for nonlinear intensity response of the digital video projector. The experimental results demonstrate the validity of the proposed method.
Active pixel sensors with substantially planarized color filtering elements
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor)
1999-01-01
A semiconductor imaging system preferably having an active pixel sensor array compatible with a CMOS fabrication process. Color-filtering elements such as polymer filters and wavelength-converting phosphors can be integrated with the image sensor.
Park, Young-Jae; Lee, Jin-Moo; Yoo, Seung-Yeon; Park, Young-Bae
2016-04-01
To examine whether color parameters of tongue inspection (TI) using a digital camera was reliable and valid, and to examine which color parameters serve as predictors of symptom patterns in terms of East Asian medicine (EAM). Two hundred female subjects' tongue substances were photographed by a mega-pixel digital camera. Together with the photographs, the subjects were asked to complete Yin deficiency, Phlegm pattern, and Cold-Heat pattern questionnaires. Using three sets of digital imaging software, each digital image was exposure- and white balance-corrected, and finally L* (luminance), a* (red-green balance), and b* (yellow-blue balance) values of the tongues were calculated. To examine intra- and inter-rater reliabilities and criterion validity of the color analysis method, three raters were asked to calculate color parameters for 20 digital image samples. Finally, four hierarchical regression models were formed. Color parameters showed good or excellent reliability (0.627-0.887 for intra-class correlation coefficients) and significant criterion validity (0.523-0.718 for Spearman's correlation). In the hierarchical regression models, age was a significant predictor of Yin deficiency (β = 0.192), and b* value of the tip of the tongue was a determinant predictor of Yin deficiency, Phlegm, and Heat patterns (β = - 0.212, - 0.172, and - 0.163). Luminance (L*) was predictive of Yin deficiency (β = -0.172) and Cold (β = 0.173) pattern. Our results suggest that color analysis of the tongue using the L*a*b* system is reliable and valid, and that color parameters partially serve as symptom pattern predictors in EAM practice.
Neural representation of form-contingent color filling-in in the early visual cortex.
Hong, Sang Wook; Tong, Frank
2017-11-01
Perceptual filling-in exemplifies the constructive nature of visual processing. Color, a prominent surface property of visual objects, can appear to spread to neighboring areas that lack any color. We investigated cortical responses to a color filling-in illusion that effectively dissociates perceived color from the retinal input (van Lier, Vergeer, & Anstis, 2009). Observers adapted to a star-shaped stimulus with alternating red- and cyan-colored points to elicit a complementary afterimage. By presenting an achromatic outline that enclosed one of the two afterimage colors, perceptual filling-in of that color was induced in the unadapted central region. Visual cortical activity was monitored with fMRI, and analyzed using multivariate pattern analysis. Activity patterns in early visual areas (V1-V4) reliably distinguished between the two color-induced filled-in conditions, but only higher extrastriate visual areas showed the predicted correspondence with color perception. Activity patterns allowed for reliable generalization between filled-in colors and physical presentations of perceptually matched colors in areas V3 and V4, but not in earlier visual areas. These findings suggest that the perception of filled-in surface color likely requires more extensive processing by extrastriate visual areas, in order for the neural representation of surface color to become aligned with perceptually matched real colors.
Selectively Patterning Polymer Opal Films via Microimprint Lithography.
Ding, Tao; Zhao, Qibin; Smoukov, Stoyan K; Baumberg, Jeremy J
2014-11-01
Large-scale structural color flexible coatings have been hard to create, and patterning color on them is key to many applications, including large-area strain sensors, wall-size displays, security devices, and smart fabrics. To achieve controlled tuning, a micro-imprinting technique is applied here to pattern both the surface morphology and the structural color of the polymer opal films (POFs). These POFs are made of 3D ordered arrays of hard spherical particles embedded inside soft shells. The soft outer shells cause the POFs to deform upon imprinting with a pre-patterned stamp, driving a flow of the soft polymer and a rearrangement of the hard spheres within the films. As a result, a patterned surface morphology is generated within the POFs and the structural colors are selectively modified within different regions. These changes are dependent on the pressure, temperature, and duration of imprinting, as well as the feature sizes in the stamps. Moreover, the pattern geometry and structural colors can then be further tuned by stretching. Micropattern color generation upon imprinting depends on control of colloidal transport in a polymer matrix under shear flow and brings many potential properties including stretchability and tunability, as well as being of fundamental interest.
Ishii, Keiko; Miyamoto, Yuri; Rule, Nicholas O; Toriyama, Rie
2014-02-01
We examined how cultural values of harmony and uniqueness are represented and maintained through physical media (i.e., colorings of geometric patterns) and how individuals play an active role in selecting and maintaining such cultural values. We found that colorings produced by European American adults and children were judged as more unique, whereas colorings produced by Japanese adults and children were judged as more harmonious, reflecting cultural differences in values. Harmony undergirded Japanese participants' preferences for colorings, whereas uniqueness undergirded European American participants' preferences for colorings. These cultural differences led participants to prefer own-culture colorings over other-culture colorings. Moreover, bicultural participants' preferences acculturated according to their identification with their host culture. Furthermore, child rearers in Japan and Canada gave feedback about the children's colorings that were consistent with their culture's values. These findings suggest that simple geometric patterns can embody cultural values that are socialized and reinforced from an early age.
Blind color isolation for color-channel-based fringe pattern profilometry using digital projection
NASA Astrophysics Data System (ADS)
Hu, Yingsong; Xi, Jiangtao; Chicharo, Joe; Yang, Zongkai
2007-08-01
We present an algorithm for estimating the color demixing matrix based on the color fringe patterns captured from the reference plane or the surface of the object. The advantage of this algorithm is that it is a blind approach to calculating the demixing matrix in the sense that no extra images are required for color calibration before performing profile measurement. Simulation and experimental results convince us that the proposed algorithm can significantly reduce the influence of the color cross talk and at the same time improve the measurement accuracy of the color-channel-based phase-shifting profilometry.
The generation and diversification of butterfly eyespot color patterns.
Brunetti, C R; Selegue, J E; Monteiro, A; French, V; Brakefield, P M; Carroll, S B
2001-10-16
A fundamental challenge of evolutionary and developmental biology is understanding how new characters arise and change. The recently derived eyespots on butterfly wings vary extensively in number and pattern between species and play important roles in predator avoidance. Eyespots form through the activity of inductive organizers (foci) at the center of developing eyespot fields. Foci are the proposed source of a morphogen, the levels of which determine the color of surrounding wing scale cells. However, it is unknown how reception of the focal signal translates into rings of different-colored scales, nor how different color schemes arise in different species. We have identified several transcription factors, including butterfly homologs of the Drosophila Engrailed/Invected and Spalt proteins, that are deployed in concentric territories corresponding to the future rings of pigmented scales that compose the adult eyespot. We have isolated a new Bicyclus anynana wing pattern mutant, Goldeneye, in which the scales of one inner color ring become the color of a different ring. These changes correlate with shifts in transcription factor expression, suggesting that Goldeneye affects an early regulatory step in eyespot color patterning. In different butterfly species, the same transcription factors are expressed in eyespot fields, but in different relative spatial domains that correlate with divergent eyespot color schemes. Our results suggest that signaling from the focus induces nested rings of regulatory gene expression that subsequently control the final color pattern. Furthermore, the remarkably plastic regulatory interactions downstream of focal signaling have facilitated the evolution of eyespot diversity.
Perceptual grouping and attention: not all groupings are equal.
Kimchi, Ruth; Razpurker-Apfeld, Irene
2004-08-01
We examined grouping under inattention using Driver, Davis, Russell, Turatto, & Freeman's (2001) method. On each trial, two successive displays were briefly presented, each comprising a central target square surrounded by elements. The task was to judge whether the two targets were the same or different. The organization of the background elements stayed the same or changed, independently of the targets. In different conditions, background elements grouped into columns/rows by color similarity, a shape (a triangle/arrow, a square/cross, or a vertical/horizontal line) by color similarity, and a shape with no other elements in the background. We measured the influence of the background on the target same-different judgments. The results imply that background elements grouped into columns/rows by color similarity and into a shape when no segregation from other elements was involved and the shape was relatively "good." In contrast, no background grouping was observed when resolving figure-ground relations for segregated units was required, as in grouping into a shape by color similarity. These results suggest that grouping is a multiplicity of processes that vary in their attentional demands. Regardless of attentional demands, the products of grouping are not available to awareness without attention.
Color camera computed tomography imaging spectrometer for improved spatial-spectral image accuracy
NASA Technical Reports Server (NTRS)
Wilson, Daniel W. (Inventor); Bearman, Gregory H. (Inventor); Johnson, William R. (Inventor)
2011-01-01
Computed tomography imaging spectrometers ("CTIS"s) having color focal plane array detectors are provided. The color FPA detector may comprise a digital color camera including a digital image sensor, such as a Foveon X3.RTM. digital image sensor or a Bayer color filter mosaic. In another embodiment, the CTIS includes a pattern imposed either directly on the object scene being imaged or at the field stop aperture. The use of a color FPA detector and the pattern improves the accuracy of the captured spatial and spectral information.
Slope-aspect color shading for parametric surfaces
NASA Technical Reports Server (NTRS)
Moellering, Harold J. (Inventor); Kimerling, A. Jon (Inventor)
1991-01-01
The invention is a method for generating an image of a parametric surface, such as the compass direction toward which each surface element of terrain faces, commonly called the slope-aspect azimuth of the surface element. The method maximizes color contrast to permit easy discrimination of the magnitude, ranges, intervals or classes of a surface parameter while making it easy for the user to visualize the form of the surface, such as a landscape. The four pole colors of the opponent process color theory are utilized to represent intervals or classes at 90 degree angles. The color perceived as having maximum measured luminance is selected to portray the color having an azimuth of an assumed light source and the color showing minimum measured luminance portrays the diametrically opposite azimuth. The 90 degree intermediate azimuths are portrayed by unique colors of intermediate measured luminance, such as red and green. Colors between these four pole colors are used which are perceived as mixtures or combinations of their bounding colors and are arranged progressively between their bounding colors to have perceived proportional mixtures of the bounding colors which are proportional to the interval's angular distance from its bounding colors.
Voice response system of color and pattern on clothes for visually handicapped person.
Miyake, Masao; Manabe, Yoshitsugu; Uranishi, Yuki; Imura, Masataka; Oshiro, Osamu
2013-01-01
For visually handicapped people, a mental support is important in their independent daily life and participation in a society. It is expected to develop a system which can recognize colors and patterns on clothes so that they can go out with less concerns. We have worked on a basic study into such a system, and developed a prototype system which can stably recognize colors and patterns and immediately provide these information in voice, when a user faces it to clothes. In the results of evaluation experiments it is shown that the prototype system is superior to the system in the basic study at the accuracy rate for the recognition of color and pattern.
Bai, Ling; Mai, Van Cuong; Lim, Yun; Hou, Shuai; Möhwald, Helmuth; Duan, Hongwei
2018-03-01
Structural colors originating from interaction of light with intricately arranged micro-/nanostructures have stimulated considerable interest because of their inherent photostability and energy efficiency. In particular, noniridescent structural color with wide viewing angle has been receiving increasing attention recently. However, no method is yet available for rapid and large-scale fabrication of full-spectrum structural color patterns with wide viewing angles. Here, infiltration-driven nonequilibrium assembly of colloidal particles on liquid-permeable and particle-excluding substrates is demonstrated to direct the particles to form amorphous colloidal arrays (ACAs) within milliseconds. The infiltration-assisted (IFAST) colloidal assembly opens new possibilities for rapid manufacture of noniridescent structural colors of ACAs and straightforward structural color mixing. Full-spectrum noniridescent structural colors are successfully produced by mixing primary structural colors of red, blue, and yellow using a commercial office inkjet printer. Rapid fabrication of large-scale structural color patterns with sophisticated color combination/layout by IFAST printing is realized. The IFAST technology is versatile for developing structural color patterns with wide viewing angles, as colloidal particles, inks, and substrates are flexibly designable for diverse applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
7 CFR 29.1006 - Color intensity.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Color intensity. 29.1006 Section 29.1006 Agriculture... Type 92) § 29.1006 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a specific color or hue. (See Elements of Quality...
7 CFR 29.1006 - Color intensity.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Color intensity. 29.1006 Section 29.1006 Agriculture... Type 92) § 29.1006 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a specific color or hue. (See Elements of Quality...
7 CFR 29.1006 - Color intensity.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Color intensity. 29.1006 Section 29.1006 Agriculture... Type 92) § 29.1006 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a specific color or hue. (See Elements of Quality...
7 CFR 29.1006 - Color intensity.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Color intensity. 29.1006 Section 29.1006 Agriculture... Type 92) § 29.1006 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a specific color or hue. (See Elements of Quality...
7 CFR 29.1006 - Color intensity.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Color intensity. 29.1006 Section 29.1006 Agriculture... Type 92) § 29.1006 Color intensity. The varying degree of saturation or chroma. Color intensity as applied to tobacco describes the strength or weakness of a specific color or hue. (See Elements of Quality...
Henning, Frederico; Renz, Adina Josepha; Fukamachi, Shoji; Meyer, Axel
2010-05-01
Natural populations of the Midas cichlid species in several different crater lakes in Nicaragua exhibit a conspicuous color polymorphism. Most individuals are dark and the remaining have a gold coloration. The color morphs mate assortatively and sympatric population differentiation has been shown based on neutral molecular data. We investigated the color polymorphism using segregation analysis and a candidate gene approach. The segregation patterns observed in a mapping cross between a gold and a dark individual were consistent with a single dominant gene as a cause of the gold phenotype. This suggests that a simple genetic architecture underlies some of the speciation events in the Midas cichlids. We compared the expression levels of several candidate color genes Mc1r, Ednrb1, Slc45a2, and Tfap1a between the color morphs. Mc1r was found to be up regulated in the gold morph. Given its widespread association in color evolution and role on melanin synthesis, the Mc1r locus was further investigated using sequences derived from a genomic library. Comparative analysis revealed conserved synteny in relation to the majority of teleosts and highlighted several previously unidentified conserved non-coding elements (CNEs) in the upstream and downstream regions in the vicinity of Mc1r. The identification of the CNEs regions allowed the comparison of sequences from gold and dark specimens of natural populations. No polymorphisms were found between in the population sample and Mc1r showed no linkage to the gold phenotype in the mapping cross, demonstrating that it is not causally related to the color polymorphism in the Midas cichlid.
On the uniqueness of color patterns in raptor feathers
Ellis, D.H.
2009-01-01
For this study, I compared sequentially molted feathers for a few captive raptors from year to year and symmetrically matched feathers (left/right pairs) for many raptors to see if color patterns of sequential feather pairs were identical or if symmetrical pairs were mirror-image identical. Feather pairs were found to be identical only when without color pattern (e.g., the all-white rectrices of Bald Eagles [Haliaeetus leucocephalus]). Complex patterns were not closely matched, but some simple patterns were sometimes closely matched, although not identical. Previous claims that complex color patterns in feather pairs are fingerprint-identical (and therefore that molted feathers from wild raptors can be used to identify breeding adults from year to year with certainty) were found to be untrue: each feather is unique. Although it is unwise to be certain of bird of origin using normal feathers, abnormal feathers can often be so used. ?? 2009 The Raptor Research Foundation, Inc.
NASA Astrophysics Data System (ADS)
Odhner, Jefferson E.
2016-07-01
Holographic optical elements (HOEs) work on the principal of diffraction and can in some cases replace conventional optical elements that work on the principal of refraction. An HOE can be thinner, lighter, can have more functionality, and can be lower cost than conventional optics. An HOE can serve as a beam splitter, spectral filter, mirror, and lens all at the same time. For a single wavelength system, an HOE can be an ideal solution but they have not been widely accepted for multispectral systems because they suffer from severe chromatic aberration. A refractive optical system also suffers from chromatic aberration but it is generally not as severe. To color correct a conventional refractive optical system, a flint glass and a crown glass are placed together such that the color dispersion of the flint and the crown cancel each other out making an achromatic lens (achromat) and the wavelengths all focus to the same point. The color dispersion of refractive lenses and holographic lenses are opposite from each other. In a diffractive optical system, long wavelengths focus closer (remember for HOEs: RBM "red bends more") than nominal focus while shorter wavelengths focus further out. In a refractive optical system, it is just the opposite. For this reason, diffractives can be incorporated into a refractive system to do the color correction and often cut down on the number of optical elements used [1.]. Color correction can also be achieved with an all-diffractive system by combining a holographic optical element with its conjugate. In this way the color dispersion of the first holographic optical element can be cancelled by the color dispersion of the second holographic optic. It is this technique that will be exploited in this paper to design a telescope made entirely of holographic optical elements. This telescope could be more portable (for field operations) the same technique could be used to make optics light enough for incorporation into a UAV.
Park, Jiyoon; Woo, Ok Hee; Shin, Hye Seon; Cho, Kyu Ran; Seo, Bo Kyoung; Kang, Eun Young
2015-10-01
The purpose of this study is to evaluate the diagnostic performance of SWE in palpable breast mass and to compare with color overlay pattern in SWE with conventional US and quantitative SWE for assessing palpable breast mass. SWE and conventional breast US were performed in 133 women with 156 palpable breast lesions (81 benign, 75 malignant) between August 2013 to June 2014. Either pathology or periodic imaging surveillance more than 2 years was a reference standard. Existence of previous image was blinded to performing radiologists. US BI-RADS final assessment, qualitative and quantitative SWE measurements were evaluated. Diagnostic performances of grayscale US, SWE and US combined to SWE were calculated and compared. Correlation between pattern classification and quantitative SWE was evaluated. Both color overlay pattern and quantitative SWE improved the specificity of conventional US, from 81.48% to 96.30% (p=0.0005), without improvement in sensitivity. Color overlay pattern was significantly related to all quantitative SWE parameters and malignancy rate (p<0.0001.). The optimal cutoff of color overlay pattern was between 2 and 3. Emax with optimal cutoff at 45.1 kPa showed the highest Az value, sensitivity, specificity and accuracy among other quantitative SWE parameters (p<0.0001). Echogenic halo on grayscale US showed significant correlation with color overlay pattern and pathology (p<0.0001). In evaluation of palpable breast mass, conventional US combine to SWE improves specificity and reduces the number of biopsies that ultimately yield a benign result. Color overlay pattern classification is more quick and easy and may represent quantitative SWE measurements with similar diagnostic performances. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Subset selective search on the basis of color and preview.
Donk, Mieke
2017-01-01
In the preview paradigm observers are presented with one set of elements (the irrelevant set) followed by the addition of a second set among which the target is presented (the relevant set). Search efficiency in such a preview condition has been demonstrated to be higher than that in a full-baseline condition in which both sets are simultaneously presented, suggesting that a preview of the irrelevant set reduces its influence on the search process. However, numbers of irrelevant and relevant elements are typically not independently manipulated. Moreover, subset selective search also occurs when both sets are presented simultaneously but differ in color. The aim of the present study was to investigate how numbers of irrelevant and relevant elements contribute to preview search in the absence and presence of a color difference between subsets. In two experiments it was demonstrated that a preview reduced the influence of the number of irrelevant elements in the absence but not in the presence of a color difference between subsets. In the presence of a color difference, a preview lowered the effect of the number of relevant elements but only when the target was defined by a unique feature within the relevant set (Experiment 1); when the target was defined by a conjunction of features (Experiment 2), search efficiency as a function of the number of relevant elements was not modulated by a preview. Together the results are in line with the idea that subset selective search is based on different simultaneously operating mechanisms.
Organic staining on bone from exposure to wood and other plant materials.
Pollock, Corey R; Pokines, James T; Bethard, Jonathan D
2018-02-01
Determining the depositional environment and the postmortem alterations to a set of remains are necessary aspects of a forensic investigation to explain the circumstances surrounding the death of an individual. The present study examines organic staining as a method for reconstructing the depositional environment of skeletal remains and the taphonomic agents with which they came into contact. Organic staining results largely from tannins leaching from plant materials and therefore can be seen on bone deposited in wooden coffin environments or on terrestrial surfaces. The present study examines the hypothesis that the degree of staining observed on skeletal elements would increase as the length of exposure to the organic matter increased and that different plant materials and environments would leave different patterns or colorations of staining. The sample consisted of 165 pig (Sus scrofa) femora divided into four groups exposed to differing experimental conditions, including burial in direct contact with soil or burial in a simulated coffin environment, immersion in water with wood samples, and surface deposition with plant matter contact. The bones were removed once a month from their experimental environments and the level of staining was recorded qualitatively using the Munsell Soil Color Chart. In all of the experimental environments, staining was present after two months of exposure, and the color darkened across the bone surface with each episode of data collection. The results from the present study indicate that staining can manifest on bone within a relatively short time frame once skeletonization occurs and a variety of colorations or patterns of staining can manifest based on the plant material. The present research also demonstrates the potential of organic staining to aid in estimations of the postmortem interval as well as a depositional environmental reconstruction through plant species identification. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bondar, Vyacheslav D.; Grytsiv, Myroslav; Groodzinsky, Arkady; Vasyliv, Mykhailo
1995-11-01
Results on creation of thin-film single-crystal high-resolution screens with energy control of luminescence color are presented. In order to create phosphor films ion-plasma technology for deposition of yttrium and lanthanum oxides and oxysulfides activated by rare earth elements has been developed. The screen consists of phosphor film on phosphor substrate with different colors of luminescence (e.g. Y2O3-Eu film with red color on Y3Al5O12- Tb, Ce substrate with green color of luminescence). Electron irradiation causes luminescence with color that depends on energy of the electron beam. The physical reason for color change is that electron beam energy defines electron penetration depth. If the energy is weak, only the film is excited. More powerful beam penetrates into the substrate and thus changes the color of luminescence.
Hg diffusion in books of XVIII and XIX centuries by synchrotron microprobe
NASA Astrophysics Data System (ADS)
Pessanha, S.; Carvalho, M. L.; Manso, M.; Guilherme, A.; Marques, A. F.; Perez, C. A.
2009-08-01
The pigment vermilion (HgS) was used to color the fore edge, tail and head of books. Dissemination and quantification of Hg present in the ink used to color books from XVIII and XIX centuries are reported. Mercury is a very toxic element for the human body, therefore it is extremely important to know whether Hg tends to disseminate throughout the paper or stays confined to the borders of the books with less danger for readers. Synchrotron X-ray microprobe was used to evaluate Hg dissemination from the border to the centre of the paper sheet. The diffusion pattern of Hg was compared with the results obtained by a portable X-ray fluorescence spectrometer and mean quantitative calculations were obtained by a stationary X-ray fluorescence system with triaxial geometry. The results showed high concentrations of Hg in the external regions, but no diffusion was observed for the inner parts of the paper.
ERIC Educational Resources Information Center
Durrett, John; Trezona, Judi
1982-01-01
Discusses physiological and psychological aspects of color. Includes guidelines for using color effectively, especially in the development of computer programs. Indicates that if applied with its limitations and requirements in mind, color can be a powerful manipulator of attention, memory, and understanding. (Author/JN)
Decoding and reconstructing color from responses in human visual cortex.
Brouwer, Gijs Joost; Heeger, David J
2009-11-04
How is color represented by spatially distributed patterns of activity in visual cortex? Functional magnetic resonance imaging responses to several stimulus colors were analyzed with multivariate techniques: conventional pattern classification, a forward model of idealized color tuning, and principal component analysis (PCA). Stimulus color was accurately decoded from activity in V1, V2, V3, V4, and VO1 but not LO1, LO2, V3A/B, or MT+. The conventional classifier and forward model yielded similar accuracies, but the forward model (unlike the classifier) also reliably reconstructed novel stimulus colors not used to train (specify parameters of) the model. The mean responses, averaged across voxels in each visual area, were not reliably distinguishable for the different stimulus colors. Hence, each stimulus color was associated with a unique spatially distributed pattern of activity, presumably reflecting the color selectivity of cortical neurons. Using PCA, a color space was derived from the covariation, across voxels, in the responses to different colors. In V4 and VO1, the first two principal component scores (main source of variation) of the responses revealed a progression through perceptual color space, with perceptually similar colors evoking the most similar responses. This was not the case for any of the other visual cortical areas, including V1, although decoding was most accurate in V1. This dissociation implies a transformation from the color representation in V1 to reflect perceptual color space in V4 and VO1.
NASA Astrophysics Data System (ADS)
Moia, Franco
2002-04-01
With linear photo-polymerization (LPP) ROLIC has invented a photo-patternable technology enabling to align not only conventional liquid crystals but also liquid crystals polymers (LCP). ROLIC's optical security device technology derives from its LPP/LCP technology. LPP/LCP security devices are created by structured photo-alignment of an LPP layer through phot-masks, thus generating a high resolution, photo-patterned aligning layer which carries the aligning information of the image to be created. The subsequent LCP layer transforms the aligning information into an optical phase image with low and/or very high information content, such as invisible photographic pictures. The building block capability of the LPP/LCP technology allows the manufacturing of cholesteric and non-cholesteric LPP/LCP devices which cover 1st and/or 2nd level applications. Apart from black/white security devices colored information zones can be integrated. Moreover, we have developed an LPP/LCP security device which covers all three- 1st, 2nd and 3rd- inspection levels in one and the same authentication device: besides a color shift by tilting the device (1st level) and the detection of normally hidden information by use of a simple sheet polarizer (2nd level) the new device contains encrypted hidden information which can be visualized only by superimposing an LPP/LCP inspection tool (key) for decryption (3rd level). This optical key is also based on the LPP/LCP technology and is itself a 3rd level security device.
Advanced Three-Dimensional Display System
NASA Technical Reports Server (NTRS)
Geng, Jason
2005-01-01
A desktop-scale, computer-controlled display system, initially developed for NASA and now known as the VolumeViewer(TradeMark), generates three-dimensional (3D) images of 3D objects in a display volume. This system differs fundamentally from stereoscopic and holographic display systems: The images generated by this system are truly 3D in that they can be viewed from almost any angle, without the aid of special eyeglasses. It is possible to walk around the system while gazing at its display volume to see a displayed object from a changing perspective, and multiple observers standing at different positions around the display can view the object simultaneously from their individual perspectives, as though the displayed object were a real 3D object. At the time of writing this article, only partial information on the design and principle of operation of the system was available. It is known that the system includes a high-speed, silicon-backplane, ferroelectric-liquid-crystal spatial light modulator (SLM), multiple high-power lasers for projecting images in multiple colors, a rotating helix that serves as a moving screen for displaying voxels [volume cells or volume elements, in analogy to pixels (picture cells or picture elements) in two-dimensional (2D) images], and a host computer. The rotating helix and its motor drive are the only moving parts. Under control by the host computer, a stream of 2D image patterns is generated on the SLM and projected through optics onto the surface of the rotating helix. The system utilizes a parallel pixel/voxel-addressing scheme: All the pixels of the 2D pattern on the SLM are addressed simultaneously by laser beams. This parallel addressing scheme overcomes the difficulty of achieving both high resolution and a high frame rate in a raster scanning or serial addressing scheme. It has been reported that the structure of the system is simple and easy to build, that the optical design and alignment are not difficult, and that the system can be built by use of commercial off-the-shelf products. A prototype of the system displays an image of 1,024 by 768 by 170 (=133,693,440) voxels. In future designs, the resolution could be increased. The maximum number of voxels that can be generated depends upon the spatial resolution of SLM and the speed of rotation of the helix. For example, one could use an available SLM that has 1,024 by 1,024 pixels. Incidentally, this SLM is capable of operation at a switching speed of 300,000 frames per second. Implementation of full-color displays in future versions of the system would be straightforward: One could use three SLMs for red, green, and blue, respectively, and the colors of the voxels could be automatically controlled. An optically simpler alternative would be to use a single red/green/ blue light projector and synchronize the projection of each color with the generation of patterns for that color on a single SLM.
Color and luminance in the perception of 1- and 2-dimensional motion.
Farell, B
1999-08-01
An isoluminant color grating usually appears to move more slowly than a luminance grating that has the same physical speed. Yet a grating defined by both color and luminance is seen as perceptually unified and moving at a single intermediate speed. In experiments measuring perceived speed and direction, it was found that color- and luminance-based motion signals are combined differently in the perception of 1-D motion than they are in the perception of 2-D motion. Adding color to a moving 1-D luminance pattern, a grating, slows its perceived speed. Adding color to a moving 2-D luminance pattern, a plaid made of orthogonal gratings, leaves its perceived speed unchanged. Analogous results occur for the perception of the direction of 2-D motion. The visual system appears to discount color when analyzing the motion of luminance-bearing 2-D patterns. This strategy has adaptive advantages, making the sensing of object motion more veridical without sacrificing the ability to see motion at isoluminance.
Single layer multi-color luminescent display and method of making
NASA Technical Reports Server (NTRS)
Robertson, James B. (Inventor)
1992-01-01
The invention is a multi-color luminescent display comprising an insulator substrate and a single layer of host material, which may be a phosphor deposited thereon that hosts one or more different impurities, therein forming a pattern of selected and distinctly colored phosphors such as blue, green, and red phosphors in a single layer of host material. Transparent electrical conductor means may be provided for subjecting selected portions of the pattern of colored phosphors to an electric field, thereby forming a multi-color, single layer electroluminescent display. A method of forming a multi-color luminescent display includes the steps of depositing on an insulator substrate a single layer of host material, which itself may be a phosphor, with the properties to host varying quantities of different impurities and introducing one or more of said different impurities into selected areas of the said single layer of host material by thermal diffusion or ion implantation to form a pattern of phosphors of different colors in the said single layer of host material.
Color constancy: phenomenal or projective?
Reeves, Adam J; Amano, Kinjiro; Foster, David H
2008-02-01
Naive observers viewed a sequence of colored Mondrian patterns, simulated on a color monitor. Each pattern was presented twice in succession, first under one daylight illuminant with a correlated color temperature of either 16,000 or 4000 K and then under the other, to test for color constancy. The observers compared the central square of the pattern across illuminants, either rating it for sameness of material appearance or sameness of hue and saturation or judging an objective property-that is, whether its change of color originated from a change in material or only from a change in illumination. Average color constancy indices were high for material appearance ratings and binary judgments of origin and low for hue-saturation ratings. Individuals' performance varied, but judgments of material and of hue and saturation remained demarcated. Observers seem able to separate phenomenal percepts from their ontological projections of mental appearance onto physical phenomena; thus, even when a chromatic change alters perceived hue and saturation, observers can reliably infer the cause, the constancy of the underlying surface spectral reflectance.
Brito, Vinícius L. G.; Weynans, Kevin; Sazima, Marlies; Lunau, Klaus
2015-01-01
Floral color changes and retention of old flowers are frequently combined phenomena restricted to the floral guide or single flowers in few-flowered inflorescences. They are thought to increase the attractiveness over long distances and to direct nearby pollinators toward the rewarding flowers. In Tibouchina pulchra, a massively flowering tree, the whole flower changes its color during anthesis. On the first day, the flowers are white and on the next 3 days, they change to pink. This creates a new large-scale color pattern in which the white pre-changed flowers contrast against the pink post-changed ones over the entire tree. We describe the spectral characteristics of floral colors of T. pulchra and test bumblebees’ response to this color pattern when viewed at different angles (simulating long and short distances). The results indicated the role of different color components in bumblebee attraction and the possible scenario in which this flower color pattern has evolved. We tested bumblebees’ preference for simulated trees with 75% pink and 25% white flowers resembling the color patterns of T. pulchra, and trees with green leaves and pink flowers (control) in long-distance approach. We also compared an artificial setting with three pink flowers and one white flower (T. pulchra model) against four pink flowers with white floral guides (control) in short-distance approach. Bumblebees spontaneously preferred the simulated T. pulchra patterns in both approaches despite similar reward. Moreover, in short distances, pollinator visits to peripheral, non-rewarding flowers occurred only half as frequently in the simulated T. pulchra when compared to the control. Thefore, this exceptional floral color change and the retention of old flowers in T. pulchra favors the attraction of pollinators over long distances in a deception process while it honestly directs them toward the rewarding flowers at short distances possibly exploring their innate color preferences. PMID:26052335
Self-aligned quadruple patterning-compliant placement
NASA Astrophysics Data System (ADS)
Nakajima, Fumiharu; Kodama, Chikaaki; Nakayama, Koichi; Nojima, Shigeki; Kotani, Toshiya
2015-03-01
Self-Aligned Quadruple Patterning (SAQP) will be one of the leading candidates for sub-14nm node and beyond. However, compared with triple patterning, making a feasible standard cell placement has following problems. (1) When coloring conflicts occur between two adjoining cells, they may not be solved easily since SAQP layout has stronger coloring constraints. (2) SAQP layout cannot use stitch to solve coloring conflict. In this paper, we present a framework of SAQP-aware standard cell placement considering the above problems. When standard cell is placed, the proposed method tries to solve coloring conflicts between two cells by exchanging two of three colors. If some conflicts remain between adjoining cells, dummy space will be inserted to keep coloring constraints of SAQP. We show some examples to confirm effectiveness of the proposed framework. To our best knowledge, this is the first framework of SAQP-aware standard cell placement.
Color aspects of variable data proofing
NASA Astrophysics Data System (ADS)
Beretta, Giordano B.
2005-01-01
The Internet in combination with digital presses has allowed the geographical distribution of manufacturing printed materials. An increasing number of printed pieces is customized for the recipient; when each printed piece is different, conventional proofing fails, because it is impossible to proof the entire print job. One frequent problem in automatically generated pieces is the readability of one page element on top of another element; the color combination can be unreadable or clash. I propose simple algorithms to automatically detect and correct color discriminability problems in variable data printing.
Color aspects of variable data proofing
NASA Astrophysics Data System (ADS)
Beretta, Giordano B.
2004-12-01
The Internet in combination with digital presses has allowed the geographical distribution of manufacturing printed materials. An increasing number of printed pieces is customized for the recipient; when each printed piece is different, conventional proofing fails, because it is impossible to proof the entire print job. One frequent problem in automatically generated pieces is the readability of one page element on top of another element; the color combination can be unreadable or clash. I propose simple algorithms to automatically detect and correct color discriminability problems in variable data printing.
Resolution for color photography
NASA Astrophysics Data System (ADS)
Hubel, Paul M.; Bautsch, Markus
2006-02-01
Although it is well known that luminance resolution is most important, the ability to accurately render colored details, color textures, and colored fabrics cannot be overlooked. This includes the ability to accurately render single-pixel color details as well as avoiding color aliasing. All consumer digital cameras on the market today record in color and the scenes people are photographing are usually color. Yet almost all resolution measurements made on color cameras are done using a black and white target. In this paper we present several methods for measuring and quantifying color resolution. The first method, detailed in a previous publication, uses a slanted-edge target of two colored surfaces in place of the standard black and white edge pattern. The second method employs the standard black and white targets recommended in the ISO standard, but records these onto the camera through colored filters thus giving modulation between black and one particular color component; red, green, and blue color separation filters are used in this study. The third method, conducted at Stiftung Warentest, an independent consumer organization of Germany, uses a whitelight interferometer to generate fringe pattern targets of varying color and spatial frequency.
Brzozowski, Frances; Roscoe, Jennifer; Parsons, Kevin; Albertson, Craig
2012-06-01
East African cichlids are renowned for their propensity to radiate, and variation in color patterns accounts for much of endemic cichlid diversity. Sexual dimorphism in color among cichlid species likely represents the outcome of different selective regimes acting on each sex, and is a classic example of sexual conflict. It is generally assumed that this conflict has been mitigated through the evolution of sex-linked color polymorphisms. Here, we propose that the evolution of sex-specific differences in levels of color trait integration may represent an additional mechanism through which sexual conflict has been resolved in this group. Specifically, we predict: (1) that general patterns of integration are influenced by early developmental events and thus conserved across sexes and (2) that male color is less integrated than females, and thus more evolvable in terms of producing an elaborate palette (i.e., in response to sexual selection), whereas female color is more integrated, facilitating wholesale shifts in color for background matching (i.e., in response to natural selection for crypsis). We tested these hypotheses using an F(2) design to compare the segregation of male and female color patterns. Both exploratory methods and hypothesis-driven analyses of integration demonstrate that the covariance structure of color traits in males and females is distinct, and that males are significantly less integrated than females. We suggest that the ability of species to promote different levels, and to a lesser extent patterns, of phenotypic integration between males and females may have contributed to the evolutionary success of this group. © 2012 WILEY PERIODICALS, INC.
Color Breakup In Sequentially-Scanned LC Displays
NASA Technical Reports Server (NTRS)
Arend, L.; Lubin, J.; Gille, J.; Larimer, J.; Statler, Irving C. (Technical Monitor)
1994-01-01
In sequentially-scanned liquid-crystal displays the chromatic components of color pixels are distributed in time. For such displays eye, head, display, and image-object movements can cause the individual color elements to be visible. We analyze conditions (scan designs, types of eye movement) likely to produce color breakup.
Cross-Cultural Color-Odor Associations
Levitan, Carmel A.; Ren, Jiana; Woods, Andy T.; Boesveldt, Sanne; Chan, Jason S.; McKenzie, Kirsten J.; Dodson, Michael; Levin, Jai A.; Leong, Christine X. R.; van den Bosch, Jasper J. F.
2014-01-01
Colors and odors are associated; for instance, people typically match the smell of strawberries to the color pink or red. These associations are forms of crossmodal correspondences. Recently, there has been discussion about the extent to which these correspondences arise for structural reasons (i.e., an inherent mapping between color and odor), statistical reasons (i.e., covariance in experience), and/or semantically-mediated reasons (i.e., stemming from language). The present study probed this question by testing color-odor correspondences in 6 different cultural groups (Dutch, Netherlands-residing-Chinese, German, Malay, Malaysian-Chinese, and US residents), using the same set of 14 odors and asking participants to make congruent and incongruent color choices for each odor. We found consistent patterns in color choices for each odor within each culture, showing that participants were making non-random color-odor matches. We used representational dissimilarity analysis to probe for variations in the patterns of color-odor associations across cultures; we found that US and German participants had the most similar patterns of associations, followed by German and Malay participants. The largest group differences were between Malay and Netherlands-resident Chinese participants and between Dutch and Malaysian-Chinese participants. We conclude that culture plays a role in color-odor crossmodal associations, which likely arise, at least in part, through experience. PMID:25007343
Causes of Different Vivid Colors in Chalcedonies: Kutahya-Turkey
NASA Astrophysics Data System (ADS)
Ozcan Kilic, Cumhur; Kagan Kadıoglu, Yusuf
2016-04-01
Chalcedony is a silicate mineral which is a mixture of fibrous quartz (trigonal) and granular moganite (monoclinic) minerals. They are both SiO2 in composition but differs in crystal system. Chalcedony is widely used as semi-precious gemstone in many countries. It has many different kinds due to their various colors and structures. The colour changes in mineral depends on different causes. Most important causes are transition metal impurities in minerals chemical composition and charge transfer between ions. Different chalcedony types have different colors due to their elemental composition. Chalcedony can be show almost every colour strating from white, black, gray, red, blue, green to brown or a combinations of more than one color in case of agates and jasper formations. Although they have same major oxide compositions,chrysopras (green chalcedony) have Ni which gives the green color and carnelian (orange chalcedony) have Fe+3 which gives the orange color. Kutahya, Eskisehir, Ankara, Manisa, Balıkesir, Canakkale and Yozgat represent the most cities which chalcedony can be mostly observed in Turkey. In Kutahya, chalcedony occurs in cavity or vein fillings in pyroclastic rocks such as tuff and formed by precipitation of silica bearing fluids in low temperatures. They can be also formed within the hydrothermal alteration zone of ultramafic rocks. Although chalcedonies in Kutahya form under almost same condition, they have various colors within the same unit. To specify the cause of the different colors, chemical analysis and Confocal Raman studies performed on Kutahya chalcedonies. Firstly, samples are crushed to 2 mm. size. After that, different colors of chalcedonies are separated by hand picking under binocular microscope and grouped into different color sets such as white, blue, dark yellow, light orange, dark orange and claret red. Each color set is measured by PED-XRF method to obtain chemical compositions. Also Raman studies performed to identify the effect of Fe element and OH bonds in each color set groups. Due to chemical results, 'Fe2O3-TiO2'assemblage gives claret red-dark orange, only "Fe2O3"gives claret red, 'Fe2O3-Ni' assemblage gives orange to claret red, 'Cr-Ni-Co' assemblage gives light orange, 'As' gives yellow, 'Fe2O3-Cu' assemblage gives claret red to orange, 'As-Zr' and 'Cr2O3-MgO' assemblage gives blue color to chalcedonies in Kutahya. Also 'Fe' Raman shift is figured in Raman studies in Fe containing orange-claret red colored samples. The vivid colors in all the sets derived from the OH Raman shift bonds of the chalcedony. Chemical results show that the colour differences in chalcedony is not related with only one element.The mobility and charge of Fe element with some other (Co, Mn, Cu, Cr, Ni etc.) elements also effects the variability of the colour.
Zhang, Linlin
2017-01-01
The optix gene has been implicated in butterfly wing pattern adaptation by genetic association, mapping, and expression studies. The actual developmental function of this gene has remained unclear, however. Here we used CRISPR/Cas9 genome editing to show that optix plays a fundamental role in nymphalid butterfly wing pattern development, where it is required for determination of all chromatic coloration. optix knockouts in four species show complete replacement of color pigments with melanins, with corresponding changes in pigment-related gene expression, resulting in black and gray butterflies. We also show that optix simultaneously acts as a switch gene for blue structural iridescence in some butterflies, demonstrating simple regulatory coordination of structural and pigmentary coloration. Remarkably, these optix knockouts phenocopy the recurring “black and blue” wing pattern archetype that has arisen on many independent occasions in butterflies. Here we demonstrate a simple genetic basis for structural coloration, and show that optix plays a deeply conserved role in butterfly wing pattern development. PMID:28923944
Zhang, Linlin; Mazo-Vargas, Anyi; Reed, Robert D
2017-10-03
The optix gene has been implicated in butterfly wing pattern adaptation by genetic association, mapping, and expression studies. The actual developmental function of this gene has remained unclear, however. Here we used CRISPR/Cas9 genome editing to show that optix plays a fundamental role in nymphalid butterfly wing pattern development, where it is required for determination of all chromatic coloration. optix knockouts in four species show complete replacement of color pigments with melanins, with corresponding changes in pigment-related gene expression, resulting in black and gray butterflies. We also show that optix simultaneously acts as a switch gene for blue structural iridescence in some butterflies, demonstrating simple regulatory coordination of structural and pigmentary coloration. Remarkably, these optix knockouts phenocopy the recurring "black and blue" wing pattern archetype that has arisen on many independent occasions in butterflies. Here we demonstrate a simple genetic basis for structural coloration, and show that optix plays a deeply conserved role in butterfly wing pattern development.
Phytogeographic patterns and cryptic diversity in an aposematic toad from NW Argentina.
Clemente-Carvalho, Rute B; Vaira, Marcos; King, Laura E; Koscinski, Daria; Bonansea, Maria I; Lougheed, Stephen C
2017-11-01
The Yungas Redbelly Toad, Melanophryniscus rubriventris, is patchily distributed in Argentina, confined to the upland portion (1000-2000m above sea level) of the montane forests of northern and central regions of Salta, and in central-eastern and south-eastern Jujuy. This species is known for its striking aposematic color variation across its geographic distribution, and was once treated as a complex of three subspecies based on distinctive color patterns. Here we assess the geographical genetic variation within M. rubriventris and quantify divergence in color and pattern among individuals sampled from Northwestern Argentina. We compare multi-gene phylogeography of M. rubriventris to patterns of dorsal and ventral coloration to test whether evolutionary affinities predict variation in warning color. Our results reveal two well-supported species lineages: one confined to the extreme northern portion of our sampling area, and the other extending over most of the Argentine portion of the species' range, within which there are two populations. However, these well-supported evolutionary relationships do not mirror the marked variation in warning coloration. This discordance between DNA genealogy and warning color variation may reflect selection brought about by differences in local predation pressures, potentially coupled with effects of sexual selection and thermoregulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Visual Color Comparisons in Forensic Science.
Thornton, J I
1997-06-01
Color is used extensively in forensic science for the characterization and comparison of physical evidence, and should thus be well understood. Fundamental elements of color perception and color comparison systems are first reviewed. The second portion of this article discusses instances in which defects in color perception may occur, and the recognition of opportunities by means of which color perception and color discrimination may be expressed and enhanced. Application and limitations of color comparisons in forensic science, including soil, paint, and fibers comparisons and color tests, are reviewed. Copyright © 1997 Central Police University.
Tian, Ji; Chen, Meng-chen; Zhang, Jie; Li, Ke-ting; Song, Ting-ting; Zhang, Xi; Yao, Yun-cong
2017-01-01
Anthocyanins are secondary metabolites in land plants that contribute to the colors of leaves and flowers, and are nutritionally valuable components of the human diet. The DFR gene plays an important role in the anthocyanin biosynthetic pathway. In this study, we investigated the regulation of DFR expression and in different Malus crabapple cultivars that show distinct patterns of leaf coloration, and how it influences leaf anthocyanin accumulation and coloration. Specifically, we studied the ever-red leaved cultivar ‘Royalty’, the ever-green leaved cultivar ‘Flame’ and the spring-red leaved cultivar ‘Radiant’. RT-PCR analysis showed that the expression of McDFR1 correlated with the expression of a MYB transcription factor, McMYB10, and with anthocyanin accumulation. We isolated five McDFR1 promoter fragments from the three cultivars and identified four different fragments (F1–4) that were present either in several cultivars, or only in one. Yeast one-hybrid and electrophoretic mobility shift assay analyses showed that McMYB10 could bind to all the McDFR1 promoters, except McDFR1-Ra2. The F1, F2 and F3 fragments did not affect McMYB10 binding to the McDFR1 promoters; however, we found evidence that the F4 fragment suppressed binding, and that the MYBGAHV amino-acid sequence maybe an important cis-element for McMYB10 protein binding. This information has potential value for strategies to modify plant color through genetic transformation. PMID:29263792
Tian, Ji; Chen, Meng-Chen; Zhang, Jie; Li, Ke-Ting; Song, Ting-Ting; Zhang, Xi; Yao, Yun-Cong
2017-01-01
Anthocyanins are secondary metabolites in land plants that contribute to the colors of leaves and flowers, and are nutritionally valuable components of the human diet. The DFR gene plays an important role in the anthocyanin biosynthetic pathway. In this study, we investigated the regulation of DFR expression and in different Malus crabapple cultivars that show distinct patterns of leaf coloration, and how it influences leaf anthocyanin accumulation and coloration. Specifically, we studied the ever-red leaved cultivar 'Royalty', the ever-green leaved cultivar 'Flame' and the spring-red leaved cultivar 'Radiant'. RT-PCR analysis showed that the expression of McDFR1 correlated with the expression of a MYB transcription factor, McMYB10 , and with anthocyanin accumulation. We isolated five McDFR1 promoter fragments from the three cultivars and identified four different fragments (F1-4) that were present either in several cultivars, or only in one. Yeast one-hybrid and electrophoretic mobility shift assay analyses showed that McMYB10 could bind to all the McDFR1 promoters, except McDFR1-Ra2 . The F1, F2 and F3 fragments did not affect McMYB10 binding to the McDFR1 promoters; however, we found evidence that the F4 fragment suppressed binding, and that the MYBGAHV amino-acid sequence maybe an important cis -element for McMYB10 protein binding. This information has potential value for strategies to modify plant color through genetic transformation.
Conjugated polymer dots for ultra-stable full-color fluorescence patterning.
Chang, Kaiwen; Liu, Zhihe; Chen, Haobin; Sheng, Lan; Zhang, Sean Xiao-An; Chiu, Daniel T; Yin, Shengyan; Wu, Changfeng; Qin, Weiping
2014-11-12
Stable full-color fluorescence patterning are achieved by multicolor polymer-dot inks. The fluorescent patterns show extraordinary stability upon various treatments, offering a superior combination of bright fluorescence, excellent photostability, chemical resistance, and eco-friendship. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Perception Of "Features" And "Objects": Applications To The Design Of Instrument Panel Displays
NASA Astrophysics Data System (ADS)
Poynter, Douglas; Czarnomski, Alan J.
1988-10-01
An experiment was conducted to determine whether socalled feature displays allow for faster and more accurate processing compared to object displays. Previous psychological studies indicate that features can be processed in parallel across the visual field, whereas objects must be processed one at a time with the aid of attentional focus. Numbers and letters are examples of objects; line orientation and color are examples of features. In this experiment, subjects were asked to search displays composed of up to 16 elements for the presence of specific elements. The ability to detect, localize, and identify targets was influenced by display format. Digital errors increased with the number of elements, the number of targets, and the distance of the target from the fixation point. Line orientation errors increased only with the number of targets. Several other display types were evaluated, and each produced a pattern of errors similar to either digital or line orientation format. Results of the study were discussed in terms of Feature Integration Theory, which distinguishes between elements that are processed with parallel versus serial mechanisms.
Color preference in red-green dichromats.
Álvaro, Leticia; Moreira, Humberto; Lillo, Julio; Franklin, Anna
2015-07-28
Around 2% of males have red-green dichromacy, which is a genetic disorder of color vision where one type of cone photoreceptor is missing. Here we investigate the color preferences of dichromats. We aim (i) to establish whether the systematic and reliable color preferences of normal trichromatic observers (e.g., preference maximum at blue, minimum at yellow-green) are affected by dichromacy and (ii) to test theories of color preference with a dichromatic sample. Dichromat and normal trichromat observers named and rated how much they liked saturated, light, dark, and focal colors twice. Trichromats had the expected pattern of preference. Dichromats had a reliable pattern of preference that was different to trichromats, with a preference maximum rather than minimum at yellow and a much weaker preference for blue than trichromats. Color preference was more affected in observers who lacked the cone type sensitive to long wavelengths (protanopes) than in those who lacked the cone type sensitive to medium wavelengths (deuteranopes). Trichromats' preferences were summarized effectively in terms of cone-contrast between color and background, and yellow-blue cone-contrast could account for dichromats' pattern of preference, with some evidence for residual red-green activity in deuteranopes' preference. Dichromats' color naming also could account for their color preferences, with colors named more accurately and quickly being more preferred. This relationship between color naming and preference also was present for trichromat males but not females. Overall, the findings provide novel evidence on how dichromats experience color, advance the understanding of why humans like some colors more than others, and have implications for general theories of aesthetics.
Color preference in red–green dichromats
Álvaro, Leticia; Moreira, Humberto; Lillo, Julio; Franklin, Anna
2015-01-01
Around 2% of males have red–green dichromacy, which is a genetic disorder of color vision where one type of cone photoreceptor is missing. Here we investigate the color preferences of dichromats. We aim (i) to establish whether the systematic and reliable color preferences of normal trichromatic observers (e.g., preference maximum at blue, minimum at yellow-green) are affected by dichromacy and (ii) to test theories of color preference with a dichromatic sample. Dichromat and normal trichromat observers named and rated how much they liked saturated, light, dark, and focal colors twice. Trichromats had the expected pattern of preference. Dichromats had a reliable pattern of preference that was different to trichromats, with a preference maximum rather than minimum at yellow and a much weaker preference for blue than trichromats. Color preference was more affected in observers who lacked the cone type sensitive to long wavelengths (protanopes) than in those who lacked the cone type sensitive to medium wavelengths (deuteranopes). Trichromats’ preferences were summarized effectively in terms of cone-contrast between color and background, and yellow-blue cone-contrast could account for dichromats’ pattern of preference, with some evidence for residual red–green activity in deuteranopes’ preference. Dichromats’ color naming also could account for their color preferences, with colors named more accurately and quickly being more preferred. This relationship between color naming and preference also was present for trichromat males but not females. Overall, the findings provide novel evidence on how dichromats experience color, advance the understanding of why humans like some colors more than others, and have implications for general theories of aesthetics. PMID:26170287
Domingue, Michael J.; Lakhtakia, Akhlesh; Pulsifer, Drew P.; Hall, Loyal P.; Badding, John V.; Bischof, Jesse L.; Martín-Palma, Raúl J.; Imrei, Zoltán; Janik, Gergely; Mastro, Victor C.; Hazen, Missy; Baker, Thomas C.
2014-01-01
Recent advances in nanoscale bioreplication processes present the potential for novel basic and applied research into organismal behavioral processes. Insect behavior potentially could be affected by physical features existing at the nanoscale level. We used nano-bioreplicated visual decoys of female emerald ash borer beetles (Agrilus planipennis) to evoke stereotypical mate-finding behavior, whereby males fly to and alight on the decoys as they would on real females. Using an industrially scalable nanomolding process, we replicated and evaluated the importance of two features of the outer cuticular surface of the beetle’s wings: structural interference coloration of the elytra by multilayering of the epicuticle and fine-scale surface features consisting of spicules and spines that scatter light into intense strands. Two types of decoys that lacked one or both of these elements were fabricated, one type nano-bioreplicated and the other 3D-printed with no bioreplicated surface nanostructural elements. Both types were colored with green paint. The light-scattering properties of the nano-bioreplicated surfaces were verified by shining a white laser on the decoys in a dark room and projecting the scattering pattern onto a white surface. Regardless of the coloration mechanism, the nano-bioreplicated decoys evoked the complete attraction and landing sequence of Agrilus males. In contrast, males made brief flying approaches toward the decoys without nanostructured features, but diverted away before alighting on them. The nano-bioreplicated decoys were also electroconductive, a feature used on traps such that beetles alighting onto them were stunned, killed, and collected. PMID:25225359
Median Hetero-Associative Memories Applied to the Categorization of True-Color Patterns
NASA Astrophysics Data System (ADS)
Vázquez, Roberto A.; Sossa, Humberto
Median associative memories (MED-AMs) are a special type of associative memory based on the median operator. This type of associative model has been applied to the restoration of gray scale images and provides better performance than other models, such as morphological associative memories, when the patterns are altered with mixed noise. Despite of his power, MED-AMs have not been applied in problems involving true-color patterns. In this paper we describe how a median hetero-associative memory (MED-HAM) could be applied in problems that involve true-color patterns. A complete study of the behavior of this associative model in the restoration of true-color images is performed using a benchmark of 14400 images altered by different type of noises. Furthermore, we describe how this model can be applied to an image categorization problem.
Ueda, Sayoko; Kumagai, Gaku; Otaki, Yusuke; Yamaguchi, Shinya; Kohshima, Shiro
2014-01-01
As facial color pattern around the eyes has been suggested to serve various adaptive functions related to the gaze signal, we compared the patterns among 25 canid species, focusing on the gaze signal, to estimate the function of facial color pattern in these species. The facial color patterns of the studied species could be categorized into the following three types based on contrast indices relating to the gaze signal: A-type (both pupil position in the eye outline and eye position in the face are clear), B-type (only the eye position is clear), and C-type (both the pupil and eye position are unclear). A-type faces with light-colored irises were observed in most studied species of the wolf-like clade and some of the red fox-like clade. A-type faces tended to be observed in species living in family groups all year-round, whereas B-type faces tended to be seen in solo/pair-living species. The duration of gazing behavior during which the facial gaze-signal is displayed to the other individual was longest in gray wolves with typical A-type faces, of intermediate length in fennec foxes with typical B-type faces, and shortest in bush dogs with typical C-type faces. These results suggest that the facial color pattern of canid species is related to their gaze communication and that canids with A-type faces, especially gray wolves, use the gaze signal in conspecific communication.
7 CFR 29.3509 - Color intensity.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Color intensity. 29.3509 Section 29.3509 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... colors except green. (See Elements of Quality, § 29.3586.) ...
Multi-color electron microscopy by element-guided identification of cells, organelles and molecules.
Scotuzzi, Marijke; Kuipers, Jeroen; Wensveen, Dasha I; de Boer, Pascal; Hagen, Kees C W; Hoogenboom, Jacob P; Giepmans, Ben N G
2017-04-07
Cellular complexity is unraveled at nanometer resolution using electron microscopy (EM), but interpretation of macromolecular functionality is hampered by the difficulty in interpreting grey-scale images and the unidentified molecular content. We perform large-scale EM on mammalian tissue complemented with energy-dispersive X-ray analysis (EDX) to allow EM-data analysis based on elemental composition. Endogenous elements, labels (gold and cadmium-based nanoparticles) as well as stains are analyzed at ultrastructural resolution. This provides a wide palette of colors to paint the traditional grey-scale EM images for composition-based interpretation. Our proof-of-principle application of EM-EDX reveals that endocrine and exocrine vesicles exist in single cells in Islets of Langerhans. This highlights how elemental mapping reveals unbiased biomedical relevant information. Broad application of EM-EDX will further allow experimental analysis on large-scale tissue using endogenous elements, multiple stains, and multiple markers and thus brings nanometer-scale 'color-EM' as a promising tool to unravel molecular (de)regulation in biomedicine.
Multi-color electron microscopy by element-guided identification of cells, organelles and molecules
Scotuzzi, Marijke; Kuipers, Jeroen; Wensveen, Dasha I.; de Boer, Pascal; Hagen, Kees (C.) W.; Hoogenboom, Jacob P.; Giepmans, Ben N. G.
2017-01-01
Cellular complexity is unraveled at nanometer resolution using electron microscopy (EM), but interpretation of macromolecular functionality is hampered by the difficulty in interpreting grey-scale images and the unidentified molecular content. We perform large-scale EM on mammalian tissue complemented with energy-dispersive X-ray analysis (EDX) to allow EM-data analysis based on elemental composition. Endogenous elements, labels (gold and cadmium-based nanoparticles) as well as stains are analyzed at ultrastructural resolution. This provides a wide palette of colors to paint the traditional grey-scale EM images for composition-based interpretation. Our proof-of-principle application of EM-EDX reveals that endocrine and exocrine vesicles exist in single cells in Islets of Langerhans. This highlights how elemental mapping reveals unbiased biomedical relevant information. Broad application of EM-EDX will further allow experimental analysis on large-scale tissue using endogenous elements, multiple stains, and multiple markers and thus brings nanometer-scale ‘color-EM’ as a promising tool to unravel molecular (de)regulation in biomedicine. PMID:28387351
Customized color patterning of photovoltaic cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruz-Campa, Jose Luis; Nielson, Gregory N.; Okandan, Murat
Photovoltaic cells and photovoltaic modules, as well as methods of making and using such photovoltaic cells and photovoltaic modules, are disclosed. More particularly, embodiments of the photovoltaic cells selectively reflect visible light to provide the photovoltaic cells with a colorized appearance. Photovoltaic modules combining colorized photovoltaic cells may be used to harvest solar energy while providing a customized appearance, e.g., an image or pattern.
ERIC Educational Resources Information Center
Marschalek, Douglas G.
1988-01-01
Describes study of children in grades one, three, and five that examined their active processing and short term memory (STM) of color, contour, and interior pattern of shapes found in computer digitized pictures. Age-related differences are examined, and the role of processing visual information in the learning process is discussed. (12…
Clinical application of qualitative assessment for breast masses in shear-wave elastography.
Gweon, Hye Mi; Youk, Ji Hyun; Son, Eun Ju; Kim, Jeong-Ah
2013-11-01
To evaluate the interobserver agreement and the diagnostic performance of various qualitative features in shear-wave elastography (SWE) for breast masses. A total of 153 breast lesions in 152 women who underwent B-mode ultrasound and SWE before biopsy were included. Qualitative analysis in SWE was performed using two different classifications: E values (Ecol; 6-point color score, Ehomo; homogeneity score and Esha; shape score) and a four-color pattern classification. Two radiologists reviewed five data sets: B-mode ultrasound, SWE, and combination of both for E values and four-color pattern. The BI-RADS categories were assessed B-mode and combined sets. Interobserver agreement was assessed using weighted κ statistics. Areas under the receiver operating characteristic curve (AUC), sensitivity, and specificity were analyzed. Interobserver agreement was substantial for Ecol (κ=0.79), Ehomo (κ=0.77) and four-color pattern (κ=0.64), and moderate for Esha (κ=0.56). Better-performing qualitative features were Ecol and four-color pattern (AUCs, 0.932 and 0.925) compared with Ehomo and Esha (AUCs, 0.857 and 0.864; P<0.05). The diagnostic performance of B-mode ultrasound (AUC, 0.950) was not significantly different from combined sets with E value and with four color pattern (AUCs, 0.962 and 0.954). When all qualitative values were negative, leading to downgrade the BI-RADS category, the specificity increased significantly from 16.5% to 56.1% (E value) and 57.0% (four-color pattern) (P<0.001) without improvement in sensitivity. The qualitative SWE features were highly reproducible and showed good diagnostic performance in suspicious breast masses. Adding qualitative SWE to B-mode ultrasound increased specificity in decision making for biopsy recommendation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Detecting spatial defects in colored patterns using self-oscillating gels
NASA Astrophysics Data System (ADS)
Fang, Yan; Yashin, Victor V.; Dickerson, Samuel J.; Balazs, Anna C.
2018-06-01
With the growing demand for wearable computers, there is a need for material systems that can perform computational tasks without relying on external electrical power. Using theory and simulation, we design a material system that "computes" by integrating the inherent behavior of self-oscillating gels undergoing the Belousov-Zhabotinsky (BZ) reaction and piezoelectric (PZ) plates. These "BZ-PZ" units are connected electrically to form a coupled oscillator network, which displays specific modes of synchronization. We exploit this attribute in employing multiple BZ-PZ networks to perform pattern matching on complex multi-dimensional data, such as colored images. By decomposing a colored image into sets of binary vectors, we use each BZ-PZ network, or "channel," to store distinct information about the color and the shape of the image and perform the pattern matching operation. Our simulation results indicate that the multi-channel BZ-PZ device can detect subtle differences between the input and stored patterns, such as the color variation of one pixel or a small change in the shape of an object. To demonstrate a practical application, we utilize our system to process a colored Quick Response code and show its potential in cryptography and steganography.
Implementation of Custom Colors in the DECwindows Environment
1992-01-01
Implementation of Custom Colors in the DECwindlows Environment Program Element No 0604262 Project No 64214 6. Author(s). Task No Stephanie A. Myrick, Maura C...13. Abstract (Maximum 200 words), This paper describes the implementation of user-defined, or custom , colors in the DECwindows environmeot Custom ...colors can be used to augment the standard color set that is associated with the hardware colormap. The custom color set that is included in this paper
Instrumental color control in textile printing
NASA Astrophysics Data System (ADS)
Connelly, Roland L., Sr.
1996-03-01
In textile printing there are several color outputs that need to be controlled. Just as important is the color coordination of these outputs. The types of color output are the video display on the textile design system (CATD for Computer Aided Textile Design), the color scanner, the color pattern printer, and the actual pattern printed on the textile substrate. Each of these systems has its own gamut(s) that is partially overlapping of the others and will require mapping and/or truncation to adequately represent the colors of the final print in the other systems. One of the goals of instrumentation systems is to control these devices so that the message of the pattern is the same on all four media. To accomplish this is a significant task that has yet to be completed to meet the rigorous requirements of the textile and apparel industries. Several of the major problems and directions for solving them will be discussed in this paper. These include getting good instrumental measurements, translation of data between systems, and specific problems related to the hard copy output.
NASA Astrophysics Data System (ADS)
Yang, S. W.; Ma, J. J.; Wang, J. M.
2018-04-01
As representative vulnerable regions of the city, dense distribution areas of temporary color steel building are a major target for control of fire risks, illegal buildings, environmental supervision, urbanization quality and enhancement for city's image. In the domestic and foreign literature, the related research mainly focuses on fire risks and violation monitoring. However, due to temporary color steel building's special characteristics, the corresponding research about temporal and spatial distribution, and influence on urban spatial form etc. has not been reported. Therefore, firstly, the paper research aim plans to extract information of large-scale color steel building from high-resolution images. Secondly, the color steel plate buildings were classified, and the spatial and temporal distribution and aggregation characteristics of small (temporary buildings) and large (factory building, warehouse, etc.) buildings were studied respectively. Thirdly, the coupling relationship between the spatial distribution of color steel plate and the spatial pattern of urban space was analysed. The results show that there is a good coupling relationship between the color steel plate building and the urban spatial form. Different types of color steel plate building represent the pattern of regional differentiation of urban space and the phased pattern of urban development.
Spatio-spectral color filter array design for optimal image recovery.
Hirakawa, Keigo; Wolfe, Patrick J
2008-10-01
In digital imaging applications, data are typically obtained via a spatial subsampling procedure implemented as a color filter array-a physical construction whereby only a single color value is measured at each pixel location. Owing to the growing ubiquity of color imaging and display devices, much recent work has focused on the implications of such arrays for subsequent digital processing, including in particular the canonical demosaicking task of reconstructing a full color image from spatially subsampled and incomplete color data acquired under a particular choice of array pattern. In contrast to the majority of the demosaicking literature, we consider here the problem of color filter array design and its implications for spatial reconstruction quality. We pose this problem formally as one of simultaneously maximizing the spectral radii of luminance and chrominance channels subject to perfect reconstruction, and-after proving sub-optimality of a wide class of existing array patterns-provide a constructive method for its solution that yields robust, new panchromatic designs implementable as subtractive colors. Empirical evaluations on multiple color image test sets support our theoretical results, and indicate the potential of these patterns to increase spatial resolution for fixed sensor size, and to contribute to improved reconstruction fidelity as well as significantly reduced hardware complexity.
Bar, Ido; Kaddar, Ethan; Velan, Ariel; David, Lior
2013-01-01
Colors and their patterns are fascinating phenotypes with great importance for fitness under natural conditions. For this reason and because pigmentation is associated with diseases, much research was devoted to study the genetics of pigmentation in animals. Considerable contribution to our understanding of color phenotypes was made by studies in domesticated animals that exhibit dazzling variation in color traits. Koi strains, the ornamental variants of the common carp, are a striking example for color variability that was selected by man during a very short period on an evolutionary timescale. Among several pigmentation genes, genetic variation in Melanocrtin receptor 1 was repeatedly associated with dark pigmentation phenotypes in numerous animals. In this study, we cloned Melanocrtin receptor 1 from the common carp. We found that alleles of the gene were not associated with the development of black color in Koi. However, the mRNA expression levels of the gene were higher during dark pigmentation development in larvae and in dark pigmented tissues of adult fish, suggesting that variation in the regulation of the gene is associated with black color in Koi. These regulatory differences are reflected in both the timing of the dark-pigmentation development and the different mode of inheritance of the two black patterns associated with them. Identifying the genetic basis of color and color patterns in Koi will promote the production of this valuable ornamental fish. Furthermore, given the rich variety of colors and patterns, Koi serves as a good model to unravel pigmentation genes and their phenotypic effects and by that to improve our understanding of the genetic basis of colors also in natural populations.
Bar, Ido; Kaddar, Ethan; Velan, Ariel; David, Lior
2013-01-01
Colors and their patterns are fascinating phenotypes with great importance for fitness under natural conditions. For this reason and because pigmentation is associated with diseases, much research was devoted to study the genetics of pigmentation in animals. Considerable contribution to our understanding of color phenotypes was made by studies in domesticated animals that exhibit dazzling variation in color traits. Koi strains, the ornamental variants of the common carp, are a striking example for color variability that was selected by man during a very short period on an evolutionary timescale. Among several pigmentation genes, genetic variation in Melanocrtin receptor 1 was repeatedly associated with dark pigmentation phenotypes in numerous animals. In this study, we cloned Melanocrtin receptor 1 from the common carp. We found that alleles of the gene were not associated with the development of black color in Koi. However, the mRNA expression levels of the gene were higher during dark pigmentation development in larvae and in dark pigmented tissues of adult fish, suggesting that variation in the regulation of the gene is associated with black color in Koi. These regulatory differences are reflected in both the timing of the dark-pigmentation development and the different mode of inheritance of the two black patterns associated with them. Identifying the genetic basis of color and color patterns in Koi will promote the production of this valuable ornamental fish. Furthermore, given the rich variety of colors and patterns, Koi serves as a good model to unravel pigmentation genes and their phenotypic effects and by that to improve our understanding of the genetic basis of colors also in natural populations. PMID:23355846
Chemical Abundances of Hydrostatic and Explosive Alpha-elements in Sagittarius Stream Stars
NASA Astrophysics Data System (ADS)
Carlin, Jeffrey L.; Sheffield, Allyson A.; Cunha, Katia; Smith, Verne V.
2018-05-01
We analyze chemical abundances of stars in the Sagittarius (Sgr) tidal stream using high-resolution Gemini+GRACES spectra of 42 members of the highest surface-brightness portions of both the trailing and leading arms. Targets were chosen using a 2MASS+WISE color–color selection, combined with the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) radial velocities. In this Letter, we analyze [Fe/H] and α-elements produced by both hydrostatic (O, Mg) and explosive (Si, Ca, Ti) nucleosynthetic processes. The average [Fe/H] for our Sgr stream stars is lower than that for stars in the Sgr core, and stars in the trailing and leading arms show systematic differences in [Fe/H]. Both hydrostatic and explosive elements are depleted relative to Milky Way (MW) disk and halo stars, with a larger gap between the MW trend and Sgr stars for the hydrostatic elements. Chemical abundances of Sgr stream stars show similar patterns to those measured in the core of the Sgr dSph. We explore the ratio of hydrostatic to explosive α-elements [α h/ex] (which we refer to as the “HEx ratio”). Our observed HEx ratio trends for Sgr debris are deficient relative to MW stars. Via simple chemical evolution modeling, we show that these HEx ratio patterns are consistent with a Sgr IMF that lacks the most massive stars. This study provides a link between the chemical properties in the intact Sgr core and the significant portion of the Sgr system’s luminosity that is estimated to currently reside in the streams.
Sánchez Herrera, Melissa; Kuhn, William R; Lorenzo-Carballa, Maria Olalla; Harding, Kathleen M; Ankrom, Nikole; Sherratt, Thomas N; Hoffmann, Joachim; Van Gossum, Hans; Ware, Jessica L; Cordero-Rivera, Adolfo; Beatty, Christopher D
2015-01-01
The study of color polymorphisms (CP) has provided profound insights into the maintenance of genetic variation in natural populations. We here offer the first evidence for an elaborate wing polymorphism in the Neotropical damselfly genus Polythore, which consists of 21 described species, distributed along the eastern slopes of the Andes in South America. These damselflies display highly complex wing colors and patterning, incorporating black, white, yellow, and orange in multiple wing bands. Wing colors, along with some components of the male genitalia, have been the primary characters used in species description; few other morphological traits vary within the group, and so there are few useful diagnostic characters. Previous research has indicated the possibility of a cryptic species existing in P. procera in Colombia, despite there being no significant differences in wing color and pattern between the populations of the two putative species. Here we analyze the complexity and diversity of wing color patterns of individuals from five described Polythore species in the Central Amazon Basin of Peru using a novel suite of morphological analyses to quantify wing color and pattern: geometric morphometrics, chromaticity analysis, and Gabor wavelet transformation. We then test whether these color patterns are good predictors of species by recovering the phylogenetic relationships among the 5 species using the barcode gene (COI). Our results suggest that, while highly distinct and discrete wing patterns exist in Polythore, these "wingforms" do not represent monophyletic clades in the recovered topology. The wingforms identified as P. victoria and P. ornata are both involved in a polymorphism with P. neopicta; also, cryptic speciation may have taking place among individuals with the P. victoria wingform. Only P. aurora and P. spateri represent monophyletic species with a single wingform in our molecular phylogeny. We discuss the implications of this polymorphism, and the potential evolutionary mechanisms that could maintain it.
Harding, Kathleen M.; Ankrom, Nikole; Sherratt, Thomas N.; Hoffmann, Joachim; Van Gossum, Hans; Ware, Jessica L.; Cordero-Rivera, Adolfo
2015-01-01
The study of color polymorphisms (CP) has provided profound insights into the maintenance of genetic variation in natural populations. We here offer the first evidence for an elaborate wing polymorphism in the Neotropical damselfly genus Polythore, which consists of 21 described species, distributed along the eastern slopes of the Andes in South America. These damselflies display highly complex wing colors and patterning, incorporating black, white, yellow, and orange in multiple wing bands. Wing colors, along with some components of the male genitalia, have been the primary characters used in species description; few other morphological traits vary within the group, and so there are few useful diagnostic characters. Previous research has indicated the possibility of a cryptic species existing in P. procera in Colombia, despite there being no significant differences in wing color and pattern between the populations of the two putative species. Here we analyze the complexity and diversity of wing color patterns of individuals from five described Polythore species in the Central Amazon Basin of Peru using a novel suite of morphological analyses to quantify wing color and pattern: geometric morphometrics, chromaticity analysis, and Gabor wavelet transformation. We then test whether these color patterns are good predictors of species by recovering the phylogenetic relationships among the 5 species using the barcode gene (COI). Our results suggest that, while highly distinct and discrete wing patterns exist in Polythore, these “wingforms” do not represent monophyletic clades in the recovered topology. The wingforms identified as P. victoria and P. ornata are both involved in a polymorphism with P. neopicta; also, cryptic speciation may have taking place among individuals with the P. victoria wingform. Only P. aurora and P. spateri represent monophyletic species with a single wingform in our molecular phylogeny. We discuss the implications of this polymorphism, and the potential evolutionary mechanisms that could maintain it. PMID:25923455
Possible influences on color constancy by motion of color targets and by attention-controlled gaze.
Wan, Lifang; Shinomori, Keizo
2018-04-01
We investigated the influence of motion on color constancy using a chromatic stimulus presented in various conditions (static, motion, and rotation). Attention to the stimulus and background was also controlled in different gaze modes, constant fixation of the stimulus, and random viewing of the stimulus. Color constancy was examined in six young observers using a haploscopic view of a computer monitor. The target and background were illuminated in simulation by red, green, blue, and yellow, shifted from daylight (D65) by specific color differences along L - M or S - (L + M) axes on the equiluminance plane. The standard pattern (under D65) and test pattern (under the color illuminant) of a 5-deg square were presented side by side, consisting of 1.2-deg square targets with one of 12 colors at each center, surrounded by 230 background ellipses consisting of eight other colors. The central color targets in both patterns flipped between top and bottom locations at the rate of 3 deg/s in the motion condition. The results indicated an average reduction of color constancy over the 12 test colors by motion. The random viewing parameter indicated better color constancy by more attention to the background, although the difference was not significant. Color constancy of the four color illuminations was better to worse in green, red, yellow, and blue, respectively. The reduction of color constancy by motion could be explained by less contribution of the illumination estimation effect on color constancy. In the motion with constant fixation condition, the retina strongly adapted to the mean chromaticity of the background. However, motion resulted in less attention to the color of the background, causing a weaker effect of the illumination estimation. Conversely, in the static state with a random viewing condition, more attention to the background colors caused a stronger illumination estimation effect, and color constancy was improved overall.
Ultraviolet laser beam monitor using radiation responsive crystals
McCann, Michael P.; Chen, Chung H.
1988-01-01
An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.
NASA Astrophysics Data System (ADS)
Miyahara, Tomoko; Koda, Ai; Sekiguchi, Rikuko; Amemiya, Toshihiko
In this study, we investigated the nature of cross-modal associations between colors and vowels. In Experiment 1, we examined the patterns of synesthetic correspondence between colors and vowels in a perceptual similarity experiment. The results were as follows: red was chosen for /a/, yellow was chosen for /i/, and blue was chosen for /o/ significantly more than any other vowels. Interestingly this pattern of correspondence is similar to the pattern of colored hearing reported by synesthetes. In Experiment 2, we investigated the robustness of these cross-modal associations using an implicit association test (IAT). A clear congruence effect was found. Participants responded faster in congruent conditions (/i/ and yellow, /o/ and blue) than in incongruent conditions (/i/ and blue, /o/ and yellow). This result suggests that the weak synesthesia between vowels and colors in non-synesthtes is not the fact of mere conscious choice, but reflects some underlying implicit associations.
Ueda, Sayoko; Kumagai, Gaku; Otaki, Yusuke; Yamaguchi, Shinya; Kohshima, Shiro
2014-01-01
As facial color pattern around the eyes has been suggested to serve various adaptive functions related to the gaze signal, we compared the patterns among 25 canid species, focusing on the gaze signal, to estimate the function of facial color pattern in these species. The facial color patterns of the studied species could be categorized into the following three types based on contrast indices relating to the gaze signal: A-type (both pupil position in the eye outline and eye position in the face are clear), B-type (only the eye position is clear), and C-type (both the pupil and eye position are unclear). A-type faces with light-colored irises were observed in most studied species of the wolf-like clade and some of the red fox-like clade. A-type faces tended to be observed in species living in family groups all year-round, whereas B-type faces tended to be seen in solo/pair-living species. The duration of gazing behavior during which the facial gaze-signal is displayed to the other individual was longest in gray wolves with typical A-type faces, of intermediate length in fennec foxes with typical B-type faces, and shortest in bush dogs with typical C-type faces. These results suggest that the facial color pattern of canid species is related to their gaze communication and that canids with A-type faces, especially gray wolves, use the gaze signal in conspecific communication. PMID:24918751
Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato
Ruiz, Mayté; Salazar, Patricio; Counterman, Brian; Medina, Jose Alejandro; Ortiz-Zuazaga, Humberto; Morrison, Anna; Papa, Riccardo
2014-01-01
Hybrid zones can be valuable tools for studying evolution and identifying genomic regions responsible for adaptive divergence and underlying phenotypic variation. Hybrid zones between subspecies of Heliconius butterflies can be very narrow and are maintained by strong selection acting on color pattern. The comimetic species, H. erato and H. melpomene, have parallel hybrid zones in which both species undergo a change from one color pattern form to another. We use restriction-associated DNA sequencing to obtain several thousand genome-wide sequence markers and use these to analyze patterns of population divergence across two pairs of parallel hybrid zones in Peru and Ecuador. We compare two approaches for analysis of this type of data—alignment to a reference genome and de novo assembly—and find that alignment gives the best results for species both closely (H. melpomene) and distantly (H. erato, ∼15% divergent) related to the reference sequence. Our results confirm that the color pattern controlling loci account for the majority of divergent regions across the genome, but we also detect other divergent regions apparently unlinked to color pattern differences. We also use association mapping to identify previously unmapped color pattern loci, in particular the Ro locus. Finally, we identify a new cryptic population of H. timareta in Ecuador, which occurs at relatively low altitude and is mimetic with H. melpomene malleti. PMID:24823669
Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas
2014-03-01
We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.
NASA Astrophysics Data System (ADS)
Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas
2014-03-01
We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.
Semi-automatic mapping for identifying complex geobodies in seismic images
NASA Astrophysics Data System (ADS)
Domínguez-C, Raymundo; Romero-Salcedo, Manuel; Velasquillo-Martínez, Luis G.; Shemeretov, Leonid
2017-03-01
Seismic images are composed of positive and negative seismic wave traces with different amplitudes (Robein 2010 Seismic Imaging: A Review of the Techniques, their Principles, Merits and Limitations (Houten: EAGE)). The association of these amplitudes together with a color palette forms complex visual patterns. The color intensity of such patterns is directly related to impedance contrasts: the higher the contrast, the higher the color intensity. Generally speaking, low impedance contrasts are depicted with low tone colors, creating zones with different patterns whose features are not evident for a 3D automated mapping option available on commercial software. In this work, a workflow for a semi-automatic mapping of seismic images focused on those areas with low-intensity colored zones that may be associated with geobodies of petroleum interest is proposed. The CIE L*A*B* color space was used to perform the seismic image processing, which helped find small but significant differences between pixel tones. This process generated binary masks that bound color regions to low-intensity colors. The three-dimensional-mask projection allowed the construction of 3D structures for such zones (geobodies). The proposed method was applied to a set of digital images from a seismic cube and tested on four representative study cases. The obtained results are encouraging because interesting geobodies are obtained with a minimum of information.
Nonlinear dynamics of cortical responses to color in the human cVEP.
Nunez, Valerie; Shapley, Robert M; Gordon, James
2017-09-01
The main finding of this paper is that the human visual cortex responds in a very nonlinear manner to the color contrast of pure color patterns. We examined human cortical responses to color checkerboard patterns at many color contrasts, measuring the chromatic visual evoked potential (cVEP) with a dense electrode array. Cortical topography of the cVEPs showed that they were localized near the posterior electrode at position Oz, indicating that the primary cortex (V1) was the major source of responses. The choice of fine spatial patterns as stimuli caused the cVEP response to be driven by double-opponent neurons in V1. The cVEP waveform revealed nonlinear color signal processing in the V1 cortex. The cVEP time-to-peak decreased and the waveform's shape was markedly narrower with increasing cone contrast. Comparison of the linear dynamics of retinal and lateral geniculate nucleus responses with the nonlinear dynamics of the cortical cVEP indicated that the nonlinear dynamics originated in the V1 cortex. The nature of the nonlinearity is a kind of automatic gain control that adjusts cortical dynamics to be faster when color contrast is greater.
Predicting Visibility of Aircraft
Watson, Andrew; Ramirez, Cesar V.; Salud, Ellen
2009-01-01
Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration. PMID:19462007
[Achromatic watercolor effect: about requirement of formation of sumi painting effect].
Takashima, Midori
2008-10-01
The watercolor effect (Pinna, Brelstaff, & Spillmann, 2001) is a new color spreading phenomenon. Pinna et al. (2001) proposed that the watercolor effect is a new Gestalt factor because it determines figure-ground organization more strongly than classical Gestalt factors. We used achroriatic watercolor patterns and varied the lightness of the background and two border lines to study the relationship between the color spreading effect and figure-ground organization. The results demonstrated (a)a bidirectional color spreading phenomenon when the background lightness was between the two border-lines' lightness, and that (b) some patterns elicit only a color spreading effect without organization of figure-ground, while others elicit only figure-ground organization without a color spreading effect.
World Color Survey color naming reveals universal motifs and their within-language diversity
Lindsey, Delwin T.; Brown, Angela M.
2009-01-01
We analyzed the color terms in the World Color Survey (WCS) (www.icsi.berkeley.edu/wcs/), a large color-naming database obtained from informants of mostly unwritten languages spoken in preindustrialized cultures that have had limited contact with modern, industrialized society. The color naming idiolects of 2,367 WCS informants fall into three to six “motifs,” where each motif is a different color-naming system based on a subset of a universal glossary of 11 color terms. These motifs are universal in that they occur worldwide, with some individual variation, in completely unrelated languages. Strikingly, these few motifs are distributed across the WCS informants in such a way that multiple motifs occur in most languages. Thus, the culture a speaker comes from does not completely determine how he or she will use color terms. An analysis of the modern patterns of motif usage in the WCS languages, based on the assumption that they reflect historical patterns of color term evolution, suggests that color lexicons have changed over time in a complex but orderly way. The worldwide distribution of the motifs and the cooccurrence of multiple motifs within languages suggest that universal processes control the naming of colors. PMID:19901327
Parallel human genome analysis: microarray-based expression monitoring of 1000 genes.
Schena, M; Shalon, D; Heller, R; Chai, A; Brown, P O; Davis, R W
1996-01-01
Microarrays containing 1046 human cDNAs of unknown sequence were printed on glass with high-speed robotics. These 1.0-cm2 DNA "chips" were used to quantitatively monitor differential expression of the cognate human genes using a highly sensitive two-color hybridization assay. Array elements that displayed differential expression patterns under given experimental conditions were characterized by sequencing. The identification of known and novel heat shock and phorbol ester-regulated genes in human T cells demonstrates the sensitivity of the assay. Parallel gene analysis with microarrays provides a rapid and efficient method for large-scale human gene discovery. Images Fig. 1 Fig. 2 Fig. 3 PMID:8855227
Kim, Hyo-Jun; Shin, Min-Ho; Lee, Jae-Yong; Kim, Ji-Hoon; Kim, Young-Joo
2017-05-15
An optically efficient liquid-crystal display (LCD) structure using a patterned quantum dot (QD) film and a short-pass filter (SPF) was proposed and fabricated. The patterned QD film contributed to the generation of 95% in the area ratio (or 90% in the coverage ratio) of the Rec. 2020 color gamut. This was achieved by avoiding the problem of interaction between white backlight and broad transmittance spectra of color filters (CFs) as seen in a conventional LCD with a mixed QD film as a reference. The patterned QD film can maintain the narrow bandwidth of the green and the red QD colors before passing through the CFs. Additionally, the optical intensities of the red, green, and blue spectra were enhanced to 1.63, 1.72, and 2.16 times the reference LCD values, respectively. This was a result of separated emission of the red and green patterned QD film and reflection of the red and green light to the forward direction by the SPF.
Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.
Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze
2017-04-05
In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.
2010-01-01
Background Patterns of spatial variation in discrete phenotypic traits can be used to draw inferences about the adaptive significance of traits and evolutionary processes, especially when compared to patterns of neutral genetic variation. Population divergence in adaptive traits such as color morphs can be influenced by both local ecology and stochastic factors such as genetic drift or founder events. Here, we use quantitative color measurements of males and females of Skyros wall lizard, Podarcis gaigeae, to demonstrate that this species is polymorphic with respect to throat color, and the morphs form discrete phenotypic clusters with limited overlap between categories. We use divergence in throat color morph frequencies and compare that to neutral genetic variation to infer the evolutionary processes acting on islet- and mainland populations. Results Geographically close islet- and mainland populations of the Skyros wall lizard exhibit strong divergence in throat color morph frequencies. Population variation in throat color morph frequencies between islets was higher than that between mainland populations, and the effective population sizes on the islets were small (Ne:s < 100). Population divergence (FST) for throat color morph frequencies fell within the neutral FST-distribution estimated from microsatellite markers, and genetic drift could thus not be rejected as an explanation for the pattern. Moreover, for both comparisons among mainland-mainland population pairs and between mainland-islet population pairs, morph frequency divergence was significantly correlated with neutral divergence, further pointing to some role for genetic drift in divergence also at the phenotypic level of throat color morphs. Conclusions Genetic drift could not be rejected as an explanation for the pattern of population divergence in morph frequencies. In spite of an expected stabilising selection, throat color frequencies diverged in the islet populations. These results suggest that there is an interaction between selection and genetic drift causing divergence even at a phenotypic level in these small, subdivided populations. PMID:20813033
Allen, Cerisse E; Beldade, Patrícia; Zwaan, Bas J; Brakefield, Paul M
2008-03-26
There is spectacular morphological diversity in nature but lineages typically display a limited range of phenotypes. Because developmental processes generate the phenotypic variation that fuels natural selection, they are a likely source of evolutionary biases, facilitating some changes and limiting others. Although shifts in developmental regulation are associated with morphological differences between taxa, it is unclear how underlying mechanisms affect the rate and direction of evolutionary change within populations under selection. Here we focus on two ecologically relevant features of butterfly wing color patterns, eyespot size and color composition, which are similarly and strongly correlated across the serially repeated eyespots. Though these two characters show similar patterns of standing variation and covariation within a population, they differ in key features of their underlying development. We targeted pairs of eyespots with artificial selection for coordinated (concerted selection) versus independent (antagonistic selection) change in their color composition and size and compared evolutionary responses of the two color pattern characters. The two characters respond to selection in strikingly different ways despite initially similar patterns of variation in all directions present in the starting population. Size (determined by local properties of a diffusing inductive signal) evolves flexibly in all selected directions. However, color composition (determined by a tissue-level response to the signal concentration gradient) evolves only in the direction of coordinated change. There was no independent evolutionary change in the color composition of two eyespots in response to antagonistic selection. Moreover, these differences in the directions of short-term evolutionary change in eyespot size and color composition within a single species are consistent with the observed wing pattern diversity in the genus. Both characters respond rapidly to selection for coordinated change, but there are striking differences in their response to selection for antagonistic, independent change across eyespots. While many additional factors may contribute to both short- and long-term evolutionary response, we argue that the compartmentalization of developmental processes can influence the diversification of serial repeats such as butterfly eyespots, even under strong selection.
2014-01-01
Background The colorful wing patterns of butterflies, a prime example of biodiversity, can change dramatically within closely related species. Wing pattern diversity is specifically present among papilionid butterflies. Whether a correlation between color and the evolution of these butterflies exists so far remained unsolved. Results We here investigate the Cattlehearts, Parides, a small Neotropical genus of papilionid butterflies with 36 members, the wings of which are marked by distinctly colored patches. By applying various physical techniques, we investigate the coloration toolkit of the wing scales. The wing scales contain two different, wavelength-selective absorbing pigments, causing pigmentary colorations. Scale ridges with multilayered lamellae, lumen multilayers or gyroid photonic crystals in the scale lumen create structural colors that are variously combined with these pigmentary colors. Conclusions The pigmentary and structural traits strongly correlate with the taxonomical distribution of Parides species. The experimental findings add crucial insight into the evolution of butterfly wing scales and show the importance of morphological parameter mapping for butterfly phylogenetics. PMID:25064167
Quantifying Human Visible Color Variation from High Definition Digital Images of Orb Web Spiders.
Tapia-McClung, Horacio; Ajuria Ibarra, Helena; Rao, Dinesh
2016-01-01
Digital processing and analysis of high resolution images of 30 individuals of the orb web spider Verrucosa arenata were performed to extract and quantify human visible colors present on the dorsal abdomen of this species. Color extraction was performed with minimal user intervention using an unsupervised algorithm to determine groups of colors on each individual spider, which was then analyzed in order to quantify and classify the colors obtained, both spatially and using energy and entropy measures of the digital images. Analysis shows that the colors cover a small region of the visible spectrum, are not spatially homogeneously distributed over the patterns and from an entropic point of view, colors that cover a smaller region on the whole pattern carry more information than colors covering a larger region. This study demonstrates the use of processing tools to create automatic systems to extract valuable information from digital images that are precise, efficient and helpful for the understanding of the underlying biology.
Quantifying Human Visible Color Variation from High Definition Digital Images of Orb Web Spiders
Ajuria Ibarra, Helena; Rao, Dinesh
2016-01-01
Digital processing and analysis of high resolution images of 30 individuals of the orb web spider Verrucosa arenata were performed to extract and quantify human visible colors present on the dorsal abdomen of this species. Color extraction was performed with minimal user intervention using an unsupervised algorithm to determine groups of colors on each individual spider, which was then analyzed in order to quantify and classify the colors obtained, both spatially and using energy and entropy measures of the digital images. Analysis shows that the colors cover a small region of the visible spectrum, are not spatially homogeneously distributed over the patterns and from an entropic point of view, colors that cover a smaller region on the whole pattern carry more information than colors covering a larger region. This study demonstrates the use of processing tools to create automatic systems to extract valuable information from digital images that are precise, efficient and helpful for the understanding of the underlying biology. PMID:27902724
NASA Astrophysics Data System (ADS)
Nayak, Gouranga C.
2017-09-01
Recently we have proved factorization of infrared divergences in NRQCD S-wave heavy quarkonium production at high energy colliders at all orders in coupling constant. One of the problem which still exists in the higher order pQCD calculation of color singlet P-wave heavy quarkonium production/anihillation is the appearance of noncanceling infrared divergences due to real soft gluons exchange, although no such infrared divergences are present in the color singlet S-wave heavy quarkonium. In this paper we find that since the non-perturbative matrix element of the color singlet P-wave heavy quarkonium production contains derivative operators, the gauge links are necessary to make it gauge invariant and be consistent with the factorization of such non-canceling infrared divergences at all orders in coupling constant.
Color in graphic design: an analysis of meaning and trends
NASA Astrophysics Data System (ADS)
Martinson, Barbara; Waldron, Carol C.
2002-06-01
Graphic design is visual communication through the selection, arrangement, and presentation of words and images, most often for the printed page which offer the designer almost limitless options for color use. The objective of this project is to identify patterns of color use. Ethnographic content analysis was used to document color use in annual reports represented in two publications, Print and Communication Arts, 1993-2000. The analysis focuses on the selection, combination, and contrast of hues; and their use with achromatic values. An analysis of the entire sample indicates that one-third of the annual reports used a palette that include black, white, and a hue from quadrant one (red to yellow). Nearly one-fifth of the designs used black, white, and colors from quadrants one and three (cyan to blue). The large samples for Technology, Health Sciences, Financial, and Civic organizations follow the first pattern. Food Service, Business products and services, and Transportation industries favor the second pattern.
Phenotypic and Genetic Divergence among Poison Frog Populations in a Mimetic Radiation
Twomey, Evan; Yeager, Justin; Brown, Jason Lee; Morales, Victor; Cummings, Molly; Summers, Kyle
2013-01-01
The evolution of Müllerian mimicry is, paradoxically, associated with high levels of diversity in color and pattern. In a mimetic radiation, different populations of a species evolve to resemble different models, which can lead to speciation. Yet there are circumstances under which initial selection for divergence under mimicry may be reversed. Here we provide evidence for the evolution of extensive phenotypic divergence in a mimetic radiation in Ranitomeya imitator, the mimic poison frog, in Peru. Analyses of color hue (spectral reflectance) and pattern reveal substantial divergence between morphs. However, we also report that there is a “transition-zone” with mixed phenotypes. Analyses of genetic structure using microsatellite variation reveals some differentiation between populations, but this does not strictly correspond to color pattern divergence. Analyses of gene flow between populations suggest that, while historical levels of gene flow were low, recent levels are high in some cases, including substantial gene flow between some color pattern morphs. We discuss possible explanations for these observations. PMID:23405150
Kim, Hyo-Jun; Shin, Min-Ho; Kim, Joo-Suc; Kim, Se-Eun; Kim, Young-Joo
2017-01-01
An optically efficient structure was proposed and fabricated to realize high brightness organic light emitting diode (OLED) displays based on a white OLED prepared with the air-gapped bridges on the quantum dot (QD) patterns. Compared with a conventional white OLED display, in our experiments, the optical intensity of the proposed OLED display shows the enhancement of 58.2% in the red color and 16.8% in the green color after applying the air-gapped bridge structure on QD patterns of 20 wt% concentration. This enhancement comes from the two facts that the QD patterns downconvert unnecessary blue or blue/green light to the required green or red light and the air-gapped bridges increase the color conversion efficiency of QDs by optical recycling using total internal reflection (TIR) at the interface. In addition, the color gamut of the proposed OLED display increases from 65.5 to 75.9% (NTSC x, y ratio) due to the narrow emission spectra of QDs. PMID:28211516
Nam, Hyunmoon; Song, Kyungjun; Ha, Dogyeong; Kim, Taesung
2016-08-04
Photonic crystal structures can be created to manipulate electromagnetic waves so that many studies have focused on designing photonic band-gaps for various applications including sensors, LEDs, lasers, and optical fibers. Here, we show that mono-layered, self-assembled photonic crystals (SAPCs) fabricated by using an inkjet printer exhibit extremely weak structural colors and multiple colorful holograms so that they can be utilized in anti-counterfeit measures. We demonstrate that SAPC patterns on a white background are covert under daylight, such that pattern detection can be avoided, but they become overt in a simple manner under strong illumination with smartphone flash light and/or on a black background, showing remarkable potential for anti-counterfeit techniques. Besides, we demonstrate that SAPCs yield different RGB histograms that depend on viewing angles and pattern densities, thus enhancing their cryptographic capabilities. Hence, the structural colorations designed by inkjet printers would not only produce optical holograms for the simple authentication of many items and products but also enable a high-secure anti-counterfeit technique.
NASA Astrophysics Data System (ADS)
Kim, Hyo-Jun; Shin, Min-Ho; Kim, Joo-Suc; Kim, Se-Eun; Kim, Young-Joo
2017-02-01
An optically efficient structure was proposed and fabricated to realize high brightness organic light emitting diode (OLED) displays based on a white OLED prepared with the air-gapped bridges on the quantum dot (QD) patterns. Compared with a conventional white OLED display, in our experiments, the optical intensity of the proposed OLED display shows the enhancement of 58.2% in the red color and 16.8% in the green color after applying the air-gapped bridge structure on QD patterns of 20 wt% concentration. This enhancement comes from the two facts that the QD patterns downconvert unnecessary blue or blue/green light to the required green or red light and the air-gapped bridges increase the color conversion efficiency of QDs by optical recycling using total internal reflection (TIR) at the interface. In addition, the color gamut of the proposed OLED display increases from 65.5 to 75.9% (NTSC x, y ratio) due to the narrow emission spectra of QDs.
Kim, Hyo-Jun; Shin, Min-Ho; Kim, Joo-Suc; Kim, Se-Eun; Kim, Young-Joo
2017-02-17
An optically efficient structure was proposed and fabricated to realize high brightness organic light emitting diode (OLED) displays based on a white OLED prepared with the air-gapped bridges on the quantum dot (QD) patterns. Compared with a conventional white OLED display, in our experiments, the optical intensity of the proposed OLED display shows the enhancement of 58.2% in the red color and 16.8% in the green color after applying the air-gapped bridge structure on QD patterns of 20 wt% concentration. This enhancement comes from the two facts that the QD patterns downconvert unnecessary blue or blue/green light to the required green or red light and the air-gapped bridges increase the color conversion efficiency of QDs by optical recycling using total internal reflection (TIR) at the interface. In addition, the color gamut of the proposed OLED display increases from 65.5 to 75.9% (NTSC x, y ratio) due to the narrow emission spectra of QDs.
NASA Astrophysics Data System (ADS)
Nam, Hyunmoon; Song, Kyungjun; Ha, Dogyeong; Kim, Taesung
2016-08-01
Photonic crystal structures can be created to manipulate electromagnetic waves so that many studies have focused on designing photonic band-gaps for various applications including sensors, LEDs, lasers, and optical fibers. Here, we show that mono-layered, self-assembled photonic crystals (SAPCs) fabricated by using an inkjet printer exhibit extremely weak structural colors and multiple colorful holograms so that they can be utilized in anti-counterfeit measures. We demonstrate that SAPC patterns on a white background are covert under daylight, such that pattern detection can be avoided, but they become overt in a simple manner under strong illumination with smartphone flash light and/or on a black background, showing remarkable potential for anti-counterfeit techniques. Besides, we demonstrate that SAPCs yield different RGB histograms that depend on viewing angles and pattern densities, thus enhancing their cryptographic capabilities. Hence, the structural colorations designed by inkjet printers would not only produce optical holograms for the simple authentication of many items and products but also enable a high-secure anti-counterfeit technique.
1985-07-18
Element Predictions 28 2.1.1.2-9 CIELUV Color Difference Derivation Graphically Described In a Three-Dimensional Rectangular Coordinate System 31...in CIE 1976 Coordinates 141 2.2.2-3 Derivation of CIE (L*, U*, V*) Coordinates 145 2.2.2-4 Three-Dimensional Representation of CIELUV Color...Difference Estimates 145 2.2.2-5 Application of CIELUV for Estimating Color Difference on an Electronic Color Display 146 2.2.2-6 Color Performance Envelopes
1986-02-01
Ellipses Derived from Both MacAdam’s Empirically Derived Color Matching Standard Deviation and Stiles’ Line Element Predictions 28 2.1.1.2-9 CIELUV Color...Coordinates 141 2.2.2-3 Derivation of CIE (L*, U*, V*) Coordinates 145 2.2.2-4 Three-Dimensional Representation of CIELUV Colcr Difference Estimates...145 2.2.2-5 Application of CIELUV for Estimating Color Difference on an Electronic Color Display 146 2.2.2-6 Color Performance Envelopes and Optimized
Filters for Color Imaging and for Science
2013-03-18
The color cameras on NASA Mars rover Curiosity, including the pair that make up the rover Mastcam instrument, use the same type of Bayer pattern RGB filter as found in typical commercial color cameras.
Exploring Predation and Animal Coloration through Outdoor Activity
ERIC Educational Resources Information Center
Fontaine, Joseph J.; Decker, Karie L.
2009-01-01
Although children often characterize animals by the animals' color or pattern, the children seldom understand the evolutionary and ecological factors that favor particular colors. In this article, we describe two activities that help students understand the distinct evolutionary strategies of warning coloration and camouflage. Because both of…
Fringe periods of color moirés in contact-type 3-D displays.
Lee, Hyoung; Kim, Sung-Kyu; Sohn, Kwanghoon; Son, Jung-Young; Chernyshov, Oleksii O
2016-06-27
A mathematical formula of calculating the fringe periods of the color moirés appearing at the contact-type 3-D displays is derived. It is typical that the color moirés are chirped and the period of the line pattern in viewing zone forming optics is more than two times of that of the pixel pattern in the display panel. These make impossible to calculate the fringe periods of the color moirés with the conventional beat frequency formula. The derived formula work very well for any combination of two line patterns having either a same line period or different line periods. This is experimentally proved. Furthermore, it is also shown that the fringe period can be expressed in terms of the viewing distance and focal length of the viewing zone forming optics.
Color preferences are not universal.
Taylor, Chloe; Clifford, Alexandra; Franklin, Anna
2013-11-01
Claims of universality pervade color preference research. It has been argued that there are universal preferences for some colors over others (e.g., Eysenck, 1941), universal sex differences (e.g., Hurlbert & Ling, 2007), and universal mechanisms or dimensions that govern these preferences (e.g., Palmer & Schloss, 2010). However, there have been surprisingly few cross-cultural investigations of color preference and none from nonindustrialized societies that are relatively free from the common influence of global consumer culture. Here, we compare the color preferences of British adults to those of Himba adults who belong to a nonindustrialized culture in rural Namibia. British and Himba color preferences are found to share few characteristics, and Himba color preferences display none of the so-called "universal" patterns or sex differences. Several significant predictors of color preference are identified, such as cone-contrast between stimulus and background (Hurlbert & Ling, 2007), the valence of color-associated objects (Palmer & Schloss, 2010), and the colorfulness of the color. However, the relationship of these predictors to color preference was strikingly different for the two cultures. No one model of color preference is able to account for both British and Himba color preferences. We suggest that not only do patterns of color preference vary across individuals and groups but the underlying mechanisms and dimensions of color preference vary as well. The findings have implications for broader debate on the extent to which our perception and experience of color is culturally relative or universally constrained. PsycINFO Database Record (c) 2013 APA, all rights reserved.
A spectral model for signal elements isolated from zebrafish photopic electroretinogram
Nelson, Ralph; Singla, Nirmish
2009-01-01
The zebrafish photopic ERG sums isolatable elements. In each element red, blue, green and UV (r, g, b, u) cone signals combine in a way that reflects retinal organization. ERG responses to monochromatic stimuli of different wavelengths and irradiances were recorded on a white, rod suppressing background using superfused eyecups. Onset elements were isolated with glutamatergic blockers and response subtractions. CNQX blocked ionotropic (AMPA/kainate) glutamate receptors; L-AP4 or CPPG blocked metabotropic (mGluR6) glutamate receptors; TBOA blocked glutamate transporters; and L-Aspartate inactivated all glutamatergic mechanisms. Seven elements emerged: photopic PIII, the L-Aspartate-isolated cone response; b1, a CNQX-sensitive early b-wave element of inner retinal origin; PII, a photopic, CNQX-insensitive, composite b-wave element from ON bipolar cells; PIIm, an L-AP4/CPPG-sensitive, CNQX-insensitive metabotropic sub-element of PII; PIInm, an L-AP4/CPPG/CNQX-insensitive, non-metabotropic sub-element of PII; a1nm, a TBOA-sensitive, CNQX/L-AP4/CPPG-insensitive, non-metabotropic, post-photoreceptor a-wave element; and a2, a CNQX-sensitive a-wave element linked to OFF bipolar cells. The first five elements were fit with a spectral model that demonstrates independence of cone color pathways. From this Vmax and half-saturation values (k) for the contributing r- g- b- and u-cone signals were calculated. Two signal patterns emerged. For PIII or PIInm the Vmax order was Vr > Vg ≫ Vb ≈ Vu. For b1, PII, and PIIm the Vmax order was Vr ≈ Vb > Vg > Vu. In either pattern u-cone amplitude (Vu) was smallest, but u-cone sensitivity (ku362) was greatest, some 10-30 times greater than r-cone (kr570). The spectra of b1/PII/PIIm elements peaked near b-cone and u-cone absorbance maxima regardless of criteria, but the spectra of PIII/PIInm elements shifted from b- towards r-cone absorbance maxima as criterion levels increased. The greatest gains in Vmax relative to PIII occurred for the b- and u-cone signals in the b1/PII/PIIm b-wave elements. This suggests a high-gain, prolific metabotropic circuitry for b- and u-cone bipolar cells. PMID:19723365
Effects of task-irrelevant grouping on visual selection in partial report.
Lunau, Rasmus; Habekost, Thomas
2017-07-01
Perceptual grouping modulates performance in attention tasks such as partial report and change detection. Specifically, grouping of search items according to a task-relevant feature improves the efficiency of visual selection. However, the role of task-irrelevant feature grouping is not clearly understood. In the present study, we investigated whether grouping of targets by a task-irrelevant feature influences performance in a partial-report task. In this task, participants must report as many target letters as possible from a briefly presented circular display. The crucial manipulation concerned the color of the elements in these trials. In the sorted-color condition, the color of the display elements was arranged according to the selection criterion, and in the unsorted-color condition, colors were randomly assigned. The distractor cost was inferred by subtracting performance in partial-report trials from performance in a control condition that had no distractors in the display. Across five experiments, we manipulated trial order, selection criterion, and exposure duration, and found that attentional selectivity was improved in sorted-color trials when the exposure duration was 200 ms and the selection criterion was luminance. This effect was accompanied by impaired selectivity in unsorted-color trials. Overall, the results suggest that the benefit of task-irrelevant color grouping of targets is contingent on the processing locus of the selection criterion.
21 CFR 74.1321 - D&C Red No. 21.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ADDITIVES SUBJECT TO CERTIFICATION Drugs § 74.1321 D&C Red No. 21. (a) Identity. (1) The color additive D&C... (CAS Reg. No. 25709-84-6). The color additive is manufactured by brominating fluorescein with elemental... anhydride. The fluorescein is isolated and partially purified prior to bromination. (2) Color additive...
Exogenic and endogenic albedo and color patterns on Europa
NASA Technical Reports Server (NTRS)
Mcewen, A. S.
1986-01-01
New global and high-resolution multispectral mosaics of Europa have been produced from the Voyager imaging data. Photometric normalizations are based on multiple-image techniques that explicitly account for intrinsic albedo variations through pixel-by-pixel solutions. The exogenic color and albedo pattern on Europa is described by a second-order function of the cosine of the angular distance from the apex of orbital motion. On the basis of this second-order function and of color trends that are different on the leading and trailing hemispheres, the exogenic pattern is interpreted as being due to equilibrium between two dominant processes: (1) impact gardening and (2) magnetospheric interactions, including sulfur-ion implantation and sputtering redistribution. Removal of the model exogenic pattern in the mosaics reveals the endogenic variations, consisting of only two major units: darker (redder) and bright materials. Therefore Europa's visual spectral reflectivity is simple, having one continuous exogenic pattern and two discrete endogenic units.
Carbonate biomineralization in terrestrial gastropods: environmental vs. physiological constraints
NASA Astrophysics Data System (ADS)
Mierzwa, D.; Stolarski, J.
2009-04-01
Preservational potential of shells of terrestrial gastropods allows to use them as valuable (paleo)climatic proxies. Despite of the fact, that the elements incorporated in their skeleton derive almost entirely from their diet, details of the ion uptake routes have not been studied in details. This work is a first step in the investigations of element uptake and biomineralization processes in pulmonate gastropod Cepaea vindobonensis (Férussac, 1821). Although phenotypic plasticity in the shell characters of the species appears to be mainly genetic in nature, some differences seem to correlate with availability of ions used in biomineralization. For example, shells of individuals living in marginal parts of flood plains (environment extreme for the species and generally depleted in calcium) have weakened structure and faded color pattern, whereas individuals from the lime substrata form typically developed, pigmented shells with several cross-lamellar layers. Micro- and nanostructural characteristics of shells from different environments are visualized by SEM and AFM imaging techniques and some biogeochemical properties are characterized by spectroscopic and fluorescence methods. Further experiments are required to elucidate the ion/trace elements transfer between the substratum, nutrients, organism, and the shell.
Hair treatment process providing dispersed colors by light diffraction
Sutton, Richard Matthew Charles; Lamartine, Bruce Carvell; Orler, E. Bruce; Song, Shuangqi
2015-12-22
A hair treatment process for providing dispersed colors by light diffraction including (a) coating the hair with a material comprising a polymer, (b) pressing the hair with a pressing device including one or more surfaces, and (c) forming a secondary nanostructured surface pattern on the hair that is complementary to the primary nanostructured surface pattern on the one or more surfaces of the pressing device. The secondary nanostructured surface pattern diffracts light into dispersed colors that are visible on the hair. The section of the hair is pressed with the pressing device for from about 1 to 55 seconds. The polymer has a glass transition temperature from about 55.degree. C. to about 90.degree. C. The one or more surfaces include a primary nanostructured surface pattern.
Zu, Yanqun; Bock, Laurent; Schvartz, Christian; Colinet, Gilles; Li, Yuan
2011-01-01
Field investigations were conducted to measure subsoil trace element content and factors influencing content in an intensive periurban market garden in Chenggong County, Yunnan Province, South-West China. The area was divided into three different geomorphological units: specifically, mountain (M), transition (T) and lacustrine (L). Mean trace element content in subsoil were determined for Pb (58.2 mg/kg), Cd (0.89 mg/kg), Cu (129.2 mg/kg), and Zn (97.0 mg/kg). Strong significant relationships between trace element content in topsoil and subsoil were observed. Both Pb and Zn were accumulated in topsoil (RTS (ratio of mean trace element in topsoil to subsoil) of Pb and Zn > or =1.0) and Cd and Cu in subsoil (RTS of Cd and Cu < or = 1.0). Subsoil trace element content was related to relief, stoniness, soil color, clay content, and cation exchange capacity. Except for 7.5 YR (yellow-red) color, trace element content increased with color intensity from brown to reddish brown. Significant positive relationships were observed between Fe content and that of Pb and Cu. Trace element content in mountain unit subsoil was higher than in transition and lacustrine units (M > T > L), except for Cu (T > M > L). Mean trace element content in calcareous subsoil was higher than in sandstone and shale. Mean trace element content in clay texture subsoil was higher than in sandy and sandy loam subsoil, and higher Cu and Zn content in subsoil with few mottles. It is possible to model Pb, Cd, Cu, and Zn distribution in subsoil physico-chemical characteristics to help improve agricultural practice.
Automatic differentiation of melanoma and clark nevus skin lesions
NASA Astrophysics Data System (ADS)
LeAnder, R. W.; Kasture, A.; Pandey, A.; Umbaugh, S. E.
2007-03-01
Skin cancer is the most common form of cancer in the United States. Although melanoma accounts for just 11% of all types of skin cancer, it is responsible for most of the deaths, claiming more than 7910 lives annually. Melanoma is visually difficult for clinicians to differentiate from Clark nevus lesions which are benign. The application of pattern recognition techniques to these lesions may be useful as an educational tool for teaching physicians to differentiate lesions, as well as for contributing information about the essential optical characteristics that identify them. Purpose: This study sought to find the most effective features to extract from melanoma, melanoma in situ and Clark nevus lesions, and to find the most effective pattern-classification criteria and algorithms for differentiating those lesions, using the Computer Vision and Image Processing Tools (CVIPtools) software package. Methods: Due to changes in ambient lighting during the photographic process, color differences between images can occur. These differences were minimized by capturing dermoscopic images instead of photographic images. Differences in skin color between patients were minimized via image color normalization, by converting original color images to relative-color images. Relative-color images also helped minimize changes in color that occur due to changes in the photographic and digitization processes. Tumors in the relative-color images were segmented and morphologically filtered. Filtered, relative-color, tumor features were then extracted and various pattern-classification schemes were applied. Results: Experimentation resulted in four useful pattern classification methods, the best of which was an overall classification rate of 100% for melanoma and melanoma in situ (grouped) and 60% for Clark nevus. Conclusion: Melanoma and melanoma in situ have feature parameters and feature values that are similar enough to be considered one class of tumor that significantly differs from Clark nevus. Consequently, grouping melanoma and melanoma in situ together achieves the best results in classifying and automatically differentiating melanoma from Clark nevus lesions.
Environmental fog/rain visual display system for aircraft simulators
NASA Technical Reports Server (NTRS)
Chase, W. D. (Inventor)
1982-01-01
An environmental fog/rain visual display system for aircraft simulators is described. The electronic elements of the system include a real time digital computer, a caligraphic color display which simulates landing lights of selective intensity, and a color television camera for producing a moving color display of the airport runway as depicted on a model terrain board. The mechanical simulation elements of the system include an environmental chamber which can produce natural fog, nonhomogeneous fog, rain and fog combined, or rain only. A pilot looking through the aircraft wind screen will look through the fog and/or rain generated in the environmental chamber onto a viewing screen with the simulated color image of the airport runway thereon, and observe a very real simulation of actual conditions of a runway as it would appear through actual fog and/or rain.
Quality issues in blue noise halftoning
NASA Astrophysics Data System (ADS)
Yu, Qing; Parker, Kevin J.
1998-01-01
The blue noise mask (BNM) is a halftone screen that produces unstructured visually pleasing dot patterns. The BNM combines the blue-noise characteristics of error diffusion and the simplicity of ordered dither. A BNM is constructed by designing a set of interdependent binary patterns for individual gray levels. In this paper, we investigate the quality issues in blue-noise binary pattern design and mask generation as well as in application to color reproduction. Using a global filtering technique and a local 'force' process for rearranging black and white pixels, we are able to generate a series of binary patterns, all representing a certain gray level, ranging from white-noise pattern to highly structured pattern. The quality of these individual patterns are studied in terms of low-frequency structure and graininess. Typically, the low-frequency structure (LF) is identified with a measurement of the energy around dc in the spatial frequency domain, while the graininess is quantified by a measurement of the average minimum distance (AMD) between minority dots as well as the kurtosis of the local kurtosis distribution (KLK) for minority pixels of the binary pattern. A set of partial BNMs are generated by using the different patterns as unique starting 'seeds.' In this way, we are able to study the quality of binary patterns over a range of gray levels. We observe that the optimality of a binary pattern for mask generation is related to its own quality mertirc values as well as the transition smoothness of those quality metric values over neighboring levels. Several schemes have been developed to apply blue-noise halftoning to color reproduction. Different schemes generate halftone patterns with different textures. In a previous paper, a human visual system (HVS) model was used to study the color halftone quality in terms of luminance and chrominance error in CIELAB color space. In this paper, a new series of psycho-visual experiments address the 'preferred' color rendering among four different blue noise halftoning schemes. The experimental results will be interpreted with respect to the proposed halftone quality metrics.
The reasons for the color green fluorite Mehmandooye cover using UV spectroscopy and XRF results
NASA Astrophysics Data System (ADS)
Pirzadeh, Sara; Zahiri, Reza
2016-04-01
Fluorite mineral or fluorine with chemical formula CaF2 is most important mineralfluor in nature. This mineral crystallization to colors yellow, green, pink, blue, purple, colorless and sometimes black andin cubic system crystallized.assemi transparent and glass with polished.fluoritethe purity include 48/9% fluoreand 51/9% calcium. How the creation colors in minerals different greatly indebted to Kurt Nassau research from Bell Labs, Murray Hill, New Jersey.almostall the mechanisms that cause color in minerals, are the result of the interaction of light waves with the electrons The main factors affecting the color generation include the following: 1)the presence of a constructive element inherent (essential ingredient mineral composition) 2)The presence of a minor impurities (such a element as involved in latticesolid solution) 3) appearancedefects in the crystal structure 4) There are some physical boundaries with distances very small and delicate, like blades out of the solution (which may be the play of colors or Chatvyansy) 5) Mixing mechanical impurities dispersed in a host mineral Based on the results of the analysis, XRF and UV spectrum and also based on the results of ICP, because the color green fluorite examined, the focus color (F_center) and also the presence of some elementsintermediate (such as Y (yttrium). [1] Bill, H., Calas, G. Color centres associated rare earth ions and the origin of coloration in natural fluorites// PhysChem Min, (1978), v 3, pp. 117-131.
NASA Astrophysics Data System (ADS)
Bianconi, Francesco; Bello-Cerezo, Raquel; Napoletano, Paolo
2018-01-01
Texture classification plays a major role in many computer vision applications. Local binary patterns (LBP) encoding schemes have largely been proven to be very effective for this task. Improved LBP (ILBP) are conceptually simple, easy to implement, and highly effective LBP variants based on a point-to-average thresholding scheme instead of a point-to-point one. We propose the use of this encoding scheme for extracting intra- and interchannel features for color texture classification. We experimentally evaluated the resulting improved opponent color LBP alone and in concatenation with the ILBP of the local color contrast map on a set of image classification tasks over 9 datasets of generic color textures and 11 datasets of biomedical textures. The proposed approach outperformed other grayscale and color LBP variants in nearly all the datasets considered and proved competitive even against image features from last generation convolutional neural networks, particularly for the classification of biomedical images.
NASA Astrophysics Data System (ADS)
Auger, Jean-Claude; McLoughlin, Daragh
2017-01-01
We study the color fading of paints films composed of mixtures of white rutile titanium dioxide and yellow arylide pigments dispersed in two polymer binders at different volume concentrations. The samples were exposed to ultraviolet radiations in an accelerated weathering tester during three weeks. The measured patterns in color variations appeared to be independent of the chemistry of the binders. We then developed a theoretical framework, based on the Radiative transfer Equation of light and the One Particle T-Matrix formalism to simulate the color fading process. The loss of color is correlated to the progressive decrease of the original colored pigment volume-filling fraction as the destructive UV radiations penetrate deeper into the films. The calculated patterns of color variations of paints film composed by mixtures of white pigments with yellow Cadmium Sulfate (CdS) and red Cerium Sulfide (Ce2S3) pigments showed the same trend as that seen experimentally.
NASA Astrophysics Data System (ADS)
Petrov, Alexander P.
1996-09-01
Classic colorimetry and the traditionally used color space do not represent all perceived colors (for example, browns look dark yellow in colorimetric conditions of observation) so, the specific goal of this work is to suggest another concept of color and to prove that the corresponding set of colors is complete. The idea of our approach attributing color to surface patches (not to the light) immediately ties all the problems of color perception and vision geometry. The equivalence relation in the linear space of light fluxes F established by a procedure of colorimetry gives us a 3D color space H. By definition we introduce a sample (sigma) (surface patch) as a linear mapping (sigma) : L yields H, where L is a subspace of F called the illumination space. A Dedekind structure of partial order can be defined in the set of the samples: two samples (alpha) and (Beta) belong to one chromatic class if ker(alpha) equals ker(Beta) and (alpha) > (Beta) if ker(alpha) ker(Beta) . The maximal elements of this chain create the chromatic class BLACK. There can be given geometrical arguments for L to be 3D and it can be proved that in this case the minimal element of the above Dedekind structure is unique and the corresponding chromatic class is called WHITE containing the samples (omega) such that ker(omega) equals {0} L. Color is defined as mapping C: H yields H and assuming color constancy the complete set of perceived colors is proved to be isomorphic to a subset C of 3 X 3 matrices. This subset is convex, limited and symmetrical with E/2 as the center of symmetry. The problem of metrization of the color space C is discussed and a color metric related to shape, i.e., to vision geometry, is suggested.
Han, Ting; Jia, Zhe; Zhang, Hui; Liu, Huan; Gao, Yan; Zhang, Ying; Lin, Qing-Hua; Xu, Shu-Ya; Xu, Xin-Fang; Li, Xiang-Ri
2016-12-01
The fluoritum is used for gynecology frequently and it's for those diseases: kidney yang deficiency, Gong cold sterility, palpitation due to fright, insomnia and dreaminess and cold cough. It's ruled in Chinese Pharmacopoeia (1985 edition) that the fluoritum originates from fluorite which belongs to fluoride minerals. Its main content is CaF2. The colors are of differents grades with purple or green. In the market, there are large differences in quality and it has various colors. Besides of the ruled color of purple and green, white and yellow are also common colors. By digging into and analysis the relevant research literature of fluorite which belongs to fluoride minerals, colors and coloration mechanism of fluorite are summarized in this paper.Natural fluorite is the mineral which has the most species of colors in nature. The different colors of fluorite are mainly caused by the impurity elements. At present, there are mainly about the coloration mechanism of fluorite: rare earth ions (4fN ions), color center, inclusions, crystalline domains or sub microscopic inclusions. The green of fluorite is produced by 570 nm and 305 nm absorption peaks which are caused by Sm2+ and compensated ions Na+ centers generated color center. The yellow of fluorite is produced by the joining of transition element, resulting in the formation of charge transfer between the crystal ions and the formation of O2-O32- ion molecule.The black of fluorite, mainly was attributed to the existence of a higher degree of evolution of organic matter. In this passage,suggestions for modification of the properties of fluoritum in Chinese Pharmacopoeia are put forward. Copyright© by the Chinese Pharmaceutical Association.
Multicolor microcontact printing of proteins on nanoporous surface for patterned immunoassay
NASA Astrophysics Data System (ADS)
Ng, Elaine; Gopal, Ashwini; Hoshino, Kazunori; Zhang, Xiaojing
2011-07-01
The large scale patterning of therapeutic proteins is a key to the efficient design, characterization, and production of biologics for cost effective, high throughput, and point-of-care detection and analysis system. We demonstrate an efficient method for protein deposition and adsorption on nanoporous silica substrates in specific patterns using a method called "micro-contact printing". Multiple color-tagged proteins can be printed through sequential application of such micro-patterning technique. Two groups of experiments were performed. In the first group, the protein stamp was aligned precisely with the printing sites, where the stamp was applied multiple times. Optimal conditions were identified for protein transfer and adsorption using the pore size of 4 nm and thickness of 30 nm porous silica thin film. In the second group, we demonstrate the patterning of two-color rabbit immunoglobin labeled with fluorescein isothiocyanate and tetramethyl rhodamine iso-thiocyanate on porous silica substrates that have a pore size 4 nm, porosity 57% and thickness of the porous layer 30 nm. A pair of protein stamps, with corresponding alignment markings and coupled patterns, were aligned and used to produce a two-colored stamp pattern of proteins on porous silica. Different colored proteins can be applied to exemplify the diverse protein composition within a sample. This method of multicolor microcontact printing can be used to perform a fluorescence-based patterned enzyme-linked immunosorbent assay to detect the presence of various proteins within a sample.
NASA Astrophysics Data System (ADS)
Fan, Yang-Tung; Peng, Chiou-Shian; Chu, Cheng-Yu
2000-12-01
New markets are emerging for digital electronic image device, especially in visual communications, PC camera, mobile/cell phone, security system, toys, vehicle image system and computer peripherals for document capture. To enable one-chip image system that image sensor is with a full digital interface, can make image capture devices in our daily lives. Adding a color filter to such image sensor in a pattern of mosaics pixel or wide stripes can make image more real and colorful. We can say 'color filter makes the life more colorful color filter is? Color filter means can filter image light source except the color with specific wavelength and transmittance that is same as color filter itself. Color filter process is coating and patterning green, red and blue (or cyan, magenta and yellow) mosaic resists onto matched pixel in image sensing array pixels. According to the signal caught from each pixel, we can figure out the environment image picture. Widely use of digital electronic camera and multimedia applications today makes the feature of color filter becoming bright. Although it has challenge but it is very worthy to develop the process of color filter. We provide the best service on shorter cycle time, excellent color quality, high and stable yield. The key issues of advanced color process have to be solved and implemented are planarization and micro-lens technology. Lost of key points of color filter process technology have to consider will also be described in this paper.
Development of noise emission measurement specifications for color printing multifunctional devices
NASA Astrophysics Data System (ADS)
Kimizuka, Ikuo
2005-09-01
Color printing (including copying) is becoming more popular application in home, as well as in offices. Existing de jule and/or industrial standards (such as ISO 7779, ECMA-74, ANSI S12.10 series, etc.), however, state only monochrome patterns, which are mainly intended for acoustic noise testing of mechanical impact type printers. This paper discusses the key issues and corresponding resolutions for development of color printing patterns for acoustic noise measurements. The results of these technical works will be published by JBMS-74 (new industry standard of JBMIA within 2005), and hopefully be the technical basis of updating other standards mentioned above. This paper also shows the development processes and key features of proposed patterns.
ERIC Educational Resources Information Center
Texley, Juliana
2005-01-01
Colors are powerful tools for engaging children, from the youngest years onward. We hang brightly patterned mobiles above their cribs and help them learn the names of colors as they begin to record their own ideas in pictures and words. Colors can also open the door to an invisible world of electromagnetism, even when children can barely imagine…
Zoned chondrules in Semarkona: Evidence for high-and low-temperature processing
Grossman, J.N.; Alexander, C.M. O'D.; Wang, Jingyuan; Brearley, A.J.
2002-01-01
At least 15% of the low-FeO chondrules in Semarkona (LL3.0) have mesostases that are concentrically zoned in Na, with enrichments near the outer margins. We have studied zoned chondrules using electron microprobe methods (x-ray mapping plus quantitative analysis), ion micropobe analysis for trace elements and hydrogen isotopes, cathodoluminescence imaging, and transmission electron microscopy in order to determine what these objects can tell us about the environment in which chondrules formed and evolved. Mesostases in these chondrules are strongly zoned in all moderately volatile elements and H (interpreted as water). Calcium is depleted in areas of volatile enrichment. Titanium and Cr generally decrease toward the chondrule surfaces, whereas Al and Si may either increase or decrease, generally in opposite directions to one another; Mn follows Na in some chondrules but not in others; Fe and Mg are unzoned. D/H ratios increase in the water-rich areas of zoned chondrules. Mesostasis shows cathodoluminescence zoning in most zoned chondrules, with the brightest yellow color near the outside. Mesostasis in zoned chondrules appears to be glassy, with no evidence for devitrification. Systematic variations in zoning patterns among pyroxene- and olivine-rich chondrules may indicate that fractionation of low- and high-Ca pyroxene played some role in Ti, Cr, Mn, Si, Al, and some Ca zoning. But direct condensation of elements into hot chondrules, secondary melting of late condensates into the outer portions of chondrules, and subsolidus diffusion of elements into warm chondrules cannot account for the sub-parallel zoning profiles of many elements, the presence of H2O, or elemental abundance patterns. Zoning of moderately volatile elements and Ca may have been produced by hydration of chondrule glass without devitrification during aqueous alteration on the parent asteroid. This could have induced structural changes in the glass allowing rapid diffusion and exchange of elements between altered glass and surrounding matrix and rim material. Calcium was mainly lost during this process, and other nonvolatile elements may have been mobile as well. Some unzoned, low-FeO chondrules appear to have fully altered mesostasis.
Gella, Laxmi; Raman, Rajiv; Kulothungan, Vaitheeswaran; Pal, Swakshyar Saumya; Ganesan, Suganeswari; Srinivasan, Sangeetha; Sharma, Tarun
2017-01-01
Purpose: The purpose of this study is to assess color vision abnormalities in a cohort of subjects with type II diabetes and elucidate associated risk factors. Methods: Subjects were recruited from follow-up cohort of Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetics Study I. Six hundred and seventy-three eyes of 343 subjects were included from this population-based study. All subjects underwent detailed ophthalmic evaluation, including the Farnsworth-Munsell 100 hue test. Results: The prevalence of impaired color vision (ICV) was 43% (CI: 39.2–46.7). Risk factors for ICV were higher heart rate (odds ratio [OR]: 1.043, [1.023–1.064]) and a higher intraocular pressure (IOP) (OR: 1.086, [1.012–1.165]). Subjects with clinically significant macular edema (CSME) had three times higher chance of having ICV. C1, C2, and C3 are the commonly found Early Treatment Diabetic Retinopathy Study (ETDRS) patterns. The moment of inertia method showed that the angle did not reveal any specific pattern of color vision defect. Although the major and minor radii were high in those with ICV, we did not observe polarity. Confusion index was high in subjects with ICV, indicating a severe color vision defect. Conclusions: The prevalence of ICV was 43% among subjects with type II diabetes. The most commonly observed patterns were increasing severities of the blue–yellow defect on ETDRS patterns, but no specific pattern was observed at the moment of inertia analysis. The presence of CSME, a higher heart rate, and IOP was significant risk factors for ICV. This functional impairment in color vision could significantly contribute to morbidity among subjects with diabetes. PMID:29044066
Gella, Laxmi; Raman, Rajiv; Kulothungan, Vaitheeswaran; Pal, Swakshyar Saumya; Ganesan, Suganeswari; Srinivasan, Sangeetha; Sharma, Tarun
2017-10-01
The purpose of this study is to assess color vision abnormalities in a cohort of subjects with type II diabetes and elucidate associated risk factors. Subjects were recruited from follow-up cohort of Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetics Study I. Six hundred and seventy-three eyes of 343 subjects were included from this population-based study. All subjects underwent detailed ophthalmic evaluation, including the Farnsworth-Munsell 100 hue test. The prevalence of impaired color vision (ICV) was 43% (CI: 39.2-46.7). Risk factors for ICV were higher heart rate (odds ratio [OR]: 1.043, [1.023-1.064]) and a higher intraocular pressure (IOP) (OR: 1.086, [1.012-1.165]). Subjects with clinically significant macular edema (CSME) had three times higher chance of having ICV. C1, C2, and C3 are the commonly found Early Treatment Diabetic Retinopathy Study (ETDRS) patterns. The moment of inertia method showed that the angle did not reveal any specific pattern of color vision defect. Although the major and minor radii were high in those with ICV, we did not observe polarity. Confusion index was high in subjects with ICV, indicating a severe color vision defect. The prevalence of ICV was 43% among subjects with type II diabetes. The most commonly observed patterns were increasing severities of the blue-yellow defect on ETDRS patterns, but no specific pattern was observed at the moment of inertia analysis. The presence of CSME, a higher heart rate, and IOP was significant risk factors for ICV. This functional impairment in color vision could significantly contribute to morbidity among subjects with diabetes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, Neville R.
Objective: We will research how short (ns) and ultrashort (fs) laser pulses interact with the surfaces of various materials to create complex color layers and morphological patterns. Method: We are investigating the site-specific, formation of microcolor features. Also, research includes a fundamental study of the physics underlying periodic ripple formation during femtosecond laser irradiation. Status of effort: Laser induced color markings were demonstrated on an increased number of materials (including metal thin films) and investigated for optical properties and microstructure. Technology that allows for marking curved surfaces (and large areas) has been implemented. We have used electro-magnetic solvers to modelmore » light-solid interactions leading to periodic surface ripple patterns. This includes identifying the roles of surface plasmon polaritons. Goals/Milestones: Research corrosion resistance of oxide color markings (salt spray, fog, polarization tests); Through modeling, investigate effects of multi-source scattering and interference on ripple patterns; Investigate microspectrophotometry for mapping color; and Investigate new methods for laser color marking curved surfaces and large areas.« less
Hanlon, R.T.; Chiao, C.-C.; Mäthger, L.M.; Barbosa, A.; Buresch, K.C.; Chubb, C.
2008-01-01
Individual cuttlefish, octopus and squid have the versatile capability to use body patterns for background matching and disruptive coloration. We define—qualitatively and quantitatively—the chief characteristics of the three major body pattern types used for camouflage by cephalopods: uniform and mottle patterns for background matching, and disruptive patterns that primarily enhance disruptiveness but aid background matching as well. There is great variation within each of the three body pattern types, but by defining their chief characteristics we lay the groundwork to test camouflage concepts by correlating background statistics with those of the body pattern. We describe at least three ways in which background matching can be achieved in cephalopods. Disruptive patterns in cuttlefish possess all four of the basic components of ‘disruptiveness’, supporting Cott's hypotheses, and we provide field examples of disruptive coloration in which the body pattern contrast exceeds that of the immediate surrounds. Based upon laboratory testing as well as thousands of images of camouflaged cephalopods in the field (a sample is provided on a web archive), we note that size, contrast and edges of background objects are key visual cues that guide cephalopod camouflage patterning. Mottle and disruptive patterns are frequently mixed, suggesting that background matching and disruptive mechanisms are often used in the same pattern. PMID:19008200
ERIC Educational Resources Information Center
Klopak, Ken
2008-01-01
The seventh- and eight-grade students in the author's art program sharpened up their eyesight and their use of color charts in preparation for an op art project. Op art is short for "optical patterns and designs." The goal of the project is to create and organize line and color into shapes, patterns, and design in symmetrical and asymmetrical…
Molecular genetic analysis of the Phaseolus vulgaris P locus
USDA-ARS?s Scientific Manuscript database
Common bean market classes are distinguished by their many seed colors, patterns, and size. At least 23 genes, acting independently or in an epistatic manner, affect the seed coat color and pattern. The P locus which is described as the “ground factor” by Emerson, has multiple alleles and controls a...
Structural color and its interaction with other color-producing elements: perspectives from spiders
NASA Astrophysics Data System (ADS)
Hsiung, Bor-Kai; Blackledge, Todd A.; Shawkey, Matthew D.
2014-09-01
Structural color is produced when nanostructures called schemochromes alter light reflected from a surface through different optic principles, in contrast with other types of colors that are produced when pigments selectively absorb certain wavelengths of light. Research on biogenic photonic nanostructures has focused primarily on bird feathers, butterfly wings and beetle elytra, ignoring other diverse groups such as spiders. We argue that spiders are a good model system to study the functions and evolution of colors in nature for the following reasons. First, these colors clearly function in spiders such as the tarantulas outside of sexual selection, which is likely the dominant driver of the evolution of structural colors in birds and butterflies. Second, within more than 44,000 currently known spider species, colors are used in every possible way based on the same sets of relatively simple materials. Using spiders, we can study how colors evolve to serve different functions under a variety of combinations of driving forces, and how those colors are produced within a relatively simple system. Here, we first review the different color-producing materials and mechanisms (i.e., light absorbing, reflecting and emitting) in birds, butterflies and beetles, the interactions between these different elements, and the functions of colors in different organisms. We then summarize the current state of knowledge of spider colors and compare it with that of birds and insects. We then raise questions including: 1. Could spiders use fluorescence as a mechanism to protect themselves from UV radiation, if they do not have the biosynthetic pathways to produce melanins? 2. What functions could color serve for nearly blind tarantulas? 3. Why are only multilayer nanostructures (thus far) found in spiders, while birds and butterflies use many diverse nanostructures? And, does this limit the diversity of structural colors found in spiders? Answering any of these questions in the future will bring spiders to the forefront of the study of structural colors in nature.
A Coded Structured Light System Based on Primary Color Stripe Projection and Monochrome Imaging
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2013-01-01
Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy. PMID:24129018
A coded structured light system based on primary color stripe projection and monochrome imaging.
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2013-10-14
Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy.
Nam, Hyunmoon; Song, Kyungjun; Ha, Dogyeong; Kim, Taesung
2016-01-01
Photonic crystal structures can be created to manipulate electromagnetic waves so that many studies have focused on designing photonic band-gaps for various applications including sensors, LEDs, lasers, and optical fibers. Here, we show that mono-layered, self-assembled photonic crystals (SAPCs) fabricated by using an inkjet printer exhibit extremely weak structural colors and multiple colorful holograms so that they can be utilized in anti-counterfeit measures. We demonstrate that SAPC patterns on a white background are covert under daylight, such that pattern detection can be avoided, but they become overt in a simple manner under strong illumination with smartphone flash light and/or on a black background, showing remarkable potential for anti-counterfeit techniques. Besides, we demonstrate that SAPCs yield different RGB histograms that depend on viewing angles and pattern densities, thus enhancing their cryptographic capabilities. Hence, the structural colorations designed by inkjet printers would not only produce optical holograms for the simple authentication of many items and products but also enable a high-secure anti-counterfeit technique. PMID:27487978
Automated navigation assessment for earth survey sensors using island targets
NASA Technical Reports Server (NTRS)
Patt, Frederick S.; Woodward, Robert H.; Gregg, Watson W.
1997-01-01
An automated method has been developed for performing navigation assessment on satellite-based Earth sensor data. The method utilizes islands as targets which can be readily located in the sensor data and identified with reference locations. The essential elements are an algorithm for classifying the sensor data according to source, a reference catalog of island locations, and a robust pattern-matching algorithm for island identification. The algorithms were developed and tested for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), an ocean color sensor. This method will allow navigation error statistics to be automatically generated for large numbers of points, supporting analysis over large spatial and temporal ranges.
Xiao, Youping; Kavanau, Christopher; Bertin, Lauren; Kaplan, Ehud
2011-01-01
Many studies have provided evidence for the existence of universal constraints on color categorization or naming in various languages, but the biological basis of these constraints is unknown. A recent study of the pattern of color categorization across numerous languages has suggested that these patterns tend to avoid straddling a region in color space at or near the border between the English composite categories of "warm" and "cool". This fault line in color space represents a fundamental constraint on color naming. Here we report that the two-way categorization along the fault line is correlated with the sign of the L- versus M-cone contrast of a stimulus color. Moreover, we found that the sign of the L-M cone contrast also accounted for the two-way clustering of the spatially distributed neural responses in small regions of the macaque primary visual cortex, visualized with optical imaging. These small regions correspond to the hue maps, where our previous study found a spatially organized representation of stimulus hue. Altogether, these results establish a direct link between a universal constraint on color naming and the cone-specific information that is represented in the primate early visual system.
Full color organic light-emitting devices with microcavity structure and color filter.
Zhang, Weiwei; Liu, Hongyu; Sun, Runguang
2009-05-11
This letter demonstrated the fabrication of the full color passive matrix organic light-emitting devices based on the combination of the microcavity structure, color filter and a common white polymeric OLED. In the microcavity structure, patterned ITO terraces with different thickness were used as the anode as well as cavity spacer. The primary color emitting peaks were originally generated by the microcavity and then the second resonance peak was absorbed by the color filter.
3-Dimensional shear wave elastography of breast lesions
Chen, Ya-ling; Chang, Cai; Zeng, Wei; Wang, Fen; Chen, Jia-jian; Qu, Ning
2016-01-01
Abstract Color patterns of 3-dimensional (3D) shear wave elastography (SWE) is a promising method in differentiating tumoral nodules recently. This study was to evaluate the diagnostic accuracy of color patterns of 3D SWE in breast lesions, with special emphasis on coronal planes. A total of 198 consecutive women with 198 breast lesions (125 malignant and 73 benign) were included, who underwent conventional ultrasound (US), 3D B-mode, and 3D SWE before surgical excision. SWE color patterns of Views A (transverse), T (sagittal), and C (coronal) were determined. Sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC) were calculated. Distribution of SWE color patterns was significantly different between malignant and benign lesions (P = 0.001). In malignant lesions, “Stiff Rim” was significantly more frequent in View C (crater sign, 60.8%) than in View A (51.2%, P = 0.013) and View T (54.1%, P = 0.035). AUC for combination of “Crater Sign” and conventional US was significantly higher than View A (0.929 vs 0.902, P = 0.004) and View T (0.929 vs 0.907, P = 0.009), and specificity significantly increased (90.4% vs 78.1%, P = 0.013) without significant change in sensitivity (85.6% vs 88.0%, P = 0.664) as compared with conventional US. In conclusion, combination of conventional US with 3D SWE color patterns significantly increased diagnostic accuracy, with “Crater Sign” in coronal plane of the highest value. PMID:27684820
Genetics of Ustilago violacea. XXXII. Genetic evidence for transposable elements.
Garber, E D; Ruddat, M
1994-12-01
Crosses between Ustilago violacea mutant strains with different color phenotypes that were derived from the 1.A1 and 2.A2 laboratory strains yielded, as expected, bisectored teliospore colonies with the parental colors as well as the a-1 and the a-2 mating-types. Generally, wild teliospore collections usually produced sporidia of both mating-types, providing two-mating-type (TMT) strains. Occasionally, however, sporidia with only one mating-type allele, a-1 or a-2, were obtained from teliospores, providing one-mating-type (OMT) strains. Crosses between OMT and laboratory strains with different color phenotypes gave (1) bisectored teliospore colonies with the parental colors or colonies with a parental color and a nonparental color and (2) nonsectored colonies with the nonparental color or with the parental color. The frequencies for the occurrence of non-parental color ranged from 41% to 93%, depending on the strain. The yield of teliospore colonies was usually reduced for these crosses. In many of these teliospore colonies, morphologically-altered sporidia (MAS phenotype) were observed. The morphology and the size of the sporidia with the MAS phenotype differed from those of teliospore colonies of the crosses between the laboratory strains. In addition, these sporidia did not form conjugants. A cross involving the TMT strains C449 yielded the MAS phenotype as well as a high incidence of tetrad colonies with a nonparental color. The high degree of instability of the parental color phenotypes, and the high frequency of the appearance of nonparental color phenotypes as well as the appearance of the MAS phenotype, are in accord with the presence of active and inactive transposable elements in the OMT strains, TMT strains, and laboratory strains.
Kline, Richard J.; Khan, Izhar A.; Holt, G. Joan
2011-01-01
Hermaphroditism, associated with territoriality and dominance behavior, is common in the marine environment. While male sex-specific coloration patterns have been documented in groupers, particularly during the spawning season, few data regarding social structure and the context for these color displays are available. In the present study, we define the social structure and male typical behavior of rock hind (Epinephelus adscensionis) in the wild. In addition, we detail the captive conditions and time period necessary to induce the onset of the sex-specific coloration and sexual change. At six oil production platform locations in the Gulf of Mexico, rock hind social group size and typical male rock hind social behavior were documented. We observed a rapid temporary color display in rock hind that could be turned on and off within three seconds and was used for confronting territory intruders and displays of aggression towards females. The male-specific “tuxedo” pattern consists of a bright yellow tail, a body with alternating dark brown and white patches and a dark bar extending from the upper mandible to the operculum. Identification and size ranges of male, female and intersex fish collected from oil platforms were determined in conjunction with gonadal histology. Rock hind social order is haremic with one dominant male defending a territory and a linear dominance hierarchy among individuals. In five captive experiments, the largest remaining female rock hind displayed the male specific color pattern within 32d after dominant male removal from the social group. To our knowledge, this is the first evidence in a grouper species of color patterning used to display territoriality and dominance outside of spawning aggregations. The behavioral paradigm described here is a key advance that will enable mechanistic studies of this complex sex change process. PMID:21647429
Avian vision and the evolution of egg color mimicry in the common cuckoo.
Stoddard, Mary Caswell; Stevens, Martin
2011-07-01
Coevolutionary arms races are a potent force in evolution, and brood parasite-host dynamics provide classical examples. Different host-races of the common cuckoo, Cuculus canorus, lay eggs in the nests of other species, leaving all parental care to hosts. Cuckoo eggs often (but not always) appear to match remarkably the color and pattern of host eggs, thus reducing detection by hosts. However, most studies of egg mimicry focus on human assessments or reflectance spectra, which fail to account for avian vision. Here, we use discrimination and tetrachromatic color space modeling of bird vision to quantify egg background and spot color mimicry in the common cuckoo and 11 of its principal hosts, and we relate this to egg rejection by different hosts. Egg background color and luminance are strongly mimicked by most cuckoo host-races, and mimicry is better when hosts show strong rejection. We introduce a novel measure of color mimicry-"color overlap"-and show that cuckoo and host background colors increasingly overlap in avian color space as hosts exhibit stronger rejection. Finally, cuckoos with better background color mimicry also have better pattern mimicry. Our findings reveal new information about egg mimicry that would be impossible to derive by the human eye. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Color Charts, Esthetics, and Subjective Randomness
ERIC Educational Resources Information Center
Sanderson, Yasmine B.
2012-01-01
Color charts, or grids of evenly spaced multicolored dots or squares, appear in the work of modern artists and designers. Often the artist/designer distributes the many colors in a way that could be described as "random," that is, without an obvious pattern. We conduct a statistical analysis of 125 "random-looking" art and design color charts and…
Guédot, Christelle; Bosch, Jordi; James, Rosalind R; Kemp, William P
2006-06-01
ABSTRACT In alfalfa, Medicago sativa L., seed production where high bee densities are released, alfalfa leafcutting bee, Megachile rotundata (F.) (Hymenoptera: Megachilidae), females may enter several nesting holes before locating their nests. Such levels of "wrong hole" visits lead to an increase in the time spent by females locating their own nests, thereby decreasing alfalfa pollination efficiency and possibly healthy brood production. The objectives of this study were to determine the effect of different nesting board configurations in commercial alfalfa leafcutting bee shelters (separating nesting boards, applying a three-dimensional pattern to the boards, applying a color contrast pattern, or applying a combination of three-dimensional and color contrast patterns) on nest location performance, on the incidence of chalkbrood disease, and on the incidence of broodless provisions. Separating the nesting boards inside shelters improved the ability of females to locate their nests. An increase in nest location performance also occurred in boards with the three-dimensional pattern and the combined three-dimensional and color contrast pattern, compared with the uniform board (a standard configuration currently used commercially). The percentage of provisioned cells that were broodless was not statistically different between treatments, but the percentage of larvae infected with chalkbrood decreased by half in the three-dimensional board design, compared with the uniform board.
A Raven in a Coal Scuttle: Theodore Roosevelt & the Animal Coloration Controversy.
ERIC Educational Resources Information Center
Hendrick, Robert
1995-01-01
Recounts a debate between Theodore Roosevelt and Abbott Thayer in 1909-12 over whether animal coloration was an adaptation resulting from natural selection or whether the animal's environment acted directly on it to form its color patterns. (ZWH)
NASA Astrophysics Data System (ADS)
Hatipoğlu, Murat; Kibar, Rana; Çetin, Ahmet; Can, Nurdoğan; Helvacı, Cahit; Derin, H.
2011-07-01
Amethyst crystals on matrix specimens from the Dursunbey-Balıkesir region in Turkey have five representative purple color zonings: dark purple, light purple, lilac, orchid, and violet. The purple color zonings have been analyzed with optical absorption spectra in the visible wavelength region, chemical full trace element analyses (inductively coupled plasma-atomic emission spectroscopy and inductively coupled plasma-mass spectroscopy), and scanning electron microscopic images with high magnification. It can be proposed that the production of the purple color in amethyst crystals is due to three dominant absorption bands centered at 375, 530, and 675 nm, respectively. In addition, the purple color zonings are also due to four minor absorption bands centered at 435, 480, 620, and 760 nm. X-ray diffraction graphics of the investigated amethyst crystals indicate that these crystals are composed of a nearly pure alpha-quartz phase and do not include any moganite silica phase and/or other mineral implications. Trace element analyses of the amethyst crystals show five representative purple color zonings, suggesting that the absorption bands can be mainly attributed to extrinsic defects (chemical impurities). However, another important factor that influences all structural defects in amethyst is likely to be the gamma irradiation that exists during amethyst crystallization and its inclusion in host materials. This gamma irradiation originates from the large underlying intrusive granitoid body in the region of amethyst formation. Irradiation modifies the valence values of the impurity elements in the amethyst crystals. It is observed that the violet-colored amethyst crystals have the most stable and the least reversible coloration when exposed to strong light sources. This situation can be related to the higher impurity content of Fe (2.50 ppm), Co (3.1 ppm), Ni (38 ppm), Cu (17.9 ppm), Zn (10 ppm), Zr (3.9 ppm), and Mo (21.8 ppm).
Thresholded-Rewards Decision Problems: Acting Effectively in Timed Domains
2009-04-02
intermediate reward (score difference). 89 5.8 Regions covered by each role in each play. (a) RoboCup play. The defender’s region is colored with dark dots; the...colored with dark dots; the middle defender’s region is colored with a light checkerboard pattern, and the front defender’s region is colored with...defender’s region is colored with dark dots; the supporter’s region is colored with diagonal lines. The attacker’s region is the entire field. (b
Development of Instrumental Techniques for Color Assessment of Camouflage Patterns
ERIC Educational Resources Information Center
Fang, Gang
2012-01-01
Camouflage fabrics are produced on a large scale for use in the US military and other applications. One of the highest volume camouflage fabrics is known as the Universal Camouflage Pattern (UCP) which is produced for the US Department of Defense. At present, no standard measurement-based color quality control method exists for camouflage…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-19
... may: Also include natural or other non-man-made fibers; Be of any color, style, pattern, or weave..., twill, jacquard, or a combination of two or more colors, styles, patterns, and/or weave constructions... DEPARTMENT OF COMMERCE International Trade Administration [A-570-952] Narrow Woven Ribbons With...
An improved method for LCD displays colorimetric characterization
NASA Astrophysics Data System (ADS)
Li, Tong; Xie, Kai; Wang, Qiaojie; He, Nannan; Ye, Yushan
2018-03-01
The colorimetric characterization of the display can achieve the purpose of precisely controlling the color of the monitor. This paper describes an improved method for estimating the gamma value of liquid-crystal displays (LCDs) without using a measurement device was described by Xiao et al. It relies on observer's luminance matching by presenting eight half-tone patterns with luminance from 1/9 to 8/9 of the maximum value of each color channel. Since the previous method lacked partial low frequency information, we partially replaced the half-tone patterns. A large number of experiments show that the color difference is reduced from 3.726 to 2.835, and our half-tone pattern can better estimate the visual gamma value of LCDs.
Study on Coloration Mechanism of Chinese Ancient Ceramics by X-ray Absorption Near-edge Structure
NASA Astrophysics Data System (ADS)
Peng, Y. H.; Xie, Z.; He, J. F.; Liu, Q. H.; Pan, Z. Y.; Cheng, W. R.; Wei, S. Q.
2013-04-01
The Fe K-edge X-ray absorption near-edge structure (XANES) spectra of a series of ceramic shards were measured by fluorescence mode to reveal the color-generating techniques of Chinese porcelain. The analysis disclosed relationships among the chemical form of the iron, the firing conditions and the colors of the ceramics. The results indicate that the coloration for different ceramics depend on the valence states of iron as the main color element in glaze and the proportion of Fe2+ and Fe3+ was attributed to the baking technology. The findings provide important information for archaeologist on the coloration researches.
Design of electrochromic window technology with single and multi-color patterns
NASA Astrophysics Data System (ADS)
Kim, Sooyeun
The electrochromic window (ECW) technology has gained a lot of attention due to its current and potential applications for office, vehicle and aircraft windows. Center for Intelligent Materials and System (CIMS) at University of Washington has proposed the new design of an ECW for its high contrast, rapid switching speed and long cyclic lifetime. Three primary components of the ECW are an electrochromic (EC) layer, an ion conducting layer and an ion storage layer. A V2O5-TiO2 (V/Ti=70/30) film, fabricated by a sol-gel electrophoretic deposition, was proposed as an ion storage layer. The film was characterized by X-ray diffraction, a scanning probe microscope and impedance spectroscopy. Its optical and electrochemical properties were investigated. The poly-(3,3-dimethy1-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine) film was suggested as an EC layer. Its electropolymerization kinetics and optical and electrochemical properties were reported. The V2O 5-TiO2 film based ECW was successfully fabricated and examined. The ECW exhibited its high electrochromic contrast, rapid switching speed and long-term cyclic durability. Its contrast (Delta%T = Tmax-T min) was 68%T with a minimum transmittance of 1% at 580 nm wavelength. The ECW took five seconds for complete coloration, while it did four seconds for complete bleaching. Its asymmetric switching behavior was explained by modeling the ECW as a simple equivalent circuit. The cyclic durability of the ECW was measured over 150,000 cycles. It revealed the contrast degradation of only 2% at 580 nm wavelength. The ECW dimensions were scaled up to 300 x 300 mm2, demonstrating their high contrast and long-term electrochemical cycle stability. Multi-color pattern electrochromic window technology was considered to evolve toward higher definition devices. Patterning of electrodes was essential to fabricate multi-color pattern ECWs which required the separation of adjacent electrodes. New fabrication procedures to create a pattern electrode were challenged. Two monomers were selectively electropolymerized on the pattern electrode in order to display a set of colors. The successful construction of a two-color pattern ECW was based on the sandwich-type configuration.
Color- and motion-specific units in the tectum opticum of goldfish.
Gruber, Morna; Behrend, Konstantin; Neumeyer, Christa
2016-01-05
Extracellular recordings were performed from 69 units at different depths between 50 and [Formula: see text]m below the surface of tectum opticum in goldfish. Using large field stimuli (86[Formula: see text] visual angle) of 21 colored HKS-papers we were able to record from 54 color-sensitive units. The colored papers were presented for 5[Formula: see text]s each. They were arranged in the sequence of the color circle in humans separated by gray of medium brightness. We found 22 units with best responses between orange, red and pink. About 12 of these red-sensitive units were of the opponent "red-ON/blue-green-OFF" type as found in retinal bipolar- and ganglion cells as well. Most of them were also activated or inhibited by black and/or white. Some units responded specifically to red either with activation or inhibition. 18 units were sensitive to blue and/or green, 10 of them to both colors and most of them to black as well. They were inhibited by red, and belonged to the opponent "blue-green-ON/red-OFF" type. Other units responded more selectively either to blue, to green or to purple. Two units were selectively sensitive to yellow. A total of 15 units were sensitive to motion, stimulated by an excentrically rotating black and white random dot pattern. Activity of these units was also large when a red-green random dot pattern of high L-cone contrast was used. Activity dropped to zero when the red-green pattern did not modulate the L-cones. Neither of these motion selective units responded to any color. The results directly show color-blindness of motion vision, and confirm the hypothesis of separate and parallel processing of "color" and "motion".
Abrupt skin lesion border cutoff measurement for malignancy detection in dermoscopy images.
Kaya, Sertan; Bayraktar, Mustafa; Kockara, Sinan; Mete, Mutlu; Halic, Tansel; Field, Halle E; Wong, Henry K
2016-10-06
Automated skin lesion border examination and analysis techniques have become an important field of research for distinguishing malignant pigmented lesions from benign lesions. An abrupt pigment pattern cutoff at the periphery of a skin lesion is one of the most important dermoscopic features for detection of neoplastic behavior. In current clinical setting, the lesion is divided into a virtual pie with eight sections. Each section is examined by a dermatologist for abrupt cutoff and scored accordingly, which can be tedious and subjective. This study introduces a novel approach to objectively quantify abruptness of pigment patterns along the lesion periphery. In the proposed approach, first, the skin lesion border is detected by the density based lesion border detection method. Second, the detected border is gradually scaled through vector operations. Then, along gradually scaled borders, pigment pattern homogeneities are calculated at different scales. Through this process, statistical texture features are extracted. Moreover, different color spaces are examined for the efficacy of texture analysis. The proposed method has been tested and validated on 100 (31 melanoma, 69 benign) dermoscopy images. Analyzed results indicate that proposed method is efficient on malignancy detection. More specifically, we obtained specificity of 0.96 and sensitivity of 0.86 for malignancy detection in a certain color space. The F-measure, harmonic mean of recall and precision, of the framework is reported as 0.87. The use of texture homogeneity along the periphery of the lesion border is an effective method to detect malignancy of the skin lesion in dermoscopy images. Among different color spaces tested, RGB color space's blue color channel is the most informative color channel to detect malignancy for skin lesions. That is followed by YCbCr color spaces Cr channel, and Cr is closely followed by the green color channel of RGB color space.
Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation.
Wu, Di M; Solomon, Michelle L; Naik, Gururaj V; García-Etxarri, Aitzol; Lawrence, Mark; Salleo, Alberto; Dionne, Jennifer A
2018-02-01
Chameleons are masters of light, expertly changing their color, pattern, and reflectivity in response to their environment. Engineered materials that share this tunability can be transformative, enabling active camouflage, tunable holograms, and novel colorimetric medical sensors. While progress has been made in creating artificial chameleon skin, existing schemes often require external power, are not continuously tunable, and may prove too stiff or bulky for applications. Here, a chemically tunable, large-area metamaterial is demonstrated that accesses a wide range of colors and refractive indices. An ordered monolayer of nanoresonators is fabricated, then its optical response is dynamically tuned by infiltrating its polymer substrate with solvents. The material shows a strong magnetic response with a dependence on resonator spacing that leads to a highly tunable effective permittivity, permeability, and refractive index spanning negative and positive values. The unity-order index tuning exceeds that of traditional electro-optic and photochromic materials and is robust to cycling, providing a path toward programmable optical elements and responsive light routing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Samadi-Maybodi, Abdolraouf; Atashbozorg, Ebrahim
2006-11-15
Silicon is an essential trace element and is found in vegetables, fruits, cereals, water, pasta and rice (Oryza sativa). In this work, the silica content of different types of rice grains were measured. Here, we used the heteropoly blue photometric method with a double beam UV-vis spectrophotometer to determine the amount of silicon in rice samples (n=7) that were collected in the north of Iran. The samples were digested with wet-ashing method by microwave-assisted heating and then treated with ammonium molybdate to produce a yellow color compound in acidic solution (ca. pH 1.2) and then reduced to give a heteropoly compound with a blue color. Analyses were performed using standard addition method and absorbance values were measured with double beam UV-vis spectrophotometer at lambda(max)=815nm. Results indicated that the silica content was 307-451mg/kg for the samples. X-ray diffraction patterns and infra-red spectra were obtained from rice samples without any sample treatment.
Greco, Gustavo Diniz; Jansen, Wellington Corrêa; Landre, Janis; Seraidarian, Paulo Isaías
2009-01-01
Objectives: This study evaluated by three-dimensional finite element analysis the tensions generated by different disocclusion patterns (canine guide and bilateral balanced occlusion) in an implant-supported mandibular complete denture. Material and Methods: A three-dimensional model of implant-supported mandibular complete denture was fabricated according to the Brånemark protocol. A 5-element 3.75 x 13-mm screw-shape dental implant system was modeled for this study. The implants were located in the intermental foramen region with 3-mm-high prosthetic components joined by a nickel-chromium framework with 12-mm bilateral cantilever covered by acrylic resin and 12 acrylic denture teeth. SolidWorks® software was used before and after processing the simulations. The mechanical properties of the components were inserted in the model and a 15 N load was established in fixed points, in each one of the simulations. Data were collected in the entire nickel-chromium framework. The results were displayed three-dimensionally as color graphic scales. Results: The canine guide generated greater tensions in the region of the first implant, while the bilateral balanced occlusion generated great tensions in the entire metallic framework. The maximum tension found in the simulation of the bilateral balanced occlusion was 3.22 fold higher than the one found in the simulation of the disocclusion in canine guide. Conclusion: The pattern of disocclusion in canine guide is the ideal for implant-supported mandibular complete denture. PMID:19936535
Greco, Gustavo Diniz; Jansen, Wellington Corrêa; Landre Junior, Janis; Seraidarian, Paulo Isaías
2009-01-01
This study evaluated by three-dimensional finite element analysis the tensions generated by different disocclusion patterns (canine guide and bilateral balanced occlusion) in an implant-supported mandibular complete denture. A three-dimensional model of implant-supported mandibular complete denture was fabricated according to the Brånemark protocol. A 5-element 3.75 x 13-mm screw-shape dental implant system was modeled for this study. The implants were located in the inter-mental foramen region with 3-mm-high prosthetic components joined by a nickel-chromium framework with 12-mm bilateral cantilever covered by acrylic resin and 12 acrylic denture teeth. SolidWorks software was used before and after processing the simulations. The mechanical properties of the components were inserted in the model and a 15 N load was established in fixed points, in each one of the simulations. Data were collected in the entire nickel-chromium framework. The results were displayed three-dimensionally as color graphic scales. The canine guide generated greater tensions in the region of the first implant, while the bilateral balanced occlusion generated great tensions in the entire metallic framework. The maximum tension found in the simulation of the bilateral balanced occlusion was 3.22 fold higher than the one found in the simulation of the disocclusion in canine guide. The pattern of disocclusion in canine guide is the ideal for implant-supported mandibular complete denture.
Padula, Vinicius; Bahia, Juliana; Stöger, Isabella; Camacho-García, Yolanda; Malaquias, Manuel António E; Cervera, Juan Lucas; Schrödl, Michael
2016-10-01
Traditionally, species identification in nudibranch gastropods relies heavily on body color pattern. The Felimida clenchi species complex, a group of brightly colored Atlantic and Mediterranean species in the family Chromodorididae, has a history of exceptional controversy and discussion among taxonomists. The most widely accepted hypothesis is that the complex includes four species (Felimida clenchi, F. neona, F. binza and F. britoi), each with a characteristic body color pattern. In this study, we investigated the taxonomic value of coloration in the Felimida clenchi complex, using molecular phylogenetics, species-delimitation analyses (ABGD, GMYC, PTP), haplotype-network methods, and the anatomy of the reproductive system. None of our analyses recovered the traditional separation into four species. Our results indicated the existence of three species, a result inconsistent with previous taxonomic hypotheses. We distinguished an undescribed species of Felimida and redefined the concepts of F. clenchi and F. binza, both highly polychromatic species. For the first time, molecular data support the existence of extreme color polymorphism in chromatic nudibranch species, with direct implications for the taxonomy of the group and its diversity. The polychromatism observed in the F. clenchi complex apparently correlates with the regional occurrence of similar color patterns in congeneric species, suggesting different mimicry circles. This may represent a parallel in the marine environment to the mechanisms that play a major role in the diversification of color in terrestrial and fresh-water chromatic groups, such as heliconian butterflies. Copyright © 2016 Elsevier Inc. All rights reserved.
Rationale and description of a coordinated cockpit display for aircraft flight management
NASA Technical Reports Server (NTRS)
Baty, D. L.
1976-01-01
The design for aircraft cockpit display systems is discussed in detail. The system consists of a set of three beam penetration color cathode ray tubes (CRT). One of three orthogonal projects of the aircraft's state appears on each CRT which displays different views of the same information. The color feature is included to obtain visual separation of information elements. The colors of red, green and yellow are used to differentiate control, performance and navigation information. Displays are coordinated in information and color.
Horridge, A
2000-07-01
The visual discrimination of horizontal gratings by the honeybee (Apis mellifera) was studied in a Y-choice apparatus with fixed patterns presented vertically at a set range. Translocation in this context is the exchange of the positions of two different colored or black areas. This paper investigates what cues the bees have learned in this task. The patterns, made from combinations of calibrated colored papers, are designed to explore the parts played by the blue and green receptors when the boundary between the two colors provides contrast to only one receptor type. Horizontal translocation is not discriminated without contrast to the green receptors, but up/down translocation can be discriminated whatever the contrast at the boundary. The trained bees were tested on the same patterns made with different papers that included extreme changes in contrast. The results show that discrimination of up/down translocation involves green receptors and also blue receptors. When bees discriminate a translocation that shows contrast to only one type of receptor, they do not use the apparent brightness or the direction of the contrast to that receptor type acting alone. Instead, they discriminate the locations of colored areas irrespective of intensity differences or directions of contrasts. They use some measure of the photon flux at both receptor types and remember the difference between the colors and their locations. Copyright 2000 Academic Press.
The dynamics of color signals in male threespine sticklebacks Gasterosteus aculeatus
Hiermes, Meike
2016-01-01
Abstract Body coloration and color patterns are ubiquitous throughout the animal kingdom and vary between and within species. Recent studies have dealt with individual dynamics of various aspects of coloration, as it is in many cases a flexible trait and changes in color expression may be context-dependent. During the reproductive phase, temporal changes of coloration in the visible spectral range (400–700 nm) have been shown for many animals but corresponding changes in the ultraviolet (UV) waveband (300–400 nm) have rarely been studied. Threespine stickleback Gasterosteus aculeatus males develop conspicuous orange–red breeding coloration combined with UV reflectance in the cheek region. We investigated dynamics of color patterns including UV throughout a male breeding cycle, as well as short-term changes in coloration in response to a computer-animated rival using reflectance spectrophotometry and visual modeling, to estimate how colors would be perceived by conspecifics. We found the orange–red component of coloration to vary during the breeding cycle with respect to hue (theta/R50) and intensity (achieved chroma/red chroma). Furthermore, color intensity in the orange–red spectral part (achieved chroma) tended to be increased after the presentation of an artificial rival. Dynamic changes in specific measures of hue and intensity in the UV waveband were not found. In general, the orange–red component of the signal seems to be dynamic with respect to color intensity and hue. This accounts in particular for color changes during the breeding cycle, presumably to signal reproductive status, and with limitations as well in the intrasexual context, most likely to signal dominance or inferiority. PMID:29491887
Perception of Fechner Illusory Colors in Alzheimer Disease Patients.
Kaubrys, Gintaras; Bukina, Vera; Bingelytė, Ieva; Taluntis, Vladas
2016-11-30
BACKGROUND Alzheimer disease (AD) primarily affects cognition. A variety of visual disorders was established in AD. Fechner illusory colors are produced by a rotating disk with a black and white pattern. The purpose of our research was to explore the perception of illusory colors in AD. MATERIAL AND METHODS W recruited 40 AD patients (MMSE ≥14) and 40 normal controls (CG group) matched by age, education, gender in this prospective, cross-sectional, case-control study. An achromatic Benham's disk attached to a device to control the speed and direction of rotation was used to produce illusory colors. Primary, secondary, and tertiary RGB system colors were used for matching of illusory and physical colors. RESULTS Subjects in the AD group perceived less illusory colors in 5 arcs (p<0.05) of the 8 arcs assessed. The biggest difference was found between AD and CG groups for pure blue (χ²=26.87, p<0.001 clockwise, χ²=22.75, p<0.001 counter-clockwise). Groups did not differ in perception of pure yellow opponent colors (p>0.05). Mixed colors of the blue-yellow axis were perceived less often in AD, but more frequently than pure blue (#0000FF). The sequence of colors on Benham's disk followed a complex pattern, different from the order of physical spectral colors and opponent processes-based colors. CONCLUSIONS AD patients retained reduced perception of illusory colors. The perception of pure blue illusory color is almost absent in AD. The asymmetrical shift to the yellow opponent is observed in AD with red prevailing over green constituent. This may indicate cortical rather than retinal impairment.
Dissociation of Color and Figure-Ground Effects in the Watercolor Illusion
von der Heydt, Rüdiger; Pierson, Rachel
2005-01-01
Two phenomena can be observed in the watercolor illusion: illusory color spreading and figure-ground organization. We performed experiments to determine whether the figure-ground effect is a consequence of the color illusion or due to an independent mechanism. Subjects were tested with displays consisting of six adjacent compartments, three that generated the illusion alternating with three that served for comparison. In a first set of experiments, the illusory color was measured by finding the matching physical color in the alternate compartments. Figureness (probability of ‘figure’ responses, 2AFC) of the watercolor compartments was then determined with and without the matching color in the alternate compartments. The color match reduced figureness, but did not abolish it. There was a range of colors in which the watercolor compartments dominated as figures over the alternate compartments although the latter appeared more saturated in color. In another experiment, the effect of tinting alternate compartments was measured in displays without watercolor illusion. Figureness increased with color contrast, but its value at the equivalent contrast fell short of the figureness value obtained for the watercolor pattern. Thus, in both experiments figureness produced by the watercolor pattern was stronger than expected from the color effect, suggesting independent mechanisms. Considering the neurophysiology, we propose that the color illusion follows from the principles of representation of surface color in the visual cortex, while the figure-ground effect results from two mechanisms of border ownership assignment, one that is sensitive to asymmetric shape of edge profile, the other to consistency of color borders. PMID:16862843
The dynamics of color signals in male threespine sticklebacks Gasterosteus aculeatus.
Hiermes, Meike; Rick, Ingolf P; Mehlis, Marion; Bakker, Theo C M
2016-02-01
Body coloration and color patterns are ubiquitous throughout the animal kingdom and vary between and within species. Recent studies have dealt with individual dynamics of various aspects of coloration, as it is in many cases a flexible trait and changes in color expression may be context-dependent. During the reproductive phase, temporal changes of coloration in the visible spectral range (400-700 nm) have been shown for many animals but corresponding changes in the ultraviolet (UV) waveband (300-400 nm) have rarely been studied. Threespine stickleback Gasterosteus aculeatus males develop conspicuous orange-red breeding coloration combined with UV reflectance in the cheek region. We investigated dynamics of color patterns including UV throughout a male breeding cycle, as well as short-term changes in coloration in response to a computer-animated rival using reflectance spectrophotometry and visual modeling, to estimate how colors would be perceived by conspecifics. We found the orange-red component of coloration to vary during the breeding cycle with respect to hue ( theta /R50) and intensity (achieved chroma/red chroma). Furthermore, color intensity in the orange-red spectral part (achieved chroma) tended to be increased after the presentation of an artificial rival. Dynamic changes in specific measures of hue and intensity in the UV waveband were not found. In general, the orange-red component of the signal seems to be dynamic with respect to color intensity and hue. This accounts in particular for color changes during the breeding cycle, presumably to signal reproductive status, and with limitations as well in the intrasexual context, most likely to signal dominance or inferiority.
NASA Technical Reports Server (NTRS)
Cartmill, R. H. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Using the 12S Digicol color additive viewer and eight color classification map has been produced of a portion of the study area. Channel 3 of the MSS produced the best map. Enlargements of the MSS data have been accomplished by using the Data Analysis Station. The attached film recorder has three color guns which are capable of placing 2400 square elements across a 9 inch film. It has been found that by repeating ERTS element 9 times and each scan line 13 times that a map of a scale approximately 1:62,000 can be produced as a color negative film strip. This can be contact printed to produce a color map of the scale. As yet this procedure does not correct for image skew caused by rotation which is believed to be the major source of distortion and blockiness in the image. However, the final product which has not undergone any photographic enlargement is superior to photographically enlarged maps of the same scale.
Hypnotic color blindness and performance on the Stroop test.
Mallard, D; Bryant, R A
2001-10-01
A suggestion for hypnotic color blindness was investigated by administering a reverse Stroop color-naming task. Prior to the suggestion for color blindness, participants learned associations between color names and shapes. Following the color blindness suggestion, participants were required to name the shapes when they appeared in colors that were either congruent or incongruent with the learned associations. The 18 high hypnotizable participants who passed the suggestion were slower to name (a) shapes in which the color name was incongruent with the color in which it was printed, (b) "unseen" rather than "seen" shapes, and (c) color-incongruent shapes that were printed in the color in which they were "color-blind." These patterns are discussed in terms of potential cognitive and social mechanisms that may mediate responses to hypnotic color blindness.
Nunez, Valerie; Shapley, Robert M; Gordon, James
2018-01-01
In the early visual cortex V1, there are currently only two known neural substrates for color perception: single-opponent and double-opponent cells. Our aim was to explore the relative contributions of these neurons to color perception. We measured the perceptual scaling of color saturation for equiluminant color checkerboard patterns (designed to stimulate double-opponent neurons preferentially) and uniformly colored squares (designed to stimulate only single-opponent neurons) at several cone contrasts. The spatially integrative responses of single-opponent neurons would produce the same response magnitude for checkerboards as for uniform squares of the same space-averaged cone contrast. However, perceived saturation of color checkerboards was higher than for the corresponding squares. The perceptual results therefore imply that double-opponent cells are involved in color perception of patterns. We also measured the chromatic visual evoked potential (cVEP) produced by the same stimuli; checkerboard cVEPs were much larger than those for corresponding squares, implying that double-opponent cells also contribute to the cVEP response. The total Fourier power of the cVEP grew sublinearly with cone contrast. However, the 6-Hz Fourier component's power grew linearly with contrast-like saturation perception. This may also indicate that cortical coding of color depends on response dynamics.
Shapley, Robert M.; Gordon, James
2018-01-01
In the early visual cortex V1, there are currently only two known neural substrates for color perception: single-opponent and double-opponent cells. Our aim was to explore the relative contributions of these neurons to color perception. We measured the perceptual scaling of color saturation for equiluminant color checkerboard patterns (designed to stimulate double-opponent neurons preferentially) and uniformly colored squares (designed to stimulate only single-opponent neurons) at several cone contrasts. The spatially integrative responses of single-opponent neurons would produce the same response magnitude for checkerboards as for uniform squares of the same space-averaged cone contrast. However, perceived saturation of color checkerboards was higher than for the corresponding squares. The perceptual results therefore imply that double-opponent cells are involved in color perception of patterns. We also measured the chromatic visual evoked potential (cVEP) produced by the same stimuli; checkerboard cVEPs were much larger than those for corresponding squares, implying that double-opponent cells also contribute to the cVEP response. The total Fourier power of the cVEP grew sublinearly with cone contrast. However, the 6-Hz Fourier component’s power grew linearly with contrast-like saturation perception. This may also indicate that cortical coding of color depends on response dynamics. PMID:29375753
Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences.
Kovanen, Lauri; Kaski, Kimmo; Kertész, János; Saramäki, Jari
2013-11-05
Recent studies on electronic communication records have shown that human communication has complex temporal structure. We study how communication patterns that involve multiple individuals are affected by attributes such as sex and age. To this end, we represent the communication records as a colored temporal network where node color is used to represent individuals' attributes, and identify patterns known as temporal motifs. We then construct a null model for the occurrence of temporal motifs that takes into account the interaction frequencies and connectivity between nodes of different colors. This null model allows us to detect significant patterns in call sequences that cannot be observed in a static network that uses interaction frequencies as link weights. We find sex-related differences in communication patterns in a large dataset of mobile phone records and show the existence of temporal homophily, the tendency of similar individuals to participate in communication patterns beyond what would be expected on the basis of their average interaction frequencies. We also show that temporal patterns differ between dense and sparse neighborhoods in the network. Because also this result is independent of interaction frequencies, it can be seen as an extension of Granovetter's hypothesis to temporal networks.
Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences
Kovanen, Lauri; Kaski, Kimmo; Kertész, János; Saramäki, Jari
2013-01-01
Recent studies on electronic communication records have shown that human communication has complex temporal structure. We study how communication patterns that involve multiple individuals are affected by attributes such as sex and age. To this end, we represent the communication records as a colored temporal network where node color is used to represent individuals’ attributes, and identify patterns known as temporal motifs. We then construct a null model for the occurrence of temporal motifs that takes into account the interaction frequencies and connectivity between nodes of different colors. This null model allows us to detect significant patterns in call sequences that cannot be observed in a static network that uses interaction frequencies as link weights. We find sex-related differences in communication patterns in a large dataset of mobile phone records and show the existence of temporal homophily, the tendency of similar individuals to participate in communication patterns beyond what would be expected on the basis of their average interaction frequencies. We also show that temporal patterns differ between dense and sparse neighborhoods in the network. Because also this result is independent of interaction frequencies, it can be seen as an extension of Granovetter’s hypothesis to temporal networks. PMID:24145424
Unification of color postprocessing techniques for 3-dimensional computational mechanics
NASA Technical Reports Server (NTRS)
Bailey, Bruce Charles
1985-01-01
To facilitate the understanding of complex three-dimensional numerical models, advanced interactive color postprocessing techniques are introduced. These techniques are sufficiently flexible so that postprocessing difficulties arising from model size, geometric complexity, response variation, and analysis type can be adequately overcome. Finite element, finite difference, and boundary element models may be evaluated with the prototype postprocessor. Elements may be removed from parent models to be studied as independent subobjects. Discontinuous responses may be contoured including responses which become singular, and nonlinear color scales may be input by the user for the enhancement of the contouring operation. Hit testing can be performed to extract precise geometric, response, mesh, or material information from the database. In addition, stress intensity factors may be contoured along the crack front of a fracture model. Stepwise analyses can be studied, and the user can recontour responses repeatedly, as if he were paging through the response sets. As a system, these tools allow effective interpretation of complex analysis results.
A comparison of viewer reactions to outdoor scenes and photographs of those scenes
Elwood, Jr. Shafer; Thomas A. Richards; Thomas A. Richards
1974-01-01
A color-slide projection or photograph can be used to determine reactions to an actual scene if the presentation adequately includes most of the elements in the scene. Eight kinds of scenes were subjected to three different types of presentation: (A) viewing. the actual scenes, (B) viewing color slides of the scenes, and (C) viewing color photographs of the scenes. For...
Spatial and temporal drivers of phenotypic diversity in polymorphic snakes.
Cox, Christian L; Davis Rabosky, Alison R
2013-08-01
Color polymorphism in natural populations presents an ideal opportunity to study the evolutionary drivers of phenotypic diversity. Systems with striking spatial, temporal, and qualitative variation in color can be leveraged to study the mechanisms promoting the distribution of different types of variation in nature. We used the highly polymorphic ground snake (Sonora semiannulata), a putative coral snake mimic with both cryptic and conspicuous morphs, to compare patterns of neutral genetic variation and variation over space and time in color polymorphism to investigate the mechanistic drivers of phenotypic variation across scales. We found that strong selection promotes color polymorphism across spatial and temporal scales, with morph frequencies differing markedly between juvenile and adult age classes within a single population, oscillating over time within multiple populations, and varying drastically over the landscape despite minimal population genetic structure. However, we found no evidence that conspicuousness of morphs was related to which color pattern was favored by selection or to any geographic factors, including sympatry with coral snakes. We suggest that complex patterns of phenotypic variation in polymorphic systems may be a fundamental outcome of the conspicuousness of morphs and that explicit tests of temporal and geographic variation are critical to the interpretation of conspicuousness and mimicry.
Integration of Spectral Reflectance across the Plumage: Implications for Mating Patterns
Laczi, Miklós; Török, János; Rosivall, Balázs; Hegyi, Gergely
2011-01-01
Background In complex sexual signaling systems such as plumage color, developmental or genetic links may occur among seemingly distinct traits. However, the interrelations of such traits and the functional significance of their integration rarely have been examined. Methodology/Principal Findings We investigated the parallel variation of two reflectance descriptors (brightness and UV chroma) across depigmented and melanized plumage areas of collared flycatchers (Ficedula albicollis), and the possible role of integrated color signals in mate acquisition. We found moderate integration in brightness and UV chroma across the plumage, with similar correlation structures in the two sexes despite the strong sexual dichromatism. Patterns of parallel color change across the plumage were largely unrelated to ornamental white patch sizes, but they all showed strong assortative mating between the sexes. Comparing different types of assortative mating patterns for individual spectral variables suggested a distinct role for plumage-level color axes in mate acquisition. Conclusions/Significance Our results indicate that the plumage-level, parallel variation of coloration might play a role in mate acquisition. This study underlines the importance of considering potential developmental and functional integration among apparently different ornaments in studies of sexual selection. PMID:21853088
The Effects of Color in American Political Campaigns.
ERIC Educational Resources Information Center
Howard, W. Gary
1984-01-01
Examined whether public relations and social psychology beliefs about color are adapatable to the market conditions of campaigns. Surveyed voters (N=273) incorporating relevant questions on legibility, preference, and remembrance of color patterns. One combination - black on yellow - was most legible, most preferred, and most remembered; blue…
New flesh colors in watermelon?
USDA-ARS?s Scientific Manuscript database
There are currently six published flesh colors in watermelon along with the associated genes for each of the designated flesh colors. Previous results have shown that segregation patterns did not fit with published results for canary yellow and red flesh. We believe that part of the problem has been...
ERIC Educational Resources Information Center
Marschalek, Douglas G.
1986-01-01
This study investigated the ability of first-, third-, and fifth-grade students to perceive similarities and differences in contour and interior pattern of shapes in color drawings. Results showed that with increase of age, attention to contour information was significantly affected by the surrounding contextual information found in the drawings.…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-19
... include natural or other non-man-made fibers; be of any color, style, pattern, or weave construction..., jacquard, or a combination of two or more colors, styles, patterns, and/or weave constructions; have been... of Sales at Less Than Fair Value: Narrow Woven Ribbons with Woven Selvedge from Taiwan AGENCY: Import...
HIV Testing Patterns among Urban YMSM of Color
ERIC Educational Resources Information Center
Leonard, Noelle R.; Rajan, Sonali; Gwadz, Marya V.; Aregbesola, Temi
2014-01-01
The heightened level of risk for HIV infection among Black and Latino young men who have sex with men (YMSM) is driven by multilevel influences. Using cross-sectional data, we examined HIV testing patterns among urban YMSM of color in a high-HIV seroprevalence area (ages 16 to 21 years). Self-reported frequency of testing was high, with 42% of…
Recent advances in flower color variation and patterning of Japanese morning glory and petunia
Morita, Yasumasa; Hoshino, Atsushi
2018-01-01
The Japanese morning glory (Ipomoea nil) and petunia (Petunia hybrida), locally called “Asagao” and “Tsukubane-asagao”, respectively, are popular garden plants. They have been utilized as model plants for studying the genetic basis of floricultural traits, especially anthocyanin pigmentation in flower petals. In their long history of genetic studies, many mutations affecting flower pigmentation have been characterized, and both structural and regulatory genes for the anthocyanin biosynthesis pathway have been identified. In this review, we will summarize recent advances in the understanding of flower pigmentation in the two species with respect to flower hue and color patterning. Regarding flower hue, we will describe a novel enhancer of flavonoid production that controls the intensity of flower pigmentation, new aspects related to a flavonoid glucosyltransferase that has been known for a long time, and the regulatory mechanisms of vacuolar pH being a key determinant of red and blue coloration. On color patterning, we describe particular flower patterns regulated by epigenetic and RNA-silencing mechanisms. As high-quality whole genome sequences of the Japanese morning glory and petunia wild parents (P. axillaris and P. inflata, respectively) were published in 2016, further study on flower pigmentation will be accelerated. PMID:29681755
Jiang, Hao; Kaminska, Bozena
2018-04-24
To enable customized manufacturing of structural colors for commercial applications, up-scalable, low-cost, rapid, and versatile printing techniques are highly demanded. In this paper, we introduce a viable strategy for scaling up production of custom-input images by patterning individual structural colors on separate layers, which are then vertically stacked and recombined into full-color images. By applying this strategy on molded-ink-on-nanostructured-surface printing, we present an industry-applicable inkjet structural color printing technique termed multilayer molded-ink-on-nanostructured-surface (M-MIONS) printing, in which structural color pixels are molded on multiple layers of nanostructured surfaces. Transparent colorless titanium dioxide nanoparticles were inkjet-printed onto three separate transparent polymer substrates, and each substrate surface has one specific subwavelength grating pattern for molding the deposited nanoparticles into structural color pixels of red, green, or blue primary color. After index-matching lamination, the three layers were vertically stacked and bonded to display a color image. Each primary color can be printed into a range of different shades controlled through a half-tone process, and full colors were achieved by mixing primary colors from three layers. In our experiments, an image size as big as 10 cm by 10 cm was effortlessly achieved, and even larger images can potentially be printed on recombined grating surfaces. In one application example, the M-MIONS technique was used for printing customizable transparent color optical variable devices for protecting personalized security documents. In another example, a transparent diffractive color image printed with the M-MIONS technique was pasted onto a transparent panel for overlaying colorful information onto one's view of reality.
Thinking About the Aesthetics of Children's Environments.
ERIC Educational Resources Information Center
Greenman, Jim
1987-01-01
Emphasizes the importance of aesthetic elements such as color, light, texture, plants, art, and music in children's centers and schools. Describes how aesthetic elements may be added to the environment. (NH)
Multi-modal cockpit interface for improved airport surface operations
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J. (Inventor); Bailey, Randall E. (Inventor); Prinzel, III, Lawrence J. (Inventor); Kramer, Lynda J. (Inventor); Williams, Steven P. (Inventor)
2010-01-01
A system for multi-modal cockpit interface during surface operation of an aircraft comprises a head tracking device, a processing element, and a full-color head worn display. The processing element is configured to receive head position information from the head tracking device, to receive current location information of the aircraft, and to render a virtual airport scene corresponding to the head position information and the current aircraft location. The full-color head worn display is configured to receive the virtual airport scene from the processing element and to display the virtual airport scene. The current location information may be received from one of a global positioning system or an inertial navigation system.
NASA Astrophysics Data System (ADS)
Gates, S. James; Kang, Lucas; Kessler, David S.; Korotkikh, Vadim
2018-04-01
A Gadget, more precisely a scalar Gadget, is defined as a mathematical calculation acting over a domain of one or more adinkra graphs and whose range is a real number. A 2010 work on the subject of automorphisms of adinkra graphs, implied the existence of multiple numbers of Gadgets depending on the number of colors under consideration. For four colors, this number is two. In this work, we verify the existence of a second such Gadget and calculate (both analytically and via explicit computer-enabled algorithms) its 1,358,954,496 matrix elements over 36,864 minimal valise adinkras related to the Coxeter Group BC4.
The significance of blue color in dermatoscopy.
Popadić, Mirjana; Sinz, Christoph; Kittler, Harald
2017-03-01
Skin lesions with blue color are frequently excised to rule out malignancy. The objective of the present study was to investigate the significance of blue color. We retrospectively scanned dermatoscopic images for blue color and classified them according to pattern analysis. Of 1,123 pigmented skin lesions, 144 (12.8 %) showed blue color, 92 of which (63.9 %) were malignant. Among lesions with blue color, the most common benign diagnoses were nevi (n = 35, 24.3 %) and seborrheic keratoses (n = 8, 5.6 %). Of 103 (71.5 %) lesions with a structureless blue pattern, eight (7.8 %) were entirely blue and 95 (92.2 %) were partly blue, of which 81 (78.6 %) showed peripheral or patchy and 14 (13.6 %) central blue color. Most lesions with peripheral or patchy blue color were melanomas (n = 47, 58 %), whereas most lesions with central blue color were nevi (n = 9, 64.3 %). Of 28 lesions with blue clods, 17 (60.7 %) were basal cell carcinomas. With respect to malignancy, the positive predictive value of blue color was 63.9 % (95 % CI: 56.0-71.8 %). Among malignant lesions with blue color, structureless peripheral or patchy blue color is a clue for melanoma, while blue clods point to basal cell carcinoma. Pitfalls include seborrheic keratoses, which may show blue color, as well as some nevi, especially combined nevi. © 2017 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.
Search for a Possible Chalcophile Chemical Component in Io's Color and Spectral Reflectance
NASA Astrophysics Data System (ADS)
Kargel, Jeffrey S.; Nash, Douglas B.
1996-09-01
Galileo images of Io show red, orange, brown, tan, yellow, green, white, and black regions. Color changes reported on Io represent a redistribution of surface materials and are related to Io's dynamic geologic and geochemical processes. Most Ionian colors and spectral features are attributable to a heterogeneous cover of quenched forms of pure elemental sulfur and sulfur dioxide frost perhaps with sodium pentasulfide and polysulfur oxides. However, the olive greens and greenish tans of some areas require something additional. S-associated elements abundant in meteorites and comets (e.g., percentage amounts of C, P, and Cl as CS2, P4S10, and SCl2, and smaller traces of As, Se, and others), could be important impurities on Io. These elements follow S in many terrestrial materials, such as the metallic core, massive sulfide deposits, carbonatite lavas, evaporite salts, and hydrothermal sublimates; it is doubtful that Io's sulfurous crust would somehow have excluded or lost all of these elements. Chalcophile impurities, acting through modifications of sulfur polymer chain structures, could have important effects on spectroscopic reflectance, sulfur volcanic flow rheology, subsurface flow of molten sulfur in magmatic plumbing, and crustal tectonics. We have started collection and analysis of native sulfur and related minerals obtained from diverse terrestrial environments and are analyzing these substances (particularly materials whose colors resemble Io's) for major and trace elements and reflectance from 0.23 to 23 microns. We will investigate whether expected correlations of chemical and spectroscopic parameters of these substances might explain some Io observations. Acknowledgements. JSK thanks P. Delmelle and C. Oppenheimer for donating samples for this study, and R.A. Hutchinson and the National Park Service for facilitating the collection of sulfur samples from Yellowstone National Park.
Yuan, Yao-Wu; Rebocho, Alexandra B.; Sagawa, Janelle M.; Stanley, Lauren E.; Bradshaw, Harvey D.
2016-01-01
Flower color patterns have long served as a model for developmental genetics because pigment phenotypes are visually striking, yet generally not required for plant viability, facilitating the genetic analysis of color and pattern mutants. The evolution of novel flower colors and patterns has played a key role in the adaptive radiation of flowering plants via their specialized interactions with different pollinator guilds (e.g., bees, butterflies, birds), motivating the search for allelic differences affecting flower color pattern in closely related plant species with different pollinators. We have identified LIGHT AREAS1 (LAR1), encoding an R2R3-MYB transcription factor, as the causal gene underlying the spatial pattern variation of floral anthocyanin pigmentation between two sister species of monkeyflower: the bumblebee-pollinated Mimulus lewisii and the hummingbird-pollinated Mimulus cardinalis. We demonstrated that LAR1 positively regulates FLAVONOL SYNTHASE (FLS), essentially eliminating anthocyanin biosynthesis in the white region (i.e., light areas) around the corolla throat of M. lewisii flowers by diverting dihydroflavonol into flavonol biosynthesis from the anthocyanin pigment pathway. FLS is preferentially expressed in the light areas of the M. lewisii flower, thus prepatterning the corolla. LAR1 expression in M. cardinalis flowers is much lower than in M. lewisii, explaining the unpatterned phenotype and recessive inheritance of the M. cardinalis allele. Furthermore, our gene-expression analysis and genetic mapping results suggest that cis-regulatory change at the LAR1 gene played a critical role in the evolution of different pigmentation patterns between the two species. PMID:26884205
Yuan, Yao-Wu; Rebocho, Alexandra B; Sagawa, Janelle M; Stanley, Lauren E; Bradshaw, Harvey D
2016-03-01
Flower color patterns have long served as a model for developmental genetics because pigment phenotypes are visually striking, yet generally not required for plant viability, facilitating the genetic analysis of color and pattern mutants. The evolution of novel flower colors and patterns has played a key role in the adaptive radiation of flowering plants via their specialized interactions with different pollinator guilds (e.g., bees, butterflies, birds), motivating the search for allelic differences affecting flower color pattern in closely related plant species with different pollinators. We have identified LIGHT AREAS1 (LAR1), encoding an R2R3-MYB transcription factor, as the causal gene underlying the spatial pattern variation of floral anthocyanin pigmentation between two sister species of monkeyflower: the bumblebee-pollinated Mimulus lewisii and the hummingbird-pollinated Mimulus cardinalis. We demonstrated that LAR1 positively regulates FLAVONOL SYNTHASE (FLS), essentially eliminating anthocyanin biosynthesis in the white region (i.e., light areas) around the corolla throat of M. lewisii flowers by diverting dihydroflavonol into flavonol biosynthesis from the anthocyanin pigment pathway. FLS is preferentially expressed in the light areas of the M. lewisii flower, thus prepatterning the corolla. LAR1 expression in M. cardinalis flowers is much lower than in M. lewisii, explaining the unpatterned phenotype and recessive inheritance of the M. cardinalis allele. Furthermore, our gene-expression analysis and genetic mapping results suggest that cis-regulatory change at the LAR1 gene played a critical role in the evolution of different pigmentation patterns between the two species.
Ensemble perception of color in autistic adults.
Maule, John; Stanworth, Kirstie; Pellicano, Elizabeth; Franklin, Anna
2017-05-01
Dominant accounts of visual processing in autism posit that autistic individuals have an enhanced access to details of scenes [e.g., weak central coherence] which is reflected in a general bias toward local processing. Furthermore, the attenuated priors account of autism predicts that the updating and use of summary representations is reduced in autism. Ensemble perception describes the extraction of global summary statistics of a visual feature from a heterogeneous set (e.g., of faces, sizes, colors), often in the absence of local item representation. The present study investigated ensemble perception in autistic adults using a rapidly presented (500 msec) ensemble of four, eight, or sixteen elements representing four different colors. We predicted that autistic individuals would be less accurate when averaging the ensembles, but more accurate in recognizing individual ensemble colors. The results were consistent with the predictions. Averaging was impaired in autism, but only when ensembles contained four elements. Ensembles of eight or sixteen elements were averaged equally accurately across groups. The autistic group also showed a corresponding advantage in rejecting colors that were not originally seen in the ensemble. The results demonstrate the local processing bias in autism, but also suggest that the global perceptual averaging mechanism may be compromised under some conditions. The theoretical implications of the findings and future avenues for research on summary statistics in autism are discussed. Autism Res 2017, 10: 839-851. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Ensemble perception of color in autistic adults
Stanworth, Kirstie; Pellicano, Elizabeth; Franklin, Anna
2016-01-01
Dominant accounts of visual processing in autism posit that autistic individuals have an enhanced access to details of scenes [e.g., weak central coherence] which is reflected in a general bias toward local processing. Furthermore, the attenuated priors account of autism predicts that the updating and use of summary representations is reduced in autism. Ensemble perception describes the extraction of global summary statistics of a visual feature from a heterogeneous set (e.g., of faces, sizes, colors), often in the absence of local item representation. The present study investigated ensemble perception in autistic adults using a rapidly presented (500 msec) ensemble of four, eight, or sixteen elements representing four different colors. We predicted that autistic individuals would be less accurate when averaging the ensembles, but more accurate in recognizing individual ensemble colors. The results were consistent with the predictions. Averaging was impaired in autism, but only when ensembles contained four elements. Ensembles of eight or sixteen elements were averaged equally accurately across groups. The autistic group also showed a corresponding advantage in rejecting colors that were not originally seen in the ensemble. The results demonstrate the local processing bias in autism, but also suggest that the global perceptual averaging mechanism may be compromised under some conditions. The theoretical implications of the findings and future avenues for research on summary statistics in autism are discussed. Autism Res 2017, 10: 839–851. © 2016 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research PMID:27874263
Adaptive color halftoning for minimum perceived error using the blue noise mask
NASA Astrophysics Data System (ADS)
Yu, Qing; Parker, Kevin J.
1997-04-01
Color halftoning using a conventional screen requires careful selection of screen angles to avoid Moire patterns. An obvious advantage of halftoning using a blue noise mask (BNM) is that there are no conventional screen angle or Moire patterns produced. However, a simple strategy of employing the same BNM on all color planes is unacceptable in case where a small registration error can cause objectionable color shifts. In a previous paper by Yao and Parker, strategies were presented for shifting or inverting the BNM as well as using mutually exclusive BNMs for different color planes. In this paper, the above schemes will be studied in CIE-LAB color space in terms of root mean square error and variance for luminance channel and chrominance channel respectively. We will demonstrate that the dot-on-dot scheme results in minimum chrominance error, but maximum luminance error and the 4-mask scheme results in minimum luminance error but maximum chrominance error, while the shift scheme falls in between. Based on this study, we proposed a new adaptive color halftoning algorithm that takes colorimetric color reproduction into account by applying 2-mutually exclusive BNMs on two different color planes and applying an adaptive scheme on other planes to reduce color error. We will show that by having one adaptive color channel, we obtain increased flexibility to manipulate the output so as to reduce colorimetric error while permitting customization to specific printing hardware.
Parental conflict and blue egg coloration in a seabird
NASA Astrophysics Data System (ADS)
Morales, Judith; Torres, Roxana; Velando, Alberto
2010-02-01
When both parents provide offspring care, equal sharing of costly parental duties may enhance reproductive success. This is crucial for longlived species, where increased parental effort in current reproduction profoundly affects future reproduction. Indication of reproductive value or willingness to invest in reproduction may promote matching responses by mates, thus reducing the conflict over care. In birds with biparental care, blue-green eggshell color may function as a signal of reproductive value that affects parental effort, as predicted by the signaling hypothesis of blue-green eggshell coloration. However, this hypothesis has not been explored during incubation, when the potential stimulus of egg color is present, and has been little studied in longlived birds. We experimentally studied if egg color affected incubation patterns in the blue-footed booby, a longlived species with biparental care and blue eggs. We exchanged fresh eggs between nests of the same laying date and recorded parental incubation effort on the following 4 days. Although egg color did not affect male effort, original eggshell color was correlated with pair matching in incubation. Exchanged eggshell color did not affect incubation patterns. This suggests that biliverdin-based egg coloration reflects female quality features that are associated with pair incubation effort or that blue-footed boobies mate assortatively high-quality pairs incubating more colorful clutches. An intriguing possibility is that egg coloration facilitates an equal sharing of incubation, the signal being functional only during a short period close to laying. Results also suggest that indication of reproductive value reduces the conflict over care.
A general modeling framework for describing spatially structured population dynamics
Sample, Christine; Fryxell, John; Bieri, Joanna; Federico, Paula; Earl, Julia; Wiederholt, Ruscena; Mattsson, Brady; Flockhart, Tyler; Nicol, Sam; Diffendorfer, James E.; Thogmartin, Wayne E.; Erickson, Richard A.; Norris, D. Ryan
2017-01-01
Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance that comparative analyses are colored by model details rather than general principles
Colorimetric Recognition of Aldehydes and Ketones.
Li, Zheng; Fang, Ming; LaGasse, Maria K; Askim, Jon R; Suslick, Kenneth S
2017-08-07
A colorimetric sensor array has been designed for the identification of and discrimination among aldehydes and ketones in vapor phase. Due to rapid chemical reactions between the solid-state sensor elements and gaseous analytes, distinct color difference patterns were produced and digitally imaged for chemometric analysis. The sensor array was developed from classical spot tests using aniline and phenylhydrazine dyes that enable molecular recognition of a wide variety of aliphatic or aromatic aldehydes and ketones, as demonstrated by hierarchical cluster, principal component, and support vector machine analyses. The aldehyde/ketone-specific sensors were further employed for differentiation among and identification of ten liquor samples (whiskies, brandy, vodka) and ethanol controls, showing its potential applications in the beverage industry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A study of image quality for radar image processing. [synthetic aperture radar imagery
NASA Technical Reports Server (NTRS)
King, R. W.; Kaupp, V. H.; Waite, W. P.; Macdonald, H. C.
1982-01-01
Methods developed for image quality metrics are reviewed with focus on basic interpretation or recognition elements including: tone or color; shape; pattern; size; shadow; texture; site; association or context; and resolution. Seven metrics are believed to show promise as a way of characterizing the quality of an image: (1) the dynamic range of intensities in the displayed image; (2) the system signal-to-noise ratio; (3) the system spatial bandwidth or bandpass; (4) the system resolution or acutance; (5) the normalized-mean-square-error as a measure of geometric fidelity; (6) the perceptual mean square error; and (7) the radar threshold quality factor. Selective levels of degradation are being applied to simulated synthetic radar images to test the validity of these metrics.
Perception of Fechner Illusory Colors in Alzheimer Disease Patients
Kaubrys, Gintaras; Bukina, Vera; Bingelytė, Ieva; Taluntis, Vladas
2016-01-01
Background Alzheimer disease (AD) primarily affects cognition. A variety of visual disorders was established in AD. Fechner illusory colors are produced by a rotating disk with a black and white pattern. The purpose of our research was to explore the perception of illusory colors in AD. Material/Methods W recruited 40 AD patients (MMSE ≥14) and 40 normal controls (CG group) matched by age, education, gender in this prospective, cross-sectional, case-control study. An achromatic Benham’s disk attached to a device to control the speed and direction of rotation was used to produce illusory colors. Primary, secondary, and tertiary RGB system colors were used for matching of illusory and physical colors. Results Subjects in the AD group perceived less illusory colors in 5 arcs (p<0.05) of the 8 arcs assessed. The biggest difference was found between AD and CG groups for pure blue (χ2=26.87, p<0.001 clockwise, χ2=22.75, p<0.001 counter-clockwise). Groups did not differ in perception of pure yellow opponent colors (p>0.05). Mixed colors of the blue-yellow axis were perceived less often in AD, but more frequently than pure blue (#0000FF). The sequence of colors on Benham’s disk followed a complex pattern, different from the order of physical spectral colors and opponent processes-based colors. Conclusions AD patients retained reduced perception of illusory colors. The perception of pure blue illusory color is almost absent in AD. The asymmetrical shift to the yellow opponent is observed in AD with red prevailing over green constituent. This may indicate cortical rather than retinal impairment. PMID:27902677
Retinex at 50: color theory and spatial algorithms, a review
NASA Astrophysics Data System (ADS)
McCann, John J.
2017-05-01
Retinex Imaging shares two distinct elements: first, a model of human color vision; second, a spatial-imaging algorithm for making better reproductions. Edwin Land's 1964 Retinex Color Theory began as a model of human color vision of real complex scenes. He designed many experiments, such as Color Mondrians, to understand why retinal cone quanta catch fails to predict color constancy. Land's Retinex model used three spatial channels (L, M, S) that calculated three independent sets of monochromatic lightnesses. Land and McCann's lightness model used spatial comparisons followed by spatial integration across the scene. The parameters of their model were derived from extensive observer data. This work was the beginning of the second Retinex element, namely, using models of spatial vision to guide image reproduction algorithms. Today, there are many different Retinex algorithms. This special section, "Retinex at 50," describes a wide variety of them, along with their different goals, and ground truths used to measure their success. This paper reviews (and provides links to) the original Retinex experiments and image-processing implementations. Observer matches (measuring appearances) have extended our understanding of how human spatial vision works. This paper describes a collection very challenging datasets, accumulated by Land and McCann, for testing algorithms that predict appearance.
NASA Astrophysics Data System (ADS)
Ozolinsh, Maris; Fomins, Sergejs
2010-11-01
Multispectral color analysis was used for spectral scanning of Ishihara and Rabkin color deficiency test book images. It was done using tunable liquid-crystal LC filters built in the Nuance II analyzer. Multispectral analysis keeps both, information on spatial content of tests and on spectral content. Images were taken in the range of 420-720nm with a 10nm step. We calculated retina neural activity charts taking into account cone sensitivity functions, and processed charts in order to find the visibility of latent symbols in color deficiency plates using cross-correlation technique. In such way the quantitative measure is found for each of diagnostics plate for three different color deficiency carrier types - protanopes, deutanopes and tritanopes. Multispectral color analysis allows to determine the CIE xyz color coordinates of pseudoisochromatic plate design elements and to perform statistical analysis of these data to compare the color quality of available color deficiency test books.
Rewritable and pH-Sensitive Micropatterns Based on Nanoparticle "Inks"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, D. W.; Lagzi, Istvan; Wesson, Paul J.
2010-08-16
Rewritable micropatterns based on nanoparticle “inks” are created in gel substrates by wet stamping. The colors of the patterns depend on pH, reflect the degree of nanoparticle aggregation, and can be written using acids and erased using bases. Micropatterns imprinted with salts are “permanent” but can change color upon pH changes; these patterns act as multiple-use pH sensors.
Eleven Colors That Are Almost Never Confused
NASA Astrophysics Data System (ADS)
Boynton, Robert M.
1989-08-01
1.1. Three functions of color vision. Setting aside the complex psychological effects of color, related to esthetics, fashion, and mood, three relatively basic functions of color vision, which can be examined scientifically, are discernable. (1) With the eye in a given state of adaptation, color vision allows the perception of signals that otherwise would be below threshold, and therefore lost to perception. Evidence for this comes from a variety of two-color threshold experiments. (2) Visible contours can be maintained by color differences alone, regardless of the relative radiances of the two parts of the field whose junction defines the border. For achromatic vision, contour disappears at the isoluminant point. (3) Color specifies what seems to be an absolute property of a surface, one that enhances its recognizability and allows a clearer separation and classification of non-contiguous elements in the visual field.
Identification of Cichlid Fishes from Lake Malawi Using Computer Vision
Joo, Deokjin; Kwan, Ye-seul; Song, Jongwoo; Pinho, Catarina; Hey, Jody; Won, Yong-Jin
2013-01-01
Background The explosively radiating evolution of cichlid fishes of Lake Malawi has yielded an amazing number of haplochromine species estimated as many as 500 to 800 with a surprising degree of diversity not only in color and stripe pattern but also in the shape of jaw and body among them. As these morphological diversities have been a central subject of adaptive speciation and taxonomic classification, such high diversity could serve as a foundation for automation of species identification of cichlids. Methodology/Principal Finding Here we demonstrate a method for automatic classification of the Lake Malawi cichlids based on computer vision and geometric morphometrics. For this end we developed a pipeline that integrates multiple image processing tools to automatically extract informative features of color and stripe patterns from a large set of photographic images of wild cichlids. The extracted information was evaluated by statistical classifiers Support Vector Machine and Random Forests. Both classifiers performed better when body shape information was added to the feature of color and stripe. Besides the coloration and stripe pattern, body shape variables boosted the accuracy of classification by about 10%. The programs were able to classify 594 live cichlid individuals belonging to 12 different classes (species and sexes) with an average accuracy of 78%, contrasting to a mere 42% success rate by human eyes. The variables that contributed most to the accuracy were body height and the hue of the most frequent color. Conclusions Computer vision showed a notable performance in extracting information from the color and stripe patterns of Lake Malawi cichlids although the information was not enough for errorless species identification. Our results indicate that there appears an unavoidable difficulty in automatic species identification of cichlid fishes, which may arise from short divergence times and gene flow between closely related species. PMID:24204918
Brunstein, Maia; Wicker, Kai; Hérault, Karine; Heintzmann, Rainer; Oheim, Martin
2013-11-04
Most structured illumination microscopes use a physical or synthetic grating that is projected into the sample plane to generate a periodic illumination pattern. Albeit simple and cost-effective, this arrangement hampers fast or multi-color acquisition, which is a critical requirement for time-lapse imaging of cellular and sub-cellular dynamics. In this study, we designed and implemented an interferometric approach allowing large-field, fast, dual-color imaging at an isotropic 100-nm resolution based on a sub-diffraction fringe pattern generated by the interference of two colliding evanescent waves. Our all-mirror-based system generates illumination pat-terns of arbitrary orientation and period, limited only by the illumination aperture (NA = 1.45), the response time of a fast, piezo-driven tip-tilt mirror (10 ms) and the available fluorescence signal. At low µW laser powers suitable for long-period observation of life cells and with a camera exposure time of 20 ms, our system permits the acquisition of super-resolved 50 µm by 50 µm images at 3.3 Hz. The possibility it offers for rapidly adjusting the pattern between images is particularly advantageous for experiments that require multi-scale and multi-color information. We demonstrate the performance of our instrument by imaging mitochondrial dynamics in cultured cortical astrocytes. As an illustration of dual-color excitation dual-color detection, we also resolve interaction sites between near-membrane mitochondria and the endoplasmic reticulum. Our TIRF-SIM microscope provides a versatile, compact and cost-effective arrangement for super-resolution imaging, allowing the investigation of co-localization and dynamic interactions between organelles--important questions in both cell biology and neurophysiology.
NASA Technical Reports Server (NTRS)
Acker, James G.; Hooker, Stanford B.; Firestone, Elaine R.
1994-01-01
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission is based on the scientific heritage of the Coastal Zone Color Scanner (CZCS), a proof-of-concept instrument carried on the National Aeronautics and Space Administration (NASA) NIMBUS-7 environmental satellite for the purpose of measuring upwelling radiance from the ocean surface. The CZCS mission provided the first observations of ocean color from space, and over the mission lifetime of 1978-1986, allowed oceanographers an initial opportunity to observe the variable patterns of global biological productivity. One of the key elements of the CZCS mission was the formation of the CZCS NIMBUS Experiment Team (NET), a group of optical physicists and biological oceanographers. The CZCS NET was designated to validate the accuracy of the CZCS radiometric measurements and to connect the instrument's measurements to standard measures of oceanic biological productivity and optical seawater clarity. In the period following the cessation of CZCS observations, some of the insight and experience gained by the CZCS NET activity has dissipated as several proposed follow-on sensors failed to achieve active status. The Sea WiFS mission will be the first dedicated orbital successor to CZCS it in turn precedes observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) of the Earth Observing System (EOS). Since the CZCS NET experience is an important model for Sea WiFS and MODIS surface truth efforts, this document is intended to provide a comprehensive review of the validation of oceanographic data for the first orbital ocean color sensor mission. This document also summarizes the history of the CZCS NET activities. The references listed in the Bibliography are a listing of published scientific research which relied upon the CZCS BET algorithms, or research which was conducted on the basis of CZCS mission elements.
Shwirl: Meaningful coloring of spectral cube data with volume rendering
NASA Astrophysics Data System (ADS)
Vohl, Dany
2017-04-01
Shwirl visualizes spectral data cubes with meaningful coloring methods. The program has been developed to investigate transfer functions, which combines volumetric elements (or voxels) to set the color, and graphics shaders, functions used to compute several properties of the final image such as color, depth, and/or transparency, as enablers for scientific visualization of astronomical data. The program uses Astropy (ascl:1304.002) to handle FITS files and World Coordinate System, Qt (and PyQt) for the user interface, and VisPy, an object-oriented Python visualization library binding onto OpenGL.
Elemental Etymology: What's in a Name?
ERIC Educational Resources Information Center
Ball, David W.
1985-01-01
Examines the origin of the names (or etymologies) of the chemical elements. Includes tables listing elements: (1) with names of obscure origin; (2) named for colors; (3) named after real or mythical people; (4) named after places; (5) named after heavenly bodies; and (6) having names of miscellaneous origin. (JN)
Perrard, Adrien; Arca, Mariangela; Rome, Quentin; Muller, Franck; Tan, Jiangli; Bista, Sanjaya; Nugroho, Hari; Baudoin, Raymond; Baylac, Michel; Silvain, Jean-François; Carpenter, James M.; Villemant, Claire
2014-01-01
Coloration of stinging insects is often based on contrasted patterns of light and black pigmentations as a warning signal to predators. However, in many social wasp species, geographic variation drastically modifies this signal through melanic polymorphism potentially driven by different selective pressures. To date, surprisingly little is known about the geographic variation of coloration of social wasps in relation to aposematism and melanism and to genetic and developmental constraints. The main objectives of this study are to improve the description of the colour variation within a social wasp species and to determine which factors are driving this variation. Therefore, we explored the evolutionary history of a polymorphic hornet, Vespa velutina Lepeletier, 1836, using mitochondrial and microsatellite markers, and we analysed its melanic variation using a colour space based on a description of body parts coloration. We found two main lineages within the species and confirmed the previous synonymy of V. auraria Smith, 1852, under V. velutina, differing only by the coloration. We also found that the melanic variation of most body parts was positively correlated, with some segments forming potential colour modules. Finally, we showed that the variation of coloration between populations was not related to their molecular, geographic or climatic differences. Our observations suggest that the coloration patterns of hornets and their geographic variations are determined by genes with an influence of developmental constraints. Our results also highlight that Vespa velutina populations have experienced several convergent evolutions of the coloration, more likely influenced by constraints on aposematism and Müllerian mimicry than by abiotic pressures on melanism. PMID:24740142
Perrard, Adrien; Arca, Mariangela; Rome, Quentin; Muller, Franck; Tan, Jiangli; Bista, Sanjaya; Nugroho, Hari; Baudoin, Raymond; Baylac, Michel; Silvain, Jean-François; Carpenter, James M; Villemant, Claire
2014-01-01
Coloration of stinging insects is often based on contrasted patterns of light and black pigmentations as a warning signal to predators. However, in many social wasp species, geographic variation drastically modifies this signal through melanic polymorphism potentially driven by different selective pressures. To date, surprisingly little is known about the geographic variation of coloration of social wasps in relation to aposematism and melanism and to genetic and developmental constraints. The main objectives of this study are to improve the description of the colour variation within a social wasp species and to determine which factors are driving this variation. Therefore, we explored the evolutionary history of a polymorphic hornet, Vespa velutina Lepeletier, 1836, using mitochondrial and microsatellite markers, and we analysed its melanic variation using a colour space based on a description of body parts coloration. We found two main lineages within the species and confirmed the previous synonymy of V. auraria Smith, 1852, under V. velutina, differing only by the coloration. We also found that the melanic variation of most body parts was positively correlated, with some segments forming potential colour modules. Finally, we showed that the variation of coloration between populations was not related to their molecular, geographic or climatic differences. Our observations suggest that the coloration patterns of hornets and their geographic variations are determined by genes with an influence of developmental constraints. Our results also highlight that Vespa velutina populations have experienced several convergent evolutions of the coloration, more likely influenced by constraints on aposematism and Müllerian mimicry than by abiotic pressures on melanism.
Divergence with gene flow across a speciation continuum of Heliconius butterflies.
Supple, Megan A; Papa, Riccardo; Hines, Heather M; McMillan, W Owen; Counterman, Brian A
2015-09-24
A key to understanding the origins of species is determining the evolutionary processes that drive the patterns of genomic divergence during speciation. New genomic technologies enable the study of high-resolution genomic patterns of divergence across natural speciation continua, where taxa pairs with different levels of reproductive isolation can be used as proxies for different stages of speciation. Empirical studies of these speciation continua can provide valuable insights into how genomes diverge during speciation. We examine variation across a handful of genomic regions in parapatric and allopatric populations of Heliconius butterflies with varying levels of reproductive isolation. Genome sequences were mapped to 2.2-Mb of the H. erato genome, including 1-Mb across the red color pattern locus and multiple regions unlinked to color pattern variation. Phylogenetic analyses reveal a speciation continuum of pairs of hybridizing races and incipient species in the Heliconius erato clade. Comparisons of hybridizing pairs of divergently colored races and incipient species reveal that genomic divergence increases with ecological and reproductive isolation, not only across the locus responsible for adaptive variation in red wing coloration, but also at genomic regions unlinked to color pattern. We observe high levels of divergence between the incipient species H. erato and H. himera, suggesting that divergence may accumulate early in the speciation process. Comparisons of genomic divergence between the incipient species and allopatric races suggest that limited gene flow cannot account for the observed high levels of divergence between the incipient species. Our results provide a reconstruction of the speciation continuum across the H. erato clade and provide insights into the processes that drive genomic divergence during speciation, establishing the H. erato clade as a powerful framework for the study of speciation.
Nanosecond laser coloration on stainless steel surface.
Lu, Yan; Shi, Xinying; Huang, Zhongjia; Li, Taohai; Zhang, Meng; Czajkowski, Jakub; Fabritius, Tapio; Huttula, Marko; Cao, Wei
2017-08-02
In this work, we present laser coloration on 304 stainless steel using nanosecond laser. Surface modifications are tuned by adjusting laser parameters of scanning speed, repetition rate, and pulse width. A comprehensive study of the physical mechanism leading to the appearance is presented. Microscopic patterns are measured and employed as input to simulate light-matter interferences, while chemical states and crystal structures of composites to figure out intrinsic colors. Quantitative analysis clarifies the final colors and RGB values are the combinations of structural colors and intrinsic colors from the oxidized pigments, with the latter dominating. Therefore, the engineering and scientific insights of nanosecond laser coloration highlight large-scale utilization of the present route for colorful and resistant steels.
Design Issues for Producing Effective Multimedia Presentations.
ERIC Educational Resources Information Center
Mason, Lisa D.
1997-01-01
Discusses design issues for interactive multimedia. Notes that technical communication instructors must consider navigational aids, the degree of control a user should have, audio cues, color and typographical elements, visual elements, and copyright issues. (RS)
Detection of Fingerprints Based on Elemental Composition Using Micro-X-Ray Fluorescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worley, C. G.; Wiltshire, S.; Miller, T. C.
A method was developed to detect fingerprints using a technique known as micro-X-ray fluorescence. The traditional method of detecting fingerprints involves treating the sample with certain powders, liquids, or vapors to add color to the fingerprint so that it can be easily seen and photographed for forensic purposes. This is known as contrast enhancement, and a multitude of chemical processing methods have been developed in the past century to render fingerprints visible. However, fingerprints present on certain substances such as fibrous papers and textiles, wood, leather, plastic, adhesives, and human skin can sometimes be difficult to detect by contrast enhancement.more » Children's fingerprints are also difficult to detect due to the absence of sebum on their skin, and detection of prints left on certain colored backgrounds can sometimes be problematic. Micro-X-ray fluorescence (MXRF) was studied here as a method to detect fingerprints based on chemical elements present in fingerprint residue. For example, salts such as sodium chloride and potassium chloride excreted in sweat are sometimes present in detectable quantities in fingerprints. We demonstrated that MXRF can be used to detect this sodium, potassium, and chlorine from such salts. Furthermore, using MXRF, each of these elements (and many other elements if present) can be detected as a function of location on a surface, so we were able to 'see' a fingerprint because these salts are deposited mainly along the patterns present in a fingerprint (traditionally called friction ridges in forensic science). MXRF is not a panacea for detecting all fingerprints; some prints will not contain enough detectable material to be 'seen'; however, determining an effective means of coloring a fingerprint with traditional contrast enhancement methods can sometimes be an arduous process with limited success. Thus, MXRF offers a possible alternative for detecting fingerprints, and it does not require any additional chemical treatment steps which can be time consuming and permanently alter the sample. Additionally, MXRF is noninvasive, so a fingerprint analyzed by this method is left pristine for examination by other methods (eg. DNA extraction). To the best of the author's knowledge, no studies have been published to date concerning the detection of fingerprints by micro-X-ray fluorescence. Some studies have been published in which other spectroscopic methods were employed to examine the chemical composition of fingerprints (eg. IR, SEM/EDX, and Auger), but very few papers discuss the actual detection and imaging of a complete fingerprint by any spectroscopic method. Thus, this work is unique.« less
Quality and noise measurements in mobile phone video capture
NASA Astrophysics Data System (ADS)
Petrescu, Doina; Pincenti, John
2011-02-01
The quality of videos captured with mobile phones has become increasingly important particularly since resolutions and formats have reached a level that rivals the capabilities available in the digital camcorder market, and since many mobile phones now allow direct playback on large HDTVs. The video quality is determined by the combined quality of the individual parts of the imaging system including the image sensor, the digital color processing, and the video compression, each of which has been studied independently. In this work, we study the combined effect of these elements on the overall video quality. We do this by evaluating the capture under various lighting, color processing, and video compression conditions. First, we measure full reference quality metrics between encoder input and the reconstructed sequence, where the encoder input changes with light and color processing modifications. Second, we introduce a system model which includes all elements that affect video quality, including a low light additive noise model, ISP color processing, as well as the video encoder. Our experiments show that in low light conditions and for certain choices of color processing the system level visual quality may not improve when the encoder becomes more capable or the compression ratio is reduced.
Yoder, Michael; Zimmerman, Robert L; Bibbo, Marluce
2004-04-01
To examine immunohistochemical staining of cell block material with antibodies against vascular marker CD34 and polyclonal carcinoembryonic antigen (pCEA) for their clinical utility as part of a 2-color staining protocol in fine needle aspiration (FNA) biopsy of liver masses to distinguish metastases from primary hepatocellular carcinoma (HCC). The authors obtained cell block material from 96 liver FNAs and performed simultaneous (i.e., "dual-color") immunohistochemical staining utilizing antibodies against vascular marker CD34 and pCEA. Cases were blinded and evaluated by the authors for staining pattern and intensity. A consensus was obtained, the results were unblinded, and the diagnoses were correlated. After staining, 89 cases had sufficient tissue for evaluation. Of the 19 HCC cases, 16 (84%) showed peripheral staining with CD34, and 13 (68%) showed a canalicular or mixed canalicular-cytoplasmic staining pattern for pCEA. Thirteen cases (68%) showed staining for both antigens. All HCC exhibited immunostaining for at least 1 antibody in an appropriate staining pattern. Of the 67 cases of metastatic malignancy, 5 (7%) showed a predominantly transgressing pattern of CD34 staining, 43 (64%) showed a predominantly cytoplasmic or mixed cytoplasmic-canalicular pattern of pCEA staining, and 2 cases (3%) showed staining for both antigens in a transgressing CD34 pattern and cytoplasmic pCEA pattern. None of the 3 normal liver tissue blocks showed staining with either antigen. Two-color immunohistochemical staining of liver cell block material obtained by FNA with antibodies to CD34 and pCEA can be helpful in differentiating metastatic tumors vs. primary HCC.
Gene loss, adaptive evolution and the co-evolution of plumage coloration genes with opsins in birds.
Borges, Rui; Khan, Imran; Johnson, Warren E; Gilbert, M Thomas P; Zhang, Guojie; Jarvis, Erich D; O'Brien, Stephen J; Antunes, Agostinho
2015-10-06
The wide range of complex photic systems observed in birds exemplifies one of their key evolutionary adaptions, a well-developed visual system. However, genomic approaches have yet to be used to disentangle the evolutionary mechanisms that govern evolution of avian visual systems. We performed comparative genomic analyses across 48 avian genomes that span extant bird phylogenetic diversity to assess evolutionary changes in the 17 representatives of the opsin gene family and five plumage coloration genes. Our analyses suggest modern birds have maintained a repertoire of up to 15 opsins. Synteny analyses indicate that PARA and PARIE pineal opsins were lost, probably in conjunction with the degeneration of the parietal organ. Eleven of the 15 avian opsins evolved in a non-neutral pattern, confirming the adaptive importance of vision in birds. Visual conopsins sw1, sw2 and lw evolved under negative selection, while the dim-light RH1 photopigment diversified. The evolutionary patterns of sw1 and of violet/ultraviolet sensitivity in birds suggest that avian ancestors had violet-sensitive vision. Additionally, we demonstrate an adaptive association between the RH2 opsin and the MC1R plumage color gene, suggesting that plumage coloration has been photic mediated. At the intra-avian level we observed some unique adaptive patterns. For example, barn owl showed early signs of pseudogenization in RH2, perhaps in response to nocturnal behavior, and penguins had amino acid deletions in RH2 sites responsible for the red shift and retinal binding. These patterns in the barn owl and penguins were convergent with adaptive strategies in nocturnal and aquatic mammals, respectively. We conclude that birds have evolved diverse opsin adaptations through gene loss, adaptive selection and coevolution with plumage coloration, and that differentiated selective patterns at the species level suggest novel photic pressures to influence evolutionary patterns of more-recent lineages.
Liu, Wenjuan; Ji, Jianlin; Chen, Hua; Ye, Chenyu
2014-01-01
Color is one of the most powerful aspects of a psychological counseling environment. Little scientific research has been conducted on color design and much of the existing literature is based on observational studies. Using design of experiments and response surface methodology, this paper proposes an optimal color design approach for transforming patients' perception into color elements. Six indices, pleasant-unpleasant, interesting-uninteresting, exciting-boring, relaxing-distressing, safe-fearful, and active-inactive, were used to assess patients' impression. A total of 75 patients participated, including 42 for Experiment 1 and 33 for Experiment 2. 27 representative color samples were designed in Experiment 1, and the color sample (L = 75, a = 0, b = -60) was the most preferred one. In Experiment 2, this color sample was set as the 'central point', and three color attributes were optimized to maximize the patients' satisfaction. The experimental results show that the proposed method can get the optimal solution for color design of a counseling room.
Chen, Hua; Ye, Chenyu
2014-01-01
Color is one of the most powerful aspects of a psychological counseling environment. Little scientific research has been conducted on color design and much of the existing literature is based on observational studies. Using design of experiments and response surface methodology, this paper proposes an optimal color design approach for transforming patients’ perception into color elements. Six indices, pleasant-unpleasant, interesting-uninteresting, exciting-boring, relaxing-distressing, safe-fearful, and active-inactive, were used to assess patients’ impression. A total of 75 patients participated, including 42 for Experiment 1 and 33 for Experiment 2. 27 representative color samples were designed in Experiment 1, and the color sample (L = 75, a = 0, b = -60) was the most preferred one. In Experiment 2, this color sample was set as the ‘central point’, and three color attributes were optimized to maximize the patients’ satisfaction. The experimental results show that the proposed method can get the optimal solution for color design of a counseling room. PMID:24594683
NASA Astrophysics Data System (ADS)
Quan, Shuxue
2009-02-01
Bayer patterns, in which a single value of red, green or blue is available for each pixel, are widely used in digital color cameras. The reconstruction of the full color image is often referred to as demosaicking. This paper introduced a new approach - morphological demosaicking. The approach is based on strong edge directionality selection and interpolation, followed by morphological operations to refine edge directionality selection and reduce color aliasing. Finally performance evaluation and examples of color artifacts reduction are shown.
Field, Aaron S; Alexander, Andrew L; Wu, Yu-Chien; Hasan, Khader M; Witwer, Brian; Badie, Behnam
2004-10-01
To categorize the varied appearances of tumor-altered white matter (WM) tracts on diffusion tensor eigenvector directional color maps. Diffusion tensor imaging (DTI) was obtained preoperatively in 13 patients with brain tumors ranging from benign to high-grade malignant, including primary and metastatic lesions, and maps of apparent diffusion coefficient (ADC), fractional anisotropy (FA), and major eigenvector direction were generated. Regions of interest (ROIs) were drawn within identifiable WM tracts affected by tumor, avoiding grossly cystic and necrotic regions, known fiber crossings, and gray matter. Patterns of WM tract alteration were categorized on the basis of qualitative analysis of directional color maps and correlation analysis of ADC and FA. Four basic patterns of WM alteration were identified: 1) normal or nearly normal FA and ADC, with abnormal tract location or tensor directions attributable to bulk mass displacement, 2) moderately decreased FA and increased ADC with normal tract locations and tensor directions, 3) moderately decreased FA and increased ADC with abnormal tensor directions, and 4) near isotropy. FA and ADC were inversely correlated for Patterns 1-3 but did not discriminate edema from infiltrating tumor. However, in the absence of mass displacement, infiltrating tumor was found to produce tensor directional changes that were not observed with vasogenic edema, suggesting the possibility of discrimination on the basis of directional statistics. Tumor alteration of WM tracts tends to produce one of four patterns on FA and directional color maps. Clinical application of these patterns must await further study. Copyright 2004 Wiley-Liss, Inc.
NASA Technical Reports Server (NTRS)
Holman, R. E., III
1974-01-01
Color infrared aerial photography was found to be superior to color aerial photography in an ecological study of Lynnhaven Bay, Virginia. The research was divided into three phases: (1) Determination of the feasibility of correlating color infrared aerial photography with saline wetland species composition and zonation patterns, (2) determination of the accuracy of the aerial interpretation and problems related to the aerial method used; and (3) comparison of developed with undeveloped areas along Lynnhaven Bay's shoreline. Wetland species composition and plant community zonation bands were compared with aerial infrared photography and resulted in a high degree of correlation. Problems existed with changing physical conditions; time of day, aircraft angle and sun angle, making it necessary to use several different characteristics in wetland species identification. The main characteristics used were known zonation patterns, textural signatures and color tones. Lynnhaven Bay's shoreline was 61.5 percent developed.
Saiki, Jun
2002-01-01
Research on change blindness and transsaccadic memory revealed that a limited amount of information is retained across visual disruptions in visual working memory. It has been proposed that visual working memory can hold four to five coherent object representations. To investigate their maintenance and transformation in dynamic situations, I devised an experimental paradigm called multiple-object permanence tracking (MOPT) that measures memory for multiple feature-location bindings in dynamic situations. Observers were asked to detect any color switch in the middle of a regular rotation of a pattern with multiple colored disks behind an occluder. The color-switch detection performance dramatically declined as the pattern rotation velocity increased, and this effect of object motion was independent of the number of targets. The MOPT task with various shapes and colors showed that color-shape conjunctions are not available in the MOPT task. These results suggest that even completely predictable motion severely reduces our capacity of object representations, from four to only one or two.
Roman onyx glass: A study of production recipes and colorants, using PIXE spectrometry
NASA Astrophysics Data System (ADS)
Fleming, S. J.; Swann, C. P.
1994-03-01
The most attractive Roman glass produced during the latter half of the 1st century B.C. was mosaic ware — vessels and dishes molded from arrays of composite, multi-colored canes which create abstract floral and geometric designs. We have studied a range of such vessels, all of them colored amber and white in a way which was intended to imitate elite vessels that were carved from onyx stone. We have differentiated three ways in which onyx patterns were achieved in this glass. Taking advantage of the spatial resolution and detection sensitivity of PIXE spectrometry, we have studied the "recipes" for colorants used in these onyx patterns, thus raising the notion that each one may have been fashionable in just certain regions of the Roman World, and/or in vogue only during a certain time period.
Iapetus: Unique Surface Properties and a Global Color Dichotomy from Cassini Imaging
NASA Astrophysics Data System (ADS)
Denk, Tilmann; Neukum, Gerhard; Roatsch, Thomas; Porco, Carolyn C.; Burns, Joseph A.; Galuba, Götz G.; Schmedemann, Nico; Helfenstein, Paul; Thomas, Peter C.; Wagner, Roland J.; West, Robert A.
2010-01-01
Since 2004, Saturn’s moon Iapetus has been observed repeatedly with the Imaging Science Subsystem of the Cassini spacecraft. The images show numerous impact craters down to the resolution limit of ~10 meters per pixel. Small, bright craters within the dark hemisphere indicate a dark blanket thickness on the order of meters or less. Dark, equator-facing and bright, poleward-facing crater walls suggest temperature-driven water-ice sublimation as the process responsible for local albedo patterns. Imaging data also reveal a global color dichotomy, wherein both dark and bright materials on the leading side have a substantially redder color than the respective trailing-side materials. This global pattern indicates an exogenic origin for the redder leading-side parts and suggests that the global color dichotomy initiated the thermal formation of the global albedo dichotomy.
Iapetus: unique surface properties and a global color dichotomy from Cassini imaging.
Denk, Tilmann; Neukum, Gerhard; Roatsch, Thomas; Porco, Carolyn C; Burns, Joseph A; Galuba, Götz G; Schmedemann, Nico; Helfenstein, Paul; Thomas, Peter C; Wagner, Roland J; West, Robert A
2010-01-22
Since 2004, Saturn's moon Iapetus has been observed repeatedly with the Imaging Science Subsystem of the Cassini spacecraft. The images show numerous impact craters down to the resolution limit of approximately 10 meters per pixel. Small, bright craters within the dark hemisphere indicate a dark blanket thickness on the order of meters or less. Dark, equator-facing and bright, poleward-facing crater walls suggest temperature-driven water-ice sublimation as the process responsible for local albedo patterns. Imaging data also reveal a global color dichotomy, wherein both dark and bright materials on the leading side have a substantially redder color than the respective trailing-side materials. This global pattern indicates an exogenic origin for the redder leading-side parts and suggests that the global color dichotomy initiated the thermal formation of the global albedo dichotomy.
NASA Astrophysics Data System (ADS)
Zaw, Khin; Sutherland, Lin; Yui, Tzen-Fu; Meffre, Sebastien; Thu, Kyaw
2015-01-01
Rubies and sapphires are of both scientific and commercial interest. These gemstones are corundum colored by transition elements within the alumina crystal lattice: Cr3+ yields red in ruby and Fe2+, Fe3+, and Ti4+ ionic interactions color sapphires. A minor ion, V3+ induces slate to purple colors and color change in some sapphires, but its role in coloring rubies remains enigmatic. Trace element and oxygen isotope composition provide genetic signatures for natural corundum and assist geographic typing. Here, we show that V can dominate chromophore contents in Mogok ruby suites. This raises implications for their color quality, enhancement treatments, geographic origin, exploration and exploitation and their comparison with rubies elsewhere. Precise LA-ICP-MS analysis of ruby and sapphire from Mogok placer and in situ deposits reveal that V can exceed 5,000 ppm, giving V/Cr, V/Fe and V/Ti ratios up to 26, 78, and 97 respectively. Such values significantly exceed those found elsewhere suggesting a localized geological control on V-rich ruby distribution. Our results demonstrate that detailed geochemical studies of ruby suites reveal that V is a potential ruby tracer, encourage comparisons of V/Cr-variation between ruby suites and widen the scope for geographic typing and genesis of ruby. This will allow more precise comparison of Asian and other ruby fields and assist confirmation of Mogok sources for rubies in historical and contemporary gems and jewelry.
Svensson, W E; Pandian, A J; Hashimoto, H
2010-10-01
The aim of this study was to evaluate the use of vascular morphology, around and within the B-mode region of abnormality, for improving the diagnostic accuracy of two of the most common solid breast pathologies. The B-mode and Doppler images of 117 breast cancers and 366 fibroadenomas and lesions with a fibroadenoma-like appearance were reviewed retrospectively and the morphology of the vascular pattern was evaluated. The ratio of external to internal color Doppler, the external vascular pattern and the connecting vessels to internal vessels were assessed and differentiated into benign and malignant vascular patterns. These patterns were correlated with the histological diagnosis. Vascularity was demonstrated in 95 % of cancers and in 46 % of benign lesions with a trend to increasing vascularity in cancers. This provided poor specificity for excluding cancer in fibroadenomas. Variations in vascular pattern were recorded. The observed benign vascular patterns were avascularity, vascularity in the periphery and peripheral marginal vessels connecting with internal vascularity. The observed malignant vascular patterns were radially aligned external vessels with internal vessels being more numerous than external vessels which connected to radial vessels. (Fisher exact test p < 0.0001). Analysis of the vascular morphology improved the sensitivity for identifying cancers from 97 % (B-mode) to 99 % (B-mode and color Doppler) with a minimal reduction in specificity (93.7 to 92.6 %) or accuracy (94.6 to 94.2 %). The presence of vascularity within a lesion, by itself, is no longer a good predictor of malignancy because of the increase in Doppler sensitivity associated with improvements in ultrasound technology. The color Doppler ultrasound vascular pattern morphology improves the accuracy and sensitivity of B-mode image diagnosis, breast cancers and fibroadenomas with a minimal loss of specificity. Any breast lesion with radial rather than marginal connecting vessels should be regarded with suspicion. © Georg Thieme Verlag KG Stuttgart · New York.
Colorimetric Detection Of Substances In Liquids And Gases
NASA Technical Reports Server (NTRS)
Harris, J. Milton; Mcgill, R. Andrew; Paley, Mark S.
1992-01-01
Thin polymer films containing solvatochromic dyes used as sensing elements to detect substances dissolved in liquids and gases. Dyes do not react with liquids in which dissolved, but do respond to changes in chemical compositions by changing color. Concentration determined visually by comparison of color with predetermined standard chart, or spectrophotometrically.
Iwata, Masaki; Ohno, Yoshikazu; Otaki, Joji M.
2014-01-01
Butterfly wings are covered with regularly arranged single-colored scales that are formed at the pupal stage. Understanding pupal wing development is therefore crucial to understand wing color pattern formation. Here, we successfully employed real-time in vivo imaging techniques to observe pupal hindwing development over time in the blue pansy butterfly, Junonia orithya. A transparent sheet of epithelial cells that were not yet regularly arranged was observed immediately after pupation. Bright-field imaging and autofluorescent imaging revealed free-moving hemocytes and tracheal branches of a crinoid-like structure underneath the epithelium. The wing tissue gradually became gray-white, epithelial cells were arranged regularly, and hemocytes disappeared, except in the bordering lacuna, after which scales grew. The dynamics of the epithelial cells and scale growth were also confirmed by fluorescent imaging. Fluorescent in vivo staining further revealed that these cells harbored many mitochondria at the surface of the epithelium. Organizing centers for the border symmetry system were apparent immediately after pupation, exhibiting a relatively dark optical character following treatment with fluorescent dyes, as well as in autofluorescent images. The wing tissue exhibited slow and low-frequency contraction pulses with a cycle of approximately 10 to 20 minutes, mainly occurring at 2 to 3 days postpupation. The pulses gradually became slower and weaker and eventually stopped. The wing tissue area became larger after contraction, which also coincided with an increase in the autofluorescence intensity that might have been caused by scale growth. Examination of the pattern of color development revealed that the black pigment was first deposited in patches in the central areas of an eyespot black ring and a parafocal element. These results of live in vivo imaging that covered wide wing area for a long time can serve as a foundation for studying the cellular dynamics of living wing tissues in butterflies. PMID:24586829
Iwata, Masaki; Ohno, Yoshikazu; Otaki, Joji M
2014-01-01
Butterfly wings are covered with regularly arranged single-colored scales that are formed at the pupal stage. Understanding pupal wing development is therefore crucial to understand wing color pattern formation. Here, we successfully employed real-time in vivo imaging techniques to observe pupal hindwing development over time in the blue pansy butterfly, Junonia orithya. A transparent sheet of epithelial cells that were not yet regularly arranged was observed immediately after pupation. Bright-field imaging and autofluorescent imaging revealed free-moving hemocytes and tracheal branches of a crinoid-like structure underneath the epithelium. The wing tissue gradually became gray-white, epithelial cells were arranged regularly, and hemocytes disappeared, except in the bordering lacuna, after which scales grew. The dynamics of the epithelial cells and scale growth were also confirmed by fluorescent imaging. Fluorescent in vivo staining further revealed that these cells harbored many mitochondria at the surface of the epithelium. Organizing centers for the border symmetry system were apparent immediately after pupation, exhibiting a relatively dark optical character following treatment with fluorescent dyes, as well as in autofluorescent images. The wing tissue exhibited slow and low-frequency contraction pulses with a cycle of approximately 10 to 20 minutes, mainly occurring at 2 to 3 days postpupation. The pulses gradually became slower and weaker and eventually stopped. The wing tissue area became larger after contraction, which also coincided with an increase in the autofluorescence intensity that might have been caused by scale growth. Examination of the pattern of color development revealed that the black pigment was first deposited in patches in the central areas of an eyespot black ring and a parafocal element. These results of live in vivo imaging that covered wide wing area for a long time can serve as a foundation for studying the cellular dynamics of living wing tissues in butterflies.
Nanoimprinted photonic crystal color filters for solar-powered reflective displays.
Cho, Eun-Hyoung; Kim, Hae-Sung; Sohn, Jin-Seung; Moon, Chang-Youl; Park, No-Cheol; Park, Young-Pil
2010-12-20
A novel concept for reflective displays that uses two-dimensional photonic crystals with subwavelength gratings is introduced. A solar-powered reflective display with photonic crystal color filters was analyzed by a theoretical approach. We fabricated the photonic crystal color filters on a glass substrate by using low-cost nanoimprint lithography and multi-scan excimer laser annealing to produce RGB color filters through a single patterning process. The theoretical and experimental results show that the color filters have high reflectance and angular tolerance, which was qualitatively confirmed by chromaticity coordination analysis.
Human Movement as a Function of Color Stimulation.
ERIC Educational Resources Information Center
Srivastava, Rajendra K.; Peel, Thomas S.
A research study and the intent and purpose of its experiments are outlined to support the premise that "a change in the color of an environment will bring a change in the pattern of human movement within that environment". Experiment cited is concerned with the color variables of light beige and dark brown in a controlled environment with museum…
ERIC Educational Resources Information Center
Urias, Marissa Vasquez; Falcon, Vannessa; Harris, Frank, III; Wood, J. Luke
2016-01-01
With the use of a narrative approach to inquiry, this chapter seeks to reframe deficit-oriented research on men of color, which often focuses on patterns of failure and underachievement, by exploring the pathways of community college men of color who successfully transferred to 4-year institutions.
NASA Astrophysics Data System (ADS)
Spitz, Y. H.; Cervantes, B.
2016-02-01
The Columbia River estuary experiences extensive seasonal red-colored blooms caused by a mixotrophic ciliate of the genus Mesodinium. Although the blooms are non-toxic, they have a significant influence on the levels of nutrients, light and oxygen in the estuary. Mesodinium spp. displays very particular physiology that makes it one of few planktonic species able to thrive in a highly flushed system: a high growth rate due to its ability to photosynthesize using the photosynthetic organelles of its preys, and complex vertical migration patterns. Knowledge of the migration pattern is based on limited observations of Mesodinium behavior in culture and recent in-situ measurements collected in the Columbia River estuary. A more comprehensive understanding is needed of the mechanisms allowing Mesodinium spp. to be retained and experience rapid growth. To this end, we extended the finite element circulation model SELFE to include a 5-component behavioral model that simulates the relationships between nutrients, detritus, Mesodinium spp. and its cryptophyte prey. We then used the model to investigate various migration patterns and growth scenarios to determine their role in the formation and retention of the Mesodinium spp. bloom in the brackish water of the estuary.
Lindsey, Delwin T.; Brainard, David H.; Apicella, Coren L.
2016-01-01
In our empirical and theoretical study of color naming among the Hadza, a Tanzanian hunter-gatherer group, we show that Hadza color naming is sparse (the color appearance of many stimulus tiles was not named), diverse (there was little consensus in the terms for the color appearance of most tiles), and distributed (the universal color categories of world languages are revealed in nascent form within the Hadza language community, when we analyze the patterns of how individual Hadza deploy color terms). Using our Hadza data set, Witzel shows an association between two measures of color naming performance and the chroma of the stimuli. His prediction of which colored tiles will be named with what level of consensus, while interesting, does not alter the validity of our conclusions. PMID:28781734
Color moiré simulations in contact-type 3-D displays.
Lee, B-R; Son, J-Y; Chernyshov, O O; Lee, H; Jeong, I-K
2015-06-01
A new method of color moiré fringe simulation in the contact-type 3-D displays is introduced. The method allows simulating color moirés appearing in the displays, which cannot be approximated by conventional cosine approximation of a line grating. The color moirés are mainly introduced by the line width of the boundary lines between the elemental optics in and plate thickness of viewing zone forming optics. This is because the lines are hiding some parts of pixels under the viewing zone forming optics, and the plate thickness induces a virtual contraction of the pixels. The simulated color moiré fringes are closely matched with those appearing at the displays.
Full-color stereoscopic single-pixel camera based on DMD technology
NASA Astrophysics Data System (ADS)
Salvador-Balaguer, Eva; Clemente, Pere; Tajahuerce, Enrique; Pla, Filiberto; Lancis, Jesús
2017-02-01
Imaging systems based on microstructured illumination and single-pixel detection offer several advantages over conventional imaging techniques. They are an effective method for imaging through scattering media even in the dynamic case. They work efficiently under low light levels, and the simplicity of the detector makes it easy to design imaging systems working out of the visible spectrum and to acquire multidimensional information. In particular, several approaches have been proposed to record 3D information. The technique is based on sampling the object with a sequence of microstructured light patterns codified onto a programmable spatial light modulator while light intensity is measured with a single-pixel detector. The image is retrieved computationally from the photocurrent fluctuations provided by the detector. In this contribution we describe an optical system able to produce full-color stereoscopic images by using few and simple optoelectronic components. In our setup we use an off-the-shelf digital light projector (DLP) based on a digital micromirror device (DMD) to generate the light patterns. To capture the color of the scene we take advantage of the codification procedure used by the DLP for color video projection. To record stereoscopic views we use a 90° beam splitter and two mirrors, allowing us two project the patterns form two different viewpoints. By using a single monochromatic photodiode we obtain a pair of color images that can be used as input in a 3-D display. To reduce the time we need to project the patterns we use a compressive sampling algorithm. Experimental results are shown.
Seasonal canopy reflectance patterns of wheat, sorghum, and soybean
NASA Technical Reports Server (NTRS)
Kanemasu, E. T.
1974-01-01
An investigation was conducted of canopy-reflectance patterns as a basis for the determination of surface conditions. Two fields each of wheat, sorghum, and soybeans were selected in a bottom land area. One field contained a dark-colored, silty clay loam and the other a light-colored, silt loam. The study suggests that the reflectance ratio of the 545- to 655-nm-wavelengths may be used as an indicator of crop growth.
A Hydrodynamic Instability Is Used to Create Aesthetically Appealing Patterns in Painting
Zetina, Sandra; Godínez, Francisco A.; Zenit, Roberto
2015-01-01
Painters often acquire a deep empirical knowledge of the way in which paints and inks behave. Through experimentation and practice, they can control the way in which fluids move and deform to create textures and images. David Alfaro Siqueiros, a recognized Mexican muralist, invented an accidental painting technique to create new and unexpected textures. By pouring layers of paint of different colors on a horizontal surface, the paints infiltrate into each other creating patterns of aesthetic value. In this investigation, we reproduce the technique in a controlled manner. We found that for the correct color combination, the dual viscous layer becomes Rayleigh-Taylor unstable: the density mismatch of the two color paints drives the formation of a spotted pattern. Experiments and a linear instability analysis were conducted to understand the properties of the process. We also argue that this flow configuration can be used to study the linear properties of this instability. PMID:25942586
NASA Astrophysics Data System (ADS)
Gao, Xinya; Wang, Yonghong; Li, Junrui; Dan, Xizuo; Wu, Sijin; Yang, Lianxiang
2017-06-01
It is difficult to measure absolute three-dimensional deformation using traditional digital speckle pattern interferometry (DSPI) when the boundary condition of an object being tested is not exactly given. In practical applications, the boundary condition cannot always be specifically provided, limiting the use of DSPI in real-world applications. To tackle this problem, a DSPI system that is integrated by the spatial carrier method and a color camera has been established. Four phase maps are obtained simultaneously by spatial carrier color-digital speckle pattern interferometry using four speckle interferometers with different illumination directions. One out-of-plane and two in-plane absolute deformations can be acquired simultaneously without knowing the boundary conditions using the absolute deformation extraction algorithm based on four phase maps. Finally, the system is proved by experimental results through measurement of the deformation of a flat aluminum plate with a groove.
Adaptive reptile color variation and the evolution of the Mc1r gene.
Rosenblum, Erica Bree; Hoekstra, Hopi E; Nachman, Michael W
2004-08-01
The wealth of information on the genetics of pigmentation and the clear fitness consequences of many pigmentation phenotypes provide an opportunity to study the molecular basis of an ecologically important trait. The melanocortin-1 receptor (Mc1r) is responsible for intraspecific color variation in mammals and birds. Here, we study the molecular evolution of Mc1r and investigate its role in adaptive intraspecific color differences in reptiles. We sequenced the complete Mc1r locus in seven phylogenetically diverse squamate species with melanic or blanched forms associated with different colored substrates or thermal environments. We found that patterns of amino acid substitution across different regions of the receptor are similar to the patterns seen in mammals, suggesting comparable levels of constraint and probably a conserved function for Mc1r in mammals and reptiles. We also found high levels of silent-site heterozygosity in all species, consistent with a high mutation rate or large long-term effective population size. Mc1r polymorphisms were strongly associated with color differences in Holbrookia maculata and Aspidoscelis inornata. In A. inornata, several observations suggest that Mc1r mutations may contribute to differences in color: (1) a strong association is observed between one Mc1r amino acid substitution and dorsal color; (2) no significant population structure was detected among individuals from these populations at the mitochondrial ND4 gene; (3) the distribution of allele frequencies at Mc1r deviates from neutral expectations; and (4) patterns of linkage disequilibrium at Mc1r are consistent with recent selection. This study provides comparative data on a nuclear gene in reptiles and highlights the utility of a candidate-gene approach for understanding the evolution of genes involved in vertebrate adaptation.
Disappointment Reach, Australia as seen from STS-67 Endeavour
NASA Technical Reports Server (NTRS)
1995-01-01
A nearly vertical view of Disappointment Reach and surroundings. Ripple-like patterns extending at right angles to the tidal flow can be discerned on shoals. Relict sand dune patterns, crests unvegetated, are evident on the western side of the estuary. Red mud brought down the Mooramel River on the east side of the estuary does extend into the shallow water of the inter-tidal lagoons. Most of the light-colored water along the coast, represents shoals of lime sediment. Patterns of sediment distribution by tides, waves, streams, and wind combine to create a complex and colorful scene.
Disappointment Reach, Australia as seen from STS-67 Endeavour
1995-03-14
A nearly vertical view of Disappointment Reach and surroundings. Ripple-like patterns extending at right angles to the tidal flow can be discerned on shoals. Relict sand dune patterns, crests unvegetated, are evident on the western side of the estuary. Red mud brought down the Mooramel River on the east side of the estuary does extend into the shallow water of the inter-tidal lagoons. Most of the light-colored water along the coast, represents shoals of lime sediment. Patterns of sediment distribution by tides, waves, streams, and wind combine to create a complex and colorful scene.
Coloring your information: How designers use Theory of Color in creative ways to present infographic
NASA Astrophysics Data System (ADS)
Lucius, C. R.; Fuad, A.
2017-12-01
Various methods of data presentation is now visualized through engaging infographics and perform the presentation techniques a new kind of storytelling. Geometric elements for infographics perform interesting data, which is developed with color harmony. There are categories of colors based on color circle from the theory of color design: primary color, secondary color and tertiary color. This color circle allows a designer to visualize the balance and harmony of colors when they are side by side. These composition of colors can be formed as a harmonious dyad, triad, or tetrads. A harmonious dyad is formed from two diametrically opposed colors on the color circle, which known as contrast complementary and works best in color harmonious if one of the colors is dominant. A harmonious triad is represented by three colors from the color circle which positions with an equilateral triangle. An triangle of yellow-red-blue shows the most powerful of harmonious triad and call as the fundamental triad. A harmonious tetrad is developed from two pairs of complementary colors, which can be formed by rectangle or square on the color circle. It help to figure out how objects are connected on presenting data. To create an efficiency infographic, presenting data has to prepare with some strategic. The color circle has the power to perform the infographic when it is made for a fascinating design.
Song, Tingting; Yao, Yuncong
2014-01-01
Chalcone synthase is a key and often rate-limiting enzyme in the biosynthesis of anthocyanin pigments that accumulate in plant organs such as flowers and fruits, but the relationship between CHS expression and the petal coloration level in different cultivars is still unclear. In this study, three typical crabapple cultivars were chosen based on different petal colors and coloration patterns. The two extreme color cultivars, ‘Royalty’ and ‘Flame’, have dark red and white petals respectively, while the intermediate cultivar ‘Radiant’ has pink petals. We detected the flavoniods accumulation and the expression levels of McCHS during petals expansion process in different cultivars. The results showed McCHS have their special expression patterns in each tested cultivars, and is responsible for the red coloration and color variation in crabapple petals, especially for color fade process in ‘Radiant’. Furthermore, tobacco plants constitutively expressing McCHS displayed a higher anthocyanins accumulation and a deeper red petal color compared with control untransformed lines. Moreover, the expression levels of several anthocyanin biosynthetic genes were higher in the transgenic McCHS overexpressing tobacco lines than in the control plants. A close relationship was observed between the expression of McCHS and the transcription factors McMYB4 and McMYB5 during petals development in different crabapple cultivars, suggesting that the expression of McCHS was regulated by these transcription factors. We conclude that the endogenous McCHS gene is a critical factor in the regulation of anthocyanin biosynthesis during petal coloration in Malus crabapple. PMID:25357207
Stoddard, Mary Caswell; Fayet, Annette L.; Kilner, Rebecca M.; Hinde, Camilla A.
2012-01-01
Many passerine birds lay white eggs with reddish brown speckles produced by protoporphyrin pigment. However, the function of these spots is contested. Recently, the sexually selected eggshell coloration (SSEC) hypothesis proposed that eggshell color is a sexually selected signal through which a female advertises her quality (and hence the potential quality of her future young) to her male partner, thereby encouraging him to contribute more to breeding attempts. We performed a test of the SSEC hypothesis in a common passerine, the great tit Parus major. We used a double cross-fostering design to determine whether males change their provisioning behavior based on eggshell patterns they observe at the nest. We also tested the assumption that egg patterning reflects female and/or offspring quality. Because birds differ from humans in their color and pattern perception, we used digital photography and models of bird vision to quantify egg patterns objectively. Neither male provisioning nor chick growth was related to the pattern of eggs males observed during incubation. Although heavy females laid paler, less speckled eggs, these eggs did not produce chicks that grew faster. Therefore, we conclude that the SSEC hypothesis is an unlikely explanation for the evolution of egg speckling in great tits. PMID:22815730
Principles of computer processing of Landsat data for geologic applications
Taranik, James V.
1978-01-01
The main objectives of computer processing of Landsat data for geologic applications are to improve display of image data to the analyst or to facilitate evaluation of the multispectral characteristics of the data. Interpretations of the data are made from enhanced and classified data by an analyst trained in geology. Image enhancements involve adjustments of brightness values for individual picture elements. Image classification involves determination of the brightness values of picture elements for a particular cover type. Histograms are used to display the range and frequency of occurrence of brightness values. Landsat-1 and -2 data are preprocessed at Goddard Space Flight Center (GSFC) to adjust for the detector response of the multispectral scanner (MSS). Adjustments are applied to minimize the effects of striping, adjust for bad-data lines and line segments and lost individual pixel data. Because illumination conditions and landscape characteristics vary considerably and detector response changes with time, the radiometric adjustments applied at GSFC are seldom perfect and some detector striping remain in Landsat data. Rotation of the Earth under the satellite and movements of the satellite platform introduce geometric distortions in the data that must also be compensated for if image data are to be correctly displayed to the data analyst. Adjustments to Landsat data are made to compensate for variable solar illumination and for atmospheric effects. GeoMetric registration of Landsat data involves determination of the spatial location of a pixel in. the output image and the determination of a new value for the pixel. The general objective of image enhancement is to optimize display of the data to the analyst. Contrast enhancements are employed to expand the range of brightness values in Landsat data so that the data can be efficiently recorded in a manner desired by the analyst. Spatial frequency enhancements are designed to enhance boundaries between features which have subtle differences in brightness values. Ratioing tends to reduce the effects due to topography and it tends to emphasize changes in brightness values between two Landsat bands. Simulated natural color is produced for geologists so that the colors of materials on images appear similar to colors of actual materials in the field. Image classification of Landsat data involves both machine assisted delineation of multispectral patterns in four-dimensional spectral space and identification of machine delineated multispectral patterns that represent particular cover conditions. The geological information derived from an analysis of a multispectral classification is usually related to lithology.
Iapetus: Major discoveries from the Cassini imaging experiment
NASA Astrophysics Data System (ADS)
Denk, T.; Neukum, G.; Schmedemann, N.; Roatsch, Th.; Thomas, P. C.; Helfenstein, P.; Turtle, E. P.; Porco, C. C.
2008-09-01
Over the course of more than three years orbiting Saturn, the Imaging Subsystem (ISS) [1] of the Cassini spacecraft has acquired high-resolution images of the Saturnian moon Iapetus during a number of flybys. The most recent and only targeted Iapetus flyby occured on 10 September 2007, and allowed a >50x closer look at the surface than any previous observation. The surface of Iapetus is heavily cratered down to the resolution limit of ~10 meters per pixel. The crater size-frequency distribution shows no measurable difference between the leading and the trailing hemisphere, arguing for planetocentric projectiles as the main impactor source. The equatorial ridge can now be clearly tracked along half of Iapetus's circumference, from ~50°W to ~245°W; it is mainly absent on the other hemisphere. However, we argue that it presumably spanned the full globe shortly after formation. Very small bright-ray and bright-rim craters have been detected deep within the dark hemisphere, suggestive for a dark blanket with a thickness in the order of decimeters to meters only. On the trailing side at low and mid-latitudes, very dark terrain is located immediately adjacent to bright terrain, with almost no gray shading in between. In many cases, crater walls facing towards the equator are dark, while poleward-facing walls and slopes are bright. This effect vanishes at both north and south high latitudes. We interpret these observations to indicate that thermal segregation of water ice is responsible for these complex small-scale dark-bright patterns. On the trailing side, a bright polar cap has been observed at high latitudes on both hemispheres (north and south). A global color dichotomy has been detected in addition to the long-known global brightness dichotomy, with the leading side showing a significantly redder color than the trailing side. Unlike the more ellipsoidal-shaped brightness dichotomy, the color dichotomy is quite well separated into two different hemispheres, with the sub-Saturn (~0°W) and anti-Saturn (~180°W) meridians as the approximate boundaries [2]. This global pattern indicates an exogenic origin. Earlier hypotheses for the origin of the brightness dichotomy, like the infall of dust from retrograde outer moons, might actually offer a better explanation for the color dichotomy than for the brightness dichotomy. We propose that this so far unknown process forming the color dichotomy has also reddened and somewhat darkened Hyperion, another moon of Saturn. The color dichotomy also provides a key element to the explanation of the brightness dichotomy in the model of Spencer et al. [3]. References [1] Porco, C.C. et al. (2004) Space Sci. Rev.115, 363. [2] Denk, T. et al. (2006) EGU06-A-08352. [3] Spencer, J.R. et al. (2005) 37th DPS, abstract 39.08.
NASA Astrophysics Data System (ADS)
Seol, Daun; Moon, Jong-Sik; Lee, Yujin; Han, Jiye; Jang, Daeil; Kang, Dong-Jin; Moon, Jiyoung; Jang, Eunjin; Oh, Jin-Woo; Chung, Hoeil
2018-05-01
An M13 bacteriophage-based color sensor, which can change its structural color upon interaction with a gaseous molecule, was evaluated as a screening tool for the discrimination of the geographical origins of three different agricultural products (garlic, onion, and perilla). Exposure of the color sensor to sample odors induced the self-assembled M13 bacteriophage bundles to swell by the interaction of amino acid residues (repeating units of four glutamates) on the bacteriophage with the odor components, resulting in a change in the structural color of the sensor. When the sensor was exposed to the odors of garlic and onion samples, the RGB color changes were considerable because of the strong interactions of the odor components such as disulfides with the glutamate residues on the sensor. Although the patterns of the color variations were generally similar between the domestic and imported samples, some degrees of dissimilarities in their intensities were also observed. Although the magnitude of color change decreased for perilla, the color change patterns between the two groups were somewhat different. With the acquired RGB data, a support vector machine was employed to distinguish the domestic and imported samples, and the resulting accuracies in the measurements of garlic, onion, and perilla samples were 94.1, 88.7, and 91.6%, respectively. The differences in the concentrations of the odor components between both groups and/or the presence of specific components exclusively in the odor of one group allowed the color sensor-based discrimination. The demonstrated color sensor was thus shown to be a potentially versatile and simple as an on-site screening tool. Strategies able to further improve the sensor performance were also discussed.
Seol, Daun; Moon, Jong-Sik; Lee, Yujin; Han, Jiye; Jang, Daeil; Kang, Dong-Jin; Moon, Jiyoung; Jang, Eunjin; Oh, Jin-Woo; Chung, Hoeil
2018-05-15
An M13 bacteriophage-based color sensor, which can change its structural color upon interaction with a gaseous molecule, was evaluated as a screening tool for the discrimination of the geographical origins of three different agricultural products (garlic, onion, and perilla). Exposure of the color sensor to sample odors induced the self-assembled M13 bacteriophage bundles to swell by the interaction of amino acid residues (repeating units of four glutamates) on the bacteriophage with the odor components, resulting in a change in the structural color of the sensor. When the sensor was exposed to the odors of garlic and onion samples, the RGB color changes were considerable because of the strong interactions of the odor components such as disulfides with the glutamate residues on the sensor. Although the patterns of the color variations were generally similar between the domestic and imported samples, some degrees of dissimilarities in their intensities were also observed. Although the magnitude of color change decreased for perilla, the color change patterns between the two groups were somewhat different. With the acquired RGB data, a support vector machine was employed to distinguish the domestic and imported samples, and the resulting accuracies in the measurements of garlic, onion, and perilla samples were 94.1, 88.7, and 91.6%, respectively. The differences in the concentrations of the odor components between both groups and/or the presence of specific components exclusively in the odor of one group allowed the color sensor-based discrimination. The demonstrated color sensor was thus shown to be a potentially versatile and simple as an on-site screening tool. Strategies able to further improve the sensor performance were also discussed. Copyright © 2018. Published by Elsevier B.V.
Color, Reference, and Expertise in Language Acquisition
ERIC Educational Resources Information Center
Clark, Eve V.
2006-01-01
In learning the meaning of a new term, children need to fix its reference, learn its conventional meaning, and discover the meanings with which it contrasts. To do this, children must attend to adult speakers--the experts--and to their patterns of use. In the domain of color, children need to identify color terms as such, fix the reference of each…
NASA Astrophysics Data System (ADS)
Kim, Hyo-Jun; Shin, Min-Ho; Kim, Young-Joo
2016-08-01
A new structure for white organic light-emitting diode (OLED) displays with a patterned quantum dot (QD) film and a long pass filter (LPF) was proposed and evaluated to realize both a high color gamut and high optical efficiency. Since optical efficiency is a critical parameter in white OLED displays with a high color gamut, a red or green QD film as a color-converting component and an LPF as a light-recycling component are introduced to be adjusted via the characteristics of a color filter (CF). Compared with a conventional white OLED without both a QD film and the LPF, it was confirmed experimentally that the optical powers of red and green light in a new white OLED display were increased by 54.1 and 24.7% using a 30 wt % red QD film and a 20 wt % green QD film with the LPF, respectively. In addition, the white OLED with both a QD film and the LPF resulted in an increase in the color gamut from 98 to 107% (NTSC x,y ratio) due to the narrow emission linewidth of the QDs.
Sawada, H; Nakagoshi, M; Reinhardt, R K; Ziegler, I; Koch, P B
2002-06-01
Color patterns of butterfly wings are composed of single color points represented by each scale. In the case of Precis coenia, at the end of pupal development, different types of pigments are synthesized sequentially in the differently colored scales beginning with white (pterins) followed by red (ommatins) and then black (melanin). In order to explain how formation of these different colors is regulated, we examined the expression of an mRNA-encoding guanosine triphosphate-cyclohydrolase I (GTP-CH I; EC 3.5.4.16), the first key enzyme in the biosynthesis of pteridines, during pigment formation in the wings of P. coenia. The strongest positive signal was recognized around pigment formation one day before butterfly emergence. This GTP-CH I gene expression is paralleled by GTP-CH I enzyme activity measured in wing extracts. We also investigated the effect of 20-hydroxyecdysone on the expression of GTP-CH I mRNA and the enzyme activity during color formation. The results strongly suggest that the onset and duration of the expression of a GTP-CH I mRNA is triggered by a declining ecdysteroid hormone titer during late pupal development.
Intelligent web image retrieval system
NASA Astrophysics Data System (ADS)
Hong, Sungyong; Lee, Chungwoo; Nah, Yunmook
2001-07-01
Recently, the web sites such as e-business sites and shopping mall sites deal with lots of image information. To find a specific image from these image sources, we usually use web search engines or image database engines which rely on keyword only retrievals or color based retrievals with limited search capabilities. This paper presents an intelligent web image retrieval system. We propose the system architecture, the texture and color based image classification and indexing techniques, and representation schemes of user usage patterns. The query can be given by providing keywords, by selecting one or more sample texture patterns, by assigning color values within positional color blocks, or by combining some or all of these factors. The system keeps track of user's preferences by generating user query logs and automatically add more search information to subsequent user queries. To show the usefulness of the proposed system, some experimental results showing recall and precision are also explained.
Visual Search Asymmetries within Color-Coded and Intensity-Coded Displays
ERIC Educational Resources Information Center
Yamani, Yusuke; McCarley, Jason S.
2010-01-01
Color and intensity coding provide perceptual cues to segregate categories of objects within a visual display, allowing operators to search more efficiently for needed information. Even within a perceptually distinct subset of display elements, however, it may often be useful to prioritize items representing urgent or task-critical information.…
2008-09-01
automated processing of images for color correction, segmentation of foreground targets from sediment and classification of targets to taxonomic category...element in the development of HabCam as a tool for habitat characterization is the automated processing of images for color correction, segmentation of
De Carvalho, Thiago Ribeiro; Giaretta, Ariovaldo Antonio
2013-11-01
In this paper, we describe two syntopic species of Adenomera from the Chapada dos Veadeiros microregion, northern State of Goiás, central Brazil, recognized based on morphology, color patterns, and bioacoustics. Specimens and calls were obtained in the Municipality of Teresina de Goiás, central Brazil. Adenomera cotuba sp. nov. is diagnosed from the other 16 congeneric species by its 1) small size (adult male SVL 18.6-20.5 mm) and very robust body; 2) dorsum glandular/granular with no distinctive dorsal granular rows or dorsolateral folds; 3) black or very dark dorsal coloration with no distinctive color patterns (e.g., dorsolateral or vertebral stripes); 4) toe tips not developed into flattened disks; 5) presence of antebrachial tubercle; and 6) advertisement call consisting of a well-defined series of pulsed calls (7-32 calls/series) with progressive increment in amplitude in the first third of each call series when it reaches a sustained plateau. Adenomera juikitam sp. nov. is diagnosed from the other 16 congeneric species by its 1) dorsum profusely glandular/granular with no distinctive dorsal granular rows or dorsolateral folds; 2) dorsum with a marble-like and red coloration with no distinctive color patterns (e.g., dorsolateral or vertebral stripes); 3) toe tips not developed into flattened disks; 4) small size (adult male SVL 19.1-19.5 mm) and very robust body; and 5) long (148-202 ms) advertisement call composed of 16-21pulses. Both new taxa occur in syntopy, and our data allow us to differentiate them both in temporal (pulses/call) and spectral (frequency peaks) traits of their advertisement calls. Besides, dorsal coloration is distinctive, Adenomera cotuba sp. nov. has a black or very dark-colored dorsum, whereas Adenomera juikitam sp. nov. has a marble-like and red-colored dorsum, in addition to the presence (A. cotuba sp. nov.) or absence (A. juikitam sp. nov.) of antebrachial tubercle.
The Effect of Selected Cinemagraphic Elements on Audience Perception of Mediated Concepts.
ERIC Educational Resources Information Center
Orr, Quinn
This study is to explore cinemagraphic and visual elements and their inter-relations through the reinterpretation of previous research and literature. The cinemagraphic elements of visual images (camera angle, camera motion, subject motion, color, and lighting) work as a language requiring a proper grammar for the messages to be conveyed in their…
Chromatic Properties of Index of Refraction Gradients in Glass.
NASA Astrophysics Data System (ADS)
Ryan-Howard, Danette Patrice
The chromatic properties of index of refraction gradients have been predicted theoretically and verified experimentally. The use of these materials in the design of color corrected optical systems has been investigated and confirmed by the evaluation of two fabricated lenses. A model for the chromatic properties of gradient index materials has been developed. The index of refraction is calculated based on the composition of the material. Since the index of refraction and the conventional Abbe number change as a function of the composition of the glass, a gradient Abbe number and a partial dispersion are defined. Analysis of combinations of ion exchange pairs and glasses result in a wide range of gradient Abbe numbers and partial dispersions. These ranges can be further extended by using glasses which contain more than one exchange ion or by using mixed salt baths. The chromatic properties were measured with a multiple wavelength A.C. interferometer. The gradient Abbe numbers and partial dispersions for a number of samples were calculated. Evaluation of the samples showed that the index and dispersion data correlated well with that predicted by the model. Thin lens formulae for the paraxial axial color and secondary spectrum of a radial gradient singlet with curves were examined. The design of a single element 10x microscope objective verified the applicability of these formulae. The design of a two element 40x microscope objective showed that a six element diffraction limited 40x objective can be replaced with a two element system composed of one homogeneous lens and one gradient lens without sacrificing either monochromatic performance or color correction. A previously fabricated axial gradient collimator and a fabricated Wood element were evaluated. Correlation of the directly measured quantities, paraxial axial color, secondary spectrum and spherochromatism with the values predicted by the model verified that the predicted superior performance of gradient-index lenses can be obtained.
Zimmer, Claudia; Bierbach, David; Arias-Rodriguez, Lenin; Plath, Martin
2018-01-01
Divergent selection between ecologically dissimilar habitats promotes local adaptation, which can lead to reproductive isolation (RI). Populations in the Poecilia mexicana species complex have independently adapted to toxic hydrogen sulfide and show varying degrees of RI. Here, we examined the variation in the mate choice component of prezygotic RI. Mate choice tests across drainages (with stimulus males from another drainage) suggest that specific features of the males coupled with a general female preference for yellow color patterns explain the observed variation. Analyses of male body coloration identified the intensity of yellow fin coloration as a strong candidate to explain this pattern, and common-garden rearing suggested heritable population differences. Male sexual ornamentation apparently evolved differently across sulfide-adapted populations, for example because of differences in natural counterselection via predation. The ubiquitous preference for yellow color ornaments in poeciliid females likely undermines the emergence of strong RI, as female discrimination in favor of own males becomes weaker when yellow fin coloration in the respective sulfide ecotype increases. Our study illustrates the complexity of the (partly non-parallel) pathways to divergence among replicated ecological gradients. We suggest that future work should identify the genomic loci involved in the pattern reported here, making use of the increasing genomic and transcriptomic datasets available for our study system. PMID:29724050
Applications of remote sensing to estuarine problems. [estuaries of Chesapeake Bay
NASA Technical Reports Server (NTRS)
Munday, J. C., Jr.
1975-01-01
A variety of siting problems for the estuaries of the lower Chesapeake Bay have been solved with cost beneficial remote sensing techniques. Principal techniques used were repetitive 1:30,000 color photography of dye emitting buoys to map circulation patterns, and investigation of water color boundaries via color and color infrared imagery to scales of 1:120,000. Problems solved included sewage outfall siting, shoreline preservation and enhancement, oil pollution risk assessment, and protection of shellfish beds from dredge operations.
NASA Technical Reports Server (NTRS)
Zibordi, Giuseppe; Holben, Brent; Slutsker, Ilya; Giles, David; D'Alimonte, Davide; Melin, Frederic; Berthon, Jean-Francois; Vandemark, Doug; Feng, Hui; Schuster, Gregory;
2008-01-01
The Ocean Color component of the Aerosol Robotic Network (AERONET-OC) has been implemented to support long-term satellite ocean color investigations through cross-site consistent and accurate measurements collected by autonomous radiometer systems deployed on offshore fixed platforms. The ultimate purpose of AERONET-OC is the production of standardized measurements performed at different sites with identical measuring systems and protocols, calibrated using a single reference source and method, and processed with the same code. The AERONET-OC primary data product is the normalized water leaving radiance determined at center-wavelengths of interest for satellite ocean color applications, with an uncertainty lower than 5% in the blue-green spectral regions and higher than 8% in the red. Measurements collected at 6 sites counting the northern Adriatic Sea, the Baltic Proper, the Gulf of Finland, the Persian Gulf, and, the northern and southern margins of the Middle Atlantic Bay, have shown the capability of producing quality assured data over a wide range of bio-optical conditions including Case-2 yellow substance- and sedimentdominated waters. This work briefly introduces network elements like: deployment sites, measurement method, instrument calibration, processing scheme, quality-assurance, uncertainties, data archive and products accessibility. Emphases is given to those elements which underline the network strengths (i.e., mostly standardization of any network element) and its weaknesses (i.e., the use of consolidated, but old-fashioned technology). The work also addresses the application of AERONET-OC data to the validation of primary satellite radiometric products over a variety of complex coastal waters and finally provides elements for the identification of new deployment sites most suitable to support satellite ocean color missions.
The nature of instructional effects in color constancy.
Radonjić, Ana; Brainard, David H
2016-06-01
The instructions subjects receive can have a large effect on experimentally measured color constancy, but the nature of these effects and how their existence should inform our understanding of color perception remains unclear. We used a factorial design to measure how instructional effects on constancy vary with experimental task and stimulus set. In each of 2 experiments, we employed both a classic adjustment-based asymmetric matching task and a novel color selection task. Four groups of naive subjects were instructed to make adjustments/selections based on (a) color (neutral instructions); (b) the light reaching the eye (physical spectrum instructions); (c) the actual surface reflectance of an object (objective reflectance instructions); or (d) the apparent surface reflectance of an object (apparent reflectance instructions). Across the 2 experiments we varied the naturalness of the stimuli. We find clear interactions between instructions, task, and stimuli. With simplified stimuli (Experiment 1), instructional effects were large and the data revealed 2 instruction-dependent patterns. In 1 (neutral and physical spectrum instructions) constancy was low, intersubject variability was also low, and adjustment-based and selection-based constancy were in agreement. In the other (reflectance instructions) constancy was high, intersubject variability was large, adjustment-based constancy deviated from selection-based constancy and for some subjects selection-based constancy increased across sessions. Similar patterns held for naturalistic stimuli (Experiment 2), although instructional effects were smaller. We interpret these 2 patterns as signatures of distinct task strategies-1 is perceptual, with judgments based primarily on the perceptual representation of color; the other involves explicit instruction-driven reasoning. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
How color enhances visual memory for natural scenes.
Spence, Ian; Wong, Patrick; Rusan, Maria; Rastegar, Naghmeh
2006-01-01
We offer a framework for understanding how color operates to improve visual memory for images of the natural environment, and we present an extensive data set that quantifies the contribution of color in the encoding and recognition phases. Using a continuous recognition task with colored and monochrome gray-scale images of natural scenes at short exposure durations, we found that color enhances recognition memory by conferring an advantage during encoding and by strengthening the encoding-specificity effect. Furthermore, because the pattern of performance was similar at all exposure durations, and because form and color are processed in different areas of cortex, the results imply that color must be bound as an integral part of the representation at the earliest stages of processing.
MM Herculis - An eclipsing binary of the RS CVn
NASA Technical Reports Server (NTRS)
Sowell, J. R.; Hall, D. S.; Henry, G. W.; Burke, E. W., Jr.; Milone, E. F.
1983-01-01
V, B and U differential photoelectric photometry has been obtained for the RS Canum Venaticorum-class eclipsing binary star MM Her, with the light outside the eclipse being Fourier-analyzed to study wave migration and amplitude. These, together with the mean light level of the system, have been monitored from 1976 through 1980. Observations within the eclipse have revealed eclipses to be partial, rather than total as previously thought. The geometric elements of the presently rectified light curve are forced on the pre-1980 light curves and found to be compatible. With these elements, and previously obtained double line radial velocity curves, new absolute dimensions of 1.18 solar masses and 1.58 solar radii are calculated for the hotter star and 1.27 solar masses and 2.83 solar radii for the cooler star. The plotting of color indices on the color-color curve indicates G2V and K2IV spectral types.
NASA Astrophysics Data System (ADS)
Lin, Cheng; Meitian, Li; Youshi, Kim; Changsheng, Fan; Shanghai, Wang; Qiuli, Pan; Zhiguo, Liu; Rongwu, Li
2011-02-01
It is very difficult to measure the chemical composition of colored pigments of over-glaze porcelain by X-ray fluorescence because it contains high concentration of Pb. One of the disadvantages of our polycapillary optics is that it has low transmission efficiency to the high energy X-ray. However, it is beneficial to measure the chemical compositions of rich Pb sample. In this paper, we reported the performances of a tabletop setup of micro-X-ray fluorescence system base on slightly focusing polycapillary and its applications for analysis of rich Pb sample. A piece of Chinese ancient over-glaze porcelain was analyzed by micro-X-ray fluorescence. The experimental results showed that the Cu, Fe and Mn are the major color elements. The possibilities of the process of decorative technology were discussed in this paper, also.
Bailey, James A; Casanova, Ruby S; Bufkin, Kim
2006-07-01
In using infrared or infrared-enhanced photography to examine gunshot residue (GSR) on dark-colored clothing, the GSR particles are microscopically examined directly on the fabric followed by the modified Griess test (MGT) for nitrites. In conducting the MGT, the GSR is transferred to treated photographic paper for visualization. A positive reaction yields an orange color on specially treated photographic paper. The examiner also evaluates the size of the powder pattern based on the distribution of nitrite reaction sites or density. A false-positive reaction can occur using the MGT due to contaminants or dyes that produce an orange cloud reaction as well. A method for enhancing visualization of the pattern produced by burned and partially unburned powder is by treatment of the fabric with a solution of sodium hypochlorite. In order to evaluate the results of sodium hypochlorite treatment for GSR visualization, the MGT was used as a reference pattern. Enhancing GSR patterns on dark or multicolored clothing was performed by treating the fabric with an application of 5.25% solution of sodium hypochlorite. Bleaching the dyes in the fabric enhances visualization of the GSR pattern by eliminating the background color. Some dyes are not affected by sodium hypochlorite; therefore, bleaching may not enhance the GSR patterns in some fabrics. Sodium hypochlorite provides the investigator with a method for enhancing GSR patterns directly on the fabric. However, this study is not intended to act as a substitute for the MGT or Sodium Rhodizonate test.
Study of the Gray Scale, Polychromatic, Distortion Invariant Neural Networks Using the Ipa Model.
NASA Astrophysics Data System (ADS)
Uang, Chii-Maw
Research in the optical neural network field is primarily motivated by the fact that humans recognize objects better than the conventional digital computers and the massively parallel inherent nature of optics. This research represents a continuous effort during the past several years in the exploitation of using neurocomputing for pattern recognition. Based on the interpattern association (IPA) model and Hamming net model, many new systems and applications are introduced. A gray level discrete associative memory that is based on object decomposition/composition is proposed for recognizing gray-level patterns. This technique extends the processing ability from the binary mode to gray-level mode, and thus the information capacity is increased. Two polychromatic optical neural networks using color liquid crystal television (LCTV) panels for color pattern recognition are introduced. By introducing a color encoding technique in conjunction with the interpattern associative algorithm, a color associative memory was realized. Based on the color decomposition and composition technique, a color exemplar-based Hamming net was built for color image classification. A shift-invariant neural network is presented through use of the translation invariant property of the modulus of the Fourier transformation and the hetero-associative interpattern association (IPA) memory. To extract the main features, a quadrantal sampling method is used to sampled data and then replace the training patterns. Using the concept of hetero-associative memory to recall the distorted object. A shift and rotation invariant neural network using an interpattern hetero-association (IHA) model is presented. To preserve the shift and rotation invariant properties, a set of binarized-encoded circular harmonic expansion (CHE) functions at the Fourier domain is used as the training set. We use the shift and symmetric properties of the modulus of the Fourier spectrum to avoid the problem of centering the CHE functions. Almost all neural networks have the positive and negative weights, which increases the difficulty of optical implementation. A method to construct a unipolar IPA IWM is discussed. By searching the redundant interconnection links, an effective way that removes all negative links is discussed.
Nondestructive Redox Quantification Reveals Glassmaking of Rare French Gothic Stained Glasses
2017-01-01
The sophisticated colors of medieval glasses arise from their transition metal (TM) impurities and capture information about ancient glassmaking techniques. Beyond the glass chemical composition, the TM redox is also a key factor in the glass color, but its quantification without any sampling is a challenge. We report a combination of nondestructive and noninvasive quantitative analyses of the chemical composition by particle-induced X-ray emission–particle-induced γ-ray emission mappings and of the color and TM element speciation by optical absorption spectroscopy performed on a red-blue-purple striped glass from the stained glass windows of the Sainte-Chapelle in Paris, France, during its restoration. These particular glass pieces must have been produced as a single shot, which guarantees that the chemical variations reflect the recipe in use in a specific medieval workshop. The quantitative elemental mappings demonstrate that the colored glass parts are derived from the same base glass, to which TMs were deliberately added. Optical absorption spectra reveal the origin of the colors: blue from CoII, red from copper nanoparticles, and purple from MnIII. Furthermore, the derivation of the quantitative redox state of each TM in each color shows that the contents of Fe, Cu, and Mn were adjusted to ensure a reducing glass matrix in the red stripe or a metastable overoxidized glass in the purple stripe. We infer that the agility of the medieval glassmaker allowed him to master the redox kinetics in the glass by rapid shaping and cooling to obtain a snapshot of the thermodynamically unstable glass colors. PMID:28494150
Sanabria, Eduardo A; Vaira, Marcos; Quiroga, Lorena B; Akmentins, Mauricio S; Pereyra, Laura C
2014-04-01
We study the variation in thermal parameters in two contrasting populations Yungas Redbelly Toads (Melanophryniscus rubriventris) with different discrete color phenotypes comparing field body temperatures, critical thermal maximum and heating rates. We found significant differences in field body temperatures of the different morphs. Temperatures were higher in toads with a high extent of dorsal melanization. No variation was registered in operative temperatures between the study locations at the moment of capture and processing. Critical thermal maximum of toads was positively related with the extent of dorsal melanization. Furthermore, we founded significant differences in heating rates between morphs, where individuals with a high extent of dorsal melanization showed greater heating rates than toads with lower dorsal melanization. The color pattern-thermal parameter relationship observed may influence the activity patterns and body size of individuals. Body temperature is a modulator of physiological and behavioral functions in amphibians, influencing daily and seasonal activity, locomotor performance, digestion rate and growth rate. It is possible that some growth constraints may arise due to the relationship of color pattern-metabolism allowing different morphs to attain similar sizes at different locations instead of body-size clines. Copyright © 2014. Published by Elsevier Ltd.
Categorical clustering of the neural representation of color.
Brouwer, Gijs Joost; Heeger, David J
2013-09-25
Cortical activity was measured with functional magnetic resonance imaging (fMRI) while human subjects viewed 12 stimulus colors and performed either a color-naming or diverted attention task. A forward model was used to extract lower dimensional neural color spaces from the high-dimensional fMRI responses. The neural color spaces in two visual areas, human ventral V4 (V4v) and VO1, exhibited clustering (greater similarity between activity patterns evoked by stimulus colors within a perceptual category, compared to between-category colors) for the color-naming task, but not for the diverted attention task. Response amplitudes and signal-to-noise ratios were higher in most visual cortical areas for color naming compared to diverted attention. But only in V4v and VO1 did the cortical representation of color change to a categorical color space. A model is presented that induces such a categorical representation by changing the response gains of subpopulations of color-selective neurons.
Blue reflectance in tarantulas is evolutionarily conserved despite nanostructural diversity
Hsiung, Bor-Kai; Deheyn, Dimitri D.; Shawkey, Matthew D.; Blackledge, Todd A.
2015-01-01
Slight shifts in arrangement within biological photonic nanostructures can produce large color differences, and sexual selection often leads to high color diversity in clades with structural colors. We use phylogenetic reconstruction, electron microscopy, spectrophotometry, and optical modeling to show an opposing pattern of nanostructural diversification accompanied by unusual conservation of blue color in tarantulas (Araneae: Theraphosidae). In contrast to other clades, blue coloration in phylogenetically distant tarantulas peaks within a narrow 20-nm region around 450 nm. Both quasi-ordered and multilayer nanostructures found in different tarantulas produce this blue color. Thus, even within monophyletic lineages, tarantulas have evolved strikingly similar blue coloration through divergent mechanisms. The poor color perception and lack of conspicuous display during courtship of tarantulas argue that these colors are not sexually selected. Therefore, our data contrast with sexual selection that typically produces a diverse array of colors with a single structural mechanism by showing that natural selection on structural color in tarantulas resulted in convergence on similar color through diverse structural mechanisms. PMID:26702433
Categorical Clustering of the Neural Representation of Color
Heeger, David J.
2013-01-01
Cortical activity was measured with functional magnetic resonance imaging (fMRI) while human subjects viewed 12 stimulus colors and performed either a color-naming or diverted attention task. A forward model was used to extract lower dimensional neural color spaces from the high-dimensional fMRI responses. The neural color spaces in two visual areas, human ventral V4 (V4v) and VO1, exhibited clustering (greater similarity between activity patterns evoked by stimulus colors within a perceptual category, compared to between-category colors) for the color-naming task, but not for the diverted attention task. Response amplitudes and signal-to-noise ratios were higher in most visual cortical areas for color naming compared to diverted attention. But only in V4v and VO1 did the cortical representation of color change to a categorical color space. A model is presented that induces such a categorical representation by changing the response gains of subpopulations of color-selective neurons. PMID:24068814
Implications of Tobacco Industry Research on Packaging Colors for Designing Health Warning Labels.
Lempert, Lauren K; Glantz, Stanton A
2016-09-01
Health warning labels (HWLs) are an important way to educate the public about the dangers of tobacco products. Tobacco companies conducted research to understand how pack colors affect consumers' perceptions of the products and make packages and their labeling more visually prominent. We analyzed previously secret tobacco industry documents concerning the tobacco industry's internal research on how cigarette package colors and design influence the visual prominence of packages and consumers' perceptions of the harmfulness of the products. The companies found that black is visually prominent, placing dark pack elements on a contrasting light background makes them stand out more, and black text on a white background is more prominent than white text on a black background. Yellow most quickly and effectively seizes and holds consumers' attention and signals warning or danger, while white connotes health and safety. Using black text on a bright contrasting background color, particularly yellow, attracts consumers' attention to the message. Tobacco industry research on pack color choices that make pack elements more prominent, attract and keep consumers' attention, and convey danger instead of health should guide governments in specifying requirements for HWLs. These factors suggest that HWLs printed on a yellow background with black lettering and borders would most effectively seize and keep consumers' attention and signal the danger of cigarettes and other tobacco products. Tobacco companies' internal research on improving the prominence of pack elements suggests that HWLs using black lettering on a contrasting yellow background would most effectively seize and hold consumers' attention and signal the danger of cigarettes and other tobacco products. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Murta-Fonseca, Roberta A; Franco, Francisco L; Fernandes, Daniel Silva
2016-08-26
Hydrodynastes bicinctus was described with no type material or locality and it has two subspecies currently recognized that are not taxonomically well defined. We tested the validity of the two subspecies through meristic, morphometric, and color pattern characters. Two apparently distinct color patterns of H. bicinctus were noticed, one from the Cerrado open formations and the other from the Amazon rainforest. These aforementioned patterns, however, exhibited a high degree of geographic overlap and many specimens showed a blended pattern. Based on these results we propose synonymizing H. bicinctus schultzi with the nominal taxon. Furthermore, we designate a neotype for the species, present data on geographic distribution, and provide morphological descriptions of the hemipenis, cephalic glands, and skull.
Chromatic Modulator for High Resolution CCD or APS Devices
NASA Technical Reports Server (NTRS)
Hartley, Frank T. (Inventor); Hull, Anthony B. (Inventor)
2003-01-01
A system for providing high-resolution color separation in electronic imaging. Comb drives controllably oscillate a red-green-blue (RGB) color strip filter system (or otherwise) over an electronic imaging system such as a charge-coupled device (CCD) or active pixel sensor (APS). The color filter is modulated over the imaging array at a rate three or more times the frame rate of the imaging array. In so doing, the underlying active imaging elements are then able to detect separate color-separated images, which are then combined to provide a color-accurate frame which is then recorded as the representation of the recorded image. High pixel resolution is maintained. Registration is obtained between the color strip filter and the underlying imaging array through the use of electrostatic comb drives in conjunction with a spring suspension system.
Management of natural resources through automatic cartographic inventory. [France
NASA Technical Reports Server (NTRS)
Rey, P.; Gourinard, Y.; Cambou, F. (Principal Investigator)
1974-01-01
The author has identified the following significant results. (1) Accurate recognition of previously known ground features from ERTS-1 imagery has been confirmed and a probable detection range for the major signatures can be given. (2) Unidentified elements, however, must be decoded by means of the equal densitometric value zone method. (3) Determination of these zonings involves an analogical treatment of images using the color equidensity methods (pseudo-color), color composites and especially temporal color composite (repetitive superposition). (4) After this analogical preparation, the digital equidensities can be processed by computer in the four MSS bands, according to a series of transfer operations from imagery and automatic cartography.
Broadband full-color multichannel hologram with geometric metasurface.
Qin, F F; Liu, Z Z; Zhang, Z; Zhang, Q; Xiao, J J
2018-04-30
Due to the abilities of manipulating the wavefront of light with well-controlled amplitude, and phase and polarization, optical metasurfaces are very suitable for optical holography, enabling applications with multiple functionalities and high data capacity. Here, we demonstrate encoding two- and three-dimensional full-color holographic images by an ultrathin metasurface hologram whose unit cells are subwavelength nanoslits with spatially varying orientations. We further show that it is possible to achieve full-color holographic multiplexing with such kind of geometric metasurfaces, realized by a synthetic spectrum holographic algorithm. Our results provide an efficient way to design multi-color optical display elements that are ready for fabrication.
USDA-ARS?s Scientific Manuscript database
Here we reported a previously-undescribed coat color phenotype in Holstein cattle. Larson Blue Holsteins, located on a dairy in south Florida, exhibit a coloration pattern that is similar to that of black and white or red and white Holsteins except that, instead of being black or red, darker region...
Spectral and spatial selectivity of luminance vision in reef fish.
Siebeck, Ulrike E; Wallis, Guy Michael; Litherland, Lenore; Ganeshina, Olga; Vorobyev, Misha
2014-01-01
Luminance vision has high spatial resolution and is used for form vision and texture discrimination. In humans, birds and bees luminance channel is spectrally selective-it depends on the signals of the long-wavelength sensitive photoreceptors (bees) or on the sum of long- and middle-wavelength sensitive cones (humans), but not on the signal of the short-wavelength sensitive (blue) photoreceptors. The reasons of such selectivity are not fully understood. The aim of this study is to reveal the inputs of cone signals to high resolution luminance vision in reef fish. Sixteen freshly caught damselfish, Pomacentrus amboinensis, were trained to discriminate stimuli differing either in their color or in their fine patterns (stripes vs. cheques). Three colors ("bright green", "dark green" and "blue") were used to create two sets of color and two sets of pattern stimuli. The "bright green" and "dark green" were similar in their chromatic properties for fish, but differed in their lightness; the "dark green" differed from "blue" in the signal for the blue cone, but yielded similar signals in the long-wavelength and middle-wavelength cones. Fish easily learned to discriminate "bright green" from "dark green" and "dark green" from "blue" stimuli. Fish also could discriminate the fine patterns created from "dark green" and "bright green". However, fish failed to discriminate fine patterns created from "blue" and "dark green" colors, i.e., the colors that provided contrast for the blue-sensitive photoreceptor, but not for the long-wavelength sensitive one. High resolution luminance vision in damselfish, Pomacentrus amboinensis, does not have input from the blue-sensitive cone, which may indicate that the spectral selectivity of luminance channel is a general feature of visual processing in both aquatic and terrestrial animals.
Feng, Dandan; Li, Qi; Yu, Hong; Zhao, Xuelin; Kong, Lingfeng
2015-01-01
Background Shell color polymorphisms of Mollusca have contributed to development of evolutionary biology and population genetics, while the genetic bases and molecular mechanisms underlying shell pigmentation are poorly understood. The Pacific oyster (Crassostrea gigas) is one of the most important farmed oysters worldwide. Through successive family selection, four shell color variants (white, golden, black and partially pigmented) of C. gigas have been developed. To elucidate the genetic mechanisms of shell coloration in C. gigas and facilitate the selection of elite oyster lines with desired coloration patterns, differentially expressed genes (DEGs) were identified among the four shell color variants by RNA-seq. Results Digital gene expression generated over fifteen million reads per sample, producing expression data for 28,027 genes. A total number of 2,645 DEGs were identified from pair-wise comparisons, of which 432, 91, 43 and 39 genes specially were up-regulated in white, black, golden and partially pigmented shell of C. gigas, respectively. Three genes of Abca1, Abca3 and Abcb1 which belong to the ATP-binding cassette (ABC) transporters super-families were significantly associated with white shell formation. A tyrosinase transcript (CGI_10008737) represented consistent up-regulated pattern with golden coloration. We proposed that white shell variant of C. gigas could employ “endocytosis” to down-regulate notch level and to prevent shell pigmentation. Conclusion This study discovered some potential shell coloration genes and related molecular mechanisms by the RNA-seq, which would provide foundational information to further study on shell coloration and assist in selective breeding in C. gigas. PMID:26693729
3D-shape of objects with straight line-motion by simultaneous projection of color coded patterns
NASA Astrophysics Data System (ADS)
Flores, Jorge L.; Ayubi, Gaston A.; Di Martino, J. Matías; Castillo, Oscar E.; Ferrari, Jose A.
2018-05-01
In this work, we propose a novel technique to retrieve the 3D shape of dynamic objects by the simultaneous projection of a fringe pattern and a homogeneous light pattern which are both coded in two of the color channels of a RGB image. The fringe pattern, red channel, is used to retrieve the phase by phase-shift algorithms with arbitrary phase-step, while the homogeneous pattern, blue channel, is used to match pixels from the test object in consecutive images, which are acquired at different positions, and thus, to determine the speed of the object. The proposed method successfully overcomes the standard requirement of projecting fringes of two different frequencies; one frequency to extract object information and the other one to retrieve the phase. Validation experiments are presented.
NASA Astrophysics Data System (ADS)
Dyson, Hilarie
2008-10-01
The purpose of the study was to identify structures and systems implemented in a high-performing high-poverty urban school to promote high academic achievement among students of color. The researcher used a sociocultural theoretical framework to examine the influence of culture on the structures and systems that increased performance by African American and Hispanic students. Four research questions guided the study: (1) What are the trends and patterns of student performance among students of color? (2) What are the organizational structures and systems that are perceived to contribute to high student performance in high-poverty urban schools with high concentrations of students of color? (3) How are the organizational structures and systems implemented to support school-wide effective classroom instruction that promotes student learning? (4) How is the construct of race reflected in the school's structures and systems? Qualitative data were collected through interviews, observations, and artifact collection. A single case study method was employed and collected data were triangulated to capture and explore the rich details of the study. The study focused on a high-performing high-poverty urban elementary school located in southern California. The school population consisted of 99% students of color and 93% were economically disadvantaged. The school was selected for making significant and consistent growth in Academic Performance Index and Adequate Yearly Progress over a 3-year period. The school-wide structures and systems studied were (a) leadership, (b) school climate and culture, (c) standards-based instruction, (d) data-driven decision making, and (e) professional development. Four common themes emerged from the findings: (a) instructional leadership that focused on teaching and learning; (b) high expectations for all students; (c) school-wide focus on student achievement using standards, data, and culturally responsive teaching; and (d) positive relationships and interactions among students, teachers, parents, and community. Suggestion for future research include a deep examination of how and why culturally relevant pedagogy supports students of color, research on leadership and its impact on creating a positive school climate and culture to produce high student achievement by students of color, and the impact of early education programs on student achievement among poor students and students of color.
Mapping lichen color-groups in western Arctic Alaska using seasonal Landsat composites
NASA Astrophysics Data System (ADS)
Nelson, P.; Macander, M. J.; Swingley, C. S.
2016-12-01
Mapping lichens at a landscape scale has received increased recent interest due to fears that terricolous lichen mats, primary winter caribou forage, may be decreasing across the arctic and boreal zones. However, previous efforts have produced taxonomically coarse, total lichen cover maps or have covered relatively small spatial extents. Here we attempt to map lichens of differing colors as species proxies across northwestern Alaska to produce the finest taxonomic and spatial- grained lichen maps covering the largest spatial extent to date. Lichen community sampling in five western Alaskan National Parks and Preserves from 2007-2012 generated 328 FIA-style 34.7 m radius plots on which species-level macrolichen community structure and abundance was estimated. Species were coded by color and plot lichen cover was aggregated by plot as the sum of the cover of each species in a color group. Ten different lichen color groupings were used for modeling to deduce which colors were most detectable. Reflectance signatures of each plot were extracted from a series of Landsat composites (circa 2000-2010) partitioned into two-week intervals from June 1 to Sept. 15. Median reflectance values for each band in each pixel were selected based on filtering criteria to reduce likelihood of snow cover. Lichen color group cover was regressed against plot reflectance plus additional abiotic predictors in two different data mining algorithms. Brown and grey lichens had the best models explaining approximately 40% of lichen cover in those color groups. Both data mining techniques produced similarly good fitting models. Spatial patterns of lichen color-group cover show distinctly different ecological patterns of these color-group species proxies.
Color vision deficiency in a middle-aged population: the Shahroud Eye Study.
Jafarzadehpur, Ebrahim; Hashemi, Hassan; Emamian, Mohammad Hassan; Khabazkhoob, Mehdi; Mehravaran, Shiva; Shariati, Mohammad; Fotouhi, Akbar
2014-10-01
The aim of this study was to determine the prevalence of color vision defects in the middle-age population of Shahroud, Iran. We selected 6,311 people from the 40- to 64-year-old population through random cluster sampling. Color vision testing was performed with the Farnsworth D-15. Cases with similar and symmetric results in both eyes were classified as hereditary, and those with asymmetric results were considered acquired. Cases that did not conform to standard patterns were classified as unknown category. Of 5,190 respondents (response rate 82.2 %), 5,102 participants underwent the color vision test. Of these, 14.7 % (95 % confidence interval 13.7-15.6) had some type of color vision deficiency. Of the 2,157 male participants, 6.2 % were hereditary and 10.2 % were acquired and of the 2,945 female participants, 3.1 % were hereditary and 10 % were acquired. Hereditary color deficiencies were mostly of the deutan form (63.8 %), and acquired deficiencies were mostly tritan (66.1 %). The prevalence of hereditary and acquired color vision deficiency, as well as different types of red-green and blue-yellow color vision defects significantly increased with age (p < 0.001). In conclusion, the pattern of color vision defects among the middle-aged population of Shahroud was significantly different from that seen in the younger population. This could be due to changes associated with age, gender, medical and ocular conditions, and differences in race and environment. Thus, results of previous examinations and the overall health status should be considered before making any judgment about the status of color vision in middle-aged people.
Biomimetic plasmonic color generated by the single-layer coaxial honeycomb nanostructure arrays
NASA Astrophysics Data System (ADS)
Zhao, Jiancun; Gao, Bo; Li, Haoyong; Yu, Xiaochang; Yang, Xiaoming; Yu, Yiting
2017-07-01
We proposed a periodic coaxial honeycomb nanostructure array patterned in a silver film to realize the plasmonic structural color, which was inspired from natural honeybee hives. The spectral characteristics of the structure with variant geometrical parameters are investigated by employing a finite-difference time-domain method, and the corresponding colors are thus derived by calculating XYZ tristimulus values corresponding with the transmission spectra. The study demonstrates that the suggested structure with only a single layer has high transmission, narrow full-width at half-maximum, and wide color tunability by changing geometrical parameters. Therefore, the plasmonic colors realized possess a high color brightness, saturation, as well as a wide color gamut. In addition, the strong polarization independence makes it more attractive for practical applications. These results indicate that the recommended color-generating plasmonic structure has various potential applications in highly integrated optoelectronic devices, such as color filters and high-definition displays.
Reaffirming Diversity in Higher Education through Faculty Hiring: A Leadership Perspective
ERIC Educational Resources Information Center
Chen, Dianbing; Yang, Xinxiao
2013-01-01
Ongoing globalization and immigration bring diversity and rich cultural elements to American organizations at all levels. An educational environment with faculty and leaders from people of colors will set a good example for all students, especially for students of color who are eager to explore ideas and arguments at a thoughtful level to rethink…
Rotary Motion Impairs Attention to Color Change in 4-Month-Old Infants
ERIC Educational Resources Information Center
Kavsek, Michael
2013-01-01
Continuous color changes of an array of elements appear to stop changing if the array undergoes a coherent motion. This "silencing" illusion was demonstrated for adults by Suchow and Alvarez ("Current Biology", 2011, vol. 21, pp. 140-143). The current forced-choice preferential looking study examined 4-month-old infants' sensitivity to the…
NASA Technical Reports Server (NTRS)
Kriegler, F. J.; Gordon, M. F.; Mclaughlin, R. H.; Marshall, R. E.
1975-01-01
The MIDAS (Multivariate Interactive Digital Analysis System) processor is a high-speed processor designed to process multispectral scanner data (from Landsat, EOS, aircraft, etc.) quickly and cost-effectively to meet the requirements of users of remote sensor data, especially from very large areas. MIDAS consists of a fast multipipeline preprocessor and classifier, an interactive color display and color printer, and a medium scale computer system for analysis and control. The system is designed to process data having as many as 16 spectral bands per picture element at rates of 200,000 picture elements per second into as many as 17 classes using a maximum likelihood decision rule.
Zhang, Ke; Tang, Yiwen; Meng, Jinsong; Wang, Ge; Zhou, Han; Fan, Tongxiang; Zhang, Di
2014-11-03
Polarization-sensitive color originates from polarization-dependent reflection or transmission, exhibiting abundant light information, including intensity, spectral distribution, and polarization. A wide range of butterflies are physiologically sensitive to polarized light, but the origins of polarized signal have not been fully understood. Here we systematically investigate the colorful scales of six species of butterfly to reveal the physical origins of polarization-sensitive color. Microscopic optical images under crossed polarizers exhibit their polarization-sensitive characteristic, and micro-structural characterizations clarify their structural commonality. In the case of the structural scales that have deep ridges, the polarization-sensitive color related with scale azimuth is remarkable. Periodic ridges lead to the anisotropic effective refractive indices in the parallel and perpendicular grating orientations, which achieves form-birefringence, resulting in the phase difference of two different component polarized lights. Simulated results show that ridge structures with reflecting elements reflect and rotate the incident p-polarized light into s-polarized light. The dimensional parameters and shapes of grating greatly affect the polarization conversion process, and the triangular deep grating extends the outstanding polarization conversion effect from the sub-wavelength period to the period comparable to visible light wavelength. The parameters of ridge structures in butterfly scales have been optimized to fulfill the polarization-dependent reflection for secret communication. The structural and physical origin of polarization conversion provides a more comprehensive perspective on the creation of polarization-sensitive color in butterfly wing scales. These findings show great potential in anti-counterfeiting technology and advanced optical material design.
Mizusawa, Kanta; Kobayashi, Yuki; Sunuma, Toshikazu; Asahida, Takashi; Saito, Yumiko; Takahashi, Akiyoshi
2011-03-01
Barfin flounders change their surface color pattern to match their background. We have reported evidence of the association between hormones and body color changes in this fish. First, bolus intraperitoneal injection with melanin-concentrating hormone (MCH) immediately turned the skin color pale, while injection with melanocyte-stimulating hormone (MSH) did not change the skin color. Second, gene expression levels of MCH change in response to background color, while those of MSH do not. We also reported the expression of an MCH receptor gene (Mch-r2) in the skin of this fish. In this study, we aimed to further evaluate the roles of MCH in skin color change. First, long-term adaptation of adult barfin flounder to black or white background colors induced significantly different pigment migration patterns in both melanophores and xanthophores (P<0.05). However, continuous intraperitoneal injection with MCH did not influence chromatophore proliferation. Then, using in vitro experiments, we found that MCH aggregates both melanophores and xanthophores, and inhibits the pigment-dispersing activity of MSH in a similar manner. Finally, we identified transcripts of Mch-r2 in cells isolated from both melanophores and xanthophores. Taken together, the evidence suggests that MCH aggregates pigments via MCH-R2 in concert with the nervous system by overcoming the melanin-dispersing activities of MSH in barfin flounder. Copyright © 2010 Elsevier Inc. All rights reserved.
An automated algorithm for determining photometric redshifts of quasars
NASA Astrophysics Data System (ADS)
Wang, Dan; Zhang, Yanxia; Zhao, Yongheng
2010-07-01
We employ k-nearest neighbor algorithm (KNN) for photometric redshift measurement of quasars with the Fifth Data Release (DR5) of the Sloan Digital Sky Survey (SDSS). KNN is an instance learning algorithm where the result of new instance query is predicted based on the closest training samples. The regressor do not use any model to fit and only based on memory. Given a query quasar, we find the known quasars or (training points) closest to the query point, whose redshift value is simply assigned to be the average of the values of its k nearest neighbors. Three kinds of different colors (PSF, Model or Fiber) and spectral redshifts are used as input parameters, separatively. The combination of the three kinds of colors is also taken as input. The experimental results indicate that the best input pattern is PSF + Model + Fiber colors in all experiments. With this pattern, 59.24%, 77.34% and 84.68% of photometric redshifts are obtained within ▵z < 0.1, 0.2 and 0.3, respectively. If only using one kind of colors as input, the model colors achieve the best performance. However, when using two kinds of colors, the best result is achieved by PSF + Fiber colors. In addition, nearest neighbor method (k = 1) shows its superiority compared to KNN (k ≠ 1) for the given sample.
Characteristics of grouping colors for figure segregation on a multicolored background.
Nagai, Takehiro; Uchikawa, Keiji
2008-11-01
A figure is segregated from its background when the colored elements belonging to the figure are grouped together. We investigated the range of color distribution conditions in which a figure could be segregated from its background using the color distribution differences. The stimulus was a multicolored texture composed of randomly shaped pieces. It was divided into two regions: a test region and a background region. The pieces in these two regions had different color distributions in the OSA Uniform Color Space. In our experiments, the subject segregated the figure of the test region using two different procedures. Since the Euclidean distance in the OSA Uniform Color Space corresponds to perceived color difference, if segregation thresholds are determined by only color difference, the thresholds should be independent of position and direction in the color space. In the results, however, the thresholds did depend on position and direction in the OSA Uniform Color Space. This suggests that color difference is not the only factor in figure segregation by color. Moreover, the threshold dependence on position and direction is influenced by the distances in the cone-opponent space whose axes are normalized by discrimination thresholds, suggesting that figure segregation threshold is determined by similar factors in the cone-opponent space for color discrimination. The analysis of the results by categorical color naming suggests that categorical color perception may affect figure segregation only slightly.
Outer Space Research Helps Color Habitability in Earth Interiors
NASA Technical Reports Server (NTRS)
Haines, Richard F.
1977-01-01
Color is one of the most important elements in making an environment habitable. Both color and light level combine to create comfortable and efficient work areas and satisfying leisure time environments. Indeed, without light, color cannot even be experienced. It is vitally important for the designer to understand the subject of habitability and to know how to make a positive impact upon the habitability of spaces through the application of proven principles of color-design developed by the scientific community. Consider some of these possibilities and pitfalls: A color chosen in broad daylight will not appear the same under dim lighting conditions. If a designer were creating a dimly lit cocktail lounge, for example, there is little sense in using dark colors, which also tend to be more expensive. When the eyes have dark-adapted for even five minutes, any color reflecting 20 percent or less will appear black, and the color experience will be lost. Therefore, surface reflectances should be kept at least above 20 to 25 percent to maintain color where illumination is at low levels. In effect, for lower reflectance surfaces, higher levels of illumination are required to produce the most accurate color discriminability.
Evaluation of Kojima-Matsubara color vision test plates: validity in young children.
Lee, D Y; Cotter, S A; French, A L
1997-09-01
We examined a pseudoisochromatic color plate test by Kojima and Matsubara for young children which uses drawings of familiar objects rather than letters or numbers. First, we evaluated the test's efficacy as a color deficiency screener and its validity in classifying the types of color deficiencies by comparing its results with those from the Moreland anomaloscope. Second, we eliminated the chromatic factor and evaluated the functional ability of young children to perform the task by determining how many correct responses were obtained using modified black/white replicas of the test plates. Part 1: Twenty color-normal and 13 color-deficient adults were diagnosed and classified with the Ishihara test, Panel D-15 test, and anomaloscope. Subjects were then tested with the Kojima-Matsubara test and result were compared with those from the anomaloscope. Part 2: Fifty children aged 3 to 7 years were tested with modified black/white test plate replicas. The number of correct responses for each plate was determined for five different age groups. Part 1: Among the 20 color-normal subjects, 18 read all 10 plates correctly and 2 subjects missed 1 of the 10. Only 1 of the 13 color-deficient subjects exhibited the expected responses for plates 2 to 6 (used for color deficiency screening). The color-deficient subjects' responses for plates 7 to 10, which are used to classify red-green defects, were varied and only the protanomalous subjects (n = 2) followed the expected response pattern. Part 2: Of the 10 black/white modified plates, only 2 were correctly identified by all 50 children. The other plates had a recognition rate that ranged from 32 to 98%. Because the response patterns given by most of the color-deficient adult subjects were different from those in the test manual, ambiguous results would occur if the Kojima-Matsubara test were used for color vision screening or the diagnosis of color deficiency. In addition, the difficulty that many of the young children exhibited in identifying the objects in the black/white replica plates suggests that there would be a large number of false positive errors (classifying a color normal as color deficient) when using this test in young children.
Clinical application of a color map pattern on shear-wave elastography for invasive breast cancer.
Lee, Seokwon; Jung, Younglae; Bae, Youngtae
2016-03-01
The aim of this study was to classify the color map pattern on shear-wave elastography (SWE) and to determine its association with clinicopathological factors for clinical application in invasive breast cancer. From June to December 2014, 103 invasive breast cancers were imaged by B-mode ultrasonography (US) and SWE just before surgery. The color map pattern identified on the SWE could be classified into three main categories: type 1 (diffuse pattern), increased stiffness in the surrounding stroma and the interior lesion itself; type 2 (lateral pattern), marked peri-tumoral stiffness at the anterior and lateral portions with no or minor stiffness at the posterior portion; and type 3 (rim-off pattern), marked peri-tumoral stiffness at the anterior and posterior portion with no or minor stiffness at both lateral portions. High-grade density on mammography (grade 3-4) was more frequent in the type 1 pattern than the other pattern types (80.5% in high-grade density vs. 19.5% in low-grade density). For type 1 tumors, the extent of synchronous non-invasive cancers (pT0), ductal carcinoma in situ (DCIS), was 1.8-2.0 times wider than that measured by US or magnetic resonance imaging (MRI). For type 2 tumors, the invasive tumor components (pT size) size was 1.3 times greater than measured by MRI (p = 0.049). On the other hand, the pT size and pT0 extent of type 3 tumors were almost equal to the preoperative US and MRI measurements. In terms of immunohistochemical (IHC) profiles, type 3 tumors showed a high histologic grade (p = 0.021), poor differentiation (p = 0.009), presence of necrosis (p = 0.018), and high Ki-67 (p = 0.002). The percentage of HER2-positive cancers was relatively high within the type 2 group, and the percentage of triple negative breast cancer was relatively high in the type 3 group (p = 0.011). We expect that assessments of the SWE color map pattern will prove useful for surgical or therapeutic plan decisions and to predict prognosis in invasive breast cancer patients. Copyright © 2015 Elsevier Ltd. All rights reserved.
Single sensor processing to obtain high resolution color component signals
NASA Technical Reports Server (NTRS)
Glenn, William E. (Inventor)
2010-01-01
A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.
Is countershading camouflage robust to lighting change due to weather?
Penacchio, Olivier; Lovell, P George; Harris, Julie M
2018-02-01
Countershading is a pattern of coloration thought to have evolved in order to implement camouflage. By adopting a pattern of coloration that makes the surface facing towards the sun darker and the surface facing away from the sun lighter, the overall amount of light reflected off an animal can be made more uniformly bright. Countershading could hence contribute to visual camouflage by increasing background matching or reducing cues to shape. However, the usefulness of countershading is constrained by a particular pattern delivering 'optimal' camouflage only for very specific lighting conditions. In this study, we test the robustness of countershading camouflage to lighting change due to weather, using human participants as a 'generic' predator. In a simulated three-dimensional environment, we constructed an array of simple leaf-shaped items and a single ellipsoidal target 'prey'. We set these items in two light environments: strongly directional 'sunny' and more diffuse 'cloudy'. The target object was given the optimal pattern of countershading for one of these two environment types or displayed a uniform pattern. By measuring detection time and accuracy, we explored whether and how target detection depended on the match between the pattern of coloration on the target object and scene lighting. Detection times were longest when the countershading was appropriate to the illumination; incorrectly camouflaged targets were detected with a similar pattern of speed and accuracy to uniformly coloured targets. We conclude that structural changes in light environment, such as caused by differences in weather, do change the effectiveness of countershading camouflage.
Grayscale imbalance correction in real-time phase measuring profilometry
NASA Astrophysics Data System (ADS)
Zhu, Lin; Cao, Yiping; He, Dawu; Chen, Cheng
2016-10-01
Grayscale imbalance correction in real-time phase measuring profilometry (RPMP) is proposed. In the RPMP, the sufficient information is obtained to reconstruct the 3D shape of the measured object in one over twenty-four of a second. Only one color fringe pattern whose R, G and B channels are coded as three sinusoidal phase-shifting gratings with an equivalent shifting phase of 2π/3 is sent to a flash memory on a specialized digital light projector (SDLP). And then the SDLP projects the fringe patterns in R, G and B channels sequentially onto the measured object in one over seventy-two of a second and meanwhile a monochrome CCD camera captures the corresponding deformed patterns synchronously with the SDLP. Because the deformed patterns from three color channels are captured at different time, the color crosstalk is avoided completely. But due to the monochrome CCD camera's different spectral sensitivity to R, G and B tricolor, there will be grayscale imbalance among these deformed patterns captured at R, G and B channels respectively which may result in increasing measuring errors or even failing to reconstruct the 3D shape. So a new grayscale imbalance correction method based on least square method is developed. The experimental results verify the feasibility of the proposed method.
The expression and activation of protease-activated receptor-2 correlate with skin color.
Babiarz-Magee, Laura; Chen, Nannan; Seiberg, Miri; Lin, Connie B
2004-06-01
Skin color results from the production and distribution of melanin in the epidermis. The protease-activated receptor-2 (PAR-2), expressed on keratinocytes but not on melanocytes, is involved in melanosome uptake via phagocytosis, and modulation of PAR-2 activation affects skin color. The pattern of melanosome distribution within the epidermis is skin color-dependent. In vitro, this distribution pattern is regulated by the ethnic origin of the keratinocytes, not the melanocytes. Therefore, we hypothesized that PAR-2 may play a role in the modulation of pigmentation in a skin type-dependent manner. We examined the expression of PAR-2 and its activator, trypsin, in human skins with different pigmentary levels. Here we show that PAR-2 and trypsin are expressed in higher levels, and are differentially localized in highly pigmented, relative to lightly pigmented skins. Moreover, highly pigmented skins exhibit an increase in PAR-2-specific protease cleavage ability. Microsphere phagocytosis was more efficient in keratinocytes from highly pigmented skins, and PAR-2 induced phagocytosis resulted in more efficient microsphere ingestion and more compacted microsphere organization in dark skin-derived keratinocytes. These results demonstrate that PAR-2 expression and activity correlate with skin color, suggesting the involvement of PAR-2 in ethnic skin color phenotypes.
Hopkins, Robin; Levin, Donald A; Rausher, Mark D
2012-02-01
Character displacement, which arises when species diverge in sympatry to decrease competition for resources or reproductive interference, has been observed in a wide variety of plants and animals. A classic example of reproductive character displacement, presumed to be caused by reinforcing selection, is flower-color variation in the native Texas wildflower Phlox drummondii. Here, we use population genetic analyses to investigate molecular signatures of selection on flower-color variation in this species. First, we quantify patterns of neutral genetic variation across the range of P. drummondii to demonstrate that restricted gene flow and genetic drift cannot explain the pattern of flower-color divergence in this species. There is evidence of extensive gene flow across populations with different flower colors, suggesting selection caused flower-color divergence. Second, analysis of sequence variation in the genes underlying this divergence reveals a signature of a selective sweep in one of the two genes, further indicating selection is responsible for divergence in sympatry. The lack of a signature of selection at the second locus does not necessarily indicate a lack of selection on this locus but instead brings attention to the uncertainty in depending on molecular signatures to identify selection. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Advances in understanding the molecular basis of the first steps in color vision
Hofmann, Lukas; Palczewski, Krzysztof
2015-01-01
Serving as one of our primary environmental inputs, vision is the most sophisticated sensory system in humans. Here, we present recent findings derived from energetics, genetics and physiology that provide a more advanced understanding of color perception in mammals. Energetics of cis–trans isomerization of 11-cis-retinal accounts for color perception in the narrow region of the electromagnetic spectrum and how human eyes can absorb light in the near infrared (IR) range. Structural homology models of visual pigments reveal complex interactions of the protein moieties with the light sensitive chromophore 11-cis-retinal and that certain color blinding mutations impair secondary structural elements of these G protein-coupled receptors (GPCRs). Finally, we identify unsolved critical aspects of color tuning that require future investigation. PMID:26187035
2012-01-01
Background Body coloration is an ecologically important trait that is often involved in prey-predator interactions through mimicry and crypsis. Although this subject has attracted the interest of biologists and the general public, our scientific knowledge on the subject remains fragmentary. In the caterpillar of the swallowtail butterfly Papilio xuthus, spectacular changes in the color pattern are observed; the insect mimics bird droppings (mimetic pattern) as a young larva, and switches to a green camouflage coloration (cryptic pattern) in the final instar. Despite the wide variety and significance of larval color patterns, few studies have been conducted at a molecular level compared with the number of studies on adult butterfly wing patterns. Results To obtain a catalog of genes involved in larval mimetic and cryptic pattern formation, we constructed expressed sequence tag (EST) libraries of larval epidermis for P. xuthus, and P. polytes that contained 20,736 and 5,376 clones, respectively, representing one of the largest collections available in butterflies. A comparison with silkworm epidermal EST information revealed the high expression of putative blue and yellow pigment-binding proteins in Papilio species. We also designed a microarray from the EST dataset information, analyzed more than five stages each for six markings, and confirmed spatial expression patterns by whole-mount in situ hybridization. Hence, we succeeded in elucidating many novel marking-specific genes for mimetic and cryptic pattern formation, including pigment-binding protein genes, the melanin-associated gene yellow-h3, the ecdysteroid synthesis enzyme gene 3-dehydroecdysone 3b-reductase, and Papilio-specific genes. We also found many cuticular protein genes with marking specificity that may be associated with the unique surface nanostructure of the markings. Furthermore, we identified two transcription factors, spalt and ecdysteroid signal-related E75, as genes expressed in larval eyespot markings. This finding suggests that E75 is a strong candidate mediator of the hormone-dependent coordination of larval pattern formation. Conclusions This study is one of the most comprehensive molecular analyses of complicated morphological features, and it will serve as a new resource for studying insect mimetic and cryptic pattern formation in general. The wide variety of marking-associated genes (both regulatory and structural genes) identified by our screening indicates that a similar strategy will be effective for understanding other complex traits. PMID:22651552
Specifying and Sustaining Pigmentation Patterns in Domestic and Wild Cats
Kaelin, Christopher B.; Xu, Xiao; Hong, Lewis Z.; David, Victor A.; McGowan, Kelly A.; Schmidt-Küntzel, Anne; Roelke, Melody E.; Pino, Javier; Pontius, Joan; Cooper, Gregory M.; Manuel, Hermogenes; Swanson, William F.; Marker, Laurie; Harper, Cindy K.; van Dyk, Ann; Yue, Bisong; Mullikin, James C.; Warren, Wesley C.; Eizirik, Eduardo; Kos, Lidia; O’Brien, Stephen J.; Barsh, Gregory S.; Menotti-Raymond, Marilyn
2013-01-01
Color markings among felid species display both a remarkable diversity and a common underlying periodicity. A similar range of patterns in domestic cats suggests a conserved mechanism whose appearance can be altered by selection. We identified the gene responsible for tabby pattern variation in domestic cats as Transmembrane aminopeptidase Q (Taqpep), which encodes a membrane-bound metalloprotease. Analyzing 31 other felid species, we identified Taqpep as the cause of the rare king cheetah phenotype, in which spots coalesce into blotches and stripes. Histologic, genomic expression, and transgenic mouse studies indicate that paracrine expression of Endothelin3 (Edn3) coordinates localized color differences. We propose a two-stage model in which Taqpep helps to establish a periodic pre-pattern during skin development that is later implemented by differential expression of Edn3. PMID:22997338
Food product design: emerging evidence for food policy.
Al-Hamdani, Mohammed; Smith, Steven
2017-03-01
The research on the impact of specific brand elements such as food descriptors and package colors is underexplored. We tested whether a "light" color and a "low-calorie" descriptor on food packages gain favorable consumer perception ratings as compared with regular packages. Our online experiment recruited 406 adults in a 3 (product type: Chips versus Juice versus Yoghurt) × 2 (descriptor type: regular versus low-calorie) × 2 (color type: regular versus light) mixed design. Dependent variables were sensory (evaluations of the product's nutritional value and quality), product-based (evaluations of the product's physical appeal), and consumer-based (evaluations of the potential consumers of the product) scales. "Low-calorie" descriptors were found to increase sensory ratings as compared with regular descriptors and light-colored packages received higher product-based ratings as compared with their regular-colored counterparts. Food package color and descriptors present a promising venue for understanding preventative measures against obesity.[Formula: see text].
Identification of the Properties of Gum Arabic Used as a Binder in 7.62-mm Ammunition Primers
2010-06-01
Solution - LCC Testing (ATK Task 700) 51 Cartridge - Ballistic Testing (ATK Task 800) 51 ATK Elemental Analysis 52 Moisture Loss and Friability...Hummel sample 7 3 SDT summary for Quadra sample 8 4 Particle size analysis summary for gum arabic samples 9 5 SEM images of Colony gum arabic at 230x...strengths 21 16 Color analysis : Colony after 5.0 hrs 23 17 Color analysis : Hummel after 5.0 hrs 23 18 Color analysis : Brenntag after 5.0 hrs 23 19 Gel
Color images of Kansas subsurface geology from well logs
Collins, D.R.; Doveton, J.H.
1986-01-01
Modern wireline log combinations give highly diagnostic information that goes beyond the basic shale content, pore volume, and fluid saturation of older logs. Pattern recognition of geology from logs is made conventionally through either the examination of log overlays or log crossplots. Both methods can be combined through the use of color as a medium of information by setting the three color primaries of blue, green, and red light as axes of three dimensional color space. Multiple log readings of zones are rendered as composite color mixtures which, when plotted sequentially with depth, show lithological successions in a striking manner. The method is extremely simple to program and display on a color monitor. Illustrative examples are described from the Kansas subsurface. ?? 1986.
NASA Astrophysics Data System (ADS)
Tegler, S. C.; Romanishin, W.; Consolmagno, G. J.; J., S.
2016-12-01
We present new optical colors for 28 Kuiper Belt objects (KBOs) and 35 Centaur objects measured with the 1.8 m Vatican Advanced Technology Telescope and the 4.3 m Discovery Channel Telescope. By combining these new colors with our previously published colors, we increase the sample size of our survey to 154 objects. Our survey is unique in that the uncertainties in our color measurements are less than half the uncertainties in the color measurements reported by other researchers in the literature. Small uncertainties are essential for discerning between a unimodal and a bimodal distribution of colors for these objects as well as detecting correlations between colors and orbital elements. From our survey, it appears red Centaurs have a broader color distribution than gray Centaurs. We find red Centaurs have a smaller orbital inclination angle distribution than gray Centaurs at the 99.3% confidence level. Furthermore, we find that our entire sample of KBOs and Centaurs exhibits bimodal colors at the 99.4 % confidence level. KBOs and Centaurs with H V > 7.0 have bimodal colors at the 99.96% confidence level and KBOs with H V < 6.0 have bimodal colors at the 96% confidence level.
Transparent Electrochemical Gratings from a Patterned Bistable Silver Mirror.
Park, Chihyun; Na, Jongbeom; Han, Minsu; Kim, Eunkyoung
2017-07-25
Silver mirror patterns were formed reversibly on a polystyrene (PS)-patterned electrode to produce gratings through the electrochemical reduction of silver ions. The electrochemical gratings exhibited high transparency (T > 95%), similar to a see-through window, by matching the refractive index of the grating pattern with the surrounding medium. The gratings switch to a diffractive state upon the formation of a mirror pattern (T < 5%) with a high diffraction efficiency up to 40%, providing reversible diffractive gratings. The diffraction state was maintained in the voltage-off state (V-off) for 40 min, which demonstrated bistable reversible electrochemical grating (BREG) behavior. By carefully combining the BREGs through period matching, dual-color switching was achieved within the full color region, which exhibited three distinct optical switching states between -2.5, 0, and +2.5 V. The wide range of light tenability using the metallic BREGs developed herein enabled IR modulation, NIR light reflection, and on-demand heat transfer.
ERIC Educational Resources Information Center
Munley, Maripat
2002-01-01
Explores whether children with AD/HD respond differently to a specific art directive. Using the Formal Elements Art Therapy Scale to evaluate the drawings, results indicate three elements that would most accurately predict the artists into the AD/HD group: color prominence, details of objects and environments, and line quality. (Contains 29…
When concepts lose their color: A case of object color knowledge impairment
Stasenko, Alena; Garcea, Frank E.; Dombovy, Mary; Mahon, Bradford Z.
2014-01-01
Color is important in our daily interactions with objects, and plays a role in both low- and high-level visual processing. Previous neuropsychological studies have shown that color perception and object-color knowledge can doubly dissociate, and that both can dissociate from processing of object form. We present a case study of an individual who displayed an impairment for knowledge of the typical colors of objects, with preserved color perception and color naming. Our case also presented with a pattern of, if anything, worse performance for naming living items compared to nonliving things. The findings of the experimental investigation are evaluated in light of two theories of conceptual organization in the brain: the Sensory Functional Theory and the Domain-Specific Hypothesis. The dissociations observed in this case compel a model in which sensory/motor modality and semantic domain jointly constrain the organization of object knowledge. PMID:25058612
Zhao, Jiancun; Yu, Xiaochang; Yang, Xiaoming; Xiang, Quan; Duan, Huigao; Yu, Yiting
2017-09-18
Structural color printing based on plasmonic metasurfaces has been recognized as a promising alternative to the conventional dye colorants, though the color brightness and polarization tolerance are still a great challenge for practical applications. In this work, we report a novel plasmonic metasurface for subtractive color printing employing the ultrathin hexagonal nanodisk-nanohole hybrid structure arrays. Through both the experimental and numerical investigations, the subtractive color thus generated taking advantages of extraordinary low transmission (ELT) exhibits high brightness, polarization independence and wide color tunability by varying key geometrical parameters. In addition, other regular patterns including square, pentagonal and circular shapes are also surveyed, and reveal a high color brightness, wide gamut and polarization independence as well. These results indicate that the demonstrated plasmonic metasurface has various potential applications in high-definition displays, high-density optical data storage, imaging and filtering technologies.
Recent progress in liquid crystal projection displays
NASA Astrophysics Data System (ADS)
Hamada, Hiroshi
1997-05-01
An LC-projector usually contains 3 monochrome TFT-LCDs with a 3-channel dichroic system or a single TFT-LCD with a micro color filter. The liquid crystal operation mode adopted in a TFT-LCD is TN. The optical throughput of an LC-projector is reduced by a pair of polarizers, an aperture ratio of a TFT- LCD and a color filter in a single-LCD projector. In order to eliminate absorption loss by a color filter, a single LCD projection system which consists of a monochrome LCD with a microlens array and a color splitting system using tilted dichroic mirrors or another optical element such as a holographic optical element or a blazed grating has been developed. And LC rear projection TVs have started to challenge CRT-based rear projection TVs. In addition to this system, new technologies to improve optical throughput have been developed to the practical stage such as an active- matrix-addressed PDLC and a reflective type LCD on a Si-LSI chip. Merits and technical issues of newly developed systems and conventional systems including a-Si TFT-LCDs and p-Si TFT-LCDs are discussed mainly in terms of optical throughput.
Full-Color Biomimetic Photonic Materials with Iridescent and Non-Iridescent Structural Colors
Kawamura, Ayaka; Kohri, Michinari; Morimoto, Gen; Nannichi, Yuri; Taniguchi, Tatsuo; Kishikawa, Keiki
2016-01-01
The beautiful structural colors in bird feathers are some of the brightest colors in nature, and some of these colors are created by arrays of melanin granules that act as both structural colors and scattering absorbers. Inspired by the color of bird feathers, high-visibility structural colors have been created by altering four variables: size, blackness, refractive index, and arrangement of the nano-elements. To control these four variables, we developed a facile method for the preparation of biomimetic core-shell particles with melanin-like polydopamine (PDA) shell layers. The size of the core-shell particles was controlled by adjusting the core polystyrene (PSt) particles’ diameter and the PDA shell thicknesses. The blackness and refractive index of the colloidal particles could be adjusted by controlling the thickness of the PDA shell. The arrangement of the particles was controlled by adjusting the surface roughness of the core-shell particles. This method enabled the production of both iridescent and non-iridescent structural colors from only one component. This simple and novel process of using core-shell particles containing PDA shell layers can be used in basic research on structural colors in nature and their practical applications. PMID:27658446
Full-Color Biomimetic Photonic Materials with Iridescent and Non-Iridescent Structural Colors.
Kawamura, Ayaka; Kohri, Michinari; Morimoto, Gen; Nannichi, Yuri; Taniguchi, Tatsuo; Kishikawa, Keiki
2016-09-23
The beautiful structural colors in bird feathers are some of the brightest colors in nature, and some of these colors are created by arrays of melanin granules that act as both structural colors and scattering absorbers. Inspired by the color of bird feathers, high-visibility structural colors have been created by altering four variables: size, blackness, refractive index, and arrangement of the nano-elements. To control these four variables, we developed a facile method for the preparation of biomimetic core-shell particles with melanin-like polydopamine (PDA) shell layers. The size of the core-shell particles was controlled by adjusting the core polystyrene (PSt) particles' diameter and the PDA shell thicknesses. The blackness and refractive index of the colloidal particles could be adjusted by controlling the thickness of the PDA shell. The arrangement of the particles was controlled by adjusting the surface roughness of the core-shell particles. This method enabled the production of both iridescent and non-iridescent structural colors from only one component. This simple and novel process of using core-shell particles containing PDA shell layers can be used in basic research on structural colors in nature and their practical applications.
Molecular basis of wing coloration in a Batesian mimic butterfly, Papilio polytes
Nishikawa, Hideki; Iga, Masatoshi; Yamaguchi, Junichi; Saito, Kazuki; Kataoka, Hiroshi; Suzuki, Yutaka; Sugano, Sumio; Fujiwara, Haruhiko
2013-01-01
Batesian mimicry protects animals from predators through resemblance with distasteful models in shape, color pattern, or behavior. To elucidate the wing coloration mechanisms involved in the mimicry, we investigated chemical composition and gene expression of the pale yellow and red pigments of a swallowtail butterfly, Papilio polytes, whose females mimic the unpalatable butterfly Pachliopta aristolochiae. Using LC/MS, we showed that the pale yellow wing regions in non-mimetic females consist of kynurenine and N-β-alanyldopamine (NBAD). Moreover, qRT-PCR showed that kynurenine/NBAD biosynthetic genes were upregulated in these regions in non-mimetic females. However, these pigments were absent in mimetic females. RNA-sequencing showed that kynurenine/NBAD synthesis and Toll signaling genes were upregulated in the red spots specific to mimetic female wings. These results demonstrated that drastic changes in gene networks in the red and pale yellow regions can switch wing color patterns between non-mimetic and mimetic females of P. polytes. PMID:24212474
Relationship between neural response and adaptation selectivity to form and color: an ERP study.
Rentzeperis, Ilias; Nikolaev, Andrey R; Kiper, Daniel C; van Leeuwen, Cees
2012-01-01
Adaptation is widely used as a tool for studying selectivity to visual features. In these studies it is usually assumed that the loci of feature selective neural responses and adaptation coincide. We used an adaptation paradigm to investigate the relationship between response and adaptation selectivity in event-related potentials (ERPs). ERPs were evoked by the presentation of colored Glass patterns in a form discrimination task. Response selectivities to form and, to some extent, color of the patterns were reflected in the C1 and N1 ERP components. Adaptation selectivity to color was reflected in N1 and was followed by a late (300-500 ms after stimulus onset) effect of form adaptation. Thus for form, response and adaptation selectivity were manifested in non-overlapping intervals. These results indicate that adaptation and response selectivity can be associated with different processes. Therefore, inferring selectivity from an adaptation paradigm requires analysis of both adaptation and neural response data.
Molecular basis of wing coloration in a Batesian mimic butterfly, Papilio polytes.
Nishikawa, Hideki; Iga, Masatoshi; Yamaguchi, Junichi; Saito, Kazuki; Kataoka, Hiroshi; Suzuki, Yutaka; Sugano, Sumio; Fujiwara, Haruhiko
2013-11-11
Batesian mimicry protects animals from predators through resemblance with distasteful models in shape, color pattern, or behavior. To elucidate the wing coloration mechanisms involved in the mimicry, we investigated chemical composition and gene expression of the pale yellow and red pigments of a swallowtail butterfly, Papilio polytes, whose females mimic the unpalatable butterfly Pachliopta aristolochiae. Using LC/MS, we showed that the pale yellow wing regions in non-mimetic females consist of kynurenine and N-β-alanyldopamine (NBAD). Moreover, qRT-PCR showed that kynurenine/NBAD biosynthetic genes were upregulated in these regions in non-mimetic females. However, these pigments were absent in mimetic females. RNA-sequencing showed that kynurenine/NBAD synthesis and Toll signaling genes were upregulated in the red spots specific to mimetic female wings. These results demonstrated that drastic changes in gene networks in the red and pale yellow regions can switch wing color patterns between non-mimetic and mimetic females of P. polytes.
Drummond-Borg, M; Deeb, S; Motulsky, A G
1988-01-01
The molecular nature of three different types of X-linked color-vision defects, protanomaly, deuteranomaly, and protanopia, in a large 3-generation family was determined. In the protanomalous and protanopic males the normal red pigment gene was replaced by a 5' red-3' green fusion gene. The protanomalous male had more red pigment DNA in his fusion gene than did the more severely affected protanopic individual. The deuteranomalous individual had four green pigment genes and one 5' green-3' red fusion gene. These results extend those of Nathans et al., who proposed that most red-green color-vision defects arise as a result of unequal crossing-over between the red and green pigment genes. The various data suggest that differences in severity of color-vision defects associated with fusion genes are caused by differences in crossover sites between the red and green pigment genes. Currently used molecular methodology is not sufficiently sensitive to define these fusion points accurately, and the specific color-vision defect within the deutan or protan class cannot be predicted. The DNA patterns for color-vision genes of female heterozygotes have not previously been described. Patterns of heterozygotes may not be distinguishable from those of normals. However, a definite assignment of the various color pigment gene arrays could be carried out by family study. Two compound heterozygotes for color-vision defects who tested as normal by anomaloscopy were found to carry abnormal fusion genes. In addition, a normal red pigment gene was present on one chromosome and at least one normal green pigment gene was present on the other.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 3 PMID:2847528
The transfer of Cfunc contextual control through equivalence relations.
Perez, William F; Fidalgo, Adriana P; Kovac, Roberta; Nico, Yara C
2015-05-01
Derived relational responding is affected by contextual stimuli (Cfunc) that select specific stimulus functions. The present study investigated the transfer of Cfunc contextual control through equivalence relations by evaluating both (a) the maintenance of Cfunc contextual control after the expansion of a relational network, and (b) the establishment of novel contextual stimuli by the transfer of Cfunc contextual control through equivalence relations. Initially, equivalence relations were established and contingencies were arranged so that colors functioned as Cfunc stimuli controlling participants' key-pressing responses in the presence of any stimulus from a three-member equivalence network. To investigate the first research question, the three-member equivalence relations were expanded to five members and the novel members were presented with the Cfunc stimuli in the key-pressing task. To address the second goal of this study, the colors (Cfunc) were established as equivalent to certain line patterns. The transfer of contextual cue function (Cfunc) was tested replacing the colored backgrounds with line patterns in the key-pressing task. Results suggest that the Cfunc contextual control was transferred to novel stimuli that were added to the relational network. In addition, the line patterns indirectly acquired the contextual cue function (Cfunc) initially established for the colored backgrounds. The conceptual and applied implications of Cfunc contextual control are discussed. © Society for the Experimental Analysis of Behavior.
Schloss, Karen B; Heck, Isobel A
2017-01-01
People form associations between colors and entities, which influence their evaluations of the world. These evaluations are dynamic, as specific associations become more or less active in people's minds over time. We investigated how evaluations of colors (color preferences) changed over the course of fall, as color-associated fall entities became more prevalent in the environment. Participants judged their preferences for the same set of colors during nine testing sessions over 11 weeks during fall. We categorized the colors as Leaf and Non-Leaf Colors by matching them to leaves collected during the same period. Changes in preferences for Leaf Colors followed a quadratic pattern, peaking around when the leaves were most colorful and declining as winter approached. Preferences for Non-Leaf Colors did not significantly change. Individual differences in these changes could be explained by preferences for seasonal entities, as predicted by the differential activation hypothesis within the Ecological Valence Theory. The more a given individual liked fall-associated entities, the more their preference for Leaf Colors increased during fall. No analogous relations existed with winter-associated entities or Non-Leaf Colors. These results demonstrate the importance of studying temporal and individual differences for understanding preferences.
Satellite studies of turbidity and circulation patterns in Delaware Bay
NASA Technical Reports Server (NTRS)
Klemas, V.; Srna, R.; Treasure, W. M.; Rogers, R.
1973-01-01
Satellite imagery from four successful ERTS-1 passes over Delaware Bay during different portions of the tidal cycle are interpreted with special emphasis on visibility of suspended sediment and its use as a natural tracer for gross circulation patters. The MSS red band (band 5) appears to give the best contrast, although the sediment patterns are represented by only a few neighboring shades of grey. Color density slicing improves the differentiation of turbidity levels. However, color additive enhancements are of limited value since most of the information is in a single color band. The ability of ERTS-1 to present a synoptic view of the surface circulation over the entire bay is shown to be a valuable and unique contribution of ERTS-1 to coastal oceanography.
Linnen, Catherine R; O'Quin, Claire T; Shackleford, Taylor; Sears, Connor R; Lindstedt, Carita
2018-05-01
Pigmentation has emerged as a premier model for understanding the genetic basis of phenotypic evolution, and a growing catalog of color loci is starting to reveal biases in the mutations, genes, and genetic architectures underlying color variation in the wild. However, existing studies have sampled a limited subset of taxa, color traits, and developmental stages. To expand the existing sample of color loci, we performed QTL mapping analyses on two types of larval pigmentation traits that vary among populations of the redheaded pine sawfly ( Neodiprion lecontei ): carotenoid-based yellow body color and melanin-based spotting pattern. For both traits, our QTL models explained a substantial proportion of phenotypic variation and suggested a genetic architecture that is neither monogenic nor highly polygenic. Additionally, we used our linkage map to anchor the current N. lecontei genome assembly. With these data, we identified promising candidate genes underlying (1) a loss of yellow pigmentation in populations in the mid-Atlantic/northeastern United States [C locus-associated membrane protein homologous to a mammalian HDL receptor-2 gene ( Cameo2 ) and lipid transfer particle apolipoproteins II and I gene ( apoLTP-II/I )], and (2) a pronounced reduction in black spotting in Great Lakes populations [members of the yellow gene family, tyrosine hydroxylase gene ( pale ), and dopamine N -acetyltransferase gene ( Dat )]. Several of these genes also contribute to color variation in other wild and domesticated taxa. Overall, our findings are consistent with the hypothesis that predictable genes of large effect contribute to color evolution in nature. Copyright © 2018 by the Genetics Society of America.
USDA-ARS?s Scientific Manuscript database
Tomato (Solanum lycopersicum) fruit quality and yield are highly dependent on adequate uptake of nutrients. Potassium, magnesium and calcium are essential elements that influence fruit quality traits such as color, uniformity of ripening, hollow fruit, fruit shape, firmness, and acidity. Sodium is n...
Ultra-widefield fluorescein angiography of white without pressure
Orlin, Anton; Fatoo, Aalya; Ehrlich, Joshua; D’Amico, Donald J; Chan, RV Paul; Kiss, Szilárd
2013-01-01
Purpose To describe ultra-widefield fluorescein angiography (UWFA) findings in eyes with white without pressure (WWOP) and in eyes without any obvious peripheral chorioretinal disease, and to determine if a difference exists between these two groups. Methods A retrospective review of 379 eyes undergoing diagnostic UWFA using the Optos 200Tx imaging system. Eyes were excluded if the quality of the color photograph or UWFA prevented reliable evaluation. Eyes were also excluded if there was any evidence of peripheral retinal or choroidal disease, which was thought to have an effect on UWFA (eg, peripheral background diabetic or hypertensive retinopathy, vein occlusion, or any other peripheral vascular disorder). Eyes were determined to have WWOP, based on a dilated fundus examination and color fundus photography that contained areas of peripheral retinal whitening consistent with the diagnosis. UWFA was evaluated by trained masked graders, and determined to have or not have peripheral vascular leakage and/or staining. Results Of the 379 eyes evaluated, 45 eyes were included in the study. Twelve eyes were determined to have peripheral WWOP; 33 eyes did not have WWOP on examination or color fundus photography. Three common UWFA peripheral patterns were visualized. Eyes with and without WWOP were grouped into one of three patterns. The majority of eyes without WWOP demonstrated UWFA pattern one (69.7%), while those in the WWOP group demonstrated pattern three (50%). The distribution of UWFA patterns is statistically different between those with and without WWOP (P = 0.002). In eyes without WWOP, in patients with no documented systemic microvascular disease (diabetes, hypertension), 71.4% of eyes had UWFA pattern one while 14.3% had both patterns two and three. Conclusion This study is one of the first to specifically evaluate peripheral vascular leakage/staining in eyes with WWOP as well as in eyes without any obvious peripheral chorioretinal disease. We demonstrate that a significant portion of WWOP eyes exhibit peripheral findings on UWFA (pattern one) compared to eyes without WWOP. Importantly, even in eyes that are apparently unremarkable in the periphery on exam and color photography, UWFA can still show peripheral vascular abnormalities. These results warrant further investigation. PMID:23737658
NASA Astrophysics Data System (ADS)
El-Saba, A. M.; Alam, M. S.; Surpanani, A.
2006-05-01
Important aspects of automatic pattern recognition systems are their ability to efficiently discriminate and detect proper targets with low false alarms. In this paper we extend the applications of passive imaging polarimetry to effectively discriminate and detect different color targets of identical shapes using color-blind imaging sensor. For this case of study we demonstrate that traditional color-blind polarization-insensitive imaging sensors that rely only on the spatial distribution of targets suffer from high false detection rates, especially in scenarios where multiple identical shape targets are present. On the other hand we show that color-blind polarization-sensitive imaging sensors can successfully and efficiently discriminate and detect true targets based on their color only. We highlight the main advantages of using our proposed polarization-encoded imaging sensor.
Photonic Multitasking Interleaved Si Nanoantenna Phased Array.
Lin, Dianmin; Holsteen, Aaron L; Maguid, Elhanan; Wetzstein, Gordon; Kik, Pieter G; Hasman, Erez; Brongersma, Mark L
2016-12-14
Metasurfaces provide unprecedented control over light propagation by imparting local, space-variant phase changes on an incident electromagnetic wave. They can improve the performance of conventional optical elements and facilitate the creation of optical components with new functionalities and form factors. Here, we build on knowledge from shared aperture phased array antennas and Si-based gradient metasurfaces to realize various multifunctional metasurfaces capable of achieving multiple distinct functions within a single surface region. As a key point, we demonstrate that interleaving multiple optical elements can be accomplished without reducing the aperture of each subelement. Multifunctional optical elements constructed from Si-based gradient metasurface are realized, including axial and lateral multifocus geometric phase metasurface lenses. We further demonstrate multiwavelength color imaging with a high spatial resolution. Finally, optical imaging functionality with simultaneous color separation has been obtained by using multifunctional metasurfaces, which opens up new opportunities for the field of advanced imaging and display.
ERIC Educational Resources Information Center
Anishchanka, Alena
2010-01-01
The article presents a usage-based analysis of color attribution, i.e. the construal of the relation between color property and an entity to which it is attributed in painting descriptions. The study is based on the corpus of 100 catalog entries written for American art museums. It focuses on the two most frequent morpho-syntactic patterns in the…
The Rotated Speeded-Up Robust Features Algorithm (R-SURF)
2014-06-01
blue color model YUV one luminance two chrominance color model xviii THIS PAGE INTENTIONALLY LEFT BLANK xix EXECUTIVE SUMMARY Automatic...256 256 3 color scheme with an uncompressed image is used, each visual pixel has a possibility of 3256 combinations 2 [5]. There are...Portugal, 2009. [41] J. Sivic and A. Zisserman, “Efficient visual search of videos cast as text retrieval,” IEEE Transactions on Pattern Analysis and
Skin glands, poison and mimicry in dendrobatid and leptodactylid amphibians.
Prates, Ivan; Antoniazzi, Marta M; Sciani, Juliana M; Pimenta, Daniel C; Toledo, Luís Felipe; Haddad, Célio F B; Jared, Carlos
2012-03-01
In amphibians, secretions of toxins from specialized skin poison glands play a central role in defense against predators. The production of toxic secretions is often associated with conspicuous color patterns that warn potential predators, as it is the case of many dendrobatid frogs, including Ameerega picta. This species resembles the presumably nontoxic Leptodactylus lineatus. This study tests for mimicry by studying the morphology and distribution of skin glands, components of skin secretion, and defensive behavior. Dorsal skin was studied histologically and histochemically, and skin secretions were submitted to sodium dodecyl sulfate polyacrylamide gel electrophoresis, reversed phase high performance liquid chromatography and assays for proteolytic activity. We found that poison glands in A. picta are filled with nonprotein granules that are rich in carbohydrates, while L. lineatus glands present protein granules. Accordingly, great amounts of proteins, at least some of them enzymes, were found in the poison of L. lineatus but not in that of A. picta. Both species differ greatly on profiles of gland distribution: In L. lineatus, poison glands are organized in clusters whose position coincides with colored elements of the dorsum. These regions are evidenced through a set of displays, suggesting that poison location is announced to predators through skin colors. In contrast, A. picta presents lower densities of glands, distributed homogeneously. This simpler profile suggests a rather qualitative than quantitative investment in chemical defense, in agreement with the high toxicity attributed to dendrobatids in general. Our data suggest that both species are toxic or unpalatable and transmit common warning signals to predators, which represents a case of Müllerian mimicry. Copyright © 2011 Wiley Periodicals, Inc.
Does contrast between eggshell ground and spot coloration affect egg rejection?
Dainson, Miri; Hauber, Mark E; López, Analía V; Grim, Tomáš; Hanley, Daniel
2017-08-01
Obligate avian brood parasitic species impose the costs of incubating foreign eggs and raising young upon their unrelated hosts. The most common host defence is the rejection of parasitic eggs from the nest. Both egg colours and spot patterns influence egg rejection decisions in many host species, yet no studies have explicitly examined the role of variation in spot coloration. We studied the American robin Turdus migratorius, a blue-green unspotted egg-laying host of the brown-headed cowbird Molothrus ater, a brood parasite that lays non-mimetic spotted eggs. We examined host responses to model eggs with variable spot coloration against a constant robin-mimetic ground colour to identify patterns of rejection associated with perceived contrast between spot and ground colours. By using avian visual modelling, we found that robins were more likely to reject eggs whose spots had greater chromatic (hue) but not achromatic (brightness) contrast. Therefore, egg rejection decision rules in the American robin may depend on the colour contrast between parasite eggshell spot and host ground coloration. Our study also suggests that egg recognition in relation to spot coloration, like ground colour recognition, is tuned to the natural variation of avian eggshell spot colours but not to unnatural spot colours.
NASA Technical Reports Server (NTRS)
1979-01-01
GANYMEDE COLOR PHOTOS: This color picture as acquired by Voyager 1 during its approach to Ganymede on Monday afternoon (the 5th of March). At ranges between about 230 to 250 thousand km. The images show detail on the surface with a resolution of four and a half km. This picture is south of PIA01516 (P21262) near the equator of Ganymede, and has relatively subdued colors in the visible part of the spectrum (later, scientists will analyze Voyager pictures taken in UV). The most striking features are the bright ray craters which have a distinctly 'bluer' color appearing white against the redder background. Ganymede's surface is known to contain large amounts of surface ice and it appears that these relatively young craters have spread bright fresh ice materials over the surface. Likewise, the lighter color and reflectivity of the grooved areas suggest that here, too, there is cleaner ice. We see ray craters with all sizes of ray patterns, ranging from extensive systems, down to craters which have only faint remnants of bright ejecta patterns. This variation suggests that, as on the Moon, there are processes which act to darken ray material, probably 'gardening' by micrometeoroid impact. JPL manages and controls the Voyager project for NASA's Office of Space Science.
Empirical Studies of Patterning
ERIC Educational Resources Information Center
Pasnak, Robert
2017-01-01
Young children have been taught simple sequences of alternating shapes and colors, referred to as "patterning", for the past half century in the hope that their understanding of pre-algebra and their mathematics achievement would be improved. The evidence that such patterning instruction actually improves children's academic achievement…
David R. Houston; David R. Houston
1972-01-01
This paper discusses the use of aerial color photography to discern symptoms of the disease as it developed over time, the factors contributing to disease development, and the patterns of disease development.
Improved sensitivity high-definition interline CCD using the KODAK TRUESENSE color filter pattern
NASA Astrophysics Data System (ADS)
DiBella, James; Andreghetti, Marco; Enge, Amy; Chen, William; Stanka, Timothy; Kaser, Robert
2010-01-01
The KODAK TRUESENSE Color Filter Pattern has technology that for the first time is applied to a commercially available interline CCD. This 2/3" true-HD sensor will be described along with its performance attributes, including sensitivity improvement as compared to the Bayer CFA version of the same sensor. In addition, an overview of the system developed for demonstration and evaluation will be provided. Examples of the benefits of the new technology in specific applications including surveillance and intelligent traffic systems will be discussed.
Joint sparse coding based spatial pyramid matching for classification of color medical image.
Shi, Jun; Li, Yi; Zhu, Jie; Sun, Haojie; Cai, Yin
2015-04-01
Although color medical images are important in clinical practice, they are usually converted to grayscale for further processing in pattern recognition, resulting in loss of rich color information. The sparse coding based linear spatial pyramid matching (ScSPM) and its variants are popular for grayscale image classification, but cannot extract color information. In this paper, we propose a joint sparse coding based SPM (JScSPM) method for the classification of color medical images. A joint dictionary can represent both the color information in each color channel and the correlation between channels. Consequently, the joint sparse codes calculated from a joint dictionary can carry color information, and therefore this method can easily transform a feature descriptor originally designed for grayscale images to a color descriptor. A color hepatocellular carcinoma histological image dataset was used to evaluate the performance of the proposed JScSPM algorithm. Experimental results show that JScSPM provides significant improvements as compared with the majority voting based ScSPM and the original ScSPM for color medical image classification. Copyright © 2014 Elsevier Ltd. All rights reserved.
Geographic variation in the plumage coloration of willow flycatchers Empidonax traillii
Paxton, Eben H.; Sogge, Mark K.; Koronkiewicz, Thomas J.; McLeod, Mary Anne; Theimer, Tad C.
2010-01-01
The ability to identify distinct taxonomic groups of birds (species, subspecies, geographic races) can advance ecological research efforts by determining connectivity between the non-breeding and breeding grounds for migrant species, identifying the origin of migrants, and helping to refine boundaries between subspecies or geographic races. Multiple methods are available to identify taxonomic groups (e.g., morphology, genetics), and one that has played an important role for avian taxonomists over the years is plumage coloration. With the advent of electronic devices that can quickly and accurately quantify plumage coloration, the potential of using coloration as an identifier for distinct taxonomic groups, even when differences are subtle, becomes possible. In this study, we evaluated the degree to which plumage coloration differs among the four subspecies of the willow flycatcher Empidonax traillii, evaluated sources of variation, and considered the utility of plumage coloration to assign subspecies membership for individuals of unknown origin. We used a colorimeter to measure plumage coloration of 374 adult willow flycatchers from 29 locations across their breeding range in 2004 and 2005. We found strong statistical differences among the mean plumage coloration values of the four subspecies; however, while individuals tended to group around their respective subspecies' mean color value, the dispersion of individuals around such means overlapped. Mean color values for each breeding site of the three western subspecies clustered together, but the eastern subspecies' color values were dispersed among the other subspecies, rather than distinctly clustered. Additionally, sites along boundaries showed evidence of intergradation and intermediate coloration patterns. We evaluated the predictive power of colorimeter measurements on flycatchers by constructing a canonical discriminant model to predict subspecies origin of migrants passing through the southwestern U.S. Considering only western subspecies, we found that individuals can be assigned with reasonable certainty. Applying the model to migrants sampled along the Colorado River in Mexico and the U.S. suggests different migration patterns for the three western subspecies. We believe that the use of plumage coloration, as measured by electronic devices, can provide a powerful tool to look at ecological questions in a wide range of avian species.
Akkaynak, Derya; Allen, Justine J; Mäthger, Lydia M; Chiao, Chuan-Chin; Hanlon, Roger T
2013-03-01
Cephalopods are renowned for their ability to adaptively camouflage on diverse backgrounds. Sepia officinalis camouflage body patterns have been characterized spectrally in the laboratory but not in the field due to the challenges of dynamic natural light fields and the difficulty of using spectrophotometric instruments underwater. To assess cuttlefish color match in their natural habitats, we studied the spectral properties of S. officinalis and their backgrounds on the Aegean coast of Turkey using point-by-point in situ spectrometry. Fifteen spectrometry datasets were collected from seven cuttlefish; radiance spectra from animal body components and surrounding substrates were measured at depths shallower than 5 m. We quantified luminance and color contrast of cuttlefish components and background substrates in the eyes of hypothetical di- and trichromatic fish predators. Additionally, we converted radiance spectra to sRGB color space to simulate their in situ appearance to a human observer. Within the range of natural colors at our study site, cuttlefish closely matched the substrate spectra in a variety of body patterns. Theoretical calculations showed that this effect might be more pronounced at greater depths. We also showed that a non-biological method ("Spectral Angle Mapper"), commonly used for spectral shape similarity assessment in the field of remote sensing, shows moderate correlation to biological measures of color contrast. This performance is comparable to that of a traditional measure of spectral shape similarity, hue and chroma. This study is among the first to quantify color matching of camouflaged cuttlefish in the wild.
Children's choice: Color associations in children's safety sign design.
Siu, Kin Wai Michael; Lam, Mei Seung; Wong, Yi Lin
2017-03-01
Color has been more identified as a key consideration in ergonomics. Color conveys messages and is an important element in safety signs, as it provides extra information to users. However, very limited recent research has focused on children and their color association in the context of safety signs. This study thus examined how children use colors in drawing different safety signs and how they associate colors with different concepts and objects that appear in safety signs. Drawing was used to extract children's use of color and the associations they made between signs and colors. The child participants were given 12 referents of different safety signs and were asked to design and draw the signs using different colored felt-tip pens. They were also asked to give reasons for their choices of colors. Significant associations were found between red and 'don't', orange and 'hands', and blue and 'water'. The child participants were only able to attribute the reasons for the use of yellow, green, blue and black through concrete identification and concrete association, and red through abstract association. The children's use of color quite differs from that shown in the ISO registered signs. There is a need to consider the use of colors carefully when designing signs specifically for children. Sign designers should take children's color associations in consideration and be aware if there are any misunderstandings. Copyright © 2016 Elsevier Ltd. All rights reserved.
Focal colors across languages are representative members of color categories.
Abbott, Joshua T; Griffiths, Thomas L; Regier, Terry
2016-10-04
Focal colors, or best examples of color terms, have traditionally been viewed as either the underlying source of cross-language color-naming universals or derived from category boundaries that vary widely across languages. Existing data partially support and partially challenge each of these views. Here, we advance a position that synthesizes aspects of these two traditionally opposed positions and accounts for existing data. We do so by linking this debate to more general principles. We show that best examples of named color categories across 112 languages are well-predicted from category extensions by a statistical model of how representative a sample is of a distribution, independently shown to account for patterns of human inference. This model accounts for both universal tendencies and variation in focal colors across languages. We conclude that categorization in the contested semantic domain of color may be governed by principles that apply more broadly in cognition and that these principles clarify the interplay of universal and language-specific forces in color naming.
Focal colors across languages are representative members of color categories
Abbott, Joshua T.; Griffiths, Thomas L.; Regier, Terry
2016-01-01
Focal colors, or best examples of color terms, have traditionally been viewed as either the underlying source of cross-language color-naming universals or derived from category boundaries that vary widely across languages. Existing data partially support and partially challenge each of these views. Here, we advance a position that synthesizes aspects of these two traditionally opposed positions and accounts for existing data. We do so by linking this debate to more general principles. We show that best examples of named color categories across 112 languages are well-predicted from category extensions by a statistical model of how representative a sample is of a distribution, independently shown to account for patterns of human inference. This model accounts for both universal tendencies and variation in focal colors across languages. We conclude that categorization in the contested semantic domain of color may be governed by principles that apply more broadly in cognition and that these principles clarify the interplay of universal and language-specific forces in color naming. PMID:27647896
NASA Astrophysics Data System (ADS)
Yang, Yang; Pan, Yayue; Guo, Ping
2017-04-01
Creating orderly periodic micro/nano-structures on metallic surfaces, or structural coloration, for control of surface apparent color and optical reflectivity has been an exciting research topic over the years. The direct applications of structural coloration include color marking, display devices, and invisibility cloak. This paper presents an efficient method to colorize metallic surfaces with periodic micro/nano-gratings using elliptical vibration texturing. When the tool vibration is coupled with a constant cutting velocity, controlled periodic ripples can be generated due to the overlapping tool trajectory. These periodic ripples with a wavelength near visible spectrum can act as micro-gratings to introduce iridescent colors. The proposed technique also provides a flexible method for color marking of metallic surfaces with arbitrary patterns and images by precise control of the spacing distance and orientation of induced micro/nano-ripples. Theoretical analysis and experimental results are given to demonstrate structural coloration of metals by a direct mechanical machining technique.
Full-color laser cathode ray tube (L-CRT) projector
NASA Astrophysics Data System (ADS)
Kozlovskiy, Vladimir; Nasibov, Alexander S.; Popov, Yuri M.; Reznikov, Parvel V.; Skasyrsky, Yan K.
1995-04-01
A full color TV projector based on three laser cathode-ray tubes (L-CRT) is described. A water-cooled laser screen (LS) is the radiation element of the L-CRT. We have produced three main colors (blue, green and red) by using the LS made of three II-VI compounds: ZnSe ((lambda) equals 475 nm), CdS ((lambda) equals 530 nm) and ZnCdSe (630 nm). The total light flow reaches 1500 Lm, and the number of elements per line is not less than 1000. The LS efficiency may be about 10 Lm/W. In our experiments we have tested new electron optics: - (30 - 37) kV are applied to the cathode unit of the electron gun; the anode of the e-gun and the e-beam intensity modulator are under low potential; the LS has a potential + (30 - 37) kV. The accelerating voltage is divided into two parts, and this enables us to diminish the size and weight of the projector.
Identifying and Overcoming Obstacles to Point-of-Care Data Collection for Eye Care Professionals
Lobach, David F.; Silvey, Garry M.; Macri, Jennifer M.; Hunt, Megan; Kacmaz, Roje O.; Lee, Paul P.
2005-01-01
Supporting data entry by clinicians is considered one of the greatest challenges in implementing electronic health records. In this paper we describe a formative evaluation study using three different methodologies through which we identified obstacles to point-of-care data entry for eye care and then used the formative process to develop and test solutions to overcome these obstacles. The greatest obstacles were supporting free text annotation of clinical observations and accommodating the creation of detailed diagrams in multiple colors. To support free text entry, we arrived at an approach that captures an image of a free text note and associates this image with related data elements in an encounter note. The detailed diagrams included a color pallet that allowed changing pen color with a single stroke and also captured the diagrams as an image associated with related data elements. During observed sessions with simulated patients, these approaches satisfied the clinicians’ documentation needs by capturing the full range of clinical complexity that arises in practice. PMID:16779083
Application and enhancements of MOVIE.BYU
NASA Technical Reports Server (NTRS)
Gates, R. L.; Vonofenheim, W. H.
1984-01-01
MOVIE.BYU (MOVIE.BRIGHAM YOUNG UNIVERSITY) is a system of programs for the display and manipulation of data representing mathematical, architectural, and topological models in which the geometry may be described in terms of panel (n-sided polygons) and solid elements or contour lines. The MOVIE.BYU system has been used in a series of applications of LaRC. One application has been the display, creation, and manipulation of finite element models in aeronautic/aerospace research. These models have been displayed on both vector and color raster devices, and the user has the option to modify color and shading parameters on these color raster devices. Another application involves the display of scalar functions (temperature, pressure, etc.) over the surface of a given model. This capability gives the researcher added flexibility in the analysis of the model and its accompanying data. Limited animation (frame-by-frame creation) has been another application of MOVIE.BYU in the modeling of kinematic processes in antenna structures.
Morphological rational operator for contrast enhancement.
Peregrina-Barreto, Hayde; Herrera-Navarro, Ana M; Morales-Hernández, Luis A; Terol-Villalobos, Iván R
2011-03-01
Contrast enhancement is an important task in image processing that is commonly used as a preprocessing step to improve the images for other tasks such as segmentation. However, some methods for contrast improvement that work well in low-contrast regions affect good contrast regions as well. This occurs due to the fact that some elements may vanish. A method focused on images with different luminance conditions is introduced in the present work. The proposed method is based on morphological transformations by reconstruction and rational operations, which, altogether, allow a more accurate contrast enhancement resulting in regions that are in harmony with their environment. Furthermore, due to the properties of these morphological transformations, the creation of new elements on the image is avoided. The processing is carried out on luminance values in the u'v'Y color space, which avoids the creation of new colors. As a result of the previous considerations, the proposed method keeps the natural color appearance of the image.
Conodont color alteration index and upper Paleozoic thermal history of the Amazonas Basin, Brazil
NASA Astrophysics Data System (ADS)
Cardoso, Cassiane Negreiros; Sanz-López, Javier; Blanco-Ferrera, Silvia; Lemos, Valesca Brasil; Scomazzon, Ana Karina
2015-12-01
The conodont color alteration index (CAI) was determined in elements from core samples of the Frasnian Barreirinha Formation (one well) and of the Pennsylvanian-Permian Tapajós Group (twenty three wells and one limestone quarry) in the Amazonas Basin. The thermal history of the basin is analyzed using the CAI value distribution represented in maps and stratigraphic sections through correlation schemes, and in conjunction with previously published data. The pattern of palaeotemperatures for CAI values of 1.5-3 is coincident with organic matter maturation under a sedimentary overburden providing diagenetic conditions in the oil/gas window. Locally, conodonts show metamorphism (CAI value of 6-7) in relation to the intrusion of diabase bodies in beds including high geothermal gradient evaporites. Microtextural alteration on the surface conodonts commonly shows several types of overgrowth microtextures developed in diagenetic conditions. Locally, recrystallization in conodonts with a high CAI value is congruent with contact metamorphism in relation to Mesozoic intrusions. The CAI values of 1.5 or 2 observed close to the surface in several areas of the basin may be interpreted in relation to a high thermal palaeogradient derived from the magmatic episode or/and to the local denudation of the upper part of the Paleozoic succession prior to this thermal event.
Fillers in the skin of color population.
Heath, Candrice R; Taylor, Susan C
2011-05-01
The skin of color population in the United States is rapidly growing and the cosmetic industry is responding to the demand for skin of color targeted treatments. The aging face in skin of color patients has a unique pattern that can be successfully augmented by dermal fillers. Though many subjects with skin of color were not included in the pre-market dermal filler clinical trials, some post-market studies have examined the safety and risks of adverse events in this population. The safety data from a selection of these studies was examined. Though pigmentary changes occurred, there have been no reports of keloid development. Developing a patient-specific care plan and instituting close follow up is emphasized.
Young's double-slit interference with two-color biphotons.
Zhang, De-Jian; Wu, Shuang; Li, Hong-Guo; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige
2017-12-12
In classical optics, Young's double-slit experiment with colored coherent light gives rise to individual interference fringes for each light frequency, referring to single-photon interference. However, two-photon double-slit interference has been widely studied only for wavelength-degenerate biphoton, known as subwavelength quantum lithography. In this work, we report double-slit interference experiments with two-color biphoton. Different from the degenerate case, the experimental results depend on the measurement methods. From a two-axis coincidence measurement pattern we can extract complete interference information about two colors. The conceptual model provides an intuitional picture of the in-phase and out-of-phase photon correlations and a complete quantum understanding about the which-path information of two colored photons.
Detailed electromagnetic simulation for the structural color of butterfly wings.
Lee, R Todd; Smith, Glenn S
2009-07-20
Many species of butterflies exhibit interesting optical phenomena due to structural color. The physical reason for this color is subwavelength features on the surface of a single scale. The exposed surface of a scale is covered with a ridge structure. The fully three-dimensional, periodic, finite-difference time-domain method is used to create a detailed electromagnetic model of a generic ridge. A novel method for presenting the three-dimensional observed color pattern is developed. Using these tools, the change in color that is a result of varying individual features of the scale is explored. Computational models are developed that are similar to three butterflies: Morpho rhetenor, Troides magellanus, and Ancyluris meliboeus.
Categorical color constancy for simulated surfaces.
Olkkonen, Maria; Hansen, Thorsten; Gegenfurtner, Karl R
2009-11-12
Color constancy is the ability to perceive constant surface colors under varying lighting conditions. Color constancy has traditionally been investigated with asymmetric matching, where stimuli are matched over two different contexts, or with achromatic settings, where a stimulus is made to appear gray. These methods deliver accurate information on the transformations of single points of color space under illuminant changes, but can be cumbersome and unintuitive for observers. Color naming is a fast and intuitive alternative to matching, allowing data collection from a large portion of color space. We asked observers to name the colors of 469 Munsell surfaces with known reflectance spectra simulated under five different illuminants. Observers were generally as consistent in naming the colors of surfaces under different illuminants as they were naming the colors of the same surfaces over time. The transformations in category boundaries caused by illuminant changes were generally small and could be explained well with simple linear models. Finally, an analysis of the pattern of naming consistency across color space revealed that largely the same hues were named consistently across illuminants and across observers even after correcting for category size effects. This indicates a possible relationship between perceptual color constancy and the ability to consistently communicate colors.
Advances in understanding the molecular basis of the first steps in color vision.
Hofmann, Lukas; Palczewski, Krzysztof
2015-11-01
Serving as one of our primary environmental inputs, vision is the most sophisticated sensory system in humans. Here, we present recent findings derived from energetics, genetics and physiology that provide a more advanced understanding of color perception in mammals. Energetics of cis-trans isomerization of 11-cis-retinal accounts for color perception in the narrow region of the electromagnetic spectrum and how human eyes can absorb light in the near infrared (IR) range. Structural homology models of visual pigments reveal complex interactions of the protein moieties with the light sensitive chromophore 11-cis-retinal and that certain color blinding mutations impair secondary structural elements of these G protein-coupled receptors (GPCRs). Finally, we identify unsolved critical aspects of color tuning that require future investigation. Copyright © 2015. Published by Elsevier Ltd.
Bio-inspired self-healing structural color hydrogel
Fu, Fanfan; Chen, Zhuoyue; Zhao, Ze; Wang, Huan; Shang, Luoran; Gu, Zhongze
2017-01-01
Biologically inspired self-healing structural color hydrogels were developed by adding a glucose oxidase (GOX)- and catalase (CAT)-filled glutaraldehyde cross-linked BSA hydrogel into methacrylated gelatin (GelMA) inverse opal scaffolds. The composite hydrogel materials with the polymerized GelMA scaffold could maintain the stability of an inverse opal structure and its resultant structural colors, whereas the protein hydrogel filler could impart self-healing capability through the reversible covalent attachment of glutaraldehyde to lysine residues of BSA and enzyme additives. A series of unprecedented structural color materials could be created by assembling and healing the elements of the composite hydrogel. In addition, as both the GelMA and the protein hydrogels were derived from organisms, the composite materials presented high biocompatibility and plasticity. These features of self-healing structural color hydrogels make them excellent functional materials for different applications. PMID:28533368
Morphology-Induced Collective Behaviors: Dynamic Pattern Formation in Water-Floating Elements
Nakajima, Kohei; Ngouabeu, Aubery Marchel Tientcheu; Miyashita, Shuhei; Göldi, Maurice; Füchslin, Rudolf Marcel; Pfeifer, Rolf
2012-01-01
Complex systems involving many interacting elements often organize into patterns. Two types of pattern formation can be distinguished, static and dynamic. Static pattern formation means that the resulting structure constitutes a thermodynamic equilibrium whose pattern formation can be understood in terms of the minimization of free energy, while dynamic pattern formation indicates that the system is permanently dissipating energy and not in equilibrium. In this paper, we report experimental results showing that the morphology of elements plays a significant role in dynamic pattern formation. We prepared three different shapes of elements (circles, squares, and triangles) floating in a water-filled container, in which each of the shapes has two types: active elements that were capable of self-agitation with vibration motors, and passive elements that were mere floating tiles. The system was purely decentralized: that is, elements interacted locally, and subsequently elicited global patterns in a process called self-organized segregation. We showed that, according to the morphology of the selected elements, a different type of segregation occurs. Also, we quantitatively characterized both the local interaction regime and the resulting global behavior for each type of segregation by means of information theoretic quantities, and showed the difference for each case in detail, while offering speculation on the mechanism causing this phenomenon. PMID:22715370
Horie, Yu; Han, Seunghoon; Lee, Jeong-Yub; Kim, Jaekwan; Kim, Yongsung; Arbabi, Amir; Shin, Changgyun; Shi, Lilong; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Lee, Hong-Seok; Hwang, Sungwoo; Faraon, Andrei
2017-05-10
We report transmissive color filters based on subwavelength dielectric gratings that can replace conventional dye-based color filters used in backside-illuminated CMOS image sensor (BSI CIS) technologies. The filters are patterned in an 80 nm-thick poly silicon film on a 115 nm-thick SiO 2 spacer layer. They are optimized for operating at the primary RGB colors, exhibit peak transmittance of 60-80%, and have an almost insensitive response over a ± 20° angular range. This technology enables shrinking of the pixel sizes down to near a micrometer.
Is countershading camouflage robust to lighting change due to weather?
2018-01-01
Countershading is a pattern of coloration thought to have evolved in order to implement camouflage. By adopting a pattern of coloration that makes the surface facing towards the sun darker and the surface facing away from the sun lighter, the overall amount of light reflected off an animal can be made more uniformly bright. Countershading could hence contribute to visual camouflage by increasing background matching or reducing cues to shape. However, the usefulness of countershading is constrained by a particular pattern delivering ‘optimal’ camouflage only for very specific lighting conditions. In this study, we test the robustness of countershading camouflage to lighting change due to weather, using human participants as a ‘generic’ predator. In a simulated three-dimensional environment, we constructed an array of simple leaf-shaped items and a single ellipsoidal target ‘prey’. We set these items in two light environments: strongly directional ‘sunny’ and more diffuse ‘cloudy’. The target object was given the optimal pattern of countershading for one of these two environment types or displayed a uniform pattern. By measuring detection time and accuracy, we explored whether and how target detection depended on the match between the pattern of coloration on the target object and scene lighting. Detection times were longest when the countershading was appropriate to the illumination; incorrectly camouflaged targets were detected with a similar pattern of speed and accuracy to uniformly coloured targets. We conclude that structural changes in light environment, such as caused by differences in weather, do change the effectiveness of countershading camouflage. PMID:29515822
NASA Astrophysics Data System (ADS)
Selj, Gorm K.; Heinrich, Daniela H.
2016-10-01
We present results from an observer based photosimulation study of generic camouflage patterns, intended for military uniforms, where three near-identical patterns have been compared. All the patterns were prepared with similar effective color, but were different in how the individual pattern patches were distributed throughout the target. We did this in order to test if high contrast (black) patches along the outline of the target would enhance the survivability when exposed to human observers. In the recent years it has been shown that disruptive coloration in the form of high contrast patches are capable of disturbing an observer by creating false edges of the target and consequently enhance target survivability. This effect has been shown in different forms in the Animal Kingdom, but not to the same extent in camouflaged military targets. The three patterns in this study were i) with no disruptive preference, ii) with a disruptive patch along the outline of the head and iii) with a disruptive patch on the outline of one of the shoulders. We used a high number of human observers to assess the three targets in 16 natural (woodland) backgrounds by showing images of one of the targets at the time on a high definition pc screen. We found that the two patterns that were thought to have a minor disruptive preference to the remaining pattern were more difficult to detect in some (though not all) of the 16 scenes and were also better in overall performance when all the scenes were accounted for.
Cal, Laura; MegÍas, Manuel; Cerdá-Reverter, José Miguel; Postlethwait, John H; Braasch, Ingo; Rotllant, Josep
2017-11-01
Dorsoventral pigment patterning, characterized by a light ventrum and a dark dorsum, is one of the most widespread chromatic adaptations in vertebrate body coloration. In mammals, this countershading depends on differential expression of agouti-signaling protein (ASIP), which drives a switch of synthesis of one type of melanin to another within melanocytes. Teleost fish share countershading, but the pattern results from a differential distribution of multiple types of chromatophores, with black-brown melanophores most abundant in the dorsal body and reflective iridophores most abundant in the ventral body. We previously showed that Asip1 (a fish ortholog of mammalian ASIP) plays a role in patterning melanophores. This observation leads to the surprising hypothesis that agouti may control an evolutionarily conserved pigment pattern by regulating different mechanisms in mammals and fish. To test this hypothesis, we compared two ray-finned fishes: the teleost zebrafish and the nonteleost spotted gar (Lepisosteus oculatus). By examining the endogenous pattern of asip1 expression in gar, we demonstrate a dorsoventral-graded distribution of asip1 expression that is highest ventrally, similar to teleosts. Additionally, in the first reported experiments to generate zebrafish transgenic lines carrying a bacterial artificial chromosome (BAC) from spotted gar, we show that both transgenic zebrafish lines embryos replicate the endogenous asip1 expression pattern in adult zebrafish, showing that BAC transgenes from both species contain all of the regulatory elements required for regular asip1 expression within adult ray-finned fishes. These experiments provide evidence that the mechanism leading to an environmentally important pigment pattern was likely in place before the origin of teleosts. © 2017 Wiley Periodicals, Inc.
The purple cauliflower arises from activation of a MYB transcription factor
USDA-ARS?s Scientific Manuscript database
Anthocyanins are responsible for the color of many flowers, fruits, and vegetables. An interesting and unique Purple (Pr) gene mutation in cauliflower confers an abnormal pattern of anthocyanin accumulation, giving the striking mutant phenotype of intense purple color in curds and a few other tissue...
Remote sensing of environmental disturbance
NASA Technical Reports Server (NTRS)
Latham, J. P.
1972-01-01
Color, color infrared, and minus-blue films obtained by RB-57 remote sensing aircraft at an altitude of 60,000 feet over Boca Raton and Southeast Florida Earth Resources Test Site were analyzed for nine different types of photographic images of the geographic patterns of the surface. Results of these analyses are briefly described.
Multi-Scale Residential Segregation: Black Exceptionalism and America's Changing Color Line
ERIC Educational Resources Information Center
Parisi, Domenico; Lichter, Daniel T.; Taquino, Michael C.
2011-01-01
America's changing color line is perhaps best expressed in shifting patterns of neighborhood residential segregation--the geographic separation of races. This research evaluates black exceptionalism by using the universe of U.S. blocks from the 1990 and 2000 decennial censuses to provide a "single" geographically inclusive national…
2013-01-01
Background One of the most intriguing questions in evolutionary developmental biology is how an insect acquires a mimicry pattern within its body parts. A striking example of pattern mimicry is found in the pattern diversity of moth and butterfly wings, which is thought to evolve from preexisting elements illustrated by the nymphalid ground plan (NGP). Previous studies demonstrated that individuality of the NGP facilitates the decoupling of associated common elements, leading to divergence. In contrast, recent studies on the concept of modularity have argued the importance of a combination of coupling and decoupling of the constituent elements. Here, we examine the modularity of a mimicry wing pattern in a moth and explore an evolvable characteristic of the NGP. Results This study examined the wings of the noctuid moth Oraesia excavata, which closely resemble leaves with a leaf venation pattern. Based on a comparative morphological procedure, we found that this leaf pattern was formed by the NGP common elements. Using geometric morphometrics combined with network analysis, we found that each of the modules in the leaf pattern integrates the constituent components of the leaf venation pattern (i.e., the main and lateral veins). Moreover, the detected modules were established by coupling different common elements and decoupling even a single element into different modules. The modules of the O. excavata wing pattern were associated with leaf mimicry, not with the individuality of the NGP common elements. For comparison, we also investigated the modularity of a nonmimetic pattern in the noctuid moth Thyas juno. Quantitative analysis demonstrated that the modules of the T. juno wing pattern regularly corresponded to the individuality of the NGP common elements, unlike those in the O. excavata wing pattern. Conclusions This study provides the first evidence for modularity in a leaf mimicry pattern. The results suggest that the evolution of this pattern involves coupling and decoupling processes to originate these modules, free from the individuality of the NGP system. We propose that this evolution has been facilitated by a versatile characteristic of the NGP, allowing the association of freely modifiable subordinate common elements to make modules. PMID:23890367
EFFECTS OF NON-CIRCULAR MOTIONS ON AZIMUTHAL COLOR GRADIENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Garcia, Eric E.; Gonzalez-Lopezlira, Rosa A.; Gomez, Gilberto C., E-mail: emartinez@cida.v, E-mail: r.gonzalez@crya.unam.m, E-mail: g.gomez@crya.unam.m
2009-12-20
Assuming that density waves trigger star formation, and that young stars preserve the velocity components of the molecular gas where they are born, we analyze the effects that non-circular gas orbits have on color gradients across spiral arms. We try two approaches, one involving semianalytical solutions for spiral shocks, and another with magnetohydrodynamic (MHD) numerical simulation data. We find that, if non-circular motions are ignored, the comparison between observed color gradients and stellar population synthesis models would in principle yield pattern speed values that are systematically too high for regions inside corotation, with the difference between the real and themore » measured pattern speeds increasing with decreasing radius. On the other hand, image processing and pixel averaging result in systematically lower measured spiral pattern speed values, regardless of the kinematics of stellar orbits. The net effect is that roughly the correct pattern speeds are recovered, although the trend of higher measured OMEGA{sub p} at lower radii (as expected when non-circular motions exist but are neglected) should still be observed. We examine the MartInez-GarcIa et al. photometric data and confirm that this is indeed the case. The comparison of the size of the systematic pattern speed offset in the data with the predictions of the semianalytical and MHD models corroborates that spirals are more likely to end at outer Lindblad resonance, as these authors had already found.« less
Madankumar, Reshmi; Gumaste, Priyanka V; Martires, Kathryn; Schaffer, Panta R; Choudhary, Sonal; Falto-Aizpurua, Leyre; Arora, Harleen; Kallis, Penelope J; Patel, Shailee; Damanpour, Shadi; Sanchez, Margaret I; Yin, Natalie; Chan, Aegean; Sanchez, Miguel; Polsky, David; Kanavy, Holly; Grichnik, James M; Stein, Jennifer A
2016-04-01
Acral lentiginous melanoma has increased mortality compared with other melanoma subtypes and disproportionately affects ethnic minorities. Acral melanocytic lesions have not been well studied in diverse populations of the United States. We sought to assess the prevalence, awareness, and dermoscopic patterns of acral melanocytic lesions in skin-of-color and non-Hispanic white patients. We prospectively examined the palms and soles of 1052 patients presenting to dermatology clinics in New York, NY, and Miami, FL, from October 2013 to April 2015. Acral melanocytic lesions were observed in 36% of our cohort. Skin-of-color patients were more likely to have acral melanocytic lesions than non-Hispanic white patients (P < .01). Acral melanocytic lesions correlated with increased mole counts, particularly on non-Hispanic white patients. The majority of lesions demonstrated benign dermoscopic patterns. We observed 2 lesions with the parallel ridge pattern in our cohort, both found to be atypical nevi on biopsy specimen. Patients often lacked awareness of the presence of their lesions. Interobserver variability in assessing dermoscopic patterns is a limitation. Melanocytic lesions of the palms and soles are common, particularly in a cohort of multiple ethnicities from the United States. Dermoscopy of acral lesions is an important clinical tool for diagnosis and management of these lesions. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
Latitudinal Clines of the Human Vitamin D Receptor and Skin Color Genes.
Tiosano, Dov; Audi, Laura; Climer, Sharlee; Zhang, Weixiong; Templeton, Alan R; Fernández-Cancio, Monica; Gershoni-Baruch, Ruth; Sánchez-Muro, José Miguel; El Kholy, Mohamed; Hochberg, Zèev
2016-05-03
The well-documented latitudinal clines of genes affecting human skin color presumably arise from the need for protection from intense ultraviolet radiation (UVR) vs. the need to use UVR for vitamin D synthesis. Sampling 751 subjects from a broad range of latitudes and skin colors, we investigated possible multilocus correlated adaptation of skin color genes with the vitamin D receptor gene (VDR), using a vector correlation metric and network method called BlocBuster. We discovered two multilocus networks involving VDR promoter and skin color genes that display strong latitudinal clines as multilocus networks, even though many of their single gene components do not. Considered one by one, the VDR components of these networks show diverse patterns: no cline, a weak declining latitudinal cline outside of Africa, and a strong in- vs. out-of-Africa frequency pattern. We confirmed these results with independent data from HapMap. Standard linkage disequilibrium analyses did not detect these networks. We applied BlocBuster across the entire genome, showing that our networks are significant outliers for interchromosomal disequilibrium that overlap with environmental variation relevant to the genes' functions. These results suggest that these multilocus correlations most likely arose from a combination of parallel selective responses to a common environmental variable and coadaptation, given the known Mendelian epistasis among VDR and the skin color genes. Copyright © 2016 Tiosano et al.
Latitudinal Clines of the Human Vitamin D Receptor and Skin Color Genes
Tiosano, Dov; Audi, Laura; Climer, Sharlee; Zhang, Weixiong; Templeton, Alan R.; Fernández-Cancio, Monica; Gershoni-Baruch, Ruth; Sánchez-Muro, José Miguel; El Kholy, Mohamed; Hochberg, Zèev
2016-01-01
The well-documented latitudinal clines of genes affecting human skin color presumably arise from the need for protection from intense ultraviolet radiation (UVR) vs. the need to use UVR for vitamin D synthesis. Sampling 751 subjects from a broad range of latitudes and skin colors, we investigated possible multilocus correlated adaptation of skin color genes with the vitamin D receptor gene (VDR), using a vector correlation metric and network method called BlocBuster. We discovered two multilocus networks involving VDR promoter and skin color genes that display strong latitudinal clines as multilocus networks, even though many of their single gene components do not. Considered one by one, the VDR components of these networks show diverse patterns: no cline, a weak declining latitudinal cline outside of Africa, and a strong in- vs. out-of-Africa frequency pattern. We confirmed these results with independent data from HapMap. Standard linkage disequilibrium analyses did not detect these networks. We applied BlocBuster across the entire genome, showing that our networks are significant outliers for interchromosomal disequilibrium that overlap with environmental variation relevant to the genes’ functions. These results suggest that these multilocus correlations most likely arose from a combination of parallel selective responses to a common environmental variable and coadaptation, given the known Mendelian epistasis among VDR and the skin color genes. PMID:26921301
Comparison of hair shaft damage after chemical treatment in Asian, White European, and African hair.
Lee, Yoonhee; Kim, Youn-Duk; Pi, Long-Quan; Lee, Sung Yul; Hong, Hannah; Lee, Won-Soo
2014-09-01
Diverse causes of extrinsic damage to the hair shaft have been documented and can be roughly divided into physical and chemical causes. Chemical causes of hair damage include bleaching, hair dyeing, and perming. The goal of this study was to investigate differences in patterns of serial damage in Asian, White European (WE), and African hair after chemical stress imposed by straightening and coloring treatments. Hairs were divided into control and treatment groups (straightening, coloring, and a combination of straightening and coloring). At 24 hours after the final treatment, patterns of hair damage were evaluated using transmission electron microscopy (TEM) and lipid TEM. Grades of hair cuticle and cortex damage were evaluated by three dermatologists. In the TEM examination, the cuticle of Asian hair proved to be resistant to damage caused by straightening treatments, whereas the WE hair cuticle and cortex were relatively susceptible to stress imposed by coloring treatments. In the combination treatment of straightening and coloring, African hair emerged as the most resistant to stress. In the lipid TEM examination, no notable differences in cell membrane complex damage were observed among the three groups of hairs. The present study suggests that WE hair is relatively susceptible and African hair is more resistant to chemical stresses, such as those imposed by straightening and coloring. © 2013 The International Society of Dermatology.
Delhey, Kaspar; Burger, Claudia; Fiedler, Wolfgang; Peters, Anne
2010-01-01
Background Plumage coloration is important for bird communication, most notably in sexual signalling. Colour is often considered a good quality indicator, and the expression of exaggerated colours may depend on individual condition during moult. After moult, plumage coloration has been deemed fixed due to the fact that feathers are dead structures. Still, many plumage colours change after moult, although whether this affects signalling has not been sufficiently assessed. Methodology/Principal Findings We studied changes in coloration after moult in four passerine birds (robin, Erithacus rubecula; blackbird, Turdus merula; blue tit, Cyanistes caeruleus; and great tit, Parus major) displaying various coloration types (melanin-, carotenoid-based and structural). Birds were caught regularly during three years to measure plumage reflectance. We used models of avian colour vision to derive two variables, one describing chromatic and the other achromatic variation over the year that can be compared in magnitude among different colour types. All studied plumage patches but one (yellow breast of the blue tit) showed significant chromatic changes over the year, although these were smaller than for a typical dynamic trait (bill colour). Overall, structural colours showed a reduction in relative reflectance at shorter wavelengths, carotenoid-based colours the opposite pattern, while no general pattern was found for melanin-based colours. Achromatic changes were also common, but there were no consistent patterns of change for the different types of colours. Conclusions/Significance Changes of plumage coloration independent of moult are probably widespread; they should be perceivable by birds and have the potential to affect colour signalling. PMID:20644723
Taborsky, Michael; Villa, Fabienne; Frommen, Joachim G.
2017-01-01
Abstract Visual signals, including changes in coloration and color patterns, are frequently used by animals to convey information. During contests, body coloration and its changes can be used to assess an opponent’s state or motivation. Communication of aggressive propensity is particularly important in group‐living animals with a stable dominance hierarchy, as the outcome of aggressive interactions determines the social rank of group members. Neolamprologus pulcher is a cooperatively breeding cichlid showing frequent within-group aggression. Both sexes exhibit two vertical black stripes on the operculum that vary naturally in shape and darkness. During frontal threat displays these patterns are actively exposed to the opponent, suggesting a signaling function. To investigate the role of operculum stripes during contests we manipulated their darkness in computer animated pictures of the fish. We recorded the responses in behavior and stripe darkness of test subjects to which these animated pictures were presented. Individuals with initially darker stripes were more aggressive against the animations and showed more operculum threat displays. Operculum stripes of test subjects became darker after exposure to an animation exhibiting a pale operculum than after exposure to a dark operculum animation, highlighting the role of the darkness of this color pattern in opponent assessment. We conclude that (i) the black stripes on the operculum of N. pulcher are a reliable signal of aggression and dominance, (ii) these markings play an important role in opponent assessment, and (iii) 2D computer animations are well suited to elicit biologically meaningful short-term aggressive responses in this widely used model system of social evolution. PMID:29491962
Gender differences in cerebral metabolism for color processing in mice: A PET/MRI Study.
Njemanze, Philip C; Kranz, Mathias; Amend, Mario; Hauser, Jens; Wehrl, Hans; Brust, Peter
2017-01-01
Color processing is a central component of mammalian vision. Gender-related differences of color processing revealed by non-invasive functional transcranial Doppler ultrasound suggested right hemisphere pattern for blue/yellow chromatic opponency by men, and a left hemisphere pattern by women. The present study measured the accumulation of [18F]fluorodeoxyglucose ([18F]FDG) in mouse brain using small animal positron emission tomography and magnetic resonance imaging (PET/MRI) with statistical parametric mapping (SPM) during light stimulation with blue and yellow filters compared to darkness condition. PET revealed a reverse pattern relative to dark condition compared to previous human studies: Male mice presented with left visual cortex dominance for blue through the right eye, while female mice presented with right visual cortex dominance for blue through the left eye. We applied statistical parametric mapping (SPM) to examine gender differences in activated architectonic areas within the orbital and medial prefrontal cortex and related cortical and sub-cortical areas that lead to the striatum, medial thalamus and other brain areas. The metabolic connectivity of the orbital and medial prefrontal cortex evoked by blue stimulation spread through a wide range of brain structures implicated in viscerosensory and visceromotor systems in the left intra-hemispheric regions in male, but in the right-to-left inter-hemispheric regions in female mice. Color functional ocular dominance plasticity was noted in the right eye in male mice but in the left eye in female mice. This study of color processing in an animal model could be applied in the study of the role of gender differences in brain disease.
Balzarini, Valentina; Taborsky, Michael; Villa, Fabienne; Frommen, Joachim G
2017-02-01
Visual signals, including changes in coloration and color patterns, are frequently used by animals to convey information. During contests, body coloration and its changes can be used to assess an opponent's state or motivation. Communication of aggressive propensity is particularly important in group-living animals with a stable dominance hierarchy, as the outcome of aggressive interactions determines the social rank of group members. Neolamprologus pulcher is a cooperatively breeding cichlid showing frequent within-group aggression. Both sexes exhibit two vertical black stripes on the operculum that vary naturally in shape and darkness. During frontal threat displays these patterns are actively exposed to the opponent, suggesting a signaling function. To investigate the role of operculum stripes during contests we manipulated their darkness in computer animated pictures of the fish. We recorded the responses in behavior and stripe darkness of test subjects to which these animated pictures were presented. Individuals with initially darker stripes were more aggressive against the animations and showed more operculum threat displays. Operculum stripes of test subjects became darker after exposure to an animation exhibiting a pale operculum than after exposure to a dark operculum animation, highlighting the role of the darkness of this color pattern in opponent assessment. We conclude that (i) the black stripes on the operculum of N. pulcher are a reliable signal of aggression and dominance, (ii) these markings play an important role in opponent assessment, and (iii) 2D computer animations are well suited to elicit biologically meaningful short-term aggressive responses in this widely used model system of social evolution.
Colorimetric qualification of shear sensitive liquid crystal coatings
NASA Technical Reports Server (NTRS)
Muratore, Joseph J., Jr.
1993-01-01
The work that has been done to date on the Shear Sensitive Liquid Crystal Project demonstrated that cholesteric liquid crystal coatings respond to both the direction and magnitude of a shearing force. The response of the coating is to selectively scatter incident white light into a spectrum of colors. Discernible color changes at a fixed angle of observation and illumination are the result of an applied shear stress. The intention was to be able to convert these observable color patterns from a flow visualization technique into a quantitative tool. One of the earlier intentions was to be able to use liquid crystals in dynamic flow fields. This was assumed possible because liquid crystals had made it possible to visualize transients in surface shear forces. Although the transients were visualized by color changes to an order one micro second, the time response of a coating to align to a shearing force is dependent on the magnitude of the change between its initial and final states. Unfortunately, the response is not instantaneous. It is for this reason any future attempt at quantifying the magnitude and directions of a shearing force are limited to surface shear stress vector fields in three dimensional steady state flows. This limitation does not significantly detract from the utility of liquid crystal coatings. The measurement of skin friction in the study of transition on wings, prediction of drag forces, performance assessment, and the investigation of boundary layer behavior is of great importance in aerodynamics. There exist numerous examples of techniques for the measurement of surface shear stress. Most techniques require arduous calibrations and necessitate extensive preparation of the receiving surfaces. However, the main draw back of instruments such as Preston tubes, hot films, buried wire gages, and floating element balances is that they only provide a point measurement. The advantages of capturing global shear data would be appreciable when compared with conventional point measurement sensors. It has yet to be determined if a repeatable correlation exists between the measured color of a liquid crystal coating and the magnitude/directional components of a shear vector imposed onto it.
Brembs, Björn; Hempel de Ibarra, Natalie
2006-01-01
We have used a genetically tractable model system, the fruit fly Drosophila melanogaster to study the interdependence between sensory processing and associative processing on learning performance. We investigated the influence of variations in the physical and predictive properties of color stimuli in several different operant-conditioning procedures on the subsequent learning performance. These procedures included context and stimulus generalization as well as color, compound, and conditional discrimination (colors and patterns). A surprisingly complex dependence of the learning performance on the colors' physical and predictive properties emerged, which was clarified by taking into account the fly-subjective perception of the color stimuli. Based on estimates of the stimuli's color and brightness values, we propose that the different tasks are supported by different parameters of the color stimuli; generalization occurs only if the chromaticity is sufficiently similar, whereas discrimination learning relies on brightness differences.
Music-color associations are mediated by emotion.
Palmer, Stephen E; Schloss, Karen B; Xu, Zoe; Prado-León, Lilia R
2013-05-28
Experimental evidence demonstrates robust cross-modal matches between music and colors that are mediated by emotional associations. US and Mexican participants chose colors that were most/least consistent with 18 selections of classical orchestral music by Bach, Mozart, and Brahms. In both cultures, faster music in the major mode produced color choices that were more saturated, lighter, and yellower whereas slower, minor music produced the opposite pattern (choices that were desaturated, darker, and bluer). There were strong correlations (0.89 < r < 0.99) between the emotional associations of the music and those of the colors chosen to go with the music, supporting an emotional mediation hypothesis in both cultures. Additional experiments showed similarly robust cross-modal matches from emotionally expressive faces to colors and from music to emotionally expressive faces. These results provide further support that music-to-color associations are mediated by common emotional associations.
Emerging optical properties from the combination of simple optical effects
NASA Astrophysics Data System (ADS)
England, Grant T.; Aizenberg, Joanna
2018-01-01
Structural color arises from the patterning of geometric features or refractive indices of the constituent materials on the length-scale of visible light. Many different organisms have developed structurally colored materials as a means of creating multifunctional structures or displaying colors for which pigments are unavailable. By studying such organisms, scientists have developed artificial structurally colored materials that take advantage of the hierarchical geometries, frequently employed for structural coloration in nature. These geometries can be combined with absorbers—a strategy also found in many natural organisms—to reduce the effects of fabrication imperfections. Furthermore, artificial structures can incorporate materials that are not available to nature—in the form of plasmonic nanoparticles or metal layers—leading to a host of novel color effects. Here, we explore recent research involving the combination of different geometries and materials to enhance the structural color effect or to create entirely new effects, which cannot be observed otherwise.
Music–color associations are mediated by emotion
Palmer, Stephen E.; Schloss, Karen B.; Xu, Zoe; Prado-León, Lilia R.
2013-01-01
Experimental evidence demonstrates robust cross-modal matches between music and colors that are mediated by emotional associations. US and Mexican participants chose colors that were most/least consistent with 18 selections of classical orchestral music by Bach, Mozart, and Brahms. In both cultures, faster music in the major mode produced color choices that were more saturated, lighter, and yellower whereas slower, minor music produced the opposite pattern (choices that were desaturated, darker, and bluer). There were strong correlations (0.89 < r < 0.99) between the emotional associations of the music and those of the colors chosen to go with the music, supporting an emotional mediation hypothesis in both cultures. Additional experiments showed similarly robust cross-modal matches from emotionally expressive faces to colors and from music to emotionally expressive faces. These results provide further support that music-to-color associations are mediated by common emotional associations. PMID:23671106
Two Color Populations of Kuiper Belt and Centaur Objects
NASA Astrophysics Data System (ADS)
Tegler, Stephen C.; Romanishin, William; Consolmagno, Guy
2016-10-01
We present new optical colors for 64 Kuiper belt objects (KBOs) and Centaur objects measured with the 1.8-meter Vatican Advanced Technology Telescope (VATT) and the 4.3-meter Discovery Channel Telescope (DCT). By combining these new colors with our previously published colors, we increase the sample size of our survey to 154 objects. Our survey is unique in that the uncertainties in our color measurements are less than half the uncertainties in the color measurements reported by other researchers in the literature. Small uncertainties are essential for discerning between a unimodal and a bimodal distribution of colors for these objects as well as detecting correlations between colors and orbital elements. From our survey, it appears red Centaurs have a broader color distribution than grey Centaurs. We find red Centaurs have a smaller orbital inclination angle distribution than grey Centaurs at the 99.3% confidence level. Furthermore, we find that our entire sample of KBOs and Centaurs exhibits bimodal colors at the 99.4% confidence level. KBOs and Centaurs with HV > 7.0 have bimodal colors at the 99.96% confidence level and KBOs with HV < 6.0 have bimodal colors at the 96.3% confidence level.We are grateful to the NASA Solar System Observations Program for support, NAU for joining the Discovery Channel Telescope Partnership, and the Vatican Observatory for the consistent allocation of telescope time over the last 12 years of this project.
Spontaneous long-range calcium waves in developing butterfly wings.
Ohno, Yoshikazu; Otaki, Joji M
2015-03-25
Butterfly wing color patterns emerge as the result of a regular arrangement of scales produced by epithelial scale cells at the pupal stage. These color patterns and scale arrangements are coordinated throughout the wing. However, the mechanism by which the development of scale cells is controlled across the entire wing remains elusive. In the present study, we used pupal wings of the blue pansy butterfly, Junonia orithya, which has distinct eyespots, to examine the possible involvement of Ca(2+) waves in wing development. Here, we demonstrate that the developing pupal wing tissue of the blue pansy butterfly displayed spontaneous low-frequency Ca(2+) waves in vivo that propagated slowly over long distances. Some waves appeared to be released from the immediate peripheries of the prospective eyespot and discal spot, though it was often difficult to identify the specific origins of these waves. Physical damage, which is known to induce ectopic eyespots, led to the radiation of Ca(2+) waves from the immediate periphery of the damaged site. Thapsigargin, which is a specific inhibitor of Ca(2+)-ATPases in the endoplasmic reticulum, induced an acute increase in cytoplasmic Ca(2+) levels and halted the spontaneous Ca(2+) waves. Additionally, thapsigargin-treated wings showed incomplete scale development as well as other scale and color pattern abnormalities. We identified a novel form of Ca(2+) waves, spontaneous low-frequency slow waves, which travel over exceptionally long distances. Our results suggest that spontaneous Ca(2+) waves play a critical role in the coordinated development of scale arrangements and possibly in color pattern formation in butterflies.
Scattering apodizer for laser beams
Summers, Mark A.; Hagen, Wilhelm F.; Boyd, Robert D.
1985-01-01
A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.
Scattering apodizer for laser beams
Summers, M.A.; Hagen, W.F.; Boyd, R.D.
1984-01-01
A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.
When product designers use perceptually based color tools
NASA Astrophysics Data System (ADS)
Bender, Walter R.
1998-07-01
Palette synthesis and analysis tools have been built based upon a model of color experience. This model adjusts formal compositional elements such as hue, value, chroma, and their contrasts, as well as size and proportion. Clothing and household product designers were given these tools to give guidance to their selection of seasonal palettes for use in production of the private-label merchandise of a large retail chain. The designers chose base palettes. Accents to these palettes were generated with and without the aid of the color tools. These palettes are compared by using perceptual metrics and interviews. The results are presented.
When product designers use perceptually based color tools
NASA Astrophysics Data System (ADS)
Bender, Walter R.
2001-01-01
Palette synthesis and analysis tools have been built based upon a model of color experience. This model adjusts formal compositional elements such as hue, value, chroma, and their contrasts, as well as size and proportion. Clothing and household product designers were given these tools to guide their selection of seasonal palettes in the production of the private-label merchandise in a large retail chain. The designers chose base palettes. Accents to these palettes were generated with and without the aid of the color tools. These palettes are compared by using perceptual metrics and interviews. The results are presented.
Colorful solar selective absorber integrated with different colored units.
Chen, Feiliang; Wang, Shao-Wei; Liu, Xingxing; Ji, Ruonan; Li, Zhifeng; Chen, Xiaoshuang; Chen, Yuwei; Lu, Wei
2016-01-25
Solar selective absorbers are the core part for solar thermal technologies such as solar water heaters, concentrated solar power, solar thermoelectric generators and solar thermophotovoltaics. Colorful solar selective absorber can provide new freedom and flexibility beyond energy performance, which will lead to wider utilization of solar technologies. In this work, we present a monolithic integration of colored solar absorber array with different colors on a single substrate based on a multilayered structure of Cu/TiN(x)O(y)/TiO(2)/Si(3)N(4)/SiO(2). A colored solar absorber array with 16 color units is demonstrated experimentally by using combinatorial deposition technique via changing the thickness of SiO(2) layer. The solar absorptivity and thermal emissivity of all the color units is higher than 92% and lower than 5.5%, respectively. The colored solar selective absorber array can have colorful appearance and designable patterns while keeping high energy performance at the same time. It is a new candidate for a number of solar applications, especially for architecture integration and military camouflage.
ERIC Educational Resources Information Center
Fell, John L.
"Understanding Film," the opening section of this book, discusses perceptions of and responses to film and the way in which experiences with and knowledge of other media affect film viewing. The second section, "Film Elements," analyzes the basic elements of film: the use of space and time, the impact of editing, sound and color, and the effects…
Cultural Symbolism behind the Architectural Design of Mounds Park All-Nations Magnet School.
ERIC Educational Resources Information Center
Pewewardy, Cornell; May, Paul G.
1992-01-01
The architectural design of Mounds Park All-Nations Magnet School (St. Paul, Minnesota) incorporates cultural symbols representing the Native American worldview and Medicine Wheel Circle beliefs, as well as design elements from aboriginal housing styles, and colors and sculptured elements that reinforce the relationship of nature to building. (SV)
Rhizobium selenitireducens proteins involved in the reduction of selenite to elemental selenium
USDA-ARS?s Scientific Manuscript database
Microbial based bioremediation barriers can remove the metalloid selenite (SeO3–2) from flowing groundwater. The organisms associated with the process include microorganisms from within the bacterial and archaeal domains that can reduce soluble SeO3–2 to the insoluble and reddish-colored elemental ...
Beautiful Math, Part 5: Colorful Archimedean Tilings from Dynamical Systems.
Ouyang, Peichang; Zhao, Weiguo; Huang, Xuan
2015-01-01
The art of tiling originated very early in the history of civilization. Almost every known human society has made use of tilings in some form or another. In particular, tilings using only regular polygons have great visual appeal. Decorated regular tilings with continuous and symmetrical patterns were widely used in decoration field, such as mosaics, pavements, and brick walls. In science, these tilings provide inspiration for synthetic organic chemistry. Building on previous CG&A “Beautiful Math” articles, the authors propose an invariant mapping method to create colorful patterns on Archimedean tilings (1-uniform tilings). The resulting patterns simultaneously have global crystallographic symmetry and local cyclic or dihedral symmetry.
Spectral and spatial selectivity of luminance vision in reef fish
Siebeck, Ulrike E.; Wallis, Guy Michael; Litherland, Lenore; Ganeshina, Olga; Vorobyev, Misha
2014-01-01
Luminance vision has high spatial resolution and is used for form vision and texture discrimination. In humans, birds and bees luminance channel is spectrally selective—it depends on the signals of the long-wavelength sensitive photoreceptors (bees) or on the sum of long- and middle-wavelength sensitive cones (humans), but not on the signal of the short-wavelength sensitive (blue) photoreceptors. The reasons of such selectivity are not fully understood. The aim of this study is to reveal the inputs of cone signals to high resolution luminance vision in reef fish. Sixteen freshly caught damselfish, Pomacentrus amboinensis, were trained to discriminate stimuli differing either in their color or in their fine patterns (stripes vs. cheques). Three colors (“bright green”, “dark green” and “blue”) were used to create two sets of color and two sets of pattern stimuli. The “bright green” and “dark green” were similar in their chromatic properties for fish, but differed in their lightness; the “dark green” differed from “blue” in the signal for the blue cone, but yielded similar signals in the long-wavelength and middle-wavelength cones. Fish easily learned to discriminate “bright green” from “dark green” and “dark green” from “blue” stimuli. Fish also could discriminate the fine patterns created from “dark green” and “bright green”. However, fish failed to discriminate fine patterns created from “blue” and “dark green” colors, i.e., the colors that provided contrast for the blue-sensitive photoreceptor, but not for the long-wavelength sensitive one. High resolution luminance vision in damselfish, Pomacentrus amboinensis, does not have input from the blue-sensitive cone, which may indicate that the spectral selectivity of luminance channel is a general feature of visual processing in both aquatic and terrestrial animals. PMID:25324727
A Teacher-Friendly Method of Improving Reading and Mathematics
ERIC Educational Resources Information Center
Kidd, Julie K.; Gadzichowski, K. Marinka; Gallington, Deb A.; Lopez, Claudia; Pasnak, Robert
2013-01-01
In early elementary school in most English-speaking countries children are taught "patterning," which involves learning repetitive patterns of colors or shapes (e.g., red, blue, green, red, blue, green). The present study was designed to test the effectiveness of patterning instruction when compared to equal amounts of instruction in…
Revisit Pattern Blocks to Develop Rational Number Sense
ERIC Educational Resources Information Center
Champion, Joe; Wheeler, Ann
2014-01-01
Pattern blocks are inexpensive wooden, foam, or plastic manipulatives developed in the 1960s to help students build an understanding of shapes, proportions, equivalence, and fractions (EDC 1968). The colorful collection of basic shapes in classic pattern block kits affords opportunities for amazing puzzle-like problem-solving tasks and for…
ERIC Educational Resources Information Center
Chan, Helen Hsu
2015-01-01
Students' experiences with pattern blocks begin as early as preschool. At that time, they begin to develop an understanding of repetition by alternating the colored shapes to create AB, AAB, or ABC patterns. They experiment with area and symmetry by covering polygonal spaces using the fewest (or the greatest) number of pattern blocks possible or…
Heck, Isobel A.
2017-01-01
People form associations between colors and entities, which influence their evaluations of the world. These evaluations are dynamic, as specific associations become more or less active in people’s minds over time. We investigated how evaluations of colors (color preferences) changed over the course of fall, as color-associated fall entities became more prevalent in the environment. Participants judged their preferences for the same set of colors during nine testing sessions over 11 weeks during fall. We categorized the colors as Leaf and Non-Leaf Colors by matching them to leaves collected during the same period. Changes in preferences for Leaf Colors followed a quadratic pattern, peaking around when the leaves were most colorful and declining as winter approached. Preferences for Non-Leaf Colors did not significantly change. Individual differences in these changes could be explained by preferences for seasonal entities, as predicted by the differential activation hypothesis within the Ecological Valence Theory. The more a given individual liked fall-associated entities, the more their preference for Leaf Colors increased during fall. No analogous relations existed with winter-associated entities or Non-Leaf Colors. These results demonstrate the importance of studying temporal and individual differences for understanding preferences. PMID:29230276
Prevalence of deafness and association with coat variations in client-owned ferrets.
Piazza, Stéphanie; Abitbol, Marie; Gnirs, Kirsten; Huynh, Minh; Cauzinille, Laurent
2014-05-01
To evaluate the prevalence of congenital sensorineural deafness (CSD) and its association with phenotypic markers in client-owned ferrets. Epidemiological study. 152 healthy European pet ferrets. Brainstem auditory evoked response tests were recorded in ferrets during general anesthesia. Phenotypic markers such as sex, coat color and pattern, coat length (Angora or not), and premature graying trait were assessed. Overall, 44 of the 152 (29%) ferrets were affected by CSD; 10 (7%) were unilaterally deaf, and 34 (22%) were bilaterally deaf. There was no association between CSD and sex or Angora trait, but a strong association between CSD and white patterned coat or premature graying was identified. All panda, American panda, and blaze ferrets were deaf. The ferrets in this study had a high prevalence of CSD that was strictly associated with coat color patterns, specifically white markings and premature graying. This seemed to be an emerging congenital defect in pet ferrets because white-marked coats are a popular new coat color. Breeders should have a greater awareness and understanding of this defect to reduce its prevalence for the overall benefit of the species.
Patterned polyaniline encapsulated in titania nanotubes for electrochromism.
Lv, Haiming; Wang, Yi; Pan, Lei; Zhang, Leipeng; Zhang, Hangchuan; Shang, Lei; Qu, Huiying; Li, Na; Zhao, Jiupeng; Li, Yao
2018-02-21
In this article, we report the preparation of a TiO 2 nanotube array (TNA) film used as a transparent electrochromic material and a TNA/polyaniline patterned hybrid electrochromic film utilized as an information display material. The TNA film was fabricated by an anodizing process, and a surface patterned TNA with extreme wettability contrast (hydrophilic/hydrophobic) on a TNA surface through self-assembly (SAM) and photocatalytic lithography is fabricated. Then the TNA/polyaniline hybrid film was prepared by electrodeposition of aniline in an aqueous solution. Finally, the electrochromic properties of the TNA film and the TNA/polyaniline hybrid film were investigated. Compared with neat TNA film and polyaniline (PANI) films, the hybrid film shows a much higher optical contrast in the near infrared range. The TNA/polyaniline hybrid film shows higher coloration efficiencies of 24.4 cm 2 C -1 at a wavelength of 700 nm and 17.1 cm 2 C -1 at a wavelength of 1050 nm compared to the TNA coloration efficiency. The color switching time (20.9 s or 22.9 s) of TNA/polyaniline is faster than TNA.
Atmospheres of the Giant Planets
NASA Technical Reports Server (NTRS)
Ingersoll, Andrew P.
2002-01-01
The giant planets, Jupiter, Saturn, Uranus, and Neptune, are fluid objects. They have no solid surfaces because the light elements constituting them do not condense at solar-system temperatures. Instead, their deep atmospheres grade downward until the distinction between gas and liquid becomes meaningless. The preceding chapter delved into the hot, dark interiors of the Jovian planets. This one focuses on their atmospheres, especially the observable layers from the base of the clouds to the edge of space. These veneers arc only a few hundred kilometers thick, less than one percent of each planet's radius, but they exhibit an incredible variety of dynamic phenomena. The mixtures of elements in these outer layers resemble a cooled-down piece of the Sun. Clouds precipitate out of this gaseous soup in a variety of colors. The cloud patterns are organized by winds, which are powered by heat derived from sunlight (as on Earth) and by internal heat left over from planetary formation. Thus the atmospheres of the Jovian planets are distinctly different both compositionally and dynamically from those of the terrestrial planets. Such differences make them fascinating objects for study, providing clues about the origin and evolution of the planets and the formation of the solar system.
Compositional heterogeneity of the Sugarloaf melilite nephelinite flow, Honolulu Volcanics, Hawai'i
NASA Astrophysics Data System (ADS)
Clague, David A.; Frey, Frederick A.; Garcia, Michael O.; Huang, Shichun; McWilliams, Michael; Beeson, Melvin H.
2016-07-01
The Sugarloaf flow is a melilite nephelinite erupted from the Tantalus rift during rejuvenated-stage volcanism on O'ahu, the Honolulu Volcanics. The flow ponded in Mānoa Valley forming a ∼15 m thick flow which was cored and sampled in a quarry. Nepheline from a pegmatoid segregation in the flow yielded a 40Ar-39Ar age of 76 ka. This age, combined with others, indicates that the Tantalus rift eruptions are some of the youngest on O'ahu. Honolulu Volcanics erupt on average about every 35-40 ka indicating that future eruptions are possible. We evaluated the compositional variability of 19 samples from the flow, including 14 from the core. Twelve samples are representative of the bulk flow, four are dark- or light-colored variants, one is a heavy rare earth element (REE)-enriched pegmatoid, and two visually resemble the bulk flow, but have chemical characteristics of the dark and light variants. Our objective was to determine intraflow heterogeneity in mineralogy and composition. Variable abundances of Na2O, K2O, Sr, Ba, Rb, Pb and U in the flow were caused by post-eruptive mobility in a vapor phase, most likely during or soon after flow emplacement, and heterogeneous deposition of secondary calcite and zeolites. Relative to fine-grained samples, a pegmatoid vein that crosscuts the flow is enriched in incompatible trace elements except Sr and TiO2. Element mobility after eruption introduced scatter in trace element ratios including light-REE/heavy-REE, and all ratios involving mobile elements K, Rb, Ba, Sr, Pb, and U. Lavas from some of the 37 Honolulu Volcanics vents have crosscutting REE patterns in a primitive mantle-normalized plot. Such patterns have been interpreted to reflect variable amounts of residual garnet during partial melting. Previous studies of lavas from different vents concluded that garnet, phlogopite, amphibole, and Fe-Ti oxides were residual phases of the partial melting processes that created the Honolulu Volcanics (Clague and Frey, 1982; Yang et al., 2003). However post-eruptive processes in the Sugarloaf flow also produced crossing REE patterns. Eruptions on the Tantalus rift, including the Sugarloaf flow, produced volatile- and crystal-rich ash with interstitial glass and melt inclusions in olivine containing 4.2-6.4 wt% MgO compared to the flow average of 11.8 wt%. This flow erupted as a partially crystallized viscous magma at least 100 °C below its liquidus. The slow advance and cooling of the 15-m thick 'a' ā low promoted the segregation of pegmatoids, formation of light and dark bands with differing proportions of melilite and clinopyroxene, and induced volatile-enhanced mobility of incompatible elements.
Color Constancy of Red-Green Dichromats and Anomalous Trichromats
Foster, David H.; Amano, Kinjiro; Nascimento, Sérgio M. C.
2010-01-01
Purpose. Color-vision deficiency is associated with abnormalities in color matching and color discrimination, but its impact on the ability of people to judge the constancy of surface colors under different lights (color constancy) is less clear. This work had two aims: first, to quantify the degree of color constancy in subjects with congenital red-green color deficiency; second, to test whether the degree of color constancy in anomalous trichromats can be predicted from their Rayleigh anomaloscope matches. Methods. Color constancy of red-green color-deficient subjects was tested in a task requiring the discrimination of illuminant changes from surface-reflectance changes. Mondrian-like colored patterns, generated on the screen of a computer monitor, were used as stimuli to avoid the spatial cues provided by natural objects and scenes. Spectral reflectances were taken from the Munsell Book of Color and from natural scenes. Illuminants were taken from the daylight locus. Results. Protanopes and deuteranopes performed more poorly than normal trichromats with Munsell spectral reflectances but were less impaired with natural spectral reflectances. Protanomalous and deuteranomalous trichromats performed as well as, or almost as well as, normal trichromats, independent of the type of reflectance. Individual differences were not correlated with Rayleigh anomaloscope matches. Conclusions. Despite the evidence of clinical color-vision tests, red-green color-deficient persons are less disadvantaged than might be expected in their judgments of surface colors under different lights. PMID:19892868
NASA Astrophysics Data System (ADS)
Honma, Hiroaki; Takahashi, Kazuhiro; Ishida, Makoto; Sawada, Kazuaki
2012-11-01
This paper reports on the construction of a nano-electro-mechanical system (NEMS) tunable color filter based on a subwavelength grating with high color uniformity and a low drive voltage. We recently proposed a ground-voltage-ground (GVG)-type tunable color filter with a parallel-plate actuator with three pairs of electrodes to decrease the crosstalk due to the electrostatic attractive force between each pair of actuators. Our finite element method (FEM) simulation results indicate that the drive voltage is decreased by 10 V, as compared to that of the previously reported GV type. The proposed structure was fabricated using a silicon-on-insulator (SOI) wafer. The color tuning capability of the device was demonstrated by applying a drive voltage of 6.7 V. The reflected light intensity was decreased by 34% at a wavelength of 680 nm. Color uniformity was also obtained in the filter area by reducing the variation of the displacement on the one-dimensional actuator arrays.
Compressing images for the Internet
NASA Astrophysics Data System (ADS)
Beretta, Giordano B.
1998-01-01
The World Wide Web has rapidly become the hot new mass communications medium. Content creators are using similar design and layout styles as in printed magazines, i.e., with many color images and graphics. The information is transmitted over plain telephone lines, where the speed/price trade-off is much more severe than in the case of printed media. The standard design approach is to use palettized color and to limit as much as possible the number of colors used, so that the images can be encoded with a small number of bits per pixel using the Graphics Interchange Format (GIF) file format. The World Wide Web standards contemplate a second data encoding method (JPEG) that allows color fidelity but usually performs poorly on text, which is a critical element of information communicated on this medium. We analyze the spatial compression of color images and describe a methodology for using the JPEG method in a way that allows a compact representation while preserving full color fidelity.
THE RELATIVE REACTION WITHIN LIVING MAMMALIAN TISSUES
Rous, Peyton
1925-01-01
The present paper is the first of a series of reports on the relative reaction of living tissues as determined by vital staining with indicators. It is possible to bring about a localized and a general coloration of living rats and mice with litmus. The animals remain in good health and the coloration of some of the tissues persists for months. Much of the dye is stored in cell granules, especially in those of the reticulo-endothelial elements, but a diffuse staining of certain tissues occurs, notably of bone, epidermis, cartilage, and connective tissue everywhere. In the intensity and localization of the bony coloration litmus has resemblances to madder. Diffuse staining with it renders blue most, if not all, of the tissues affected, while a granular staining causes others to become notably pink, owing to the fact that the indicator, though introduced into the organism in the blue form and circulating as such in the body fluids, is ordinarily red when stored in cells. The polymorphonuclear elements and macrophages of a peritoneal exudate, may become so laden with material colored red by litmus that the blue color of the fluid constituent is masked and the exudate appears a deep, turbid red. The phenomenon is but one manifestation of a notable acidity within cell granules throughout the organism. Like many another in the stained animals it would appear to be of physiological import. Some of the questions suggested by the work will be dealt with in the paper immediately following. PMID:19868995
Advanced technology development multi-color holography
NASA Technical Reports Server (NTRS)
Vikram, Chandra S.
1994-01-01
Several key aspects of multi-color holography and some non-conventional ways to study the holographic reconstructions are considered. The error analysis of three-color holography is considered in detail with particular example of a typical triglycine sulfate crystal growth situation. For the numerical analysis of the fringe patterns, a new algorithm is introduced with experimental verification using sugar-water solution. The role of the phase difference among component holograms is also critically considered with examples of several two- and three-color situations. The status of experimentation on two-color holography and fabrication of a small breadboard system is also reported. Finally, some successful demonstrations of unconventional ways to study holographic reconstructions are described. These methods are deflectometry and confocal optical processing using some Spacelab III holograms.
Seeing Blue As Red: A Hypnotic Suggestion Can Alter Visual Awareness of Colors.
Kallio, Sakari; Koivisto, Mika
2016-01-01
Some highly hypnotizable individuals have reported changes in objects' color with suggestions given in normal waking state. However, it is not clear whether this occurs only in their imagination. The authors show that, although subjects could imagine colors, a posthypnotic suggestion was necessary for seeing altered colors, even for a hypnotic virtuoso. She reported posthypnotic color alterations also selectively in response to specific target shapes in briefly presented object arrays. Surprisingly, another highly hypnotizable person showed a very different pattern of results. The control participants could not simulate virtuosos' results by applying cognitive strategies. The results imply that hypnosis can alter the functioning of automatic visual processes but only in some of the most hypnotizable individuals.
Emotion-Color Associations in the Context of the Face.
Thorstenson, Christopher A; Elliot, Andrew J; Pazda, Adam D; Perrett, David I; Xiao, Dengke
2017-11-27
Facial expressions of emotion contain important information that is perceived and used by observers to understand others' emotional state. While there has been considerable research into perceptions of facial musculature and emotion, less work has been conducted to understand perceptions of facial coloration and emotion. The current research examined emotion-color associations in the context of the face. Across 4 experiments, participants were asked to manipulate the color of face, or shape, stimuli along 2 color axes (i.e., red-green, yellow-blue) for 6 target emotions (i.e., anger, disgust, fear, happiness, sadness, surprise). The results yielded a pattern that is consistent with physiological and psychological models of emotion. (PsycINFO Database Record (c) 2017 APA, all rights reserved).