Sample records for color time set

  1. All set! Evidence of simultaneous attentional control settings for multiple target colors.

    PubMed

    Irons, Jessica L; Folk, Charles L; Remington, Roger W

    2012-06-01

    Although models of visual search have often assumed that attention can only be set for a single feature or property at a time, recent studies have suggested that it may be possible to maintain more than one attentional control setting. The aim of the present study was to investigate whether spatial attention could be guided by multiple attentional control settings for color. In a standard spatial cueing task, participants searched for either of two colored targets accompanied by an irrelevantly colored distractor. Across five experiments, results consistently showed that nonpredictive cues matching either target color produced a significant spatial cueing effect, while irrelevantly colored cues did not. This was the case even when the target colors could not be linearly separated from irrelevantly cue colors in color space, suggesting that participants were not simply adopting one general color set that included both target colors. The results could not be explained by intertrial priming by previous targets, nor could they be explained by a single inhibitory set for the distractor color. Overall, the results are most consistent with the maintenance of multiple attentional control settings.

  2. The psychological four-color mapping problem.

    PubMed

    Francis, Gregory; Bias, Keri; Shive, Joshua

    2010-06-01

    Mathematicians have proven that four colors are sufficient to color 2-D maps so that no neighboring regions share the same color. Here we consider the psychological 4-color problem: Identifying which 4 colors should be used to make a map easy to use. We build a model of visual search for this design task and demonstrate how to apply it to the task of identifying the optimal colors for a map. We parameterized the model with a set of 7 colors using a visual search experiment in which human participants found a target region on a small map. We then used the model to predict search times for new maps and identified the color assignments that minimize or maximize average search time. The differences between these maps were predicted to be substantial. The model was then tested with a larger set of 31 colors on a map of English counties under conditions in which participants might memorize some aspects of the map. Empirical tests of the model showed that an optimally best colored version of this map is searched 15% faster than the correspondingly worst colored map. Thus, the color assignment seems to affect search times in a way predicted by the model, and this effect persists even when participants might use other sources of knowledge about target location. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  3. The Role of Presented Objects in Deriving Color Preference Criteria from Psychophysical Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Royer, Michael P.; Wei, Minchen

    Of the many “components” of a color rendering measure, one is perhaps the most important: the set of color samples (spectral reflectance functions) that are employed as a standardized means of evaluating and rating a light source. At the same time, a standardized set of color samples can never apply perfectly to a real space or a real set of observed objects, meaning there will always be some level of mismatch between the predicted and observed color shifts. This mismatch is important for lighting specifiers to consider, but even more critical for experiments that seek to evaluate the relationship betweenmore » color rendering measures and human perception. This article explores how the color distortions of three possible experimental object sets compare to the color distortions predicted using the color evaluation samples of IES TM-30-15 (TM-30). The experimental object sets include those from Royer and colleagues [2016], a set of produce (10 fruits and vegetables), and the X-rite Color Checker Classic. The differences are traced back to properties of the samples sets, such as the coverage of color space, average chroma level, and specific spectral features. The consequence of the differences, that the visual evaluation is based on color distortions that are substantially different from what is predicted, can lead to inaccurate criteria or models of a given perception, such as preference. To minimize the error in using criteria or models when specifying color rendering attributes for a given application, the criteria or models should be developed using a set of experimental objects that matches the typical objects of the application as closely as possible. Alternatively, if typical objects of an application cannot be reasonably determined, an object set that matches the distortions predicted by TM-30 as close as possible is likely to provide the most meaningful results.« less

  4. Enabling Next-Generation Multicore Platforms in Embedded Applications

    DTIC Science & Technology

    2014-04-01

    mapping to sets 129 − 256 ) to the second page in memory, color 2 (sets 257 − 384) to the third page, and so on. Then, after the 32nd page, all 212 sets...the Real-Time Nested Locking Protocol (RNLP) [56], a recently developed multiprocessor real-time locking protocol that optimally supports the...RELEASE; DISTRIBUTION UNLIMITED 15 In general, the problems of optimally assigning tasks to processors and colors to tasks are both NP-hard in the

  5. Evaluation of the usefulness of color digital summation radiography in temporally sequential digital radiographs: a phantom study.

    PubMed

    Ogata, Yuji; Naito, Hiroaki; Tomiyama, Noriyuki; Hamada, Seiki; Kozuka, Takenori; Koyama, Mitsuhiro; Tsubamoto, Mitusko; Murai, Sachiko; Ueguchi, Takashi; Matsumoto, Mitsuhiro; Tamura, Shinichi; Nakamura, Hironobu; Johkoh, Takeshi

    2006-04-01

    The purpose of this study was to assess the usefulness of color digital summation radiography (CDSR) for detection of nodules on chest radiographs by observers with different levels of experience. A total of 30 radiographs of chest phantoms with abnormalities and 30 normal ones were arranged at random. Set A was conventional radiographs only. Set B consisted of both conventional radiographs and CDSR images, which were colored with magenta. Five chest radiologists and five residents evaluated both image sets on a TFT monitor. The observers were asked to rate each image set using a continuous rating scale. The reading time for each set was also recorded. In set A, the performance of chest radiologists was significantly superior to that of the residents (P < 0.05). However, in set B, there was no significant difference in the performance of the chest radiologists and the residents. In both observer groups, the mean reading time per case in set B was significantly shorter than that in set A (P < 0.01). By using CDSR, the detection capability of observers with little experience improves and is comparable to that of experienced observers. Moreover, the reading time becomes much shorter using CDSR.

  6. Optimum color filters for CCD digital cameras

    NASA Astrophysics Data System (ADS)

    Engelhardt, Kai; Kunz, Rino E.; Seitz, Peter; Brunner, Harald; Knop, Karl

    1993-12-01

    As part of the ESPRIT II project No. 2103 (MASCOT) a high performance prototype color CCD still video camera was developed. Intended for professional usage such as in the graphic arts, the camera provides a maximum resolution of 3k X 3k full color pixels. A high colorimetric performance was achieved through specially designed dielectric filters and optimized matrixing. The color transformation was obtained by computer simulation of the camera system and non-linear optimization which minimized the perceivable color errors as measured in the 1976 CIELUV uniform color space for a set of about 200 carefully selected test colors. The color filters were designed to allow perfect colorimetric reproduction in principle and at the same time with imperceptible color noise and with special attention to fabrication tolerances. The camera system includes a special real-time digital color processor which carries out the color transformation. The transformation can be selected from a set of sixteen matrices optimized for different illuminants and output devices. Because the actual filter design was based on slightly incorrect data the prototype camera showed a mean colorimetric error of 2.7 j.n.d. (CIELUV) in experiments. Using correct input data in the redesign of the filters, a mean colorimetric error of only 1 j.n.d. (CIELUV) seems to be feasible, implying that it is possible with such an optimized color camera to achieve such a high colorimetric performance that the reproduced colors in an image cannot be distinguished from the original colors in a scene, even in direct comparison.

  7. Prospective and retrospective timing by pigeons.

    PubMed

    Fetterman, J Gregor; Killeen, P Richard

    2010-05-01

    Pigeons discriminated between two pairs of durations: a short set (2.5 and 5 sec) and a long set (5 and 10 sec). The pairs were intermixed within sessions and identified by the colors on the signal and choice keys. Once the task was learned, the pigeons experienced the following three conditions seriatim: (1) The signal key was made ambiguous about the test change, but the choice keys were informative (retrospective); (2) the signal key identified the test range, but the choice keys did not (prospective); (3) probe trials were introduced in which the color of the center key signaled one test range, but the color of the choice keys signaled the other test range (inconsistent). Accuracy of choice decreased in the retrospective condition and, returned to baseline levels, was higher under the prospective condition than under the retrospective condition. In a final condition, referred to as conflict trials, the center-key color signified one test range and the choice-key colors the other range. The results from these conflict-inconsistent tests indicate that choice behavior was largely controlled by the signal-key color and not by the choice-key color. We relate these findings to different approaches to timing in animals.

  8. Portable real-time color night vision

    NASA Astrophysics Data System (ADS)

    Toet, Alexander; Hogervorst, Maarten A.

    2008-03-01

    We developed a simple and fast lookup-table based method to derive and apply natural daylight colors to multi-band night-time images. The method deploys an optimal color transformation derived from a set of samples taken from a daytime color reference image. The colors in the resulting colorized multiband night-time images closely resemble the colors in the daytime color reference image. Also, object colors remain invariant under panning operations and are independent of the scene content. Here we describe the implementation of this method in two prototype portable dual band realtime night vision systems. One system provides co-aligned visual and near-infrared bands of two image intensifiers, the other provides co-aligned images from a digital image intensifier and an uncooled longwave infrared microbolometer. The co-aligned images from both systems are further processed by a notebook computer. The color mapping is implemented as a realtime lookup table transform. The resulting colorised video streams can be displayed in realtime on head mounted displays and stored on the hard disk of the notebook computer. Preliminary field trials demonstrate the potential of these systems for applications like surveillance, navigation and target detection.

  9. The effect of sequential exposure of color conditions on time and accuracy of graphic symbol location.

    PubMed

    Alant, Erna; Kolatsis, Anna; Lilienfeld, Margi

    2010-03-01

    An important aspect in AAC concerns the user's ability to locate an aided visual symbol on a communication display in order to facilitate meaningful interaction with partners. Recent studies have suggested that the use of different colored symbols may be influential in the visual search process, and that this, in turn will influence the speed and accuracy of symbol location. This study examined the role of color on rate and accuracy of identifying symbols on an 8-location overlay through the use of 3 color conditions (same, mixed and unique). Sixty typically developing preschool children were exposed to two different sequential exposures (Set 1 and Set 2). Participants searched for a target stimulus (either meaningful symbols or arbitrary forms) in a stimuli array. Findings indicated that the sequential exposures (orderings) impacted both time and accuracy for both types of symbols within specific instances.

  10. Influence of pre-cooking protein paste gelation conditions and post-cooking gel storage conditions on gel texture.

    PubMed

    Paker, Ilgin; Matak, Kristen E

    2016-01-15

    Gelation conditions affect the setting of myofibrillar fish protein gels. Therefore the impact of widely applied pre-cooking gelation time/temperature strategies and post-cooking period on the texture and color of final protein gels was determined. Four pre-cooking gelation strategies (no setting time, 30 min at 25 °C, 1 h at 40 °C or 24 h at 4 °C) were applied to protein pastes (fish protein concentrate and standard functional additives). After cooking, texture and color were analyzed either directly or after 24 h at 4 °C on gels adjusted to 25 °C. No-set gels were harder, gummier and chewier (P < 0.05) when analyzed immediately after cooling; however, gel chewiness, cohesiveness and firmness indicated by Kramer force benefited from 24 h at 4 °C gel setting when stored post-cooking. Gel-setting conditions had a greater (P < 0.05) effect on texture when directly analyzed and most changes occurred in no-set gels. There were significant (P < 0.05) changes between directly analyzed and post-cooking stored gels in texture and color, depending on the pre-cooking gelation strategy. Pre-cooking gelation conditions will affect final protein gel texture and color, with gel stability benefiting from a gel-setting period. However, post-cooking storage may have a greater impact on final gels, with textural attributes becoming more consistent between all samples. © 2015 Society of Chemical Industry.

  11. Identification and classification of similar looking food grains

    NASA Astrophysics Data System (ADS)

    Anami, B. S.; Biradar, Sunanda D.; Savakar, D. G.; Kulkarni, P. V.

    2013-01-01

    This paper describes the comparative study of Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers by taking a case study of identification and classification of four pairs of similar looking food grains namely, Finger Millet, Mustard, Soyabean, Pigeon Pea, Aniseed, Cumin-seeds, Split Greengram and Split Blackgram. Algorithms are developed to acquire and process color images of these grains samples. The developed algorithms are used to extract 18 colors-Hue Saturation Value (HSV), and 42 wavelet based texture features. Back Propagation Neural Network (BPNN)-based classifier is designed using three feature sets namely color - HSV, wavelet-texture and their combined model. SVM model for color- HSV model is designed for the same set of samples. The classification accuracies ranging from 93% to 96% for color-HSV, ranging from 78% to 94% for wavelet texture model and from 92% to 97% for combined model are obtained for ANN based models. The classification accuracy ranging from 80% to 90% is obtained for color-HSV based SVM model. Training time required for the SVM based model is substantially lesser than ANN for the same set of images.

  12. Rec.2100 color gamut revelation using spectrally ultranarrow emitters

    NASA Astrophysics Data System (ADS)

    Genc, Sinan; Uguz, Mustafa; Yilmaz, Osman; Mutlugun, Evren

    2017-11-01

    We theoretically simulate the performance of ultranarrow emitters for the first time to achieve record high coverage for the International Telecommunication Union Radiocommunication Sector BT.2100 (Rec.2100) and National Television System Committee (NTSC) color gamut. Our results, employing more than 130-m parameter sets, include the investigation into peak emission wavelength and full width at half maximum (FWHM) values for three primaries that show ultranarrow emitters, i.e., nanoplatelets are potentially promising materials to fully cover the Rec.2100 color gamut. Using ultranarrow emitters having FWHM as low as 6 nm can provide the ability to attain 99.7% coverage area of the Rec.2100 color gamut as well as increasing the NTSC triangle to 133.7% with full coverage. The parameter set that provides possibility to fully reach Rec.2100 also has been shown to match with D65 white light by making use of the correct combination of those three primaries. Furthermore, we investigate the effect of the fourth color component on the CIE 1931 color space without sacrificing the achieved coverage percentages. The investigation into the fourth color component, cyan, is shown for the first time to enhance the Rec.2100 gamut area to 127.7% with 99.9% coverage. The fourth color component also provides an NTSC coverage ratio of 171.5%. The investigation into the potential of emitters with ultranarrow emission bandwidth holds great promise for future display applications.

  13. Stimulus-driven attentional capture by subliminal onset cues.

    PubMed

    Schoeberl, Tobias; Fuchs, Isabella; Theeuwes, Jan; Ansorge, Ulrich

    2015-04-01

    In two experiments, we tested whether subliminal abrupt onset cues capture attention in a stimulus-driven way. An onset cue was presented 16 ms prior to the stimulus display that consisted of clearly visible color targets. The onset cue was presented either at the same side as the target (the valid cue condition) or on the opposite side of the target (the invalid cue condition). Because the onset cue was presented 16 ms before other placeholders were presented, the cue was subliminal to the participant. To ensure that this subliminal cue captured attention in a stimulus-driven way, the cue's features did not match the top-down attentional control settings of the participants: (1) The color of the cue was always different than the color of the non-singleton targets ensuring that a top-down set for a specific color or for a singleton would not match the cue, and (2) colored targets and distractors had the same objective luminance (measured by the colorimeter) and subjective lightness (measured by flicker photometry), preventing a match between the top-down set for target and cue contrast. Even though a match between the cues and top-down settings was prevented, in both experiments, the cues captured attention, with faster response times in valid than invalid cue conditions (Experiments 1 and 2) and faster response times in valid than the neutral conditions (Experiment 2). The results support the conclusion that subliminal cues capture attention in a stimulus-driven way.

  14. An Evaluation of Color Sets for CRT Displays

    DTIC Science & Technology

    1985-12-31

    color sets covered a wide range in color difference values (AE* in CIELUV , 1976). Performance with some color sets was significantly better than that...difference value, AE*. This value, Part of the 1976 CIELUV system, is an estimate of the perceptual color difference between any two colors of known...1:* in CIELUV , 1976). Performance with some color sets was significantly better than that with others on a task where color discrimination was

  15. SeaWiFS technical report series. Volume 17: Ocean color in the 21st century. A strategy for a 20-year time series

    NASA Technical Reports Server (NTRS)

    Abbott, Mark R.; Brown, Otis B.; Evans, Robert H.; Gordon, Howard R.; Carder, Kendall L.; Mueller-Karger, Frank E.; Esaias, Wayne E.; Hooker, Stanford B.; Firestone, Elaine R.

    1994-01-01

    Beginning with the upcoming launch of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), there should be almost continuous measurements of ocean color for nearly 20 years if all of the presently planned national and international missions are implemented. This data set will present a unique opportunity to understand the coupling of physical and biological processes in the world ocean. The presence of multiple ocean color sensors will allow the eventual development of an ocean color observing system that is both cost effective and scientifically based. This report discusses the issues involved and makes recommendations intended to ensure the maximum scientific return from this unique set of planned ocean color missions. An executive summary is included with this document which briefly discusses the primary issues and suggested actions to be considered.

  16. Qualitative evaluations and comparisons of six night-vision colorization methods

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Reese, Kristopher; Blasch, Erik; McManamon, Paul

    2013-05-01

    Current multispectral night vision (NV) colorization techniques can manipulate images to produce colorized images that closely resemble natural scenes. The colorized NV images can enhance human perception by improving observer object classification and reaction times especially for low light conditions. This paper focuses on the qualitative (subjective) evaluations and comparisons of six NV colorization methods. The multispectral images include visible (Red-Green- Blue), near infrared (NIR), and long wave infrared (LWIR) images. The six colorization methods are channel-based color fusion (CBCF), statistic matching (SM), histogram matching (HM), joint-histogram matching (JHM), statistic matching then joint-histogram matching (SM-JHM), and the lookup table (LUT). Four categries of quality measurements are used for the qualitative evaluations, which are contrast, detail, colorfulness, and overall quality. The score of each measurement is rated from 1 to 3 scale to represent low, average, and high quality, respectively. Specifically, high contrast (of rated score 3) means an adequate level of brightness and contrast. The high detail represents high clarity of detailed contents while maintaining low artifacts. The high colorfulness preserves more natural colors (i.e., closely resembles the daylight image). Overall quality is determined from the NV image compared to the reference image. Nine sets of multispectral NV images were used in our experiments. For each set, the six colorized NV images (produced from NIR and LWIR images) are concurrently presented to users along with the reference color (RGB) image (taken at daytime). A total of 67 subjects passed a screening test ("Ishihara Color Blindness Test") and were asked to evaluate the 9-set colorized images. The experimental results showed the quality order of colorization methods from the best to the worst: CBCF < SM < SM-JHM < LUT < JHM < HM. It is anticipated that this work will provide a benchmark for NV colorization and for quantitative evaluation using an objective metric such as objective evaluation index (OEI).

  17. All set, indeed! N2pc components reveal simultaneous attentional control settings for multiple target colors.

    PubMed

    Grubert, Anna; Eimer, Martin

    2016-08-01

    To study whether top-down attentional control processes can be set simultaneously for different visual features, we employed a spatial cueing procedure to measure behavioral and electrophysiological markers of task-set contingent attentional capture during search for targets defined by 1 or 2 possible colors (one-color and two-color tasks). Search arrays were preceded by spatially nonpredictive color singleton cues. Behavioral spatial cueing effects indicative of attentional capture were elicited only by target-matching but not by distractor-color cues. However, when search displays contained 1 target-color and 1 distractor-color object among gray nontargets, N2pc components were triggered not only by target-color but also by distractor-color cues both in the one-color and two-color task, demonstrating that task-set nonmatching items attracted attention. When search displays contained 6 items in 6 different colors, so that participants had to adopt a fully feature-specific task set, the N2pc to distractor-color cues was eliminated in both tasks, indicating that nonmatching items were now successfully excluded from attentional processing. These results demonstrate that when observers adopt a feature-specific search mode, attentional task sets can be configured flexibly for multiple features within the same dimension, resulting in the rapid allocation of attention to task-set matching objects only. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. Effect of task set-modulating attentional capture depends on the distractor cost in visual search: evidence from N2pc.

    PubMed

    Zhao, Dandan; Liang, Shengnan; Jin, Zhenlan; Li, Ling

    2014-07-09

    Previous studies have confirmed that attention can be modulated by the current task set while involuntarily captured by salient items. However, little is known on which factors the modulation of attentional capture is dependent on when the same stimuli with different task sets are presented. In the present study, participants conducted two visual search tasks with the same search arrays by varying target and distractor settings (color singleton as target, onset singleton as distractor, named as color task, and vice versa). Ipsilateral and contralateral color distractors resulted in two different relative saliences in two tasks, respectively. Both reaction times (RTs) and N2-posterior-contralateral (N2pc) results showed that there was no difference between ipsilateral and contralateral color distractors in the onset task. However, both RTs and the latency of N2pc showed a delay to the ipsilateral onset distractor compared with the contralateral onset distractor. Moreover, the N2pc observed under the contralateral distractor condition in the color task was reversed, and its amplitude was attenuated. On the basis of these results, we proposed a parameter called distractor cost (DC), computed by subtracting RTs under the contralateral distractor condition from the ipsilateral condition. The results suggest that an enhanced DC might be related to the modification of N2pc in searching for the color target. Taken together, these findings provide evidence that the effect of task set-modulating attentional capture in visual search is related to the DC.

  19. Evaluation of the Waggoner Computerized Color Vision Test.

    PubMed

    Ng, Jason S; Self, Eriko; Vanston, John E; Nguyen, Andrew L; Crognale, Michael A

    2015-04-01

    Clinical color vision evaluation has been based primarily on the same set of tests for the past several decades. Recently, computer-based color vision tests have been devised, and these have several advantages but are still not widely used. In this study, we evaluated the Waggoner Computerized Color Vision Test (CCVT), which was developed for widespread use with common computer systems. A sample of subjects with (n = 59) and without (n = 361) color vision deficiency (CVD) were tested on the CCVT, the anomaloscope, the Richmond HRR (Hardy-Rand-Rittler) (4th edition), and the Ishihara test. The CCVT was administered in two ways: (1) on a computer monitor using its default settings and (2) on one standardized to a correlated color temperature (CCT) of 6500 K. Twenty-four subjects with CVD performed the CCVT both ways. Sensitivity, specificity, and correct classification rates were determined. The screening performance of the CCVT was good (95% sensitivity, 100% specificity). The CCVT classified subjects as deutan or protan in agreement with anomaloscopy 89% of the time. It generally classified subjects as having a more severe defect compared with other tests. Results from 18 of the 24 subjects with CVD tested under both default and calibrated CCT conditions were the same, whereas the results from 6 subjects had better agreement with other test results when the CCT was set. The Waggoner CCVT is an adequate color vision screening test with several advantages and appears to provide a fairly accurate diagnosis of deficiency type. Used in conjunction with other color vision tests, it may be a useful addition to a color vision test battery.

  20. Seasonal to Decadal-Scale Variability in Satellite Ocean Color and Sea Surface Temperature for the California Current System

    NASA Technical Reports Server (NTRS)

    Mitchell, B. Greg; Kahru, Mati; Marra, John (Technical Monitor)

    2002-01-01

    Support for this project was used to develop satellite ocean color and temperature indices (SOCTI) for the California Current System (CCS) using the historic record of CZCS West Coast Time Series (WCTS), OCTS, WiFS and AVHRR SST. The ocean color satellite data have been evaluated in relation to CalCOFI data sets for chlorophyll (CZCS) and ocean spectral reflectance and chlorophyll OCTS and SeaWiFS. New algorithms for the three missions have been implemented based on in-water algorithm data sets, or in the case of CZCS, by comparing retrieved pigments with ship-based observations. New algorithms for absorption coefficients, diffuse attenuation coefficients and primary production have also been evaluated. Satellite retrievals are being evaluated based on our large data set of pigments and optics from CalCOFI.

  1. Task-dependent color discrimination

    NASA Technical Reports Server (NTRS)

    Poirson, Allen B.; Wandell, Brian A.

    1990-01-01

    When color video displays are used in time-critical applications (e.g., head-up displays, video control panels), the observer must discriminate among briefly presented targets seen within a complex spatial scene. Color-discrimination threshold are compared by using two tasks. In one task the observer makes color matches between two halves of a continuously displayed bipartite field. In a second task the observer detects a color target in a set of briefly presented objects. The data from both tasks are well summarized by ellipsoidal isosensitivity contours. The fitted ellipsoids differ both in their size, which indicates an absolute sensitivity difference, and orientation, which indicates a relative sensitivity difference.

  2. The association of color memory and the enumeration of multiple spatially overlapping sets.

    PubMed

    Poltoratski, Sonia; Xu, Yaoda

    2013-07-09

    Using dot displays, Halberda, Sires, and Feigenson (2006) showed that observers could simultaneously encode the numerosity of two spatially overlapping sets and the superset of all items at a glance. With the brief display and the masking used in Halberda et al., the task required observers to encode the colors of each set in order to select and enumerate all the dots in that set. As such, the observed capacity limit for set enumeration could reflect a limit in visual short-term memory (VSTM) capacity for the set color rather than a limit in set enumeration per se. Here, we largely replicated Halberda et al. and found successful enumeration of approximately two sets (the superset was not probed). We also found that only about two and a half colors could be remembered from the colored dot displays whether or not the enumeration task was performed concurrently with the color VSTM task. Because observers must remember the color of a set prior to enumerating it, the under three-item VSTM capacity for color necessarily dictates that set enumeration capacity in this paradigm could not exceed two sets. Thus, the ability to enumerate multiple spatially overlapping sets is likely limited by VSTM capacity to retain the discriminating feature of these sets. This relationship suggests that the capacity for set enumeration cannot be considered independently from the capacity for the set's defining features.

  3. Evaluating the uniformity of color spaces and performance of color difference formulae

    NASA Astrophysics Data System (ADS)

    Lian, Yusheng; Liao, Ningfang; Wang, Jiajia; Tan, Boneng; Liu, Zilong

    2010-11-01

    Using small color difference data sets (Macadam ellipses dataset and RIT-DuPont suprathreshold color difference ellipses dataset), and large color difference data sets (Munsell Renovation Data and OSA Uniform Color Scales dataset), the uniformity of several color spaces and performance of color difference formulae based on these color spaces are evaluated. The color spaces used are CIELAB, DIN99d, IPT, and CIECAM02-UCS. It is found that the uniformity of lightness is better than saturation and hue. Overall, for all these color spaces, the uniformity in the blue area is inferior to the other area. The uniformity of CIECAM02-UCS is superior to the other color spaces for the whole color-difference range from small to large. The uniformity of CIELAB and IPT for the large color difference data sets is better than it for the small color difference data sets, but the DIN99d is opposite. Two common performance factors (PF/3 and STRESS) and the statistical F-test are calculated to test the performance of color difference formula. The results show that the performance of color difference formulae based on these four color spaces is consistent with the uniformity of these color spaces.

  4. [Experimental study on ergonomical color matching design of virtual crew cabin layout in manned spacecraft].

    PubMed

    Zhou, Q X; Qu, Z S; Wang, C H; Jiang, G H

    2001-12-01

    Objective. To approach general principles of color matching for crew module layout and to provide its ergonomical evaluation with basic data. Method. First, according to some ergonomic rules a virtual reality experimental system was set up, then 64 subjects of different ages and with some background of spaceflight were offered a color matching example according to their own choice in advance. Finally, all the hues, saturations, and lightnesses of the selected colors and their total number were statistically analyzed by SPSS 8.0 software. Result. After choosing the colors for items (standard cabinets, floor, handrails, supports and etc.) in the crew cabin, the mean kinds of color hue matching in the cockpit was 5. In addition, above half of subjects endorsed the example colors but its saturation and lightness were a little higher than those of the example every time. Although its distribution was discrete, there still was a common agreement on color matching (about 50%). Conclusion. When the color matching of crew module in long time flight was ergonomically designed, generally, cool and warm hues should be taken into consideration, and their total number need be controlled to be under 5 so as to satisfy human psychological characters.

  5. Web-based visualization of gridded dataset usings OceanBrowser

    NASA Astrophysics Data System (ADS)

    Barth, Alexander; Watelet, Sylvain; Troupin, Charles; Beckers, Jean-Marie

    2015-04-01

    OceanBrowser is a web-based visualization tool for gridded oceanographic data sets. Those data sets are typically four-dimensional (longitude, latitude, depth and time). OceanBrowser allows one to visualize horizontal sections at a given depth and time to examine the horizontal distribution of a given variable. It also offers the possibility to display the results on an arbitrary vertical section. To study the evolution of the variable in time, the horizontal and vertical sections can also be animated. Vertical section can be generated by using a fixed distance from coast or fixed ocean depth. The user can customize the plot by changing the color-map, the range of the color-bar, the type of the plot (linearly interpolated color, simple contours, filled contours) and download the current view as a simple image or as Keyhole Markup Language (KML) file for visualization in applications such as Google Earth. The data products can also be accessed as NetCDF files and through OPeNDAP. Third-party layers from a web map service can also be integrated. OceanBrowser is used in the frame of the SeaDataNet project (http://gher-diva.phys.ulg.ac.be/web-vis/) and EMODNET Chemistry (http://oceanbrowser.net/emodnet/) to distribute gridded data sets interpolated from in situ observation using DIVA (Data-Interpolating Variational Analysis).

  6. Linearly additive shape and color signals in monkey inferotemporal cortex.

    PubMed

    McMahon, David B T; Olson, Carl R

    2009-04-01

    How does the brain represent a red circle? One possibility is that there is a specialized and possibly time-consuming process whereby the attributes of shape and color, carried by separate populations of neurons in low-order visual cortex, are bound together into a unitary neural representation. Another possibility is that neurons in high-order visual cortex are selective, by virtue of their bottom-up input from low-order visual areas, for particular conjunctions of shape and color. A third possibility is that they simply sum shape and color signals linearly. We tested these ideas by measuring the responses of inferotemporal cortex neurons to sets of stimuli in which two attributes-shape and color-varied independently. We find that a few neurons exhibit conjunction selectivity but that in most neurons the influences of shape and color sum linearly. Contrary to the idea of conjunction coding, few neurons respond selectively to a particular combination of shape and color. Contrary to the idea that binding requires time, conjunction signals, when present, occur as early as feature signals. We argue that neither conjunction selectivity nor a specialized feature binding process is necessary for the effective representation of shape-color combinations.

  7. Set-specific capture can be reduced by preemptively occupying a limited-capacity focus of attention.

    PubMed

    Moore, Katherine Sledge; Weissman, Daniel H

    2011-01-01

    Recent work has shown that contingent attentional capture effects can be especially large when multiple attentional sets for color guide visual search (Moore & Weissman, 2010). In particular, this research suggests that detecting a target-colored (e.g., orange) distractor leads the corresponding attentional set (e.g., identify orange letters) to enter a limited-capacity focus of attention in working memory, where it remains briefly while the distractor is being attended. Consequently, the ability to identify a differently-colored (e.g., green) target 100-300 ms later is impaired because the appropriate set (e.g., identify green letters) cannot also enter the focus of attention. In two experiments, we investigated whether such set-specific capture can be reduced by preemptively occupying the focus of attention. As predicted, a target-colored central distractor presented 233 ms before a target-colored peripheral distractor eliminated set-specific capture arising from the peripheral distractor. Moreover, this effect was observed only when the central distractor's color (e.g., orange) (a) matched a different set than the upcoming peripheral distractor's color (e.g., green) and (b) matched the same set as the upcoming central target's color (e.g., orange). We conclude that the same working memory limitations that give rise to set-specific capture can be preemptively exploited to reduce it.

  8. Color stability, radiopacity, and chemical characteristics of white mineral trioxide aggregate associated with 2 different vehicles in contact with blood.

    PubMed

    Guimarães, Bruno Martini; Tartari, Talita; Marciano, Marina Angélica; Vivan, Rodrigo Ricci; Mondeli, Rafael Francisco Lia; Camilleri, Josette; Duarte, Marco Antonio Hungaro

    2015-06-01

    Discoloration of mineral trioxide aggregate (MTA) can be exacerbated by the interaction of the cement with body fluids such as blood. This study aimed to analyze the color alteration, chemical characteristics, and radiopacity of MTA manipulated with 2 different vehicles after immersion in blood or distilled water (DW). MTA mixed with 100% DW or 80% DW/20% propylene glycol (PG) as vehicles were placed into rubber rings and incubated at 37°C and 100% relative humidity until set. Color assessment and scanning electron microscopy/energy-dispersive spectroscopy analysis were performed after setting and repeated after 7, 15, and 30 days after immersion in blood and DW. Statistical analysis for color alteration and radiopacity was performed using nonparametric Kruskal-Wallis and Dunn tests (P < .05). When 80% DW/20% PG was used as the vehicle, significantly lower color alterations were observed for all time periods compared with 100% DW when immersed in blood (P < .05). All surfaces displayed morphologic changes after immersion in both media because of loss of bismuth. A decrease in radiopacity was observed over time in all groups, with a statistically significant difference after 30 days for groups DW immersed in blood and 80% DW/20% immersed in both media (P < .05). The ratio of 80% DW/20% PG as a vehicle for MTA results in a lower color alteration when in contact with blood. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Global Swath and Gridded Data Tiling

    NASA Technical Reports Server (NTRS)

    Thompson, Charles K.

    2012-01-01

    This software generates cylindrically projected tiles of swath-based or gridded satellite data for the purpose of dynamically generating high-resolution global images covering various time periods, scaling ranges, and colors called "tiles." It reconstructs a global image given a set of tiles covering a particular time range, scaling values, and a color table. The program is configurable in terms of tile size, spatial resolution, format of input data, location of input data (local or distributed), number of processes run in parallel, and data conditioning.

  10. All Set! Evidence of Simultaneous Attentional Control Settings for Multiple Target Colors

    ERIC Educational Resources Information Center

    Irons, Jessica L.; Folk, Charles L.; Remington, Roger W.

    2012-01-01

    Although models of visual search have often assumed that attention can only be set for a single feature or property at a time, recent studies have suggested that it may be possible to maintain more than one attentional control setting. The aim of the present study was to investigate whether spatial attention could be guided by multiple attentional…

  11. Qualitative differences in the guidance of attention during single-color and multiple-color visual search: behavioral and electrophysiological evidence.

    PubMed

    Grubert, Anna; Eimer, Martin

    2013-10-01

    To find out whether attentional target selection can be effectively guided by top-down task sets for multiple colors, we measured behavioral and ERP markers of attentional target selection in an experiment where participants had to identify color-defined target digits that were accompanied by a single gray distractor object in the opposite visual field. In the One Color task, target color was constant. In the Two Color task, targets could have one of two equally likely colors. Color-guided target selection was less efficient during multiple-color relative to single-color search, and this was reflected by slower response times and delayed N2pc components. Nontarget-color items that were presented in half of all trials captured attention and gained access to working memory when participants searched for two colors, but were excluded from attentional processing in the One Color task. Results demonstrate qualitative differences in the guidance of attentional target selection between single-color and multiple-color visual search. They suggest that top-down attentional control can be applied much more effectively when it is based on a single feature-specific attentional template. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  12. Simultaneous Multi-Filter Optical Photometry of GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Cowardin, Heather; Barker, Edwin S.; Abercromby, Kira; Kelecy, Thomas

    2011-01-01

    Information on the physical characteristics of unresolved pieces of debris comes from an object's brightness, and how it changes with time and wavelength. True colors of tumbling, irregularly shaped objects can be accurately determined only if the intensity at all wavelengths is measured at the same time. In this paper we report on simultaneous photometric observations of objects at geosynchronous orbit (GEO) using two telescopes at Cerro Tololo Inter-American Observatory (CTIO). The CTIO/SMARTS 0.9-m observes in a Johnson B filter, while the 0.6-m MODEST (Michigan Orbital DEbris Survey Telescope) observes in a Cousins R filter. The two CCD cameras are electronically synchronized so that the exposure start time and duration are the same for both telescopes. Thus we obtain the brightness as a function of time in two passbands simultaneously, and can determine the true color of the object at any time. We will report here on such calibrated measurements made on a sample of GEO objects and what is the distribution of the observed B-R colors. In addition, using this data set, we will show what colors would be observed if the observations in different filters were obtained sequentially, as would be the case for conventional imaging observations with a single detector on a single telescope. Finally, we will compare our calibrated colors of GEO debris with colors determined in the laboratory of selected materials actually used in spacecraft construction.

  13. Color line scan camera technology and machine vision: requirements to consider

    NASA Astrophysics Data System (ADS)

    Paernaenen, Pekka H. T.

    1997-08-01

    Color machine vision has shown a dynamic uptrend in use within the past few years as the introduction of new cameras and scanner technologies itself underscores. In the future, the movement from monochrome imaging to color will hasten, as machine vision system users demand more knowledge about their product stream. As color has come to the machine vision, certain requirements for the equipment used to digitize color images are needed. Color machine vision needs not only a good color separation but also a high dynamic range and a good linear response from the camera used. Good dynamic range and linear response is necessary for color machine vision. The importance of these features becomes even more important when the image is converted to another color space. There is always lost some information when converting integer data to another form. Traditionally the color image processing has been much slower technique than the gray level image processing due to the three times greater data amount per image. The same has applied for the three times more memory needed. The advancements in computers, memory and processing units has made it possible to handle even large color images today cost efficiently. In some cases he image analysis in color images can in fact even be easier and faster than with a similar gray level image because of more information per pixel. Color machine vision sets new requirements for lighting, too. High intensity and white color light is required in order to acquire good images for further image processing or analysis. New development in lighting technology is bringing eventually solutions for color imaging.

  14. Set-specific capture can be reduced by preemptively occupying a limited-capacity focus of attention

    PubMed Central

    Moore, Katherine Sledge; Weissman, Daniel H.

    2011-01-01

    Recent work has shown that contingent attentional capture effects can be especially large when multiple attentional sets for color guide visual search (Moore & Weissman, 2010). In particular, this research suggests that detecting a target-colored (e.g., orange) distractor leads the corresponding attentional set (e.g., identify orange letters) to enter a limited-capacity focus of attention in working memory, where it remains briefly while the distractor is being attended. Consequently, the ability to identify a differently-colored (e.g., green) target 100–300 ms later is impaired because the appropriate set (e.g., identify green letters) cannot also enter the focus of attention. In two experiments, we investigated whether such set-specific capture can be reduced by preemptively occupying the focus of attention. As predicted, a target-colored central distractor presented 233 ms before a target-colored peripheral distractor eliminated set-specific capture arising from the peripheral distractor. Moreover, this effect was observed only when the central distractor’s color (e.g., orange) (a) matched a different set than the upcoming peripheral distractor’s color (e.g., green) and (b) matched the same set as the upcoming central target’s color (e.g., orange). We conclude that the same working memory limitations that give rise to set-specific capture can be preemptively exploited to reduce it. PMID:21779149

  15. Category learning in the color-word contingency learning paradigm.

    PubMed

    Schmidt, James R; Augustinova, Maria; De Houwer, Jan

    2018-04-01

    In the typical color-word contingency learning paradigm, participants respond to the print color of words where each word is presented most often in one color. Learning is indicated by faster and more accurate responses when a word is presented in its usual color, relative to another color. To eliminate the possibility that this effect is driven exclusively by the familiarity of item-specific word-color pairings, we examine whether contingency learning effects can be observed also when colors are related to categories of words rather than to individual words. To this end, the reported experiments used three categories of words (animals, verbs, and professions) that were each predictive of one color. Importantly, each individual word was presented only once, thus eliminating individual color-word contingencies. Nevertheless, for the first time, a category-based contingency effect was observed, with faster and more accurate responses when a category item was presented in the color in which most of the other items of that category were presented. This finding helps to constrain episodic learning models and sets the stage for new research on category-based contingency learning.

  16. Seasonal Changes in Color Preferences Are Linked to Variations in Environmental Colors: A Longitudinal Study of Fall.

    PubMed

    Schloss, Karen B; Heck, Isobel A

    2017-01-01

    People form associations between colors and entities, which influence their evaluations of the world. These evaluations are dynamic, as specific associations become more or less active in people's minds over time. We investigated how evaluations of colors (color preferences) changed over the course of fall, as color-associated fall entities became more prevalent in the environment. Participants judged their preferences for the same set of colors during nine testing sessions over 11 weeks during fall. We categorized the colors as Leaf and Non-Leaf Colors by matching them to leaves collected during the same period. Changes in preferences for Leaf Colors followed a quadratic pattern, peaking around when the leaves were most colorful and declining as winter approached. Preferences for Non-Leaf Colors did not significantly change. Individual differences in these changes could be explained by preferences for seasonal entities, as predicted by the differential activation hypothesis within the Ecological Valence Theory. The more a given individual liked fall-associated entities, the more their preference for Leaf Colors increased during fall. No analogous relations existed with winter-associated entities or Non-Leaf Colors. These results demonstrate the importance of studying temporal and individual differences for understanding preferences.

  17. Image Transform Based on the Distribution of Representative Colors for Color Deficient

    NASA Astrophysics Data System (ADS)

    Ohata, Fukashi; Kudo, Hiroaki; Matsumoto, Tetsuya; Takeuchi, Yoshinori; Ohnishi, Noboru

    This paper proposes the method to convert digital image containing distinguishing difficulty sets of colors into the image with high visibility. We set up four criteria, automatically processing by a computer, retaining continuity in color space, not making images into lower visible for people with normal color vision, and not making images not originally having distinguishing difficulty sets of colors into lower visible. We conducted the psychological experiment. We obtained the result that the visibility of a converted image had been improved at 60% for 40 images, and we confirmed the main criterion of the continuity in color space was kept.

  18. Influence of Interpretation Aids on Attentional Capture, Visual Processing, and Understanding of Front-of-Package Nutrition Labels.

    PubMed

    Antúnez, Lucía; Giménez, Ana; Maiche, Alejandro; Ares, Gastón

    2015-01-01

    To study the influence of 2 interpretational aids of front-of-package (FOP) nutrition labels (color code and text descriptors) on attentional capture and consumers' understanding of nutritional information. A full factorial design was used to assess the influence of color code and text descriptors using visual search and eye tracking. Ten trained assessors participated in the visual search study and 54 consumers completed the eye-tracking study. In the visual search study, assessors were asked to indicate whether there was a label high in fat within sets of mayonnaise labels with different FOP labels. In the eye-tracking study, assessors answered a set of questions about the nutritional content of labels. The researchers used logistic regression to evaluate the influence of interpretational aids of FOP nutrition labels on the percentage of correct answers. Analyses of variance were used to evaluate the influence of the studied variables on attentional measures and participants' response times. Response times were significantly higher for monochromatic FOP labels compared with color-coded ones (3,225 vs 964 ms; P < .001), which suggests that color codes increase attentional capture. The highest number and duration of fixations and visits were recorded on labels that did not include color codes or text descriptors (P < .05). The lowest percentage of incorrect answers was observed when the nutrient level was indicated using color code and text descriptors (P < .05). The combination of color codes and text descriptors seems to be the most effective alternative to increase attentional capture and understanding of nutritional information. Copyright © 2015 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  19. Linearly Additive Shape and Color Signals in Monkey Inferotemporal Cortex

    PubMed Central

    McMahon, David B. T.; Olson, Carl R.

    2009-01-01

    How does the brain represent a red circle? One possibility is that there is a specialized and possibly time-consuming process whereby the attributes of shape and color, carried by separate populations of neurons in low-order visual cortex, are bound together into a unitary neural representation. Another possibility is that neurons in high-order visual cortex are selective, by virtue of their bottom-up input from low-order visual areas, for particular conjunctions of shape and color. A third possibility is that they simply sum shape and color signals linearly. We tested these ideas by measuring the responses of inferotemporal cortex neurons to sets of stimuli in which two attributes—shape and color—varied independently. We find that a few neurons exhibit conjunction selectivity but that in most neurons the influences of shape and color sum linearly. Contrary to the idea of conjunction coding, few neurons respond selectively to a particular combination of shape and color. Contrary to the idea that binding requires time, conjunction signals, when present, occur as early as feature signals. We argue that neither conjunction selectivity nor a specialized feature binding process is necessary for the effective representation of shape–color combinations. PMID:19144745

  20. Categorical color constancy for simulated surfaces.

    PubMed

    Olkkonen, Maria; Hansen, Thorsten; Gegenfurtner, Karl R

    2009-11-12

    Color constancy is the ability to perceive constant surface colors under varying lighting conditions. Color constancy has traditionally been investigated with asymmetric matching, where stimuli are matched over two different contexts, or with achromatic settings, where a stimulus is made to appear gray. These methods deliver accurate information on the transformations of single points of color space under illuminant changes, but can be cumbersome and unintuitive for observers. Color naming is a fast and intuitive alternative to matching, allowing data collection from a large portion of color space. We asked observers to name the colors of 469 Munsell surfaces with known reflectance spectra simulated under five different illuminants. Observers were generally as consistent in naming the colors of surfaces under different illuminants as they were naming the colors of the same surfaces over time. The transformations in category boundaries caused by illuminant changes were generally small and could be explained well with simple linear models. Finally, an analysis of the pattern of naming consistency across color space revealed that largely the same hues were named consistently across illuminants and across observers even after correcting for category size effects. This indicates a possible relationship between perceptual color constancy and the ability to consistently communicate colors.

  1. On the correlation of absorption cross-section with plasmonic color generation.

    PubMed

    Rezaei, Soroosh Daqiqeh; Ho, Jinfa; Ng, Ray Jia Hong; Ramakrishna, Seeram; Yang, Joel K W

    2017-10-30

    Through numerical simulations, we investigate the correlation between the absorption cross-section and the color saturation of plasmonic nanostructures of varying density. Understanding this correlation, enables the prediction of an optimal nanostructure separation, or combinations of different nanostructure sizes for plasmonic color printing applications. Here, we use metal-insulator-metal (MIM) aluminum nanostructures that support gap-plasmons. Large absorption cross-sections were observed that exceed twelve times the physical cross-section of the nanostructure disks. We derive a set of equations to determine the optimal separation for a periodic array using the absorption cross-section of an individual structure to realize saturated colors. Using the optimum pitch and enabled by the large absorption cross-sections of our structures, we employ color mixing strategies to realize a wider color gamut. The simulated color gamut exceeds the sRGB gamut for some colors, and includes dark tones. Color mixing using structures with large absorption cross-sections is a practical approach to generate a broad range of colors, in comparison to fabricating structures with continuously varying sizes.

  2. Real-time Supervised Detection of Pink Areas in Dermoscopic Images of Melanoma: Importance of Color Shades, Texture and Location

    PubMed Central

    Kaur, Ravneet; Albano, Peter P.; Cole, Justin G.; Hagerty, Jason; LeAnder, Robert W.; Moss, Randy H.; Stoecker, William V.

    2015-01-01

    Background/Purpose Early detection of malignant melanoma is an important public health challenge. In the USA, dermatologists are seeing more melanomas at an early stage, before classic melanoma features have become apparent. Pink color is a feature of these early melanomas. If rapid and accurate automatic detection of pink color in these melanomas could be accomplished, there could be significant public health benefits. Methods Detection of three shades of pink (light pink, dark pink, and orange pink) was accomplished using color analysis techniques in five color planes (red, green, blue, hue and saturation). Color shade analysis was performed using a logistic regression model trained with an image set of 60 dermoscopic images of melanoma that contained pink areas. Detected pink shade areas were further analyzed with regard to the location within the lesion, average color parameters over the detected areas, and histogram texture features. Results Logistic regression analysis of a separate set of 128 melanomas and 128 benign images resulted in up to 87.9% accuracy in discriminating melanoma from benign lesions measured using area under the receiver operating characteristic curve. The accuracy in this model decreased when parameters for individual shades, texture, or shade location within the lesion were omitted. Conclusion Texture, color, and lesion location analysis applied to multiple shades of pink can assist in melanoma detection. When any of these three details: color location, shade analysis, or texture analysis were omitted from the model, accuracy in separating melanoma from benign lesions was lowered. Separation of colors into shades and further details that enhance the characterization of these color shades are needed for optimal discrimination of melanoma from benign lesions. PMID:25809473

  3. Real-time supervised detection of pink areas in dermoscopic images of melanoma: importance of color shades, texture and location.

    PubMed

    Kaur, R; Albano, P P; Cole, J G; Hagerty, J; LeAnder, R W; Moss, R H; Stoecker, W V

    2015-11-01

    Early detection of malignant melanoma is an important public health challenge. In the USA, dermatologists are seeing more melanomas at an early stage, before classic melanoma features have become apparent. Pink color is a feature of these early melanomas. If rapid and accurate automatic detection of pink color in these melanomas could be accomplished, there could be significant public health benefits. Detection of three shades of pink (light pink, dark pink, and orange pink) was accomplished using color analysis techniques in five color planes (red, green, blue, hue, and saturation). Color shade analysis was performed using a logistic regression model trained with an image set of 60 dermoscopic images of melanoma that contained pink areas. Detected pink shade areas were further analyzed with regard to the location within the lesion, average color parameters over the detected areas, and histogram texture features. Logistic regression analysis of a separate set of 128 melanomas and 128 benign images resulted in up to 87.9% accuracy in discriminating melanoma from benign lesions measured using area under the receiver operating characteristic curve. The accuracy in this model decreased when parameters for individual shades, texture, or shade location within the lesion were omitted. Texture, color, and lesion location analysis applied to multiple shades of pink can assist in melanoma detection. When any of these three details: color location, shade analysis, or texture analysis were omitted from the model, accuracy in separating melanoma from benign lesions was lowered. Separation of colors into shades and further details that enhance the characterization of these color shades are needed for optimal discrimination of melanoma from benign lesions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Sea Surface Temperature and Ocean Color Variability in the South China Sea

    NASA Astrophysics Data System (ADS)

    Conaty, A. P.

    2001-12-01

    The South China Sea is a marginal sea in the Southeast Asian region whose surface circulation is driven by monsoons and whose surface currents have complex seasonal patterns. Its rich natural resources and strategic location have made its small islands areas of political dispute among the neighboring nations. This study aims to show the seasonal and interannual variability of sea surface temperature and ocean color in South China Sea. It makes use of NOAA's Advanced Very High Resolution Radiometer (AVHRR) satellite data sets on sea surface temperature for the period 1981-2000 and NASA's Nimbus-7 Coastal Zone Color Scanner (CZCS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite data sets on pigment concentration (ocean color) for the period 1981-1996 and 1997-2000, respectively. Transect lines were drawn along several potential hotspot areas to show the variability in sea surface temperature and pigment concentration through time. In-situ data on sea surface temperature along South China Sea were likewise plotted to see the variability with time. Higher seasonal variability in sea surface temperature was seen at higher latitudes. Interannual variability was within 1-3 Kelvin. In most areas, pigment concentration was higher during northern hemisphere winter and autumn, after the monsoon rains, with a maximum of 30 milligrams per cubic meter.

  5. White light phase shifting interferometry and color fringe analysis for the detection of contaminants in water

    NASA Astrophysics Data System (ADS)

    Dubey, Vishesh; Singh, Veena; Ahmad, Azeem; Singh, Gyanendra; Mehta, Dalip Singh

    2016-03-01

    We report white light phase shifting interferometry in conjunction with color fringe analysis for the detection of contaminants in water such as Escherichia coli (E.coli), Campylobacter coli and Bacillus cereus. The experimental setup is based on a common path interferometer using Mirau interferometric objective lens. White light interferograms are recorded using a 3-chip color CCD camera based on prism technology. The 3-chip color camera have lesser color cross talk and better spatial resolution in comparison to single chip CCD camera. A piezo-electric transducer (PZT) phase shifter is fixed with the Mirau objective and they are attached with a conventional microscope. Five phase shifted white light interferograms are recorded by the 3-chip color CCD camera and each phase shifted interferogram is decomposed into the red, green and blue constituent colors, thus making three sets of five phase shifted intererograms for three different colors from a single set of white light interferogram. This makes the system less time consuming and have lesser effect due to surrounding environment. Initially 3D phase maps of the bacteria are reconstructed for red, green and blue wavelengths from these interferograms using MATLAB, from these phase maps we determines the refractive index (RI) of the bacteria. Experimental results of 3D shape measurement and RI at multiple wavelengths will be presented. These results might find applications for detection of contaminants in water without using any chemical processing and fluorescent dyes.

  6. Involuntary transfer of a top-down attentional set into the focus of attention: evidence from a contingent attentional capture paradigm.

    PubMed

    Moore, Katherine Sledge; Weissman, Daniel H

    2010-08-01

    In the present study, we investigated whether involuntarily directing attention to a target-colored distractor causes the corresponding attentional set to enter a limited-capacity focus of attention, thereby facilitating the identification of a subsequent target whose color matches the same attentional set. As predicted, in Experiment 1, contingent attentional capture effects from a target-colored distractor were only one half to one third as large when subsequent target identification relied on the same (vs. a different) attentional set. In Experiment 2, this effect was eliminated when all of the target colors matched the same attentional set, arguing against bottom-up perceptual priming of the distractor's color as an alternative account of our findings. In Experiment 3, this effect was reversed when a target-colored distractor appeared after the target, ruling out a feature-based interference account of our findings. We conclude that capacity limitations in working memory strongly influence contingent attentional capture when multiple attentional sets guide selection.

  7. Power and color Doppler ultrasound settings for inflammatory flow: impact on scoring of disease activity in patients with rheumatoid arthritis.

    PubMed

    Torp-Pedersen, Søren; Christensen, Robin; Szkudlarek, Marcin; Ellegaard, Karen; D'Agostino, Maria Antonietta; Iagnocco, Annamaria; Naredo, Esperanza; Balint, Peter; Wakefield, Richard J; Torp-Pedersen, Arendse; Terslev, Lene

    2015-02-01

    To determine how settings for power and color Doppler ultrasound sensitivity vary on different high- and intermediate-range ultrasound machines and to evaluate the impact of these changes on Doppler scoring of inflamed joints. Six different types of ultrasound machines were used. On each machine, the factory setting for superficial musculoskeletal scanning was used unchanged for both color and power Doppler modalities. The settings were then adjusted for increased Doppler sensitivity, and these settings were designated study settings. Eleven patients with rheumatoid arthritis (RA) with wrist involvement were scanned on the 6 machines, each with 4 settings, generating 264 Doppler images for scoring and color quantification. Doppler sensitivity was measured with a quantitative assessment of Doppler activity: color fraction. Higher color fraction indicated higher sensitivity. Power Doppler was more sensitive on half of the machines, whereas color Doppler was more sensitive on the other half, using both factory settings and study settings. There was an average increase in Doppler sensitivity, despite modality, of 78% when study settings were applied. Over the 6 machines, 2 Doppler modalities, and 2 settings, the grades for each of 7 of the patients varied between 0 and 3, while the grades for each of the other 4 patients varied between 0 and 2. The effect of using different machines, Doppler modalities, and settings has a considerable influence on the quantification of inflammation by ultrasound in RA patients, and this must be taken into account in multicenter studies. Copyright © 2015 by the American College of Rheumatology.

  8. Seasonal Changes in Color Preferences Are Linked to Variations in Environmental Colors: A Longitudinal Study of Fall

    PubMed Central

    Heck, Isobel A.

    2017-01-01

    People form associations between colors and entities, which influence their evaluations of the world. These evaluations are dynamic, as specific associations become more or less active in people’s minds over time. We investigated how evaluations of colors (color preferences) changed over the course of fall, as color-associated fall entities became more prevalent in the environment. Participants judged their preferences for the same set of colors during nine testing sessions over 11 weeks during fall. We categorized the colors as Leaf and Non-Leaf Colors by matching them to leaves collected during the same period. Changes in preferences for Leaf Colors followed a quadratic pattern, peaking around when the leaves were most colorful and declining as winter approached. Preferences for Non-Leaf Colors did not significantly change. Individual differences in these changes could be explained by preferences for seasonal entities, as predicted by the differential activation hypothesis within the Ecological Valence Theory. The more a given individual liked fall-associated entities, the more their preference for Leaf Colors increased during fall. No analogous relations existed with winter-associated entities or Non-Leaf Colors. These results demonstrate the importance of studying temporal and individual differences for understanding preferences. PMID:29230276

  9. The Trouble with Color.

    ERIC Educational Resources Information Center

    Merchant, David

    1999-01-01

    Discusses problems with color quality in Web sites. Topics include differences in monitor settings, including contrast; amount of video RAM; user preference settings; browser-safe colors; cross-platform readability; and gamma values. (LRW)

  10. Study of chromatic adaptation using memory color matches, Part I: neutral illuminants.

    PubMed

    Smet, Kevin A G; Zhai, Qiyan; Luo, Ming R; Hanselaer, Peter

    2017-04-03

    Twelve corresponding color data sets have been obtained using the long-term memory colors of familiar objects as target stimuli. Data were collected for familiar objects with neutral, red, yellow, green and blue hues under 4 approximately neutral illumination conditions on or near the blackbody locus. The advantages of the memory color matching method are discussed in light of other more traditional asymmetric matching techniques. Results were compared to eight corresponding color data sets available in literature. The corresponding color data was used to test several linear (von Kries, RLAB, etc.) and nonlinear (Hunt & Nayatani) chromatic adaptation transforms (CAT). It was found that a simple two-step von Kries, whereby the degree of adaptation D is optimized to minimize the DEu'v' prediction errors, outperformed all other tested models for both memory color and literature corresponding color sets, whereby prediction errors were lower for the memory color sets. The predictive errors were substantially smaller than the standard uncertainty on the average observer and were comparable to what are considered just-noticeable-differences in the CIE u'v' chromaticity diagram, supporting the use of memory color based internal references to study chromatic adaptation mechanisms.

  11. Implementation of Custom Colors in the DECwindows Environment

    DTIC Science & Technology

    1992-01-01

    Implementation of Custom Colors in the DECwindlows Environment Program Element No 0604262 Project No 64214 6. Author(s). Task No Stephanie A. Myrick, Maura C...13. Abstract (Maximum 200 words), This paper describes the implementation of user-defined, or custom , colors in the DECwindows environmeot Custom ...colors can be used to augment the standard color set that is associated with the hardware colormap. The custom color set that is included in this paper

  12. The simple perfection of quantum correlation in human vision.

    PubMed

    Bouman, Maarten A

    2006-01-01

    A theory is presented that specifies the amount of light that is needed for the perception of any stimulus that is defined in space, time and color. For detection and discrimination mechanistic neural elements with deterministic procedures exist. Twin pairs of red and green cones are ordered in three sets along clockwise and counter clockwise revolving spirals and along circles around the center of the fovea. In the rod-free fovea the red pairs are ordered along the spirals and the green along the circles. Each cone is accompanied by--dependent on retinal eccentricity--up to 100 satellite rods. For the retinal signal processing such a receptor group constitutes a space-quantum in analogy with time-quanta of about 0.04 s. In the peripheral retina the red and green twin pairs of space-quanta are roughly ordered along and at random distributed over the spirals and circles. Over each time-quantum, the cone and rods of a space-quantum sum their responses in a common nerve circuit of the luminosity channel. The summation's results from twin pairs of the same set of space-quanta are correlated by two-fold spatio-temporal coincidence mechanisms in the retina. Their outcome signals the perception of light, movement and edge. In the fused binocular visual field the movement and edge signals of the three sets from both eyes perfectly join vectorially together, provided the responding pairs of space-quanta are binocularly in perfect register as they normally are. The receptor's Weber gain control makes the receptor an all-or-none-system. The space-quantum's De Vries gain control makes its sensitivity equal to the average of the poisson fluctuations in quantum absorption per time-quantum. The controls are based on, respectively, arithmetically feed forward and backward inhibitive nerve mechanisms. The thermal noise of the photo-pigment resets the controls. The response to the second quantum absorption in a time-quantum in the individual rod, red or green cone has accession to the white, red or green nerve color circuit, respectively, and produces there a corresponding color signal. Already a single absorption in a blue cone is for a blue signal. In the retina, for the generation of yellow signals, the color circuits of individual red and green cones of each mixed entwined triple of red and green twin pairs of space-quanta are cross-connected through a nerve opponent color circuit. In the lateral geniculate nucleus in groups of seven neighboring triples, through two nerve opponent color circuits that are common for the two eyes together, the red and green signals as well as the yellow and blue mutually annihilate each other's color. White signals remain. In anomalous trichromacy, the space-quanta of some pairs have different cones or in one of them the cone is missing. In dichromacy, all pairs have different cones or one type of cones is missing. For perceptive resolution the periodic scanning of the retinal image by the eye tremor in synchrony with the time-quanta, overrules the limit of optical resolution as set by diffraction in the eye optics. Dependent on pupil diameter the scanning contributes up to a factor of about 30 to resolution. The action potentials of the Purkinje cells in the myocardium generate the time-quanta of the central nervous system as well as the mechanical scanning of the retinal image through the synchronic periodic variation of the tonus in the eye muscles.

  13. Demosaiced pixel super-resolution in digital holography for multiplexed computational color imaging on-a-chip (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan

    2017-03-01

    Digital holographic on-chip microscopy achieves large space-bandwidth-products (e.g., >1 billion) by making use of pixel super-resolution techniques. To synthesize a digital holographic color image, one can take three sets of holograms representing the red (R), green (G) and blue (B) parts of the spectrum and digitally combine them to synthesize a color image. The data acquisition efficiency of this sequential illumination process can be improved by 3-fold using wavelength-multiplexed R, G and B illumination that simultaneously illuminates the sample, and using a Bayer color image sensor with known or calibrated transmission spectra to digitally demultiplex these three wavelength channels. This demultiplexing step is conventionally used with interpolation-based Bayer demosaicing methods. However, because the pixels of different color channels on a Bayer image sensor chip are not at the same physical location, conventional interpolation-based demosaicing process generates strong color artifacts, especially at rapidly oscillating hologram fringes, which become even more pronounced through digital wave propagation and phase retrieval processes. Here, we demonstrate that by merging the pixel super-resolution framework into the demultiplexing process, such color artifacts can be greatly suppressed. This novel technique, termed demosaiced pixel super-resolution (D-PSR) for digital holographic imaging, achieves very similar color imaging performance compared to conventional sequential R,G,B illumination, with 3-fold improvement in image acquisition time and data-efficiency. We successfully demonstrated the color imaging performance of this approach by imaging stained Pap smears. The D-PSR technique is broadly applicable to high-throughput, high-resolution digital holographic color microscopy techniques that can be used in resource-limited-settings and point-of-care offices.

  14. Graph Coloring Used to Model Traffic Lights.

    ERIC Educational Resources Information Center

    Williams, John

    1992-01-01

    Two scheduling problems, one involving setting up an examination schedule and the other describing traffic light problems, are modeled as colorings of graphs consisting of a set of vertices and edges. The chromatic number, the least number of colors necessary for coloring a graph, is employed in the solutions. (MDH)

  15. Quantifying the Onset and Progression of Plant Senescence by Color Image Analysis for High Throughput Applications

    PubMed Central

    Cai, Jinhai; Okamoto, Mamoru; Atieno, Judith; Sutton, Tim; Li, Yongle; Miklavcic, Stanley J.

    2016-01-01

    Leaf senescence, an indicator of plant age and ill health, is an important phenotypic trait for the assessment of a plant’s response to stress. Manual inspection of senescence, however, is time consuming, inaccurate and subjective. In this paper we propose an objective evaluation of plant senescence by color image analysis for use in a high throughput plant phenotyping pipeline. As high throughput phenotyping platforms are designed to capture whole-of-plant features, camera lenses and camera settings are inappropriate for the capture of fine detail. Specifically, plant colors in images may not represent true plant colors, leading to errors in senescence estimation. Our algorithm features a color distortion correction and image restoration step prior to a senescence analysis. We apply our algorithm to two time series of images of wheat and chickpea plants to quantify the onset and progression of senescence. We compare our results with senescence scores resulting from manual inspection. We demonstrate that our procedure is able to process images in an automated way for an accurate estimation of plant senescence even from color distorted and blurred images obtained under high throughput conditions. PMID:27348807

  16. Using clinical simulation centers to test design interventions: a pilot study of lighting and color modifications.

    PubMed

    Gray, Whitney Austin; Kesten, Karen S; Hurst, Stephen; Day, Tama Duffy; Anderko, Laura

    2012-01-01

    The aim of this pilot study was to test design interventions such as lighting, color, and spatial color patterning on nurses' stress, alertness, and satisfaction, and to provide an example of how clinical simulation centers can be used to conduct research. The application of evidence-based design research in healthcare settings requires a transdisciplinary approach. Integrating approaches from multiple fields in real-life settings often proves time consuming and experimentally difficult. However, forums for collaboration such as clinical simulation centers may offer a solution. In these settings, identical operating and patient rooms are used to deliver simulated patient care scenarios using automated mannequins. Two identical rooms were modified in the clinical simulation center. Nurses spent 30 minutes in each room performing simulated cardiac resuscitation. Subjective measures of nurses' stress, alertness, and satisfaction were collected and compared between settings and across time using matched-pair t-test analysis. Nurses reported feeling less stressed after exposure to the experimental room than nurses who were exposed to the control room (2.22, p = .03). Scores post-session indicated a significant reduction in stress and an increase in alertness after exposure to the experimental room as compared to the control room, with significance levels below .10. (Change in stress scores: 3.44, p = .069); (change in alertness scores: 3.6, p = .071). This study reinforces the use of validated survey tools to measure stress, alertness, and satisfaction. Results support human-centered design approaches by evaluating the effect on nurses in an experimental setting.

  17. Uncovering gender discrimination cues in a realistic setting.

    PubMed

    Dupuis-Roy, Nicolas; Fortin, Isabelle; Fiset, Daniel; Gosselin, Frédéric

    2009-02-10

    Which face cues do we use for gender discrimination? Few studies have tried to answer this question and the few that have tried typically used only a small set of grayscale stimuli, often distorted and presented a large number of times. Here, we reassessed the importance of facial cues for gender discrimination in a more realistic setting. We applied Bubbles-a technique that minimizes bias toward specific facial features and does not necessitate the distortion of stimuli-to a set of 300 color photographs of Caucasian faces, each presented only once to 30 participants. Results show that the region of the eyes and the eyebrows-probably in the light-dark channel-is the most important facial cue for accurate gender discrimination; and that the mouth region is driving fast correct responses (but not fast incorrect responses)-the gender discrimination information in the mouth region is concentrated in the red-green color channel. Together, these results suggest that, when color is informative in the mouth region, humans use it and respond rapidly; and, when it's not informative, they have to rely on the more robust but more sluggish luminance information in the eye-eyebrow region.

  18. Transforming reflectance spectra into Munsell color space by using prime colors.

    PubMed

    Romney, A Kimball; Fulton, James T

    2006-10-17

    Independent researchers have proved mathematically that, given a set of color-matching functions, there exists a unique set of three monochromatic spectral lights that optimizes luminous efficiency and color gamut. These lights are called prime colors. We present a method for transforming reflectance spectra into Munsell color space by using hypothetical absorbance curves based on Gaussian approximations of the prime colors and a simplified version of opponent process theory. The derived color appearance system is represented as a 3D color system that is qualitatively similar to a conceptual representation of the Munsell color system. We illustrate the application of the model and compare it with existing models by using reflectance spectra obtained from 1,269 Munsell color samples.

  19. Smartphone based Tomographic PIV using colored shadows

    NASA Astrophysics Data System (ADS)

    Aguirre-Pablo, Andres A.; Alarfaj, Meshal K.; Li, Er Qiang; Thoroddsen, Sigurdur T.

    2016-11-01

    We use low-cost smartphones and Tomo-PIV, to reconstruct the 3D-3C velocity field of a vortex ring. The experiment is carried out in an octagonal tank of water with a vortex ring generator consisting of a flexible membrane enclosed by a cylindrical chamber. This chamber is pre-seeded with black polyethylene microparticles. The membrane is driven by an adjustable impulsive air-pressure to produce the vortex ring. Four synchronized smartphone cameras, of 40 Mpx each, are used to capture the location of particles from different viewing angles. We use red, green and blue LED's as backlighting sources, to capture particle locations at different times. The exposure time on the smartphone cameras are set to 2 seconds, while exposing each LED color for about 80 μs with different time steps that can go below 300 μs. The timing of these light pulses is controlled with a digital delay generator. The backlight is blocked by the instantaneous location of the particles in motion, leaving a shadow of the corresponding color for each time step. The image then is preprocessed to separate the 3 different color fields, before using the MART reconstruction and cross-correlation of the time steps to obtain the 3D-3C velocity field. This proof of concept experiment represents a possible low-cost Tomo-PIV setup.

  20. The human factors of color in environmental design: A critical review

    NASA Technical Reports Server (NTRS)

    Wise, Barbara K.; Wise, James A.

    1988-01-01

    The literature on environmental color to enhance habitability in the design of Space Station interiors is reviewed. Some 200 studies were examined to determine the relative contributions of the three dimensions of color (hue, saturation, and brightness or lightness) to responses to environmental colorations. Implications of the study for color usage in novel settings and locales include: (1) There are no hard-wired linkages between environmental colors and particular judgmental or emotional states; (2) Perceptual impressions of color applications can, however, affect experiences and performances in settings; (3) Color behavior studies cannot yet specify an optimal color scheme, but instead must consider differing objectives, the relative importance of each, and design features such as the coordination of geometry, color, texture, etc.; (4) Some color-behavior effects are governed by low-level retinal and limbal mechanisms as well as by cognitive processes; and (5) Colors should first be specified in terms of what they are to do instead of what they are. Some exercise of choice is therefore needed to establish a sense of personal competence in the setting, since color must be ultimately be accepted by the people who are to live with it.

  1. Digital methods of recording color television images on film tape

    NASA Astrophysics Data System (ADS)

    Krivitskaya, R. Y.; Semenov, V. M.

    1985-04-01

    Three methods are now available for recording color television images on film tape, directly or after appropriate finish of signal processing. Conventional recording of images from the screens of three kinescopes with synthetic crystal face plates is still most effective for high fidelity. This method was improved by digital preprocessing of brightness color-difference signal. Frame-by-frame storage of these signals in the memory in digital form is followed by gamma and aperture correction and electronic correction of crossover distortions in the color layers of the film with fixing in accordance with specific emulsion procedures. The newer method of recording color television images with line arrays of light-emitting diodes involves dichromic superposing mirrors and a movable scanning mirror. This method allows the use of standard movie cameras, simplifies interlacing-to-linewise conversion and the mechanical equipment, and lengthens exposure time while it shortens recording time. The latest image transform method requires an audio-video recorder, a memory disk, a digital computer, and a decoder. The 9-step procedure includes preprocessing the total color television signal with reduction of noise level and time errors, followed by frame frequency conversion and setting the number of lines. The total signal is then resolved into its brightness and color-difference components and phase errors and image blurring are also reduced. After extraction of R,G,B signals and colorimetric matching of TV camera and film tape, the simultaneous R,B, B signals are converted from interlacing to sequential triades of color-quotient frames with linewise scanning at triple frequency. Color-quotient signals are recorded with an electron beam on a smoothly moving black-and-white film tape under vacuum. While digital techniques improve the signal quality and simplify the control of processes, not requiring stabilization of circuits, image processing is still analog.

  2. Interpretation of the rainbow color scale for quantitative medical imaging: perceptually linear color calibration (CSDF) versus DICOM GSDF

    NASA Astrophysics Data System (ADS)

    Chesterman, Frédérique; Manssens, Hannah; Morel, Céline; Serrell, Guillaume; Piepers, Bastian; Kimpe, Tom

    2017-03-01

    Medical displays for primary diagnosis are calibrated to the DICOM GSDF1 but there is no accepted standard today that describes how display systems for medical modalities involving color should be calibrated. Recently the Color Standard Display Function3,4 (CSDF), a calibration using the CIEDE2000 color difference metric to make a display as perceptually linear as possible has been proposed. In this work we present the results of a first observer study set up to investigate the interpretation accuracy of a rainbow color scale when a medical display is calibrated to CSDF versus DICOM GSDF and a second observer study set up to investigate the detectability of color differences when a medical display is calibrated to CSDF, DICOM GSDF and sRGB. The results of the first study indicate that the error when interpreting a rainbow color scale is lower for CSDF than for DICOM GSDF with statistically significant difference (Mann-Whitney U test) for eight out of twelve observers. The results correspond to what is expected based on CIEDE2000 color differences between consecutive colors along the rainbow color scale for both calibrations. The results of the second study indicate a statistical significant improvement in detecting color differences when a display is calibrated to CSDF compared to DICOM GSDF and a (non-significant) trend indicating improved detection for CSDF compared to sRGB. To our knowledge this is the first work that shows the added value of a perceptual color calibration method (CSDF) in interpreting medical color images using the rainbow color scale. Improved interpretation of the rainbow color scale may be beneficial in the area of quantitative medical imaging (e.g. PET SUV, quantitative MRI and CT and doppler US), where a medical specialist needs to interpret quantitative medical data based on a color scale and/or detect subtle color differences and where improved interpretation accuracy and improved detection of color differences may contribute to a better diagnosis. Our results indicate that for diagnostic applications involving both grayscale and color images, CSDF should be chosen over DICOM GSDF and sRGB as it assures excellent detection for color images and at the same time maintains DICOM GSDF for grayscale images.

  3. Real-time test of MOCS algorithm during Superflux 1980. [ocean color algorithm for remotely detecting suspended solids

    NASA Technical Reports Server (NTRS)

    Grew, G. W.

    1981-01-01

    A remote sensing experiment was conducted in which success depended upon the real-time use of an algorithm, generated from MOCS (multichannel ocean color sensor) data onboard the NASA P-3 aircraft, to direct the NOAA ship Kelez to oceanic stations where vitally needed sea truth could be collected. Remote data sets collected on two consecutive days of the mission were consistent with the sea truth for low concentrations of chlorophyll a. Two oceanic regions of special interest were located. The algorithm and the collected data are described.

  4. Memory color of natural familiar objects: effects of surface texture and 3-D shape.

    PubMed

    Vurro, Milena; Ling, Yazhu; Hurlbert, Anya C

    2013-06-28

    Natural objects typically possess characteristic contours, chromatic surface textures, and three-dimensional shapes. These diagnostic features aid object recognition, as does memory color, the color most associated in memory with a particular object. Here we aim to determine whether polychromatic surface texture, 3-D shape, and contour diagnosticity improve memory color for familiar objects, separately and in combination. We use solid three-dimensional familiar objects rendered with their natural texture, which participants adjust in real time to match their memory color for the object. We analyze mean, accuracy, and precision of the memory color settings relative to the natural color of the objects under the same conditions. We find that in all conditions, memory colors deviate slightly but significantly in the same direction from the natural color. Surface polychromaticity, shape diagnosticity, and three dimensionality each improve memory color accuracy, relative to uniformly colored, generic, or two-dimensional shapes, respectively. Shape diagnosticity improves the precision of memory color also, and there is a trend for polychromaticity to do so as well. Differently from other studies, we find that the object contour alone also improves memory color. Thus, enhancing the naturalness of the stimulus, in terms of either surface or shape properties, enhances the accuracy and precision of memory color. The results support the hypothesis that memory color representations are polychromatic and are synergistically linked with diagnostic shape representations.

  5. Focused attention improves working memory: implications for flexible-resource and discrete-capacity models.

    PubMed

    Souza, Alessandra S; Rerko, Laura; Lin, Hsuan-Yu; Oberauer, Klaus

    2014-10-01

    Performance in working memory (WM) tasks depends on the capacity for storing objects and on the allocation of attention to these objects. Here, we explored how capacity models need to be augmented to account for the benefit of focusing attention on the target of recall. Participants encoded six colored disks (Experiment 1) or a set of one to eight colored disks (Experiment 2) and were cued to recall the color of a target on a color wheel. In the no-delay condition, the recall-cue was presented after a 1,000-ms retention interval, and participants could report the retrieved color immediately. In the delay condition, the recall-cue was presented at the same time as in the no-delay condition, but the opportunity to report the color was delayed. During this delay, participants could focus attention exclusively on the target. Responses deviated less from the target's color in the delay than in the no-delay condition. Mixture modeling assigned this benefit to a reduction in guessing (Experiments 1 and 2) and transposition errors (Experiment 2). We tested several computational models implementing flexible or discrete capacity allocation, aiming to explain both the effect of set size, reflecting the limited capacity of WM, and the effect of delay, reflecting the role of attention to WM representations. Both models fit the data better when a spatially graded source of transposition error is added to its assumptions. The benefits of focusing attention could be explained by allocating to this object a higher proportion of the capacity to represent color.

  6. Determinants of naming latencies, object comprehension times, and new norms for the Russian standardized set of the colorized version of the Snodgrass and Vanderwart pictures.

    PubMed

    Bonin, Patrick; Guillemard-Tsaparina, Diana; Méot, Alain

    2013-09-01

    We report object-naming and object recognition times collected from Russian native speakers for the colorized version of the Snodgrass and Vanderwart (Journal of Experimental Psychology: Human Learning and Memory 6:174-215, 1980) pictures (Rossion & Pourtois, Perception 33:217-236, 2004). New norms for image variability, body-object interaction [BOI], and subjective frequency collected in Russian, as well as new name agreement scores for the colorized pictures in French, are also reported. In both object-naming and object comprehension times, the name agreement, image agreement, and age-of-acquisition variables made significant independent contributions. Objective word frequency was reliable in object-naming latencies only. The variables of image variability, BOI, and subjective frequency were not significant in either object naming or object comprehension. Finally, imageability was reliable in both tasks. The new norms and object-naming and object recognition times are provided as supplemental materials.

  7. Reconstruction of reflectance data using an interpolation technique.

    PubMed

    Abed, Farhad Moghareh; Amirshahi, Seyed Hossein; Abed, Mohammad Reza Moghareh

    2009-03-01

    A linear interpolation method is applied for reconstruction of reflectance spectra of Munsell as well as ColorChecker SG color chips from the corresponding colorimetric values under a given set of viewing conditions. Hence, different types of lookup tables (LUTs) have been created to connect the colorimetric and spectrophotometeric data as the source and destination spaces in this approach. To optimize the algorithm, different color spaces and light sources have been used to build different types of LUTs. The effects of applied color datasets as well as employed color spaces are investigated. Results of recovery are evaluated by the mean and the maximum color difference values under other sets of standard light sources. The mean and the maximum values of root mean square (RMS) error between the reconstructed and the actual spectra are also calculated. Since the speed of reflectance reconstruction is a key point in the LUT algorithm, the processing time spent for interpolation of spectral data has also been measured for each model. Finally, the performance of the suggested interpolation technique is compared with that of the common principal component analysis method. According to the results, using the CIEXYZ tristimulus values as a source space shows priority over the CIELAB color space. Besides, the colorimetric position of a desired sample is a key point that indicates the success of the approach. In fact, because of the nature of the interpolation technique, the colorimetric position of the desired samples should be located inside the color gamut of available samples in the dataset. The resultant spectra that have been reconstructed by this technique show considerable improvement in terms of RMS error between the actual and the reconstructed reflectance spectra as well as CIELAB color differences under the other light source in comparison with those obtained from the standard PCA technique.

  8. Better understanding of digital photography for skin color measurement: With a special emphasis on light characteristics.

    PubMed

    Seo, Soo Hong; Kim, Jae Hwan; Kim, Ji Woong; Kye, Young Chul; Ahn, Hyo Hyun

    2011-02-01

    Digital photography can be used to measure skin color colorimetrically when combined with proper techniques. To better understand the settings of digital photography for the evaluation and measurement of skin colors, we used a tungsten lamp with filters and the custom white balance (WB) function of a digital camera. All colored squares on a color chart were photographed with each original and filtered light, analyzed into CIELAB coordinates to produce the calibration method for each given light setting, and compared statistically with reference coordinates obtained using a reflectance spectrophotometer. They were summarized as to the typical color groups, such as skin colors. We compared these results according to the fixed vs. custom WB of a digital camera. The accuracy of color measurement was improved when using light with a proper color temperature conversion filter. The skin colors from color charts could be measured more accurately using a fixed WB. In vivo measurement of skin color was easy and possible with our method and settings. The color temperature conversion filter that produced daylight-like light from the tungsten lamp was the best choice when combined with fixed WB for the measurement of colors and acceptable photographs. © 2010 John Wiley & Sons A/S.

  9. Coastal Atmosphere and Sea Time Series (CoASTS)

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Zibordi, Giuseppe; Berthon, Jean-Francoise; Doyle, John P.; Grossi, Stefania; vanderLinde, Dirk; Targa, Cristina; Alberotanza, Luigi; McClain, Charles R. (Technical Monitor)

    2002-01-01

    The Coastal Atmosphere and Sea Time Series (CoASTS) Project aimed at supporting ocean color research and applications, from 1995 up to the time of publication of this document, has ensured the collection of a comprehensive atmospheric and marine data set from an oceanographic tower located in the northern Adriatic Sea. The instruments and the measurement methodologies used to gather quantities relevant for bio-optical modeling and for the calibration and validation of ocean color sensors, are described. Particular emphasis is placed on four items: (1) the evaluation of perturbation effects in radiometric data (i.e., tower-shading, instrument self-shading, and bottom effects); (2) the intercomparison of seawater absorption coefficients from in situ measurements and from laboratory spectrometric analysis on discrete samples; (3) the intercomparison of two filter techniques for in vivo measurement of particulate absorption coefficients; and (4) the analysis of repeatability and reproducibility of the most relevant laboratory measurements carried out on seawater samples (i.e., particulate and yellow substance absorption coefficients, and pigment and total suspended matter concentrations). Sample data are also presented and discussed to illustrate the typical features characterizing the CoASTS measurement site in view of supporting the suitability of the CoASTS data set for bio-optical modeling and ocean color calibration and validation.

  10. Reflective photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentine, Anthony L.; Nielson, Gregory N.; Cruz-Campa, Jose Luis

    A photovoltaic module includes colorized reflective photovoltaic cells that act as pixels. The colorized reflective photovoltaic cells are arranged so that reflections from the photovoltaic cells or pixels visually combine into an image on the photovoltaic module. The colorized photovoltaic cell or pixel is composed of a set of 100 to 256 base color sub-pixel reflective segments or sub-pixels. The color of each pixel is determined by the combination of base color sub-pixels forming the pixel. As a result, each pixel can have a wide variety of colors using a set of base colors, which are created, from sub-pixel reflectivemore » segments having standard film thicknesses.« less

  11. A novel false color mapping model-based fusion method of visual and infrared images

    NASA Astrophysics Data System (ADS)

    Qi, Bin; Kun, Gao; Tian, Yue-xin; Zhu, Zhen-yu

    2013-12-01

    A fast and efficient image fusion method is presented to generate near-natural colors from panchromatic visual and thermal imaging sensors. Firstly, a set of daytime color reference images are analyzed and the false color mapping principle is proposed according to human's visual and emotional habits. That is, object colors should remain invariant after color mapping operations, differences between infrared and visual images should be enhanced and the background color should be consistent with the main scene content. Then a novel nonlinear color mapping model is given by introducing the geometric average value of the input visual and infrared image gray and the weighted average algorithm. To determine the control parameters in the mapping model, the boundary conditions are listed according to the mapping principle above. Fusion experiments show that the new fusion method can achieve the near-natural appearance of the fused image, and has the features of enhancing color contrasts and highlighting the infrared brilliant objects when comparing with the traditional TNO algorithm. Moreover, it owns the low complexity and is easy to realize real-time processing. So it is quite suitable for the nighttime imaging apparatus.

  12. V1 mechanisms underlying chromatic contrast detection

    PubMed Central

    Hass, Charles A.

    2013-01-01

    To elucidate the cortical mechanisms of color vision, we recorded from individual primary visual cortex (V1) neurons in macaque monkeys performing a chromatic detection task. Roughly 30% of the neurons that we encountered were unresponsive at the monkeys' psychophysical detection threshold (PT). The other 70% were responsive at threshold but on average, were slightly less sensitive than the monkey. For these neurons, the relationship between neurometric threshold (NT) and PT was consistent across the four isoluminant color directions tested. A corollary of this result is that NTs were roughly four times lower for stimuli that modulated the long- and middle-wavelength sensitive cones out of phase. Nearly one-half of the neurons that responded to chromatic stimuli at the monkeys' detection threshold also responded to high-contrast luminance modulations, suggesting a role for neurons that are jointly tuned to color and luminance in chromatic detection. Analysis of neuronal contrast-response functions and signal-to-noise ratios yielded no evidence for a special set of “cardinal color directions,” for which V1 neurons are particularly sensitive. We conclude that at detection threshold—as shown previously with high-contrast stimuli—V1 neurons are tuned for a diverse set of color directions and do not segregate naturally into red–green and blue–yellow categories. PMID:23446689

  13. The contribution of color to attention capture effects during search for onset targets.

    PubMed

    Goller, Florian; Ditye, Thomas; Ansorge, Ulrich

    2016-04-01

    The literature on top-down contingent capture is concerned with the question of what constitutes a search set. Is it restricted to single stimulus properties such as color or onsets, or can such sets be more complex? In nine experiments (N = 140), we tested whether cueing effects during search for onset targets were affected by cue color. According to the classic theory of contingent capture (Folk, Remington, & Johnston, Journal of Experimental Psychology: Human Perception and Performance, 18, 1030-1044, 1992), during search for onset targets, cues capture attention on the basis of a match between the cue's onset and top-down control settings directed to the target onsets. However, such cueing effects were based on cues of a color similar to the target color. Therefore, matches of the cue color to the target color could have contributed to the effects. Indeed, here we found cueing effects when the cues and targets were of the same color, but not when they were of different colors (Exps. 1a, 1b, 4a, and 4b). In addition, same-color cueing effects were stronger than different-color cueing effects (Exps. 2a, 2b, 3a, 3b, and the white-target conditions of Exp. 5). In Experiment 5, we also identified efficient search for only one target color as a critical prerequisite for the differences between cueing by color-similar and -dissimilar onset cues. We conclude with a discussion of the contributions of cue-to-set color matches, deallocation of attention, and intertrial priming to what appear to be top-down contingent-capture effects based on abrupt onsets.

  14. Is it turquoise + fuchsia = purple or is it turquoise + fuchsia = blue?

    NASA Astrophysics Data System (ADS)

    Beretta, Giordano B.; Moroney, Nathan M.

    2011-01-01

    The first step in communicating color is to name it. The second step is color semiotics. The third step is introducing structure in the set of colors. In color education at all levels, this structure often takes the form of formulæ, like red + green = yellow, or turquoise + red = black. In recent times, Johannes Itten's color theory and its associated color wheel have been very influential, mostly through its impact on Bauhaus, although a number of color order systems and circles have been introduced over the centuries. Students get confused when they are trying to formulate the color name arithmetic using the structure of color order systems and concepts like complementary colors and opponent colors. Suddenly turquoise + fuchsia = purple instead of blue; purple and violet become blurred, and finally the student's head explodes under the epistemological pressures of Itten, Albers, Goethe, Runge, Newton, da Vinci, and all the other monsters of color structure. In this contribution we propose a systematic presentation of structure in color, from color theories to color naming. We start from the concept of color perception introduced by da Vinci and work ourselves through color measurement, color formation, and color naming, to develop the basis for a robust system based on table lookup and interpolation. One source of confusion is that color naming has been quite loose in color theory, where for example red can be used interchangeably with fuchsia, and blue with turquoise. Furthermore, common color terms are intermingled with technical colorant terms, for example cyan and aqua or fuchsia and magenta. We present the evolution of a few color terms, some of which have experienced a radical transition over the centuries, and describe an experiment showing the robustness of crowd-sourcing for color naming.

  15. Long-term memory color investigation: culture effect and experimental setting factors.

    PubMed

    Zhu, Yuteng; Luo, Ming Ronnier; Fischer, Sebastian; Bodrogi, Peter; Khanh, Tran Quoc

    2017-10-01

    Memory colors generated continuous interest in the color community. Previous studies focused on reflecting color chips and color samples in real scenes or on monitors. The cognitive effect of culture was rarely considered. In this paper, we performed a comprehensive investigation of the long-term memory colors of 26 familiar objects using the asymmetric color matching method among Chinese and German observers on a display. Three experiments were conducted to evaluate the variations introduced by culture, context-based gray image, and initial matching color. Memory colors of important objects were collected and representative memory colors were quantified in terms of CIELAB L * , a * , and b * values. The intra- and inter-observer variations were analyzed by mean-color-difference-from-mean values and chromatic ellipses. The effects of different cultural groups and experimental settings were also shown.

  16. Influence of light and oxygen on the color stability of five calcium silicate-based materials.

    PubMed

    Vallés, Marta; Mercadé, Montse; Duran-Sindreu, Fernando; Bourdelande, Jose L; Roig, Miguel

    2013-04-01

    Difficult handling, long setting time, and potential discoloration are important drawbacks of white mineral trioxide aggregate (WMTA). The development of Biodentine, a recently developed calcium silicate-based material (CSM), has overcome some of these shortcomings; however, there are no available data on its color stability. A previous study showed that WMTA discolors under light irradiation in an oxygen-free environment. The present study evaluated the influence of light irradiation and oxygen on the color stability of 5 CSMs. Fifteen samples of 5 CSMs (ProRoot WMTA, Angelus WMTA, White Portland Cement [PC], PC with bismuth oxide, and Biodentine) were divided into 5 groups. Each group was exposed to different oxygen and light conditions. A spectrophotometer was used to determine the color of each specimen at 0, 120 seconds, and 5 days. Data were analyzed by using analysis of variance and Tukey honestly significant difference test. The materials PC with bismuth oxide, Angelus WMTA, and ProRoot WMTA showed dark discoloration after light irradiation in an oxygen-free environment, which was statistically significantly different from Biodentine and PC. In groups that were exposed to no light irradiation or to an oxygen atmosphere, all materials showed color stability over time, and no significant differences were observed among them. PC and Biodentine maintained color stability in all conditions over time and showed no significant differences. The combination of light and anaerobic conditions (similar to those in clinical situations) results in differences in color of the tested CSMs during a period of 5 days, of which Biodentine and PC demonstrated color stability. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Study of chromatic adaptation using memory color matches, Part II: colored illuminants.

    PubMed

    Smet, Kevin A G; Zhai, Qiyan; Luo, Ming R; Hanselaer, Peter

    2017-04-03

    In a previous paper, 12 corresponding color data sets were derived for 4 neutral illuminants using the long-term memory colours of five familiar objects. The data were used to test several linear (one-step and two-step von Kries, RLAB) and nonlinear (Hunt and Nayatani) chromatic adaptation transforms (CAT). This paper extends that study to a total of 156 corresponding color sets by including 9 more colored illuminants: 2 with low and 2 with high correlated color temperatures as well as 5 representing high chroma adaptive conditions. As in the previous study, a two-step von Kries transform whereby the degree of adaptation D is optimized to minimize the DEu'v' prediction errors outperformed all other tested models for both memory color and literature corresponding color sets, whereby prediction errors were lower for the memory color set. Most of the transforms tested, except the two- and one-step von Kries models with optimized D, showed large errors for corresponding color subsets that contained non-neutral adaptive conditions as all of them tended to overestimate the effective degree of adaptation in this study. An analysis of the impact of the sensor space primaries in which the adaptation is performed was found to have little impact compared to that of model choice. Finally, the effective degree of adaptation for the 13 illumination conditions (4 neutral + 9 colored) was successfully modelled using a bivariate Gaussian in a Macleod-Boyton like chromaticity diagram.

  18. Addressing Inter-set Write-Variation for Improving Lifetime of Non-Volatile Caches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Sparsh; Vetter, Jeffrey S

    We propose a technique which minimizes inter-set write variation in NVM caches for improving its lifetime. Our technique uses cache coloring scheme to add a software-controlled mapping layer between groups of physical pages (called memory regions) and cache sets. Periodically, the number of writes to different colors of the cache is computed and based on this result, the mapping of a few colors is changed to channel the write traffic to least utilized cache colors. This change helps to achieve wear-leveling.

  19. Credit WCT. Original 21/4"x21/4" color negative is housed in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-1/4"x2-1/4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. At one time, Building 4285/E-86 accommodated tensile testing of propellant samples. This view shows a tensile strength tester set up for propellant tests, under the supervision of JPL staff member Milton Clay (JPL negative no. JPL-10291AC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Casting & Curing Building, Edwards Air Force Base, Boron, Kern County, CA

  20. Wipes, Coatings, and Patches for Detecting Hydrazines

    NASA Technical Reports Server (NTRS)

    Young, Rebecca; Buttner, William

    2005-01-01

    Three color-indicating devices have been conceived as simple, rapid, inexpensive means of detecting hazardous liquid and gaseous substances in settings in which safety is of paramount concern and it would be too time-consuming or otherwise impractical to perform detection by use of such instruments as mass spectrometers. More specifically, these devices are designed for detecting hypergolic fuels (in particular, hydrazines) and hypergolic oxidizers in spacecraft settings, where occasional leakage of these substances in liquid or vapor form occurs and it is imperative to take early corrective action to minimize adverse health effects. With suitable redesign, including reformulation of their color indicator chemicals, these devices could be adapted to detection of other hazardous substances in terrestrial settings (e.g., industrial and military ones). One of the devices is a pad of a commercially available absorbent material doped with a color indicator. The absorbent material is made from 70 percent polyester and 30 percent nylon and can absorb about eight times its own weight of liquid. The color indicator is a mixture of conventional pH color indicator chemicals. Hydrazine and monomethyl hydrazine, which are basic, cause the color indicator to turn green. In the original intended application, the pad is wiped on a space suit that is suspected of having been exposed to leaking monomethyl hydrazine during a space walk, before the wearer returns to the interior of the spacecraft. If the wiped surface is contaminated with hydrazine, the pad turns green. In addition, the pad absorbs hydrazine from the wiped surface, thereby reducing or eliminating the hazard. Used pads, including ones that show contamination by hydrazine, can be stored in a sealed plastic bag for subsequent disposal. The second device, which has been proposed but not yet developed, would comprise a color indicator material in the form of either a coating on a space suit (or other protective garment) or a coating on a sheet that could be easily attached to and detached from the protective garment. The coating material would be a hydrogel doped with a suitable pH indicator. The hydrogel would also serve to maintain a level of moisture needed to support the chemical reaction mentioned in the next sentence. In addition to changing color to indicate the presence of any hypergolic fuel (which is basic) or hypergolic oxidizer (which is acidic) that might splash on the space suit, the pH indicator would also react with the hypergolic fuel or oxidizer and thereby bind it. The third device is a color dosimeter for detecting hydrazine liquid or vapor coming from microscopic leaks. This device is designed to satisfy several requirements specific to its original intended use in the auxiliary power unit of the space shuttle. These requirements include stability under vacuum, stability at moderate temperature, fast and irreversible change in color upon exposure to hydrazine, and visibility of the color change through polyimide tape.

  1. The achromatic locus: Effect of navigation direction in color space

    PubMed Central

    Chauhan, Tushar; Perales, Esther; Xiao, Kaida; Hird, Emily; Karatzas, Dimosthenis; Wuerger, Sophie

    2014-01-01

    An achromatic stimulus is defined as a patch of light that is devoid of any hue. This is usually achieved by asking observers to adjust the stimulus such that it looks neither red nor green and at the same time neither yellow nor blue. Despite the theoretical and practical importance of the achromatic locus, little is known about the variability in these settings. The main purpose of the current study was to evaluate whether achromatic settings were dependent on the task of the observers, namely the navigation direction in color space. Observers could either adjust the test patch along the two chromatic axes in the CIE u*v* diagram or, alternatively, navigate along the unique-hue lines. Our main result is that the navigation method affects the reliability of these achromatic settings. Observers are able to make more reliable achromatic settings when adjusting the test patch along the directions defined by the four unique hues as opposed to navigating along the main axes in the commonly used CIE u*v* chromaticity plane. This result holds across different ambient viewing conditions (Dark, Daylight, Cool White Fluorescent) and different test luminance levels (5, 20, and 50 cd/m2). The reduced variability in the achromatic settings is consistent with the idea that internal color representations are more aligned with the unique-hue lines than the u* and v* axes. PMID:24464164

  2. The achromatic locus: effect of navigation direction in color space.

    PubMed

    Chauhan, Tushar; Perales, Esther; Xiao, Kaida; Hird, Emily; Karatzas, Dimosthenis; Wuerger, Sophie

    2014-01-24

    An achromatic stimulus is defined as a patch of light that is devoid of any hue. This is usually achieved by asking observers to adjust the stimulus such that it looks neither red nor green and at the same time neither yellow nor blue. Despite the theoretical and practical importance of the achromatic locus, little is known about the variability in these settings. The main purpose of the current study was to evaluate whether achromatic settings were dependent on the task of the observers, namely the navigation direction in color space. Observers could either adjust the test patch along the two chromatic axes in the CIE u*v* diagram or, alternatively, navigate along the unique-hue lines. Our main result is that the navigation method affects the reliability of these achromatic settings. Observers are able to make more reliable achromatic settings when adjusting the test patch along the directions defined by the four unique hues as opposed to navigating along the main axes in the commonly used CIE u*v* chromaticity plane. This result holds across different ambient viewing conditions (Dark, Daylight, Cool White Fluorescent) and different test luminance levels (5, 20, and 50 cd/m(2)). The reduced variability in the achromatic settings is consistent with the idea that internal color representations are more aligned with the unique-hue lines than the u* and v* axes.

  3. Multi-color space threshold segmentation and self-learning k-NN algorithm for surge test EUT status identification

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Liu, Gui-xiong

    2016-09-01

    The identification of targets varies in different surge tests. A multi-color space threshold segmentation and self-learning k-nearest neighbor algorithm ( k-NN) for equipment under test status identification was proposed after using feature matching to identify equipment status had to train new patterns every time before testing. First, color space (L*a*b*, hue saturation lightness (HSL), hue saturation value (HSV)) to segment was selected according to the high luminance points ratio and white luminance points ratio of the image. Second, the unknown class sample S r was classified by the k-NN algorithm with training set T z according to the feature vector, which was formed from number of pixels, eccentricity ratio, compactness ratio, and Euler's numbers. Last, while the classification confidence coefficient equaled k, made S r as one sample of pre-training set T z '. The training set T z increased to T z+1 by T z ' if T z ' was saturated. In nine series of illuminant, indicator light, screen, and disturbances samples (a total of 21600 frames), the algorithm had a 98.65%identification accuracy, also selected five groups of samples to enlarge the training set from T 0 to T 5 by itself.

  4. Four-dimensional ultrasonography of the fetal heart using color Doppler spatiotemporal image correlation.

    PubMed

    Gonçalves, Luís F; Romero, Roberto; Espinoza, Jimmy; Lee, Wesley; Treadwell, Marjorie; Chintala, Kavitha; Brandl, Helmut; Chaiworapongsa, Tinnakorn

    2004-04-01

    To describe clinical and research applications of 4-dimensional imaging of the fetal heart using color Doppler spatiotemporal image correlation. Forty-four volume data sets were acquired by color Doppler spatiotemporal image correlation. Seven subjects were examined: 4 fetuses without abnormalities, 1 fetus with ventriculomegaly and a hypoplastic cerebellum but normal cardiac anatomy, and 2 fetuses with cardiac anomalies detected by fetal echocardiography (1 case of a ventricular septal defect associated with trisomy 21 and 1 case of a double-inlet right ventricle with a 46,XX karyotype). The median gestational age at the time of examination was 21 3/7 weeks (range, 19 5/7-34 0/7 weeks). Volume data sets were reviewed offline by multiplanar display and volume-rendering methods. Representative images and online video clips illustrating the diagnostic potential of this technology are presented. Color Doppler spatiotemporal image correlation allowed multiplanar visualization of ventricular septal defects, multiplanar display and volume rendering of tricuspid regurgitation, volume rendering of the outflow tracts by color and power Doppler ultrasonography (both in a normal case and in a case of a double-inlet right ventricle with a double-outlet right ventricle), and visualization of venous streams at the level of the foramen ovale. Color Doppler spatiotemporal image correlation has the potential to simplify visualization of the outflow tracts and improve the evaluation of the location and extent of ventricular septal defects. Other applications include 3-dimensional evaluation of regurgitation jets and venous streams at the level of the foramen ovale.

  5. On the local vertex antimagic total coloring of some families tree

    NASA Astrophysics Data System (ADS)

    Febriani Putri, Desi; Dafik; Hesti Agustin, Ika; Alfarisi, Ridho

    2018-04-01

    Let G(V, E) be a graph of vertex set V and edge set E. Local vertex antimagic total coloring developed from local edge and local vertex antimagic coloring of graph. Local vertex antimagic total coloring is defined f:V(G)\\cup E(G)\\to \\{1,2,3,\\ldots,|V(G)|+|E(G)|\\} if for any two adjacent vertices v 1 and v 2, w({v}1)\

  6. Dual-Color Click Beetle Luciferase Heteroprotein Fragment Complementation Assays

    PubMed Central

    Villalobos, Victor; Naik, Snehal; Bruinsma, Monique; Dothager, Robin S.; Pan, Mei-Hsiu; Samrakandi, Mustapha; Moss, Britney; Elhammali, Adnan; Piwnica-Worms, David

    2010-01-01

    Summary Understanding the functional complexity of protein interactions requires mapping biomolecular complexes within the cellular environment over biologically-relevant time scales. Herein we describe a novel set of reversible, multicolored heteroprotein complementation fragments based on various firefly and click beetle luciferases that utilize the same substrate, D-luciferin. Luciferase heteroprotein fragment complementation systems enabled dual-color quantification of two discreet pairs of interacting proteins simultaneously or two distinct proteins interacting with a third shared protein in live cells. Using real-time analysis of click beetle green and click beetle red luciferase heteroprotein fragment complementation applied to β-TrCP, an E3-ligase common to the regulation of both β-catenin and IκBα, GSK3β was identified as a novel candidate kinase regulating IκBα processing. These dual-color protein interaction switches may enable directed dynamic analysis of a variety of protein interactions in living cells. PMID:20851351

  7. Color and Luminance Analysis of the Space Shuttle Multifunction Display Units(MDUs)

    NASA Technical Reports Server (NTRS)

    McCandless, Jeffrey W.

    2003-01-01

    The purpose of this evaluation is to measure and analyze the colors that can be shown on the Multifunction Display Units (MDUs) of the Space Shuttle cockpit. The evaluation was conducted in the JSC Avionics Engineering Laboratory (JAEL) in building 16A at NASA Johnson Space Center. The JAEL contains a suite of 11 MDUs, each of which can be configured to show colors based on input values of the MDU red, green and blue (RGB) channels. Each of the channels has a range of 0 to 15. For example, bright green is produced by setting RGB to 0,15,0, and orange is produced by setting RGB to 15,4,0. The Cockpit Avionics Upgrade (CAU) program has specified the RGB settings for 14 different colors in the Display Design document (Rev A, 29 June 2001). The analysis in this report may help the CAU program determine better RGB settings for the colors.

  8. Real Data and Rapid Results: Ocean Color Data Analysis with Giovanni (GES DISC Interactive Online Visualization and ANalysis Infrastructure)

    NASA Technical Reports Server (NTRS)

    Acker, J. G.; Leptoukh, G.; Kempler, S.; Gregg, W.; Berrick, S.; Zhu, T.; Liu, Z.; Rui, H.; Shen, S.

    2004-01-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) has taken a major step addressing the challenge of using archived Earth Observing System (EOS) data for regional or global studies by developing an infrastructure with a World Wide Web interface which allows online, interactive, data analysis: the GES DISC Interactive Online Visualization and ANalysis Infrastructure, or "Giovanni." Giovanni provides a data analysis environment that is largely independent of underlying data file format. The Ocean Color Time-Series Project has created an initial implementation of Giovanni using monthly Standard Mapped Image (SMI) data products from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission. Giovanni users select geophysical parameters, and the geographical region and time period of interest. The system rapidly generates a graphical or ASCII numerical data output. Currently available output options are: Area plot (averaged or accumulated over any available data period for any rectangular area); Time plot (time series averaged over any rectangular area); Hovmeller plots (image view of any longitude-time and latitude-time cross sections); ASCII output for all plot types; and area plot animations. Future plans include correlation plots, output formats compatible with Geographical Information Systems (GIs), and higher temporal resolution data. The Ocean Color Time-Series Project will produce sensor-independent ocean color data beginning with the Coastal Zone Color Scanner (CZCS) mission and extending through SeaWiFS and Moderate Resolution Imaging Spectroradiometer (MODIS) data sets, and will enable incorporation of Visible/lnfrared Imaging Radiometer Suite (VIIRS) data, which will be added to Giovanni. The first phase of Giovanni will also include tutorials demonstrating the use of Giovanni and collaborative assistance in the development of research projects using the SeaWiFS and Ocean Color Time-Series Project data in the online Laboratory for Ocean Color Users (LOCUS). The synergy of Giovanni with high-quality ocean color data provides users with the ability to investigate a variety of important oceanic phenomena, such as coastal primary productivity related to pelagic fisheries, seasonal patterns and interannual variability, interdependence of atmospheric dust aerosols and harmful algal blooms, and the potential effects of climate change on oceanic productivity.

  9. Improvement of Visuo-spatial Function Assessed by Raven’s Colored Progressive Matrices in Dementia with Lewy Bodies by Donepezil Treatment

    PubMed Central

    Yoshino, Yuta; Mori, Takaaki; Yoshida, Taku; Toyota, Yasutaka; Shimizu, Hideaki; Iga, Jun-ichi; Nishitani, Shusaku; Ueno, Shu-ichi

    2017-01-01

    Objective Donepezil is used to improve cognitive impairment of dementia with Lewy bodies (DLB). Visuo-spatial dysfunction is a well-known symptom of DLB. Non-verbal Raven’s Colored Progressive Matrices (RCPM) were used to assess both visual perception and reasoning ability in DLB subjects treated with donepezil. Methods Twenty-one DLB patients (mean age, 78.7±4.5 years) were enrolled. RCPM assessment was performed at the time of starting donepezil and within one year after starting donepezil. Results There were significant improvements of RCPM in the total scores between one year donepezil treatment (p=0.013), in both Set A score (p=0.002) and Set AB score (p=0.015), but trend in the Set B score (p=0.083). Conclusion Donepezil is useful for improving visuo-spatial impairment in DLB, but not for problem-solving impairment. PMID:28783933

  10. The power of purple.

    PubMed

    Gershenson, Terri Ann; Milone, Barbara; Somerville, Susan; Mann-Finnerty, Kathy

    2003-01-01

    A brand is a promise. It sets a tone and expectation for patients that are negotiating an often-over-whelming health care setting. Enhancing your brand identity, when done successfully, will ultimately create an emotional bond to the care you are providing. People like brands, and want to believe in something special. Incorporating color into your branding strategy can foster an emotional impact upon your patients, one patient at a time.

  11. Electrophysiological revelations of trial history effects in a color oddball search task.

    PubMed

    Shin, Eunsam; Chong, Sang Chul

    2016-12-01

    In visual oddball search tasks, viewing a no-target scene (i.e., no-target selection trial) leads to the facilitation or delay of the search time for a target in a subsequent trial. Presumably, this selection failure leads to biasing attentional set and prioritizing stimulus features unseen in the no-target scene. We observed attention-related ERP components and tracked the course of attentional biasing as a function of trial history. Participants were instructed to identify color oddballs (i.e., targets) shown in varied trial sequences. The number of no-target scenes preceding a target scene was increased from zero to two to reinforce attentional biasing, and colors presented in two successive no-target scenes were repeated or changed to systematically bias attention to specific colors. For the no-target scenes, the presentation of a second no-target scene resulted in an early selection of, and sustained attention to, the changed colors (mirrored in the frontal selection positivity, the anterior N2, and the P3b). For the target scenes, the N2pc indicated an earlier allocation of attention to the targets with unseen or remotely seen colors. Inhibitory control of attention, shown in the anterior N2, was greatest when the target scene was followed by repeated no-target scenes with repeated colors. Finally, search times and the P3b were influenced by both color previewing and its history. The current results demonstrate that attentional biasing can occur on a trial-by-trial basis and be influenced by both feature previewing and its history. © 2016 Society for Psychophysiological Research.

  12. Contextual cueing in multiconjunction visual search is dependent on color- and configuration-based intertrial contingencies.

    PubMed

    Geyer, Thomas; Shi, Zhuanghua; Müller, Hermann J

    2010-06-01

    Three experiments examined memory-based guidance of visual search using a modified version of the contextual-cueing paradigm (Jiang & Chun, 2001). The target, if present, was a conjunction of color and orientation, with target (and distractor) features randomly varying across trials (multiconjunction search). Under these conditions, reaction times (RTs) were faster when all items in the display appeared at predictive ("old") relative to nonpredictive ("new") locations. However, this RT benefit was smaller compared to when only one set of items, namely that sharing the target's color (but not that in the alternative color) appeared in predictive arrangement. In all conditions, contextual cueing was reliable on both target-present and -absent trials and enhanced if a predictive display was preceded by a predictive (though differently arranged) display, rather than a nonpredictive display. These results suggest that (1) contextual cueing is confined to color subsets of items, that (2) retrieving contextual associations for one color subset of items can be impeded by associations formed within the alternative subset ("contextual interference"), and (3) that contextual cueing is modulated by intertrial priming.

  13. Does semantic preactivation reduce inattentional blindness?

    PubMed

    Kreitz, Carina; Schnuerch, Robert; Furley, Philip A; Gibbons, Henning; Memmert, Daniel

    2015-04-01

    We are susceptible to failures of awareness if a stimulus occurs unexpectedly and our attention is focused elsewhere. Such inattentional blindness is modulated by various parameters, including stimulus attributes, the observer's cognitive resources, and the observer's attentional set regarding the primary task. In three behavioral experiments with a total of 360 participants, we investigated whether mere semantic preactivation of the color of an unexpected object can reduce inattentional blindness. Neither explicitly mentioning the color several times before the occurrence of the unexpected stimulus nor priming the color more implicitly via color-related concepts could significantly reduce the susceptibility to inattentional blindness. Even putting the specific color concept in the main focus of the primary task did not lead to reduced inattentional blindness. Thus, we have shown that the failure to consciously perceive unexpected objects was not moderated by semantic preactivation of the objects' most prominent feature: its color. We suggest that this finding reflects the rather general principle that preactivations that are not motivationally relevant for one's current selection goals do not suffice to make an unexpected object overcome the threshold of awareness.

  14. Identification of Vitis vinifera L. grape berry skin color mutants and polyphenolic profile.

    PubMed

    Ferreira, Vanessa; Fernandes, Fátima; Pinto-Carnide, Olinda; Valentão, Patrícia; Falco, Virgílio; Martín, Juan Pedro; Ortiz, Jesús María; Arroyo-García, Rosa; Andrade, Paula B; Castro, Isaura

    2016-03-01

    A germplasm set of twenty-five grapevine accessions, forming eleven groups of possible berry skin color mutants, were genotyped with twelve microsatellite loci, being eleven of them identified as true color mutants. The polyphenolic profiling of the confirmed mutant cultivars revealed a total of twenty-four polyphenols, comprising non-colored compounds (phenolic acids, flavan-3-ols, flavonols and a stilbene) and anthocyanins. Results showed differences in the contribution of malvidin-3-O-glucoside to the characteristic Pinot Noir anthocyanins profile. Regarding the two Pique-Poul colored variants, the lighter variant was richer than the darker one in all classes of compounds, excepting anthocyanins. In Moscatel Galego Roxo the F3'H pathway seems to be more active than F3'5'H, resulting in higher amounts of cyanidin, precursor of the cyanidin derivatives. As far as we are aware, this is the first time that a relationship between the content of polyphenolic compounds is established in groups of grape berry skin color mutant cultivars. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Digital TAcy: proof of concept

    NASA Astrophysics Data System (ADS)

    Bubel, Annie; Sylvain, Jean-François; Martin, François

    2009-06-01

    Anthocyanins are water soluble pigments in plants that are recognized for their antioxidant property. These pigments are found in high concentration in cranberries, which give their characteristic dark red color. The Total Anthocyanin concentration (TAcy) measurement process requires precious time, consumes chemical products and needs to be continuously repeated during the harvesting period. The idea of the digital TAcy system is to explore the possibility of estimating the TAcy based on analysing the color of the fruits. A calibrated color image capture set-up was developed and characterized, allowing calibrated color data capture from hundreds of samples over two harvesting years (fall of 2007 and 2008). The acquisition system was designed in such a way to avoid specular reflections and provide good resolution images with an extended range of color values representative of the different stages of fruit ripeness. The chemical TAcy value being known for every sample, a mathematical model was developed to predict the TAcy based on color information. This model, which also takes into account bruised and rotten fruits, shows a RMS error of less than 6% over the TAcy interest range [0-50].

  16. Improved atom number with a dual color magneto—optical trap

    NASA Astrophysics Data System (ADS)

    Cao, Qiang; Luo, Xin-Yu; Gao, Kui-Yi; Wang, Xiao-Rui; Chen, Dong-Min; Wang, Ru-Quan

    2012-04-01

    We demonstrate a novel dual color magneto—optical trap (MOT), which uses two sets of overlapping laser beams to cool and trap 87Rb atoms. The volume of cold cloud in the dual color MOT is strongly dependent on the frequency difference of the laser beams and can be significantly larger than that in the normal MOT with single frequency MOT beams. Our experiment shows that the dual color MOT has the same loading rate as the normal MOT, but much longer loading time, leading to threefold increase in the number of trapped atoms. This indicates that the larger number is caused by reduced light induced loss. The dual color MOT is very useful in experiments where both high vacuum level and large atom number are required, such as single chamber quantum memory and Bose—Einstein condensation (BEC) experiments. Compared to the popular dark spontaneous-force optical trap (dark SPOT) technique, our approach is technically simpler and more suitable to low power laser systems.

  17. A Neuroelectrical Brain Imaging Study on the Perception of Figurative Paintings against Only their Color or Shape Contents.

    PubMed

    Maglione, Anton G; Brizi, Ambra; Vecchiato, Giovanni; Rossi, Dario; Trettel, Arianna; Modica, Enrica; Babiloni, Fabio

    2017-01-01

    In this study, the cortical activity correlated with the perception and appreciation of different set of pictures was estimated by using neuroelectric brain activity and graph theory methodologies in a group of artistic educated persons. The pictures shown to the subjects consisted of original pictures of Titian's and a contemporary artist's paintings (Orig dataset) plus two sets of additional pictures. These additional datasets were obtained from the previous paintings by removing all but the colors or the shapes employed (Color and Style dataset, respectively). Results suggest that the verbal appreciation of Orig dataset when compared to Color and Style ones was mainly correlated to the neuroelectric indexes estimated during the first 10 s of observation of the pictures. Always in the first 10 s of observation: (1) Orig dataset induced more emotion and is perceived with more appreciation than the other two Color and Style datasets; (2) Style dataset is perceived with more attentional effort than the other investigated datasets. During the whole period of observation of 30 s: (1) emotion induced by Color and Style datasets increased across the time while that induced of the Orig dataset remain stable; (2) Color and Style dataset were perceived with more attentional effort than the Orig dataset. During the entire experience, there is evidence of a cortical flow of activity from the parietal and central areas toward the prefrontal and frontal areas during the observation of the images of all the datasets. This is coherent from the notion that active perception of the images with sustained cognitive attention in parietal and central areas caused the generation of the judgment about their aesthetic appreciation in frontal areas.

  18. A Neuroelectrical Brain Imaging Study on the Perception of Figurative Paintings against Only their Color or Shape Contents

    PubMed Central

    Maglione, Anton G.; Brizi, Ambra; Vecchiato, Giovanni; Rossi, Dario; Trettel, Arianna; Modica, Enrica; Babiloni, Fabio

    2017-01-01

    In this study, the cortical activity correlated with the perception and appreciation of different set of pictures was estimated by using neuroelectric brain activity and graph theory methodologies in a group of artistic educated persons. The pictures shown to the subjects consisted of original pictures of Titian's and a contemporary artist's paintings (Orig dataset) plus two sets of additional pictures. These additional datasets were obtained from the previous paintings by removing all but the colors or the shapes employed (Color and Style dataset, respectively). Results suggest that the verbal appreciation of Orig dataset when compared to Color and Style ones was mainly correlated to the neuroelectric indexes estimated during the first 10 s of observation of the pictures. Always in the first 10 s of observation: (1) Orig dataset induced more emotion and is perceived with more appreciation than the other two Color and Style datasets; (2) Style dataset is perceived with more attentional effort than the other investigated datasets. During the whole period of observation of 30 s: (1) emotion induced by Color and Style datasets increased across the time while that induced of the Orig dataset remain stable; (2) Color and Style dataset were perceived with more attentional effort than the Orig dataset. During the entire experience, there is evidence of a cortical flow of activity from the parietal and central areas toward the prefrontal and frontal areas during the observation of the images of all the datasets. This is coherent from the notion that active perception of the images with sustained cognitive attention in parietal and central areas caused the generation of the judgment about their aesthetic appreciation in frontal areas. PMID:28790907

  19. Wide range instantaneous temperature measurements of convective fluid flows by using a schlieren system based in color images

    NASA Astrophysics Data System (ADS)

    Martínez-González, A.; Moreno-Hernández, D.; Monzón-Hernández, D.; León-Rodríguez, M.

    2017-06-01

    In the schlieren method, the deflection of light by the presence of an inhomogeneous medium is proportional to the gradient of its refractive index. Such deflection, in a schlieren system, is represented by light intensity variations on the observation plane. Then, for a digital camera, the intensity level registered by each pixel depends mainly on the variation of the medium refractive index and the status of the digital camera settings. Therefore, in this study, we regulate the intensity value of each pixel by controlling the camera settings such as exposure time, gamma and gain values in order to calibrate the image obtained to the actual temperature values of a particular medium. In our approach, we use a color digital camera. The images obtained with a color digital camera can be separated on three different color-channels. Each channel corresponds to red, green, and blue color, moreover, each one has its own sensitivity. The differences in sensitivity allow us to obtain a range of temperature values for each color channel. Thus, high, medium and low sensitivity correspond to green, blue, and red color channel respectively. Therefore, by adding up the temperature contribution of each color channel we obtain a wide range of temperature values. Hence, the basic idea in our approach to measure temperature, using a schlieren system, is to relate the intensity level of each pixel in a schlieren image to the corresponding knife-edge position measured at the exit focal plane of the system. Our approach was applied to the measurement of instantaneous temperature fields of the air convection caused by a heated rectangular metal plate and a candle flame. We found that for the metal plate temperature measurements only the green and blue color-channels were required to sense the entire phenomena. On the other hand, for the candle case, the three color-channels were needed to obtain a complete measurement of temperature. In our study, the candle temperature was took as reference and it was found that the maximum temperature value obtained for green, blue and red color-channel was ∼275.6, ∼412.9, and ∼501.3 °C, respectively.

  20. Short-term and long-term attentional biases to frequently encountered target features.

    PubMed

    Sha, Li Z; Remington, Roger W; Jiang, Yuhong V

    2017-07-01

    It has long been known that frequently occurring targets are attended better than infrequent ones in visual search. But does this frequency-based attentional prioritization reflect momentary or durable changes in attention? Here we observed both short-term and long-term attentional biases for visual features as a function of different types of statistical associations between the targets, distractors, and features. Participants searched for a target, a line oriented horizontally or vertically among diagonal distractors, and reported its length. In one set of experiments we manipulated the target's color probability: Targets were more often in Color 1 than in Color 2. The distractors were in other colors. Participants found Color 1 targets more quickly than Color 2 targets, but this preference disappeared immediately when the target's color became random in the subsequent testing phase. In the other set of experiments, we manipulated the diagnostic values of the two colors: Color 1 was more often a target than a distractor; Color 2 was more often a distractor than a target. Participants found Color 1 targets more quickly than Color 2 targets. Importantly, and in contrast to the first set of experiments, the featural preference was sustained in the testing phase. These results suggest that short-term and long-term attentional biases are products of different statistical information. Finding a target momentarily activates its features, inducing short-term repetition priming. Long-term changes in attention, on the other hand, may rely on learning diagnostic features of the targets.

  1. Digital Earth Watch: Investigating the World with Digital Cameras

    NASA Astrophysics Data System (ADS)

    Gould, A. D.; Schloss, A. L.; Beaudry, J.; Pickle, J.

    2015-12-01

    Every digital camera including the smart phone camera can be a scientific tool. Pictures contain millions of color intensity measurements organized spatially allowing us to measure properties of objects in the images. This presentation will demonstrate how digital pictures can be used for a variety of studies with a special emphasis on using repeat digital photographs to study change-over-time in outdoor settings with a Picture Post. Demonstrations will include using inexpensive color filters to take pictures that enhance features in images such as unhealthy leaves on plants, or clouds in the sky. Software available at no cost from the Digital Earth Watch (DEW) website that lets students explore light, color and pixels, manipulate color in images and make measurements, will be demonstrated. DEW and Picture Post were developed with support from NASA. Please visit our websites: DEW: http://dew.globalsystemsscience.orgPicture Post: http://picturepost.unh.edu

  2. Surface compositions across Pluto and Charon.

    PubMed

    Grundy, W M; Binzel, R P; Buratti, B J; Cook, J C; Cruikshank, D P; Dalle Ore, C M; Earle, A M; Ennico, K; Howett, C J A; Lunsford, A W; Olkin, C B; Parker, A H; Philippe, S; Protopapa, S; Quirico, E; Reuter, D C; Schmitt, B; Singer, K N; Verbiscer, A J; Beyer, R A; Buie, M W; Cheng, A F; Jennings, D E; Linscott, I R; Parker, J Wm; Schenk, P M; Spencer, J R; Stansberry, J A; Stern, S A; Throop, H B; Tsang, C C C; Weaver, H A; Weigle, G E; Young, L A

    2016-03-18

    The New Horizons spacecraft mapped colors and infrared spectra across the encounter hemispheres of Pluto and Charon. The volatile methane, carbon monoxide, and nitrogen ices that dominate Pluto's surface have complicated spatial distributions resulting from sublimation, condensation, and glacial flow acting over seasonal and geological time scales. Pluto's water ice "bedrock" was also mapped, with isolated outcrops occurring in a variety of settings. Pluto's surface exhibits complex regional color diversity associated with its distinct provinces. Charon's color pattern is simpler, dominated by neutral low latitudes and a reddish northern polar region. Charon's near-infrared spectra reveal highly localized areas with strong ammonia absorption tied to small craters with relatively fresh-appearing impact ejecta. Copyright © 2016, American Association for the Advancement of Science.

  3. Biogeochemical Response to Mesoscale Physical Forcing in the California Current System

    NASA Technical Reports Server (NTRS)

    Niiler, Pearn P.; Letelier, Ricardo; Moisan, John R.; Marra, John A. (Technical Monitor)

    2001-01-01

    In the first part of the project, we investigated the local response of the coastal ocean ecosystems (changes in chlorophyll, concentration and chlorophyll, fluorescence quantum yield) to physical forcing by developing and deploying Autonomous Drifting Ocean Stations (ADOS) within several mesoscale features along the U.S. west coast. Also, we compared the temporal and spatial variability registered by sensors mounted in the drifters to that registered by the sensors mounted in the satellites in order to assess the scales of variability that are not resolved by the ocean color satellite. The second part of the project used the existing WOCE SVP Surface Lagrangian drifters to track individual water parcels through time. The individual drifter tracks were used to generate multivariate time series by interpolating/extracting the biological and physical data fields retrieved by remote sensors (ocean color, SST, wind speed and direction, wind stress curl, and sea level topography). The individual time series of the physical data (AVHRR, TOPEX, NCEP) were analyzed against the ocean color (SeaWiFS) time-series to determine the time scale of biological response to the physical forcing. The results from this part of the research is being used to compare the decorrelation scales of chlorophyll from a Lagrangian and Eulerian framework. The results from both parts of this research augmented the necessary time series data needed to investigate the interactions between the ocean mesoscale features, wind, and the biogeochemical processes. Using the historical Lagrangian data sets, we have completed a comparison of the decorrelation scales in both the Eulerian and Lagrangian reference frame for the SeaWiFS data set. We are continuing to investigate how these results might be used in objective mapping efforts.

  4. The TRICLOBS Dynamic Multi-Band Image Data Set for the Development and Evaluation of Image Fusion Methods

    PubMed Central

    Hogervorst, Maarten A.; Pinkus, Alan R.

    2016-01-01

    The fusion and enhancement of multiband nighttime imagery for surveillance and navigation has been the subject of extensive research for over two decades. Despite the ongoing efforts in this area there is still only a small number of static multiband test images available for the development and evaluation of new image fusion and enhancement methods. Moreover, dynamic multiband imagery is also currently lacking. To fill this gap we present the TRICLOBS dynamic multi-band image data set containing sixteen registered visual (0.4–0.7μm), near-infrared (NIR, 0.7–1.0μm) and long-wave infrared (LWIR, 8–14μm) motion sequences. They represent different military and civilian surveillance scenarios registered in three different scenes. Scenes include (military and civilian) people that are stationary, walking or running, or carrying various objects. Vehicles, foliage, and buildings or other man-made structures are also included in the scenes. This data set is primarily intended for the development and evaluation of image fusion, enhancement and color mapping algorithms for short-range surveillance applications. The imagery was collected during several field trials with our newly developed TRICLOBS (TRI-band Color Low-light OBServation) all-day all-weather surveillance system. This system registers a scene in the Visual, NIR and LWIR part of the electromagnetic spectrum using three optically aligned sensors (two digital image intensifiers and an uncooled long-wave infrared microbolometer). The three sensor signals are mapped to three individual RGB color channels, digitized, and stored as uncompressed RGB (false) color frames. The TRICLOBS data set enables the development and evaluation of (both static and dynamic) image fusion, enhancement and color mapping algorithms. To allow the development of realistic color remapping procedures, the data set also contains color photographs of each of the three scenes. The color statistics derived from these photographs can be used to define color mappings that give the multi-band imagery a realistic color appearance. PMID:28036328

  5. The TRICLOBS Dynamic Multi-Band Image Data Set for the Development and Evaluation of Image Fusion Methods.

    PubMed

    Toet, Alexander; Hogervorst, Maarten A; Pinkus, Alan R

    2016-01-01

    The fusion and enhancement of multiband nighttime imagery for surveillance and navigation has been the subject of extensive research for over two decades. Despite the ongoing efforts in this area there is still only a small number of static multiband test images available for the development and evaluation of new image fusion and enhancement methods. Moreover, dynamic multiband imagery is also currently lacking. To fill this gap we present the TRICLOBS dynamic multi-band image data set containing sixteen registered visual (0.4-0.7μm), near-infrared (NIR, 0.7-1.0μm) and long-wave infrared (LWIR, 8-14μm) motion sequences. They represent different military and civilian surveillance scenarios registered in three different scenes. Scenes include (military and civilian) people that are stationary, walking or running, or carrying various objects. Vehicles, foliage, and buildings or other man-made structures are also included in the scenes. This data set is primarily intended for the development and evaluation of image fusion, enhancement and color mapping algorithms for short-range surveillance applications. The imagery was collected during several field trials with our newly developed TRICLOBS (TRI-band Color Low-light OBServation) all-day all-weather surveillance system. This system registers a scene in the Visual, NIR and LWIR part of the electromagnetic spectrum using three optically aligned sensors (two digital image intensifiers and an uncooled long-wave infrared microbolometer). The three sensor signals are mapped to three individual RGB color channels, digitized, and stored as uncompressed RGB (false) color frames. The TRICLOBS data set enables the development and evaluation of (both static and dynamic) image fusion, enhancement and color mapping algorithms. To allow the development of realistic color remapping procedures, the data set also contains color photographs of each of the three scenes. The color statistics derived from these photographs can be used to define color mappings that give the multi-band imagery a realistic color appearance.

  6. What top-down task sets do for us: an ERP study on the benefits of advance preparation in visual search.

    PubMed

    Eimer, Martin; Kiss, Monika; Nicholas, Susan

    2011-12-01

    When target-defining features are specified in advance, attentional target selection in visual search is controlled by preparatory top-down task sets. We used ERP measures to study voluntary target selection in the absence of such feature-specific task sets, and to compare it to selection that is guided by advance knowledge about target features. Visual search arrays contained two different color singleton digits, and participants had to select one of these as target and report its parity. Target color was either known in advance (fixed color task) or had to be selected anew on each trial (free color-choice task). ERP correlates of spatially selective attentional target selection (N2pc) and working memory processing (SPCN) demonstrated rapid target selection and efficient exclusion of color singleton distractors from focal attention and working memory in the fixed color task. In the free color-choice task, spatially selective processing also emerged rapidly, but selection efficiency was reduced, with nontarget singleton digits capturing attention and gaining access to working memory. Results demonstrate the benefits of top-down task sets: Feature-specific advance preparation accelerates target selection, rapidly resolves attentional competition, and prevents irrelevant events from attracting attention and entering working memory.

  7. 7 CFR 28.402 - Strict Middling Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Strict Middling Color. 28.402 Section 28.402... for the Color Grade of American Upland Cotton § 28.402 Strict Middling Color. Strict Middling Color is color which is within the range represented by a set of samples in the custody of the United States...

  8. 7 CFR 28.402 - Strict Middling Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Strict Middling Color. 28.402 Section 28.402... for the Color Grade of American Upland Cotton § 28.402 Strict Middling Color. Strict Middling Color is color which is within the range represented by a set of samples in the custody of the United States...

  9. 7 CFR 28.402 - Strict Middling Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Strict Middling Color. 28.402 Section 28.402... for the Color Grade of American Upland Cotton § 28.402 Strict Middling Color. Strict Middling Color is color which is within the range represented by a set of samples in the custody of the United States...

  10. 7 CFR 28.402 - Strict Middling Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Strict Middling Color. 28.402 Section 28.402... for the Color Grade of American Upland Cotton § 28.402 Strict Middling Color. Strict Middling Color is color which is within the range represented by a set of samples in the custody of the United States...

  11. 7 CFR 28.402 - Strict Middling Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Middling Color. 28.402 Section 28.402... for the Color Grade of American Upland Cotton § 28.402 Strict Middling Color. Strict Middling Color is color which is within the range represented by a set of samples in the custody of the United States...

  12. ColorMoves: Optimizing Color's Potential for Exploration and Communication of Data

    NASA Astrophysics Data System (ADS)

    Samsel, F.

    2017-12-01

    Color is the most powerful perceptual channel available for exposing and communicating data. Most visualizations are rendered in one of a handful of common colormaps - the rainbow, cool-warm, heat map and viridis. These maps meet the basic criteria for encoding data - perceptual uniformity and reasonable discriminatory power. However, as the size and complexity of data grows, our need to optimize the potential of color grows. The ability to expose greater detail and differentiate between multiple variables becomes ever more important. To meet this need we have created ColorMoves, an interactive colormap construction tool that enables scientists to quickly and easily align a concentration contrast with the data ranges of interest. Perceptual research tells us that luminance is the strongest contrast and thus provides the highest degree of perceptual discrimination. However, the most commonly used colormaps contain a limited range of luminance contrast. ColorMoves enables interactive constructing colormaps enabling one to distribute the luminance where is it most needed. The interactive interface enables optimal placement of the color scales. The ability to watch the changes on ones data, in real time makes precision adjustment quick and easy. By enabling more precise placement and multiple ranges of luminance one can construct colomaps containing greater discriminatory power. By selecting from the wide range of color scale hues scientists can create colormaps intuitive to their subject. ColorMoves is comprised of four main components: a set of 40 color scales; a histogram of the data distribution; a viewing area showing the colormap on your data; and the controls section. The 40 color scales span the spectrum of hues, saturation levels and value distributions. The histogram of the data distribution enables placement of the color scales in precise locations. The viewing area show is the impact of changes on the data in real time. The controls section enables export of the constructed colormaps for use in tools such as ParaView and Matplotlib. For a clearer understanding of ColorMoves capability we recommend trying it out at SciVisColor.org.

  13. ColorTree: a batch customization tool for phylogenic trees

    PubMed Central

    Chen, Wei-Hua; Lercher, Martin J

    2009-01-01

    Background Genome sequencing projects and comparative genomics studies typically aim to trace the evolutionary history of large gene sets, often requiring human inspection of hundreds of phylogenetic trees. If trees are checked for compatibility with an explicit null hypothesis (e.g., the monophyly of certain groups), this daunting task is greatly facilitated by an appropriate coloring scheme. Findings In this note, we introduce ColorTree, a simple yet powerful batch customization tool for phylogenic trees. Based on pattern matching rules, ColorTree applies a set of customizations to an input tree file, e.g., coloring labels or branches. The customized trees are saved to an output file, which can then be viewed and further edited by Dendroscope (a freely available tree viewer). ColorTree runs on any Perl installation as a stand-alone command line tool, and its application can thus be easily automated. This way, hundreds of phylogenic trees can be customized for easy visual inspection in a matter of minutes. Conclusion ColorTree allows efficient and flexible visual customization of large tree sets through the application of a user-supplied configuration file to multiple tree files. PMID:19646243

  14. ColorTree: a batch customization tool for phylogenic trees.

    PubMed

    Chen, Wei-Hua; Lercher, Martin J

    2009-07-31

    Genome sequencing projects and comparative genomics studies typically aim to trace the evolutionary history of large gene sets, often requiring human inspection of hundreds of phylogenetic trees. If trees are checked for compatibility with an explicit null hypothesis (e.g., the monophyly of certain groups), this daunting task is greatly facilitated by an appropriate coloring scheme. In this note, we introduce ColorTree, a simple yet powerful batch customization tool for phylogenic trees. Based on pattern matching rules, ColorTree applies a set of customizations to an input tree file, e.g., coloring labels or branches. The customized trees are saved to an output file, which can then be viewed and further edited by Dendroscope (a freely available tree viewer). ColorTree runs on any Perl installation as a stand-alone command line tool, and its application can thus be easily automated. This way, hundreds of phylogenic trees can be customized for easy visual inspection in a matter of minutes. ColorTree allows efficient and flexible visual customization of large tree sets through the application of a user-supplied configuration file to multiple tree files.

  15. Real-Time Lane Region Detection Using a Combination of Geometrical and Image Features

    PubMed Central

    Cáceres Hernández, Danilo; Kurnianggoro, Laksono; Filonenko, Alexander; Jo, Kang Hyun

    2016-01-01

    Over the past few decades, pavement markings have played a key role in intelligent vehicle applications such as guidance, navigation, and control. However, there are still serious issues facing the problem of lane marking detection. For example, problems include excessive processing time and false detection due to similarities in color and edges between traffic signs (channeling lines, stop lines, crosswalk, arrows, etc.). This paper proposes a strategy to extract the lane marking information taking into consideration its features such as color, edge, and width, as well as the vehicle speed. Firstly, defining the region of interest is a critical task to achieve real-time performance. In this sense, the region of interest is dependent on vehicle speed. Secondly, the lane markings are detected by using a hybrid color-edge feature method along with a probabilistic method, based on distance-color dependence and a hierarchical fitting model. Thirdly, the following lane marking information is extracted: the number of lane markings to both sides of the vehicle, the respective fitting model, and the centroid information of the lane. Using these parameters, the region is computed by using a road geometric model. To evaluate the proposed method, a set of consecutive frames was used in order to validate the performance. PMID:27869657

  16. Improved eye- and skin-color prediction based on 8 SNPs.

    PubMed

    Hart, Katie L; Kimura, Shey L; Mushailov, Vladimir; Budimlija, Zoran M; Prinz, Mechthild; Wurmbach, Elisa

    2013-06-01

    To improve the 7-plex system to predict eye and skin color by increasing precision and detailed phenotypic descriptions. Analysis of an eighth single nucleotide polymorphism (SNP), rs12896399 (SLC24A4), showed a statistically significant association with human eye color (P=0.007) but a rather poor strength of agreement (κ=0.063). This SNP was added to the 7-plex system (rs12913832 at HERC2, rs1545397 at OCA2, rs16891982 at SLC45A2, rs1426654 at SLC24A5, rs885479 at MC1R, rs6119471 at ASIP, and rs12203592 at IRF4). Further, the instruction guidelines on the interpretation of genotypes were changed to create a new 8-plex system. This was based on the analysis of an 803-sample training set of various populations. The newly developed 8-plex system can predict the eye colors brown, green, and blue, and skin colors light, not dark, and not light. It is superior to the 7-plex system with its additional ability to predict blue eye and light skin color. The 8-plex system was tested on an additional 212 samples, the test set. Analysis showed that the number of positive descriptions for eye colors as being brown, green, or blue increased significantly (P=6.98e-15, z-score: -7.786). The error rate for eye-color prediction was low, at approximately 5%, while the skin color prediction showed no error in the test set (1% in training set). We can conclude that the new 8-plex system for the prediction of eye and skin color substantially enhances its former version.

  17. 7 CFR 51.1860 - Color classification.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color classification. 51.1860 Section 51.1860... STANDARDS) United States Standards for Fresh Tomatoes 1 Color Classification § 51.1860 Color classification... illustrating the color classification requirements, as set forth in this section. This visual aid may be...

  18. [True color accuracy in digital forensic photography].

    PubMed

    Ramsthaler, Frank; Birngruber, Christoph G; Kröll, Ann-Katrin; Kettner, Mattias; Verhoff, Marcel A

    2016-01-01

    Forensic photographs not only need to be unaltered and authentic and capture context-relevant images, along with certain minimum requirements for image sharpness and information density, but color accuracy also plays an important role, for instance, in the assessment of injuries or taphonomic stages, or in the identification and evaluation of traces from photos. The perception of color not only varies subjectively from person to person, but as a discrete property of an image, color in digital photos is also to a considerable extent influenced by technical factors such as lighting, acquisition settings, camera, and output medium (print, monitor). For these reasons, consistent color accuracy has so far been limited in digital photography. Because images usually contain a wealth of color information, especially for complex or composite colors or shades of color, and the wavelength-dependent sensitivity to factors such as light and shadow may vary between cameras, the usefulness of issuing general recommendations for camera capture settings is limited. Our results indicate that true image colors can best and most realistically be captured with the SpyderCheckr technical calibration tool for digital cameras tested in this study. Apart from aspects such as the simplicity and quickness of the calibration procedure, a further advantage of the tool is that the results are independent of the camera used and can also be used for the color management of output devices such as monitors and printers. The SpyderCheckr color-code patches allow true colors to be captured more realistically than with a manual white balance tool or an automatic flash. We therefore recommend that the use of a color management tool should be considered for the acquisition of all images that demand high true color accuracy (in particular in the setting of injury documentation).

  19. A category-specific top-down attentional set can affect the neural responses outside the current focus of attention.

    PubMed

    Jiang, Yunpeng; Wu, Xia; Gao, Xiaorong

    2017-10-17

    A top-down set can guide attention to enhance the processing of task-relevant objects. Many studies have found that the top-down set can be tuned to a category level. However, it is unclear whether the category-specific top-down set involving a central search task can exist outside the current area of attentional focus. To directly probe the neural responses inside and outside the current focus of attention, we recorded continuous EEG to measure the contralateral ERP components for central targets and the steady-state visual evoked potential (SSVEP) oscillations associated with a flickering checkerboard placed on the visual periphery. The relationship of color categories between targets and non-targets was manipulated to investigate the effect of category-specific top-down set. Results showed that when the color categories of targets and non-targets in the central search arrays were the same, larger SSVEP oscillations were evoked by target color peripheral checkerboards relative to the non-target color ones outside the current attentional focus. However, when the color categories of targets and non-targets were different, the peripheral checkerboards in two different colors of the same category evoked similar SSVEP oscillations, indicating the effects of category-specific top-down set. These results firstly demonstrate that the category-specific top-down set can affect the neural responses of peripheral distractors. The results could support the idea of a global selection account and challenge the attentional window account in selective attention. Copyright © 2017. Published by Elsevier B.V.

  20. 7 CFR 28.404 - Strict Low Middling Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Strict Low Middling Color. 28.404 Section 28.404... for the Color Grade of American Upland Cotton § 28.404 Strict Low Middling Color. Strict Low Middling Color is color which is within the range represented by a set of samples in the custody of the United...

  1. 7 CFR 28.406 - Strict Good Ordinary Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Strict Good Ordinary Color. 28.406 Section 28.406... for the Color Grade of American Upland Cotton § 28.406 Strict Good Ordinary Color. Strict Good Ordinary Color is color which is within the range represented by a set of samples in the custody of the...

  2. 7 CFR 28.404 - Strict Low Middling Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Strict Low Middling Color. 28.404 Section 28.404... for the Color Grade of American Upland Cotton § 28.404 Strict Low Middling Color. Strict Low Middling Color is color which is within the range represented by a set of samples in the custody of the United...

  3. 7 CFR 28.404 - Strict Low Middling Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Strict Low Middling Color. 28.404 Section 28.404... for the Color Grade of American Upland Cotton § 28.404 Strict Low Middling Color. Strict Low Middling Color is color which is within the range represented by a set of samples in the custody of the United...

  4. 7 CFR 28.406 - Strict Good Ordinary Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Strict Good Ordinary Color. 28.406 Section 28.406... for the Color Grade of American Upland Cotton § 28.406 Strict Good Ordinary Color. Strict Good Ordinary Color is color which is within the range represented by a set of samples in the custody of the...

  5. 7 CFR 28.406 - Strict Good Ordinary Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Strict Good Ordinary Color. 28.406 Section 28.406... for the Color Grade of American Upland Cotton § 28.406 Strict Good Ordinary Color. Strict Good Ordinary Color is color which is within the range represented by a set of samples in the custody of the...

  6. 7 CFR 28.406 - Strict Good Ordinary Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Strict Good Ordinary Color. 28.406 Section 28.406... for the Color Grade of American Upland Cotton § 28.406 Strict Good Ordinary Color. Strict Good Ordinary Color is color which is within the range represented by a set of samples in the custody of the...

  7. 7 CFR 28.404 - Strict Low Middling Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Strict Low Middling Color. 28.404 Section 28.404... for the Color Grade of American Upland Cotton § 28.404 Strict Low Middling Color. Strict Low Middling Color is color which is within the range represented by a set of samples in the custody of the United...

  8. 7 CFR 28.406 - Strict Good Ordinary Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Good Ordinary Color. 28.406 Section 28.406... for the Color Grade of American Upland Cotton § 28.406 Strict Good Ordinary Color. Strict Good Ordinary Color is color which is within the range represented by a set of samples in the custody of the...

  9. 7 CFR 28.404 - Strict Low Middling Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Low Middling Color. 28.404 Section 28.404... for the Color Grade of American Upland Cotton § 28.404 Strict Low Middling Color. Strict Low Middling Color is color which is within the range represented by a set of samples in the custody of the United...

  10. Optical tests for using smartphones inside medical devices

    NASA Astrophysics Data System (ADS)

    Bernat, Amir S.; Acobas, Jennifer K.; Phang, Ye Shang; Hassan, David; Bolton, Frank J.; Levitz, David

    2018-02-01

    Smartphones are currently used in many medical applications and are more frequently being integrated into medical imaging devices. The regulatory requirements in existence today however, particularly the standardization of smartphone imaging through validation and verification testing, only partially cover imaging characteristics with a smartphone. Specifically, it has been shown that smartphone camera specifications are of sufficient quality for medical imaging, and there are devices which comply with the FDA's regulatory requirements for a medical device such as a device's field of view, direction of viewing and optical resolution and optical distortion. However, these regulatory requirements do not call specifically for color testing. Images of the same object using automatic settings or different light sources can show different color composition. Experimental results showing such differences are presented. Under some circumstances, such differences in color composition could potentially lead to incorrect diagnoses. It is therefore critical to control the smartphone camera and illumination parameters properly. This paper examines different smartphone camera settings that affect image quality and color composition. To test and select the correct settings, a test methodology is proposed. It aims at evaluating and testing image color correctness and white balance settings for mobile phones and LED light sources. Emphasis is placed on color consistency and deviation from gray values, specifically by evaluating the ΔC values based on the CIEL*a*b* color space. Results show that such standardization minimizes differences in color composition and thus could reduce the risk of a wrong diagnosis.

  11. 7 CFR 28.424 - Strict Low Middling Spotted Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Strict Low Middling Spotted Color. 28.424 Section 28.424 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Spotted Color. Strict Low Middling Spotted Color is color which is within the range represented by a set...

  12. 7 CFR 28.425 - Low Middling Spotted Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Low Middling Spotted Color. 28.425 Section 28.425 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Low Middling Spotted Color is color which is within the range represented by a set of samples in...

  13. 7 CFR 28.433 - Strict Low Middling Tinged Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Strict Low Middling Tinged Color. 28.433 Section 28.433 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Tinged Color. Strict Low Middling Tinged Color is color which is within the range represented by a set of...

  14. 7 CFR 28.433 - Strict Low Middling Tinged Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Strict Low Middling Tinged Color. 28.433 Section 28.433 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Tinged Color. Strict Low Middling Tinged Color is color which is within the range represented by a set of...

  15. 7 CFR 28.422 - Strict Middling Spotted Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Strict Middling Spotted Color. 28.422 Section 28.422 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Strict Middling Spotted Color is color which is within the range represented by a set of samples...

  16. 7 CFR 28.426 - Strict Good Ordinary Spotted Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Strict Good Ordinary Spotted Color. 28.426 Section 28.426 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Spotted Color. Strict Good Ordinary Spotted Color is color which is within the range represented by a set...

  17. 7 CFR 28.426 - Strict Good Ordinary Spotted Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Strict Good Ordinary Spotted Color. 28.426 Section 28.426 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Spotted Color. Strict Good Ordinary Spotted Color is color which is within the range represented by a set...

  18. 7 CFR 28.424 - Strict Low Middling Spotted Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Strict Low Middling Spotted Color. 28.424 Section 28.424 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Spotted Color. Strict Low Middling Spotted Color is color which is within the range represented by a set...

  19. 7 CFR 28.424 - Strict Low Middling Spotted Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Strict Low Middling Spotted Color. 28.424 Section 28.424 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Spotted Color. Strict Low Middling Spotted Color is color which is within the range represented by a set...

  20. 7 CFR 28.433 - Strict Low Middling Tinged Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Strict Low Middling Tinged Color. 28.433 Section 28.433 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Tinged Color. Strict Low Middling Tinged Color is color which is within the range represented by a set of...

  1. 7 CFR 28.425 - Low Middling Spotted Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Low Middling Spotted Color. 28.425 Section 28.425 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Low Middling Spotted Color is color which is within the range represented by a set of samples in...

  2. 7 CFR 28.426 - Strict Good Ordinary Spotted Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Strict Good Ordinary Spotted Color. 28.426 Section 28.426 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Spotted Color. Strict Good Ordinary Spotted Color is color which is within the range represented by a set...

  3. 7 CFR 28.422 - Strict Middling Spotted Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Strict Middling Spotted Color. 28.422 Section 28.422 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Strict Middling Spotted Color is color which is within the range represented by a set of samples...

  4. 7 CFR 28.424 - Strict Low Middling Spotted Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Strict Low Middling Spotted Color. 28.424 Section 28.424 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Spotted Color. Strict Low Middling Spotted Color is color which is within the range represented by a set...

  5. 7 CFR 28.422 - Strict Middling Spotted Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Strict Middling Spotted Color. 28.422 Section 28.422 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Strict Middling Spotted Color is color which is within the range represented by a set of samples...

  6. 7 CFR 28.433 - Strict Low Middling Tinged Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Strict Low Middling Tinged Color. 28.433 Section 28.433 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Tinged Color. Strict Low Middling Tinged Color is color which is within the range represented by a set of...

  7. 7 CFR 28.425 - Low Middling Spotted Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Low Middling Spotted Color. 28.425 Section 28.425 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Low Middling Spotted Color is color which is within the range represented by a set of samples in...

  8. 7 CFR 28.426 - Strict Good Ordinary Spotted Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Strict Good Ordinary Spotted Color. 28.426 Section 28.426 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Spotted Color. Strict Good Ordinary Spotted Color is color which is within the range represented by a set...

  9. 7 CFR 28.425 - Low Middling Spotted Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Low Middling Spotted Color. 28.425 Section 28.425 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Low Middling Spotted Color is color which is within the range represented by a set of samples in...

  10. 7 CFR 28.422 - Strict Middling Spotted Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Strict Middling Spotted Color. 28.422 Section 28.422 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Strict Middling Spotted Color is color which is within the range represented by a set of samples...

  11. 7 CFR 28.433 - Strict Low Middling Tinged Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Low Middling Tinged Color. 28.433 Section 28.433 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Tinged Color. Strict Low Middling Tinged Color is color which is within the range represented by a set of...

  12. 7 CFR 28.425 - Low Middling Spotted Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Low Middling Spotted Color. 28.425 Section 28.425 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Low Middling Spotted Color is color which is within the range represented by a set of samples in...

  13. 7 CFR 28.422 - Strict Middling Spotted Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Middling Spotted Color. 28.422 Section 28.422 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Color. Strict Middling Spotted Color is color which is within the range represented by a set of samples...

  14. 7 CFR 28.426 - Strict Good Ordinary Spotted Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Good Ordinary Spotted Color. 28.426 Section 28.426 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Spotted Color. Strict Good Ordinary Spotted Color is color which is within the range represented by a set...

  15. 7 CFR 28.424 - Strict Low Middling Spotted Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Low Middling Spotted Color. 28.424 Section 28.424 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Spotted Color. Strict Low Middling Spotted Color is color which is within the range represented by a set...

  16. The stability of color discrimination threshold determined using pseudoisochromatic test plates

    NASA Astrophysics Data System (ADS)

    Zutere, B.; Jurasevska Luse, K.; Livzane, A.

    2014-09-01

    Congenital red-green color vision deficiency is one of the most common genetic disorders. A previously printed set of pseudoisochromatic plates (KAMS test, 2012) was created for individual discrimination threshold determination in case of mild congenital red-green color vision deficiency using neutral colors (colors confused with gray). The diagnostics of color blind subjects was performed with Richmond HRR (4th edition, 2002) test, Oculus HMC anomaloscope, and further the examination was made using the KAMS test. 4 male subjects aged 20 to 24 years old participated in the study: all of them were diagnosed with deuteranomalia. Due to the design of the plates, the threshold of every subject in each trial was defined as the plate total color difference value ΔE at which the stimulus was detected 75% of the time, so the just-noticeable difference (jnd) was calculated in CIE LAB DeltaE (ΔE) units. Authors performed repeated discrimination threshold measurements (5 times) for all four subjects under controlled illumination conditions. Psychophysical data were taken by sampling an observer's performance on a psychophysical task at a number of different stimulus saturation levels. Results show that a total color difference value ΔE threshold exists for each individual tested with the KAMS pseudoisochromatic plates, this threshold value does not change significantly in multiple measurements. Deuteranomal threshold values aquired using greenish plates of KAMS test are significantly higher than thresholds acquired using reddish plates. A strong positive correlation (R=0.94) exists between anomaloscope matching range (MR) and deuteranomal thresholds aquired by the KAMS test and (R=0.81) between error score in the Richmond HRR test and thresholds aquired by the KAMS test.

  17. Chromatic aberration and the roles of double-opponent and color-luminance neurons in color vision.

    PubMed

    Vladusich, Tony

    2007-03-01

    How does the visual cortex encode color? I summarize a theory in which cortical double-opponent color neurons perform a role in color constancy and a complementary set of color-luminance neurons function to selectively correct for color fringes induced by chromatic aberration in the eye. The theory may help to resolve an ongoing debate concerning the functional properties of cortical receptive fields involved in color coding.

  18. Structures in color space

    NASA Astrophysics Data System (ADS)

    Petrov, Alexander P.

    1996-09-01

    Classic colorimetry and the traditionally used color space do not represent all perceived colors (for example, browns look dark yellow in colorimetric conditions of observation) so, the specific goal of this work is to suggest another concept of color and to prove that the corresponding set of colors is complete. The idea of our approach attributing color to surface patches (not to the light) immediately ties all the problems of color perception and vision geometry. The equivalence relation in the linear space of light fluxes F established by a procedure of colorimetry gives us a 3D color space H. By definition we introduce a sample (sigma) (surface patch) as a linear mapping (sigma) : L yields H, where L is a subspace of F called the illumination space. A Dedekind structure of partial order can be defined in the set of the samples: two samples (alpha) and (Beta) belong to one chromatic class if ker(alpha) equals ker(Beta) and (alpha) > (Beta) if ker(alpha) ker(Beta) . The maximal elements of this chain create the chromatic class BLACK. There can be given geometrical arguments for L to be 3D and it can be proved that in this case the minimal element of the above Dedekind structure is unique and the corresponding chromatic class is called WHITE containing the samples (omega) such that ker(omega) equals {0} L. Color is defined as mapping C: H yields H and assuming color constancy the complete set of perceived colors is proved to be isomorphic to a subset C of 3 X 3 matrices. This subset is convex, limited and symmetrical with E/2 as the center of symmetry. The problem of metrization of the color space C is discussed and a color metric related to shape, i.e., to vision geometry, is suggested.

  19. Blue-green color categorization in Mandarin-English speakers.

    PubMed

    Wuerger, Sophie; Xiao, Kaida; Mylonas, Dimitris; Huang, Qingmei; Karatzas, Dimosthenis; Hird, Emily; Paramei, Galina

    2012-02-01

    Observers are faster to detect a target among a set of distracters if the targets and distracters come from different color categories. This cross-boundary advantage seems to be limited to the right visual field, which is consistent with the dominance of the left hemisphere for language processing [Gilbert et al., Proc. Natl. Acad. Sci. USA 103, 489 (2006)]. Here we study whether a similar visual field advantage is found in the color identification task in speakers of Mandarin, a language that uses a logographic system. Forty late Mandarin-English bilinguals performed a blue-green color categorization task, in a blocked design, in their first language (L1: Mandarin) or second language (L2: English). Eleven color singletons ranging from blue to green were presented for 160 ms, randomly in the left visual field (LVF) or right visual field (RVF). Color boundary and reaction times (RTs) at the color boundary were estimated in L1 and L2, for both visual fields. We found that the color boundary did not differ between the languages; RTs at the color boundary, however, were on average more than 100 ms shorter in the English compared to the Mandarin sessions, but only when the stimuli were presented in the RVF. The finding may be explained by the script nature of the two languages: Mandarin logographic characters are analyzed visuospatially in the right hemisphere, which conceivably facilitates identification of color presented to the LVF. © 2012 Optical Society of America

  20. Real-time, resource-constrained object classification on a micro-air vehicle

    NASA Astrophysics Data System (ADS)

    Buck, Louis; Ray, Laura

    2013-12-01

    A real-time embedded object classification algorithm is developed through the novel combination of binary feature descriptors, a bag-of-visual-words object model and the cortico-striatal loop (CSL) learning algorithm. The BRIEF, ORB and FREAK binary descriptors are tested and compared to SIFT descriptors with regard to their respective classification accuracies, execution times, and memory requirements when used with CSL on a 12.6 g ARM Cortex embedded processor running at 800 MHz. Additionally, the effect of x2 feature mapping and opponent-color representations used with these descriptors is examined. These tests are performed on four data sets of varying sizes and difficulty, and the BRIEF descriptor is found to yield the best combination of speed and classification accuracy. Its use with CSL achieves accuracies between 67% and 95% of those achieved with SIFT descriptors and allows for the embedded classification of a 128x192 pixel image in 0.15 seconds, 60 times faster than classification with SIFT. X2 mapping is found to provide substantial improvements in classification accuracy for all of the descriptors at little cost, while opponent-color descriptors are offer accuracy improvements only on colorful datasets.

  1. Subset selective search on the basis of color and preview.

    PubMed

    Donk, Mieke

    2017-01-01

    In the preview paradigm observers are presented with one set of elements (the irrelevant set) followed by the addition of a second set among which the target is presented (the relevant set). Search efficiency in such a preview condition has been demonstrated to be higher than that in a full-baseline condition in which both sets are simultaneously presented, suggesting that a preview of the irrelevant set reduces its influence on the search process. However, numbers of irrelevant and relevant elements are typically not independently manipulated. Moreover, subset selective search also occurs when both sets are presented simultaneously but differ in color. The aim of the present study was to investigate how numbers of irrelevant and relevant elements contribute to preview search in the absence and presence of a color difference between subsets. In two experiments it was demonstrated that a preview reduced the influence of the number of irrelevant elements in the absence but not in the presence of a color difference between subsets. In the presence of a color difference, a preview lowered the effect of the number of relevant elements but only when the target was defined by a unique feature within the relevant set (Experiment 1); when the target was defined by a conjunction of features (Experiment 2), search efficiency as a function of the number of relevant elements was not modulated by a preview. Together the results are in line with the idea that subset selective search is based on different simultaneously operating mechanisms.

  2. Optimal methodologies for terahertz time-domain spectroscopic analysis of traditional pigments in powder form

    NASA Astrophysics Data System (ADS)

    Ha, Taewoo; Lee, Howon; Sim, Kyung Ik; Kim, Jonghyeon; Jo, Young Chan; Kim, Jae Hoon; Baek, Na Yeon; Kang, Dai-ill; Lee, Han Hyoung

    2017-05-01

    We have established optimal methods for terahertz time-domain spectroscopic analysis of highly absorbing pigments in powder form based on our investigation of representative traditional Chinese pigments, such as azurite [blue-based color pigment], Chinese vermilion [red-based color pigment], and arsenic yellow [yellow-based color pigment]. To accurately extract the optical constants in the terahertz region of 0.1 - 3 THz, we carried out transmission measurements in such a way that intense absorption peaks did not completely suppress the transmission level. This required preparation of pellet samples with optimized thicknesses and material densities. In some cases, mixing the pigments with polyethylene powder was required to minimize absorption due to certain peak features. The resulting distortion-free terahertz spectra of the investigated set of pigment species exhibited well-defined unique spectral fingerprints. Our study will be useful to future efforts to establish non-destructive analysis methods of traditional pigments, to construct their spectral databases, and to apply these tools to restoration of cultural heritage materials.

  3. Automatic priming of attentional control by relevant colors.

    PubMed

    Ansorge, Ulrich; Becker, Stefanie I

    2012-01-01

    We tested whether color word cues automatically primed attentional control settings during visual search, or whether color words were used in a strategic manner for the control of attention. In Experiment 1, we used color words as cues that were informative or uninformative with respect to the target color. Regardless of the cue's informativeness, distractors similar to the color cue captured more attention. In Experiment 2, the participants either indicated their expectation about the target color or recalled the last target color, which was uncorrelated with the present target color. We observed more attentional capture by distractors that were similar to the participants' predictions and recollections, but no difference between effects of the recollected and predicted colors. In Experiment 3, we used 100%-informative word cues that were congruent with the predicted target color (e.g., the word "red" informed that the target would be red) or incongruent with the predicted target color (e.g., the word "green" informed that the target would be red) and found that informative incongruent word cues primed attention capture by a word-similar distractor. Together, the results suggest that word cues (Exps. 1 and 3) and color representations (Exp. 2) primed attention capture in an automatic manner. This indicates that color cues automatically primed temporary adjustments in attention control settings.

  4. Regional vicarious gain adjustment for coastal VIIRS products

    NASA Astrophysics Data System (ADS)

    Bowers, Jennifer; Arnone, Robert; Ladner, Sherwin; Fargion, Giulietta S.; Lawson, Adam; Martinolich, Paul; Vandermeulen, Ryan

    2014-05-01

    As part of the Joint Polar Satellite System (JPSS) Ocean Cal/Val Team, Naval Research Lab - Stennis Space Center (NRL-SSC) has been working to facilitate calibration and validation of the Visible Infrared Imaging Radiometer Suite (VIIRS) ocean color products. By relaxing the constraints of the NASA Ocean Biology Processing Group (OBPG) methodology for vicarious calibration of ocean color satellites and utilizing the Aerosol Robotic Network Ocean Color (AERONET-OC) system to provide in situ data, we investigated differences between remotely sensed water leaving radiance and the expected in situ response in coastal areas and compare the results to traditional Marine Optical Buoy (MOBY) calibration/validation activities. An evaluation of the Suomi National Polar-Orbiting Partnership (SNPP)-VIIRS ocean color products was performed in coastal waters using the time series data obtained from the Northern Gulf of Mexico AERONET-OC site, WaveCIS. The coastal site provides different water types with varying complexity of CDOM, sedimentary, and chlorophyll components. Time series data sets were used to develop a vicarious gain adjustment (VGA) at this site, which provides a regional top of the atmospheric (TOA) spectral offset to compare the standard MOBY spectral calibration gain in open ocean waters.

  5. 7 CFR 28.423 - Middling Spotted Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Middling Spotted Color. 28.423 Section 28.423... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Spotted Cotton § 28.423 Middling Spotted Color. Middling Spotted Color is color which is within the range represented by a set of samples in the custody of...

  6. 7 CFR 28.432 - Middling Tinged Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Middling Tinged Color. 28.432 Section 28.432... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Tinged Cotton § 28.432 Middling Tinged Color. Middling Tinged Color is color which is within the range represented by a set of samples in the custody of...

  7. 7 CFR 28.434 - Low Middling Tinged Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Low Middling Tinged Color. 28.434 Section 28.434... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Tinged Cotton § 28.434 Low Middling Tinged Color. Low Middling Tinged Color is color which is within the range represented by a set of samples in the...

  8. 7 CFR 28.423 - Middling Spotted Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Middling Spotted Color. 28.423 Section 28.423... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Spotted Cotton § 28.423 Middling Spotted Color. Middling Spotted Color is color which is within the range represented by a set of samples in the custody of...

  9. 7 CFR 28.432 - Middling Tinged Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Middling Tinged Color. 28.432 Section 28.432... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Tinged Cotton § 28.432 Middling Tinged Color. Middling Tinged Color is color which is within the range represented by a set of samples in the custody of...

  10. 7 CFR 28.432 - Middling Tinged Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Middling Tinged Color. 28.432 Section 28.432... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Tinged Cotton § 28.432 Middling Tinged Color. Middling Tinged Color is color which is within the range represented by a set of samples in the custody of...

  11. 7 CFR 28.434 - Low Middling Tinged Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Low Middling Tinged Color. 28.434 Section 28.434... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Tinged Cotton § 28.434 Low Middling Tinged Color. Low Middling Tinged Color is color which is within the range represented by a set of samples in the...

  12. 7 CFR 28.432 - Middling Tinged Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Middling Tinged Color. 28.432 Section 28.432... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Tinged Cotton § 28.432 Middling Tinged Color. Middling Tinged Color is color which is within the range represented by a set of samples in the custody of...

  13. 7 CFR 28.423 - Middling Spotted Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Middling Spotted Color. 28.423 Section 28.423... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Spotted Cotton § 28.423 Middling Spotted Color. Middling Spotted Color is color which is within the range represented by a set of samples in the custody of...

  14. 7 CFR 28.434 - Low Middling Tinged Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Low Middling Tinged Color. 28.434 Section 28.434... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Tinged Cotton § 28.434 Low Middling Tinged Color. Low Middling Tinged Color is color which is within the range represented by a set of samples in the...

  15. 7 CFR 28.434 - Low Middling Tinged Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Low Middling Tinged Color. 28.434 Section 28.434... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Tinged Cotton § 28.434 Low Middling Tinged Color. Low Middling Tinged Color is color which is within the range represented by a set of samples in the...

  16. 7 CFR 28.423 - Middling Spotted Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Middling Spotted Color. 28.423 Section 28.423... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Spotted Cotton § 28.423 Middling Spotted Color. Middling Spotted Color is color which is within the range represented by a set of samples in the custody of...

  17. 7 CFR 28.423 - Middling Spotted Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Middling Spotted Color. 28.423 Section 28.423... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Spotted Cotton § 28.423 Middling Spotted Color. Middling Spotted Color is color which is within the range represented by a set of samples in the custody of...

  18. 7 CFR 28.434 - Low Middling Tinged Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Low Middling Tinged Color. 28.434 Section 28.434... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Tinged Cotton § 28.434 Low Middling Tinged Color. Low Middling Tinged Color is color which is within the range represented by a set of samples in the...

  19. 7 CFR 28.432 - Middling Tinged Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Middling Tinged Color. 28.432 Section 28.432... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Tinged Cotton § 28.432 Middling Tinged Color. Middling Tinged Color is color which is within the range represented by a set of samples in the custody of...

  20. Photographing the Night Sky (Without a Telescope).

    ERIC Educational Resources Information Center

    Scott, Roger L.

    1983-01-01

    Describes the use of a 35-millimeter camera with color slide film to produce photographs of constellations, star trails, bright comets, aurorae, and meteor showers. Discusses film speed, lenses, f-stop settings, exposure times, and other items related to astrophotographic technique; provides ideas for use of slides in the classroom. (JM)

  1. Step Right Up and Try Boo Goo

    ERIC Educational Resources Information Center

    Lowenstein, Arlene

    1972-01-01

    Author's class of largely non-college-bound students were given practical lesson in powers of persuasion by setting up a Sell Bloo Goo" campaign in their school, the bloo goo" being a harmless colored jelle which their schoolmates were eager to buy by the time it appeared on the market. (PD)

  2. Nielsen Television '73; A Look at the Medium.

    ERIC Educational Resources Information Center

    Nielsen (A.C.) Co., Chicago, IL.

    The latest (1973) edition of Nielsen Television presents data on the television audience. Major findings are graphically summarized and data are presented for: number of stations receivable by household; households equipped with TV sets; United States TV households with color television; total United States households using television by time of…

  3. Localization of needle tip with color doppler during pericardiocentesis: In vitro validation and initial clinical application

    NASA Technical Reports Server (NTRS)

    Armstrong, G.; Cardon, L.; Vilkomerson, D.; Lipson, D.; Wong, J.; Rodriguez, L. L.; Thomas, J. D.; Griffin, B. P.

    2001-01-01

    This study evaluates a new device that uses color Doppler ultrasonography to enable real-time image guidance of the aspirating needle, which has not been possible until now. The ColorMark device (EchoCath Inc, Princeton, NJ) induces high-frequency, low-amplitude vibrations in the needle to enable localization with color Doppler. We studied this technique in 25 consecutive patients undergoing pericardiocentesis, and in vitro, in a urethane phantom with which the accuracy of color Doppler localization of the needle tip was compared with that obtained by direct measurement. Tip localization was excellent in vitro; errors axial to the ultrasound beam (velocity Doppler -0.13 +/- 0.90 mm, power Doppler -0.05 +/- 1.7 mm) were less than lateral errors (velocity -0.36 +/- 1.8 mm, power -0.02 +/- 2.8 mm). In 18 of 25 patients, the needle was identified and guided into the pericardial space with the ColorMark technique, and it allowed successful, uncomplicated drainage of fluid. Initial failures were the result of incorrect settings on the echocardiographic machine and inappropriate combinations of the needle puncture site and imaging window. This study demonstrates a novel color Doppler technique that is highly accurate at localizing a needle tip. The technique is feasible for guiding pericardiocentesis. Further clinical validation of this technique is required.

  4. The IAT shows no evidence for Kandinsky's color-shape associations.

    PubMed

    Makin, Alexis D J; Wuerger, Sophie M

    2013-01-01

    In the early twentieth century, the Bauhaus revolutionized art and design by using simple colors and forms. Wassily Kandinsky was especially interested in the relationship of these two visual attributes and postulated a fundamental correspondence between color and form: yellow triangle, red square and blue circle. Subsequent empirical studies used preference judgments to test Kandinsky's original color-form combinations, usually yielding inconsistent results. We have set out to test the validity of these postulated associations by using the Implicit Association Test. Participants pressed one of two buttons on each trial. On some trials they classified shapes (e.g., circle or triangle). On interleaved trials they classified colors (e.g., blue or yellow). Response times should theoretically be faster when the button mapping follows Kandinsky's associations: For example, when the left key is used to report blue or circle and the right is used for yellow and triangle, than when the response mapping is the opposite of this (blue or triangle, yellow or circle). Our findings suggest that there is no implicit association between the original color-form combinations. Of the three combinations we tested, there was only a marginal effect in one case. It can be concluded that the IAT does not support Kandinsky's postulated color-form associations, and that these are probably not a universal property of the visual system.

  5. What #theDress reveals about the role of illumination priors in color perception and color constancy

    PubMed Central

    Aston, Stacey; Hurlbert, Anya

    2018-01-01

    The disagreement between people who named #theDress (the Internet phenomenon of 2015) “blue and black” versus “white and gold” is thought to be caused by individual differences in color constancy. It is hypothesized that observers infer different incident illuminations, relying on illumination “priors” to overcome the ambiguity of the image. Different experiences may drive the formation of different illumination priors, and these may be indicated by differences in chronotype. We assess this hypothesis, asking whether matches to perceived illumination in the image and/or perceived dress colors relate to scores on the morningness-eveningness questionnaire (a measure of chronotype). We find moderate correlations between chronotype and illumination matches (morning types giving bluer illumination matches than evening types) and chronotype and dress body matches, but these are significant only at the 10% level. Further, although inferred illumination chromaticity in the image explains variation in the color matches to the dress (confirming the color constancy hypothesis), color constancy thresholds obtained using an established illumination discrimination task are not related to dress color perception. We also find achromatic settings depend on luminance, suggesting that subjective white point differences may explain the variation in dress color perception only if settings are made at individually tailored luminance levels. The results of such achromatic settings are inconsistent with their assumed correspondence to perceived illumination. Finally, our results suggest that perception and naming are disconnected, with observers reporting different color names for the dress photograph and their isolated color matches, the latter best capturing the variation in the matches. PMID:28793353

  6. Normalization of satellite imagery

    NASA Technical Reports Server (NTRS)

    Kim, Hongsuk H.; Elman, Gregory C.

    1990-01-01

    Sets of Thematic Mapper (TM) imagery taken over the Washington, DC metropolitan area during the months of November, March and May were converted into a form of ground reflectance imagery. This conversion was accomplished by adjusting the incident sunlight and view angles and by applying a pixel-by-pixel correction for atmospheric effects. Seasonal color changes of the area can be better observed when such normalization is applied to space imagery taken in time series. In normalized imagery, the grey scale depicts variations in surface reflectance and tonal signature of multi-band color imagery can be directly interpreted for quantitative information of the target.

  7. Quantitative Evaluation of Surface Color of Tomato Fruits Cultivated in Remote Farm Using Digital Camera Images

    NASA Astrophysics Data System (ADS)

    Hashimoto, Atsushi; Suehara, Ken-Ichiro; Kameoka, Takaharu

    To measure the quantitative surface color information of agricultural products with the ambient information during cultivation, a color calibration method for digital camera images and a remote monitoring system of color imaging using the Web were developed. Single-lens reflex and web digital cameras were used for the image acquisitions. The tomato images through the post-ripening process were taken by the digital camera in both the standard image acquisition system and in the field conditions from the morning to evening. Several kinds of images were acquired with the standard RGB color chart set up just behind the tomato fruit on a black matte, and a color calibration was carried out. The influence of the sunlight could be experimentally eliminated, and the calibrated color information consistently agreed with the standard ones acquired in the system through the post-ripening process. Furthermore, the surface color change of the tomato on the tree in a greenhouse was remotely monitored during maturation using the digital cameras equipped with the Field Server. The acquired digital color images were sent from the Farm Station to the BIFE Laboratory of Mie University via VPN. The time behavior of the tomato surface color change during the maturing process could be measured using the color parameter calculated based on the obtained and calibrated color images along with the ambient atmospheric record. This study is a very important step in developing the surface color analysis for both the simple and rapid evaluation of the crop vigor in the field and to construct an ambient and networked remote monitoring system for food security, precision agriculture, and agricultural research.

  8. Dual-Color Luciferase Complementation for Chemokine Receptor Signaling.

    PubMed

    Luker, Kathryn E; Luker, Gary D

    2016-01-01

    Chemokine receptors may share common ligands, setting up potential competition for ligand binding, and association of activated receptors with downstream signaling molecules such as β-arrestin. Determining the "winner" of competition for shared effector molecules is essential for understanding integrated functions of chemokine receptor signaling in normal physiology, disease, and response to therapy. We describe a dual-color click beetle luciferase complementation assay for cell-based analysis of interactions of two different chemokine receptors, CXCR4 and ACKR3, with the intracellular scaffolding protein β-arrestin 2. This assay provides real-time quantification of receptor activation and signaling in response to chemokine CXCL12. More broadly, this general imaging strategy can be applied to quantify interactions of any set of two proteins that interact with a common binding partner. © 2016 Elsevier Inc. All rights reserved.

  9. Color difference threshold determination for acrylic denture base resins.

    PubMed

    Ren, Jiabao; Lin, Hong; Huang, Qingmei; Liang, Qifan; Zheng, Gang

    2015-01-01

    This study aimed to set evaluation indicators, i.e., perceptibility and acceptability color difference thresholds, of color stability for acrylic denture base resins for a spectrophotometric assessing method, which offered an alternative to the visual method described in ISO 20795-1:2013. A total of 291 disk specimens 50±1 mm in diameter and 0.5±0.1 mm thick were prepared (ISO 20795-1:2013) and processed through radiation tests in an accelerated aging chamber (ISO 7491:2000) for increasing times of 0 to 42 hours. Color alterations were measured with a spectrophotometer and evaluated using the CIE L*a*b* colorimetric system. Color differences were calculated through the CIEDE2000 color difference formula. Thirty-two dental professionals without color vision deficiencies completed perceptibility and acceptability assessments under controlled conditions in vitro. An S-curve fitting procedure was used to analyze the 50:50% perceptibility and acceptability thresholds. Furthermore, perceptibility and acceptability against the differences of the three color attributes, lightness, chroma, and hue, were also investigated. According to the S-curve fitting procedure, the 50:50% perceptibility threshold was 1.71ΔE00 (r(2)=0.88) and the 50:50% acceptability threshold was 4.00 ΔE00 (r(2)=0.89). Within the limitations of this study, 1.71/4.00 ΔE00 could be used as perceptibility/acceptability thresholds for acrylic denture base resins.

  10. Can attentional control settings be maintained for two color-location conjunctions? Evidence from an RSVP task.

    PubMed

    Irons, Jessica L; Remington, Roger W

    2013-07-01

    Previous investigations of the ability to maintain separate attentional control settings for different spatial locations have relied principally on a go/no-go spatial-cueing paradigm. The results have suggested that control of attention is accomplished only late in processing. However, the go/no-go task does not provide strong incentives to withhold attention from irrelevant color-location conjunctions. We used a modified version of the task in which failing to adopt multiple control settings would be detrimental to performance. Two RSVP streams of colored letters appeared to the left and right of fixation. Participants searched for targets that were a conjunction of color and location, so that the target color for one stream acted as a distractor when presented in the opposite stream. Distractors that did not match the target conjunctions nevertheless captured attention and interfered with performance. This was the case even when the target conjunctions were previewed early in the trial prior to the target (Exp. 2). However, distractor interference was reduced when the upcoming distractor was previewed early on in the trial (Exp. 3). Attentional selection of targets by color-location conjunctions may be effective if facilitative attentional sets are accompanied by the top-down inhibition of irrelevant items.

  11. Interactive model evaluation tool based on IPython notebook

    NASA Astrophysics Data System (ADS)

    Balemans, Sophie; Van Hoey, Stijn; Nopens, Ingmar; Seuntjes, Piet

    2015-04-01

    In hydrological modelling, some kind of parameter optimization is mostly performed. This can be the selection of a single best parameter set, a split in behavioural and non-behavioural parameter sets based on a selected threshold or a posterior parameter distribution derived with a formal Bayesian approach. The selection of the criterion to measure the goodness of fit (likelihood or any objective function) is an essential step in all of these methodologies and will affect the final selected parameter subset. Moreover, the discriminative power of the objective function is also dependent from the time period used. In practice, the optimization process is an iterative procedure. As such, in the course of the modelling process, an increasing amount of simulations is performed. However, the information carried by these simulation outputs is not always fully exploited. In this respect, we developed and present an interactive environment that enables the user to intuitively evaluate the model performance. The aim is to explore the parameter space graphically and to visualize the impact of the selected objective function on model behaviour. First, a set of model simulation results is loaded along with the corresponding parameter sets and a data set of the same variable as the model outcome (mostly discharge). The ranges of the loaded parameter sets define the parameter space. A selection of the two parameters visualised can be made by the user. Furthermore, an objective function and a time period of interest need to be selected. Based on this information, a two-dimensional parameter response surface is created, which actually just shows a scatter plot of the parameter combinations and assigns a color scale corresponding with the goodness of fit of each parameter combination. Finally, a slider is available to change the color mapping of the points. Actually, the slider provides a threshold to exclude non behaviour parameter sets and the color scale is only attributed to the remaining parameter sets. As such, by interactively changing the settings and interpreting the graph, the user gains insight in the model structural behaviour. Moreover, a more deliberate choice of objective function and periods of high information content can be identified. The environment is written in an IPython notebook and uses the available interactive functions provided by the IPython community. As such, the power of the IPython notebook as a development environment for scientific computing is illustrated (Shen, 2014).

  12. Real-Time Color-Doppler Guidance of HIFU for the Selective Avoidance or Occlusion of Blood Vessels

    NASA Astrophysics Data System (ADS)

    Rabkin, Brian A.; Zderic, Vesna; Vaezy, Shahram

    2005-03-01

    High-intensity focused ultrasound (HIFU) has been shown to effectively occlude blood vessels deep within tissue. The objective of the current study was to synchronize HIFU and color-Doppler ultrasound (US) for the real-time visualization of flow within blood vessels during HIFU treatment. The excitation of the HIFU was synchronized with the color-Doppler imager by collecting the excitation pulses of one of the elements of either a curved array intracavitary (C 9-5) or an intraoperative (CL 10-5) imaging probe. The collected excitation pulse was converted into a TTL-high pulse, which was delayed and gated to time the excitation duration and location of the HIFU pulse with respect to each imaging frame. The single pulse was used to drive a 3.2 MHz concave HIFU transducer (focal length of 3.5 cm, f-number 1) while the US imager was not collecting RF signals from the treatment region of the US image. The feasibility of the system was demonstrated in vivo by the selective ablation of tissue adjacent to, or the occlusion of, large vessels (including the femoral artery) both transcutaneously and interoperatively in the rabbit and pig. For the occlusion of vessels, the HIFU focus was placed immediately distal (with respect to the transducer) to the vessel at a depth of 2-2.5 cm. HIFU was applied at in situ intensities of 1000-2000 W/cm2, at a duty cycle of 50-75%, and a HIFU pulse repetition frequency (set by the US image frame rate) of 6-18 Hz. During each HIFU exposure, the HIFU pulse resulted in color interference bands running vertically within the color-Doppler window. Through the synchronization of the US imager with the HIFU excitation, the location and duration of the interference bands were set outside the treatment region within each image frame. This provided the operator with a clear view of the HIFU treatment site during therapy. Gross assessment showed necrosis of the tissue surrounding the HIFU treated vessel and occlusion of vessels up to 4 mm in diameter after a 30 s HIFU exposure. We have developed a method of synchronizing pulsed HIFU with color-Doppler US imaging for the real-time visualization of flow within blood vessels during HIFU therapy. This provides a means of guiding HIFU therapy for the detection and occlusion of deep vessels, or the selective ablation of tissue surrounding the vessels without vascular occlusion.

  13. Human preferences for colorful birds: Vivid colors or pattern?

    PubMed

    Lišková, Silvie; Landová, Eva; Frynta, Daniel

    2015-04-29

    In a previous study, we found that the shape of a bird, rather than its color, plays a major role in the determination of human preferences. Thus, in the present study, we asked whether the preferences of human respondents towards uniformly shaped, colorful birds are determined by pattern rather than color. The experimental stimuli were pictures of small passerine birds of the family Pittidae possessing uniform shape but vivid coloration. We asked 200 participants to rank 43 colored and 43 identical, but grayscaled, pictures of birds. To find the traits determining human preferences, we performed GLM analysis in which we tried to explain the mean preference ranks and PC axes by the following explanatory variables: the overall lightness and saturation, edges (pattern), and the portion of each of the basic color hues. The results showed that the mean preference ranks of the grayscale set is explained mostly by the birds' pattern, whereas the colored set ranking is mostly determined by the overall lightness. The effect of colors was weaker, but still significant, and revealed that people liked blue and green birds. We found no significant role of the color red, the perception of which was acquired relatively recently in evolution.

  14. Interpreting linear support vector machine models with heat map molecule coloring

    PubMed Central

    2011-01-01

    Background Model-based virtual screening plays an important role in the early drug discovery stage. The outcomes of high-throughput screenings are a valuable source for machine learning algorithms to infer such models. Besides a strong performance, the interpretability of a machine learning model is a desired property to guide the optimization of a compound in later drug discovery stages. Linear support vector machines showed to have a convincing performance on large-scale data sets. The goal of this study is to present a heat map molecule coloring technique to interpret linear support vector machine models. Based on the weights of a linear model, the visualization approach colors each atom and bond of a compound according to its importance for activity. Results We evaluated our approach on a toxicity data set, a chromosome aberration data set, and the maximum unbiased validation data sets. The experiments show that our method sensibly visualizes structure-property and structure-activity relationships of a linear support vector machine model. The coloring of ligands in the binding pocket of several crystal structures of a maximum unbiased validation data set target indicates that our approach assists to determine the correct ligand orientation in the binding pocket. Additionally, the heat map coloring enables the identification of substructures important for the binding of an inhibitor. Conclusions In combination with heat map coloring, linear support vector machine models can help to guide the modification of a compound in later stages of drug discovery. Particularly substructures identified as important by our method might be a starting point for optimization of a lead compound. The heat map coloring should be considered as complementary to structure based modeling approaches. As such, it helps to get a better understanding of the binding mode of an inhibitor. PMID:21439031

  15. Color appearance of familiar objects: effects of object shape, texture, and illumination changes.

    PubMed

    Olkkonen, Maria; Hansen, Thorsten; Gegenfurtner, Karl R

    2008-05-26

    People perceive roughly constant surface colors despite large changes in illumination. The familiarity of colors of some natural objects might help achieve this feat through direct modulation of the objects' color appearance. Research on memory colors and color appearance has yielded controversial results and due to the employed methods has often confounded perceptual with semantic effects. We studied the effect of memory colors on color appearance by presenting photographs of fruit on a monitor under various simulated illuminations and by asking observers to make either achromatic or typical color settings without placing demands on short-term memory or semantic processing. In a control condition, we presented photographs of 3D fruit shapes without texture and 2D outline shapes. We found that (1) achromatic settings for fruit were systematically biased away from the gray point toward the opposite direction of a fruit's memory color; (2) the strength of the effect depended on the degree of naturalness of the stimuli; and (3) the effect was evident under all tested illuminations, being strongest for illuminations whose chromaticity was closest to the stimulus chromaticity. We conclude that the visual identity of an object has a measurable effect on color perception, and that this effect is robust under illuminant changes, indicating its potential significance as an additional mechanism for color constancy.

  16. Neural Measures Reveal Implicit Learning during Language Processing.

    PubMed

    Batterink, Laura J; Cheng, Larry Y; Paller, Ken A

    2016-10-01

    Language input is highly variable; phonological, lexical, and syntactic features vary systematically across different speakers, geographic regions, and social contexts. Previous evidence shows that language users are sensitive to these contextual changes and that they can rapidly adapt to local regularities. For example, listeners quickly adjust to accented speech, facilitating comprehension. It has been proposed that this type of adaptation is a form of implicit learning. This study examined a similar type of adaptation, syntactic adaptation, to address two issues: (1) whether language comprehenders are sensitive to a subtle probabilistic contingency between an extraneous feature (font color) and syntactic structure and (2) whether this sensitivity should be attributed to implicit learning. Participants read a large set of sentences, 40% of which were garden-path sentences containing temporary syntactic ambiguities. Critically, but unbeknownst to participants, font color probabilistically predicted the presence of a garden-path structure, with 75% of garden-path sentences (and 25% of normative sentences) appearing in a given font color. ERPs were recorded during sentence processing. Almost all participants indicated no conscious awareness of the relationship between font color and sentence structure. Nonetheless, after sufficient time to learn this relationship, ERPs time-locked to the point of syntactic ambiguity resolution in garden-path sentences differed significantly as a function of font color. End-of-sentence grammaticality judgments were also influenced by font color, suggesting that a match between font color and sentence structure increased processing fluency. Overall, these findings indicate that participants can implicitly detect subtle co-occurrences between physical features of sentences and abstract, syntactic properties, supporting the notion that implicit learning mechanisms are generally operative during online language processing.

  17. Accuracy of color prediction of anthraquinone dyes in methanol solution estimated from first principle quantum chemistry computations.

    PubMed

    Cysewski, Piotr; Jeliński, Tomasz

    2013-10-01

    The electronic spectrum of four different anthraquinones (1,2-dihydroxyanthraquinone, 1-aminoanthraquinone, 2-aminoanthraquinone and 1-amino-2-methylanthraquinone) in methanol solution was measured and used as reference data for theoretical color prediction. The visible part of the spectrum was modeled according to TD-DFT framework with a broad range of DFT functionals. The convoluted theoretical spectra were validated against experimental data by a direct color comparison in terms of CIE XYZ and CIE Lab tristimulus model color. It was found, that the 6-31G** basis set provides the most accurate color prediction and there is no need to extend the basis set since it does not improve the prediction of color. Although different functionals were found to give the most accurate color prediction for different anthraquinones, it is possible to apply the same DFT approach for the whole set of analyzed dyes. Especially three functionals seem to be valuable, namely mPW1LYP, B1LYP and PBE0 due to very similar spectra predictions. The major source of discrepancies between theoretical and experimental spectra comes from L values, representing the lightness, and the a parameter, depicting the position on green→magenta axis. Fortunately, the agreement between computed and observed blue→yellow axis (parameter b) is very precise in the case of studied anthraquinone dyes in methanol solution. Despite discussed shortcomings, color prediction from first principle quantum chemistry computations can lead to quite satisfactory results, expressed in terms of color space parameters.

  18. From Capture to Inhibition: How does Irrelevant Information Influence Visual Search? Evidence from a Spatial Cuing Paradigm

    PubMed Central

    Mertes, Christine; Wascher, Edmund; Schneider, Daniel

    2016-01-01

    Even though information is spatially and temporally irrelevant, it can influence the processing of subsequent information. The present study used a spatial cuing paradigm to investigate the origins of this persisting influence by means of event-related potentials (ERPs) of the EEG. An irrelevant color cue that was either contingent (color search) or non-contingent (shape search) on attentional sets was presented prior to a target array with different stimulus-onset asynchronies (SOA; 200, 400, 800 ms). Behavioral results indicated that color cues captured attention only when they shared target-defining properties. These same-location effects persisted over time but were pronounced when cue and target array were presented in close succession. N2 posterior contralateral (N2pc) showed that the color cue generally drew attention, but was strongest in the contingent condition. A subsequently emerging contralateral posterior positivity referred to the irrelevant cue (i.e., distractor positivity, Pd) was unaffected by the attentional set and therefore interpreted as an inhibitory process required to enable a re-direction of the attentional focus. Contralateral delay activity (CDA) was only observable in the contingent condition, indicating the transfer of spatial information into working memory and thus providing an explanation for the same-location effect for longer SOAs. Inhibition of this irrelevant information was reflected by a second contralateral positivity triggered through target presentation. The results suggest that distracting information is actively maintained when it resembles a sought-after object. However, two independent attentional processes are at work to compensate for attentional distraction: the timely inhibition of attentional capture and the active inhibition of mental representation of irrelevant information. PMID:27242493

  19. How does the color influence figure and shape formation, grouping, numerousness and reading? The role of chromatic wholeness and fragmentation.

    PubMed

    Pinna, Baingio; Uccula, Arcangelo; Tanca, Maria

    2010-09-01

    In this work it is suggested that color induces phenomenal wholeness, part-whole organization and fragmentation. The phenomenal wholeness subsumes the set of its main attributes: homogeneity, continuity, univocality, belongingness, and oneness. If color induces wholeness, it can also induce fragmentation. Therefore, in order to understand the role played by color within the process of part-whole organization, color is used both as a wholeness and as a fragmentation tool, thus operating synergistically or antagonistically with other wholeness processes. Therefore, color is expected to influence figure-ground segregation, grouping, shape formation and other visual processes that are related to the phenomenal wholeness. The purpose of this study is to rate the influence of color in inducing whole and part-whole organization and, consequently, in determining the perception of figure-ground segregation, grouping, shape formation, numerousness evaluation and time reading. We manipulated experimental conditions by using equiluminant colors to favor or break (parcel-out) the wholeness of objects like geometrical composite figures and words. The results demonstrated that color is aimed, among other psychological and biological purposes, at: (1) relating each chromatic component of an object, thus favoring the emergence of the whole object; (2) eliciting a part-whole organization, whose components are interdependent; (3) eliciting fragments and then breaking up the whole and favoring the emergence of single components. Wholeness, part-whole organization and fragmentation can be considered as three further purposes of color. © 2010 The Authors, Ophthalmic and Physiological Optics © 2010 The College of Optometrists.

  20. 7 CFR 28.501 - Color Grade No. 1.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color Grade No. 1. 28.501 Section 28.501 Agriculture... American Pima Cotton § 28.501 Color Grade No. 1. Color grade No. 1 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  1. 7 CFR 28.503 - Color Grade No. 3.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color Grade No. 3. 28.503 Section 28.503 Agriculture... American Pima Cotton § 28.503 Color Grade No. 3. Color grade No. 3 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  2. 7 CFR 28.503 - Color Grade No. 3.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color Grade No. 3. 28.503 Section 28.503 Agriculture... American Pima Cotton § 28.503 Color Grade No. 3. Color grade No. 3 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  3. 7 CFR 28.506 - Color Grade No. 6.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color Grade No. 6. 28.506 Section 28.506 Agriculture... American Pima Cotton § 28.506 Color Grade No. 6. Color grade No. 6 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  4. 7 CFR 28.502 - Color Grade No. 2.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color Grade No. 2. 28.502 Section 28.502 Agriculture... American Pima Cotton § 28.502 Color Grade No. 2. Color grade No. 2 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  5. 7 CFR 28.505 - Color Grade No. 5.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color Grade No. 5. 28.505 Section 28.505 Agriculture... American Pima Cotton § 28.505 Color Grade No. 5. Color grade No. 5 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  6. 7 CFR 28.502 - Color Grade No. 2.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color Grade No. 2. 28.502 Section 28.502 Agriculture... American Pima Cotton § 28.502 Color Grade No. 2. Color grade No. 2 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  7. 7 CFR 28.503 - Color Grade No. 3.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color Grade No. 3. 28.503 Section 28.503 Agriculture... American Pima Cotton § 28.503 Color Grade No. 3. Color grade No. 3 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  8. 7 CFR 28.501 - Color Grade No. 1.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color Grade No. 1. 28.501 Section 28.501 Agriculture... American Pima Cotton § 28.501 Color Grade No. 1. Color grade No. 1 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  9. 7 CFR 28.502 - Color Grade No. 2.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color Grade No. 2. 28.502 Section 28.502 Agriculture... American Pima Cotton § 28.502 Color Grade No. 2. Color grade No. 2 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  10. 7 CFR 28.505 - Color Grade No. 5.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color Grade No. 5. 28.505 Section 28.505 Agriculture... American Pima Cotton § 28.505 Color Grade No. 5. Color grade No. 5 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  11. 7 CFR 28.504 - Color Grade No. 4.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color Grade No. 4. 28.504 Section 28.504 Agriculture... American Pima Cotton § 28.504 Color Grade No. 4. Color grade No. 4 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  12. 7 CFR 28.505 - Color Grade No. 5.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color Grade No. 5. 28.505 Section 28.505 Agriculture... American Pima Cotton § 28.505 Color Grade No. 5. Color grade No. 5 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  13. 7 CFR 28.506 - Color Grade No. 6.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color Grade No. 6. 28.506 Section 28.506 Agriculture... American Pima Cotton § 28.506 Color Grade No. 6. Color grade No. 6 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  14. 7 CFR 28.501 - Color Grade No. 1.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color Grade No. 1. 28.501 Section 28.501 Agriculture... American Pima Cotton § 28.501 Color Grade No. 1. Color grade No. 1 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  15. 7 CFR 28.505 - Color Grade No. 5.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color Grade No. 5. 28.505 Section 28.505 Agriculture... American Pima Cotton § 28.505 Color Grade No. 5. Color grade No. 5 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  16. 7 CFR 28.504 - Color Grade No. 4.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color Grade No. 4. 28.504 Section 28.504 Agriculture... American Pima Cotton § 28.504 Color Grade No. 4. Color grade No. 4 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  17. 7 CFR 28.504 - Color Grade No. 4.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Color Grade No. 4. 28.504 Section 28.504 Agriculture... American Pima Cotton § 28.504 Color Grade No. 4. Color grade No. 4 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  18. 7 CFR 28.502 - Color Grade No. 2.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color Grade No. 2. 28.502 Section 28.502 Agriculture... American Pima Cotton § 28.502 Color Grade No. 2. Color grade No. 2 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  19. 7 CFR 28.506 - Color Grade No. 6.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Color Grade No. 6. 28.506 Section 28.506 Agriculture... American Pima Cotton § 28.506 Color Grade No. 6. Color grade No. 6 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  20. 7 CFR 28.501 - Color Grade No. 1.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color Grade No. 1. 28.501 Section 28.501 Agriculture... American Pima Cotton § 28.501 Color Grade No. 1. Color grade No. 1 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  1. 7 CFR 28.504 - Color Grade No. 4.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color Grade No. 4. 28.504 Section 28.504 Agriculture... American Pima Cotton § 28.504 Color Grade No. 4. Color grade No. 4 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  2. 7 CFR 28.506 - Color Grade No. 6.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Color Grade No. 6. 28.506 Section 28.506 Agriculture... American Pima Cotton § 28.506 Color Grade No. 6. Color grade No. 6 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  3. 7 CFR 28.503 - Color Grade No. 3.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Color Grade No. 3. 28.503 Section 28.503 Agriculture... American Pima Cotton § 28.503 Color Grade No. 3. Color grade No. 3 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  4. 7 CFR 28.503 - Color Grade No. 3.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color Grade No. 3. 28.503 Section 28.503 Agriculture... American Pima Cotton § 28.503 Color Grade No. 3. Color grade No. 3 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  5. 7 CFR 28.504 - Color Grade No. 4.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color Grade No. 4. 28.504 Section 28.504 Agriculture... American Pima Cotton § 28.504 Color Grade No. 4. Color grade No. 4 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  6. 7 CFR 28.502 - Color Grade No. 2.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color Grade No. 2. 28.502 Section 28.502 Agriculture... American Pima Cotton § 28.502 Color Grade No. 2. Color grade No. 2 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  7. 7 CFR 28.506 - Color Grade No. 6.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color Grade No. 6. 28.506 Section 28.506 Agriculture... American Pima Cotton § 28.506 Color Grade No. 6. Color grade No. 6 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  8. 7 CFR 28.505 - Color Grade No. 5.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color Grade No. 5. 28.505 Section 28.505 Agriculture... American Pima Cotton § 28.505 Color Grade No. 5. Color grade No. 5 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  9. 7 CFR 28.501 - Color Grade No. 1.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color Grade No. 1. 28.501 Section 28.501 Agriculture... American Pima Cotton § 28.501 Color Grade No. 1. Color grade No. 1 shall be American Pima cotton which in color is within the range represented by a set of samples in the custody of the U.S. Department of...

  10. 7 CFR 51.305 - Color requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Color Requirements § 51.305 Color requirements. In addition to the requirements specified for the grades set forth in §§ 51.300 to 51.304, apples... this section. All apple varieties other than those appearing in table I shall have no color...

  11. 7 CFR 51.305 - Color requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Color Requirements § 51.305 Color requirements. In addition to the requirements specified for the grades set forth in §§ 51.300 to 51.304, apples... this section. All apple varieties other than those appearing in table I shall have no color...

  12. Ocean color - Availability of the global data set

    NASA Technical Reports Server (NTRS)

    Feldman, Gene; Kuring, Norman; Ng, Carolyn; Esaias, Wayne; Mcclain, Chuck; Elrod, Jane; Maynard, Nancy; Endres, Dan

    1989-01-01

    The use of satellite observations of ocean color to provide reliable estimates of marine phytoplankton biomass on synoptic scales is examined. An overview is given of the Coastal Zone Color Scanner data processing system. The archiving and distribution of ocean color data are discussed, and NASA-sponsored archive sites are listed.

  13. The Winogradsky Column and Biofilms: Models for Teaching Nutrient Cycling and Succession in an Ecosystem.

    ERIC Educational Resources Information Center

    Anderson, Delia Castro; Hairston, Rosalina V.

    1999-01-01

    Presents protocols for setting up a Winogradsky column and biofilm slides, interpreting the chemical transformations that occur in the column as a result of color changes in the soil, identifying common microorganisms, and determining the microbial composition of the column over specified intervals of time. (WRM)

  14. Computational approach to seasonal changes of living leaves.

    PubMed

    Tang, Ying; Wu, Dong-Yan; Fan, Jing

    2013-01-01

    This paper proposes a computational approach to seasonal changes of living leaves by combining the geometric deformations and textural color changes. The geometric model of a leaf is generated by triangulating the scanned image of a leaf using an optimized mesh. The triangular mesh of the leaf is deformed by the improved mass-spring model, while the deformation is controlled by setting different mass values for the vertices on the leaf model. In order to adaptively control the deformation of different regions in the leaf, the mass values of vertices are set to be in proportion to the pixels' intensities of the corresponding user-specified grayscale mask map. The geometric deformations as well as the textural color changes of a leaf are used to simulate the seasonal changing process of leaves based on Markov chain model with different environmental parameters including temperature, humidness, and time. Experimental results show that the method successfully simulates the seasonal changes of leaves.

  15. New method for identifying features of an image on a digital video display

    NASA Astrophysics Data System (ADS)

    Doyle, Michael D.

    1991-04-01

    The MetaMap process extends the concept of direct manipulation human-computer interfaces to new limits. Its specific capabilities include the correlation of discrete image elements to relevant text information and the correlation of these image features to other images as well as to program control mechanisms. The correlation is accomplished through reprogramming of both the color map and the image so that discrete image elements comprise unique sets of color indices. This process allows the correlation to be accomplished with very efficient data storage and program execution times. Image databases adapted to this process become object-oriented as a result. Very sophisticated interrelationships can be set up between images text and program control mechanisms using this process. An application of this interfacing process to the design of an interactive atlas of medical histology as well as other possible applications are described. The MetaMap process is protected by U. S. patent #4

  16. Color inference in visual communication: the meaning of colors in recycling.

    PubMed

    Schloss, Karen B; Lessard, Laurent; Walmsley, Charlotte S; Foley, Kathleen

    2018-01-01

    People interpret abstract meanings from colors, which makes color a useful perceptual feature for visual communication. This process is complicated, however, because there is seldom a one-to-one correspondence between colors and meanings. One color can be associated with many different concepts (one-to-many mapping) and many colors can be associated with the same concept (many-to-one mapping). We propose that to interpret color-coding systems, people perform assignment inference to determine how colors map onto concepts. We studied assignment inference in the domain of recycling. Participants saw images of colored but unlabeled bins and were asked to indicate which bins they would use to discard different kinds of recyclables and trash. In Experiment 1, we tested two hypotheses for how people perform assignment inference. The local assignment hypothesis predicts that people simply match objects with their most strongly associated color. The global assignment hypothesis predicts that people also account for the association strengths between all other objects and colors within the scope of the color-coding system. Participants discarded objects in bins that optimized the color-object associations of the entire set, which is consistent with the global assignment hypothesis. This sometimes resulted in discarding objects in bins whose colors were weakly associated with the object, even when there was a stronger associated option available. In Experiment 2, we tested different methods for encoding color-coding systems and found that people were better at assignment inference when color sets simultaneously maximized the association strength between assigned color-object parings while minimizing associations between unassigned pairings. Our study provides an approach for designing intuitive color-coding systems that facilitate communication through visual media such as graphs, maps, signs, and artifacts.

  17. Upper bound for the span of pencil graph

    NASA Astrophysics Data System (ADS)

    Parvathi, N.; Vimala Rani, A.

    2018-04-01

    An L(2,1)-Coloring or Radio Coloring or λ coloring of a graph is a function f from the vertex set V(G) to the set of all nonnegative integers such that |f(x) ‑ f(y)| ≥ 2 if d(x,y) = 1 and |f(x) ‑ f(y)| ≥ 1 if d(x,y)=2, where d(x,y) denotes the distance between x and y in G. The L(2,1)-coloring number or span number λ(G) of G is the smallest number k such that G has an L(2,1)-coloring with max{f(v) : v ∈ V(G)} = k. [2]The minimum number of colors used in L(2,1)-coloring is called the radio number rn(G) of G (Positive integer). Griggs and yeh conjectured that λ(G) ≤ Δ2 for any simple graph with maximum degree Δ>2. In this article, we consider some special graphs like, n-sunlet graph, pencil graph families and derive its upper bound of (G) and rn(G).

  18. Multi-color incomplete Cholesky conjugate gradient methods for vector computers. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Poole, E. L.

    1986-01-01

    In this research, we are concerned with the solution on vector computers of linear systems of equations, Ax = b, where A is a larger, sparse symmetric positive definite matrix. We solve the system using an iterative method, the incomplete Cholesky conjugate gradient method (ICCG). We apply a multi-color strategy to obtain p-color matrices for which a block-oriented ICCG method is implemented on the CYBER 205. (A p-colored matrix is a matrix which can be partitioned into a pXp block matrix where the diagonal blocks are diagonal matrices). This algorithm, which is based on a no-fill strategy, achieves O(N/p) length vector operations in both the decomposition of A and in the forward and back solves necessary at each iteration of the method. We discuss the natural ordering of the unknowns as an ordering that minimizes the number of diagonals in the matrix and define multi-color orderings in terms of disjoint sets of the unknowns. We give necessary and sufficient conditions to determine which multi-color orderings of the unknowns correpond to p-color matrices. A performance model is given which is used both to predict execution time for ICCG methods and also to compare an ICCG method to conjugate gradient without preconditioning or another ICCG method. Results are given from runs on the CYBER 205 at NASA's Langley Research Center for four model problems.

  19. The IAT shows no evidence for Kandinsky's color-shape associations

    PubMed Central

    Makin, Alexis D. J.; Wuerger, Sophie M.

    2013-01-01

    In the early twentieth century, the Bauhaus revolutionized art and design by using simple colors and forms. Wassily Kandinsky was especially interested in the relationship of these two visual attributes and postulated a fundamental correspondence between color and form: yellow triangle, red square and blue circle. Subsequent empirical studies used preference judgments to test Kandinsky's original color-form combinations, usually yielding inconsistent results. We have set out to test the validity of these postulated associations by using the Implicit Association Test. Participants pressed one of two buttons on each trial. On some trials they classified shapes (e.g., circle or triangle). On interleaved trials they classified colors (e.g., blue or yellow). Response times should theoretically be faster when the button mapping follows Kandinsky's associations: For example, when the left key is used to report blue or circle and the right is used for yellow and triangle, than when the response mapping is the opposite of this (blue or triangle, yellow or circle). Our findings suggest that there is no implicit association between the original color-form combinations. Of the three combinations we tested, there was only a marginal effect in one case. It can be concluded that the IAT does not support Kandinsky's postulated color-form associations, and that these are probably not a universal property of the visual system. PMID:24062709

  20. Infant color preference for red is not selectively context specific.

    PubMed

    Franklin, Anna; Gibbons, Emily; Chittenden, Katie; Alvarez, James; Taylor, Chloe

    2012-10-01

    It has been proposed that human infants, like nonhuman primates, respond favorably to red in hospitable contexts, yet unfavorably in hostile contexts (Maier, Barchfeld, Elliot, & Pekrun, 2009). Here, we replicate and extend the study (Maier et al., 2009) whose findings have been used to support this hypothesis. As in Maier et al., 1-year-old infants were shown a photograph of a happy or angry face before pairs of colors were presented, yet in the current study, the set of stimuli crucially included two colors that are typically preferred by infants (red and blue). The percentage of times that infants looked first at the colors was analyzed for the two emotional "contexts." Following the happy face, infants looked first at red and blue equally, but significantly more than green. Following the angry face, the pattern of looking preference was the same as following the happy face, but the variation across the three colors was reduced. Contrary to Maier et al.'s hypothesis, there was no evidence that infants are selectively averse to red in angry contexts: following the angry face, "preference" for both red and blue was reduced, but was not significantly below chance. We therefore suggest an alternative account to Maier et al.'s evolutionary hypothesis, which argues that an angry face merely removes infant color preference, potentially due to the perceptual characteristics of the angry face disrupting infants' encoding of color.

  1. NIR Color vs Launch Date: A 20-year Analysis of Space Weathering Effects on the Boeing 376 Spacecraft

    NASA Astrophysics Data System (ADS)

    Frith, J.; Anz-Meador, P.; Lederer, S.; Cowardin, H.; Buckalew, B.

    The Boeing HS-376 spin stabilized spacecraft was a popular design that was launched continuously into geosynchronous orbit starting in 1980 with the last launch occurring in 2002. Over 50 of the HS-376 buses were produced to fulfill a variety of different communication missions for countries all over the world. The design of the bus is easily approximated as a telescoping cylinder that is covered with solar cells and an Earth facing antenna that is despun at the top of the cylinder. The similarity in design and the number of spacecraft launched over a long period of time make the HS-376 a prime target for studying the effects of solar weathering on solar panels as a function of time. A selection of primarily non-operational HS-376 spacecraft launched over a 20 year time period were observed using the United Kingdom Infrared Telescope on Mauna Kea and multi-band near-infrared photometry produced. Each spacecraft was observed for an entire night cycling through ZYJHK filters and time-varying colors produced to compare near-infrared color as a function of launch date. The resulting analysis shown here may help in the future to set launch date constraints on the parent object of unidentified debris objects or other unknown spacecraft.

  2. NIR Color vs Launch Date: A 20-Year Analysis of Space Weathering Effects on the Boeing 376 Spacecraft

    NASA Technical Reports Server (NTRS)

    Frith, James; Anz-Meador, Philip; Lederer, Sue; Cowardin, Heather; Buckalew, Brent

    2015-01-01

    The Boeing HS-376 spin stabilized spacecraft was a popular design that was launched continuously into geosynchronous orbit starting in 1980 with the last launch occurring in 2002. Over 50 of the HS-376 buses were produced to fulfill a variety of different communication missions for countries all over the world. The design of the bus is easily approximated as a telescoping cylinder that is covered with solar cells and an Earth facing antenna that is despun at the top of the cylinder. The similarity in design and the number of spacecraft launched over a long period of time make the HS-376 a prime target for studying the effects of solar weathering on solar panels as a function of time. A selection of primarily non-operational HS-376 spacecraft launched over a 20 year time period were observed using the United Kingdom Infrared Telescope on Mauna Kea and multi-band near-infrared photometry produced. Each spacecraft was observed for an entire night cycling through ZYJHK filters and time-varying colors produced to compare near-infrared color as a function of launch date. The resulting analysis shown here may help in the future to set launch date constraints on the parent object of unidentified debris objects or other unknown spacecraft.

  3. Exposing Color Blindness/Grounding Color Consciousness: Challenges for Teacher Education

    ERIC Educational Resources Information Center

    Ullucci, Kerri; Battey, Dan

    2011-01-01

    As teacher educators we have been struck by the consistency, urgency, and frequency in which students employ color-blind perspectives. This orientation has negative consequences in K-12 settings. In this manuscript, we lay out the multiple meanings of color blindness, drawing from legal, educational, and social science traditions, and offer…

  4. 7 CFR 51.305 - Color requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades of Apples Color Requirements § 51.305 Color requirements. In addition to the requirements specified for the grades set forth in §§ 51.300 to 51.304, apples of these grades shall have the percentage of color specified for the variety in table I appearing in this section. All apple varieties other...

  5. 7 CFR 51.305 - Color requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Standards for Grades of Apples Color Requirements § 51.305 Color requirements. In addition to the requirements specified for the grades set forth in §§ 51.300 to 51.304, apples of these grades shall have the percentage of color specified for the variety in table I appearing in this section. All apple varieties other...

  6. The Interaction of Color Realism and Pictorial Recall Memory.

    ERIC Educational Resources Information Center

    Berry, Louis H.

    This study investigated the interaction of variations in color realism on pictorial recall memory in order to better understand the effects of variations in color realism, and to draw comparisons between visual recall memory and visual recognition memory in terms of color information processing. Stimulus materials used were three sets of slides,…

  7. Evaluation of color grading impact in restoration process of archive films

    NASA Astrophysics Data System (ADS)

    Fliegel, Karel; Vítek, Stanislav; Páta, Petr; Janout, Petr; Myslík, Jiří; Pecák, Josef; Jícha, Marek

    2016-09-01

    Color grading of archive films is a very particular task in the process of their restoration. The ultimate goal of color grading here is to achieve the same look of the movie as intended at the time of its first presentation. The role of the expert restorer, expert group and a digital colorist in this complicated process is to find the optimal settings of the digital color grading system so that the resulting image look is as close as possible to the estimate of the original reference release print adjusted by the expert group of cinematographers. A methodology for subjective assessment of perceived differences between the outcomes of color grading is introduced, and results of a subjective study are presented. Techniques for objective assessment of perceived differences are discussed, and their performance is evaluated using ground truth obtained from the subjective experiment. In particular, a solution based on calibrated digital single-lens reflex camera and subsequent analysis of image features captured from the projection screen is described. The system based on our previous work is further developed so that it can be used for the analysis of projected images. It allows assessing color differences in these images and predict their impact on the perceived difference in image look.

  8. EFFECTS OF LOW-DOSE IRRADIATION AND STORAGE ON ACCEPTABILITY OF BROCCOLI, SWEET CORN, AND STRAWBERRIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, D.C.; Tichenor, D.A.

    1962-11-01

    Fresh vegetables, in some cases stored in nitrogen, were gamma irradiated with doses of 0.25 to 1.0 Mrad, then stored at 35 deg F, and evaluated for taste at various periods up to 305 days. All nitrogen-packed irradiated sweet corn was acceptable after 305 days, in contrast with unirradiated 35 deg F control samples, which were spoiled. One set of nitrogenpacked irradiated broccoli samples was acceptable after 270 days at 35 deg F; all others were unacceptable after this period. All of the irradiated strawberries were less acceptable than 35 deg F controls at all time periods. Correlation of objectivemore » color measurements with visual color scores varied with the product, but dominant wavelength, purity, or brightness was significantly related to color score for all products tested. Irradiation of strawberries resulted in bleaching of the characteristic red color, the amount of bleaching being greater at the higher dose levels. Samples irradiated at the higher levels had the lowest average dominant wavelength, closer to the orange area of the spectrum, and the lowest average purity. The pH of all strawberry syrup samples was between 3.1 and 3.5, and varied only slightly with blanching, radiation treatment, or time period. (H.H.D.)« less

  9. New concept high-speed and high-resolution color scanner

    NASA Astrophysics Data System (ADS)

    Nakashima, Keisuke; Shinoda, Shin'ichi; Konishi, Yoshiharu; Sugiyama, Kenji; Hori, Tetsuya

    2003-05-01

    We have developed a new concept high-speed and high-resolution color scanner (Blinkscan) using digital camera technology. With our most advanced sub-pixel image processing technology, approximately 12 million pixel image data can be captured. High resolution imaging capability allows various uses such as OCR, color document read, and document camera. The scan time is only about 3 seconds for a letter size sheet. Blinkscan scans documents placed "face up" on its scan stage and without any special illumination lights. Using Blinkscan, a high-resolution color document can be easily inputted into a PC at high speed, a paperless system can be built easily. It is small, and since the occupancy area is also small, setting it on an individual desk is possible. Blinkscan offers the usability of a digital camera and accuracy of a flatbed scanner with high-speed processing. Now, about several hundred of Blinkscan are mainly shipping for the receptionist operation in a bank and a security. We will show the high-speed and high-resolution architecture of Blinkscan. Comparing operation-time with conventional image capture device, the advantage of Blinkscan will make clear. And image evaluation for variety of environment, such as geometric distortions or non-uniformity of brightness, will be made.

  10. Raman spectroscopy for the identification of pigments and color measurement in Dugès watercolors

    NASA Astrophysics Data System (ADS)

    Frausto-Reyes, C.; Ortiz-Morales, M.; Bujdud-Pérez, J. M.; Magaña-Cota, G. E.; Mejía-Falcón, R.

    2009-12-01

    Spectroscopic and colorimetric analysis of a representative set of Dugès watercolor paintings was performed. These paintings were the result of scientific studies carried out by the zoologist Alfredo Dugès, who recorded the fauna of the Mexican Republic between 1853 and 1910. Micro-Raman spectroscopy, with an excitation wavelength of 830 nm, and colorimetric techniques were employed in order to understand if different colors with the same hue were reproduced using the same pigments. The color coordinates of the measured areas were obtained in the CIE L* a* b* color space. Raman analysis showed that, in some cases, to reproduce colors with the same hue the pigment employed was not the same. Pigments identified in the watercolors were vermilion, carbon-based black, lead white, gamboge and chrome yellow, Prussian and ultramarine blue. Some of these pigments have been used since ancient times, others as Prussian blue, chrome yellow and synthetic ultramarine blue arrived to the market at the beginning of the 18th and 19th centuries, respectively. Furthermore, regarding the white color, instead of left the paper unpainted, lead white was detected in the eye of a bird. The green color was obtained by mixing Prussian blue with chrome yellow. The results of this work show the suitability of using Raman spectroscopy for watercolor pigment analysis and colorimetric techniques to measure the color of small areas (246 μm × 246 μm) that was the case for the lead white pigment.

  11. Direct push driven in situ color logging tool (CLT): technique, analysis routines, and application

    NASA Astrophysics Data System (ADS)

    Werban, U.; Hausmann, J.; Dietrich, P.; Vienken, T.

    2014-12-01

    Direct push technologies have recently seen a broad development providing several tools for in situ parameterization of unconsolidated sediments. One of these techniques is the measurement of soil colors - a proxy information that reveals to soil/sediment properties. We introduce the direct push driven color logging tool (CLT) for real-time and depth-resolved investigation of soil colors within the visible spectrum. Until now, no routines exist on how to handle high-resolved (mm-scale) soil color data. To develop such a routine, we transform raw data (CIEXYZ) into soil color surrogates of selected color spaces (CIExyY, CIEL*a*b*, CIEL*c*h*, sRGB) and denoise small-scale natural variability by Haar and Daublet4 wavelet transformation, gathering interpretable color logs over depth. However, interpreting color log data as a single application remains challenging. Additional information, such as site-specific knowledge of the geological setting, is required to correlate soil color data to specific layers properties. Hence, we exemplary provide results from a joint interpretation of in situ-obtained soil color data and 'state-of-the-art' direct push based profiling tool data and discuss the benefit of additional data. The developed routine is capable of transferring the provided information obtained as colorimetric data into interpretable color surrogates. Soil color data proved to correlate with small-scale lithological/chemical changes (e.g., grain size, oxidative and reductive conditions), especially when combined with additional direct push vertical high resolution data (e.g., cone penetration testing and soil sampling). Thus, the technique allows enhanced profiling by means of providing another reproducible high-resolution parameter for analysis subsurface conditions. This opens potential new areas of application and new outputs for such data in site investigation. It is our intention to improve color measurements by means method of application and data interpretation, useful to characterize vadose layer/soil/sediment characteristics.

  12. Imaging tristimulus colorimeter for the evaluation of color in printed textiles

    NASA Astrophysics Data System (ADS)

    Hunt, Martin A.; Goddard, James S., Jr.; Hylton, Kathy W.; Karnowski, Thomas P.; Richards, Roger K.; Simpson, Marc L.; Tobin, Kenneth W., Jr.; Treece, Dale A.

    1999-03-01

    The high-speed production of textiles with complicated printed patterns presents a difficult problem for a colorimetric measurement system. Accurate assessment of product quality requires a repeatable measurement using a standard color space, such as CIELAB, and the use of a perceptually based color difference formula, e.g. (Delta) ECMC color difference formula. Image based color sensors used for on-line measurement are not colorimetric by nature and require a non-linear transformation of the component colors based on the spectral properties of the incident illumination, imaging sensor, and the actual textile color. This research and development effort describes a benchtop, proof-of-principle system that implements a projection onto convex sets (POCS) algorithm for mapping component color measurements to standard tristimulus values and incorporates structural and color based segmentation for improved precision and accuracy. The POCS algorithm consists of determining the closed convex sets that describe the constraints on the reconstruction of the true tristimulus values based on the measured imperfect values. We show that using a simulated D65 standard illuminant, commercial filters and a CCD camera, accurate (under perceptibility limits) per-region based (Delta) ECMC values can be measured on real textile samples.

  13. A Human Bird Eye View of Mars

    NASA Image and Video Library

    2016-09-08

    There have been several proposals to send people to Mars but not land them on the surface. Instead, they would either fly by Mars once and return to Earth, or orbit Mars for a period of time. Would they at least get spectacular naked-eye views of the Martian surface? Some parts of Mars would be interesting: for example the polar ice caps, and the bright (dust-covered) regions would be seen reasonably well, although the color is very uniform. The dark (low reflectance) regions of Mars are some of the most interesting and important regions studied by our orbiters and rovers, but they would appear very bland to humans outside of the planet's atmosphere. This is because the thin atmosphere of Mars is quite bright and dusty, so when looking at dark surface areas, most of what you would see is scattered light from the atmospheric dust, and the surface would have a very low contrast. It would also appear reddish, even if the surface materials are not reddish, from the scattered light. Here is an example from the Nili Patera region of Mars, a candidate future landing site. At the top is an approximation of the natural color as seen by people with normal color vision -- almost no surface detail is visible. In the middle is the standard HiRISE IRB color product, consisting of the infrared, red, and blue-green images displayed as red, green, and blue, respectively, and with a min-max stretch applied to each color. In other words, the darkest pixel in the entire image is set to black, the brightest pixel is set to white, and all others are linearly interpolated. At bottom is an enhanced color product, in which each bandpass is given a linear stretch for the local subimage, sometimes saturating a small percentage of data to black or white to give the rest of the scene more contrast, followed by color saturation enhancement. Now we can see a diversity of colors that distinguish different surface units: dust, sand, and rocks with different minerals. http://photojournal.jpl.nasa.gov/catalog/PIA21040

  14. Determination of tailored filter sets to create rayfiles including spatial and angular resolved spectral information.

    PubMed

    Rotscholl, Ingo; Trampert, Klaus; Krüger, Udo; Perner, Martin; Schmidt, Franz; Neumann, Cornelius

    2015-11-16

    To simulate and optimize optical designs regarding perceived color and homogeneity in commercial ray tracing software, realistic light source models are needed. Spectral rayfiles provide angular and spatial varying spectral information. We propose a spectral reconstruction method with a minimum of time consuming goniophotometric near field measurements with optical filters for the purpose of creating spectral rayfiles. Our discussion focuses on the selection of the ideal optical filter combination for any arbitrary spectrum out of a given filter set by considering measurement uncertainties with Monte Carlo simulations. We minimize the simulation time by a preselection of all filter combinations, which bases on factorial design.

  15. Improving color constancy by discounting the variation of camera spectral sensitivity

    NASA Astrophysics Data System (ADS)

    Gao, Shao-Bing; Zhang, Ming; Li, Chao-Yi; Li, Yong-Jie

    2017-08-01

    It is an ill-posed problem to recover the true scene colors from a color biased image by discounting the effects of scene illuminant and camera spectral sensitivity (CSS) at the same time. Most color constancy (CC) models have been designed to first estimate the illuminant color, which is then removed from the color biased image to obtain an image taken under white light, without the explicit consideration of CSS effect on CC. This paper first studies the CSS effect on illuminant estimation arising in the inter-dataset-based CC (inter-CC), i.e., training a CC model on one dataset and then testing on another dataset captured by a distinct CSS. We show the clear degradation of existing CC models for inter-CC application. Then a simple way is proposed to overcome such degradation by first learning quickly a transform matrix between the two distinct CSSs (CSS-1 and CSS-2). The learned matrix is then used to convert the data (including the illuminant ground truth and the color biased images) rendered under CSS-1 into CSS-2, and then train and apply the CC model on the color biased images under CSS-2, without the need of burdensome acquiring of training set under CSS-2. Extensive experiments on synthetic and real images show that our method can clearly improve the inter-CC performance for traditional CC algorithms. We suggest that by taking the CSS effect into account, it is more likely to obtain the truly color constant images invariant to the changes of both illuminant and camera sensors.

  16. Influence of LCD color reproduction accuracy on observer performance using virtual pathology slides

    NASA Astrophysics Data System (ADS)

    Krupinski, Elizabeth A.; Silverstein, Louis D.; Hashmi, Syed F.; Graham, Anna R.; Weinstein, Ronald S.; Roehrig, Hans

    2012-02-01

    The use of color LCDs in medical imaging is growing as more clinical specialties use digital images as a resource in diagnosis and treatment decisions. Telemedicine applications such as telepathology, teledermatology and teleophthalmology rely heavily on color images. However, standard methods for calibrating, characterizing and profiling color displays do not exist, resulting in inconsistent presentation. To address this, we developed a calibration, characterization and profiling protocol for color-critical medical imaging applications. Physical characterization of displays calibrated with and without the protocol revealed high color reproduction accuracy with the protocol. The present study assessed the impact of this protocol on observer performance. A set of 250 breast biopsy virtual slide regions of interest (half malignant, half benign) were shown to 6 pathologists, once using the calibration protocol and once using the same display in its "native" off-the-shelf uncalibrated state. Diagnostic accuracy and time to render a decision were measured. In terms of ROC performance, Az (area under the curve) calibrated = 0.8640; uncalibrated = 0.8558. No statistically significant difference (p = 0.2719) was observed. In terms of interpretation speed, mean calibrated = 4.895 sec, mean uncalibrated = 6.304 sec which is statistically significant (p = 0.0460). Early results suggest a slight advantage diagnostically for a properly calibrated and color-managed display and a significant potential advantage in terms of improved workflow. Future work should be conducted using different types of color images that may be more dependent on accurate color rendering and a wider range of LCDs with varying characteristics.

  17. Location-Unbound Color-Shape Binding Representations in Visual Working Memory.

    PubMed

    Saiki, Jun

    2016-02-01

    The mechanism by which nonspatial features, such as color and shape, are bound in visual working memory, and the role of those features' location in their binding, remains unknown. In the current study, I modified a redundancy-gain paradigm to investigate these issues. A set of features was presented in a two-object memory display, followed by a single object probe. Participants judged whether the probe contained any features of the memory display, regardless of its location. Response time distributions revealed feature coactivation only when both features of a single object in the memory display appeared together in the probe, regardless of the response time benefit from the probe and memory objects sharing the same location. This finding suggests that a shared location is necessary in the formation of bound representations but unnecessary in their maintenance. Electroencephalography data showed that amplitude modulations reflecting location-unbound feature coactivation were different from those reflecting the location-sharing benefit, consistent with the behavioral finding that feature-location binding is unnecessary in the maintenance of color-shape binding. © The Author(s) 2015.

  18. Automatic color preference correction for color reproduction

    NASA Astrophysics Data System (ADS)

    Tsukada, Masato; Funayama, Chisato; Tajima, Johji

    2000-12-01

    The reproduction of natural objects in color images has attracted a great deal of attention. Reproduction more pleasing colors of natural objects is one of the methods available to improve image quality. We developed an automatic color correction method to maintain preferred color reproduction for three significant categories: facial skin color, green grass and blue sky. In this method, a representative color in an object area to be corrected is automatically extracted from an input image, and a set of color correction parameters is selected depending on the representative color. The improvement in image quality for reproductions of natural image was more than 93 percent in subjective experiments. These results show the usefulness of our automatic color correction method for the reproduction of preferred colors.

  19. Visual determinants of reduced performance on the Stroop color-word test in normal aging individuals.

    PubMed

    van Boxtel, M P; ten Tusscher, M P; Metsemakers, J F; Willems, B; Jolles, J

    2001-10-01

    It is unknown to what extent the performance on the Stroop color-word test is affected by reduced visual function in older individuals. We tested the impact of common deficiencies in visual function (reduced distant and close acuity, reduced contrast sensitivity, and color weakness) on Stroop performance among 821 normal individuals aged 53 and older. After adjustment for age, sex, and educational level, low contrast sensitivity was associated with more time needed on card I (word naming), red/green color weakness with slower card 2 performance (color naming), and reduced distant acuity with slower performance on card 3 (interference). Half of the age-related variance in speed performance was shared with visual function. The actual impact of reduced visual function may be underestimated in this study when some of this age-related variance in Stroop performance is mediated by visual function decrements. It is suggested that reduced visual function has differential effects on Stroop performance which need to be accounted for when the Stroop test is used both in research and in clinical settings. Stroop performance measured from older individuals with unknown visual status should be interpreted with caution.

  20. Texture and color features for tile classification

    NASA Astrophysics Data System (ADS)

    Baldrich, Ramon; Vanrell, Maria; Villanueva, Juan J.

    1999-09-01

    In this paper we present the results of a preliminary computer vision system to classify the production of a ceramic tile industry. We focus on the classification of a specific type of tiles whose production can be affected by external factors, such as humidity, temperature, origin of clays and pigments. Variations on these uncontrolled factors provoke small differences in the color and the texture of the tiles that force to classify all the production. A constant and non- subjective classification would allow avoiding devolution from customers and unnecessary stock fragmentation. The aim of this work is to simulate the human behavior on this classification task by extracting a set of features from tile images. These features are induced by definitions from experts. To compute them we need to mix color and texture information and to define global and local measures. In this work, we do not seek a general texture-color representation, we only deal with textures formed by non-oriented colored-blobs randomly distributed. New samples are classified using Discriminant Analysis functions derived from known class tile samples. The last part of the paper is devoted to explain the correction of acquired images in order to avoid time and geometry illumination changes.

  1. Use of Color in Child Care Environments: Application of Color for Wayfinding and Space Definition in Alabama Child Care Environments.

    ERIC Educational Resources Information Center

    Read, Marilyn A.

    2003-01-01

    Compared the use of color in physical design features associated with the exterior and interior designs of 101 child care centers in Alabama. Found that color was evidenced on the exterior of the centers at just over half of the sample. The interior environments had warm colors and bright accents in the setting; however, the majority of centers…

  2. Comparing Perception of Stroop Stimuli in Focused versus Divided Attention Paradigms: Evidence for Dramatic Processing Differences

    ERIC Educational Resources Information Center

    Eidels, Ami; Townsend, James T.; Algom, Daniel

    2010-01-01

    A huge set of focused attention experiments show that when presented with color words printed in color, observers report the ink color faster if the carrier word is the name of the color rather than the name of an alternative color, the Stroop effect. There is also a large number (although not so numerous as the Stroop task) of so-called…

  3. 7 CFR 28.956 - Prescribed fees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... sample 42.00 3.0Furnishing standard color tiles for calibrating cotton colormeters, per set of five tiles... outside continental United States 165.00 3.1Furnishing single color calibration tiles for use with specific instruments or as replacements in above sets, each tile: a. f.o.b. Memphis, Tennessee 22.00 b...

  4. 7 CFR 28.956 - Prescribed fees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... sample 42.00 3.0Furnishing standard color tiles for calibrating cotton colormeters, per set of five tiles... outside continental United States 165.00 3.1Furnishing single color calibration tiles for use with specific instruments or as replacements in above sets, each tile: a. f.o.b. Memphis, Tennessee 22.00 b...

  5. eWaterCycle visualisation. combining the strength of NetCDF and Web Map Service: ncWMS

    NASA Astrophysics Data System (ADS)

    Hut, R.; van Meersbergen, M.; Drost, N.; Van De Giesen, N.

    2016-12-01

    As a result of the eWatercycle global hydrological forecast we have created Cesium-ncWMS, a web application based on ncWMS and Cesium. ncWMS is a server side application capable of reading any NetCDF file written using the Climate and Forecasting (CF) conventions, and making the data available as a Web Map Service(WMS). ncWMS automatically determines available variables in a file, and creates maps colored according to map data and a user selected color scale. Cesium is a Javascript 3D virtual Globe library. It uses WebGL for rendering, which makes it very fast, and it is capable of displaying a wide variety of data types such as vectors, 3D models, and 2D maps. The forecast results are automatically uploaded to our web server running ncWMS. In turn, the web application can be used to change the settings for color maps and displayed data. The server uses the settings provided by the web application, together with the data in NetCDF to provide WMS image tiles, time series data and legend graphics to the Cesium-NcWMS web application. The user can simultaneously zoom in to the very high resolution forecast results anywhere on the world, and get time series data for any point on the globe. The Cesium-ncWMS visualisation combines a global overview with local relevant information in any browser. See the visualisation live at forecast.ewatercycle.org

  6. 21 CFR 82.1050 - General.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... PROVISIONALLY LISTED COLORS AND SPECIFICATIONS Drugs and Cosmetics § 82.1050 General. A batch of a straight color listed in this subpart may be certified, in accordance with the provisions of this part, for use... specifications set forth in this subpart for such color. ...

  7. Redundant Coding in Visual Search Displays: Effects of Shape and Colour.

    DTIC Science & Technology

    1997-02-01

    results for refining color selection algorithms and for color coding in situations where the gamut of available colors is limited. In a secondary set of analyses, we note large performance differences as a function of target shape.

  8. Fusion of visible and near-infrared images based on luminance estimation by weighted luminance algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Zhun; Cheng, Feiyan; Shi, Junsheng; Huang, Xiaoqiao

    2018-01-01

    In a low-light scene, capturing color images needs to be at a high-gain setting or a long-exposure setting to avoid a visible flash. However, such these setting will lead to color images with serious noise or motion blur. Several methods have been proposed to improve a noise-color image through an invisible near infrared flash image. A novel method is that the luminance component and the chroma component of the improved color image are estimated from different image sources [1]. The luminance component is estimated mainly from the NIR image via a spectral estimation, and the chroma component is estimated from the noise-color image by denoising. However, it is challenging to estimate the luminance component. This novel method to estimate the luminance component needs to generate the learning data pairs, and the processes and algorithm are complex. It is difficult to achieve practical application. In order to reduce the complexity of the luminance estimation, an improved luminance estimation algorithm is presented in this paper, which is to weight the NIR image and the denoised-color image and the weighted coefficients are based on the mean value and standard deviation of both images. Experimental results show that the same fusion effect at aspect of color fidelity and texture quality is achieved, compared the proposed method with the novel method, however, the algorithm is more simple and practical.

  9. Effect of instrument settings on liquid-containing lesion images characterized by radiofrequency ultrasound local estimators.

    PubMed

    Wang, Jian; Kang, Chunsong; Feng, Tinghua; Xue, Jiping; Shi, Kailing; Li, Tingting; Liu, Xiaofang; Wang, Yu

    2013-05-01

    The purpose of this study was to investigate the effects of ultrasonic instrument gain, transducer frequency, and depth on the color variety and color filling of radiofrequency ultrasonic local estimators (RULES) images which indicated specific physical representation of liquid-containing lesions in order to find the optimal settings for the clinical application of RULES in liquid-containing lesions. Changing the ultrasonic instrument gain, transducer frequency, and depth affected the color filling and color variety of 21 pathologically-confirmed liquid-containing lesion images analyzed by RULES. Blue colored fill dominated the RULES images to represent the liquid-containing lesions. A frequency of 12.5MHz led to red and green colors along the inner edges of the liquid-containing lesions. Changing the gain resulted in significantly different blue colored filling that was highest when the gain was 90 to 100. Changing the frequency also significantly changed the blue color filling, with the highest filling occurring at 12.5MHz. Changing the depth did not affect the blue color filling. The liquid components of the lesions may be identified by their characteristic manifestations in RULES, where color variety is affected by transducer frequency and blue color filling which represent liquid-containing lesions in RULES images is affected by frequency and gain. Copyright © 2012. Published by Elsevier GmbH.

  10. Childhood obesity study: a pilot study of the effect of the nutrition education program Color My Pyramid.

    PubMed

    Moore, Jean Burley; Pawloski, Lisa Renee; Goldberg, Patricia; Kyeung, Mi Oh; Stoehr, Ana; Baghi, Heibatollah

    2009-06-01

    The need for successful nutrition interventions is critical as the prevalence of childhood obesity increases. Thus, this pilot project examines the effect of a nutrition education program, Color My Pyramid, on children's nutrition knowledge, self-care practices, activity levels, and nutrition status. Using a pretest-posttest, quasiexperimental design, 126 fourth- and fifth-grade students from experimental and control schools are compared. The intervention program incorporates an online component www.MyPyramid.gov, Orem's Self-Care Deficit Nursing Theory, and consists of six classes taught over a 3-month period. Results indicated that the program increased nutrition knowledge in the control group. Furthermore, it increased activity time from pretest to posttest and decreased systolic blood pressure for children in both groups; however, there were no significant differences in BMI percentiles. The findings indicate that Color My Pyramid can be successfully employed in school settings and thus support school nursing practice.

  11. The effect of a redundant color code on an overlearned identification task

    NASA Technical Reports Server (NTRS)

    Obrien, Kevin

    1992-01-01

    The possibility of finding redundancy gains with overlearned tasks was examined using a paradigm varying familiarity with the stimulus set. Redundant coding in a multidimensional stimulus was demonstrated to result in increased identification accuracy and decreased latency of identification when compared to stimuli varying on only one dimension. The advantages attributable to redundant coding are referred to as redundancy gain and were found for a variety of stimulus dimension combinations, including the use of hue or color as one of the dimensions. Factors that have affected redundancy gain include the discriminability of the levels of one stimulus dimension and the level of stimulus-to-response association. The results demonstrated that response time is in part a function of familiarity, but no effect of redundant color coding was demonstrated. Implications of research on coding in identification tasks for display design are discussed.

  12. Probabilistic density function method for nonlinear dynamical systems driven by colored noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barajas-Solano, David A.; Tartakovsky, Alexandre M.

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integro-differential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified Large-Eddy-Diffusivity-type closure. Additionally, we introduce the generalized local linearization (LL) approximation for deriving a computable PDF equation in the form of the second-order partial differential equation (PDE). We demonstrate the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary auto-correlation time.more » We apply the proposed PDF method to the analysis of a set of Kramers equations driven by exponentially auto-correlated Gaussian colored noise to study the dynamics and stability of a power grid.« less

  13. Availability of color calibration for consistent color display in medical images and optimization of reference brightness for clinical use

    NASA Astrophysics Data System (ADS)

    Iwai, Daiki; Suganami, Haruka; Hosoba, Minoru; Ohno, Kazuko; Emoto, Yutaka; Tabata, Yoshito; Matsui, Norihisa

    2013-03-01

    Color image consistency has not been accomplished yet except the Digital Imaging and Communication in Medicine (DICOM) Supplement 100 for implementing a color reproduction pipeline and device independent color spaces. Thus, most healthcare enterprises could not check monitor degradation routinely. To ensure color consistency in medical color imaging, monitor color calibration should be introduced. Using simple color calibration device . chromaticity of colors including typical color (Red, Green, Blue, Green and White) are measured as device independent profile connection space value called u'v' before and after calibration. In addition, clinical color images are displayed and visual differences are observed. In color calibration, monitor brightness level has to be set to quite lower value 80 cd/m2 according to sRGB standard. As Maximum brightness of most color monitors available currently for medical use have much higher brightness than 80 cd/m2, it is not seemed to be appropriate to use 80 cd/m2 level for calibration. Therefore, we propose that new brightness standard should be introduced while maintaining the color representation in clinical use. To evaluate effects of brightness to chromaticity experimentally, brightness level is changed in two monitors from 80 to 270cd/m2 and chromaticity value are compared with each brightness levels. As a result, there are no significant differences in chromaticity diagram when brightness levels are changed. In conclusion, chromaticity is close to theoretical value after color calibration. Moreover, chromaticity isn't moved when brightness is changed. The results indicate optimized reference brightness level for clinical use could be set at high brightness in current monitors .

  14. Intelligent keyframe extraction for video printing

    NASA Astrophysics Data System (ADS)

    Zhang, Tong

    2004-10-01

    Nowadays most digital cameras have the functionality of taking short video clips, with the length of video ranging from several seconds to a couple of minutes. The purpose of this research is to develop an algorithm which extracts an optimal set of keyframes from each short video clip so that the user could obtain proper video frames to print out. In current video printing systems, keyframes are normally obtained by evenly sampling the video clip over time. Such an approach, however, may not reflect highlights or regions of interest in the video. Keyframes derived in this way may also be improper for video printing in terms of either content or image quality. In this paper, we present an intelligent keyframe extraction approach to derive an improved keyframe set by performing semantic analysis of the video content. For a video clip, a number of video and audio features are analyzed to first generate a candidate keyframe set. These features include accumulative color histogram and color layout differences, camera motion estimation, moving object tracking, face detection and audio event detection. Then, the candidate keyframes are clustered and evaluated to obtain a final keyframe set. The objective is to automatically generate a limited number of keyframes to show different views of the scene; to show different people and their actions in the scene; and to tell the story in the video shot. Moreover, frame extraction for video printing, which is a rather subjective problem, is considered in this work for the first time, and a semi-automatic approach is proposed.

  15. Hybrid chip-on-board LED module with patterned encapsulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soer, Wouter Anthon; Helbing, Rene; Huang, Guan

    Different wavelength conversion materials, or different concentrations of a wavelength conversion material are used to encapsulate the light emitting elements of different colors of a hybrid light emitting module. In an embodiment of this invention, second light emitting elements (170) of a particular color are encapsulated with a transparent second encapsulant (120;420;520), while first light emitting elements (160) of a different color are encapsulated with a wavelength conversion first encapsulant (110;410;510). In another embodiment of this invention, a particular second set of second and third light emitting elements (170,580) of different colors is encapsulated with a different encapsulant than anothermore » first set of first light emitting elements (160).« less

  16. Changes in unique hues induced by chromatic surrounds.

    PubMed

    Klauke, Susanne; Wachtler, Thomas

    2016-03-01

    A chromatic surround can have a strong influence on the perceived hue of a stimulus. We investigated whether chromatic induction has similar effects on the perception of colors that appear pure and unmixed (unique red, green, blue, and yellow) as on other colors. Subjects performed unique hue settings of stimuli in isoluminant surrounds of different chromaticities. Compared with the settings in a neutral gray surround, unique hue settings altered systematically with chromatic surrounds. The amount of induced hue shift depended on the difference between stimulus and surround hues, and was similar for unique hue settings as for settings of nonunique hues. Intraindividual variability in unique hue settings was roughly twice as high as for settings obtained in asymmetric matching experiments, which may reflect the presence of a reference stimulus in the matching task. Variabilities were also larger with chromatic surrounds than with neutral gray surrounds, for both unique hue settings and matching of nonunique hues. The results suggest that the neural representations underlying unique hue percepts are influenced by the same neural processing mechanisms as the percepts of other colors.

  17. Displaying Colors of Specified Chrominance on a Color Graphics Display.

    DTIC Science & Technology

    1982-12-01

    coordinates (such as Commission Internationale de l’Eclairage CIEXYZ coordinates). This report contains the description of a procedure for displaying...colors of known chrominance as specified by CIEXYZ coordinates. The procedure makes use of models of a color graphics system intensity (bits) to lumi...coordinates (e.g., CIELUV -1976 CT contrast equations as described in Robertson, 1977). Thus, the results of most efforts to specify a set of colors to

  18. Freely-available, true-color volume rendering software and cryohistology data sets for virtual exploration of the temporal bone anatomy.

    PubMed

    Kahrs, Lüder Alexander; Labadie, Robert Frederick

    2013-01-01

    Cadaveric dissection of temporal bone anatomy is not always possible or feasible in certain educational environments. Volume rendering using CT and/or MRI helps understanding spatial relationships, but they suffer in nonrealistic depictions especially regarding color of anatomical structures. Freely available, nonstained histological data sets and software which are able to render such data sets in realistic color could overcome this limitation and be a very effective teaching tool. With recent availability of specialized public-domain software, volume rendering of true-color, histological data sets is now possible. We present both feasibility as well as step-by-step instructions to allow processing of publicly available data sets (Visible Female Human and Visible Ear) into easily navigable 3-dimensional models using free software. Example renderings are shown to demonstrate the utility of these free methods in virtual exploration of the complex anatomy of the temporal bone. After exploring the data sets, the Visible Ear appears more natural than the Visible Human. We provide directions for an easy-to-use, open-source software in conjunction with freely available histological data sets. This work facilitates self-education of spatial relationships of anatomical structures inside the human temporal bone as well as it allows exploration of surgical approaches prior to cadaveric testing and/or clinical implementation. Copyright © 2013 S. Karger AG, Basel.

  19. In blind pursuit of racial equality?

    PubMed

    Apfelbaum, Evan P; Pauker, Kristin; Sommers, Samuel R; Ambady, Nalini

    2010-11-01

    Despite receiving little empirical assessment, the color-blind approach to managing diversity has become a leading institutional strategy for promoting racial equality, across domains and scales of practice. We gauged the utility of color blindness as a means to eliminating future racial inequity--its central objective--by assessing its impact on a sample of elementary-school students. Results demonstrated that students exposed to a color-blind mind-set, as opposed to a value-diversity mind-set, were actually less likely both to detect overt instances of racial discrimination and to describe such events in a manner that would prompt intervention by certified teachers. Institutional messages of color blindness may therefore artificially depress formal reporting of racial injustice. Color-blind messages may thus appear to function effectively on the surface even as they allow explicit forms of bias to persist.

  20. Colorimetric characterization of digital cameras with unrestricted capture settings applicable for different illumination circumstances

    NASA Astrophysics Data System (ADS)

    Fang, Jingyu; Xu, Haisong; Wang, Zhehong; Wu, Xiaomin

    2016-05-01

    With colorimetric characterization, digital cameras can be used as image-based tristimulus colorimeters for color communication. In order to overcome the restriction of fixed capture settings adopted in the conventional colorimetric characterization procedures, a novel method was proposed considering capture settings. The method calculating colorimetric value of the measured image contains five main steps, including conversion from RGB values to equivalent ones of training settings through factors based on imaging system model so as to build the bridge between different settings, scaling factors involved in preparation steps for transformation mapping to avoid errors resulted from nonlinearity of polynomial mapping for different ranges of illumination levels. The experiment results indicate that the prediction error of the proposed method, which was measured by CIELAB color difference formula, reaches less than 2 CIELAB units under different illumination levels and different correlated color temperatures. This prediction accuracy for different capture settings remains the same level as the conventional method for particular lighting condition.

  1. Genome-wide association studies identify several new loci associated with pigmentation traits and skin cancer risk in European Americans

    PubMed Central

    Zhang, Mingfeng; Song, Fengju; Liang, Liming; Nan, Hongmei; Zhang, Jiangwen; Liu, Hongliang; Wang, Li-E.; Wei, Qingyi; Lee, Jeffrey E.; Amos, Christopher I.; Kraft, Peter; Qureshi, Abrar A.; Han, Jiali

    2013-01-01

    Aiming to identify novel genetic loci for pigmentation and skin cancer, we conducted a series of genome-wide association studies on hair color, eye color, number of sunburns, tanning ability and number of non-melanoma skin cancers (NMSCs) among 10 183 European Americans in the discovery stage and 4504 European Americans in the replication stage (for eye color, 3871 males in the discovery stage and 2496 males in the replication stage). We targeted novel chromosome regions besides the known ones for replication. As a result, we identified a new region downstream of the EDNRB gene on 13q22 associated with hair color and the strongest association was the single-nucleotide polymorphism (SNP) rs975739 (P = 2.4 × 10−14; P = 5.4 × 10−9 in the discovery set and P = 1.2 × 10−6 in the replication set). Using blue, intermediate (including green) and brown eye colors as co-dominant outcomes, we identified the SNP rs3002288 in VASH2 on 1q32.3 associated with brown eye (P = 7.0 × 10−8; P = 5.3 × 10−5 in the discovery set and P = 0.02 in the replication set). Additionally, we identified a significant interaction between the SNPs rs7173419 and rs12913832 in the OCA2 gene region on brown eye color (P-value for interaction = 3.8 × 10−3). As for the number of NMSCs, we identified two independent SNPs on chr6 and one SNP on chromosome 14: rs12203592 in IRF4 (P = 7.2 × 10−14; P = 1.8 × 10−8 in the discovery set and P = 6.7 × 10−7 in the replication set), rs12202284 between IRF4 and EXOC2 (P = 5.0 × 10−8; P = 6.6 × 10−7 in the discovery set and P = 3.0 × 10−3 in the replication set) and rs8015138 upstream of GNG2 (P = 6.6 × 10−8; P = 5.3 × 10−7 in the discovery set and P = 0.01 in the replication set). PMID:23548203

  2. A method for identifying color vision deficiency malingering.

    PubMed

    Pouw, Andrew; Karanjia, Rustum; Sadun, Alfredo

    2017-03-01

    To propose a new test to identify color vision deficiency malingering. An online survey was distributed to 130 truly color vision deficient participants and 160 participants willing to simulate color vision deficiency. The survey contained three sets of six color-adjusted versions of the standard Ishihara color plates each, as well as one set of six control plates. The plates that best discriminated both participant groups were selected for a "balanced" test emphasizing both sensitivity and specificity. A "specific" test that prioritized high specificity was also created by selecting from these plates. Statistical measures of the test (sensitivity, specificity, and Youden index) were assessed at each possible cut-off threshold, and a receiver operating characteristic (ROC) function with its area under the curve (AUC) charted. The redshift plate set was identified as having the highest difference of means between groups (-58%, CI: -64 to -52%), as well as the widest gap between group modes. Statistical measures of the "balanced" test show an optimal cut-off of at least two incorrectly identified plates to suggest malingering (Youden index: 0.773, sensitivity: 83.3%, specificity: 94.0%, AUC of ROC 0.918). The "specific" test was able to identify color vision deficiency simulators with a specificity of 100% when using a cut-off of at least two incorrectly identified plates (Youden index 0.599, sensitivity 59.9%, specificity 100%, AUC of ROC 0.881). Our proposed test for identifying color vision deficiency malingering demonstrates a high degree of reliability with AUCs of 0.918 and 0.881 for the "balanced" and "specific" tests, respectively. A cut-off threshold of at least two missed plates on the "specific" test was able to identify color vision deficiency simulators with 100% specificity.

  3. The Impact of White Teachers on the Academic Achievement of Black Students: An Exploratory Qualitative Analysis

    ERIC Educational Resources Information Center

    Douglas, Bruce; Lewis, Chance W.; Douglas, Adrian; Scott, Malcolm Earl; Garrison-Wade, Dorothy

    2008-01-01

    In today's school systems, students of color, particularly in urban settings, represent the majority student populations (Lewis, Hancock, James, & Larke, in press). Interestingly, the educators--teachers and administrators--that comprise these settings are predominately White, and, in turn, the students of color commonly face pressures that…

  4. Hue distinctiveness overrides category in determining performance in multiple object tracking.

    PubMed

    Sun, Mengdan; Zhang, Xuemin; Fan, Lingxia; Hu, Luming

    2018-02-01

    The visual distinctiveness between targets and distractors can significantly facilitate performance in multiple object tracking (MOT), in which color is a feature that has been commonly used. However, the processing of color can be more than "visual." Color is continuous in chromaticity, while it is commonly grouped into discrete categories (e.g., red, green). Evidence from color perception suggested that color categories may have a unique role in visual tasks independent of its chromatic appearance. Previous MOT studies have not examined the effect of chromatic and categorical distinctiveness on tracking separately. The current study aimed to reveal how chromatic (hue) and categorical distinctiveness of color between the targets and distractors affects tracking performance. With four experiments, we showed that tracking performance was largely facilitated by the increasing hue distance between the target set and the distractor set, suggesting that perceptual grouping was formed based on hue distinctiveness to aid tracking. However, we found no color categorical effect, because tracking performance was not significantly different when the targets and distractors were from the same or different categories. It was concluded that the chromatic distinctiveness of color overrides category in determining tracking performance, suggesting a dominant role of perceptual feature in MOT.

  5. A Coded Structured Light System Based on Primary Color Stripe Projection and Monochrome Imaging

    PubMed Central

    Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano

    2013-01-01

    Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy. PMID:24129018

  6. A coded structured light system based on primary color stripe projection and monochrome imaging.

    PubMed

    Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano

    2013-10-14

    Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy.

  7. Orientation of an Asian longhorned beetle, Anoplophora glabripennis, towards objects of different shapes and colors

    Treesearch

    Baode Wang; David R. Lance; Joseph A. Francese; Zhichun Xu; Fengyong Jia; Youqing Luo; Victor C. Mastro

    2003-01-01

    Silhouettes of different colors, shapes and sizes made of bamboo frames covered with cloth, paired in different color sets, were placed equidistantly around the perimeter of a circle with a 7.5 m radius, in an open area.

  8. Visual short-term memory for high resolution associations is impaired in patients with medial temporal lobe damage.

    PubMed

    Koen, Joshua D; Borders, Alyssa A; Petzold, Michael T; Yonelinas, Andrew P

    2017-02-01

    The medial temporal lobe (MTL) plays a critical role in episodic long-term memory, but whether the MTL is necessary for visual short-term memory is controversial. Some studies have indicated that MTL damage disrupts visual short-term memory performance whereas other studies have failed to find such evidence. To account for these mixed results, it has been proposed that the hippocampus is critical in supporting short-term memory for high resolution complex bindings, while the cortex is sufficient to support simple, low resolution bindings. This hypothesis was tested in the current study by assessing visual short-term memory in patients with damage to the MTL and controls for high resolution and low resolution object-location and object-color associations. In the location tests, participants encoded sets of two or four objects in different locations on the screen. After each set, participants performed a two-alternative forced-choice task in which they were required to discriminate the object in the target location from the object in a high or low resolution lure location (i.e., the object locations were very close or far away from the target location, respectively). Similarly, in the color tests, participants were presented with sets of two or four objects in a different color and, after each set, were required to discriminate the object in the target color from the object in a high or low resolution lure color (i.e., the lure color was very similar or very different, respectively, to the studied color). The patients were significantly impaired in visual short-term memory, but importantly, they were more impaired for high resolution object-location and object-color bindings. The results are consistent with the proposal that the hippocampus plays a critical role in forming and maintaining complex, high resolution bindings. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Illumination estimation via thin-plate spline interpolation.

    PubMed

    Shi, Lilong; Xiong, Weihua; Funt, Brian

    2011-05-01

    Thin-plate spline interpolation is used to interpolate the chromaticity of the color of the incident scene illumination across a training set of images. Given the image of a scene under unknown illumination, the chromaticity of the scene illumination can be found from the interpolated function. The resulting illumination-estimation method can be used to provide color constancy under changing illumination conditions and automatic white balancing for digital cameras. A thin-plate spline interpolates over a nonuniformly sampled input space, which in this case is a training set of image thumbnails and associated illumination chromaticities. To reduce the size of the training set, incremental k medians are applied. Tests on real images demonstrate that the thin-plate spline method can estimate the color of the incident illumination quite accurately, and the proposed training set pruning significantly decreases the computation.

  10. Evolution of the circuitry for conscious color vision in primates

    PubMed Central

    Neitz, J; Neitz, M

    2017-01-01

    There are many ganglion cell types and subtypes in our retina that carry color information. These have appeared at different times over the history of the evolution of the vertebrate visual system. They project to several different places in the brain and serve a variety of purposes allowing wavelength information to contribute to diverse visual functions. These include circadian photoentrainment, regulation of sleep and mood, guidance of orienting movements, detection and segmentation of objects. Predecessors to some of the circuits serving these purposes presumably arose before mammals evolved and different functions are represented by distinct ganglion cell types. However, while other animals use color information to elicit motor movements and regulate activity rhythms, as do humans, using phylogenetically ancient circuitry, the ability to appreciate color appearance may have been refined in ancestors to primates, mediated by a special set of ganglion cells that serve only that purpose. Understanding the circuitry for color vision has implications for the possibility of treating color blindness using gene therapy by recapitulating evolution. In addition, understanding how color is encoded, including how chromatic and achromatic percepts are separated is a step toward developing a complete picture of the diversity of ganglion cell types and their functions. Such knowledge could be useful in developing therapeutic strategies for blinding eye disorders that rely on stimulating elements in the retina, where more than 50 different neuron types are organized into circuits that transform signals from photoreceptors into specialized detectors many of which are not directly involved in conscious vision. PMID:27935605

  11. Evolution of the circuitry for conscious color vision in primates.

    PubMed

    Neitz, J; Neitz, M

    2017-02-01

    There are many ganglion cell types and subtypes in our retina that carry color information. These have appeared at different times over the history of the evolution of the vertebrate visual system. They project to several different places in the brain and serve a variety of purposes allowing wavelength information to contribute to diverse visual functions. These include circadian photoentrainment, regulation of sleep and mood, guidance of orienting movements, detection and segmentation of objects. Predecessors to some of the circuits serving these purposes presumably arose before mammals evolved and different functions are represented by distinct ganglion cell types. However, while other animals use color information to elicit motor movements and regulate activity rhythms, as do humans, using phylogenetically ancient circuitry, the ability to appreciate color appearance may have been refined in ancestors to primates, mediated by a special set of ganglion cells that serve only that purpose. Understanding the circuitry for color vision has implications for the possibility of treating color blindness using gene therapy by recapitulating evolution. In addition, understanding how color is encoded, including how chromatic and achromatic percepts are separated is a step toward developing a complete picture of the diversity of ganglion cell types and their functions. Such knowledge could be useful in developing therapeutic strategies for blinding eye disorders that rely on stimulating elements in the retina, where more than 50 different neuron types are organized into circuits that transform signals from photoreceptors into specialized detectors many of which are not directly involved in conscious vision.

  12. Achromatic synesthesias - a functional magnetic resonance imaging study.

    PubMed

    Melero, H; Ríos-Lago, M; Peña-Melián, A; Álvarez-Linera, J

    2014-09-01

    Grapheme-color synesthetes experience consistent, automatic and idiosyncratic colors associated with specific letters and numbers. Frequently, these specific associations exhibit achromatic synesthetic qualities (e.g. white, black or gray). In this study, we have investigated for the first time the neural basis of achromatic synesthesias, their relationship to chromatic synesthesias and the achromatic congruency effect in order to understand not only synesthetic color but also other components of the synesthetic experience. To achieve this aim, functional magnetic resonance imaging experiments were performed in a group of associator grapheme-color synesthetes and matched controls who were stimulated with real chromatic and achromatic stimuli (Mondrians), and with letters and numbers that elicited different types of grapheme-color synesthesias (i.e. chromatic and achromatic inducers which elicited chromatic but also achromatic synesthesias, as well as congruent and incongruent ones). The information derived from the analysis of Mondrians and chromatic/achromatic synesthesias suggests that real and synesthetic colors/achromaticity do not fully share neural mechanisms. The whole-brain analysis of BOLD signals in response to the complete set of synesthetic inducers revealed that the functional peculiarities of the synesthetic brain are distributed, and reflect different components of the synesthetic experience: a perceptual component, an (attentional) feature binding component, and an emotional component. Additionally, the inclusion of achromatic experiences has provided new evidence in favor of the emotional binding theory, a line of interpretation which constitutes a bridge between grapheme-color synesthesia and other developmental modalities of the phenomenon. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Application of the airborne ocean color imager for commercial fishing

    NASA Technical Reports Server (NTRS)

    Wrigley, Robert C.

    1993-01-01

    The objective of the investigation was to develop a commercial remote sensing system for providing near-real-time data (within one day) in support of commercial fishing operations. The Airborne Ocean Color Imager (AOCI) had been built for NASA by Daedalus Enterprises, Inc., but it needed certain improvements, data processing software, and a delivery system to make it into a commercial system for fisheries. Two products were developed to support this effort: the AOCI with its associated processing system and an information service for both commercial and recreational fisheries to be created by Spectro Scan, Inc. The investigation achieved all technical objectives: improving the AOCI, creating software for atmospheric correction and bio-optical output products, georeferencing the output products, and creating a delivery system to get those products into the hands of commercial and recreational fishermen in near-real-time. The first set of business objectives involved Daedalus Enterprises and also were achieved: they have an improved AOCI and new data processing software with a set of example data products for fisheries applications to show their customers. Daedalus' marketing activities showed the need for simplification of the product for fisheries, but they successfully marketed the current version to an Italian consortium. The second set of business objectives tasked Spectro Scan to provide an information service and they could not be achieved because Spectro Scan was unable to obtain necessary venture capital to start up operations.

  14. SU-G-JeP1-11: Feasibility Study of Markerless Tracking Using Dual Energy Fluoroscopic Images for Real-Time Tumor-Tracking Radiotherapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiinoki, T; Shibuya, K; Sawada, A

    Purpose: The new real-time tumor-tracking radiotherapy (RTRT) system was installed in our institution. This system consists of two x-ray tubes and color image intensifiers (I.I.s). The fiducial marker which was implanted near the tumor was tracked using color fluoroscopic images. However, the implantation of the fiducial marker is very invasive. Color fluoroscopic images enable to increase the recognition of the tumor. However, these images were not suitable to track the tumor without fiducial marker. The purpose of this study was to investigate the feasibility of markerless tracking using dual energy colored fluoroscopic images for real-time tumor-tracking radiotherapy system. Methods: Themore » colored fluoroscopic images of static and moving phantom that had the simulated tumor (30 mm diameter sphere) were experimentally acquired using the RTRT system. The programmable respiratory motion phantom was driven using the sinusoidal pattern in cranio-caudal direction (Amplitude: 20 mm, Time: 4 s). The x-ray condition was set to 55 kV, 50 mA and 105 kV, 50 mA for low energy and high energy, respectively. Dual energy images were calculated based on the weighted logarithmic subtraction of high and low energy images of RGB images. The usefulness of dual energy imaging for real-time tracking with an automated template image matching algorithm was investigated. Results: Our proposed dual energy subtraction improve the contrast between tumor and background to suppress the bone structure. For static phantom, our results showed that high tracking accuracy using dual energy subtraction images. For moving phantom, our results showed that good tracking accuracy using dual energy subtraction images. However, tracking accuracy was dependent on tumor position, tumor size and x-ray conditions. Conclusion: We indicated that feasibility of markerless tracking using dual energy fluoroscopic images for real-time tumor-tracking radiotherapy system. Furthermore, it is needed to investigate the tracking accuracy using proposed dual energy subtraction images for clinical cases.« less

  15. 21 CFR 73.500 - Saffron.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.500 Saffron. (a) Identity. (1) The color additive saffron is the... identity as a color additive only, and shall not be construed as setting forth an official standard for...

  16. 21 CFR 73.340 - Paprika.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.340 Paprika. (a) Identity. (1) The color additive paprika is the... for the purpose of identity as a color additive only and shall not be construed as setting forth an...

  17. Probabilistic density function method for nonlinear dynamical systems driven by colored noise.

    PubMed

    Barajas-Solano, David A; Tartakovsky, Alexandre M

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integrodifferential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified large-eddy-diffusivity (LED) closure. In contrast to the classical LED closure, the proposed closure accounts for advective transport of the PDF in the approximate temporal deconvolution of the integrodifferential equation. In addition, we introduce the generalized local linearization approximation for deriving a computable PDF equation in the form of a second-order partial differential equation. We demonstrate that the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary autocorrelation time. We apply the proposed PDF method to analyze a set of Kramers equations driven by exponentially autocorrelated Gaussian colored noise to study nonlinear oscillators and the dynamics and stability of a power grid. Numerical experiments show the PDF method is accurate when the noise autocorrelation time is either much shorter or longer than the system's relaxation time, while the accuracy decreases as the ratio of the two timescales approaches unity. Similarly, the PDF method accuracy decreases with increasing standard deviation of the noise.

  18. Enriching text with images and colored light

    NASA Astrophysics Data System (ADS)

    Sekulovski, Dragan; Geleijnse, Gijs; Kater, Bram; Korst, Jan; Pauws, Steffen; Clout, Ramon

    2008-01-01

    We present an unsupervised method to enrich textual applications with relevant images and colors. The images are collected by querying large image repositories and subsequently the colors are computed using image processing. A prototype system based on this method is presented where the method is applied to song lyrics. In combination with a lyrics synchronization algorithm the system produces a rich multimedia experience. In order to identify terms within the text that may be associated with images and colors, we select noun phrases using a part of speech tagger. Large image repositories are queried with these terms. Per term representative colors are extracted using the collected images. Hereto, we either use a histogram-based or a mean shift-based algorithm. The representative color extraction uses the non-uniform distribution of the colors found in the large repositories. The images that are ranked best by the search engine are displayed on a screen, while the extracted representative colors are rendered on controllable lighting devices in the living room. We evaluate our method by comparing the computed colors to standard color representations of a set of English color terms. A second evaluation focuses on the distance in color between a queried term in English and its translation in a foreign language. Based on results from three sets of terms, a measure of suitability of a term for color extraction based on KL Divergence is proposed. Finally, we compare the performance of the algorithm using either the automatically indexed repository of Google Images and the manually annotated Flickr.com. Based on the results of these experiments, we conclude that using the presented method we can compute the relevant color for a term using a large image repository and image processing.

  19. The Relationship Between Coat Color and Aggressive Behaviors in the Domestic Cat.

    PubMed

    Stelow, Elizabeth A; Bain, Melissa J; Kass, Philip H

    2016-01-01

    The authors explored a possible relationship between coat color and aggressive behaviors in the domestic cat. This study used an Internet-based survey to collect information on coat color, affiliative behaviors toward cats/humans, agonistic behaviors toward cats/humans, other "problem" behaviors, and cat and guardian demographic data. A total of 1,432 cat guardians completed the online survey; after exclusions based on study protocol, data analysis included 1,274 completed surveys. Guardians reported sex-linked orange female (tortoiseshells, calicos, and "torbies"), black-and-white, and gray-and-white cats to be more frequently aggressive toward humans in 3 settings: during everyday interactions, during handling, and during veterinary visits. Kruskal-Wallis 1-way analysis of variance was used to compare possible differences between the 2 sexes and among different coat colors. Analyses of aggression due to handling, as well as aggression displayed during veterinarian visits, showed little difference among coat colors in these settings.

  20. Study on some useful Operators for Graph-theoretic Image Processing

    NASA Astrophysics Data System (ADS)

    Moghani, Ali; Nasiri, Parviz

    2010-11-01

    In this paper we describe a human perception based approach to pixel color segmentation which applied in color reconstruction by numerical method associated with graph-theoretic image processing algorithm typically in grayscale. Fuzzy sets defined on the Hue, Saturation and Value components of the HSV color space, provide a fuzzy logic model that aims to follow the human intuition of color classification.

  1. Color stability of ceramic brackets immersed in potentially staining solutions

    PubMed Central

    Guignone, Bruna Coser; Silva, Ludimila Karsbergen; Soares, Rodrigo Villamarim; Akaki, Emilio; Goiato, Marcelo Coelho; Pithon, Matheus Melo; Oliveira, Dauro Douglas

    2015-01-01

    OBJECTIVE: To assess the color stability of five types of ceramic brackets after immersion in potentially staining solutions. METHODS: Ninety brackets were divided into 5 groups (n = 18) according to brackets commercial brands and the solutions in which they were immersed (coffee, red wine, coke and artificial saliva). The brackets assessed were Transcend (3M/Unitek, Monrovia, CA, USA), Radiance (American Orthodontics, Sheboygan, WI, USA), Mystique (GAC International Inc., Bohemia, NY, USA) and Luxi II (Rocky Mountain Orthodontics, Denver, CO, USA). Chromatic changes were analyzed with the aid of a reflectance spectrophotometer and by visual inspection at five specific time intervals. Assessment periods were as received from the manufacturer (T0), 24 hours (T1), 72 hours (T2), as well as 7 days (T3) and 14 days (T4) of immersion in the aforementioned solutions. Results were submitted to statistical analysis with ANOVA and Bonferroni correction, as well as to a multivariate profile analysis for independent and paired samples with significance level set at 5%. RESULTS: The duration of the immersion period influenced color alteration of all tested brackets, even though these changes could not always be visually observed. Different behaviors were observed for each immersion solution; however, brackets immersed in one solution progressed similarly despite minor variations. CONCLUSIONS: Staining became more intense over time and all brackets underwent color alterations when immersed in the aforementioned solutions. PMID:26352842

  2. Color stability of ceramic brackets immersed in potentially staining solutions.

    PubMed

    Guignone, Bruna Coser; Silva, Ludimila Karsbergen; Soares, Rodrigo Villamarim; Akaki, Emilio; Goiato, Marcelo Coelho; Pithon, Matheus Melo; Oliveira, Dauro Douglas

    2015-01-01

    To assess the color stability of five types of ceramic brackets after immersion in potentially staining solutions. Ninety brackets were divided into 5 groups (n = 18) according to brackets commercial brands and the solutions in which they were immersed (coffee, red wine, coke and artificial saliva). The brackets assessed were Transcend (3M/Unitek, Monrovia, CA, USA), Radiance (American Orthodontics, Sheboygan, WI, USA), Mystique (GAC International Inc., Bohemia, NY, USA) and Luxi II (Rocky Mountain Orthodontics, Denver, CO, USA). Chromatic changes were analyzed with the aid of a reflectance spectrophotometer and by visual inspection at five specific time intervals. Assessment periods were as received from the manufacturer (T0), 24 hours (T1), 72 hours (T2), as well as 7 days (T3) and 14 days (T4) of immersion in the aforementioned solutions. Results were submitted to statistical analysis with ANOVA and Bonferroni correction, as well as to a multivariate profile analysis for independent and paired samples with significance level set at 5%. The duration of the immersion period influenced color alteration of all tested brackets, even though these changes could not always be visually observed. Different behaviors were observed for each immersion solution; however, brackets immersed in one solution progressed similarly despite minor variations. Staining became more intense over time and all brackets underwent color alterations when immersed in the aforementioned solutions.

  3. Duration ratio discrimination in pigeons: a criterion-setting analysis.

    PubMed

    Fetterman, J Gregor

    2006-02-28

    Pigeons received trials beginning with a sequence of two colors (blue-->yellow) on the center key of a three-key array. The colors lasted different lengths of time. At the end of the sequence pigeons chose between two keys based on a criterial ratio of the temporal sequence. One choice was reinforced if the time ratio was less than the criterion and the alternate choice was reinforced if the time ratio was greater than the criterion. The criterial ratios (first to second duration) were 1:1, 1.5:1, and 3:1. The same set of intervals was used for the different criterion ratios, producing a balanced distribution of time ratios for the 1.5:1 condition, and unbalanced distributions for the 1:1 and 3:1 conditions. That is, for the 1.5:1 condition half of the duration pairs were less than the criterion and half were greater. However, for the 1:1 and 3:1 conditions, more duration pairs were less than (3:1) or greater than (1:1) the criterion. Accuracy was similar across criterion ratios, but response bias was influenced by the asymmetries of time ratios in the 1:1 and 3:1 conditions. When these asymmetries were controlled, the response biases were reduced or eliminated. These results indicate that pigeons are flexible in establishing a criterion for discriminating duration ratios, unlike humans, who are less flexible and are bound to categorical distinctions in the discrimination of duration ratios.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houser, Kevin W.; Royer, Michael P.; David, Aurelien

    A system for evaluating the color rendition of light sources was recently published as IES TM-30-15 IES Method for Evaluating Light Source Color Rendition. The system includes a fidelity index (Rf) to quantify similarity to a reference illuminant, a relative-gamut index (Rg) to quantify saturation relative to a reference illuminant, and a color vector icon that visually presents information about color rendition. The calculation employs CAM02-UCS and uses a newly-developed set of reflectance functions, comprising 99 color evaluation samples (CES). The CES were down-selected from 105,000 real object samples and are uniformly distributed in color space (fairly representing different colors)more » and wavelength space (avoiding artificial increase of color rendition values by selective optimization).« less

  5. Image-Processing Techniques for the Creation of Presentation-Quality Astronomical Images

    NASA Astrophysics Data System (ADS)

    Rector, Travis A.; Levay, Zoltan G.; Frattare, Lisa M.; English, Jayanne; Pu'uohau-Pummill, Kirk

    2007-02-01

    The quality of modern astronomical data and the agility of current image-processing software enable the visualization of data in a way that exceeds the traditional definition of an astronomical image. Two developments in particular have led to a fundamental change in how astronomical images can be assembled. First, the availability of high-quality multiwavelength and narrowband data allow for images that do not correspond to the wavelength sensitivity of the human eye, thereby introducing ambiguity in the usage and interpretation of color. Second, many image-processing software packages now use a layering metaphor that allows for any number of astronomical data sets to be combined into a color image. With this technique, images with as many as eight data sets have been produced. Each data set is intensity-scaled and colorized independently, creating an immense parameter space that can be used to assemble the image. Since such images are intended for data visualization, scaling and color schemes must be chosen that best illustrate the science. A practical guide is presented on how to use the layering metaphor to generate publication-ready astronomical images from as many data sets as desired. A methodology is also given on how to use intensity scaling, color, and composition to create contrasts in an image that highlight the scientific detail. Examples of image creation are discussed.

  6. Combining Topological Hardware and Topological Software: Color-Code Quantum Computing with Topological Superconductor Networks

    NASA Astrophysics Data System (ADS)

    Litinski, Daniel; Kesselring, Markus S.; Eisert, Jens; von Oppen, Felix

    2017-07-01

    We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall-superconductor hybrids.

  7. A Performance Comparison of Color Vision Tests for Military Screening.

    PubMed

    Walsh, David V; Robinson, James; Jurek, Gina M; Capó-Aponte, José E; Riggs, Daniel W; Temme, Leonard A

    2016-04-01

    Current color vision (CV) tests used for aviation screening in the U.S. Army only provide pass-fail results, and previous studies have shown variable sensitivity and specificity. The purpose of this study was to evaluate seven CV tests to determine an optimal CV test screener that potentially could be implemented by the U.S. Army. There were 133 subjects [65 Color Vision Deficits (CVD), 68 Color Vision Normal (CVN)] who performed all of the tests in one setting. CVD and CVN determination was initially assessed with the Oculus anomaloscope. Each test was administered monocularly and according to the test protocol. The main outcome measures were test sensitivity, specificity, and administration time (automated tests). Three of the four Pseudoisochromatic Plate (PIP) tests had a sensitivity/specificity > 0.90 OD/OS, whereas the FALANT tests had a sensitivity/specificity > 0.80 OD/OS. The Cone Contrast Test (CCT) demonstrated sensitivity/specificity > 0.90 OD/OS, whereas the Color Assessment and Diagnosis (CAD) test demonstrated sensitivity/specificity > 0.85 OD/OS. Comparison with the anomaloscope ("gold standard") revealed no significant difference of sensitivity and specificity OD/OS with the CCT, Dvorine PIP, and PIPC tests. Finally, the CCT administration time was significantly faster than the CAD test. The current U.S. Army CV screening tests demonstrated good sensitivity and specificity, as did the automated tests. In addition, some current PIP tests (Dvorine, PIPC), and the CCT performed no worse statistically than the anomaloscope with regard to sensitivity/specificity. The CCT letter presentation is randomized and results would not be confounded by potential memorization, or fading, of book plates.

  8. 21 CFR 73.300 - Carrot oil.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.300 Carrot oil. (a) Identity. (1) The color additive carrot... of identity as a color additive only and shall not be construed as setting forth an official standard for carrot oil or carrot oleoresin under section 401 of the act. (2) Color additive mixtures for food...

  9. 21 CFR 73.600 - Turmeric.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.600 Turmeric. (a) Identity. (1) The color additive turmeric... purpose of identity as a color additive only, and shall not be construed as setting forth an official standard for turmeric under section 401 of the act. (2) Color additive mixtures made with turmeric may...

  10. An Unexpected Expected Value.

    ERIC Educational Resources Information Center

    Schwartzman, Steven

    1993-01-01

    Discusses the surprising result that the expected number of marbles of one color drawn from a set of marbles of two colors after two draws without replacement is the same as the expected number of that color marble after two draws with replacement. Presents mathematical models to help explain this phenomenon. (MDH)

  11. Causes of Different Vivid Colors in Chalcedonies: Kutahya-Turkey

    NASA Astrophysics Data System (ADS)

    Ozcan Kilic, Cumhur; Kagan Kadıoglu, Yusuf

    2016-04-01

    Chalcedony is a silicate mineral which is a mixture of fibrous quartz (trigonal) and granular moganite (monoclinic) minerals. They are both SiO2 in composition but differs in crystal system. Chalcedony is widely used as semi-precious gemstone in many countries. It has many different kinds due to their various colors and structures. The colour changes in mineral depends on different causes. Most important causes are transition metal impurities in minerals chemical composition and charge transfer between ions. Different chalcedony types have different colors due to their elemental composition. Chalcedony can be show almost every colour strating from white, black, gray, red, blue, green to brown or a combinations of more than one color in case of agates and jasper formations. Although they have same major oxide compositions,chrysopras (green chalcedony) have Ni which gives the green color and carnelian (orange chalcedony) have Fe+3 which gives the orange color. Kutahya, Eskisehir, Ankara, Manisa, Balıkesir, Canakkale and Yozgat represent the most cities which chalcedony can be mostly observed in Turkey. In Kutahya, chalcedony occurs in cavity or vein fillings in pyroclastic rocks such as tuff and formed by precipitation of silica bearing fluids in low temperatures. They can be also formed within the hydrothermal alteration zone of ultramafic rocks. Although chalcedonies in Kutahya form under almost same condition, they have various colors within the same unit. To specify the cause of the different colors, chemical analysis and Confocal Raman studies performed on Kutahya chalcedonies. Firstly, samples are crushed to 2 mm. size. After that, different colors of chalcedonies are separated by hand picking under binocular microscope and grouped into different color sets such as white, blue, dark yellow, light orange, dark orange and claret red. Each color set is measured by PED-XRF method to obtain chemical compositions. Also Raman studies performed to identify the effect of Fe element and OH bonds in each color set groups. Due to chemical results, 'Fe2O3-TiO2'assemblage gives claret red-dark orange, only "Fe2O3"gives claret red, 'Fe2O3-Ni' assemblage gives orange to claret red, 'Cr-Ni-Co' assemblage gives light orange, 'As' gives yellow, 'Fe2O3-Cu' assemblage gives claret red to orange, 'As-Zr' and 'Cr2O3-MgO' assemblage gives blue color to chalcedonies in Kutahya. Also 'Fe' Raman shift is figured in Raman studies in Fe containing orange-claret red colored samples. The vivid colors in all the sets derived from the OH Raman shift bonds of the chalcedony. Chemical results show that the colour differences in chalcedony is not related with only one element.The mobility and charge of Fe element with some other (Co, Mn, Cu, Cr, Ni etc.) elements also effects the variability of the colour.

  12. Accelerating Time-Varying Hardware Volume Rendering Using TSP Trees and Color-Based Error Metrics

    NASA Technical Reports Server (NTRS)

    Ellsworth, David; Chiang, Ling-Jen; Shen, Han-Wei; Kwak, Dochan (Technical Monitor)

    2000-01-01

    This paper describes a new hardware volume rendering algorithm for time-varying data. The algorithm uses the Time-Space Partitioning (TSP) tree data structure to identify regions within the data that have spatial or temporal coherence. By using this coherence, the rendering algorithm can improve performance when the volume data is larger than the texture memory capacity by decreasing the amount of textures required. This coherence can also allow improved speed by appropriately rendering flat-shaded polygons instead of textured polygons, and by not rendering transparent regions. To reduce the polygonization overhead caused by the use of the hierarchical data structure, we introduce an optimization method using polygon templates. The paper also introduces new color-based error metrics, which more accurately identify coherent regions compared to the earlier scalar-based metrics. By showing experimental results from runs using different data sets and error metrics, we demonstrate that the new methods give substantial improvements in volume rendering performance.

  13. Integration of Real-Time Intraoperative Contrast-Enhanced Ultrasound and Color Doppler Ultrasound in the Surgical Treatment of Spinal Cord Dural Arteriovenous Fistulas.

    PubMed

    Della Pepa, Giuseppe Maria; Sabatino, Giovanni; Sturiale, Carmelo Lucio; Marchese, Enrico; Puca, Alfredo; Olivi, Alessandro; Albanese, Alessio

    2018-04-01

    In the surgical treatment of spinal dural arteriovenous fistulas (DAVFs), intraoperative definition of anatomic characteristics of the DAVF and identification of the fistulous point is mandatory to effectively exclude the DAVF. Intraoperative ultrasound and contrast-enhanced ultrasound integrated with color Doppler ultrasound was applied in the surgical setting for a cervical DAVF to identify the fistulous point and evaluate correct occlusion of the fistula. Integration of intraoperative ultrasound and contrast-enhanced ultrasound is a simple, cost-effective technique that provides an opportunity for real-time dynamic visualization of DAVF vascular patterns, identification of the fistulous point, and assessment of correct exclusion. Compared with other intraoperative tools, such as indocyanine green videoangiography, it allows the surgeon to visualize hidden anatomic and vascular structures, minimizing surgical manipulation and guiding the surgeon during resection. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. What are the Shapes of Response Time Distributions in Visual Search?

    PubMed Central

    Palmer, Evan M.; Horowitz, Todd S.; Torralba, Antonio; Wolfe, Jeremy M.

    2011-01-01

    Many visual search experiments measure reaction time (RT) as their primary dependent variable. Analyses typically focus on mean (or median) RT. However, given enough data, the RT distribution can be a rich source of information. For this paper, we collected about 500 trials per cell per observer for both target-present and target-absent displays in each of three classic search tasks: feature search, with the target defined by color; conjunction search, with the target defined by both color and orientation; and spatial configuration search for a 2 among distractor 5s. This large data set allows us to characterize the RT distributions in detail. We present the raw RT distributions and fit several psychologically motivated functions (ex-Gaussian, ex-Wald, Gamma, and Weibull) to the data. We analyze and interpret parameter trends from these four functions within the context of theories of visual search. PMID:21090905

  15. Heuristics and Criterion Setting during Selective Encoding in Visual Decision-Making: Evidence from Eye Movements.

    PubMed

    Schotter, Elizabeth R; Gerety, Cainen; Rayner, Keith

    2012-01-01

    When making a decision, people spend longer looking at the option they ultimately choose compared other options-termed the gaze bias effect-even during their first encounter with the options (Glaholt & Reingold, 2009a, 2009b; Schotter, Berry, McKenzie & Rayner, 2010). Schotter et al. (2010) suggested that this is because people selectively encode decision-relevant information about the options, on-line during the first encounter with them. To extend their findings and test this claim, we recorded subjects' eye movements as they made judgments about pairs of images (i.e., which one was taken more recently or which one was taken longer ago). We manipulated whether both images were presented in the same color content (e.g., both in color or both in black-and-white) or whether they differed in color content and the extent to which color content was a reliable cue to relative recentness of the images. We found that the magnitude of the gaze bias effect decreased when the color content cue was not reliable during the first encounter with the images, but no modulation of the gaze bias effect in remaining time on the trial. These data suggest people do selectively encode decision-relevant information on-line.

  16. Science Museum Series - Speed, Time, Space, and Flight

    NASA Astrophysics Data System (ADS)

    Wilkinson, Philip

    2004-04-01

    This four-volume set explores some of the most popular areas of science and invention. It is produced in collaboration with the Science Museum in London, which houses one of the most remarkable science collections in the world. Each book takes one area of our inventiveness and reveals our progress through time, highlighting the key developments and ending with the state-of-the-art technology of today. Each story is told with brief, lively text linked to the four-color images and includes a glossary and index.

  17. Protocol Handbook - A Guide for the Base Protocol Officer

    DTIC Science & Technology

    1986-04-01

    printed or otherwise impressed on paper napkins , boxes, or anythi-ng designed ftar temporary use and discard. Advertisitig s;Igns are not to be...colored cloth and napkins are fine and add to the setting of the luncheon. There should be a centerpiece, but no candles are used on luncheon tables. Th~e...time, place, dress, and occasion. They should be in the third person, in black ink with the date and time written completely. The dress is handwritten

  18. A multilevel multispectral data set analysis in the visible and infrared wavelength regions. [for land use remote sensing

    NASA Technical Reports Server (NTRS)

    Biehl, L. L.; Silva, L. F.

    1975-01-01

    Skylab multispectral scanner data, digitized Skylab color infrared (IR) photography, digitized Skylab black and white multiband photography, and Earth Resources Technology Satellite (ERTS) multispectral scanner data collected within a 24-hr time period over an area in south-central Indiana near Bloomington on June 9 and 10, 1973, were compared in a machine-aided land use analysis of the area. The overall classification performance results, obtained with nine land use classes, were 87% correct classification using the 'best' 4 channels of the Skylab multispectral scanner, 80% for the channels on the Skylab multispectral scanner which are spectrally comparable to the ERTS multispectral scanner, 88% for the ERTS multispectral scanner, 83% for the digitized color IR photography, and 76% for the digitized black and white multiband photography. The results indicate that the Skylab multispectral scanner may yield even higher classification accuracies when a noise-filtered multispectral scanner data set becomes available in the near future.

  19. Computational Approach to Seasonal Changes of Living Leaves

    PubMed Central

    Wu, Dong-Yan

    2013-01-01

    This paper proposes a computational approach to seasonal changes of living leaves by combining the geometric deformations and textural color changes. The geometric model of a leaf is generated by triangulating the scanned image of a leaf using an optimized mesh. The triangular mesh of the leaf is deformed by the improved mass-spring model, while the deformation is controlled by setting different mass values for the vertices on the leaf model. In order to adaptively control the deformation of different regions in the leaf, the mass values of vertices are set to be in proportion to the pixels' intensities of the corresponding user-specified grayscale mask map. The geometric deformations as well as the textural color changes of a leaf are used to simulate the seasonal changing process of leaves based on Markov chain model with different environmental parameters including temperature, humidness, and time. Experimental results show that the method successfully simulates the seasonal changes of leaves. PMID:23533545

  20. Preliminary evaluation of a fully automated quantitative framework for characterizing general breast tissue histology via color histogram and color texture analysis

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Gastounioti, Aimilia; Batiste, Rebecca C.; Kontos, Despina; Feldman, Michael D.

    2016-03-01

    Visual characterization of histologic specimens is known to suffer from intra- and inter-observer variability. To help address this, we developed an automated framework for characterizing digitized histology specimens based on a novel application of color histogram and color texture analysis. We perform a preliminary evaluation of this framework using a set of 73 trichrome-stained, digitized slides of normal breast tissue which were visually assessed by an expert pathologist in terms of the percentage of collagenous stroma, stromal collagen density, duct-lobular unit density and the presence of elastosis. For each slide, our algorithm automatically segments the tissue region based on the lightness channel in CIELAB colorspace. Within each tissue region, a color histogram feature vector is extracted using a common color palette for trichrome images generated with a previously described method. Then, using a whole-slide, lattice-based methodology, color texture maps are generated using a set of color co-occurrence matrix statistics: contrast, correlation, energy and homogeneity. The extracted features sets are compared to the visually assessed tissue characteristics. Overall, the extracted texture features have high correlations to both the percentage of collagenous stroma (r=0.95, p<0.001) and duct-lobular unit density (r=0.71, p<0.001) seen in the tissue samples, and several individual features were associated with either collagen density and/or the presence of elastosis (p<=0.05). This suggests that the proposed framework has promise as a means to quantitatively extract descriptors reflecting tissue-level characteristics and thus could be useful in detecting and characterizing histological processes in digitized histology specimens.

  1. [Development of new approaches for objective dental tissue characteristiсs reproduction for preparation of highly aesthetical restoration].

    PubMed

    Makeeva, I M; Moskalev, E E; Kuz'ko, E I

    2010-01-01

    A new method of color quality control based on spectrophotometry has been developed for dental restoration. A comparative analysis of quality of subjective color control by trained and non-trained observers has been made. Based on comparative analysis of the results of subjective color-control and spectrophotometry the maximum amount of allowed color difference has been set (dE=2.8).

  2. Color categories are not universal: new evidence from traditional and western cultures

    NASA Astrophysics Data System (ADS)

    Roberson, Debi D.; Davidoff, Jules; Davies, Ian R. L.

    2002-06-01

    Evidence presented supports the linguistic relativity of color categories in three different paradigms. Firstly, a series of cross-cultural investigations, which had set out to replicate the seminal work of Rosch Heider with the Dani of New Guinea, failed to find evidence of a set of universal color categories. Instead, we found evidence of linguistic relativity in both populations tested. Neither participants from a Melanesian hunter-gatherer culture, nor those from an African pastoral tribe, whose languages both contain five color terms, showed a cognitive organization of color resembling that of English speakers. Further, Melanesian participants showed evidence of Categorical Perception, but only at their linguistic category boundaries. Secondly, in native English speakers verbal interference was found to selectively remove the defining features of Categorical Perception. Under verbal interference, the greater accuracy normally observed for cross-category judgements compared to within-category judgements disappeared. While both visual and verbal codes may be employed in the recognition memory of colors, participants only make use of verbal coding when demonstrating Categorical Perception. Thirdly, in a brain- damaged patient suffering from a naming disorder, the loss of labels radically impaired his ability to categorize colors. We conclude that language affects both the perception of and memory for colors.

  3. Self-Organizing-Map Program for Analyzing Multivariate Data

    NASA Technical Reports Server (NTRS)

    Li, P. Peggy; Jacob, Joseph C.; Block, Gary L.; Braverman, Amy J.

    2005-01-01

    SOM_VIS is a computer program for analysis and display of multidimensional sets of Earth-image data typified by the data acquired by the Multi-angle Imaging Spectro-Radiometer [MISR (a spaceborne instrument)]. In SOM_VIS, an enhanced self-organizing-map (SOM) algorithm is first used to project a multidimensional set of data into a nonuniform three-dimensional lattice structure. The lattice structure is mapped to a color space to obtain a color map for an image. The Voronoi cell-refinement algorithm is used to map the SOM lattice structure to various levels of color resolution. The final result is a false-color image in which similar colors represent similar characteristics across all its data dimensions. SOM_VIS provides a control panel for selection of a subset of suitably preprocessed MISR radiance data, and a control panel for choosing parameters to run SOM training. SOM_VIS also includes a component for displaying the false-color SOM image, a color map for the trained SOM lattice, a plot showing an original input vector in 36 dimensions of a selected pixel from the SOM image, the SOM vector that represents the input vector, and the Euclidean distance between the two vectors.

  4. Evaluation of coffee roasting degree by using electronic nose and artificial neural network for off-line quality control.

    PubMed

    Romani, Santina; Cevoli, Chiara; Fabbri, Angelo; Alessandrini, Laura; Dalla Rosa, Marco

    2012-09-01

    An electronic nose (EN) based on an array of 10 metal oxide semiconductor sensors was used, jointly with an artificial neural network (ANN), to predict coffee roasting degree. The flavor release evolution and the main physicochemical modifications (weight loss, density, moisture content, and surface color: L*, a*), during the roasting process of coffee, were monitored at different cooking times (0, 6, 8, 10, 14, 19 min). Principal component analysis (PCA) was used to reduce the dimensionality of sensors data set (600 values per sensor). The selected PCs were used as ANN input variables. Two types of ANN methods (multilayer perceptron [MLP] and general regression neural network [GRNN]) were used in order to estimate the EN signals. For both neural networks the input values were represented by scores of sensors data set PCs, while the output values were the quality parameter at different roasting times. Both the ANNs were able to well predict coffee roasting degree, giving good prediction results for both roasting time and coffee quality parameters. In particular, GRNN showed the highest prediction reliability. Actually the evaluation of coffee roasting degree is mainly a manned operation, substantially based on the empirical final color observation. For this reason it requires well-trained operators with a long professional skill. The coupling of e-nose and artificial neural networks (ANNs) may represent an effective possibility to roasting process automation and to set up a more reproducible procedure for final coffee bean quality characterization. © 2012 Institute of Food Technologists®

  5. The Roles of Feature-Specific Task Set and Bottom-Up Salience in Attentional Capture: An ERP Study

    ERIC Educational Resources Information Center

    Eimer, Martin; Kiss, Monika; Press, Clare; Sauter, Disa

    2009-01-01

    We investigated the roles of top-down task set and bottom-up stimulus salience for feature-specific attentional capture. Spatially nonpredictive cues preceded search arrays that included a color-defined target. For target-color singleton cues, behavioral spatial cueing effects were accompanied by cue-induced N2pc components, indicative of…

  6. Color Vision in Color Display Night Vision Goggles.

    PubMed

    Liggins, Eric P; Serle, William P

    2017-05-01

    Aircrew viewing eyepiece-injected symbology on color display night vision goggles (CDNVGs) are performing a visual task involving color under highly unnatural viewing conditions. Their performance in discriminating different colors and responding to color cues is unknown. Experimental laboratory measurements of 1) color discrimination and 2) visual search performance are reported under adaptation conditions representative of a CDNVG. Color discrimination was measured using a two-alternative forced choice (2AFC) paradigm that probes color space uniformly around a white point. Search times in the presence of different degrees of clutter (distractors in the scene) are measured for different potential symbology colors. The discrimination data support previous data suggesting that discrimination is best for colors close to the adapting point in color space (P43 phosphor in this case). There were highly significant effects of background adaptation (white or green) and test color. The search time data show that saturated colors with the greatest chromatic contrast with respect to the background lead to the shortest search times, associated with the greatest saliency. Search times for the green background were around 150 ms longer than for the white. Desaturated colors, along with those close to a typical CDNVG display phosphor in color space, should be avoided by CDNVG designers if the greatest conspicuity of symbology is desired. The results can be used by CDNVG symbology designers to optimize aircrew performance subject to wider constraints arising from the way color is used in the existing conventional cockpit instruments and displays.Liggins EP, Serle WP. Color vision in color display night vision goggles. Aerosp Med Hum Perform. 2017; 88(5):448-456.

  7. Ecological influences on individual differences in color preference.

    PubMed

    Schloss, Karen B; Hawthorne-Madell, Daniel; Palmer, Stephen E

    2015-11-01

    How can the large, systematic differences that exist between individuals' color preferences be explained? The ecological valence theory (Palmer & Schloss, Proceedings of the National Academy of Sciences 107:8877-8882, 2010) posits that an individual's preference for each particular color is determined largely by his or her preferences for all correspondingly colored objects. Therefore, individuals should differ in their color preferences to the extent that they have different preferences for the same color-associated objects or that they experience different objects. Supporting this prediction, we found that individuals' color preferences were predicted better by their own preferences for correspondingly colored objects than by other peoples' preferences for the same objects. Moreover, the fit between color preferences and affect toward the colored objects was reliably improved when people's own idiosyncratic color-object associations were included in addition to a standard set of color-object associations. These and related results provide evidence that individual differences in color preferences are reliably influenced by people's personal experiences with colored objects in their environment.

  8. Improvement to the scanning electron microscope image adaptive Canny optimization colorization by pseudo-mapping.

    PubMed

    Lo, T Y; Sim, K S; Tso, C P; Nia, M E

    2014-01-01

    An improvement to the previously proposed adaptive Canny optimization technique for scanning electron microscope image colorization is reported. The additional feature, called pseudo-mapping technique, is that the grayscale markings are temporarily mapped to a set of pre-defined pseudo-color map as a mean to instill color information for grayscale colors in chrominance channels. This allows the presence of grayscale markings to be identified; hence optimization colorization of grayscale colors is made possible. This additional feature enhances the flexibility of scanning electron microscope image colorization by providing wider range of possible color enhancement. Furthermore, the nature of this technique also allows users to adjust the luminance intensities of selected region from the original image within certain extent. © 2014 Wiley Periodicals, Inc.

  9. Direct versus indirect processing changes the influence of color in natural scene categorization.

    PubMed

    Otsuka, Sachio; Kawaguchi, Jun

    2009-10-01

    We examined whether participants would use a negative priming (NP) paradigm to categorize color and grayscale images of natural scenes that were presented peripherally and were ignored. We focused on (1) attentional resources allocated to natural scenes and (2) direct versus indirect processing of them. We set up low and high attention-load conditions, based on the set size of the searched stimuli in the prime display (one and five). Participants were required to detect and categorize the target objects in natural scenes in a central visual search task, ignoring peripheral natural images in both the prime and probe displays. The results showed that, irrespective of attention load, NP was observed for color scenes but not for grayscale scenes. We did not observe any effect of color information in central visual search, where participants responded directly to natural scenes. These results indicate that, in a situation in which participants indirectly process natural scenes, color information is critical to object categorization, but when the scenes are processed directly, color information does not contribute to categorization.

  10. Hadza Color Terms Are Sparse, Diverse, and Distributed, and Presage the Universal Color Categories Found in Other World Languages

    PubMed Central

    Lindsey, Delwin T.; Brainard, David H.; Apicella, Coren L.

    2016-01-01

    In our empirical and theoretical study of color naming among the Hadza, a Tanzanian hunter-gatherer group, we show that Hadza color naming is sparse (the color appearance of many stimulus tiles was not named), diverse (there was little consensus in the terms for the color appearance of most tiles), and distributed (the universal color categories of world languages are revealed in nascent form within the Hadza language community, when we analyze the patterns of how individual Hadza deploy color terms). Using our Hadza data set, Witzel shows an association between two measures of color naming performance and the chroma of the stimuli. His prediction of which colored tiles will be named with what level of consensus, while interesting, does not alter the validity of our conclusions. PMID:28781734

  11. Adolescent Gender-Related Abuse, Androphilia, and HIV Risk Among Transfeminine People of Color in New York City

    PubMed Central

    Hwahng, Sel J.; Nuttbrock, Larry

    2014-01-01

    Public health research has indicated extremely high HIV seroprevalence (13–63%) among low-income transfeminine people of color of African, Latina, and Asian descent living in the U.S. This paper combines two data sets. One set is based on an ethnographic study (N=50, 120 hours of participant observation). The other set longitudinal quantitative study (baseline N=600, N=275 followed for 3 years). Transfeminine people of color are much more likely to be androphilic and at high HIV risk. A greater understanding of adolescent gender-related abuse and trauma-impacted androphilia contributes towards a holistic conceptual model of HIV risk. A theoretical model is proposed that incorporates findings from both studies and integrates sociostructural, interpersonal, and intrapsychic levels of HIV risk. PMID:24294927

  12. In Hard Times, Colleges Search for Ways to Trim the Faculty

    ERIC Educational Resources Information Center

    Wilson, Robin

    2009-01-01

    The Jones Theatre at Washington State University is getting a $500,000 face-lift this summer. A construction crew has already ripped out its 500 orange and blue seats and is replacing them with new ones covered in a wine-colored fabric. The theater's walls are being painted a light beige, and a new set of black velour curtains will grace the…

  13. How to identify up to 30 colors without training: color concept retrieval by free color naming

    NASA Astrophysics Data System (ADS)

    Derefeldt, Gunilla A. M.; Swartling, Tiina

    1994-05-01

    Used as a redundant code, color is shown to be advantageous in visual search tasks. It enhances attention, detection, and recall of information. Neuropsychological and neurophysiological findings have shown color and spatial perception to be interrelated functions. Studies on eye movements show that colored symbols are easier to detect and that eye fixations are more correctly directed to color-coded symbols. Usually between 5 and 15 colors have been found useful in classification tasks, but this umber can be increased to between 20 to 30 by careful selection of colors, and by a subject's practice with the identification task and familiarity with the particular colors. Recent neurophysiological findings concerning the language-concept connection in color suggest that color concept retrieval would be enhanced by free color naming or by the use of natural associations between color concepts and color words. To test this hypothesis, we had subjects give their own free associations to a set of 35 colors presented on a display. They were able to identify as many as 30 colors without training.

  14. Ability of the D-15 panel tests and HRR pseudoisochromatic plates to predict performance in naming VDT colors.

    PubMed

    Ramaswamy, Shankaran; Hovis, Jeffery K

    2004-01-01

    Color codes in VDT displays often contain sets of colors that are confusing to individuals with color-vision deficiencies. The purpose of this study is to determine whether individuals with color-vision deficiencies (color defectives) can perform as well as individuals without color-vision deficiencies (color normals) on a colored VDT display used in the railway industry and to determine whether clinical color-vision tests can predict their performance. Of the 52 color defectives, 58% failed the VDT test. The kappa coefficients of agreement for the Farnsworth D-15, Adams desaturated D-15, and Richmond 3rd Edition HRR PIC diagnostic plates were significantly greater than chance. In particular, the D-15 tests have a high probability of predicting who fails the practical test. However, all three tests had an unacceptably high false-negative rate (9.5-35%); so that a practical test is still needed.

  15. A System for Monitoring and Forecasting Land Surface Phenology Using Time Series of JPSS VIIRS Observations and Its Applications

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Yu, Y.; Liu, L.

    2015-12-01

    Land surface phenology quantifies seasonal dynamics of vegetation properties including the timing and magnitude of vegetation greenness from satellite observations. Over the last decade, historical time series of AVHRR and MODIS data has been used to characterize the seasonal and interannual variation in terrestrial ecosystems and their responses to a changing and variable climate. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on board the operational JPSS satellites provides land surface observations in a timely fashion, which has the capability to monitor phenological development in near real time. This capability is particularly important for assisting agriculture, natural resource management, and land modeling for weather prediction systems. Here we introduce a system to monitor in real time and forecast in the short term phenological development based on daily VIIRS observations available with a one-day latency. The system integrates a climatological land surface phenology from long-term MODIS data and available VIIRS observations to simulate a set of potential temporal trajectories of greenness development at a given time and pixel. The greenness trajectories, which are qualified using daily two-band Enhanced Vegetation Index (EVI2), are applied to identify spring green leaf development and autumn color foliage status in real time and to predict the occurrence of future phenological events. This system currently monitors vegetation development across the North America every three days and makes prediction to 10 days ahead. We further introduce the applications of near real time spring green leaf and fall color foliage. Specifically, this system is used for tracing the crop progress across the United States, guiding the field observations in US National Phenology Network, servicing tourists for the observation of color fall foliage, and parameterizing seasonal surface physical conditions for numerical weather prediction models.

  16. Extending color primary set in spectral vector error diffusion by multilevel halftoning

    NASA Astrophysics Data System (ADS)

    Norberg, Ole; Nyström, Daniel

    2013-02-01

    Ever since its origin in the late 19th century, a color reproduction technology has relied on a trichromatic color reproduction approach. This has been a very successful method and also fundamental for the development of color reproduction devices. Trichromatic color reproduction is sufficient to approximate the range of colors perceived by the human visual system. However, tricromatic systems only have the ability to match colors when the viewing illumination for the reproduction matches that of the original. Furthermore, the advancement of digital printing technology has introduced printing systems with additional color channels. These additional color channels are used to extend the tonal range capabilities in light and dark regions and to increase color gamut. By an alternative approach the addition color channels can also be used to reproduce the spectral information of the original color. A reproduced spectral match will always correspond to original independent of lighting situation. On the other hand, spectral color reproductions also introduce a more complex color processing by spectral color transfer functions and spectral gamut mapping algorithms. In that perspective, spectral vector error diffusion (sVED) look like a tempting approach with a simple workflow where the inverse color transfer function and halftoning is performed simultaneously in one single operation. Essential for the sVED method are the available color primaries, created by mixing process colors. Increased numbers of as well as optimal spectral characteristics of color primaries are expected to significantly improve the color accuracy of the spectral reproduction. In this study, sVED in combination with multilevel halftoning has been applied on a ten channel inkjet system. The print resolution has been reduced and the underlying physical high resolution of the printer has been used to mix additional primaries. With ten ink channels and halfton cells built-up by 2x2 micro dots where each micro dot can be a combination of all ten inks the number of possible ink combinations gets huge. Therefore, the initial study has been focused on including lighter colors to the intrinsic primary set. Results from this study shows that by this approach the color reproduction accuracy increases significantly. The RMS spectral difference to target color for multilevel halftoning is less than 1/6 of the difference achieved by binary halftoning.

  17. Comparative transcriptome analysis of three color variants of the sea cucumber Apostichopus japonicus.

    PubMed

    Jo, Jihoon; Park, Jongsun; Lee, Hyun-Gwan; Kern, Elizabeth M A; Cheon, Seongmin; Jin, Soyeong; Park, Joong-Ki; Cho, Sung-Jin; Park, Chungoo

    2016-08-01

    The sea cucumber Apostichopus japonicus Selenka 1867 represents an important resource in biomedical research, traditional medicine, and the seafood industry. Much of the commercial value of A. japonicus is determined by dorsal/ventral color variation (red, green, and black), yet the taxonomic relationships between these color variants are not clearly understood. We performed the first comparative analysis of de novo assembled transcriptome data from three color variants of A. japonicus. Using the Illumina platform, we sequenced nearly 177,596,774 clean reads representing a total of 18.2Gbp of sea cucumber transcriptome. A comparison of over 0.3 million transcript scaffolds against the Uniprot/Swiss-Prot database yielded 8513, 8602, and 8588 positive matches for green, red, and black body color transcriptomes, respectively. Using the Panther gene classification system, we assessed an extensive and diverse set of expressed genes in three color variants and found that (1) among the three color variants of A. japonicus, genes associated with RNA binding protein, oxidoreductase, nucleic acid binding, transferase, and KRAB box transcription factor were most commonly expressed; and (2) the main protein functional classes are differently regulated in all three color variants (extracellular matrix protein and phosphatase for green color, transporter and potassium channel for red color, and G-protein modulator and enzyme modulator for black color). This work will assist in the discovery and annotation of novel genes that play significant morphological and physiological roles in color variants of A. japonicus, and these sequence data will provide a useful set of resources for the rapidly growing sea cucumber aquaculture industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Constraining Dust Properties in Circumstellar Envelopes of C-Stars in the Small Magellanic Cloud: Optical Constants And Grain Size Of Carbon Dust

    NASA Astrophysics Data System (ADS)

    Nanni, Ambra; Marigo, Paola; Groenewegen, Martin A. T.; Aringer, Berhard; Girardi, Léo; Pastorelli, Giada; Bressan, Alessandro; Bladh, Sara

    2016-07-01

    We present our recent investigation aimed at constraining the typical size and optical properties of carbon dust grains in Circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC).We applied our recent dust growth model, coupled with a radiative transfer code, to the dusty CSEs of C-stars along the TP-AGB phase, for which we computed spectra and colors. We then compared our modeled colors in the Near and Mid Infrared (NIR and MIR) bands with the observed ones, testing different assumptions in our dust scheme and employing different optical constants data sets for carbon dust. We constrained the optical properties of carbon dust by identifying the combinations of typical grain size and optical constants data set which simultaneously reproduce several colors in the NIR and MIR wavelengths. In particular, the different choices of optical properties and grain size lead to differences in the NIR and MIR colors greater than two magnitudes in some cases. We concluded that the complete set of selected NIR and MIR colors are best reproduced by small grains, with sizes between 0.06 and 0.1 mum, rather than by large grains of 0.2-0.4 mum. The inability of large grains to reproduce NIR and MIR colors is found to be independent of the adopted optical data set and the deviations between models and observations tend to increase for increasing grain sizes. We also find a possible trend of the typical grain size with mss-loss and/or carbon-excess in the CSEs of these stars.The work presented is preparatory to future studies aimed at calibrating the TP-AGB phase through resolved stellar populations in the framework of the STARKEY project.

  19. A sensory origin for color-word stroop effects in aging: simulating age-related changes in color-vision mimics age-related changes in Stroop.

    PubMed

    Ben-David, Boaz M; Schneider, Bruce A

    2010-11-01

    An increase in Stroop effects with age can be interpreted as reflecting age-related reductions in selective attention, cognitive slowing, or color-vision. In the present study, 88 younger adults performed a Stroop test with two color-sets, saturated and desaturated, to simulate an age-related decrease in color perception. This color manipulation with younger adults was sufficient to lead to an increase in Stroop effects that mimics age-effects. We conclude that age-related changes in color perception can contribute to the differences in Stroop effects observed in aging. Finally, we suggest that the clinical applications of Stroop take this factor into account.

  20. Reducing user error in dipstick urinalysis with a low-cost slipping manifold and mobile phone platform (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Smith, Gennifer T.; Dwork, Nicholas; Khan, Saara A.; Millet, Matthew; Magar, Kiran; Javanmard, Mehdi; Bowden, Audrey K.

    2017-03-01

    Urinalysis dipsticks were designed to revolutionize urine-based medical diagnosis. They are cheap, extremely portable, and have multiple assays patterned on a single platform. They were also meant to be incredibly easy to use. Unfortunately, there are many aspects in both the preparation and the analysis of the dipsticks that are plagued by user error. This high error is one reason that dipsticks have failed to flourish in both the at-home market and in low-resource settings. Sources of error include: inaccurate volume deposition, varying lighting conditions, inconsistent timing measurements, and misinterpreted color comparisons. We introduce a novel manifold and companion software for dipstick urinalysis that eliminates the aforementioned error sources. A micro-volume slipping manifold ensures precise sample delivery, an opaque acrylic box guarantees consistent lighting conditions, a simple sticker-based timing mechanism maintains accurate timing, and custom software that processes video data captured by a mobile phone ensures proper color comparisons. We show that the results obtained with the proposed device are as accurate and consistent as a properly executed dip-and-wipe method, the industry gold-standard, suggesting the potential for this strategy to enable confident urinalysis testing. Furthermore, the proposed all-acrylic slipping manifold is reusable and low in cost, making it a potential solution for at-home users and low-resource settings.

  1. Image indexing using color correlograms

    DOEpatents

    Huang, Jing; Kumar, Shanmugasundaram Ravi; Mitra, Mandar; Zhu, Wei-Jing

    2001-01-01

    A color correlogram is a three-dimensional table indexed by color and distance between pixels which expresses how the spatial correlation of color changes with distance in a stored image. The color correlogram may be used to distinguish an image from other images in a database. To create a color correlogram, the colors in the image are quantized into m color values, c.sub.i . . . c.sub.m. Also, the distance values k.epsilon.[d] to be used in the correlogram are determined where [d] is the set of distances between pixels in the image, and where dmax is the maximum distance measurement between pixels in the image. Each entry (i, j, k) in the table is the probability of finding a pixel of color c.sub.i at a selected distance k from a pixel of color c.sub.i. A color autocorrelogram, which is a restricted version of the color correlogram that considers color pairs of the form (i,i) only, may also be used to identify an image.

  2. Enhancing On-Task Behavior in Fourth-Grade Students Using a Modified Color Wheel System

    ERIC Educational Resources Information Center

    Blondin, Carolyn; Skinner, Christopher; Parkhurst, John; Wood, Allison; Snyder, Jamie

    2012-01-01

    The authors used a withdrawal design to evaluate the effects of a modified Color Wheel System (M-CWS) on the on-task behavior of 7 students enrolled in the 4th grade. Standard CWS procedures were modified to include a 4th set of rules designed to set behavioral expectation for cooperative learning activities. Mean data showed that immediately…

  3. Consider the Soil First. Narrative Guide for Color Slide Set and Film Strip C-183.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    The importance of soil, its use and suitability for agriculture and building construction, and the need for and value of soil surveys are emphasized in this pamphlet. It serves as the script for a set of color slides and filmstrip produced by the Soil Conservation Service, U.S. Department of Agriculture. Each of the 73 frames is illustrated with…

  4. An explorative chemometric approach applied to hyperspectral images for the study of illuminated manuscripts

    NASA Astrophysics Data System (ADS)

    Catelli, Emilio; Randeberg, Lise Lyngsnes; Alsberg, Bjørn Kåre; Gebremariam, Kidane Fanta; Bracci, Silvano

    2017-04-01

    Hyperspectral imaging (HSI) is a fast non-invasive imaging technology recently applied in the field of art conservation. With the help of chemometrics, important information about the spectral properties and spatial distribution of pigments can be extracted from HSI data. With the intent of expanding the applications of chemometrics to the interpretation of hyperspectral images of historical documents, and, at the same time, to study the colorants and their spatial distribution on ancient illuminated manuscripts, an explorative chemometric approach is here presented. The method makes use of chemometric tools for spectral de-noising (minimum noise fraction (MNF)) and image analysis (multivariate image analysis (MIA) and iterative key set factor analysis (IKSFA)/spectral angle mapper (SAM)) which have given an efficient separation, classification and mapping of colorants from visible-near-infrared (VNIR) hyperspectral images of an ancient illuminated fragment. The identification of colorants was achieved by extracting and interpreting the VNIR spectra as well as by using a portable X-ray fluorescence (XRF) spectrometer.

  5. An evaluation of the transferability of Munsell's colour notation methodology to modern inkjet printing technology

    NASA Astrophysics Data System (ADS)

    Olen, Melissa; Geisow, Adrian; Parraman, Carinna

    2015-01-01

    This paper examines the transferability of the Munsell system to modern inkjet colorants and printing technology following a similar approach to his original methods. While extensive research and development has gone into establishing methods for measuring and modelling the modern colour gamut, this study seeks to reintegrate the psychophysical and artistic principles used in Munsell's early colour studies with digital print. Contemporary inkjet printing, with ink sets containing a greater number of primary colorants, are significantly higher in chroma compared to the limited colorants available at the time of Munsell's original work. Following Munsell's design and implementation, our experiments replicate the use of Clerk-Maxwell's spinning disks in order to examine the effects of colour mixing with these expanded colour capacities, and to determine hue distribution and placement. This work revisits Munsell's project in light of known issues, and formulates questions about how we can reintegrate Munsell's approach for colour description and mixing into modern colour science, understanding, and potential application.

  6. Quantum computing with Majorana fermion codes

    NASA Astrophysics Data System (ADS)

    Litinski, Daniel; von Oppen, Felix

    2018-05-01

    We establish a unified framework for Majorana-based fault-tolerant quantum computation with Majorana surface codes and Majorana color codes. All logical Clifford gates are implemented with zero-time overhead. This is done by introducing a protocol for Pauli product measurements with tetrons and hexons which only requires local 4-Majorana parity measurements. An analogous protocol is used in the fault-tolerant setting, where tetrons and hexons are replaced by Majorana surface code patches, and parity measurements are replaced by lattice surgery, still only requiring local few-Majorana parity measurements. To this end, we discuss twist defects in Majorana fermion surface codes and adapt the technique of twist-based lattice surgery to fermionic codes. Moreover, we propose a family of codes that we refer to as Majorana color codes, which are obtained by concatenating Majorana surface codes with small Majorana fermion codes. Majorana surface and color codes can be used to decrease the space overhead and stabilizer weight compared to their bosonic counterparts.

  7. Rapid Communication: Effect of machine, anatomical location, and replication on instrumental color of boneless pork loins.

    PubMed

    Barkley, K E; Fields, B; Dilger, A C; Boler, D D

    2018-06-07

    The objective was to determine the effect of machine, anatomical location and replication (multiple readings) on instrumental color and to characterize the amount of variation each factor contributed to overall color. Instrumental color was measured 3 times on the anterior and 3 times on the posterior end of 250 pork loins with 2 different Minolta CR-400 Chroma meter devices. Each Minolta was programed to use a D65 illuminant, 2º observer with an 8 mm aperture, and calibrated with white tiles specific to each machine. Therefore, a total of 12 instrumental color measurements were collected on each loin. The VARCOMP procedure in SAS was used to estimate the proportion of variation contributed by each factor to CIE L*, a*, b*, chroma and hue. Based on previous research, the average untrained consumer is able to distinguish between 3-L* units, 0.4-a* units, and 0.9-hue angle units. Loins evaluated with machine 1 were 0.71 L* units darker (P < 0.01), 1.09 b* units more yellow (P < 0.01), 0.47 chroma units more saturated (P < 0.01), and had a hue angle 5.12 units greater (P < 0.01) than when evaluated with machine 2 but did not differ (P = 0.24) in redness. The anterior portion of the loin was lighter, less red, more yellow, more saturated and had a greater hue angle than the posterior end (P < 0.01). All color trait values decreased (P < 0.01) as replication number increased. Inherent color differences among loins contributed the greatest proportion of variability for lightness (58%), redness (57%), yellowness (70%), saturation (70%) and hue angle (49%). Machine contributed 1% variability to lightness 3% to saturation, 23% to yellowness and 31% to hue angle (31%) but did not contribute to variability for redness. Anatomical location contributed 41% to lightness, 43% to redness, 7% to yellowness, 27% to saturation and 31% to hue angle. Replication did not contribute to total variation for any color traits, even though it did differ among measurements. Overall, there were differences in instrumental color values between the two machines tested but those differences were likely less than the threshold for detection by a consumer. Even so, inherent color differences between loins were a greater contributor to total variability than the differences between the 2 machines. Therefore, it is more important to define the location of measurements than replication or machine when using a Minolta CR-400 when performing color evaluations, assuming the settings are the same.

  8. System for clinical photometric stereo endoscopy

    NASA Astrophysics Data System (ADS)

    Durr, Nicholas J.; González, Germán.; Lim, Daryl; Traverso, Giovanni; Nishioka, Norman S.; Vakoc, Benjamin J.; Parot, Vicente

    2014-02-01

    Photometric stereo endoscopy is a technique that captures information about the high-spatial-frequency topography of the field of view simultaneously with a conventional color image. Here we describe a system that will enable photometric stereo endoscopy to be clinically evaluated in the large intestine of human patients. The clinical photometric stereo endoscopy system consists of a commercial gastroscope, a commercial video processor, an image capturing and processing unit, custom synchronization electronics, white light LEDs, a set of four fibers with diffusing tips, and an alignment cap. The custom pieces that come into contact with the patient are composed of biocompatible materials that can be sterilized before use. The components can then be assembled in the endoscopy suite before use. The resulting endoscope has the same outer diameter as a conventional colonoscope (14 mm), plugs into a commercial video processor, captures topography and color images at 15 Hz, and displays the conventional color image to the gastroenterologist in real-time. We show that this system can capture a color and topographical video in a tubular colon phantom, demonstrating robustness to complex geometries and motion. The reported system is suitable for in vivo evaluation of photometric stereo endoscopy in the human large intestine.

  9. Origin of coloration in beetle scales: An optical and structural investigation

    NASA Astrophysics Data System (ADS)

    Nagi, Ramneet Kaur

    In this thesis the origin of angle-independent yellowish-green coloration of the exoskeleton of a beetle was studied. The beetle chosen was a weevil with the Latin name Eupholus chevrolati. The origin of this weevil's coloration was investigated by optical and structural characterization techniques, including optical microscopy, scanning electron microscopy imaging and focused ion beam milling, combined with three-dimensional modeling and photonic band structure calculations. Furthermore, using color theory the pixel-like coloring of the weevil's exoskeleton was investigated and an interesting additive color mixing scheme was discovered. For optical studies, a microreflectance microscopy/spectroscopy set-up was optimized. This set-up allowed not only for imaging of individual colored exoskeleton domains with sizes ˜2-10 μm, but also for obtaining reflection spectra of these micrometer-sized domains. Spectra were analyzed in terms of reflection intensity and wavelength position and shape of the reflection features. To find the origin of these colored exoskeleton spots, a combination of focused ion beam milling and scanning electron microscopy imaging was employed. A three-dimensional photonic crystal in the form of a face-centered cubic lattice of ABC-stacked air cylinders in a biopolymeric cuticle matrix was discovered. Our photonic band structure calculations revealed the existence of different sets of stop-gaps for the lattice constant of 360, 380 and 400 nm in the main lattice directions, Gamma-L, Gamma-X, Gamma-U, Gamma-W and Gamma-K. In addition, scanning electron microscopy images were compared to the specific directional-cuts through the constructed face-centered cubic lattice-based model and the optical micrographs of individual domains to determine the photonic structure corresponding to the different lattice directions. The three-dimensional model revealed stop-gaps in the Gamma-L, Gamma-W and Gamma-K directions. Finally, the coloration of the weevil as perceived by an unaided human eye was represented (mathematically) on the xy-chromaticity diagram, based on XYZ color space developed by CIE (Commission Internationale de l'Eclairage), using the micro-reflectance spectroscopy measurements. The results confirmed the additive mixing of various colors produced by differently oriented photonic crystal domains present in the weevil's exoskeleton scales, as a reason for the angle-independent dull yellowish-green coloration of the weevil E. chevrolati.

  10. Colorant modelling for on-line paper coloring: Evaluations of models and an extension to Kubelka-Munk model

    NASA Astrophysics Data System (ADS)

    Shakespeare, Tarja Tuulikki

    Traditionally, single constant Kubelka-Munk type colorant formulation algorithms have been used for color control in the paper industry. Tuning data is derived from colored handsheets representing dyeing of a particular color grade, applicable to a substrate of similar properties. Due to furnish variation and changes in the chemical environment, such tuning data is of limited accuracy in practice. Kubelka-Munk approaches have numerous other limitations, in part due to their physically unrealistic assumptions. In particular, they neglect fluorescence phenomena, the interdependence of absorption and scattering, and nonlinearities due to colorant interactions. This thesis addresses those problems. A set of colored handsheets was made, employing several anionic direct dyes and fluorescent colorants, individually and in various combinations. Both a spectrophotometer and a spectrofluorimeter were used for measuring color properties. An extended Langmuir adsorption isotherm was used in modelling the dye-on- fiber in each dyeing. Kubelka-Munk absorption and scattering coefficients were then modelled based on dye- on-fiber, and a number of the limitations of the Kubelka- Munk approach were clearly demonstrated. An extended phenomenological model was derived, incorporating fluorescence and interdependence of absorption and scattering. This model predicts illuminator-independent radiance transfer factors based on dye-on-fiber, from which total radiance factor responses under arbitrary illumination can be computed. It requires spectrofluorometric measurements to characterize the coloring process. A new reflectance factor model, based on the same adsorption isotherm approach, was derived for non- fluorescent colorants. A corresponding total radiance factor model, which is illuminator-dependent, was derived for fluorescent colorants. These models have provision for phenomena such as broadening of absorption and scattering bands, which are encountered in practice. Being based on spectrophotometric measurements, they are directly applicable in industrial settings, and predict colorant responses reliably under wider ranges of conditions than the Kubelka-Munk approach.

  11. Uncovering the Professional Lives of Suburban Teachers of Color

    ERIC Educational Resources Information Center

    Lee, Vera J.

    2012-01-01

    When the author began the present study, she was discouraged to learn that little research exists that captures the professional experiences of teachers of color, particularly in suburban schools. Yet studies about teachers of color in these settings are critical in light of the fact that they comprise only 16.9% of the total teaching force in the…

  12. Color-coded visualization of magnetic resonance imaging multiparametric maps

    NASA Astrophysics Data System (ADS)

    Kather, Jakob Nikolas; Weidner, Anja; Attenberger, Ulrike; Bukschat, Yannick; Weis, Cleo-Aron; Weis, Meike; Schad, Lothar R.; Zöllner, Frank Gerrit

    2017-01-01

    Multiparametric magnetic resonance imaging (mpMRI) data are emergingly used in the clinic e.g. for the diagnosis of prostate cancer. In contrast to conventional MR imaging data, multiparametric data typically include functional measurements such as diffusion and perfusion imaging sequences. Conventionally, these measurements are visualized with a one-dimensional color scale, allowing only for one-dimensional information to be encoded. Yet, human perception places visual information in a three-dimensional color space. In theory, each dimension of this space can be utilized to encode visual information. We addressed this issue and developed a new method for tri-variate color-coded visualization of mpMRI data sets. We showed the usefulness of our method in a preclinical and in a clinical setting: In imaging data of a rat model of acute kidney injury, the method yielded characteristic visual patterns. In a clinical data set of N = 13 prostate cancer mpMRI data, we assessed diagnostic performance in a blinded study with N = 5 observers. Compared to conventional radiological evaluation, color-coded visualization was comparable in terms of positive and negative predictive values. Thus, we showed that human observers can successfully make use of the novel method. This method can be broadly applied to visualize different types of multivariate MRI data.

  13. Measurement of the relationship between perceived and computed color differences

    NASA Astrophysics Data System (ADS)

    García, Pedro A.; Huertas, Rafael; Melgosa, Manuel; Cui, Guihua

    2007-07-01

    Using simulated data sets, we have analyzed some mathematical properties of different statistical measurements that have been employed in previous literature to test the performance of different color-difference formulas. Specifically, the properties of the combined index PF/3 (performance factor obtained as average of three terms), widely employed in current literature, have been considered. A new index named standardized residual sum of squares (STRESS), employed in multidimensional scaling techniques, is recommended. The main difference between PF/3 and STRESS is that the latter is simpler and allows inferences on the statistical significance of two color-difference formulas with respect to a given set of visual data.

  14. A Fast linking approach for CMYK to CMYK conversion preserving black separation in ICC color management system

    NASA Astrophysics Data System (ADS)

    Zeng, Huanzhao

    2003-12-01

    In the linking step of the standard ICC color management workflow for CMYK to CMYK conversion, a CMM takes an AToBn tag (n = 0, 1, or 2) from a source ICC profile to convert a color from the source color space to PCS (profile connection space), and then takes a BToAn tag from the destination ICC profile to convert the color from PCS to the destination color space. This approach may give satisfactory result perceptually or colorimetrically. However, it does not preserve the K channel for CMYK to CMYK conversion, which is often required in graphic art"s market. The problem is that the structure of a BtoAn tag is designed to convert colors from PCS to a device color space ignoring the K values from the source color space. Different approaches have been developed to control K in CMYK to CMYK printing, yet none of them well fits into the "Profile - PCS - Profile" model in the ICC color management system. A traditional approach is to transform the source CMYK to the destination CMYK by 1-D TRC curves and GCR/UCR tables. This method is so simple that it cannot accurately transform colors perceptually or colorimetrically. Another method is to build a 4-D CMYK to CMYK closed-loop lookup table (LUT) (or a deviceLink ICC profile) for the color transformation. However, this approach does not fit into opened color management workflows for it ties the source and the destination color spaces in the color characterization step. A specialized CMM may preserve K for a limit number of colors by mapping those CMYK colors to some carefully chosen PCS colors in both the AToBi tag and the BToAi tag. A more complete solution is to move to smart linking in which gamut mapping is performed in the real-time linking at a CMM. This method seems to solve all problems existed in the CMYK to CMYK conversion. However, it introduces new problems: 1) gamut mapping at real-time linking is often unacceptable slow; 2) gamut mapping may not be optimized or may be unreliable; 3) manual adjustment for building high quality maps does not fit to the smart CMM workflow. A new approach is described in this paper to solve these problems. Instead of using a BtoAn tag from the destination profile for color transformation, a new tag is created to map colors in PCS (L*a*b* or XYZ) with different K values to different CMY values. A set of 3-D LUTs for different K values are created for the conversion from PCS to CMY, and 1-D LUTs are created for the conversion from luminance to K and to guide a CMM to perform the interpolation from KPCS (K plus PCS) to CMYK. The gamut mapping is performed in the step to create the profile, thus avoiding realtime gamut mapping in a CMM. With this approach, the black channel is preserved; the "Profile - PCS - Profile" approach is still valid; and the gamut mapping is not performed during linking in a CMM. Therefore, gamut mapping can be manually adjusted for high quality color mapping, the linking is almost as easy and fast as the standard linking, and the black channel is preserved.

  15. A Discrete Model for Color Naming

    NASA Astrophysics Data System (ADS)

    Menegaz, G.; Le Troter, A.; Sequeira, J.; Boi, J. M.

    2006-12-01

    The ability to associate labels to colors is very natural for human beings. Though, this apparently simple task hides very complex and still unsolved problems, spreading over many different disciplines ranging from neurophysiology to psychology and imaging. In this paper, we propose a discrete model for computational color categorization and naming. Starting from the 424 color specimens of the OSA-UCS set, we propose a fuzzy partitioning of the color space. Each of the 11 basic color categories identified by Berlin and Kay is modeled as a fuzzy set whose membership function is implicitly defined by fitting the model to the results of an ad hoc psychophysical experiment (Experiment 1). Each OSA-UCS sample is represented by a feature vector whose components are the memberships to the different categories. The discrete model consists of a three-dimensional Delaunay triangulation of the CIELAB color space which associates each OSA-UCS sample to a vertex of a 3D tetrahedron. Linear interpolation is used to estimate the membership values of any other point in the color space. Model validation is performed both directly, through the comparison of the predicted membership values to the subjective counterparts, as evaluated via another psychophysical test (Experiment 2), and indirectly, through the investigation of its exploitability for image segmentation. The model has proved to be successful in both cases, providing an estimation of the membership values in good agreement with the subjective measures as well as a semantically meaningful color-based segmentation map.

  16. Displaying Data As Movies

    NASA Technical Reports Server (NTRS)

    Moore, Judith G.

    1992-01-01

    NMSB Movie computer program displays large sets of data (more than million individual values). Presentation dynamic, rapidly displaying sequential image "frames" in main "movie" window. Any sequence of two-dimensional sets of data scaled between 0 and 255 (1-byte resolution) displayed as movie. Time- or slice-wise progression of data illustrated. Originally written to present data from three-dimensional ultrasonic scans of damaged aerospace composite materials, illustrates data acquired by thermal-analysis systems measuring rates of heating and cooling of various materials. Developed on Macintosh IIx computer with 8-bit color display adapter and 8 megabytes of memory using Symantec Corporation's Think C, version 4.0.

  17. An efficient sequential approach to tracking multiple objects through crowds for real-time intelligent CCTV systems.

    PubMed

    Li, Liyuan; Huang, Weimin; Gu, Irene Yu-Hua; Luo, Ruijiang; Tian, Qi

    2008-10-01

    Efficiency and robustness are the two most important issues for multiobject tracking algorithms in real-time intelligent video surveillance systems. We propose a novel 2.5-D approach to real-time multiobject tracking in crowds, which is formulated as a maximum a posteriori estimation problem and is approximated through an assignment step and a location step. Observing that the occluding object is usually less affected by the occluded objects, sequential solutions for the assignment and the location are derived. A novel dominant color histogram (DCH) is proposed as an efficient object model. The DCH can be regarded as a generalized color histogram, where dominant colors are selected based on a given distance measure. Comparing with conventional color histograms, the DCH only requires a few color components (31 on average). Furthermore, our theoretical analysis and evaluation on real data have shown that DCHs are robust to illumination changes. Using the DCH, efficient implementations of sequential solutions for the assignment and location steps are proposed. The assignment step includes the estimation of the depth order for the objects in a dispersing group, one-by-one assignment, and feature exclusion from the group representation. The location step includes the depth-order estimation for the objects in a new group, the two-phase mean-shift location, and the exclusion of tracked objects from the new position in the group. Multiobject tracking results and evaluation from public data sets are presented. Experiments on image sequences captured from crowded public environments have shown good tracking results, where about 90% of the objects have been successfully tracked with the correct identification numbers by the proposed method. Our results and evaluation have indicated that the method is efficient and robust for tracking multiple objects (>or= 3) in complex occlusion for real-world surveillance scenarios.

  18. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance

    PubMed Central

    Wei, Jianwei; Lee, Zhongping; Ondrusek, Michael; Mannino, Antonio; Tzortziou, Maria; Armstrong, Roy

    2017-01-01

    The spectral slope of the absorption coefficient of colored dissolved and detrital material (CDM), Scdm (units: nm−1), is an important optical parameter for characterizing the absorption spectral shape of CDM. Although highly variable in natural waters, in most remote sensing algorithms, this slope is either kept as a constant or empirically modeled with multiband ocean color in the visible domain. In this study, we explore the potential of semianalytically retrieving Scdm with added ocean color information in the ultraviolet (UV) range between 360 and 400 nm. Unique features of hyperspectral remote sensing reflectance in the UV-visible wavelengths (360–500 nm) have been observed in various waters across a range of coastal and open ocean environments. Our data and analyses indicate that ocean color in the UV domain is particularly sensitive to the variation of the CDM spectral slope. Here, we used a synthesized data set to show that adding UV wavelengths to the ocean color measurements will improve the retrieval of Scdm from remote sensing reflectance considerably, while the spectral band settings of past and current satellite ocean color sensors cannot fully account for the spectral variation of remote sensing reflectance. Results of this effort support the concept to include UV wavelengths in the next generation of satellite ocean color sensors. PMID:29201583

  19. Explaining efficient search for conjunctions of motion and form: evidence from negative color effects.

    PubMed

    Dent, Kevin

    2014-05-01

    Dent, Humphreys, and Braithwaite (2011) showed substantial costs to search when a moving target shared its color with a group of ignored static distractors. The present study further explored the conditions under which such costs to performance occur. Experiment 1 tested whether the negative color-sharing effect was specific to cases in which search showed a highly serial pattern. The results showed that the negative color-sharing effect persisted in the case of a target defined as a conjunction of movement and form, even when search was highly efficient. In Experiment 2, the ease with which participants could find an odd-colored target amongst a moving group was examined. Participants searched for a moving target amongst moving and stationary distractors. In Experiment 2A, participants performed a highly serial search through a group of similarly shaped moving letters. Performance was much slower when the target shared its color with a set of ignored static distractors. The exact same displays were used in Experiment 2B; however, participants now responded "present" for targets that shared the color of the static distractors. The same targets that had previously been difficult to find were now found efficiently. The results are interpreted in a flexible framework for attentional control. Targets that are linked with irrelevant distractors by color tend to be ignored. However, this cost can be overridden by top-down control settings.

  20. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance.

    PubMed

    Wei, Jianwei; Lee, Zhongping; Ondrusek, Michael; Mannino, Antonio; Tzortziou, Maria; Armstrong, Roy

    2016-03-01

    The spectral slope of the absorption coefficient of colored dissolved and detrital material (CDM), S cdm (units: nm -1 ), is an important optical parameter for characterizing the absorption spectral shape of CDM. Although highly variable in natural waters, in most remote sensing algorithms, this slope is either kept as a constant or empirically modeled with multiband ocean color in the visible domain. In this study, we explore the potential of semianalytically retrieving S cdm with added ocean color information in the ultraviolet (UV) range between 360 and 400 nm. Unique features of hyperspectral remote sensing reflectance in the UV-visible wavelengths (360-500 nm) have been observed in various waters across a range of coastal and open ocean environments. Our data and analyses indicate that ocean color in the UV domain is particularly sensitive to the variation of the CDM spectral slope. Here, we used a synthesized data set to show that adding UV wavelengths to the ocean color measurements will improve the retrieval of S cdm from remote sensing reflectance considerably, while the spectral band settings of past and current satellite ocean color sensors cannot fully account for the spectral variation of remote sensing reflectance. Results of this effort support the concept to include UV wavelengths in the next generation of satellite ocean color sensors.

  1. Color constancy in a scene with bright colors that do not have a fully natural surface appearance.

    PubMed

    Fukuda, Kazuho; Uchikawa, Keiji

    2014-04-01

    Theoretical and experimental approaches have proposed that color constancy involves a correction related to some average of stimulation over the scene, and some of the studies showed that the average gives greater weight to surrounding bright colors. However, in a natural scene, high-luminance elements do not necessarily carry information about the scene illuminant when the luminance is too high for it to appear as a natural object color. The question is how a surrounding color's appearance mode influences its contribution to the degree of color constancy. Here the stimuli were simple geometric patterns, and the luminance of surrounding colors was tested over the range beyond the luminosity threshold. Observers performed perceptual achromatic setting on the test patch in order to measure the degree of color constancy and evaluated the surrounding bright colors' appearance mode. Broadly, our results support the assumption that the visual system counts only the colors in the object-color appearance for color constancy. However, detailed analysis indicated that surrounding colors without a fully natural object-color appearance had some sort of influence on color constancy. Consideration of this contribution of unnatural object color might be important for precise modeling of human color constancy.

  2. Using two web-based addiction Stroops to measure the attentional bias in adults with Internet Gaming Disorder

    PubMed Central

    Jeromin, Franziska; Rief, Winfrief; Barke, Antonia

    2016-01-01

    Background and aims People with substance abuse and pathological gamblers show an attentional bias. In a laboratory setting, we found an attentional bias using an addiction Stroop in adults with Internet Gaming Disorder (IGD). We aimed at investigating this effect using two web-based experiments. Methods Study 1: Gamers with IGD, casual gamers, and non-gamers (N = 81, 28.1 ± 7.8 years) completed a web-based addiction Stroop with a fully randomized word order. They saw computer-related and neutral words in four colors and indicated the word color via keypress. Study 2: Gamers with IGD, casual gamers, and non-gamers (N = 87, 23.4 ± 5.1 years) completed a web-based addiction Stroop and a classical Stroop (incongruent color and neutral words), which both had a block design. We expected that in both studies, only the gamers with IGD would react more slowly to computer-related words in the addiction Stroop. All groups were expected to react more slowly to incongruent color words in the classical Stroop. Results In neither study did the gamers with IGD differ in their reaction times to computer-related words compared to neutral words. In Study 2, all groups reacted more slowly to incongruent color words than to neutral words confirming the validity of the online reaction time assessment. Discussion Gamers with IGD did not show a significant attentional bias. IGD may differ from substance abuse and pathological gambling in this respect; alternatively experimenting on the Internet may have introduced error variance that made it harder to detect a bias. PMID:27776420

  3. Using two web-based addiction Stroops to measure the attentional bias in adults with Internet Gaming Disorder.

    PubMed

    Jeromin, Franziska; Rief, Winfrief; Barke, Antonia

    2016-12-01

    Background and aims People with substance abuse and pathological gamblers show an attentional bias. In a laboratory setting, we found an attentional bias using an addiction Stroop in adults with Internet Gaming Disorder (IGD). We aimed at investigating this effect using two web-based experiments. Methods Study 1: Gamers with IGD, casual gamers, and non-gamers (N = 81, 28.1 ± 7.8 years) completed a web-based addiction Stroop with a fully randomized word order. They saw computer-related and neutral words in four colors and indicated the word color via keypress. Study 2: Gamers with IGD, casual gamers, and non-gamers (N = 87, 23.4 ± 5.1 years) completed a web-based addiction Stroop and a classical Stroop (incongruent color and neutral words), which both had a block design. We expected that in both studies, only the gamers with IGD would react more slowly to computer-related words in the addiction Stroop. All groups were expected to react more slowly to incongruent color words in the classical Stroop. Results In neither study did the gamers with IGD differ in their reaction times to computer-related words compared to neutral words. In Study 2, all groups reacted more slowly to incongruent color words than to neutral words confirming the validity of the online reaction time assessment. Discussion Gamers with IGD did not show a significant attentional bias. IGD may differ from substance abuse and pathological gambling in this respect; alternatively experimenting on the Internet may have introduced error variance that made it harder to detect a bias.

  4. Joint Chroma Subsampling and Distortion-Minimization-Based Luma Modification for RGB Color Images With Application.

    PubMed

    Chung, Kuo-Liang; Hsu, Tsu-Chun; Huang, Chi-Chao

    2017-10-01

    In this paper, we propose a novel and effective hybrid method, which joins the conventional chroma subsampling and the distortion-minimization-based luma modification together, to improve the quality of the reconstructed RGB full-color image. Assume the input RGB full-color image has been transformed to a YUV image, prior to compression. For each 2×2 UV block, one 4:2:0 subsampling is applied to determine the one subsampled U and V components, U s and V s . Based on U s , V s , and the corresponding 2×2 original RGB block, a main theorem is provided to determine the ideally modified 2×2 luma block in constant time such that the color peak signal-to-noise ratio (CPSNR) quality distortion between the original 2×2 RGB block and the reconstructed 2×2 RGB block can be minimized in a globally optimal sense. Furthermore, the proposed hybrid method and the delivered theorem are adjusted to tackle the digital time delay integration images and the Bayer mosaic images whose Bayer CFA structure has been widely used in modern commercial digital cameras. Based on the IMAX, Kodak, and screen content test image sets, the experimental results demonstrate that in high efficiency video coding, the proposed hybrid method has substantial quality improvement, in terms of the CPSNR quality, visual effect, CPSNR-bitrate trade-off, and Bjøntegaard delta PSNR performance, of the reconstructed RGB images when compared with existing chroma subsampling schemes.

  5. Color group selection for computer interfaces

    NASA Astrophysics Data System (ADS)

    Lyons, Paul; Moretti, Giovanni; Wilson, Mark

    2000-06-01

    We describe a low-impact method for coloring interfaces harmoniously. The method uses a model that characterizes the overall image including the need for distinguishability between interface components. The degree of visual distinction between one component and other components, and its color strength (which increases with its importance and decreases with its size and longevity), are used in generating a rigid ball-and-stick 'color molecule,' which represents the color relationships between the interface components. The shape of the color molecule is chosen to conform to standard principles of color harmony (like colors harmonize, complementary colors harmonize, cycles in the color space harmonize, and so on). The color molecule's shape is fixed, but its position and orientation within the perceptually uniform color solid are not. The end user of the application chooses a new color scheme for the complete interface by repositioning the molecule within the color space. The molecule's shape and rigidity, and the space's perceptual uniformity, ensures the distinguishability and color harmony of the components are maintained. The system produces a selection of color schemes which often include subtle 'nameless' colors that people rarely choose using conventional color controls, but which blend smoothly into a harmonious color scheme. A new set of equally harmonious color schemes only requires repositioning the color molecule within the space.

  6. How color enhances visual memory for natural scenes.

    PubMed

    Spence, Ian; Wong, Patrick; Rusan, Maria; Rastegar, Naghmeh

    2006-01-01

    We offer a framework for understanding how color operates to improve visual memory for images of the natural environment, and we present an extensive data set that quantifies the contribution of color in the encoding and recognition phases. Using a continuous recognition task with colored and monochrome gray-scale images of natural scenes at short exposure durations, we found that color enhances recognition memory by conferring an advantage during encoding and by strengthening the encoding-specificity effect. Furthermore, because the pattern of performance was similar at all exposure durations, and because form and color are processed in different areas of cortex, the results imply that color must be bound as an integral part of the representation at the earliest stages of processing.

  7. Taking Race Off the Table: Agenda Setting and Support for Color-Blind Public Policy.

    PubMed

    Chow, Rosalind M; Knowles, Eric D

    2016-01-01

    Whites are theorized to support color-blind policies as an act of racial agenda setting-an attempt to defend the existing hierarchy by excluding race from public and institutional discourse. The present analysis leverages work distinguishing between two forms of social dominance orientation (SDO): passive opposition to equality (SDO-E) and active desire for dominance (SDO-D). We hypothesized that agenda setting, as a subtle hierarchy-maintenance strategy, would be uniquely tied to high levels of SDO-E. When made to believe that the hierarchy was under threat, Whites high in SDO-E increased their endorsement of color-blind policy (Study 1), particularly when the racial hierarchy was framed as ingroup advantage (Study 2), and became less willing to include race as a topic in a hypothetical presidential debate (Study 3). Across studies, Whites high in SDO-D showed no affinity for agenda setting as a hierarchy-maintenance strategy. © 2015 by the Society for Personality and Social Psychology, Inc.

  8. Mapping Computation with No Memory

    NASA Astrophysics Data System (ADS)

    Burckel, Serge; Gioan, Emeric; Thomé, Emmanuel

    We investigate the computation of mappings from a set S n to itself with in situ programs, that is using no extra variables than the input, and performing modifications of one component at a time. We consider several types of mappings and obtain effective computation and decomposition methods, together with upper bounds on the program length (number of assignments). Our technique is combinatorial and algebraic (graph coloration, partition ordering, modular arithmetics).

  9. East Europe Report Economic and Industrial Affairs No. 2390

    DTIC Science & Technology

    1983-04-22

    Discussed (B-. GIilan, et al .; BORBA , 7 Mar 83) ......................... 89 -b - ALBANIA DEVELOPMENTS IN COLOR TELEVISION BROADCASTING Tirana BASHKIMI...experiment- al work was carried on with limited and irregular schedules. The beginning of regular programming coincided with the 6th party congress in...upheav- als . But the practice of permanent revolution has set back for a long time even such a huge country, with a great cultural heritage, enormous

  10. Clinical application of qualitative assessment for breast masses in shear-wave elastography.

    PubMed

    Gweon, Hye Mi; Youk, Ji Hyun; Son, Eun Ju; Kim, Jeong-Ah

    2013-11-01

    To evaluate the interobserver agreement and the diagnostic performance of various qualitative features in shear-wave elastography (SWE) for breast masses. A total of 153 breast lesions in 152 women who underwent B-mode ultrasound and SWE before biopsy were included. Qualitative analysis in SWE was performed using two different classifications: E values (Ecol; 6-point color score, Ehomo; homogeneity score and Esha; shape score) and a four-color pattern classification. Two radiologists reviewed five data sets: B-mode ultrasound, SWE, and combination of both for E values and four-color pattern. The BI-RADS categories were assessed B-mode and combined sets. Interobserver agreement was assessed using weighted κ statistics. Areas under the receiver operating characteristic curve (AUC), sensitivity, and specificity were analyzed. Interobserver agreement was substantial for Ecol (κ=0.79), Ehomo (κ=0.77) and four-color pattern (κ=0.64), and moderate for Esha (κ=0.56). Better-performing qualitative features were Ecol and four-color pattern (AUCs, 0.932 and 0.925) compared with Ehomo and Esha (AUCs, 0.857 and 0.864; P<0.05). The diagnostic performance of B-mode ultrasound (AUC, 0.950) was not significantly different from combined sets with E value and with four color pattern (AUCs, 0.962 and 0.954). When all qualitative values were negative, leading to downgrade the BI-RADS category, the specificity increased significantly from 16.5% to 56.1% (E value) and 57.0% (four-color pattern) (P<0.001) without improvement in sensitivity. The qualitative SWE features were highly reproducible and showed good diagnostic performance in suspicious breast masses. Adding qualitative SWE to B-mode ultrasound increased specificity in decision making for biopsy recommendation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Development and evaluation of real-time loop-mediated isothermal amplification assay for rapid detection of cystic echinococcosis.

    PubMed

    Ahmed, Mohamed E; Eldigail, Mawahib H; Elamin, Fatima M; Ali, Ibtisam A; Grobusch, Martin P; Aradaib, Imadeldin E

    2016-09-13

    Cystic echinococcosis (CE) or hydatidosis, caused by the larval stage of Echinococcus granulosus (EG)-complex, is a neglected parasitic disease of public health importance. The disease is endemic in many African and Mediterranean countries including the Sudan. The objective of the present study was to develop and evaluate a real-time loop-mediated isothermal amplification (LAMP) assay for simple and rapid detection of CE in humans and domestic live stock in Sudan. A set of six LAMP primers, designed from the mitochondrial NADH-1 gene of EG cattle strain of genotype 5 (G5), was used as a target for LAMP assay. The assay was performed at a constant temperature (63 °C), with a real-time follow-up using a LightCycler and fluorochrome dye. Following amplification cycles in a simple water bath, LAMP products were observed for color change by naked eye and were visualized under UV light source using agarose gel electrophoresis. The real-time LAMP assay identified a variety of hydatid cysts strains recovered in the Sudan, including Echinococcus canadenses (G6) and Echinococcus ortleppi (G5). Real-time LAMP positive results were detected by the presence of an amplification curve, whereas negative results were indicated by absence of fluorescence detection. Positive LAMP results appeared as a bluish-colored reaction as observed by naked eye, whereas negative LAMP results were observed as purple-colored reaction. The sensitivity studies indicated that the LAMP assay detected as little as a 10 fg of parasite DNA. There was 100 % agreement between results of the LAMP assay and our previously described nested PCR when testing 10-fold serial dilution of DNA extracted from EG-complex hydatid cyst. However, there was no cross-reactivity with other parasites including cysticercus bovis, Fasciola gigantica, and Schistosoma bovis and nucleic acid free samples. The developed LAMP assay would be expected to prove highly significant in epidemiological surveys of CE in developing countries or areas of resource-poor settings for both ease of use and cost.

  12. Exploring the color feature power for psoriasis risk stratification and classification: A data mining paradigm.

    PubMed

    Shrivastava, Vimal K; Londhe, Narendra D; Sonawane, Rajendra S; Suri, Jasjit S

    2015-10-01

    A large percentage of dermatologist׳s decision in psoriasis disease assessment is based on color. The current computer-aided diagnosis systems for psoriasis risk stratification and classification lack the vigor of color paradigm. The paper presents an automated psoriasis computer-aided diagnosis (pCAD) system for classification of psoriasis skin images into psoriatic lesion and healthy skin, which solves the two major challenges: (i) fulfills the color feature requirements and (ii) selects the powerful dominant color features while retaining high classification accuracy. Fourteen color spaces are discovered for psoriasis disease analysis leading to 86 color features. The pCAD system is implemented in a support vector-based machine learning framework where the offline image data set is used for computing machine learning offline color machine learning parameters. These are then used for transformation of the online color features to predict the class labels for healthy vs. diseased cases. The above paradigm uses principal component analysis for color feature selection of dominant features, keeping the original color feature unaltered. Using the cross-validation protocol, the above machine learning protocol is compared against the standalone grayscale features with 60 features and against the combined grayscale and color feature set of 146. Using a fixed data size of 540 images with equal number of healthy and diseased, 10 fold cross-validation protocol, and SVM of polynomial kernel of type two, pCAD system shows an accuracy of 99.94% with sensitivity and specificity of 99.93% and 99.96%. Using a varying data size protocol, the mean classification accuracies for color, grayscale, and combined scenarios are: 92.85%, 93.83% and 93.99%, respectively. The reliability of the system in these three scenarios are: 94.42%, 97.39% and 96.00%, respectively. We conclude that pCAD system using color space alone is compatible to grayscale space or combined color and grayscale spaces. We validated our pCAD system against facial color databases and the results are consistent in accuracy and reliability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Distinct roles of the intraparietal sulcus and temporoparietal junction in attentional capture from distractor features: An individual differences approach.

    PubMed

    Painter, David R; Dux, Paul E; Mattingley, Jason B

    2015-07-01

    Setting attention for an elementary visual feature, such as color or motion, results in greater spatial attentional "capture" from items with target compared with distractor features. Thus, capture is contingent on feature-based control settings. Neuroimaging studies suggest that this contingent attentional capture involves interactions between dorsal and ventral frontoparietal networks. To examine the distinct causal influences of these networks on contingent capture, we applied continuous theta-burst stimulation (cTBS) to alter neural excitability within the dorsal intraparietal sulcus (IPS), the ventral temporoparietal junction (TPJ) and a control site, visual area MT. Participants undertook an attentional capture task before and after stimulation, in which they made speeded responses to color-defined targets that were preceded by spatial cues in the target or distractor color. Cues appeared either at the target location (valid) or at a non-target location (invalid). Reaction times were slower for targets preceded by invalid compared with valid cues, demonstrating spatial attentional capture. Cues with the target color captured attention to a greater extent than those with the distractor color, consistent with contingent capture. Effects of cTBS were not evident at the group level, but emerged instead from analyses of individual differences. Target capture magnitude was positively correlated pre- and post-stimulation for all three cortical sites, suggesting that cTBS did not influence target capture. Conversely, distractor capture was positively correlated pre- and post-stimulation of MT, but uncorrelated for IPS and TPJ, suggesting that stimulation of IPS and TPJ selectively disrupted distractor capture. Additionally, the effects of IPS stimulation were predicted by pre-stimulation attentional capture, whereas the effects of TPJ stimulation were predicted by pre-stimulation distractor suppression. The results are consistent with the existence of distinct neural circuits underlying target and distractor capture, as well as distinct roles for the IPS and TPJ. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Influence of Light Conditions and Light Sources on Clinical Measurement of Natural Teeth Color using VITA Easyshade Advance 4,0® Spectrophotometer. Pilot Study.

    PubMed

    Posavec, Ivona; Prpić, Vladimir; Zlatarić, Dubravka Knezović

    2016-12-01

    The purpose of this study was to evaluate and compare lightness (L), chroma (C) and hue (h), green-red (a) and blue-yellow (b) character of the color of maxillary right central incisors in different light conditions and light sources. Two examiners who were well trained in digital color evaluation participated in the research. Intraclass correlation coefficients (ICCs) were used to analyze intra- and interobserver reliability. The LCh and L*a*b* values were determined at 08.15 and at 10.00 in the morning under three different light conditions. Tooth color was assessed in 10 subjects using intraoral spectrophotometer VITA Easyshade Advance 4.0 ® set at the central region of the vestibular surface of the measured tooth. Intra- and interobserver ICC values were high for both examiners and ranged from 0.57 to 0.99. Statistically significant differences in LCh and L*a*b* values measured in different time of the day and certain light condition were not found (p>0.05). Statistically significant differences in LCh and L*a*b* values measured under three different light conditions were not found, too (p>0.05). VITA Easyshade Advance 4.0 ® is reliable enough for daily clinical work in order to assess tooth color during the fabrication of esthtic appliances because it is not dependent on light conditions and light sources.

  15. Choosing colors for map display icons using models of visual search.

    PubMed

    Shive, Joshua; Francis, Gregory

    2013-04-01

    We show how to choose colors for icons on maps to minimize search time using predictions of a model of visual search. The model analyzes digital images of a search target (an icon on a map) and a search display (the map containing the icon) and predicts search time as a function of target-distractor color distinctiveness and target eccentricity. We parameterized the model using data from a visual search task and performed a series of optimization tasks to test the model's ability to choose colors for icons to minimize search time across icons. Map display designs made by this procedure were tested experimentally. In a follow-up experiment, we examined the model's flexibility to assign colors in novel search situations. The model fits human performance, performs well on the optimization tasks, and can choose colors for icons on maps with novel stimuli to minimize search time without requiring additional model parameter fitting. Models of visual search can suggest color choices that produce search time reductions for display icons. Designers should consider constructing visual search models as a low-cost method of evaluating color assignments.

  16. Color image quality in projection displays: a case study

    NASA Astrophysics Data System (ADS)

    Strand, Monica; Hardeberg, Jon Y.; Nussbaum, Peter

    2005-01-01

    Recently the use of projection displays has increased dramatically in different applications such as digital cinema, home theatre, and business and educational presentations. Even if the color image quality of these devices has improved significantly over the years, it is still a common situation for users of projection displays that the projected colors differ significantly from the intended ones. This study presented in this paper attempts to analyze the color image quality of a large set of projection display devices, particularly investigating the variations in color reproduction. As a case study, a set of 14 projectors (LCD and DLP technology) at Gjovik University College have been tested under four different conditions: dark and light room, with and without using an ICC-profile. To find out more about the importance of the illumination conditions in a room, and the degree of improvement when using an ICC-profile, the results from the measurements was processed and analyzed. Eye-One Beamer from GretagMacbeth was used to make the profiles. The color image quality was evaluated both visually and by color difference calculations. The results from the analysis indicated large visual and colorimetric differences between the projectors. Our DLP projectors have generally smaller color gamut than LCD projectors. The color gamuts of older projectors are significantly smaller than that of newer ones. The amount of ambient light reaching the screen is of great importance for the visual impression. If too much reflections and other ambient light reaches the screen, the projected image gets pale and has low contrast. When using a profile, the differences in colors between the projectors gets smaller and the colors appears more correct. For one device, the average ΔE*ab color difference when compared to a relative white reference was reduced from 22 to 11, for another from 13 to 6. Blue colors have the largest variations among the projection displays and makes them therefore harder to predict.

  17. Color image quality in projection displays: a case study

    NASA Astrophysics Data System (ADS)

    Strand, Monica; Hardeberg, Jon Y.; Nussbaum, Peter

    2004-10-01

    Recently the use of projection displays has increased dramatically in different applications such as digital cinema, home theatre, and business and educational presentations. Even if the color image quality of these devices has improved significantly over the years, it is still a common situation for users of projection displays that the projected colors differ significantly from the intended ones. This study presented in this paper attempts to analyze the color image quality of a large set of projection display devices, particularly investigating the variations in color reproduction. As a case study, a set of 14 projectors (LCD and DLP technology) at Gjøvik University College have been tested under four different conditions: dark and light room, with and without using an ICC-profile. To find out more about the importance of the illumination conditions in a room, and the degree of improvement when using an ICC-profile, the results from the measurements was processed and analyzed. Eye-One Beamer from GretagMacbeth was used to make the profiles. The color image quality was evaluated both visually and by color difference calculations. The results from the analysis indicated large visual and colorimetric differences between the projectors. Our DLP projectors have generally smaller color gamut than LCD projectors. The color gamuts of older projectors are significantly smaller than that of newer ones. The amount of ambient light reaching the screen is of great importance for the visual impression. If too much reflections and other ambient light reaches the screen, the projected image gets pale and has low contrast. When using a profile, the differences in colors between the projectors gets smaller and the colors appears more correct. For one device, the average ΔE*ab color difference when compared to a relative white reference was reduced from 22 to 11, for another from 13 to 6. Blue colors have the largest variations among the projection displays and makes them therefore harder to predict.

  18. Effects of color combination and ambient illumination on visual perception time with TFT-LCD.

    PubMed

    Lin, Chin-Chiuan; Huang, Kuo-Chen

    2009-10-01

    An empirical study was carried out to examine the effects of color combination and ambient illumination on visual perception time using TFT-LCD. The effect of color combination was broken down into two subfactors, luminance contrast ratio and chromaticity contrast. Analysis indicated that the luminance contrast ratio and ambient illumination had significant, though small effects on visual perception. Visual perception time was better at high luminance contrast ratio than at low luminance contrast ratio. Visual perception time under normal ambient illumination was better than at other ambient illumination levels, although the stimulus color had a confounding effect on visual perception time. In general, visual perception time was better for the primary colors than the middle-point colors. Based on the results, normal ambient illumination level and high luminance contrast ratio seemed to be the optimal choice for design of workplace with video display terminals TFT-LCD.

  19. Color-coordinate system from a 13th-century account of rainbows.

    PubMed

    Smithson, Hannah E; Anderson, Philip S; Dinkova-Bruun, Greti; Fosbury, Robert A E; Gasper, Giles E M; Laven, Philip; McLeish, Tom C B; Panti, Cecilia; Tanner, Brian K

    2014-04-01

    We present a new analysis of Robert Grosseteste's account of color in his treatise De iride (On the Rainbow), dating from the early 13th century. The work explores color within the 3D framework set out in Grosseteste's De colore [see J. Opt. Soc. Am. A29, A346 (2012)], but now links the axes of variation to observable properties of rainbows. We combine a modern understanding of the physics of rainbows and of human color perception to resolve the linguistic ambiguities of the medieval text and to interpret Grosseteste's key terms.

  20. Computer-aided diagnosis of psoriasis skin images with HOS, texture and color features: A first comparative study of its kind.

    PubMed

    Shrivastava, Vimal K; Londhe, Narendra D; Sonawane, Rajendra S; Suri, Jasjit S

    2016-04-01

    Psoriasis is an autoimmune skin disease with red and scaly plaques on skin and affecting about 125 million people worldwide. Currently, dermatologist use visual and haptic methods for diagnosis the disease severity. This does not help them in stratification and risk assessment of the lesion stage and grade. Further, current methods add complexity during monitoring and follow-up phase. The current diagnostic tools lead to subjectivity in decision making and are unreliable and laborious. This paper presents a first comparative performance study of its kind using principal component analysis (PCA) based CADx system for psoriasis risk stratification and image classification utilizing: (i) 11 higher order spectra (HOS) features, (ii) 60 texture features, and (iii) 86 color feature sets and their seven combinations. Aggregate 540 image samples (270 healthy and 270 diseased) from 30 psoriasis patients of Indian ethnic origin are used in our database. Machine learning using PCA is used for dominant feature selection which is then fed to support vector machine classifier (SVM) to obtain optimized performance. Three different protocols are implemented using three kinds of feature sets. Reliability index of the CADx is computed. Among all feature combinations, the CADx system shows optimal performance of 100% accuracy, 100% sensitivity and specificity, when all three sets of feature are combined. Further, our experimental result with increasing data size shows that all feature combinations yield high reliability index throughout the PCA-cutoffs except color feature set and combination of color and texture feature sets. HOS features are powerful in psoriasis disease classification and stratification. Even though, independently, all three set of features HOS, texture, and color perform competitively, but when combined, the machine learning system performs the best. The system is fully automated, reliable and accurate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Rationale and description of a coordinated cockpit display for aircraft flight management

    NASA Technical Reports Server (NTRS)

    Baty, D. L.

    1976-01-01

    The design for aircraft cockpit display systems is discussed in detail. The system consists of a set of three beam penetration color cathode ray tubes (CRT). One of three orthogonal projects of the aircraft's state appears on each CRT which displays different views of the same information. The color feature is included to obtain visual separation of information elements. The colors of red, green and yellow are used to differentiate control, performance and navigation information. Displays are coordinated in information and color.

  2. 78 FR 42451 - Listing of Color Additives Exempt From Certification; Reactive Blue 246 and Reactive Blue 247...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 73 [Docket Nos. FDA-2011-C-0344 and FDA-2011-C-0463] Listing of Color Additives Exempt From Certification; Reactive... to read as set forth below: In the Federal Register of April 1, 2013, we amended the color additive...

  3. Reaction to the Special Issue on Centralizing the Experiences of LGB People of Color in Counseling Psychology

    ERIC Educational Resources Information Center

    Zea, Maria Cecilia

    2010-01-01

    This reaction article comments on the Major Contribution "Centralizing the Experiences of LGB People of Color in Counseling Psychology." The content analysis of the published literature on lesbian, gay, and bisexual (LGB) people of color from 1998 to 2007 provides much-needed information that will help psychologists set future research agendas and…

  4. New Perspectives of Point Clouds Color Management - the Development of Tool in Matlab for Applications in Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Pepe, M.; Ackermann, S.; Fregonese, L.; Achille, C.

    2017-02-01

    The paper describes a method for Point Clouds Color management and Integration obtained from Terrestrial Laser Scanner (TLS) and Image Based (IB) survey techniques. Especially in the Cultural Heritage (CH) environment, methods and techniques to improve the color quality of Point Clouds have a key role because a homogenous texture brings to a more accurate reconstruction of the investigated object and to a more pleasant perception of the color object as well. A color management method for point clouds can be useful in case of single data set acquired by TLS or IB technique as well as in case of chromatic heterogeneity resulting by merging different datasets. The latter condition can occur when the scans are acquired in different moments of the same day or when scans of the same object are performed in a period of weeks or months, and consequently with a different environment/lighting condition. In this paper, a procedure to balance the point cloud color in order to uniform the different data sets, to improve the chromatic quality and to highlight further details will be presented and discussed.

  5. Carded Tow Real-Time Color Assessment: A Spectral Camera-Based System.

    PubMed

    Furferi, Rocco; Governi, Lapo; Volpe, Yary; Carfagni, Monica

    2016-08-31

    One of the most important parameters to be controlled during the production of textile yarns obtained by mixing pre-colored fibers, is the color correspondence between the manufactured yarn and a given reference, usually provided by a designer or a customer. Obtaining yarns from raw pre-colored fibers is a complex manufacturing process entailing a number of steps such as laboratory sampling, color recipe corrections, blowing, carding and spinning. Carding process is the one devoted to transform a "fuzzy mass" of tufted fibers into a regular mass of untwisted fibers, named "tow". During this process, unfortunately, the correspondence between the color of the tow and the target one cannot be assured, thus leading to yarns whose color differs from the one used for reference. To solve this issue, the main aim of this work is to provide a system able to perform a spectral camera-based real-time measurement of a carded tow, to assess its color correspondence with a reference carded fabric and, at the same time, to monitor the overall quality of the tow during the carding process. Tested against a number of differently colored carded fabrics, the proposed system proved its effectiveness in reliably assessing color correspondence in real-time.

  6. Real-time time-division color electroholography using a single GPU and a USB module for synchronizing reference light.

    PubMed

    Araki, Hiromitsu; Takada, Naoki; Niwase, Hiroaki; Ikawa, Shohei; Fujiwara, Masato; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2015-12-01

    We propose real-time time-division color electroholography using a single graphics processing unit (GPU) and a simple synchronization system of reference light. To facilitate real-time time-division color electroholography, we developed a light emitting diode (LED) controller with a universal serial bus (USB) module and the drive circuit for reference light. A one-chip RGB LED connected to a personal computer via an LED controller was used as the reference light. A single GPU calculates three computer-generated holograms (CGHs) suitable for red, green, and blue colors in each frame of a three-dimensional (3D) movie. After CGH calculation using a single GPU, the CPU can synchronize the CGH display with the color switching of the one-chip RGB LED via the LED controller. Consequently, we succeeded in real-time time-division color electroholography for a 3D object consisting of around 1000 points per color when an NVIDIA GeForce GTX TITAN was used as the GPU. Furthermore, we implemented the proposed method in various GPUs. The experimental results showed that the proposed method was effective for various GPUs.

  7. Top-down expectancy versus bottom-up guidance in search for known color-form conjunctions.

    PubMed

    Anderson, Giles M; Humphreys, Glyn W

    2015-11-01

    We assessed the effects of pairing a target object with its familiar color on eye movements in visual search, under conditions where the familiar color could or could not be predicted. In Experiment 1 participants searched for a yellow- or purple-colored corn target amongst aubergine distractors, half of which were yellow and half purple. Search was more efficient when the color of the target was familiar and early eye movements more likely to be directed to targets carrying a familiar color than an unfamiliar color. Experiment 2 introduced cues which predicted the target color at 80 % validity. Cue validity did not affect whether early fixations were to the target. Invalid cues, however, disrupted search efficiency for targets in an unfamiliar color whilst there was little cost to search efficiency for targets in their familiar color. These results generalized across items with different colors (Experiment 3). The data are consistent with early processes in selection being automatically modulated in a bottom-up manner to targets in their familiar color, even when expectancies are set for other colors.

  8. Perceptual asynchrony between color and motion with a single direction change.

    PubMed

    Linares, Daniel; López-Moliner, Joan

    2006-08-23

    When a stimulus repeatedly and rapidly changes color (e.g., between red and green) and motion direction (e.g., upwards and downwards) with the same frequency, it was found that observers were most likely to pair colors and motion directions when the direction changes lead the color changes by approximately 80 ms. This is the color-motion asynchrony illusion. According to the differential processing time model, the illusion is explained because the neural activity leading to the perceptual experience of motion requires more time than that of color. Alternatively, the time marker model attributes the misbinding to a failure in matching different sorts of changes at rapid alternations. Here, running counter to the time marker model, we demonstrate that the illusion can arise with a single direction change. Using this simplified version of the illusion we also show that, although some form of visual masking takes place between colors, the measured asynchrony genuinely reflects processing time differences.

  9. Eleven Colors That Are Almost Never Confused

    NASA Astrophysics Data System (ADS)

    Boynton, Robert M.

    1989-08-01

    1.1. Three functions of color vision. Setting aside the complex psychological effects of color, related to esthetics, fashion, and mood, three relatively basic functions of color vision, which can be examined scientifically, are discernable. (1) With the eye in a given state of adaptation, color vision allows the perception of signals that otherwise would be below threshold, and therefore lost to perception. Evidence for this comes from a variety of two-color threshold experiments. (2) Visible contours can be maintained by color differences alone, regardless of the relative radiances of the two parts of the field whose junction defines the border. For achromatic vision, contour disappears at the isoluminant point. (3) Color specifies what seems to be an absolute property of a surface, one that enhances its recognizability and allows a clearer separation and classification of non-contiguous elements in the visual field.

  10. Frequency division multiplexed multi-color fluorescence microscope system

    NASA Astrophysics Data System (ADS)

    Le, Vu Nam; Yang, Huai Dong; Zhang, Si Chun; Zhang, Xin Rong; Jin, Guo Fan

    2017-10-01

    Grayscale camera can only obtain gray scale image of object, while the multicolor imaging technology can obtain the color information to distinguish the sample structures which have the same shapes but in different colors. In fluorescence microscopy, the current method of multicolor imaging are flawed. Problem of these method is affecting the efficiency of fluorescence imaging, reducing the sampling rate of CCD etc. In this paper, we propose a novel multiple color fluorescence microscopy imaging method which based on the Frequency division multiplexing (FDM) technology, by modulating the excitation lights and demodulating the fluorescence signal in frequency domain. This method uses periodic functions with different frequency to modulate amplitude of each excitation lights, and then combine these beams for illumination in a fluorescence microscopy imaging system. The imaging system will detect a multicolor fluorescence image by a grayscale camera. During the data processing, the signal obtained by each pixel of the camera will be processed with discrete Fourier transform, decomposed by color in the frequency domain and then used inverse discrete Fourier transform. After using this process for signals from all of the pixels, monochrome images of each color on the image plane can be obtained and multicolor image is also acquired. Based on this method, this paper has constructed and set up a two-color fluorescence microscope system with two excitation wavelengths of 488 nm and 639 nm. By using this system to observe the linearly movement of two kinds of fluorescent microspheres, after the data processing, we obtain a two-color fluorescence dynamic video which is consistent with the original image. This experiment shows that the dynamic phenomenon of multicolor fluorescent biological samples can be generally observed by this method. Compared with the current methods, this method can obtain the image signals of each color at the same time, and the color video's frame rate is consistent with the frame rate of the camera. The optical system is simpler and does not need extra color separation element. In addition, this method has a good filtering effect on the ambient light or other light signals which are not affected by the modulation process.

  11. Animal Science.

    ERIC Educational Resources Information Center

    VanCleave, Janice

    2001-01-01

    Presents a set of hands-on, outdoor science experiments designed to teach elementary school students about animal adaptation. The experiments focus on: how color camouflage affects an insect population; how spiderlings find a home; and how chameleons camouflage themselves by changing color. (SM)

  12. Do different perceptual task sets modulate electrophysiological correlates of masked visuomotor priming? Attention to shape and color put to the test.

    PubMed

    Zovko, Monika; Kiefer, Markus

    2013-02-01

    According to classical theories, automatic processes operate independently of attention. Recent evidence, however, shows that masked visuomotor priming, an example of an automatic process, depends on attention to visual form versus semantics. In a continuation of this approach, we probed feature-specific attention within the perceptual domain and tested in two event-related potential (ERP) studies whether masked visuomotor priming in a shape decision task specifically depends on attentional sensitization of visual pathways for shape in contrast to color. Prior to the masked priming procedure, a shape or a color decision task served to induce corresponding task sets. ERP analyses revealed visuomotor priming effects over the occipitoparietal scalp only after the shape, but not after the color induction task. Thus, top-down control coordinates automatic processing streams in congruency with higher-level goals even at a fine-grained level. Copyright © 2012 Society for Psychophysiological Research.

  13. Information-Adaptive Image Encoding and Restoration

    NASA Technical Reports Server (NTRS)

    Park, Stephen K.; Rahman, Zia-ur

    1998-01-01

    The multiscale retinex with color restoration (MSRCR) has shown itself to be a very versatile automatic image enhancement algorithm that simultaneously provides dynamic range compression, color constancy, and color rendition. A number of algorithms exist that provide one or more of these features, but not all. In this paper we compare the performance of the MSRCR with techniques that are widely used for image enhancement. Specifically, we compare the MSRCR with color adjustment methods such as gamma correction and gain/offset application, histogram modification techniques such as histogram equalization and manual histogram adjustment, and other more powerful techniques such as homomorphic filtering and 'burning and dodging'. The comparison is carried out by testing the suite of image enhancement methods on a set of diverse images. We find that though some of these techniques work well for some of these images, only the MSRCR performs universally well oil the test set.

  14. A Comparison of the Multiscale Retinex With Other Image Enhancement Techniques

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-Ur; Woodell, Glenn A.; Jobson, Daniel J.

    1997-01-01

    The multiscale retinex with color restoration (MSRCR) has shown itself to be a very versatile automatic image enhancement algorithm that simultaneously provides dynamic range compression, color constancy, and color rendition. A number of algorithms exist that provide one or more of these features, but not all. In this paper we compare the performance of the MSRCR with techniques that are widely used for image enhancement. Specifically, we compare the MSRCR with color adjustment methods such as gamma correction and gain/offset application, histogram modification techniques such as histogram equalization and manual histogram adjustment, and other more powerful techniques such as homomorphic filtering and 'burning and dodging'. The comparison is carried out by testing the suite of image enhancement methods on a set of diverse images. We find that though some of these techniques work well for some of these images, only the MSRCR performs universally well on the test set.

  15. Contingent attentional capture occurs by activated target congruence.

    PubMed

    Ariga, Atsunori; Yokosawa, Kazuhiko

    2008-05-01

    Contingent attentional capture occurs when a stimulus property captures an observer's attention, usually related to the observer's top-down attentional set for target-defining properties. In this study, we examined whether contingent attentional capture occurs for a distractor that does not share the target-defining property at a physical level, but does share that property at an abstract level of representation. In a rapid serial visual presentation stream, we defined the target by color (e.g., a green-colored Japanese kanji character). Before the target onset, we presented a distractor that referred to the target-defining color (e.g., a white-colored character meaning "green"). We observed contingent attentional capture by the distractor, which was reflected by a deficit in identifying the subsequent target. This result suggests that because of the attentional set, stimuli were scanned on the basis of the target-defining property at an abstract semantic level of representation.

  16. Red vs. green: Does the exam booklet color matter in higher education summative evaluations? Not likely.

    PubMed

    Arthur, Winfred; Cho, Inchul; Muñoz, Gonzalo J

    2016-10-01

    We examined the so-called "red effect" in the context of higher education summative exams under the premise that unlike the conditions or situations where this effect typically has been obtained, the totality of factors, such as higher motivation, familiarity with exam material, and more reliance on domain knowledge that characterize high-stakes testing such as those in operational educational settings, are likely to mitigate any color effects. Using three naturally occurring archival data sets in which students took exams on either red or green exam booklets, the results indicated that booklet color (red vs. green) did not affect exam performance. From a scientific perspective, the results suggest that color effects may be attenuated by factors that characterize high-stakes assessments, and from an applied perspective, they suggest that the choice of red vs. green exam booklets in higher education summative evaluations is likely not a concern.

  17. Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip.

    PubMed

    Dongre, Chaitanya; van Weerd, Jasper; Besselink, Geert A J; Vazquez, Rebeca Martinez; Osellame, Roberto; Cerullo, Giulio; van Weeghel, Rob; van den Vlekkert, Hans H; Hoekstra, Hugo J W M; Pollnau, Markus

    2011-02-21

    We introduce a principle of parallel optical processing to an optofluidic lab-on-a-chip. During electrophoretic separation, the ultra-low limit of detection achieved with our set-up allows us to record fluorescence from covalently end-labeled DNA molecules. Different sets of exclusively color-labeled DNA fragments-otherwise rendered indistinguishable by spatio-temporal coincidence-are traced back to their origin by modulation-frequency-encoded multi-wavelength laser excitation, fluorescence detection with a single ultrasensitive, albeit color-blind photomultiplier, and Fourier analysis decoding. As a proof of principle, fragments obtained by multiplex ligation-dependent probe amplification from independent human genomic segments, associated with genetic predispositions to breast cancer and anemia, are simultaneously analyzed.

  18. Working memory for visual features and conjunctions in schizophrenia.

    PubMed

    Gold, James M; Wilk, Christopher M; McMahon, Robert P; Buchanan, Robert W; Luck, Steven J

    2003-02-01

    The visual working memory (WM) storage capacity of patients with schizophrenia was investigated using a change detection paradigm. Participants were presented with 2, 3, 4, or 6 colored bars with testing of both single feature (color, orientation) and feature conjunction conditions. Patients performed significantly worse than controls at all set sizes but demonstrated normal feature binding. Unlike controls, patient WM capacity declined at set size 6 relative to set size 4. Impairments with subcapacity arrays suggest a deficit in task set maintenance: Greater impairment for supercapacity set sizes suggests a deficit in the ability to selectively encode information for WM storage. Thus, the WM impairment in schizophrenia appears to be a consequence of attentional deficits rather than a reduction in storage capacity.

  19. [Establishment of the background color to make discrimination of domestic ethical tablets sharper and more feasible based on the analysis of their color distribution].

    PubMed

    Ishizaki, Makiko; Maeda, Hatsuo; Okamoto, Ikuko

    2012-01-01

    In Japan, pharmacists as well as patients often have problems distinguishing one ethical tablet from another because they can be very similar in color. In an attempt to solve this problem, we hypothesized using a background sheet of dark gray identified by N3.5 on the Munsell color system (Munsell CS). The colors of 369 and 656 ethical tablets in Japan and the USA, respectively, were measured. On the Munsell CS, the Japanese tablets were localized mostly in the range of hues between 10R∼10Y with values ≧ 8 and chroma ≦ 4, while the colors of the American tablets were scattered over the hue spectrum with a variety of values and chroma. Based on these findings, we examined the effects of background colors on discrimination between 5 tablets classified into yellow, yellow red, red, or mixed groups that represented typical domestic Japanese tablets. Background colors of light, medium, and dark gray, purple, blue, and blue green were selected based on a general concept on color discrimination. The influence of white 10 mm-ruled squares on background sheets was examined as well. Under JIS Z8723 conditions, 42 volunteers used a 4-point scale to evaluate how clearly they could discriminate between each set of tablets on each of the background sheets. Variance analysis of the obtained data with SPSS demonstrated that with healthy vision, use of a dark gray background sheet with or without ruled squares enabled the sharpest and most feasible discrimination between all sets of tablets. A similar test with dark gray and white clearly demonstrated that the former works as a practical background color for discrimination among different domestic Japanese tablets.

  20. Quantification of color vision using a tablet display.

    PubMed

    Chacon, Alicia; Rabin, Jeff; Yu, Dennis; Johnston, Shawn; Bradshaw, Timothy

    2015-01-01

    Accurate color vision is essential for optimal performance in aviation and space environments using nonredundant color coding to convey critical information. Most color tests detect color vision deficiency (CVD) but fail to diagnose type or severity of CVD, which are important to link performance to occupational demands. The computer-based Cone Contrast Test (CCT) diagnoses type and severity of CVD. It is displayed on a netbook computer for clinical application, but a more portable version may prove useful for deployments, space and aviation cockpits, as well as accident and sports medicine settings. Our purpose was to determine if the CCT can be conducted on a tablet display (Windows 8, Microsoft, Seattle, WA) using touch-screen response input. The CCT presents colored letters visible only to red (R), green (G), and blue (B) sensitive retinal cones to determine the lowest R, G, and B cone contrast visible to the observer. The CCT was measured in 16 color vision normals (CVN) and 16 CVDs using the standard netbook computer and a Windows 8 tablet display calibrated to produce equal color contrasts. Both displays showed 100% specificity for confirming CVN and 100% sensitivity for detecting CVD. In CVNs there was no difference between scores on netbook vs. tablet displays. G cone CVDs showed slightly lower G cone CCT scores on the tablet. CVD can be diagnosed with a tablet display. Ease-of-use, portability, and complete computer capabilities make tablets ideal for multiple settings, including aviation, space, military deployments, accidents and rescue missions, and sports vision. Chacon A, Rabin J, Yu D, Johnston S, Bradshaw T. Quantification of color vision using a tablet display.

  1. Hybrid rendering of the chest and virtual bronchoscopy [corrected].

    PubMed

    Seemann, M D; Seemann, O; Luboldt, W; Gebicke, K; Prime, G; Claussen, C D

    2000-10-30

    Thin-section spiral computed tomography was used to acquire the volume data sets of the thorax. The tracheobronchial system and pathological changes of the chest were visualized using a color-coded surface rendering method. The structures of interest were then superimposed on a volume rendering of the other thoracic structures, thus producing a hybrid rendering. The hybrid rendering technique exploit the advantages of both rendering methods and enable virtual bronchoscopic examinations using different representation models. Virtual bronchoscopic examinations with a transparent color-coded shaded-surface model enables the simultaneous visualization of both the airways and the adjacent structures behind of the tracheobronchial wall and therefore, offers a practical alternative to fiberoptic bronchoscopy. Hybrid rendering and virtual endoscopy obviate the need for time consuming detailed analysis and presentation of axial source images.

  2. Feature singletons attract spatial attention independently of feature priming

    PubMed Central

    Yashar, Amit; White, Alex L.; Fang, Wanghaoming; Carrasco, Marisa

    2017-01-01

    People perform better in visual search when the target feature repeats across trials (intertrial feature priming [IFP]). Here, we investigated whether repetition of a feature singleton's color modulates stimulus-driven shifts of spatial attention by presenting a probe stimulus immediately after each singleton display. The task alternated every two trials between a probe discrimination task and a singleton search task. We measured both stimulus-driven spatial attention (via the distance between the probe and singleton) and IFP (via repetition of the singleton's color). Color repetition facilitated search performance (IFP effect) when the set size was small. When the probe appeared at the singleton's location, performance was better than at the opposite location (stimulus-driven attention effect). The magnitude of this attention effect increased with the singleton's set size (which increases its saliency) but did not depend on whether the singleton's color repeated across trials, even when the previous singleton had been attended as a search target. Thus, our findings show that repetition of a salient singleton's color affects performance when the singleton is task relevant and voluntarily attended (as in search trials). However, color repetition does not affect performance when the singleton becomes irrelevant to the current task, even though the singleton does capture attention (as in probe trials). Therefore, color repetition per se does not make a singleton more salient for stimulus-driven attention. Rather, we suggest that IFP requires voluntary selection of color singletons in each consecutive trial. PMID:28800369

  3. Feature singletons attract spatial attention independently of feature priming.

    PubMed

    Yashar, Amit; White, Alex L; Fang, Wanghaoming; Carrasco, Marisa

    2017-08-01

    People perform better in visual search when the target feature repeats across trials (intertrial feature priming [IFP]). Here, we investigated whether repetition of a feature singleton's color modulates stimulus-driven shifts of spatial attention by presenting a probe stimulus immediately after each singleton display. The task alternated every two trials between a probe discrimination task and a singleton search task. We measured both stimulus-driven spatial attention (via the distance between the probe and singleton) and IFP (via repetition of the singleton's color). Color repetition facilitated search performance (IFP effect) when the set size was small. When the probe appeared at the singleton's location, performance was better than at the opposite location (stimulus-driven attention effect). The magnitude of this attention effect increased with the singleton's set size (which increases its saliency) but did not depend on whether the singleton's color repeated across trials, even when the previous singleton had been attended as a search target. Thus, our findings show that repetition of a salient singleton's color affects performance when the singleton is task relevant and voluntarily attended (as in search trials). However, color repetition does not affect performance when the singleton becomes irrelevant to the current task, even though the singleton does capture attention (as in probe trials). Therefore, color repetition per se does not make a singleton more salient for stimulus-driven attention. Rather, we suggest that IFP requires voluntary selection of color singletons in each consecutive trial.

  4. Stochastic Sampling in the IMF of Galactic Open Clusters

    NASA Astrophysics Data System (ADS)

    Kay, Christina; Hancock, M.; Canalizo, G.; Smith, B. J.; Giroux, M. L.

    2010-01-01

    We sought observational evidence of the effects of stochastic sampling of the initial mass function by investigating the integrated colors of a sample of Galactic open clusters. In particular we looked for scatter in the integrated (V-K) color as previous research resulted in little scatter in the (U-B) and (B-V) colors. Combining data from WEBDA and 2MASS we determined three different colors for 287 open clusters. Of these clusters, 39 have minimum uncertainties in age and formed a standard set. A plot of the (V-K) color versus age showed much more scatter than the (U-B) versus age. We also divided the sample into two groups based on a lowest luminosity limit which is a function of age and V magnitude. We expected the group of clusters fainter than this limit to show more scatter than the brighter group. Assuming the published ages, we compared the reddening corrected observed colors to those predicted by Starburst99. The presence of stochastic sampling should increase scatter in the distribution of the differences between observed and model colors of the fainter group relative to the brighter group. However, we found that K-S tests cannot rule out that the distribution of color difference for the brighter and fainter sets come from the same parent distribution. This indistinguishabilty may result from uncertainties in the parameters used to define the groups. This result constrains the size of the effects of stochastic sampling of the initial mass function.

  5. The Relative Importance of Sexual Dimorphism, Fluctuating Asymmetry, and Color Cues to Health during Evaluation of Potential Partners' Facial Photographs : A Conjoint Analysis Study.

    PubMed

    Mogilski, Justin K; Welling, Lisa L M

    2017-03-01

    Sexual dimorphism, symmetry, and coloration in human faces putatively signal information relevant to mate selection and reproduction. Although the independent contributions of these characteristics to judgments of attractiveness are well established, relatively few studies have examined whether individuals prioritize certain features over others. Here, participants (N = 542, 315 female) ranked six sets of facial photographs (3 male, 3 female) by their preference for starting long- and short-term romantic relationships with each person depicted. Composite-based digital transformations were applied such that each image set contained 11 different versions of the same identity. Each photograph in each image set had a unique combination of three traits: sexual dimorphism, symmetry, and color cues to health. Using conjoint analysis to evaluate participants' ranking decisions, we found that participants prioritized cues to sexual dimorphism over symmetry and color cues to health. Sexual dimorphism was also found to be relatively more important for the evaluation of male faces than for female faces, whereas symmetry and color cues to health were relatively more important for the evaluation of female faces than for male faces. Symmetry and color cues to health were more important for long-term versus short-term evaluations for female faces, but not male faces. Analyses of utility estimates reveal that our data are consistent with research showing that preferences for facial masculinity and femininity in male and female faces vary according to relationship context. These findings are interpreted in the context of previous work examining the influence of these facial attributes on romantic partner perception.

  6. Development of the RGB LEDs color mixing mechanism for stability the color temperature at different projection distances.

    PubMed

    Hung, Chih-Ching

    2015-01-01

    In lighting application, the color mixing of the RGB LEDs can provide more color selection in correlated color temperature and color rendering. Therefore, the purpose of this study is to propose a RGB color mixing mechanism by applying the mechanism design. Three sets of lamp-type RGB LEDs are individually installed on three four-bar linkages. A crank is used to drive three groups of RGB LEDs lamp-type to project lights onto a single plane in order to mix the lights. And, simulations of the illuminance and associated color temperatures are conducted by changing the distance to the projection plane, under the assumption that the stability of the color temperature of the projected light does not change according to the projecting height. Thus, the effect of change in the color temperature on color determination by the humans' eyes was avoided. The success of the proposed method will allow medical personnel to choose suitable wavelengths and color temperatures according to the particular requirements of their medical-examination environments.

  7. An interactive tool for gamut masking

    NASA Astrophysics Data System (ADS)

    Song, Ying; Lau, Cheryl; Süsstrunk, Sabine

    2014-02-01

    Artists often want to change the colors of an image to achieve a particular aesthetic goal. For example, they might limit colors to a warm or cool color scheme to create an image with a certain mood or feeling. Gamut masking is a technique that artists use to limit the set of colors they can paint with. They draw a mask over a color wheel and only use the hues within the mask. However, creating the color palette from the mask and applying the colors to the image requires skill. We propose an interactive tool for gamut masking that allows amateur artists to create an image with a desired mood or feeling. Our system extracts a 3D color gamut from the 2D user-drawn mask and maps the image to this gamut. The user can draw a different gamut mask or locally refine the image colors. Our voxel grid gamut representation allows us to represent gamuts of any shape, and our cluster-based image representation allows the user to change colors locally.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Aurelien; Fini, Paul T.; Houser, Kevin W.

    We have developed a two-measure system for evaluating light sources’ color rendition that builds upon conceptual progress of numerous researchers over the last two decades. The system quantifies the color fidelity and color gamut (change in object chroma) of a light source in comparison to a reference illuminant. The calculations are based on a newly developed set of reflectance data from real samples uniformly distributed in color space (thereby fairly representing all colors) and in wavelength space (thereby precluding artificial optimization of the color rendition scores by spectral engineering). The color fidelity score R f is an improved version ofmore » the CIE color rendering index. The color gamut score R g is an improved version of the Gamut Area Index. In combination, they provide two complementary assessments to guide the optimization of future light sources. This method summarizes the findings of the Color Metric Task Group of the Illuminating Engineering Society of North America (IES). It is adopted in the upcoming IES TM-30-2015, and is proposed for consideration with the International Commission on Illumination (CIE).« less

  9. Optimal color design of psychological counseling room by design of experiments and response surface methodology.

    PubMed

    Liu, Wenjuan; Ji, Jianlin; Chen, Hua; Ye, Chenyu

    2014-01-01

    Color is one of the most powerful aspects of a psychological counseling environment. Little scientific research has been conducted on color design and much of the existing literature is based on observational studies. Using design of experiments and response surface methodology, this paper proposes an optimal color design approach for transforming patients' perception into color elements. Six indices, pleasant-unpleasant, interesting-uninteresting, exciting-boring, relaxing-distressing, safe-fearful, and active-inactive, were used to assess patients' impression. A total of 75 patients participated, including 42 for Experiment 1 and 33 for Experiment 2. 27 representative color samples were designed in Experiment 1, and the color sample (L = 75, a = 0, b = -60) was the most preferred one. In Experiment 2, this color sample was set as the 'central point', and three color attributes were optimized to maximize the patients' satisfaction. The experimental results show that the proposed method can get the optimal solution for color design of a counseling room.

  10. Assessment of perceptibility and acceptability of color variations between matched teeth among trainee dentist and lay person.

    PubMed

    Ramesh, A S; Sharma, Aruna; Rijesh, K; Prakash, R; Devi, Lakshmi; Raja, Edilbert

    2015-08-01

    The aim of this study was to find the difference in perceptibility and acceptability of changes done to various color coordinates of matched teeth, between trainee dental surgeons, and lay person. A photograph with a set of matched central incisor teeth was selected. In one of the central incisors, the color coordinates (hue, value, and chroma) were altered to a preset value. These pictures were presented to trainee dental surgeons and lay person and their level of perception of color change and acceptance of color change was registered and compared. It was found that trainee dental surgeons fared better in perceiving the color change and accepted less of the color changed specimens. The dimension of color that was more discerned both by lay person and trainee dental surgeons was value, hue, and last chroma. When compared to a lay person, dental surgeons are more acute in perceiving color changes and do not accept the color difference between teeth to a higher degree.

  11. Optimal Color Design of Psychological Counseling Room by Design of Experiments and Response Surface Methodology

    PubMed Central

    Chen, Hua; Ye, Chenyu

    2014-01-01

    Color is one of the most powerful aspects of a psychological counseling environment. Little scientific research has been conducted on color design and much of the existing literature is based on observational studies. Using design of experiments and response surface methodology, this paper proposes an optimal color design approach for transforming patients’ perception into color elements. Six indices, pleasant-unpleasant, interesting-uninteresting, exciting-boring, relaxing-distressing, safe-fearful, and active-inactive, were used to assess patients’ impression. A total of 75 patients participated, including 42 for Experiment 1 and 33 for Experiment 2. 27 representative color samples were designed in Experiment 1, and the color sample (L = 75, a = 0, b = -60) was the most preferred one. In Experiment 2, this color sample was set as the ‘central point’, and three color attributes were optimized to maximize the patients’ satisfaction. The experimental results show that the proposed method can get the optimal solution for color design of a counseling room. PMID:24594683

  12. Access and Success for System Goals for People of Color in Washington Community and Technical Colleges: Progress Report. Research Report No. 05-3

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2005

    2005-01-01

    This report is designed to provide information for readers, promote discussion, and set the stage for future initiatives to address outcomes for people of color. The data provided speaks to the success that Washington's community and technical colleges have achieved in increasing higher education access and participation for students of color. It…

  13. The Role of Color in Search Templates for Real-world Target Objects.

    PubMed

    Nako, Rebecca; Smith, Tim J; Eimer, Martin

    2016-11-01

    During visual search, target representations (attentional templates) control the allocation of attention to template-matching objects. The activation of new attentional templates can be prompted by verbal or pictorial target specifications. We measured the N2pc component of the ERP as a temporal marker of attentional target selection to determine the role of color signals in search templates for real-world search target objects that are set up in response to word or picture cues. On each trial run, a word cue (e.g., "apple") was followed by three search displays that contained the cued target object among three distractors. The selection of the first target was based on the word cue only, whereas selection of the two subsequent targets could be controlled by templates set up after the first visual presentation of the target (picture cue). In different trial runs, search displays either contained objects in their natural colors or monochromatic objects. These two display types were presented in different blocks (Experiment 1) or in random order within each block (Experiment 2). RTs were faster, and target N2pc components emerged earlier for the second and third display of each trial run relative to the first display, demonstrating that pictures are more effective than word cues in guiding search. N2pc components were triggered more rapidly for targets in the second and third display in trial runs with colored displays. This demonstrates that when visual target attributes are fully specified by picture cues, the additional presence of color signals in target templates facilitates the speed with which attention is allocated to template-matching objects. No such selection benefits for colored targets were found when search templates were set up in response to word cues. Experiment 2 showed that color templates activated by word cues can even impair the attentional selection of noncolored targets. Results provide new insights into the status of color during the guidance of visual search for real-world target objects. Color is a powerful guiding feature when the precise visual properties of these objects are known but seems to be less important when search targets are specified by word cues.

  14. Distinctiveness and encoding effects in online sentence comprehension

    PubMed Central

    Hofmeister, Philip; Vasishth, Shravan

    2014-01-01

    In explicit memory recall and recognition tasks, elaboration and contextual isolation both facilitate memory performance. Here, we investigate these effects in the context of sentence processing: targets for retrieval during online sentence processing of English object relative clause constructions differ in the amount of elaboration associated with the target noun phrase, or the homogeneity of superficial features (text color). Experiment 1 shows that greater elaboration for targets during the encoding phase reduces reading times at retrieval sites, but elaboration of non-targets has considerably weaker effects. Experiment 2 illustrates that processing isolated superficial features of target noun phrases—here, a green word in a sentence with words colored white—does not lead to enhanced memory performance, despite triggering longer encoding times. These results are interpreted in the light of the memory models of Nairne, 1990, 2001, 2006, which state that encoding remnants contribute to the set of retrieval cues that provide the basis for similarity-based interference effects. PMID:25566105

  15. Robotic Arm Camera on Mars with Lights On

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image is a composite view of NASA's Phoenix Mars Lander's Robotic Arm Camera (RAC) with its lights on, as seen by the lander's Surface Stereo Imager (SSI). This image combines images taken on the afternoon of Phoenix's 116th Martian day, or sol (September 22, 2008). The RAC is about 8 centimeters (3 inches) tall.

    The SSI took images of the RAC to test both the light-emitting diodes (LEDs) and cover function. Individual images were taken in three SSI filters that correspond to the red, green, and blue LEDs one at a time. When combined, it appears that all three sets of LEDs are on at the same time. This composite image is not true color. The streaks of color extending from the LEDs are an artifact from saturated exposure.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Color correction optimization with hue regularization

    NASA Astrophysics Data System (ADS)

    Zhang, Heng; Liu, Huaping; Quan, Shuxue

    2011-01-01

    Previous work has suggested that observers are capable of judging the quality of an image without any knowledge of the original scene. When no reference is available, observers can extract the apparent objects in an image and compare them with the typical colors of similar objects recalled from their memories. Some generally agreed upon research results indicate that although perfect colorimetric rendering is not conspicuous and color errors can be well tolerated, the appropriate rendition of certain memory colors such as skin, grass, and sky is an important factor in the overall perceived image quality. These colors are appreciated in a fairly consistent manner and are memorized with slightly different hues and higher color saturation. The aim of color correction for a digital color pipeline is to transform the image data from a device dependent color space to a target color space, usually through a color correction matrix which in its most basic form is optimized through linear regressions between the two sets of data in two color spaces in the sense of minimized Euclidean color error. Unfortunately, this method could result in objectionable distortions if the color error biased certain colors undesirably. In this paper, we propose a color correction optimization method with preferred color reproduction in mind through hue regularization and present some experimental results.

  17. [Influence of repeated sintering on the color of two brands of porcelain-fused-to-titanium].

    PubMed

    Shu, Cheng-jun; Luo, Xiao-ping; Wu, Lie

    2007-08-01

    To investigate the influence of repeated sintering on the color of two porcelain-fused-to-titanium, and the differences between the two porcelains. Thirty samples were prepared and sintered for 9 times. The color of samples were measured following sintering 1, 3, 5, 7, 9 times by ShadeEye NCC colorimeter according to two brands of porcelains with CIE1976L*a*b* color system, and calculated relevant chrome, chromatism and hue, and statistical analysis. When two brands of porcelains were sintered 5 times, the color parameters had no significant change and sintered continuely, the color parameters of L* and a* had obvious changes, but can't be observed by eyes. The color parameters of titanium-porcelains have no significant change after repeated sintering.

  18. Colorimetric and Longitudinal Analysis of Leukocoria in Recreational Photographs of Children with Retinoblastoma

    PubMed Central

    Holden, Rebecca L.; Shaw, Elizabeth V.; Kentsis, Alex; Rodriguez-Galindo, Carlos; Mukai, Shizuo; Shaw, Bryan F.

    2013-01-01

    Retinoblastoma is the most common primary intraocular tumor in children. The first sign that is often reported by parents is the appearance of recurrent leukocoria (i.e., “white eye”) in recreational photographs. A quantitative definition or scale of leukocoria – as it appears during recreational photography – has not been established, and the amount of clinical information contained in a leukocoric image (collected by a parent) remains unknown. Moreover, the hypothesis that photographic leukocoria can be a sign of early stage retinoblastoma has not been tested for even a single patient. This study used commercially available software (Adobe Photoshop®) and standard color space conversion algorithms (operable in Microsoft Excel®) to quantify leukocoria in actual “baby pictures” of 9 children with retinoblastoma (that were collected by parents during recreational activities i.e., in nonclinical settings). One particular patient with bilateral retinoblastoma (“Patient Zero”) was photographed >7, 000 times by his parents (who are authors of this study) over three years: from birth, through diagnosis, treatment, and remission. This large set of photographs allowed us to determine the longitudinal and lateral frequency of leukocoria throughout the patient's life. This study establishes: (i) that leukocoria can emerge at a low frequency in early-stage retinoblastoma and increase in frequency during disease progression, but decrease upon disease regression, (ii) that Hue, Saturation and Value (i.e., HSV color space) are suitable metrics for quantifying the intensity of retinoblastoma-linked leukocoria; (iii) that different sets of intraocular retinoblastoma tumors can produce distinct leukocoric reflections; and (iv) the Saturation-Value plane of HSV color space represents a convenient scale for quantifying and classifying pupillary reflections as they appear during recreational photography. PMID:24204654

  19. Carded Tow Real-Time Color Assessment: A Spectral Camera-Based System

    PubMed Central

    Furferi, Rocco; Governi, Lapo; Volpe, Yary; Carfagni, Monica

    2016-01-01

    One of the most important parameters to be controlled during the production of textile yarns obtained by mixing pre-colored fibers, is the color correspondence between the manufactured yarn and a given reference, usually provided by a designer or a customer. Obtaining yarns from raw pre-colored fibers is a complex manufacturing process entailing a number of steps such as laboratory sampling, color recipe corrections, blowing, carding and spinning. Carding process is the one devoted to transform a “fuzzy mass” of tufted fibers into a regular mass of untwisted fibers, named “tow”. During this process, unfortunately, the correspondence between the color of the tow and the target one cannot be assured, thus leading to yarns whose color differs from the one used for reference. To solve this issue, the main aim of this work is to provide a system able to perform a spectral camera-based real-time measurement of a carded tow, to assess its color correspondence with a reference carded fabric and, at the same time, to monitor the overall quality of the tow during the carding process. Tested against a number of differently colored carded fabrics, the proposed system proved its effectiveness in reliably assessing color correspondence in real-time. PMID:27589765

  20. Spectral sharpening of color sensors: diagonal color constancy and beyond.

    PubMed

    Vazquez-Corral, Javier; Bertalmío, Marcelo

    2014-02-26

    It has now been 20 years since the seminal work by Finlayson et al. on the use of spectral sharpening of sensors to achieve diagonal color constancy. Spectral sharpening is still used today by numerous researchers for different goals unrelated to the original goal of diagonal color constancy e.g., multispectral processing, shadow removal, location of unique hues. This paper reviews the idea of spectral sharpening through the lens of what is known today in color constancy, describes the different methods used for obtaining a set of sharpening sensors and presents an overview of the many different uses that have been found for spectral sharpening over the years.

  1. Color images of Kansas subsurface geology from well logs

    USGS Publications Warehouse

    Collins, D.R.; Doveton, J.H.

    1986-01-01

    Modern wireline log combinations give highly diagnostic information that goes beyond the basic shale content, pore volume, and fluid saturation of older logs. Pattern recognition of geology from logs is made conventionally through either the examination of log overlays or log crossplots. Both methods can be combined through the use of color as a medium of information by setting the three color primaries of blue, green, and red light as axes of three dimensional color space. Multiple log readings of zones are rendered as composite color mixtures which, when plotted sequentially with depth, show lithological successions in a striking manner. The method is extremely simple to program and display on a color monitor. Illustrative examples are described from the Kansas subsurface. ?? 1986.

  2. Color constancy using bright-neutral pixels

    NASA Astrophysics Data System (ADS)

    Wang, Yanfang; Luo, Yupin

    2014-03-01

    An effective illuminant-estimation approach for color constancy is proposed. Bright and near-neutral pixels are selected to jointly represent the illuminant color and utilized for illuminant estimation. To assess the representing capability of pixels, bright-neutral strength (BNS) is proposed by combining pixel chroma and brightness. Accordingly, a certain percentage of pixels with the largest BNS is selected to be the representative set. For every input image, a proper percentage value is determined via an iterative strategy by seeking the optimal color-corrected image. To compare various color-corrected images of an input image, image color-cast degree (ICCD) is devised using means and standard deviations of RGB channels. Experimental evaluation on standard real-world datasets validates the effectiveness of the proposed approach.

  3. A color coordinate system from a 13th century account of rainbows

    PubMed Central

    Smithson, Hannah E.; Anderson, Philip S.; Dinkova-Bruun, Greti; Fosbury, Robert A. E.; Gasper, Giles E. M.; Laven, Philip; McLeish, Tom C. B.; Panti, Cecilia; Tanner, Brian

    2015-01-01

    We present a new analysis of Robert Grosseteste’s account of color in his treatise De iride, On the Rainbow, dating from the early 13th century. The work explores color within the three-dimensional framework set out in Grosseteste’s De colore (see Smithson et al, 2012, A three-dimensional color space from the 13th century.” Journal of the Optical Society of America (A), 29 (2), A346-A352), but now links the axes of variation to observable properties of rainbows. We combine a modern understanding of the physics of rainbows and of human color perception to resolve the linguistic ambiguities of the medieval text and to interpret Grosseteste’s key terms. PMID:24695192

  4. Plumes and Blooms: Observations, Analysis and Modeling for SIMBIOS

    NASA Technical Reports Server (NTRS)

    Siegel, D. A.; Maritorena, S.; Nelson, N. B.

    2003-01-01

    The goal of the Plumes and Blooms (PnB) project is to develop, validate and apply to imagery state-of-theart ocean color algorithms for quantifying sediment plumes and phytoplankton blooms for the Case I1 environment of the Santa Barbara Channel. We conduct monthly to twice-monthly transect observations across the Santa Barbara Channel to develop an algorithm development and product validation data set. The PnB field program started in the summer of 1996. At each of the 7 PnB stations, a complete verification bio-geo-optical data set is collected. Included are redundant measures of apparent optical properties (remote sensing reflectance and diffuse attenuation spectra), as well as in situ profiles of spectral absorption, beam attenuation and backscattering coefficients. Water samples are analyzed for component in vivo absorption spectra, fluorometric chlorophyll, phytoplankton pigment (by the SDSU CHORS laboratory), and inorganic nutrient concentrations (Table 1). A primary goal is to use the PnB field data set to objectively tune semi-analytical models of ocean color for this site and apply them using available satellite imagery (SeaWiFS and MODIS). In support of this goal, we have also been addressing SeaWiFS ocean color and AVHRR SST imagery (Otero and Siegel, 2003). We also are using the PnB data set to address time/space variability of water masses in the Santa Barbara Channel and its relationship to the 1997/1998 El Niiio. However, the comparison between PnB field observations and satellite estimates of primary products has been disappointing. We find that field estimates of water-leaving radiance, LwN(h), correspond poorly to satellite estimates for both SeaWiFS and MODIS local area coverage imagery. We believe this is due to poor atmospheric correction due to complex mixtures of aerosol types found in these near-coastal regions. Last, we remain active in outreach activities.

  5. Plumes and Blooms: Modeling the Case II Waters of the Santa Barbara Channel. Chapter 15

    NASA Technical Reports Server (NTRS)

    Siegel, D. A.; Maritorena, S.; Nelson, N. B.

    2003-01-01

    The goal of the Plumes and Blooms (PnB) project is to develop, validate and apply to imagery state-of-the-art ocean color algorithms for quantifying sediment plumes and phytoplankton blooms for the Case II environment of the Santa Barbara Channel. We conduct monthly to twice-monthly transect observations across the Santa Barbara Channel to develop an algorithm development and product validation data set. The PnB field program started in the summer of 1996. At each of the 7 PnB stations, a complete verification bio-geo-optical data set is collected. Included are redundant measures of apparent optical properties (remote sensing reflectance and diffuse attenuation spectra), as well as in situ profiles of spectral absorption, beam attenuation and backscattering coefficients. Water samples are analyzed for component in vivo absorption spectra, fluorometric chlorophyll, phytoplankton pigment (by the SDSU CHORS laboratory), and inorganic nutrient concentrations. A primary goal is to use the PnB field data set to objectively tune semi-analytical models of ocean color for this site and apply them using available satellite imagery (SeaWiFS and MODIS). In support of this goal, we have also been addressing SeaWiFS ocean color and AVHRR SST imagery. We also are using the PnB data set to address time/space variability of water masses in the Santa Barbara Channel and its relationship to the 1997/1998 El Nino. However, the comparison between PnB field observations and satellite estimates of primary products has been disappointing. We find that field estimates of water-leaving radiance, L(sub wN)(lambda), correspond poorly to satellite estimates for both SeaWiFS and MODIS local area coverage imagery. We believe this is due to poor atmospheric correction due to complex mixtures of aerosol types found in these near-coastal regions. Last, we remain active in outreach activities.

  6. Color reproduction and processing algorithm based on real-time mapping for endoscopic images.

    PubMed

    Khan, Tareq H; Mohammed, Shahed K; Imtiaz, Mohammad S; Wahid, Khan A

    2016-01-01

    In this paper, we present a real-time preprocessing algorithm for image enhancement for endoscopic images. A novel dictionary based color mapping algorithm is used for reproducing the color information from a theme image. The theme image is selected from a nearby anatomical location. A database of color endoscopy image for different location is prepared for this purpose. The color map is dynamic as its contents change with the change of the theme image. This method is used on low contrast grayscale white light images and raw narrow band images to highlight the vascular and mucosa structures and to colorize the images. It can also be applied to enhance the tone of color images. The statistic visual representation and universal image quality measures show that the proposed method can highlight the mucosa structure compared to other methods. The color similarity has been verified using Delta E color difference, structure similarity index, mean structure similarity index and structure and hue similarity. The color enhancement was measured using color enhancement factor that shows considerable improvements. The proposed algorithm has low and linear time complexity, which results in higher execution speed than other related works.

  7. Preparation and Presentation of Digital Maps in Raster Format

    USGS Publications Warehouse

    Edwards, K.; Batson, R.M.

    1980-01-01

    A set of algorithms has been developed at USGS Flagstaff for displaying digital map data in raster format. The set includes: FILLIN, which assigns a specified attribute code to units of a map which have been outlined on a digitizer and converted to raster format; FILBND, which removes the outlines; ZIP, which adds patterns to the map units; and COLOR, which provides a simplified process for creating color separation plates for either photographic or lithographic reproduction. - Authors

  8. Estimating Spectra from Photometry

    NASA Astrophysics Data System (ADS)

    Kalmbach, J. Bryce; Connolly, Andrew J.

    2017-12-01

    Measuring the physical properties of galaxies such as redshift frequently requires the use of spectral energy distributions (SEDs). SED template sets are, however, often small in number and cover limited portions of photometric color space. Here we present a new method to estimate SEDs as a function of color from a small training set of template SEDs. We first cover the mathematical background behind the technique before demonstrating our ability to reconstruct spectra based upon colors and then compare our results to other common interpolation and extrapolation methods. When the photometric filters and spectra overlap, we show that the error in the estimated spectra is reduced by more than 65% compared to the more commonly used techniques. We also show an expansion of the method to wavelengths beyond the range of the photometric filters. Finally, we demonstrate the usefulness of our technique by generating 50 additional SED templates from an original set of 10 and by applying the new set to photometric redshift estimation. We are able to reduce the photometric redshifts standard deviation by at least 22.0% and the outlier rejected bias by over 86.2% compared to original set for z ≤ 3.

  9. Shwirl: Meaningful coloring of spectral cube data with volume rendering

    NASA Astrophysics Data System (ADS)

    Vohl, Dany

    2017-04-01

    Shwirl visualizes spectral data cubes with meaningful coloring methods. The program has been developed to investigate transfer functions, which combines volumetric elements (or voxels) to set the color, and graphics shaders, functions used to compute several properties of the final image such as color, depth, and/or transparency, as enablers for scientific visualization of astronomical data. The program uses Astropy (ascl:1304.002) to handle FITS files and World Coordinate System, Qt (and PyQt) for the user interface, and VisPy, an object-oriented Python visualization library binding onto OpenGL.

  10. Spreadsheet macros for coloring sequence alignments.

    PubMed

    Haygood, M G

    1993-12-01

    This article describes a set of Microsoft Excel macros designed to color amino acid and nucleotide sequence alignments for review and preparation of visual aids. The colored alignments can then be modified to emphasize features of interest. Procedures for importing and coloring sequences are described. The macro file adds a new menu to the menu bar containing sequence-related commands to enable users unfamiliar with Excel to use the macros more readily. The macros were designed for use with Macintosh computers but will also run with the DOS version of Excel.

  11. A Set of Blast Marks in Color, Right Side

    NASA Image and Video Library

    2012-08-09

    This cut-out from a color panorama image taken by NASA Curiosity rover shows the effects of the descent stage rocket engines blasting the ground. It comes from the right side of the thumbnail panorama obtained the Mast Camera.

  12. A Set of Blast Marks in Color, Left Side

    NASA Image and Video Library

    2012-08-09

    This cut-out from a color panorama image taken by NASA Curiosity rover shows the effects of the descent stage rocket engines blasting the ground. It comes from the left side of the thumbnail panorama obtained by Curiosity Mast Camera.

  13. Messier 35 (NGC 2168) DANCe. I. Membership, proper motions, and multiwavelength photometry

    NASA Astrophysics Data System (ADS)

    Bouy, H.; Bertin, E.; Barrado, D.; Sarro, L. M.; Olivares, J.; Moraux, E.; Bouvier, J.; Cuillandre, J.-C.; Ribas, Á.; Beletsky, Y.

    2015-03-01

    Context. Messier 35 (NGC 2168) is an important young nearby cluster. Its age, richness and relative proximity make it an ideal target for stellar evolution studies. The Kepler K2 mission recently observed it and provided a high accuracy photometric time series of a large number of sources in this area of the sky. Identifying the cluster's members is therefore of high importance to optimize the interpretation and analysis of the Kepler K2 data. Aims: We aim to identify the cluster's members by deriving membership probabilities for the sources within 1° of the cluster's center, which is farther away than equivalent previous studies. Methods: We measure accurate proper motions and multiwavelength (optical and near-infrared) photometry using ground-based archival images of the cluster. We use these measurements to compute membership probabilities. The list of candidate members from the literature is used as a training set to identify the cluster's locus in a multidimensional space made of proper motions, luminosities, and colors. Results: The final catalog includes 338 892 sources with multiwavelength photometry. Approximately half (194 452) were detected at more than two epochs and we measured their proper motion and used it to derive membership probability. A total of 4349 candidate members with membership probabilities greater than 50% are found in this sample in the luminosity range between 10 mag and 22 mag. The slow proper motion of the cluster and the overlap of its sequence with the field and background sequences in almost all color-magnitude and color-color diagrams complicate the analysis and the contamination level is expected to be significant. Our study, nevertheless, provides a coherent and quantitative membership analysis of Messier 35 based on a large fraction of the best ground-based data sets obtained over the past 18 years. As such, it represents a valuable input for follow-up studies using, in particular, the Kepler K2 photometric time series. Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A120

  14. Automatic capture of attention by conceptually generated working memory templates.

    PubMed

    Sun, Sol Z; Shen, Jenny; Shaw, Mark; Cant, Jonathan S; Ferber, Susanne

    2015-08-01

    Many theories of attention propose that the contents of working memory (WM) can act as an attentional template, which biases processing in favor of perceptually similar inputs. While support has been found for this claim, it is unclear how attentional templates are generated when searching real-world environments. We hypothesized that in naturalistic settings, attentional templates are commonly generated from conceptual knowledge, an idea consistent with sensorimotor models of knowledge representation. Participants performed a visual search task in the delay period of a WM task, where the item in memory was either a colored disk or a word associated with a color concept (e.g., "Rose," associated with red). During search, we manipulated whether a singleton distractor in the array matched the contents of WM. Overall, we found that search times were impaired in the presence of a memory-matching distractor. Furthermore, the degree of impairment did not differ based on the contents of WM. Put differently, regardless of whether participants were maintaining a perceptually colored disk identical to the singleton distractor, or whether they were simply maintaining a word associated with the color of the distractor, the magnitude of attentional capture was the same. Our results suggest that attentional templates can be generated from conceptual knowledge, in the physical absence of the visual feature.

  15. Colored Traveling Salesman Problem.

    PubMed

    Li, Jun; Zhou, MengChu; Sun, Qirui; Dai, Xianzhong; Yu, Xiaolong

    2015-11-01

    The multiple traveling salesman problem (MTSP) is an important combinatorial optimization problem. It has been widely and successfully applied to the practical cases in which multiple traveling individuals (salesmen) share the common workspace (city set). However, it cannot represent some application problems where multiple traveling individuals not only have their own exclusive tasks but also share a group of tasks with each other. This work proposes a new MTSP called colored traveling salesman problem (CTSP) for handling such cases. Two types of city groups are defined, i.e., each group of exclusive cities of a single color for a salesman to visit and a group of shared cities of multiple colors allowing all salesmen to visit. Evidences show that CTSP is NP-hard and a multidepot MTSP and multiple single traveling salesman problems are its special cases. We present a genetic algorithm (GA) with dual-chromosome coding for CTSP and analyze the corresponding solution space. Then, GA is improved by incorporating greedy, hill-climbing (HC), and simulated annealing (SA) operations to achieve better performance. By experiments, the limitation of the exact solution method is revealed and the performance of the presented GAs is compared. The results suggest that SAGA can achieve the best quality of solutions and HCGA should be the choice making good tradeoff between the solution quality and computing time.

  16. A new region-edge based level set model with applications to image segmentation

    NASA Astrophysics Data System (ADS)

    Zhi, Xuhao; Shen, Hong-Bin

    2018-04-01

    Level set model has advantages in handling complex shapes and topological changes, and is widely used in image processing tasks. The image segmentation oriented level set models can be grouped into region-based models and edge-based models, both of which have merits and drawbacks. Region-based level set model relies on fitting to color intensity of separated regions, but is not sensitive to edge information. Edge-based level set model evolves by fitting to local gradient information, but can get easily affected by noise. We propose a region-edge based level set model, which considers saliency information into energy function and fuses color intensity with local gradient information. The evolution of the proposed model is implemented by a hierarchical two-stage protocol, and the experimental results show flexible initialization, robust evolution and precise segmentation.

  17. Subjective perception of natural scenes: the role of color

    NASA Astrophysics Data System (ADS)

    Bianchi-Berthouze, Nadia

    2003-01-01

    The subjective perception of colors has been extensively studied, with a focus on single colors or on combinations of a few colors. Not much has been done, however, to understand the subjective perception of colors in other contexts, where color is not a single feature. This is what the Kansei community in Japan has set itself to, by exploring subjective experiences of perceptions, and colors in particular, given its obvious influence on humans' emotional changes. The motivation is to create computational models of user visual perceptions, so that computers can be endowed with the ability to personalize visual aspects of their computational task, according to their user. Such a capability is hypothesized to be very important in fields such as printing, information search, design support, advertisement, etc. In this paper, we present our experimental results in the study of color as a contextual feature of images, rather than in isolation. The experiments aim at understanding the mechanisms linked to the personal perception of colors in complex images, and to understand the formation of color categories when labeling experiences related to color perception.

  18. Development of the IES method for evaluating the color rendition of light sources

    DOE PAGES

    David, Aurelien; Fini, Paul T.; Houser, Kevin W.; ...

    2015-06-08

    We have developed a two-measure system for evaluating light sources’ color rendition that builds upon conceptual progress of numerous researchers over the last two decades. The system quantifies the color fidelity and color gamut (change in object chroma) of a light source in comparison to a reference illuminant. The calculations are based on a newly developed set of reflectance data from real samples uniformly distributed in color space (thereby fairly representing all colors) and in wavelength space (thereby precluding artificial optimization of the color rendition scores by spectral engineering). The color fidelity score R f is an improved version ofmore » the CIE color rendering index. The color gamut score R g is an improved version of the Gamut Area Index. In combination, they provide two complementary assessments to guide the optimization of future light sources. This method summarizes the findings of the Color Metric Task Group of the Illuminating Engineering Society of North America (IES). It is adopted in the upcoming IES TM-30-2015, and is proposed for consideration with the International Commission on Illumination (CIE).« less

  19. Cosmic Bell Test: Measurement Settings from Milky Way Stars

    NASA Astrophysics Data System (ADS)

    Handsteiner, Johannes; Friedman, Andrew S.; Rauch, Dominik; Gallicchio, Jason; Liu, Bo; Hosp, Hannes; Kofler, Johannes; Bricher, David; Fink, Matthias; Leung, Calvin; Mark, Anthony; Nguyen, Hien T.; Sanders, Isabella; Steinlechner, Fabian; Ursin, Rupert; Wengerowsky, Sören; Guth, Alan H.; Kaiser, David I.; Scheidl, Thomas; Zeilinger, Anton

    2017-02-01

    Bell's theorem states that some predictions of quantum mechanics cannot be reproduced by a local-realist theory. That conflict is expressed by Bell's inequality, which is usually derived under the assumption that there are no statistical correlations between the choices of measurement settings and anything else that can causally affect the measurement outcomes. In previous experiments, this "freedom of choice" was addressed by ensuring that selection of measurement settings via conventional "quantum random number generators" was spacelike separated from the entangled particle creation. This, however, left open the possibility that an unknown cause affected both the setting choices and measurement outcomes as recently as mere microseconds before each experimental trial. Here we report on a new experimental test of Bell's inequality that, for the first time, uses distant astronomical sources as "cosmic setting generators." In our tests with polarization-entangled photons, measurement settings were chosen using real-time observations of Milky Way stars while simultaneously ensuring locality. Assuming fair sampling for all detected photons, and that each stellar photon's color was set at emission, we observe statistically significant ≳7.31 σ and ≳11.93 σ violations of Bell's inequality with estimated p values of ≲1.8 ×10-13 and ≲4.0 ×10-33, respectively, thereby pushing back by ˜600 years the most recent time by which any local-realist influences could have engineered the observed Bell violation.

  20. Cosmic Bell Test: Measurement Settings from Milky Way Stars.

    PubMed

    Handsteiner, Johannes; Friedman, Andrew S; Rauch, Dominik; Gallicchio, Jason; Liu, Bo; Hosp, Hannes; Kofler, Johannes; Bricher, David; Fink, Matthias; Leung, Calvin; Mark, Anthony; Nguyen, Hien T; Sanders, Isabella; Steinlechner, Fabian; Ursin, Rupert; Wengerowsky, Sören; Guth, Alan H; Kaiser, David I; Scheidl, Thomas; Zeilinger, Anton

    2017-02-10

    Bell's theorem states that some predictions of quantum mechanics cannot be reproduced by a local-realist theory. That conflict is expressed by Bell's inequality, which is usually derived under the assumption that there are no statistical correlations between the choices of measurement settings and anything else that can causally affect the measurement outcomes. In previous experiments, this "freedom of choice" was addressed by ensuring that selection of measurement settings via conventional "quantum random number generators" was spacelike separated from the entangled particle creation. This, however, left open the possibility that an unknown cause affected both the setting choices and measurement outcomes as recently as mere microseconds before each experimental trial. Here we report on a new experimental test of Bell's inequality that, for the first time, uses distant astronomical sources as "cosmic setting generators." In our tests with polarization-entangled photons, measurement settings were chosen using real-time observations of Milky Way stars while simultaneously ensuring locality. Assuming fair sampling for all detected photons, and that each stellar photon's color was set at emission, we observe statistically significant ≳7.31σ and ≳11.93σ violations of Bell's inequality with estimated p values of ≲1.8×10^{-13} and ≲4.0×10^{-33}, respectively, thereby pushing back by ∼600  years the most recent time by which any local-realist influences could have engineered the observed Bell violation.

  1. Does Blue Uniform Color Enhance Winning Probability in Judo Contests?

    PubMed

    Dijkstra, Peter D; Preenen, Paul T Y; van Essen, Hans

    2018-01-01

    The color of an athlete's uniform may have an effect on psychological functioning and consequently bias the chances of winning contests in sport competition. Several studies reported a winning bias for judo athletes wearing a blue outfit relative to those wearing a white outfit. However, we argue there is no winning bias and that previous studies were confounded and based on small and specific data sets. We tested whether blue biases winning in judo using a very extensive judo data set (45,874 contests from all international judo tournaments between 2008 and 2014). In judo, the first called athlete for the fight used to wear the blue judogi but this was changed to the white judogi in 2011. This switch enabled us to compare the win bias before and after this change to isolate the effect of the color of the judogi . We found a significant win bias for the first called athlete, but this effect was not significantly related to the color of the judogi . The lack of a significant win effect of judogi color suggests that blue does not bias winning in judo, and that the blue-white pairing ensures an equal level of play. Our study shows the importance of thoroughly considering alternative explanations and using extensive datasets in color research in sports and psychology.

  2. Does Blue Uniform Color Enhance Winning Probability in Judo Contests?

    PubMed Central

    Dijkstra, Peter D.; Preenen, Paul T. Y.; van Essen, Hans

    2018-01-01

    The color of an athlete's uniform may have an effect on psychological functioning and consequently bias the chances of winning contests in sport competition. Several studies reported a winning bias for judo athletes wearing a blue outfit relative to those wearing a white outfit. However, we argue there is no winning bias and that previous studies were confounded and based on small and specific data sets. We tested whether blue biases winning in judo using a very extensive judo data set (45,874 contests from all international judo tournaments between 2008 and 2014). In judo, the first called athlete for the fight used to wear the blue judogi but this was changed to the white judogi in 2011. This switch enabled us to compare the win bias before and after this change to isolate the effect of the color of the judogi. We found a significant win bias for the first called athlete, but this effect was not significantly related to the color of the judogi. The lack of a significant win effect of judogi color suggests that blue does not bias winning in judo, and that the blue-white pairing ensures an equal level of play. Our study shows the importance of thoroughly considering alternative explanations and using extensive datasets in color research in sports and psychology. PMID:29441036

  3. Toward a functional analysis of the basal ganglia.

    PubMed

    Hayes, A E; Davidson, M C; Keele, S W; Rafal, R D

    1998-03-01

    Parkinson patients were tested in two paradigms to test the hypothesis that the basal ganglia are involved in the shifting of attentional set. Set shifting means a respecification of the conditions that regulate responding, a process sometimes referred to as an executive process. In one paradigm, upon the appearance of each stimulus, subjects were instructed to respond either to its color or to its shape. In a second paradigm, subjects learned to produce short sequences of three keypresses in response to two arbitrary stimuli. Reaction times were compared for the cases where set either remained the same or changed for two successive stimuli. Parkinson patients were slow to change set compared to controls. Parkinson patients were also less able to filter the competing but irrelevant set than were control subjects. The switching deficit appears to be dopamine based; the magnitude of the shifting deficit was related to the degree to which 1-dopa-based medication ameliorated patients' motor symptoms. Moreover, temporary withholding of medication, a so-called off manipulation, increased the time to switch. Using the framework of equilibrium point theory of movement, we discuss how a set switching deficit may also underlie clinical motor disturbances seen in Parkinson's disease.

  4. TileDCS web system

    NASA Astrophysics Data System (ADS)

    Maidantchik, C.; Ferreira, F.; Grael, F.; Atlas Tile Calorimeter Community

    2010-04-01

    The web system described here provides features to monitor the ATLAS Detector Control System (DCS) acquired data. The DCS is responsible for overseeing the coherent and safe operation of the ATLAS experiment hardware. In the context of the Hadronic Tile Calorimeter Detector (TileCal), it controls the power supplies of the readout electronics acquiring voltages, currents, temperatures and coolant pressure measurements. The physics data taking requires the stable operation of the power sources. The TileDCS Web System retrieves automatically data and extracts the statistics for given periods of time. The mean and standard deviation outcomes are stored as XML files and are compared to preset thresholds. Further, a graphical representation of the TileCal cylinders indicates the state of the supply system of each detector drawer. Colors are designated for each kind of state. In this way problems are easier to find and the collaboration members can focus on them. The user selects a module and the system presents detailed information. It is possible to verify the statistics and generate charts of the parameters over the time. The TileDCS Web System also presents information about the power supplies latest status. One wedge is colored green whenever the system is on. Otherwise it is colored red. Furthermore, it is possible to perform customized analysis. It provides search interfaces where the user can set the module, parameters, and the time period of interest. The system also produces the output of the retrieved data as charts, XML files, CSV and ROOT files according to the user's choice.

  5. Supersymmetry For Cognitive Science

    NASA Astrophysics Data System (ADS)

    Flanagan, Brian J.

    1989-03-01

    Machine vision may be understood as an attempt to replicate natural vision. The latter process is associated with neural networks. Light enters the eye and sets in motion processes which culminate in observed patterns of color. Light is, of course, an electromagnetic phenomenon. Our nerve cells communicate with each other via electrochemical means. To say that a process is electrochemical is to say that it is electromagnetic, involving the exchange of photons among electrons. It seems, therefore, that we ought to be able to understand vision in terms of the physical theory of electromagnetism. Historically, however, it has been held that such properties as color do not belong to the physical world. Color has long been considered to be a mental effect of physical stimuli. Nevertheless, it is generally understood that color is related to the energy, wavelength, and frequency of the photons which give rise to the "mental" impression of hue and intensity and so forth. Similar arguments and propositions can be made for all of the sensory modalities, but we will restrict our attention to vision for the time being. If, with Mach, we accept that colors are physical objects, we are obliged to seek a suitable place for them within the body of physical theory. Where should we locate them? Colors are given to us as simple entities, having no parts: We can point to an object that is blue, but we cannot say what blue is. Color is given to us as elemental. In a formal theory, we have a number of elements, rules for joining them, well-formed formulae, and methods of proof. It seems to make good sense to place color among the elements of a formal theory (T). If our mind/brains can be modelled by a formal theory, it follows logically that we should not be able to define our elements - i.e., if we could define our elements, they would not be elements.

  6. Multiplexing T- and B-Cell FLUOROSPOT Assays: Experimental Validation of the Multi-Color ImmunoSpot® Software Based on Center of Mass Distance Algorithm.

    PubMed

    Karulin, Alexey Y; Megyesi, Zoltán; Caspell, Richard; Hanson, Jodi; Lehmann, Paul V

    2018-01-01

    Over the past decade, ELISPOT has become a highly implemented mainstream assay in immunological research, immune monitoring, and vaccine development. Unique single cell resolution along with high throughput potential sets ELISPOT apart from flow cytometry, ELISA, microarray- and bead-based multiplex assays. The necessity to unambiguously identify individual T and B cells that do, or do not co-express certain analytes, including polyfunctional cytokine producing T cells has stimulated the development of multi-color ELISPOT assays. The success of these assays has also been driven by limited sample/cell availability and resource constraints with reagents and labor. There are few commercially available test kits and instruments available at present for multi-color FLUOROSPOT. Beyond commercial descriptions of competing systems, little is known about their accuracy in experimental settings detecting individual cells that secrete multiple analytes vs. random overlays of spots. Here, we present a theoretical and experimental validation study for three and four color T- and B-cell FLUOROSPOT data analysis. The ImmunoSpot ® Fluoro-X™ analysis system we used includes an automatic image acquisition unit that generates individual color images free of spectral overlaps and multi-color spot counting software based on the maximal allowed distance between centers of spots of different colors or Center of Mass Distance (COMD). Using four color B-cell FLUOROSPOT for IgM, IgA, IgG1, IgG3; and three/four color T-cell FLUOROSPOT for IL-2, IFN-γ, TNF-α, and GzB, in serial dilution experiments, we demonstrate the validity and accuracy of Fluoro-X™ multi-color spot counting algorithms. Statistical predictions based on the Poisson spatial distribution, coupled with scrambled image counting, permit objective correction of true multi-color spot counts to exclude randomly overlaid spots.

  7. Synesthetic colors are elicited by sound quality in Japanese synesthetes.

    PubMed

    Asano, Michiko; Yokosawa, Kazuhiko

    2011-12-01

    Determinants of synesthetic color choice for Japanese phonetic characters were studied in six Japanese synesthetes. The study used Hiragana and Katakana characters, which represent the same set of syllables although their visual forms are dissimilar. From a palette of 138 colors, synesthetes selected a color corresponding to each character. Results revealed that synesthetic color choices for Hiragana characters and those for their Katakana counterparts were remarkably consistent, indicating that color selection depended on character-related sounds and not visual form. This Hiragana-Katakana invariance cannot be regarded as the same phenomenon as letter case invariance, usually reported for English grapheme-color synesthesia, because Hiragana and Katakana characters have different identities whereas upper and lower case letters have the same identity. This involvement of phonology suggests that cross-activation between an inducer (i.e., letter/character) brain region and that of the concurrent (i.e., color) area in grapheme-color synesthesia is mediated by higher order cortical processing areas. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Ganymede in Visible and Infrared Light

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This montage compares New Horizons' best views of Ganymede, Jupiter's largest moon, gathered with the spacecraft's Long Range Reconnaissance Imager (LORRI) and its infrared spectrometer, the Linear Etalon Imaging Spectral Array (LEISA).

    LEISA observes its targets in more than 200 separate wavelengths of infrared light, allowing detailed analysis of their surface composition. The LEISA image shown here combines just three of these wavelengths -- 1.3, 1.8 and 2.0 micrometers -- to highlight differences in composition across Ganymede's surface. Blue colors represent relatively clean water ice, while brown colors show regions contaminated by dark material.

    The right panel combines the high-resolution grayscale LORRI image with the color-coded compositional information from the LEISA image, producing a picture that combines the best of both data sets.

    The LEISA and LORRI images were taken at 9:48 and 10:01 Universal Time, respectively, on February 27, 2007, from a range of 3.5 million kilometers (2.2 million miles). The longitude of the disk center is 38 degrees west. With a diameter of 5,268 kilometers (3,273 miles), Ganymede is the largest satellite in the solar system.

  9. EM-ANIMATE - COMPUTER PROGRAM FOR DISPLAYING AND ANIMATING THE STEADY-STATE TIME-HARMONIC ELECTROMAGNETIC NEAR FIELD AND SURFACE-CURRENT SOLUTIONS

    NASA Technical Reports Server (NTRS)

    Hom, K. W.

    1994-01-01

    The EM-ANIMATE program is a specialized visualization program that displays and animates the near-field and surface-current solutions obtained from an electromagnetics program, in particular, that from MOM3D (LAR-15074). The EM-ANIMATE program is windows based and contains a user-friendly, graphical interface for setting viewing options, case selection, file manipulation, etc. EM-ANIMATE displays the field and surface-current magnitude as smooth shaded color fields (color contours) ranging from a minimum contour value to a maximum contour value for the fields and surface currents. The program can display either the total electric field or the scattered electric field in either time-harmonic animation mode or in the root mean square (RMS) average mode. The default setting is initially set to the minimum and maximum values within the field and surface current data and can be optionally set by the user. The field and surface-current value are animated by calculating and viewing the solution at user selectable radian time increments between 0 and 2pi. The surface currents can also be displayed in either time-harmonic animation mode or in RMS average mode. In RMS mode, the color contours do not vary with time, but show the constant time averaged field and surface-current magnitude solution. The electric field and surface-current directions can be displayed as scaled vector arrows which have a length proportional to the magnitude at each field grid point or surface node point. These vector properties can be viewed separately or concurrently with the field or surface-current magnitudes. Animation speed is improved by turning off the display of the vector arrows. In RMS modes, the direction vectors are still displayed as varying with time since the time averaged direction vectors would be zero length vectors. Other surface properties can optionally be viewed. These include the surface grid, the resistance value assigned to each element of the grid, and the power dissipation of each element which has an assigned resistance value. The EM-ANIMATE program will accept up to 10 different surface current cases each consisting of up to 20,000 node points and 10,000 triangle definitions and will animate one of these cases. The capability is used to compare surface-current distribution due to various initial excitation directions or electric field orientations. The program can accept up to 50 planes of field data consisting of a grid of 100 by 100 field points. These planes of data are user selectable and can be viewed individually or concurrently. With these preset limits, the program requires 55 megabytes of core memory to run. These limits can be changed in the header files to accommodate the available core memory of an individual workstation. An estimate of memory required can be made as follows: approximate memory in bytes equals (number of nodes times number of surfaces times 14 variables times bytes per word, typically 4 bytes per floating point) plus (number of field planes times number of nodes per plane times 21 variables times bytes per word). This gives the approximate memory size required to store the field and surface-current data. The total memory size is approximately 400,000 bytes plus the data memory size. The animation calculations are performed in real time at any user set time step. For Silicon Graphics Workstations that have multiple processors, this program has been optimized to perform these calculations on multiple processors to increase animation rates. The optimized program uses the SGI PFA (Power FORTRAN Accelerator) library. On single processor machines, the parallelization directives are seen as comments to the program and will have no effect on compilation or execution. EM-ANIMATE is written in FORTRAN 77 for implementation on SGI IRIS workstations running IRIX 3.0 or later. A minimum of 55Mb of RAM is required for execution of this program; however, the code may be modified to accommodate the available memory of an individual workstation. For program execution, twenty-four bit, double-buffered color capability is suggested, but not required. Sample input and output files and a sample executable are provided on the distribution medium. Electronic documentation is provided in PostScript format and in the form of IRIX man pages. The standard distribution medium for EM-ANIMATE is a .25 inch streaming magnetic IRIX tape cartridge in UNIX tar format. EM-ANIMATE is also available as part of a bundled package, COS-10048 that includes MOM3D, an IRIS program that produces electromagnetic near field and surface current solutions. This program was developed in 1993.

  10. Quantification and analysis of color stability based on thermal transient behavior in white LED lamps.

    PubMed

    Nisa Khan, M

    2017-09-20

    We present measurement and analysis of color stability over time for two categories of white LED lamps based on their thermal management scheme, which also affects their transient lumen depreciation. We previously reported that lumen depreciation in LED lamps can be minimized by properly designing the heat sink configuration that allows lamps to reach a thermal equilibrium condition quickly. Although it is well known that lumen depreciation degrades color stability of white light since color coordinates vary with total lumen power by definition, quantification and characterization of color shifts based on thermal transient behavior have not been previously reported in literature for LED lamps. Here we provide experimental data and analysis of transient color shifts for two categories of household LED lamps (from a total of six lamps in two categories) and demonstrate that reaching thermal equilibrium more quickly provides better stability for color rendering, color temperature, and less deviation of color coordinates from the Planckian blackbody locus line, which are all very important characterization parameters of color for white light. We report for the first time that a lamp's color degradation from the turn-on time primarily depends on thermal transient behavior of the semiconductor LED chip, which experiences a wavelength shift as well as a decrease in its dominant wavelength peak value with time, which in turn degrades the phosphor conversion. For the first time, we also provide a comprehensive quantitative analysis that differentiates color degradation due to the heat rise in GaN/GaInN LED chips and subsequently the boards these chips are mounted on-from that caused by phosphor heating in a white LED module. Finally, we briefly discuss why there are some inevitable trade-offs between omnidirectionality and color and luminous output stability in current household LED lamps and what will help eliminate these trade-offs in future lamp designs.

  11. 36 CFR 292.13 - Standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... conventional architecture and will utilize colors, nonglare roofing materials, and spacing or layout that harmonizes with forested settings. Except for signs, structures designed primarily for purposes of calling..., harmonizing in design and color with the surroundings and shall not be attached to any tree or shrub...

  12. 36 CFR 292.13 - Standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... conventional architecture and will utilize colors, nonglare roofing materials, and spacing or layout that harmonizes with forested settings. Except for signs, structures designed primarily for purposes of calling..., harmonizing in design and color with the surroundings and shall not be attached to any tree or shrub...

  13. 36 CFR 292.13 - Standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... conventional architecture and will utilize colors, nonglare roofing materials, and spacing or layout that harmonizes with forested settings. Except for signs, structures designed primarily for purposes of calling..., harmonizing in design and color with the surroundings and shall not be attached to any tree or shrub...

  14. Algorithms for Coastal-Zone Color-Scanner Data

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Software for Nimbus-7 Coastal-Zone Color-Scanner (CZCS) derived products consists of set of scientific algorithms for extracting information from CZCS-gathered data. Software uses CZCS-generated Calibrated RadianceTemperature (CRT) tape as input and outputs computer-compatible tape and film product.

  15. Influence of Light Conditions and Light Sources on Clinical Measurement of Natural Teeth Color using VITA Easyshade Advance 4,0® Spectrophotometer. Pilot Study.

    PubMed Central

    Posavec, Ivona; Prpić, Vladimir

    2016-01-01

    Objectives The purpose of this study was to evaluate and compare lightness (L), chroma (C) and hue (h), green-red (a) and blue-yellow (b) character of the color of maxillary right central incisors in different light conditions and light sources. Materials and methods Two examiners who were well trained in digital color evaluation participated in the research. Intraclass correlation coefficients (ICCs) were used to analyze intra- and interobserver reliability. The LCh and L*a*b* values were determined at 08.15 and at 10.00 in the morning under three different light conditions. Tooth color was assessed in 10 subjects using intraoral spectrophotometer VITA Easyshade Advance 4.0® set at the central region of the vestibular surface of the measured tooth. Results Intra- and interobserver ICC values were high for both examiners and ranged from 0.57 to 0.99. Statistically significant differences in LCh and L*a*b* values measured in different time of the day and certain light condition were not found (p>0.05). Statistically significant differences in LCh and L*a*b* values measured under three different light conditions were not found, too (p>0.05). Conclusions VITA Easyshade Advance 4.0® is reliable enough for daily clinical work in order to assess tooth color during the fabrication of esthtic appliances because it is not dependent on light conditions and light sources. PMID:28275281

  16. Three-dimensional color Doppler imaging of the carotid artery

    NASA Astrophysics Data System (ADS)

    Picot, Paul A.; Rickey, Daniel W.; Mitchell, Ross; Rankin, Richard N.; Fenster, Aaron

    1991-05-01

    Stroke is the third leading cause of death in the United States. It is caused by ischemic injury to the brain, usually resulting from emboli from atherosclerotic plaques. The carotid bifurcation in humans is prone to atherosclerotic disease and is a site where emboli may originate. Currently, carotid stenoses are evaluated by non-invasive duplex Doppler ultrasound, with preoperative verification by intra-arterial angiography. We have developed a system that uses a color Doppler ultrasound imaging system to acquire in-vivo 3-D color Doppler images of the human carotid artery, with the aim of increasing the diagnostic accuracy of ultrasound and decreasing the use of angiography for verification. A clinical TL Ultramark 9 color Doppler ultrasound system was modified by mounting the hand-held ultrasound scan head on a motor-driven translation stage. The stage allows planar ultrasound images to be acquired over 45 mm along the neck between the clavicle and the mandible. A 3- D image is acquired by digitizing, in synchrony with the cardiac cycle, successive color ultrasound video images as the scan head is stepped along the neck. A complete volume set of 64 frames, comprising some 15 megabytes of data, requires approximately 2 minutes to acquire. The volume image is reformatted and displayed on a Sun 4/360 workstation equipped with a TAAC-1 graphics accelerator. The 3-D image may be manipulated in real time to yield the best view of blood flow in the bifurcation.

  17. The Proposal for the NASA Sensor Intercalibration and Merger for Biological and Interdisciplinary Oceanic Studies(SIMBIOS) Program, 1995

    NASA Technical Reports Server (NTRS)

    McClain, Charles; Esaias, Wayne; Feldman, Gene; Gregg, Watson; Hooker, Stanford; Frouin, Robert

    2002-01-01

    As a result of the Earth Observing System (EOS) restructuring exercise during the last half of fiscal year 1994, the EOS Color mission, which was scheduled to be a data-buy with a 1998 launch was dropped from the EOS mission manifest primarily because of the number of international ocean color missions scheduled for launch in the 1998 time frame. In lieu of a new mission, NASA Goddard Space Flight Center (GSFC) was tasked by NASA Headquarters to develop an ocean color satellite calibration and validation plan for multiple sensors. The objective of the activity was to develop a methodology and operational capability to combine data products from the various ocean color missions in a manner that ensures the best possible global coverage and data quality. The program was called the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project coined from the biological term "symbiosis." This document is the original proposal that was developed and submitted in May 1995. SIMBIOS was approved in 1996 and initiated in 1997 with a project office and technical staff at GSFC and a science team to assist in the development of validation data sets, sensor calibration, atmospheric correction, and bio-optical and data merger algorithms. Since its inception, the SIMBIOS program has resulted in a broad-based international collaboration on the calibration and validation of a number of ocean color satellites.

  18. Context-aware tunable office lighting application and user response

    NASA Astrophysics Data System (ADS)

    Chen, Nancy H.; Nawyn, Jason; Thompson, Maria; Gibbs, Julie; Larson, Kent

    2013-09-01

    LED light sources having multiple independently controllable color channels allow tuning of both the intensity and color output. Consequently, highly tailored lighting can be applied according to instantaneous user needs and preferences. Besides improving lighting performance, energy use can also be reduced since the brightest illumination is applied only when necessary. In an example application, low activity or vacant areas of a multi-zone office are lit by low power illumination, including colored light options, which can reduce energy consumption to 20-45% of typical full-time, fullbrightness, office-wide illumination. The availability of color also allows communication functions and additional aesthetic design possibilities. To reduce user burden in frequent switching between various illumination settings, an activity recognition sensor network is used to identify selected office activities. The illumination is then adjusted automatically to satisfy the needs of the occupants. A handheld mobile device provides an interactive interface for gathering user feedback regarding impressions and illumination preferences. The activity-triggered queries collect contemporaneous feedback that reduces reliance on memory; immediate previews of illumination options are also provided. Through mobile queries and post-experience interviews, user feedback was gathered regarding automation, colored lighting, and illumination preferences. Overall reaction was indicated by a range of response words such as fun, stimulating, very cool, very pleasant, enjoyed, good, comfortable, satisfactory, fine, energy saving, interesting, curious, dim, cave, isolated, distracting, and unfamiliar. Positive reaction from a meaningful, though not universal, fraction of users indicates reasonable application potential, particularly as personal preferences and control are accommodated.

  19. Effects of Gender Color-Coding on Toddlers' Gender-Typical Toy Play.

    PubMed

    Wong, Wang I; Hines, Melissa

    2015-07-01

    Gender color-coding of children's toys may make certain toys more appealing or less appealing to a given gender. We observed toddlers playing with two gender-typical toys (a train, a doll), once in gender-typical colors and once in gender-atypical colors. Assessments occurred twice, at 20-40 months of age and at 26-47 months of age. A Sex × Time × Toy × Color ANOVA showed expected interactions between Sex and Toy and Sex and Color. Boys played more with the train than girls did and girls played more with the doll and with pink toys than boys did. The Sex × Toy × Color interaction was not significant, but, at both time points, boys and girls combined played more with the gender-atypical toy when its color was typical for their sex than when it was not. This effect appeared to be caused largely by boys' preference for, or avoidance of, the doll and by the use of pink. Also, at both time points, gender differences in toy preferences were larger in the gender-typical than in the gender-atypical color condition. At Time 2, these gender differences were present only in the gender-typical color condition. Overall, the results suggest that, once acquired, gender-typical color preferences begin to influence toy preferences, especially those for gender-atypical toys and particularly in boys. They thus could enlarge differences between boys' and girls' toy preferences. Because boys' and girls' toys elicit different activities, removing the gender color-coding of toys could encourage more equal learning opportunities.

  20. Progress in characterizing the multidimensional color quality properties of white LED light sources

    NASA Astrophysics Data System (ADS)

    Teunissen, Kees; Hoelen, Christoph

    2016-03-01

    With the introduction of solid state light sources, the variety in emission spectra is almost unlimited. However, the set of standardized parameters to characterize a white LED light source, such as correlated color temperature (CCT) and CIE general color rendering index (Ra), is known to be limited and insufficient for describing perceived differences between light sources. Several characterization methods have been proposed over the past decades, but their contribution to perceived color quality has not always been validated. To gain more insight in the relevant characteristics of the emission spectra for specific applications, we have conducted a perception experiment to rate the attractiveness of three sets of objects, including fresh food, packaging materials and skin tones. The objects were illuminated with seven different combinations of Red, Green, Blue, Amber and White LEDs, all with the same CCT and illumination level, but with differences in Ra and color saturation. The results show that, in general, object attractiveness does not correlate well with Ra, but shows a positive correlation with saturation increase for two out of three applications. There is no clear relation between saturation and skin tone attractiveness, partly due to differences in preference between males and females. A relative gamut area index (Ga) represents the average change in saturation and a complementary color vector graphic shows the direction and magnitude of chromatic differences for the eight CIE-1974 test-color samples. Together with the CIE general color rendering index (Ra) they provide useful information for designing and optimizing application specific emission spectra.

  1. Uncertainty of sensory signal explains variation of color constancy.

    PubMed

    Witzel, Christoph; van Alphen, Carlijn; Godau, Christoph; O'Regan, J Kevin

    2016-12-01

    Color constancy is the ability to recognize the color of an object (or more generally of a surface) under different illuminations. Without color constancy, surface color as a perceptual attribute would not be meaningful in the visual environment, where illumination changes all the time. Nevertheless, it is not obvious how color constancy is possible in the light of metamer mismatching. Surfaces that produce exactly the same sensory color signal under one illumination (metamerism) may produce utterly different sensory signals under another illumination (metamer mismatching). Here we show that this phenomenon explains to a large extent the variation of color constancy across different colors. For this purpose, color constancy was measured for different colors in an asymmetric matching task with photorealistic images. Color constancy performance was strongly correlated to the size of metamer mismatch volumes, which describe the uncertainty of the sensory signal due to metamer mismatching for a given color. The higher the uncertainty of the sensory signal, the lower the observers' color constancy. At the same time, sensory singularities, color categories, and cone ratios did not affect color constancy. The present findings do not only provide considerable insight into the determinants of color constancy, they also show that metamer mismatch volumes must be taken into account when investigating color as a perceptual property of objects and surfaces.

  2. True Color and Chromaticity of the Martian Surface and Sky from Mars Exploration Rover Pancam Observations

    NASA Astrophysics Data System (ADS)

    Savransky, D.; Bell, J. F.

    2004-12-01

    We calculate the quantitative color of Mars using calibrated data from the Panoramic Cameras (Pancams) on the Mars Exploration Rovers Spirit and Opportunity. Measured color values allow us to directly compare the color properties of the rover landing sites with the Mars Pathfinder and Viking Lander sites, to quantify systematic changes in color over time, and to increase our perceptual understanding of conditions on the Martian surface. By converting calculated color values to the sRGB color space employed by the majority of modern computer monitors and printers, "true color" representations of the martian surface and sky are produced. Initial colorimetry values are calculated as CIE tristimulus values (the red, green, and blue components of human color vision). Calibrated radiance images from the six discrete left eye Pancam narrow band filters (centered at 753, 673, 601, 535, 482, and 432 nm) are splined to estimate an entire human visible spectrum (360 to 830 nm) for each pixel. Tristimulus values are found by discretely summing over the products of the spectra and 3 CIE color matching functions, allowing chromaticities (normalized tristimulus values) to be calculated. CIE tristimulus values are convolved with a transformation matrix to create sRGB tristimulus values which are then fit to a 2.2 gamma curve and scaled to the range of 0 to 255, 24 bit encoding (8 bits/channel) used by the majority of color displays. An average normalized surface spectrum is used to approximate chromaticities for images with only partial left eye filter sets. Chromaticity values of the martian sky and surface at various points throughout the mission generally match those from the Pathfinder and Viking landing sites. Using the color designation method defined by the ISCC-NBS, the martian sky is "light to moderate yellowish brown," while average rocks and soil vary between "dark grayish yellowish brown" to "moderate brown". Study of changes in the colors of the rover calibration targets over the first 200 sols of each mission show that the chromaticities are trending towards the "dark yellowish brown" portion of the color space, indicating that the calibration targets are getting covered by martian dust as the mission progresses and allowing a quantitative estimate of dust deposition rates. A similar study of sky chromaticities throughout the missions shows trends in the color of the sky towards "very light yellowish brown." Comparing these trends with measured dust opacities throughout the missions would predict that, to the human eye, the "true" martian sky (with no suspended dust) would appear a very light yellowish brown color - almost directly opposite from the color of Earth's sky. However, this hypothesis needs to be tested against multiple scattering radiative transfer models of the martian sky radiance field.

  3. Coastal Zone Color Scanner studies

    NASA Technical Reports Server (NTRS)

    Elrod, J.

    1988-01-01

    Activities over the past year have included cooperative work with a summer faculty fellow using the Coastal Zone Color Scanner (CZCS) imagery to study the effects of gradients in trophic resources on coral reefs in the Caribbean. Other research included characterization of ocean radiances specific to an acid-waste plume. Other activities include involvement in the quality control of imagery produced in the processing of the global CZCS data set, the collection of various other data global sets, and the subsequent data comparison and analysis.

  4. VIIRS On-Orbit Calibration for Ocean Color Data Processing

    NASA Technical Reports Server (NTRS)

    Eplee, Robert E., Jr.; Turpie, Kevin R.; Fireman, Gwyn F.; Meister, Gerhard; Stone, Thomas C.; Patt, Frederick S.; Franz, Bryan; Bailey, Sean W.; Robinson, Wayne D.; McClain, Charles R.

    2012-01-01

    The NASA VIIRS Ocean Science Team (VOST) has the task of evaluating Suomi NPP VIIRS ocean color data for the continuity of the NASA ocean color climate data records. The generation of science quality ocean color data products requires an instrument calibration that is stable over time. Since the VIIRS NIR Degradation Anomaly directly impacts the bands used for atmospheric correction of the ocean color data (Bands M6 and M7), the VOST has adapted the VIIRS on-orbit calibration approach to meet the ocean science requirements. The solar diffuser calibration time series and the solar diffuser stability monitor time series have been used to derive changes in the instrument response and diffuser reflectance over time for bands M1-M11.

  5. A natural-color mapping for single-band night-time image based on FPGA

    NASA Astrophysics Data System (ADS)

    Wang, Yilun; Qian, Yunsheng

    2018-01-01

    A natural-color mapping for single-band night-time image method based on FPGA can transmit the color of the reference image to single-band night-time image, which is consistent with human visual habits and can help observers identify the target. This paper introduces the processing of the natural-color mapping algorithm based on FPGA. Firstly, the image can be transformed based on histogram equalization, and the intensity features and standard deviation features of reference image are stored in SRAM. Then, the real-time digital images' intensity features and standard deviation features are calculated by FPGA. At last, FPGA completes the color mapping through matching pixels between images using the features in luminance channel.

  6. A dual-channel fusion system of visual and infrared images based on color transfer

    NASA Astrophysics Data System (ADS)

    Pei, Chuang; Jiang, Xiao-yu; Zhang, Peng-wei; Liang, Hao-cong

    2013-09-01

    A dual-channel fusion system of visual and infrared images based on color transfer The increasing availability and deployment of imaging sensors operating in multiple spectrums has led to a large research effort in image fusion, resulting in a plethora of pixel-level image fusion algorithms. However, most of these algorithms have gray or false color fusion results which are not adapt to human vision. Transfer color from a day-time reference image to get natural color fusion result is an effective way to solve this problem, but the computation cost of color transfer is expensive and can't meet the request of real-time image processing. We developed a dual-channel infrared and visual images fusion system based on TMS320DM642 digital signal processing chip. The system is divided into image acquisition and registration unit, image fusion processing unit, system control unit and image fusion result out-put unit. The image registration of dual-channel images is realized by combining hardware and software methods in the system. False color image fusion algorithm in RGB color space is used to get R-G fused image, then the system chooses a reference image to transfer color to the fusion result. A color lookup table based on statistical properties of images is proposed to solve the complexity computation problem in color transfer. The mapping calculation between the standard lookup table and the improved color lookup table is simple and only once for a fixed scene. The real-time fusion and natural colorization of infrared and visual images are realized by this system. The experimental result shows that the color-transferred images have a natural color perception to human eyes, and can highlight the targets effectively with clear background details. Human observers with this system will be able to interpret the image better and faster, thereby improving situational awareness and reducing target detection time.

  7. The Verriest Lecture: Color lessons from space, time, and motion

    PubMed Central

    Shevell, Steven K.

    2012-01-01

    The appearance of a chromatic stimulus depends on more than the wavelengths composing it. The scientific literature has countless examples showing that spatial and temporal features of light influence the colors we see. Studying chromatic stimuli that vary over space, time or direction of motion has a further benefit beyond predicting color appearance: the unveiling of otherwise concealed neural processes of color vision. Spatial or temporal stimulus variation uncovers multiple mechanisms of brightness and color perception at distinct levels of the visual pathway. Spatial variation in chromaticity and luminance can change perceived three-dimensional shape, an example of chromatic signals that affect a percept other than color. Chromatic objects in motion expose the surprisingly weak link between the chromaticity of objects and their physical direction of motion, and the role of color in inducing an illusory motion direction. Space, time and motion – color’s colleagues – reveal the richness of chromatic neural processing. PMID:22330398

  8. Evaluation of the effectiveness of color attributes for video indexing

    NASA Astrophysics Data System (ADS)

    Chupeau, Bertrand; Forest, Ronan

    2001-10-01

    Color features are reviewed and their effectiveness assessed in the application framework of key-frame clustering for abstracting unconstrained video. Existing color spaces and associated quantization schemes are first studied. Description of global color distribution by means of histograms is then detailed. In our work, 12 combinations of color space and quantization were selected, together with 12 histogram metrics. Their respective effectiveness with respect to picture similarity measurement was evaluated through a query-by-example scenario. For that purpose, a set of still-picture databases was built by extracting key frames from several video clips, including news, documentaries, sports and cartoons. Classical retrieval performance evaluation criteria were adapted to the specificity of our testing methodology.

  9. Evaluation of the effectiveness of color attributes for video indexing

    NASA Astrophysics Data System (ADS)

    Chupeau, Bertrand; Forest, Ronan

    2001-01-01

    Color features are reviewed and their effectiveness assessed in the application framework of key-frame clustering for abstracting unconstrained video. Existing color spaces and associated quantization schemes are first studied. Description of global color distribution by means of histograms is then detailed. In our work, twelve combinations of color space and quantization were selected, together with twelve histogram metrics. Their respective effectiveness with respect to picture similarity measurement was evaluated through a query-be-example scenario. For that purpose, a set of still-picture databases was built by extracting key-frames from several video clips, including news, documentaries, sports and cartoons. Classical retrieval performance evaluation criteria were adapted to the specificity of our testing methodology.

  10. Evaluation of the effectiveness of color attributes for video indexing

    NASA Astrophysics Data System (ADS)

    Chupeau, Bertrand; Forest, Ronan

    2000-12-01

    Color features are reviewed and their effectiveness assessed in the application framework of key-frame clustering for abstracting unconstrained video. Existing color spaces and associated quantization schemes are first studied. Description of global color distribution by means of histograms is then detailed. In our work, twelve combinations of color space and quantization were selected, together with twelve histogram metrics. Their respective effectiveness with respect to picture similarity measurement was evaluated through a query-be-example scenario. For that purpose, a set of still-picture databases was built by extracting key-frames from several video clips, including news, documentaries, sports and cartoons. Classical retrieval performance evaluation criteria were adapted to the specificity of our testing methodology.

  11. Parts Color Matching Scanner for Edge Gluing - Research That Works

    Treesearch

    Richard W. Conners; D.Earl Kline; Philip A. Araman

    1996-01-01

    This paper presents an automatic color sorting system for hardwood edge-glued panel parts. The color sorting system simultaneously examines both faces of a panel part and then determines which face has the "best" color given specified color uniformity and priority defined by management. The real-time color sorting system hardware and color matching hardware...

  12. Estimating dust production rate of carbon-rich stars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Nanni, A.; Marigo, P.; Groenewegen, M. A. T.; Aringer, B.; Pastorelli, G.; Rubele, S.; Girardi, L.; Bressan, A.; Bladh, S.

    We compute a grid of spectra describing dusty Circumstellar Envelopes of Thermally Pulsing Asymptotic Giant Branch carbon-rich stars by employing a physically grounded description for dust growth. The optical constants for carbon dust have been selected in order to reproduce simultaneously the most important color-color diagrams in the Near and Mid Infrared bands. We fit the Spectral Energy Distribution of ≈2000 carbon-rich in the Small Magellanic Cloud and we compute their total dust production rate. We compare our results with the ones in the literature. Different choices of the dust-to-gas ratio and outflow expansion velocity adopted in different works, yield, in some cases, a total dust budget about three times lower than the one derived from our scheme, with the same optical data set for carbon dust.

  13. Novel sensor for color control in solid state lighting applications

    NASA Astrophysics Data System (ADS)

    Gourevitch, Alex; Thurston, Thomas; Singh, Rajiv; Banachowicz, Bartosz; Korobov, Vladimir; Drowley, Cliff

    2010-02-01

    LED wavelength and luminosity shifts due to temperature, dimming, aging, and binning uncertainty can cause large color errors in open-loop light-mixing illuminators. Multispectral color light sensors combined with feedback circuits can compensate for these LED shifts. Typical color light sensor design variables include the choice of light-sensing material, filter configuration, and read-out circuitry. Cypress Semiconductor has designed and prototyped a color sensor chip that consists of photodiode arrays connected to a I/F (Current to Frequency) converter. This architecture has been chosen to achieve high dynamic range (~100dB) and provide flexibility for tailoring sensor response. Several different optical filter configurations were evaluated in this prototype. The color-sensor chip was incorporated into an RGB light color mixing system with closed-loop optical feedback. Color mixing accuracy was determined by calculating the difference between (u',v') set point values and CIE coordinates measured with a reference colorimeter. A typical color precision ▵u'v' less than 0.0055 has been demonstrated over a wide range of colors, a temperature range of 50C, and light dimming up to 80%.

  14. Assessment of perceptibility and acceptability of color variations between matched teeth among trainee dentist and lay person

    PubMed Central

    Ramesh, A. S.; Sharma, Aruna; Rijesh, K.; Prakash, R.; Devi, Lakshmi; Raja, Edilbert

    2015-01-01

    Aim: The aim of this study was to find the difference in perceptibility and acceptability of changes done to various color coordinates of matched teeth, between trainee dental surgeons, and lay person. Materials and Methods: A photograph with a set of matched central incisor teeth was selected. In one of the central incisors, the color coordinates (hue, value, and chroma) were altered to a preset value. These pictures were presented to trainee dental surgeons and lay person and their level of perception of color change and acceptance of color change was registered and compared. Results: It was found that trainee dental surgeons fared better in perceiving the color change and accepted less of the color changed specimens. The dimension of color that was more discerned both by lay person and trainee dental surgeons was value, hue, and last chroma. Conclusion: When compared to a lay person, dental surgeons are more acute in perceiving color changes and do not accept the color difference between teeth to a higher degree. PMID:26538933

  15. Physiological responses to illuminance and color temperature of lighting.

    PubMed

    Kobayashi, H; Sato, M

    1992-01-01

    The present study was designed to examine the effects of illuminance and color temperature of room lighting. Four male students volunteered as subjects. Each of them performed a calculation task for 95 minutes under nine different lighting environments consisting of a combination of three levels of illuminance (320lx, 1000lx and 2000lx) and three levels of color temperature (3000 degrees K, 5000 degrees K and 7500 degrees K). Three types of fluorescent lamps were used as a light source to vary the color temperature. Blood pressure, critical flicker frequency (CFF) and accommodation time of eye movements were measured every 30 minutes during the task. The accommodation time was significantly influenced by the illuminance level and both the relaxation time and contraction time were prolonged under 2000lx. The diastolic blood pressure was significantly affected by the color temperature level and increased under 7500 degrees K. As for the CFF, the interaction between illuminance and color temperature was significant. These results mean that not only the illuminance but also color temperature produces physiological effects. The present study may be the first to recognize the effect of color temperature on the blood pressure.

  16. Color calibration of swine gastrointestinal tract images acquired by radial imaging capsule endoscope

    NASA Astrophysics Data System (ADS)

    Ou-Yang, Mang; Jeng, Wei-De; Lai, Chien-Cheng; Wu, Hsien-Ming; Lin, Jyh-Hung

    2016-01-01

    The type of illumination systems and color filters used typically generate varying levels of color difference in capsule endoscopes, which influence medical diagnoses. In order to calibrate the color difference caused by the optical system, this study applied a radial imaging capsule endoscope (RICE) to photograph standard color charts, which were then employed to calculate the color gamut of RICE. Color gamut was also measured using a spectrometer in order to get a high-precision color information, and the results obtained using both methods were compared. Subsequently, color-correction methods, namely polynomial transform and conformal mapping, were used to improve the color difference. Before color calibration, the color difference value caused by the influences of optical systems in RICE was 21.45±1.09. Through the proposed polynomial transformation, the color difference could be reduced effectively to 1.53±0.07. Compared to another proposed conformal mapping, the color difference value was substantially reduced to 1.32±0.11, and the color difference is imperceptible for human eye because it is <1.5. Then, real-time color correction was achieved using this algorithm combined with a field-programmable gate array, and the results of the color correction can be viewed from real-time images.

  17. Optical properties (bidirectional reflectance distribution function) of shot fabric.

    PubMed

    Lu, R; Koenderink, J J; Kappers, A M

    2000-11-01

    To study the optical properties of materials, one needs a complete set of the angular distribution functions of surface scattering from the materials. Here we present a convenient method for collecting a large set of bidirectional reflectance distribution function (BRDF) samples in the hemispherical scattering space. Material samples are wrapped around a right-circular cylinder and irradiated by a parallel light source, and the scattered radiance is collected by a digital camera. We tilted the cylinder around its center to collect the BRDF samples outside the plane of incidence. This method can be used with materials that have isotropic and anisotropic scattering properties. We demonstrate this method in a detailed investigation of shot fabrics. The warps and the fillings of shot fabrics are dyed different colors so that the fabric appears to change color at different viewing angles. These color-changing characteristics are found to be related to the physical and geometrical structure of shot fabric. Our study reveals that the color-changing property of shot fabrics is due mainly to an occlusion effect.

  18. Lesions affecting the right hippocampal formation differentially impair short-term memory of spatial and nonspatial associations.

    PubMed

    Braun, Mischa; Weinrich, Christiane; Finke, Carsten; Ostendorf, Florian; Lehmann, Thomas-Nicolas; Ploner, Christoph J

    2011-03-01

    Converging evidence from behavioral and imaging studies suggests that within the human medial temporal lobe (MTL) the hippocampal formation may be particularly involved in recognition memory of associative information. However, it is unclear whether the hippocampal formation processes all types of associations or whether there is a specialization for processing of associations involving spatial information. Here, we investigated this issue in six patients with postsurgical lesions of the right MTL affecting the hippocampal formation and in ten healthy controls. Subjects performed a battery of delayed match-to-sample tasks with two delays (900/5,000 ms) and three set sizes. Subjects were requested to remember either single features (colors, locations, shapes, letters) or feature associations (color-location, color-shape, color-letter). In the single-feature conditions, performance of patients did not differ from controls. In the association conditions, a significant delay-dependent deficit in memory of color-location associations was found. This deficit was largely independent of set size. By contrast, performance in the color-shape and color-letter conditions was normal. These findings support the hypothesis that a region within the right MTL, presumably the hippocampal formation, does not equally support all kinds of visual memory but rather has a bias for processing of associations involving spatial information. Recruitment of this region during memory tasks appears to depend both on processing type (associative/nonassociative) and to-be-remembered material (spatial/nonspatial). Copyright © 2010 Wiley-Liss, Inc.

  19. Theoretical research on color indirect effects

    NASA Astrophysics Data System (ADS)

    Liu, T. C.; Liao, Changjun; Liu, Songhao

    1995-05-01

    Color indirect effects (CIE) means the physiological and psychological effects of color resulting from color vision. In this paper, we study CIE from the viewpoints of the integrated western and Chinese traditional medicine and the time quantum theory established by C. Y. Liu et al., respectively, and then put forward the color-automatic-nervous-subsystem model that could color excites parasympathetic subsystem and hot color excites sympathetic subsystem. Our theory is in agreement with modern color vision theory, and moreover, it leads to the resolution of the conflict between the color code theory and the time code theory oncolor vision. For the latitude phenomena on athlete stars number and the average lifespan, we also discuss the possibility of UV vision. The applications of our theory lead to our succeeding in explaining a number of physiological and psychological effects of color, in explaining the effects of age on color vision, and in explaining the Chinese chromophototherapy. We also discuss its application to neuroimmunology. This research provides the foundation of the clinical applications of chromophototherapy.

  20. Two plus blue equals green: Grapheme-color synesthesia allows cognitive access to numerical information via color

    PubMed Central

    McCarthy, J. Daniel; Barnes, Lianne N.; Alvarez, Bryan D.; Caplovitz, Gideon Paul

    2013-01-01

    In grapheme-color synesthesia, graphemes (e.g., numbers or letters) evoke color experiences. It is generally reported that the opposite is not true: colors will not generate experiences of graphemes or their associated information. However, recent research has provided evidence that colors can implicitly elicit symbolic representations of associated graphemes. Here, we examine if these representations can be cognitively accessed. Using a mathematical verification task replacing graphemes with color patches, we find that synesthetes can verify such problems with colors as accurately as with graphemes. Doing so, however, takes time: ~250ms per color. Moreover, we find minimal reaction time switch-costs for switching between computing with graphemes and colors. This demonstrates that given specific task demands, synesthetes can cognitively access numerical information elicited by physical colors, and they do so as accurately as with graphemes. We discuss these results in the context of possible cognitive strategies used to access the information. PMID:24100131

  1. Effects of interior colors on mood and preference: comparisons of two living rooms.

    PubMed

    Yildirim, Kemal; Hidayetoglu, M Lutfi; Capanoglu, Aysen

    2011-04-01

    The purpose was to assess whether various colors across room interiors do, in fact, evoke different moods. Digital images of two imaginary living rooms were used as the experimental settings. For each of the experiments, the rooms' spatial characteristics were fixed, with only the colors changed: either warm, cool, or achromatic colors. As predicted, warm colors tended to produce stronger participant responses when rating the scene on "high arousal," "exciting," and "stimulating." Cool colors tended be associated with "not very arousing," but to be rated higher on "spacious" and "restful." It is generally assumed that cool and achromatic colors evoke calmer and more peaceful emotions. The study's results show that the spatial characteristics of the imaginary spaces themselves affected participants' responses only on measures of "happiness" and "vividness." Lastly, sex differences were also found, with women's ratings generally more positive than those of men.

  2. Unsupervised color image segmentation using a lattice algebra clustering technique

    NASA Astrophysics Data System (ADS)

    Urcid, Gonzalo; Ritter, Gerhard X.

    2011-08-01

    In this paper we introduce a lattice algebra clustering technique for segmenting digital images in the Red-Green- Blue (RGB) color space. The proposed technique is a two step procedure. Given an input color image, the first step determines the finite set of its extreme pixel vectors within the color cube by means of the scaled min-W and max-M lattice auto-associative memory matrices, including the minimum and maximum vector bounds. In the second step, maximal rectangular boxes enclosing each extreme color pixel are found using the Chebychev distance between color pixels; afterwards, clustering is performed by assigning each image pixel to its corresponding maximal box. The two steps in our proposed method are completely unsupervised or autonomous. Illustrative examples are provided to demonstrate the color segmentation results including a brief numerical comparison with two other non-maximal variations of the same clustering technique.

  3. A comparative study on visual choice reaction time for different colors in females.

    PubMed

    Balakrishnan, Grrishma; Uppinakudru, Gurunandan; Girwar Singh, Gaur; Bangera, Shobith; Dutt Raghavendra, Aswini; Thangavel, Dinesh

    2014-01-01

    Reaction time is one of the important methods to study a person's central information processing speed and coordinated peripheral movement response. Visual choice reaction time is a type of reaction time and is very important for drivers, pilots, security guards, and so forth. Previous studies were mainly on simple reaction time and there are very few studies on visual choice reaction time. The aim of our study was to compare the visual choice reaction time for red, green, and yellow colors of 60 healthy undergraduate female volunteers. After giving adequate practice, visual choice reaction time was recorded for red, green, and yellow colors using reaction time machine (RTM 608, Medicaid, Chandigarh). Repeated measures of ANOVA and Bonferroni multiple comparison were used for analysis and P < 0.05 was considered statistically significant. The results showed that both red and green had significantly less choice visual choice reaction (P values <0.0001 and 0.0002) when compared with yellow. This could be because individual color mental processing time for yellow color is more than red and green.

  4. HIV and infectious disease care in jails and prisons: breaking down the walls with the help of academic medicine.

    PubMed

    Flanigan, Timothy P; Zaller, Nickolas; Taylor, Lynn; Beckwith, Curt; Kuester, Landon; Rich, Josiah; Carpenter, Charles C J

    2009-01-01

    Health care within correctional facilities has traditionally been marginalized from excellence in academic medicine. The armamentarium of a medical school, which includes excellence in research, teaching and clinical care, can be successfully applied to the correctional setting both in the United States and internationally. At any one time, there are over 2 million people incarcerated in the US who are disproportionately poor and from communities of color. Rates of human immunodeficiency virus (HIV) and hepatitis C virus infection (HCV) in prisons are 5 and 17-28-times higher than in the general population, respectively. The correctional setting provides an excellent opportunity to screen for and treat sexually transmitted infections (STIs), HIV, HCV, chronic hepatitis B virus (HBV) infections and tuberculosis (TB) and to develop effective prevention programs.

  5. Identification of Cichlid Fishes from Lake Malawi Using Computer Vision

    PubMed Central

    Joo, Deokjin; Kwan, Ye-seul; Song, Jongwoo; Pinho, Catarina; Hey, Jody; Won, Yong-Jin

    2013-01-01

    Background The explosively radiating evolution of cichlid fishes of Lake Malawi has yielded an amazing number of haplochromine species estimated as many as 500 to 800 with a surprising degree of diversity not only in color and stripe pattern but also in the shape of jaw and body among them. As these morphological diversities have been a central subject of adaptive speciation and taxonomic classification, such high diversity could serve as a foundation for automation of species identification of cichlids. Methodology/Principal Finding Here we demonstrate a method for automatic classification of the Lake Malawi cichlids based on computer vision and geometric morphometrics. For this end we developed a pipeline that integrates multiple image processing tools to automatically extract informative features of color and stripe patterns from a large set of photographic images of wild cichlids. The extracted information was evaluated by statistical classifiers Support Vector Machine and Random Forests. Both classifiers performed better when body shape information was added to the feature of color and stripe. Besides the coloration and stripe pattern, body shape variables boosted the accuracy of classification by about 10%. The programs were able to classify 594 live cichlid individuals belonging to 12 different classes (species and sexes) with an average accuracy of 78%, contrasting to a mere 42% success rate by human eyes. The variables that contributed most to the accuracy were body height and the hue of the most frequent color. Conclusions Computer vision showed a notable performance in extracting information from the color and stripe patterns of Lake Malawi cichlids although the information was not enough for errorless species identification. Our results indicate that there appears an unavoidable difficulty in automatic species identification of cichlid fishes, which may arise from short divergence times and gene flow between closely related species. PMID:24204918

  6. Legibility Evaluation with Oculomotor Analysis

    NASA Astrophysics Data System (ADS)

    Saito, Daisuke; Saito, Keiichi; Saito, Masao

    Web page legibility is important because of WWW dissemination and color combinations between a foreground and a background are the crucial factors to provide sufficient legibility. In our previous studies, the visibilities of several web-safe color combinations were examined using a psychological method. In those studies, simple stimuli were used because of experimental restriction. In this study, legibility of sentences on Web sites was examined using a psychophisiological method by oculomotor and the effect of the achromatic color combinations, that is contrast, was examined with calculated reading time. The presentation stimuli were positive coloration whose font color luminance is lower than background color, and negative coloration whose font color luminance is higher than background color. And the number of characters per line in each page was arranged in the same number, and the four achromatic colors that is, the contrast between the background color and font color are 92.5, 75.0, 50.0 and 25.0 percent, were examined. As the results, it was shown that reading time of became long when the contrast. However, in the negative coloration, there were great differences between individuals. Therefore, considering web accessibility, the legibility is found to be useful for using a positive coloration.

  7. Color back projection for fruit maturity evaluation

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Lee, Dah-Jye; Desai, Alok

    2013-12-01

    In general, fruits and vegetables such as tomatoes and dates are harvested before they fully ripen. After harvesting, they continue to ripen and their color changes. Color is a good indicator of fruit maturity. For example, tomatoes change color from dark green to light green and then pink, light red, and dark red. Assessing tomato maturity helps maximize its shelf life. Color is used to determine the length of time the tomatoes can be transported. Medjool dates change color from green to yellow, and the orange, light red and dark red. Assessing date maturity helps determine the length of drying process to help ripen the dates. Color evaluation is an important step in the processing and inventory control of fruits and vegetables that directly affects profitability. This paper presents an efficient color back projection and image processing technique that is designed specifically for real-time maturity evaluation of fruits. This color processing method requires very simple training procedure to obtain the frequencies of colors that appear in each maturity stage. This color statistics is used to back project colors to predefined color indexes. Fruit maturity is then evaluated by analyzing the reprojected color indexes. This method has been implemented and used for commercial production.

  8. Inter-printer color calibration using constrained printer gamut

    NASA Astrophysics Data System (ADS)

    Zeng, Huanzhao; Humet, Jacint

    2005-01-01

    Due to the drop size variation of the print heads in inkjet printers, consistent color reproduction becomes challenge for high quality color printing. To improve the color consistency, we developed a method and system to characterize a pair of printers using a colorimeter or a color scanner. Different from prior known approaches that simply try to match colors of one printer to the other without considering the gamut differences, we first constructed an overlapped gamut in which colors can be produced by both printers, and then characterized both printers using a pair of 3-D or 4-D lookup tables (LUT) to produce same colors limited to the overlapped gamut. Each LUT converts nominal device color values into engine-dependent device color values limited to the overlapped gamut. Compared to traditional approaches, the color calibration accuracy is significantly improved. This method can be simply extended to calibrate more than two engines. In a color imaging system that includes a scanner and more than one print engine, this method improves the color consistency very effectively without increasing hardware costs. A few examples for applying this method are: 1) one-pass bi-directional inkjet printing; 2) a printer with two or more sets of pens for printing; and 3) a system embedded with a pair of printers (the number of printers could be easily incremented).

  9. Sexual dimorphism of staminate- and pistillate-phase flowers of Saponaria officinalis (bouncing bet) affects pollinator behavior and seed set.

    PubMed

    Davis, Sandra L; Dudle, Dana A; Nawrocki, Jenna R; Freestone, Leah M; Konieczny, Peter; Tobin, Michael B; Britton, Michael M

    2014-01-01

    The sequential separation of male and female function in flowers of dichogamous species allows for the evolution of differing morphologies that maximize fitness through seed siring and seed set. We examined staminate- and pistillate-phase flowers of protandrous Saponaria officinalis for dimorphism in floral traits and their effects on pollinator attraction and seed set. Pistillate-phase flowers have larger petals, greater mass, and are pinker in color, but due to a shape change, pistillate-phase flowers have smaller corolla diameters than staminate-phase flowers. There was no difference in nectar volume or sugar content one day after anthesis, and minimal evidence for UV nectar guide patterns in staminate- and pistillate-phase flowers. When presented with choice arrays, pollinators discriminated against pistillate-phase flowers based on their pink color. Finally, in an experimental garden, in 2012 there was a negative correlation between seed set of an open-pollinated, emasculated flower and pinkness (as measured by reflectance spectrometry) of a pistillate-phase flower on the same plant in plots covered with shade cloth. In 2013, clones of genotypes chosen from the 2012 plants that produced pinker flowers had lower seed set than those from genotypes with paler flowers. Lower seed set of pink genotypes was found in open-pollinated and hand-pollinated flowers, indicating the lower seed set might be due to other differences between pink and pale genotypes in addition to pollinator discrimination against pink flowers. In conclusion, staminate- and pistillate-phase flowers of S. officinalis are dimorphic in shape and color. Pollinators discriminate among flowers based on these differences, and individuals whose pistillate-phase flowers are most different in color from their staminate-phase flowers make fewer seeds. We suggest morphological studies of the two sex phases in dichogamous, hermaphroditic species can contribute to understanding the evolution of sexual dimorphism in plants without the confounding effects of genetic differences between separate male and female individuals.

  10. Sexual Dimorphism of Staminate- and Pistillate-Phase Flowers of Saponaria officinalis (Bouncing Bet) Affects Pollinator Behavior and Seed Set

    PubMed Central

    Davis, Sandra L.; Dudle, Dana A.; Nawrocki, Jenna R.; Freestone, Leah M.; Konieczny, Peter; Tobin, Michael B.; Britton, Michael M.

    2014-01-01

    The sequential separation of male and female function in flowers of dichogamous species allows for the evolution of differing morphologies that maximize fitness through seed siring and seed set. We examined staminate- and pistillate-phase flowers of protandrous Saponaria officinalis for dimorphism in floral traits and their effects on pollinator attraction and seed set. Pistillate-phase flowers have larger petals, greater mass, and are pinker in color, but due to a shape change, pistillate-phase flowers have smaller corolla diameters than staminate-phase flowers. There was no difference in nectar volume or sugar content one day after anthesis, and minimal evidence for UV nectar guide patterns in staminate- and pistillate-phase flowers. When presented with choice arrays, pollinators discriminated against pistillate-phase flowers based on their pink color. Finally, in an experimental garden, in 2012 there was a negative correlation between seed set of an open-pollinated, emasculated flower and pinkness (as measured by reflectance spectrometry) of a pistillate-phase flower on the same plant in plots covered with shade cloth. In 2013, clones of genotypes chosen from the 2012 plants that produced pinker flowers had lower seed set than those from genotypes with paler flowers. Lower seed set of pink genotypes was found in open-pollinated and hand-pollinated flowers, indicating the lower seed set might be due to other differences between pink and pale genotypes in addition to pollinator discrimination against pink flowers. In conclusion, staminate- and pistillate-phase flowers of S. officinalis are dimorphic in shape and color. Pollinators discriminate among flowers based on these differences, and individuals whose pistillate-phase flowers are most different in color from their staminate-phase flowers make fewer seeds. We suggest morphological studies of the two sex phases in dichogamous, hermaphroditic species can contribute to understanding the evolution of sexual dimorphism in plants without the confounding effects of genetic differences between separate male and female individuals. PMID:24690875

  11. Align and conquer: moving toward plug-and-play color imaging

    NASA Astrophysics Data System (ADS)

    Lee, Ho J.

    1996-03-01

    The rapid evolution of the low-cost color printing and image capture markets has precipitated a huge increase in the use of color imagery by casual end users on desktop systems, as opposed to traditional professional color users working with specialized equipment. While the cost of color equipment and software has decreased dramatically, the underlying system-level problems associated with color reproduction have remained the same, and in many cases are more difficult to address in a casual environment than in a professional setting. The proliferation of color imaging technologies so far has resulted in a wide availability of component solutions which work together poorly. A similar situation in the desktop computing market has led to the various `Plug-and-Play' standards, which provide a degree of interoperability between a range of products on disparate computing platforms. This presentation will discuss some of the underlying issues and emerging trends in the desktop and consumer digital color imaging markets.

  12. The effect of a nonverbal aid on preschoolers' recall for color.

    PubMed

    Ling, J; Blades, M

    2000-09-01

    The purpose of the present study was to investigate whether the provision of a nonverbal memory aid would improve preschoolers' recall of color. Forty 4-year-old children carried out 2 tasks with the same set of colored objects. Colors were not referred to, nor were children told that their recall would later be tested. One day later, the children were split into 2 groups. One group was given a chart containing both the colors of the objects and distractor colors. The other group was not given a chart. Recall for object color was tested. There was an effect of chart provision; children who used the chart recalled more colors correctly than did those who did not use a chart. This result indicates (a) that even very young children can make use of props to facilitate their recall and (b) that such memory aids need not be exact copies of previously seen objects. Implications of these findings for eyewitness recall are discussed.

  13. A Low-Cost Real Color Picker Based on Arduino

    PubMed Central

    Agudo, Juan Enrique; Pardo, Pedro J.; Sánchez, Héctor; Pérez, Ángel Luis; Suero, María Isabel

    2014-01-01

    Color measurements have traditionally been linked to expensive and difficult to handle equipment. The set of mathematical transformations that are needed to transfer a color that we observe in any object that doesn't emit its own light (which is usually called a color-object) so that it can be displayed on a computer screen or printed on paper is not at all trivial. This usually requires a thorough knowledge of color spaces, colorimetric transformations and color management systems. The TCS3414CS color sensor (I2C Sensor Color Grove), a system for capturing, processing and color management that allows the colors of any non-self-luminous object using a low-cost hardware based on Arduino, is presented in this paper. Specific software has been developed in Matlab and a study of the linearity of chromatic channels and accuracy of color measurements for this device has been undertaken. All used scripts (Arduino and Matlab) are attached as supplementary material. The results show acceptable accuracy values that, although obviously do not reach the levels obtained with the other scientific instruments, for the price difference they present a good low cost option. PMID:25004152

  14. A low-cost real color picker based on Arduino.

    PubMed

    Agudo, Juan Enrique; Pardo, Pedro J; Sánchez, Héctor; Pérez, Ángel Luis; Suero, María Isabel

    2014-07-07

    Color measurements have traditionally been linked to expensive and difficult to handle equipment. The set of mathematical transformations that are needed to transfer a color that we observe in any object that doesn't emit its own light (which is usually called a color-object) so that it can be displayed on a computer screen or printed on paper is not at all trivial. This usually requires a thorough knowledge of color spaces, colorimetric transformations and color management systems. The TCS3414CS color sensor (I2C Sensor Color Grove), a system for capturing, processing and color management that allows the colors of any non-self-luminous object using a low-cost hardware based on Arduino, is presented in this paper. Specific software has been developed in Matlab and a study of the linearity of chromatic channels and accuracy of color measurements for this device has been undertaken. All used scripts (Arduino and Matlab) are attached as supplementary material. The results show acceptable accuracy values that, although obviously do not reach the levels obtained with the other scientific instruments, for the price difference they present a good low cost option.

  15. Stochastic inversion of ocean color data using the cross-entropy method.

    PubMed

    Salama, Mhd Suhyb; Shen, Fang

    2010-01-18

    Improving the inversion of ocean color data is an ever continuing effort to increase the accuracy of derived inherent optical properties. In this paper we present a stochastic inversion algorithm to derive inherent optical properties from ocean color, ship and space borne data. The inversion algorithm is based on the cross-entropy method where sets of inherent optical properties are generated and converged to the optimal set using iterative process. The algorithm is validated against four data sets: simulated, noisy simulated in-situ measured and satellite match-up data sets. Statistical analysis of validation results is based on model-II regression using five goodness-of-fit indicators; only R2 and root mean square of error (RMSE) are mentioned hereafter. Accurate values of total absorption coefficient are derived with R2 > 0.91 and RMSE, of log transformed data, less than 0.55. Reliable values of the total backscattering coefficient are also obtained with R2 > 0.7 (after removing outliers) and RMSE < 0.37. The developed algorithm has the ability to derive reliable results from noisy data with R2 above 0.96 for the total absorption and above 0.84 for the backscattering coefficients. The algorithm is self contained and easy to implement and modify to derive the variability of chlorophyll-a absorption that may correspond to different phytoplankton species. It gives consistently accurate results and is therefore worth considering for ocean color global products.

  16. The Culturally Responsive Teacher Educator

    ERIC Educational Resources Information Center

    Gist, Conra D.

    2014-01-01

    Recent research on teacher diversity has highlighted the challenges new teachers of color face when they enter diverse school settings. In this study the pedagogy of three sociopolitically conscious teacher educators is investigated to understand how they tailor preparation for teachers of color. Findings revealed that teacher educators'…

  17. An Evaluation of Methods for Encoding Multiple, 2D Spatial Data

    DTIC Science & Technology

    2011-01-01

    using ellipsoid glyphs and brush strokes. They showed significant differences between healthy and unhealthy spinal cords in mice . The glyphs were...researcher must take care when choosing the color set. Also, the technique monopolizes the color attribute, making it difficult to overlay additional

  18. 77 FR 60667 - EPAAR Clause for Printing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... to illustrate your concerns, and suggest alternatives. Explain your views as clearly as possible... by a color inkjet or color laser printer. This is not considered ``printing.'' However, if the output... include microfiche and microfilm. The contractor may make up to two sets of microform files for archival...

  19. A demonstration of direct access to colored stimuli following cueing by color.

    PubMed

    Navon, David; Kasten, Ronen

    2011-09-01

    To test whether cueing by color can affect orienting without first computing the location of the cued color, the impact of reorienting on the validity effect was examined. In Experiment 1 subjects were asked to detect a black dot target presented at random on either of two colored forms. The forms started being presented 750 ms before the onset of a central cue (either an arrow or a colored square). In some proportion of the trials the colors switched locations 150 ms after cue onset, simultaneously with target onset. The color switch was not found to retard responses following a color cue more than following a location cue. Furthermore, it did not reduce the validity effect of the color cue: Though the validity effect of the location cue was quite larger than the validity effect of the color cue, both effects were additive with the presence/absence of a color switch. In Experiment 2, subjects were rather asked to detect a change in shape of one of the colored forms. In this case, color switch was found to affect performance even less following a color cue. The fact that across experiments, color switch did not retard neither responding nor orienting selectively in the color cue condition, indicates that when attention is set to a certain color, reorienting to a new object following color switch does not require re-computing the address of the cued color. That finding is argued to embarrass a strong space-based view of visual attention. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Modeling of skin cancer dermatoscopy images

    NASA Astrophysics Data System (ADS)

    Iralieva, Malica B.; Myakinin, Oleg O.; Bratchenko, Ivan A.; Zakharov, Valery P.

    2018-04-01

    An early identified cancer is more likely to effective respond to treatment and has a less expensive treatment as well. Dermatoscopy is one of general diagnostic techniques for skin cancer early detection that allows us in vivo evaluation of colors and microstructures on skin lesions. Digital phantoms with known properties are required during new instrument developing to compare sample's features with data from the instrument. An algorithm for image modeling of skin cancer is proposed in the paper. Steps of the algorithm include setting shape, texture generation, adding texture and normal skin background setting. The Gaussian represents the shape, and then the texture generation based on a fractal noise algorithm is responsible for spatial chromophores distributions, while the colormap applied to the values corresponds to spectral properties. Finally, a normal skin image simulated by mixed Monte Carlo method using a special online tool is added as a background. Varying of Asymmetry, Borders, Colors and Diameter settings is shown to be fully matched to the ABCD clinical recognition algorithm. The asymmetry is specified by setting different standard deviation values of Gaussian in different parts of image. The noise amplitude is increased to set the irregular borders score. Standard deviation is changed to determine size of the lesion. Colors are set by colormap changing. The algorithm for simulating different structural elements is required to match with others recognition algorithms.

Top