Science.gov

Sample records for colossal dielectric response

  1. Wireless power transfer based on dielectric resonators with colossal permittivity

    NASA Astrophysics Data System (ADS)

    Song, Mingzhao; Belov, Pavel; Kapitanova, Polina

    2016-11-01

    Magnetic resonant wireless power transfer system based on dielectric disk resonators made of colossal permittivity (ɛ = 1000) and low loss (tan δ = 2.5 × 10-4) microwave ceramic is experimentally investigated. The system operates at the magnetic dipole mode excited in the resonators providing maximal power transfer efficiency of 90% at the frequency 232 MHz. By applying an impedance matching technique, the efficiency of 50% is achieved within the separation between the resonators d = 16 cm (3.8 radii of the resonator). The separation, misalignment and rotation dependencies of wireless power transfer efficiency are experimentally studied.

  2. Origin of colossal dielectric response of CaCu3Ti4O12 studied by using CaTiO3/CaCu3Ti4O12/CaTiO3 multilayer thin films

    NASA Astrophysics Data System (ADS)

    Mitsugi, Masakazu; Asanuma, Shutaro; Uesu, Yoshiaki; Fukunaga, Mamoru; Kobayashi, Wataru; Terasaki, Ichiro

    2007-06-01

    To elucidate the origin of the colossal dielectric response (CDR) of CaCu3Ti4O12 (CCTO), multilayer thin films of CCTO interposed in insulating CaTiO3 (CTO) were synthesized using a pulsed laser deposition technique. The capacitance C of CTO/CCTO/CTO films with different layer thicknesses is measured. After removing the capacitance of CTO by extrapolating C to zero CTO thickness, the real part of dielectric constant of CCTO is estimated to be 329-435, which is much smaller than the reported value for CCTO thin films. This fact indicates that the CDR of CCTO is extrinsic and originates from an internal barrier layer capacitor.

  3. Defect driven tailoring of colossal dielectricity of Reduced Graphene Oxide

    SciTech Connect

    Sarkar, S.; Mondal, A.; Dey, K.; Ray, R.

    2016-02-15

    Highlights: • Reduced graphene oxides (RGO) are prepared by two chemical routes. • Defects in RGO are characterized by Raman, FTIR and XPS studies. • Defects tailor colossal dielectricity in RGO. - Abstract: Reduced graphene oxide (RGO) is prepared in two different chemical routes where reduction of graphene oxide is performed by hydrazine hydrate and through high pressure in hydrothermal reactor. Samples are characterized by X-ray powdered diffraction (XRD), thermo gravimetric analysis (TGA), field emission scanning electron microscopy (FESEM) and tunneling electron microscopy (TEM). Types of defects are probed by Raman, FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). UV–vis absorption reveals different optical band gaps of the two RGOs. Conductivity mechanism is studied through I–V measurements displaying different characteristic features which are addressed due to the presence of defects appeared in different synthesis. Significantly high value (∼10{sup 4}) of dielectric permittivity at 10 MHz is attractive for technological application which could be tuned by the defects present in RGO.

  4. Dielectric Properties of Tungsten Copper Barium Ceramic as Promising Colossal-Permittivity Material

    NASA Astrophysics Data System (ADS)

    Wang, Juanjuan; Chao, Xiaolian; Li, Guangzhao; Feng, Lajun; Zhao, Kang; Ning, Tiantian

    2017-08-01

    Ba(Cu0.5W0.5)O3 (BCW) ceramic has been fabricated and its dielectric properties investigated for use in energy-storage applications, revealing a very large dielectric constant (˜104) at 1 kHz. Moreover, the colossal-permittivity BCW ceramic exhibited fine microstructure and optimal temperature stability over a wide temperature range from room temperature to 500°C. The internal barrier layer capacitor mechanism was considered to be responsible for its high dielectric properties. Based on activation values, it is concluded that doubly ionized oxygen vacancies make a substantial contribution to the conduction and relaxation behaviors at grain boundaries. This study suggests that this kind of material has potential for use in high-density energy storage applications.

  5. Dielectric relaxation and localized electron hopping in colossal dielectric (Nb,In)-doped TiO2 rutile nanoceramics.

    PubMed

    Tsuji, Kosuke; Han, HyukSu; Guillemet-Fritsch, Sophie; Randall, Clive A

    2017-03-28

    Dielectric spectroscopy was performed on a Nb and In co-doped rutile TiO2 nano-crystalline ceramic (n-NITO) synthesized by a low-temperature spark plasma sintering (SPS) technique. The dielectric properties of the n-NITO were not largely affected by the metal electrode contacts. Huge dielectric relaxation was observed at a very low temperature below 35 K. Both the activation energy and relaxation time suggested that the electronic hopping motion is the underlying mechanism responsible for the colossal dielectric permittivity (CP) and its relaxation, instead of the internal barrier layer effect or a dipolar relaxation. With Havriliak-Negami (H-N) fitting, a relaxation time with a large distribution of dielectric relaxations was revealed. The broad distributed relaxation phenomena indicated that Nb and In were involved, controlling the dielectric relaxation by modifying the polarization mechanism and localized states. The associated distribution function is calculated and presented. The frequency-dependent a.c. conductance is successfully explained by a hopping conduction model of the localized electrons with the distribution function. It is demonstrated that the dielectric relaxation is strongly correlated with the hopping electrons in the localized states. The CP in SPS n-NITO is then ascribed to a hopping polarization.

  6. Rb2Ti2O5 : Superionic conductor with colossal dielectric constant

    NASA Astrophysics Data System (ADS)

    Federicci, Rémi; Holé, Stéphane; Popa, Aurelian Florin; Brohan, Luc; Baptiste, Benoît.; Mercone, Silvana; Leridon, Brigitte

    2017-08-01

    Electrical conductivity and high dielectric constant are in principle self-excluding, which makes the terms insulator and dielectric usually synonymous. This is certainly true when the electrical carriers are electrons, but not necessarily in a material where ions are extremely mobile, electronic conduction is negligible, and the charge transfer at the interface is immaterial. Here we demonstrate in a perovskite-derived structure containing five-coordinated Ti atoms, a colossal dielectric constant (up to 109) together with very high ionic conduction 10-3Scm-1 at room temperature. Coupled investigations of I -V and dielectric constant behavior allow us to demonstrate that, due to ion migration and accumulation, this material behaves like a giant dipole, exhibiting colossal electrical polarization (of the order of 0.1Ccm-2 ). Therefore it may be considered as a "ferro-ionet" and is extremely promising in terms of applications.

  7. Dielectric properties of doping-free NaMn{sub 7}O{sub 12}: Origin of the observed colossal dielectric constant

    SciTech Connect

    Cabassi, R.; Bolzoni, F.; Gauzzi, A.; Gilioli, E.; Prodi, A.; Licci, F.

    2006-07-15

    The semiconducting NaMn{sub 7}O{sub 12} is a doping-free compound with several coexistent properties such as orbital ordering, charge ordering, and magnetic orderings of different types. We investigated its dielectric response by means of frequency impedance measurements in the range from 20 Hz to 1 MHz. Standard measurements on metallized samples exhibit an apparent colossal dielectric constant (CDC) with an {epsilon}{sub R} value of several thousands at low frequencies, but a careful equivalent circuit analysis allows one to ascribe the observed CDC to the effect of a depletion layer on the metal-semiconductor junctions. We bypass this effect by means of a nonstandard technique employing mica linings: the resulting dielectric behavior exhibits the presence of the charge ordering transition at T{sub CO}=176 K and shows a net bulk dielectric constant value {epsilon}{sub R}{approx_equal}68 at room temperature.

  8. Electromechanical and electro-optical functions of plasticized PVC with colossal dielectric constant

    NASA Astrophysics Data System (ADS)

    Sato, Hiromu; Hirai, Toshihiro

    2013-04-01

    A soft dielectric polymer, plasticized poly(vinyl chloride) (PVC gel), has been known as a characteristic actuator with electrotactic creep deformation. The deformation can be applied for bending and contraction. The mechanism of the deformation has been attributed to the colossal dielectric constant of the gel induced by dc field. The dielectric constant at 1 Hz, jumps from less than10 to thousand times larger value. The huge dielectric constant suggests the gel can have electro-optic function. In this paper, we introduce the gel can bend light direction by applying a dc electric field. The PVC gel can bend light direction depending on the electric field. Detailed feature of the light bending will be introduced and discussed. Bending angle can be controlled by dielectric plasticizer and electric field. The components of the gel, PVC and plasticizer themselves, did not show any effect of electro-optical function like the PVC gel. The same feature can be observed in other polymer, like poly(vinyl alcohol)-dimethyl sulphoxide gel, too.

  9. Colossal dielectric constant and relaxation behaviors in Pr:SrTiO{sub 3} ceramics

    SciTech Connect

    Liu Cheng; Liu Peng; Zhou Jianping; Su Lina; Cao Lei; He Ying; Zhang Huaiwu

    2010-05-15

    Sr{sub 1-x}Pr{sub x}TiO{sub 3} ceramics (0.00{<=}x{<=}0.03) were prepared by a traditional solid-state reaction method. Two relaxation processes (marked as A and B) of the Sr{sub 0.09}Pr{sub 0.01}TiO{sub 3} ceramics were investigated by analyzing the E{sub a} values obtained from the Arrhenius law. Colossal dielectric constant (CDC) was first obtained in Sr{sub 0.09}Pr{sub 0.01}TiO{sub 3} ceramics, whose permittivity was up to 3000 (1 kHz, room temperature), greater than that of pure SrTiO{sub 3} ceramics and samples with more Pr addition (x=0.02 and 0.03). This CDC behavior was related to the internal barrier layer capacitance mechanism.

  10. Structure and colossal dielectric permittivity of Ca2TiCrO6 ceramics

    NASA Astrophysics Data System (ADS)

    Yan-Qing, Tan; Meng, Yan; Yong-Mei, Hao

    2013-01-01

    A colossal permittivity ceramic material, Ca2TiCrO6, was successfully synthesized by the conventional solid-state reaction, and was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), x-ray photoemission spectroscopy (XPS) and x-ray diffraction (XRD). Rietveld refinement of XRD data indicated that the material crystallized in orthorhombic structure with space group pbnm. SEM displayed Ca2TiCrO6 ceramic grains packed uniformly with the size range 5-20 µm. XPS analyses indicated that elemental chromium and titanium of the material were in mixed valence. The corresponding dielectric property was tested in the frequency range 1 kHz-1 MHz and the temperature range 213-453 K, and the ceramics exhibited a relaxation-like dielectric behaviour. Importantly, the permittivity of Ca2TiCrO6 could reach 80 000 at 298 K (100 Hz) and was maintained at 40 000 up to 398 K at 1 MHz, which could be attributed to the ion disorder and mixed valence of Cr3+/Cr6+ and Ti3+/Ti4+.

  11. Dynamics of multiple phases in a colossal-magnetoresistive manganite as revealed by dielectric spectroscopy.

    PubMed

    Sheng, Zhigao; Nakamura, Masao; Kagawa, Fumitaka; Kawasaki, Masashi; Tokura, Yoshinori

    2012-07-10

    Electronic phase separation is one of the key features in correlated electron oxides. The coexistence and competition of multiple phases give rise to gigantic responses to tiny stimuli producing dramatic changes in magnetic, transport and other properties of these compounds. To probe the physical properties of each phase separately is crucial for a comprehensive understanding of phase separation phenomena and for designing their device functions. Here we unravel, using a unique p-n junction configuration, dynamic properties of multiple phases in manganite thin films. The multiple dielectric relaxations have been detected and their corresponding multiple phases have been identified, while the activation energies of dielectric responses from different phases were extracted separately. Their phase evolutions with changing both temperature and applied magnetic field have been demonstrated by dielectric response. These results provide a guideline for exploring the electronic phase separation phenomena in correlated electron oxides.

  12. Tuning of colossal dielectric constant in gold-polypyrrole composite nanotubes using in-situ x-ray diffraction techniques

    SciTech Connect

    Sarma, Abhisakh; Sanyal, Milan K.

    2014-09-15

    In-situ x-ray diffraction technique has been used to study the growth process of gold incorporated polypyrrole nanotubes that exhibit colossal dielectric constant due to existence of quasi-one-dimensional charge density wave state. These composite nanotubes were formed within nanopores of a polycarbonate membrane by flowing pyrrole monomer from one side and mixture of ferric chloride and chloroauric acid from other side in a sample cell that allows collection of x-ray data during the reaction. The size of the gold nanoparticle embedded in the walls of the nanotubes was found to be dependent on chloroauric acid concentration for nanowires having diameter more than 100 nm. For lower diameter nanotubes the nanoparticle size become independent of chloroauric acid concentration and depends on the diameter of nanotubes only. The result of this study also shows that for 50 nm gold-polypyrrole composite nanotubes obtained with 5.3 mM chloroauric acid gives colossal dielectric constant of about 10{sup 7}. This value remain almost constant over a frequency range from 1Hz to 10{sup 6} Hz even at 80 K temperature.

  13. Chemical nature of colossal dielectric constant of CaCu3Ti4O12 thin film by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Deng, Guochu; Xanthopoulos, Nicolas; Muralt, Paul

    2008-04-01

    Epitaxial CaCu3Ti4O12 thin films grown by pulsed laser deposition were studied in the as-deposited and oxygen annealed state. The first one exhibited the usual transition from dielectric to colossal dielectric behavior upon increasing the temperature to above 100K. This transition disappeared after annealing at 900°C in air. The two states significantly differ in their x-ray photoelectron spectra. The state of colossal dielectric constant corresponds to a bulk material with considerable amounts of Cu + and Ti3+, combined with Cu species enrichment at the surface. The annealed state exhibited a nearly stoichiometric composition with no Cu+ and Ti3+. The previously observed p-type conduction in the as-deposited state is thus related to oxygen vacancies compensated by the point defects of Cu+ and Ti3+.

  14. Origin of colossal dielectric permittivity of rutile Ti0.9In0.05Nb0.05O2: single crystal and polycrystalline

    DOE PAGES

    Song, Yongli; Wang, Xianjie; Sui, Yu; ...

    2016-02-12

    Here in this article, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 104, dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In+Nb) co-doped rutile TiO2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, and that the activationmore » energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles.« less

  15. Origin of colossal dielectric permittivity of rutile Ti0.9In0.05Nb0.05O2: single crystal and polycrystalline

    PubMed Central

    Song, Yongli; Wang, Xianjie; Sui, Yu; Liu, Ziyi; Zhang, Yu; Zhan, Hongsheng; Song, Bingqian; Liu, Zhiguo; Lv, Zhe; Tao, Lei; Tang, Jinke

    2016-01-01

    In this paper, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 104, dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In + Nb) co-doped rutile TiO2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, and that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles. PMID:26869187

  16. Evidences of grain boundary capacitance effect on the colossal dielectric permittivity in (Nb + In) co-doped TiO2 ceramics.

    PubMed

    Li, Jinglei; Li, Fei; Li, Chao; Yang, Guang; Xu, Zhuo; Zhang, Shujun

    2015-02-06

    The (Nb + In) co-doped TiO2 ceramics were synthesized by conventional solid-state sintering (CSSS) and spark plasma sintering (SPS) methods. The phases and microstructures were studied by X-ray diffraction, Raman spectra, field-emission scanning electron microscopy and transmission electron microscopy, indicating that both samples were in pure rutile phase while showing significant difference in grain size. The dielectric and I-V behaviors of SPS and CSSS samples were investigated. Though both possess colossal permittivity (CP), the SPS samples exhibited much higher dielectric permittivity/loss factor and lower breakdown electric field when compared to their CSSS counterparts. To further explore the origin of CP in co-doped TiO2 ceramics, the I-V behavior was studied on single grain and grain boundary in CSSS sample. The nearly ohmic I-V behavior was observed in single grain, while GBs showed nonlinear behavior and much higher resistance. The higher dielectric permittivity and lower breakdown electric field in SPS samples, thus, were thought to be associated with the feature of SPS, by which reduced space charges and/or impurity segregation can be achieved at grain boundaries. The present results support that the grain boundary capacitance effect plays an important role in the CP and nonlinear I-V behavior of (Nb + In) co-doped TiO2 ceramics.

  17. Evidences of grain boundary capacitance effect on the colossal dielectric permittivity in (Nb + In) co-doped TiO2 ceramics

    PubMed Central

    Li, Jinglei; Li, Fei; Li, Chao; Yang, Guang; Xu, Zhuo; Zhang, Shujun

    2015-01-01

    The (Nb + In) co-doped TiO2 ceramics were synthesized by conventional solid-state sintering (CSSS) and spark plasma sintering (SPS) methods. The phases and microstructures were studied by X-ray diffraction, Raman spectra, field-emission scanning electron microscopy and transmission electron microscopy, indicating that both samples were in pure rutile phase while showing significant difference in grain size. The dielectric and I–V behaviors of SPS and CSSS samples were investigated. Though both possess colossal permittivity (CP), the SPS samples exhibited much higher dielectric permittivity/loss factor and lower breakdown electric field when compared to their CSSS counterparts. To further explore the origin of CP in co-doped TiO2 ceramics, the I–V behavior was studied on single grain and grain boundary in CSSS sample. The nearly ohmic I–V behavior was observed in single grain, while GBs showed nonlinear behavior and much higher resistance. The higher dielectric permittivity and lower breakdown electric field in SPS samples, thus, were thought to be associated with the feature of SPS, by which reduced space charges and/or impurity segregation can be achieved at grain boundaries. The present results support that the grain boundary capacitance effect plays an important role in the CP and nonlinear I–V behavior of (Nb + In) co-doped TiO2 ceramics. PMID:25656713

  18. Origin of colossal dielectric permittivity of rutile Ti0.9In0.05Nb0.05O2: single crystal and polycrystalline

    SciTech Connect

    Song, Yongli; Wang, Xianjie; Sui, Yu; Liu, Ziyi; Zhang, Yu; Zhan, Hongsheng; Song, Bingqian; Liu, Zhiguo; Lv, Zhe; Tao, Lei; Tang, Jinke

    2016-02-12

    Here in this article, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 104, dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In+Nb) co-doped rutile TiO2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, and that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles.

  19. Origin of magnetic and dielectric response in single phase nano crystalline BiFeO3

    NASA Astrophysics Data System (ADS)

    Feroze, Asad; Idrees, Muhammad; Nadeem, Muhammad; Siddiqi, Saadat A.; Saleem, Murtaza; Atif, Muhammad; Siddique, Muhammad; Shaukat, Saleem F.

    2016-12-01

    Stoichiometric and single phase synthesis of BiFeO3 is critical both in its particle industrial applications as well as in understanding the origin of its attractive dielectric and magnetic properties. In this study, BiFeO3 has been obtained at temperatures as low as 400 °C. Zero Fe+2/Fe+3 ratio, and absence of bismuth and oxygen non-stoichiometry have been probed by 57Fe Mössbauer spectroscopy. The appearance of different magnetic phases in 57Fe Mössbauer spectrum, MH hysteresis curve and exchange bias effect have been conferred on the basis of magneto-crystalline anisotropy and particle size distribution. Dependence of the dielectric response on the applied electric field reveals that the colossal dielectric response in BiFeO3 is dominated by extrinsic effects at grain-grain interface.

  20. Colossal thermomagnetic response in chiral d-wave superconductor URu2Si2

    NASA Astrophysics Data System (ADS)

    Matsuda, Yuji

    The heavy-fermion compound URu2Si2 exhibits unconventional superconductivity at Tc = 1.45 K deep inside the so-called hidden order phase. An intriguing aspect is that this system has been suggested to be a candidate of a chiral d-wave superconductor, and possible Weyl-type topological superconducting states have been discussed recently. Here we report on the observation of a highly unusual Nernst signal due to the superconducting fluctuations above Tc. The Nernst coefficient is anomalously enhanced (by a factor of ~106) as compared with the theoretically expected value of the Gaussian fluctuations. This colossal Nernst effect intimately reflects the highly unusual superconducting state of URu2Si2. The results invoke possible chiral or Berry-phase fluctuations associated with the broken time-reversal symmetry of the superconducting order parameter. In collaboration with T. Yamashita, Y. Shimoyama, H. Sumiyoshi (Kyoto), S. Fujimoto (Osaka), T. Shibauchi (Tokyo), Y. Haga (JAEA), T. D. Matsuda (TMU) , Y. Onuki (Ryukyus), A. Levchenko (Wisconsin-Madison).

  1. Dielectric response of the human tooth dentine

    NASA Astrophysics Data System (ADS)

    Leskovec, J.; Filipič, C.; Levstik, A.

    2005-07-01

    Dielectric properties of tooth dentine can be well described by the model which was developed for the dielectric response to hydrating porous cement paste. It is shown that the normalized dielectric constant and the normalized specific conductivity are proportional to the model parameters ɛ and σv, indicating the deposition of AgCl in the dentine tubules during the duration of the precipitation. The fractal dimension of the tooth dentine was determined by dielectric spectroscopy.

  2. Calculation of Dielectric Response in Molecular Solids for High Capacitance Organic Dielectrics

    NASA Astrophysics Data System (ADS)

    Heitzer, Henry Matthew

    The dielectric response of a material is critically important in numerous scientific processes spanning the fields of biology, chemistry, materials science, and physics. While important across these fundamental disciplines, it remains difficult to determine theoretically the dielectric environment of a system. With recent advances in nanotechnology, biochemistry, and molecular electronics, it has become necessary to determine the dielectric response in molecular systems that are difficult to measure experimentally, such as nanoscale interfaces, highly disordered biological environments, or molecular materials that are difficult to synthesize. In these scenarios it is highly advantageous to determine the dielectric response through efficient and accurate calculations. A good example of where a theoretical prediction of dielectric response is critical is in the development of high capacitance molecular dielectrics. Molecular dielectrics offer the promise of cheap, flexible, and mass producible electronic devices when used in conjunction with organic semiconducting materials to form Organic Field Effect Transistors (OFETs). To date, molecular dielectrics suffer from poor dielectric properties resulting in low capacitances. A low capacitance dielectric material requires a much larger power source to operate the device in OFETs, leading to modest device performance. Development of better performing dielectric materials has been hindered due to the time it takes to synthesize and fabricate new molecular materials. An accurate and efficient theoretical technique could drastically decrease this time by screening potential dielectric materials and providing design rules for future molecular dielectrics. Here in, the methodology used to calculate dielectric properties of molecular materials is described. The validity of the technique is demonstrated on model systems, capturing the frequency dependence of the dielectric response and achieving quantitative accuracy compared

  3. Direct view at colossal permittivity in donor-acceptor (Nb, In) co-doped rutile TiO{sub 2}

    SciTech Connect

    Mandal, Suman Pal, Somnath; Hazarika, Abhijit; Kundu, Asish K.; Menon, Krishnakumar S. R.; Rioult, Maxime; Belkhou, Rachid

    2016-08-29

    Topical observations of colossal permittivity (CP) with low dielectric loss in donor-acceptor cations co-doped rutile TiO{sub 2} have opened up several possibilities in microelectronics and energy-storage devices. Yet, the precise origin of the CP behavior, knowledge of which is essential to empower the device integration suitably, is highly disputed in the literature. From spectromicroscopic approach besides dielectric measurements, we explore that microscopic electronic inhomogeneities along with the nano-scale phase boundaries and the low temperature polaronic relaxation are mostly responsible for such a dielectric behavior, rather than electron-pinned defect-dipoles/grain-boundary effects as usually proposed. Donor-acceptor co-doping results in a controlled carrier-hopping inevitably influencing the dielectric loss while invariably upholding the CP value.

  4. Direct view at colossal permittivity in donor-acceptor (Nb, In) co-doped rutile TiO2

    NASA Astrophysics Data System (ADS)

    Mandal, Suman; Pal, Somnath; Kundu, Asish K.; Menon, Krishnakumar S. R.; Hazarika, Abhijit; Rioult, Maxime; Belkhou, Rachid

    2016-08-01

    Topical observations of colossal permittivity (CP) with low dielectric loss in donor-acceptor cations co-doped rutile TiO2 have opened up several possibilities in microelectronics and energy-storage devices. Yet, the precise origin of the CP behavior, knowledge of which is essential to empower the device integration suitably, is highly disputed in the literature. From spectromicroscopic approach besides dielectric measurements, we explore that microscopic electronic inhomogeneities along with the nano-scale phase boundaries and the low temperature polaronic relaxation are mostly responsible for such a dielectric behavior, rather than electron-pinned defect-dipoles/grain-boundary effects as usually proposed. Donor-acceptor co-doping results in a controlled carrier-hopping inevitably influencing the dielectric loss while invariably upholding the CP value.

  5. Reply to ``Comment on `Colossal dielectric and magnetodielectric effect in Er2O3 nanoparticles embedded in a SiO2 glass matrix'''

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Chen, C. H.; Chou, C. C.; Tseng, K. F.; Chaudhuri, B. K.; Yang, H. D.

    2011-08-01

    In our earlier paper [Mukherjee , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.82.104107 82, 104107 (2010)], we concentrated mainly on lower calcined transparent monolithic glass samples (particle size <10 nm) where interesting high-k values with diffuse phase transition (DPT) and magnetodielectric (MD) behavior were observed. The Comment seems to focus on the sample calcined at 1200 ∘C (particle size >40 nm), where the dielectric value is observed without DPT behavior. In this Reply we argue that, contrary to the conclusion of Hreniak , the disappearance of the MD effect is not only due to structural reorganization via crystallization of a different phase, but very much depends on particle size.

  6. Magnetic-polaron-induced colossal magnetocapacitance in CdCr2S4

    NASA Astrophysics Data System (ADS)

    Xie, Y. M.; Yang, Z. R.; Zhang, Z. T.; Yin, L. H.; Chen, X. L.; Song, W. H.; Sun, Y. P.; Zhou, S. Q.; Tong, W.; Zhang, Y. H.

    2013-10-01

    The origin of colossal magnetoresistance and colossal magnetocapacitance in a CdCr2S4 system was investigated. Thermoelectric-power and electronic spin resonance spectra reveal that the magnetic polaron is responsible for the colossal magnetoresistance in the n-type sample. The existence of magnetic polarons in the paramagnetic insulting matrix forms an intrinsic Maxwell-Wagner system, leading to the appearance of colossal magnetocapacitance. Being consistent with the evolution of magnetic polarons upon cooling, the Maxwell-Wagner system is valid around insulator-metal transition, where the resistance derived from impedance spectroscopy matches perfectly with DC resistance.

  7. Dielectric metamaterials with toroidal dipolar response

    DOE PAGES

    Basharin, Alexey A.; Kafesaki, Maria; Economou, Eleftherios N.; ...

    2015-03-27

    Toroidal multipoles are the terms missing in the standard multipole expansion; they are usually overlooked due to their relatively weak coupling to the electromagnetic fields. Here, we propose and theoretically study all-dielectric metamaterials of a special class that represent a simple electromagnetic system supporting toroidal dipolar excitations in the THz part of the spectrum. In addition, we show that resonant transmission and reflection of such metamaterials is dominated by toroidal dipole scattering, the neglect of which would result in a misunderstanding interpretation of the metamaterials’ macroscopic response. Due to the unique field configuration of the toroidal mode, the proposed metamaterialsmore » could serve as a platform for sensing or enhancement of light absorption and optical nonlinearities.« less

  8. Dielectric Metamaterials with Toroidal Dipolar Response

    NASA Astrophysics Data System (ADS)

    Basharin, Alexey A.; Kafesaki, Maria; Economou, Eleftherios N.; Soukoulis, Costas M.; Fedotov, Vassili A.; Savinov, Vassili; Zheludev, Nikolay I.

    2015-01-01

    Toroidal multipoles are the terms missing in the standard multipole expansion; they are usually overlooked due to their relatively weak coupling to the electromagnetic fields. Here, we propose and theoretically study all-dielectric metamaterials of a special class that represent a simple electromagnetic system supporting toroidal dipolar excitations in the THz part of the spectrum. We show that resonant transmission and reflection of such metamaterials is dominated by toroidal dipole scattering, the neglect of which would result in a misunderstanding interpretation of the metamaterials' macroscopic response. Because of the unique field configuration of the toroidal mode, the proposed metamaterials could serve as a platform for sensing or enhancement of light absorption and optical nonlinearities.

  9. Dielectric relaxations and dielectric response in multiferroic BiFeO{sub 3} ceramics

    SciTech Connect

    Hunpratub, Sitchai; Thongbai, Prasit; Maensiri, Santi; Yamwong, Teerapon; Yimnirun, Rattikorn

    2009-02-09

    Single-phase multiferroic BiFeO{sub 3} ceramics were fabricated using pure precipitation-prepared BiFeO{sub 3} powder. Dielectric response of BiFeO{sub 3} ceramics was investigated over a wide range of temperature and frequency. Our results reveal that the BiFeO{sub 3} ceramic sintered at 700 deg. C exhibited high dielectric permittivity, and three dielectric relaxations were observed. A Debye-type dielectric relaxation at low temperatures (-50 to 20 deg. C) is attributed to the carrier hopping process between Fe{sup 2+} and Fe{sup 3+}. The other two dielectric relaxations at the temperature ranges 30-130 deg. C and 140-200 deg. C could be due to the grain boundary effect and the defect ordering and/or the conductivity, respectively.

  10. Local representation of the electronic dielectric response function

    DOE PAGES

    Lu, Deyu; Ge, Xiaochuan

    2015-12-11

    We present a local representation of the electronic dielectric response function, based on a spatial partition of the dielectric response into contributions from each occupied Wannier orbital using a generalized density functional perturbation theory. This procedure is fully ab initio, and therefore allows us to rigorously define local metrics, such as “bond polarizability,” on Wannier centers. We show that the locality of the bare response function is determined by the locality of three quantities: Wannier functions of the occupied manifold, the density matrix, and the Hamiltonian matrix. Furthermore, in systems with a gap, the bare dielectric response is exponentially localized,more » which supports the physical picture of the dielectric response function as a collection of interacting local responses that can be captured by a tight-binding model.« less

  11. Local representation of the electronic dielectric response function

    SciTech Connect

    Lu, Deyu; Ge, Xiaochuan

    2015-12-11

    We present a local representation of the electronic dielectric response function, based on a spatial partition of the dielectric response into contributions from each occupied Wannier orbital using a generalized density functional perturbation theory. This procedure is fully ab initio, and therefore allows us to rigorously define local metrics, such as “bond polarizability,” on Wannier centers. We show that the locality of the bare response function is determined by the locality of three quantities: Wannier functions of the occupied manifold, the density matrix, and the Hamiltonian matrix. Furthermore, in systems with a gap, the bare dielectric response is exponentially localized, which supports the physical picture of the dielectric response function as a collection of interacting local responses that can be captured by a tight-binding model.

  12. Electron-pinned defect-dipoles for high-performance colossal permittivity materials.

    PubMed

    Hu, Wanbiao; Liu, Yun; Withers, Ray L; Frankcombe, Terry J; Norén, Lasse; Snashall, Amanda; Kitchin, Melanie; Smith, Paul; Gong, Bill; Chen, Hua; Schiemer, Jason; Brink, Frank; Wong-Leung, Jennifer

    2013-09-01

    The immense potential of colossal permittivity (CP) materials for use in modern microelectronics as well as for high-energy-density storage applications has propelled much recent research and development. Despite the discovery of several new classes of CP materials, the development of such materials with the required high performance is still a highly challenging task. Here, we propose a new electron-pinned, defect-dipole route to ideal CP behaviour, where hopping electrons are localized by designated lattice defect states to generate giant defect-dipoles and result in high-performance CP materials. We present a concrete example, (Nb+In) co-doped TiO₂ rutile, that exhibits a largely temperature- and frequency-independent colossal permittivity (> 10(4)) as well as a low dielectric loss (mostly < 0.05) over a very broad temperature range from 80 to 450 K. A systematic defect analysis coupled with density functional theory modelling suggests that 'triangular' In₂(3+)Vo(••)Ti(3+) and 'diamond' shaped Nb₂(5+)Ti(3+)A(Ti) (A = Ti(3+)/In(3+)/Ti(4+)) defect complexes are strongly correlated, giving rise to large defect-dipole clusters containing highly localized electrons that are together responsible for the excellent CP properties observed in co-doped TiO₂. This combined experimental and theoretical work opens up a promising feasible route to the systematic development of new high-performance CP materials via defect engineering.

  13. Electron-pinned defect-dipoles for high-performance colossal permittivity materials

    NASA Astrophysics Data System (ADS)

    Hu, Wanbiao; Liu, Yun; Withers, Ray L.; Frankcombe, Terry J.; Norén, Lasse; Snashall, Amanda; Kitchin, Melanie; Smith, Paul; Gong, Bill; Chen, Hua; Schiemer, Jason; Brink, Frank; Wong-Leung, Jennifer

    2013-09-01

    The immense potential of colossal permittivity (CP) materials for use in modern microelectronics as well as for high-energy-density storage applications has propelled much recent research and development. Despite the discovery of several new classes of CP materials, the development of such materials with the required high performance is still a highly challenging task. Here, we propose a new electron-pinned, defect-dipole route to ideal CP behaviour, where hopping electrons are localized by designated lattice defect states to generate giant defect-dipoles and result in high-performance CP materials. We present a concrete example, (Nb+In) co-doped TiO2 rutile, that exhibits a largely temperature- and frequency-independent colossal permittivity (> 104) as well as a low dielectric loss (mostly < 0.05) over a very broad temperature range from 80 to 450 K. A systematic defect analysis coupled with density functional theory modelling suggests that ‘triangular’ In23+VO••Ti3+ and ‘diamond’ shaped Nb25+Ti3+ATi (A  =  Ti3+/In3+/Ti4+) defect complexes are strongly correlated, giving rise to large defect-dipole clusters containing highly localized electrons that are together responsible for the excellent CP properties observed in co-doped TiO2. This combined experimental and theoretical work opens up a promising feasible route to the systematic development of new high-performance CP materials via defect engineering.

  14. Anisotropic terahertz dielectric responses of sodium nitrate crystals.

    PubMed

    Fu, Xiaojian; Song, Youting; Sun, Changqing; Zhou, Ji

    2014-04-21

    Terahertz (THz) spectroscopy has become an effective tool to characterize the low-frequency rotational and vibrational modes of molecules. In addition, novel THz dielectric responses and optical properties on the basis of molecular rotation and vibration have attracted lots of attention because of their potential application in THz devices. In this paper, the dielectric response of low-symmetric sodium nitrate crystals in the frequency range of 0.2-1.5 THz was experimentally demonstrated. Four absorption bands at 0.23, 0.47, 0.92, and 1.15 THz were observed in the dielectric spectra and were tentatively ascribed to the rotational motion of nitrate ions. Based on the molecular rotation mechanism, the dielectric anisotropy and dielectric resonance of the crystal were discussed in detail.

  15. On new scaling of dielectric response

    NASA Astrophysics Data System (ADS)

    Gałązka, M.; Juszyńska-Gałązka, E.; Osiecka, N.; Massalska-Arodź, M.; Bąk, A.

    2015-08-01

    We present a new generalized scaling relationship accounting for relaxation processes of both the real and the imaginary parts of the complex dielectric permittivity data in a wide temperature range of dielectric media. It has been successfully used for experimental data related to various dynamics in liquid crystalline phases of: 4-bromobenzylidene-4'-pentyloxyanilin, 4-bromobenzylidene-4'-hexyloxyaniline, 4'-butyl-4-(2-methylbutoxy) azoxybenzene, and 4-ethyl-4'-octylazoxybenzene. Moreover, the scaling was checked for the theoretical data of Dissado-Hill cluster model. A comparison with earlier scaling, proposed by Nagel and Dendzik, is given.

  16. Dielectric response of epoxy-amine compositions during isothermal curing

    NASA Astrophysics Data System (ADS)

    Rodin, D. L.; Stefanovich, S. Yu.; Yablokova, M. Yu.

    2017-04-01

    The change in electric conductivity and dielectric permittivity during the curing of epoxy-amine compositions in a mixture with the thermoplastic Ultem 1000 polyetherimide at 180°C is studied by means of dielectric spectroscopy. TGDDM epoxy resin and DADPS, MDEA, and MIPA amine curing agents are used as the epoxy-amine composition. The times of the gel and glass transition are determined from the time and frequency dependences of the dielectric response of the investigated mixtures. At a certain step of curing of epoxy-amine compositions, the separation of a new phase enriched with the thermoplastic is detected. This separation is accompanied by charge accumulation along the phase boundary and its interaction with the external electric field. In the dielectric spectrum, this effect of phase separation appears as an individual relaxation process with characteristic parameters of dielectric relaxation. It is found that at the final step of isothermal curing, there is a glass transition of the polymer, leading to a sharp drop in the reaction rate and stabilization of the dielectric response with respect to time. The detected steps of the reaction and the corresponding changes in the structure and rheology of the investigated polymer systems are characterized and confirmed by methods of viscometry and optical microscopy.

  17. The dielectric response of a colloidal spheroid.

    PubMed

    Chassagne, C; Bedeaux, D

    2008-10-01

    In this article, we present a theory for the dielectric behavior of a colloidal spheroid, based on an improved version of a previously published analytical theory [C. Chassagne, D. Bedeaux, G.J.M. Koper, Physica A 317 (2003) 321-344]. The theory gives the dipolar coefficient of a dielectric spheroid in an electrolyte solution subjected to an oscillating electric field. In the special case of the sphere, this theory is shown to agree rather satisfactorily with the numerical solutions obtained by a code based on DeLacey and White's [E.H.B. DeLacey, L.R. White, J. Chem. Soc. Faraday Trans. 2 77 (1981) 2007] for all zeta potentials, frequencies and kappa a1 where kappa is the inverse of the Debye length and a is the radius of the sphere. Using the form of the analytical solution for a sphere we were able to derive a formula for the dipolar coefficient of a spheroid for all zeta potentials, frequencies and kappa a1. The expression we find is simpler and has a more general validity than the analytical expression proposed by O'Brien and Ward [R.W. O'Brien, D.N. Ward, J. Colloid Interface Sci. 121 (1988) 402] which is valid for kappa a > 1 and zero frequency.

  18. Electromechanical response of silicone dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Cârlescu, V.; Prisăcaru, G.; Olaru, D.

    2016-08-01

    This paper presents an experimental technique to investigate the electromechanical properties of silicone dielectric elastomers actuated with high DC electric fields. A non-contact measurement technique is used to capture and monitor the thickness strain (contraction) of a circular film placed between two metallic disks electrodes. Two active fillers such as silica (10, 15 and 30 wt%) and barium titanate (5 and 15 wt%) were incorporated in order to increase the actuation performance. Thickness strain was measured at HV stimuli up to 4.5 kV and showed a quadratic dependence against applied electric field indicating that the induced strain is triggered by the Maxwell effect and/or electrostriction phenomenon as reported in literature. The actuation process evidences a rapid contraction upon HV activation and a slowly relaxation when the electrodes are short-circuit due to visco-elastic nature of elastomers. A maximum of 1.22 % thickness strain was obtained at low actuating field intensity (1.5 V/pm) comparable with those reported in literature for similar dielectric elastomer materials.

  19. The dielectric response to the magnetic field of electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shouvik; Mukhopadhyay, Sourabh; Datta, Prasanta Kumar

    2017-04-01

    Light-matter interaction in transparent dielectrics is revisited, including the magnetic force on bound charges in the Lorentz oscillator model. The parameter ranges of incident radiation and the medium on which the magnetic field of the electromagnetic radiation will have a significant effect are traced using Floquet theory. The analysis reveals that the threshold intensity for a significant response of the magnetic field of the radiation at the second harmonic of the incident radiation can be reduced to {10}12 {{W}}{{cm}}-2 for off resonant and even lower for resonant interaction. This phenomenon has already been observed indirectly in experiments [1, 2]. Induced magnetizing current due to the magnetic force is shown to originate from a modified dielectric response, which may be useful in future magneto-optic devices, solar energy harvesting, and studying the ultrafast dynamics in doped dielectrics.

  20. Dielectric response of polar liquids in narrow slit pores.

    PubMed

    Froltsov, Vladimir A; Klapp, Sabine H L

    2007-03-21

    Based on molecular dynamics (MD) simulations and a simple (Stockmayer) model we investigate the static and dynamic dielectric response of polar liquids confined to narrow slit pores. The MD simulations are used to calculate the time-dependent polarization fluctuations along directions parallel and perpendicular to the walls, from which the components of the frequency-dependent dielectric tensor can be derived via linear response theory. Our numerical results reveal that the system's response is strongly anisotropic. The parallel dielectric function, epsilonparallel(omega), has Debye-like character very similar to the corresponding isotropic bulk function, epsilonbulk(omega), at the same chemical potential. Indeed, the main confinement effect on epsilonparallel(omega) consists in a shift toward smaller values relative to the bulk function. On the other hand, in the perpendicular direction we observe a characteristic peak in the absorption part of the dielectric function, epsilonperpendicular(omega). This peak is absent in the bulk system and reflects strongly pronounced, damped oscillations in the polarization fluctuations normal to the walls. We discuss two possible origins of the oscillations (and the resulting absorption peak), that is collective oscillations of dipoles in clusters formed parallel to the walls, and the existence of a "dipolaron mode" previously observed in MD simulations of bulk polar fluids.

  1. Biased dielectric response in LuFe2O4

    NASA Astrophysics Data System (ADS)

    Kudasov, Yu. B.; Markelova, M.; Maslov, D. A.; Platonov, V. V.; Surdin, O. M.; Kaul, A.

    2016-12-01

    A complex permittivity at a low level of excitation signal was measured in ceramic LuFe2O4. A Debye-type relaxation response with a strong temperature dependence of a characteristic frequency was observed in accordance with earlier works. A small DC bias of about 10 V/cm led to unusual changes in the dielectric response. At frequencies, which were lower than the characteristic one, the conductivity drastically increased with slight decrease of the real part of the permittivity under the bias. In the opposite case of low frequencies, there are no traces of the DC bias effect. We show that an inhomogeneous charge distribution over surface layer (domain structure) is essential for describing the biased dielectric response in LuFe2O4.

  2. Polarization states and dielectric responses of elastically clamped ferroelectric nanocrystals

    NASA Astrophysics Data System (ADS)

    Azovtsev, A. V.; Pertsev, N. A.

    2016-12-01

    Polarization states and physical properties of ferroelectrics depend on the mechanical boundary conditions due to electrostrictive coupling between electric polarization and lattice strains. Here, we describe theoretically both equilibrium thermodynamic states and electric permittivities of ferroelectric nanocrystals subjected to the elastic three-dimensional (3D) clamping by a surrounding dielectric material. The problem is solved by the minimization of a special thermodynamic potential that describes the case of an ellipsoidal ferroelectric inclusion embedded into a linear elastic matrix. Numerical calculations are performed for BaTiO3, PbTiO3, and Pb(Zr0.5Ti0.5)O3 nanoparticles surrounded by silica glass. It is shown that, in the case of BaTiO3 and PbTiO3, elastic 3D clamping may change the order of a ferroelectric phase transition from first to second. Furthermore, the mechanical inclusion-matrix interaction shifts the temperatures of structural transitions between different ferroelectric states and even eliminates some ferroelectric phases existing in stress-free BaTiO3 and Pb(Zr0.5Ti0.5)O3 crystals. Another important effect of elastic clamping is the lowering of the symmetry of ferroelectric states in ellipsoidal inclusions, where orthorhombic and monoclinic phases may form instead of the tetragonal and rhombohedral bulk counterparts. Finally, our thermodynamic calculations show that the dielectric responses of studied perovskite ferroelectrics are sensitive to matrix-induced clamping as well. For instance, dielectric peaks occurring at structural transitions between different ferroelectric phases in BaTiO3 appear to be much higher in spherical inclusions than in the freestanding crystal. Predicted clamping-induced enhancement of certain dielectric responses at room temperature indicates that composite materials comprising nanocrystals of perovskite ferroelectrics are promising for device applications requiring the use of high-permittivity dielectrics.

  3. Thermoluminescence and dielectric response of gamma irradiated muscovite mica

    NASA Astrophysics Data System (ADS)

    Kaur, Sukhnandan; Singh, Surinder; Singh, Lakhwant; Lochab, S. P.

    2014-04-01

    The effect of gamma radiation dose on the thermoluminescence (TL) and dielectric properties of muscovite mica was studied. TL glow curves exhibited a single peak around 141 0C and its activation energy was estimated to be about 0.89 eV. Different dielectric parameters like dielectric constant, dielectric loss and ac conductivity have been calculated in both pristine and gamma irradiated samples. These dielectric parameters have been studied as a function of irradiation dose.

  4. Thermoluminescence and dielectric response of gamma irradiated muscovite mica

    SciTech Connect

    Kaur, Sukhnandan Singh, Surinder Singh, Lakhwant; Lochab, S. P.

    2014-04-24

    The effect of gamma radiation dose on the thermoluminescence (TL) and dielectric properties of muscovite mica was studied. TL glow curves exhibited a single peak around 141 {sup 0}C and its activation energy was estimated to be about 0.89 eV. Different dielectric parameters like dielectric constant, dielectric loss and ac conductivity have been calculated in both pristine and gamma irradiated samples. These dielectric parameters have been studied as a function of irradiation dose.

  5. Intrinsic dielectric properties of magnetodielectric La2CoMnO6

    NASA Astrophysics Data System (ADS)

    Silva, R. X.; Moreira, R. L.; Almeida, R. M.; Paniago, R.; Paschoal, C. W. A.

    2015-06-01

    Manganite with a double perovskite structure is an attractive material because of its interesting magnetoelectric and dielectric responses. In particular, colossal dielectric constant (CDC) behavior has been observed in La2CoMnO6 (LCMO) at radio frequencies and at room temperature. In this paper, we used infrared-reflectivity spectroscopy to study a LCMO ceramic obtained through a modified Pechini's method to determine the phonon contribution to the intrinsic dielectric response of the system and to investigate the CDC origin. The analysis of the main polar modes and of the obtained phonon parameters indicate that the CDC effect of LCMO is of pure extrinsic origin. In addition, we estimated the dielectric constant and the quality factor of the material in the microwave region to be ɛ's ˜ 16 and Qu × f ˜ 124 THz, which verifies that LCMO is appropriate for application in microwave devices and circuitry.

  6. Scaling and spatial analysis of the dielectric response of cadmium selenide nanowires

    NASA Astrophysics Data System (ADS)

    Kanai, Yosuke; Cicero, Giancarlo

    2014-10-01

    Transverse dielectric response of hexagonal cadmium selenide (CdSe) nanowires was investigated using first-principles quantum mechanical calculations. Scaling behavior of polarizability was found to closely follow a simple dielectric cylinder model even for small nanowires with a diameter of a few nanometers. The spatial dependence of the dielectric response in the nanowires was analyzed in terms of maximally localized Wannier functions in order to elucidate the model behavior. Localized d electrons at cadmium atoms were found responsible for the simple analytic scaling of the polarizability, and the dielectric response in the center of nanowire was found converged to that of bulk already for 3 nm diameter nanowires.

  7. Molecular polarizability of water from local dielectric response theory

    NASA Astrophysics Data System (ADS)

    Ge, Xiaochuan; Lu, Deyu

    2017-08-01

    We propose a fully ab initio theory to compute the electron density response under the perturbation in the local field. This method is based on our recently developed local dielectric response theory [Phys. Rev. B 92, 241107(R) (2015), 10.1103/PhysRevB.92.241107], which provides a rigorous theoretical framework to treat local electronic excitations in both finite and extended systems beyond the commonly employed dipole approximation. We have applied this method to study the electronic part of the molecular polarizability of water in ice I h and liquid water. Our results reveal that the crystal field of the hydrogen-bond network has strong anisotropic effects, which significantly enhance the out-of-plane component and suppress the in-plane component perpendicular to the bisector direction. The contribution from the charge transfer is equally important, which increases the isotropic molecular polarizability by 5 -6 %. Our study provides insights into the dielectric properties of water, which form the basis to understand electronic excitations in water and to develop accurate polarizable force fields of water.

  8. Molecular polarizability of water from local dielectric response theory

    DOE PAGES

    Ge, Xiaochuan; Lu, Deyu

    2017-08-08

    Here, we propose a fully ab initio theory to compute the electron density response under the perturbation in the local field. This method is based on our recently developed local dielectric response theory [Phys. Rev. B 92, 241107(R), 2015], which provides a rigorous theoretical framework to treat local electronic excitations in both nite and extended systems beyond the commonly employed dipole approximation. We have applied this method to study the electronic part of the molecular polarizability of water in ice Ih and liquid water. Our results reveal that the crystal field of the hydrogen-bond network has strong anisotropic effects, whichmore » significantly enhance the out-of-plane component and suppress the in-plane component perpendicular to the bisector direction. The contribution from the charge transfer is equally important, which increases the isotropic molecular polarizability by 5-6%. Our study provides new insights into the dielectric properties of water, which form the basis to understand electronic excitations in water and to develop accurate polarizable force fields of water.« less

  9. Optical anisotropic-dielectric response of mercuric iodide

    SciTech Connect

    Yao, H.; Johs, B.; James, R.B.

    1997-10-01

    Anisotropic optical properties of mercuric iodide (HgI{sub 2}) were studied by variable-angle spectroscopic ellipsometry (VASE). Angular-dependent polarized reflectance and transmittance at three special optical-axis configurations, concerning the uniaxial anisotropic nature of the crystal, were derived to facilitate the VASE analysis. Two surface orientations of this tetragonal crystal were selected, i.e., an a-plane and a c-plane sample. Room-temperature multiple-angle spectroscopic ellipsometry measurements from both samples with three different optical configurations along with polarized transmission measurements were jointly analyzed by the VASE analysis through multiple-sample, multiple-model methods. Anisotropic dielectric functions of single-crystal HgI{sub 2}, {var_epsilon}{sub {perpendicular}}({omega}) and {var_epsilon}{sub {parallel}}({omega}), for optical electric-field vector oriented perpendicular and parallel to the c axis, respectively, were obtained in the range 1.24{endash}5.1 eV. Different absorption energy-band edges, at room temperature, were observed from the ordinary and extraordinary dielectric responses at 2.25 and 2.43 eV, respectively. This is consistent with the results related to the optical transitions between the conduction band and the heavy- and light-hole valence band indicated by theoretical studies. A surface model related to the surface roughness and defects of HgI{sub 2} was established and characterized by the VASE analysis. {copyright} {ital 1997} {ital The American Physical Society}

  10. Identification of structural relaxation in the dielectric response of water

    DOE PAGES

    Hansen, Jesper S.; Kisliuk, Alexander; Sokolov, Alexei P.; ...

    2016-06-09

    One century ago pioneering dielectric results obtained for water and n-alcohols triggered the advent of molecular rotation diffusion theory considered by Debye to describe the primary dielectric absorption in these liquids. Here, comparing dielectric, viscoelastic, and light scattering results, we unambiguously demonstrate that the structural relaxation appears only as a high-frequency shoulder in the dielectric spectra of water. In contrast, the main dielectric peak is related to a supramolecular structure, analogous to the Debye-like peak observed in monoalcohols.

  11. Identification of structural relaxation in the dielectric response of water

    SciTech Connect

    Hansen, Jesper S.; Kisliuk, Alexander; Sokolov, Alexei P.; Gainaru, Catalin

    2016-06-09

    One century ago pioneering dielectric results obtained for water and n-alcohols triggered the advent of molecular rotation diffusion theory considered by Debye to describe the primary dielectric absorption in these liquids. Here, comparing dielectric, viscoelastic, and light scattering results, we unambiguously demonstrate that the structural relaxation appears only as a high-frequency shoulder in the dielectric spectra of water. In contrast, the main dielectric peak is related to a supramolecular structure, analogous to the Debye-like peak observed in monoalcohols.

  12. Dielectric response based characterization and strength prediction of cementitious materials

    NASA Astrophysics Data System (ADS)

    Manchiryal, Ram Kishore

    Electrical property based methods are powerful tools to sense the properties of cement based materials. Among the several non-invasive investigative techniques, those based on monitoring the electrical properties during the initial setting and in the subsequent hardening period have immense potential in performance prediction of concrete. Electrical impedance spectroscopy (EIS) has emerged as one of the promising techniques to non-invasively probe the microstructure and property development in cement based materials. This thesis reports the results of a systematic investigation carried out to understand the influence of material parameters on the dielectric response of cement pastes and concretes, and also a methodology to property prediction in cementitious system using electrical properties. The influence of cement type, water-to-cementing materials ratio (w/cm), and the presence of fly ash as a cement replacement material on the conductivity of cement pastes is studied. The electrical conductivity---time relationships of cement pastes and concretes are expressed using a model that facilitates the extraction of initial and final conductivities, and a characteristic time parameter. These terms are used to derive information about the microstructural changes occurring with time in cement pastes. The experimental results are subjected to a range analysis to isolate the significant factors and factor interactions that influence the initial and final conductivities as well as the time parameter from the conductivity-time model for concrete mixtures. The material parameters that influence the measured conductivity are identified and their influence quantified. The changes in dielectric constant and conductivity spectra of cement paste and concretes are attributed to the polarization phenomena. There is an observed dielectric enhancement for fly ash modified pastes. The dielectric response of concrete is very similar to that of pastes, and the effect of dilution by the

  13. Maximizing the dielectric response of molecular thin films via quantum chemical design.

    PubMed

    Heitzer, Henry M; Marks, Tobin J; Ratner, Mark A

    2014-12-23

    Developing high-capacitance organic gate dielectrics is critical for advances in electronic circuitry based on unconventional semiconductors. While high-dielectric constant molecular substances are known, the mechanism of dielectric response and the fundamental chemical design principles are not well understood. Using a plane-wave density functional theory formalism, we show that it is possible to map the atomic-scale dielectric profiles of molecule-based materials while capturing important bulk characteristics. For molecular films, this approach reveals how basic materials properties such as surface coverage density, molecular tilt angle, and π-system planarity can dramatically influence dielectric response. Additionally, relatively modest molecular backbone and substituent variations can be employed to substantially enhance film dielectric response. For dense surface coverages and proper molecular alignment, conjugated hydrocarbon chains can achieve dielectric constants of >8.0, more than 3 times that of analogous saturated chains, ∼2.5. However, this conjugation-related dielectric enhancement depends on proper molecular orientation and planarization, with enhancements up to 60% for proper molecular alignment with the applied field and an additional 30% for conformations such as coplanarity in extended π-systems. Conjugation length is not the only determinant of dielectric response, and appended polarizable high-Z substituents can increase molecular film response more than 2-fold, affording estimated capacitances of >9.0 μF/cm2. However, in large π-systems, polar substituent effects are substantially attenuated.

  14. Huge low-frequency dielectric response of (Nb,In)-doped TiO2 ceramics

    NASA Astrophysics Data System (ADS)

    Wu, Y. Q.; Zhao, X.; Zhang, J. L.; Su, W. B.; Liu, J.

    2015-12-01

    The (Nb,In)-doped TiO2 ceramics have drawn considerable attention as a type of promising giant-permittivity dielectric materials in recent years. However, a significant controversy concerning the giant dielectric mechanism currently exists, and clarifying it is vitally important from both scientific and technological viewpoints. This letter reports the results of a systematical comparison study, where two kinds of (Nb,In)-doped TiO2 ceramics with a substantial difference in dielectric loss are used. Dielectric properties and complex impedance are investigated over a broad frequency band of 3 mHz-110 MHz. A huge low-frequency dielectric response in addition to the giant dielectric relaxation appearing above 1 MHz is observed for both kinds of (Nb,In)-doped TiO2 ceramics in dielectric dispersion. The huge dielectric response observed in the low frequency range can be ascribed to a non-ohmic electrode-contact, and the dielectric relaxation appearing above 1 MHz can be attributed to an internal barrier layer capacitance effect. An electrical equivalent circuit model suggested can well describe the observed dielectric properties and electrical behaviors.

  15. The study of electrical conduction mechanisms. [dielectric response of lunar fines

    NASA Technical Reports Server (NTRS)

    Morrison, H. F.

    1974-01-01

    The dielectric response of lunar fines 74241,2 is presented in the audio-frequency range and under lunarlike conditions. Results suggest that volatiles are released during storage and transport of the lunar sample. Apparently, subsequent absorption of volatiles on the sample surface alter its dielectric response. The assumed volatile influence disappear after evacuation. A comparison of the dielectric properties of lunar and terrestrial materials as a function of density, temperature, and frequency indicates that if the lunar simulator analyzed were completely devoid of atmospheric moisture it would present dielectric losses smaller than those of the lunar sample. It is concluded that density prevails over temperature as the controlling factor of dielectric permittivity in the lunar regolith and that dielectric losses vary slowly with depth.

  16. Unusual dielectric response in cobalt doped reduced graphene oxide

    SciTech Connect

    Akhtar, Abu Jahid; Gupta, Abhisek; Kumar Shaw, Bikash; Saha, Shyamal K.

    2013-12-09

    Intensive research on cobalt doped reduced graphene oxide (Co-RGO) to investigate the modification in graphene magnetism and spin polarization due to presence of transition metal atom has been carried out, however, its dielectric spectroscopy, particularly, how capacitance changes with impurity levels in graphene is relatively unexplored. In the present work, dielectric spectroscopy along with magneto-dielectric effect are investigated in Co-RGO. Contrary to other materials, here permittivity increases abruptly with frequency in the low frequency region and continues to increase till 10{sup 7} Hz. This unusual behavior is explained on the basis of trap induced capacitance created due to impurity levels.

  17. Dynamic Response of Dielectric Lenses Influenced By Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Schuster, Daniel George, Jr.

    Through analytical modeling and numerical simulations the dynamic response and stability of dielectric lenses that are influenced by radiation pressure forces and torques is investigated. Radiation pressure forces and torques are applied to the system via momentum transfer between the laser beam light and lens. The 2D response of a rolling semi-cylindrical rod that is influenced by radiation pressure is simulated using constant and modulating light intensities. Stable oscillations and regions of stability in the motion of the semi-cylindrical rod are found for both a mirrored and non-mirrored rod. The results showed that at a critical intensity of 1.72 x 106 W/m2 and 12.81 x 106 W/m2 the mirrored and non-mirrored rods motion bifurcates and begins to show neutrally stable oscillations around some higher angular orientation. Lastly, it was shown that by sinusoidally modulating the laser intensity that the motion showed stable oscillations around previously unstable equilibrium angles of attack for a constant intensity. The dynamics of a gravity-free 3D hemisphere that is influenced by radiation pressure is also considered. The motion of the system is analyzed to produce various types of gyroscopic motion. Using analytical and numerical techniques pure precessional motion along with looping, sinusoidal, and cuspsoidal nutation was shown. By first utilizing a closed loop PID controller, an open loop control algorithm was developed using an intensity time history from the closed loop system. The intensity time history was then applied to allow for angular position control of the hemisphere for a region of a 4D parameter space. The results showed that for a given parameter space approximately 25% of the initial condition parameter space allowed for the steady state angular position of the hemisphere to be within 5o of the incoming laser light direction.

  18. Giant dielectric response of Haldane gap compound Y2BaNiO5

    NASA Astrophysics Data System (ADS)

    Chen, J. W.; Narsinga Rao, G.; Li, K. W.

    2012-03-01

    The dielectric properties of the Haldane gap compound Y2BaNiO5 were studied in the frequency range from 20 Hz to 1 MHz between 20 K and room temperature. This compound exhibits a high dielectric permittivity (ɛ' ˜ 104) at room temperature below 100 kHz. Both dielectric relaxation and dc resistivity ρ follow the thermally activated process with similar value of the activation energy. This indicates the close correlation between the electric conduction and the dielectric polarization. The modulus spectra reveal evidence for both grain and grain boundary relaxation times. The grain relaxation time follows thermally activated process, whereas the grain boundary relaxation time exhibits variable range hopping (VRH) behavior. The observed giant dielectric response were explained in terms of internal (grain boundary) barrier layer capacitance (IBLC) effects.

  19. Complex notation for the dielectric response of ferroelectric materials beyond the small sinusoidal fields.

    PubMed

    Zhou, Xin; Chu, Baojin; Zhang, Qiming M

    2006-08-01

    For the polarization response beyond the small field range, Rayleigh's law has been introduced in the past to describe the field-dependent behavior (with loss) of ferroelectric materials with some success. We examine the relationship between Rayleigh's law and the complex dielectric constant notation that has been used widely in the scientific and engineering community; and we show that a modified complex notation can describe the field-dependent dielectric response with loss in the small and medium field range quite well. In addition, the modified complex notation easily can include a field independent dielectric loss that is, in fact, present in all the dielectric materials. The results also show that the alternating current (AC) field response is still predominantly linear with the amplitude and phase of the complex coefficient changing with the applied field amplitude.

  20. Dielectric response of fully and partially depleted ferroelectric thin films and inversion of the thickness effect

    NASA Astrophysics Data System (ADS)

    Misirlioglu, I. B.; Yildiz, M.

    2013-03-01

    We study the effect of full and partial depletion on the dielectric response characteristics of ferroelectric thin films with impurities via a computational approach. Using a thermodynamic approach along with the fundamental equations for semiconductors, we show that films with partial depletion display unique features and an enhanced dielectric response compared with those fully depleted. We find that the capacitance peak at switching can be significantly suppressed in the case of high impurity densities (>1025 m-3) with relatively low ionization energy, of the order of 0.5 eV. For conserved number of species in films, electromigration of ionized impurities at room temperature is negligible and has nearly no effect on the dielectric response. In films with high impurity density, the dielectric response at zero bias is enhanced with respect to charge-free films or those with relatively low impurity density (<1024 m-3). We demonstrate that partially depleted films should be expected to exhibit peculiar capacitance-voltage characteristics at low and high bias and that the thickness effect probed in experiments in ferroelectric thin films could be entirely inverted in thin films with depletion charges where a higher dielectric response can be measured in thicker films. Therefore, depletion charge densities in ferroelectric thin films should be estimated before size-effect-related studies. Finally, we noted that these findings are in good qualitative agreement with dielectric measurements carried out on PbZrxTi1-xO3.

  1. Voltage-induced pinnacle response in the dynamics of dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Li, Bo; Zhang, Junshi; Chen, Hualing; Li, Dichen

    2016-05-01

    A dielectric elastomer is capable of large deformation under alternating electromechanical excitation. In this paper, several dynamic properties of a dielectric elastomer are investigated, in particular the effect of strain stiffening. A theoretical model is established that shows that the bias voltage affects the amplitude and the response waveform during vibration, a curve with the shape of a pinnacle. We also describe the underlying physical mechanism by considering the molecular chain length and cross-linking density of the material. A phase portrait is presented that reveals the transitional behavior of the dielectric elastomer as it switches between soft and stiffened vibration states.

  2. Dielectric response of capacitor structures based on PZT annealed at different temperatures

    NASA Astrophysics Data System (ADS)

    Kamenshchikov, Mikhail V.; Solnyshkin, Alexander V.; Pronin, Igor P.

    2016-12-01

    Dielectric response of thin-film capacitor structures of Pt/PZT/Pt deposited by the RF magnetron sputtering method and annealed at temperatures of 540-570 °C was investigated. It was found that dielectric properties of these structures depend on the synthesis temperature. Stability of a polarized state is considered on the basis of the analysis of hysteresis loops and capacitance-voltage (C-V) characteristics. The contribution of the domain mechanism in the dielectric response of the capacitor structure comprising a ferroelectric is discussed. Extreme dependences of electrophysical characteristics of PZT films on their synthesis temperature were observed. Correlation of dielectric properties with microstructure of these films is found out.

  3. Origin of giant dielectric constant and conductivity behavior in Zn{sub 1−x}Mg{sub x}O (0 ≤ x ≤ 0.1) ceramics

    SciTech Connect

    Raj, C. Justin; Paramesh, G.; Prakash, B. Shri; Meher, K.R.S. Preethi; Varma, K.B.R.

    2016-02-15

    Highlights: • Mg doped zinc oxide ceramics were fabricated by co-precipitation/solid state reaction. • MZO ceramics shown a Debye type and colossal dielectric response. • Physical absorption of atmospheric water vapor contributes these high permittivity. • The fabricated ceramic shows Maxwell–Wagner type of relaxation. - Abstract: Zn{sub 1−x}Mg{sub x}O ( ≤ x ≤ 0.1) ceramics were fabricated by conventional solid-state reaction of co-precipitated zinc oxide and magnesium hydroxide nanoparticles. Structural and morphological properties of the fabricated ceramics were studied using X-ray diffraction and scanning electron microscopic analysis. The dielectric measurements of the ceramics were carried out as a function of frequency and temperature respectively. Interestingly, Mg doped ZnO (MZO) samples exhibited colossal dielectric response (∼1 × 10{sup 4} at 1 kHz) with Debye like relaxation. The detailed dielectric studies and thermal analyses showed that the unusual dielectric response of the samples were originated from the defected grain and grain boundary (GB) conductivity relaxations due to the absorbed atmospheric water vapor (moisture). Impedance spectroscopy was employed to determine the defected grain and GB resistances, capacitances and which supported Maxwell–Wagner type relaxation phenomena.

  4. Space charge effects on the dielectric response of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Shen, Zhong-Hui; Wang, Jian-Jun; Zhang, Xin; Lin, Yuanhua; Nan, Ce-Wen; Chen, Long-Qing; Shen, Yang

    2017-08-01

    Adding high-κ ceramic nanoparticles into polymers is a general strategy to improve the performances in energy storage. Classic effective medium theories may fail to predict the effective permittivity in polymer nanocomposites wherein the space charge effects are important. In this work, a computational model is developed to understand the space charge effects on the frequency-dependent dielectric properties including the real permittivity and the loss for polymer nanocomposites with both randomly distributed and aggregated nanoparticle fillers. It is found that the real permittivity of the SrTiO3/polyethylene (12% SrTiO3 in volume fraction) nanocomposite can be increased to as high as 60 when there is nanoparticle aggregation and the ion concentration in the bulk polymer is around 1016 cm-3. This model can be employed to quantitatively predict the frequency-dependent dielectric properties for polymer nanocomposites with arbitrary microstructures.

  5. Dielectric response of metal/SrTiO{sub 3}/two-dimensional electron liquid heterostructures

    SciTech Connect

    Mikheev, Evgeny; Raghavan, Santosh; Stemmer, Susanne

    2015-08-17

    Maximizing the effective dielectric constant of the gate dielectric stack is important for electrostatically controlling high carrier densities inherent to strongly correlated materials. SrTiO{sub 3} is uniquely suited for this purpose, given its extremely high dielectric constant, which can reach 10{sup 4}. Here, we present a systematic study of the thickness dependence of the dielectric response and leakage of SrTiO{sub 3} that is incorporated into a vertical structure on a high-carrier-density two-dimensional electron liquid (2DEL). A simple model can be used to interpret the data. The results show a need for improved interface control in the design of metal/SrTiO{sub 3}/2DEL devices.

  6. Dielectric response of Cu/amorphous BaTiO{sub 3}/Cu capacitors

    SciTech Connect

    Gonon, P.; El Kamel, F.

    2007-04-01

    Cu/amorphous BaTiO{sub 3}/Cu capacitors were tested for their dielectric properties in the 0.1 Hz-100 kHz range, from room temperature to 350 degree sign C. The amorphous barium titanate dielectric layer was deposited by rf sputtering on water-cooled copper electrodes. The room-temperature dielectric constant is around 18 and the dissipation factor is 3x10{sup -3} at 100 kHz. When increasing temperature the dielectric response displays an important frequency dispersion with the appearance of a marked loss peak at low frequencies. This dispersion is ascribed to electrode polarization effects, as evidenced by measurements performed on various film thicknesses and by using different electrodes. The electrode polarization phenomenon is discussed using a simple space charge model and is shown to be related to mobile oxygen vacancies.

  7. Response analysis of dielectric elastomer spherical membrane to harmonic voltage and random pressure

    NASA Astrophysics Data System (ADS)

    Jin, Xiaoling; Wang, Yong; Chen, Michael Z. Q.; Huang, Zhilong

    2017-03-01

    Spherical membranes consisting of dielectric elastomer play important roles in flexible and stretchable devices, such as flexible actuators, sensors and loudspeakers. Executing various functions of devices depends on the dynamical behaviors of dielectric elastomer spherical membranes to external electrical and/or mechanical excitations. This manuscript concentrates on the random aspect of dielectric elastomer spherical membranes, i.e., the random response to combined excitations of harmonic voltage and random pressure. To analytically evaluate the response statistics of the stretch ratio, a specific transformation and stochastic averaging technique are successively adopted to solve the strongly nonlinear equation with respect to the stretch ratio. The stochastic differential equations for the system first integral and the phase difference between harmonic excitation and response are first derived through this transformation. The Fokker-Planck-Kolmogorov equation with respect to the stationary probability density of the system first integral and the phase difference is obtained. The stationary probability densities and the response statistics of the stretch ratio and its rate of change are then subsequently calculated. The phenomenon of stochastic jumps is found and the stochastic jump bifurcates with the variations of the frequency and the amplitude of the harmonic voltage and the intensity of the random pressure. The efficacy and accuracy of the analytical results are verified by comparing with the results from Monte Carlo simulation. Besides, the reliability of the dielectric elastomer spherical membrane is discussed briefly. The obtained results could provide options in implementing and designing dielectric elastomer structures for dynamic applications.

  8. Modeling the nonlinear dielectric response of glass formers

    NASA Astrophysics Data System (ADS)

    Buchenau, U.

    2017-06-01

    The recently developed pragmatical model of asymmetric double-well potentials with a finite lifetime is applied to nonlinear dielectric data in polar undercooled liquids. The viscous effects from the finite lifetime provide a crossover from the cooperative jumps of many molecules at short times to the motion of statistically independent molecules at long times. The model allows us to determine the size of cooperatively rearranging regions from nonlinear ω -data and throws new light on a known inconsistency between nonlinear ω and 3 ω -signals for glycerol and propylene carbonate.

  9. Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films

    NASA Astrophysics Data System (ADS)

    Kotov, O. V.; Lozovik, Yu. E.

    2016-06-01

    Using the Kubo formalism we have calculated the local dynamic conductivity of a bulk, i.e., three-dimensional (3D), Dirac semimetal (BDS). We obtain that at frequencies lower than Fermi energy the metallic response in a BDS film manifests in the existence of surface-plasmon polaritons, but at higher frequencies the dielectric response is dominated and it occurs that a BDS film behaves as a dielectric waveguide. At this dielectric regime we predict the existence inside a BDS film of novel electromagnetic modes, a 3D analog of the transverse electric waves in graphene. We also find that the dielectric response manifests as the wide-angle passband in the mid-infrared (IR) transmission spectrum of light incident on a BDS film, which can be used for the interferenceless omnidirectional mid-IR filtering. The tuning of the Fermi level of the system allows us to switch between the metallic and the dielectric regimes and to change the frequency range of the predicted modes. This makes BDSs promising materials for photonics and plasmonics.

  10. Molecular motion, dielectric response, and phase transition of charge-transfer crystals: acquired dynamic and dielectric properties of polar molecules in crystals.

    PubMed

    Harada, Jun; Ohtani, Masaki; Takahashi, Yukihiro; Inabe, Tamotsu

    2015-04-08

    Molecules in crystals often suffer from severe limitations on their dynamic processes, especially on those involving large structural changes. Crystalline compounds, therefore, usually fail to realize their potential as dielectric materials even when they have large dipole moments. To enable polar molecules to undergo dynamic processes and to provide their crystals with dielectric properties, weakly bound charge-transfer (CT) complex crystals have been exploited as a molecular architecture where the constituent polar molecules have some freedom of dynamic processes, which contribute to the dielectric properties of the crystals. Several CT crystals of polar tetrabromophthalic anhydride (TBPA) molecules were prepared using TBPA as an electron acceptor and aromatic hydrocarbons, such as coronene and perylene, as electron donors. The crystal structures and dielectric properties of the CT crystals as well as the single-component crystal of TBPA were investigated at various temperatures. Molecular reorientation of TBPA molecules did not occur in the single-component crystal, and the crystal did not show a dielectric response due to orientational polarization. We have found that the CT crystal formation provides a simple and versatile method to develop molecular dielectrics, revealing that the molecular dynamics of the TBPA molecules and the dielectric property of their crystals were greatly changed in CT crystals. The TBPA molecules underwent rapid in-plane reorientations in their CT crystals, which exhibited marked dielectric responses arising from the molecular motion. An order-disorder phase transition was observed for one of the CT crystals, which resulted in an abrupt change in the dielectric constant at the transition temperature.

  11. Response delay caused by dielectric relaxation of polymer insulators for organic transistors and resolution method

    NASA Astrophysics Data System (ADS)

    Suemori, Kouji; Kamata, Toshihide

    2012-08-01

    We investigated the effect of dielectric relaxation in polymer gate insulators on the device characteristics of organic field effect transistors. Dielectric relaxation of polymer gate insulators caused an increase in drain current (ID) in a period starting immediately after the application of the gate voltage (VG) and lasting several milliseconds. This induced an apparent delay in the response of ID. Based on the observed results, we suggested an ideal gate insulator to achieve organic field effect transistors that have a fast response and high performance.

  12. Low dielectric loss, dielectric response, and conduction behavior in Na-doped Y2/3Cu3Ti4O12 ceramics

    NASA Astrophysics Data System (ADS)

    Liang, Pengfei; Chao, Xiaolian; Yang, Zupei

    2014-07-01

    The Na-doped Y2/3Cu3Ti4O12 system has been prepared and investigated. Na doping facilitates the formation of oxygen vacancies, which is of great benefit to the growth of the grain size. Proper amount of Na substitution in NaxY(2-x)/3Cu3Ti4O12 ceramics makes the dielectric loss significantly decreased. As x = 0.050, Na0.050Y0.650Cu3Ti4O12 ceramics exhibit the lowest dielectric loss (about 0.022 at 1 kHz) and a relatively high dielectric constant (about 7500 at 1 kHz). The lowered dielectric loss is closely associated with the enhanced resistance of grain boundary. The conduction and dielectric processes of grain boundary become much more difficult after Na doping. Impedance analysis suggests that the same charge defects are responsible for the conduction and dielectric relaxation behaviors of grain boundary. Scaling behaviors indicate that the physical nature of their dielectric relaxation and conduction behavior are independent of the measurement temperature and the Na concentration.

  13. Direct measurement of the effective infrared dielectric response of a highly doped semiconductor metamaterial

    NASA Astrophysics Data System (ADS)

    Mohtar, Abeer Al; Kazan, Michel; Taliercio, Thierry; Cerutti, Laurent; Blaize, Sylvain; Bruyant, Aurélien

    2017-03-01

    We have investigated the effective dielectric response of a subwavelength grating made of highly doped semiconductors (HDS) excited in reflection, using numerical simulations and spectroscopic measurement. The studied system can exhibit strong localized surface resonances and has, therefore, a great potential for surface-enhanced infrared absorption (SEIRA) spectroscopy application. It consists of a highly doped InAsSb grating deposited on lattice-matched GaSb. The numerical analysis demonstrated that the resonance frequencies can be inferred from the dielectric function of an equivalent homogeneous slab by accounting for the complex reflectivity of the composite layer. Fourier transform infrared reflectivity (FTIR) measurements, analyzed with the Kramers–Kronig conversion technique, were used to deduce the effective response in reflection of the investigated system. From the knowledge of this phenomenological dielectric function, transversal and longitudinal energy-loss functions were extracted and attributed to transverse and longitudinal resonance modes frequencies.

  14. Direct measurement of the effective infrared dielectric response of a highly doped semiconductor metamaterial.

    PubMed

    Al Mohtar, Abeer; Kazan, Michel; Taliercio, Thierry; Cerutti, Laurent; Blaize, Sylvain; Bruyant, Aurélien

    2017-03-24

    We have investigated the effective dielectric response of a subwavelength grating made of highly doped semiconductors (HDS) excited in reflection, using numerical simulations and spectroscopic measurement. The studied system can exhibit strong localized surface resonances and has, therefore, a great potential for surface-enhanced infrared absorption (SEIRA) spectroscopy application. It consists of a highly doped InAsSb grating deposited on lattice-matched GaSb. The numerical analysis demonstrated that the resonance frequencies can be inferred from the dielectric function of an equivalent homogeneous slab by accounting for the complex reflectivity of the composite layer. Fourier transform infrared reflectivity (FTIR) measurements, analyzed with the Kramers-Kronig conversion technique, were used to deduce the effective response in reflection of the investigated system. From the knowledge of this phenomenological dielectric function, transversal and longitudinal energy-loss functions were extracted and attributed to transverse and longitudinal resonance modes frequencies.

  15. Sensing Based on Fano-Type Resonance Response of All-Dielectric Metamaterials

    PubMed Central

    Semouchkina, Elena; Duan, Ran; Semouchkin, George; Pandey, Ravindra

    2015-01-01

    A new sensing approach utilizing Mie resonances in metamaterial arrays composed of dielectric resonators is proposed. These arrays were found to exhibit specific, extremely high-Q factor (up to 15,000) resonances at frequencies corresponding to the lower edge of the array second transmission band. The observed resonances possessed with features typical for Fano resonances (FRs), which were initially revealed in atomic processes and recently detected in macro-structures, where they resulted from interference between local resonances and a continuum of background waves. Our studies demonstrate that frequencies and strength of Fano-type resonances in all-dielectric arrays are defined by interaction between local Mie resonances and Fabry-Perot oscillations of Bloch eigenmodes that makes possible controlling the resonance responses by changing array arrangements. The opportunity for obtaining high-Q responses in compact arrays is investigated and promising designs for sensing the dielectric properties of analytes in the ambient are proposed. PMID:25905701

  16. Control of optical response of a supported cluster on different dielectric substrates

    SciTech Connect

    Iida, Kenji Noda, Masashi; Nobusada, Katsuyuki

    2015-06-07

    We develop a computational method for optical response of a supported cluster on a dielectric substrate. The substrate is approximated by a dielectric continuum with a frequency-dependent dielectric function. The computational approach is based on our recently developed first-principles simulation method for photoinduced electron dynamics in real-time and real-space. The approach allows us to treat optical response of an adsorbate explicitly taking account of interactions at an interface between an adsorbate and a substrate. We calculate optical absorption spectra of supported Ag{sub n} (n = 2, 54) clusters, changing the dielectric function of a substrate. By analyzing electron dynamics in real-time and real-space, we clarify the mechanisms for variations in absorption spectra, such as peak shifts and intensity changes, relating to various experimental results for optical absorption of supported clusters. Attractive and repulsive interactions between an adsorbate and a substrate result in red and blue shifts, respectively, and the intensity decreases by energy dissipation into a substrate. We demonstrate that optical properties can be controlled by varying the dielectric function of a substrate.

  17. Nodal Quasiparticle in Pseudogapped Colossal Magnetoresistive Manganites

    SciTech Connect

    Mannella, N.

    2010-06-02

    A characteristic feature of the copper oxide high-temperature superconductors is the dichotomy between the electronic excitations along the nodal (diagonal) and antinodal (parallel to the Cu-O bonds) directions in momentum space, generally assumed to be linked to the d-wave symmetry of the superconducting state. Angle-resolved photoemission measurements in the superconducting state have revealed a quasiparticle spectrum with a d-wave gap structure that exhibits a maximum along the antinodal direction and vanishes along the nodal direction. Subsequent measurements have shown that, at low doping levels, this gap structure persists even in the high-temperature metallic state, although the nodal points of the superconducting state spread out in finite Fermi arcs. This is the so-called pseudogap phase, and it has been assumed that it is closely linked to the superconducting state, either by assigning it to fluctuating superconductivity or by invoking orders which are natural competitors of d-wave superconductors. Here we report experimental evidence that a very similar pseudogap state with a nodal-antinodal dichotomous character exists in a system that is markedly different from a superconductor: the ferromagnetic metallic groundstate of the colossal magnetoresistive bilayer manganite La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7}. Our findings therefore cast doubt on the assumption that the pseudogap state in the copper oxides and the nodal-antinodal dichotomy are hallmarks of the superconductivity state.

  18. Crystalline Structure, Defect Chemistry and Room Temperature Colossal Permittivity of Nd-doped Barium Titanate.

    PubMed

    Sun, Qiaomei; Gu, Qilin; Zhu, Kongjun; Jin, Rongying; Liu, Jinsong; Wang, Jing; Qiu, Jinhao

    2017-02-13

    Dielectric materials with high permittivity are strongly demanded for various technological applications. While polarization inherently exists in ferroelectric barium titanate (BaTiO3), its high permittivity can only be achieved by chemical and/or structural modification. Here, we report the room-temperature colossal permittivity (~760,000) obtained in xNd: BaTiO3 (x = 0.5 mol%) ceramics derived from the counterpart nanoparticles followed by conventional pressureless sintering process. Through the systematic analysis of chemical composition, crystalline structure and defect chemistry, the substitution mechanism involving the occupation of Nd(3+) in Ba(2+) -site associated with the generation of Ba vacancies and oxygen vacancies for charge compensation has been firstly demonstrated. The present study serves as a precedent and fundamental step toward further improvement of the permittivity of BaTiO3-based ceramics.

  19. Crystalline Structure, Defect Chemistry and Room Temperature Colossal Permittivity of Nd-doped Barium Titanate

    NASA Astrophysics Data System (ADS)

    Sun, Qiaomei; Gu, Qilin; Zhu, Kongjun; Jin, Rongying; Liu, Jinsong; Wang, Jing; Qiu, Jinhao

    2017-02-01

    Dielectric materials with high permittivity are strongly demanded for various technological applications. While polarization inherently exists in ferroelectric barium titanate (BaTiO3), its high permittivity can only be achieved by chemical and/or structural modification. Here, we report the room-temperature colossal permittivity (~760,000) obtained in xNd: BaTiO3 (x = 0.5 mol%) ceramics derived from the counterpart nanoparticles followed by conventional pressureless sintering process. Through the systematic analysis of chemical composition, crystalline structure and defect chemistry, the substitution mechanism involving the occupation of Nd3+ in Ba2+ -site associated with the generation of Ba vacancies and oxygen vacancies for charge compensation has been firstly demonstrated. The present study serves as a precedent and fundamental step toward further improvement of the permittivity of BaTiO3-based ceramics.

  20. Crystalline Structure, Defect Chemistry and Room Temperature Colossal Permittivity of Nd-doped Barium Titanate

    PubMed Central

    Sun, Qiaomei; Gu, Qilin; Zhu, Kongjun; Jin, Rongying; Liu, Jinsong; Wang, Jing; Qiu, Jinhao

    2017-01-01

    Dielectric materials with high permittivity are strongly demanded for various technological applications. While polarization inherently exists in ferroelectric barium titanate (BaTiO3), its high permittivity can only be achieved by chemical and/or structural modification. Here, we report the room-temperature colossal permittivity (~760,000) obtained in xNd: BaTiO3 (x = 0.5 mol%) ceramics derived from the counterpart nanoparticles followed by conventional pressureless sintering process. Through the systematic analysis of chemical composition, crystalline structure and defect chemistry, the substitution mechanism involving the occupation of Nd3+ in Ba2+ -site associated with the generation of Ba vacancies and oxygen vacancies for charge compensation has been firstly demonstrated. The present study serves as a precedent and fundamental step toward further improvement of the permittivity of BaTiO3-based ceramics. PMID:28205559

  1. A new method for achieving enhanced dielectric response over a wide temperature range

    DOE PAGES

    Maurya, Deepam; Sun, Fu -Chang; Pamir Alpay, S.; ...

    2015-10-19

    We report a novel approach for achieving high dielectric response over a wide temperature range. In this approach, multilayer ceramic heterostructures with constituent compositions having strategically tuned Curie points (TC) were designed and integrated with varying electrical connectivity. Interestingly, these multilayer structures exhibited different dielectric behavior in series and parallel configuration due to variations in electrical boundary conditions resulting in the differences in the strength of the electrostatic coupling. The results are explained using nonlinear thermodynamic model taking into account electrostatic interlayer interaction. We believe that present work will have huge significance in design of high performance ceramic capacitors.

  2. A new method for achieving enhanced dielectric response over a wide temperature range

    SciTech Connect

    Maurya, Deepam; Sun, Fu -Chang; Pamir Alpay, S.; Priya, Shashank

    2015-10-19

    We report a novel approach for achieving high dielectric response over a wide temperature range. In this approach, multilayer ceramic heterostructures with constituent compositions having strategically tuned Curie points (TC) were designed and integrated with varying electrical connectivity. Interestingly, these multilayer structures exhibited different dielectric behavior in series and parallel configuration due to variations in electrical boundary conditions resulting in the differences in the strength of the electrostatic coupling. The results are explained using nonlinear thermodynamic model taking into account electrostatic interlayer interaction. We believe that present work will have huge significance in design of high performance ceramic capacitors.

  3. Insight into the dielectric response of transformer oil-based nanofluids

    NASA Astrophysics Data System (ADS)

    Dong, Ming; Dai, Jianzhuo; Li, Yang; Xie, Jiacheng; Ren, Ming; Dang, Zhimin

    2017-02-01

    The oil-based nanofluids with greater dielectric strength have attracted much attention as a crucial insulating materials in high-voltage oil-immersed power equipment. In fact, the different microstructures of the transformer oil-based nanofluids (TNFs) would result in different dielectric properties. In this work, the broadband dielectric spectroscopy measurement was used to establish the linkage between the electric double layer (EDL) and dielectric response properties of TNFs which was performed at 298K temperature and with frequency range from 10-2Hz˜106Hz. The modified Havriliak-Negami (HN) model function was used to analyze the measured results. The results demonstrate that both the real and imaginary parts of dielectric spectra of two kinds of oil are composed of the conductivity and polarization process. Compared with pure oil, two polarization process could be observed for the TNFs, explained by the EDL structure reasonably. The introduction of the EDL structure provides an idea to account for the insulating strength improvement of TNFs for the first time.

  4. Insights into the dielectric response of ferroelectric relaxors from statistical modeling

    NASA Astrophysics Data System (ADS)

    Liu, J.; Li, F.; Zeng, Y.; Jiang, Z.; Liu, L.; Wang, D.; Ye, Z.-G.; Jia, C.-L.

    2017-08-01

    Ferroelectric relaxors are complex materials with distinct properties. The understanding of their dielectric susceptibility, which strongly depends on both temperature and probing frequency, has been a challenge for researchers for many years. Here we report a macroscopic and phenomenological approach based on statistical modeling to investigate how the dielectric response of a relaxor depends on temperature. Employing the Maxwell-Boltzmann distribution and considering temperature-dependent dipolar orientational polarizability, we propose a minimum statistical model and specific equations to understand and fit numerical and experimental dielectric responses versus temperature. We show that the proposed formula can successfully fit the dielectric response of typical relaxors, including Ba (Zr ,Ti ) O3,0.87 Pb (Zn1 /3Nb2 /3) O3-0.13 PbTiO3,0.95 Pb (Mg1 /3Nb2 /3) O3-0.05 Pb (Zr0.53Ti0.47) O3 , and Bi-based compounds, which demonstrates the general applicability of this approach.

  5. An inorganic-organic hybrid crystal with a two-step dielectric response and thermochromic luminescence.

    PubMed

    Duan, Hai-Bao; Yu, Shan-Shan; Liu, Shao-Xian; Zhang, Hui

    2017-02-14

    An iodoplumbate-based hybrid crystal [C2-Apy][PbI3] (1) (C2-Apy(+) = 1-ethyl-4-aminopyridinium) was synthesized and characterized structurally. Single crystal X-ray diffraction revealed that 1 crystallizes in the orthorhombic system with the space group Pnma at 150 K. Inorganic components form straight and face-sharing octahedral [PbI3]∞ chains and organic components form C2-Apy(+) cations that are incorporated into the space between the inorganic chains. A temperature-dependent single crystal structure indicates that there exists an order-disorder transition of the cation. The dynamic motion of the cation strongly influences the dielectric and emission features of 1. 1 shows a two-step dielectric response. The first step dielectric response at a low frequency is caused by direct current conduction and electrode polarization which have been proved by impedance spectra. The second dielectric response at a high frequency (10 kHz to 10 MHz) is related to the order-disorder transition of the alkyl chain and the dynamic motion of pyridyl rings. In addition, 1 shows multi-band emission, and different emission bands show different trends with the temperature change, which makes 1 exhibit thermochromic luminescence properties.

  6. Electric and magnetic response in dielectric dark states for low loss subwavelength optical meta atoms

    SciTech Connect

    Jain, Aditya; Moitra, Parikshit; Koschny, Thomas; Valentine, Jason; Soukoulis, Costas M.

    2015-07-14

    Artificially created surfaces or metasurfaces, composed of appropriately shaped subwavelength structures, namely, meta-atoms, control light at subwavelength scales. Historically, metasurfaces have used radiating metallic resonators as subwavelength inclusions. However, while resonant optical metasurfaces made from metal have been sufficiently subwavelength in the propagation direction, they are too lossy for many applications. Metasurfaces made out of radiating dielectric resonators have been proposed to solve the loss problem, but are marginally subwavelength at optical frequencies. We designed subwavelength resonators made out of nonradiating dielectrics. The resonators are decorated with appropriately placed scatterers, resulting in a meta-atom with an engineered electromagnetic response. A metasurface that yields an electric response is fabricated, experimentally characterized, and a method to obtain a magnetic response at optical frequencies is theoretically demonstrated. In conclusion, this design methodology paves the way for metasurfaces that are simultaneously subwavelength and low loss.

  7. Generalized regular singular-point description of low-frequency dielectric responses

    NASA Astrophysics Data System (ADS)

    Frenning, Göran; Nilsson, Martin; Strømme, Maria

    2004-07-01

    This paper presents a generalized regular singular-point (GRSP) model developed to account for dielectric spectra of the wide range of materials having a frequency response containing more than two power-law regions. In fact, the model is valid for an unlimited number of such regions, and is shown to provide a good description of the entire dielectric spectrum of tablets made of microcrystalline cellulose, including two relaxation peaks and power-law responses at low and high frequencies. This finding puts the GRSP model in a unique position, since no model existing in the literature is able to describe the totality of features present in the spectrum, without resorting to a superposition of more elementary responses.

  8. Electric and magnetic response in dielectric dark states for low loss subwavelength optical meta atoms

    DOE PAGES

    Jain, Aditya; Moitra, Parikshit; Koschny, Thomas; ...

    2015-07-14

    Artificially created surfaces or metasurfaces, composed of appropriately shaped subwavelength structures, namely, meta-atoms, control light at subwavelength scales. Historically, metasurfaces have used radiating metallic resonators as subwavelength inclusions. However, while resonant optical metasurfaces made from metal have been sufficiently subwavelength in the propagation direction, they are too lossy for many applications. Metasurfaces made out of radiating dielectric resonators have been proposed to solve the loss problem, but are marginally subwavelength at optical frequencies. We designed subwavelength resonators made out of nonradiating dielectrics. The resonators are decorated with appropriately placed scatterers, resulting in a meta-atom with an engineered electromagnetic response. Amore » metasurface that yields an electric response is fabricated, experimentally characterized, and a method to obtain a magnetic response at optical frequencies is theoretically demonstrated. In conclusion, this design methodology paves the way for metasurfaces that are simultaneously subwavelength and low loss.« less

  9. Elaboration of a finite element model of pancreatic islet dielectric response to gap junction expression and insulin release.

    PubMed

    Heileman, Khalil Leon; Daoud, Jamal; Tabrizian, Maryam

    2016-12-01

    Dielectric spectroscopy could potentially be a powerful tool to monitor isolated human pancreatic islets for applications in diabetes therapy and research. Isolated intact human islets provide the most relevant means to understand the cellular and molecular mechanisms associated with diabetes. The advantages of dielectric spectroscopy for continuous islet monitoring are that it is a non-invasive, inexpensive and real-time technique. We have previously assessed the dielectric response of human islet samples during stimulation and differentiation. Because of the complex geometry of islets, analytical solutions are not sufficiently representative to provide a pertinent model of islet dielectric response. Here, we present a finite element dielectric model of a single intact islet that takes into account the tight packing of islet cells and intercellular junctions. The simulation yielded dielectric spectra characteristic of cell aggregates, similar to those produced with islets. In addition, the simulation showed that both exocytosis, such as what occurs during insulin secretion, and differential gap junction expression have significant effects on islet dielectric response. Since the progression of diabetes has some connections with dysfunctional islet gap junctions and insulin secretion, the ability to monitor these islet features with dielectric spectroscopy would benefit diabetes research. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model

    NASA Astrophysics Data System (ADS)

    Ngai, K. L.

    2015-03-01

    Nonlinear dielectric measurements at high electric fields of glass-forming glycerol and propylene carbonate initially were carried out to elucidate the dynamic heterogeneous nature of the structural α-relaxation. Recently, the measurements were extended to sufficiently high frequencies to investigate the nonlinear dielectric response of faster processes including the so-called excess wing (EW), appearing as a second power law at high frequencies in the loss spectra of many glass formers without a resolved secondary relaxation. While a strong increase of dielectric constant and loss is found in the nonlinear dielectric response of the α-relaxation, there is a lack of significant change in the EW. A surprise to the experimentalists finding it, this difference in the nonlinear dielectric properties between the EW and the α-relaxation is explained in the framework of the coupling model by identifying the EW investigated with the nearly constant loss (NCL) of caged molecules, originating from the anharmonicity of the intermolecular potential. The NCL is terminated at longer times (lower frequencies) by the onset of the primitive relaxation, which is followed sequentially by relaxation processes involving increasing number of molecules until the terminal Kohlrausch α-relaxation is reached. These intermediate faster relaxations, combined to form the so-called Johari-Goldstein (JG) β-relaxation, are spatially and dynamically heterogeneous, and hence exhibit nonlinear dielectric effects, as found in glycerol and propylene carbonate, where the JG β-relaxation is not resolved and in D-sorbitol where it is resolved. Like the linear susceptibility, χ1(f), the frequency dispersion of the third-order dielectric susceptibility, χ3(f), was found to depend primarily on the α-relaxation time, and independent of temperature T and pressure P. I show this property of the frequency dispersions of χ1(f) and χ3(f) is the characteristic of the many-body relaxation dynamics of

  11. Dielectric response variation and the strength of van der Waals interactions.

    PubMed

    Hopkins, Jaime C; Dryden, Daniel M; Ching, Wai-Yim; French, Roger H; Parsegian, V Adrian; Podgornik, Rudolf

    2014-03-01

    Small changes in the dielectric response of a material result in substantial variations in the Hamaker coefficient of the van der Waals interactions, as demonstrated in a simplified approximate model as well as a realistic example of amorphous silica with and without an exciton peak. Variation of the dielectric response spectra at one particular frequency influences all terms in the Matsubara summation, making the total change in the Hamaker coefficient depend on the spectral changes not only at that frequency but also at the rest of the spectrum, properly weighted. The Matsubara terms most affected by the addition of a single peak are not those close to the position of the added peak, but are distributed doubly non-locally over the entire range of frequencies. A possibility of eliminating van der Waals interactions or at least drastically reducing them by spectral variation in a narrow regime of frequencies thus seems very remote.

  12. Colossal magnetodielectric effect and spin flop in magnetoelectric Co{sub 4}Nb{sub 2}O{sub 9} crystal

    SciTech Connect

    Yin, L. H. E-mail: ypsun@issp.ac.cn; Yang, J.; Dai, J. M.; Song, W. H.; Zhu, X. B.; Zou, Y. M.; Sun, Y. P. E-mail: ypsun@issp.ac.cn

    2016-07-18

    We have investigated the detailed magnetic, magnetoelectric (ME), magnetodielectric (MD) and thermal expansion properties in Co{sub 4}Nb{sub 2}O{sub 9} crystal. A magnetic-field-induced spin flop was observed below antiferromagnetic (AFM) transition temperature T{sub N}. Dielectric constant at applied magnetic field nearly diverges around the AFM transition, giving rise to a colossal MD effect as high as ∼138% around T{sub N}. Theoretical analysis of the ME and MD data revealed a major contribution of critical spin fluctuation to the colossal MD effect in Co{sub 4}Nb{sub 2}O{sub 9}. These results suggest that linear ME materials with large ME coupling might be potentially used to realize large MD effect for future application.

  13. Dielectric Spectroscopy of Semiconductors: Interpretation of the Frequency Response of Trapping Processes in Semiconductors.

    DTIC Science & Technology

    1987-12-01

    Semiconductor Statistics , Pergamon, Oxford, 1962 21. H J Queisser, Phys Rev Letters 54, 234 (1985) 22. L A Dissado and R M Hill, Non-exponential... SEMICONDUCTORS FILE CO < INTERPRETATION OF THE FREQUENCY I RESPONSE OF TRAPPING PROCESSES CIN SEMICONDUCTORS SECOND PROGRESS REPORT ON CONTRACT DAJA 45-87-C...trapping proceses measured by the technique of Dielectric Spectroscopy of Semiconductors (DSS) reveals a ubiquitous and not generally recognised tendency

  14. Effect of organo-clay on the dielectric relaxation response of silicone rubber

    NASA Astrophysics Data System (ADS)

    Gharavi, N.; Razzaghi-Kashani, M.; Golshan-Ebrahimi, N.

    2010-02-01

    Dielectric elastomers are light weight, low-cost, highly deformable and fast response smart materials capable of converting electrical energy into mechanical work or vice versa. Silicone rubber is a well-known dielectric elastomer which is used as actuator, and in order to enhance the efficiency of this smart material, compounding of silicone rubber with various fillers can be carried out. The effect of organically modified montmorillonite (OMMT) nano-clay on improvement of dielectric properties, actuation stress and its relaxation response was considered in this study. OMMT was dispersed in room temperature vulcanized (RTV) silicone rubber, and a composite film was cast. Using an in-house actuation set-up, it was shown that the actuation stress for a given electric field intensity is higher for composites than that for pristine silicone rubber. Also, the time-dependent actuation response of the samples was evaluated, and it was shown that the characteristic relaxation time of the actuation stress for composites is less than for the pristine rubber as a result of OMMT addition.

  15. Inorganic backbone ionomers: Design and dielectric response of single-ion conducting polymers

    NASA Astrophysics Data System (ADS)

    Bartels, Joshua

    analysis of the static dielectric constant and show excellent agreement with x-ray scattering and DFT calculations, each ionomer strongly favoring the formation of quadrupoles. Finally a polysiloxane ionomer was considered and was mixed with three anion and/or cation solvating additives, tetraglyme, tetraethylene glycol, and branched poly(ethylenimine). The EP model of the dielectric response gives the conducting ion concentration and the mobility of conducting ions and shows an increase in conducting ion concentration with both anion solvating and cation solvating additives. The static dielectric constant indicates an increased preference for ion pairs when anion receptors are present. Most interestingly, the additive that best decreased the glass transition temperature and increased the static dielectric constant did not result in the best dc conductivity. The best dc conductivity resulted from tetraglyme because it solvated cations without interacting with the polymer. High ion conductivities have not been observed in polymer systems that decouple charge transport from polymer motion, and therefore low Tg ionomers are the natural path forward for commercially viable ionomers. Inorganic backbone polymers impart a low Tg without bringing any strong disadvantage to ionomers. These materials are very important for developing superior ion conductors and should be pursued in future ionomer research.

  16. Slow Debye-type peak observed in the dielectric response of polyalcohols

    NASA Astrophysics Data System (ADS)

    Bergman, Rikard; Jansson, Helén; Swenson, Jan

    2010-01-01

    Dielectric relaxation spectroscopy of glass forming liquids normally exhibits a relaxation scenario that seems to be surprisingly general. However, the relaxation dynamics is more complicated for hydrogen bonded liquids. For instance, the dielectric response of monoalcohols is dominated by a mysterious Debye-like process at lower frequencies than the structural α-relaxation that is normally dominating the spectra of glass formers. For polyalcohols this process has been thought to be absent or possibly obscured by a strong contribution from conductivity and polarization effects at low frequencies. We here show that the Debye-like process, although much less prominent, is also present in the response of polyalcohols. It can be observed in the derivative of the real part of the susceptibility or directly in the imaginary part if the conductivity contribution is reduced by covering the upper electrode with a thin Teflon layer. We report on results from broadband dielectric spectroscopy studies of several polyalcohols: glycerol, xylitol, and sorbitol. The findings are discussed in relation to other experimental observations of ultraslow (i.e., slower than the viscosity related α-relaxation) dynamics in glass formers.

  17. Spectral response of dielectric nano-antennas in the far- and near-field regimes

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Y.; Barreda, Á. I.; González, F.; Moreno, F.

    2016-03-01

    Recent studies show that the spectral behaviour of localized surface plasmon resonances (LPSRs) in metallic nanoparticles suffer from both a redshift and a broadening in the transition from the far- to the near-field regimes. An interpretation of this effect was given in terms of the evanescent and propagating components of the angular spectrum representation of the radiated field. Due to the increasing interest awakened by magnetodielectric materials as a both low-loss material option for nanotechnology applications, and also for their particular scattering properties, here we study the spectral response of a magnetodielectric nanoparticle as a basic element of a dielectric nano-antenna. This study is made by analyzing the changes suffered by the scattered electromagnetic field when propagating from the surface of this dielectric nanostructure to the far-zone in terms of propagating and evanescent plane wave components of the radiated fields.

  18. All-dielectric perforated metamaterials with toroidal dipolar response (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Stenishchev, Ivan; Basharin, Alexey A.

    2017-05-01

    We present metamaterials based on dielectric slab with perforated identical cylindrical clusters with perforated holes, which allow to support the toroidal dipolar response due to Mie-resonances in each hole. Note that proposed metamaterial is technologically simple for fabrication in optical frequency range. Metamaterial can be fabricated by several methods. For instance, we may apply the molecular beam epitaxy method for deposition of Si or GaAs layers, which have permittivity close to 16. Next step, nanometer/micrometer holes are perforated by focused ion beam method or laser cutting method. Fundamental difference of proposed metamaterial is technological fabrication process. Classically all- dielectric optical metamaterials consist of nano-spheres or nano-discs, which are complicated for fabrication, while our idea and suggested metamaterials are promising prototype of various optical/THz all-dielectic devices as sensor, nano-antennas elements for nanophotonics.

  19. Non-Debye Dielectric Response and non-Arrhenius Kinetics in Complex Systems at Mesoscale

    NASA Astrophysics Data System (ADS)

    Feldman, Yu.; Puzenko, A.; Ryabov, Ya.; Gutina, A.

    2004-04-01

    The paper considers several examples of non-Debye dielectric response in complex heterogeneous media. The percolation phenomenon and Cole-Cole relaxation in disordered matter are discussed in detail. The models enable us to establish the relationship between the parameters of dielectric relaxation broadening, structural properties of the media and transport features of charge carriers in the considered systems. In addition, the origins of "strange kinetic" phenomena and the specific features of relaxation kinetics in systems with different kinds of confinements are discussed in the paper. In contrast to the usual Arrhenius or Vogel-Fulcher-Tammann patterns, a quite unusual non-monotonic dependence of relaxation time versus temperature is observed in such systems. Based on the free volume concept, a model for this type of kinetics was illustrated by several particular examples: water confined in porous glasses and doped ferroelectric crystal.

  20. Dielectric response of electron-doped ionic superconductor LixZrNCl

    NASA Astrophysics Data System (ADS)

    Botana, Antia S.; Pickett, Warren E.

    2014-09-01

    When electron doped, the layered transition metal nitrides TNCl (T =group IVB transition metal ion) become impressive superconductors with critical temperature Tc=15-26 K. Here we take the most studied member ZrNCl as a representative and calculate the dielectric response ɛ (ω) versus frequency and concentration of doped electronic carriers. The static dielectric constant ɛ∞=5 is reproduced extremely well. We establish that the differences between rigid band modeling and virtual crystal treatment are small, and compare also with actual lithium doping using supercells. We obtain the variations upon changing the doping level of the reflectivity and energy loss function as well, many of which are found not to be correlated with the observed (non)variation of Tc(x). The main plasmon peaks appear where the electron gas model suggests, in the range 1.2-2.0 eV for x varying from 0.16 to 0.50.

  1. Lattice strain accompanying the colossal magnetoresistance effect in EuB6.

    PubMed

    Manna, Rudra Sekhar; Das, Pintu; de Souza, Mariano; Schnelle, Frank; Lang, Michael; Müller, Jens; von Molnár, Stephan; Fisk, Zachary

    2014-08-08

    The coupling of magnetic and electronic degrees of freedom to the crystal lattice in the ferromagnetic semimetal EuB(6), which exhibits a complex ferromagnetic order and a colossal magnetoresistance effect, is studied by high-resolution thermal expansion and magnetostriction experiments. EuB(6) may be viewed as a model system, where pure magnetism-tuned transport and the response of the crystal lattice can be studied in a comparatively simple environment, i.e., not influenced by strong crystal-electric field effects and Jahn-Teller distortions. We find a very large lattice response, quantified by (i) the magnetic Grüneisen parameter, (ii) the spontaneous strain when entering the ferromagnetic region, and (iii) the magnetostriction in the paramagnetic temperature regime. Our analysis reveals that a significant part of the lattice effects originates in the magnetically driven delocalization of charge carriers, consistent with the scenario of percolating magnetic polarons. A strong effect of the formation and dynamics of local magnetic clusters on the lattice parameters is suggested to be a general feature of colossal magnetoresistance materials.

  2. DIFFERENTIAL DIELECTRIC RESPONSES OF CHONDROCYTE AND JURKAT CELLS IN ELECTROMANIPULATION BUFFERS

    PubMed Central

    Sabuncu, Ahmet C.; Asmar, Anthony J.; Stacey, Michael W.; Beskok, Ali

    2015-01-01

    Electromanipulation of cells as a label free cell manipulation and characterization tool has gained particular interest recently. However, the applicability of electromanipulation, particularly dielectrophoresis (DEP), to biological cells is limited to cells suspended in buffers containing lower amounts of salts relative to the physiological buffers. One might question the use of low conductivity buffers (LCB) for DEP separation, as cells are stressed in buffers lacking physiological levels of salt. In LCB, cells leak ions and undergo volume regulation. Therefore, cells exhibit time-dependent DEP response in LCB. In this work, cellular changes in LCB are assessed by dielectric spectroscopy, cell viability assay, and gene expression of chondrocytes and Jurkats. Results indicate leakage of ions from cells, increases in cytoplasmic conductivity, membrane capacitance and conductance. Separability factor, which defines optimum conditions for DEP cell separation, for the two cell types is calculated using the cellular dielectric data. Optimum DEP separation conditions change as cellular dielectric properties evolve in LCB. Genetic analyses indicate no changes in expression of ionic channel proteins for chondrocytes suspended in LCB. Retaining cellular viability might be important during dielectrophoretic separation, especially when cells are to be biologically tested at a downstream microfluidic component. PMID:25958778

  3. Differential dielectric responses of chondrocyte and Jurkat cells in electromanipulation buffers.

    PubMed

    Sabuncu, Ahmet C; Asmar, Anthony J; Stacey, Michael W; Beskok, Ali

    2015-07-01

    Electromanipulation of cells as a label-free cell manipulation and characterization tool has gained particular interest recently. However, the applicability of electromanipulation, particularly dielectrophoresis (DEP), to biological cells is limited to cells suspended in buffers containing lower amounts of salts relative to the physiological buffers. One might question the use of low conductivity buffers (LCBs) for DEP separation, as cells are stressed in buffers lacking physiological levels of salt. In LCB, cells leak ions and undergo volume regulation. Therefore, cells exhibit time-dependent DEP response in LCB. In this work, cellular changes in LCB are assessed by dielectric spectroscopy, cell viability assay, and gene expression of chondrocytes and Jurkats. Results indicate leakage of ions from cells, increases in cytoplasmic conductivity, membrane capacitance, and conductance. Separability factor, which defines optimum conditions for DEP cell separation, for the two cell types is calculated using the cellular dielectric data. Optimum DEP separation conditions change as cellular dielectric properties evolve in LCB. Genetic analyses indicate no changes in expression of ionic channel proteins for chondrocytes suspended in LCB. Retaining cellular viability might be important during dielectrophoretic separation, especially when cells are to be biologically tested at a downstream microfluidic component. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A method for measuring the nonlinear response in dielectric spectroscopy through third harmonics detection.

    PubMed

    Thibierge, C; L'Hôte, D; Ladieu, F; Tourbot, R

    2008-10-01

    We present a high sensitivity method allowing the measurement of the nonlinear dielectric susceptibility of an insulating material at finite frequency. It has been developed for the study of dynamic heterogeneities in supercooled liquids using dielectric spectroscopy at frequencies 0.05 Hz < or = f < or = 3x10(4) Hz. It relies on the measurement of the third harmonics component of the current flowing out of a capacitor. We first show that standard laboratory electronics (amplifiers and voltage sources) nonlinearities lead to limits on the third harmonics measurements that preclude reaching the level needed by our physical goal, a ratio of the third harmonics to the fundamental signal about 10(-7). We show that reaching such a sensitivity needs a method able to get rid of the nonlinear contributions both of the measuring device (lock-in amplifier) and of the excitation voltage source. A bridge using two sources fulfills only the first of these two requirements, but allows to measure the nonlinearities of the sources. Our final method is based on a bridge with two plane capacitors characterized by different dielectric layer thicknesses. It gets rid of the source and amplifier nonlinearities because in spite of a strong frequency dependence of the capacitor impedance, it is equilibrated at any frequency. We present the first measurements of the physical nonlinear response using our method. Two extensions of the method are suggested.

  5. A method for measuring the nonlinear response in dielectric spectroscopy through third harmonics detection

    NASA Astrophysics Data System (ADS)

    Thibierge, C.; L'Hôte, D.; Ladieu, F.; Tourbot, R.

    2008-10-01

    We present a high sensitivity method allowing the measurement of the nonlinear dielectric susceptibility of an insulating material at finite frequency. It has been developed for the study of dynamic heterogeneities in supercooled liquids using dielectric spectroscopy at frequencies 0.05 Hz≤f≤3×104 Hz. It relies on the measurement of the third harmonics component of the current flowing out of a capacitor. We first show that standard laboratory electronics (amplifiers and voltage sources) nonlinearities lead to limits on the third harmonics measurements that preclude reaching the level needed by our physical goal, a ratio of the third harmonics to the fundamental signal about 10-7. We show that reaching such a sensitivity needs a method able to get rid of the nonlinear contributions both of the measuring device (lock-in amplifier) and of the excitation voltage source. A bridge using two sources fulfills only the first of these two requirements, but allows to measure the nonlinearities of the sources. Our final method is based on a bridge with two plane capacitors characterized by different dielectric layer thicknesses. It gets rid of the source and amplifier nonlinearities because in spite of a strong frequency dependence of the capacitor impedance, it is equilibrated at any frequency. We present the first measurements of the physical nonlinear response using our method. Two extensions of the method are suggested.

  6. On the dielectric response of complex layered oxides: Mica-type silicates and layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Mehrotra, Vivek; Giannelis, Emmanuel P.

    1992-08-01

    The dielectric properties of mica-type silicates and layered double hydroxides have been studied in the pristine and various intercalated forms in the frequency range 101-107 Hz. A relaxation peak has been observed for the pristine silicate, whereas the pristine layered double hydroxide exhibits an anomalous low-frequency dispersion. The dielectric response is rationalized in terms of structural ordering and fluctuation of charge carriers as well as models invoking fractal time processes and fractal structure. The response is also related to the structure and mobility of the intercalated water molecules. In both pristine hosts, the predominant conduction mechanism is proton hopping between sites generated by a network of intercalated water molecules. Silicate intercalated with the insulating form of polyaniline exhibits an almost frequency-independent response. In the case of conducting polyaniline intercalated silicate, where polarons are the majority charge carriers, an anomalous low-frequency dispersion is observed and the response is typical of a metal-insulator composite. Finally, impedance measurements have been used to calculate the spatial disorder and/or surface irregularity of the host layers, expressed by the fractal dimension ds. The changes observed in ds upon intercalation of high-charge ions are correlated to the stacking disorder of the host layers.

  7. Dielectric and electrical studies of Pr{sup 3+} doped nano CaSiO{sub 3} perovskite ceramics

    SciTech Connect

    Kulkarni, Sandhya; Nagabhushana, B.M.; Parvatikar, Narsimha; Koppalkar, Anilkumar; Shivakumara, C.; Damle, R.

    2014-02-01

    Highlights: • CaSiO{sub 3}:Pr{sup 3+} was prepared by facile low temperature solution combustion method. • The crystalline phase of the product is obtained by adopting sintering method. • Samples prepared at 500 °C and calcined at 900 °C for 3 h showed β-phase. • The Pr{sup 3+} doped CaSiO{sub 3} shows “unusual results”. • The electrical microstructure has been accepted to be of internal barrier layer capacitor. - Abstract: CaSiO{sub 3} nano-ceramic powder doped with Pr{sup 3+} has been prepared by solution combustion method. The powder Ca{sub 0.95}Pr{sub 0.05}SiO{sub 3} is investigated for its dielectric and electrical properties at room temperature to study the effect of doping. The sample is characterized by X-ray diffraction and infrared spectroscopy. The size of either of volume elements of CaSiO{sub 3}:Pr{sup 3+} estimated from transmission electron microscopy is about 180–200 nm. The sample shows colossal dielectric response at room temperature. This colossal dielectric behaviour follows Debye-type relaxation and can be explained by Maxwell–Wagner (MW) polarization. However, analysis of impedance and electric modulus data using Cole–Cole plot shows that it deviates from ideal Debye behaviour resulting from the distribution of relaxation times. The distribution in the relaxation times may be attributed to existence of electrically heterogeneous grains, insulating grain boundary, and electrode contact regions. Doping, thus, results in substantial modifications in the dielectric and electrical properties of the nano-ceramic CaSiO{sub 3}.

  8. Effect of initial stretch ratio on the electromechanical responses of dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Dai, Huliang; Zou, Jiangjiang; Wang, Lin

    2016-05-01

    In this paper, the dynamic responses of a dielectric elastomer actuator (DEA) subjected to an electrical load are investigated. Various dynamical behaviors of the DEA system have been observed. For example, when the DEAs are under a constant electric field, the oscillation is periodic. For DEAs under harmonic electric excitation, however, quasiperiodic and chaotic oscillations may occur. Of particular interest is that the initial stretch ratio has significant influence on the electromechanical behavior of the DEA, showing that chaotic divergent oscillation (i.e., extreme contraction with respect to the height of the DEA) could occur within a certain parameter region of the initial stretch ratios.

  9. Dielectric Response of Glass-Forming Liquids in the Nonlinear Regime

    NASA Astrophysics Data System (ADS)

    Samanta, Subarna

    Broadband dielectric spectroscopy is a powerful technique for understanding the dynamics in supercooled liquids. It generates information about the timescale of the orientational motions of molecular dipoles within the liquid. However, dynamics of liquids measured in the non-linear response regime has recently become an area of significant interest, because additional information can be obtained compared with linear response measurements. The first part of this thesis describes nonlinear dielectric relaxation experiments performed on various molecular glass forming-liquids, with an emphasis on the response at high frequencies (excess wing). A significant nonlinear dielectric effect (NDE) was found to persist in these modes, and the magnitude of this NDE traces the temperature dependence of the activation energy. A time resolved measurement technique monitoring the dielectric loss revealed that for the steady state NDE to develop it would take a very large number of high amplitude alternating current (ac) field cycles. High frequency modes were found to be 'slaved' to the average structural relaxation time, contrary to the standard picture of heterogeneity. Nonlinear measurements were also performed on the Johari-Goldstein beta-relaxation process. High ac fields were found to modify the amplitudes of these secondary modes. The nonlinear features of this secondary process are reminiscent of those found for the excess wing regime, suggesting that these two contributions to dynamics have common origins. The second part of this thesis describes the nonlinear effects observed from the application of high direct current (dc) bias fields superposed with a small amplitude sinusoidal ac field. For several molecular glass formers, the application of a dc field was found to slow down the system via reduction in configurational entropy (Adam-Gibbs relation). Time resolved measurements indicated that the rise of the non-linear effect is slower than its decay, as observed in the

  10. Contributions to the second order dielectric response of an electron liquid

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.; Miesenboeck, Helga M.; Macke, Wilhelm

    1988-06-01

    The dielectric response function χ of a uniform electron gas is investigated up to the second order of the Coulomb interaction with different methods. When examining all polarisation diagrams with two interaction lines, it is confirmed that previous work in the Green's function formalism does not contain all second order processes and the importance of the corrections is pointed out. It is further shown, how the evaluation of χ with Green's function can be greatly simplified when taking into account the symmetry of the expressions.

  11. Dielectric response change of pressboard immersed with mineral oil after replacing insulating liquid with synthetic ester

    NASA Astrophysics Data System (ADS)

    Fatyga, P.

    2016-02-01

    The manufacturer of synthetic ester claims that replacing mineral oil with his product does not affect the work of the unit. Despite assurances, this information should be treated cautiously. Insulating liquid replacement, i.e. substitution of oil with ester, and especially intermediate stages of this process can cause problems while evaluating solid insulation moisture of the transformer done by means of the most commonly applied FDS indirect method. The article presents results of model investigations of the dielectric response of pressboard samples immersed with mineral oil, which was replaced with synthetic ester afterwards.

  12. Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model

    SciTech Connect

    Ngai, K. L.

    2015-03-21

    Nonlinear dielectric measurements at high electric fields of glass-forming glycerol and propylene carbonate initially were carried out to elucidate the dynamic heterogeneous nature of the structural α-relaxation. Recently, the measurements were extended to sufficiently high frequencies to investigate the nonlinear dielectric response of faster processes including the so-called excess wing (EW), appearing as a second power law at high frequencies in the loss spectra of many glass formers without a resolved secondary relaxation. While a strong increase of dielectric constant and loss is found in the nonlinear dielectric response of the α-relaxation, there is a lack of significant change in the EW. A surprise to the experimentalists finding it, this difference in the nonlinear dielectric properties between the EW and the α-relaxation is explained in the framework of the coupling model by identifying the EW investigated with the nearly constant loss (NCL) of caged molecules, originating from the anharmonicity of the intermolecular potential. The NCL is terminated at longer times (lower frequencies) by the onset of the primitive relaxation, which is followed sequentially by relaxation processes involving increasing number of molecules until the terminal Kohlrausch α-relaxation is reached. These intermediate faster relaxations, combined to form the so-called Johari-Goldstein (JG) β-relaxation, are spatially and dynamically heterogeneous, and hence exhibit nonlinear dielectric effects, as found in glycerol and propylene carbonate, where the JG β-relaxation is not resolved and in D-sorbitol where it is resolved. Like the linear susceptibility, χ{sub 1}(f), the frequency dispersion of the third-order dielectric susceptibility, χ{sub 3}(f), was found to depend primarily on the α-relaxation time, and independent of temperature T and pressure P. I show this property of the frequency dispersions of χ{sub 1}(f) and χ{sub 3}(f) is the characteristic of the many

  13. Oxygen flux and dielectric response study of Mixed Ionic-Electronic Conducting (MIEC) heterogeneous functional materials

    NASA Astrophysics Data System (ADS)

    Rabbi, Fazle

    -50%CFO and 80%GDC-20%CFO mixtures. Material characterization suggests the emergence of a third phase contributing to the behavior. Microstructural studies suggested changes in micro-structure of a given volume fraction for different sintering temperature and sintering time. Flux variation was observed for membranes with the same constituent volume fraction but different micro-structure indicating the effects of the micro-structure on the overall oxygen permeation. To correlate the experimental flux measurement with a standard Wagner's flux equation, different microstructural characteristics were studied to incorporate them into a modified Wagner's flux equation. In-situ broadband dielectric spectroscopy measurements over a temperature range of 850°C-1060°C and frequency range of (0.1Hz-1MHz) of the operating 60%GDC-40%CFO mixture oxygen separation membranes were measured using a NOVOCONTROL dielectric spectroscopy test system. Dielectric response of the operating membrane was studied to identify the charge transfer process in the membrane. A computational model to study the dielectric impedance response of different microstructure was developed using a COMSOL(TM) Multiphysics qasi-static electromagnetic module. This model was validated using model materials with regular geometric shapes. To measure impedance of real micro/nano-structures of the membrane material, domains required for the COMSOL calculation were obtained from actual micro/nano structures by using 3D scans from X-ray nano and micro tomography. Simpleware(TM) software was used to generate 3D domains from image slices obtained from the 3D x-ray scans. Initial voltage distributions on the original microstructure were obtained from the computational model. Similarly, development of a primary model for simulating ionic/electronic species flow inside of an MIEC was also begun. The possibility of using broadband dielectric spectroscopy methods to understand and anticipate the flux capabilities of MIECs to

  14. Why the dipolar response in dielectrics and spin-glasses is unavoidably universal.

    PubMed

    Cuervo-Reyes, Eduardo

    2016-07-01

    Materials response to electric or magnetic fields is often dominated by the dynamics of dipoles in the system. This is for instance the case of polar dielectrics and many transition metal compounds. An essential and not yet well understood fact is that, despite their structural diversity, dielectric solids exhibit a striking universality of frequency and time responses, sharing many aspects with the behaviour of spin-glasses. In this article I propose a stochastic approach to dipole dynamics within which the "universal frequency response" derives naturally with Debye's relaxation mechanism as a special case. This formulation reveals constraints to the form of the relaxation functions, which are essential for a consistent representation of the dynamical slowing-down at the spin-glass transition. Relaxation functions with algebraic-, and exponential-tails, as well as damped oscillations, are shown to have a unified representation in which the stable limit of the distribution of waiting-times between dipole flips determines the present type of dynamics.

  15. Structural and dielectric properties of La0.8Te0.2MnO3

    NASA Astrophysics Data System (ADS)

    Husain, Shahid; Bhat, Irshad; Khan, Wasi; Al-Khataby, Lila

    2013-03-01

    We have studied the structural and dielectric properties of La0.8Te0.2MnO3 pervoskite compound, has a rhombohedral structure with space group R-3c, at room temperature. Infrared spectrum shows two active bands located at 611 and 410 cm-1, which can be ascribed to the internal stretching and bending phonon modes. The additional bands observed at 925, 969 and 1383 cm-1 are attributed to the multiphonon scattering. The dielectric constant ɛ' shows a step like relaxation behaviour and has been discussed with in the frame work of the Kramers-Kronig transformation model. The ac conductivity follows a universal dielectric response (UDR), and the results were discussed and fitted with the Jump relaxation model (JRM). The occurrence of giant or colossal dielectric constant is most likely due to electrode polarization or interface polarization effect. The depletion layers are arising due to the formation of Schottky barriers at the metallic contacts of semiconducting samples, which may be formed by grain boundaries, can give rise to Maxwell-Wagner type relaxation and apparently very high dielectric constants.

  16. Dielectric function beyond the random-phase approximation: kinetic theory versus linear response theory.

    PubMed

    Reinholz, H; Röpke, G

    2012-03-01

    Calculating the frequency-dependent dielectric function for strongly coupled plasmas, the relations within kinetic theory and linear response theory are derived and discussed in comparison. In this context, we give a proof that the Kohler variational principle can be extended to arbitrary frequencies. It is shown to be a special case of the Zubarev method for the construction of a nonequilibrium statistical operator from the principle of the extremum of entropy production. Within kinetic theory, the commonly used energy-dependent relaxation time approach is strictly valid only for the Lorentz plasma in the static case. It is compared with the result from linear response theory that includes electron-electron interactions and applies for arbitrary frequencies, including bremsstrahlung emission. It is shown how a general approach to linear response encompasses the different approximations and opens options for systematic improvements.

  17. Electronic Structure, Dielectric Response, and Surface Charge Distribution of RGD (1FUV) Peptide

    NASA Astrophysics Data System (ADS)

    Adhikari, Puja; Wen, Amy M.; French, Roger H.; Parsegian, V. Adrian; Steinmetz, Nicole F.; Podgornik, Rudolf; Ching, Wai-Yim

    2014-07-01

    Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor.

  18. Electronic structure, dielectric response, and surface charge distribution of RGD (1FUV) peptide.

    PubMed

    Adhikari, Puja; Wen, Amy M; French, Roger H; Parsegian, V Adrian; Steinmetz, Nicole F; Podgornik, Rudolf; Ching, Wai-Yim

    2014-07-08

    Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor.

  19. Ab-initio optical properties and dielectric response of open-shell spinel zinc ferrite

    NASA Astrophysics Data System (ADS)

    Ziaei, Vafa; Bredow, Thomas

    2017-02-01

    In the present work, we predict the optical properties and the dielectric response spectrum of the spinel zinc ferrite Zn2Fe4O8, and show in particular the impact of many-body effects on the absorption spectrum, using advanced many-body perturbation approach. The excitonic effects remarkably redistribute the spectral weights causing a red-shift of 1.6 eV of the maximum of the independent particle G 0 W 0 (IP- G 0 W 0) towards the electron-hole affected spectrum. The excitation spectrum of the zinc ferrite exhibits a low lying doubly degenerated bound dark exciton at 1.84 eV with a fully symmetric excited-state density, and a narrow optical gap setting on at 1.93 eV. We further analyse the electronic transitions and exciton density distributions giving insights to the nature of excitations. The dielectric response of Zn2Fe4O8 shows a particular sensitivity to the excitations higher than the electronic band gap, however it abruptly becomes passive to the incoming electro-magnetic wave and propagates to the negative regions at high energy regimes.

  20. Why the dipolar response in dielectrics and spin-glasses is unavoidably universal

    PubMed Central

    Cuervo-Reyes, Eduardo

    2016-01-01

    Materials response to electric or magnetic fields is often dominated by the dynamics of dipoles in the system. This is for instance the case of polar dielectrics and many transition metal compounds. An essential and not yet well understood fact is that, despite their structural diversity, dielectric solids exhibit a striking universality of frequency and time responses, sharing many aspects with the behaviour of spin-glasses. In this article I propose a stochastic approach to dipole dynamics within which the “universal frequency response” derives naturally with Debye’s relaxation mechanism as a special case. This formulation reveals constraints to the form of the relaxation functions, which are essential for a consistent representation of the dynamical slowing-down at the spin-glass transition. Relaxation functions with algebraic-, and exponential-tails, as well as damped oscillations, are shown to have a unified representation in which the stable limit of the distribution of waiting-times between dipole flips determines the present type of dynamics. PMID:27366866

  1. Why the dipolar response in dielectrics and spin-glasses is unavoidably universal

    NASA Astrophysics Data System (ADS)

    Cuervo-Reyes, Eduardo

    2016-07-01

    Materials response to electric or magnetic fields is often dominated by the dynamics of dipoles in the system. This is for instance the case of polar dielectrics and many transition metal compounds. An essential and not yet well understood fact is that, despite their structural diversity, dielectric solids exhibit a striking universality of frequency and time responses, sharing many aspects with the behaviour of spin-glasses. In this article I propose a stochastic approach to dipole dynamics within which the “universal frequency response” derives naturally with Debye’s relaxation mechanism as a special case. This formulation reveals constraints to the form of the relaxation functions, which are essential for a consistent representation of the dynamical slowing-down at the spin-glass transition. Relaxation functions with algebraic-, and exponential-tails, as well as damped oscillations, are shown to have a unified representation in which the stable limit of the distribution of waiting-times between dipole flips determines the present type of dynamics.

  2. Effects of high energy x ray and proton irradiation on lead zirconate titanate thin films' dielectric and piezoelectric response

    NASA Astrophysics Data System (ADS)

    Bastani, Y.; Cortés-Peña, A. Y.; Wilson, A. D.; Gerardin, S.; Bagatin, M.; Paccagnella, A.; Bassiri-Gharb, N.

    2013-05-01

    The effects of irradiation by X rays and protons on the dielectric and piezoelectric response of highly (100)-textured polycrystalline Pb(ZrxTi1-x)O3 (PZT) thin films have been studied. Low-field dielectric permittivity, remanent polarization, and piezoelectric d33,f response all degraded with exposure to radiation, for doses higher than 300 krad. At first approximation, the degradation increased at higher radiation doses, and was stronger in samples exposed to X rays, compared to the proton-irradiated ones. Nonlinear and high-field dielectric characterization suggest a radiation-induced reduction of the extrinsic contributions to the response, attributed to increased pinning of the domain walls by the radiation-induced point defects.

  3. Effects of high energy x ray and proton irradiation on lead zirconate titanate thin films' dielectric and piezoelectric response

    SciTech Connect

    Bastani, Y.; Cortes-Pena, A. Y.; Wilson, A. D.; Gerardin, S.; Bagatin, M.; Paccagnella, A.; Bassiri-Gharb, N.

    2013-05-13

    The effects of irradiation by X rays and protons on the dielectric and piezoelectric response of highly (100)-textured polycrystalline Pb(Zr{sub x}Ti{sub 1-x})O{sub 3} (PZT) thin films have been studied. Low-field dielectric permittivity, remanent polarization, and piezoelectric d{sub 33,f} response all degraded with exposure to radiation, for doses higher than 300 krad. At first approximation, the degradation increased at higher radiation doses, and was stronger in samples exposed to X rays, compared to the proton-irradiated ones. Nonlinear and high-field dielectric characterization suggest a radiation-induced reduction of the extrinsic contributions to the response, attributed to increased pinning of the domain walls by the radiation-induced point defects.

  4. Thermal analysis and temperature dependent dielectric responses of Co doped anatase TiO{sub 2} nanoparticles

    SciTech Connect

    Alamgir; Khan, Wasi; Ahammed, Nashiruddin; Naqvi, A. H.; Ahmad, Shabbir

    2015-05-15

    Nanoparticles (NPs) of pure and 5 mol % cobalt doped TiO{sub 2} synthesized through acid modified sol-gel method were characterized to understand their thermal, structural, morphological, and temperature dependent dielectric properties. Thermogravimetric analysis (TGA) has been used for thermal studies and indicates the weight loss in two steps due to the removal of residual organics. X-ray diffraction study was employed to confirm the formation of single anatase phase with tetragonal symmetry for both pure and 5 mol % Co doped TiO{sub 2} NPs. The average crystallite size of both samples was calculated from the Scherrer’s formula and was found in the range from 9-11 nm. TEM micrographs of these NPs reflect their shape and distribution. The dielectric constant (ε′), dielectric loss (tanδ) and ac conductivity (σ{sub ac}) were also studied as a function of temperature at different frequencies. Electrical responses of the synthesized NPs have been analyzed carefully in the framework of relevant models. It is also noticed that the dielectric constant (ε′) of the samples found to decrease with increasing frequency but increases with increasing temperature up to a particular value and then sharply decreases. Temperature variation of dielectric constant exhibits step like escalation and shows relaxation behavior. Study of dielectric properties shows dominant dependence on the grain size as well as Co ion incorporation in TiO{sub 2}.

  5. Ac-conductivity and dielectric response of new zinc-phosphate glass/metal composites

    NASA Astrophysics Data System (ADS)

    Maaroufi, A.; Oabi, O.; Lucas, B.

    2016-07-01

    The ac-conductivity and dielectric response of new composites based on zinc-phosphate glass with composition 45 mol%ZnO-55 mol%P2O5, filled with metallic powder of nickel (ZP/Ni) were investigated by impedance spectroscopy in the frequency range from 100 Hz to 1 MHz at room temperature. A high percolating jump of seven times has been observed in the conductivity behavior from low volume fraction of filler to the higher fractions, indicating an insulator - semiconductor phase transition. The measured conductivity at higher filler volume fraction is about 10-1 S/cm and is frequency independent, while, the obtained conductivity for low filler volume fraction is around 10-8 S/cm and is frequency dependent. Moreover, the elaborated composites are characterized by high dielectric constants in the range of 105 for conductive composites at low frequencies (100 Hz). In addition, the distribution of the relaxation processes was also evaluated. The Debye, Cole-Cole, Davidson-Cole and Havriliak-Negami models in electric modulus formalism were used to model the observed relaxation phenomena in ZP/Ni composites. The observed relaxation phenomena are fairly simulated by Davidson-Cole model, and an account of the interpretation of results is given.

  6. Optical dielectric response of gallium nitride studied by variable angle spectroscopy ellipsometry

    SciTech Connect

    Yao, H.; Yan, C.H.; Jenkinson, H.A.; Zavada, J.M.; Speck, J.S.; Denbaars, S.P.

    1997-12-31

    Variable angle spectroscopic ellipsometry (VASE) and transmission measurements have been employed to study the dielectric response of gallium nitride (GaN) thin films -- an important material for light emitting diodes (LEDs) and laser diodes applications. The GaN films were grown by atmosphere pressure metal organic chemical vapor deposition (MOCVD) on c-plane sapphire substrates ({alpha}-Al{sub 2}O{sub 3}). Room temperature VASE measurements were made, in the range of 0.75 to 5.5eV, at the angle of incidence of 73, 75, and 77 degree, respectively. Evidence of anisotropy is observed especially in the spectral range under the band gap ({approximately}3.4 eV), reflecting the nature of wurtzite crystal structure of GaN. The ordinary dielectric function {var_epsilon}{sub {perpendicular}}({omega}) of GaN were obtained through the analysis of transmission and VASE data in the range below and above the band gap. The thickness of these GaN films is also determined via the analysis.

  7. Peculiarities of the dielectric response of natural zeolite composites prepared by using zeolite and silicon powders

    NASA Astrophysics Data System (ADS)

    Ozturk Koc, S.; Orbukh, V. I.; Eyvazova, G. M.; Lebedeva, N. N.; Salamov, B. G.

    2016-03-01

    We present the real and imaginary part of the dielectric permittivity of natural zeolite composites prepared by using zeolite and silicon powders. The dielectric response (DR) dependences on the frequency (3-300 GHz) of electric field and different Si concentrations (5-33%) are non-monotonic and a maximum peak is observed. This peak position is practically independent on the frequency and its maximum is observed in zeolite composites which included 9% of the Si-powder. Also the maximum peak is decreased by about an order of magnitude when frequency increases from 500 Hz to 5 kHz. Addition of the conductive Si-particles to zeolite-powder leads to two opposite effects. Firstly, the movement of electrons in the Si-particles provides increase of DR. Secondly, cations which leaving from zeolite pores can be neutralized by the particles of Si in the intercrystalline-space. Such a peculiar mechanism for recombination of Si electrons and cations from pores leads to a reduction of DR for large silicon concentrations. Due to the fact that the contribution of free carriers in the decreasing of the DR as the frequency increases, it is consistent with the suggestion that the maximum peak decreases with increasing frequency.

  8. Constrained Molecular Dynamics Modeling of Dielectric Response in Polar Polyethylene Analogs and Poly(vinylidene flouride)

    NASA Astrophysics Data System (ADS)

    Calame, Jeffrey

    2013-03-01

    A simplified molecular dynamics formalism for polymers, having united atoms with constrained bond lengths and bond angles along the backbone but allowing torsional motion, has been developed to model the dielectric response and ferroelectricity in polymers with permanent dipoles. Analytic relations existing on the backbone geometry and associated dihedral motion allow elimination of many dot and cross product evaluations. Also, constraint error correcting forces, symplectic integration with velocity prediction, random force excitation with damping and a momentum-conserving thermostat, and rapid neighbor list and long range force computation allow efficient computation and time steps as large as 20 fs to enable the study of relatively long time scale dielectric phenomena. Studies are performed on non-polar polyethylene for benchmarking, followed by a model system (polar polyethylene) which retains the molecular structure, dihedral potentials, and non-bonded interactions of polyethylene, except artificial partial charges are placed on the united atoms. The modeling is extended to poly(vinylidene fluoride) by changes to the molecular structure, potentials, and charges. Heterogeneous systems containing crystalline and amorphous arrangements of polymer chains are studied. Work supported by the U.S. Office of Naval Research.

  9. Kinetic modeling of the electronic response of a dielectric plasma-facing solid

    NASA Astrophysics Data System (ADS)

    Bronold, Franz X.; Fehske, Holger

    2017-07-01

    We present a self-consistent kinetic theory for the electronic response of a plasma-facing dielectric solid. Based on the Poisson equation and two sets of spatially separated Boltzmann equations, one for electrons and ions in the plasma and one for conduction band electrons and valence band holes in the dielectric, the approach gives the quasi-stationary density and potential profiles of the electric double layer forming at the interface due to the permanent influx of electrons and ions from the plasma. The two sets of Boltzmann equations are connected by quantum-mechanical matching conditions for the electron distribution functions and a semi-empirical model for hole injection mimicking the neutralization of ions at the surface. Essential for the kinetic modeling is the ambipolarity inside the wall, leading to an electron-hole recombination condition, and the merging of the double layer with the quasi-neutral, field-free regions deep inside the wall and the plasma. To indicate the feasibility as well as the potential of the approach we apply it to a collisionless, perfectly absorbing interface using intrinsic and extrinsic silicon dioxide and silicon surfaces in contact with a two-temperature hydrogen plasma as an example.

  10. Solvation dynamics and the dielectric response in a glass-forming solvent: from picoseconds to seconds

    NASA Astrophysics Data System (ADS)

    Richert, R.; Stickel, F.; Fee, R. S.; Maroncelli, M.

    1994-10-01

    We have measured the response times of solvation dynamics in the range 100 ps to 100 s and the dielectric relaxation covering 10 decades in frequency for the glass-forming solvent 2-methyltetrahydrofuran. In this wide range of solvent viscosities, from the glass transition to beyond the melting point, the mean relaxation times for the two techniques which monitor dipolar orientation are identical within our resolution. For two characteristic decay traces recorded on the time scales of 10 ns and 1 s we compare the observed Stokes-shift dynamics with various theoretical approaches. The decay pattern is reproduced by the dipolar dynamic-mean-spherical-approximation, whereas the absolute time scale of the solvation is mapped by the dielectric polarization itself. For the solvent under study we find almost perfect agreement between experiment and the dipolar dMSA theory if the time scale of the predicted curve is rescaled by a factor of (epsilon(sub infinity)/epsilon(sub s))(exp 1/2).

  11. Inducing transparency with large magnetic response and group indices by hybrid dielectric metamaterials.

    PubMed

    Chen, Cheng-Kuang; Lai, Yueh-Chun; Yang, Yu-Hang; Chen, Chia-Yun; Yen, Ta-Jen

    2012-03-26

    We present metamaterial-induced transparency (MIT) phenomena with enhanced magnetic fields in hybrid dielectric metamaterials. Using two hybrid structures of identical-dielectric-constant resonators (IDRs) and distinct-dielectric-constant resonators (DDRs), we demonstrate a larger group index (ng~354), better bandwidth-delay product (BDP~0.9) than metallic-type metamaterials. The keys to enable these properties are to excite either the trapped mode or the suppressed mode resonances, which can be managed by controlling the contrast of dielectric constants between the dielectric resonators in the hybrid metamaterials.

  12. Stable dielectric response of low-loss aromatic polythiourea thin films on Pt/SiO2 substrate

    NASA Astrophysics Data System (ADS)

    Eršte, A.; Fulanović, L.; Čoga, L.; Lin, M.; Thakur, Y.; Zhang, Q. M.; Bobnar, V.

    2016-03-01

    We have investigated dielectric properties of aromatic polythiourea (ArPTU, a polar polymer containing high dipolar moments with very low defect levels) thin films that were developed on Pt/SiO2 substrate. The detected response is compared to the response of commercially available polymers, such as high density polyethylene (HDPE) and polypropylene (PP), which are at present used in foil capacitors. Stable values of the dielectric constant ɛ‧≈5 (being twice higher than in HDPE and PP) over broad temperature and frequency ranges and dielectric losses as low as in commercial systems suggest ArPTU as a promising candidate for future use in a variety of applications.

  13. Dielectric response of high permittivity polymer ceramic composite with low loss tangent

    SciTech Connect

    Subodh, G.; Deepu, V.; Mohanan, P.; Sebastian, M. T.

    2009-08-10

    The present communication investigates the dielectric response of the Sr{sub 9}Ce{sub 2}Ti{sub 12}O{sub 36} ceramics loaded high density polyethylene and epoxy resin. Sr{sub 9}Ce{sub 2}Ti{sub 12}O{sub 36} ceramic filled polyethylene and epoxy composites were prepared using hot blending and mechanical mixing, respectively. 40 vol % ceramic loaded polyethylene has relative permittivity of 12.1 and loss tangent of 0.004 at 8 GHz, whereas the corresponding composite using epoxy as matrix has permittivity and loss tangent of 14.1 and 0.022, respectively. The effective medium theory fits relatively well for the observed permittivity of these composites.

  14. The polarization response function and the dielectric permittivity of a plasma

    SciTech Connect

    Gnavi, G.; Gratton, F.

    1984-09-01

    We give a simple direct derivation of the polarization response function h for linear electrostatic excitations of a plasma (without magnetic field) considering the effect of a percussion on the electrons. The physical meaning of the procedure is discussed, thus bringing into light basic facts of the plasma dielectric behavior. The result h = S/sub p/ fo(x/t) (where f/sub o/ is the electron distribution function in velocity space and /sub p/ the plasma frequency) is obtained without passing through the Vlasov-Poisson equations as in the standard theory. We show that the equivalence between the present method and the classic Landau analysis rests on properties of the Fourier transform applied on velocity space.

  15. Low-frequency optical dielectric response and rigidity transitions in network glasses

    SciTech Connect

    Gonzalez-Leal, J. M.; Angel, J. A.; Marquez, E.; Jimenez-Garay, R.; Krecmer, P.

    2006-11-15

    Self-organization occurring in As{sub x}S{sub 1-x} and As{sub x}Se{sub 1-x} glass alloy films reflects in their low-frequency optical dielectric response, and valuable information about the building blocks conforming their structure, can be derived from the analysis of the refractive-index dispersion data. The experimental results are discussed in the framework of the single-oscillator approach proposed by Wemple and DiDomenico, which provides a meaningful parametrization of the phenomena ruling the coupling between the photon-probe and the electron plasma in the near-infrared spectral region. Rigidity transitions occurring in both binary glassy systems are discussed in terms of the differences observed in the oscillator parameters, and these electronic evidences are linked to those arguments found in the literature, based on calorimetric and Raman measurements, that point to a segregated-phase view of glass materials.

  16. Microfabricated, silicon devices with nanowells and nanogap electrodes: a platform for dielectric spectroscopy with silane-tunable response

    NASA Astrophysics Data System (ADS)

    Seifi Fini, Hassan; Suganuma, Yoshinori; Dhirani, Al-Amin

    2015-05-01

    Combining the advantages of nanogap devices and impedance spectroscopy can potentially provide a platform for dielectric spectroscopy with widely ranging applications—from fundamental studies at the nanoscale and surfaces to label free and selective sensors. The present study characterizes the impedance response of a microfabricated, silicon-based device with a large array of nanowells surrounded by annular, nanogap detection regions. Device impedance is measured versus frequency over 5 orders in a variety of organic solvents with dielectric constants ranging over 2 orders. The study finds two key results. First, an equivalent R/C circuit model is found to compare favorably with device impedance response over these wide ranges of parameters. Importantly, the model correlates with structure of the nanogap device, which suggests that such a structure-impedance response approach can help guide modeling of other devices geometries. Second, the model points to—and data confirm—correlation between nanogap device response and dielectric constant of materials in the nanogaps, particularly at low frequencies. In addition, the correlation is significantly modified by robust, silane functionalization of the devices due to a large surface-to-volume ratio of the nanogaps. These results demonstrate that nanogap impedance spectroscopy using microfabricated/silanized silicon devices is a robust and versatile platform for dielectric spectroscopy of materials on the nanoscale and on surfaces.

  17. Annealing effect on the dielectric response of novel polymer/nano-quasicrystalline composites

    NASA Astrophysics Data System (ADS)

    Venkatesh, Ch.; Rao, V. V.

    2013-06-01

    In the earlier paper (Ch. Venkatesh et al. Solid State Comm., 2010), a dielectric percolation has been reported in composites of nano-quasicrystalline (nQc) Al-Cu-Fe (filler) and polyvinylidene fluoride (PVDF) (matrix). Though a high value of dielectric constant is observed near to the percolation threshold, these composites show higher dielectric loss values at lower frequencies. An effect of annealing has been investigated on the same composites which lead to decrement in dielectric loss values appreciably. The low dielectric loss values have been attributed due to the formation of thick grain boundaries in polymer matrix which completely surrounds the nQc cluster that weakens the effective tunneling of charge carriers near the filler-polymer interfacial region. Finally, a dielectric constant of 500 with tanδ<1 at 1 KHz is observed which may make the composite useful for low loss capacitive applications.

  18. The effects of halide anions on the dielectric response of potassium halide solutions in visible, UV and far UV region.

    PubMed

    Shagieva, F M; Boinovich, L B

    2013-06-07

    Based on the experimentally measured dispersion of refractive indices, we studied the effects of halide anions on the dielectric response of potassium halide solutions in the visible, UV and far UV regions. It was shown that a specific ion effect according to the Hofmeister series is clearly demonstrated for the visible range of spectra. For the near-, mid-, and far UV ranges of spectra, the specific ion effect essentially depends on solution concentration and temperature. The influence of ions on the behavior of dynamic dielectric permittivity of a solution is discussed on the basis of ion/water and ion/ion electrostatic and electrodynamic interactions and hydration shell structure.

  19. Colossal anisotropy of the magnetic properties of doped lithium nitrodometalates

    SciTech Connect

    Antropov, Vladimir P; Antonov, Victor N

    2014-09-01

    We present a first-principles investigation of the electronic structure and physical properties of doped lithium nitridometalates Li2(Li1-xMx)N (LiMN) with M = Cr, Mn, Fe, Co, and Ni. The diverse properties include the equilibrium magnetic moments, magneto-crystalline anisotropy, magneto-optical Kerr spectra, and x-ray magnetic circular dichroism. We explain the colossal magnetic anisotropy in LiFeN by its unique electronic structure which ultimately leads to a series of unusual physical properties. The most unique property is a complete suppression of relativistic effects and freezing of orbital moments for in-plane orientation of the magnetization. This leads to the colossal spatial anisotropy of many magnetic properties including energy, Kerr, and dichroism effects. LiFeN is identified as an ultimate single-ion anisotropy system where a nearly insulating state can be produced by a spin orbital coupling alone. A very nontrivial strongly fluctuating and sign changing character of the magnetic anisotropy with electronic 3d-atomic doping is predicted theoretically. A large and highly anisotropic Kerr effect due to the interband transitions between atomic-like Fe 3d bands is found for LiFeN. A giant anisotropy of the x-ray magnetic circular dichroism for the Fe K spectrum and a very weak one for the Fe L2,3 spectra in LiFeN are also predicted.

  20. Electrical conductivity, dielectric response and space charge dynamics of an electroactive polymer with and without nanofiller reinforcement

    NASA Astrophysics Data System (ADS)

    Kochetov, R.; Tsekmes, I. A.; Morshuis, P. H. F.

    2015-07-01

    Electroactive polymers have gained considerable attention over the last 20 years for exhibiting a large displacement in response to electrical stimulation. The promising fields of application include wave energy converters, muscle-like actuators, sensors, robotics, and biomimetics. For an electrical engineer, electroactive polymers can be seen as a dielectric elastomer film or a compliant capacitor with a highly deformable elastomeric medium. If the elastomer is pre-stretched and pre-charged, a reduction of the tensile force lets the elastomer revert to its original form and increases the electrical potential. The light weight of electroactive polymers, low cost, high intrinsic breakdown strength, cyclical way of operation, reliable performance, and high efficiency can be exploited to utilize the elastomeric material as a transducer. The energy storage for a linear dielectric polymer is determined by its relative permittivity and the applied electric field. The latter is limited by the dielectric breakdown strength of the material. Therefore, to generate a high energy density of a flexible capacitor, the film must be used at the voltage level close to the material’s breakdown or inorganic particles with high dielectric permittivity which can be introduced into the polymer matrix. In the present study, silicone-titania elastomer nanocomposites were produced and the influence of nanoparticles on the macroscopic dielectric properties of the neat elastomer including space charge dynamics, complex permittivity, and electrical conductivity, were investigated.

  1. Dielectric properties and frequency response of self-assembled monolayers of alkanethiols.

    PubMed

    Wang, Bing; Luo, Jianglong; Wang, Xiaoping; Wang, Haiqian; Hou, J G

    2004-06-08

    This paper presents dielectric properties of alkanethiol self-assembled monolayers (SAMs) under an ac electric field. Using a Hg-SAM/SAM-Hg junction, we measured the ac impedance of alkanethiol SAMs using a sinusoidal perturbation of 30 mV (peak-to-peak) with frequency ranging from 1 Hz to 1 MHz at zero bias. Semicircles at higher frequencies and at middle frequencies along with Warburg lines at lower frequencies were observed in complex plane impedance plots, that is, Nyquist plots. The frequency response of SAMs was analyzed by modeling the junction using an equivalent circuit and fitting the Nyquist plots. The semicircles at higher frequencies are attributed to the effect of the SAM/SAM interfaces, and the ones at middle frequencies are attributed to the effect of alkanethiol SAMs. The comparison in the plots of the imaginary part of the impedance Z against frequency for the bare Hg electrodes (in pure ethanal) and the SAM-covered Hg electrodes (in alkanethiol solution) supports the analysis. The Warburg lines are attributed to a certain ionic impurity. The dielectric loss spectra are further analyzed. Chain-length-dependent peaks, which correspond to different relaxation mechanisms, at higher frequencies and middle frequencies were observed in the spectra of the dissipation factor (tan delta vs frequency). The peaks move to small frequency with the increase of chain length of alkanethiols. Using a correlation of peak position with the chain length, we then derived active energies of 39-99 meV for alkanethiol SAMs of C7-C18 under an ac electric field.

  2. Small- and strong-signal dielectric response in a single-crystal film of partially deuterated betaine phosphite

    NASA Astrophysics Data System (ADS)

    Balashova, E. V.; Krichevtsov, B. B.; Lemanov, V. V.

    2011-06-01

    Poly- and single-crystal films of betaine phosphite deuterated to ˜20% have been grown by evaporation on NdGaO3 (001) substrates with a preliminarily deposited planar interdigital structure of electrodes. The small-signal dielectric response in the 0.1-100.0-kHz frequency range has revealed a strong anomaly in capacitance upon the transition of the films to the ferroelectric state. Application of a bias field brings about suppression and a slight shift of the dielectric anomaly toward higher temperatures. The strong-signal dielectric response has been studied by the Sawyer-Tower method over the frequency range 0.06-3.00 kHz both in the para- and ferroelectric phases. In contrast to the case of a plane-parallel capacitor, in the planar structure studied, the dielectric hysteresis loops exhibit a very small coercivity at low frequencies, which grows with increasing frequency. This difference should be assigned to different domain structures formed in a planeparallel capacitor and in a planar structure in a saturating field. The growth of hysteresis with increasing frequency in a planar structure is considered to be associated with the domain wall motion.

  3. Theory of tailorable optical response of two-dimensional arrays of plasmonic nanoparticles at dielectric interfaces

    PubMed Central

    Sikdar, Debabrata; Kornyshev, Alexei A.

    2016-01-01

    Two-dimensional arrays of plasmonic nanoparticles at interfaces are promising candidates for novel optical metamaterials. Such systems materialise from ‘top–down’ patterning or ‘bottom–up’ self-assembly of nanoparticles at liquid/liquid or liquid/solid interfaces. Here, we present a comprehensive analysis of an extended effective quasi-static four-layer-stack model for the description of plasmon-resonance-enhanced optical responses of such systems. We investigate in detail the effects of the size of nanoparticles, average interparticle separation, dielectric constants of the media constituting the interface, and the nanoparticle position relative to the interface. Interesting interplays of these different factors are explored first for normally incident light. For off-normal incidence, the strong effects of the polarisation of light are found at large incident angles, which allows to dynamically tune the reflectance spectra. All the predictions of the theory are tested against full-wave simulations, proving this simplistic model to be adequate within the quasi-static limit. The model takes seconds to calculate the system’s optical response and makes it easy to unravel the effect of each system parameter. This helps rapid rationalization of experimental data and understanding of the optical signals from these novel ‘metamaterials’, optimised for light reflection or harvesting. PMID:27652788

  4. Physically responsive field-effect transistors with giant electromechanical coupling induced by nanocomposite gate dielectrics.

    PubMed

    Tien, Nguyen Thanh; Trung, Tran Quang; Seoul, Young Gug; Kim, Do Il; Lee, Nae-Eung

    2011-09-27

    Physically responsive field-effect transistors (physi-FETs) that are sensitive to physical stimuli have been studied for decades. The important issue for separating the responses of sensing materials from interference by other subcomponents in a FET transducer under global physical stimuli has not been completely resolved. In addition, challenges remain with regard to the design and employment of smart materials for flexible physi-FETs with a large electro-physical coupling effect. In this article, we propose the direct integration of nanocomposite (NC) gate dielectrics of barium titanate (BT) nanoparticles (NPs) and highly crystalline poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) into flexible organic FETs to achieve a large electro-physical coupling effect. Additionally, a new alternating current biasing method is proposed for precise extraction and quantification of tiny variations in the remnant polarization of NCs caused by mechanical stimuli. An investigation of physi-FETs under static mechanical stimuli revealed the first ever reported giant, positive piezoelectric coefficients of d(33) up to 960 pC/N in the NCs. The large coefficients are presumably due to the significant contributions of the intrinsic positive piezoelectricity of the BT NPs and P(VDF-TrFE) crystallites. © 2011 American Chemical Society

  5. Theory of tailorable optical response of two-dimensional arrays of plasmonic nanoparticles at dielectric interfaces.

    PubMed

    Sikdar, Debabrata; Kornyshev, Alexei A

    2016-09-22

    Two-dimensional arrays of plasmonic nanoparticles at interfaces are promising candidates for novel optical metamaterials. Such systems materialise from 'top-down' patterning or 'bottom-up' self-assembly of nanoparticles at liquid/liquid or liquid/solid interfaces. Here, we present a comprehensive analysis of an extended effective quasi-static four-layer-stack model for the description of plasmon-resonance-enhanced optical responses of such systems. We investigate in detail the effects of the size of nanoparticles, average interparticle separation, dielectric constants of the media constituting the interface, and the nanoparticle position relative to the interface. Interesting interplays of these different factors are explored first for normally incident light. For off-normal incidence, the strong effects of the polarisation of light are found at large incident angles, which allows to dynamically tune the reflectance spectra. All the predictions of the theory are tested against full-wave simulations, proving this simplistic model to be adequate within the quasi-static limit. The model takes seconds to calculate the system's optical response and makes it easy to unravel the effect of each system parameter. This helps rapid rationalization of experimental data and understanding of the optical signals from these novel 'metamaterials', optimised for light reflection or harvesting.

  6. Theory of tailorable optical response of two-dimensional arrays of plasmonic nanoparticles at dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Sikdar, Debabrata; Kornyshev, Alexei A.

    2016-09-01

    Two-dimensional arrays of plasmonic nanoparticles at interfaces are promising candidates for novel optical metamaterials. Such systems materialise from ‘top–down’ patterning or ‘bottom–up’ self-assembly of nanoparticles at liquid/liquid or liquid/solid interfaces. Here, we present a comprehensive analysis of an extended effective quasi-static four-layer-stack model for the description of plasmon-resonance-enhanced optical responses of such systems. We investigate in detail the effects of the size of nanoparticles, average interparticle separation, dielectric constants of the media constituting the interface, and the nanoparticle position relative to the interface. Interesting interplays of these different factors are explored first for normally incident light. For off-normal incidence, the strong effects of the polarisation of light are found at large incident angles, which allows to dynamically tune the reflectance spectra. All the predictions of the theory are tested against full-wave simulations, proving this simplistic model to be adequate within the quasi-static limit. The model takes seconds to calculate the system’s optical response and makes it easy to unravel the effect of each system parameter. This helps rapid rationalization of experimental data and understanding of the optical signals from these novel ‘metamaterials’, optimised for light reflection or harvesting.

  7. Depolarized light scattering and dielectric response of a peptide dissolved in water

    SciTech Connect

    Martin, Daniel R.; Fioretto, Daniele; Matyushov, Dmitry V.

    2014-01-21

    The density and orientational relaxation of bulk water can be separately studied by depolarized light scattering (DLS) and dielectric spectroscopy (DS), respectively. Here, we ask the question of what are the leading collective modes responsible for polarization anisotropy relaxation (DLS) and dipole moment relaxation (DS) of solutions involving mostly hydrophobic solute-water interfaces. We study, by atomistic molecular dynamics simulations, the dynamics and structure of hydration water interfacing N-Acetyl-leucine-methylamide dipeptide. The DLS response of the solution is consistent with three relaxation processes: bulk water, rotations of single solutes, and collective dipole-induced-dipole polarizability of the solutes, with the time-scale of 130–200 ps. No separate DLS response of the hydration shell has been identified by our simulations. Density fluctuations of the hydration layer, which largely contribute to the response, do not produce a dynamical process distinct from bulk water. We find that the structural perturbation of the orientational distribution of hydration waters by the dipeptide solute is quite significant and propagates ∼3−5 hydration layers into the bulk. This perturbation is still below that produced by hydrated globular proteins. Despite this structural perturbation, there is little change in the orientational dynamics of the hydration layers, compared to the bulk, as probed by both single-particle orientational dynamics and collective dynamics of the dipole moment of the shells. There is a clear distinction between the perturbation of the interfacial structure by the solute-solvent interaction potential and the perturbation of the interfacial dynamics by the corresponding forces.

  8. Colossal Tooling Design: 3D Simulation for Ergonomic Analysis

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Thomas, Robert E.; Babai, Majid

    2003-01-01

    The application of high-level 3D simulation software to the design phase of colossal mandrel tooling for composite aerospace fuel tanks was accomplished to discover and resolve safety and human engineering problems. The analyses were conducted to determine safety, ergonomic and human engineering aspects of the disassembly process of the fuel tank composite shell mandrel. Three-dimensional graphics high-level software, incorporating various ergonomic analysis algorithms, was utilized to determine if the process was within safety and health boundaries for the workers carrying out these tasks. In addition, the graphical software was extremely helpful in the identification of material handling equipment and devices for the mandrel tooling assembly/disassembly process.

  9. A colossal impact enriched Mars' mantle with noble metals

    NASA Astrophysics Data System (ADS)

    Brasser, R.; Mojzsis, S. J.

    2017-06-01

    Once the terrestrial planets had mostly completed their assembly, bombardment continued by planetesimals left over from accretion. Highly siderophile element (HSE) abundances in Mars' mantle imply that its late accretion supplement was 0.8 wt %; Earth and the Moon obtained an additional 0.7 wt % and 0.02 wt %, respectively. The disproportionately high Earth/Moon accretion ratio is explicable by stochastic addition of a few remaining Ceres-sized bodies that preferentially targeted Earth. Here we show that Mars' late accretion budget also requires a colossal impact, a plausible visible remnant of which is the emispheric dichotomy. The addition of sufficient HSEs to the Martian mantle entails an impactor of at least 1200 km in diameter to have struck Mars before 4430 Ma, by which time crust formation was well underway. Thus, the dichotomy could be one of the oldest geophysical features of the Martian crust. Ejected debris could be the source material for its satellites.

  10. Surface plasmon response of metal spherical nanoshells coated with dielectric overlayer

    NASA Astrophysics Data System (ADS)

    Cheng, Peihong; Bao, Jilong; Wu, Ligang; Li, Xue; Zhao, Hongxia; Zhu, Renxiang; Wang, Jinxia; Li, Dongsheng

    2013-11-01

    Surface Plasmon Resonance (SPR) characteristics of metal spherical nanoshells coated with different dielectric overlayers were investigated in this Letter. Besides band position, it is found that the line width of the symmetric dipole SP resonance is affected by the overlayer coating when the coupling strength of the inner surface cavity mode and outer surface sphere mode is strong. When the surrounding dielectric constant is comparative to that of core silica, narrowest damping width is expected. The computation results also demonstrate that the quality factors and electromagnetic field distribution are dependent on the overlayer coating. Consequently, an appropriate dielectric overlayer coating may be an important way of tuning SP characteristics of metal nanoshells.

  11. Study of the heating effect contribution to the nonlinear dielectric response of a supercooled liquid

    NASA Astrophysics Data System (ADS)

    Brun, C.; Crauste-Thibierge, C.; Ladieu, F.; L'Hôte, D.

    2010-12-01

    We present a detailed study of the heating effects in dielectric measurements carried out on a liquid. Such effects come from the dissipation of the electric power in the liquid and give contribution to the nonlinear third harmonics susceptibility χ _3, which depends on the frequency and temperature. This study is used to evaluate a possible "spurious" contribution to the recently measured nonlinear susceptibility of an archetypical glassforming liquid (glycerol). Those measurements have been shown to give a direct evaluation of the number of dynamically correlated molecules temperature dependence close to the glass transition temperature T_g ≈ 190 K [Crauste-Thibierge et al., Phys. Rev. Lett. 104, 165703 (2010)]. We show that the heating contribution is totally negligible (i) below 204 K at any frequency; (ii) for any temperature at the frequency where the third harmonics response χ _3 is maximum. Besides, this heating contribution does not scale as a function of f/f_{α }, with f_{α }(T) the relaxation frequency of the liquid. In the high frequency range, when f/f_{α } ≥ 1, we find that the heating contribution is damped because the dipoles cannot follow instantaneously the temperature modulation due to the heating phenomenon. An estimate of the magnitude of this damping is given.

  12. Electromechanical response and failure modes of a dielectric elastomer tube actuator with boundary constraints

    NASA Astrophysics Data System (ADS)

    Zhou, Jianyou; Jiang, Liying; Khayat, Roger E.

    2014-04-01

    As a widely used configuration for dielectric elastomer (DE) actuators, DE tube actuators (or cylindrical actuators) are also found to be susceptible to electromechanical instability (EMI), which may lead to a premature electrical breakdown (EB), and inhibit the potential actuation of DE actuators. This work investigates the electromechanical response of a DE tube actuator with and without boundary constraints to demonstrate an alternative to avoid EMI while achieving large actuation. Our simulation results based on the Gent strain energy model show that the EMI of a DE tube actuator can be eliminated, and larger actuation deformation can be achieved by applying boundary constraints. As a result of these constraints, consideration is also given to the possible mechanical buckling failure that may occur. Mechanisms of possible failure modes of constrained and unconstrained DE tube actuators, such as electromechanical instability, electrical breakdown and mechanical buckling, are elucidated. This paper should provide better theoretical guidance on how to improve the actuation performance of DE actuators, thus leading to the optimal design of DE-based devices.

  13. Calculation of plasma dielectric response in inhomogeneous magnetic field near electron cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Evstatiev, Evstati; Svidzinski, Vladimir; Spencer, Andy; Galkin, Sergei

    2014-10-01

    Full wave 3-D modeling of RF fields in hot magnetized nonuniform plasma requires calculation of nonlocal conductivity kernel describing the dielectric response of such plasma to the RF field. In many cases, the conductivity kernel is a localized function near the test point which significantly simplifies numerical solution of the full wave 3-D problem. Preliminary results of feasibility analysis of numerical calculation of the conductivity kernel in a 3-D hot nonuniform magnetized plasma in the electron cyclotron frequency range will be reported. This case is relevant to modeling of ECRH in ITER. The kernel is calculated by integrating the linearized Vlasov equation along the unperturbed particle's orbits. Particle's orbits in the nonuniform equilibrium magnetic field are calculated numerically by one of the Runge-Kutta methods. RF electric field is interpolated on a specified grid on which the conductivity kernel is discretized. The resulting integrals in the particle's initial velocity and time are then calculated numerically. Different optimization approaches of the integration are tested in this feasibility analysis. Work is supported by the U.S. DOE SBIR program.

  14. Universal dielectric response of variously doped CeO{sub 2} ionically conducting ceramics

    SciTech Connect

    Nowick, A.S.; Vaysleyb, A.V.; Kuskovsky, I.

    1998-10-01

    The Jonscher power law, or {open_quotes}universal dielectric response{close_quotes} (UDR) behavior was studied for a range of CeO{sub 2} solid solutions with Y{sup 3+} and Gd{sup 3+} dopants, with particular emphasis on dilute systems which possess relatively simple defect structures. The results show power-law frequency dependence of the ac conductivity, with exponent s=0.61{plus_minus}0.03, independent of temperature and concentration. The conductivity data also show scaling behavior in terms of a time constant {tau}, whose activation energy is very close to that of the dc conductivity. For 1{percent} Y and 1{percent} Gd samples, an additional Debye-type relaxation is observed due to dopant{endash}oxygen-vacancy pairs. Such samples are clearly in the association range (stage III). These results contradict the assumption by Almond and West that {tau}{sup {minus}1} is the hopping frequency of the carrier defects. At very low concentrations ({approximately}0.01{percent}), UDR behavior virtually disappears. The present results are then compared to the principal theories that describe UDR behavior. It is found that, while each theory suffers from some drawbacks, the more phenomenological theories fare better. {copyright} {ital 1998} {ital The American Physical Society}

  15. A complete dielectric response model for liquid water: a solution of the Bethe ridge problem.

    PubMed

    Emfietzoglou, Dimitris; Cucinotta, Francis A; Nikjoo, Hooshang

    2005-08-01

    We present a complete yet computationally simple model for the dielectric response function of liquid water over the energy-momentum plane, which, in contrast to earlier models, is consistent with the recent inelastic X-ray scattering spectroscopy data at both zero and finite momentum transfer values. The model follows Ritchie's extended-Drude algorithm and is particularly effective at the region of the Bethe ridge, substantially improving previous models. The present development allows for a more accurate simulation of the inelastic scattering and energy deposition process of low-energy electrons in liquid water and other biomaterials. As an example, we calculate the stopping power of liquid water for electrons over the 0.1-10 keV range where direct experimental measurements are still impractical and the Bethe stopping formula is inaccurate. The new stopping power values are up to 30-40% lower than previous calculations. Within the range of validity of the first Born approximation, the new values are accurate to within the experimental uncertainties (a few percent). At the low end, the introduction of Born corrections raises the uncertainty to perhaps approximately 10%. Thus the present model helps extend the ICRU electron stopping power database for liquid water down to about two orders of magnitude with a comparable level of uncertainty.

  16. Dielectric response of wurtzite gallium nitride in the terahertz frequency range

    NASA Astrophysics Data System (ADS)

    Hibberd, M. T.; Frey, V.; Spencer, B. F.; Mitchell, P. W.; Dawson, P.; Kappers, M. J.; Oliver, R. A.; Humphreys, C. J.; Graham, D. M.

    2016-12-01

    We report on the characterization of the intrinsic, anisotropic, dielectric properties of wurtzite gallium nitride in the spectral range of 0.5-11 THz, using terahertz time-domain spectroscopy. The ordinary (ε˜⊥) and extraordinary (ε˜∥) components of the complex dielectric function were determined experimentally for a semi-insulating, m-plane gallium nitride single crystal, providing measurements of the refractive indices (n⊥,∥) and absorption coefficients (α⊥,∥) . These material parameters were successfully modeled by considering the contribution of the optical phonon modes, measured using Raman spectroscopy, to the dielectric function, giving values for the relative static dielectric constants of ε0⊥ = 9.22 ± 0.02 and ε0∥ = 10.32 ± 0.03 for wurtzite gallium nitride.

  17. Non-debye dielectric response in monolithic layers of silver stearate

    NASA Astrophysics Data System (ADS)

    Kastro, R. A.; Goryaev, M. A.; Smirnov, A. P.

    2017-02-01

    This paper reports on the results of investigations of the electrophysical properties of silver stearate by the methods of dielectric spectroscopy and differential scanning calorimetry (DSC). The mechanisms of charge transfer and dielectric relaxation in silver stearate have been established. It has been found that there is a critical temperature T = 338 K, which is probably related to the low-temperature phase transition in the system under investigation.

  18. Dielectric Response at THz Frequencies of Mg Water Complexes Interacting with O3 Calculated by Density Functional Theory

    DTIC Science & Technology

    2012-10-24

    vibrational modes in the absorption spectra of various materials. A series of studies have focused on the general concept of constructing dielectric response...has a total of 3N-6 normal mode vibrations . The Schrodinger equation for the harmonic oscillations of these normal modes has known solutions. The...and m is the effective mass contributed by those atoms vibrating in the normal mode . A molecule in stable equilibrium is characterized by all

  19. Impact of antiphase domain boundaries on the dielectric response of Ba_xSr_1-xTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Naumov, Ivan; Rabe, Karin; Cohen, Morrel

    2003-03-01

    Epitaxial Ba_xSr_1-xTiO3 (BST) films grown on MgO substrates have a high density of anti-phase domain boundaries (ADB's). These defects are belived to be one of the primary causes for the lowering of the dielectric constant of the films compared to bulk. We investigate the impact of ADBs on the dielectric constants of BST films combining first-principles pseudopotential plane-wave density functional calculations with a Landau-Ginzburg approach. We found that the ADBs act to lower the in-plane dielectric constant in several different ways. First, the dielectric response perpendicular to the ADBs is reduced due to the breaking of the infinite Ti-O chains normal to the boundaries. To show this we have calculated the dielectric properties of SrTiO3 with an ordered array of ADBs. Comparing with the dielectric response of ideal SrTiO_3, we found that the dielectric response perpendicular to the ADBs is reduced by a factor of 4-8. Second, within a Landau-Ginzburg analysis we find that the ADBs parallel to the electric field also lead to a significant reduction in the dielectric constant, as their effective width is given by the coherence length. Finally, the dielectric constant may be even further reduced by a segregation effect near the ADBs. Using ordered supercells and the virtual crystal approximation we discovered that in BST with Ba/Sr-rich APB's, enhancement of the relative Ba/Sr concentration near the boundaries is energetically favorable, raising the Sr concentration in the remainder of the film. This should stabilize the paraelectric state and, consequently, lower the net dielectric constant.

  20. Distinctive contributions from organic filler and relaxorlike polymer matrix to dielectric response of CuPc-P(VDF-TrFE-CFE) composite.

    PubMed

    Bobnar, V; Levstik, A; Huang, C; Zhang, Q M

    2004-01-30

    The dielectric response of copper-phthalocyanine (CuPc) oligomers embedded in a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer matrix was studied. Although admixture of CuPc strongly increases the dielectric constant of the terpolymer at all temperatures, each of the two constituents determines the dielectric dynamics in a different temperature region-the relaxorlike matrix above and CuPc below the terpolymer's freezing temperature. Two relaxations, reflecting the charge carriers' response in CuPc, were detected. Results on ac conductivity reveal that the tunneling of polarons is the dominating charge transport mechanism.

  1. Hybrid metal-dielectric ring resonators for homogenizable optical metamaterials with strong magnetic response at short wavelengths down to the ultraviolet range.

    PubMed

    Tang, Jianwei; He, Sailing

    2013-10-07

    We derive an analytical LC model from Maxwell's equations for the magnetic resonance of subwavelength ring resonators. Using the LC model, we revisit the scaling of split-ring resonators. Inspired by the LC model, we propose a hybrid metal-dielectric ring resonator mainly composed of high index dielectric material (e.g., TiO₂) with some gaps filled with metal (e.g., Ag). The saturation frequency of magnetic response for the hybrid metal-dielectric ring resonator is much higher (up to the ultraviolet range) than that for split-ring resonators, and can be controlled by the metal fraction in the ring. The hybrid metal-dielectric ring resonator can also overcome the homogenization problem of all-dielectric magnetic resonators, and therefore can form homogenizable magnetic metamaterials at short wavelengths down to the ultraviolet range.

  2. High-performance colossal permittivity materials of (Nb + Er) co-doped TiO2 for large capacitors and high-energy-density storage devices.

    PubMed

    Tse, Mei-Yan; Wei, Xianhua; Hao, Jianhua

    2016-09-21

    The search for colossal permittivity (CP) materials is imperative because of their potential for promising applications in the areas of device miniaturization and energy storage. High-performance CP materials require high dielectric permittivity, low dielectric loss and relatively weak dependence of frequency- and temperature. In this work, we first investigate the CP behavior of rutile TiO2 ceramics co-doped with niobium and erbium, i.e., (Er0.5Nb0.5)xTi1-xO2. Excellent dielectric properties were observed in the materials, including a CP of up to 10(4)-10(5) and a low dielectric loss (tan δ) down to 0.03, which are lower than that of the previously reported co-doped TiO2 CP materials when measured at 1 kHz. Stabilities of frequency and temperature were also accomplished via doping Er and Nb. Valence states of the elements in the material were analyzed using X-ray photoelectron spectroscopy. The Er induced secondary phases were observed using elemental mapping and energy-dispersive spectrometry. Consequently, this work may provide comprehensive guidance to develop high-performance CP materials for fully solid-state capacitor and energy storage applications.

  3. Photo-induced change of dielectric response in BaCoSiO{sub 4} stuffed tridymite

    SciTech Connect

    Taniguchi, Hiroki Okamura, Takuma; Yamamoto, Takafumi; Okazaki, Ryuji; Terasaki, Ichiro; Moriwake, Hiroki; Kuwabara, Akihide; Itoh, Mitsuru

    2014-04-28

    The photodielectric effect is demonstrated in Mott-insulator BaCoSiO{sub 4} with a stuffed-tridymite-type structure under irradiation of visible light at 365 nm. The real part of dielectric permittivity is enhanced by ∼300% with little increase of tan δ in a low-frequency region. Results of diffuse reflectance spectroscopy, first-principles calculations and dielectric measurements suggest that the photodielectric effect stems from a response of photo-excited electrons in an unoccupied upper-Hubbard band for 3d-orbitals of cobalt, which have significantly small mobility due to the unique configuration of Co ions in the stuffed-tridymite-type structure.

  4. Relaxor-like dielectric response of spin liquid CuCrO{sub 2}

    SciTech Connect

    Mazumder, N. Roy, R.; Ghorai, U. K.; Saha, S.; Chattopadhyay, K. K.

    2014-04-24

    Broadband dielectric analysis (10{sup −2}-10{sup 7} Hz) of layered triangular lattice CuCrO{sub 2} is performed (123 K - 473 K) and analyzed in connection with recently observed spin frustration in this multiferroic [M. Poienar et al. Phys. Rev. B 81, 104411, (2010); M. Frontzek et al. Phys. Rev. B 84, 094448, (2011)]. Most unexpectedly, this well known delafossite has found to have nontrivial charge degrees of freedom, being characterized by a relaxor-like dielectric relaxation around 375 K with FWHM of ∼100K. The result strongly suggests the existence of intermolecular Coulomb interaction between charge disproportionation induced electric dipoles.

  5. Colossal magnetocaloric effect in magneto-auxetic systems

    NASA Astrophysics Data System (ADS)

    Dudek, M. R.; Wojciechowski, K. W.; Grima, J. N.; Caruana-Gauci, R.; Dudek, K. K.

    2015-08-01

    We show that a mechanically driven magnetocaloric effect (MCE) in magneto-auxetic systems (MASs) in the vicinity of room temperature is possible and the effect can be colossal. Even at zero external magnetic field, the magnetic entropy change in this reversible process can be a few times larger in magnitude than in the case of the giant MCE discovered by Pecharsky and Gschneidner in Gd5(Si2Ge2). MAS represent a novel class of metamaterials having magnetic insertions embedded within a non-magnetic matrix which exhibits a negative Poisson’s ratio. The auxetic behaviour of the non-magnetic matrix may either enhance the magnetic ordering process or it may result in a transition to the disordered phase. In the MAS under consideration, a spin 1/2 system is chosen for the magnetic component and the well-known Onsager solution for the two-dimensional square lattice Ising model at zero external magnetic field is used to show that the isothermal change in magnetic entropy accompanying the auxetic behaviour can take a large value at room temperature. The practical importance of our findings is that MCE materials used in present engineering applications may be further enhanced by changing their geometry such that they exhibit auxetic behaviour.

  6. Colossal Ultraviolet Photoresponsivity of Few-Layer Black Phosphorus.

    PubMed

    Wu, Jing; Koon, Gavin Kok Wai; Xiang, Du; Han, Cheng; Toh, Chee Tat; Kulkarni, Eeshan S; Verzhbitskiy, Ivan; Carvalho, Alexandra; Rodin, Aleksandr S; Koenig, Steven P; Eda, Goki; Chen, Wei; Neto, A H Castro; Özyilmaz, Barbaros

    2015-08-25

    Black phosphorus has an orthorhombic layered structure with a layer-dependent direct band gap from monolayer to bulk, making this material an emerging material for photodetection. Inspired by this and the recent excitement over this material, we studied the optoelectronics characteristics of high-quality, few-layer black phosphorus-based photodetectors over a wide spectrum ranging from near-ultraviolet (UV) to near-infrared (NIR). It is demonstrated for the first time that black phosphorus can be configured as an excellent UV photodetector with a specific detectivity ∼3 × 10(13) Jones. More critically, we found that the UV photoresponsivity can be significantly enhanced to ∼9 × 10(4) A W(-1) by applying a source-drain bias (VSD) of 3 V, which is the highest ever measured in any 2D material and 10(7) times higher than the previously reported value for black phosphorus. We attribute such a colossal UV photoresponsivity to the resonant-interband transition between two specially nested valence and conduction bands. These nested bands provide an unusually high density of states for highly efficient UV absorption due to the singularity of their nature.

  7. Spin and orbital order separation in colossal magnetoresistive transition

    NASA Astrophysics Data System (ADS)

    Hossain, M. A.; Burkhardt, M. H.; Weschke, E.; Schierle, E.; Golden, M. S.; Tomioka, Y.; Tokura, Y.; StöHr, J.; D&üRr, H. A.

    2013-03-01

    Understanding the Colossal magnetoresistive (CMR) process in manganites is one of the grand challenges of modern physics. While the metallic ferromagnetic phase is relatively well understood, the triggering mechanism of the metal-insulator transition is not clear and it is believed that lattice strain in term of polarons play an important role in the mysterious insulating phase. Lattice strain occurs in the charge-orbitally ordered insulating phase via the Jahn-Teller type distortion and therefore, to understand the CMR it is critical to understand the interplay of ferromagnetism and orbital order during the CMR transition itself. In this letter, with high magnetic field dependent Resonant Soft X-ray Scattering measurements, we show that during the CMR process, an insulating antiferromagnetic phase, which is extremely susceptible to magnetic field and temperature, directly competes with metallic ferromagnetism while the robust CE type spin and orbitally ordered regions act as a catalyst to seed these antiferromagnetic regions. This allows us to construct a picture of the competing forces at the heart of CMR.

  8. Cryogenic temperature relaxor-like dielectric responses and magnetodielectric coupling in Aurivillius Bi5Ti3FeO15 multiferroic thin films

    NASA Astrophysics Data System (ADS)

    Bai, Wei; Yin, Wenhao; Yang, Jing; Tang, Kai; Zhang, Yuanyuan; Lin, Tie; Meng, Xiangjian; Duan, Chun-Gang; Tang, Xiaodong; Chu, Junhao

    2014-08-01

    Dielectric responses and magnetodielectric (MD) behavior of Aurivillius Bi5Ti3FeO15 multiferroics were systemically studied at cryogenic temperatures. Dielectric anomaly at ˜145 K was found by the temperature dependent dielectric spectroscopy, and relaxor-like relaxation dynamics was further confirmed unambiguously. Besides the two abnormal MD transitions at about 98 K and 220 K, remarkable MD couplings were observed near relaxation peak over the whole frequency range of 102-106 Hz. Finally, the possible mechanisms of the relaxation and MD properties were discussed in association with the occurrence of local Fe-O nano-clusters because of the antisite disorder defects in Aurivillius multiferroic phases.

  9. Characterization of dielectric materials

    DOEpatents

    King, Danny J.; Babinec, Susan; Hagans, Patrick L.; Maxey, Lonnie C.; Payzant, Edward A.; Daniel, Claus; Sabau, Adrian S.; Dinwiddie, Ralph B.; Armstrong, Beth L.; Howe, Jane Y.; Wood, III, David L.; Nembhard, Nicole S.

    2017-06-27

    A system and a method for characterizing a dielectric material are provided. The system and method generally include applying an excitation signal to electrodes on opposing sides of the dielectric material to evaluate a property of the dielectric material. The method can further include measuring the capacitive impedance across the dielectric material, and determining a variation in the capacitive impedance with respect to either or both of a time domain and a frequency domain. The measured property can include pore size and surface imperfections. The method can still further include modifying a processing parameter as the dielectric material is formed in response to the detected variations in the capacitive impedance, which can correspond to a non-uniformity in the dielectric material.

  10. Room-temperature magneto-dielectric response in multiferroic ZnFe2O4/PMN-PT bilayer thin films

    NASA Astrophysics Data System (ADS)

    Garg, T.; Kulkarni, A. R.; Venkataramani, N.

    2016-08-01

    The magneto-dielectric response in multiferroic ZnFe2O4/PMN-PT bilayer thin films prepared on a glass substrate using RF magnetron sputtering has been investigated in this work. PMN-PT thin films (i.e. PMN-PT/LCMO/Pt/Ti/glass) deposited on glass were used as a substrate for deposition of ZnFe2O4 thin films. ZnFe2O4 thin films were annealed ex situ at different temperatures. Structural, magnetic, ferroelectric, dielectric and magneto-dielectric studies were carried out on these multiferroic bilayer thin films. Structural studies revealed the presence of each layer in its respective single phase. Magnetic and ferroelectric studies revealed the ferromagnetic and ferroelectric behaviors of these bilayers. To quantify the magnetoelectric coupling, the dielectric constant of the bilayer was measured at room temperature as a function of frequency with and without the applied magnetic field. The magneto-dielectric response MD(%) was calculated by finding the relative change in dielectric constant at 1 kHz as a percentage. The observed MD response was correlated with magnetization of the ferrite layer. An MD response of 2.60% was found for a bilayer film annealed at 350 °C. At this particular annealing temperature, the ZnFe2O4 layer also has the highest saturation magnetization of 1900 G.

  11. Colossal terahertz nonlinearity of tunneling van der Waals gap (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bahk, Young-Mi; Kang, Bong Joo; Kim, Yong Seung; Kim, Joon-Yeon; Kim, Won Tae; Kim, Tae Yun; Kang, Taehee; Rhie, Ji Yeah; Han, Sanghoon; Park, Cheol-Hwan; Rotermund, Fabian; Kim, Dai-Sik

    2016-09-01

    We manufactured an array of three angstrom-wide, five millimeter-long van der Waals gaps of copper-graphene-copper composite, in which unprecedented nonlinearity was observed. To probe and manipulate van der Waals gaps with long wavelength electromagnetic waves such as terahertz waves, one is required to fabricate vertically oriented van der Waals gaps sandwiched between two metal planes with an infinite length in the sense of being much larger than any of the wavelengths used. By comparison with the simple vertical stacking of metal-graphene-metal structure, in our structure, background signals are completely blocked enabling all the light to squeeze through the gap without any strays. When the angstrom-sized van der Waals gaps are irradiated with intense terahertz pulses, the transient voltage across the gap reaches up to 5 V with saturation, sufficiently strong to deform the quantum barrier of angstrom gaps. The large transient potential difference across the gap facilitates electron tunneling through the quantum barrier, blocking terahertz waves completely. This negative feedback of electron tunneling leads to colossal nonlinear optical response, a 97% decrease in the normalized transmittance. Our technology for infinitely long van der Waals gaps can be utilized for other atomically thin materials than single layer graphene, enabling linear and nonlinear angstrom optics in a broad spectral range.

  12. Joining Chemical Pressure and Epitaxial Strain to Yield Y-doped BiFeO3 Thin Films with High Dielectric Response

    NASA Astrophysics Data System (ADS)

    Scarisoreanu, N. D.; Craciun, F.; Birjega, R.; Ion, V.; Teodorescu, V. S.; Ghica, C.; Negrea, R.; Dinescu, M.

    2016-05-01

    BiFeO3 is one of the most promising multiferroic materials but undergoes two major drawbacks: low dielectric susceptibility and high dielectric loss. Here we report high in-plane dielectric permittivity (ε’ ∼2500) and low dielectric loss (tan δ < 0.01) obtained on Bi0.95Y0.05FeO3 films epitaxially grown on SrTiO3 (001) by pulsed laser deposition. High resolution transmission electron microscopy and geometric phase analysis evidenced nanostripe domains with alternating compressive/tensile strain and slight lattice rotations. Nanoscale mixed phase/domain ensembles are commonly found in different complex materials with giant dielectric/electromechanical (ferroelectric/ relaxors) or magnetoresistance (manganites) response. Our work brings insight into the joined role of chemical pressure and epitaxial strain on the appearance of nanoscale stripe structure which creates conditions for easy reorientation and high dielectric response, and could be of more general relevance for the field of materials science where engineered materials with huge response to external stimuli are a highly priced target.

  13. Joining Chemical Pressure and Epitaxial Strain to Yield Y-doped BiFeO3 Thin Films with High Dielectric Response

    PubMed Central

    Scarisoreanu, N. D.; Craciun, F.; Birjega, R.; Ion, V.; Teodorescu, V. S.; Ghica, C.; Negrea, R.; Dinescu, M.

    2016-01-01

    BiFeO3 is one of the most promising multiferroic materials but undergoes two major drawbacks: low dielectric susceptibility and high dielectric loss. Here we report high in-plane dielectric permittivity (ε’ ∼2500) and low dielectric loss (tan δ < 0.01) obtained on Bi0.95Y0.05FeO3 films epitaxially grown on SrTiO3 (001) by pulsed laser deposition. High resolution transmission electron microscopy and geometric phase analysis evidenced nanostripe domains with alternating compressive/tensile strain and slight lattice rotations. Nanoscale mixed phase/domain ensembles are commonly found in different complex materials with giant dielectric/electromechanical (ferroelectric/ relaxors) or magnetoresistance (manganites) response. Our work brings insight into the joined role of chemical pressure and epitaxial strain on the appearance of nanoscale stripe structure which creates conditions for easy reorientation and high dielectric response, and could be of more general relevance for the field of materials science where engineered materials with huge response to external stimuli are a highly priced target. PMID:27157090

  14. Nanostructure and free volume effects in enhancing the dielectric response of strongly dipolar polymers

    NASA Astrophysics Data System (ADS)

    Dong, Rui; Thakur, Yash; Ranjan, Vivek; Buongiorno Nardelli, Marco; Zhang, Qiming; Bernholc, Jerry

    Materials for capacitive energy storage with high energy density and low loss are desired in many fields. We perform multiscale simulations to investigate several members of the aromatic polyurea family. We find that the disordered structures with misaligned chains have considerably larger dielectric constants, due to significant increase in the free volume, which leads to easier reorientation of dipolar groups in the presence of an electric field. Large segment motion is still not allowed below the glass transition temperature, upholding the very low loss at high field and elevated temperature that we observe experimentally. Optimization of the nanostructure and free volume effects thus provides a new, very promising pathway for the design of high-performance dielectrics for capacitive energy storage.

  15. A multi-physical model of actuation response in dielectric gels

    NASA Astrophysics Data System (ADS)

    Li, Bo; Chang, LongFei; Asaka, Kinji; Chen, Hualing; Li, Dichen

    2016-12-01

    Actuation deformation of a dielectric gel is attributed to: the solvent diffusion, the electrical polarization and material hyperelasticity. A multi-physical model, coupling electrical and mechanical quantities, is established, based on the thermodynamics. A set of constitutive relations is derived as an equation of state for characterization. The model is applied to specific cases as effective validations. Physical and chemical parameters affect the performance of the gel, showing nonlinear deformation and instability. This model offers guidance for engineering application.

  16. Response of a grounded dielectric slab to an impulse line source using leaky modes

    NASA Technical Reports Server (NTRS)

    Duffy, Dean G.

    1994-01-01

    This paper describes how expansions in leaky (or improper) modes may be used to represent the continuous spectrum in an open radiating waveguide. The technique requires a thorough knowledge of the life history of the improper modes as they migrate from improper to proper Riemann surfaces. The method is illustrated by finding the electric field resulting from an impulsively forced current located in the free space above a grounded dielectric slab.

  17. Colossal magnetoresistivity in manganese-based perovskites (invited) (abstract)

    NASA Astrophysics Data System (ADS)

    Ramesh, R.; Venkatesan, T.; Ogale, S. B.; Greene, R. L.; Bhagat, S. M.

    1996-04-01

    Magnetoresistivity values of the order of 106% (and in some cases even higher) have been obtained in epitaxial AxB1-xMnO3-y (A=La,Nd; B=Ca,Sr,Ba) thin films grown by pulsed laser deposition. Ferromagnetic resonance experiments suggest a granular-type behavior with conducting ferromagnetic regions (Rcond<10 mΩ cm) in a less conducting matrix (Rinsulazting≳100.Rcond). Ion channeling experiments over a range of temperatures clearly reveal the existence of structural distortion at the peak resistivity temperature TP. Systematic studies of samples prepared under a variety of oxygenation conditions show that the resistivity above TP can be modeled with a single functional form: Rcond≊eΔ/kT, where Δ, the activation energy, is of the order of 50-200 meV. This suggests that these different samples represent the same basic material in a semiconducting matrix, with differing volume fractions of the two components which depends on the processing conditions. These ``colossal'' values of MR have been obtained at temperatures lower than room temperature and at fields of the order of a few Teslas, both of which are impediments to the development of viable MR sensor and nonvolatile storage technologies. We are therefore addressing the critical scientific and technological issues through a variety of materials integration approaches. Using structural chemistry and lattice matching as fundamental guiding principles, we are growing epitaxial heterostructure superlattices consisting of the CMR oxides interleaved with magnetic perovskites such as La-Sr-Co-O (metallic ferromagnet), rare earth-Fe-O (ferromagnetic insulator). We are also exploring the possibility of using the semiconducting properties of these materials in an all-perovskite field effect transistor device. In this presentation, we will describe our progress to date on these studies to enhance the field and temperature dependence of the MR properties and explore new device architectures that utilize the inherently

  18. Colossal injection of catalyst atoms into silicon nanowires.

    PubMed

    Moutanabbir, Oussama; Isheim, Dieter; Blumtritt, Horst; Senz, Stephan; Pippel, Eckhard; Seidman, David N

    2013-04-04

    The incorporation of impurities during the growth of nanowires from the vapour phase alters their basic properties substantially, and this process is critical in an extended range of emerging nanometre-scale technologies. In particular, achieving precise control of the behaviour of group III and group V dopants has been a crucial step in the development of silicon (Si) nanowire-based devices. Recently it has been demonstrated that the use of aluminium (Al) as a growth catalyst, instead of the usual gold, also yields an effective p-type doping, thereby enabling a novel and efficient route to functionalizing Si nanowires. Besides the technological implications, this self-doping implies the detachment of Al from the catalyst and its injection into the growing nanowire, involving atomic-scale processes that are crucial for the fundamental understanding of the catalytic assembly of nanowires. Here we present an atomic-level, quantitative study of this phenomenon of catalyst dissolution by three-dimensional atom-by-atom mapping of individual Al-catalysed Si nanowires using highly focused ultraviolet-laser-assisted atom-probe tomography. Although the observed incorporation of the catalyst atoms into nanowires exceeds by orders of magnitude the equilibrium solid solubility and solid-solution concentrations in known non-equilibrium processes, the Al impurities are found to be homogeneously distributed in the nanowire and do not form precipitates or clusters. As well as the anticipated effect on the electrical properties, this kinetics-driven colossal injection also has direct implications for nanowire morphology. We discuss the observed strong deviation from equilibrium using a model of solute trapping at step edges, and identify the key growth parameters behind this phenomenon on the basis of a kinetic model of step-flow growth of nanowires. The control of this phenomenon provides opportunities to create a new class of nanoscale devices by precisely tailoring the shape and

  19. Phase Pattern of Barium Strontium Titanate System and Dielectric Responses of Its Solid Solutions

    NASA Astrophysics Data System (ADS)

    Sadykov, Kh. A.; Verbenko, I. A.; Reznichenko, L. A.; Pavelko, A. A.; Shilkina, L. A.; Konstantinov, G. M.; Abubakarov, A. G.; Shevtsova, S. I.; Pavlenko, A. V.; Khasbulatov, S. V.

    2017-04-01

    Samples of solid solutions of the system Ba1- x Sr x TiO3 (0 ≤ x ≤1.0) are produced by solid-phase synthesis followed by sintering using conventional ceramic technology. Their crystal structure and grain structure are studied at room temperature and dielectric properties - in a wide range of external influences (temperature and frequency of the alternating electric field). Based on these results, the state diagram of the system is constructed including three single-phase fields with different-symmetry (tetragonal, pseudocubic, and cubic) and two morphotropic fields with coexistence of the tetragonal and pseudocubic, pseudocubic and cubic phases. Peculiarities of the grain landscape associated with the formation of morphotropic areas and melting of barium hydroxide are revealed. The dependence of the dielectric properties of solid solutions on their crystal-chemical specifics and position in the phase diagram of the system is demonstrated. A conclusion is made about the possibility of using the compositions with x = 0.2 to create materials with high dielectric constants promising for applications in microelectronics.

  20. Time-dependent non-equilibrium dielectric response in QM/continuum approaches

    SciTech Connect

    Ding, Feizhi; Lingerfelt, David B.; Li, Xiaosong E-mail: li@chem.washington.edu; Mennucci, Benedetta E-mail: li@chem.washington.edu

    2015-01-21

    The Polarizable Continuum Models (PCMs) are some of the most inexpensive yet successful methods for including the effects of solvation in quantum-mechanical calculations of molecular systems. However, when applied to the electronic excitation process, these methods are restricted to dichotomously assuming either that the solvent has completely equilibrated with the excited solute charge density (infinite-time limit), or that it retains the configuration that was in equilibrium with the solute prior to excitation (zero-time limit). This renders the traditional PCMs inappropriate for resolving time-dependent solvent effects on non-equilibrium solute electron dynamics like those implicated in the instants following photoexcitation of a solvated molecular species. To extend the existing methods to this non-equilibrium regime, we herein derive and apply a new formalism for a general time-dependent continuum embedding method designed to be propagated alongside the solute’s electronic degrees of freedom in the time domain. Given the frequency-dependent dielectric constant of the solvent, an equation of motion for the dielectric polarization is derived within the PCM framework and numerically integrated simultaneously with the time-dependent Hartree fock/density functional theory equations. Results for small molecular systems show the anticipated dipole quenching and electronic state dephasing/relaxation resulting from out-of-phase charge fluctuations in the dielectric and embedded quantum system.

  1. Peculiarities of the dielectric response of the silver-modified-zeolite porous microstructure

    NASA Astrophysics Data System (ADS)

    Bunyatova, U.; Ozturk Koc, S.; Orbukh, V. I.; Eyvazova, G. M.; Agamaliev, Z. A.; Lebedeva, N. N.; Koçum, İ. C.; Salamov, B. G.; Ozer, M.

    2016-10-01

    The aim of this study was to characterize electrical conductivity and dielectrical properties of the silver-exchanged zeolite - natural clinoptilolite from Western part of Turkey and Azerbaijan in the range of frequencies from 200 Hz to 1 MHz and at room temperature. For a better understanding the effect of concentration and content of silver in the nanoporous zeolite volume on the conductivity, a study of the dielectric properties of an un-modified and silver-modified zeolite plates with different amounts of Ag ions and Ag nanoparticles is performed. Un-modified and three different types of the silver ion-exchanged modified clinoptilolite plates were prepared. It was found, that with increasing silver concentration, resistance of zeolite plate monotonically decreases at the same time a capacitance is increases. It is suggested an explanation of the observed frequency dependence of the capacitance and resistance of zeolite plates on the silver concentrations may be explain on the basis of an electrode-dielectric interface gap model. At the same time, the observed phenomenon can be explained by considering the fact that with increasing content of silver the conductivity increases. These results show that Ag nanoparticles play significant role for performance improvement in plasma electronic devices with zeolite cathode.

  2. Dielectric response of II-VI semiconductor core-shell ensembles: Study of the lossless optical condition

    NASA Astrophysics Data System (ADS)

    de la Cruz, R. M.; Kanyinda-Malu, C.

    2014-09-01

    We theoretically investigate optical properties of II-VI core-shell distribution mixtures made of two type-I sized-nanoshells as a plausible negative dielectric function material. The nonlocal optical response of the semiconductor QD is described by using a resonant excitonic dielectric function, while the shell response is modeled with Demangeot formula. Achieving the zero-loss at an optical frequency ω, i.e., ɛeff =ɛeff‧ + iɛeff″ with ɛeff‧ < 0 and ɛeff″ = 0, is of fundamental importance in nanophotonics. Resonant states in semiconductors provide a source for negative dielectric function provided that the dipole strength and the oscillator density are adequate to offset the background. Furthermore, the semiconductor offers the prospect of pumping, either optically or electrically, to achieve a gain mechanism that can offset the loss. We analyse optimal conditions that must be satisfied to achieve semiconductor-based negative index materials. By comparing with II-VI semiconductor quantum dots (QDs) previously reported in the literature, the inclusion of phonon and shell contributions in the ɛeff along with the finite barrier Effective Mass Approximation (EMA) approach, we found similar qualitative behaviours for the ɛeff. The lossless optical condition along with ɛeff‧ < 0 is discussed in terms of sizes, volume fractions and embedding medium of the mixtures' distributions. Furthermore, we estimated optical power to maintain nanocrystals density in excited states and this value is less than that previously obtained in II-VI semiconductor QDs.

  3. Experimental study on the dielectric properties of polyacrylate dielectric elastomer

    NASA Astrophysics Data System (ADS)

    Qiang, Junhua; Chen, Hualing; Li, Bo

    2012-02-01

    The dielectric constant of elastomeric dielectric material is an essential physical parameter, whose value may affect the electromechanical deformation of a dielectric elastomer actuator. Since the dielectric constant is influenced by several external factors as reported before, and no certain value has been confirmed to our knowledge, in the present paper, on the basis of systematical comparison of recent past literature, we conducted extensive works on the measurement of dielectric properties of VHB films, involving five influencing factors: prestretch (both equal and unequal biaxial), electrical frequency, electrode material, stress relaxation time and temperature. Experimental results directly show that the dielectric response changes according to these factors, based on which we investigate the significance of each factor, especially the interaction of two external conditions on the dielectric constant of deformable dielectric, by presenting a physical picture of the mechanism of polarization.

  4. Impedance response and dielectric relaxation in co-precipitation derived ferrite (Ni,Zn)Fe2O4 ceramics

    NASA Astrophysics Data System (ADS)

    Chen, D. G.; Tang, X. G.; Liu, Q. X.; Jiang, Y. P.; Ma, C. B.; Li, R.

    2013-06-01

    Dielectric spectra and magnetization hysteresis loops were used to investigate the grain size effect with temperature on the electrical and magnetic response of co-precipitation derived spinel (Ni0.5Zn0.5)Fe2O4 (NZFO) ceramics. Remarkable dielectric relaxation phenomena of non-Debye type have been observed in each NZFO ceramics as confirmed by two kinds of Cole-Cole plots of the 1100 °C sintered samples, mainly due to the electron-hopping mechanism between n-type and p-type carriers and interfacial ion effect when applied an increase of temperature. The high and low response of grain and grain-boundary regions were determined by modeling the impedance experimental results on two equivalent RC circuits taking into account grain deep trap states. By employing the modified Arrhenius equation, activation energy values of different sintering temperatures were calculated and analyzed in combination with oxygen vacancy. In addition, the magnetization of various sintering temperature samples is dominated by cation distribution and surface effect in different particle ranges.

  5. Enhancement of the dielectric permittivity of (Nb1/2In1/2)0.02Ti0.98O2 single crystals at low temperatures due to (Nb + In) codoping

    NASA Astrophysics Data System (ADS)

    Taniguchi, Hiroki; Ando, Kako; Terasaki, Ichiro

    2017-10-01

    Dielectric measurements are performed on (Nb1/2In1/2)0.02Ti0.98O2 (NITO-2.0) single crystals grown by a floating zone method to address the nature of the colossal permittivity recently reported in (Nb + In) co-doped TiO2 ceramics. The colossal permittivity of the order of 105, which is also observed in the NITO-2.0 single crystals, disappears in the lowest temperature region, indicating an extrinsic contribution from thermally excited carriers to the colossal permittivity. Even at low temperatures where the thermally excited carriers are expected to be frozen out, a high permittivity of the order of 103 remains. This finding suggests that an intrinsic contribution from electron-pinned defect dipoles boosts the dielectric permittivity of TiO2.

  6. Temperature dependence of the dielectric response of anodized Al-Al2O3-metal capacitors

    NASA Astrophysics Data System (ADS)

    Hickmott, T. W.

    2003-03-01

    The temperature dependence of capacitance, CM, and conductance, GM, of Al-Al2O3-metal capacitors with Cu, Ag, and Au electrodes has been measured between 100 and 340 K at seven frequencies between 10 kHz and 1 MHz. Al2O3 films between 15 and 64 nm thick were formed by anodizing evaporated Al films in borate-glycol or borate-H2O electrolyte. The interface capacitance at the Al2O3-metal interface, CI, which is in series with the capacitance CD due to the Al2O3 dielectric, is determined from plots of 1/CM versus insulator thickness. CI is not fixed for a given metal-insulator interface but depends on the vacuum system used to deposit the metal electrode. CI is nearly temperature independent. When CI is taken into account the dielectric constant of Al2O3 determined from capacitance measurements is ˜8.3 at 295 K. The dielectric constant does not depend on anodizing electrolyte, insulator thickness, metal electrode, deposition conditions for the metal electrode or measurement frequency. By contrast, GM of Al-Al2O3-metal capacitors depends on both the deposition conditions of the metal and on the metal. For Al-Al2O3-Cu capacitors, GM is larger for capacitors with large values of 1/CI that result when Cu is evaporated in an oil-pumped vacuum system. For Al-Al2O3-Ag capacitors, GM does not depend on the Ag deposition conditions.

  7. The enhancement in dielectric and magnetic property in Na and Mn co substituted lanthanum ferrite

    SciTech Connect

    Rai, Atma; Thakur, Awalendra K.

    2016-05-06

    Nanocrystalline solid solutions of La{sub 1-x}Na{sub x}Fe{sub 1-y}Mn{sub y}O{sub 3} (x=y=0.00 and 0.25) were prepared via modified Pechini route. No evidence of secondary or impurity phase has been detected up to the detection of error limit of high power X-ray diffractometer. Dielectric property of the samples has been investigated in the frequency range 100 Hz-4MHz at temperature ranging 300–450K. The value of relative permittivity (ε{sub r}) increases drastically and shows colossal dielectric response (∼10{sup 4}) by cosubstitution of Na and Mn as compared to pure LaFeO{sub 3}. Dielectric relaxation peak in loss tangent in both samples have been found and shift towards higher frequency region as temperature increases. Magnetization-Field (M-H) loop of the calcined sample have been recorded at room temperature (300K) at field ±60kOe. Magnetic property also enhanced by co substitution of Na and Mn. The change in Fe/Mn-O-Fe/Mn angle by co-substitution of Na and Mn in LaFeO{sub 3} and indirect exchange interaction between two different magnetic sub lattices Fe and Mn might be responsible for drastic change. Saturation/maximum magnetic moment increase ∼four times in LNFM25 (5.335emu/g) as compared to pure LaFeO{sub 3} (1.302emu/g).

  8. Terahertz dielectric response of photoexcited carriers in Si revealed via single-shot optical-pump and terahertz-probe spectroscopy

    SciTech Connect

    Minami, Yasuo; Horiuchi, Kohei; Masuda, Kaisei; Takeda, Jun; Katayama, Ikufumi

    2015-10-26

    We have demonstrated accurate observations of terahertz (THz) dielectric response due to photoexcited carriers in a Si plate via single-shot optical-pump and THz-probe spectroscopy. In contrast to conventional THz time-domain spectroscopy, this spectroscopic technique allows single-shot detection of the THz response of materials at a given delay time between the pump and THz pulses, thereby sufficiently extending the time interval between the pump pulses. As a result, we can accurately measure the dielectric properties of materials, while avoiding artifacts in the response caused by the accumulation of long-lived photoexcited carriers. Using our single-shot scheme, the transmittance of a Si plate was measured in the range of 0.5–2.5 THz with different pump fluences. Based on a Drude model analysis, the optically induced complex dielectric constant, plasma frequency, and damping rate in the THz region were quantitatively evaluated.

  9. Effect of DC Bias on Dielectric Response in Relaxor Ferroelectric Terpolymer Films

    NASA Astrophysics Data System (ADS)

    Tian, L.; Sun, J.; Wang, J. L.; Li, Y. P.

    2017-06-01

    The permittivity as a function of temperature and dc bias in the poly(vinylindene fluoride-trifluorethylene-chlorofluoroethylene) [P(VDF-TrFE-CFE)] terpolymer was measured and analyzed using both the Vogel-Fulcher and universal Curie-Weiss law. The decreased permittivity with increasing dc bias has been observed. The lower permittivity in dc bias is due to the suppressed diffusion of phase transition rather than the nonlinear dielectric contribution. Furthermore, the suppression of phase diffusion can be explained by the molecular conformation conversion in dc bias.

  10. Broadband effective magnetic response of inorganic dielectric resonator-based metamaterial for microwave applications

    NASA Astrophysics Data System (ADS)

    Yahiaoui, R.; Chung, U.-C.; Burokur, S. N.; de Lustrac, A.; Elissalde, C.; Maglione, M.; Vigneras, V.; Mounaix, P.

    2014-03-01

    A single-sized dielectric cylinder-based metamaterial is fabricated from TiO2 nanoparticles, using a bottom-up approach. The sub-elements constituting the metalayer are embedded in a nonmagnetic transparent host matrix in the microwave regime and arranged in a square lattice. We demonstrate numerically and experimentally a broadband magnetic activity. The key feature to achieve this performance remains in the high aspect ratio of the metamaterial building blocks. This is a very promising step towards complex electromagnetic functions, involving low-cost metamaterials with simple fabrication.

  11. Dielectric response of an inhomogeneous quasi-two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Fernández-Velicia, F. J.; García-Moliner, F.; Velasco, V. R.

    1996-01-01

    The solution of the integral equation required to invert the dielectric function of a confined quasi-two-dimensional electron gas is studied by means of a formal analysis which yields a convergent algorithm. The dielectric function can then be inverted in real space for an arbitrary number of populated subbands and taking into account the effect of intersubband excitations involving empty subbands to any desired degree of accuracy. Plasma modes and screened potential can then be easily studied by using a basis which bears out explicitly the consequences of symmetry in symmetric systems. A model calculation of dynamical screening at frequencies of the order of those of confined polar optical modes in usual GaAs wells indicates that the empty states may play a quite significant role and the screened potential, explicitly obtained in real space, may exhibit a great variety of behaviors: the sign of the potential may change and its magnitude may be either reduced (ordinary screening) or enhanced (antiscreening).

  12. Griffiths phase and colossal magnetoresistance in Nd0.5Sr0.5MnO3 oxygen-deficient thin films

    NASA Astrophysics Data System (ADS)

    Solin, N. I.; Korolyov, A. V.; Medvedev, Yu. V.; Nikolaenko, Yu. M.; Khokhlov, V. A.; Prokhorov, A. Yu.; Levchenko, G. G.

    2013-05-01

    This work is devoted to study the influence of the Griffiths phase in colossal magnetoresistance manganites. Griffiths-phase-like behavior of the paramagnetic susceptibility χ0 is observed in Nd0.5Sr0.5MnO3 oxygen-deficient thin films fabricated by magnetron sputtering deposition. In Nd0.5Sr0.5MnO3-δ films with oxygen deficiency for ТG≈260-280 K>T>TC=138 K (ТG and ТС—Griffiths and Curie temperatures, respectively), paramagnetic matrix consists of a magnetic phase with short-range order (˜1-1.5 nm) (which is responsible for the colossal magnetoresistance (CMR) above ТС), and is embedded in this matrix region with long-range ferromagnetic order (≫10 nm), responsible for the Griffiths phase-like behavior of the paramagnetic susceptibility. Electrical resistivity is caused by carrier tunneling between the localized states and obeys the Efros-Shklovskii law. Magnetic resistivity is caused by change of the localized state sizes under the magnetic field. The temperature and magnetic field dependencies of size of the phase inhomogeneity inclusions, found from measurements of magneto-transport properties, can be satisfactorily described by the model of thermodynamic phase separation into metallic droplets of small radius in a paramagnetic matrix. Intrinsic nanoscale inhomogeneities caused by thermodynamic phase separation, rather than the Griffiths phase, determine the electrical resistivity and colossal magnetoresistance of the films. In half-doped manganites, the nature of long-range ordered magnetic phases may be related, besides the chemical heterogeneity, to proximity to a ferromagnetic-antiferromagnetic boundary at the phase diagram as well. The results are in good agreement with the model of existence of an analog of Griffiths phase temperature in half-doped manganites.

  13. Enhanced dielectric and piezoelectric responses in Zn1-xMgxO thin films near the phase separation boundary

    DOE PAGES

    Kang, Xiaoyu; Shetty, Smitha; Garten, Lauren; ...

    2017-01-23

    Dielectric and piezoelectric properties for Zn1-xMgxO (ZMO) thin films are reported as a function of MgO composition up to and including the phase separation region. Zn1-xMgxO (0.25 ≤ x ≤ 0.5) thin films with c-axis textures were deposited by pulsed laser deposition on platinized sapphire substrates. The films were phase pure wurtzite for MgO concentrations up to 40%; above that limit, a second phase with rocksalt structure evolves with strong {100} texture. With increasing MgO concentration, the out-of-plane (d33,f) and in-plane (e31,f) piezoelectric coefficients increase by 360% and 290%, respectively. The increase in piezoelectric coefficients is accompanied by a 35%more » increase in relative permittivity. Loss tangent values fall monotonically with increasing MgO concentration, reaching a minimum of 0.001 for x ≥ 0.30, at which point the band gap is reported to be 4 eV. As a result, the enhanced piezoelectric response, the large band gap, and the low dielectric loss make Zn1-xMgxO an interesting candidate for thin film piezoelectric devices, and demonstrate that compositional phase transformations provide opportunities for property engineering.« less

  14. Enhanced dielectric and piezoelectric responses in Zn1-xMgxO thin films near the phase separation boundary

    NASA Astrophysics Data System (ADS)

    Kang, Xiaoyu; Shetty, Smitha; Garten, Lauren; Ihlefeld, Jon F.; Trolier-McKinstry, Susan; Maria, Jon-Paul

    2017-01-01

    Dielectric and piezoelectric properties for Zn1-xMgxO (ZMO) thin films are reported as a function of MgO composition up to and including the phase separation region. Zn1-xMgxO (0.25 ≤ x ≤ 0.5) thin films with c-axis textures were deposited by pulsed laser deposition on platinized sapphire substrates. The films were phase pure wurtzite for MgO concentrations up to 40%; above that limit, a second phase with rocksalt structure evolves with strong {100} texture. With increasing MgO concentration, the out-of-plane (d33,f) and in-plane (e31,f) piezoelectric coefficients increase by 360% and 290%, respectively. The increase in piezoelectric coefficients is accompanied by a 35% increase in relative permittivity. Loss tangent values fall monotonically with increasing MgO concentration, reaching a minimum of 0.001 for x ≥ 0.30, at which point the band gap is reported to be 4 eV. The enhanced piezoelectric response, the large band gap, and the low dielectric loss make Zn1-xMgxO an interesting candidate for thin film piezoelectric devices, and demonstrate that compositional phase transformations provide opportunities for property engineering.

  15. Dielectric response and electric modulus of Y{sub 2}CrCoO{sub 6} perovskite

    SciTech Connect

    Pecovska-Gjorgjevich, M. Popeski-Dimovski, R.; Dimitrovska-Lazova, S.; Aleksovska, S.

    2016-03-25

    Y{sub 2}CrCoO{sub 6} perovskite prepared by solution combustion method and sintered at 1073 K has been characterized by dielectric spectroscopy and electric modulus formalism. Temperature and frequency dependent measurements of permitivitty reveal that observed relaxation might be related to the hopping conductivity, i.e. universal dielectric response. The presence of electrode polarization is dominant at low frequencies. The electric modulus dependencies enable us to distinguish and separate the relaxation processes connected to the conduction processes in the material. The presences of both grain and grain boundary effects are established, each dominant in different frequency and temperature range. The conductivity through grain boundaries obeys metalic behavior, while conductivity through grains shows semiconductor behavior. The electrical behavior of this material depends on the differences in (Cr-O) and (Co-O) bond lenghts, Co{sup 3+} being in the low-spin state, resulting in shorter Co-O and thus stronger π bonding e.g. more efficient overlapping of the Co{sup 3+} d-orbitals with oxygen p{sub π} orbitals.

  16. The ac-magnetic susceptibility and dielectric response of complex spin ordering processes in Mn₃O₄

    SciTech Connect

    Thota, Subhash E-mail: wilfrid.prellier@ensicaen.fr; Singh, Kiran; Simon, Ch.; Prellier, Wilfrid E-mail: wilfrid.prellier@ensicaen.fr; Nayak, Sanjib; Kumar, Jitendra

    2014-09-14

    We report a meticulous study of the ac-magnetization dynamics (χ{sub ac}(T)), relative dielectric permittivity ε{sub r}(T), and magneto-dielectric (Δε{sub r}/ε{sub r}(H)) response of various complex magnetic transitions that occur below the ferrimagnetic Néel temperature T{sub N} of Mn₃O₄. Besides the known sequence of transitions at T{sub N}~42.75 K, T₁~39 K, and T₂~34 K, the existence of a new anomaly reported recently at 38 K (T*) has been successfully probed by χ{sub ac}(T) and ε{sub r}(T) measurements. The effect of external dc-bias fields (H{sub DC}) and driving frequency (f) on the above mentioned transitions has been investigated in consonance with the ε{sub r}(T) and Δε{sub r}/ε{sub r}(T,H) results. For the first time, we observed a clear hysteresis of about 5.15 K in the zero-field ε{sub r}(T) across the incommensurate-to-commensurate transition T₂~34 K, which provides evidence to the first-order nature of this transition. The Arrott plot (H/M vs. M²}) criterion has been used to distinguish the nature of all the sequential transitions that take place below T{sub N}.

  17. Simulating the Radio-Frequency Dielectric Response of Relaxor Ferroelectrics: Combination of Coarse-Grained Hamiltonians and Kinetic Monte Carlo Simulations.

    PubMed

    Geneste, Grégory; Bellaiche, L; Kiat, Jean-Michel

    2016-06-17

    The radio-frequency dielectric response of the lead-free Ba(Zr_{0.5}Ti_{0.5})O_{3} relaxor ferroelectric is simulated using a coarse-grained Hamiltonian. This concept, taken from real-space renormalization group theories, allows us to depict the collective behavior of correlated local modes gathered in blocks. Free-energy barriers for their thermally activated collective hopping are deduced from this ab initio-based approach, and used as input data for kinetic Monte Carlo simulations. The resulting numerical scheme allows us to simulate the dielectric response for external field frequencies ranging from kHz up to a few tens of MHz for the first time and to demonstrate, e.g., that local (electric or elastic) random fields lead to the dielectric relaxation in the radio-frequency range that has been observed in relaxors.

  18. Simulating the Radio-Frequency Dielectric Response of Relaxor Ferroelectrics: Combination of Coarse-Grained Hamiltonians and Kinetic Monte Carlo Simulations

    NASA Astrophysics Data System (ADS)

    Geneste, Grégory; Bellaiche, L.; Kiat, Jean-Michel

    2016-06-01

    The radio-frequency dielectric response of the lead-free Ba (Zr0.5Ti0.5)O3 relaxor ferroelectric is simulated using a coarse-grained Hamiltonian. This concept, taken from real-space renormalization group theories, allows us to depict the collective behavior of correlated local modes gathered in blocks. Free-energy barriers for their thermally activated collective hopping are deduced from this ab initio-based approach, and used as input data for kinetic Monte Carlo simulations. The resulting numerical scheme allows us to simulate the dielectric response for external field frequencies ranging from kHz up to a few tens of MHz for the first time and to demonstrate, e.g., that local (electric or elastic) random fields lead to the dielectric relaxation in the radio-frequency range that has been observed in relaxors.

  19. Propagation of electromagnetic waves in stratified media with nonlinearity in both dielectric and magnetic responses.

    PubMed

    Kim, Kihong; Phung, D K; Rotermund, F; Lim, H

    2008-01-21

    We develop a generalized version of the invariant imbedding method, which allows us to solve the electromagnetic wave equations in arbitrarily inhomogeneous stratified media where both the dielectric permittivity and magnetic permeability depend on the strengths of the electric and magnetic fields, in a numerically accurate and efficient manner. We apply our method to a uniform nonlinear slab and find that in the presence of strong external radiation, an initially uniform medium of positive refractive index can spontaneously change into a highly inhomogeneous medium where regions of positive or negative refractive index as well as metallic regions appear. We also study the wave transmission properties of periodic nonlinear media and the influence of nonlinearity on the mode conversion phenomena in inhomogeneous plasmas. We argue that our theory is very useful in the study of the optical properties of a variety of nonlinear media including nonlinear negative index media fabricated using wires and split-ring resonators.

  20. Dielectric response of poly(vinyl alcohol)–zinc selenide nanocomposite film

    NASA Astrophysics Data System (ADS)

    Sinha, Subhojyoti; Das, Amit Kumar; Basu, Soumen; Meikap, Ajit Kumar

    2017-10-01

    Poly(vinyl alcohol)–zinc selenide (PVA–ZnSe) nanocomposite films have been prepared, which offer higher effective permittivity than pure PVA. There is an about 2.5-fold increase (at 420 K) in the effective permittivity at 100 kHz for the 4 wt % ZnSe nanostructure impregnated PVA film as calculated from the dielectric reinforcement function. Prevailing relaxation mechanisms in the nanocomposite films, within the frequency range of 100 Hz ≤ f ≤ 1 MHz and in the temperature range of 298 ≤ T ≤ 420 K, have been discussed on the basis of available theoretical approaches in the literature. AC conductivity behavior reveals that correlated barrier hopping is the ac charge transport mechanism for the nanocomposite films, and the maximum barrier heights vary inversely with the weight percent inclusion of ZnSe nanostructures.

  1. Slow dielectric response of Debye-type in water and other hydrogen bonded liquids

    NASA Astrophysics Data System (ADS)

    Jansson, Helén; Bergman, Rikard; Swenson, Jan

    2010-05-01

    The slow dynamics of some hydrogen bonded glass-forming liquids has been investigated by broadband dielectric spectroscopy. We show that the polyalcohols glycerol, xylitol, and sorbitol, and mixtures of glycerol and water, and in fact, even pure water exhibit a process of Debye character at longer time-scales than the glass transition and viscosity related α-relaxation. Even if it is less pronounced, this process displays many similarities to the well-studied Debye-like process in monoalcohols. It can be observed in both the negative derivative of the real part of the permittivity or in the imaginary part of the permittivity, if the conductivity contribution is reduced. In the present study the conductivity contribution has been suppressed by use of a thin Teflon film placed between the sample and one of the electrodes. The new findings might have important implications for the structure and dynamics of hydrogen bonded liquids in general, and for water in particular.

  2. Strong domain configuration dependence of the nonlinear dielectric response in (K,Na)NbO{sub 3}-based ceramics

    SciTech Connect

    Huan, Yu; Wang, Xiaohui Li, Longtu; Koruza, Jurij

    2015-11-16

    The nonlinear dielectric response in (Na{sub 0.52}K{sub 0.4425}Li{sub 0.0375})(Nb{sub 0.92−x}Ta{sub x}Sb{sub 0.08})O{sub 3} ceramics with different amounts of Ta was measured using subcoercive electric fields and quantified by the Rayleigh model. The irreversible extrinsic contribution, mainly caused by the irreversible domain wall translation, was strongly dependent on the domain configuration. The irreversible extrinsic contributions remained approximately the same within the single-phase regions, either orthorhombic or tetragonal, due to the similar domain morphology. However, in the polymorphic phase transition region, the domain wall density was increased by minimized domain size, as observed by transmission electron microscopy. This resulted in constrained domain wall motion due to self-clamping and reduced the irreversible extrinsic contribution.

  3. Dielectric response of pure and doped-GaSe crystals studied by an indigenously developed broadband THz-TDS system

    NASA Astrophysics Data System (ADS)

    Das, Amit C.; Bhattacharya, S.; Mandal, K. C.; Mondal, S.; Jewariya, M.; Ozaki, T.; Bhaktha, S. N. B.; Datta, P. K.

    2016-04-01

    Publisher's Note: This paper, originally published on 12 July 2016, was replaced with a corrected/revised version on 26 July 2016. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. We have developed a terahertz time domain spectroscopy system (THz TDS). For THz generation, optical rectification process and for detection, electro-optic sampling processes are used. Identical < 110 > cut ZnTe crystals are used for both generation and detection of THz radiation.This spectroscopy system can be used for the noninvasive and contactless electrical and optical characterizations of various samples. In this work spectroscopic measurements of pure, Chromium and Indium doped GaSe crystals within 0.4 THz to 3 THz range are taken by the developed set-up to study the dielectric response of the samples.

  4. Tuning of Magnetic Optical Response in a Dielectric Nanoparticle by Ultrafast Photoexcitation of Dense Electron-Hole Plasma.

    PubMed

    Makarov, Sergey; Kudryashov, Sergey; Mukhin, Ivan; Mozharov, Alexey; Milichko, Valentin; Krasnok, Alexander; Belov, Pavel

    2015-09-09

    We propose a novel approach for efficient tuning of optical properties of a high refractive index subwavelength nanoparticle with a magnetic Mie-type resonance by means of femtosecond laser irradiation. This concept is based on ultrafast photoinjection of dense (>10(20) cm(-3)) electron-hole plasma within such nanoparticle, drastically changing its transient dielectric permittivity. This allows manipulation by both electric and magnetic nanoparticle responses, resulting in dramatic changes of its scattering diagram and scattering cross section. We experimentally demonstrate 20% tuning of reflectance of a single silicon nanoparticle by femtosecond laser pulses with wavelength in the vicinity of the magnetic dipole resonance. Such a single-particle nanodevice enables designing of fast and ultracompact optical switchers and modulators.

  5. Liquid crystal wavefront corrector with modal response based on spreading of the electric field in a dielectric material.

    PubMed

    Loktev, Mikhail; Vdovin, Gleb; Klimov, Nikolai; Kotova, Svetlana

    2007-03-19

    A novel liquid crystal (LC) wavefront corrector with smooth modal influence functions is proposed and realized. The device consists of a thin layer of planar aligned nematic LC sandwiched between a glass plate with a conductive electrode and a plate made of ceramic material with a very high dielectric constant. Control electrodes are positioned on the back side of the ceramic plate, opposite to the LC. The modal character of the response is determined by spreading of the electric field in the ceramic plate. The device implemented is operating in a reflective (mirror) mode; however, similar principles can be used to build a transmissive device. Low cost and simplicity of control make it a good alternative to continuous face-sheet deformable mirrors.

  6. Model of dissipative dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Chiang Foo, Choon; Cai, Shengqiang; Jin Adrian Koh, Soo; Bauer, Siegfried; Suo, Zhigang

    2012-02-01

    The dynamic performance of dielectric elastomer transducers and their capability of electromechanical energy conversion are affected by dissipative processes, such as viscoelasticity, dielectric relaxation, and current leakage. This paper describes a method to construct a model of dissipative dielectric elastomers on the basis of nonequilibrium thermodynamics. We characterize the state of the dielectric elastomer with kinematic variables through which external loads do work, and internal variables that measure the progress of the dissipative processes. The method is illustrated with examples motivated by existing experiments of polyacrylate very-high-bond dielectric elastomers. This model predicts the dynamic response of the dielectric elastomer and the leakage current behavior. We show that current leakage can be significant under large deformation and for long durations. Furthermore, current leakage can result in significant hysteresis for dielectric elastomers under cyclic voltage.

  7. Tunable Dielectric Responses Triggered by Dimensionality Modification in Organic-Inorganic Hybrid Phase Transition Compounds (C5H6N)CdnCl2n+1 (n = 1 and 2).

    PubMed

    Sun, Xiao-Fen; Wang, Zhongxia; Li, Peng-Fei; Liao, Wei-Qiang; Ye, Heng-Yun; Zhang, Yi

    2017-03-20

    Two hybrids (C5H6N)CdCl3 (1) and (C5H6N)Cd2Cl5 (2) were synthesized by stoichiometric regulation of reactants. 1 with a one-dimensional chain-like structure shows a step-like dielectric anomaly at around 158 K. 2 with a layered structure undergoes a prominent phase transition in the vicinity of 182 K, accompanying obvious dielectric relaxation behavior in a broad temperature range. Systematic characterization, such as differential scanning calorimetry (DSC), single-crystal X-ray diffraction, and dielectric measurements, has demonstrated that the phase transitions of 1 and 2 are both attributable to the dynamic motion of the organic cation. Significantly, dimensionality modulation triggers the tunable dielectric responses in these two compounds. Thus, regulation of the phase transition temperature and dielectric responses in the various dimensions of the structure is a potentially effective method to construct tunable dielectric phase transition materials.

  8. Dielectric Response to Impurity Ions in GALLIUM(1 -X)ALUMINUM(X)ARSENIDE/GALLIUM-ARSENIDE/GALLIUM(1- X)aluminum(x) Arsenide Quantum Wells.

    NASA Astrophysics Data System (ADS)

    Elabsy, Abdelsalam Mohamed

    The present work considers the dielectric response to donor and acceptor ions by the valence electrons in GaAs quantum wells (QWs) of infinite and finite depths. It is found that, as far as the binding energy for a donor is concerned, the dielectric response of the GaAs QWs leads to deviations with respect to the hydrogenic theory. The effect of the nonparabolicity of the GaAs conduction band on the binding energy for a hydrogenic donor placed at on- and off-center positions in a GaAs QW, leads to substantially enhanced binding. A model of the kinetic energy operator, adapted by Morrow and Brownstein for an electron in the presence of an abrupt heterojunction, has also been used to calculate the binding energy for a donor placed at the center of the GaAs QW. It is found that the binding energy considering the linearized screening theory is larger than that for the hydrogenic theory. It is also found that an acceptor ion binding a heavy hole is much more affected by the dielectric response of the valence electrons of the GaAs than that associated with a light hole. It is clear from this work that consideration of the dielectric response of the valence electrons of a GaAs QW is an important factor in investigating the energy states of impurities.

  9. Spectroscopic and dielectric response of zinc bismuth phosphate glasses as a function of chromium content

    SciTech Connect

    Rao, P. Srinivasa; Babu, P. Ramesh; Vijay, R.; Narendrudu, T.; Veeraiah, N.; Rao, D. Krishna

    2014-09-15

    Graphical abstract: 20ZnF{sub 2}–(20 − x)Bi{sub 2}O{sub 3}–60P{sub 2}O{sub 5}:xCr{sub 2}O{sub 3} (0 ≤ x ≤2 mol%) glasses are prepared by melt quenching technique. The optical absorption spectra of present glasses are analyzed as a function of chromium content. The absorption bands are assigned to {sup 4}A{sub 2g}(F) ⟶ {sup 4}T{sub 1g}(F), {sup 4}A{sub 2g}(F) ⟶ {sup 4}T{sub 2g}(F), {sup 4}A{sub 2g}(F) ⟶ {sup 2}T{sub 1g}(G) and {sup 4}A{sub 2g}(F) ⟶ {sup 2}E{sub g}(G) transitions of Cr{sup 3+} ions. - Highlights: • ZnF{sub 2}–Bi{sub 2}O{sub 3}–P{sub 2}O{sub 5}:Cr{sub 2}O{sub 3} glasses were prepared by melt quenching and annealing. • Spectroscopic and dielectric properties of chromium ions were investigated. • ESR and optical absorption spectra indicate the co-existence of Cr{sup 6+} ions with Cr{sup 5+} ions and Cr{sup 3+} ions. • Cr{sup 3+} ions act as modifiers and influence the semiconducting nature of the glass system. - Abstract: 20ZnF{sub 2}–(20 − x)Bi{sub 2}O{sub 3}–60P{sub 2}O{sub 5}:xCr{sub 2}O{sub 3} (0 ≤ x ≤2 mol%) glasses are prepared by melt quenching technique. Amorphous nature of these samples is confirmed by X-ray diffraction (XRD) analysis. FTIR study reveals bands due to CrO{sub 6}(o{sub d}) and CrO{sub 4}{sup 2−}(T{sub d}) units along with conventional phosphate groups. The optical absorption and ESR studies of present glasses are analyzed as a function of chromium content. The absorption bands are assigned to {sup 4}A{sub 2g}(F) ⟶ {sup 4}T{sub 1g}(F), {sup 4}A{sub 2g}(F) ⟶ {sup 4}T{sub 2g}(F), {sup 4}A{sub 2g}(F) ⟶ {sup 2}T{sub 1g}(G) and {sup 4}A{sub 2g}(F) ⟶ {sup 2}E{sub g}(G) transitions of Cr{sup 3+} ions. The highest concentration of Cr{sup 3+} ions (in octahedral sites, with network modifying positions) is found in the sample with 2.0 mol% of Cr{sub 2}O{sub 3}. The analysis of dielectric properties indicates a gradual increase in semiconducting character with increase in the concentration of

  10. Dielectric Response of a Quantum Dot Measured with an Aluminum Single Electron Transistor

    NASA Astrophysics Data System (ADS)

    Berman, D.; Zhitenev, N. B.; Ashoori, R. C.; Melloch, M. R.

    1997-03-01

    We demonstrate the first use of an aluminum single electron transistor (SET) as a charge sensor coupled to a semiconductor structure. A quantum dot is electrostatically defined with metal gates on top of a GaAs/AlGaAs heterostructure. The SET functions both as one of the defining gates for the quantum dot and as an electrometer. The quantum dot acts as a dielectric between two capacitor plates, one of which is the SET, and the other is an opposing gate to which we apply an ac excitation and a dc voltage V_g. We vary the conductance of a single tunnel barrier (resistances in the range of 10^3-10^12 Ω) which connects the dot to a charge reservoir and measure the capacitance C between the opposing gate and the SET. Due to the effect of screening, C(V_g) displays periodically occurring dips for those Vg at which a single electron can move in and out of the dot. The oscillations are gradually washed out as the coupling strength to the lead increases beyond 2e^2/h. For sufficiently small couplings, electrons do not tunnel into the dot during one cycle of ac excitation. Surprisingly, the capacitance of such an effectively sealed dot also displays oscillations with electron number. These however are opposite in sign to the oscillations seen for moderate coupling.

  11. Instantaneous charge and dielectric response to terahertz pulse excitation in TTF-CA

    NASA Astrophysics Data System (ADS)

    Gomi, Hiroki; Yamagishi, Naoto; Mase, Tomohito; Inagaki, Takeshi J.; Takahashi, Akira

    2017-03-01

    We present the results of exact numerical calculations of the dielectric properties of tetrathiafulvalene-p -chloranil (TTF-CA) using the extended Hubbard model. The electronic polarization P¯el of the ionic ground state is obtained by directly calculating the adiabatic flow of current. The direction of P¯el is opposite to polarization P¯ion owing to ionic displacement, and | P¯el| is much larger than | P¯ion| , showing that, in the ionic phase, TTF-CA is an electric ferroelectric. Furthermore, we numerically calculate the dynamics induced by THz pulse excitation. In the ionic phase, there exists an almost exact linear relationship between Δ ρ (t ) and E (t ) , and between Δ Pel(t ) and E (t ) in the realistic range of the excitation magnitude, where Δ ρ (t ) [Δ Pel(t ) ] is the charge transfer (electric polarization) variation induced by the THz pulse and E (t ) is the electric field of the pulse at time t . The absolute value of Δ ρ (t ) in the neutral phase is much smaller than that in the ionic phase. These results are consistent with those of experiments and originate from the adiabatic nature of the THz pulse excited state.

  12. Origin of soft-mode stiffening and reduced dielectric response in SrTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Ostapchuk, T.; Petzelt, J.; Železný, V.; Pashkin, A.; Pokorný, J.; Drbohlav, I.; Kužel, R.; Rafaja, D.; Gorshunov, B. P.; Dressel, M.; Ohly, Ch.; Hoffmann-Eifert, S.; Waser, R.

    2002-12-01

    The problem of the reduced dielectric response in thin films of high-permittivity materials is analyzed by studying the soft-mode response in several SrTiO3 thin films by means of Fourier transform far infrared, monochromatic submillimeter, and micro-Raman spectroscopies. A 300-nm-thick metalorganic chemical vapor deposition film, quasiepitaxially grown on a (0001) sapphire substrate with a perfect <111> orientation, displays a ferroelectric transition near 125 K induced by a tensile residual stress, appearing apparently simultaneously with the antiferrodistortive transition. On the other hand, polycrystalline chemical solution deposition films grown on (0001) sapphire, and also tensile stressed, show a harder soft mode response without the appearance of macroscopic ferroelectricity. This effect, which increases with the film thickness, is explained by a strong depolarizing field induced by the percolated porosity and cracks (in the 10-nm scale) along the boundaries of columnar grains (normal to the probe field direction). Brick-wall model calculations showed that 0.2 vol. % of such a porosity type reduces the permittivity from 30000 to less than 1000. The activation of the forbidden IR modes in the Raman spectra in the whole 80-300-K temperature range studied is explained by the effect of polar grain boundaries, in analogy with the bulk ceramics.

  13. Control-focused, nonlinear and time-varying modelling of dielectric elastomer actuators with frequency response analysis

    NASA Astrophysics Data System (ADS)

    Jacobs, William R.; Wilson, Emma D.; Assaf, Tareq; Rossiter, Jonathan; Dodd, Tony J.; Porrill, John; Anderson, Sean R.

    2015-05-01

    Current models of dielectric elastomer actuators (DEAs) are mostly constrained to first principal descriptions that are not well suited to the application of control design due to their computational complexity. In this work we describe an integrated framework for the identification of control focused, data driven and time-varying DEA models that allow advanced analysis of nonlinear system dynamics in the frequency-domain. Experimentally generated input-output data (voltage-displacement) was used to identify control-focused, nonlinear and time-varying dynamic models of a set of film-type DEAs. The model description used was the nonlinear autoregressive with exogenous input structure. Frequency response analysis of the DEA dynamics was performed using generalized frequency response functions, providing insight and a comparison into the time-varying dynamics across a set of DEA actuators. The results demonstrated that models identified within the presented framework provide a compact and accurate description of the system dynamics. The frequency response analysis revealed variation in the time-varying dynamic behaviour of DEAs fabricated to the same specifications. These results suggest that the modelling and analysis framework presented here is a potentially useful tool for future work in guiding DEA actuator design and fabrication for application domains such as soft robotics.

  14. Spin relaxation signature of colossal magnetic anisotropy in platinum atomic chains

    PubMed Central

    Bergman, Anders; Hellsvik, Johan; Bessarab, Pavel F.; Delin, Anna

    2016-01-01

    Recent experimental data demonstrate emerging magnetic order in platinum atomically thin nanowires. Furthermore, an unusual form of magnetic anisotropy – colossal magnetic anisotropy (CMA) – was earlier predicted to exist in atomically thin platinum nanowires. Using spin dynamics simulations based on first-principles calculations, we here explore the spin dynamics of atomically thin platinum wires to reveal the spin relaxation signature of colossal magnetic anisotropy, comparing it with other types of anisotropy such as uniaxial magnetic anisotropy (UMA). We find that the CMA alters the spin relaxation process distinctly and, most importantly, causes a large speed-up of the magnetic relaxation compared to uniaxial magnetic anisotropy. The magnetic behavior of the nanowire exhibiting CMA should be possible to identify experimentally at the nanosecond time scale for temperatures below 5 K. This time-scale is accessible in e.g., soft x-ray free electron laser experiments. PMID:27841287

  15. Spin relaxation signature of colossal magnetic anisotropy in platinum atomic chains

    NASA Astrophysics Data System (ADS)

    Bergman, Anders; Hellsvik, Johan; Bessarab, Pavel F.; Delin, Anna

    2016-11-01

    Recent experimental data demonstrate emerging magnetic order in platinum atomically thin nanowires. Furthermore, an unusual form of magnetic anisotropy - colossal magnetic anisotropy (CMA) - was earlier predicted to exist in atomically thin platinum nanowires. Using spin dynamics simulations based on first-principles calculations, we here explore the spin dynamics of atomically thin platinum wires to reveal the spin relaxation signature of colossal magnetic anisotropy, comparing it with other types of anisotropy such as uniaxial magnetic anisotropy (UMA). We find that the CMA alters the spin relaxation process distinctly and, most importantly, causes a large speed-up of the magnetic relaxation compared to uniaxial magnetic anisotropy. The magnetic behavior of the nanowire exhibiting CMA should be possible to identify experimentally at the nanosecond time scale for temperatures below 5 K. This time-scale is accessible in e.g., soft x-ray free electron laser experiments.

  16. Argentophilicity-dependent colossal thermal expansion in extended prussian blue analogues.

    PubMed

    Goodwin, Andrew L; Keen, David A; Tucker, Matthew G; Dove, Martin T; Peters, Lars; Evans, John S O

    2008-07-30

    The thermal expansion behavior of isostructural variants of the colossal thermal expansion material Ag3[CoIII(CN)6] has been investigated using variable temperature X-ray and neutron powder diffraction. It was found that substitution at the octahedral transition metal site did not strongly affect the thermal expansion behavior, giving Ag3[FeIII(CN)6] as a new colossal thermal expansion material. Substitution at the Ag site (by D) was shown to reduce the thermal expansion coefficients by an order of magnitude. It was proposed that this correlation between the presence of argentophilic interactions and extreme thermal expansion behavior may explain a variety of thermal effects in flexible framework materials containing metallophilic interactions.

  17. Microwave responses and general model of nanotetraneedle ZnO: Integration of interface scattering, microcurrent, dielectric relaxation, and microantenna

    NASA Astrophysics Data System (ADS)

    Fang, Xiao-Yong; Cao, Mao-Sheng; Shi, Xiao-Ling; Hou, Zhi-Ling; Song, Wei-Li; Yuan, Jie

    2010-03-01

    Based on the unique geometrical structure of nanotetra-ZnO needle (T-ZnON), we investigate the microwave responses of T-ZnON, including interface scattering, microcurrent attenuation, microantenna radiation, and dielectric relaxation, and build an energy attenuation model. The associated quantitative formula is deduced for calculating the microwave absorption properties of T-ZnON/SiO2 nanocomposite (T-ZnON/SiO2) in the range 8-14 GHz according to the present energy attenuation model. Very good agreement between the calculated and experimental results is obtained in a wide frequency range. The maximum deviation less than 0.5 dB in the range 8-14 GHz is obtained. Using the aforementioned model, we analyze the contribution of microwave responses to the energy attenuation in the frequency range 2-18 GHz, and the results reveal that interface scattering and microcurrent attenuation make the contribution most important. In addition, we calculate the effects of the volume fraction, conductivity, permittivity, needle length of T-ZnON, and thickness of T-ZnON/SiO2 on the reflectivity. The results show that the microwave absorption is evidently dependent on these effect factors, and the optimal microwave absorption band and the strongest microwave absorption peak of T-ZnON/SiO2 would appear when these physical parameters are changed.

  18. Variation of Topology in Magnetic Bubbles in a Colossal Magnetoresistive Manganite.

    PubMed

    Yu, Xiuzhen; Tokunaga, Yusuke; Taguchi, Yasujiro; Tokura, Yoshinori

    2017-01-01

    The emergence of zero-bias bubbles (≈100 nm in diameter) with various Bloch lines and their triangular lattice is revealed in a colossal magnetoresistive material, La1-x Srx MnO3 , by means of Lorentz transmission electron microscopy (LTEM). The magnetization dynamics, and accompanying changes of the topological number of bubbles via the field-driven motion of the Bloch lines, are demonstrated by in situ LTEM observations.

  19. A Material Showing Colossal Positive and Negative Volumetric Thermal Expansion with Hysteretic Magnetic Transition.

    PubMed

    Hu, Ji-Xiang; Xu, Yang; Meng, Yin-Shan; Zhao, Liang; Hayami, Shinya; Sato, Osamu; Liu, Tao

    2017-10-09

    It is an ongoing challenge to design and synthesize magnetic materials that undergo colossal thermal expansion and that possess potential applications as microscale or nanoscale actuators with magnetic functionality. A paramagnetic metallocyanate building block was used to construct a cyanide-bridged Fe-Co complex featuring both positive and negative colossal volumetric thermal-expansion behavior. A detailed study revealed that metal-to-metal charge transfer between 180 and 240 K induced a volumetric thermal expansion coefficient of 1498 MK(-1) accompanied with hysteretic spin transition. Rotation of the magnetic building blocks induced change of π⋅⋅⋅π interactions, resulting in a negative volume expansion coefficient of -489 MK(-1) , and another hysteretic magnetic transition between 300 and 350 K. This work presents a strategy for incorporating both colossal positive and negative volumetric thermal expansion with shape and magnetic memory effects in a material. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Dielectric nanoresonators for light manipulation

    NASA Astrophysics Data System (ADS)

    Yang, Zhong-Jian; Jiang, Ruibin; Zhuo, Xiaolu; Xie, Ya-Ming; Wang, Jianfang; Lin, Hai-Qing

    2017-07-01

    Nanostructures made of dielectric materials with high or moderate refractive indexes can support strong electric and magnetic resonances in the optical region. They can therefore function as nanoresonators. In addition to plasmonic metal nanostructures that have been widely investigated, dielectric nanoresonators provide a new type of building blocks for realizing powerful and versatile nanoscale light manipulation. In contrast to plasmonic metal nanostructures, nanoresonators made of appropriate dielectric materials are low-cost, earth-abundant and have very small or even negligible light energy losses. As a result, they will find potential applications in a number of photonic devices, especially those that require low energy losses. In this review, we describe the recent progress on the experimental and theoretical studies of dielectric nanoresonators. We start from the basic theory of the electromagnetic responses of dielectric nanoresonators and their fabrication methods. The optical properties of individual dielectric nanoresonators are then elaborated, followed by the coupling behaviors between dielectric nanoresonators, between dielectric nanoresonators and substrates, and between dielectric nanoresonators and plasmonic metal nanostructures. The applications of dielectric nanoresonators are further described. Finally, the challenges and opportunities in this field are discussed.

  1. Atomic-scale control of TiO6 octahedra through solution chemistry towards giant dielectric response

    PubMed Central

    Hu, Wanbiao; Li, Liping; Li, Guangshe; Liu, Yun; Withers, Ray L.

    2014-01-01

    The structures of many important functional oxides contain networks of metal-oxygen polyhedral units i.e. MOn. The correlation between the configurations and connectivities of these MOn to properties is essentially important to be well established to conduct the design, synthesis and application of new MOn-based functional materials. In this paper, we report on an atomic-scale solution-chemistry approach that for the first time enables TiO6 octahedral network control starting from metastable brookite TiO2 through simultaneously tuning pH values and interfering ions (Fe3+, Sc3+, and Sm3+). The relationship between solution chemistry and the resultant configuration/connectivity of TiO6 octahedra in TiO2 and lepidocrocite titanate is mapped out. Apart from differing crystalline phases and morphologies, atomic-scale TiO6 octahedral control also endows numerous defect dipoles for giant dielectric responses. The structural and property evolutions are well interpreted by the associated H+/OH− species in solution and/or defect states associated with Fe3+ occupation within TiO6 octahedra. This work therefore provides fundamental new insights into controlling TiO6 octahedral arrangement essential for atomic-scale structure-property design. PMID:25301286

  2. Anomalous dielectric response of short hydrogen bonds under pressure: the case of (Mn,Fe)2+AlPO4(OH)2H2O

    NASA Astrophysics Data System (ADS)

    Röska, B.; Park, S.-H.; Yoshimori, Y.; Kimura, K.; Kimura, T.

    2017-09-01

    An anomalous increase in the real part of dielectric response is observed in Mn0.5Fe0.5AlPO4(OH)2H2O while cooling to ~70 K. This is addressed to field-induced proton dynamics in a short hydrogen bond of 2.480(3) Å. The absence of discontinuities in heat capacity curves above the Néel temperature (T N  ≈  7 K) excludes a paraelectric to antiferroelectric phase transition. Upon the application of mild hydrostatic pressures below 1.6 GPa, the maximum in the dielectric response is shifted from 70 K to lower temperatures near 2 K. This explains a narrow correlation between proton transfer and the compression of the short hydrogen bond length.

  3. Dielectric response of doped Bi12TiO20: Ru crystals in an alternating electric field

    NASA Astrophysics Data System (ADS)

    Avanesyan, V. T.; Paima, K. I.

    2016-08-01

    The results of examination of AC dependences of capacitance and dielectric loss tangent of sillenite Bi12TiO20 crystals doped with ruthenium on frequency are presented. Non-Debye dispersion of dielectric coefficients is found in the frequency interval of 5 × 102-105 Hz, and a resonance phenomenon is observed. Polarization processes in the studied samples are attributed to relaxators associated with metal-oxygen vacancies and structural elements incorporating 6 s 2 lone-pair electrons.

  4. Resonances in the optical response of a slab with time-periodic dielectric function {epsilon}(t)

    SciTech Connect

    Zurita-Sanchez, Jorge R.; Halevi, P.

    2010-05-15

    We demonstrate that the optical response of a periodically modulated dynamic slab exhibits infinite resonances for frequencies {omega}=({Omega}/2)(2l+1), namely, odd multiples of one-half of the modulating frequency {Omega} of the dielectric function {epsilon}(t). These frequencies coincide partially with the usual condition of parametric amplification. However, the resonances occur only for certain normalized slab thicknesses L{sub R}. These resonances follow from detailed numerical studies based on our recent paper [Zurita-Sanchez, Halevi, and Cervantes-Gonzalez, Phys. Rev. A 79, 053821 (2009)]. As the thickness L nearly matches a resonance thickness L{sub R}, the amplitudes of counterpropagating modes in the slab obey a condition implying that both have the same modulus and their phases match a condition related to L{sub R} and the bulk wave vectors. When this condition is met, the electric field profile inside the slab is a superposition of standing waves with odd and even symmetries, and the reflection and transmission coefficients can reach great values and become infinite at exact resonance. Numerical simulations of the optical response are shown for a sinusoidal {epsilon}(t) with either moderate or strong modulation. As expected, as the modulation strength increases, higher-order harmonics {omega}-n{Omega} (n=0,{+-}1,{+-}2,...) become more noticeable, and short-wavelength bulk modes contribute significantly. However, we found that, regardless of the excitation frequency {omega}=({Omega}/2)(2l+1), the dominant spectral component of the generated fields is {Omega}/2. Also, as the excitation frequency increases, the parity of the standing waves is conserved.

  5. PREFACE: Dielectrics 2011

    NASA Astrophysics Data System (ADS)

    Vaughan, Alun; Lewin, Paul

    2011-08-01

    In 2011, the biennial meeting of the Dielectrics Group of the IOP, Dielectrics 2011, was held for the first time in a number of years at the University of Kent at Canterbury. This conference represents the most recent in a long standing series that can trace its roots back to a two-day meeting that was held in the spring of 1968 at Gregynog Hall of the University of Wales. In the intervening 43 years, this series of meetings has addressed many topics, including dielectric relaxation, high field phenomena, biomaterials and even molecular electronics, and has been held at many different venues within the UK. However, in the early 1990s, a regular venue was established at the University of Kent at Canterbury and, it this respect, this year's conference can be considered as "Dielectrics coming home". The format for the 2011 meeting followed that established at Dielectrics 2009, in breaking away from the concept of a strongly themed event that held sway during the mid 2000s. Rather, we again adopted a general, inclusive approach that was based upon four broad technical areas: Theme 1: Insulation/HV Materials Theme 2: Dielectric Spectroscopy Theme 3: Modelling Dielectric Response Theme 4: Functional Materials The result was a highly successful conference that attracted more than 60 delegates from eight countries, giving the event a truly international flavour, and which included both regular and new attendees; it was particularly pleasing to see the number of early career researchers at the meeting. Consequently, the organizing committee would like to thank our colleagues at the IOP, the invited speakers, our sponsors and all the delegates for making the event such a success. Finally, we look forward to convening again in 2013, when we will be returning to The University of Reading. Prof Alun Vaughan and Prof Paul Lewin, Editors

  6. Component-Specific Electromechanical Response in a Ferroelectric/Dielectric Superlattice

    SciTech Connect

    Jo, Ji Young; Sichel, Rebecca; Dufresne, Eric M.; Lee, Ho Nyung; Nakhmanson, Serge; Evans, Paul G.

    2010-01-01

    The electronic and electromechanical properties of complex oxide superlattices are closely linked to the evolution of the structure and electrical polarization of the component layers in applied electric fields. Efforts to deduce the responses of the individual components of the superlattice to applied fields have focused on theoretical approaches because of the limitations of available experimental techniques. Time-resolved x-ray microdiffraction provides a precise crystallographic probe of each component using the shift in wave vector and change in intensity of superlattice satellite reflections. We report in detail the methods to measure and analyze the x-ray diffraction patterns in applied electric field and their application to a 2-unit-cell BaTiO{sub 3}/4-unit-cell CaTiO{sub 3} superlattice. We find that the overall piezoelectric distortion is shared between the two components. Theoretical predictions of the electromechanical properties of a superlattice with the same composition constrained to tetragonal symmetry are in excellent agreement with the experiments. Lattice instability analysis, however, suggests that the low-temperature ground state could exhibit antiferrodistortive rotations of TiO{sub 6} octahedra within and/or at the interfaces of the CaTiO{sub 3} component.

  7. Dielectric responses and multirelaxation behaviors of pure and doped CaCu3Ti4O12 ceramics

    NASA Astrophysics Data System (ADS)

    Fang, Liang; Shen, Mingrong; Zheng, Fengang; Li, Zhenya; Yang, Jing

    2008-09-01

    Pure and Co/Fe doped CaCu3Ti4O12 (CCTO) ceramics were prepared by solid state reaction method. The electrical properties of ceramics were found to be dependent on the type of dopant materials. A multirelaxation mechanism should be considered for the common observed (50-200 K) dielectric relaxation of CCTO ceramic. In relatively high temperature range, this relaxation followed the Arrhenius behavior with activation energy of 68 meV, which was ascribed to the Maxwell-Wagner (MW)-type relaxation associated with grains. In lower temperature range, this relaxation exhibited variable-ranger-hopping behavior due to the dipolar effects. The dielectric relaxation mechanism of Co doped CCTO ceramic was similar to that of pure CCTO ceramic, while that of Fe doped CCTO ceramic was quite different. Two dielectric relaxations were identified in the temperature range from 4 to 300 K. A dielectric relaxation at room temperature with an activation energy of 390.3 meV was attributed to the MW-type relaxation associated with grain boundaries. Another dielectric relaxation at low temperatures (100-200 K) with an activation energy of 265 meV was originated from the carrier hopping process between Fe2+ and Fe3+.

  8. Terahertz dielectric response of ferroelectric Ba(x)Sr(1-x)TiO3 thin films.

    PubMed

    Kang, Seung Beom; Kwak, Min Hwan; Choi, Muhan; Kim, Sungil; Kim, Taeyong; Cha, Eun Jong; Kang, Kwang Yong

    2011-11-01

    Terahertz time-domain spectroscopy has been used to investigate the dielectric and optical properties of ferroelectric Ba(x)Sr(1-x)TiO(3) thin films for nominal x-values of 0.4, 0.6, and 0.8 in the frequency range of 0.3 to 2.5 THz. The ferroelectric thin films were deposited at approximately 700 nm thickness on [001] MgO substrate by pulsed laser deposition. The measured complex dielectric and optical constants were compared with the Cole-Cole relaxation model. The results show that the Cole-Cole relaxation model fits well with the data throughout the frequency range and the dielectric relaxation behavior of ferroelectric Ba(x)Sr(1-x)TiO(3) thin films varies with the films compositions. Among the compositions of Ba(x)Sr(1-x)TiO(3) films with different Ba/Sr ratios, Ba(0.6)Sr(0.4)TiO(3) has the highest dielectric constants and the shortest dielectric relaxation time.

  9. Colossal permittivity induced by lattice mirror reflection symmetry breaking in Ba7Ir3O13+x(0 <= x <= 1.5) epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Miao, Ludi; Xin, Yan; Zhu, Huiwen; Xu, Hong; Luo, Sijun; Talbayev, Diyar; Stanislavchuk, T. N.; Sirenko, A. A.; Mao, Zhiqiang

    2014-03-01

    Materials with colossal permittivity (CP) at room temperature hold tremendous promise in modern microelectronics as well as high-energy-density storage applications. Despite several proposed mechanisms that lead torecent discoveries of a series of new CP materials such as Nb, In co-doped TiO2 and CaCu3Ti4O12 ceramics, it is imperative to find other approaches which can further guide the search for new CP materials. In this talk, we will demonstrate a new mechanism for CP: the breaking of mirror reflection symmetry of lattice can cause CP. This mechanism was revealed in a new layered iridate Ba7Ir3O13+x (BIO) thin film we recently discovered. Structural characterization of BIO films show that its mirror reflection symmetry is broken along b-axis, but preserved along a- and c-axes. Dielectric property measurements of BIO films at room temperature show a CP (103-10<4) along the in-plane direction, but a much smaller permittivity (10- 20) along the c-axis, in the 102- 106 Hz frequency range. Such unusually large anisotropy in permittivity testifies to the significant role of the structural in-plane mirror reflection symmetry breaking in inducing CP. This work is supported by DOD-ARO under Grant No. W911NF0910530.

  10. Toward Carbon-Nanotube-Based Theranostic Agents for Microwave Detection and Treatment of Breast Cancer: Enhanced Dielectric and Heating Response of Tissue-Mimicking Materials

    PubMed Central

    Mashal, Alireza; Sitharaman, Balaji; Li, Xu; Avti, Pramod; Sahakian, Alan V.; Booske, John H.; Hagness, Susan C.

    2010-01-01

    The experimental results reported in this letter suggest that single-walled carbon nanotubes (SWCNTs) have the potential to enhance dielectric contrast between malignant and normal tissue for microwave detection of breast cancer and facilitate selective heating of malignant tissue for microwave hyperthermia treatment of breast cancer. In this study, we constructed tissue-mimicking materials with varying concentrations of SWCNTs and characterized their dielectric properties and heating response. At SWCNT concentrations of less than 0.5% by weight, we observed significant increases in the relative permittivity and effective conductivity. In microwave heating experiments, we observed significantly greater temperature increases in mixtures containing SWCNTs. These temperature increases scaled linearly with the effective conductivity of the mixtures. This work is a first step towards the development of functionalized, tumor-targeting SWCNTs as theranostic (integrated therapeutic and diagnostic) agents for microwave breast cancer detection and treatment. PMID:20176534

  11. Toward carbon-nanotube-based theranostic agents for microwave detection and treatment of breast cancer: enhanced dielectric and heating response of tissue-mimicking materials.

    PubMed

    Mashal, Alireza; Sitharaman, Balaji; Li, Xu; Avti, Pramod K; Sahakian, Alan V; Booske, John H; Hagness, Susan C

    2010-08-01

    The experimental results reported in this paper suggest that single-walled carbon nanotubes (SWCNTs) have the potential to enhance dielectric contrast between malignant and normal tissue for microwave detection of breast cancer and facilitate selective heating of malignant tissue for microwave hyperthermia treatment of breast cancer. In this study, we constructed tissue-mimicking materials with varying concentrations of SWCNTs and characterized their dielectric properties and heating response. At SWCNT concentrations of less than 0.5% by weight, we observed significant increases in the relative permittivity and effective conductivity. In microwave heating experiments, we observed significantly greater temperature increases in mixtures containing SWCNTs. These temperature increases scaled linearly with the effective conductivity of the mixtures. This work is a first step towards the development of functionalized, tumor-targeting SWCNTs as theranostic (integrated therapeutic and diagnostic) agents for microwave breast cancer detection and treatment.

  12. Correlations of structural, magnetic, and dielectric properties of undoped and doped CaCu3Ti4O12

    NASA Astrophysics Data System (ADS)

    Krohns, S.; Lu, J.; Lunkenheimer, P.; Brizé, V.; Autret-Lambert, C.; Gervais, M.; Gervais, F.; Bourée, F.; Porcher, É. F.; Loidl, A.

    2009-11-01

    The present work reports synthesis, as well as a detailed and careful characterization of structural, magnetic, and dielectric properties of differently tempered undoped and doped CaCu3Ti4O12 (CCTO) ceramics. For this purpose, neutron and X-ray powder diffraction, SQUID measurements, and dielectric spectroscopy have been performed. Mn-, Fe-, and Ni-doped CCTO ceramics were investigated in great detail to document the influence of low-level doping with 3d metals on the antiferromagnetic structure and dielectric properties. In the light of possible magnetoelectric coupling in these doped ceramics, the dielectric measurements were also carried out in external magnetic fields up to 7 T. At low temperatures the dielectric constant shows a minor but significant dependence on the applied magnetic field. Undoped CCTO is well-known for its colossal dielectric constant in a broad frequency and temperature range. With the present extended characterization of doped as well as undoped CCTO, we want to address the question why doping with only 1% Mn or 0.5% Fe decreases the room-temperature dielectric constant of CCTO by a factor of ~100 with a concomitant reduction of the conductivity, whereas 0.5% Ni doping changes the dielectric properties only slightly. In addition, diffraction experiments and magnetic investigations were undertaken to check for possible correlations of the magnitude of the colossal dielectric constants with structural details or with magnetic properties like the magnetic ordering, the Curie-Weiss temperatures, or the paramagnetic moment. It is revealed, that while the magnetic ordering temperature and the effective moment of all investigated CCTO ceramics are rather similar, there is a dramatic influence of doping and tempering time on the Curie-Weiss constant.

  13. Colossal carbon! Disturbance and biomass dynamics in Alaska's national forests

    Treesearch

    John Kirkland; Tara Barrett

    2016-01-01

    The Chugach and Tongass National Forests are changing, possibly in response to global warming. Forested areas within Alaska's temperate rain forests are creeping into areas that were previously too cold or too wet. These forests are also becoming denser. As biomass increases, the amount of carbon stored in the forest also increases. Tara Barrett, a...

  14. Computationally efficient dielectric calculations of molecular crystals

    SciTech Connect

    Schwarz, Kathleen A.; Sundararaman, Ravishankar; Arias, T. A.

    2015-06-07

    The microscopic dielectric response is a key quantity for electronic materials such as organic semiconductors. Calculations of this response for molecular crystals are currently either expensive or rely on extreme simplifications such as multipole expansions which lack microscopic detail. We present an alternate approach using a microscopic analogue of the Clausius-Mossotti equation, which constructs the dielectric response of a crystal from an eigenvalue decomposition of the dielectric response of individual molecules. This method can potentially be used to examine the effects of defects, disorder, and surfaces on the dielectric properties of molecular solids.

  15. Fast response and low power consumption 1×2 thermo-optic switch based on dielectric-loaded surface plasmon polariton waveguides

    NASA Astrophysics Data System (ADS)

    Qi, Zhipeng; Hu, Guohua; Yun, Binfeng; Zhang, Xiong; Cui, Yiping

    2016-08-01

    In this paper, we present a 1 × 2 thermo-optic (TO) switch based on the integration of the dielectric-loaded surface plasmon polariton (SPP) waveguides with the silicon nanowires. Liquid-curable fluorinated resin (LFR) made of perfluorinated polymer was adopted as the ridge, which has a TO coefficient twice more than that of polymethyl methacrylate, leading to a significant decrease in the power consumption. It was shown that the response time of the dielectric-loaded SPP waveguide could be improved through optimizing the dimensions of the LFR polymer ridge without loss of relative high figure of merit and large confinement factor. Performance characteristics of such a 1 × 2 TO switch operating at a telecom wavelength of 1550 nm was investigated theoretically from the analysis of both heat and optical fields. The results reveal that a switching power as low as 7 mW and an extremely short switching time (with rise time of 3 μs and fall time of 6.7 μs) could be achieved with the proposed dielectric-loaded SPP-based 1 × 2 TO switch. In addition, the crosstalk could be enhanced to at least 40 dB with the applied power of 7 mW at the wavelength of 1550 nm, and it could be retained to be above 20 dB in the wavelength spectrum of 1500-1600 nm during the on/off state.

  16. Toward a better understanding of dielectric responses of van der Waals liquids: The role of chemical structures

    NASA Astrophysics Data System (ADS)

    Jedrzejowska, Agnieszka; Wojnarowska, Zaneta; Adrjanowicz, Karolina; Ngai, K. L.; Paluch, Marian

    2017-03-01

    Exhaustive analysis of dielectric relaxation data of van der Waals glass-forming liquids revealed a strong correlation between the width of the frequency dispersion of the α-relaxation and the dielectric strength Δ ɛ , originating from the dipole-dipole interaction contribution to the intermolecular potential [M. Paluch et al., Phys. Rev. Lett. 116, 025702 (2016)]. The two van der Waals liquids, 4-vinyl-1,3-dioxolan-2-one (VPC) and 4-ethyl-1,3-dioxolan-2-one (EPC), have chemical structures modified from that of propylene carbonate. All three glass-formers have very similar values of dipole moments, exactly the same dielectric strength, and hence identical frequency dispersion of the α-relaxation in all three glass-formers is expected if the correlation holds. Based on this expectation, we performed dielectric relaxation measurements of the VPC and EPC at ambient and elevated pressures. The results obtained show not only identical α-relaxation frequency dispersion for the three glass-formers but also the excess wing which is the unresolved Johari-Goldstein β-relaxation. On the other hand, the other thermodynamics related parameters of the α-relaxation dynamics, including the glass transition temperature Tg, the fragility index mP, and activation volume Δ Va c t, are not uniformly the same for all three glass-formers.

  17. Ru(4+) induced colossal magnetoimpedance in Ru doped perovskite manganite at room temperature.

    PubMed

    Singh, Brajendra

    2016-05-14

    We have demonstrated Ru(4+) induced colossal magnetoimpedance (MI) at room temperature in a ∼1 Tesla magnetic field with a pulsed laser deposited La0.7Ca0.3Mn0.7Ru0.3O3 thin film. This composition showed a large negative ∼12% MI in the low frequency range (<5 MHz), a colossal positive MI > 120% in the intermediate frequency range (5 MHz to ∼13 MHz) and a negative MI in the high frequency range (∼13 MHz to 40 MHz) at room temperature. XAS data confirmed the predominant Ru valence state was 4+ in La0.7Ca0.3Mn0.7Ru0.3O3. Ru(4+) induced (i) charge carrier localization and (ii) reduced hole carrier density enhances the MI in this composition, which otherwise was not significant in mixed valences Mn(3+)/Mn(4+) containing La0.7Ca0.3MnO3 and Ru(4+)/Ru(5+) and Mn(3+)/Mn(4+) mixed valences containing Ru = 0.1 and Ru = 0.2 compositions in La0.7Ca0.3Mn1-xRuxO3 (0 ≤x≤ 0.3) thin films.

  18. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer.

    PubMed

    Azuma, Masaki; Chen, Wei-tin; Seki, Hayato; Czapski, Michal; Olga, Smirnova; Oka, Kengo; Mizumaki, Masaichiro; Watanuki, Tetsu; Ishimatsu, Naoki; Kawamura, Naomi; Ishiwata, Shintaro; Tucker, Matthew G; Shimakawa, Yuichi; Attfield, J Paul

    2011-06-14

    The unusual property of negative thermal expansion is of fundamental interest and may be used to fabricate composites with zero or other controlled thermal expansion values. Here we report that colossal negative thermal expansion (defined as linear expansion <-10(-4) K(-1) over a temperature range ~100 K) is accessible in perovskite oxides showing charge-transfer transitions. BiNiO(3) shows a 2.6% volume reduction under pressure due to a Bi/Ni charge transfer that is shifted to ambient pressure through lanthanum substitution for Bi. Changing proportions of coexisting low- and high-temperature phases leads to smooth volume shrinkage on heating. The crystallographic linear expansion coefficient for Bi(0.95)La(0.05)NiO(3) is -137×10(-6) K(-1) and a value of -82×10(-6) K(-1) is observed between 320 and 380 K from a dilatometric measurement on a ceramic pellet. Colossal negative thermal expansion materials operating at ambient conditions may also be accessible through metal-insulator transitions driven by other phenomena such as ferroelectric orders.

  19. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer

    PubMed Central

    Azuma, Masaki; Chen, Wei-tin; Seki, Hayato; Czapski, Michal; Olga, Smirnova; Oka, Kengo; Mizumaki, Masaichiro; Watanuki, Tetsu; Ishimatsu, Naoki; Kawamura, Naomi; Ishiwata, Shintaro; Tucker, Matthew G.; Shimakawa, Yuichi; Attfield, J. Paul

    2011-01-01

    The unusual property of negative thermal expansion is of fundamental interest and may be used to fabricate composites with zero or other controlled thermal expansion values. Here we report that colossal negative thermal expansion (defined as linear expansion <−10−4 K−1 over a temperature range ~100 K) is accessible in perovskite oxides showing charge-transfer transitions. BiNiO3 shows a 2.6% volume reduction under pressure due to a Bi/Ni charge transfer that is shifted to ambient pressure through lanthanum substitution for Bi. Changing proportions of coexisting low- and high-temperature phases leads to smooth volume shrinkage on heating. The crystallographic linear expansion coefficient for Bi0.95La0.05NiO3 is −137×10−6 K−1 and a value of −82×10−6 K−1 is observed between 320 and 380 K from a dilatometric measurement on a ceramic pellet. Colossal negative thermal expansion materials operating at ambient conditions may also be accessible through metal-insulator transitions driven by other phenomena such as ferroelectric orders. PMID:21673668

  20. PREFACE: Dielectrics 2013

    NASA Astrophysics Data System (ADS)

    Hadjiloucas, Sillas; Blackburn, John

    2013-11-01

    pleased to express our thanks to the Conference Department of the Institute of Physics for their invaluable support in organizing this event. We are especially grateful to Dawn Stewart for her responsive and day-to-day handling of this conference, as well as Claire Garland for help in planning and managing this international event. We would also like to thank Dr Steve Welch, Director at ESP Central Ltd, representing the interest of the Electronics, Sensors, Photonics Knowledge Transfer Network, as well as Paul Naylor and Susan Matos for their contribution towards the KTN session of the Conference. Finally, we would like to thank Solartron Analytical, Ametek and Princeton Applied Research for demonstrating precision electrochemical impedance spectroscopy measurement techniques at the conference. We hope that the wider Dielectrics community will find these proceedings of interest and will use them as reference text in their future work. Programme committee R Pethig, University of Edinburgh J Blackburn, National Physical Laboratory J Swingler, Heriot Watt University S Hadjiloucas, University of Reading A West, University of Sheffiled M Hughes, University of Surrey S Dodd, University of Leicester D Almond, University of Bath M Cain, National Physical Laboratory D J Swaffield, University of Southampton N Green, University of Southampton A Vaughan, University of Southampton Sillas Hadjiloucas and John Blackburn (Summer 2013)

  1. Study of the anisotropy of the dielectric response of Na1/2Bi1/2TiO3 relaxor ferroelectric

    NASA Astrophysics Data System (ADS)

    Zalesskii, V. G.; Polushina, A. D.; Obozova, E. D.; Dmitriev, A. V.; Syrnikov, P. P.; Lushnikov, S. G.

    2017-02-01

    The dielectric response, conductivity, and domain structure of (Na1/2Bi1/2)TiO3 single crystals are studied in the temperature range of 290-750 K for the [100], [110], and [111] crystallographic directions. It is shown that the region of optical isotropization is observed in polarized light in the temperature range of 570-620 K. In this case, the birefringence (Δ n) decreases and disappears (together with the image of the domain structure) for the [100] directions. The region of optical isotropization in the [111] directions is characterized by the disappearance of the image of the domain structure and by the existence of individual regions with partial quenching. The domain structure in the [110] directions remains distinguished against the background of a significant decrease in Δ n in the indicated temperature range. The region of isotropization is also manifested in the temperature dependence of the imaginary part of the dielectric response and is determined by the isotropic character of the conductivity in the range of 570-620 K. The bulk conductivity has a thermally activated character with activation energies E a = 50-60 meV at T < 500 K and E a = 700-900 meV for T > 620 K. The low-frequency dispersion of the dielectric response is determined by the Maxwell-Wagner mechanism and is due to an increase in the ionic conductivity at temperatures above 620 K. The anisotropy of the susceptibility holds in the entire studied ranges of frequencies (25 Hz-1 MHz) and temperatures.

  2. Ultraviolet to near infrared response of optically sensitive nonvolatile memories based on platinum nano-particles and high-k dielectrics on a silicon on insulator substrate

    NASA Astrophysics Data System (ADS)

    Mikhelashvili, V.; Meyler, B.; Shneider, Y.; Yofis, S.; Salzman, J.; Atiya, G.; Cohen-Hyams, T.; Ankonina, G.; Kaplan, W. D.; Lisiansky, M.; Roizin, Y.; Eisenstein, G.

    2013-02-01

    An optically triggered nonvolatile memory based on platinum nano-particles embedded within a SiO2 and HfO2 dielectric stack on a silicon on insulator (SOI) substrate is presented. The memory cell exhibits a very wide spectral response, from 220 nm to 950 nm; much wider than common photo-detectors fabricated on SOI. It offers several functionalities including a low programming voltage and wide hysteresis of the capacitance-voltage characteristics, an illumination and voltage sweep amplitude dependent hysteresis of the current-voltage characteristics, and plasmonic enhanced, efficient broad-band photo detection.

  3. Dielectric Response of Multiorbital Molecular Compounds (TTM-TTP)X (X = AuI2 and I3)

    NASA Astrophysics Data System (ADS)

    Sasaki, Satoru; Iguchi, Satoshi; Kawamoto, Tadashi; Mori, Takehiko; Sasaki, Takahiko

    2014-09-01

    The temperature dependence of the dielectric constant in the organic molecular compounds (TTM-TTP)X (X = AuI2, I3) was investigated, where the intramolecular charge degrees of freedom arising from the mixing of orbitals are discussed. We observed a large relaxor-like dielectric anomaly in single crystals along the TTM-TTP molecular long axis but not along the short axis as well as the suppression of such anomaly under dc bias fields. These results indicate the intramolecular charge fluctuation between two fragments of the molecular orbitals in one TTM-TTP molecule with inhomogeneity. The relations between the anomaly, natural defects, spin singlet transition, and unpaired localized spins are discussed.

  4. Modeling of dielectric charging in capacitive structures

    NASA Astrophysics Data System (ADS)

    Amiaud, A.-C.; Leuliet, A.; Loiseaux, B.; Ganne, J.-P.; Nagle, J.

    2015-11-01

    In this paper, we investigate dielectric charging process in capacitive structure dielectrics under bias voltage. We particularly focus on the case of Si 3 N 4 dielectric layers. The main defects in silicon nitride involved in electronic transport are identified as shallow traps. A new model for dielectric charging is presented with trap assisted tunneling effect as interfacial electronic transport mechanism and Frenkel-Poole and hopping current as bulk transport mechanisms. Thanks to this model, electric field and charge carrier distribution in the dielectric layer can be calculated. The actuation bias shift versus time, which is responsible for RF capacitive structure failure, can also be determined. We find that after a 300 s actuation, the charge is concentrated in few nm in the dielectric layer and a voltage shift of few volts is calculated, depending on dielectric characteristics.

  5. Terahertz-Driven Luminescence and Colossal Stark Effect in CdSe–CdS Colloidal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Pein, Brandt C.; Chang, Wendi; Hwang, Harold Y.; Scherer, Jennifer; Coropceanu, Igor; Zhao, Xiaoguang; Zhang, Xin; Bulović, Vladimir; Bawendi, Moungi; Nelson, Keith A.

    2017-09-01

    Unique optical properties of colloidal semiconductor quantum dots (QDs), arising from quantum mechanical confinement of charge within these structures, present a versatile testbed for the study of how high electric fields affect the electronic structure of nanostructured solids. Earlier studies of quasi-DC electric field modulation of QD properties have been limited by the electrostatic breakdown processes under the high externally applied electric fields, which have restricted the range of modulation of QD properties. In contrast, in the present work we drive CdSe:CdS core:shell QD films with high-field THz-frequency electromagnetic pulses whose duration is only a few picoseconds. Surprisingly, in response to the THz excitation we observe QD luminescence even in the absence of an external charge source. Our experiments show that QD luminescence is associated with a remarkably high and rapid modulation of the QD band-gap, which is changing by more than 0.5 eV (corresponding to 25% of the unperturbed bandgap energy) within the picosecond timeframe of THz field profile. We show that these colossal energy shifts can be consistently explained by the quantum confined Stark effect. Our work demonstrates a route to extreme modulation of material properties without configurational changes in material sets or geometries. Additionally, we expect that this platform can be adapted to a novel compact THz detection scheme where conversion of THz fields (with meV-scale photon energies) to the visible/near-IR band (with eV-scale photon energies) can be achieved at room temperature with high bandwidth and sensitivity.

  6. ReaxFF reactive molecular dynamics on silicon pentaerythritol tetranitrate crystal validates the mechanism for the colossal sensitivity.

    PubMed

    Zhou, Tingting; Liu, Lianchi; Goddard, William A; Zybin, Sergey V; Huang, Fenglei

    2014-11-21

    Recently quantum mechanical (QM) calculations on a single Si-PETN (silicon-pentaerythritol tetranitrate) molecule were used to explain its colossal sensitivity observed experimentally in terms of a unique Liu carbon-silyl nitro-ester rearrangement (R3Si-CH2-O-R2→ R3Si-O-CH2-R2). In this paper we expanded the study of Si-PETN from a single molecule to a bulk system by extending the ReaxFF reactive force field to describe similar Si-C-H-O-N systems with parameters optimized to reproduce QM results. The reaction mechanisms and kinetics of thermal decomposition of solid Si-PETN were investigated using ReaxFF reactive molecular dynamics (ReaxFF-RMD) simulations at various temperatures to explore the origin of the high sensitivity. We find that at lower temperatures, the decomposition of Si-PETN is initiated by the Liu carbon-silyl nitro-ester rearrangement forming Si-O bonds which is not observed in PETN. As the reaction proceeds, the exothermicity of Si-O bond formation promotes the onset of NO2 formation from N-OC bond cleavage which does not occur in PETN. At higher temperatures PETN starts to react by the usual mechanisms of NO2 dissociation and HONO elimination; however, Si-PETN remains far more reactive. These results validate the predictions from QM that the significantly increased sensitivity of Si-PETN arises from a unimolecular process involving the unusual Liu rearrangement but not from multi-molecular collisions. It is the very low energy barrier and the high exothermicity of the Si-O bond formation providing energy early in the decomposition process that is responsible.

  7. Impedance response and dielectric relaxation in co-precipitation derived ferrite (Ni,Zn)Fe{sub 2}O{sub 4} ceramics

    SciTech Connect

    Chen, D. G.; Tang, X. G.; Liu, Q. X.; Jiang, Y. P.; Ma, C. B.; Li, R.

    2013-06-07

    Dielectric spectra and magnetization hysteresis loops were used to investigate the grain size effect with temperature on the electrical and magnetic response of co-precipitation derived spinel (Ni{sub 0.5}Zn{sub 0.5})Fe{sub 2}O{sub 4} (NZFO) ceramics. Remarkable dielectric relaxation phenomena of non-Debye type have been observed in each NZFO ceramics as confirmed by two kinds of Cole-Cole plots of the 1100 Degree-Sign C sintered samples, mainly due to the electron-hopping mechanism between n-type and p-type carriers and interfacial ion effect when applied an increase of temperature. The high and low response of grain and grain-boundary regions were determined by modeling the impedance experimental results on two equivalent RC circuits taking into account grain deep trap states. By employing the modified Arrhenius equation, activation energy values of different sintering temperatures were calculated and analyzed in combination with oxygen vacancy. In addition, the magnetization of various sintering temperature samples is dominated by cation distribution and surface effect in different particle ranges.

  8. Coexistence of colossal stress and texture gradients in sputter deposited nanocrystalline ultra-thin metal films

    SciTech Connect

    Kuru, Yener; Welzel, Udo; Mittemeijer, Eric J.

    2014-12-01

    This paper demonstrates experimentally that ultra-thin, nanocrystalline films can exhibit coexisting colossal stress and texture depth gradients. Their quantitative determination is possible by X-ray diffraction experiments. Whereas a uniform texture by itself is known to generally cause curvature in so-called sin{sup 2}ψ plots, it is shown that the combined action of texture and stress gradients provides a separate source of curvature in sin{sup 2}ψ plots (i.e., even in cases where a uniform texture does not induce such curvature). On this basis, the texture and stress depth profiles of a nanocrystalline, ultra-thin (50 nm) tungsten film could be determined.

  9. Colossal magnetoresistance in a Mott insulator via magnetic field-driven insulator-metal transition

    DOE PAGES

    Zhu, M.; Peng, J.; Zou, T.; ...

    2016-05-25

    Here, we present a new type of colossal magnetoresistance (CMR) arising from an anomalous collapse of the Mott insulating state via a modest magnetic field in a bilayer ruthenate, Ti-doped Ca3Ru2O7. Such an insulator-metal transition is accompanied by changes in both lattice and magnetic structures. Our findings have important implications because a magnetic field usually stabilizes the insulating ground state in a Mott-Hubbard system, thus calling for a deeper theoretical study to reexamine the magnetic field tuning of Mott systems with magnetic and electronic instabilities and spin-lattice-charge coupling. This study further provides a model approach to search for CMR systemsmore » other than manganites, such as Mott insulators in the vicinity of the boundary between competing phases.« less

  10. Magnetically-driven colossal supercurrent enhancement in InAs nanowire Josephson junctions.

    PubMed

    Tiira, J; Strambini, E; Amado, M; Roddaro, S; San-Jose, P; Aguado, R; Bergeret, F S; Ercolani, D; Sorba, L; Giazotto, F

    2017-04-12

    The Josephson effect is a fundamental quantum phenomenon where a dissipationless supercurrent is introduced in a weak link between two superconducting electrodes by Andreev reflections. The physical details and topology of the junction drastically modify the properties of the supercurrent and a strong enhancement of the critical supercurrent is expected to occur when the topology of the junction allows an emergence of Majorana bound states. Here we report charge transport measurements in mesoscopic Josephson junctions formed by InAs nanowires and Ti/Al superconducting leads. Our main observation is a colossal enhancement of the critical supercurrent induced by an external magnetic field applied perpendicular to the substrate. This striking and anomalous supercurrent enhancement cannot be described by any known conventional phenomenon of Josephson junctions. We consider these results in the context of topological superconductivity, and show that the observed critical supercurrent enhancement is compatible with a magnetic field-induced topological transition.

  11. Origin of colossal magnetoresistance in LaMnO3 manganite.

    PubMed

    Baldini, Maria; Muramatsu, Takaki; Sherafati, Mohammad; Mao, Ho-kwang; Malavasi, Lorenzo; Postorino, Paolo; Satpathy, Sashi; Struzhkin, Viktor V

    2015-09-01

    Phase separation is a crucial ingredient of the physics of manganites; however, the role of mixed phases in the development of the colossal magnetoresistance (CMR) phenomenon still needs to be clarified. We report the realization of CMR in a single-valent LaMnO3 manganite. We found that the insulator-to-metal transition at 32 GPa is well described using the percolation theory. Pressure induces phase separation, and the CMR takes place at the percolation threshold. A large memory effect is observed together with the CMR, suggesting the presence of magnetic clusters. The phase separation scenario is well reproduced, solving a model Hamiltonian. Our results demonstrate in a clean way that phase separation is at the origin of CMR in LaMnO3.

  12. Colossal aggregations of giant alien freshwater fish as a potential biogeochemical hotspot.

    PubMed

    Boulêtreau, Stéphanie; Cucherousset, Julien; Villéger, Sébastien; Masson, Rémi; Santoul, Frédéric

    2011-01-01

    The ubiquity and fascinating nature of animal aggregations are widely recognised. We report here consistent and previously undocumented occurences of aggregations of a giant alien freshwater fish, the Wels catfish (Silurus glanis). Aggregative groups were on average composed of 25 (± 10 SD, ranging from 15 to 44) adults with estimated average total biomass of 651 kg (386 - 1132) and biomass density of 23 kg m(-2) (14 - 40). Aggregations always occurred within the same location. No foraging, reproductive or anti-predator behaviour were observed during the aggregations. A mass-balance model estimated that these colossal aggregations of an alien species can locally release, through excretion only, up to 70 mg P m(-2) h(-1) and 400 mg N m(-2) h(-1), potentially representing the highest biogeochemical hotspots reported in freshwater ecosystems and another unexpected ecological effect of alien species.

  13. First Order Colossal Magnetoresistance Transitions in the Two-Orbital Model for Manganites

    SciTech Connect

    Sen, Cengiz; Alvarez, Gonzalo; Dagotto, Elbio R

    2010-01-01

    Large-scale Monte Carlo simulation results for the two-orbital model for manganites, including Jahn- Teller lattice distortions, are presented here. At hole density x 1=4 and in the vicinity of the region of competition between the ferromagnetic metallic and spin-charge-orbital ordered insulating phases, the colossal magnetoresistance (CMR) phenomenon is observed with a magnetoresistance ratio 10 000%. Our main result is that this CMR transition is found to be of first order in some portions of the phase diagram, in agreement with early results from neutron scattering, specific heat, and magnetization, thus solving a notorious discrepancy between experiments and previous theoretical studies. The first order characteristics of the transition survive, and are actually enhanced, when weak quenched disorder is introduced.

  14. Magnetically-driven colossal supercurrent enhancement in InAs nanowire Josephson junctions

    PubMed Central

    Tiira, J.; Strambini, E.; Amado, M.; Roddaro, S.; San-Jose, P.; Aguado, R.; Bergeret, F. S.; Ercolani, D.; Sorba, L.; Giazotto, F.

    2017-01-01

    The Josephson effect is a fundamental quantum phenomenon where a dissipationless supercurrent is introduced in a weak link between two superconducting electrodes by Andreev reflections. The physical details and topology of the junction drastically modify the properties of the supercurrent and a strong enhancement of the critical supercurrent is expected to occur when the topology of the junction allows an emergence of Majorana bound states. Here we report charge transport measurements in mesoscopic Josephson junctions formed by InAs nanowires and Ti/Al superconducting leads. Our main observation is a colossal enhancement of the critical supercurrent induced by an external magnetic field applied perpendicular to the substrate. This striking and anomalous supercurrent enhancement cannot be described by any known conventional phenomenon of Josephson junctions. We consider these results in the context of topological superconductivity, and show that the observed critical supercurrent enhancement is compatible with a magnetic field-induced topological transition. PMID:28401951

  15. Metal-insulator transition above room temperature in maximum colossal magnetoresistance manganite thin films

    NASA Astrophysics Data System (ADS)

    Chen, X. J.; Habermeier, H.-U.; Zhang, H.; Gu, G.; Varela, M.; Santamaria, J.; Almasan, C. C.

    2005-09-01

    It has been suggested that the maximum magnitude of colossal magnetoresistance occurs in mixed-valent manganites with a tolerance factor t=0.96 [Zhou, Archibald, and Goodenough, Nature (London) 381, 770 (1996)]. However, at t≈0.96 most manganites have relatively low values of the metal-insulator transition temperature TMI(˜60-150K) . Here, we report that a 50 Å La0.9Sr0.1MnO3 thin film with t=0.96 grown on a (100) SrTiO3 substrate has a metal-insulator transition above room temperature, which represents a doubling of TMI compared with its value in the bulk material. We show that this spectacular increase of TMI is a result of the epitaxially compressive strain-induced reduction of the Jahn-Teller distortion.

  16. Origin of colossal magnetoresistance in LaMnO3 manganite

    DOE PAGES

    Baldini, Maria; Muramatsu, Takaki; Sherafati, Mohammad; ...

    2015-08-13

    Phase separation is a crucial ingredient of the physics of manganites; however, the role of mixed phases in the development of the colossal magnetoresistance (CMR) phenomenon still needs to be clarified. In this paper, we report the realization of CMR in a single-valent LaMnO3 manganite. We found that the insulator-to-metal transition at 32 GPa is well described using the percolation theory. Pressure induces phase separation, and the CMR takes place at the percolation threshold. A large memory effect is observed together with the CMR, suggesting the presence of magnetic clusters. The phase separation scenario is well reproduced, solving a modelmore » Hamiltonian. Finally, our results demonstrate in a clean way that phase separation is at the origin of CMR in LaMnO3.« less

  17. Colossal magnetoresistance in a Mott insulator via magnetic field-driven insulator-metal transition

    SciTech Connect

    Zhu, M.; Peng, J.; Zou, T.; Prokes, K.; Mahanti, S. D.; Hong, Tao; Mao, Z. Q.; Liu, G. Q.; Ke, X.

    2016-05-25

    Here, we present a new type of colossal magnetoresistance (CMR) arising from an anomalous collapse of the Mott insulating state via a modest magnetic field in a bilayer ruthenate, Ti-doped Ca3Ru2O7. Such an insulator-metal transition is accompanied by changes in both lattice and magnetic structures. Our findings have important implications because a magnetic field usually stabilizes the insulating ground state in a Mott-Hubbard system, thus calling for a deeper theoretical study to reexamine the magnetic field tuning of Mott systems with magnetic and electronic instabilities and spin-lattice-charge coupling. This study further provides a model approach to search for CMR systems other than manganites, such as Mott insulators in the vicinity of the boundary between competing phases.

  18. Spin Seebeck Effect and Thermal Colossal Magnetoresistance in Graphene Nanoribbon Heterojunction

    PubMed Central

    Ni, Yun; Yao, Kailun; Fu, Huahua; Gao, Guoying; Zhu, Sicong; Wang, Shuling

    2013-01-01

    Spin caloritronics devices are very important for future development of low-power-consumption technology. We propose a new spin caloritronics device based on zigzag graphene nanoribbon (ZGNR), which is a heterojunction consisting of single-hydrogen-terminated ZGNR (ZGNR-H) and double-hydrogen-terminated ZGNR (ZGNR-H2). We predict that spin-up and spin-down currents flowing in opposite directions can be induced by temperature difference instead of external electrical bias. The thermal spin-up current is considerably large and greatly improved compared with previous work in graphene. Moreover, the thermal colossal magnetoresistance is obtained in our research, which could be used to fabricate highly-efficient spin caloritronics MR devices. PMID:23459307

  19. Colossal Aggregations of Giant Alien Freshwater Fish as a Potential Biogeochemical Hotspot

    PubMed Central

    Boulêtreau, Stéphanie; Cucherousset, Julien; Villéger, Sébastien; Masson, Rémi; Santoul, Frédéric

    2011-01-01

    The ubiquity and fascinating nature of animal aggregations are widely recognised. We report here consistent and previously undocumented occurences of aggregations of a giant alien freshwater fish, the Wels catfish (Silurus glanis). Aggregative groups were on average composed of 25 (±10 SD, ranging from 15 to 44) adults with estimated average total biomass of 651 kg (386 – 1132) and biomass density of 23 kg m−2 (14 – 40). Aggregations always occurred within the same location. No foraging, reproductive or anti-predator behaviour were observed during the aggregations. A mass-balance model estimated that these colossal aggregations of an alien species can locally release, through excretion only, up to 70 mg P m−2 h−1 and 400 mg N m−2 h−1, potentially representing the highest biogeochemical hotspots reported in freshwater ecosystems and another unexpected ecological effect of alien species. PMID:21998687

  20. Spin seebeck effect and thermal colossal magnetoresistance in graphene nanoribbon heterojunction.

    PubMed

    Ni, Yun; Yao, Kailun; Fu, Huahua; Gao, Guoying; Zhu, Sicong; Wang, Shuling

    2013-01-01

    Spin caloritronics devices are very important for future development of low-power-consumption technology. We propose a new spin caloritronics device based on zigzag graphene nanoribbon (ZGNR), which is a heterojunction consisting of single-hydrogen-terminated ZGNR (ZGNR-H) and double-hydrogen-terminated ZGNR (ZGNR-H2). We predict that spin-up and spin-down currents flowing in opposite directions can be induced by temperature difference instead of external electrical bias. The thermal spin-up current is considerably large and greatly improved compared with previous work in graphene. Moreover, the thermal colossal magnetoresistance is obtained in our research, which could be used to fabricate highly-efficient spin caloritronics MR devices.

  1. Spin correlations and colossal magnetoresistance in HgCr2Se4

    NASA Astrophysics Data System (ADS)

    Lin, Chaojing; Yi, Changjiang; Shi, Youguo; Zhang, Lei; Zhang, Guangming; Müller, Jens; Li, Yongqing

    2016-12-01

    This study aims to unravel the mechanism of colossal magnetoresistance (CMR) observed in n -type HgCr2Se4 , in which low-density conduction electrons are exchange-coupled to a three-dimensional Heisenberg ferromagnet with a Curie temperature TC≈105 K. Near room temperature the electron transport exhibits an ordinary semiconducting behavior. As temperature drops below T*≃2.1 TC , the magnetic susceptibility deviates from the Curie-Weiss law, and concomitantly the transport enters an intermediate regime exhibiting a pronounced CMR effect before a transition to metallic conduction occurs at T

  2. Colossal magnetoresistance in a Mott insulator via magnetic field-driven insulator-metal transition

    SciTech Connect

    Zhu, M.; Peng, J.; Zou, T.; Prokes, K.; Mahanti, S. D.; Hong, Tao; Mao, Z. Q.; Liu, G. Q.; Ke, X.

    2016-05-25

    Here, we present a new type of colossal magnetoresistance (CMR) arising from an anomalous collapse of the Mott insulating state via a modest magnetic field in a bilayer ruthenate, Ti-doped Ca3Ru2O7. Such an insulator-metal transition is accompanied by changes in both lattice and magnetic structures. Our findings have important implications because a magnetic field usually stabilizes the insulating ground state in a Mott-Hubbard system, thus calling for a deeper theoretical study to reexamine the magnetic field tuning of Mott systems with magnetic and electronic instabilities and spin-lattice-charge coupling. This study further provides a model approach to search for CMR systems other than manganites, such as Mott insulators in the vicinity of the boundary between competing phases.

  3. Magnetically-driven colossal supercurrent enhancement in InAs nanowire Josephson junctions

    NASA Astrophysics Data System (ADS)

    Tiira, J.; Strambini, E.; Amado, M.; Roddaro, S.; San-Jose, P.; Aguado, R.; Bergeret, F. S.; Ercolani, D.; Sorba, L.; Giazotto, F.

    2017-04-01

    The Josephson effect is a fundamental quantum phenomenon where a dissipationless supercurrent is introduced in a weak link between two superconducting electrodes by Andreev reflections. The physical details and topology of the junction drastically modify the properties of the supercurrent and a strong enhancement of the critical supercurrent is expected to occur when the topology of the junction allows an emergence of Majorana bound states. Here we report charge transport measurements in mesoscopic Josephson junctions formed by InAs nanowires and Ti/Al superconducting leads. Our main observation is a colossal enhancement of the critical supercurrent induced by an external magnetic field applied perpendicular to the substrate. This striking and anomalous supercurrent enhancement cannot be described by any known conventional phenomenon of Josephson junctions. We consider these results in the context of topological superconductivity, and show that the observed critical supercurrent enhancement is compatible with a magnetic field-induced topological transition.

  4. Thermal, dielectrical and mechanical response of α and β-poly(vinilydene fluoride)/Co-MgO nanocomposites

    PubMed Central

    2011-01-01

    Nanocomposites of the self-forming core-shell Co-MgO nanoparticles, which were of approximately 100 nm in diameter, and poly(vinylidene fluoride) (PVDF) polymer have been prepared. When the polymer is crystallized in the α-phase, the introduction of the nanoparticles leads to nucleation of the γ-phase of PVDF, increasing also the melting temperature of the polymer. With the introduction of the Co-MgO particles, the dielectric constant of the material slightly increases and the storage modulus decreases with respect to the values obtained for the pure polymer. PMID:21711778

  5. Strong magnetic-dielectric-lattice coupling in transition metal hydroxyhalides and ferroelectric response in rhombohedral Co2(OD)3X (X=Cl, Br)

    NASA Astrophysics Data System (ADS)

    Zheng, X. G.; Fujihala, M.; Kitajima, S.; Maki, M.; Kato, K.; Takata, M.; Xu, C. N.

    2013-05-01

    Hydroxyl salts of the type M2(OH)3X, and M(OH)X, where M represents a transition metal ion and X represents a halogen ion, widely exist as minerals and were recently reported to be geometrically frustrated magnets. Here, we report the finding of ferroelectric response in them. First, we observed strong magnetic-lattice-dielectric couplings in all of them as witnessed during their magnetic transitions at low temperatures. Secondly, we identified apparent ferroelectric responses in the deuterated hydroxyl salts of high crystal symmetries, i.e., rhombohedral Co2(OD)3Cl and Co2(OD)3Br, at high temperatures of 220-230 K through an isotope effect. The present work shows that multiferroicity may be a potentially universal phenomenon in magnetic hydroxyl salts. Meanwhile, it provides the first link between magnetic geometric frustration and hydrogen-bonded soft-mode ferroelectrics.

  6. Broadband local dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Labardi, M.; Lucchesi, M.; Prevosto, D.; Capaccioli, S.

    2016-05-01

    A route to extend the measurement bandwidth of local dielectric spectroscopy up to the MHz range has been devised. The method is based on a slow amplitude modulation at a frequency Ω of the excitation field oscillating at a frequency ω and the coherent detection of the modulated average electric force or force gradient at Ω. The cantilever mechanical response does not affect the measurement if Ω is well below its resonant frequency; therefore, limitations on the excitation field frequency are strongly reduced. Demonstration on a thin poly(vinyl acetate) film is provided, showing its structural relaxation spectrum on the local scale up to 45 °C higher than glass temperature, and nanoscale resolution dielectric relaxation imaging near conductive nanowires embedded in the polymer matrix was obtained up to 5 MHz frequency, with no physical reason to hinder further bandwidth extension.

  7. Giant dielectric response and low dielectric loss in Al{sub 2}O{sub 3} grafted CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics

    SciTech Connect

    Rajabtabar-Darvishi, A.; Bayati, R. E-mail: mbayati@ncsu.edu; Sheikhnejad-Bishe, O.; Wang, L. D.; Li, W. L.; Sheng, J.; Fei, W. D. E-mail: mbayati@ncsu.edu

    2015-03-07

    This study sheds light on the effect of alumina on dielectric constant and dielectric loss of novel CaCu{sub 3}Ti{sub 4}O{sub 12} composite ceramics. Alumina, at several concentrations, was deposited on the surface of CaCu{sub 3}Ti{sub 4}O{sub 12} particles via sol-gel technique. The dielectric constant significantly increased for all frequencies and the dielectric loss substantially decreased for low and intermediate frequencies. These observations were attributed to the change in characteristics of grains and grain boundaries. It was found that the insulating properties of the grain boundaries are improved following the addition of Al{sub 2}O{sub 3}. The relative density of CaCu{sub 3}Ti{sub 4}O{sub 12}/Al{sub 2}O{sub 3} composite ceramics decreased compared to the pure CaCu{sub 3}Ti{sub 4}O{sub 12} and the grain size was greatly changed with the alumina content affecting the dielectric properties. With the addition of alumina into CaCu{sub 3}Ti{sub 4}O{sub 12}, tighter interfaces formed. The 6%- and 10%-alumina ceramics showed the minimum dielectric loss and the maximum dielectric constant, respectively. Both the dielectric constant and loss tangent decreased in the 20%-alumina ceramic due to the formation of CuO secondary phase. It was revealed that Al serves as an electron acceptor decreasing the electron concentration, if Al{sup 3+} ions substitute for Ti{sup 4+} ions, and as an electron donor increasing the electron concentration, if Al{sup 3+} ions substitute for Ca{sup 2+} ions. We established a processing-microstructure-properties paradigm which opens new avenues for novel applications of CaCu{sub 3}Ti{sub 4}O{sub 12}/Al{sub 2}O{sub 3} composite ceramics.

  8. Bias-field and pressure effects on the one-dimensional dielectric response in N-H(+)...N hydrogen-bonded 1,4-diazabicyclo[2.2.2]octane hydrobromide crystal.

    PubMed

    Szafrański, Marek

    2009-07-16

    Unusual dielectric properties of 1,4-diazabicyclo[2.2.2]octane hydrobromide [C(6)H(13)N(2)](+).Br(-) (dabcoHBr) have been investigated at ambient and hydrostatic pressures and at biasing dc electric field. The crystal exhibits a huge dielectric constant along the hydrogen-bonded chains, exceeding 1500, while in the perpendicular direction it behaves as a typical nonpolar dielectric. Though the dynamics of protons in the N-H(+)...N hydrogen bonds is essential for these properties, of key importance are weak protonic correlations leading to the formation of short-range ordered regions. The complex dielectric response of dabcoHBr is due to several contributions involving dipolar fluctuation within the polar nanoregions, fluctuations of boundaries, and excitation of solitonic kinks propagating along the chains as a result of coherent proton transfers. A relatively low dc biasing electric field distinctly modifies the dielectric response, making it reminiscent of ferroelectric relaxors. Profound changes are also induced by hydrostatic pressure, which counteracts the proton correlations and the short-range polar order formation. At elevated pressures, the hexagonal structure of dabcoHBr undergoes a phase transition, associated with a loss of the unusual dielectric properties. This is due to the breaking of the N-H(+)...N hydrogen bonds, which destroys the one-dimensional topology of the polycationic chains and results in formation of the phase built of hydrogen-bonded ionic pairs. The phase diagram, illustrating the phase boundary between the high- and low-dielectric constant phases of dabcoHBr, is presented.

  9. Dielectric response of a semi-infinite layered electron gas and Raman scattering from its bulk and surface plasmons

    NASA Astrophysics Data System (ADS)

    Jain, Jainendra K.; Allen, Philip B.

    1985-07-01

    An exact solution of the random-phase-approximation equations is worked out for the density-density correlation function of a semi-infinite system of two-dimensional electron-gas layers, with different dielectrics outside and inside the layered system. From this solution, analytic formulas are derived for the dispersion relations of the bulk and surface plasmons and for the intensity of the light scattered inelastically from such a system. The intensity is written as a sum of the bulk and the surface terms. The theory is applied to semiconductor multilayers. The line shape of the bulk-plasmon peak, obtained after cancellation of van Hove singularities in the bulk piece by the surface piece, is compared with experiment. Conditions for observation of the Giuliani-Quinn surface plasmon are outlined.

  10. Dielectric metasurfaces

    NASA Astrophysics Data System (ADS)

    Valentine, Jason

    While plasmonics metasurfaces have seen much development over the past several years, they still face throughput limitations due to ohmic losses. On the other hand, dielectric resonators and associated metasurfaces can eliminate the issue of ohmic loss while still providing the freedom to engineer the optical properties of the composite. In this talk, I will present our recent efforts to harness this freedom using metasurfaces formed from silicon and fabricated using CMOS-compatible techniques. Operating in the telecommunications band, I will discuss how we have used this platform to realize a number of novel functionalities including wavefront control, near-perfect reflection, and high quality factor resonances. In many cases the optical performance of these silicon-based metasurfaces can surpass their plasmonic counterparts. Furthermore, for some cases the surfaces are more amenable to large-area fabrication techniques.

  11. Dielectric constant of water in the interface

    NASA Astrophysics Data System (ADS)

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V.

    2016-07-01

    We define the dielectric constant (susceptibility) that should enter the Maxwell boundary value problem when applied to microscopic dielectric interfaces polarized by external fields. The dielectric constant (susceptibility) of the interface is defined by exact linear-response equations involving correlations of statistically fluctuating interface polarization and the Coulomb interaction energy of external charges with the dielectric. The theory is applied to the interface between water and spherical solutes of altering size studied by molecular dynamics (MD) simulations. The effective dielectric constant of interfacial water is found to be significantly lower than its bulk value, and it also depends on the solute size. For TIP3P water used in MD simulations, the interface dielectric constant changes from 9 to 4 when the solute radius is increased from ˜5 to 18 Å.

  12. Electrode effects in dielectric spectroscopy measurements on (Nb +In) co-doped TiO2

    NASA Astrophysics Data System (ADS)

    Crandles, David; Yee, Susan; Savinov, Maxim; Nuzhnyy, Dimitri; Petzelt, Jan; Kamba, Stanislav; Prokes, Jan

    Recently, several papers reported the discovery of giant permittivity and low dielectric loss in (Nb+In) co-doped TiO2. A series of tests was performed which included the measurement of the frequency dependence of the dielectric permittivity and ac conductivity of co-doped (Nb+In)TiO2 as a function of electrode type, sample thickness and temperature. The data suggest that the measurements are strongly affected by the electrodes. The consistency between four contact van der Pauw dc conductivity measurements and bulk conductivity values extracted from two contact ac conductivity measurements suggest that the values of colossal permittivity are, at least in part, a result of Schottky barrier depletion widths that depend on electrode type and temperature. Nserc, Czech Science Foundation (Project 15-08389S).

  13. All-dielectric metamaterials.

    PubMed

    Jahani, Saman; Jacob, Zubin

    2016-01-01

    The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.

  14. All-dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Jahani, Saman; Jacob, Zubin

    2016-01-01

    The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.

  15. Investigation of nonlinear effects in glassy matter using dielectric methods

    NASA Astrophysics Data System (ADS)

    Lunkenheimer, P.; Michl, M.; Bauer, Th.; Loidl, A.

    2017-08-01

    We summarize current developments in the investigation of glassy matter using nonlinear dielectric spectroscopy. This work also provides a brief introduction into the phenomenology of the linear dielectric response of glass-forming materials and discusses the main mechanisms that can give rise to nonlinear dielectric response in this material class. Here we mainly concentrate on measurements of the conventional dielectric permittivity at high fields and the higher-order susceptibilities characterizing the 3ω and 5ω components of the dielectric response as performed in our group. Typical results on canonical glass-forming liquids and orientationally disordered plastic crystals are discussed, also treating the special case of supercooled monohydroxy alcohols.

  16. Achievement of High-Response Organic Field-Effect Transistor NO2 Sensor by Using the Synergistic Effect of ZnO/PMMA Hybrid Dielectric and CuPc/Pentacene Heterojunction

    PubMed Central

    Han, Shijiao; Cheng, Jiang; Fan, Huidong; Yu, Junsheng; Li, Lu

    2016-01-01

    High-response organic field-effect transistor (OFET)-based NO2 sensors were fabricated using the synergistic effect the synergistic effect of zinc oxide/poly(methyl methacrylate) (ZnO/PMMA) hybrid dielectric and CuPc/Pentacene heterojunction. Compared with the OFET sensors without synergistic effect, the fabricated OFET sensors showed a remarkable shift of saturation current, field-effect mobility and threshold voltage when exposed to various concentrations of NO2 analyte. Moreover, after being stored in atmosphere for 30 days, the variation of saturation current increased more than 10 folds at 0.5 ppm NO2. By analyzing the electrical characteristics, and the morphologies of organic semiconductor films of the OFET-based sensors, the performance enhancement was ascribed to the synergistic effect of the dielectric and organic semiconductor. The ZnO nanoparticles on PMMA dielectric surface decreased the grain size of pentacene formed on hybrid dielectric, facilitating the diffusion of CuPc molecules into the grain boundary of pentacene and the approach towards the conducting channel of OFET. Hence, NO2 molecules could interact with CuPc and ZnO nanoparticles at the interface of dielectric and organic semiconductor. Our results provided a promising strategy for the design of high performance OFET-based NO2 sensors in future electronic nose and environment monitoring. PMID:27775653

  17. Achievement of High-Response Organic Field-Effect Transistor NO₂ Sensor by Using the Synergistic Effect of ZnO/PMMA Hybrid Dielectric and CuPc/Pentacene Heterojunction.

    PubMed

    Han, Shijiao; Cheng, Jiang; Fan, Huidong; Yu, Junsheng; Li, Lu

    2016-10-21

    High-response organic field-effect transistor (OFET)-based NO₂ sensors were fabricated using the synergistic effect the synergistic effect of zinc oxide/poly(methyl methacrylate) (ZnO/PMMA) hybrid dielectric and CuPc/Pentacene heterojunction. Compared with the OFET sensors without synergistic effect, the fabricated OFET sensors showed a remarkable shift of saturation current, field-effect mobility and threshold voltage when exposed to various concentrations of NO₂ analyte. Moreover, after being stored in atmosphere for 30 days, the variation of saturation current increased more than 10 folds at 0.5 ppm NO₂. By analyzing the electrical characteristics, and the morphologies of organic semiconductor films of the OFET-based sensors, the performance enhancement was ascribed to the synergistic effect of the dielectric and organic semiconductor. The ZnO nanoparticles on PMMA dielectric surface decreased the grain size of pentacene formed on hybrid dielectric, facilitating the diffusion of CuPc molecules into the grain boundary of pentacene and the approach towards the conducting channel of OFET. Hence, NO₂ molecules could interact with CuPc and ZnO nanoparticles at the interface of dielectric and organic semiconductor. Our results provided a promising strategy for the design of high performance OFET-based NO₂ sensors in future electronic nose and environment monitoring.

  18. Metal-dielectric composite for dispersion free optics

    NASA Astrophysics Data System (ADS)

    Balasubrahmaniyam, M.; Patra, Anuradha; Ganesan, A. R.; Kasiviswanathan, S.

    2013-02-01

    Bergman formulation has been used to extract effective dielectric function of Au nanoparticles (AuNPs) embedded metal oxide (MO) composite thin films. The extracted composite dielectric function helps further understanding ofthe resonance features in optical far-field responses. Detailed analysis on the extracted dielectric functions point towards the possibility of using them for dispersion free optics.

  19. Correlation between upconversion photoluminescence and dielectric response in Ba-substituted (Sr1-xBax)4(La0.85Ho0.025Yb0.125)2Ti4Nb6O30

    NASA Astrophysics Data System (ADS)

    Wei, T.; Wang, X. D.; Zhao, C. Z.; Liu, M. F.; Liu, J. M.

    2014-06-01

    The filled tetragonal tungsten bronze (Sr1-xBax)4(La0.85Ho0.025Yb0.125)2Ti4Nb6O30 (SBLTNx: Ho-Yb) ceramics with different Ba substitution levels (x) are prepared. The upconversion photoluminescence (UC-PL) and dielectric permittivity are investigated. The substitution of Sr2+ ions at the A2-sites by larger Ba2+ ions results in substantial variation of the UC-PL intensity as a function of substitution level x. Furthermore, the dielectric response to the substitution of Sr2+ by Ba2+ suggests a close correlation between the UC-PL intensity and dielectric permittivity. The origin for this correlation is discussed based on the random stress field (RSF) model.

  20. On the terahertz dielectric response of cubic BaTiO3: Coexistence of displacive and order-disorder dynamics

    NASA Astrophysics Data System (ADS)

    Deng, Hai-Yao

    2012-10-01

    Two distinct modes with frequencies below 150 cm-1 were recently observed in cubic BaTiO3 (Ponomareva I. et al., Phys. Rev. B, 77 (2008) 012102). One of these modes perfectly softens to zero while the other saturates at about 60 cm-1 as the ferroelectric transition is approached. In the present work, we interpret these modes employing two widely recognized elements: nano-size tetragonal precursors forming in the cubic phase and an eight-well potential model for Ti ions due to Comes, Lambert and Guinier (Solid State Commun., 6 (1968) 715). We show that the frequency squared of the saturating mode (SM), which exists in the cubic phase, and that of an E-symmetry mode (EM), which exists in the tetragonal phase, fall on a single curve, ˜33 cm-2K-1(T - T*), thereby suggesting connections between the lattice dynamics across the ferroelectric transition. T* is predicted and confirmed to coincide with the tetragonal-orthorhombic transition temperature of 290 K. The perfectly softening mode (PSM) is argued to be associated with the re-orientational motions of tetragonal precursors. The complex dielectric function is calculated without free inputs and the result agrees satisfactorily with measurements. The SM is characterized as a resonant mode, whereas the PSM as a relaxational mode, confirming that both order-disorder and displacive dynamics coexist in cubic BaTiO3.

  1. Mathematical models for the reflection coefficients of lossy dielectric half-spaces with application to transient responses of chirped pulses

    NASA Technical Reports Server (NTRS)

    Evans, D. D.

    1977-01-01

    Reflection coefficients are found at normal incidence for a large class of homogeneous lossy half-spaces with a one-dimensionally inhomogeneous or stratified lossy layer on top. Solutions are in terms of Hankel functions of complex argument to decrease cancellation error at high frequencies. One special case is that of layers on a homogeneous half-space where the dielectric constant in each layer may vary in a quite general manner. A Wronskian is used to insure the critical computations are correct. The reflection of chirped pulses is considered. Solutions are obtained by applying the fast Fourier transform. It is found that for a typical relatively long normalized 'long' pulse the power reflected as a function of time is essentially the power reflection coefficient for the frequencies swept out, whereas for a relatively short 'long' pulse, with the same relative change in frequency and the same number of oscillations there is only the uniform attenuation by the power reflection coefficient of the center frequency. By a 'long' pulse we mean a pulse whose spatial length is long compared to the thickness of the reflecting layer.

  2. Chemical Ordering Modulated Electronic Phase Separation and Macroscopic Properties in Colossal Magnetoresistance Manganites

    NASA Astrophysics Data System (ADS)

    Zhu, Yinyan; Du, Kai; Yin, Lifeng; Shen, Jian; Low-dimensional material physics Team

    Using unit cell by unit cell superlattice growth technique, we determine the role of chemical ordering of the Pr dopant in a colossal magnetoresistance (La1-yPry)1-x CaxMnO3 (LPCMO) system, which has been well known for its large length scale electronic phase separation (EPS) phenomena. Our experimental results show that the chemical ordering of Pr leads to dramatic reduction of the length scale of EPS. Moreover, compared to the conventional Pr-disordered LPCMO system, the Pr-ordered LPCMO system has ~100 K higher metal-insulator transition temperature. We have further investigated the n-dependence of the physical properties of the (LCMO)2n/(PCMO)n superlattices. Magnetic and transport measurements indicate that the physical properties change nonmonotonically with increasing n, reaching a minimum for both the Curie temperature and the meta-insulator transition temperature. The crossover thickness thus reflects the characteristic correlation length scale along the vertical direction of the superlattice. For superlattices with n smaller than the correlation length, we combine MFM studies and model calculations to explain the weakened ferromagnetism and metallicity with increasing n.

  3. Wigner Crystal and Colossal Magnetoresistance in InSb Doped with Mn

    PubMed Central

    Obukhov, S. A.; Tozer, S. W.; Coniglio, W. A.

    2015-01-01

    We report magnetotransport investigation of nonmagnetic InSb single crystal doped with manganese at Mn concentration NMn ~ 1,5 × 1017 cm−3 in the temperature range T = 300 K–40 mK, magnetic field B = 0–25T and hydrostatic pressure P = 0–17 kbar. Resistivity saturation was observed in the absence of magnetic field at temperatures below 200 mK while applied increasing external magnetic field induced colossal drop of resistivity (by factor 104) at B ~ 4T with further gigantic resistivity increase (by factor 104) at 15T. Under pressure, P = 17 kbar, resistivity saturation temperature increased up to 1,2 K. Existing models are discussed in attempt to explain resistivity saturation, dramatic influence of magnetic field and pressure on resistivity with the focus on possible manifestation of three dimensional Wigner crystal formed in InSb by light electrons and heavy holes. PMID:26307952

  4. Explanation of the Colossal Sensitivity of Silicon Pentaerythritol Tetranitrate (Si-PETN)

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Guang; Zybin, Sergey; Dasgupta, Siddharth; Goddard, William, III

    2009-06-01

    A new extremely sensitive silicon-based explosive was recently synthesized in Germany by the nitration of tetrakis(hydroxymethyl)-silane, Si(CH2OH)4, with nitric acid. This sila-pentaerythritol tetranitrate (Si-PETN), Si(CH2ONO2)4 (tetrakis(nitratomethyl)-silane) has a molecular structure nearly identical to its carbon analog - PentaErythritol TetraNitrate (PETN), C(CH2ONO2)4 - with the central carbon atom replaced by silicon. Unexpectedly, SiPETN shows dramatically increased sensitivity, exploding with just a touch of a spatula, making it extremely dangerous and difficult to study. We have performed DFT calculations on paths of unimolecular decomposition and identified a novel central carbon-oxygen (or silicon-oxygen) rearrangement which shows a dramatic difference that may explain the colossal sensitivity. In particular, this reaction in SiPETN has significantly lower barrier and far more exothermic, which leads to a large net energy release at very early stages of Si-PETN decomposition facilitating a fast temperature increase and expansion of the reaction zone.

  5. Colossal positive magnetoresistance in surface-passivated oxygen-deficient strontium titanite

    PubMed Central

    David, Adrian; Tian, Yufeng; Yang, Ping; Gao, Xingyu; Lin, Weinan; Shah, Amish B.; Zuo, Jian-Min; Prellier, Wilfrid; Wu, Tom

    2015-01-01

    Modulation of resistance by an external magnetic field, i.e. magnetoresistance effect, has been a long-lived theme of research due to both fundamental science and device applications. Here we report colossal positive magnetoresistance (CPMR) (>30,000% at a temperature of 2 K and a magnetic field of 9 T) discovered in degenerate semiconducting strontium titanite (SrTiO3) single crystals capped with ultrathin SrTiO3/LaAlO3 bilayers. The low-pressure high-temperature homoepitaxial growth of several unit cells of SrTiO3 introduces oxygen vacancies and high-mobility carriers in the bulk SrTiO3, and the three-unit-cell LaAlO3 capping layer passivates the surface and improves carrier mobility by suppressing surface-defect-related scattering. The coexistence of multiple types of carriers and inhomogeneous transport lead to the emergence of CPMR. This unit-cell-level surface engineering approach is promising to be generalized to others oxides, and to realize devices with high-mobility carriers and interesting magnetoelectronic properties. PMID:25975606

  6. Dielectric Properties of Piezoelectric Polyimides

    NASA Technical Reports Server (NTRS)

    Ounaies, Z.; Young, J. A.; Simpson, J. O.; Farmer, B. L.

    1997-01-01

    Molecular modeling and dielectric measurements are being used to identify mechanisms governing piezoelectric behavior in polyimides such as dipole orientation during poling, as well as degree of piezoelectricity achievable. Molecular modeling on polyimides containing pendant, polar nitrile (CN) groups has been completed to determine their remanent polarization. Experimental investigation of their dielectric properties evaluated as a function of temperature and frequency has substantiated numerical predictions. With this information in hand, we are then able to suggest changes in the molecular structures, which will then improve upon the piezoelectric response.

  7. Non-Debye relaxation in the dielectric response of nematic liquid crystals: Surface and memory effects in the adsorption-desorption process of ionic impurities

    NASA Astrophysics Data System (ADS)

    de Paula, J. L.; Santoro, P. A.; Zola, R. S.; Lenzi, E. K.; Evangelista, L. R.; Ciuchi, F.; Mazzulla, A.; Scaramuzza, N.

    2012-11-01

    We demonstrate theoretically that the presence of ions in insulating materials such as nematic liquid crystals may be responsible for the dielectric spectroscopy behavior observed experimentally. It is shown that, at low frequencies, an essentially non-Debye relaxation process takes place due to surface effects. This is accomplished by investigating the effects of the adsorption-desorption process on the electrical response of an electrolytic cell when the generation and recombination of ions is present. The adsorption-desorption is governed by a non-usual kinetic equation in order to incorporate memory effects related to a non-Debye relaxation and the roughness of the surface. The analysis is carried out by searching for solutions to the drift-diffusion equation that satisfy the Poisson equation relating the effective electric field to the net charge density. We also discuss the effect of the mobility of the ions, i.e., situations with equal and different diffusion coefficients for positive and negative ions, on the impedance and obtain an exact expression for the admittance. The model is compared with experimental results measured for the impedance of a nematic liquid crystal sample and a very good agreement is obtained.

  8. Non-Debye relaxation in the dielectric response of nematic liquid crystals: surface and memory effects in the adsorption-desorption process of ionic impurities.

    PubMed

    de Paula, J L; Santoro, P A; Zola, R S; Lenzi, E K; Evangelista, L R; Ciuchi, F; Mazzulla, A; Scaramuzza, N

    2012-11-01

    We demonstrate theoretically that the presence of ions in insulating materials such as nematic liquid crystals may be responsible for the dielectric spectroscopy behavior observed experimentally. It is shown that, at low frequencies, an essentially non-Debye relaxation process takes place due to surface effects. This is accomplished by investigating the effects of the adsorption-desorption process on the electrical response of an electrolytic cell when the generation and recombination of ions is present. The adsorption-desorption is governed by a non-usual kinetic equation in order to incorporate memory effects related to a non-Debye relaxation and the roughness of the surface. The analysis is carried out by searching for solutions to the drift-diffusion equation that satisfy the Poisson equation relating the effective electric field to the net charge density. We also discuss the effect of the mobility of the ions, i.e., situations with equal and different diffusion coefficients for positive and negative ions, on the impedance and obtain an exact expression for the admittance. The model is compared with experimental results measured for the impedance of a nematic liquid crystal sample and a very good agreement is obtained.

  9. 55Mn NMR observation of colossal magnetoresistance effect in Sm0.55Sr0.45MnO3

    NASA Astrophysics Data System (ADS)

    Michalik, J. M.; Rybicki, D.; Tarnawski, Z.; Sikora, M.; De Teresa, J. M.; Ibarra, M. R.; Kapusta, Cz

    2017-07-01

    Temperature dependent 55Mn NMR study of Sm0.55Sr0.45MnO3 is reported. Previous bulk magnetization measurements have shown that below T C ~ 125 K the sample is ferromagnetic metallic (FMM) and above TC it is charge ordered and insulating. In present report, we show that from zero-field NMR a single line double-exchange (DE) signal is observed at temperatures up to 139 K, which is due to a presence of FMM clusters also above T C. The intensity of the DE line follows the temperature dependence of the magnetization measured at 0.01 T. When a magnetic field up to 2 T is applied at 139 K (i.e. 14 K above T C), a strong increase in NMR intensity of the DE line is observed indicating that content of FMM regions increases. This reveals that metallicity is induced in the material by the applied magnetic field and explains the observed colossal magnetoresistance (CMR) effect at the microscopic level. The observation agrees with previous results, which confirm that the percolation of the FMM clusters is responsible for the CMR effect. The shift of the resonant frequency in the applied field is three times smaller compared to decrease expected from gyromagnetic ratio, which indicates an antiferromagnetic coupling between the FMM clusters.

  10. Quasi-intrinsic colossal permittivity in Nb and In co-doped rutile TiO2 nanoceramics synthesized through a oxalate chemical-solution route combined with spark plasma sintering.

    PubMed

    Han, HyukSu; Dufour, Pascal; Mhin, Sungwook; Ryu, Jeong Ho; Tenailleau, Christophe; Guillemet-Fritsch, Sophie

    2015-07-14

    Nb and In co-doped rutile TiO2 nanoceramics (n-NITO) were successfully synthesized through a chemical-solution route combined with a low temperature spark plasma sintering (SPS) technique. The particle morphology and the microstructure of n-NITO compounds were nanometric in size. Various techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG)/differential thermal analysis (DTA), Fourier transform infrared (FTIR), and Raman spectroscopy were used for the structural and compositional characterization of the synthesized compound. The results indicated that the as-synthesized n-NITO oxalate as well as sintered ceramic have a co-doped single phase of titanyl oxalate and rutile TiO2, respectively. Broadband impedance spectroscopy revealed that novel colossal permittivity (CP) was achieved in n-NITO ceramics exhibiting excellent temperature-frequency stable CP (up to 10(4)) as well as low dielectric loss (∼5%). Most importantly, detailed impedance data analyses of n-NITO compared to microcrystalline NITO (μ-NITO) demonstrated that the origin of CP in NITO bulk nanoceramics might be related with the pinned electrons in defect clusters and not to extrinsic interfacial effects.

  11. High frequency dielectric response and magnetic studies of Zn1-xTbxFe2O4 nanocrystalline ferrites synthesized via micro-emulsion technique

    NASA Astrophysics Data System (ADS)

    Azhar Khan, Muhammad; Sabir, Muhammad; Mahmood, Azhar; Asghar, M.; Mahmood, K.; Afzal Khan, M.; Ahmad, Iqbal; Sher, Muhammad; Farooq Warsi, Muhammad

    2014-06-01

    Tb3+-doped nanocrystalline zinc ferrites with a nominal composition of Zn1-xTbxFe2O4 (x=0, 0.03, 0.06, 0.09, 0.12 and 0.15) were prepared by micro-emulsion method and were annealed at 600 °C for 8.5 h. The synthesized samples were characterized by thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM) and dielectric measurement techniques. The powder XRD patterns confirm the single phase cubic spinel structure, indicated that doping nanoferrites with small concentrations of terbium ions allowed their entrance to the spinel lattice and the crystallite size is found in the range of 16-24 nm. The dielectric constant (ε) and dielectric loss (tanδ) of all the samples were measured in the frequency range 100 MHz-3 GHz at room temperature. The dielectric constant and dielectric loss of the samples are found to decrease with increase in frequency and Tb3+ content. The reduction in the dielectric parameters is attributed to the obstruction incorporated in electron exchange mechanism caused by the lockup among iron and terbium cations. The magnetic properties revealed that these terbium doped nanocrystalline zinc ferrites exhibit ferrimagnetic behavior. The high saturation magnetization and coercivity along with smaller dielectric parameters having Tb-contents suggests that the materials are suitable for applications in memory devices and high frequency applications.

  12. Tens of successive, colossal Missoula floods at north and east margins of channeled scabland

    USGS Publications Warehouse

    Waitt, Richard B.

    1983-01-01

    In deposits of Pleistocene glacial lakes in northern Idaho and Washington, beds comprising 20 to 55 varves (average = 35-40) separate each successive graded gravel or sand bed that was swiftly emplaced by a catastrophic flood from glacial Lake Missoula. The floodlaid beds are similar to rhythmic successions of 40 or more graded beds in backflooded tributaries of the lower Columbia River. This new field evidence corroborates a controversial hypothesis that the great Pleistocene floods from glacial Lake Missoula were 40 or more colossal, separate joekulhlaups, and refutes the conventional notion that any two successive graded beds were deposited by one flood. The only outlet of the 2000-km3 glacial Lake Missoula was through its great ice dam. Calculations show that each time the lake rose to about 600 m deep, it made the glacier buoyant and engendered a catastrophic discharge along the glacier bed (a joekulhlaup). A reconstructed water budget suggests that after a complete draining, the lake refilled in 3 to 6 decades; thus the hydrostatic prerequisites for a joekulhlaup were reestablished dozens of times during the late-Wisconsin episode of lake damming. Various intercalated tephra layers, radiocarbon dates, varve successions, and the Bonneville flood deposits in the region suggest that late-Wisconsin glacial Lake Missoula existed for about 2 millennia within the period 15,000 to 12,700(?) yr ago. Varve beds indicate that the mean period between Missoula floods was about 4 decades, but became shorter during the last several floods. Between 20 and 30 of the Missoula joekulhlaups occurred after the single great flood from Lake Bonneville, which according to 14C dating in the Bonneville basin by W. E. Scott and associates and by D. R. Currey occurred some time between 15,000 and 14,000 yr ago.

  13. Dielectric behavior of Ar{sup +} implanted CR-39 polymer

    SciTech Connect

    Shekhawat, Nidhi; Sharma, Annu; Aggarwal, Sanjeev; Deshpande, S. K.; Nair, K. G. M.

    2012-06-05

    The frequency dependent dielectric response of Ar{sup +} implanted CR-39 specimens has been studied. Samples were implanted with 130 keV Ar{sup +} ions to various doses ranging from 5x10{sup 14} to 1x10{sup 16} cm{sup -2}. The frequency response of dielectric constant (e) and dielectric loss has been studied both in the pristine and argon ion implanted samples of CR-39 polymer in the frequency range 10{sup 4} to 10{sup 8} Hz. Structural changes produced in CR-39 specimens due to implantation have been studied using Attenuated total reflectance (ATR) Fourier transform infrared spectroscopic technique. Results of dielectric analysis indicate the lowering in dielectric constant ({epsilon}') and similar behavior of dielectric loss with increase in ion fluence. An attempt has been made to correlate these changes produced in the dielectric properties of implanted specimens with the structural changes produced due to implantation.

  14. Colossal Kerr nonlinearity based on electromagnetically induced transparency in a five-level double-ladder atomic system.

    PubMed

    Hamedi, H R; Gharamaleki, Ali Hamrah; Sahrai, Mostafa

    2016-08-01

    The paper is aimed at modeling the enhanced Kerr nonlinearity in a five-level double-ladder-type atomic system based on electromagnetically induced transparency (EIT) by using the semi-classical density matrix method. We present an analytical model to explain the origin of Kerr nonlinearity enhancement. The scheme also results in a several orders of magnitude increase in the Kerr nonlinearity in comparison with the well-known four- and three-level atomic systems. In addition to the steady-state case, the time-dependent Kerr nonlinearity and the switching feature of EIT-based colossal Kerr nonlinearity is investigated for the proposed system.

  15. Nonlinear electroelastic deformations of dielectric elastomer composites: I-Ideal elastic dielectrics

    NASA Astrophysics Data System (ADS)

    Lefèvre, Victor; Lopez-Pamies, Oscar

    2017-02-01

    This paper puts forth homogenization solutions for the macroscopic elastic dielectric response-under finite deformations and finite electric fields-of ideal elastic dielectric composites with two-phase isotropic particulate microstructures. Specifically, solutions are presented for three classes of microstructures: (i) an isotropic iterative microstructure wherein the particles are infinitely polydisperse in size, (ii) an isotropic distribution of polydisperse spherical particles of a finite number of different sizes, and (iii) an isotropic distribution of monodisperse spherical particles. The solution for the iterative microstructure, which corresponds to the viscosity solution of a Hamilton-Jacobi equation in five "space" variables, is constructed by means of a novel high-order WENO finite-difference scheme. On the other hand, the solutions for the microstructures with spherical particles are constructed by means of hybrid finite elements. Prompted by the functional features shared by all three obtained solutions, a simple closed-form approximation is proposed for the macroscopic elastic dielectric response of ideal elastic dielectric composites with any type of (non-percolative) isotropic particulate microstructure. As elaborated in a companion paper, the proposed approximate solution proves particularly useful as a fundamental building block to generate approximate solutions for the macroscopic elastic dielectric response of dielectric elastomer composites made up of non-Gaussian dielectric elastomers filled with nonlinear elastic dielectric particles.

  16. Electrode effects in dielectric spectroscopy measurements on (Nb+In) co-doped TiO2

    NASA Astrophysics Data System (ADS)

    Crandles, D. A.; Yee, S. M. M.; Savinov, M.; Nuzhnyy, D.; Petzelt, J.; Kamba, S.; Prokeš, J.

    2016-04-01

    Recently, several papers reported the discovery of giant permittivity and low dielectric loss in (Nb+In) co-doped TiO2. A series of tests was performed which included the measurement of the frequency dependence of the dielectric permittivity and alternating current (ac) conductivity of co-doped (Nb+In)TiO2 as a function of electrode type, sample thickness, and temperature. The data suggest that the measurements are strongly affected by the electrodes. The consistency between four-contact van der Pauw direct current conductivity measurements and bulk conductivity values extracted from two-contact ac conductivity measurements suggest that the values of colossal permittivity are, at least in part, a result of Schottky barrier depletion widths that depend on electrode type and temperature.

  17. Response to ``Comment on `Slow Debye-type peak observed in the dielectric response of polyalcohols' '' [J. Chem. Phys. 134, 037101 (2011)

    NASA Astrophysics Data System (ADS)

    Bergman, R.; Jansson, H.; Swenson, J.

    2011-01-01

    In our recent article [R. Bergman et al., J. Chem. Phys. 132, 044504 (2010)] we investigated some polyalcohols, i.e., glycerol, xylitol, and sorbitol by dielectric spectroscopy. In the study, a low-frequency peak of Debye character that normally is hidden by the large low-frequency dispersion due to conductivity was revealed by analyzing the real part of the permittivity and by using a thin Teflon film to suppress the low-frequency dispersion. We agree with the comment by Paluch et al. [J. Chem. Phys. 134, 037101 (2011)] that the Teflon film setup will indeed create a peak due to the dc conductivity. However, due to the fact that the location of the peak was almost identical in measurement with and without Teflon, we unfortunately mainly showed the data measured with Teflon, despite that it could also be observed in the real part of the permittivity without using the Teflon setup, as shown in our original article [R. Bergman et al., J. Chem. Phys. 132, 044504 (2010)]. Here, we show that the low-frequency peak of Debye character can also be observed by subtracting the dc conductivity. Furthermore, we show that the modulus representation used in Paluch et al. [J. Chem. Phys. 134, 037101 (2011).] is also not suitable for detecting processes hidden by the conductivity.

  18. Dielectric Metamaterials

    DTIC Science & Technology

    2015-05-29

    disordered MM made of all-isotropic constituents. With additional use of accurate finite-element electromagnetic (EM) simulations, SRI has identified a...responses to electromagnetic waves and promise many novel applications. Reliable and efficient modeling tools play an indispensable role in advancing...Figure 1. Definition of terms for the GEM model. SRI Project P21340 Final Report 29 May 2015 4 electromagnetic fields and resonances in the

  19. Broadband terahertz dielectric spectroscopy of alcohols

    NASA Astrophysics Data System (ADS)

    Sarkar, Sohini; Saha, Debasis; Banerjee, Sneha; Mukherjee, Arnab; Mandal, Pankaj

    2017-06-01

    We have studied the complex dielectric properties of a series of alcohols in 0.5-10 THz frequency range using THz time-domain spectroscopy. The dielectric response observed has contribution from a Debye relaxation process and three damped harmonic oscillators. Combination of experimental observations, all-atom molecular dynamics simulations and ab initio quantum calculations reveals that the complex dielectric spectra of alcohols result from a complex dynamics involving vibrational motions of several atoms across multiple interacting alcohol molecules. The major contribution comes from the fast hydrogen-bond rupture and reformation dynamics, the motion of alkyl chains, and the motions of the H-bonded OH groups.

  20. Experimental evidence for the formation of CoFe{sub 2}C phase with colossal magnetocrystalline-anisotropy

    SciTech Connect

    El-Gendy, Ahmed A. E-mail: ecarpenter2@vcu.edu; Bertino, Massimo; Qian, Meichun; Khanna, Shiv N. E-mail: ecarpenter2@vcu.edu; Clifford, Dustin; Carpenter, Everett E. E-mail: ecarpenter2@vcu.edu

    2015-05-25

    Attainment of magnetic order in nanoparticles at room temperature is an issue of critical importance for many different technologies. For ordinary ferromagnetic materials, a reduction in size leads to decreased magnetic anisotropy and results in superparamagnetic relaxations. If, instead, anisotropy could be enhanced at reduced particle sizes, then it would be possible to attain stable magnetic order at room temperature. Herein, we provide experimental evidence substantiating the synthesis of a cobalt iron carbide phase (CoFe{sub 2}C) of nanoparticles. Structural characterization of the CoFe{sub 2}C carbide phase was performed by transmission electron microscopy, electron diffraction and energy electron spectroscopy. X-ray diffraction was also performed as a complimentary analysis. Magnetic characterization of the carbide phase revealed a blocking temperature, T{sub B}, of 790 K for particles with a domain size as small as 5 ± 1 nm. The particles have magnetocrystalline anisotropy of 4.6 ± 2 × 10{sup 6 }J/m{sup 3}, which is ten times larger than that of Co nanoparticles. Such colossal anisotropy leads to thermally stable long range magnetic order. Moreover, the thermal stability constant is much larger than that of the commonly used FePt nanoparticles. With thermal stability and colossal anisotropy, the CoFe{sub 2}C nanoparticles have huge potential for enhanced magnetic data storage devices.

  1. Impact of metallophilicity on "colossal" positive and negative thermal expansion in a series of isostructural dicyanometallate coordination polymers.

    PubMed

    Korcok, Jasmine L; Katz, Michael J; Leznoff, Daniel B

    2009-04-08

    Five isostructural dicyanometallate coordination polymers containing metallophilic interactions (In[M(CN)(2)](3) (M = Ag, Au), KCd[M(CN)(2)](3), and KNi[Au(CN)(2)](3)) were synthesized and investigated by variable-temperature powder X-ray diffraction to probe their thermal expansion properties. The compounds have a trigonal unit cell and show positive thermal expansion (PTE) in the ab plane, where Kagome sheets of M atoms reside, and negative thermal expansion (NTE) along the trigonal c axis, perpendicular to these sheets. The magnitude of thermal expansion is unusually large in all cases (40 x 10(-6) K(-1) < |alpha| < 110 x 10(-6) K(-1)). The system with the weakest metallophilic interactions, In[Ag(CN)(2)](3), shows the most "colossal" thermal expansion of the series (alpha(a) = 105(2) x 10(-6) K(-1), alpha(c) = -84(2) x 10(-6) K(-1) at 295 K), while systems containing stronger Au-Au interactions show relatively reduced thermal expansion. Thus, it appears that strong metallophilic interactions hinder colossal thermal expansion behavior. Additionally, the presence of K(+) counterions also reduces the magnitude of thermal expansion.

  2. Experimental evidence for the formation of CoFe2C phase with colossal magnetocrystalline-anisotropy

    SciTech Connect

    El-Gendy, AA; Bertino, M; Clifford, D; Qian, MC; Khanna, SN; Carpenter, EE

    2015-05-25

    Attainment of magnetic order in nanoparticles at room temperature is an issue of critical importance for many different technologies. For ordinary ferromagnetic materials, a reduction in size leads to decreased magnetic anisotropy and results in superparamagnetic relaxations. If, instead, anisotropy could be enhanced at reduced particle sizes, then it would be possible to attain stable magnetic order at room temperature. Herein, we provide experimental evidence substantiating the synthesis of a cobalt iron carbide phase (CoFe2C) of nanoparticles. Structural characterization of the CoFe2C carbide phase was performed by transmission electron microscopy, electron diffraction and energy electron spectroscopy. X-ray diffraction was also performed as a complimentary analysis. Magnetic characterization of the carbide phase revealed a blocking temperature, TB, of 790K for particles with a domain size as small as 5 +/- 1 nm. The particles have magnetocrystalline anisotropy of 4.662 +/- 10 6 J/m(3), which is ten times larger than that of Co nanoparticles. Such colossal anisotropy leads to thermally stable long range magnetic order. Moreover, the thermal stability constant is much larger than that of the commonly used FePt nanoparticles. With thermal stability and colossal anisotropy, the CoFe2C nanoparticles have huge potential for enhanced magnetic data storage devices. (C) 2015 AIP Publishing LLC.

  3. Experimental evidence for the formation of CoFe2C phase with colossal magnetocrystalline-anisotropy

    NASA Astrophysics Data System (ADS)

    El-Gendy, Ahmed A.; Bertino, Massimo; Clifford, Dustin; Qian, Meichun; Khanna, Shiv N.; Carpenter, Everett E.

    2015-05-01

    Attainment of magnetic order in nanoparticles at room temperature is an issue of critical importance for many different technologies. For ordinary ferromagnetic materials, a reduction in size leads to decreased magnetic anisotropy and results in superparamagnetic relaxations. If, instead, anisotropy could be enhanced at reduced particle sizes, then it would be possible to attain stable magnetic order at room temperature. Herein, we provide experimental evidence substantiating the synthesis of a cobalt iron carbide phase (CoFe2C) of nanoparticles. Structural characterization of the CoFe2C carbide phase was performed by transmission electron microscopy, electron diffraction and energy electron spectroscopy. X-ray diffraction was also performed as a complimentary analysis. Magnetic characterization of the carbide phase revealed a blocking temperature, TB, of 790 K for particles with a domain size as small as 5 ± 1 nm. The particles have magnetocrystalline anisotropy of 4.6 ± 2 × 106 J/m3, which is ten times larger than that of Co nanoparticles. Such colossal anisotropy leads to thermally stable long range magnetic order. Moreover, the thermal stability constant is much larger than that of the commonly used FePt nanoparticles. With thermal stability and colossal anisotropy, the CoFe2C nanoparticles have huge potential for enhanced magnetic data storage devices.

  4. Size effect on the colossal thermoelectric power in charge ordered small band width manganites based on Gd-Sr

    NASA Astrophysics Data System (ADS)

    Joy, Lija K.; Singh, Durgesh; Sudeep, P. M.; Ganesan, V.; Ajayan, P. M.; Thomas, Senoy; Anantharaman, M. R.

    2015-05-01

    Earlier we observed colossal thermoelectric power in charge ordered intermediate band width manganite La0.5Ca0.5MnO3 and was explained based on charge ordering and occurrence of spin glass states. With a view to extending such a study on small band width Gd-Sr manganites, both unmilled and milled forms of Gd1-xSrxMnO3 (x = 0.3, 0.5, and 0.6) samples were prepared. Nano forms of Gd1-xSrxMnO3 were prepared by high energy ball milling. All compositions, both milled and unmilled forms, exhibited colossal thermoelectric power. The absolute value of thermoelectric power almost doubled in the case of milled samples and attained a maximum value of -69 mV K-1 at 42 K, where a spin glass transition takes place. In order to explain the occurrence of transition at ˜42 K, field cooling and zero-field cooling magnetic measurements were conducted and we found that the peak value of thermoelectric power is observed at the same magnetic ordering temperature. The results are further modelled using Mandal’s model by incorporating Kondo properties of spin glass along with magnon scattering.

  5. Soft Dielectrics: Heterogeneity and Instabilities

    NASA Astrophysics Data System (ADS)

    Rudykh, Stephan; Debotton, Gal; Bhattacharya, Kaushik

    2012-02-01

    Dielectric Elastomers are capable of large deformations in response to electrical stimuli. Heterogeneous soft dielectrics with proper microstructures demonstrate much stronger electromechanical coupling than their homogeneous constituents. In turn, the heterogeneity is an origin for instability developments leading to drastic change in the composite microstructure. In this talk, the electromechanical instabilities are considered. Stability of anisotropic soft dielectrics is analyzed. Ways to achieve giant deformations and manipulating extreme material properties are discussed. 1. S. Rudykh and G. deBotton, ``Instabilities of Hyperelastic Fiber Composites: Micromechanical Versus Numerical Analyses.'' Journal of Elasticity, 2011. http://dx.doi.org/2010.1007/s10659-011-9313-x 2. S. Rudykh, K. Bhattacharya and G. deBotton, ``Snap-through actuation of thick-wall electroactive balloons.'' International Journal of Non-Linear Mechanics, 2011. http://dx.doi.org/10.1016/j.ijnonlinmec.2011.05.006 3. S. Rudykh and G. deBotton, ``Stability of Anisotropic Electroactive Polymers with Application to Layered Media.'' Zeitschrift f"ur angewandte Mathematik und Physik, 2011. http://dx.doi.org/10.1007/s00033-011-0136-1 4. S. Rudykh, A. Lewinstein, G. Uner and G. deBotton, ``Giant Enhancement of the Electromechanical Coupling in Soft Heterogeneous Dielectrics.'' 2011 http://arxiv.org/abs/1105.4217v1

  6. Dielectric properties of body tissues.

    PubMed

    Pethig, R

    1987-01-01

    A review is given of the dielectric properties of various mammalian tissues and biological fluids for the frequency range from 1 Hz to 10 GHz. The properties considered are the frequency variations of the relative permittivity and electrical conductivity. An attempt has been made to present data which can be considered to be the most typical for each material. The dielectric properties of aqueous solutions of amino-acids, polypeptides, proteins, and then cells, are first outlined in order to lay the groundwork for the understanding of the properties of tissues. The electrical characteristics of various tissues and blood are presented in tabular and graphical form, and the differences between normal and cancerous tissue is also discussed. The effects of necrosis and temperature changes are described and the important contribution that water makes to the overall properties is emphasised. An insight into some of the dominant physiological and biophysical processes responsible for the dielectric properties of biological materials is also attempted, since this should aid further developments of both the diagnostic and therapeutic applications of radiofrequency and microwave radiation. Such information is also relevant to an understanding of the possible biological hazards of such radiation. The ways in which dielectric studies can aid an understanding at the molecular level of the basic physiological differences between normal and cancerous tissue, as well as of the physico-chemical state of biological water, are also described.

  7. Dielectrically Loaded HTS Spiral Antenna

    NASA Astrophysics Data System (ADS)

    Ramasamy, J.; Hanna, D.; Vlasov, Y. A.; Larkins, G. L.; Moeckly, B. H.

    2004-06-01

    The objective of this work is to fabricate, test, and study a dielectrically loaded high temperature superconductor (HTS) spiral antenna that would operate in the frequency band of 10 MHz to 200 MHz. The antenna is formed by depositing and patterning a YBa2Cu3O7 (YBCO) thin film on top of 4-inch-diameter sapphire and Yittria Stabilized ZrO2 substrates. The presence of the HTS material guarantees low conductor loss in the antenna. A thick epitaxial layer of strontium titanate (STO) is then deposited on top of the YBCO for high dielectric constant loading. This set-up can be simulated using the Fidelity software routine, a Finite Difference Time Domain based program from Zeland, Inc. We have simulated the performance of this antenna structure, first in free space and then after loading with the dielectric slabs. Important parameters such as feed point impedance and antenna gain are studied for different simulation conditions. The dielectric ensures reduced feed point impedance as well as improvement of the low frequency response of the antenna.

  8. Dielectric Actuation of Polymers

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  9. Magnetic force microscopy of colossal magneto-resistive materials and superconductors

    NASA Astrophysics Data System (ADS)

    Lu, Qingyou

    Using a home-built low temperature piezo-driven magnetic force microscope (LT-PD-MFM), we have studied the magnetic domain behaviors in colossal magneto-resistive (CMR) thin films, the vortex behavior in high TC superconducting (HTCS) thin films as well as the localized penetration depth in a Yttrium(1)Barium(2)Copper(3)Oxygen(7) single crystal. We have obtained MFM images of domains in CMR films for temperatures from close to TC to far below TC. Domains behave differently for these two temperature zones. Well below TC, neighboring domains exhibit strong interdomain coupling. External magnetic fields can split domains more easily than rearrange them. As temperature increases, domain interactions become weaker with a reduced magnetization, and are subject to moving, splitting or merging. They are still traceable in the presence of a sample scratch. As temperature drops from TC, domains increase in magnetization. The weak interdomain interactions and high fluctuations make domain tracing impossible if there are no topographic defects. Sample scratches tend to pin domains for T ˜ TC. Current flow in CMR films can split domains. This splitting can be both reversible and irreversible when current is turned on and off. Lattice mismatch between a CMR film and a substrate leads to a stress that results in smaller domains. The magnetization of these smaller domains does not cancel out, resulting in "large-scale" domains if detected from a longer distance from the sample. Images of superconducting vortices in BSSCO films show that they grow with temperature, which is compared with the theory. The theory fits our experimental data well. We also measured the gradient of the levitation force between a magnetic tip and a superconducting single crystal as a function of the tip-sample distance. A series of these measurements were performed at different temperatures. By comparing these data with the theory in which the penetration depth lambda and the TC are parameters to be

  10. Time-resolved optical studies of colossal magnetoresistance and charge-density wave materials

    NASA Astrophysics Data System (ADS)

    Ren, Yuhang

    This thesis presents measurements of collective modes and ultrafast carrier relaxation dynamics in charge-density-wave (CDW) conductors and colossal magnetoresistance (CMR) manganites. A femtosecond laser pump pulse excites a broad frequency spectrum of low-energy collective modes and electron-hole pairs thereby changing its optical properties. The low-energy collective excitations and quasiparticle relaxation and recombination processes are monitored by measuring the resulting photoinduced absorption as a function of probe pulse wavelength and time delay. A general model was developed for the photogeneration and detection mechanism of collective modes based on light absorption in two-color pump-probe experiments. A broad spectrum of collective modes (phasons and amplitudons) with frequencies down to a few GHz is excited and propagates normal to the surface into the material. The dispersion of the long-wavelength phason and amplitudon can be measured by changing the probe wavelength. The first pump-probe spectroscopy was performed from the ultraviolet to mid-infrared wavelength range to study low-frequency collective excitations, including temperature evolution, dispersion, damping, and anisotropy of amplitude mode and transverse phason in quasi-one dimensional CDW conductors, K 0.3MoO3 and K0.33MoO3 on ultrafast time scale. The transverse phason exhibits an acoustic-like dispersion relation in the frequency range from 5--40 GHz. The phason velocity is strongly anisotropic with a very weak temperature dependence. In contrast, the amplitude mode exhibits a weak (optic-like) dispersion relation with a frequency of 1.66 THz at 30 K. The studies were extended to doped perovskite manganite thin films and single crystals. A low-energy collective mode is observed and discussed in terms of the opening of a pseudogap resulting from charge/orbital ordering phases. The softening of the collective mode is necessary to explain by combining a cooperative Jahn-Teller type

  11. Applications of dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Pelrine, Ron; Sommer-Larsen, Peter; Kornbluh, Roy D.; Heydt, Richard; Kofod, Guggi; Pei, Qibing; Gravesen, Peter

    2001-07-01

    Dielectric elastomer actuators, based on the field-induced deformation of elastomeric polymers with compliant electrodes, can produce a large strain response, combined with a fast response time and high electromechanical efficiency. This unique performance, combined with other factors such as low cost, suggests many potential applications, a wide range of which are under investigation. Applications that effectively exploit the properties of dielectric elastomers include artificial muscle actuators for robots; low-cost, lightweight linear actuators; solid- state optical devices; diaphragm actuators for pumps and smart skins; acoustic actuators; and rotary motors. Issues that may ultimately determine the success or failure of the actuation technology for specific applications include the durability of the actuator, the performance of the actuator under load, operating voltage and power requirements, and electronic driving circuitry, to name a few.

  12. Extending applications of dielectric elastomer artificial muscle

    NASA Astrophysics Data System (ADS)

    Chiba, Seiki; Waki, Mikio; Kornbluh, Roy; Pelrine, Ron

    2007-04-01

    Dielectric elastomers have demonstrated high energy density and high strains as well as high electromechanical efficiency and fast speeds of response. These properties, combined with their projected low cost make them attractive for a variety of actuator applications including linear actuators, diaphragm pumps, rotary motors, and haptic displays. Dielectric elastomers have also been shown to offer high energy density, high efficiency, and large strains when operated as generators. Dielectric elastomers have reached a stage of development where standardized products can be applied to new applications. In some cases, dielectric elastomer devices are improvements over existing devices. In other cases, however, dielectric elastomers can enable new types of devices that cannot be made with existing technologies, such as new types of loudspeakers and power generating devices. A new dipole loudspeaker system was developed using a commercially available push-pull diaphragm configuration. This same transducer configuration was used to develop a new power generating system. This generator system enables a power generation of 0.06 to 0.12 W by manually displacing the device by 5 to 6 mm once a second. By introducing a voltage step-down conversion circuit, the device was able to power wireless communications, allowing the control of devices separated by a distance of a few meters. These two devices are examples of the new applications that are enabled as the dielectric elastomer technology commercially emerges. Future improvements to dielectric elastomers could enable new capabilities in clean electrical power generation from ocean waves, for example.

  13. Electrical conduction in polymer dielectrics

    NASA Technical Reports Server (NTRS)

    Cotts, D. B.

    1985-01-01

    The use of polymer dielectrics with moderate resistivities could reduce or eliminate problems associated with spacecraft charging. The processes responsible for conduction and the properties of electroactive polymers are reviewed, and correlations drawn between molecular structure and electrical conductivity. These structure-property relationships led to the development of several new electroactive polymer compositions and the identification of several systems that have the requisite thermal, mechanical, environmental and electrical properties for use in spacecraft.

  14. Resonant dielectric metamaterials

    DOEpatents

    Loui, Hung; Carroll, James; Clem, Paul G; Sinclair, Michael B

    2014-12-02

    A resonant dielectric metamaterial comprises a first and a second set of dielectric scattering particles (e.g., spheres) having different permittivities arranged in a cubic array. The array can be an ordered or randomized array of particles. The resonant dielectric metamaterials are low-loss 3D isotropic materials with negative permittivity and permeability. Such isotropic double negative materials offer polarization and direction independent electromagnetic wave propagation.

  15. Mesa-top quantum dot single photon emitter arrays: Growth, optical characteristics, and the simulated optical response of integrated dielectric nanoantenna-waveguide systems

    NASA Astrophysics Data System (ADS)

    Zhang, Jiefei; Chattaraj, Swarnabha; Lu, Siyuan; Madhukar, Anupam

    2016-12-01

    Nanophotonic quantum information processing systems require spatially ordered, spectrally uniform single photon sources (SPSs) integrated on-chip with co-designed light manipulating elements providing emission rate enhancement, emitted photon guidance, and lossless propagation. Towards this goal, we consider systems comprising an SPS array with each SPS coupled to a dielectric building block (DBB) based multifunctional light manipulation unit (LMU). For the SPS array, we report triggered single photon emission from GaAs(001)/InGaAs single quantum dots grown selectively on top of nanomesas using the approach of substrate-encoded size-reducing epitaxy (SESRE). Systematic temperature and power dependent photoluminescence (PL), PL excitation, time-resolved PL, and emission statistics studies reveal high spectral uniformity and single photon emission at 8 K with g(2)(0) of 0.19 ± 0.03. The SESRE based SPS arrays, following growth of a planarizing overlayer, are readily integrable with LMUs fabricated subsequently using either the 2D photonic crystal approach or, as theoretically examined here, DBB based LMUs. We report the simulated optical response of SPS embedded in DBB based nanoantenna-waveguide structures as the multifunctional LMU. The multiple functions of emission rate enhancement, guiding, and lossless propagation are derived from the behavior of the same collective Mie resonance (dominantly magnetic) of the interacting DBB based LMU tuned to the SPS targeted emission wavelength of 980 nm. The simulation utilizes an analytical approach that provides physical insight into the obtained numerical results. Together, the combined experimental and modelling demonstrations open a rich approach to implementing co-designed on-chip integrated SPS-LMUs that, in turn, serve as basic elements of integrated nanophotonic information processing systems.

  16. Inductive dielectric analyzer

    NASA Astrophysics Data System (ADS)

    Agranovich, Daniel; Polygalov, Eugene; Popov, Ivan; Ben Ishai, Paul; Feldman, Yuri

    2017-03-01

    One of the approaches to bypass the problem of electrode polarization in dielectric measurements is the free electrode method. The advantage of this technique is that, the probing electric field in the material is not supplied by contact electrodes, but rather by electromagnetic induction. We have designed an inductive dielectric analyzer based on a sensor comprising two concentric toroidal coils. In this work, we present an analytic derivation of the relationship between the impedance measured by the sensor and the complex dielectric permittivity of the sample. The obtained relationship was successfully employed to measure the dielectric permittivity and conductivity of various alcohols and aqueous salt solutions.

  17. Method of making dielectric capacitors with increased dielectric breakdown strength

    DOEpatents

    Ma, Beihai; Balachandran, Uthamalingam; Liu, Shanshan

    2017-05-09

    The invention is directed to a process for making a dielectric ceramic film capacitor and the ceramic dielectric laminated capacitor formed therefrom, the dielectric ceramic film capacitors having increased dielectric breakdown strength. The invention increases breakdown strength by embedding a conductive oxide layer between electrode layers within the dielectric layer of the capacitors. The conductive oxide layer redistributes and dissipates charge, thus mitigating charge concentration and micro fractures formed within the dielectric by electric fields.

  18. Dielectric relaxation in dielectric mixtures: Application of the finite element method and its comparison with dielectric mixture formulas

    SciTech Connect

    Tuncer, Enis; Gubanski, Stanislaw M.; Nettelblad, B.

    2001-06-15

    In this article, the frequency dependent dielectric properties, {var_epsilon}({omega}), of an {open_quotes}ideal binary composite structure were investigated by using the finite element method in the frequency domain. The material properties of the phases, i.e., dielectric permittivity, {epsilon}, and direct-current conductivity, {sigma}, were assumed to be frequency independent. Moreover, the inclusion phase was more conductive than the matrix phase. The inclusions were infinitely long unidirectional cylinders which could be assumed to be hard disks in two dimensions in the direction perpendicular to the cylinder direction. Three different inclusion concentration levels were considered, e.g., low, intermediate, and high. The calculated dielectric relaxations were compared with those of the dielectric mixture formulas in the literature and it was found that there were no significant differences between the formulas and the numerical solutions at low inclusion concentration. Furthermore, the obtained responses were curve fitted by the addition of the Cole{endash}Cole empirical expression and the ohmic losses by using a complex nonlinear least squares algorithm in order to explain the plausible physical origin of the Cole{endash}Cole type dielectric relaxation. The dielectric relaxations were Debye-like when the concentration of the inclusions were low. For intermediate and high concentrations, the responses obtained from the numerical simulations deviated from that of the Debye one, whose curve fittings with the Cole{endash}Cole empirical expression were inadequate. {copyright} 2001 American Institute of Physics.

  19. Dielectric screening in semiconductors

    NASA Astrophysics Data System (ADS)

    Harrison, Walter A.; Klepeis, John E.

    1988-01-01

    Intra-atomic and interatomic Coulomb interactions are incorporated into bond-orbital theory, based upon universal tight-binding parameters, in order to treat the effects of charge redistribution in semiconductor bonds. The dielectric function ɛ(q) is obtained for wave numbers in a [100] direction. The screening of differences in average hybrid energy across a heterojunction is calculated in detail, indicating that the decay length for the potential depends upon the relative values of Madelung and intra-atomic Coulomb terms. The parameters used here predict an imaginary decay length and thus an oscillating potential near the interface. The same theory is applied to point defects by imbedding a cluster in a matrix lattice, taking charges in that lattice to be consistent with continuum theory. Illustrating the theory with a phosphorus impurity in silicon, it is seen that the impurity and its neighboring atoms have charges on the order of only one-tenth of an electronic charge, alternating in sign from neighbor to neighbor as for planar defects. Although there are shifts in the term values on the order of a volt, the difference in these shifts for neighboring atoms is much smaller so that the effect on the bonds is quite small. This behavior is analogous to the response of a dielectric continuum to a point charge: The medium is locally neutral except at the center of the cluster and there are slowly varying potentials e2/ɛr. Because of this slow variation, free-atom term values should ordinarily suffice for the calculation of bond properties and bond lengths at impurities. Corrections are larger for homovalent substitutions such as carbon in silicon.

  20. Dielectric anisotropy in polar solvents under external fields

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin

    2015-08-01

    We investigate dielectric saturation and increment in polar liquids under external fields. We couple a previously introduced dipolar solvent model to a uniform electric field and derive the electrostatic kernel of interacting dipoles. This procedure allows an unambiguous definition of the liquid dielectric permittivity embodying non-linear dielectric response and correlation effects. We find that the presence of the external field results in a dielectric anisotropy characterized by a two-component dielectric permittivity tensor. The increase of the electric field amplifies the permittivity component parallel to the field direction, i.e. dielectric increment is observed along the field. However, the perpendicular component is lowered below the physiological permittivity {{\\varepsilon}w}≈ 77 , indicating dielectric saturation perpendicular to the field. By comparison with Molecular Dynamics simulations from the literature, we show that the mean-field level dielectric response theory underestimates dielectric saturation. The inclusion of dipolar correlations at the weak-coupling level intensify the mean-field level dielectric saturation and improves the agreement with simulation data at weak electric fields. The correlation-corrected theory predicts as well the presence of a metastable configuration corresponding to the antiparallel alignment of dipoles with the field. This prediction can be verified by solvent-explicit simulations where solvent molecules are expected to be trapped transiently in this metastable state.

  1. Deformation and instabilities in dielectric elastomer composites

    NASA Astrophysics Data System (ADS)

    Li, Wenyuan; Landis, Chad M.

    2012-09-01

    The deformation behavior in dielectric elastomer composites due to applied mechanical and electrical loadings is investigated using finite element methods. The composite structure consists of a dielectric elastomer matrix with a regular square array of cylindrical holes or rigid conducting inclusions. The dielectric elastomer material is represented with either a compressible Neo-Hookean model for the elasticity or a compressible Gent model. Following previous work, the dielectric constant relating the true electric displacement to the true electric field is taken to be independent of the deformation. The finite element method is used to analyze the electromechanical behavior of representative unit cells of the composite material structure. Results are presented for the stress-strain, electric field-electric displacement and coupled electromechanical responses of the different composite types.

  2. Dielectric spectroscopy of bidisperse colloidal suspensions.

    PubMed

    Beltramo, Peter J; Furst, Eric M

    2012-08-15

    Dielectric spectroscopy is used to measure the complex permittivity of bidisperse colloidal suspensions over the frequency range 2.5 kHz ≤ ω/2π ≤ 10 MHz using the spectrometer design of Hollingsworth and Saville (A.D. Hollingsworth, D.A. Saville, J. Colloid Interface Sci., 2003). Dielectric spectra of monodisperse polystyrene spheres of two diameters (530 nm and 1 μm) are fit to electrokinetic theory using the surface charge density as an adjustable parameter. Quantitative agreement is found in the dielectric increment and also for the conductivity increment, after considering the effect of added counterions and nonspecific adsorption. Bidisperse suspension spectra are a linear superposition of each particle's dielectric response. The results provide a simple method to extend standard electrokinetic theory based on a single particle size to dilute suspensions with many particle sizes and verify the sensitivity of the spectrometer. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Multimode directionality in all-dielectric metasurfaces

    NASA Astrophysics Data System (ADS)

    Yang, Yuanqing; Miroshnichenko, Andrey E.; Kostinski, Sarah V.; Odit, Mikhail; Kapitanova, Polina; Qiu, Min; Kivshar, Yuri S.

    2017-04-01

    We demonstrate that spectrally diverse multiple magnetic dipole resonances can be excited in all-dielectric structures lacking rotational symmetry, in contrast to conventionally used spheres, disks, or spheroids. Such multiple magnetic resonances arise from hybrid Mie-Fabry-Perot modes, and can constructively interfere with induced electric dipole moments, thereby leading to novel multifrequency unidirectional scattering. Here we focus on elongated dielectric nanobars, whose magnetic resonances can be spectrally tuned by their aspect ratios. Based on our theoretical results, we suggest all-dielectric multimode metasurfaces and verify them in proof-of-principle microwave experiments. We also believe that the demonstrated property of multimode directionality is largely responsible for the best efficiency of all-dielectric metasurfaces that were recently shown to operate across multiple telecom bands.

  4. Terahertz Artificial Dielectric Lens

    NASA Astrophysics Data System (ADS)

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-03-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  5. All-Dielectric Multilayer Cylindrical Structures for Invisibility Cloaking

    PubMed Central

    Mirzaei, Ali; Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S.

    2015-01-01

    We study optical response of all-dielectric multilayer structures and demonstrate that the total scattering of such structures can be suppressed leading to optimal invisibility cloaking. We use experimental material data and a genetic algorithm to reduce the total scattering by adjusting the material and thickness of various layers for several types of dielectric cores at telecommunication wavelengths. Our approach demonstrates 80-fold suppression of the total scattering cross-section by employing just a few dielectric layers. PMID:25858295

  6. All-dielectric multilayer cylindrical structures for invisibility cloaking.

    PubMed

    Mirzaei, Ali; Miroshnichenko, Andrey E; Shadrivov, Ilya V; Kivshar, Yuri S

    2015-04-10

    We study optical response of all-dielectric multilayer structures and demonstrate that the total scattering of such structures can be suppressed leading to optimal invisibility cloaking. We use experimental material data and a genetic algorithm to reduce the total scattering by adjusting the material and thickness of various layers for several types of dielectric cores at telecommunication wavelengths. Our approach demonstrates 80-fold suppression of the total scattering cross-section by employing just a few dielectric layers.

  7. Tunable frequency response of tunnel-type magneto-dielectric effect in Co-MgF2 granular films with different content of Co

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Umetsu, A.; Kobayashi, N.; Ohnuma, S.; Masumoto, H.

    2017-09-01

    We have demonstrated the frequency dependence of the tunnel-type magneto-dielectric (TMD) effect in superparamagnetic Cox-(MgF2)1-x granular nanostructures by precise variations of x from 0.06 to 0.2. The structures consist of the nanometer-sized Co granules embedded in a crystallized MgF2 dielectric matrix. We observed an increased peak dielectric change Δɛ'/ɛ'0 from 0.8% to 3% at a specific frequency fTMD, and tunable fTMD was achieved from 8 kHz to 6.6 MHz by increasing x. Theoretical fittings predict that the narrow distribution of relaxation time gave rise to an enhanced Δɛ'/ɛ'0 and the narrowing of fTMD; the position variation of fTMD was attributed to the change in the intergranular distance between a pair of two neighboring granules. This study may help understand the fundamental physics between the TMD effect and nanometric structure and indicate that the films may work at higher frequency for devices with tunable dielectrics.

  8. Radio frequency abnormal dielectric response of manganese chromite (MnCr{sub 2}O{sub 4}) nanoparticles synthesized by coprecipitation method

    SciTech Connect

    Gul, Muhammad

    2016-04-15

    Highlights: • Uniform MnCr{sub 2}O{sub 4} nanoparticles synthesized by surfactant-free coprecipitation route. • XRD analysis confirmed the single spinel phase formation in the material. • Dielectric loss was found abnormal over certain lower frequencies. • AC conductivity proved the involvement of small polarons in conduction process. - Abstract: Radio frequency dielectric behavior of nanocrystalline MnCr{sub 2}O{sub 4} synthesized via surfactant-free controlled coprecipitation route has been studied. Keeping in view the necessity of particle size uniformity and phase purity for genuine performance, experimental conditions were optimized accordingly. The scanning electron micrographs of the synthesized product revealed the formation of monodispersed particle system. X-ray diffraction analysis confirmed monophasic spinel structure formation with 65 nm crystallite size. Two characteristic peaks observed between 700 cm{sup −1} and 400 cm{sup −1} in the FTIR spectrum also supported the spinel phase purity of compound. The dielectric constant was found normal, but loss tangent of the sample showed abnormal behavior with frequency. The observed dielectric behavior of the synthesized product has been explained on the basis of space-charge polarization according to Maxwell–Wagner’s model and mutual contribution of n-type &p-type charge carriers (Rezlescu model). The ac conductivity linearly increased with frequency highlighting the existence of polaron hopping.

  9. Phase transition and enhanced magneto-dielectric response in BiFeO{sub 3}-DyMnO{sub 3} multiferroics

    SciTech Connect

    Tripathy, Satya N. Pradhan, Dillip K.; Pradhan, Dhiren K.; Palai, Ratnakar; Katiyar, Ram S.; Mishra, Karuna K.; Sen, Shrabanee; Paulch, Marian; Scott, James F.

    2015-04-14

    We report systematic studies on crystal structure and magneto-dielectric properties of (1 − x) BiFeO{sub 3}-x DyMnO{sub 3} (0.0 ≤ x ≤ 0.2) nanoceramics synthesized by auto-combustion method. Rietveld refinement of X-ray diffraction data indicates a structural transition from R3c to R3c + Pn2{sub 1}a at x = 0.1. Field emission scanning electron micrographs display a decrease in grain size with increase in x. The presence of dielectric anomalies around antiferromagnetic transition temperature implies the magnetoelectric coupling. Dielectric measurements showed decrease in magnetic ordering temperature with increasing x in agreement with differential scanning calorimetry results. A significant increase in magnetization has been found with increasing DyMnO{sub 3} substitution. Magneto-impedance spectroscopy reveals a significant change (∼18%) in dielectric permittivity at H = 2 T for x = 0.2.

  10. Temperature-controlled colossal magnetoresistance and perfect spin Seebeck effect in hybrid graphene/boron nitride nanoribbons.

    PubMed

    Zhu, Lin; Li, Ruimin; Yao, Kailun

    2017-02-01

    Thermal spin transport properties of graphene and hexagonal boron nitride nanoribbon heterojunctions have been investigated using density functional theory calculations combined with the Keldysh nonequilibrium Green's function approach. The results showed that the perfect spin Seebeck effect and analogy negative differential thermoelectric resistance occurred in the device under a temperature difference without a gate or bias voltage. An intriguing thermally induced colossal magnetoresistance without gate regulation was also observed, which can be switched between a positive and negative value with temperature control. It was also found that the unit number of zigzag graphene nanoribbons and boron nitride nanoribbons can tune the electronic band structure and the energy gap of the heterostructure, and then modulate the thermal spin transport properties. The results suggest that graphene and hexagonal boron nitride nanoribbon heterostructures may have potential applications in graphene-based nanodevices.

  11. The influence of the semiconductor and dielectric properties on surface flashover in silicon-dielectric systems

    SciTech Connect

    Gradinaru, G.; Madangarli, V.P.; Sudarshan, T.S. . Dept. of Electrical and Computer Engineering)

    1994-07-01

    New experimental results on surface flashover are reported for high field silicon-dielectric systems. Different conditions of the lateral surface, contacts and ambient dielectrics have been studied. The strong influence of the semiconductor quality, and that of the dielectric properties, on the prebreakdown and breakdown response of the system, is demonstrated. All experimental results strongly support the conclusion that surface flashover in silicon systems is a physical process totally different from semiconductor surface breakdown. This conclusion has important practical application in the improvement of the performance of photoconductive power switches, severely limited by premature breakdown effects.

  12. Dielectric Characterization of Mylar and The Effects of Doping Processes.

    SciTech Connect

    Belcher, Cami Beth

    2016-11-01

    Mylar® polymer is a bi-axially oriented polyethylene terephthalate (PET) polymer film used widely as a dielectric, specifically in capacitors. The dielectric characteristics of Mylar have been well studied and documented over the years; however, many of the mechanisms responsible for dielectric breakdown and failure are not understood for modified versions of the material. Previous studies on Mylar confirm that factors such as temperature, humidity, and voltage ramp rates can also have a significant effect on the dielectric properties and measurement of the dielectric properties. This study seeks to determine how dielectric properties, including permittivity, dielectric loss, and breakdown strength, are affected by doping of the polymer. To do this, two types of Mylar films, virgin film and film doped with a small-molecule electron-acceptor, are tested. Both types of materials are tested under a variety of environmental and experimental conditions, including testing at elevated temperatures, varying relative humidity, and varying ramp rates in dielectric breakdown testing. Analysis of permittivity, dielectric loss, and breakdown strength will be presented comparing virgin and doped Mylar to gain insight into the effects of doping with electron-acceptor molecules on dielectric properties under these varying environmental and test conditions.

  13. Highly efficient omnidirectional structural color tuning method based on dielectric-metal-dielectric structure.

    PubMed

    Fang, Bo; Yang, Chenying; Shen, Weidong; Zhang, Xing; Zhang, Yueguang; Liu, Xu

    2017-02-01

    A novel and convenient scheme is proposed to achieve angle insensitive color filtering across a large color gamut by simply altering the thickness of the dielectric layer of a dielectric-metal-dielectric grating structure. The plasmonic filter presents a great feature of angle resolved spectrum response up to 60° and is independent of the azimuthal angle and the polarization state as well so as to construct an omnidirectional filter for practical applications. The color tuning feature of the proposed filter with varied dielectric thickness is attributed to the modulation of the condition for the localized surface plasmon resonance, which bears responsibility for the omnidirectional property of this plasmonic filter. This color-tuning method with a single mold size required can have wide applications in fields of display, colorful decoration, printing, and so forth.

  14. Diffractive coherence in multilayer dielectric gratings

    SciTech Connect

    Shore, B.W.; Feit, M.D.; Perry, M.D.; Boyd, R.D.; Britten, J.A.; Li, Lifeng

    1995-05-26

    Successful operation of large-scale high-power lasers, such as those in use and planned at LLNL and elsewhere, require optical elements that can withstand extremely high fluences without suffering damage. Of particular concern are dielectric diffraction gratings used for beam sampling and pulse compression. Laser induced damage to bulk dielectric material originates with coupling of the electric field of the radiation to bound electrons, proceeding through a succession of mechanisms that couple the electron kinetic energy to lattice energy and ultimately to macroscopic structural changes (e.g. melting). The constructive interference that is responsible for the diffractive behavior of a grating or the reflective properties of a multilayer dielectric stack can enhance the electric field above values that would occur in unstructured homogeneous material. Much work has been done to model damage to bulk matter. The presence of nonuniform electric fields, resulting from diffractive coherence, has the potential to affect damage thresholds and requires more elaborate theory. We shall discuss aspects of work directed towards understanding the influence of dielectric structures upon damage, with particular emphasis on computations and interpretation of electric fields within dielectric gratings and multilayer dielectric stacks, noting particularly the interference effects that occur in these structures.

  15. Dielectric fluctuations and the origins of noncontact friction.

    PubMed

    Kuehn, Seppe; Loring, Roger F; Marohn, John A

    2006-04-21

    Dielectric fluctuations underlie a wide variety of physical phenomena, from ion mobility in electrolyte solutions and decoherence in quantum systems to dynamics in glass-forming materials and conformational changes in proteins. Here we show that dielectric fluctuations also lead to noncontact friction. Using high sensitivity, custom fabricated, single crystal silicon cantilevers we measure energy losses over poly(methyl methacrylate), poly(vinyl acetate), and polystyrene thin films. A new theoretical analysis, relating noncontact friction to the dielectric response of the film, is consistent with our experimental observations. This work constitutes the first direct, mechanical detection of noncontact friction due to dielectric fluctuations.

  16. Dielectric fluctuations and the origins of non-contact friction

    PubMed Central

    Kuehn, Seppe; Loring, Roger F.; Marohn, John A.

    2006-01-01

    Dielectric fluctuations underlie a wide variety of physical phenomena, from ion mobility in electrolyte solutions and decoherence in quantum systems to dynamics in glass-forming materials and conformational changes in proteins. Here we show that dielectric fluctuations also lead to non-contact friction. Using high sensitivity, custom fabricated, single crystal silicon cantilevers we measure energy losses over poly(methyl methacrylate), poly(vinyl acetate), and polystyrene thin films. A new theoretical analysis, relating non-contact friction to the dielectric response of the film, is consistent with our experimental observations. This work constitutes the first direct, mechanical detection of friction due to dielectric fluctuations. PMID:16712172

  17. Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies.

    PubMed

    Gutruf, Philipp; Zou, Chengjun; Withayachumnankul, Withawat; Bhaskaran, Madhu; Sriram, Sharath; Fumeaux, Christophe

    2016-01-26

    Devices that manipulate light represent the future of information processing. Flat optics and structures with subwavelength periodic features (metasurfaces) provide compact and efficient solutions. The key bottleneck is efficiency, and replacing metallic resonators with dielectric resonators has been shown to significantly enhance performance. To extend the functionalities of dielectric metasurfaces to real-world optical applications, the ability to tune their properties becomes important. In this article, we present a mechanically tunable all-dielectric metasurface. This is composed of an array of dielectric resonators embedded in an elastomeric matrix. The optical response of the structure under a uniaxial strain is analyzed by mechanical-electromagnetic co-simulations. It is experimentally demonstrated that the metasurface exhibits remarkable resonance shifts. Analysis using a Lagrangian model reveals that strain modulates the near-field mutual interaction between resonant dielectric elements. The ability to control and alter inter-resonator coupling will position dielectric metasurfaces as functional elements of reconfigurable optical devices.

  18. Dielectric breakdown studies of Teflon perfluoroalkoxy at high temperature

    NASA Technical Reports Server (NTRS)

    Suthar, J. L.; Laghari, J. R.

    1992-01-01

    Teflon perfluoroalkoxy (PFA) was evaluated for use as a dielectric material in high-temperature high-voltage capacitors for space applications. The properties that were characterized included the dc dielectric strength at temperatures up to 250 C and the permittivity and dielectric loss as a function of frequency, temperature and voltage. To understand the breakdown mechanism taking place at high temperatures, the pre-breakdown discharge and conduction currents, and the dependence of dielectric strength on thickness of the film were determined. Confocal laser microscopy was performed to diagnose for microimperfections within the film structure. The results obtained show a significant decrease in the dielectric strength and an increase in dielectric loss with an increase in temperature, suggesting that impulse thermal breakdown could be a responsible mechanism in PFA film at temperatures above 150 C.

  19. Dielectric comparison of lunar and terrestrial fines at lunar conditions

    NASA Technical Reports Server (NTRS)

    Alvarez, R.

    1974-01-01

    The dielectric properties of lunar fines 74241,2 in the audio-frequency range under lunarlike conditions are presented. Results suggest that volatiles are released during storage and transport of the lunar sample. Apparently, subsequent adsorption of volatiles on the sample surface alters its dielectric response. The assumed volatile influence disappears after evacuation. A comparison of the dielectric properties of lunar and terrestrial materials as a function of density, temperature, and frequency indicates that if the terrestrial sample analyzed were completely devoid of atmospheric moisture, it would present dielectric losses smaller than those of the lunar sample. It is concluded that density prevails over temperature as the controlling factor of dielectric permittivity in the lunar regolith and that dielectric losses vary slowly with depth.

  20. Improved Dielectric Films For Capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.; Lewis, Carol R.; Cygan, Peter J.; Jow, T. Richard

    1994-01-01

    Dielectric films made from blends of some commercially available high-dielectric-constant cyanoresins with each other and with cellulose triacetate (CTA) have both high dielectric constants and high breakdown strengths. Dielectric constants as high as 16.2. Films used to produce high-energy-density capacitors.

  1. Fabrication of Polyurethane Dielectric Actuators

    DTIC Science & Technology

    2005-01-01

    a summary of a 3 year Technology Investment Fund Project entitled “Dielectric Polymer Actuators for Active/ Passive Vibration Isolation”, which was...completed in March 2005. The purpose of this project was to investigate dielectric polymer materials for potential use in active/ passive vibration...devices and systems based on dielectric polymer actuators. Keywords: dielectric actuators, electroactive polymers , Technology Investment Fund 1

  2. Electronic, thermoelectric, and magneto-dielectric properties of Ca1-xNaxCr2O4

    NASA Astrophysics Data System (ADS)

    Kolodiazhnyi, Taras; Sakurai, Hiroya

    2013-06-01

    We report on electronic, thermoelectric, and magneto-dielectric properties of Ca1-xNaxCr2O4 series with a calcium ferrite-type structure prepared by high-pressure-high-temperature synthesis. Dielectric spectroscopy down to 2 K confirms that both CaCr2O4 and NaCr2O4 end members have an insulating ground state notwithstanding the fact that the latter compound has a mixed valence Cr3+/Cr4+ structure. A crossover from positive to negative charge carriers occurs in NaCr2O4 at T≈230 K. Partial substitution of Ca for Na brings about a change from n to p type carriers at ca. x =0.75. A strong suppression of thermal conductivity below TN=21 K was found in CaCr2O4 indicating a scattering of acoustic phonons from a long wave-length cycloidal magnetic excitations. A pronounced dielectric anomaly at Néel temperature adds CaCr2O4 to the multiferroic family of compounds. Lattice contribution to dielectric properties of NaCr2O4 at TN=125 K is screened by high electric conductivity. An onset of the magnetocapacitance above 3 T correlates with the spin-flop transition in NaCr2O4 at a critical field of 3.5 T. A strong non-saturated magnetocapacitance in this compound cannot be entirely attributed to the colossal magnetoresistance.

  3. Multi-susceptibile Single-Phased Ceramics with Both Considerable Magnetic and Dielectric Properties by Selectively Doping

    PubMed Central

    Liu, Chuyang; Zhang, Yujing; Jia, Jingguo; Sui, Qiang; Ma, Ning; Du, Piyi

    2015-01-01

    Multiferroic ceramics with extraordinary susceptibilities coexisting are vitally important for the multi-functionality and integration of electronic devices. However, multiferroic composites, as the most potential candidates, will introduce inevitable interface deficiencies and thus dielectric loss from dissimilar phases. In this study, single-phased ferrite ceramics with considerable magnetic and dielectric performances appearing simultaneously were fabricated by doping target ions in higher valence than that of Fe3+, such as Ti4+, Nb5+ and Zr4+, into BaFe12O19. In terms of charge balance, Fe3+/Fe2+ pair dipoles are produced through the substitution of Fe3+ by high-valenced ions. The electron hopping between Fe3+ and Fe2+ ions results in colossal permittivity. Whilst the single-phased ceramics doped by target ions exhibit low dielectric loss naturally due to the diminishment of interfacial polarization and still maintain typical magnetic properties. This study provides a convenient method to attain practicable materials with both outstanding magnetic and dielectric properties, which may be of interest to integration and multi-functionality of electronic devices. PMID:25835175

  4. A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities.

    PubMed

    Shi, Lei; Tuzer, T Umut; Fenollosa, Roberto; Meseguer, Francisco

    2012-11-20

    A new dielectric metamaterial building block based on high refractive index silicon spherical nanocavities with Mie resonances appearing in the near infrared optical region is prepared and characterized. It is demonstrated both experimentally and theoretically that a single silicon nanocavity supports well-defined and robust magnetic resonances, even in a liquid medium environment, at wavelength values up to six times larger than the cavity radius.

  5. Dielectric responses of modified BaTiO3 ceramics in multilayer ceramic capacitors to the combined uniaxial stress and dc bias field

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Yue, Zhenxing; Gui, Zhilun; Li, Longtu

    2008-10-01

    Dielectric measurements of modified BaTiO3 in a multilayer ceramic capacitor (MLCC) show that the application of external uniaxial stress perpendicular to electric field in a MLCC can lead to a slight increase in the dielectric permittivity. The additional application of a dc bias results in a significantly suppressed dielectric permittivity in the temperature range from 228 to 453 K. These observations can be explained as a result of domain wall movements in grains with a core-shell structure, due to the combined stress and dc bias field. As the dc bias increased up to 5.6 MV/m, the Curie peak, which has diffuse phase transition characteristics in the absence of dc bias, becomes sharper, and two new peaks are induced at about 250 and 315 K. Furthermore, the first order paraelectric-ferroelectric phase transition of the modified BaTiO3 ceramic becomes stronger with increasing dc bias when a uniaxial stress is also applied.

  6. Cast dielectric composite linear accelerator

    DOEpatents

    Sanders, David M.; Sampayan, Stephen; Slenes, Kirk; Stoller, H. M.

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  7. Colossal negative thermal expansion with an extended temperature interval covering room temperature in fine-powdered Mn0.98CoGe

    NASA Astrophysics Data System (ADS)

    Lin, Jianchao; Tong, Peng; Zhang, Kui; Tong, Haiyun; Guo, Xinge; Yang, Cheng; Wu, Ying; Wang, Meng; Lin, Shuai; Chen, Li; Song, Wenhai; Sun, Yuping

    2016-12-01

    MnM'X (M' = Co, Ni; X = Ge, Si, etc.) alloys usually present a large volumetric change during the Martensitic (MA) transformation. This offers a great opportunity for exploring new negative thermal expansion (NTE) materials if the temperature interval of NTE can be extended. Here, we report colossal NTE in fine-powdered Mn0.98CoGe prepared by repeated thermal cycling (TC) through the MA transition or ball milling. Both treatments can expand the MA transformation, and thus broaden the NTE temperature window (ΔT). For the powders that have gone through TC for ten times, ΔT reaches 90 K (309 K-399 K), and the linear expansion coefficient (αL) is about -141 ppm/K, which rank among the largest values of colossal NTE materials. The difference between two kinds of treatments and the possible mechanisms of the extended MA transformation window are discussed based on the introduced strain.

  8. Nonlinear electroelastic deformations of dielectric elastomer composites: II - Non-Gaussian elastic dielectrics

    NASA Astrophysics Data System (ADS)

    Lefèvre, Victor; Lopez-Pamies, Oscar

    2017-02-01

    This paper presents an analytical framework to construct approximate homogenization solutions for the macroscopic elastic dielectric response - under finite deformations and finite electric fields - of dielectric elastomer composites with two-phase isotropic particulate microstructures. The central idea consists in employing the homogenization solution derived in Part I of this work for ideal elastic dielectric composites within the context of a nonlinear comparison medium method - this is derived as an extension of the comparison medium method of Lopez-Pamies et al. (2013) in nonlinear elastostatics to the coupled realm of nonlinear electroelastostatics - to generate in turn a corresponding solution for composite materials with non-ideal elastic dielectric constituents. Complementary to this analytical framework, a hybrid finite-element formulation to construct homogenization solutions numerically (in three dimensions) is also presented. The proposed analytical framework is utilized to work out a general approximate homogenization solution for non-Gaussian dielectric elastomers filled with nonlinear elastic dielectric particles that may exhibit polarization saturation. The solution applies to arbitrary (non-percolative) isotropic distributions of filler particles. By construction, it is exact in the limit of small deformations and moderate electric fields. For finite deformations and finite electric fields, its accuracy is demonstrated by means of direct comparisons with finite-element solutions. Aimed at gaining physical insight into the extreme enhancement in electrostriction properties displayed by emerging dielectric elastomer composites, various cases wherein the filler particles are of poly- and mono-disperse sizes and exhibit different types of elastic dielectric behavior are discussed in detail. Contrary to an initial conjecture in the literature, it is found (inter alia) that the isotropic addition of a small volume fraction of stiff (semi

  9. Pyroelectric and dielectric properties of ferroelectric films with interposed dielectric buffer layers

    NASA Astrophysics Data System (ADS)

    Espinal, Y.; Kesim, M. T.; Misirlioglu, I. B.; Trolier-McKinstry, S.; Mantese, J. V.; Alpay, S. P.

    2014-12-01

    The dielectric and pyroelectric properties of c-domain ferroelectric films with linear dielectric buffer layers were investigated theoretically. Computations were carried out for multilayers consisting of PbZr0.2Ti0.8O3 with Al2O3, SiO2, Si3N4, HfO2, and TiO2 buffers on metalized Si. It is shown that the dielectric and pyroelectric properties of such multilayers can be increased by the presence of the buffer compared to ferroelectric monolayers. Calculations for PbZr0.2Ti0.8O3 films with 1% Al2O3 interposed between electrodes on Si show that the dielectric and pyroelectric coefficients are 310 and 0.070 μC cm-2 °C-1, respectively. Both values are higher than the intrinsic response of PbZr0.2Ti0.8O3 monolayer on Si.

  10. PREFACE: Dielectrics 2009: Measurement Analysis and Applications

    NASA Astrophysics Data System (ADS)

    Vaughan, Alun; Williams, Graham

    2009-07-01

    2001 the Annual Meetings focused on numerous topics, including relaxation and conduction processes in liquids, solids, liquid crystals, synthetic polymers and biopolymers, piezoelectric materials, electrets and ferroelectrets, interfacial phenomena, high field conduction and breakdown phenomena in solids, liquids and gases and, importantly, the remarkable developments in dielectric instrumentation during this period. These activities reflected the need, and willingness, to move dielectrics researches with the times. As examples of the variety and diversity of these meetings we may refer briefly to the 1981, 1989 and 1996 Meetings. The 1981 Oxford Meeting on High Field Phenomena in Dielectrics included strong themes on fundamental and practical effects of high E-fields on the dielectric and conduction behaviour of liquids and solids, electrical treeing and dielectric breakdown, non-linear dielectric effects, electrets, thin-film devices and electro-rheology. The late 1980's had seen large initiatives in the UK and globally in the general area of Molecular Electronics so, in timely fashion, this was the subject of the 1989 Meeting in Bangor. The 1996 Smart Dielectrics Meeting at Canterbury reported subsequent advances in designer materials having electro-responsive and electro-optical properties. The programme concerned electro- and photo-active materials, mainly organic, in the form of polar dielectrics, polyelectrolytes, organic semi- and photo-conductors, photo-refractive polymer films, organic ferroelectric films, liquid crystalline polymer films, piezo- and pyro-electric polymer films, electroluminescent polymers, electro-rheological fluids and non-linear optical polymer films as described by leading international scientists. The physico-chemical functions of the materials were demonstrated and interpreted in terms of fundamental molecular properties. An Archive, containing full details of all the Meetings of the DDG and the Dielectrics Society, has been placed on

  11. Colossal terahertz magnetoresistance at room temperature in epitaxial La0.7Sr0.3MnO3 nanocomposites and single-phase thin films

    DOE PAGES

    Lloyd-Hughes, James; Mosley, C. D. W.; Jones, S. P. P.; ...

    2017-03-13

    Colossal magnetoresistance (CMR) is demonstrated at terahertz (THz) frequencies by using terahertz time-domain magnetospectroscopy to examine vertically aligned nanocomposites (VANs) and planar thin films of La0.7Sr0.3MnO3. At the Curie temperature (room temperature), the THz conductivity of the VAN was dramatically enhanced by over 2 orders of magnitude under the application of a magnetic field with a non-Drude THz conductivity that increased with frequency. The direct current (dc) CMR of the VAN is controlled by extrinsic magnetotransport mechanisms such as spin-polarized tunneling between nanograins. In contrast, we find that THz CMR is dominated by intrinsic, intragrain transport: the mean free pathmore » was smaller than the nanocolumn size, and the planar thin-film exhibited similar THz CMR to the VAN. Surprisingly, the observed colossal THz magnetoresistance suggests that the magnetoresistance can be large for alternating current motion on nanometer length scales, even when the magnetoresistance is negligible on the macroscopic length scales probed by dc transport. This suggests that colossal magnetoresistance at THz frequencies may find use in nanoelectronics and in THz optical components controlled by magnetic fields. As a result, the VAN can be scaled in thickness while retaining a high structural quality and offers a larger THz CMR at room temperature than the planar film.« less

  12. Colossal Room-Temperature Electrocaloric Effect in Ferroelectric Polymer Nanocomposites Using Nanostructured Barium Strontium Titanates.

    PubMed

    Zhang, Guangzu; Zhang, Xiaoshan; Yang, Tiannan; Li, Qi; Chen, Long-Qing; Jiang, Shenglin; Wang, Qing

    2015-07-28

    The electrocaloric effect (ECE) refers to conversion of thermal to electrical energy of polarizable materials and could form the basis for the next-generation refrigeration and power technologies that are highly efficient and environmentally friendly. Ferroelectric materials such as ceramic and polymer films exhibit large ECEs, but each of these monolithic materials has its own limitations for practical cooling applications. In this work, nanosized barium strontium titanates with systematically varied morphologies have been prepared to form polymer nanocomposites with the ferroelectric polymer matrix. The solution-processed polymer nanocomposites exhibit an extraordinary room-temperature ECE via the synergistic combination of the high breakdown strength of a ferroelectric polymer matrix and the large change of polarization with temperature of ceramic nanofillers. It is found that a sizable ECE can be generated under both modest and high electric fields, and further enhanced greatly by tailoring the morphology of the ferroelectric nanofillers such as increasing the aspect ratio of the nanoinclusions. The effect of the geometry of the nanofillers on the dielectric permittivity, polarization, breakdown strength, ECE and crystallinity of the ferroelectric polymer has been systematically investigated. Simulations based on the phase-field model have been carried out to substantiate the experimental results. With the remarkable cooling energy density and refrigerant capacity, the polymer nanocomposites are promising for solid-state cooling applications.

  13. A single dielectric nanolaser

    NASA Astrophysics Data System (ADS)

    Huang, Tsung-Yu; Yen, Ta-Jen

    2016-09-01

    To conquer Ohmic losses from metal and enhance pump absorption efficiency of a nanolaser based on surface plasmon polariton, we theoretically calculate the first magnetic and electric scattering coefficient of a dielectric sphere under a plane wave excitation with a dielectric constant of around 12. From this calculation, we could retrieve both negative effective permittivity and permeability of the sphere simultaneously at frequencies around 153 THz in the aids of Lewin's theory and the power distribution clearly demonstrate the expected negative Goos-Hänchen effect, which usually occurred in a negative refractive waveguide, thus creating two energy vortices to trap incident energy and then promoting the pump absorption efficiency. Meanwhile, a magnetic lasing mode at 167.3 THz is demonstrated and reveals a magnetic dipole resonance mode and a circulating energy flow within the dielectric sphere, providing a possible stopped light feedback mechanism to enable the all-dielectric nanolaser. More importantly, the corresponding mode volume is reduced to 0.01λ3 and a gain threshold of 5.1×103 is obtained. To validate our design of all-dielectric nanolaser, we employ finite-difference-time-domain simulation software to examine the behavior of the nanolaser. From simulation, we could obtain a pinned-down population inversion of 0.001 and a lasing peak at around 166.5 THz, which is very consistent with the prediction of Mie theory. Finally, according to Mie theory, we can regard the all-dielectric nanolaser as the excitation of material polariton and thus could make an analogue between lasing modes of the dielectric and metallic nanoparticles.

  14. Dielectric response and structure of in-plane tensile strained BaTiO3 thin films grown on the LaNiO3 buffered Si substrate

    NASA Astrophysics Data System (ADS)

    Qiao, Liang; Bi, Xiaofang

    2008-02-01

    Highly (001)-textured BaTiO3 films were grown epitaxially on the LaNiO3 buffered Si substrate. A strong in-plane tensile strain has been revealed by using x-ray diffraction and high resolution transmission electron microscopy. The BaTiO3 film has exhibited a small remnant polarization, indicating the presence of ca1/ca2/ca1/ca2 polydomain state in the film. Temperature dependent dielectric permittivity has demonstrated that two phase transitions occurred at respective temperatures of 170 and 30°C. The result was discussed in detail based on the misfit strain-temperature phase diagrams theory.

  15. Effect of temperature, high pressure and freezing/thawing of dry-cured ham slices on dielectric time domain reflectometry response.

    PubMed

    Rubio-Celorio, Marc; Garcia-Gil, Núria; Gou, Pere; Arnau, Jacint; Fulladosa, Elena

    2015-02-01

    Dielectric Time Domain Reflectometry (TDR) is a useful technique for the characterization and classification of dry-cured ham according to its composition. However, changes in the behavior of dielectric properties may occur depending on environmental factors and processing. The effect of temperature, high pressure (HP) and freezing/thawing of dry-cured ham slices on the obtained TDR curves and on the predictions of salt and water contents when using previously developed predictive models, was evaluated in three independent experiments. The results showed that at temperatures below 20 °C there is an increase of the predicted salt content error, being more important in samples with higher water content. HP treatment caused a decrease of the reflected signal intensity due to the major mobility of available ions promoting an increase of the predicted salt content. Freezing/thawing treatment caused an increase of the reflected signal intensity due to the microstructural damages and the loss of water and ions, promoting a decrease of the predicted salt content.

  16. Dielectric relaxation and magnetodielectric response in DyMn{sub 0.5}Cr{sub 0.5}O{sub 3}

    SciTech Connect

    Yuan, B.; Yang, J. Zuo, X. Z.; Zhu, X. B.; Dai, J. M.; Song, W. H.; Kan, X. C.; Zu, L.; Sun, Y. P.

    2015-09-28

    We investigate the structural, magnetic, and magnetodielectric properties of DyMn{sub 0.5}Cr{sub 0.5}O{sub 3}. The sample can be indexed with an orthorhombic phase with B site disordered space group Pbnm. The valence state of both Mn and Cr ions are suggested to be +3 based on the results of x-ray photoelectron spectroscopy. Two thermally excited dielectric relaxation at temperatures T{sub N2} < T< 300 K and large magnetodielectric effect (MDC = 20%–30%) due to the disordered arrangement of Mn{sup 3+}/Cr{sup 3+} ions associated with electron hopping between them are observed. The absence of any noticeable magnetoresistance effect (MR < 0.5%) demonstrates that the observed magnetodielectric effect is an intrinsic behavior. These results suggest that DyMn{sub 0.5}Cr{sub 0.5}O{sub 3} is a magnetodielectric compound, whose dielectric properties are dependence of the applied magnetic field, which exhibits such effects near room temperature and holds great promise for future device applications.

  17. Dielectric elastomer actuators for facial expression

    NASA Astrophysics Data System (ADS)

    Wang, Yuzhe; Zhu, Jian

    2016-04-01

    Dielectric elastomer actuators have the advantage of mimicking the salient feature of life: movements in response to stimuli. In this paper we explore application of dielectric elastomer actuators to artificial muscles. These artificial muscles can mimic natural masseter to control jaw movements, which are key components in facial expressions especially during talking and singing activities. This paper investigates optimal design of the dielectric elastomer actuator. It is found that the actuator with embedded plastic fibers can avert electromechanical instability and can greatly improve its actuation. Two actuators are then installed in a robotic skull to drive jaw movements, mimicking the masseters in a human jaw. Experiments show that the maximum vertical displacement of the robotic jaw, driven by artificial muscles, is comparable to that of the natural human jaw during speech activities. Theoretical simulations are conducted to analyze the performance of the actuator, which is quantitatively consistent with the experimental observations.

  18. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Effective Anisotropic Dielectric Properties of Crystal Composites

    NASA Astrophysics Data System (ADS)

    Wei, En-Bo; Gu, Guo-Qing; Poon, Ying-Ming; Franklin, G. Shin

    2010-02-01

    Transformation field method (TFM) is developed to estimate the anisotropic dielectric properties of crystal composites having arbitrary shapes and dielectric properties of crystal inclusions, whose principal dielectric axis are different from those of anisotropic crystal matrix. The complicated boundary-value problem caused by inclusion shapes is circumvented by introducing a transformation electric field into the crystal composites regions, and the effective anisotropic dielectric responses are formulated in terms of the transformation field. Furthermore, the numerical results show that the effective anisotropic dielectric responses of crystal composites periodically vary as a function of the rotating angle between the principal dielectric axes of inclusion and matrix crystal materials. It is found that at larger inclusion volume fraction the inclusion shapes induce profound effect on the effective anisotropic dielectric responses.

  19. Composition-dependent structural, dielectric and ferroelectric responses of lead-free Bi0.5Na0.5TiO3-SrZrO3 ceramics

    NASA Astrophysics Data System (ADS)

    Maqbool, Adnan; Hussain, Ali; Rahman, Jamil Ur; Malik, Rizwan Ahmed; Song, Tae Kwon; Kim, Myong-Ho; Kim, Won-Jeong

    2016-06-01

    The influence of SrZrO3 (SZ) addition on the crystal structure, piezoelectric and the dielectric properties of lead-free Bi0.5Na0.5TiO3 (BNT-SZ100 x, with x = 0 - 0.10) ceramics was systematically investigated. A significant reduction in the grain size was observed with SZ substitution. The X-ray diffraction analysis of the sintered BNT-SZ ceramics revealed a single perovskite phase with a pseudocubic symmetry; however, electric poling indicated a non-cubic distortion in the poled BNT-SZ ceramics. With increase in the SZ content, the temperature of maximum dielectric constant ( T m ) shifted towards lower temperatures, and the curves became more diffuse. Enhanced piezoelectric constant ( d 33 = 102 pC/N) and polarization response were observed for the BNT-SZ5 ceramics. The results indicated that SZ substitution induced a transition from a ferroelectric to relaxor state with a field-induced strain of 0.24% for BNT-SZ9 corresponding to a normalized strain of 340 pm/V.

  20. Fermi surfaces, spin-mixing parameter, and colossal anisotropy of spin relaxation in transition metals from ab initio theory

    NASA Astrophysics Data System (ADS)

    Zimmermann, Bernd; Mavropoulos, Phivos; Long, Nguyen H.; Gerhorst, Christian-Roman; Blügel, Stefan; Mokrousov, Yuriy

    2016-04-01

    The Fermi surfaces and Elliott-Yafet spin-mixing parameter (EYP) of several elemental metals are studied by ab initio calculations. We focus first on the anisotropy of the EYP as a function of the direction of the spin-quantization axis [B. Zimmermann et al., Phys. Rev. Lett. 109, 236603 (2012), 10.1103/PhysRevLett.109.236603]. We analyze in detail the origin of the gigantic anisotropy in 5 d hcp metals as compared to 5 d cubic metals by band structure calculations and discuss the stability of our results against an applied magnetic field. We further present calculations of light (4 d and 3 d ) hcp crystals, where we find a huge increase of the EYP anisotropy, reaching colossal values as large as 6000 % in hcp Ti. We attribute these findings to the reduced strength of spin-orbit coupling, which promotes the anisotropic spin-flip hot loops at the Fermi surface. In order to conduct these investigations, we developed an adapted tetrahedron-based method for the precise calculation of Fermi surfaces of complicated shape and accurate Fermi-surface integrals within the full-potential relativistic Korringa-Kohn-Rostoker Green function method.

  1. Colossal low-frequency resonant magnetomechanical and magnetoelectric effects in a three-phase ferromagnetic/elastic/piezoelectric composite

    NASA Astrophysics Data System (ADS)

    Liu, Guoxi; Li, Xiaotian; Chen, Jianguo; Shi, Huaduo; Xiao, Wenlei; Dong, Shuxiang

    2012-10-01

    Colossal low-frequency resonant magnetomechanical (MM) and magnetoelectric (ME) coupling effects have been found in a three-phase composite made of Pb(Zr,Ti)O3 ceramic fibers/phosphor copper-sheet unimorph and NdFeB magnets. The experimental results revealed that the ferromagnetic/elastic/piezoelectric three-phase composite with a cantilever beam structure could show huge bending MM coefficient of ˜145.9 × 10-3/Oe (unit in bending radian per Oe) and ME voltage coefficient of ˜16 000 V/cm.Oe at the first-order bending resonance frequency of ˜5 Hz. The achieved results related to ME effect are at least one order of magnitude higher over those of other ME materials and devices reported ever. The extremely strong MM and ME couplings in the three-phase composite are due to strong magnetic force moment effect induced by the interaction between NdFeB magnets and the applied magnetic field, and further resonant enhancement via the strain-mediated phosphor copper-sheet with a relatively high mechanical quality factor.

  2. Electric field induced metal-insulator transition and colossal magnetoresistance in CdCr2S4

    NASA Astrophysics Data System (ADS)

    Sun, C. P.; Lin, C. C.; Her, J. L.; Taran, S.; Chou, C. C.; Chan, C. L.; Huang, C. L.; Berger, H.; Yang, H. D.

    2008-03-01

    Multiferroic ordering existing in a single material is a recent hot topic in the field of condensed matter physics due to its potential application in device control. The chromium chalcogenide spinel CdCr2S4 is one of the attractive materials investigated by Hemberger et al. recently.[1] Based on the electrical measurement, there is no discontinuity through the ferromagnetic ordering at TC ˜ 85K.[2] We measure the temperature dependent resistance under various electric fields to investigate the electrical properties of the present material. To our knowledge, we first observe the electric field induced metal-insulator transition in this material around TC. Moreover, a colossal magnetoresistance (CMR), which is comparable to that of manganese-based CMR material, is also observed near TC. The origin for these properties is discussed. [1] J. Hemberger, P. Lunkenheimer, R. Fichtl, H.-A. Krug von Nidda, V. Tsurkan, A. Loidl, Nature 434, 364 (2006). [2] P. K. Baltzer, H. W. Lehmann, and M. Robbins, Phys. Rev. Lett. 15, 493 (1965).

  3. Successive Magnetic-Field-Induced Transitions and Colossal Magnetoelectric Effect in Ni3TeO6

    DOE PAGES

    Kim, Jae Wook; Artyukhin, Sergei; Mun, Eun Deok; ...

    2015-09-24

    In this paper, we report the discovery of a metamagnetic phase transition in a polar antiferromagnet Ni3TeO6 that occurs at 52 T. The new phase transition accompanies a colossal magnetoelectric effect, with a magnetic-field-induced polarization change of 0.3 μC/cm2, a value that is 4 times larger than for the spin-flop transition at 9 T in the same material, and also comparable to the largest magnetically induced polarization changes observed to date. Via density-functional calculations we construct a full microscopic model that describes the data. We model the spin structures in all fields and clarify the physics behind the 52 Tmore » transition. The high-field transition involves a competition between multiple different exchange interactions which drives the polarization change through the exchange-striction mechanism. Finally, the resultant spin structure is rather counterintuitive and complex, thus providing new insights on design principles for materials with strong magnetoelectric coupling.« less

  4. Effects of Multiple Treatments of Low-Temperature Colossal Supersaturation on Tribological Characteristics of Austenitic Stainless Steels

    SciTech Connect

    Qu, Jun; Blau, Peter Julian; Zhang, Ligong; Xu, Hanbing

    2008-01-01

    An alternative carburization process, low-temperature colossal supersaturation (LTCSS), has demonstrated significant improvement on both wear- and corrosion-resistance for austenitic stainless steel surfaces in recent literature. This study explores the effects of multiple treatments of LTCSS on tribological characteristics for Type 316 stainless steel. Thicker carburized layers were produced by multiple LTCSS treatments, with 30, 45, and 55 m for one, two, and four treatments, respectively. Although the hardness remains unchanged at low-load microindentation, multiple treatments have showed higher values in both microindentation and scratch hardness tests when deeper penetrations occurred under heavier loads. The friction and wear characteristics of Type 316 stainless steel with multiple LTCSS treatments were evaluated in non-lubricated unidirectional sliding (pin-on-disk) against Type 440C stainless steel. While little change was observed on friction behavior, substantial further improvement on wear-resistance has been achieved for the multiple treatments. In addition, the wear of the counterface was also largely reduced when rubbing against a multiple-treated surface.

  5. Dielectric Constant of Suspensions

    NASA Astrophysics Data System (ADS)

    Mendelson, Kenneth S.; Ackmann, James J.

    1997-03-01

    We have used a finite element method to calculate the dielectric constant of a cubic array of spheres. Extensive calculations support preliminary conclusions reported previously (K. Mendelson and J. Ackmann, Bull. Am. Phys. Soc. 41), 657 (1996).. At frequencies below 100 kHz the real part of the dielectric constant (ɛ') shows oscillations as a function of the volume fraction of suspension. These oscillations disappear at low conductivities of the suspending fluid. Measurements of the dielectric constant (J. Ackmann, et al., Ann. Biomed. Eng. 24), 58 (1996). (H. Fricke and H. Curtis, J. Phys. Chem. 41), 729 (1937). are not sufficiently sensitive to show oscillations but appear to be consistent with the theoretical results.

  6. Dielectric assist accelerating structure

    NASA Astrophysics Data System (ADS)

    Satoh, D.; Yoshida, M.; Hayashizaki, N.

    2016-01-01

    A higher-order TM02 n mode accelerating structure is proposed based on a novel concept of dielectric loaded rf cavities. This accelerating structure consists of ultralow-loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure. Unlike conventional dielectric loaded accelerating structures, most of the rf power is stored in the vacuum space near the beam axis, leading to a significant reduction of the wall loss, much lower than that of conventional normal-conducting linac structures. This allows us to realize an extremely high quality factor and a very high shunt impedance at room temperature. A simulation of a 5 cell prototype design with an existing alumina ceramic indicates an unloaded quality factor of the accelerating mode over 120 000 and a shunt impedance exceeding 650 M Ω /m at room temperature.

  7. Superdirective dielectric nanoantennas

    NASA Astrophysics Data System (ADS)

    Krasnok, Alexander E.; Simovski, Constantin R.; Belov, Pavel A.; Kivshar, Yuri S.

    2014-06-01

    We introduce the novel concept of superdirective nanoantennas based on the excitation of higher-order magnetic multipole moments in subwavelength dielectric nanoparticles. Our superdirective nanoantenna is a small Si nanosphere containing a notch, and is excited by a dipole located within the notch. In addition to extraordinary directivity, this nanoantenna demonstrates efficient radiation steering at the nanoscale, resulting from the subwavelength sensitivity of the beam radiation direction to variation of the source position inside the notch. We compare our dielectric nanoantenna with a plasmonic nanoantenna of similar geometry, and reveal that the nanoantenna's high directivity in the regime of transmission is not associated with strong localization of near fields in the regime of reception. Likewise, the absence of hot spots inside the nanoantenna leads to low dissipation in the radiation regime, so that our dielectric nanoantenna has significantly smaller losses and high radiation efficiency of up to 70%.

  8. Controlling birefringence in dielectrics

    NASA Astrophysics Data System (ADS)

    Danner, Aaron J.; Tyc, Tomáš; Leonhardt, Ulf

    2011-06-01

    Birefringence, from the very essence of the word itself, refers to the splitting of light rays into two parts. In natural birefringent materials, this splitting is a beautiful phenomenon, resulting in the perception of a double image. In optical metamaterials, birefringence is often an unwanted side effect of forcing a device designed through transformation optics to operate in dielectrics. One polarization is usually implemented in dielectrics, and the other is sacrificed. Here we show, with techniques beyond transformation optics, that this need not be the case, that both polarizations can be controlled to perform useful tasks in dielectrics, and that rays, at all incident angles, can even follow different trajectories through a device and emerge together as if the birefringence did not exist at all. A number of examples are shown, including a combination Maxwell fisheye/Luneburg lens that performs a useful task and is achievable with current fabrication materials.

  9. Super Dielectric Materials

    PubMed Central

    Fromille, Samuel; Phillips, Jonathan

    2014-01-01

    Evidence is provided here that a class of materials with dielectric constants greater than 105 at low frequency (<10−2 Hz), herein called super dielectric materials (SDM), can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 108 in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 104. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc.), filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution), herein called New Paradigm Super (NPS) capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å) of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to “short” the individual water droplets. Potentially NPS capacitor stacks can surpass “supercapacitors” in volumetric energy density. PMID:28788298

  10. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  11. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  12. A dielectric affinity microbiosensor

    NASA Astrophysics Data System (ADS)

    Huang, Xian; Li, Siqi; Schultz, Jerome S.; Wang, Qian; Lin, Qiao

    2010-01-01

    We present an affinity biosensing approach that exploits changes in dielectric properties of a polymer due to its specific, reversible binding with an analyte. The approach is demonstrated using a microsensor comprising a pair of thin-film capacitive electrodes sandwiching a solution of poly(acrylamide-ran-3-acrylamidophenylboronic acid), a synthetic polymer with specific affinity to glucose. Binding with glucose induces changes in the permittivity of the polymer, which can be measured capacitively for specific glucose detection, as confirmed by experimental results at physiologically relevant concentrations. The dielectric affinity biosensing approach holds the potential for practical applications such as long-term continuous glucose monitoring.

  13. Thermally switchable dielectrics

    DOEpatents

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  14. Non-Linear Dielectrics and Ferrites in ICEPIC

    DTIC Science & Technology

    2012-04-10

    in-cell code ICEPIC. The non-linear dielectric model includes a relaxation term to account for the physical response time of the material, which may...Andrew D. Greenwood, David M. French, Brad W. Hoff, Susan L. Heidger Air Force Research Laboratory, Directed Energy Directorate, Kirtland AFB, NM 87117...ICEPIC. The non-linear dielectric model includes a relaxation term to account for the physical response time of the material, which may be longer than an

  15. Investigations of novel high dielectric materials and new mechanisms

    NASA Astrophysics Data System (ADS)

    Guo, Meng

    A high dielectric constant material with excellent dielectric properties is highly desirable for a wide range of applications, such as high energy density capacitors and optical limiting materials. High dielectric constant materials used for embedded capacitors require characteristics such as a high dielectric constant (>7), a low dielectric loss (<0.01) as well as good thermal stability. Some success has been made in ceramics, polymers and polymeric composites, where a large dielectric constant was obtained at low frequency. However, many of these materials possess relatively large dielectric loss and their performance is limited by their percolative nature. Organic molecules have been widely investigated for various applications. However, the use of organic molecules toward obtaining large dielectric constant at high operational frequencies is a relatively new approach. Hyperelectronic polarization has been suggested as the main contributor to the high dielectric constant found in polyacene quinone radical (PAQR) polymers (e.g. 14000 at 100Hz for a PAQR polymer) by Pohl and his co-workers. However, the physics underlying this polarization mechanism is not well understood so far. In addition, this polarization mechanism hasn't been explored in other organic systems, such as hyperbranched polymers and dendrimers yet. In my Ph.D investigations, I studied a novel strategy of creating a high dielectric constant material by utilizing the long-range delocalization in a controllable organic structure to produce hyperelectronic polarization. My studies initiated the investigation with the hyperbranched polyaniline and dendritic triarylamine. A remarkable enhancement in the dielectric response at higher frequency was obtained in comparison to linear polymer systems. For example, a dielectric constant ˜ 200 was obtained in hyperbranched polyaniline at 1MHz, which is 45 times that of linear polyaniline base (4.4+/-0.05). The enhancement is due to the extended delocalization

  16. Millimeter wave and terahertz dielectric properties of biological materials

    NASA Astrophysics Data System (ADS)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  17. Molds for cable dielectrics

    DOEpatents

    Roose, L.D.

    1996-12-10

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. 5 figs.

  18. Molds for cable dielectrics

    DOEpatents

    Roose, Lars D.

    1996-01-01

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made.

  19. Ionic Structure at Dielectric Interfaces

    NASA Astrophysics Data System (ADS)

    Jing, Yufei

    The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as biosensors, lithium-ion batteries double-layer supercapacitors for energy storage and seawater desalination. Electrostatics plays a critical role in the development of such functional materials. Many of the functions of these materials, result from charge and composition heterogeneities. There are great challenges in solving electrostatics problems in heterogeneous media with arbitrary shapes because electrostatic interactions remains unknown but depend on the particular density of charge distributions. Charged molecules in heterogeneous media affect the media's dielectric response and hence the interaction between the charges is unknown since it depends on the media and on the geometrical properties of the interfaces. To determine the properties of heterogeneous systems including crucial effects neglected in classical mean field models such as the hard core of the ions, the dielectric mismatch and interfaces with arbitrary shapes. The effect of hard core interactions accounts properly for short range interactions and the effect of local dielectric heterogeneities in the presence of ions and/or charged molecules for long-range interactions are both analyzed via an energy variational principle that enables to update charges and the medium's response in the same simulation time step. In particular, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric

  20. The effects of vacuum ultraviolet radiation on low-k dielectric films

    SciTech Connect

    Sinha, H.; Ren, H.; Nichols, M. T.; Lauer, J. L.; Shohet, J. L.; Tomoyasu, M.; Russell, N. M.; Jiang, G.; Antonelli, G. A.; Fuller, N. C.; Engelmann, S. U.; Lin, Q.; Ryan, V.; Nishi, Y.

    2012-12-01

    Plasmas, known to emit high levels of vacuum ultraviolet (VUV) radiation, are used in the semiconductor industry for processing of low-k organosilicate glass (SiCOH) dielectric device structures. VUV irradiation induces photoconduction, photoemission, and photoinjection. These effects generate trapped charges within the dielectric film, which can degrade electrical properties of the dielectric. The amount of charge accumulation in low-k dielectrics depends on factors that affect photoconduction, photoemission, and photoinjection. Changes in the photo and intrinsic conductivities of SiCOH are also ascribed to the changes in the numbers of charged traps generated during VUV irradiation. The dielectric-substrate interface controls charge trapping by affecting photoinjection of charged carriers into the dielectric from the substrate. The number of trapped charges increases with increasing porosity of SiCOH because of charge trapping sites in the nanopores. Modifications to these three parameters, i.e., (1) VUV induced charge generation, (2) dielectric-substrate interface, and (3) porosity of dielectrics, can be used to reduce trapped-charge accumulation during processing of low-{kappa} SiCOH dielectrics. Photons from the plasma are responsible for trapped-charge accumulation within the dielectric, while ions stick primarily to the surface of the dielectrics. In addition, as the dielectric constant was decreased by adding porosity, the defect concentrations increased.

  1. Effect of Fe3O4 addition on dielectric properties of LaFeO3 nano-crystalline materials synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Laysandra, H.; Triyono, D.

    2017-04-01

    Dielectric properties of nano-crystalline material LaFeO3.xFe3O4 with x = 0, 0.1, 0.2, 0.3, and 0.4 at.% have been studied by impedance spectroscopy method. LaFeO3 was synthesized by sol-gel method resulting nano-particle. Then, it was mixed with Fe3O4 powder. The mixture powder was pressed to form pellet and then sintered at 1300°C for 1 h to form nano-crystalline of LaFeO3.xFe3O4. X-ray diffraction characterization at room temperature for all samples show two phases i.e. perovskite LaFeO3 (orthorhombic) as a main phase and Fe3O4 (cubic) as second phase. It is found that the crystallite size of main phase increases with addition of Fe3O4 until 0.3 at.%. The electrical properties as a function of temperature (300-500 K) and frequency (100 Hz - 1 MHz) are presented in Nyquist and Bode plots. It is observed that from equivalent circuit and their parameters, dielectrical properties are contributed by grain and grain boundary. The dielectric constant, ε‧ were calculated by parallel plate method and their values reach up to 107 exhibiting typical colossal dielectric constant (CDC) material like behavior.

  2. Antenna with Dielectric Having Geometric Patterns

    NASA Technical Reports Server (NTRS)

    Dudley, Kenneth L. (Inventor); Elliott, Holly A. (Inventor); Cravey, Robin L. (Inventor); Connell, John W. (Inventor); Ghose, Sayata (Inventor); Watson, Kent A. (Inventor); Smith, Jr., Joseph G. (Inventor)

    2013-01-01

    An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern.

  3. Correlation between upconversion photoluminescence and dielectric response in Ba-substituted (Sr{sub 1−x}Ba{sub x}){sub 4}(La{sub 0.85}Ho{sub 0.025}Yb{sub 0.125}){sub 2}Ti{sub 4}Nb{sub 6}O{sub 30}

    SciTech Connect

    Wei, T.; Wang, X. D.; Zhao, C. Z.; Liu, M. F.; Liu, J. M.

    2014-06-30

    The filled tetragonal tungsten bronze (Sr{sub 1−x}Ba{sub x}){sub 4}(La{sub 0.85}Ho{sub 0.025}Yb{sub 0.125}){sub 2}Ti{sub 4}Nb{sub 6}O{sub 30} (SBLTNx: Ho-Yb) ceramics with different Ba substitution levels (x) are prepared. The upconversion photoluminescence (UC-PL) and dielectric permittivity are investigated. The substitution of Sr{sup 2+} ions at the A{sub 2}-sites by larger Ba{sup 2+} ions results in substantial variation of the UC-PL intensity as a function of substitution level x. Furthermore, the dielectric response to the substitution of Sr{sup 2+} by Ba{sup 2+} suggests a close correlation between the UC-PL intensity and dielectric permittivity. The origin for this correlation is discussed based on the random stress field (RSF) model.

  4. Magneto-Optical Activity in High Index Dielectric Nanoantennas

    PubMed Central

    de Sousa, N.; Froufe-Pérez, L. S.; Sáenz, J. J.; García-Martín, A.

    2016-01-01

    The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conversion in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the system. However, in strong contrast with plasmon nanoparticles, due to the peculiar distribution of the internal fields in resonant dielectric spheres, the magneto-optical response is fully governed by the magnetic (dipolar and quadrupolar) resonances with little effect of the electric ones. PMID:27488903

  5. DIELECTRIC WALL ACCELERATOR TECHNOLOGY

    SciTech Connect

    Sampayan, S; Caporaso, G; Chen, Y; Harris, J; Hawkins, S; Holmes, C; Nelson, S; Poole, B; Rhodes, M; Sanders, D; Sullivan, J; Wang, L; Watson, J

    2007-10-18

    The dielectric wall accelerator (DWA) is a compact pulsed power device where the pulse forming lines, switching, and vacuum wall are integrated into a single compact geometry. For this effort, we initiated a extensive compact pulsed power development program and have pursued the study of switching (gas, oil, laser induced surface flashover and photoconductive), dielectrics (ceramics and nanoparticle composites), pulse forming line topologies (asymmetric and symmetric Blumleins and zero integral pulse forming lines), and multilayered vacuum insulator (HGI) technology. Finally, we fabricated an accelerator cell for test on ETAII (a 5.5 MeV, 2 kA, 70 ns pulsewidth electron beam accelerator). We review our past results and report on the progress of accelerator cell testing.

  6. Temperature switchable polymer dielectrics.

    SciTech Connect

    Kholwadwala, Fenil Manish; Johnson, Ross Stefan; Dirk, Shawn M.

    2010-06-01

    Materials with switchable states are desirable in many areas of science and technology. The ability to thermally transform a dielectric material to a conductive state should allow for the creation of electronics with built-in safety features. Specifically, the non-desirable build-up and discharge of electricity in the event of a fire or over-heating would be averted by utilizing thermo-switchable dielectrics in the capacitors of electrical devices (preventing the capacitors from charging at elevated temperatures). We have designed a series of polymers that effectively switch from a non-conductive to a conductive state. The thermal transition is governed by the stability of the leaving group after it leaves as a free entity. Here, we present the synthesis and characterization of a series of precursor polymers that eliminate to form poly(p-phenylene vinylene) (PPV's).

  7. Temperature switchable polymer dielectrics.

    SciTech Connect

    Johnson, Ross Stefan

    2010-08-01

    Materials with switchable states are desirable in many areas of science and technology. The ability to thermally transform a dielectric material to a conductive state should allow for the creation of electronics with built-in safety features. Specifically, the non-desirable build-up and discharge of electricity in the event of a fire or over-heating would be averted by utilizing thermo-switchable dielectrics in the capacitors of electrical devices (preventing the capacitors from charging at elevated temperatures). We have designed a series of polymers that effectively switch from a non-conductive to a conductive state. The thermal transition is governed by the stability of the leaving group after it leaves as a free entity. Here, we present the synthesis and characterization of a series of precursor polymers that eliminate to form poly(p-phenylene vinylene) (PPV's).

  8. Dielectric Signatures of Annealing in Glacier Ice

    NASA Astrophysics Data System (ADS)

    Grimm, R. E.; Stillman, D. E.; MacGregor, J. A.

    2015-12-01

    We analyzed the dielectric spectra of 49 firn and ice samples from ice sheets and glaciers to better understand how differing ice formation and evolution affect electrical properties. The dielectric relaxation of ice is well known and its characteristic frequency increases with the concentration of soluble impurities in the ice lattice. We found that meteoric ice and firn generally possess two such relaxations, indicating distinct crystal populations or zonation. Typically, one population is consistent with that of relatively pure ice, and the other is significantly more impure. However, high temperatures (e.g., temperate ice), long residence times (e.g., ancient ice from Mullins Glacier, Antarctica), or anomalously high impurity concentrations favor the development of a single relaxation. These relationships suggest that annealing causes two dielectrically distinct populations to merge into one population. The dielectric response of temperate ice samples indicates increasing purity with increasing depth, suggesting final rejection of impurities from the lattice. Separately, subglacially frozen samples from the Vostok 5G ice core possess a single relaxation whose variable characteristic frequency likely reflects the composition of the source water. Multi-frequency electrical measurements on cores and in the field can track annealing of glacier ice.

  9. Dielectric Circuit Board Bonding.

    DTIC Science & Technology

    circuit boards to form subassemblies and the bonding of subassemblies together. The finished circuit may include a bonded-in ground plate of copper...The patent application describes a method and apparatus for bonding of dielectric circuit boards for microwave use, the bonding together of several...wire cloth or the like and may include through- plate holes. The technique includes the build-up of thin films to provide strength, toughness and

  10. Dielectric spectroscopy of polyaniline

    SciTech Connect

    Calleja, R.D.; Matveeva, E.M.

    1993-12-31

    Polyaniline films (PANI) are being considered as attractive new galvanic sources, electrochromic displays, chemical sensors, etc. So far much work has been done to study their optical, electrochemical and electrical properties. However, there are still doubts about the basic electric conductivity mechanisms of PANI. The aim of this paper is to study the influence of water molecules and acid anions on the properties of PANI films by dielectric spectroscopy.

  11. The dielectric breakdown limit of silicone dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Gatti, Davide; Haus, Henry; Matysek, Marc; Frohnapfel, Bettina; Tropea, Cameron; Schlaak, Helmut F.

    2014-02-01

    Soft silicone elastomers are used in a generation of dielectric elastomer actuators (DEAs) with improved actuation speed and durability compared to the commonly used, highly viscoelastic polyacrylate 3M VHB™ films. The maximum voltage-induced stretch of DEAs is ultimately limited by their dielectric breakdown field strength. We measure the dependence of dielectric breakdown field strength on thickness and stretch for a silicone elastomer, when voltage-induced deformation is prevented. The experimental results are combined with an analytic model of equi-biaxial actuation to show that accounting for variable dielectric field strength results in different values of optimal pre-stretch and thickness that maximize the DEA actuation.

  12. Tunable Dielectric Properties of Ferrite-Dielectric Based Metamaterial

    PubMed Central

    Bi, K.; Huang, K.; Zeng, L. Y.; Zhou, M. H.; Wang, Q. M.; Wang, Y. G.; Lei, M.

    2015-01-01

    A ferrite-dielectric metamaterial composed of dielectric and ferrite cuboids has been investigated by experiments and simulations. By interacting with the electromagnetic wave, the Mie resonance can take place in the dielectric cuboids and the ferromagnetic precession will appear in the ferrite cuboids. The magnetic field distributions show the electric Mie resonance of the dielectric cuboids can be influenced by the ferromagnetic precession of ferrite cuboids when a certain magnetic field is applied. The effective permittivity of the metamaterial can be tuned by modifying the applied magnetic field. A good agreement between experimental and simulated results is demonstrated, which confirms that these metamaterials can be used for tunable microwave devices. PMID:25993433

  13. Tunable dielectric properties of ferrite-dielectric based metamaterial.

    PubMed

    Bi, K; Huang, K; Zeng, L Y; Zhou, M H; Wang, Q M; Wang, Y G; Lei, M

    2015-01-01

    A ferrite-dielectric metamaterial composed of dielectric and ferrite cuboids has been investigated by experiments and simulations. By interacting with the electromagnetic wave, the Mie resonance can take place in the dielectric cuboids and the ferromagnetic precession will appear in the ferrite cuboids. The magnetic field distributions show the electric Mie resonance of the dielectric cuboids can be influenced by the ferromagnetic precession of ferrite cuboids when a certain magnetic field is applied. The effective permittivity of the metamaterial can be tuned by modifying the applied magnetic field. A good agreement between experimental and simulated results is demonstrated, which confirms that these metamaterials can be used for tunable microwave devices.

  14. Terahertz dielectric assay of solution phase protein binding

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Yin; Knab, J. R.; Ye, Shuji; He, Yunfen; Markelz, A. G.

    2007-06-01

    The authors demonstrate a method for rapid determination of protein-ligand binding on solution phase samples using terahertz dielectric spectroscopy. Measurements were performed using terahertz time domain spectroscopy on aqueous solutions below the liquid-solid transition for water. Small ligand binding sensitivity was demonstrated using triacetylglucosamine and hen egg white lysozyme with a decrease in dielectric response with binding. The magnitude of the change increases with frequency.

  15. Magnetorefractive effect in manganites with a colossal magnetoresistance in the visible spectral region

    SciTech Connect

    Sukhorukov, Yu. P. Telegin, A. V.; Granovsky, A. B. Gan'shina, E. A.; Zhukov, A.; Gonzalez, J.; Caicedo, J. M.; Bessonov, V. D.; Kaul', A. R.; Gorbenko, O. Yu.; Korsakov, I. E.

    2012-01-15

    The magnetotransmission, magnetoreflection, and magnetoresistance of the La{sub 0.7}Ca{sub 0.3}MnO{sub 3} and La{sub 0.9}Ag{sub 0.1}MnO{sub 3} epitaxial films have been investigated. It has been found that the films exhibit a significant magnetorefractive effect in the case of reflection and transmission of light in the fundamental absorption region both in the vicinity of the Curie temperature and at low temperatures. It has been shown that the magnetorefractive effect in the infrared spectral region of the manganites is determined by a high-frequency response to magnetoresistance, whereas the magnetorefractive effect in the visible spectral region of these materials is associated with a change in the electronic structure in response to a magnetic field, which, in turn, leads to a change in the electron density of states, the probability of interband optical transitions, and the shift of light absorption bands. The obtained values of the magnetotransmittance and magnetoreflectance in the visible spectral region are less than those observed in the infrared region of the spectrum, but they are several times greater than the linear magneto-optical effects. As a result, the magnetorefractive effect, which is a nongyrotropic phenomenon, makes it possible to avoid the use of light analyzers and polarizers in optical circuits.

  16. Magnetorefractive effect in manganites with a colossal magnetoresistance in the visible spectral region

    NASA Astrophysics Data System (ADS)

    Sukhorukov, Yu. P.; Telegin, A. V.; Granovsky, A. B.; Gan'shina, E. A.; Zhukov, A.; Gonzalez, J.; Herranz, G.; Caicedo, J. M.; Yurasov, A. N.; Bessonov, V. D.; Kaul', A. R.; Gorbenko, O. Yu.; Korsakov, I. E.

    2012-01-01

    The magnetotransmission, magnetoreflection, and magnetoresistance of the La0.7Ca0.3MnO3 and La0.9Ag0.1MnO3 epitaxial films have been investigated. It has been found that the films exhibit a significant magnetorefractive effect in the case of reflection and transmission of light in the fundamental absorption region both in the vicinity of the Curie temperature and at low temperatures. It has been shown that the magnetorefractive effect in the infrared spectral region of the manganites is determined by a high-frequency response to magnetoresistance, whereas the magnetorefractive effect in the visible spectral region of these materials is associated with a change in the electronic structure in response to a magnetic field, which, in turn, leads to a change in the electron density of states, the probability of interband optical transitions, and the shift of light absorption bands. The obtained values of the magnetotransmittance and magnetoreflectance in the visible spectral region are less than those observed in the infrared region of the spectrum, but they are several times greater than the linear magneto-optical effects. As a result, the magnetorefractive effect, which is a nongyrotropic phenomenon, makes it possible to avoid the use of light analyzers and polarizers in optical circuits.

  17. Low temperature magnetic and anomalous high temperature dielectric response of Dy-Ni co-doped hexagonal YMnO3 ceramics

    NASA Astrophysics Data System (ADS)

    Kumar, Virendra; Gaur, Anurag; Kumar Gaur, Umesh

    2015-06-01

    YMnO3 pristine and Dy-Ni co-doped Y1-xDyxMn1-xNixO3 compositions with x=0.01, 0.03 and 0.05 were synthesised by high temperature solid state route. In all synthesized samples with doping a minor phase of DyMnO3 is formed but no indication of phase transition from hexagonal to orthorhombic is observed. For 3 and 5% Dy-Ni co-doped YMnO3, a thin coercivity is observed at 10 K due to insertion of weak ferromagnetism in these compositions. For undoped YMnO3, crimps are observed in both FC and ZFC curves at exactly 75 K (Neel temperature), however crimps are shifted towards significantly lesser temperature after adding the dopants. For pristine and 1% Dy-Ni co-doped samples explicit bifurcation in FC-ZFC curves is observed, which is not pronounced for 3 and 5% Dy-Ni co-doped samples. Moreover, in these compositions cusps are observed only in ZFC curves at 25 and 19 K, respectively which can be considered as hallmark of weak spin glass behaviour in these compositions. Anomalous dielectric peaks are observed at 450 and 550 K for undoped YMnO3 while a distinct peak is observed at 450 K for 1% Dy-Ni co-doped sample along with the suppression of other peaks. It is proposed that relaxor behaviour of these peaks can be explained on the basis of the Maxwell-Wagner effect.

  18. Dielectric Spectroscopy of Grape Juice at Microwave Frequencies

    NASA Astrophysics Data System (ADS)

    Vijay, Ravika; Jain, Ritu; Sharma, Krishna S.

    2015-04-01

    The complex permittivity of fresh juice of two cultivars of grapes, Sultania (green grapes) and Black Monukka (black grapes) was measured in terms of the dielectric constant and dielectric loss factor over the frequency range from 1 to 50 GHz and at temperatures ranging from 30 to 60°C, by using the PNA network analyzer model E8364C and open ended coaxial probe 85070E. The Cole-Cole plots and dielectric constant vs. (angular frequency) dielectric loss factor and dielectric constant vs. dielectric loss factor/(angular frequency) regression lines at different temperatures were used in Debye approximation to predict relaxation frequency of molecules for the two cultivars of grapes in the low frequency and high frequency limits, respectively. It was observed that the acidic character of green grapes is responsible for the large amplitude vibrational peaks in dielectric loss factor - frequency curves, in the high frequency region at higher temperatures. On the other hand, excess of sugar in black grapes suppresses the activity of water molecules, thereby suppressing the vibrational peaks at higher frequencies. Different relaxation frequencies found for the two cultivars of grapes suggest that they have different molecular structure.

  19. Principles of dielectric blood coagulometry as a comprehensive coagulation test.

    PubMed

    Hayashi, Yoshihito; Brun, Marc-Aurèle; Machida, Kenzo; Nagasawa, Masayuki

    2015-10-06

    Dielectric blood coagulometry (DBCM) is intended to support hemostasis management by providing comprehensive information on blood coagulation from automated, time-dependent measurements of whole blood dielectric spectra. We discuss the relationship between the series of blood coagulation reactions, especially the aggregation and deformation of erythrocytes, and the dielectric response with the help of clot structure electron microscope observations. Dielectric response to the spontaneous coagulation after recalcification presented three distinct phases that correspond to (P1) rouleau formation before the onset of clotting, (P2) erythrocyte aggregation and reconstitution of aggregates accompanying early fibrin formation, and (P3) erythrocyte shape transformation and/or structure changes within aggregates after the stable fibrin network is formed and platelet contraction occurs. Disappearance of the second phase was observed upon addition of tissue factor and ellagic acid for activation of extrinsic and intrinsic pathways, respectively, which is attributable to accelerated thrombin generation. A series of control experiments revealed that the amplitude and/or quickness of dielectric response reflect platelet function, fibrin polymerization, fibrinolysis activity, and heparin activity. Therefore, DBCM sensitively measures blood coagulation via erythrocytes aggregation and shape changes and their impact on the dielectric permittivity, making possible the development of the battery of assays needed for comprehensive coagulation testing.

  20. Dielectric Nonlinear Transmission Line (Postprint)

    DTIC Science & Technology

    2011-12-01

    Technical Paper 3. DATES COVERED (From - To) 2011 4. TITLE AND SUBTITLE Dielectric Nonlinear Transmission Line (POSTPRINT) 5a. CONTRACT NUMBER...14. ABSTRACT A parallel plate nonlinear transmission line (NLTL) was constructed. Periodic loading of nonlinear dielectric slabs provides the...846-9101 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Dielectric Nonlinear Transmission Line David M. French, Brad W. Hoff

  1. Dielectric properties of lunar surface

    NASA Astrophysics Data System (ADS)

    Yushkova, O. V.; Kibardina, I. N.

    2017-03-01

    Measurements of the dielectric characteristics of lunar soil samples are analyzed in the context of dielectric theory. It has been shown that the real component of the dielectric permittivity and the loss tangent of rocks greatly depend on the frequency of the interacting electromagnetic field and the soil temperature. It follows from the analysis that one should take into account diurnal variations in the lunar surface temperature when interpreting the radar-sounding results, especially for the gigahertz radio range.

  2. Potential energy mapping of the excited-states of (η6-arene)Cr(CO)3 complexes: the evolution toward CO-loss or haptotropic shift processes.

    PubMed

    Long, Conor

    2012-06-28

    The potential energy profiles of the optically accessible excited states of two model (η(6)-arene)Cr(CO)(3) systems were explored using Time-Dependent Density Functional Theory. Two photochemical reactions were investigated, CO-loss and the haptotropic or ring-slip of the arene ligand. In both cases the photochemical reaction requires the surmounting of a small thermal barrier in the lowest energy excited state. In the case of (η(6)-benzene)Cr(CO)(3) only one excited state is populated following 400 nm excitation and this leads to the release of CO. The calculated energy barrier to this process is 13 kJ mol(-1). In the case of (η(6)-thiophenol)Cr(CO)(3) two excited states are accessible one leading to CO-loss while the other results in the ring-slip process. The calculated barrier to the ring-slip process is 11 kJ mol(-1). The calculations are consistent with the results of picosecond time-resolved infrared studies.

  3. Colossal negative thermal expansion induced by magnetic phase competition on frustrated lattices in Laves phase compound (Hf,Ta)Fe2

    NASA Astrophysics Data System (ADS)

    Li, B.; Luo, X. H.; Wang, H.; Ren, W. J.; Yano, S.; Wang, C.-W.; Gardner, J. S.; Liss, K.-D.; Miao, P.; Lee, S.-H.; Kamiyama, T.; Wu, R. Q.; Kawakita, Y.; Zhang, Z. D.

    2016-06-01

    Competition between ferromagnetic and antiferromagnetic phases on frustrated lattices in hexagonal Laves phase compound Hf0.86Ta0.14Fe2 is investigated by using neutron diffraction as a function of temperature and magnetic fields and density-functional-theory calculations. At 325 K, the compound orders into the 120° frustrated antiferromagnetic state with a well-reduced magnetic moment, and an in-plane lattice contraction simultaneously sets in. With further cooling down, however, the accumulated distortion in turn destabilizes this susceptible frustrated structure. The frustration is completely relieved at 255 K when the first-order transition to the ferromagnetic state takes place, where a colossal negative volumetric thermal expansion, -123 ×10-6 /K, is obtained. Meanwhile, the antiferromagnetic state can be suppressed by few-tesla magnetic fields, which results in a colossal positive magnetostriction. Such delicate competition is attributed to the giant magnetic fluctuation inherent in the frustrated antiferromagnetic state. Therefore, the magnetoelastic instability is approached even under a small perturbation.

  4. Stable isotopes, beaks and predators: a new tool to study the trophic ecology of cephalopods, including giant and colossal squids.

    PubMed

    Cherel, Yves; Hobson, Keith A

    2005-08-07

    Cephalopods play a key role in the marine environment but knowledge of their feeding habits is limited by lack of data. Here, we have developed a new tool to investigate their feeding ecology by combining the use of their predators as biological samplers together with measurements of the stable isotopic signature of their beaks. Cephalopod beaks are chitinous hard structures that resist digestion and the stable isotope ratios of carbon (delta13C) and nitrogen (delta15N) are indicators of the foraging areas and trophic levels of consumers, respectively. First, a comparison of delta13C and delta15N values of different tissues from the same individuals showed that beaks were slightly enriched in 13C but highly impoverished in 15N compared with lipid-free muscle tissues. Second, beaks from the same species showed a progressive increase in their delta15N values with increasing size, which is in agreement with a dietary shift from lower to higher trophic levels during cephalopod growth. In the same way, there was an increase in the delta15N signature of various parts of the same lower beaks in the order rostrum, lateral walls and wings, which reflects the progressive growth and chitinization of the beaks in parallel with dietary changes. Third, we investigated the trophic structure of a cephalopod community for the first time. Values of delta15N indicate that cephalopods living in slope waters of the subantarctic Kerguelen Islands (n=18 species) encompass almost three distinct trophic levels, with a continuum of two levels between crustacean- and fish-eaters and a distinct higher trophic level occupied by the colossal squid Mesonychoteuthis hamiltoni. delta13C values demonstrated that cephalopods grow in three different marine ecosystems, with 16 species living and developing in Kerguelen waters and two species migrating from either Antarctica (Slosarczykovia circumantarctica) or the subtropics (the giant squid Architeuthis dux). The stable isotopic signature of beaks

  5. Stable isotopes, beaks and predators: a new tool to study the trophic ecology of cephalopods, including giant and colossal squids

    PubMed Central

    Cherel, Yves; Hobson, Keith A

    2005-01-01

    Cephalopods play a key role in the marine environment but knowledge of their feeding habits is limited by lack of data. Here, we have developed a new tool to investigate their feeding ecology by combining the use of their predators as biological samplers together with measurements of the stable isotopic signature of their beaks. Cephalopod beaks are chitinous hard structures that resist digestion and the stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) are indicators of the foraging areas and trophic levels of consumers, respectively. First, a comparison of δ13C and δ15N values of different tissues from the same individuals showed that beaks were slightly enriched in 13C but highly impoverished in 15N compared with lipid-free muscle tissues. Second, beaks from the same species showed a progressive increase in their δ15N values with increasing size, which is in agreement with a dietary shift from lower to higher trophic levels during cephalopod growth. In the same way, there was an increase in the δ15N signature of various parts of the same lower beaks in the order rostrum, lateral walls and wings, which reflects the progressive growth and chitinization of the beaks in parallel with dietary changes. Third, we investigated the trophic structure of a cephalopod community for the first time. Values of δ15N indicate that cephalopods living in slope waters of the subantarctic Kerguelen Islands (n=18 species) encompass almost three distinct trophic levels, with a continuum of two levels between crustacean- and fish-eaters and a distinct higher trophic level occupied by the colossal squid Mesonychoteuthis hamiltoni. δ13C values demonstrated that cephalopods grow in three different marine ecosystems, with 16 species living and developing in Kerguelen waters and two species migrating from either Antarctica (Slosarczykovia circumantarctica) or the subtropics (the giant squid Architeuthis dux). The stable isotopic signature of beaks accumulated in predators

  6. Immunohistochemistry Successfully Uncovers Intratumoral Heterogeneity and Widespread Co-Losses of Chromatin Regulators in Clear Cell Renal Cell Carcinoma

    PubMed Central

    Devarajan, Karthik; Parsons, Theodore; Wang, Qiong; Liao, Lili; Cho, Eun-Ah; O'Neill, Raymond; Solomides, Charalambos; Peiper, Stephen C.; Testa, Joseph R.; Uzzo, Robert; Yang, Haifeng

    2016-01-01

    Recent studies have shown that intratumoral heterogeneity (ITH) is prevalent in clear cell renal cell carcinoma (ccRCC), based on DNA sequencing and chromosome aberration analysis of multiple regions from the same tumor. VHL mutations were found to be universal throughout individual tumors when it occurred (ubiquitous), while the mutations in other tumor suppressor genes tended to be detected only in parts of the tumors (subclonal). ITH has been studied mostly by DNA sequencing in limited numbers of samples, either by whole genome sequencing or by targeted sequencing. It is not known whether immunohistochemistry (IHC) can be used as a tool to study ITH. To address this question, we examined the protein expression of PBRM1, and PBRM1-related proteins such as ARID1A, SETD2, BRG1, and BRM. Altogether, 160 ccRCC (40 per stage) were used to generate a tissue microarray (TMA), with four foci from each tumor included. Loss of expression was defined as 0–5% of tumor cells with positive nuclear staining in an individual focus. We found that 49/160 (31%), 81/160 (51%), 23/160 (14%), 24/160 (15%), and 61/160 (38%) of ccRCC showed loss of expression of PBRM1, ARID1A, SETD2, BRG1, and BRM, respectively, and that IHC could successfully detect a high prevalence of ITH. Phylogenetic trees were constructed that reflected the ITH. Striking co-losses among proteins were also observed. For instance, ARID1A loss almost always accompanied PBRM1 loss, whereas BRM loss accompanied loss of BRG1, PBRM1 or ARID1A. SETD2 loss frequently occurred with loss of one or more of the other four proteins. Finally, in order to learn the impact of combined losses, we compared the tumor growth after cells acquired losses of ARID1A, PBRM1, or both in a xenograft model. The results suggest that ARID1A loss has a greater tumor-promoting effect than PBRM1 loss, indicating that xenograft analysis is a useful tool to investigate how these losses impact on tumor behavior, either alone or in combination. PMID

  7. Angle-resolved photoemission studies on bi-layer colossal magnetoresistive oxides lanthanum(2-2x)strontium(1+2x)manganese(2)oxide(7)

    NASA Astrophysics Data System (ADS)

    Sun, Zhe

    In recent years the studies of manganites have flourished initially because of their Colossal Magnetoresistance (CMR) effect. However the scientific community quickly realized that the fundamental physics is abundant, exotic and challenging. Strong correlations of charge, lattice, spin and orbital degrees of freedom have been found to be responsible for many interesting physical phenomena. Of manganites, La2-2xSr 1+2xMn2O 7 has naturally layered crystal structure. The reduced two-dimensional character amplifies fluctuations of electronic, magnetic, and orbital degrees of freedom and interactions of them, which provides good opportunities for an understanding of the rich physics in manganites. In crystals, electrons have intrinsic charge, spin and orbital degrees of freedom, and the electron-phonon interaction has been an active topic for many decades, thus studies of electrons will definitely shed light on important physics in manganites. Angle-resolved photoemission spectroscopy (ARPES) is an ideal probe of electrons, and so by performing ARPES measurements on La2-2 xSr1+2xMn2 O7 we have obtained abundant knowledge of the physics of strong correlations of various degrees of freedom. We have made many new discoveries by exploring the physics in this com-pound. For the first time we resolved bi-layer split band structure of the prototype of bi-layer manganites, which was predicted by theoretical calculations long time ago. We observed minority-spin states in La2-2 xSr1+2xMn 2O7 (x = 0.36--0.39), which gives direct evidence that this system is not a half-metal in this doping iv range. We gave the first direct measurement of electron-phonon coupling strength in manganites and identified the phonon branches to which electrons couple. In addition to band insulator and Mott insulator there is another type of insulator, in which metallic domains and insulating domains coexist and phase separation and percolation effect play important roles in the metal

  8. Wakefields in a Dielectric Tube with Frequency Dependent Dielectric Constant

    SciTech Connect

    Siemann, R.H.; Chao, A.W.; /SLAC

    2005-05-27

    Laser driven dielectric accelerators could operate at a fundamental mode frequency where consideration must be given to the frequency dependence of the dielectric constant when calculating wakefields. Wakefields are calculated for a frequency dependence that arises from a single atomic resonance. Causality is considered, and the effects on the short range wakefields are calculated.

  9. Very high dielectric strength for dielectric elastomer actuators in liquid dielectric immersion

    NASA Astrophysics Data System (ADS)

    La, Thanh-Giang; Lau, Gih-Keong

    2013-05-01

    This letter reported that a dielectric elastomer actuator (3M VHB), which is immersed in a liquid dielectric bath, is enhanced tremendously in dielectric strength up to 800 MV/m, as compared to 450 MV/m for the actuator operated in air. The bath consists of silicone oil (Dow Corning Fluid 200 50cSt), which is 6.5 times more thermally conductive than air, and it is found able to maintain the actuator at a stable temperature. As a result, the oil-immersed dielectric elastomer actuator is prevented from local thermal runaway, which causes loss of electrical insulation, and consequently avoids the damage by electromechanical instability.

  10. Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown

    SciTech Connect

    Ji, Yanfeng; Pan, Chengbin; Hui, Fei; Shi, Yuanyuan; Lanza, Mario; Zhang, Meiyun; Long, Shibing; Lian, Xiaojuan; Miao, Feng; Larcher, Luca; Wu, Ernest

    2016-01-04

    Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO{sub 2}, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.

  11. Molecular Donor-Bridge-Acceptor Strategies for High-Capacitance Organic Dielectric Materials.

    PubMed

    Heitzer, Henry M; Marks, Tobin J; Ratner, Mark A

    2015-06-10

    Donor-bridge-acceptor (DBA) systems occupy a rich history in molecular electronics and photonics. A key property of DBA materials is their typically large and tunable (hyper)polarizabilities. While traditionally, classical descriptions such as the Clausius-Mossotti formalism have been used to relate molecular polarizabilities to bulk dielectric response, recent work has shown that these classical equations are inadequate for numerous materials classes. Creating high-dielectric organic materials is critically important for utilizing unconventional semiconductors in electronic circuitry. Employing a plane-wave density functional theory formalism, we investigate the dielectric response of highly polarizable DBA molecule-based thin films. Such films are found to have large dielectric response arising from cooperative effects between donor and acceptor units when mediated by a conjugated bridge. Moreover, the dielectric response can be systematically tuned by altering the building block donor, acceptor, or bridge structures and is found to be nonlinearly dependent on electric field strength. The computed dielectric constants are largely independent of the density functional employed, and qualitative trends are readily evident. Remarkably large computed dielectric constants >15.0 and capacitances >6.0 μF/cm(2) are achieved for squaraine monolayers, significantly higher than in traditional organic dielectrics. Such calculations should provide a guide for designing high-capacitance organic dielectrics that should greatly enhance transistor performance.

  12. Square dielectric THz waveguides.

    PubMed

    Aflakian, N; Yang, N; LaFave, T; Henderson, R M; O, K K; MacFarlane, D L

    2016-06-27

    A holey cladding dielectric waveguide with square cross section is designed, simulated, fabricated and characterized. The TOPAS waveguide is designed to be single mode across the broad frequency range of 180 GHz to 360 GHz as shown by finite-difference time domain simulation and to robustly support simultaneous TE and TM mode propagation. The square fiber geometry is realized by pulling through a heat distribution made square by appropriate furnace design. The transmitted mode profile is imaged using a vector network analyzer with a pinhole at the receiver module. Good agreement between the measured mode distribution and the calculated mode distribution is demonstrated.

  13. Inorganic optical dielectric films

    NASA Astrophysics Data System (ADS)

    Woollam, John A.

    1996-07-01

    Dielectric coatings have been in use for a very long time, yet today they represent a steadily growing wold-wide industry. A wide range of materials, and applications from the near ultraviolet into the infrared are in use, or under development. This paper is a brief survey, including references to the literature, and a discussion of materials diagnostics. Discussed is the microstructure, optical constants and their relationship as determined especially by optical measurements. This paper emphasizes the materials science aspects rather than applications.

  14. Low Dielectric Polymers

    NASA Technical Reports Server (NTRS)

    Venumbaka, Sreenivasulu R.; Cassidy, Patrick E.

    2002-01-01

    This report summarizes results obtained from research funded through Research Cooperative Agreement No. NCC-1-01033-"Low Dielectric Polymers" (from 5/10/01 through 5/09/02). Results are reported in three of the proposed research areas (Tasks 1-3 in the original proposal): (1) Repeat and confirm the preparation and properties of the new alkyl-substituted PEK, 6HC17-PEK, (2) Prepare and evaluate polymers derived from a highly fluorinated monomer, and (3) Prepare and evaluate new silicon and/or fluorine-containing polymers expected to retain useful properties at low temperature.

  15. Computational model of deformable lenses actuated by dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Lu, Tongqing; Cai, Shengqiang; Wang, Huiming; Suo, Zhigang

    2013-09-01

    A recent design of deformable lens mimics the human eye, adjusting its focal length in response to muscle-like actuation. The artificial muscle is a membrane of a dielectric elastomer subject to a voltage. Here, we calculate the coupled and inhomogeneous deformation of the lens and the dielectric elastomer actuator by formulating a nonlinear boundary-value problem. We characterize the strain-stiffening elastomer with the Gent model and describe the voltage-induced deformation using the model of ideal dielectric elastomer. The computational predictions agree well with experimental data. We use the model to explore the space of parameters, including the prestretch of the membrane, the volume of the liquid in the lens, and the size of the dielectric elastomer actuator relative to the lens. We examine how various modes of failure limit the minimum radius of curvature.

  16. Residual ferroelectricity in barium strontium titanate thin film tunable dielectrics

    SciTech Connect

    Garten, L. M. Trolier-McKinstry, S.; Lam, P.; Harris, D.; Maria, J.-P.

    2014-07-28

    Loss reduction is critical to develop Ba{sub 1−x}Sr{sub x}TiO{sub 3} thin film tunable microwave dielectric components and dielectric energy storage devices. The presence of ferroelectricity, and hence the domain wall contributions to dielectric loss, will degrade the tunable performance in the microwave region. In this work, residual ferroelectricity—a persistent ferroelectric response above the global phase transition temperature—was characterized in tunable dielectrics using Rayleigh analysis. Chemical solution deposited Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} films, with relative tunabilities of 86% over 250 kV/cm at 100 kHz, demonstrated residual ferroelectricity 65 °C above the ostensible paraelectric transition temperature. Frequency dispersion observed in the dielectric temperature response was consistent with the presence of nanopolar regions as one source of residual ferroelectricity. The application of AC electric field for the Rayleigh analysis of these samples led to a doubling of the dielectric loss for fields over 10 kV/cm at room temperature.

  17. Modeling and control of a dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Gupta, Ujjaval; Gu, Guo-Ying; Zhu, Jian

    2016-04-01

    The emerging field of soft robotics offers the prospect of applying soft actuators as artificial muscles in the robots, replacing traditional actuators based on hard materials, such as electric motors, piezoceramic actuators, etc. Dielectric elastomers are one class of soft actuators, which can deform in response to voltage and can resemble biological muscles in the aspects of large deformation, high energy density and fast response. Recent research into dielectric elastomers has mainly focused on issues regarding mechanics, physics, material designs and mechanical designs, whereas less importance is given to the control of these soft actuators. Strong nonlinearities due to large deformation and electromechanical coupling make control of the dielectric elastomer actuators challenging. This paper investigates feed-forward control of a dielectric elastomer actuator by using a nonlinear dynamic model. The material and physical parameters in the model are identified by quasi-static and dynamic experiments. A feed-forward controller is developed based on this nonlinear dynamic model. Experimental evidence shows that this controller can control the soft actuator to track the desired trajectories effectively. The present study confirms that dielectric elastomer actuators are capable of being precisely controlled with the nonlinear dynamic model despite the presence of material nonlinearity and electromechanical coupling. It is expected that the reported results can promote the applications of dielectric elastomer actuators to soft robots or biomimetic robots.

  18. Voltage sensor and dielectric material

    DOEpatents

    Yakymyshyn, Christopher Paul; Yakymyshyn, Pamela Jane; Brubaker, Michael Allen

    2006-10-17

    A voltage sensor is described that consists of an arrangement of impedance elements. The sensor is optimized to provide an output ratio that is substantially immune to changes in voltage, temperature variations or aging. Also disclosed is a material with a large and stable dielectric constant. The dielectric constant can be tailored to vary with position or direction in the material.

  19. Microwave Propagation in Dielectric Fluids.

    ERIC Educational Resources Information Center

    Lonc, W. P.

    1980-01-01

    Describes an undergraduate experiment designed to verify quantitatively the effect of a dielectric fluid's dielectric constant on the observed wavelength of microwave radiation propagating through the fluid. The fluid used is castor oil, and results agree with the expected behavior within 5 percent. (Author/CS)

  20. Microwave Propagation in Dielectric Fluids.

    ERIC Educational Resources Information Center

    Lonc, W. P.

    1980-01-01

    Describes an undergraduate experiment designed to verify quantitatively the effect of a dielectric fluid's dielectric constant on the observed wavelength of microwave radiation propagating through the fluid. The fluid used is castor oil, and results agree with the expected behavior within 5 percent. (Author/CS)

  1. Tailoring the dipole properties in dielectric polymers to realize high energy density with high breakdown strength and low dielectric loss

    NASA Astrophysics Data System (ADS)

    Thakur, Yash; Lin, Minren; Wu, Shan; Cheng, Zhaoxi; Jeong, D.-Y.; Zhang, Q. M.

    2015-03-01

    High energy density polymer materials are desirable for a broad range of modern power electronic systems. Here, we report the development of a new class of polymer dielectrics based on polyurea and polythiourea, which possess high thermal stability. By increasing the dipole density, the dielectric constant of meta-phenylene polyurea and methylene polythiourea can be increased to 5.7, compared with aromatic polyurea and aromatic polythiourea, which have a dielectric constant in the range of 4.1-4.3. The random dipoles with high dipolar moment and amorphous structure of these polyurea and polythiourea based polymers provide strong scattering to the charge carriers, resulting in low losses even at high electric fields. Consequently, this new class of polymers exhibit a linear dielectric response to the highest field measured (>700 MV/m) with a high breakdown strength, achieving high energy density (>13 J/cm3) with high efficiency (>90%).

  2. Tailoring the dipole properties in dielectric polymers to realize high energy density with high breakdown strength and low dielectric loss

    SciTech Connect

    Thakur, Yash; Lin, Minren; Wu, Shan; Zhang, Q. M. E-mail: qxz1@psu.edu; Cheng, Zhaoxi; Jeong, D.-Y. E-mail: qxz1@psu.edu

    2015-03-21

    High energy density polymer materials are desirable for a broad range of modern power electronic systems. Here, we report the development of a new class of polymer dielectrics based on polyurea and polythiourea, which possess high thermal stability. By increasing the dipole density, the dielectric constant of meta-phenylene polyurea and methylene polythiourea can be increased to 5.7, compared with aromatic polyurea and aromatic polythiourea, which have a dielectric constant in the range of 4.1–4.3. The random dipoles with high dipolar moment and amorphous structure of these polyurea and polythiourea based polymers provide strong scattering to the charge carriers, resulting in low losses even at high electric fields. Consequently, this new class of polymers exhibit a linear dielectric response to the highest field measured (>700 MV/m) with a high breakdown strength, achieving high energy density (>13 J/cm{sup 3}) with high efficiency (>90%)

  3. Miniaturization of dielectric liquid microlens in package

    PubMed Central

    Yang, Chih-Cheng; Tsai, C. Gary; Yeh, J. Andrew

    2010-01-01

    This study presents packaged microscale liquid lenses actuated with liquid droplets of 300–700 μm in diameter using the dielectric force manipulation. The liquid microlens demonstrated function focal length tunability in a plastic package. The focal length of the liquid lens with a lens droplet of 500 μm in diameter is shortened from 4.4 to 2.2 mm when voltages applied change from 0 to 79 Vrms. Dynamic responses that are analyzed using 2000 frames∕s high speed motion cameras show that the advancing and receding times are measured to be 90 and 60 ms, respectively. The size effect of dielectric liquid microlens is characterized for a lens droplet of 300–700 μm in diameter in an aspect of focal length. PMID:21267438

  4. Low frequency dielectric relaxation in boracites

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Somoano, R.

    1983-01-01

    In order to elucidate the nature of the imperfections which adversely affect pyroelectric processes in boracites, the thermal and dispersive characteristics of the low frequency dielectric response in iron-iodide boracite (Fe3B7O13I) and copper-chloride boracite (Cu3B7O13Cl) have been investigated. These characteristics were measured as a function of crystallographic orientation and applied field in both the ferroelectric and paraelectric states. The low frequency dielectric relaxation of 100 line oriented multi-domain copper-chloride boracite clearly indicates the dipole nature of the lattice imperfections. The activation energies calculated from a noninteracting Debye model, are 0.53 eV in the ferroelectric phase and 0.10 eV in the paraelectric phase.

  5. Microfabrication of stacked dielectric elastomer actuator fibers

    NASA Astrophysics Data System (ADS)

    Corbaci, Mert; Walter, Wayne; Lamkin-Kennard, Kathleen

    2016-04-01

    Dielectric elastomer actuators (DEA) are one of the best candidate materials for next generation of robotic actuators, soft sensors and artificial muscles due to their fast response, mechanical robustness and compliance. However, high voltage requirements of DEAs have impeded their potential to become widely used in such applications. In this study, we propose a method for fabrication of silicon based multilayer DEA fibers composed of microlevel dielectric layers to improve the actuation ratios of DEAs at lower voltages. A multi-walled carbon nanotube - polydimethylsiloxane (MWCNT/PDMS) composite was used to fabricate mechanically compliant, conductive parallel plates and electrode connections for the DEA actuators. Active surface area and layer thickness were varied to study the effects of these parameters on actuation ratio as a function of applied voltage. Different structures were fabricated to assess the flexibility of the fabrication method for specific user-end applications.

  6. Spacecraft dielectric material properties and spacecraft charging

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Wall, J. A.; Cotts, D. B.; Bouquet, F. L.

    1986-01-01

    The physics of spacecraft charging is reviewed, and criteria for selecting and testing semiinsulating polymers (SIPs) to avoid charging are discussed and illustrated. Chapters are devoted to the required properties of dielectric materials, the charging process, discharge-pulse phenomena, design for minimum pulse size, design to prevent pulses, conduction in polymers, evaluation of SIPs that might prevent spacecraft charging, and the general response of dielectrics to space radiation. SIPs characterized include polyimides, fluorocarbons, thermoplastic polyesters, poly(alkanes), vinyl polymers and acrylates, polymers containing phthalocyanine, polyacene quinones, coordination polymers containing metal ions, conjugated-backbone polymers, and 'metallic' conducting polymers. Tables summarizing the results of SIP radiation tests (such as those performed for the NASA Galileo Project) are included.

  7. Spacecraft dielectric material properties and spacecraft charging

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Wall, J. A.; Cotts, D. B.; Bouquet, F. L.

    1986-01-01

    The physics of spacecraft charging is reviewed, and criteria for selecting and testing semiinsulating polymers (SIPs) to avoid charging are discussed and illustrated. Chapters are devoted to the required properties of dielectric materials, the charging process, discharge-pulse phenomena, design for minimum pulse size, design to prevent pulses, conduction in polymers, evaluation of SIPs that might prevent spacecraft charging, and the general response of dielectrics to space radiation. SIPs characterized include polyimides, fluorocarbons, thermoplastic polyesters, poly(alkanes), vinyl polymers and acrylates, polymers containing phthalocyanine, polyacene quinones, coordination polymers containing metal ions, conjugated-backbone polymers, and 'metallic' conducting polymers. Tables summarizing the results of SIP radiation tests (such as those performed for the NASA Galileo Project) are included.

  8. Precision time-domain dielectric spectrometer

    NASA Astrophysics Data System (ADS)

    Mopsik, F. I.

    1984-01-01

    A description is given for an automated method for determining dielectric constant and loss by the measurement of the time response of the dielectric to a step voltage. Attention is paid to the circuits necessary to achieve high accuracy (0.1%) and high sensitivity (tan δ=10-5) over audio and subaudio frequencies (104 to 10-4 Hz). These include a 100-V step generator accurate to 5 ppm, a charge detector with a time-independent bias current of 30 fA, and a clock that can control sampling time from 5 μs to 10 s. In addition, a numerical Laplace transform, based on a cubic spline, is described that preserves the accuracy of the time data when they are transformed into the frequency domain.

  9. The use of nonlinear dielectric spectroscopy to monitor the bioelectromagnetic effects of a weak pulsed magnetic field in real time.

    PubMed

    Davies, E; Woodward, A; Kell, D

    2000-01-01

    Nonlinear dielectric spectroscopy (NLDS) was used to detect interaction of a pulsed magnetic field (PMF) with membrane protein dynamics in aggregating Dictyostelium discoideum amoebae. In the experiments reported here, a strong nonlinear dielectric response of Dictyostelium discoideum cells is shown, and a distinctive nonlinear dielectric response of cells previously exposed to PMF is shown. The method of NLDS is shown to be capable of monitoring and charting the dynamic frequency response of the cell to an electromagnetic field.

  10. Dielectric laser accelerators

    NASA Astrophysics Data System (ADS)

    England, R. Joel; Noble, Robert J.; Bane, Karl; Dowell, David H.; Ng, Cho-Kuen; Spencer, James E.; Tantawi, Sami; Wu, Ziran; Byer, Robert L.; Peralta, Edgar; Soong, Ken; Chang, Chia-Ming; Montazeri, Behnam; Wolf, Stephen J.; Cowan, Benjamin; Dawson, Jay; Gai, Wei; Hommelhoff, Peter; Huang, Yen-Chieh; Jing, Chunguang; McGuinness, Christopher; Palmer, Robert B.; Naranjo, Brian; Rosenzweig, James; Travish, Gil; Mizrahi, Amit; Schachter, Levi; Sears, Christopher; Werner, Gregory R.; Yoder, Rodney B.

    2014-10-01

    The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV /m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.

  11. Low dielectric polyimide fibers

    NASA Technical Reports Server (NTRS)

    Dorogy, William E., Jr. (Inventor); St.clair, Anne K. (Inventor)

    1994-01-01

    A high temperature resistant polyimide fiber that has a dielectric constant of less than 3 is presented. The fiber was prepared by first reacting 2,2-bis (4-(4aminophenoxy)phenyl) hexafluoropropane with 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride in an aprotic solvent to form a polyamic acid resin solution. The polyamic acid resin solution is then extruded into a coagulation medium to form polyamic acid fibers. The fibers are thermally cured to their polyimide form. Alternatively, 2,2-bis(4-(4-aminophenoxy)phenyl) hexafluoropropane is reacted with 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride to form a polyamic acid, and the polyamic acid is chemically converted to its polyimide form. The polyimide is then dissolved in a solvent to form a polyimide resin solution, and the polyimide resin is extruded into a coagulation medium to form a polyimide wet gel filament. In order to obtain polyimide fibers of increased tensile properties, the polyimide wet gel filaments are stretched at elevated temperatures. The tensile properties of the fibers were measured and found to be in the range of standard textile fibers. Polyimide fibers obtained by either method will have a dielectric constant similar to that of the corresponding polymer, viz., less than 3 at 10 GHz.

  12. Folded dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Salaris, Claudio; DeRossi, Danilo

    2007-04-01

    Polymer-based linear actuators with contractile ability are currently demanded for several types of applications. Within the class of dielectric elastomer actuators, two basic configurations are available today for such a purpose: the multi-layer stack and the helical structure. The first consists of several layers of elementary planar actuators stacked in series mechanically and parallel electrically. The second configuration relies on a couple of helical compliant electrodes alternated with a couple of helical dielectrics. The fabrication of both these configurations presents some specific drawbacks today, arising from the peculiarity of each structure. Accordingly, the availability of simpler solutions may boost the short-term use of contractile actuators in practical applications. For this purpose, a new configuration is here described. It consists of a monolithic structure made of an electroded sheet, which is folded up and compacted. The resulting device is functionally equivalent to a multi-layer stack with interdigitated electrodes. However, with respect to a stack the new configuration is advantageously not discontinuous and can be manufactured in one single phase, avoiding layer-by-layer multi-step procedures. The development and preliminary testing of prototype samples of this new actuator made of a silicone elastomer are presented here.

  13. Colossal piezoresistance in manganites.

    NASA Astrophysics Data System (ADS)

    Tosado, Jacob; Lopez, Josymir; Dhakal, Tara; Biswas, Amlan

    2007-03-01

    We have studied the effect of the application of direct mechanical stress on thin films of the hole-doped manganese oxide (manganite) (La1-yPry)1-xCaxMnO3 (LPCMO). The two competing phases in manganites are the pseudocubic ferromagnetic metallic (FMM) phase and the orthorhombic charge-ordered insulating (COI) phase. Due to the different structures of the FMM and COI phases, manganites are susceptible to mechanical stresses. The traditional methods of applying stress on oxide thin films result in different growth modes which makes it difficult to quantify the strain in the thin film. Using a calibrated screw we applied direct mechanical stress on the substrate and measured the change in the phase diagram of the manganite as a function of strain. Our results show that the effect of strain is the largest in the fluid phase separated region of the phase diagram^2, where we observe a strain-induced change in resistance of about 5 orders of magnitude. [2] Tara Dhakal, et. al, Cond-mat/0607502.

  14. The Colossal Cosmic Eye

    NASA Astrophysics Data System (ADS)

    2005-09-01

    Eighty-five million years ago on small planet Earth, dinosaurs ruled, ignorant of their soon-to-come demise in the great Jurassic extinction, while mammals were still small and shy creatures. The southern Andes of Bolivia, Chile, and Argentina were not yet formed and South America was still an island continent. Eighty-five million years ago, our Sun and its solar system was 60,000 light years away from where it now stands [1]. Eighty-five million years ago, in another corner of the Universe, light left the beautiful spiral galaxy NGC 1350, for a journey across the universe. Part of this light was recorded at the beginning of the year 2000 AD by ESO's Very Large Telescope, located on the 2,600m high Cerro Paranal in the Chilean Andes on planet Earth. Astronomers classify NGC 1350 as an Sa(r) type galaxy, meaning it is a spiral with large central regions. In fact, NGC 1350 lies at the border between the broken-ring spiral type and a grand design spiral with two major outer arms. It is about 130,000 light-years across and, hence, is slightly larger than our Milky Way. The rather faint and graceful outer arms originate at the inner main ring and can be traced for almost half a circle when they each meet the opposite arm, giving the impression of completing a second outer ring, the "eye". The arms are given a blue tint as a result of the presence of very young and massive stars. The amount of dust, seen as small fragmented dust spirals in the central part of the galaxy and producing a fine tapestry that bear resemblance with blood vessels in the eye, is also a signature of the formation of stars.

  15. An identification and characterization of biodiesel fatty acid based by using dielectric sensor

    NASA Astrophysics Data System (ADS)

    Rahmawati; Djatna, T.; Noor, E.; Irzaman

    2017-05-01

    The fatty acids composition is identified by a gas chromatography mass spectrometer (GC-MS), then it is characterized in saturated and unsaturated components. This paper investigates biodiesel fatty acid by using dielectric constant measurements and focuses on dielectric sensor based on biodiesel chemical properties characterization. The objectives of this paper are identification fatty acids and determination of correlation dielectric properties and biodiesel fatty acid characterization. The proposed method is dielectric constant by using capacitance sensor are applied to determine the response dielectric sensor from the fatty acid composition. Sixteen fatty acid methyl esters were identified and two characterizations the amount of saturated and unsaturated fatty ester fractions. The model parameter was determined by regression analysis for estimating the relationships among fatty acid content and dielectric properties. The results show that measurements of electrical properties, successfully used for the characterization of fatty acids. The dielectric constant of biodiesel was found increasing as the saturated decreases. This relationship becomes calibration for the assessment of the quality of biodiesel based on the dielectric sensor. The model reveals that the fatty acid composition affects the value of the biodiesel dielectric and show that dielectric sensor potentially to handle for characterization of biodiesel fatty acid content.

  16. The Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, George J.; Chen, Yu-Jiuan; Sampayan, Stephen E.

    2009-01-01

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  17. A dielectric omnidirectional reflector

    PubMed

    Fink; Winn; Fan; Chen; Michel; Joannopoulos; Thomas

    1998-11-27

    A design criterion that permits truly omnidirectional reflectivity for all polarizations of incident light over a wide selectable range of frequencies was used in fabricating an all-dielectric omnidirectional reflector consisting of multilayer films. The reflector was simply constructed as a stack of nine alternating micrometer-thick layers of polystyrene and tellurium and demonstrates omnidirectional reflection over the wavelength range from 10 to 15 micrometers. Because the omnidirectionality criterion is general, it can be used to design omnidirectional reflectors in many frequency ranges of interest. Potential uses depend on the geometry of the system. For example, coating of an enclosure will result in an optical cavity. A hollow tube will produce a low-loss, broadband waveguide, whereas a planar film could be used as an efficient radiative heat barrier or collector in thermoelectric devices.

  18. Multilayer optical dielectric coating

    DOEpatents

    Emmett, John L.

    1990-01-01

    A highly damage resistant, multilayer, optical reflective coating includes alternating layers of doped and undoped dielectric material. The doping levels are low enough that there are no distinct interfaces between the doped and undoped layers so that the coating has properties nearly identical to the undoped material. The coating is fabricated at high temperature with plasma-assisted chemical vapor deposition techniques to eliminate defects, reduce energy-absorption sites, and maintain proper chemical stoichiometry. A number of differently-doped layer pairs, each layer having a thickness equal to one-quarter of a predetermined wavelength in the material are combined to form a narrowband reflective coating for a predetermined wavelength. Broadband reflectors are made by using a number of narrowband reflectors, each covering a portion of the broadband.

  19. Magnetic origin of dielectric transition in BiFeO{sub 3}

    SciTech Connect

    Ray, J.; Biswal, A. K.; Vishwakarma, P. N.; Babu, P. D.; Siruguri, V.

    2014-04-24

    Magnetic relaxation measurements at 5K, 50K and 120K on BiFeO{sub 3} prepared by sol-gel auto combustion method shows stretched -exponential decay. These results shows the two factors viz, cooperative dynamics and rate of dynamics of spin, may be responsible for the low temperature magnetic-glassy behavior, concluded from bifurcation of zero field cooled (ZFC) and field cooled (FC) data of dc magnetization. Temperature dependent dielectric measurement shows a possible phase transition, seen in the dielectric-relaxation time and dielectric constant in the range 200 – 240K. Comparison of dielectric and magnetization data indicates a possibility of magneto-electric coupling.

  20. Mechanisms of dielectric polarization in thermotropic liquid-crystalline complexes based on lanthanides

    NASA Astrophysics Data System (ADS)

    Dobrun, L. A.; Kovshik, A. P.; Ryumtsev, E. I.; Knyazev, A. A.; Galyametdinov, Yu. G.

    2016-06-01

    The components of the dielectric constant of a terbium-based liquid-crystalline complex have been measured in the frequency range of 350-5 × 106 Hz. The magnitude and sign of the dielectric anisotropy of the complex have been determined. Dispersion of the dielectric constants in the liquid-crystalline and isotropic phases has been found. The mechanisms responsible for the relaxation phenomena that appear in the studied sample have been determined. The time of dielectric relaxation, the activation energy, and the dipole moment of the complex have been obtained.

  1. Nonlinear dielectric effects in liquids: a guided tour

    NASA Astrophysics Data System (ADS)

    Richert, Ranko

    2017-09-01

    Dielectric relaxation measurements probe how the polarization of a material responds to the application of an external electric field, providing information on structure and dynamics of the sample. In the limit of small fields and thus linear response, such experiments reveal the properties of the material in the same thermodynamic state it would have in the absence of the external field. At sufficiently high fields, reversible changes in enthalpy and entropy of the system occur even at constant temperature, and these will in turn alter the polarization responses. The resulting nonlinear dielectric effects feature field induced suppressions (saturation) and enhancements (chemical effect) of the amplitudes, as well as time constant shifts towards faster (energy absorption) and slower (entropy reduction) dynamics. This review focuses on the effects of high electric fields that are reversible and observed at constant temperature for single component glass-forming liquids. The experimental challenges involved in nonlinear dielectric experiments, the approaches to separating and identifying the different sources of nonlinear behavior, and the current understanding of how high electric fields affect dielectric materials will be discussed. Covering studies from Debye’s initial approach to the present state-of-the-art, it will be emphasized what insight can be gained from the nonlinear responses that are not available from dielectric relaxation results obtained in the linear regime.

  2. A New Concept for Non-Volatile Memory: The Electric-Pulse Induced Resistive Change Effect in Colossal Magnetoresistive Thin Films

    NASA Technical Reports Server (NTRS)

    Liu, S. Q.; Wu, N. J.; Ignatiev, A.

    2001-01-01

    A novel electric pulse-induced resistive change (EPIR) effect has been found in thin film colossal magnetoresistive (CMR) materials, and has shown promise for the development of resistive, nonvolatile memory. The EPIR effect is induced by the application of low voltage (< 4 V) and short duration (< 20 ns) electrical pulses across a thin film sample of a CMR material at room temperature and under no applied magnetic field. The pulse can directly either increase or decrease the resistance of the thin film sample depending on pulse polarity. The sample resistance change has been shown to be over two orders of magnitude, and is nonvolatile after pulsing. The sample resistance can also be changed through multiple levels - as many as 50 have been shown. Such a device can provide a way for the development of a new kind of nonvolatile multiple-valued memory with high density, fast write/read speed, low power-consumption, and potential high radiation-hardness.

  3. Current dependence of colossal anisotropic magnetoresistance in La 0.3 Pr 0.4 Ca 0.3 MnO 3 microbridges

    NASA Astrophysics Data System (ADS)

    Jeon, J.; Jung, J.; Chow, K. H.

    2016-09-01

    The effect of the bias current on the in-plane colossal anisotropic magnetoresistance (C-AMR) is investigated in spatially confined La 0.3 Pr 0.4 Ca 0.3 MnO 3 microbridges. Dramatic increases of the C-AMR are found when the bias current is reduced. For example, in one of the samples, the C-AMR changed from ˜900% to over ˜24 000% as the current is decreased from 1 μA to 10 nA. The results indicate that the bias current can be used to manipulate the C-AMR in spatially confined manganite thin films via changes to the nature of the anisotropic percolation within the samples.

  4. Colossal magnetoresistance in amino-functionalized graphene quantum dots at room temperature: manifestation of weak anti-localization and doorway to spintronics.

    PubMed

    Roy, Rajarshi; Thapa, Ranjit; Kumar, Gundam Sandeep; Mazumder, Nilesh; Sen, Dipayan; Sinthika, S; Das, Nirmalya S; Chattopadhyay, Kalyan K

    2016-04-21

    In this work, we have demonstrated the signatures of localized surface distortions and disorders in functionalized graphene quantum dots (fGQD) and consequences in magneto-transport under weak field regime (∼1 Tesla) at room temperature. Observed positive colossal magnetoresistance (MR) and its suppression is primarily explained by weak anti-localization phenomenon where competitive valley (inter and intra) dependent scattering takes place at room temperature under low magnetic field; analogous to low mobility disordered graphene samples. Furthermore, using ab-initio analysis we show that sub-lattice sensitive spin-polarized ground state exists in the GQD as a result of pz orbital asymmetry in GQD carbon atoms with amino functional groups. This spin polarized ground state is believed to help the weak anti-localization dependent magneto transport by generating more disorder and strain in a GQD lattice under applied magnetic field and lays the premise for future graphene quantum dot based spintronic applications.

  5. Colossal Electroresistive Properties Of CSD Grown Pr{sub 0.7}Ca{sub 0.3}MnO{sub 3} Films For Nonvolatile Memory Applications

    SciTech Connect

    Bhavsar, K. H.; Joshi, U. S.

    2010-12-01

    Colossal electroresistance effects upon application of electric field in perovskite oxide Pr{sub 0.7}Ca{sub 0.3}MnO{sub 3}(PCMO) thin films, which is a promising candidate for resistance random access memory (RRAM) device have been investigated. Nanocrystalline PCMO films were grown on SiO{sub 2} substrates by chemical solution deposition and crystallized at 700 deg. C under different gas atmospheres. Four terminal current voltage characteristics of Ag/PCMO/Ag planar geometry exhibited a sharp transition from a low resistance state (LRS) to a high resistance state (HRS) with a resistance switching ratio of as high as 1100% at room temperature. Nonvolatility and high retention was confirmed by electric pulse induced resistive switching measurements. The resistance switching ratios were found to depend on the annealing conditions, suggesting an interaction between the nonlattice oxygen and oxygen vacancies and/or the cationic vacancy.

  6. A New Concept for Non-Volatile Memory: The Electric-Pulse Induced Resistive Change Effect in Colossal Magnetoresistive Thin Films

    NASA Technical Reports Server (NTRS)

    Liu, S. Q.; Wu, N. J.; Ignatiev, A.

    2001-01-01

    A novel electric pulse-induced resistive change (EPIR) effect has been found in thin film colossal magnetoresistive (CMR) materials, and has shown promise for the development of resistive, nonvolatile memory. The EPIR effect is induced by the application of low voltage (< 4 V) and short duration (< 20 ns) electrical pulses across a thin film sample of a CMR material at room temperature and under no applied magnetic field. The pulse can directly either increase or decrease the resistance of the thin film sample depending on pulse polarity. The sample resistance change has been shown to be over two orders of magnitude, and is nonvolatile after pulsing. The sample resistance can also be changed through multiple levels - as many as 50 have been shown. Such a device can provide a way for the development of a new kind of nonvolatile multiple-valued memory with high density, fast write/read speed, low power-consumption, and potential high radiation-hardness.

  7. An acoustic dielectric and mechanical spectrometer.

    PubMed

    Hu, Ruifen; Stevenson, Adrian C; Lowe, Christopher R

    2012-06-21

    In this report, the dielectric constant of glycerol solutions (0-70% (w/w)) and the mechanical transitions of poly(2-hydroxylethyl methacrylate-co-methacrylic acid) films (600-800 nm, 1.5-10 mol% cross-linker) have been investigated by the magnetic acoustic resonance sensor (MARS), which is an electrode-free acoustic sensor and operates over a continuous frequency spectrum (6-200 MHz). When a glycerol solution was loaded, the response of the MARS decayed exponentially as the operating frequency was increased. The decay rate against frequency as a function of the glycerol concentration reflects the change of the dielectric property of the glycerol solutions. In addition, mechanical relaxation of the poly(2-hydroxylethyl methacrylate-co-methacrylic acid) film has been observed on the MARS and the corresponding viscoelastic transition frequency has been estimated. The viscoelastic transition frequency increased as the polymer was more highly cross-linked. The MARS system behaved as a dielectric and mechanical spectrometer, monitoring the electrical and mechanical properties of viscoelastic materials or on the solid-liquid interfaces simultaneously, which has prospective application in studies of biomaterials, molecular interactions and drug deliveries.

  8. Maxwell stress on a small dielectric sphere in a dielectric

    NASA Astrophysics Data System (ADS)

    Datsyuk, Vitaly V.; Pavlyniuk, Oleg R.

    2015-02-01

    Electrically induced normal pressure and tangential stress at the surface of a small dielectric sphere (or cavity) in a dielectric are calculated using the Minkowski, Einstein-Laub, Abraham, and Lorentz forms of the Maxwell stress tensor. Only the Lorentz tensor is in agreement with the following observations: (1) A spherical cavity in a dielectric transforms into a sharp-edge plate perpendicular to the electric field; (2) a liquid drop placed in a medium with a slightly lower refractive index is stretched along the electric field; and (3) there is a torque on a small birefringent sphere. These phenomena cannot be explained by the conventional theory using the Minkowski stress tensor. For example, the Minkowski stress tensor predicts lateral compression of a spherical cavity in a dielectric.

  9. Magnetically tunable dielectric, impedance and magnetoelectric response in MnFe2O4/(Pb1-xSrx)TiO3 composites thin films

    NASA Astrophysics Data System (ADS)

    Bala, Kanchan; Kotnala, R. K.; Negi, N. S.

    2017-02-01

    We have synthesized piezomagnetic-piezoelectric composites thin films MnFe2O4/(Pb1-xSrx)TiO3, where x=0.1, 0.2, and 0.3, using the metalorganic deposition (MOD) reaction method. The structural and microstructural analysis using the X-ray diffraction (XRD), AFM, and SEM reveals the presence of homogenous growth of both pervoskite and spinel phases in the composite films. Our results show that all the composites films exhibit good multiferroic as well as considerable magnetoelectric coupling. The impedance (Z‧ and Z″) and electrical modulus (M‧ and M″) Nyquist plots show distinct electrical responses with the magnetic field. Our analyses suggest that this electrical response arises due to the coexistence of the high resistive phase and the comparatively conductive phase in the MFO/PST composite films. The maximum magnetoelectric coefficient (α) is found to be 4.29 V Oe-1 cm-1 and 2.82 V Oe-1 cm-1 for compositions x=0.1 and 0.2. These values are substantially larger than those reported for bilayer composites thin films in literature and make them interesting for room temperature device applications.

  10. Attosecond clocking of scattering dynamics in dielectrics

    NASA Astrophysics Data System (ADS)

    Kling, Matthias

    2016-05-01

    In the past few years electronic-device scaling has progressed rapidly and miniaturization has reached physical gate lengths below 100 nm, heralding the age of nanoelectronics. Besides the effort in size scaling of integrated circuits, tremendous progress has recently been made in increasing the switching speed where strong-field-based ``dielectric-electronics'' may push it towards the petahertz frontier. In this contest, the investigation of the electronic collisional dynamics occurring in a dielectric material is of primary importance to fully understand the transport properties of such future devices. Here, we demonstrate attosecond chronoscopy of electron collisions in SiO2. In our experiment, a stream of isolated aerodynamically focused SiO2 nanoparticles of 50 nm diameter was delivered into the laser interaction region. Photoemission is initiated by an isolated 250 as pulse at 35 eV and the electron dynamics is traced by attosecond streaking using a delayed few-cycle laser pulse at 700 nm. Electrons were detected by a kilohertz, single-shot velocity-map imaging spectrometer, permitting to separate frames containing nanoparticle signals from frames containing the response of the reference gas only. We find that the nanoparticle photoemission exhibits a positive temporal shift with respect to the reference. In order to understand the physical origin of the shift we performed semi-classical Monte-Carlo trajectory simulations taking into account the near-field distributions in- and outside the nanoparticles as obtained from Mie theory. The simulations indicate a pronounced dependence of the streaking time shift near the highest measured electron energies on the inelastic scattering time, while elastic scattering only shows a small influence on the streaking time shift for typical dielectric materials. We envision our approach to provide direct time-domain access to inelastic scattering for a wide range of dielectrics.

  11. High dielectric constant 0-3 ceramic-polymer composites

    NASA Astrophysics Data System (ADS)

    Shan, Xiaobing

    0-3 ceramic-polymer composites using both nano-size and micro-size CaCu3Ti4O12 ceramic particles were studied. The micro-size ceramic particles were prepared from the CaCu3Ti 4O12 pellets by milling. The CaCu3Ti4O 12 ceramics were prepared using conventional solid-state reaction under different conditions, such as molding pressure, milling media and time, and calcination temperature and time. Based on the analysis of the dielectric spectrum, it was found that the dielectric responses of CaCu3Ti 4O12 ceramics are determined by three different processes. The effect of thickness of the ceramics on the dielectric properties was observed and studied. Although the dielectric response at low frequency increases with decreasing thickness, the dielectric behavior for the high frequency relaxation process is weakly dependent on thickness. 0-3 composites with different concentrations (0-50 vo% CaCu3Ti 4O12 ceramics) were prepared using solution casting. However, a clear polymer-rich layer was found in as-cast film due to the poor wettability between ceramic and polymer matrix. The HP was used to modify the morphology of the composites. Different configurations were studied for the HP process. Composites with a dielectric constant of 510 at 1 kHz were obtained in 50vol% CaCu3Ti4O12 composite with CC HP at room temperature. It was found that the relaxation time of the major relaxation process obtained in the composite changes with processing condition, such as annealing, HP and concentration. It indicates that the interfacial layers between ceramic particles and polymer matrix play an important role on the dielectric response of the composite. As for the HP samples, it was interestingly observed that as HP time changes, there is a critical HP time at which the composite exhibits a much higher dielectric constant. Based on the dielectric spectrum of the composites at different temperatures, it was concluded that the loss of the composites at low frequency is controlled by a

  12. Dielectric Spectroscopy in Biomaterials: Agrophysics

    PubMed Central

    El Khaled, Dalia; Castellano, Nuria N.; Gázquez, Jose A.; Perea-Moreno, Alberto-Jesus; Manzano-Agugliaro, Francisco

    2016-01-01

    Being dependent on temperature and frequency, dielectric properties are related to various types of food. Predicting multiple physical characteristics of agri-food products has been the main objective of non-destructive assessment possibilities executed in many studies on horticultural products and food materials. This review manipulates the basic fundamentals of dielectric properties with their concepts and principles. The different factors affecting the behavior of dielectric properties have been dissected, and applications executed on different products seeking the characterization of a diversity of chemical and physical properties are all pointed out and referenced with their conclusions. Throughout the review, a detailed description of the various adopted measurement techniques and the mostly popular equipment are presented. This compiled review serves in coming out with an updated reference for the dielectric properties of spectroscopy that are applied in the agrophysics field. PMID:28773438

  13. Infrared cubic dielectric resonator metamaterial.

    SciTech Connect

    Sinclair, Michael B.; Brener, Igal; Peters, David William; Ginn, James Cleveland, III; Ten Eyck, Gregory A.

    2010-06-01

    Dielectric resonators are an effective means to realize isotropic, low-loss optical metamaterials. As proof of this concept, a cubic resonator is analytically designed and then tested in the long-wave infrared.

  14. Dielectric inspection of erythrocyte morphology

    NASA Astrophysics Data System (ADS)

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio; Asami, Koji

    2008-05-01

    We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes.

  15. Dielectric loss in microstrip lines

    NASA Technical Reports Server (NTRS)

    Simpson, T. L.; Tseng, B.

    1976-01-01

    A technique is presented for calculating dielectric loss in microstrip lines. Numerical results for several different substrates are included. These are compared with other available results and experimental data.

  16. Soft generators using dielectric elastomers

    NASA Astrophysics Data System (ADS)

    McKay, Thomas G.; O'Brien, Benjamin M.; Calius, Emilio P.; Anderson, Iain A.

    2011-04-01

    The potential to produce light-weight, low-cost, wearable dielectric elastomer generators has been limited by the requirement for bulky rigid, and expensive external circuitry. In this letter, we present a soft dielectric elastomer generator whose stretchable circuit elements are integrated within the membrane. The soft generator achieved an energy density of 10 mJ/g at an efficiency of 12% and simply consisted of low-cost acrylic membranes and carbon grease mounted in a frame.

  17. Interconnect Between a Waveguide and a Dielectric Waveguide Comprising an Impedance Matched Dielectric Lens

    NASA Technical Reports Server (NTRS)

    Decrossas, Emmanuel (Inventor); Chattopadhyay, Goutam (Inventor); Chahat, Nacer (Inventor); Tang, Adrian J. (Inventor)

    2016-01-01

    A lens for interconnecting a metallic waveguide with a dielectric waveguide is provided. The lens may be coupled a metallic waveguide and a dielectric waveguide, and minimize a signal loss between the metallic waveguide and the dielectric waveguide.

  18. A comparative study of nano-SiO2 and nano-TiO2 fillers on proton conductivity and dielectric response of a silicotungstic acid-H3PO4-poly(vinyl alcohol) polymer electrolyte.

    PubMed

    Gao, Han; Lian, Keryn

    2014-01-08

    The effects of nano-SiO2 and nano-TiO2 fillers on a thin film silicotungstic acid (SiWA)-H3PO4-poly(vinyl alcohol) (PVA) proton conducting polymer electrolyte were studied and compared with respect to their proton conductivity, environmental stability, and dielectric properties, across a temperature range from 243 to 323 K. Three major effects of these fillers have been identified: (a) barrier effect; (b) intrinsic dielectric constant effect; and (c) water retention effect. Dielectric analyses were used to differentiate these effects on polymer electrolyte-enabled capacitors. Capacitor performance was correlated to electrolyte properties through dielectric constant and dielectric loss spectra. Using a single-ion approach, proton density and proton mobility of each polymer electrolyte were derived as a function of temperature. The results allow us to deconvolute the different contributions to proton conductivity in SiWA-H3PO4-PVA-based electrolytes, especially in terms of the effects of fillers on the dynamic equilibrium of free protons and protonated water in the electrolytes.

  19. Response of the capacitance and dielectric loss of the SrRuO3/SrTiO3/SrRuO3 film heterostructures to variations in temperature and electric field

    NASA Astrophysics Data System (ADS)

    Boikov, Yu. A.; Danilov, V. A.

    2016-10-01

    Three-layer epitaxial heterostructures with a 750-nm-thick intermediate strontium titanate layer between two strontium ruthenate conductive thin-film electrodes have been grown by laser deposition. Photolithography and ion etching have been used to form film parallel-plate capacitors based on the grown heterostructures. The capacitance ( C) and dielectric loss tangent (tanδ) of the parallel-plate capacitors have been measured in the temperature range T = 4.2-300 K at an applied bias voltage of up to ±2.5 V and without it. At T > 100 K, the temperature dependence of the dielectric permittivity (ɛ) of the SrTiO3 intermediate layer is well approximated by the Curie-Weiss law taking into account the capacitance induced by the penetration of an electric field into the oxide electrodes. At T ≈ 20 K, the dielectric permittivity ɛ of the SrTiO3 intermediate layer decreases by approximately 20% in an electric field of 25 kV/cm. The dielectric loss tangent of the film capacitor heterostructures decreases monotonically with a decrease in the temperature in the range from 300 to 80 K and almost does not depend on the electric field strength. However, in the range from 80 to 4.2 K, the dielectric loss tangent increases nonmonotonically (abruptly) with a decrease in the temperature and decreases significantly in an applied electric field.

  20. Dielectric properties of marsh vegetation

    NASA Astrophysics Data System (ADS)

    Kochetkova, Tatiana D.; Suslyaev, Valentin I.; Shcheglova, Anna S.

    2015-10-01

    The present work is devoted to the measurement of the dielectric properties of mosses and lichens in the frequency range from 500 MHz to 18 GHz. Subjects of this research were three species of march vegetation - moss (Dicranum polysetum Michx), groundcedar (Diphasiastrum complanatum (L.) Holub) and lichen (Cladonia stellaris). Samples of vegetation were collected in Tomsk region, Western Siberia, Russia. Complex dielectric permittivity was measured in coaxial section by Agilent Technologies vector network analyzer E8363B. Green samples was measured for some moisture contents from 100% to 3-5 % during a natural drying. The measurements were performed at room temperature, which remained within 21 ÷ 23 ° C. The frequency dependence of the dielectric constant for the three species of marsh vegetation differ markedly. Different parts of the complex permittivity dependency on moisture were fitted by line for all frequency points. Two break point were observed corresponding to the transition of water in the vegetation in various phase states. The complex permittivity spectra of water in the vegetation allow determining the most likely corresponding dielectric model of water in the vegetation by the method of hypothesis testing. It is the Debye's model. Parameters of Debye's model were obtained by numerical methods for all of three states of water. This enables to calculate the dielectric constant of water at any frequency range from 500 MHz to 18 GHz and to find the parameters of the dielectric model of the vegetation.

  1. Visualization of dielectric constant-electric field-temperature phase maps for imprinted relaxor ferroelectric thin films

    SciTech Connect

    Frederick, J. C.; Kim, T. H.; Maeng, W.; Brewer, A. A.; Podkaminer, J. P.; Saenrang, W.; Vaithyanathan, V.; Schlom, D. G.; Li, F.; Chen, L.-Q.; Trolier-McKinstry, S.; Rzchowski, M. S.; Eom, C. B.

    2016-03-28

    The dielectric phase transition behavior of imprinted lead magnesium niobate–lead titanate relaxor ferroelectric thin films was mapped as a function of temperature and dc bias. To compensate for the presence of internal fields, an external electric bias was applied while measuring dielectric responses. The constructed three-dimensional dielectric maps provide insight into the dielectric behaviors of relaxor ferroelectric films as well as the temperature stability of the imprint. The transition temperature and diffuseness of the dielectric response correlate with crystallographic disorder resulting from strain and defects in the films grown on strontium titanate and silicon substrates; the latter was shown to induce a greater degree of disorder in the film as well as a dielectric response lower in magnitude and more diffuse in nature over the same temperature region. Strong and stable imprint was exhibited in both films and can be utilized to enhance the operational stability of piezoelectric devices through domain self-poling.

  2. Metal-dielectric interactions

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1979-01-01

    Metal direlectric surface interactions and dielectric films on metal substrates were investigated. Since interfacial interaction depends so heavily on the nature of the surfaces, analytical surface tools such as Auger emission spectroscopy, X-ray photoelectron spectroscopy and field ion microscopy were used to assist in surface and interfacial characterization. The results indicate that with metals contacting certain glasses in the clean state interfacial, bonding produces fractures in the glasses while when a film such as water is present, fractures occur in the metal near the interface. Friction forces were used to measure the interfacial bond strengths. Studies with metals contacting polymers using field ion microscopy revealed that strong bonding forces could develop being between a metal and polymer surface with polymer transferring to the metal surface in various ways depending upon the forces applied to the surface in contact. With the deposition of refractory carbides, silicides and borides onto metal and alloy substrates the presence of oxides at the interface or active gases in the deposition plasma were shown to alter interfacial properties and chemistry. Auger ion depth profile analysis indicated the chemical composition at the interface and this could be related to the mechanical, friction, and wear behavior of the coating.

  3. Extrinsic mechanism for giant dielectric response in Ba{sub 0.70}Sr{sub 0.30}(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} ceramic

    SciTech Connect

    Patel, Piyush Kumar Yadav, K. L. Durgesh

    2014-04-24

    To obtain the high dielectric constant, the effect of sintering process on the electrical properties of Ba{sub 0.70}Sr{sub 0.30}(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} ceramics were investigated. X-ray diffraction pattern of the samples at room temperature shows a monoclinic structure. Microstructure analysis shows well-grown and dense microstructure in all the samples. We found giant dielectric constant (∼3.59 × 10{sup 5}) with low dielectric loss (∼0.49) at room temperature for 2 hr sintered sample at 1250 °C. The extrinsic phenomena like interfacial polarization due to space charge accumulation at grain boundaries are discussed.

  4. Dielectric Properties of Strontium Titanate Filled Mullite Composites in Microwave Region

    NASA Astrophysics Data System (ADS)

    See, Alex; Hassan, Jumiah; Hashim, Mansor; Yusoff, W. Mohd. Daud Wan

    2008-05-01

    This research was designed to form better dielectric composite material using one steady state dielectric with a good dielectric material. Distinct dielectric composite was successfully produced using locally sourced kaolinite clay. The samples were made using kaolinite as the base matrix and Strontium Titanate (ST) added in varying ratios. Strontium Titanate were synthesized via solid-state reaction using Strontium Carbonate and rutile Titanium (IV) Oxide with sintering at 1300 °C. Local white kaolinite was used to fuse the barium titanate material in varying weight ratios. The powders were dry-mixed and made into pellets for calcination at 1000 °C. The dielectric measurements were carried out using the HP 4291B Impedance Analyzer dielectric setup. Three samples were prepared, namely 10%ST, 20%ST and 30%ST. The dielectric measurements were carried out at room temperature. Microwave region measurements showed steady state and linear dielectric relaxation ranging from 7 in the control sample and dropping down to 5 in 30%ST. The responses indicate linear relation between ST addition and microwave region dielectric permittivity

  5. Influence of temperature on Cole-Cole dielectric model of oil-immersed bushing

    NASA Astrophysics Data System (ADS)

    Wang, K.; Chen, X. J.; Xu, X. W.; Liu, G. Q.; Zou, D. X.; Liu, W. D.

    2017-07-01

    In this paper, 72.5 kV oil-immersed bushing was produced in laboratory. The frequency-domain dielectric response tests of oil-immersed bushings were carried out at different test temperatures. The experimental data were fitted by using the modified double relaxation Cole-Cole dielectric model. The influence of temperature variation on the dielectric response test of the oil-immersed bushing and the Cole-Cole dielectric model parameters were analysed. The results showed that with the increase of the test temperature, the spectrum of the real and imaginary of the complex permittivity are shifted to the high frequency direction; the parameters of the dielectric model are significantly affected by temperature.

  6. Designing Multipolar Resonances in Dielectric Metamaterials.

    PubMed

    Butakov, Nikita A; Schuller, Jon A

    2016-12-08

    Dielectric resonators form the building blocks of nano-scale optical antennas and metamaterials. Due to their multipolar resonant response and low intrinsic losses they offer design flexibility and high-efficiency performance. These resonators are typically described in terms of a spherical harmonic decomposition with Mie theory. In experimental realizations however, a departure from spherical symmetry and the use of high-index substrates leads to new features appearing in the multipolar response. To clarify this behavior, we present a systematic experimental and numerical characterization of Silicon disk resonators. We demonstrate that for disk resonators on low-index quartz substrates, the electric and magnetic dipole modes are easily identifiable across a wide range of aspect-ratios, but that higher order peaks cannot be unambiguously associated with any specific multipolar mode. On high-index Silicon substrates, even the fundamental dipole modes do not have a clear association. When arranged into arrays, resonances are shifted and pronounced preferential forward and backward scattering conditions appear, which are not as apparent in individual resonators and may be associated with interference between multipolar modes. These findings present new opportunities for engineering the multipolar scattering response of dielectric optical antennas and metamaterials, and provide a strategy for designing nano-optical components with unique functionalities.

  7. Designing Multipolar Resonances in Dielectric Metamaterials

    PubMed Central

    Butakov, Nikita A.; Schuller, Jon A.

    2016-01-01

    Dielectric resonators form the building blocks of nano-scale optical antennas and metamaterials. Due to their multipolar resonant response and low intrinsic losses they offer design flexibility and high-efficiency performance. These resonators are typically described in terms of a spherical harmonic decomposition with Mie theory. In experimental realizations however, a departure from spherical symmetry and the use of high-index substrates leads to new features appearing in the multipolar response. To clarify this behavior, we present a systematic experimental and numerical characterization of Silicon disk resonators. We demonstrate that for disk resonators on low-index quartz substrates, the electric and magnetic dipole modes are easily identifiable across a wide range of aspect-ratios, but that higher order peaks cannot be unambiguously associated with any specific multipolar mode. On high-index Silicon substrates, even the fundamental dipole modes do not have a clear association. When arranged into arrays, resonances are shifted and pronounced preferential forward and backward scattering conditions appear, which are not as apparent in individual resonators and may be associated with interference between multipolar modes. These findings present new opportunities for engineering the multipolar scattering response of dielectric optical antennas and metamaterials, and provide a strategy for designing nano-optical components with unique functionalities. PMID:27929038

  8. Designing Multipolar Resonances in Dielectric Metamaterials

    NASA Astrophysics Data System (ADS)

    Butakov, Nikita A.; Schuller, Jon A.

    2016-12-01

    Dielectric resonators form the building blocks of nano-scale optical antennas and metamaterials. Due to their multipolar resonant response and low intrinsic losses they offer design flexibility and high-efficiency performance. These resonators are typically described in terms of a spherical harmonic decomposition with Mie theory. In experimental realizations however, a departure from spherical symmetry and the use of high-index substrates leads to new features appearing in the multipolar response. To clarify this behavior, we present a systematic experimental and numerical characterization of Silicon disk resonators. We demonstrate that for disk resonators on low-index quartz substrates, the electric and magnetic dipole modes are easily identifiable across a wide range of aspect-ratios, but that higher order peaks cannot be unambiguously associated with any specific multipolar mode. On high-index Silicon substrates, even the fundamental dipole modes do not have a clear association. When arranged into arrays, resonances are shifted and pronounced preferential forward and backward scattering conditions appear, which are not as apparent in individual resonators and may be associated with interference between multipolar modes. These findings present new opportunities for engineering the multipolar scattering response of dielectric optical antennas and metamaterials, and provide a strategy for designing nano-optical components with unique functionalities.

  9. Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics

    NASA Astrophysics Data System (ADS)

    Decker, Manuel; Staude, Isabelle

    2016-10-01

    This review overviews the state of the art of research into high-index dielectric nanoresonators and their use in functional photonic nanostructures at optical frequencies. We start by providing the motivations for this research area and by putting it into context with the more well-established subfields of nanophotonics, in particular nanoplasmonics. Following the introduction, fundamental concepts regarding the optical properties of subwavelength dielectric nanoresonators are established. To this end, we provide a brief summary of the Mie theory, before focussing on optically induced magnetic response in Mie-resonant dielectric nanoparticles. We discuss the influence of the nanoparticle’s shape on its optical response, and provide an overview of directional effects that can occur when light is scattered by a Mie-resonant nanoparticle. We then dedicate a few words to technology-related aspects, including an overview of fabrication methods for Mie-resonant dielectric nanoparticles. Next, recent progress on all-dielectric nanoantennas is presented, focussing on strategies to locally enhance optical near-fields and to achieve directional emission patterns. We then turn to all-dielectric metasurfaces and their potential applications. We touch on dielectric metamaterial reflectors and Fano-resonant dielectric metasurfaces, before discussing graded Mie-resonant dielectric metasurfaces for wavefront control applications in more detail. Following this, an overview of the recent progress in active, tunable and nonlinear dielectric nanostructures is provided. Finally, prospects and challenges are discussed, particularly the realization of highly efficient Mie-resonant nanostructures at visible frequencies, the integration of Mie-resonant nanostructures with active and functional materials, and the construction of three-dimensional high-index dielectric nanostructures.

  10. Dielectric properties of biomass/biochar mixtures at microwave frequencies

    USDA-ARS?s Scientific Manuscript database

    Material dielectric properties are important for understanding their response to microwaves. Carbonaceous materials are considered good microwave absorbers and can be mixed with dry biomasses, which are otherwise low- loss materials, to improve the heating efficiency of biomass feedstocks. In this ...

  11. Terahertz Magnetic Mirror Realized with Dielectric Resonator Antennas.

    PubMed

    Headland, Daniel; Nirantar, Shruti; Withayachumnankul, Withawat; Gutruf, Philipp; Abbott, Derek; Bhaskaran, Madhu; Fumeaux, Christophe; Sriram, Sharath

    2015-11-25

    Single-crystal silicon is bonded to a metal-coated substrate and etched in order to form an array of microcylinder passive terahertz dielectric resonator antennas (DRAs). The DRAs exhibit a magnetic response, and hence the array behaves as an efficient artificial magnetic conductor (AMC), with potential for terahertz antenna and sensing applications.

  12. Temperature-dependent dielectric properties of a thermoplastic gelatin

    NASA Astrophysics Data System (ADS)

    Landi, Giovanni; Neitzert, Heinz C.; Sorrentino, Andrea

    2016-05-01

    The frequency and the temperature dependence of the dielectric properties of a thermoplastic gelatin based bio-material have been investigated. At lower frequencies the dielectric response is strongly affected by charge carrier accumulation at the electrodes which modifies the dominating hopping conduction mechanism. The variation of the ac conductivity with frequency obeys a Jonscher type power law except for a small deviation in the low frequency range due to the electrode polarization effect. The master curve of the ac conductivity data shows that the conductivity relaxation of the gelatin is temperature independent.

  13. Nonlinear light scattering by high-index dielectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Smirnova, Daria A.

    2017-09-01

    Recently emerged new platform for nanophotonics based on high-index dielectric nanoparticles utilizes optically-induced magnetic response via multipolar resonances, and provides many novel opportunities for subwavelength nonlinear optics. Here, we summarize our studies on nonlinear light scattering by high-permittivity dielectric nanoparticles and oligomers, and demonstrate approaches for achieving highly-efficient frequency conversion and directional harmonic radiation at the nanoscale. We analyze the multipolar nature of the generated electromagnetic fields by combining analytical and numerical methods. Our results delineate a roadmap towards design of miniature light sources and nonlinear photonic metadevices with exceptional characteristics.

  14. Optical forces between dielectric nanoparticles in an optical vortex

    NASA Astrophysics Data System (ADS)

    Bradshaw, David S.; Andrews, David L.

    2005-03-01

    We report a study on the optical forces between a pair of dielectric particles, based on quantum electrodynamics. At a fundamental level these forces result from a stimulated scattering process which entails a virtual photon relay between the two particles. Results for a variety of systems are secured from a completely general analysis that accommodates a system with arbitrary dielectric properties (with regard to shape, frequency response etc.) in an optical field of arbitrary complexity. Specific results are obtained and exhibited for: (a) optical forces between nanoparticles, and specifically between carbon nanotubes; (b) the effects of optical ordering, clustering and trapping associated with twisted (Laguerre-Gaussian) laser beams.

  15. Electrowetting without electrolysis on self-healing dielectrics.

    PubMed

    Dhindsa, Manjeet; Heikenfeld, Jason; Weekamp, Wim; Kuiper, Stein

    2011-05-03

    An electrowetting system with protection against dielectric breakdown is presented. It comprises an electrolyte and a Parylene-C film deposited on an aluminum electrode. The system demonstrates virtually instantaneous self-healing (within 100 ms) after dielectric breakdown under both DC and certain AC electrowetting conditions. DC current response during electrowetting on intentionally damaged Parylene-C is presented. Also presented is a characterization of DC offset voltages and duty cycle percentages required for electrolysis free AC electrowetting between 10 Hz and 4 kHz.

  16. Dipolar correlations and the dielectric permittivity of water.

    PubMed

    Sharma, Manu; Resta, Raffaele; Car, Roberto

    2007-06-15

    The static dielectric properties of liquid and solid water are investigated within linear response theory in the context of ab initio molecular dynamics. Using maximally localized Wannier functions to treat the macroscopic polarization we formulate a first-principles, parameter-free, generalization of Kirkwood's phenomenological theory. Our calculated static permittivity is in good agreement with experiment. Two effects of the hydrogen bonds, i.e., a significant increase of the average local moment and a local alignment of the molecular dipoles, contribute in almost equal measure to the unusually large dielectric constant of water.

  17. Efficient Third Harmonic Generation from Metal-Dielectric Hybrid Nanoantennas.

    PubMed

    Shibanuma, Toshihiko; Grinblat, Gustavo; Albella, Pablo; Maier, Stefan A

    2017-04-12

    High refractive index dielectric nanoantennas are expected to become key elements for nonlinear nano-optics applications due to their large nonlinearities, low energy losses, and ability to produce high electric field enhancements in relatively large nanoscale volumes. In this work, we show that the nonlinear response from a high-index dielectric nanoantenna can be significantly improved by adding a metallic component to build a metal-dielectric hybrid nanostructure. We demonstrate that the plasmonic resonance of a Au nanoring can boost the anapole mode supported by a Si nanodisk, strongly enhancing the electric field inside the large third-order susceptibility dielectric. As a result, a high third harmonic conversion efficiency, which reaches 0.007% at a third harmonic wavelength of 440 nm, is obtained. In addition, by suitably modifying geometrical parameters of the hybrid nanoantenna, we tune the enhanced third harmonic emission throughout the optical regime. Coupling metallic and dielectric nanoantennas to expand the potential of subwavelength structures opens new paths for efficient nonlinear optical effects in the visible range on the nanoscale.

  18. Impedance and dielectric properties of mercury cuprate at nonsuperconducting state

    NASA Astrophysics Data System (ADS)

    Özdemir, Z. Güven; Çataltepe, Ö. Aslan; Onbaşlı, Ü.

    2015-10-01

    In this paper, impedance and dielectric properties of nonsuperconducting state of the mercury-based cuprate have been investigated by impedance measurements within the frequency interval of 10 Hz-10 MHz for the first time. The dielectric loss factor (tgδ) and ac conductivity (σac) parameters have also been calculated for non-superconducting state. According to impedance spectroscopy analysis, the equivalent circuit of the mercury cuprate system manifests itself as a semicircle in the Nyquist plot that corresponds to parallel connected resistance-capacitance circuit. The oscillation frequency of the circuit has been determined as approximately 45 kHz which coincides with the low frequency radio waves. Moreover, it has been revealed that the mercury-based cuprate investigated has high dielectric constants and hence it may be utilized in microelectronic industry such as capacitors, memory devices etc., at room temperature. In addition, negative capacitance (NC) effect has been observed for the mercury cuprate regardless of the operating temperatures at nonsuperconducting state. Referring to dispersions in dielectric properties, the main contribution to dielectric response of the system has been suggested as dipolar and interfacial polarization mechanisms.

  19. Abnormal percolative transport and colossal electroresistance induced by anisotropic strain in (011)-Pr(0.7)(Ca(0.6)Sr(0.4))(0.3)MnO₃/PMN-PT heterostructure.

    PubMed

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Zhang, Hong-Rui; Liu, Yao; Zhang, Ying; Wang, Shuan-Hu; Wu, Rong-Rong; Zhang, Ming; Bao, Li-Fu; Sun, Ji-Rong; Shen, Bao-Gen

    2014-11-17

    Abnormal percolative transport in inhomogeneous systems has drawn increasing interests due to its deviation from the conventional percolation picture. However, its nature is still ambiguous partly due to the difficulty in obtaining controllable abnormal percolative transport behaviors. Here, we report the first observation of electric-field-controlled abnormal percolative transport in (011)-Pr(0.7)(Ca(0.6)Sr(0.4))(0.3)MnO3/0.7Pb(Mg(1/3)Nb(2/3))O3-0.3PbTiO3 heterostructure. By introducing an electric-field-induced in-plane anisotropic strain-field in a phase separated PCSMO film, we stimulate a significant inverse thermal hysteresis (~ -17.5 K) and positive colossal electroresistance (~11460%), which is found to be crucially orientation-dependent and completely inconsistent with the well accepted conventional percolation picture. Further investigations reveal that such abnormal inverse hysteresis is strongly related to the preferential formation of ferromagnetic metallic domains caused by in-plane anisotropic strain-field. Meanwhile, it is found that the positive colossal electroresistance should be ascribed to the coactions between the anisotropic strain and the polarization effect from the poling of the substrate which leads to orientation and bias-polarity dependencies for the colossal electroresistance. This work unambiguously evidences the indispensable role of the anisotropic strain-field in driving the abnormal percolative transport and provides a new perspective for well understanding the percolation mechanism in inhomogeneous systems.

  20. Abnormal percolative transport and colossal electroresistance induced by anisotropic strain in (011)-Pr0.7(Ca0.6Sr0.4)0.3MnO3/PMN-PT heterostructure

    NASA Astrophysics Data System (ADS)

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Zhang, Hong-Rui; Liu, Yao; Zhang, Ying; Wang, Shuan-Hu; Wu, Rong-Rong; Zhang, Ming; Bao, Li-Fu; Sun, Ji-Rong; Shen, Bao-Gen

    2014-11-01

    Abnormal percolative transport in inhomogeneous systems has drawn increasing interests due to its deviation from the conventional percolation picture. However, its nature is still ambiguous partly due to the difficulty in obtaining controllable abnormal percolative transport behaviors. Here, we report the first observation of electric-field-controlled abnormal percolative transport in (011)-Pr0.7(Ca0.6Sr0.4)0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructure. By introducing an electric-field-induced in-plane anisotropic strain-field in a phase separated PCSMO film, we stimulate a significant inverse thermal hysteresis (~ -17.5 K) and positive colossal electroresistance (~11460%), which is found to be crucially orientation-dependent and completely inconsistent with the well accepted conventional percolation picture. Further investigations reveal that such abnormal inverse hysteresis is strongly related to the preferential formation of ferromagnetic metallic domains caused by in-plane anisotropic strain-field. Meanwhile, it is found that the positive colossal electroresistance should be ascribed to the coactions between the anisotropic strain and the polarization effect from the poling of the substrate which leads to orientation and bias-polarity dependencies for the colossal electroresistance. This work unambiguously evidences the indispensable role of the anisotropic strain-field in driving the abnormal percolative transport and provides a new perspective for well understanding the percolation mechanism in inhomogeneous systems.

  1. A Wireless Multi-Sensor Dielectric Impedance Spectroscopy Platform

    PubMed Central

    Ghaffari, Seyed Alireza; Caron, William-O.; Loubier, Mathilde; Rioux, Maxime; Viens, Jeff; Gosselin, Benoit; Messaddeq, Younes

    2015-01-01

    This paper describes the development of a low-cost, miniaturized, multiplexed, and connected platform for dielectric impedance spectroscopy (DIS), designed for in situ measurements and adapted to wireless network architectures. The platform has been tested and used as a DIS sensor node on ZigBee mesh and was able to interface up to three DIS sensors at the same time and relay the information through the network for data analysis and storage. The system is built from low-cost commercial microelectronics components, performs dielectric spectroscopy ranging from 5 kHz to 100 kHz, and benefits from an on-the-fly calibration system that makes sensor calibration easy. The paper describes the microelectronics design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the testing of the platform for in situ dielectric impedance spectroscopy applications pertaining to fertilizer sensing, water quality sensing, and touch sensing. PMID:26393587

  2. Dielectric properties of polyfunctional alcohols: 2,3-butanediol

    NASA Astrophysics Data System (ADS)

    Zhuravlev, V. I.

    2016-08-01

    Using a variety theoretical approaches within the Debye, Davidson-Cole, and Forsman models, and an approach based on the Dissado-Hill theory, dielectric spectra of 2,3-butanediol in the temperature range of 298 to 423 K are analyzed. It is shown that the dielectric spectra of 2,3-butanediole are described by the Davidson-Cole equation, and the βDC parameter depends strongly on temperature. The spectrum of dielectric relaxation of 2,3-butanediol within the Debye theory is presented as the sum of two areas of dispersion, and conclusions are drawn regarding possible mechanisms of dispersion responsible for the obtained fields. The relaxation times of 2,3-butanediol, calculated using different equations describing the nonlinear behavior of relaxation times, are compared. The dipole moments of clusters are obtained for the first time using the Dissado-Hill cluster model, and a preliminary analysis of them is performed.

  3. Polarization processes in rocks: 1. Complex Dielectric Permittivity method

    NASA Astrophysics Data System (ADS)

    Levitskaya, Tsylya M.; Sternberg, Ben K.

    1996-07-01

    This is the first part of a review of research performed in the former USSR. Experimental data were used from several regions of the USSR, including Russia, Ukraine, and Georgia. Many of the publications are available in U.S. libraries. Some of them are translated into English. This part contains results from applying the Complex Dielectric Permittivity method (Dielectric Spectroscopy) for studying the electrical response of rocks in alternating fields with frequencies from 100 Hz to 100 MHz. Data on dielectric properties of sedimentary rocks of different lithology and with various porosities, salinities of saturating solution, and hydrocarbon content are reviewed here. Measurement methods, including means for avoiding or reducing the electrode polarization, are also considered. It is shown that wet rocks exhibit a Maxwell-Wagner polarization process at frequencies 105-107 Hz, caused by charge accumulation on the pore boundaries.

  4. A Wireless Multi-Sensor Dielectric Impedance Spectroscopy Platform.

    PubMed

    Ghaffari, Seyed Alireza; Caron, William-O; Loubier, Mathilde; Rioux, Maxime; Viens, Jeff; Gosselin, Benoit; Messaddeq, Younes

    2015-09-17

    This paper describes the development of a low-cost, miniaturized, multiplexed, and connected platform for dielectric impedance spectroscopy (DIS), designed for in situ measurements and adapted to wireless network architectures. The platform has been tested and used as a DIS sensor node on ZigBee mesh and was able to interface up to three DIS sensors at the same time and relay the information through the network for data analysis and storage. The system is built from low-cost commercial microelectronics components, performs dielectric spectroscopy ranging from 5 kHz to 100 kHz, and benefits from an on-the-fly calibration system that makes sensor calibration easy. The paper describes the microelectronics design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the testing of the platform for in situ dielectric impedance spectroscopy applications pertaining to fertilizer sensing, water quality sensing, and touch sensing.

  5. Optical control of dielectric permittivity in LaAl0.99Zn0.01O3-δ

    NASA Astrophysics Data System (ADS)

    Nagai, Takayuki; Takahashi, Hidefumi; Okazaki, Ryuji; Tanabe, Kenji; Terasaki, Ichiro; Taniguchi, Hiroki

    2017-04-01

    A photo-dielectric effect (i.e., a change in dielectric permittivity due to photo-irradiation) has been demonstrated in LaAl0.99Zn0.01O3-δ. Photo-irradiation with an incident energy of 3.4 eV was found to enhance the dielectric permittivity in LaAl0.99Zn0.01O3-δ over a wide frequency range from 100 Hz to 1 MHz. The change in dielectric permittivity in the high-frequency region hardly depended on frequency and was not accompanied by an increase in dielectric loss, indicating an intrinsic photo-dielectric effect in LaAl0.99Zn0.01O3-δ that is not due to photo-conduction. The dependence of the photo-dielectric effect on incident energy suggests the existence of deep in-gap states introduced by Zn substitution. The mechanism of the photo-dielectric effect in LaAl0.99Zn0.01O3-δ relates to the dielectric response of the photo-excited electrons trapped in the deep in-gap states, which work as effective polar displacements under an applied electric field. These findings are expected to contribute to the development of photo-capacitors that enable the remote control of the dielectric response via photo-irradiation.

  6. Hydration dependence of conformational dielectric relaxation of lysozyme.

    PubMed

    Knab, Joseph; Chen, Jing-Yin; Markelz, Andrea

    2006-04-01

    Dielectric response of hen egg white lysozyme is measured in the far infrared (5-65 cm-1, 0.15-1.95 THz, 0.6-8.1 meV) as a function of hydration. The frequency range is associated with collective vibrational modes of protein tertiary structure. The observed frequency dependence of the absorbance is broad and glass-like. For the entire frequency range, there is a slight increase in both the absorbance and index of refraction with increasing hydration for <0.27 h (mass of H2O per unit mass protein). At 0.27 h, the absorbance and index begin to increase more rapidly. This transition corresponds to the point where the first hydration shell is filled. The abrupt increase in dielectric response cannot be fully accounted for by the additional contribution to the dielectric response due to bulk water, suggesting that the protein has not yet achieved its fully hydrated state. The broad, glass-like response suggests that at low hydrations, the low frequency conformational hen egg white lysozyme dynamics can be described by a dielectric relaxation model where the protein relaxes to different local minima in the conformational energy landscape. However, the low frequency complex permittivity does not allow for a pure relaxational mechanism. The data can best be modeled with a single low frequency resonance (nu approximately 120 GHz=4 cm-1) and a single Debye relaxation process (tau approximately .03-.04 ps). Terahertz dielectric response is currently being considered as a possible biosensing technique and the results demonstrate the required hydration control necessary for reliable biosensor applications.

  7. Elastomer dielectric for pulse power

    NASA Astrophysics Data System (ADS)

    Bradely, L. P.; Orham, E. L.; Stowers, I. F.; Braucht, J. R.

    1980-05-01

    Selected elastomer dielectrics are characterized as high voltage insulators for use in pulse power systems. Silicone, ethylene propylene rubber and polyurethene were tested, but most of the data is for silicone. The particular power system developed uses a formed silicone insulator 76 cm in dia. and 3 mm thick as the major insulator between capacitors, railgap switches, load, and return conductor. The capacitor array is dc charged to 50 kv. The use of an elastomer dielectric made possible the construction of a pulser one order of magnitude smaller than previously constructed pulsers having the same current characteristics. Also, use of the elastomer dielectrics in pulse powr systems leads to improved production techniques and system reliability.

  8. A physically based model for dielectric charging in an integrated optical MEMS wavelength selective switch.

    SciTech Connect

    Nielson, Gregory N.; Barbastathis, George

    2005-07-01

    A physical parameter based model for dielectric charge accumulation is proposed and used to predict the displacement versus applied voltage and pull-in response of an electrostatic MEMS wavelength selective integrated optical switch.

  9. Capacitive Cells for Dielectric Constant Measurement

    ERIC Educational Resources Information Center

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco

    2015-01-01

    A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.

  10. USDA/ARS and dielectric properties research

    USDA-ARS?s Scientific Manuscript database

    An overview of the research is presented, including RF dielectric heating for seed treatment, insect control, product conditioning, and moisture and quality sensing applications, equipment used, dielectric properties measurement techniques, broad- frequency- range data obtained, and research results...

  11. Capacitive Cells for Dielectric Constant Measurement

    ERIC Educational Resources Information Center

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco

    2015-01-01

    A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.

  12. CVD Diamond Dielectric Accelerating Structures

    SciTech Connect

    Schoessow, P.; Kanareykin, A.; Gat, R.

    2009-01-22

    The electrical and mechanical properties of diamond make it an ideal candidate material for use in dielectric accelerating structures: high RF breakdown field, extremely low dielectric losses and the highest available thermoconductive coefficient. Using chemical vapor deposition (CVD) cylindrical diamond structures have been manufactured with dimensions corresponding to fundamental TM{sub 01} mode frequencies in the GHz to THz range. Surface treatments are being developed to reduce the secondary electron emission (SEE) coefficient below unity to reduce the possibility of multipactor. The diamond CVD cylindrical waveguide technology developed here can be applied to a variety of other high frequency, large-signal applications.

  13. Dielectric nanostructures with high laser damage threshold

    NASA Astrophysics Data System (ADS)

    Ngo, C. Y.; Hong, L. Y.; Deng, J.; Khoo, E. H.; Liu, Z.; Wu, R. F.; Teng, J. H.

    2017-02-01

    Dielectric-based metamaterials are proposed to be the ideal candidates for low-loss, high-efficiency devices. However, to employ dielectric nanostructures for high-power applications, the dielectric material must have a high laser-induced damaged threshold (LIDT) value. In this work, we investigated the LIDT values of dielectric nanostructures for high-power fiber laser applications. Consequently, we found that the fabricated SiO2 nanostructured lens can withstand laser fluence exceeding 100 J/cm2.

  14. Dielectric barrier discharges applied for optical spectrometry

    NASA Astrophysics Data System (ADS)

    Brandt, S.; Schütz, A.; Klute, F. D.; Kratzer, J.; Franzke, J.

    2016-09-01

    The present review reflects the importance of dielectric barrier discharges for optical spectrometric detection in analytical chemistry. In contrast to usual discharges with a direct current the electrodes are separated by at least one dielectric barrier. There are two main features of the dielectric barrier discharges: they can serve as dissociation and excitation devices as well as ionization sources, respectively. This article portrays various application fields of dielectric barrier discharges in analytical chemistry used for elemental and molecular detection with optical spectrometry.

  15. Dielectric spectroscopy of ionic microgel suspensions.

    PubMed

    Mohanty, P S; Nöjd, S; Bergman, M J; Nägele, G; Arrese-Igor, S; Alegria, A; Roa, R; Schurtenberger, P; Dhont, J K G

    2016-12-06

    The determination of the net charge and size of microgel particles as a function of their concentration, as well as the degree of association of ions to the microgel backbone, has been pursued in earlier studies mainly by scattering and rheology. These methods suffer from contributions due to inter-particle interactions that interfere with the characterization of single-particle properties. Here we introduce dielectric spectroscopy as an alternative experimental method to characterize microgel systems. The advantage of dielectric spectroscopy over other experimental methods is that the polarization due to mobile charges within a microgel particle is only weakly affected by inter-particle interactions. Apart from electrode polarization effects, experimental spectra on PNIPAM-co-AA [poly(N-isopropylacrylamide-co-acrylic acid)] ionic microgel particles suspended in de-ionized water exhibit three well-separated relaxation modes, which are due to the polarization of the mobile charges within the microgel particles, the diffuse double layer around the particles, and the polymer backbone. Expressions for the full frequency dependence of the electrode-polarization contribution to the measured dielectric response are derived, and a theory is proposed for the polarization resulting from the mobile charges within the microgel. Relaxation of the diffuse double layer is modeled within the realm of a cell model. The net charge and the size of the microgel particles are found to be strongly varying with concentration. A very small value of the diffusion coefficient of ions within the microgel is found, due to a large degree of chemical association of protons to the polymer backbone.

  16. The behavior of dielectric elastomer actuators connected in series and parallel

    NASA Astrophysics Data System (ADS)

    Li, Guorui; Liang, Yiming; Yang, Xuxu; Cheng, Tingyu; Huang, Zhilong; Li, Tiefeng

    2016-04-01

    Dielectric elastomer membrane has the ability of shrinking the thickness and expanding surface area when a voltage is applied through its thickness. Dielectric elastomer has been widely studied and used as dielectric elastomer actuator (DEA), dielectric elastomer generator (DEG) and dielectric elastomer sensor (DES). We study the behavior of several DEAs connected in series and parallel, and find that the different connecting models can achieve different responses of the DEAs. DEAs connected in series can enhance the actuation, while DEA connected in parallel can enhance the actuation force. In our experiment, DEAs connected in series and parallel are loaded in actuation direction under a dead load providing pre-stretch. We discuss the results of the experiments and give the conclusions.

  17. Effect of thermal stresses on the dielectric properties of strontium titanate thin films

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Weiss, C. V.; Alpay, S. P.

    2011-07-01

    We develop a quantitative thermodynamic model to understand the role of thermal stresses on the dielectric permittivity and tunability of (001)-textured polycrystalline monodomain strontium titanate (SrTiO3) films. This methodology is used to compute the dielectric constant and tunability of SrTiO3 films on Si, c-sapphire, LaAlO3, and MgO substrates. Results show that dielectric properties of SrTiO3 depend strongly on the growth/processing temperature TG. For substrates such as MgO that induce compressive in-plane thermal stresses, the dielectric response of SrTiO3 is enhanced. However, for SrTiO3 films on IC-compatible substrates (Si and c-sapphire), thermal stresses can significantly degrade the dielectric permittivity and tunability.

  18. Manipulation of the dielectric properties of diamond by an ultrashort laser pulse

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqin; Wang, Feng; Jiang, Lan; Yao, Yugui

    2017-05-01

    The dielectric properties of diamond in excited state modulated by an ultrashort and intense single-cycle laser field are investigated based on the real-time time-dependent density functional theory. The electron dynamics of diamond is analyzed within ultrashort time resolution. The change of dielectric properties are demonstrated by studying the effect of easily tunable laser parameters including intensity, frequency, and duration time. The extracted dielectric function shows anisotropy even in an centrosymmetric diamond when going beyond the linear response regime. We also demonstrate control of the dielectric functions by the delay time between pump and probe pulse. It is concluded that a tailored single-cycle laser field can be used to effectively manipulate the dielectric properties of wide-band gap materials.

  19. Low-κ' dielectric properties of UV-treated bi-axially oriented polypropylene films

    NASA Astrophysics Data System (ADS)

    Dervos, C. T.; Tarantili, P. A.; Athanassopoulou, M. D.

    2009-07-01

    A 40 µm multilayer bi-axially oriented polypropylene (BOPP) film, was fabricated by the tenter process and its dielectric response was investigated after applying combined action of UV, humidity and heat. Dissipation factor (tan δ) and relative dielectric constant measurements were performed via the capacitance method for frequencies 20Hz-1 GHz. These results show that the relative dielectric constant (κ') reduces towards ultra low values (1.8) with an increasing number of applied UV-condensation cycles without any subsequent increase in the dielectric loss. Having no added physical porosity and absence of fluorine atoms, the irradiated BOPP structures offer significant advantages over poly(tetrafluoroethylene) PTFE due to reduced polarization effects, lower dielectric constant values and chemical stability to the adjacent copper or aluminium conductors. Possible application fields are dry type high-voltage capacitors and insulation within electronic components.

  20. Cellulose Triacetate Dielectric Films For Capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.; Jow, T. Richard

    1994-01-01

    Cellulose triacetate investigated for use as dielectric material in high-energy-density capacitors for pulsed-electrical-power systems. Films of cellulose triacetate metalized on one or both sides for use as substrates for electrodes and/or as dielectrics between electrodes in capacitors. Used without metalization as simple dielectric films. Advantages include high breakdown strength and self-healing capability.