Science.gov

Sample records for colossal magnetoresistive manganites

  1. Nodal Quasiparticle in Pseudogapped Colossal Magnetoresistive Manganites

    SciTech Connect

    Mannella, N.

    2010-06-02

    A characteristic feature of the copper oxide high-temperature superconductors is the dichotomy between the electronic excitations along the nodal (diagonal) and antinodal (parallel to the Cu-O bonds) directions in momentum space, generally assumed to be linked to the d-wave symmetry of the superconducting state. Angle-resolved photoemission measurements in the superconducting state have revealed a quasiparticle spectrum with a d-wave gap structure that exhibits a maximum along the antinodal direction and vanishes along the nodal direction. Subsequent measurements have shown that, at low doping levels, this gap structure persists even in the high-temperature metallic state, although the nodal points of the superconducting state spread out in finite Fermi arcs. This is the so-called pseudogap phase, and it has been assumed that it is closely linked to the superconducting state, either by assigning it to fluctuating superconductivity or by invoking orders which are natural competitors of d-wave superconductors. Here we report experimental evidence that a very similar pseudogap state with a nodal-antinodal dichotomous character exists in a system that is markedly different from a superconductor: the ferromagnetic metallic groundstate of the colossal magnetoresistive bilayer manganite La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7}. Our findings therefore cast doubt on the assumption that the pseudogap state in the copper oxides and the nodal-antinodal dichotomy are hallmarks of the superconductivity state.

  2. Metal-insulator transition above room temperature in maximum colossal magnetoresistance manganite thin films

    NASA Astrophysics Data System (ADS)

    Chen, X. J.; Habermeier, H.-U.; Zhang, H.; Gu, G.; Varela, M.; Santamaria, J.; Almasan, C. C.

    2005-09-01

    It has been suggested that the maximum magnitude of colossal magnetoresistance occurs in mixed-valent manganites with a tolerance factor t=0.96 [Zhou, Archibald, and Goodenough, Nature (London) 381, 770 (1996)]. However, at t≈0.96 most manganites have relatively low values of the metal-insulator transition temperature TMI(˜60-150K) . Here, we report that a 50 Å La0.9Sr0.1MnO3 thin film with t=0.96 grown on a (100) SrTiO3 substrate has a metal-insulator transition above room temperature, which represents a doubling of TMI compared with its value in the bulk material. We show that this spectacular increase of TMI is a result of the epitaxially compressive strain-induced reduction of the Jahn-Teller distortion.

  3. Origin of colossal magnetoresistance in LaMnO3 manganite.

    PubMed

    Baldini, Maria; Muramatsu, Takaki; Sherafati, Mohammad; Mao, Ho-kwang; Malavasi, Lorenzo; Postorino, Paolo; Satpathy, Sashi; Struzhkin, Viktor V

    2015-09-01

    Phase separation is a crucial ingredient of the physics of manganites; however, the role of mixed phases in the development of the colossal magnetoresistance (CMR) phenomenon still needs to be clarified. We report the realization of CMR in a single-valent LaMnO3 manganite. We found that the insulator-to-metal transition at 32 GPa is well described using the percolation theory. Pressure induces phase separation, and the CMR takes place at the percolation threshold. A large memory effect is observed together with the CMR, suggesting the presence of magnetic clusters. The phase separation scenario is well reproduced, solving a model Hamiltonian. Our results demonstrate in a clean way that phase separation is at the origin of CMR in LaMnO3.

  4. First Order Colossal Magnetoresistance Transitions in the Two-Orbital Model for Manganites

    SciTech Connect

    Sen, Cengiz; Alvarez, Gonzalo; Dagotto, Elbio R

    2010-01-01

    Large-scale Monte Carlo simulation results for the two-orbital model for manganites, including Jahn- Teller lattice distortions, are presented here. At hole density x 1=4 and in the vicinity of the region of competition between the ferromagnetic metallic and spin-charge-orbital ordered insulating phases, the colossal magnetoresistance (CMR) phenomenon is observed with a magnetoresistance ratio 10 000%. Our main result is that this CMR transition is found to be of first order in some portions of the phase diagram, in agreement with early results from neutron scattering, specific heat, and magnetization, thus solving a notorious discrepancy between experiments and previous theoretical studies. The first order characteristics of the transition survive, and are actually enhanced, when weak quenched disorder is introduced.

  5. Variation of Topology in Magnetic Bubbles in a Colossal Magnetoresistive Manganite.

    PubMed

    Yu, Xiuzhen; Tokunaga, Yusuke; Taguchi, Yasujiro; Tokura, Yoshinori

    2017-01-01

    The emergence of zero-bias bubbles (≈100 nm in diameter) with various Bloch lines and their triangular lattice is revealed in a colossal magnetoresistive material, La1-x Srx MnO3 , by means of Lorentz transmission electron microscopy (LTEM). The magnetization dynamics, and accompanying changes of the topological number of bubbles via the field-driven motion of the Bloch lines, are demonstrated by in situ LTEM observations.

  6. Magnetorefractive effect in manganites with a colossal magnetoresistance in the visible spectral region

    SciTech Connect

    Sukhorukov, Yu. P. Telegin, A. V.; Granovsky, A. B. Gan'shina, E. A.; Zhukov, A.; Gonzalez, J.; Caicedo, J. M.; Bessonov, V. D.; Kaul', A. R.; Gorbenko, O. Yu.; Korsakov, I. E.

    2012-01-15

    The magnetotransmission, magnetoreflection, and magnetoresistance of the La{sub 0.7}Ca{sub 0.3}MnO{sub 3} and La{sub 0.9}Ag{sub 0.1}MnO{sub 3} epitaxial films have been investigated. It has been found that the films exhibit a significant magnetorefractive effect in the case of reflection and transmission of light in the fundamental absorption region both in the vicinity of the Curie temperature and at low temperatures. It has been shown that the magnetorefractive effect in the infrared spectral region of the manganites is determined by a high-frequency response to magnetoresistance, whereas the magnetorefractive effect in the visible spectral region of these materials is associated with a change in the electronic structure in response to a magnetic field, which, in turn, leads to a change in the electron density of states, the probability of interband optical transitions, and the shift of light absorption bands. The obtained values of the magnetotransmittance and magnetoreflectance in the visible spectral region are less than those observed in the infrared region of the spectrum, but they are several times greater than the linear magneto-optical effects. As a result, the magnetorefractive effect, which is a nongyrotropic phenomenon, makes it possible to avoid the use of light analyzers and polarizers in optical circuits.

  7. Magnetorefractive effect in manganites with a colossal magnetoresistance in the visible spectral region

    NASA Astrophysics Data System (ADS)

    Sukhorukov, Yu. P.; Telegin, A. V.; Granovsky, A. B.; Gan'shina, E. A.; Zhukov, A.; Gonzalez, J.; Herranz, G.; Caicedo, J. M.; Yurasov, A. N.; Bessonov, V. D.; Kaul', A. R.; Gorbenko, O. Yu.; Korsakov, I. E.

    2012-01-01

    The magnetotransmission, magnetoreflection, and magnetoresistance of the La0.7Ca0.3MnO3 and La0.9Ag0.1MnO3 epitaxial films have been investigated. It has been found that the films exhibit a significant magnetorefractive effect in the case of reflection and transmission of light in the fundamental absorption region both in the vicinity of the Curie temperature and at low temperatures. It has been shown that the magnetorefractive effect in the infrared spectral region of the manganites is determined by a high-frequency response to magnetoresistance, whereas the magnetorefractive effect in the visible spectral region of these materials is associated with a change in the electronic structure in response to a magnetic field, which, in turn, leads to a change in the electron density of states, the probability of interband optical transitions, and the shift of light absorption bands. The obtained values of the magnetotransmittance and magnetoreflectance in the visible spectral region are less than those observed in the infrared region of the spectrum, but they are several times greater than the linear magneto-optical effects. As a result, the magnetorefractive effect, which is a nongyrotropic phenomenon, makes it possible to avoid the use of light analyzers and polarizers in optical circuits.

  8. Chemical Ordering Modulated Electronic Phase Separation and Macroscopic Properties in Colossal Magnetoresistance Manganites

    NASA Astrophysics Data System (ADS)

    Zhu, Yinyan; Du, Kai; Yin, Lifeng; Shen, Jian; Low-dimensional material physics Team

    Using unit cell by unit cell superlattice growth technique, we determine the role of chemical ordering of the Pr dopant in a colossal magnetoresistance (La1-yPry)1-x CaxMnO3 (LPCMO) system, which has been well known for its large length scale electronic phase separation (EPS) phenomena. Our experimental results show that the chemical ordering of Pr leads to dramatic reduction of the length scale of EPS. Moreover, compared to the conventional Pr-disordered LPCMO system, the Pr-ordered LPCMO system has ~100 K higher metal-insulator transition temperature. We have further investigated the n-dependence of the physical properties of the (LCMO)2n/(PCMO)n superlattices. Magnetic and transport measurements indicate that the physical properties change nonmonotonically with increasing n, reaching a minimum for both the Curie temperature and the meta-insulator transition temperature. The crossover thickness thus reflects the characteristic correlation length scale along the vertical direction of the superlattice. For superlattices with n smaller than the correlation length, we combine MFM studies and model calculations to explain the weakened ferromagnetism and metallicity with increasing n.

  9. Experimental Evidence of the Origin of Nanophase Separation in Low Hole-Doped Colossal Magnetoresistant Manganites.

    PubMed

    Cortés-Gil, Raquel; Ruiz-González, M Luisa; González-Merchante, Daniel; Alonso, José M; Hernando, Antonio; Trasobares, Susana; Vallet-Regí, María; Rojo, Juan M; González-Calbet, José M

    2016-01-13

    While being key to understanding their intriguing physical properties, the origin of nanophase separation in manganites and other strongly correlated materials is still unclear. Here, experimental evidence is offered for the origin of the controverted phase separation mechanism in the representative La1-xCaxMnO3 system. For low hole densities, direct evidence of Mn(4+) holes localization around Ca(2+) ions is experimentally provided by means of aberration-corrected scanning transmission electron microscopy combined with electron energy loss spectroscopy. These localized holes give rise to the segregated nanoclusters, within which double exchange hopping between Mn(3+) and Mn(4+) remains restricted, accounting for the insulating character of perovskites with low hole density. This localization is explained in terms of a simple model in which Mn(4+) holes are bound to substitutional divalent Ca(2+) ions.

  10. Dynamics of multiple phases in a colossal-magnetoresistive manganite as revealed by dielectric spectroscopy.

    PubMed

    Sheng, Zhigao; Nakamura, Masao; Kagawa, Fumitaka; Kawasaki, Masashi; Tokura, Yoshinori

    2012-07-10

    Electronic phase separation is one of the key features in correlated electron oxides. The coexistence and competition of multiple phases give rise to gigantic responses to tiny stimuli producing dramatic changes in magnetic, transport and other properties of these compounds. To probe the physical properties of each phase separately is crucial for a comprehensive understanding of phase separation phenomena and for designing their device functions. Here we unravel, using a unique p-n junction configuration, dynamic properties of multiple phases in manganite thin films. The multiple dielectric relaxations have been detected and their corresponding multiple phases have been identified, while the activation energies of dielectric responses from different phases were extracted separately. Their phase evolutions with changing both temperature and applied magnetic field have been demonstrated by dielectric response. These results provide a guideline for exploring the electronic phase separation phenomena in correlated electron oxides.

  11. Polaron Coherence Condensation As the Mechanism for Colossal Magnetoresistance in Layered Manganites

    SciTech Connect

    Mannella, N.; Yang, W.L.; Tanaka, K.; Zhou, X.J.; Zheng, H.; Mitchell, J.F.; Zaanen, J.; Devereaux, T.P.; Nagaosa, N.; Hussain, Z.; Shen, Z.-X.; /SLAC

    2007-11-20

    Angle-resolved photoemission spectroscopy data for the bilayer manganite La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7} show that, upon lowering the temperature below the Curie point, a coherent polaronic metallic groundstate emerges very rapidly with well defined quasiparticles which track remarkably well the electrical conductivity, consistent with macroscopic transport properties. Our data suggest that the mechanism leading to the insulator-to-metal transition in La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7} can be regarded as a polaron coherence condensation process acting in concert with the Double Exchange interaction.

  12. Temperature dependent evolution of the electronic and local atomic structure in the cubic colossal magnetoresistive manganite La1-xSrxMnO3

    SciTech Connect

    Arenholz, Elke; Mannella, N.; Booth, C.H.; Rosenhahn, A.; Sell, B.C.; Nambu, A.; Marchesini, S.; Mun, B. S.; Yang, S.-H.; Watanabe, M.; Ibrahim, K.; Arenholz, E.; Young, A.; Guo, J.; Tomioka, Y.; Fadley, C.S.

    2007-12-06

    We have studied the temperature-dependent evolution of the electronic and local atomic structure in the cubic colossal magnetoresistive manganite La{sub 1-x}Sr{sub x}MnO{sub 3} (x= 0.3-0.4) with core and valence level photoemission (PE), x-ray absorption spectroscopy (XAS), x-ray emission spectroscopy (XES), resonant inelastic x-ray scattering (RIXS), extended x-ray absorption fine structure (EXAFS) spectroscopy and magnetometry. As the temperature is varied across the Curie temperature T{sub c}, our PE experiments reveal a dramatic change of the electronic structure involving an increase in the Mn spin moment from {approx} 3 {micro}B to {approx} 4 {micro}B, and a modification of the local chemical environment of the other constituent atoms indicative of electron localization on the Mn atom. These effects are reversible and exhibit a slow-timescale {approx}200 K-wide hysteresis centered at T{sub c}. Based upon the probing depths accessed in our PE measurements, these effects seem to survive for at least 35-50 {angstrom} inward from the surface, while other consistent signatures for this modification of the electronic structure are revealed by more bulk sensitive spectroscopies like XAS and XES/RIXS. We interpret these effects as spectroscopic fingerprints for polaron formation, consistent with the presence of local Jahn-Teller distortions of the MnO{sub 6} octahedra around the Mn atom, as revealed by the EXAFS data. Magnetic susceptibility measurements in addition show typical signatures of ferro-magnetic clusters formation well above the Curie temperature.

  13. Time-resolved x-ray absorption spectroscopy of photoinduced insulator-metal transition in a colossal magnetoresistive manganite

    SciTech Connect

    Rini, M.; Tobey, R.; Wall, S.; Zhu, Y.; Tomioka, Y.; Tokura, Y.; Cavalleri, A.; Schoenlein, R.W.

    2008-08-01

    We studied the ultrafast insulator-metal transition in a manganite by means of picosecond X-ray absorption at the O K- and Mn L-edges, probing photoinduced changes in O-2p and Mn-3d electronic states near the Fermi level.

  14. Effectis of Lattice Distortion, Polaron Sonduction and Double-Exchange Interaction on the Physical Properties of Magnetoresistive Manganites and Cobaltites

    NASA Technical Reports Server (NTRS)

    Yeh, N. C.; Vasquez, R. P.; Wei, J. Y. T.; Fu, C. C.; Beach, G.; Huynh, J.; Samoilov, A. V.; Boris, A. V.; Kovaleva, N. N.; Bazhenov, A. V.

    1997-01-01

    The relevance of lattice distortion, polaron conduction, and double-exchange interaction to the occurrence of colossal magnetoresistance (SMR) is investigated by comparing the physical properties of magnetoresistive manganites and cobaltites.

  15. Colossal Magnetoresistive Manganite Based Fast Bolometric X-ray Sensors for Total Energy Measurements of Free Electron Lasers

    SciTech Connect

    Yong, G J; Kolagani, R M; Adhikari, S; Mundle, R M; Cox, D W; Davidson III, A L; Liang, Y; Drury, O B; Hau-Riege, S P; Gardner, C; Ables, E; Bionta, R M; Friedrich, S

    2008-12-17

    Bolometric detectors based on epitaxial thin films of rare earth perovskite manganites have been proposed as total energy monitors for X-ray pulses at the Linac Coherent Light Source free electron laser. We demonstrate such a detector scheme based on epitaxial thin films of the perovskite manganese oxide material Nd{sub 0.67}Sr{sub x0.33}MnO{sub 3}, grown by pulsed laser deposition on buffered silicon substrates. The substrate and sensor materials are chosen to meet the conflicting requirements of radiation hardness, sensitivity, speed and linearity over a dynamic range of three orders of magnitude. The key challenge in the material development is the integration of the sensor material with Si. Si is required to withstand the free electron laser pulse impact and to achieve a readout speed three orders of magnitude faster than conventional cryoradiometers for compatibility with the Linac Coherent Light Source pulse rate. We discuss sensor material development and the photoresponse of prototype devices. This Linac Coherent Light Source total energy monitor represents the first practical application of manganite materials as bolometric sensors.

  16. Influence of Domain Structure on Magnetoresistance in Perovskite Manganite Grain Boundary Jnctions

    DTIC Science & Technology

    2001-04-01

    Perovskite Manganite Grain Boundary Jnctions DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report...Mat. Res. Soc. Symp. Proc. Vol. 674 © 2001 Materials Research Society Influence of Domain Structure on Magnetoresistance in Perovskite Manganite Grain...INTRODUCTION Since the discovery of colossal magnetoresistance (CMR) [I I in perovskite manganites these materials have attracted a lot of scientific

  17. Spin and orbital order separation in colossal magnetoresistive transition

    NASA Astrophysics Data System (ADS)

    Hossain, M. A.; Burkhardt, M. H.; Weschke, E.; Schierle, E.; Golden, M. S.; Tomioka, Y.; Tokura, Y.; StöHr, J.; D&üRr, H. A.

    2013-03-01

    Understanding the Colossal magnetoresistive (CMR) process in manganites is one of the grand challenges of modern physics. While the metallic ferromagnetic phase is relatively well understood, the triggering mechanism of the metal-insulator transition is not clear and it is believed that lattice strain in term of polarons play an important role in the mysterious insulating phase. Lattice strain occurs in the charge-orbitally ordered insulating phase via the Jahn-Teller type distortion and therefore, to understand the CMR it is critical to understand the interplay of ferromagnetism and orbital order during the CMR transition itself. In this letter, with high magnetic field dependent Resonant Soft X-ray Scattering measurements, we show that during the CMR process, an insulating antiferromagnetic phase, which is extremely susceptible to magnetic field and temperature, directly competes with metallic ferromagnetism while the robust CE type spin and orbitally ordered regions act as a catalyst to seed these antiferromagnetic regions. This allows us to construct a picture of the competing forces at the heart of CMR.

  18. Anomalously large anisotropic magnetoresistance in a perovskite manganite.

    PubMed

    Li, Run-Wei; Wang, Huabing; Wang, Xuewen; Yu, X Z; Matsui, Y; Cheng, Zhao-Hua; Shen, Bao-Gen; Plummer, E Ward; Zhang, Jiandi

    2009-08-25

    The signature of correlated electron materials (CEMs) is the coupling between spin, charge, orbital and lattice resulting in exotic functionality. This complexity is directly responsible for their tunability. We demonstrate here that the broken symmetry, through cubic to orthorhombic distortion in the lattice structure in a prototype manganite single crystal, La(0.69)Ca(0.31)MnO(3), leads to an anisotropic magneto-elastic response to an external field, and consequently to remarkable magneto-transport behavior. An anomalous anisotropic magnetoresistance (AMR) effect occurs close to the metal-insulator transition (MIT) in the system, showing a direct correlation with the anisotropic field-tuned MIT in the system and can be understood by means of a simple phenomenological model. A small crystalline anisotropy stimulates a "colossal" AMR near the MIT phase boundary of the system, thus revealing the intimate interplay between magneto- and electronic-crystalline couplings.

  19. Colossal magnetoresistance in a Mott insulator via magnetic field-driven insulator-metal transition

    SciTech Connect

    Zhu, M.; Peng, J.; Zou, T.; Prokes, K.; Mahanti, S. D.; Hong, Tao; Mao, Z. Q.; Liu, G. Q.; Ke, X.

    2016-05-25

    Here, we present a new type of colossal magnetoresistance (CMR) arising from an anomalous collapse of the Mott insulating state via a modest magnetic field in a bilayer ruthenate, Ti-doped Ca3Ru2O7. Such an insulator-metal transition is accompanied by changes in both lattice and magnetic structures. Our findings have important implications because a magnetic field usually stabilizes the insulating ground state in a Mott-Hubbard system, thus calling for a deeper theoretical study to reexamine the magnetic field tuning of Mott systems with magnetic and electronic instabilities and spin-lattice-charge coupling. This study further provides a model approach to search for CMR systems other than manganites, such as Mott insulators in the vicinity of the boundary between competing phases.

  20. Colossal magnetoresistance in a Mott insulator via magnetic field-driven insulator-metal transition

    DOE PAGES

    Zhu, M.; Peng, J.; Zou, T.; ...

    2016-05-25

    Here, we present a new type of colossal magnetoresistance (CMR) arising from an anomalous collapse of the Mott insulating state via a modest magnetic field in a bilayer ruthenate, Ti-doped Ca3Ru2O7. Such an insulator-metal transition is accompanied by changes in both lattice and magnetic structures. Our findings have important implications because a magnetic field usually stabilizes the insulating ground state in a Mott-Hubbard system, thus calling for a deeper theoretical study to reexamine the magnetic field tuning of Mott systems with magnetic and electronic instabilities and spin-lattice-charge coupling. This study further provides a model approach to search for CMR systemsmore » other than manganites, such as Mott insulators in the vicinity of the boundary between competing phases.« less

  1. Magnetic mesocrystal-assisted magnetoresistance in manganite.

    PubMed

    Yang, Jan-Chi; He, Qing; Zhu, Yuan-Min; Lin, Jheng-Cyuan; Liu, Heng-Jui; Hsieh, Ying-Hui; Wu, Ping-Chun; Chen, Yen-Lin; Lee, Shang-Fan; Chin, Yi-Ying; Lin, Hong-Ji; Chen, Chien-Te; Zhan, Qian; Arenholz, Elke; Chu, Ying-Hao

    2014-11-12

    Mesocrystal, a new class of crystals as compared to conventional and well-known single crystals and polycrystalline systems, has captured significant attention in the past decade. Recent studies have been focused on the advance of synthesis mechanisms as well as the potential on device applications. In order to create further opportunities upon functional mesocrystals, we fabricated a self-assembled nanocomposite composed of magnetic CoFe2O4 mesocrystal in Sr-doped manganites. This combination exhibits intriguing structural and magnetic tunabilities. Furthermore, the antiferromagnetic coupling of the mesocrystal and matrix has induced an additional magnetic perturbation to spin-polarized electrons, resulting in a significantly enhanced magnetoresistance in the nanocomposite. Our work demonstrates a new thought toward the enhancement of intrinsic functionalities assisted by mesocrystals and advanced design of novel mesocrystal-embedded nanocomposites.

  2. Relation between giant volume magnetostriction, colossal magnetoresistance, and crystal lattice softening in manganites La{sub 1-x}A{sub y}MnO{sub 3} (A = Ca, Ag, Ba, Sr)

    SciTech Connect

    Koroleva, L. I. Demin, R. V.; Kozlov, A. V.; Zashchirinskii, D. M.; Mukovskii, Ya. M.

    2007-02-15

    Giant volume magnetostriction (GVM) is detected near the Curie temperature T{sub C} in La{sub 1-x}A{sub x}MnO{sub 3} single crystals (A = Ca, Sr, Ba, 0.1 {<=} x {<=} 0.3) and above T{sub C} in La{sub 1-x}Ag{sub y}MnO{sub 3} (x = y = 0.15, 0.2 and x = 0.2, y = 0.1) ceramics (in the latter system, giant volume magnetostriction attains a value of 6.5 x 10{sup -4} in a magnetic field of 8.2 kOe). The behavior of GVM and colossal magnetoresistance (CMR) is found to be the same: both quantities have negative values, the temperature dependences of their absolute values pass through a peak, and the isotherms do not exhibit saturation up to the maximal measuring fields of 130 kOe. In compounds with compositions La{sub 0.7}Ba{sub 0.3}MnO{sub 3} and La{sub 0.85}Ag{sub 0.15}MnO{sub 3}, GVM and CMR were observed at room temperatures (in a magnetic field of 8.2 kOe, GVM attains values of 2.54 x 10{sup -4} and 2 x 10{sup -4} and CMR is equal to 11.6 and 11.2%, respectively). Both phenomena are attributed to the presence of a magnetic (ferromagnetic-antiferromagnetic) two-phase state in these systems, which is associated with a strong s-d exchange. It is found that the maximum value of the GVM in single crystals of La{sub 1-x}A{sub x}MnO{sub 3} (A = Ba, Sr, Ca, Ag) depends on the radius R{sub A} of cation A (it is the higher, the larger the difference |R{sub A}-R{sub LA{sup 3}{sup +}}|). The only exception is the compound with A = Ag, in which the pattern is complicated by additional defectiveness. Local disorder in the La{sub 1-x}A{sub x} sublattice, which is associated with the presence of cations with different radii, leads to a displacement of oxygen ions and to crystal lattice softening. The exchange s-d interactions in La{sub 1-x}A{sub x}MnO{sub 3} (A = Ca, Sr, Ba, Ag) are found to be comparable with electrostatic interactions ensuring the existence of the crystal; this facilitates manifestation of the GVM.

  3. Unidirectional Anisotropy in Manganite Based Ferromagnetic-Antiferromagnetic Multilayers

    DTIC Science & Technology

    2000-01-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11814 TITLE: Unidirectional Anisotropy in Manganite Based...component part numbers comprise the compilation report: ADPO11800 thru ADP011832 UNCLASSIFIED UNIDIRECTIONAL ANISOTROPY IN MANGANITE BASED FERROMAGNETIC...Introduction In mixed valence manganites a large negative magnetoresistance (MR), termed colossal magnetoresistance [1] (CMR), can be obtained due to a

  4. Griffiths phase and colossal magnetoresistance in Nd0.5Sr0.5MnO3 oxygen-deficient thin films

    NASA Astrophysics Data System (ADS)

    Solin, N. I.; Korolyov, A. V.; Medvedev, Yu. V.; Nikolaenko, Yu. M.; Khokhlov, V. A.; Prokhorov, A. Yu.; Levchenko, G. G.

    2013-05-01

    This work is devoted to study the influence of the Griffiths phase in colossal magnetoresistance manganites. Griffiths-phase-like behavior of the paramagnetic susceptibility χ0 is observed in Nd0.5Sr0.5MnO3 oxygen-deficient thin films fabricated by magnetron sputtering deposition. In Nd0.5Sr0.5MnO3-δ films with oxygen deficiency for ТG≈260-280 K>T>TC=138 K (ТG and ТС—Griffiths and Curie temperatures, respectively), paramagnetic matrix consists of a magnetic phase with short-range order (˜1-1.5 nm) (which is responsible for the colossal magnetoresistance (CMR) above ТС), and is embedded in this matrix region with long-range ferromagnetic order (≫10 nm), responsible for the Griffiths phase-like behavior of the paramagnetic susceptibility. Electrical resistivity is caused by carrier tunneling between the localized states and obeys the Efros-Shklovskii law. Magnetic resistivity is caused by change of the localized state sizes under the magnetic field. The temperature and magnetic field dependencies of size of the phase inhomogeneity inclusions, found from measurements of magneto-transport properties, can be satisfactorily described by the model of thermodynamic phase separation into metallic droplets of small radius in a paramagnetic matrix. Intrinsic nanoscale inhomogeneities caused by thermodynamic phase separation, rather than the Griffiths phase, determine the electrical resistivity and colossal magnetoresistance of the films. In half-doped manganites, the nature of long-range ordered magnetic phases may be related, besides the chemical heterogeneity, to proximity to a ferromagnetic-antiferromagnetic boundary at the phase diagram as well. The results are in good agreement with the model of existence of an analog of Griffiths phase temperature in half-doped manganites.

  5. Time-resolved optical studies of colossal magnetoresistance and charge-density wave materials

    NASA Astrophysics Data System (ADS)

    Ren, Yuhang

    This thesis presents measurements of collective modes and ultrafast carrier relaxation dynamics in charge-density-wave (CDW) conductors and colossal magnetoresistance (CMR) manganites. A femtosecond laser pump pulse excites a broad frequency spectrum of low-energy collective modes and electron-hole pairs thereby changing its optical properties. The low-energy collective excitations and quasiparticle relaxation and recombination processes are monitored by measuring the resulting photoinduced absorption as a function of probe pulse wavelength and time delay. A general model was developed for the photogeneration and detection mechanism of collective modes based on light absorption in two-color pump-probe experiments. A broad spectrum of collective modes (phasons and amplitudons) with frequencies down to a few GHz is excited and propagates normal to the surface into the material. The dispersion of the long-wavelength phason and amplitudon can be measured by changing the probe wavelength. The first pump-probe spectroscopy was performed from the ultraviolet to mid-infrared wavelength range to study low-frequency collective excitations, including temperature evolution, dispersion, damping, and anisotropy of amplitude mode and transverse phason in quasi-one dimensional CDW conductors, K 0.3MoO3 and K0.33MoO3 on ultrafast time scale. The transverse phason exhibits an acoustic-like dispersion relation in the frequency range from 5--40 GHz. The phason velocity is strongly anisotropic with a very weak temperature dependence. In contrast, the amplitude mode exhibits a weak (optic-like) dispersion relation with a frequency of 1.66 THz at 30 K. The studies were extended to doped perovskite manganite thin films and single crystals. A low-energy collective mode is observed and discussed in terms of the opening of a pseudogap resulting from charge/orbital ordering phases. The softening of the collective mode is necessary to explain by combining a cooperative Jahn-Teller type

  6. Current dependence of colossal anisotropic magnetoresistance in La 0.3 Pr 0.4 Ca 0.3 MnO 3 microbridges

    NASA Astrophysics Data System (ADS)

    Jeon, J.; Jung, J.; Chow, K. H.

    2016-09-01

    The effect of the bias current on the in-plane colossal anisotropic magnetoresistance (C-AMR) is investigated in spatially confined La 0.3 Pr 0.4 Ca 0.3 MnO 3 microbridges. Dramatic increases of the C-AMR are found when the bias current is reduced. For example, in one of the samples, the C-AMR changed from ˜900% to over ˜24 000% as the current is decreased from 1 μA to 10 nA. The results indicate that the bias current can be used to manipulate the C-AMR in spatially confined manganite thin films via changes to the nature of the anisotropic percolation within the samples.

  7. Lattice strain accompanying the colossal magnetoresistance effect in EuB6.

    PubMed

    Manna, Rudra Sekhar; Das, Pintu; de Souza, Mariano; Schnelle, Frank; Lang, Michael; Müller, Jens; von Molnár, Stephan; Fisk, Zachary

    2014-08-08

    The coupling of magnetic and electronic degrees of freedom to the crystal lattice in the ferromagnetic semimetal EuB(6), which exhibits a complex ferromagnetic order and a colossal magnetoresistance effect, is studied by high-resolution thermal expansion and magnetostriction experiments. EuB(6) may be viewed as a model system, where pure magnetism-tuned transport and the response of the crystal lattice can be studied in a comparatively simple environment, i.e., not influenced by strong crystal-electric field effects and Jahn-Teller distortions. We find a very large lattice response, quantified by (i) the magnetic Grüneisen parameter, (ii) the spontaneous strain when entering the ferromagnetic region, and (iii) the magnetostriction in the paramagnetic temperature regime. Our analysis reveals that a significant part of the lattice effects originates in the magnetically driven delocalization of charge carriers, consistent with the scenario of percolating magnetic polarons. A strong effect of the formation and dynamics of local magnetic clusters on the lattice parameters is suggested to be a general feature of colossal magnetoresistance materials.

  8. Role of excess manganese in the formation of properties of nanometer-sized manganite powders

    NASA Astrophysics Data System (ADS)

    Akimov, G. Ya.; Novokhatska, A. A.

    2016-06-01

    It has been revealed for the first time that the introduction of excess manganese to a charge when preparing nanometer-sized manganite powders exhibiting the colossal magnetoresistance effect leads to the formation of a single-phase material with the crystallite sizes 15-25 nm that are two time smaller than those in manganite powders produced without excess manganese.

  9. Spin correlations and colossal magnetoresistance in HgCr2Se4

    NASA Astrophysics Data System (ADS)

    Lin, Chaojing; Yi, Changjiang; Shi, Youguo; Zhang, Lei; Zhang, Guangming; Müller, Jens; Li, Yongqing

    2016-12-01

    This study aims to unravel the mechanism of colossal magnetoresistance (CMR) observed in n -type HgCr2Se4 , in which low-density conduction electrons are exchange-coupled to a three-dimensional Heisenberg ferromagnet with a Curie temperature TC≈105 K. Near room temperature the electron transport exhibits an ordinary semiconducting behavior. As temperature drops below T*≃2.1 TC , the magnetic susceptibility deviates from the Curie-Weiss law, and concomitantly the transport enters an intermediate regime exhibiting a pronounced CMR effect before a transition to metallic conduction occurs at T

  10. Spin seebeck effect and thermal colossal magnetoresistance in graphene nanoribbon heterojunction.

    PubMed

    Ni, Yun; Yao, Kailun; Fu, Huahua; Gao, Guoying; Zhu, Sicong; Wang, Shuling

    2013-01-01

    Spin caloritronics devices are very important for future development of low-power-consumption technology. We propose a new spin caloritronics device based on zigzag graphene nanoribbon (ZGNR), which is a heterojunction consisting of single-hydrogen-terminated ZGNR (ZGNR-H) and double-hydrogen-terminated ZGNR (ZGNR-H2). We predict that spin-up and spin-down currents flowing in opposite directions can be induced by temperature difference instead of external electrical bias. The thermal spin-up current is considerably large and greatly improved compared with previous work in graphene. Moreover, the thermal colossal magnetoresistance is obtained in our research, which could be used to fabricate highly-efficient spin caloritronics MR devices.

  11. Spin Seebeck Effect and Thermal Colossal Magnetoresistance in Graphene Nanoribbon Heterojunction

    PubMed Central

    Ni, Yun; Yao, Kailun; Fu, Huahua; Gao, Guoying; Zhu, Sicong; Wang, Shuling

    2013-01-01

    Spin caloritronics devices are very important for future development of low-power-consumption technology. We propose a new spin caloritronics device based on zigzag graphene nanoribbon (ZGNR), which is a heterojunction consisting of single-hydrogen-terminated ZGNR (ZGNR-H) and double-hydrogen-terminated ZGNR (ZGNR-H2). We predict that spin-up and spin-down currents flowing in opposite directions can be induced by temperature difference instead of external electrical bias. The thermal spin-up current is considerably large and greatly improved compared with previous work in graphene. Moreover, the thermal colossal magnetoresistance is obtained in our research, which could be used to fabricate highly-efficient spin caloritronics MR devices. PMID:23459307

  12. Colossal positive magnetoresistance in surface-passivated oxygen-deficient strontium titanite

    PubMed Central

    David, Adrian; Tian, Yufeng; Yang, Ping; Gao, Xingyu; Lin, Weinan; Shah, Amish B.; Zuo, Jian-Min; Prellier, Wilfrid; Wu, Tom

    2015-01-01

    Modulation of resistance by an external magnetic field, i.e. magnetoresistance effect, has been a long-lived theme of research due to both fundamental science and device applications. Here we report colossal positive magnetoresistance (CPMR) (>30,000% at a temperature of 2 K and a magnetic field of 9 T) discovered in degenerate semiconducting strontium titanite (SrTiO3) single crystals capped with ultrathin SrTiO3/LaAlO3 bilayers. The low-pressure high-temperature homoepitaxial growth of several unit cells of SrTiO3 introduces oxygen vacancies and high-mobility carriers in the bulk SrTiO3, and the three-unit-cell LaAlO3 capping layer passivates the surface and improves carrier mobility by suppressing surface-defect-related scattering. The coexistence of multiple types of carriers and inhomogeneous transport lead to the emergence of CPMR. This unit-cell-level surface engineering approach is promising to be generalized to others oxides, and to realize devices with high-mobility carriers and interesting magnetoelectronic properties. PMID:25975606

  13. Positive magnetoresistance of single-crystal bilayer manganites (La{sub 1−z}Nd{sub z}){sub 1.4}Sr{sub 1.6}Mn{sub 2}O{sub 7} (z = 0, 0.1)

    SciTech Connect

    Shaykhutdinov, K. A.; Petrov, M. I.; Terent'ev, K. I.; Semenov, S. V.; Popkov, S. I.; Nikitin, S. E.

    2015-04-28

    We investigate magnetoresistance, ρ{sub c}, of single-crystal bilayer lanthanum manganites (La{sub 1−z}Nd{sub z}){sub 1.4}Sr{sub 1.6}Mn{sub 2}O{sub 7} (z = 0 and 0.1) at a transport current flowing along the crystal c axis and in external magnetic fields applied parallel to the crystal c axis or ab plane. It is demonstrated that the La{sub 1.4}Sr{sub 1.6}Mn{sub 2}O{sub 7} manganite exhibits the positive magnetoresistance effect in the magnetic field applied in the ab sample plane at the temperatures T < 60 K, along with the negative magnetoresistance typical of all the substituted lanthanum manganites. In the (La{sub 0.9}Nd{sub 0.1}){sub 1.4}Sr{sub 1.6}Mn{sub 2}O{sub 7} sample, the positive magnetoresistance effect is observed at temperatures of 60–80 K in an applied field parallel to the c axis. The mechanism of this effect is shown to be fundamentally different from the colossal magnetoresistance effect typical of lanthanum manganites. The positive magnetoresistance originates from spin-dependent tunneling of carriers between the manganese-oxygen bilayers and can be explained by features of the magnetic structure of the investigated compounds.

  14. Magnetically induced nonvolatile magnetoresistance and resistance memory effect in phase-separated manganite thin films

    NASA Astrophysics Data System (ADS)

    Li, Qian; Cao, Qingqi; Wang, Dunhui; Du, Youwei

    2017-03-01

    We report the observation of magnetically induced resistance memory effect in a typical electronic phase-separated manganite La5/8‑x Pr x Ca3/8MnO3 (x  =  0.3) thin film. In the hysteresis region of metal-to-insulator transition, the resistance exhibits a sharp drop with the application of magnetic field and maintains the low resistance state after the removal of field, showing a nonvolatile magnetoresistance effect. The high resistance state can be recovered until the temperature is warmed. More explicit measurements at the hysteresis region exhibit the non-volatility and irreversibility of magnetoresistance, which can be ascribed to the percolative feature in the electronic phase-separated manganite. The origin and potential applications of these interesting effects are discussed.

  15. Angle-resolved photoemission studies on bi-layer colossal magnetoresistive oxides lanthanum(2-2x)strontium(1+2x)manganese(2)oxide(7)

    NASA Astrophysics Data System (ADS)

    Sun, Zhe

    In recent years the studies of manganites have flourished initially because of their Colossal Magnetoresistance (CMR) effect. However the scientific community quickly realized that the fundamental physics is abundant, exotic and challenging. Strong correlations of charge, lattice, spin and orbital degrees of freedom have been found to be responsible for many interesting physical phenomena. Of manganites, La2-2xSr 1+2xMn2O 7 has naturally layered crystal structure. The reduced two-dimensional character amplifies fluctuations of electronic, magnetic, and orbital degrees of freedom and interactions of them, which provides good opportunities for an understanding of the rich physics in manganites. In crystals, electrons have intrinsic charge, spin and orbital degrees of freedom, and the electron-phonon interaction has been an active topic for many decades, thus studies of electrons will definitely shed light on important physics in manganites. Angle-resolved photoemission spectroscopy (ARPES) is an ideal probe of electrons, and so by performing ARPES measurements on La2-2 xSr1+2xMn2 O7 we have obtained abundant knowledge of the physics of strong correlations of various degrees of freedom. We have made many new discoveries by exploring the physics in this com-pound. For the first time we resolved bi-layer split band structure of the prototype of bi-layer manganites, which was predicted by theoretical calculations long time ago. We observed minority-spin states in La2-2 xSr1+2xMn 2O7 (x = 0.36--0.39), which gives direct evidence that this system is not a half-metal in this doping iv range. We gave the first direct measurement of electron-phonon coupling strength in manganites and identified the phonon branches to which electrons couple. In addition to band insulator and Mott insulator there is another type of insulator, in which metallic domains and insulating domains coexist and phase separation and percolation effect play important roles in the metal

  16. Atomic scale studies of La/Sr ordering in colossal magnetoresistant La2-2xSr1+2xMn2O7 single crystals

    SciTech Connect

    Roldan, Manuel A.; Oxley, Mark P.; Li, Qing'an A.; Zheng, Hong; Gray, Kenneth E.; Mitchell, John F.; Pennycook, Stephen J.; Varela, Maria

    2014-09-29

    In this study, it is unclear whether chemical order (or disorder) is in any way connected to double exchange, electronic phase separation, or charge ordering (CO) in manganites. In this work, we carry out an atomic resolution study of the colossal magnetoresistant manganite La2–2xSr1+2xMn2O7 (LSMO). We combine aberration-corrected electron microscopy and spectroscopy with spectroscopic image simulations, to analyze cation ordering at the atomic scale in real space in a number of LSMO single crystals. We compare three different compositions within the phase diagram: a ferromagnetic metallic material (x=0.36), an insulating, antiferromagnetic charge ordered (AF-CO) compound (x=0.5), which also exhibits orbital ordering, and an additional AF sample (x=0.56). Detailed image simulations are essential to accurately quantify the degree of chemical ordering of these samples. We find a significant degree of long-range chemical ordering in all cases, which increases in the AF-CO range. However, the degree of ordering is never complete nor can it explain the strongly correlated underlying ordering phenomena. Our results show that chemical ordering over distinct crystallographic sites is not needed for electronic ordering phenomena to appear in manganites, and cannot by itself explain the complex electronic behavior of LSMO.

  17. Atomic scale studies of La/Sr ordering in colossal magnetoresistant La2-2xSr1+2xMn2O7 single crystals

    DOE PAGES

    Roldan, Manuel A.; Oxley, Mark P.; Li, Qing'an A.; ...

    2014-09-29

    In this study, it is unclear whether chemical order (or disorder) is in any way connected to double exchange, electronic phase separation, or charge ordering (CO) in manganites. In this work, we carry out an atomic resolution study of the colossal magnetoresistant manganite La2–2xSr1+2xMn2O7 (LSMO). We combine aberration-corrected electron microscopy and spectroscopy with spectroscopic image simulations, to analyze cation ordering at the atomic scale in real space in a number of LSMO single crystals. We compare three different compositions within the phase diagram: a ferromagnetic metallic material (x=0.36), an insulating, antiferromagnetic charge ordered (AF-CO) compound (x=0.5), which also exhibits orbitalmore » ordering, and an additional AF sample (x=0.56). Detailed image simulations are essential to accurately quantify the degree of chemical ordering of these samples. We find a significant degree of long-range chemical ordering in all cases, which increases in the AF-CO range. However, the degree of ordering is never complete nor can it explain the strongly correlated underlying ordering phenomena. Our results show that chemical ordering over distinct crystallographic sites is not needed for electronic ordering phenomena to appear in manganites, and cannot by itself explain the complex electronic behavior of LSMO.« less

  18. Ru(4+) induced colossal magnetoimpedance in Ru doped perovskite manganite at room temperature.

    PubMed

    Singh, Brajendra

    2016-05-14

    We have demonstrated Ru(4+) induced colossal magnetoimpedance (MI) at room temperature in a ∼1 Tesla magnetic field with a pulsed laser deposited La0.7Ca0.3Mn0.7Ru0.3O3 thin film. This composition showed a large negative ∼12% MI in the low frequency range (<5 MHz), a colossal positive MI > 120% in the intermediate frequency range (5 MHz to ∼13 MHz) and a negative MI in the high frequency range (∼13 MHz to 40 MHz) at room temperature. XAS data confirmed the predominant Ru valence state was 4+ in La0.7Ca0.3Mn0.7Ru0.3O3. Ru(4+) induced (i) charge carrier localization and (ii) reduced hole carrier density enhances the MI in this composition, which otherwise was not significant in mixed valences Mn(3+)/Mn(4+) containing La0.7Ca0.3MnO3 and Ru(4+)/Ru(5+) and Mn(3+)/Mn(4+) mixed valences containing Ru = 0.1 and Ru = 0.2 compositions in La0.7Ca0.3Mn1-xRuxO3 (0 ≤x≤ 0.3) thin films.

  19. Temperature-controlled colossal magnetoresistance and perfect spin Seebeck effect in hybrid graphene/boron nitride nanoribbons.

    PubMed

    Zhu, Lin; Li, Ruimin; Yao, Kailun

    2017-02-01

    Thermal spin transport properties of graphene and hexagonal boron nitride nanoribbon heterojunctions have been investigated using density functional theory calculations combined with the Keldysh nonequilibrium Green's function approach. The results showed that the perfect spin Seebeck effect and analogy negative differential thermoelectric resistance occurred in the device under a temperature difference without a gate or bias voltage. An intriguing thermally induced colossal magnetoresistance without gate regulation was also observed, which can be switched between a positive and negative value with temperature control. It was also found that the unit number of zigzag graphene nanoribbons and boron nitride nanoribbons can tune the electronic band structure and the energy gap of the heterostructure, and then modulate the thermal spin transport properties. The results suggest that graphene and hexagonal boron nitride nanoribbon heterostructures may have potential applications in graphene-based nanodevices.

  20. Improved tunneling magnetoresistance at low temperature in manganite junctions grown by molecular beam epitaxy

    SciTech Connect

    Werner, R.; Kleiner, R.; Koelle, D.; Petrov, A. Yu.; Davidson, B. A.; Mino, L. Alvarez

    2011-04-18

    We report resistance versus magnetic field measurements for a La{sub 0.65}Sr{sub 0.35}MnO{sub 3}/SrTiO{sub 3}/La{sub 0.65}Sr{sub 0.35}MnO{sub 3} tunnel junction grown by molecular-beam epitaxy, that show a large field window of extremely high tunneling magnetoresistance (TMR) at low temperature. Scanning the in-plane applied field orientation through 360 deg., the TMR shows fourfold symmetry, i.e., biaxial anisotropy, aligned with the crystalline axis but not the junction geometrical long axis. The TMR reaches {approx}1900% at 4 K, corresponding to an interfacial spin polarization of >95% assuming identical interfaces. These results show that uniaxial anisotropy is not necessary for large TMR, and lay the groundwork for future improvements in TMR in manganite junctions.

  1. Correlation between vacancies and magnetoresistance changes in FM manganites using the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Agudelo-Giraldo, J. D.; Restrepo-Parra, E.; Restrepo, J.

    2015-10-01

    The Metropolis algorithm and the classical Heisenberg approximation were implemented by the Monte Carlo method to design a computational approach to the magnetization and resistivity of La2/3Ca1/3MnO3, which depends on the Mn ion vacancies as the external magnetic field increases. This compound is ferromagnetic, and it exhibits the colossal magnetoresistance (CMR) effect. The monolayer was built with L×L×d dimensions, and it had L=30 umc (units of magnetic cells) for its dimension in the x-y plane and was d=12 umc in thickness. The Hamiltonian that was used contains interactions between first neighbors, the magnetocrystalline anisotropy effect and the external applied magnetic field response. The system that was considered contains mixed-valence bonds: Mn3+eg'-O-Mn3+eg, Mn3+eg-O-Mn4+d3 and Mn3+eg'-O-Mn4+d3. The vacancies were placed randomly in the sample, replacing any type of Mn ion. The main result shows that without vacancies, the transitions TC (Curie temperature) and TMI (metal-insulator temperature) are similar, whereas with the increase in the vacancy percentage, TMI presented lower values than TC. This situation is caused by the competition between the external magnetic field, the vacancy percentage and the magnetocrystalline anisotropy, which favors the magnetoresistive effect at temperatures below TMI. Resistivity loops were also observed, which shows a direct correlation with the hysteresis loops of magnetization at temperatures below TC.

  2. Electric field induced metal-insulator transition and colossal magnetoresistance in CdCr2S4

    NASA Astrophysics Data System (ADS)

    Sun, C. P.; Lin, C. C.; Her, J. L.; Taran, S.; Chou, C. C.; Chan, C. L.; Huang, C. L.; Berger, H.; Yang, H. D.

    2008-03-01

    Multiferroic ordering existing in a single material is a recent hot topic in the field of condensed matter physics due to its potential application in device control. The chromium chalcogenide spinel CdCr2S4 is one of the attractive materials investigated by Hemberger et al. recently.[1] Based on the electrical measurement, there is no discontinuity through the ferromagnetic ordering at TC ˜ 85K.[2] We measure the temperature dependent resistance under various electric fields to investigate the electrical properties of the present material. To our knowledge, we first observe the electric field induced metal-insulator transition in this material around TC. Moreover, a colossal magnetoresistance (CMR), which is comparable to that of manganese-based CMR material, is also observed near TC. The origin for these properties is discussed. [1] J. Hemberger, P. Lunkenheimer, R. Fichtl, H.-A. Krug von Nidda, V. Tsurkan, A. Loidl, Nature 434, 364 (2006). [2] P. K. Baltzer, H. W. Lehmann, and M. Robbins, Phys. Rev. Lett. 15, 493 (1965).

  3. Wigner Crystal and Colossal Magnetoresistance in InSb Doped with Mn

    PubMed Central

    Obukhov, S. A.; Tozer, S. W.; Coniglio, W. A.

    2015-01-01

    We report magnetotransport investigation of nonmagnetic InSb single crystal doped with manganese at Mn concentration NMn ~ 1,5 × 1017 cm−3 in the temperature range T = 300 K–40 mK, magnetic field B = 0–25T and hydrostatic pressure P = 0–17 kbar. Resistivity saturation was observed in the absence of magnetic field at temperatures below 200 mK while applied increasing external magnetic field induced colossal drop of resistivity (by factor 104) at B ~ 4T with further gigantic resistivity increase (by factor 104) at 15T. Under pressure, P = 17 kbar, resistivity saturation temperature increased up to 1,2 K. Existing models are discussed in attempt to explain resistivity saturation, dramatic influence of magnetic field and pressure on resistivity with the focus on possible manifestation of three dimensional Wigner crystal formed in InSb by light electrons and heavy holes. PMID:26307952

  4. The development of alkoxy-based sol-gel processing for magnetoresistive manganite thin films

    NASA Astrophysics Data System (ADS)

    Clothier, Brent Allen

    This dissertation presents, for the first time, the successful development of an all-alkoxy based, sol-gel process for integrating thin films of magnetoresistive doped-lanthanide manganites onto silicon-based substrates. Crystallization of the requisite perovskite phase at temperatures below 650°C resulted from the incorporation of all-alkoxide precursors, and in particular, Mn[OC(CH 3)3)]2. This latter precursor, when combined with the polyfunctional solvent, 2-methoxyethanol, exhibited high solubility and hydrolytic reactivity. This accomplishment represents a significant new contribution because low carbon-content manganese(II) alkoxides are stable, insoluble coordinate polymers. Orange and pinkish-orange solutions, also synthesized for the first time, were free from products of aerobic oxidation, and hence, contained no brown discoloration. A partial hydrolysis of h = 0.25 produced a polymeric sol system, conferring both spinnable viscosities and excellent sol longevity. Post-coating hydrolysis via humidified air proved essential to yield transparent, dense, and defect-free amorphous coatings. Conversion into a fine-grain, polycrystalline microstructure occurred above 600°C on platinized-Si(100) and above 650°C on Si(100). The cubic lattice parameters of the films (i.e., a = ˜ 3.90 A) were in excellent agreement with values published in the literature for bulk, polycrystalline powders. Typical grain sizes started at 10--15 nm, increasing to 20--25 nm by 750°C. For films deposited on Si(100), magnetoresistance was observed in specimens heat treated at 700°C and 750°C, and for platinized-Si(100), 650°C, 700°C, and 750°C. Magnetoresistive response improved with heat-treatment temperature for the more refractory La0.67Ba0.33MnO3 composition. The lead-doped counterpart offered the best property evolution, with TC = 320 K and TIM = 254 K by 750°C on platinized-Si(100). All corresponding transport curves were symmetric, demonstrating clear metal

  5. Relaxor behavior in manganites (invited)

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Tokura, Y.; Kumai, R.; Okimoto, Y.; Tomioka, Y.

    2001-06-01

    The impurity (Cr3+)-doping effect on the stability of charge and orbital ordering has been systematically investigated for Nd1/2Ca1/2Mn1-yCryO3 crystals by measurements of magnetotransport and x-ray diffraction. The random field in terms of eg orbital deficiencies on the Cr sites drives the charge and orbital correlations to dynamical and short range, which is most relevant to the high-resistive state exhibiting colossal magnetoresistance. In the Cr-doped manganite, we can observe the coexistence of ferromagnetic-metallic and charge-orbital ordered phases, their spatial distributions, diffuse x-ray scattering, magnetic-field annealing, and the aging effect on the magnetic and electric properties, etc. These phenomena are reminiscent of those of relaxor ferroelectrics composed of ferroelectric clusters embedded in a paraelectric matrix. We propose that the mixed-valent manganite can be viewed as a "magneto- and electrorelaxor."

  6. Magnetoresistive properties of cerium doped La0.7Ca0.3MnO3 manganites

    NASA Astrophysics Data System (ADS)

    Chihoub, R.; Amira, A.; Mahamdioua, N.; Altintas, S. P.; Varilci, A.; Terzioglu, C.

    2016-07-01

    In this work, the effect of doping by tetravalent Ce4+on the structural and magnetoresistive properties of La0.7-xCexCa0.3MnO3 polycrystalline manganites is presented. Samples with x=0, 0.1, 0.2 and 0.3 are prepared by solid state reaction method and characterized. For all doping levels, the X ray diffraction (XRD) analysis shows that the doping element is not completely soluble in the manganite. The cell parameters values, which decrease with Ce content, are refined in the orthorhombic system by taking into account the unreacted CeO2 phase. The observation by scanning electron microscopy (SEM) reveals a change in the morphology of the grains and the porosity of the samples by doping. The temperature dependence of magnetization curves shows a transition from paramagnetic to ferromagnetic state in all samples. A decrease of the Curie temperature Tc with doping is revealed. The resistivity of the samples increases with Ce content and shows a clear metal to insulator transition when measured as a function of temperature. The doping also decreases the temperature Tp of this transition, in accordance with the evolution of Tc values. The calculated magnetoresistance (MR) for a magnetic field of 5T increases gradually from 39.52% for x=0 to 66.18% for x=0.3.

  7. Magnetic anisotropy and anisotropic magnetoresistance in strongly phase separated manganite thin films

    NASA Astrophysics Data System (ADS)

    Kandpal, Lalit M.; Singh, Sandeep; Kumar, Pawan; Siwach, P. K.; Gupta, Anurag; Awana, V. P. S.; Singh, H. K.

    2016-06-01

    The present study reports the impact of magnetic anisotropy (MA) on magnetotransport properties such as the magnetic transitions, magnetic liquid behavior, glass transition and anisotropic magnetoresistance (AMR) in epitaxial film (thickness 42 nm) of strongly phase separated manganite La5/8-yPryCa3/8MnO3 (y≈0.4). Angle dependent magnetization measurement confirms the out-of-plane magnetic anisotropy with the magnetic easy axes aligned in the plane of the film and the magnetic hard axis along the normal to the film plane. The more prominent divergence between the zero filed cooled (ZFC) and field cooled warming (FCW) and the stronger hysteresis between the field cooled cooling (FCC) and FCW magnetization for H ∥ shows the weakening of the magnetic liquid along the magnetic hard axis. The peak at Tp≈42 K in FCW magnetization, which characterizes the onset of spin freezing shifts down to Tp≈18 K as the field direction is switched from the easy axes (H ∥) to the hard axis (H ⊥). The glass transition, which appears at Tg≈28 K for H ∥ disappears for H ⊥. The easy axis magnetization (M∣∣) appears to saturate around H~20 kOe, but the hard axis counterpart (M⊥) does not show such tendency even up to H=50 kOe. MA appears well above the ferromagnetic (FM) transition at T≈170 K, which is nearly the same as the Neel temperature (TN) of M⊥ - T . The temperature dependent resistivity measured at H=10 kOe applied along the easy axis (ρ|| - T) and the hard axis (ρ⊥ - T) shows insulator metal transition (IMT) at ≈106 K and ≈99 K in the cooling cycle, respectively. The large difference between ρ⊥ - T and ρ|| - T during the cooling cycle and in the vicinity of IMT results in huge AMR of ≈-142% and -115%. The observed properties have been explained in terms of the MA induced variation in the relative fraction of the coexisting magnetic phases.

  8. Effects of Lattice Distortion and Jahn-Teller Coupling on the Magnetoresistance of La(sub 0.7)Ca(sub 0.3)MnO(sub 3) and La(sub 0.5)Ca(sub 0.5)CoO(sub 3) Epitaxial Films

    NASA Technical Reports Server (NTRS)

    Yeh, N. C.; Vasquez, R. P.; Beam, D. A.; Fu, C. C.; Huynh, J.; Beach, G.

    1996-01-01

    Studies of La(sub 0.7)Ca(sub 0.3)MnO(sub 3) epitaxial films on substrates with a range of lattice constants reveal two dominant contributions to the occurence of colossal negative magnetoresistance (CMR) in these manganites:...We therefore suggest that lattice polaron conduction associated with Jahn-Teller coupling is essential for the occurence of CMR, and that lattice distortion further enhances the CMR effect in the manganites.

  9. Colossal magnetoresistance in amino-functionalized graphene quantum dots at room temperature: manifestation of weak anti-localization and doorway to spintronics.

    PubMed

    Roy, Rajarshi; Thapa, Ranjit; Kumar, Gundam Sandeep; Mazumder, Nilesh; Sen, Dipayan; Sinthika, S; Das, Nirmalya S; Chattopadhyay, Kalyan K

    2016-04-21

    In this work, we have demonstrated the signatures of localized surface distortions and disorders in functionalized graphene quantum dots (fGQD) and consequences in magneto-transport under weak field regime (∼1 Tesla) at room temperature. Observed positive colossal magnetoresistance (MR) and its suppression is primarily explained by weak anti-localization phenomenon where competitive valley (inter and intra) dependent scattering takes place at room temperature under low magnetic field; analogous to low mobility disordered graphene samples. Furthermore, using ab-initio analysis we show that sub-lattice sensitive spin-polarized ground state exists in the GQD as a result of pz orbital asymmetry in GQD carbon atoms with amino functional groups. This spin polarized ground state is believed to help the weak anti-localization dependent magneto transport by generating more disorder and strain in a GQD lattice under applied magnetic field and lays the premise for future graphene quantum dot based spintronic applications.

  10. A New Concept for Non-Volatile Memory: The Electric-Pulse Induced Resistive Change Effect in Colossal Magnetoresistive Thin Films

    NASA Technical Reports Server (NTRS)

    Liu, S. Q.; Wu, N. J.; Ignatiev, A.

    2001-01-01

    A novel electric pulse-induced resistive change (EPIR) effect has been found in thin film colossal magnetoresistive (CMR) materials, and has shown promise for the development of resistive, nonvolatile memory. The EPIR effect is induced by the application of low voltage (< 4 V) and short duration (< 20 ns) electrical pulses across a thin film sample of a CMR material at room temperature and under no applied magnetic field. The pulse can directly either increase or decrease the resistance of the thin film sample depending on pulse polarity. The sample resistance change has been shown to be over two orders of magnitude, and is nonvolatile after pulsing. The sample resistance can also be changed through multiple levels - as many as 50 have been shown. Such a device can provide a way for the development of a new kind of nonvolatile multiple-valued memory with high density, fast write/read speed, low power-consumption, and potential high radiation-hardness.

  11. Magnetic and charge ordering in nanosized manganites

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Wang, X. P.; Fang, Q. F.; Li, X. G.

    2014-09-01

    Perovskite manganites exhibit a wide range of functional properties, such as colossal magneto-resistance, magnetocaloric effect, multiferroic property, and some interesting physical phenomena including spin, charge, and orbital ordering. Recent advances in science and technology associated with perovskite oxides have resulted in the feature sizes of microelectronic devices down-scaling into nanoscale dimensions. The nanoscale perovskite manganites display novel magnetic and electronic properties that are different from their bulk and film counterparts. Understanding the size effects of perovskite manganites at the nanoscale is of importance not only for the fundamental scientific research but also for developing next generation of electronic and magnetic nanodevices. In this paper, the current understanding and the fundamental issues related to the size effects on the magnetic properties and charge ordering in manganites are reviewed, which covers lattice structure, magnetic and electronic properties in both ferromagnetic and antiferromagnetic based manganites. In addition to review the literatures, this article identifies the promising avenues for the future research in this area.

  12. Magnetic and charge ordering in nanosized manganites

    SciTech Connect

    Zhang, T. Wang, X. P.; Fang, Q. F.; Li, X. G.

    2014-09-15

    Perovskite manganites exhibit a wide range of functional properties, such as colossal magneto-resistance, magnetocaloric effect, multiferroic property, and some interesting physical phenomena including spin, charge, and orbital ordering. Recent advances in science and technology associated with perovskite oxides have resulted in the feature sizes of microelectronic devices down-scaling into nanoscale dimensions. The nanoscale perovskite manganites display novel magnetic and electronic properties that are different from their bulk and film counterparts. Understanding the size effects of perovskite manganites at the nanoscale is of importance not only for the fundamental scientific research but also for developing next generation of electronic and magnetic nanodevices. In this paper, the current understanding and the fundamental issues related to the size effects on the magnetic properties and charge ordering in manganites are reviewed, which covers lattice structure, magnetic and electronic properties in both ferromagnetic and antiferromagnetic based manganites. In addition to review the literatures, this article identifies the promising avenues for the future research in this area.

  13. Colossal thermoelectric power in charge ordered lanthanum calcium manganites (La0.5Ca0.5MnO3)

    NASA Astrophysics Data System (ADS)

    Joy, Lija K.; Shanmukharao Samatham, S.; Thomas, Senoy; Ganesan, V.; Al-Harthi, Salim; Liebig, A.; Albrecht, M.; Anantharaman, M. R.

    2014-12-01

    Lanthanum calcium manganites (La0.5Ca0.5MnO3) with a composition close to charge ordering, synthesized by high energy ball milling, was found to exhibit colossal thermoelectric power. Thermoelectric power (TEP) data was systematically analyzed by dividing the entire temperature range (5 K-300 K) into three different regimes to explore different scattering mechanisms involved. Mandal's model has been applied to explain TEP data in the region below the Curie temperature (TC). It has been found that the variation of thermoelectric power with temperature is pronounced when the system enters the charge ordered region at T < 200 K. For temperatures lower than 120 K, due to the co-existence of charge ordered state with a spin-glass state, the variation of thermoelectric power is maximum and exhibited a peak value of -80 mV/K at 58 K. This has been explained by incorporating Kondo properties of the spin-glass along with magnon scattering. FC-ZFC magnetization measurements indicate the existence of a glassy state in the region corresponding to a maximum value of thermoelectric power. Phonon drag contribution instead of spin-glass contribution is taken into account to explain TEP in the region 120 K < T < TC. Mott's polaronic contribution of charge carriers are considered to interpret TEP in the high temperature region (T > TC). The optimal Mn4+-Mn3+ concentration in charge ordered La0.5Ca0.5MnO3 was examined by X-ray Photoelectron Spectroscopy analysis which confirms the charge ordered nature of this compound.

  14. Colossal thermoelectric power in charge ordered lanthanum calcium manganites (La{sub 0.5}Ca{sub 0.5}MnO{sub 3})

    SciTech Connect

    Joy, Lija K.; Anantharaman, M. R.; Shanmukharao Samatham, S.; Ganesan, V.; Thomas, Senoy; Al-Harthi, Salim; Liebig, A.; Albrecht, M.

    2014-12-07

    Lanthanum calcium manganites (La{sub 0.5}Ca{sub 0.5}MnO{sub 3}) with a composition close to charge ordering, synthesized by high energy ball milling, was found to exhibit colossal thermoelectric power. Thermoelectric power (TEP) data was systematically analyzed by dividing the entire temperature range (5 K–300 K) into three different regimes to explore different scattering mechanisms involved. Mandal's model has been applied to explain TEP data in the region below the Curie temperature (T{sub C}). It has been found that the variation of thermoelectric power with temperature is pronounced when the system enters the charge ordered region at T < 200 K. For temperatures lower than 120 K, due to the co-existence of charge ordered state with a spin-glass state, the variation of thermoelectric power is maximum and exhibited a peak value of −80 mV/K at 58 K. This has been explained by incorporating Kondo properties of the spin-glass along with magnon scattering. FC-ZFC magnetization measurements indicate the existence of a glassy state in the region corresponding to a maximum value of thermoelectric power. Phonon drag contribution instead of spin-glass contribution is taken into account to explain TEP in the region 120 K < T < T{sub C}. Mott's polaronic contribution of charge carriers are considered to interpret TEP in the high temperature region (T > T{sub C}). The optimal Mn{sup 4+}-Mn{sup 3+} concentration in charge ordered La{sub 0.5}Ca{sub 0.5}MnO{sub 3} was examined by X-ray Photoelectron Spectroscopy analysis which confirms the charge ordered nature of this compound.

  15. A Variable Temperature Synchrotron X-ray Diffraction Study of Colossal Magnetoresistant NdMnAsO0.95F0.05

    PubMed Central

    Wildman, E. J.; Mclaughlin, A. C.

    2016-01-01

    The recent discovery of high temperature superconductivity in Fe arsenides has invigorated research into transition metal pnictides. Colossal magnetoresistance (CMR) has recently been reported for NdMnAsO1-xFx for x = 0.05–0.08, with a maximum magnetoresistance achieved at low temperature (MR9T(3 K)) = −95%). This appears to be a novel mechanism of CMR, which is as a result of a second order phase transition in field from an insulating antiferromagnet to a semiconducting paramagnet. Here we report a variable temperature synchrotron X-ray powder diffraction study of the CMR oxypnictide NdMnAsO0.95F0.05 between 4 K–290 K. An excellent fit to the tetragonal unit cell with space group P4/nmm is obtained over the entire temperature range, with no change in crystal structure detected down to 4 K. A coupling of the lattice and magnetic order is observed, where subtle discontinuities in the temperature variation of a and the c/a ratio are apparent as the Nd spins order antiferromagnetically and the Mn moments reorient into the basal plane at TSR. The results suggest that very small changes in lattice parameters effect the coupling between lattice, electronic and magnetic degrees of freedom. PMID:26875693

  16. Colossal magnetoresistance accompanying a structural transition in a highly two-dimensional metallic state of Ca3 Ru2 O7

    NASA Astrophysics Data System (ADS)

    Ohmichi, E.; Yoshida, Y.; Ikeda, S. I.; Shirakawa, N.; Osada, T.

    2004-09-01

    We report the high-field magnetoresistivity, magnetization, and magnetostriction data of a bilayered ruthenate Ca3Ru2O7 grown by a floating-zone method. The samples used in this study show metallic inplane conduction, but nonmetallic interplane conduction, below 30K ; these results are suggestive of a highly two-dimensional metallic ground state. We demonstrate here the existence of two types of field-induced metamagnetic transitions at 6 and 15T , accompanied by the colossal magnetoresistance effect in the interplane conduction [ρc(20T)/ρc(0T)<10-3] . Interestingly, the higher-field transition is accompanied by large inplane lattice shrinkage that is sufficient to cause orbital polarization in nearly threefold t2g orbitals. The lattice change due to the magnetic field coincides with the discontinuity at 48K observed in the thermal contraction data, suggesting that the high-temperature crystal structure is restored by the application of a magnetic field. In this paper, we will discuss this anomalous coupling between spin, charge, and lattice in Ca3Ru2O7 in terms of structural distortions.

  17. Changes of the local distortions and colossal magnetoresistive properties of La(0.7)Ca(0.3)MnO(3) induced by Ti or Ga defects

    SciTech Connect

    Bridges, F.; Cao, D.; Anderson, M.; Ramirez, A.P.; Olapinski, M.; Subramanian, M.A.; Booth, C.H.; Kwei, G.

    2002-07-12

    The magnetoresistive properties of La0.7Ca0.3MnO3 change rapidly when Ti or Ga are substituted on the Mn site for concentrations, x, from 1 to 10 percent. The samples exhibit colossal magnetoresistance (CMR) and the resistivity increases dramatically with dopant concentration. The temperature of the resistivity peak, TR, shifts rapidly to lower temperatures with increasing x and the ferromagnetic transition broadens. However, the transition temperature, Tc, is only slightly suppressed. Consequently, TR occurs well below Tc for x above 2 percent. Investigations of these materials using Mn XAFS show that changes in the local structure, parametrized by the pair-distribution width, sigma, correlate well with Tc and the sample magnetization. For a given dopant, the resistivity peak occurs when sigma{sup 2} decreases below a critical value. Both dopants produce extended defects which increases the resistivity of the nearby materials considerably. The data suggest that even at x {approx}4 percent, most of the sites are slightly distorted at low T.

  18. Theory of Strain-Controlled Magnetotransport and Stabilization of the Ferromagnetic Insulating Phase in Manganite Thin Films

    NASA Astrophysics Data System (ADS)

    Mukherjee, Anamitra; Cole, William S.; Woodward, Patrick; Randeria, Mohit; Trivedi, Nandini

    2013-04-01

    We show that applying strain on half-doped manganites makes it possible to tune the system to the proximity of a metal-insulator transition and thereby generate a colossal magnetoresistance (CMR) response. This phase competition not only allows control of CMR in ferromagnetic metallic manganites but can be used to generate CMR response in otherwise robust insulators at half-doping. Further, from our realistic microscopic model of strain and magnetotransport calculations within the Kubo formalism, we demonstrate a striking result of strain engineering that, under tensile strain, a ferromagnetic charge-ordered insulator, previously inaccessible to experiments, becomes stable.

  19. Isotropic Kink and Quasiparticle Excitations in the Three-Dimensional Perovskite Manganite La_{0.6}Sr_{0.4}MnO_{3}.

    PubMed

    Horiba, Koji; Kitamura, Miho; Yoshimatsu, Kohei; Minohara, Makoto; Sakai, Enju; Kobayashi, Masaki; Fujimori, Atsushi; Kumigashira, Hiroshi

    2016-02-19

    In order to reveal the many-body interactions in three-dimensional perovskite manganites that show colossal magnetoresistance, we performed an in situ angle-resolved photoemission spectroscopy on La_{0.6}Sr_{0.4}MnO_{3} and investigated the behavior of quasiparticles. We observed quasiparticle peaks near the Fermi momentum in both the electron and the hole bands, and clear kinks throughout the entire hole Fermi surface in the band dispersion. This isotropic behavior of quasiparticles and kinks suggests that polaronic quasiparticles produced by the coupling of electrons with Jahn-Teller phonons play an important role in the colossal magnetoresistance properties of the ferromagnetic metallic phase of three-dimensional manganites.

  20. Magnetic and magnetoresistive properties of half-metallic ferromagnetic and charge ordered modified ferromagnetic manganite nanoparticles

    NASA Astrophysics Data System (ADS)

    Das, Kalipada; Das, I.

    2017-03-01

    In our present study, we address in detail magnetic and magneto-transport properties of well known half metallic La0.67Sr0.33MnO3 (LSMO) and charge order suppressed ferromagnetic La0.48Ca0.52MnO3 (LCMO) nanoparticles. The average particle size for LSMO and LCMO is ˜20 nm and ˜25 nm, respectively. With respect to their magnetic properties, both compounds exhibit ferromagnetic behavior, whereas they markedly differ in their magneto-transport characteristics. The magnetoresistive properties of LSMO nanoparticles indicate low field magnetoresistance and tendency for saturation at higher field values. In addition to the sharp low field magnetoresistance, we have achieved significantly large magnetoresistance at higher values of external magnetic field for the ferromagnetic LCMO nanoparticles. To address such anomalous behavior in these two different classes of ferromagnetic materials, we introduce the re-entrant core-shell type structure formation in charge ordered nanoparticles (LCMO) when charge ordering is completely suppressed.

  1. Strongly bias-dependent tunnel magnetoresistance in manganite spin filter tunnel junctions.

    PubMed

    Prasad, Bhagwati; Zhang, Wenrui; Jian, Jie; Wang, Haiyan; Blamire, Mark G

    2015-05-20

    A highly unconventional bias-dependent tunnel magnetoresistance (TMR) response is observed in Sm0.75 Sr0.25 MnO3 -based nanopillar spin filter tunnel junctions (SFTJs) with two different behaviors in two different thickness regimes of the barrier layer. Thinner barrier devices exhibit conventional SFTJ behaviors; however, for larger barrier thicknesses, the TMR-bias dependence is more complex and reverses sign at higher bias.

  2. Method of making active magnetic refrigerant, colossal magnetostriction and giant magnetoresistive materials based on Gd-Si-Ge alloys

    DOEpatents

    Gschneidner, Jr., Karl A.; Pecharsky, Alexandra O.; Pecharsky, Vitalij K.

    2003-07-08

    Method of making an active magnetic refrigerant represented by Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4 alloy for 0.ltoreq.x.ltoreq.1.0 comprising placing amounts of the commercially pure Gd, Si, and Ge charge components in a crucible, heating the charge contents under subambient pressure to a melting temperature of the alloy for a time sufficient to homogenize the alloy and oxidize carbon with oxygen present in the Gd charge component to reduce carbon, rapidly solidifying the alloy in the crucible, and heat treating the solidified alloy at a temperature below the melting temperature for a time effective to homogenize a microstructure of the solidified material, and then cooling sufficiently fast to prevent the eutectoid decomposition and improve magnetocaloric and/or the magnetostrictive and/or the magnetoresistive properties thereof.

  3. Colossal magnetoresistance in amino-functionalized graphene quantum dots at room temperature: manifestation of weak anti-localization and doorway to spintronics

    NASA Astrophysics Data System (ADS)

    Roy, Rajarshi; Thapa, Ranjit; Kumar, Gundam Sandeep; Mazumder, Nilesh; Sen, Dipayan; Sinthika, S.; Das, Nirmalya S.; Chattopadhyay, Kalyan K.

    2016-04-01

    In this work, we have demonstrated the signatures of localized surface distortions and disorders in functionalized graphene quantum dots (fGQD) and consequences in magneto-transport under weak field regime (~1 Tesla) at room temperature. Observed positive colossal magnetoresistance (MR) and its suppression is primarily explained by weak anti-localization phenomenon where competitive valley (inter and intra) dependent scattering takes place at room temperature under low magnetic field; analogous to low mobility disordered graphene samples. Furthermore, using ab-initio analysis we show that sub-lattice sensitive spin-polarized ground state exists in the GQD as a result of pz orbital asymmetry in GQD carbon atoms with amino functional groups. This spin polarized ground state is believed to help the weak anti-localization dependent magneto transport by generating more disorder and strain in a GQD lattice under applied magnetic field and lays the premise for future graphene quantum dot based spintronic applications.In this work, we have demonstrated the signatures of localized surface distortions and disorders in functionalized graphene quantum dots (fGQD) and consequences in magneto-transport under weak field regime (~1 Tesla) at room temperature. Observed positive colossal magnetoresistance (MR) and its suppression is primarily explained by weak anti-localization phenomenon where competitive valley (inter and intra) dependent scattering takes place at room temperature under low magnetic field; analogous to low mobility disordered graphene samples. Furthermore, using ab-initio analysis we show that sub-lattice sensitive spin-polarized ground state exists in the GQD as a result of pz orbital asymmetry in GQD carbon atoms with amino functional groups. This spin polarized ground state is believed to help the weak anti-localization dependent magneto transport by generating more disorder and strain in a GQD lattice under applied magnetic field and lays the premise for

  4. Spin-dependent Seebeck Effect, Thermal Colossal Magnetoresistance and Negative Differential Thermoelectric Resistance in Zigzag Silicene Nanoribbon Heterojunciton

    NASA Astrophysics Data System (ADS)

    Fu, Hua-Hua; Wu, Dan-Dan; Zhang, Zu-Quan; Gu, Lei

    2015-05-01

    Spin-dependent Seebeck effect (SDSE) is one of hot topics in spin caloritronics, which examine the relationships between spin and heat transport in materials. Meanwhile, it is still a huge challenge to obtain thermally induced spin current nearly without thermal electron current. Here, we construct a hydrogen-terminated zigzag silicene nanoribbon heterojunction, and find that by applying a temperature difference between the source and the drain, spin-up and spin-down currents are generated and flow in opposite directions with nearly equal magnitudes, indicating that the thermal spin current dominates the carrier transport while the thermal electron current is much suppressed. By modulating the temperature, a pure thermal spin current can be achieved. Moreover, a thermoelectric rectifier and a negative differential thermoelectric resistance can be obtained in the thermal electron current. Through the analysis of the spin-dependent transport characteristics, a phase diagram containing various spin caloritronic phenomena is provided. In addition, a thermal magnetoresistance, which can reach infinity, is also obtained. Our results put forward an effective route to obtain a spin caloritronic material which can be applied in future low-power-consumption technology.

  5. Spin-dependent Seebeck Effect, Thermal Colossal Magnetoresistance and Negative Differential Thermoelectric Resistance in Zigzag Silicene Nanoribbon Heterojunciton

    PubMed Central

    Fu, Hua-Hua; Wu, Dan-Dan; Zhang, Zu-Quan; Gu, Lei

    2015-01-01

    Spin-dependent Seebeck effect (SDSE) is one of hot topics in spin caloritronics, which examine the relationships between spin and heat transport in materials. Meanwhile, it is still a huge challenge to obtain thermally induced spin current nearly without thermal electron current. Here, we construct a hydrogen-terminated zigzag silicene nanoribbon heterojunction, and find that by applying a temperature difference between the source and the drain, spin-up and spin-down currents are generated and flow in opposite directions with nearly equal magnitudes, indicating that the thermal spin current dominates the carrier transport while the thermal electron current is much suppressed. By modulating the temperature, a pure thermal spin current can be achieved. Moreover, a thermoelectric rectifier and a negative differential thermoelectric resistance can be obtained in the thermal electron current. Through the analysis of the spin-dependent transport characteristics, a phase diagram containing various spin caloritronic phenomena is provided. In addition, a thermal magnetoresistance, which can reach infinity, is also obtained. Our results put forward an effective route to obtain a spin caloritronic material which can be applied in future low-power-consumption technology. PMID:26000658

  6. Spin-dependent Seebeck Effect, Thermal Colossal Magnetoresistance and Negative Differential Thermoelectric Resistance in Zigzag Silicene Nanoribbon Heterojunciton.

    PubMed

    Fu, Hua-Hua; Wu, Dan-Dan; Zhang, Zu-Quan; Gu, Lei

    2015-05-22

    Spin-dependent Seebeck effect (SDSE) is one of hot topics in spin caloritronics, which examine the relationships between spin and heat transport in materials. Meanwhile, it is still a huge challenge to obtain thermally induced spin current nearly without thermal electron current. Here, we construct a hydrogen-terminated zigzag silicene nanoribbon heterojunction, and find that by applying a temperature difference between the source and the drain, spin-up and spin-down currents are generated and flow in opposite directions with nearly equal magnitudes, indicating that the thermal spin current dominates the carrier transport while the thermal electron current is much suppressed. By modulating the temperature, a pure thermal spin current can be achieved. Moreover, a thermoelectric rectifier and a negative differential thermoelectric resistance can be obtained in the thermal electron current. Through the analysis of the spin-dependent transport characteristics, a phase diagram containing various spin caloritronic phenomena is provided. In addition, a thermal magnetoresistance, which can reach infinity, is also obtained. Our results put forward an effective route to obtain a spin caloritronic material which can be applied in future low-power-consumption technology.

  7. Any ``p'' + ``se'' Between Grabar-Kitarovic & perovskite manganite-25

    NASA Astrophysics Data System (ADS)

    Maksoed, Wh-

    2016-10-01

    Of who meets at ``a transition -metal ion in an octahedral oxygen cage forming perovskite structure''-Dagotto & Tokura, 2008 provides the Colossal Magnetoresistance Effect observed in Monte Carlo simulations and ferromagnetic & charge-ordered states in models for Manganites, realms A. Fert & P. Grundberg Nobel Prize in physics 2007 GMR/GiantMagnetoresistance winning accompanies current President of Croatia: Grabar-Kitarovic. Furthers, a family of magnetic nanocomposites, the so called molecular cluster, there retrieves `magnetic molecular clusters like Mn12 & Fe8 bridge the atomic & mesoscopic scales' describes by ought to be related to at least single-molecular magnets/Molecular Nanomagnets. Heartfelt gratitudes to HE. Mr. Ir. Sarwono Kusumaatmadja/PT. Smartfren INDONESIA.

  8. Atomic-scale electrochemistry on the surface of a manganite

    SciTech Connect

    Vasudevan, Rama K.; Tselev, Alexander; Baddorf, Arthur P.; Kalinin, Sergei V.

    2015-04-09

    The doped manganese oxides (manganites) have been widely studied for their colossal magnetoresistive effects, for potential applications in oxide spintronics, electroforming in resistive switching devices, and are materials of choice as cathodes in modern solid oxide fuel cells. However, little experimental knowledge of the dynamics of the surfaces of perovskite manganites at the atomic scale exists. Here, through in-situ scanning tunnelling microscopy (STM), we demonstrate atomic resolution on samples of La0.625Ca0.375MnO3 grown on (001) SrTiO3 by pulsed laser deposition (PLD). Furthermore, by applying triangular DC waveforms of increasing amplitude to the STM tip, and measuring the tunnelling current, we demonstrate the ability to both perform and monitor surface electrochemical processes at the atomic level, including, for the first time in a manganite, formation of single and multiple oxygen vacancies, disruption of the overlying manganite layers, and removal and deposition of individual atomic units or clusters. Our work paves the way for better understanding of surface oxygen reactions in these systems.

  9. Atomic-scale electrochemistry on the surface of a manganite

    DOE PAGES

    Vasudevan, Rama K.; Tselev, Alexander; Baddorf, Arthur P.; ...

    2015-04-09

    The doped manganese oxides (manganites) have been widely studied for their colossal magnetoresistive effects, for potential applications in oxide spintronics, electroforming in resistive switching devices, and are materials of choice as cathodes in modern solid oxide fuel cells. However, little experimental knowledge of the dynamics of the surfaces of perovskite manganites at the atomic scale exists. Here, through in-situ scanning tunnelling microscopy (STM), we demonstrate atomic resolution on samples of La0.625Ca0.375MnO3 grown on (001) SrTiO3 by pulsed laser deposition (PLD). Furthermore, by applying triangular DC waveforms of increasing amplitude to the STM tip, and measuring the tunnelling current, we demonstratemore » the ability to both perform and monitor surface electrochemical processes at the atomic level, including, for the first time in a manganite, formation of single and multiple oxygen vacancies, disruption of the overlying manganite layers, and removal and deposition of individual atomic units or clusters. Our work paves the way for better understanding of surface oxygen reactions in these systems.« less

  10. Time-resolved Studies of Phase Transition Dynamics in Strongly Correlated Manganites

    SciTech Connect

    Rini, M; Tobey, R; Dean, N; Wall, S; Ehrke, H; Zhu, Y; Tomioka, Y; Tokura, Y; Schoenlein, R W; Cavalleri, A

    2008-12-05

    Ultrafast light pulses can be used to control electronic, magnetic and structural phases of complex solids. Here, we investigate the dynamics of insulator-metal phase transitions in colossal magnetoresistive (CMR) manganites by a combination of femtosecond visible-to-midinfrared pump-probe techniques and transport measurements. We show that an insulator-metal transition can be stimulated in CMR manganites by both above bandgap excitation and selective excitation of individual vibrational degrees of freedom. These two approaches rely on the ultrafast manipulation of parameters controlling the electronic filling and the electronic bandwidth respectively, extending the concepts of filling and bandwidth control to the ultrafast timescale. The ultrafast vibrational control of correlated-electron phases may provide new insights into the role played by lattice vibrations in determining the electronic properties of complex solids.

  11. First Order CMR Transitions in the Two-Orbital Model for Manganites

    SciTech Connect

    Sen, Cengiz; Alvarez, Gonzalo; Dagotto, Elbio R

    2010-01-01

    Large-scale Monte Carlo simulation results for the two-orbital model for manganites, including Jahn-Teller lattice distortions, are presented here. At hole density x=1/4 and in the vicinity of the region of competition between the ferromagnetic metallic and spin-charge-orbital ordered insulating phases, the colossal magnetoresistance (CMR) phenomenon is observed with a magnetoresistance ratio {approx}10,000%. Our main result is that this CMR transition is found to be of first order in some portions of the phase diagram, in agreement with early results from neutron scattering, specific heat, and magnetization, thus solving a notorious discrepancy between experiments and previous theoretical studies. The first order characteristics of the transition survive, and are actually enhanced, when weak quenched disorder is introduced.

  12. Nanoscale control of low-dimensional spin structures in manganites

    NASA Astrophysics Data System (ADS)

    Jing, Wang; Iftikhar, Ahmed Malik; Renrong, Liang; Wen, Huang; Renkui, Zheng; Jinxing, Zhang

    2016-06-01

    Due to the upcoming demands of next-generation electronic/magnetoelectronic devices with low-energy consumption, emerging correlated materials (such as superconductors, topological insulators and manganites) are one of the highly promising candidates for the applications. For the past decades, manganites have attracted great interest due to the colossal magnetoresistance effect, charge-spin-orbital ordering, and electronic phase separation. However, the incapable of deterministic control of those emerging low-dimensional spin structures at ambient condition restrict their possible applications. Therefore, the understanding and control of the dynamic behaviors of spin order parameters at nanoscale in manganites under external stimuli with low energy consumption, especially at room temperature is highly desired. In this review, we collected recent major progresses of nanoscale control of spin structures in manganites at low dimension, especially focusing on the control of their phase boundaries, domain walls as well as the topological spin structures (e.g., skyrmions). In addition, capacitor-based prototype spintronic devices are proposed by taking advantage of the above control methods in manganites. This capacitor-based structure may provide a new platform for the design of future spintronic devices with low-energy consumption. Project supported by the National Basic Research Program of China (Grant No. 2014CB920902), the National Natural Science Foundation of China (Grant Nos. 61306105 and 51572278), the Information Science and Technology (TNList) Cross-discipline Foundation from Tsinghua National Laboratory, China and the Fund from the State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China.

  13. What Coexists with the Ferromagnetic Metallic Phase in Manganites?

    SciTech Connect

    Burkhardt, Mark H; Hossain, M A; Sarkar, S; Achkar, A J; Hawthorn, D G; Sutarto, R; Chuang, 5 Y.-D.; Gonzalez, A G Cruz; Choi, Y J; Cheong, S -W; Durr, H A; Stohr, J

    2012-07-25

    Colossal magnetoresistance, whereby the application of a magnetic field reduces the resistivity of a manganite by orders of magnitude, is generally believed to occur because of coexisting phases. Development of a complete theory to explain the phenomenon requires that the exact nature of these phases be known. We used resonant elastic soft x-ray scattering to examine the superlattice order that exists in La{sub 0.35}Pr{sub 0.275}Ca{sub 0.375}MnO{sub 3} above and below the Curie temperature. By measuring the resonance profile of the scattered x-rays at different values of q, we disentangle the contributions of orbital order and antiferromagnetism to the scattering signal above the Curie temperature. Below the Curie temperature, we see no signal from orbital order, and only antiferromagnetism coexists with the dominant ferromagnetic metallic phase.

  14. A new method of increasing thermopower in doped manganites

    NASA Astrophysics Data System (ADS)

    Koroleva, L. I.; Morozov, A. S.; Zhakina, E. S.; Batashev, I. K.; Balbashov, A. M.

    2016-06-01

    Thermopower, magnetothermopower, resistivity, magnetoresistance, and magnetization of singlecrystalline samples of the Sm1- x Sr x MnO3 system ( x = 0.15, 0.2, 0.25, 0.3) have been experimentally studied. These compositions consist of ferromagnetic clusters of the ferron type dispersed in the A-type antiferromagnetic matrix. Colossal thermo- and negative magnetothermopower values reaching 94.5% in a composition with x = 0.3 in the region of Curie point T C in a magnetic field of 1.323 T. This result implies that thermopower is mostly related to ferron-type clusters, since their breakage under the action of magnetic field or heating above T C leads to a sharp decrease in thermopower values. These results imply that thermopower in doped manganite semiconductors is determined by the concentration of impurity and volume of a sample.

  15. Anisotropic imprint of amorphization and phase separation in manganite thin films via laser interference irradiation.

    PubMed

    Ding, Junfeng; Lin, Zhipeng; Wu, Jianchun; Dong, Zhili; Wu, Tom

    2015-02-04

    Materials with mesoscopic structural and electronic phase separation, either inherent from synthesis or created via external means, are known to exhibit functionalities absent in the homogeneous counterparts. One of the most notable examples is the colossal magnetoresistance discovered in mixed-valence manganites, where the coexistence of nano- to micrometer-sized phase-separated domains dictates the magnetotransport. However, it remains challenging to pattern and process such materials into predesigned structures and devices. In this work, a direct laser interference irradiation (LII) method is employed to produce periodic stripes in thin films of a prototypical phase-separated manganite Pr0.65 (Ca0.75 Sr0.25 )0.35 MnO3 (PCSMO). LII induces selective structural amorphization within the crystalline PCSMO matrix, forming arrays with dimensions commensurate with the laser wavelength. Furthermore, because the length scale of LII modification is compatible to that of phase separation in PCSMO, three orders of magnitude of increase in magnetoresistance and significant in-plane transport anisotropy are observed in treated PCSMO thin films. Our results show that LII is a rapid, cost-effective and contamination-free technique to tailor and improve the physical properties of manganite thin films, and it is promising to be generalized to other functional materials.

  16. Ferromagnetic domain behavior and phase transition in bilayer manganites investigated at the nanoscale

    DOE PAGES

    Phatak, C.; Petford-Long, A. K.; Zheng, H.; ...

    2015-12-14

    Understanding the underlying mechanism and phenomenology of colossal magnetoresistance in manganites has largely focused on atomic and nanoscale physics such as double exchange, phase separation, and charge order. Here in this article, we consider a more macroscopic view of manganite materials physics, reporting on the ferromagnetic domain behavior in a bilayer manganite sample with a nominal composition of La2-2xSr1+2xMn2O7 with x = 0:38, studied using in-situ Lorentz transmission electron microscopy. The role of magnetocrystalline anisotropy on the structure of domain walls was elucidated. On cooling, magnetic domain contrast was seen to appear first at the Curie temperature within the amore » - b plane. With further reduction in temperature, the change in area fraction of magnetic domains was used to estimate the critical exponent describing the ferromagntic phase transition. Lastly, the ferromagnetic phase transition was accompanied by a distinctive nanoscale granular contrast close to the Curie temperature, which we infer to be related to the presence of ferromagnetic nanoclusters in a paramagnetic matrix, which has not yet been reported in bilayer manganites.« less

  17. Ferromagnetic domain behavior and phase transition in bilayer manganites investigated at the nanoscale

    SciTech Connect

    Phatak, C.; Petford-Long, A. K.; Zheng, H.; Mitchell, J. F.; Rosenkranz, S.; Norman, M. R.

    2015-12-14

    Understanding the underlying mechanism and phenomenology of colossal magnetoresistance in manganites has largely focused on atomic and nanoscale physics such as double exchange, phase separation, and charge order. Here in this article, we consider a more macroscopic view of manganite materials physics, reporting on the ferromagnetic domain behavior in a bilayer manganite sample with a nominal composition of La2-2xSr1+2xMn2O7 with x = 0:38, studied using in-situ Lorentz transmission electron microscopy. The role of magnetocrystalline anisotropy on the structure of domain walls was elucidated. On cooling, magnetic domain contrast was seen to appear first at the Curie temperature within the a - b plane. With further reduction in temperature, the change in area fraction of magnetic domains was used to estimate the critical exponent describing the ferromagntic phase transition. Lastly, the ferromagnetic phase transition was accompanied by a distinctive nanoscale granular contrast close to the Curie temperature, which we infer to be related to the presence of ferromagnetic nanoclusters in a paramagnetic matrix, which has not yet been reported in bilayer manganites.

  18. Magnetic-polaron-induced colossal magnetocapacitance in CdCr2S4

    NASA Astrophysics Data System (ADS)

    Xie, Y. M.; Yang, Z. R.; Zhang, Z. T.; Yin, L. H.; Chen, X. L.; Song, W. H.; Sun, Y. P.; Zhou, S. Q.; Tong, W.; Zhang, Y. H.

    2013-10-01

    The origin of colossal magnetoresistance and colossal magnetocapacitance in a CdCr2S4 system was investigated. Thermoelectric-power and electronic spin resonance spectra reveal that the magnetic polaron is responsible for the colossal magnetoresistance in the n-type sample. The existence of magnetic polarons in the paramagnetic insulting matrix forms an intrinsic Maxwell-Wagner system, leading to the appearance of colossal magnetocapacitance. Being consistent with the evolution of magnetic polarons upon cooling, the Maxwell-Wagner system is valid around insulator-metal transition, where the resistance derived from impedance spectroscopy matches perfectly with DC resistance.

  19. Bilayer manganites: polarons in the midst of a metallic breakdown

    NASA Astrophysics Data System (ADS)

    Golden, Mark; Massee, Freek; de Jong, Sanne; Huang, Yingkai; Boothroyd, Andrew; Prabhakaran, D.; Follath, Rolf; Varykhalov, Andrei; Patthey, Luc; Shi, Ming; Goedkoop, Jeroen

    2011-03-01

    The exact nature of the low temperature electronic phase of the manganite materials family, and hence the origin of their colossal magnetoresistive (CMR) transition is still a flagship issue in emergent correlated matter research. By combining new photoemission and tunneling data, we show that in the bilayer (N = 2) manganite La 2-2x Sr 1+2x Mn 2 O7 the lattice/spin/orbital polaronic degrees of freedom win out, all across the CMR region of the phase diagram. This means that the generic ground state is that of a system in which strong interactions result in vanishing coherent quasi--particle spectral weight at the Fermi level for all locations in k --space. The incoherence of the charge carriers offers a unifying explanation for the anomalous charge-carrier dynamics seen in transport, optics and electron spectroscopic data. The stacking number N is the key factor for true metallic behavior, as an intergrowth-driven breakdown of the polaronic domination to give a robust metal possessing a traditional Fermi surface is seen in the bilayer system.

  20. Epitaxial stabilization of ultra thin films of electron doped manganites

    SciTech Connect

    Middey, S. Kareev, M.; Meyers, D.; Liu, X.; Cao, Y.; Tripathi, S.; Chakhalian, J.; Yazici, D.; Maple, M. B.; Ryan, P. J.; Freeland, J. W.

    2014-05-19

    Ultra-thin films of the electron doped manganite La{sub 0.8}Ce{sub 0.2}MnO{sub 3} were grown in a layer-by-layer growth mode on SrTiO{sub 3} (001) substrates by pulsed laser interval deposition. High structural quality and surface morphology were confirmed by a combination of synchrotron based x-ray diffraction and atomic force microscopy. Resonant X-ray absorption spectroscopy measurements confirm the presence of Ce{sup 4+} and Mn{sup 2+} ions. In addition, the electron doping signature was corroborated by Hall effect measurements. All grown films show a ferromagnetic ground state as revealed by both dc magnetization and x-ray magnetic circular dichroism measurements and remain insulating contrary to earlier reports of a metal-insulator transition. Our results hint at the possibility of electron-hole asymmetry in the colossal magnetoresistive manganite phase diagram akin to the high-T{sub c} cuprates.

  1. Giant volume magnetostriction and colossal magnetoresistance at room temperature in La(0.7)Ba(0.3)MnO(3).

    PubMed

    Demin, R V; Koroleva, L I; Mukovskii, Ya M

    2005-01-12

    Giant volume magnetostriction at room temperature is found for the first time in a La(0.7)Ba(0.3)MnO(3) single crystal, achieving 2.54 × 10(-4) in a magnetic field of 8.2 kOe. An even greater value of the volume magnetostriction, equal to 4 × 10(-4) in the same magnetic field, is observed at the Curie point T(C) = 310 K.Volume magnetostriction and magnetoresistance exhibit similar dependences on temperature and magnetic field in the T(C)-region, that is explained by the presence in this compound of a magnetic two-phase ferromagnetic-antiferromagnetic state due to strong s-d exchange.

  2. Structural and magnetic states in layered manganites: An expanding view of the phase diagram

    SciTech Connect

    Mitchell, J. F.; Millburn, J. E.; Ling, C.; Argyriou, D. N.; Bordallo, H. N.

    2000-01-05

    Colossal magnetoresistive (CMR) manganites display a spectacular range of structural, magnetic, and electronic phases as a function of hole concentration, temperature, magnetic field, etc. A1though the bulk of research has concentrated on the 3-D perovskite manganites, the ability to study anisotropic magnetic and electronic interactions made available in reduced dimensions has accelerated interest in the layered Ruddlesden-Popper (R-P) phases of the manganite class. The quest for understanding the coupling among lattice, spin, and electronic degrees of freedom (and dimensionality) is driven by the availability of high quality materials. In this talk, the authors will present recent results on synthesis and magnetic properties of layered manganites from the La{sub 2{minus}2x}Sr{sub 1+2x}Mn{sub 2}O{sub 7} series in the Mn{sup 4+}-rich regime x >0.5. This region of the composition diagram is populated by antiferromagnetic structures that evolve from the A-type layered order to G-type ''rocksalt'' order as x increases. Between these two regimes is a wide region (0.7 < x < 0.9) where an incommensurate magnetic structure is observed. The IC structure joins spin canting and phase separation as a mode for mixed-valent manganites to accommodate FM/AF competition. Transport in these materials is dominated by highly insulating behavior, although a region close to x = 0.5 exhibits metal-nonmetal transitions and an extreme sensitivity to oxygen content. They suggest two possible explanations for this transport behavior at doping just above x = O.5: localization by oxygen defects or charge ordering of Mn{sup 3+}/Mn{sup 4+}sites.

  3. Manipulation of magnetic phase separation and orbital occupancy in manganites by strain engineering and electric field

    NASA Astrophysics Data System (ADS)

    Cui, Bin; Song, Cheng; Pan, Feng; Key Laboratory of Advanced Materials (MOE) Team

    2015-03-01

    The modification of electronic phases in correlated oxides is one of the core issues of condensed matter. We report the reversible control of ferromagnetic phase transition in manganite films by ionic liquid gating, replicating the La1-xSrxMnO3 (LSMO) phase diagram. The formation and annihilation of an insulating and magnetically hard phase in the soft magnetic matrix, which randomly nucleates and grows across the film, is directly observed under different gate voltages (VG) . The realization of reversible metal-insulator transition in colossal magnetoresistance materials can lead to the development of four-state memories. The orbital occupancy and magnetic anisotropy of LSMO films are manipulated by VG in a reversible and quantitative manner. Positive and negative VG increases and reduces the occupancy of the orbital and magnetic anisotropy that were initially favored by strain (irrespective of tensile and compressive), respectively. This finding fills in the blank of electrical manipulation of four degrees of freedom in correlated system.

  4. Non-Korringa nuclear relaxation in the ferromagnetic phase of the bilayered manganite La{sub1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7}.

    SciTech Connect

    Hoch, M. J. R.; Kuhns, P. L.; Moulton, W. G.; Lu, J.; Reyes, A. P.; Mitchell, J. F.; Materials Science Division; Florida State Univ.

    2009-01-01

    In contrast to ferromagnetic (FM) three-dimensional manganites, {sup 55}Mn NMR spectra obtained for the FM phase of the colossal magnetoresistance bilayer manganite La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7} show a broad distribution of hyperfine fields at Mn sites. The hyperfine distribution reflects variations in the electronic structure at the local level. {sup 55}Mn spin-lattice relaxation rates have a surprisingly weak dependence both on temperature and on applied magnetic field. Significant departures of the relaxation rate from Korringa temperature dependence below 40 K provide evidence for non Fermi liquid behavior in this quasi-two-dimensional metal. At temperatures approaching T{sub c} from below, in the range where colossal magnetoresistance appears, further anomalous and field-dependent behavior is found in the relaxation rate temperature dependence. The results provide evidence for changes in the electronic structure with temperature in this poorly metallic system. At low temperatures the changes are possibly linked to orbital ordering effects. In addition, statistical fluctuations in dopant concentration may play some role in inducing local variations in the electronic structure. Above 90 K the emergence of polarons is likely to be responsible for the observed decrease in the relaxation rate.

  5. Atomic-scale electrochemistry on the surface of a manganite by scanning tunneling microscopy

    SciTech Connect

    Vasudevan, Rama K. Tselev, Alexander; Baddorf, Arthur P.; Gianfrancesco, Anthony G.

    2015-04-06

    The doped manganese oxides (manganites) have been widely studied for their colossal magnetoresistive effects, for potential applications in oxide spintronics, electroforming in resistive switching devices, and are materials of choice as cathodes in modern solid oxide fuel cells. However, little experimental knowledge of the dynamics of the surfaces of perovskite manganites at the atomic scale exists. Here, through in-situ scanning tunneling microscopy (STM), we demonstrate atomic resolution on samples of La{sub 0.625}Ca{sub 0.375}MnO{sub 3} grown on (001) SrTiO{sub 3} by pulsed laser deposition. Furthermore, by applying triangular DC waveforms of increasing amplitude to the STM tip, and measuring the tunneling current, we demonstrate the ability to both perform and monitor surface electrochemical processes at the atomic level, including formation of oxygen vacancies and removal and deposition of individual atomic units or clusters. Our work paves the way for better understanding of surface oxygen reactions in these systems.

  6. Evaluation of the effect of various mechanisms on the magnetoresistance of lanthanum manganites La{sub 0.85}Sr{sub 0.15}MnO{sub 3} with activation-type conductivity

    SciTech Connect

    Gudin, S. A. Kurkin, M. I.; Neifel’d, E. A.; Korolev, A. V.; Gapontseva, N. N.; Ugryumova, N. A.

    2015-11-15

    A method is proposed that allows one to divide the magnetoresistance (MR) observed in manganites into three mechanisms: dimensional, orientational, and magnetic. The first two mechanisms are associated with the stratification of a substance into ferromagnetic and nonferromagnetic phases, which significantly differ in electric resistivity. The dimensional mechanism of MR is attributed to the effect of a magnetic field on the size of magnetic inclusions. The orientational mechanism of MR is determined by the dependence of electric resistivity on the mutual orientation of the magnetizations of magnetic inclusions. The magnetic mechanism of MR is determined by the properties of the magnetization of a ferromagnet, in particular, by the Curie–Weiss singularity on the temperature dependence of magnetic susceptibility at the Curie point. This mechanism exists in homogeneous substances, although its value may depend on the magnetic properties of inhomogeneities. The method is developed for substances with activation-type conductivity and is applied to the analysis of MR of La{sub 0.85}Sr{sub 0.15}MnO{sub 3} manganite near the Curie point, where the MR attains its maximum. The dimensional mechanism turns out to be dominant in magnetic fields H greater than the saturation field H{sub s} (H > H{sub s}). The orientational, dimensional, and magnetic mechanisms have a comparable effect on the MR for H < H{sub s}. The effect of the orientational mechanism on MR is relatively weak (does not exceed the third part of the total MR), although this mechanism determines the giant MR in multilayered metal films. The possibility of application of the method to the analysis of MR near the insulator–metal transition is analyzed.

  7. Evaluation of the effect of various mechanisms on the magnetoresistance of lanthanum manganites La0.85Sr0.15MnO3 with activation-type conductivity

    NASA Astrophysics Data System (ADS)

    Gudin, S. A.; Kurkin, M. I.; Neifel'd, E. A.; Korolev, A. V.; Gapontseva, N. N.; Ugryumova, N. A.

    2015-11-01

    A method is proposed that allows one to divide the magnetoresistance (MR) observed in manganites into three mechanisms: dimensional, orientational, and magnetic. The first two mechanisms are associated with the stratification of a substance into ferromagnetic and nonferromagnetic phases, which significantly differ in electric resistivity. The dimensional mechanism of MR is attributed to the effect of a magnetic field on the size of magnetic inclusions. The orientational mechanism of MR is determined by the dependence of electric resistivity on the mutual orientation of the magnetizations of magnetic inclusions. The magnetic mechanism of MR is determined by the properties of the magnetization of a ferromagnet, in particular, by the Curie-Weiss singularity on the temperature dependence of magnetic susceptibility at the Curie point. This mechanism exists in homogeneous substances, although its value may depend on the magnetic properties of inhomogeneities. The method is developed for substances with activation-type conductivity and is applied to the analysis of MR of La0.85Sr0.15MnO3 manganite near the Curie point, where the MR attains its maximum. The dimensional mechanism turns out to be dominant in magnetic fields H greater than the saturation field H s ( H > H s ). The orientational, dimensional, and magnetic mechanisms have a comparable effect on the MR for H < H s . The effect of the orientational mechanism on MR is relatively weak (does not exceed the third part of the total MR), although this mechanism determines the giant MR in multilayered metal films. The possibility of application of the method to the analysis of MR near the insulator-metal transition is analyzed.

  8. Pressure-induced colossal piezoresistance effect and the collapse of the polaronic state in the bilayer manganite (La(0.4)Pr(0.6))(1.2)Sr(1.8)Mn2O7.

    PubMed

    Thiyagarajan, R; Manivannan, N; Arumugam, S; Esakki Muthu, S; Tamilselvan, N R; Sekar, C; Yoshino, H; Murata, K; Apostu, M O; Suryanarayanan, R; Revcolevschi, A

    2012-04-04

    We have investigated the effect of hydrostatic pressure as a function of temperature on the resistivity of a single crystal of the bilayer manganite (La(0.4)Pr(0.6))(1.2)Sr(1.8)Mn(2)O(7). Whereas a strong insulating behaviour is observed at all temperatures at ambient pressure, a clear transition into a metallic-like behaviour is induced when the sample is subjected to a pressure (P) of ~1.0 GPa at T < 70 K. A huge negative piezoresistance ~10(6) in the low temperature region at moderate pressures is observed. When the pressure is increased further (5.5 GPa), the high temperature polaronic state disappears and a metallic behaviour is observed. The insulator to metal transition temperature exponentially increases with pressure and the distinct peak in the resistivity that is observed at 1.0 GPa almost vanishes for P > 7.0 GPa. A modification in the orbital occupation of the e(g) electron between 3d(x(2)-y(2)) and 3d(z(2)-r(2)) states, as proposed earlier, leading to a ferromagnetic double-exchange phenomenon, can qualitatively account for our data.

  9. Large magnetoresistance in non-magnetic silver chalcogenides and new class of magnetoresistive compounds

    DOEpatents

    Saboungi, Marie-Louis; Price, David C. L.; Rosenbaum, Thomas F.; Xu, Rong; Husmann, Anke

    2001-01-01

    The heavily-doped silver chalcogenides, Ag.sub.2+.delta. Se and Ag.sub.2+.delta. Te, show magnetoresistance effects on a scale comparable to the "colossal" magnetoresistance (CMR) compounds. Hall coefficient, magnetoconductivity, and hydrostatic pressure experiments establish that elements of narrow-gap semiconductor physics apply, but both the size of the effects at room temperature and the linear field dependence down to fields of a few Oersteds are surprising new features.

  10. The structure of nanoscale polaron correlations in the layered manganites

    NASA Astrophysics Data System (ADS)

    Campbell, Branton

    2002-03-01

    Recent x-ray and neutron scattering experiments have uncovered nanoscale polaron correlations that play an essential role in the colossal magnetoresistive (CMR) behavior of the perovskite manganites. Short-range polaronic order decreases the charge-carrier mobility of the high-temperature paramagnetic state, and subsequently becomes unstable at the ferromagnetic transition, contributing to a pronounced resistivity decrease at T_C. In the bilayered perovskite system La_2-2xSr_1+2xMn_2O7 (0.3 < x < 0.5), weak x-ray diffuse scattering maxima reveal a one-dimensional incommensurate structural modulation with wavevector q = (0.3, 0, ± 1) and a correlation length of 10 to 30 Angstroms. A crystallographic analysis of the diffuse satellite intensities yields a longitudinal Jahn-Teller stretch mode suggestive of charge-density-wave fluctuations. Within the correlated regions, polaronic eg electrons form a striped pattern of occupied d(3x^2-r^2) orbitals. Dynamic polaron correlations of the zig-zag orbital type are also observed above TC and exhibit distinctly glassy behavior. These structures provide unique insights into the nature of strongly correlated polaronic systems. Collaborators: R. Osborn, D.N. Argyriou, S. Rosenkranz, L. Vasiliu-Doloc, J.F. Mitchell, S.K. Sinha, J.W. Lynn, C.D. Ling, Z. Islam, U. Ruett, and A. Berger. This work was supported by the U.S. DOE Office of Science contract No. W-31-109-ENG-38.

  11. Composition dependence of charge and magnetic length scales in mixed valence manganite thin films

    PubMed Central

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2016-01-01

    Mixed-valence manganese oxides present striking properties like the colossal magnetoresistance, metal-insulator transition (MIT) that may result from coexistence of ferromagnetic, metallic and insulating phases. Percolation of such phase coexistence in the vicinity of MIT leads to first-order transition in these manganites. However the length scales over which the electronic and magnetic phases are separated across MIT which appears compelling for bulk systems has been elusive in (La1−yPry)1−xCaxMnO3 films. Here we show the in-plane length scale over which charge and magnetism are correlated in (La0.4Pr0.6)1−xCaxMnO3 films with x = 0.33 and 0.375, across the MIT temperature. We combine electrical transport (resistance) measurements, x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), and specular/off-specular x-ray resonant magnetic scattering (XRMS) measurements as a function of temperature to elucidate relationships between electronic, magnetic and morphological structure of the thin films. Using off-specular XRMS we obtained the charge-charge and charge-magnetic correlation length of these LPCMO films across the MIT. We observed different charge-magnetic correlation length for two films which increases below the MIT. The different correlation length shown by two films may be responsible for different macroscopic (transport and magnetic) properties. PMID:27461993

  12. Giant superconductivity-induced modulation of the ferromagnetic magnetization in a cuprate-manganite superlattice.

    PubMed

    Hoppler, J; Stahn, J; Niedermayer, Ch; Malik, V K; Bouyanfif, H; Drew, A J; Rössle, M; Buzdin, A; Cristiani, G; Habermeier, H-U; Keimer, B; Bernhard, C

    2009-04-01

    Artificial multilayers offer unique opportunities for combining materials with antagonistic orders such as superconductivity and ferromagnetism and thus to realize novel quantum states. In particular, oxide multilayers enable the utilization of the high superconducting transition temperature of the cuprates and the versatile magnetic properties of the colossal-magnetoresistance manganites. However, apart from exploratory work, the in-depth investigation of their unusual properties has only just begun. Here we present neutron reflectometry measurements of a [Y(0.6)Pr(0.4)Ba(2)Cu(3)O(7) (10 nm)/La(2/3)Ca(1/3)MnO(3) (10 nm)](10) superlattice, which reveal a surprisingly large superconductivity-induced modulation of the vertical ferromagnetic magnetization profile. Most surprisingly, this modulation seems to involve the density rather than the orientation of the magnetization and is highly susceptible to the strain, which is transmitted from the SrTiO(3) substrate. We outline a possible explanation of this unusual superconductivity-induced phenomenon in terms of a phase separation between ferromagnetic and non-ferromagnetic nanodomains in the La(2/3)Ca(1/3)MnO(3) layers.

  13. Control of the electronic phase of a manganite by mode-selective vibrational excitation.

    PubMed

    Rini, Matteo; Tobey, Ra'anan; Dean, Nicky; Itatani, Jiro; Tomioka, Yasuhide; Tokura, Yoshinori; Schoenlein, Robert W; Cavalleri, Andrea

    2007-09-06

    Controlling a phase of matter by coherently manipulating specific vibrational modes has long been an attractive (yet elusive) goal for ultrafast science. Solids with strongly correlated electrons, in which even subtle crystallographic distortions can result in colossal changes of the electronic and magnetic properties, could be directed between competing phases by such selective vibrational excitation. In this way, the dynamics of the electronic ground state of the system become accessible, and new insight into the underlying physics might be gained. Here we report the ultrafast switching of the electronic phase of a magnetoresistive manganite via direct excitation of a phonon mode at 71 meV (17 THz). A prompt, five-order-of-magnitude drop in resistivity is observed, associated with a non-equilibrium transition from the stable insulating phase to a metastable metallic phase. In contrast with light-induced and current-driven phase transitions, the vibrationally driven bandgap collapse observed here is not related to hot-carrier injection and is uniquely attributed to a large-amplitude Mn-O distortion. This corresponds to a perturbation of the perovskite-structure tolerance factor, which in turn controls the electronic bandwidth via inter-site orbital overlap. Phase control by coherent manipulation of selected metal-oxygen phonons should find extensive application in other complex solids--notably in copper oxide superconductors, in which the role of Cu-O vibrations on the electronic properties is currently controversial.

  14. Composition dependence of charge and magnetic length scales in mixed valence manganite thin films.

    PubMed

    Singh, Surendra; Freeland, J W; Fitzsimmons, M R; Jeen, H; Biswas, A

    2016-07-27

    Mixed-valence manganese oxides present striking properties like the colossal magnetoresistance, metal-insulator transition (MIT) that may result from coexistence of ferromagnetic, metallic and insulating phases. Percolation of such phase coexistence in the vicinity of MIT leads to first-order transition in these manganites. However the length scales over which the electronic and magnetic phases are separated across MIT which appears compelling for bulk systems has been elusive in (La1-yPry)1-xCaxMnO3 films. Here we show the in-plane length scale over which charge and magnetism are correlated in (La0.4Pr0.6)1-xCaxMnO3 films with x = 0.33 and 0.375, across the MIT temperature. We combine electrical transport (resistance) measurements, x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), and specular/off-specular x-ray resonant magnetic scattering (XRMS) measurements as a function of temperature to elucidate relationships between electronic, magnetic and morphological structure of the thin films. Using off-specular XRMS we obtained the charge-charge and charge-magnetic correlation length of these LPCMO films across the MIT. We observed different charge-magnetic correlation length for two films which increases below the MIT. The different correlation length shown by two films may be responsible for different macroscopic (transport and magnetic) properties.

  15. Composition dependence of charge and magnetic length scales in mixed valence manganite thin films

    NASA Astrophysics Data System (ADS)

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2016-07-01

    Mixed-valence manganese oxides present striking properties like the colossal magnetoresistance, metal-insulator transition (MIT) that may result from coexistence of ferromagnetic, metallic and insulating phases. Percolation of such phase coexistence in the vicinity of MIT leads to first-order transition in these manganites. However the length scales over which the electronic and magnetic phases are separated across MIT which appears compelling for bulk systems has been elusive in (La1‑yPry)1‑xCaxMnO3 films. Here we show the in-plane length scale over which charge and magnetism are correlated in (La0.4Pr0.6)1‑xCaxMnO3 films with x = 0.33 and 0.375, across the MIT temperature. We combine electrical transport (resistance) measurements, x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), and specular/off-specular x-ray resonant magnetic scattering (XRMS) measurements as a function of temperature to elucidate relationships between electronic, magnetic and morphological structure of the thin films. Using off-specular XRMS we obtained the charge-charge and charge-magnetic correlation length of these LPCMO films across the MIT. We observed different charge-magnetic correlation length for two films which increases below the MIT. The different correlation length shown by two films may be responsible for different macroscopic (transport and magnetic) properties.

  16. Composition dependence of electronic, magnetic, transport and morphological properties of mixed valence manganite thin films

    DOE PAGES

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, Michael R.; ...

    2016-07-27

    Mixed-valence manganese oxides present striking properties like the colossal magnetoresistance, metal-insulator transition (MIT) that may result from coexistence of ferromagnetic, metallic and insulating phases. Percolation of such phase coexistence in the vicinity of MIT leads to first-order transition in these manganites. However the length scales over which the electronic and magnetic phases are separated across MIT which appears compelling for bulk systems has been elusive in (La1-yPry)1-xCaxMnO3 films. Here we show the in-plane length scale over which charge and magnetism are correlated in (La0.4Pr0.6)1-xCaxMnO3 films with x = 0.33 and 0.375, across the MIT temperature. We combine electrical transport (resistance)more » measurements, x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), and specular/off-specular x-ray resonant magnetic scattering (XRMS) measurements as a function of temperature to elucidate relationships between electronic, magnetic and morphological structure of the thin films. Using off-specular XRMS we obtained the charge-charge and charge-magnetic correlation length of these LPCMO films across the MIT. We observed different charge-magnetic correlation length for two films which increases below the MIT. The different correlation length shown by two films may be responsible for different macroscopic (transport and magnetic) properties.« less

  17. Transport studies of Nb-doped Pr0.7Sr0.3Mn1-xNbxO3 (0≤x≤0.05) manganites

    NASA Astrophysics Data System (ADS)

    Choithrani, Renu; Bhat, Masroor A.; Gaur, N. K.

    2014-09-01

    We have investigated the transport studies of the Nb-doped Pr0.7Sr0.3Mn1-xNbxO3 (0≤x≤0.05) manganites for the first time for identifying the transport properties as a function of the composition and temperature. Pr0.7Sr0.3Mn1-xNbxO3 (0≤x≤0.05) samples exhibit a single phase nature with an orthorhombic structure and a Pbnm space group. These materials show colossal magnetoresistance effect (CMR) and have wide technological applications such as magnetic sensors, reading head devices, spintronics, bolometers, magnetic refrigeration, etc. The computed transport properties such as cohesive energy, Reststrahlen frequency, Debye temperature, Grüneisen parameter and temperature dependence of specific heat of Pr0.7Sr0.3Mn1-xNbxO3 (0≤x≤0.05) manganites are discussed in detail in the present work by applying extended rigid ion model (ERIM) and have shown significant agreement with the corresponding available results.

  18. Surprising resistivity decrease in manganites with constant electronic density

    NASA Astrophysics Data System (ADS)

    Cortés-Gil, R.; Ruiz-González, M. L.; Alonso, J. M.; Martínez, J. L.; Hernando, A.; Vallet-Regí, M.; González-Calbet, J. M.

    2013-12-01

    A decrease of eight orders of magnitude in the resistance of (La0.5Ca0.5)zMnO3 has been detected when the electronic density is kept constant while the calcium content is modified by introducing cationic vacancies. This effect is related to the disappearance of the charge ordering state and the emergence of an antiferromagnetic-ferromagnetic transition. Moreover, high values of the colossal magnetoresistance above room temperature are attained. Dedicated to Professor J M Rojo.

  19. Unusual ferromagnetism enhancement in ferromagnetically optimal manganite La0.7-yCa0.3+yMn1-yRuyO3 (0≤y<0.3): the role of Mn-Ru t2g super-exchange.

    PubMed

    Liu, M F; Du, Z Z; Xie, Y L; Li, X; Yan, Z B; Liu, J-M

    2015-04-24

    The eg-orbital double-exchange mechanism as the core of physics of colossal magnetoresistance (CMR) manganites is well known, which usually covers up the role of super-exchange at the t2g-orbitals. The role of the double-exchange mechanism is maximized in La0.7Ca0.3MnO3, leading to the concurrent metal-insulator transition and ferromagnetic transition as well as CMR effect. In this work, by a set of synchronous Ru-substitution and Ca-substitution experiments on La0.7-yCa0.3+yMn1-yRuyO3, we demonstrate that the optimal ferromagnetism in La0.7Ca0.3MnO3 can be further enhanced. It is also found that the metal-insulator transition and magnetic transition can be separately modulated. By well-designed experimental schemes with which the Mn(3+)-Mn(4+) double-exchange is damaged as weakly as possible, it is revealed that this ferromagnetism enhancement is attributed to the Mn-Ru t2g ferromagnetic super-exchange. The present work allows a platform on which the electro-transport and magnetism of rare-earth manganites can be controlled by means of the t2g-orbital physics of strongly correlated transition metal oxides.

  20. Composition dependence of electronic, magnetic, transport and morphological properties of mixed valence manganite thin films

    SciTech Connect

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, Michael R.; Jeen, H.; Biswas, A.

    2016-07-27

    Mixed-valence manganese oxides present striking properties like the colossal magnetoresistance, metal-insulator transition (MIT) that may result from coexistence of ferromagnetic, metallic and insulating phases. Percolation of such phase coexistence in the vicinity of MIT leads to first-order transition in these manganites. However the length scales over which the electronic and magnetic phases are separated across MIT which appears compelling for bulk systems has been elusive in (La1-yPry)1-xCaxMnO3 films. Here we show the in-plane length scale over which charge and magnetism are correlated in (La0.4Pr0.6)1-xCaxMnO3 films with x = 0.33 and 0.375, across the MIT temperature. We combine electrical transport (resistance) measurements, x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), and specular/off-specular x-ray resonant magnetic scattering (XRMS) measurements as a function of temperature to elucidate relationships between electronic, magnetic and morphological structure of the thin films. Using off-specular XRMS we obtained the charge-charge and charge-magnetic correlation length of these LPCMO films across the MIT. We observed different charge-magnetic correlation length for two films which increases below the MIT. The different correlation length shown by two films may be responsible for different macroscopic (transport and magnetic) properties.

  1. Mean-field and density-functional studies of charge ordering and magnetic transitions in lanthanum manganites

    NASA Astrophysics Data System (ADS)

    Mishra, Snigdharaj Kumar

    Manganese oxides with perovskite structure exhibit many interesting properties. Recently colossal magnetoresistance (CMR) was observed in these oxides. They show extremely large change in electrical resistance in response to applied magnetic fields. This property has lots of technological relevance for the development of magnetic memory and switching devices. These oxides also show transitions from antiferromagnet to ferromagnet coupled with charge-order to charge-nonorder transition. In this dissertation we examine the electronic origin of these phenomena of lanthanum manganites by studying a model electronic Hamiltonian, which includes double-exchange, super-exchange, and Hubbard terms, using a combination of Hartree-Fock approximation and an exact diagonalization scheme. The existence of "canted" spin order is investigated at zero temperature. We find that the double-exchange mechanism does not always lead to a canted magnetic state, even for small carrier concentration. The canting may be suppressed in these compounds for the typical electronic parameters. We study the charge ordering and magnetic transitions in the perovskites by solving the Hamiltonian both at zero and finite temperature. At zero temperature as we increase the strength of the extended-Hubbard repulsion (Usb1), a first-order transition from a charge-non-ordered metallic ferromagnet (FN) to a charge-ordered, insulating antiferromagnet (AFO) is obtained. The AFO-FN transition is also obtained by increasing the temperature T. The melting of charge ordering as a function of temperature, doping concentration and magnetic field is also examined. Different phases are obtained as a function of temperature and doping concentration. These are in qualitative agreement with experimental data. We study the electronic structures of pyrochlores by the density-functional LMTO method and show that the double-exchange mechanism is relevant for these compounds as well.

  2. Lattice Distortion, Polaron Conduction, and Jahn-Teller Effect on teh Magnetoresistance of La(sub 0.7)Ca(sub 0.5)CoO(sub 3) Epitaxial Films

    NASA Technical Reports Server (NTRS)

    Yeh, N. C.; Vasquez, R. P.; Beam, D. A.; Fu, C. C.; Huynh, H.; Beach, G.

    1996-01-01

    In summary, we have investigated the role of lattice distortion, polaron conduction and Jahn-Teller coupling in the occurrence of the colossal negative magnetoresistance in perovskite oxides. We conclude that larger lattice distortion gives rise to larger zero-field resistivity and larger magnitude of negative magnetoresistance.

  3. Griffiths phase and the magnetic and transport properties of doped manganites

    SciTech Connect

    Krivoruchko, V. N. Marchenko, M. A.

    2012-07-15

    A phenomenological model is proposed to describe the magnetic and magnetoresistance properties of ferromagnetic manganites. This model is based on the methods used to describe hysteretic systems, takes into account phase separation effects, and assumes the transition of ferromagnetic manganites into the Griffiths phase at above the Curie temperature. This formalism makes it possible to describe the conducting properties of the systems in the temperature range from low temperatures to the Griffiths temperature (T{sub G}). This approach is used to qualitatively explain the experimental laws of the behavior of ferromagnetic manganites using the temperature and field dependences of the electrical resistivity and magnetization, the hysteretic properties, and the magnetoresistive effect (MRE) and to classify manganites in the magnitude of the MRE. The parameter that is responsible for the response of a system to thermal effects is the ratio of the maximum energy barrier separating various states of a system at zero temperature W{sub A}(0) to thermal fluctuation energy W{sub Cfl} at T{sub G}. The W{sub A}(0)/W{sub Cfl} ratio is found to determine the temperature range of the Griffiths phase. The relation between the magnitudes of the MRE and parameter W{sub A}(0)/W{sub Cfl} for a certain system is revealed. The behavior of the magnetization and electrical resistivity of manganites in the Griffiths phase is discussed.

  4. Room temperature magnetocaloric effect, critical behavior, and magnetoresistance in Na-deficient manganite La{sub 0.8}Na{sub 0.1}MnO{sub 3}

    SciTech Connect

    Khlifi, M. Dhahri, E.; Hlil, E. K.

    2014-05-21

    The La{sub 0.8}Na{sub 0.1}MnO{sub 3} oxide was prepared by the solid-state reaction and annealed in air. The X-ray diffraction data reveal that the sample is crystallized in a rhombohedral structure with R3{sup ¯}c space group. Magnetic study shows a second-order magnetic phase transition from ferromagnetic to paramagnetic state at the Curie temperature T{sub C} = 295 K. In addition, the magnetizations as a function of temperature and the magnetic field is used to evaluate the magnetic entropy change ΔS{sub M}. Then, we have deduced that the La{sub 0.8}Na{sub 0.1}MnO{sub 3} oxide has a large magnetocaloric effect at room temperature. Such effect is given by the maximum of the magnetic entropy change ΔS{sub Mmax} = 5.56, and by the Relative cooling power (RCP) factor which is equal to 235 under a magnetic field of 5 T. Moreover, the magnetic field dependence of the magnetic entropy change is used to determine the critical exponents β, γ, and δ which are found to be β = 0.495, γ = 1.083, and δ = 3.18. These values are consistent with the prediction of the mean field theory (β = 0.5, γ = 1, and δ = 3). Above all, the temperature dependence of electrical resistivity shows a metal–insulator transition at T{sub ρ}. The electrical resistivity decrease when we apply a magnetic field giving a magnetoresistance effect in the order of 60% at room temperature.

  5. Effect of electric field and strain on the magnetic properties of phase separated manganites

    NASA Astrophysics Data System (ADS)

    Grant, Daniel M.

    Perovskite manganese oxide (manganites) have attracted research attention due to a wide variety of complex behaviors observed, including colossal responses to external perturbations. More recent work has focused on the competing ground states and the coexistence of magnetic and non-magnetic phases in manganites. Anisotropic resistance changes have been observed in high quality thin film manganites, possibly due to dielectrophoresis, upon application of an electric field. Dielectrophoresis is usually observed in fluid-like systems in an electric field but is surprisingly useful in explaining the transport properties of manganites due to the fluid-like behavior of competing phases. A main goal of this dissertation is to explore the role of magnetic interactions on the dielectrophoresis effects on ferromagnetic metallic regions in phase separated manganite thin films. The combined effect of electric and magnetic fields in these manganites could reveal a novel form of magnetoelectric effect. In one set of experiments, a magnetic field decreased the amount of time needed for the dielectrophoresis to lead to a large drop in the resistance along one direction, showing the importance of magnetic interactions in dielectrophoresis. In another set of experiments, breaking down the large resistance of a manganite sample produced a small change in coercive field, further confirming the relationship between electric and magnetic effects in manganites. However, the largest effect on the magnetic properties of the thin films was from confinement of the competing phases in micrometer scale structures fabricated on the thin films. Coercive field increases of about 100- 400% were observed in a certain range of film thicknesses. To analyze such behavior in manganites, high quality thin films of the phase-separated manganite (La1-xPrx)1-yCa yMnO3 (LPCMO) were grown on NdGaO3 (NGO) substrates using pulsed laser deposition. Mangetotransport, magnetization, and scanning probe microscopy

  6. Nanopillar spin filter tunnel junctions with manganite barriers.

    PubMed

    Prasad, Bhagwati; Egilmez, Mehmet; Schoofs, Frank; Fix, Thomas; Vickers, Mary E; Zhang, Wenrui; Jian, Jie; Wang, Haiyan; Blamire, Mark G

    2014-05-14

    The potential of a manganite ferromagnetic insulator in the field of spin-filtering has been demonstrated. For this, an ultrathin film of Sm0.75Sr0.25MnO3 is integrated as a barrier in an epitaxial oxide nanopillar tunnel junction and a high spin polarization of up to 75% at 5 K has been achieved. A large zero-bias anomaly observed in the dynamic conductance at low temperatures is explained in terms of the Kondo scattering model. In addition, a decrease in spin polarization at low bias and hysteretic magneto-resistance at low temperatures are reported. The results open up new possibilities for spin-electronics and suggest exploration of other manganites-based materials for the room temperature spin-filter applications.

  7. Huge positive magnetoresistance in antiferromagnetic double perovskite metals.

    PubMed

    Singh, Viveka Nand; Majumdar, Pinaki

    2014-07-23

    Metals with large positive magnetoresistance are rare. We demonstrate that antiferromagnetic metallic states, as have been predicted for the double perovskites, are excellent candidates for huge positive magnetoresistance. An applied field suppresses long range antiferromagnetic order leading to a state with short range antiferromagnetic correlations and strong electronic scattering. The field induced resistance ratio can be more than tenfold, at moderate field, in a structurally ordered system, and continues to be almost twofold even in systems with ∼ 25% antisite disorder. Although our explicit demonstration is in the context of a two- dimensional spin-fermion model of the double perovskites, the mechanism we uncover is far more general, complementary to the colossal negative magnetoresistance process, and would operate in other local moment metals that show a field driven suppression of non-ferromagnetic order.

  8. Realistic theoretical study of long range order in half-doped manganites

    NASA Astrophysics Data System (ADS)

    Volja, Dmitri

    The exploration of distinct orders and their mutual interplay in systems with transition metal elements is of significant importance to condensed matter physicists, as these orders may provide a way to tune material properties, giving rise to a wide practical application of these materials in industry. Usually these orders involve spin, orbital, charge and lattice degrees of freedom, providing diverse phase diagrams and interesting physical properties, such as superconductivity, thermopower, colossal magnetoresistance (CMR) etc. To have a clear understanding of the problem, one needs to have a deep understanding of the origin and stability of these systems, including the role of leading mechanisms and their mutual coupling. Currently these issues are under great debate in the literature. Manganese oxides, such as La1-xCa xMnO3 have attracted considerable attention due to the observed CMR effect at certain levels of doping (x ≈ 0.2--0.4). To gain a deeper microscopic insight on the issue, we developed a novel, three-step approach within Wannier states framework, that allows one to map out most relevant mechanisms and evaluate their relative importance. Based on the LDA+U results, as a starting point, we derive a low-energy Hamiltonian, that includes all relevant interactions. In the second step we construct Wannier states from relevant e g states close to the Fermi level via a unitary transformation and subject to certain imposed constraints. We use these states as a basis of our further calculations. In the third step, we perform a self-consistent mapping of the low-energy Hamiltonian to the LDA+U results expressed in terms of the same Wannier states basis. As a result, the Hamiltonian parameters are evaluated. These parameters are used to evaluate the contribution of various interaction terms in the Hamiltonian separately. In addition, this framework allows natural solution of a current discrepancy between the weak charge disproportion in doped manganites and

  9. Organic Magnetoresistance

    NASA Astrophysics Data System (ADS)

    Epstein, Arthur

    2009-03-01

    In recent years a broad range of magnetoresistance phenomena have been reported for organic-based semiconductors, conductors and magnets. Organic systems illustrating magnetoresistance, include molecular- and polymer-based nonmagnetic semiconductors[1], organic-based spin polarized magnetic semiconductors,[2] nonmagnetic conducting polymers, and ferromagnet/organic semiconductor/ferromagnet heterojunctions. Examples of each of these organic-based systems will be presented together with a discussion of the roles of magnetotransport mechanisms including interconversion of singlets and triplets, compression of the electronic wavefunction in presence of a magnetic field, quantum interference phenomena, effects of a ``Coulomb gap'' in π* subbands of organic magnetic semiconductors with resulting near complete spin polarization in conduction and valence bands of magnetic organic semiconductors.[2,3] Opportunities for magnetotransport in Ferromagnet/Organic Semiconductor/Ferromagnet heterojunctions will be discussed.[4] [4pt] [1] V.N. Prigodin et al., Synth. Met. 156, 757 (2006); J.D. Bergeson et al., Phys. Rev. Lett. 100, 067201 (2008) [0pt] [2] V.N. Prigodin et al., Adv. Mater. 14, 1230 (2002. [0pt] [3] J.B. Kortright et al., Phys. Rev. Lett., 100, 257204 (2008). [0pt] [4] J.D. Bergeson, et al., Appl. Phys. Lett. 93, 172505 (2008).

  10. Martensitic accommodation strain and the metal-insulator transition in manganites

    NASA Astrophysics Data System (ADS)

    Podzorov, V.; Kim, B. G.; Kiryukhin, V.; Gershenson, M. E.; Cheong, S.-W.

    2001-10-01

    In this paper, we report polarized optical microscopy and electrical transport studies of manganese oxides that reveal that the charge ordering transition in these compounds exhibits typical signatures of a martensitic transformation. We demonstrate that specific electronic properties of charge-ordered manganites stem from a combination of martensitic accommodation strain and effects of strong electron correlations. This intrinsic strain is strongly affected by the grain boundaries in ceramic samples. Consistently, our studies show a remarkable enhancement of low field magnetoresistance and the grain size effect on the resistivity in polycrystalline samples and suggest that the transport properties of this class of manganites are governed by the charge-disordered insulating phase stabilized at low temperature by virtue of martensitic accommodation strain. High sensitivity of this phase to strains and magnetic field leads to a variety of striking phenomena, such as unusually high magnetoresistance (1010%) in low magnetic fields.

  11. Magnetocaloric-transport properties correlation in doped manganites

    NASA Astrophysics Data System (ADS)

    Mohamed, Abd El-Moez A.; Hernando, B.; Ahmed, A. M.

    2016-05-01

    This investigation is interested in studying the relation between magnetocaloric effect and transport properties in La0.7Ba0.3MnO3 manganite compound. The resistivity shows a metal-semiconductor transition at Tms temperature near to its reported Curie temperature (Tc). Magnetic field application decreases resistivity and increases Tms towards higher temperatures. The magnetoresistance shows a peak around Tc and increases in value with the applied magnetic field. A similar behavior has been observed between magnetic entropy change (ΔS), resistivity and magnetoresistance around Tc, this is attributed to the spin order/disorder feature that plays a main role in the magnetocaloric-transport correlation. In spite of this similarity, the correspondence among the experimental ΔS and ΔS based resistivity calculations is missing because of lattice polarons effect on resistivity as a result of the electron-phonon interaction. The magnetocaloric-magnetoresistance relation is also studied and results show the contribution of additional factors in the magnetoresistance mechanism other than spin disorder suppression as Jahn-Teller effect and electronic phase separation.

  12. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers.

    PubMed

    Stamopoulos, D; Aristomenopoulou, E

    2015-08-26

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent 'on' and 'off', thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis.

  13. A Magnetoresistance Measuring Probe.

    DTIC Science & Technology

    The in line four point probe, commonly used for measuring the sheet resistance in a conductor, cannot measure the anisotropic ferromagnetic magnetoresistance. However, the addition of two contact points that are not collinear with the current contacts give the probe the ability to non-destructively measure the anistropic magnetoresistance. Keywords: Magnetoresistance; Anisotropic; Thin-Film; Permalloy; Four Point Probe; Anisotropic Resistance.

  14. Manganite films: Tuning phase diagrams

    NASA Astrophysics Data System (ADS)

    Mihailovic, Dragan

    2016-09-01

    Strain engineering can tune a manganite film into an antiferromagnetic insulating state whose extreme photo-susceptibility allows for the ordinary ferromagnetic metal state to then be transiently realized.

  15. Controlled mechnical modification of manganite surface with nanoscale resolution.

    PubMed

    Kelly, Simon J; Kim, Yunseok; Eliseev, Eugene; Morozovska, Anna; Jesse, Stephen; Biegalski, Michael D; Mitchell, J F; Zheng, H; Aarts, J; Hwang, Inrok; Oh, Sungtaek; Choi, Jin Sik; Choi, Taekjib; Park, Bae Ho; Kalinin, Sergei V; Maksymovych, Peter

    2014-11-28

    We investigated the surfaces of magnetoresistive manganites, La(1-x)Ca(x)MnO3 and La(2-2x)Sr(1+2x)Mn2O7, using a combination of ultrahigh vacuum conductive, electrostatic and magnetic force microscopy methods. Scanning as-grown film with a metal tip, even with zero applied bias, was found to modify the surface electronic properties such that in subsequent scans, the conductivity is reduced below the noise level of conductive probe microscopy. Scanned areas also reveal a reduced contact potential difference relative to the pristine surface by ∼0.3 eV. We propose that contact-pressure of the tip modifies the electrochemical potential of oxygen vacancies via the Vegard effect, causing vacancy motion and concomitant changes of the electronic properties.

  16. Manganite perovskite ceramics, their precursors and methods for forming

    DOEpatents

    Payne, David Alan; Clothier, Brent Allen

    2015-03-10

    Disclosed are a variety of ceramics having the formula Ln.sub.1-xM.sub.xMnO.sub.3, where 0.Itoreq.x.Itoreq.1 and where Ln is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu or Y; M is Ca, Sr, Ba, Cd, or Pb; manganite precursors for preparing the ceramics; a method for preparing the precursors; and a method for transforming the precursors into uniform, defect-free ceramics having magnetoresistance properties. The manganite precursors contain a sol and are derived from the metal alkoxides: Ln(OR).sub.3, M(OR).sub.2 and Mn(OR).sub.2, where R is C.sub.2 to C.sub.6 alkyl or C.sub.3 to C.sub.9 alkoxyalkyl, or C.sub.6 to C.sub.9 aryl. The preferred ceramics are films prepared by a spin coating method and are particularly suited for incorporation into a device such as an integrated circuit device.

  17. Surface nanostructures in manganite films.

    PubMed

    Gambardella, A; Graziosi, P; Bergenti, I; Prezioso, M; Pullini, D; Milita, S; Biscarini, F; Dediu, V A

    2014-06-19

    Ultrathin manganite films are widely used as active electrodes in organic spintronic devices. In this study, a scanning tunnelling microscopy (STM) investigation with atomic resolution revealed previously unknown surface features consisting of small non-stoichiometric islands. Based upon this evidence, a new mechanism for the growth of these complex materials is proposed. It is suggested that the non-stoichiometric islands result from nucleation centres that are below the critical threshold size required for stoichiometric crystalline growth. These islands represent a kinetic intermediate of single-layer growth regardless of the film thickness, and should be considered and possibly controlled in manganite thin-film applications.

  18. Surface Nanostructures in Manganite Films

    PubMed Central

    Gambardella, A.; Graziosi, P.; Bergenti, I.; Prezioso, M.; Pullini, D.; Milita, S.; Biscarini, F.; Dediu, V. A.

    2014-01-01

    Ultrathin manganite films are widely used as active electrodes in organic spintronic devices. In this study, a scanning tunnelling microscopy (STM) investigation with atomic resolution revealed previously unknown surface features consisting of small non-stoichiometric islands. Based upon this evidence, a new mechanism for the growth of these complex materials is proposed. It is suggested that the non-stoichiometric islands result from nucleation centres that are below the critical threshold size required for stoichiometric crystalline growth. These islands represent a kinetic intermediate of single-layer growth regardless of the film thickness, and should be considered and possibly controlled in manganite thin-film applications. PMID:24941969

  19. Current-voltage characteristics of manganite-titanite perovskite junctions.

    PubMed

    Ifland, Benedikt; Peretzki, Patrick; Kressdorf, Birte; Saring, Philipp; Kelling, Andreas; Seibt, Michael; Jooss, Christian

    2015-01-01

    After a general introduction into the Shockley theory of current voltage (J-V) characteristics of inorganic and organic semiconductor junctions of different bandwidth, we apply the Shockley theory-based, one diode model to a new type of perovskite junctions with polaronic charge carriers. In particular, we studied manganite-titanate p-n heterojunctions made of n-doped SrTi1- y Nb y O3, y = 0.002 and p-doped Pr1- x Ca x MnO3, x = 0.34 having a strongly correlated electron system. The diffusion length of the polaron carriers was analyzed by electron beam-induced current (EBIC) in a thin cross plane lamella of the junction. In the J-V characteristics, the polaronic nature of the charge carriers is exhibited mainly by the temperature dependence of the microscopic parameters, such as the hopping mobility of the series resistance and a colossal electro-resistance (CER) effect in the parallel resistance. We conclude that a modification of the Shockley equation incorporating voltage-dependent microscopic polaron parameters is required. Specifically, the voltage dependence of the reverse saturation current density is analyzed and interpreted as a voltage-dependent electron-polaron hole-polaron pair generation and separation at the interface.

  20. Magnetoresistive waves in plasmas

    NASA Astrophysics Data System (ADS)

    Felber, F. S.; Hunter, R. O., Jr.; Pereira, N. R.; Tajima, T.

    1982-10-01

    The self-generated magnetic field of a current diffusing into a plasma between conductors can magnetically insulate the plasma. Propagation of magnetoresistive waves in plasmas is analyzed. Applications to plasma opening switches are discussed.

  1. Low-Temperature Electrical Resistivity of Bilayered LaSr2Mn2O_{7 } Manganite

    NASA Astrophysics Data System (ADS)

    Ehsani, M. H.; Mehrabad, M. Jalali; Kameli, P.; Ghazi, M. E.; Razavi, F. S.

    2016-06-01

    Low-temperature transport and magneto-resistance properties were systemically studied for the bilayered polycrystalline LaSr2Mn2O7 manganite under an applied magnetic field from 0 to 9 T. The results obtained from the resistivity measurements between 70 and 130 K were fitted using the electron-electron (e-e) and electron-magnon (e-m) scattering models. The temperature dependence of resistivity showed an upturn behavior at low temperatures (˜ T < 45 K) under various applied magnetic fields. Best fits were obtained by using a variable-range hopping model. The magneto-resistance behavior observed at low temperatures supports the magnetic properties of the sample.

  2. Transport properties and electroresistance of a manganite based heterostructure: role of the manganite-manganite interface.

    PubMed

    Gadani, Keval; Dhruv, Davit; Joshi, Zalak; Boricha, Hetal; Rathod, K N; Keshvani, M J; Shah, N A; Solanki, P S

    2016-06-29

    In this paper, we report the results of the investigations on the transport properties performed across the manganite-manganite interface in the LaMnO3-δ/La0.7Ca0.3MnO3/LaAlO3 (LMO/LCMO/LAO) heterostructure. The bilayered heterostructure was synthesized by a low cost and simple chemical solution deposition (CSD) method by employing the acetate precursor route. The same LMO/LCMO/LAO heterostructure was also grown using the dry metal oxide chemical vapor deposition (CVD) method and the results of transport characterization have been compared on the basis of wet and dry chemical methods used. XRD Φ-scan measurements were carried out to verify the structural quality and crystallographic orientations of LMO and LCMO manganite layers, for both wet and dry chemical method grown heterostructures. For wet and dry chemical methods, the temperature dependent resistance of the LMO/LCMO interface suggests the metallic nature. The asymmetric I-V curves collected at different temperatures show normal diode characteristics which get transformed to backward diode characteristics at high temperatures under high applied voltages at Vtr for both the methods. The values of Vtr are strongly dependent on the chemical method used. I-V data have been fitted using the Simmons model at different temperatures and discussed in terms of the spin-flip scattering mechanism for both wet and dry chemical method grown heterostructures. The electric field dependent electroresistance (ER) behavior of the presently studied LMO/LCMO manganite-manganite interface, grown using wet and dry chemical methods, has been understood on the basis of complex mechanisms including charge injection, formation of the depletion region, the tunneling effect, thermal processes and junction breakdown and their dependence on the applied electric field, field polarity and temperature studied.

  3. Direct and real time probe of photoinduced structure transition in colossal magnetoresistive material

    DOE PAGES

    Li, Junjie; Wang, Xuan; Zhou, Haidong; ...

    2016-07-29

    Here, we report a direct and real time measurement of photoinduced structure phase transition in single crystal La0.84Sr0.16MnO3 using femtosecond electron diffraction. The melting of orthorhombic lattice ordering under femtosecond optical excitation is found involving two distinct processes with different time scales, an initial fast melting of orthorhombic phase in about 4 ps and a subsequent slower transformation in 90 ps and longer timescales. Furthermore, the fast process is designated as the initial melting of orthorhombic phase induced by the Mn-O bond change that is most likely driven by the quenching of the dynamic Jahn-Teller distortion following the photo-excitation. Wemore » attribute the slow process to the growing of newly formed structure domain from the photo-excited sites to the neighboring non-excited orthorhombic sites.« less

  4. Direct and real time probe of photoinduced structure transition in colossal magnetoresistive material

    NASA Astrophysics Data System (ADS)

    Li, Junjie; Wang, Xuan; Zhou, Haidong; Zhou, Jun; Cheng, J. G.; Cao, Jianming

    2016-07-01

    We report a direct and real time measurement of photoinduced structure phase transition in single crystal La0.84Sr0.16MnO3 using femtosecond electron diffraction. The melting of orthorhombic lattice ordering under femtosecond optical excitation is found involving two distinct processes with different time scales, an initial fast melting of orthorhombic phase in about 4 ps and a subsequent slower transformation in 90 ps and longer timescales. The fast process is designated as the initial melting of orthorhombic phase induced by the Mn-O bond change that is most likely driven by the quenching of the dynamic Jahn-Teller distortion following the photo-excitation. The slow process is attributed to the growing of newly formed structure domain from the photo-excited sites to the neighboring non-excited orthorhombic sites.

  5. Direct and real time probe of photoinduced structure transition in colossal magnetoresistive material

    SciTech Connect

    Li, Junjie; Wang, Xuan; Zhou, Haidong; Zhou, Jun; Cheng, J. G.; Cao, Jianming

    2016-07-29

    Here, we report a direct and real time measurement of photoinduced structure phase transition in single crystal La0.84Sr0.16MnO3 using femtosecond electron diffraction. The melting of orthorhombic lattice ordering under femtosecond optical excitation is found involving two distinct processes with different time scales, an initial fast melting of orthorhombic phase in about 4 ps and a subsequent slower transformation in 90 ps and longer timescales. Furthermore, the fast process is designated as the initial melting of orthorhombic phase induced by the Mn-O bond change that is most likely driven by the quenching of the dynamic Jahn-Teller distortion following the photo-excitation. We attribute the slow process to the growing of newly formed structure domain from the photo-excited sites to the neighboring non-excited orthorhombic sites.

  6. Multiferroicity in Perovskite Manganite Superlattice

    NASA Astrophysics Data System (ADS)

    Tao, Yong-Mei; Jiang, Xue-Fan; Liu, Jun-Ming

    2016-08-01

    Multiferroic properties of short period perovskite type manganite superlattice ((R1MnO3)n/(R2MnO3)n (n=1,2,3)) are considered within the framework of classical Heisenberg model using Monte Carlo simulation. Our result revealed the interesting behaviors in Mn spins structure in superlattice. Apart from simple plane spin cycloid structure which is shown in all manganites including bulk, film, and superlattice here in low temperature, a non-coplanar spiral spin structure is exhibited in a certain temperature range when n equals 1, 2 or 3. Specific heat, spin-helicity vector, spin correlation function, spin-helicity correlation function, and spin configuration are calculated to confirm this non-coplanar spiral spin structure. These results are associated with the competition among exchange interaction, magnetic anisotropy, and Dzyaloshinskii-Moriya interaction. Supported by the National Natural Science Foundation of China (NSFC) under Grant No. 11447136

  7. High Temperature Superconducting Compounds.

    DTIC Science & Technology

    1999-04-02

    addition to superconducting films, non-superconducting mixed-valence manganite perovskites, which exhibit so-called colossal magnetoresistance were grown...The manganites are unique in that their charge carriers are believed to be almost 100% spin polarized. These materials were combined with the...brought about by the injection of spin polarized carriers from the manganite into the curate. This work may make possible new classes of devices based on

  8. Optical evidence of quantum rotor orbital excitations in orthorhombic manganites

    NASA Astrophysics Data System (ADS)

    Kovaleva, N. N.; Kugel, K. I.; Potůček, Z.; Kusmartseva, O. E.; Goryachev, N. S.; Bryknar, Z.; Demikhov, E. I.; Trepakov, V. A.; Dejneka, A.; Kusmartsev, F. V.; Stoneham, A. M.

    2016-05-01

    In magnetic compounds with Jahn-Teller (JT) ions (such as Mn3+ or Cu2+), the ordering of the electron or hole orbitals is associated with cooperative lattice distortions. There the role of JT effect, although widely recognized, is still elusive in the ground state properties. Here we discovered that, in these materials, there exist excitations whose energy spectrum is described in terms of the total angular momentum eigenstates and is quantized as in quantum rotors found in JT centers. We observed features originating from these excitations in the optical spectra of a model compound LaMnO3 using ellipsometry technique. They appear clearly as narrow sidebands accompanying the electron transition between the JT split orbitals at neighboring Mn3+ ions, displaying anomalous temperature behavior around the Néel temperature T N ≈ 140 K. We present these results together with new experimental data on photoluminescence found in LaMnO3, which lend additional support to the ellipsometry implying the electronic-vibrational origin of the quantum rotor orbital excitations. We note that the discovered orbital excitations of quantum rotors may play an important role in many unusual properties observed in these materials upon doping, such as high-temperature superconductivity and colossal magnetoresistance.

  9. Giant semiclassical magnetoresistance in high mobility TaAs{sub 2} semimetal

    SciTech Connect

    Wu, Desheng; Liao, Jian; Yi, Wei; Wang, Xia; Weng, Hongming E-mail: hmweng@iphy.ac.cn; Shi, Youguo E-mail: hmweng@iphy.ac.cn; Li, Yongqing; Dai, Xi; Fang, Zhong; Li, Peigang; Luo, Jianlin

    2016-01-25

    We report the observation of colossal positive magnetoresistance (MR) in single crystalline, high mobility TaAs{sub 2} semimetal. The excellent fit of MR by a single quadratic function of the magnetic field B over a wide temperature range (T = 2–300 K) suggests the semiclassical nature of the MR. The measurements of Hall effect and Shubnikov-de Haas oscillations, as well as band structure calculations, suggest that the giant MR originates from the nearly perfectly compensated electrons and holes in TaAs{sub 2}. The quadratic MR can even exceed 1 200 000% at B = 9 T and T = 2 K, which is one of the largest values among those of all known semi-metallic compounds, including the very recently discovered WTe{sub 2} and NbSb{sub 2}. The giant positive magnetoresistance in TaAs{sub 2} not only has a fundamentally different origin from the negative colossal MR observed in magnetic systems but also provides a nice complemental system that will be beneficial for applications in magnetoelectronic devices.

  10. Chemical ordering suppresses large-scale electronic phase separation in doped manganites

    NASA Astrophysics Data System (ADS)

    Zhu, Yinyan; Du, Kai; Niu, Jiebin; Lin, Lingfang; Wei, Wengang; Liu, Hao; Lin, Hanxuan; Zhang, Kai; Yang, Tieying; Kou, Yunfang; Shao, Jian; Gao, Xingyu; Xu, Xiaoshan; Wu, Xiaoshan; Dong, Shuai; Yin, Lifeng; Shen, Jian

    2016-04-01

    For strongly correlated oxides, it has been a long-standing issue regarding the role of the chemical ordering of the dopants on the physical properties. Here, using unit cell by unit cell superlattice growth technique, we determine the role of chemical ordering of the Pr dopant in a colossal magnetoresistant (La1-yPry)1-xCaxMnO3 (LPCMO) system, which has been well known for its large length-scale electronic phase separation phenomena. Our experimental results show that the chemical ordering of Pr leads to marked reduction of the length scale of electronic phase separations. Moreover, compared with the conventional Pr-disordered LPCMO system, the Pr-ordered LPCMO system has a metal-insulator transition that is ~100 K higher because the ferromagnetic metallic phase is more dominant at all temperatures below the Curie temperature.

  11. Chemical ordering suppresses large-scale electronic phase separation in doped manganites

    PubMed Central

    Zhu, Yinyan; Du, Kai; Niu, Jiebin; Lin, Lingfang; Wei, Wengang; Liu, Hao; Lin, Hanxuan; Zhang, Kai; Yang, Tieying; Kou, Yunfang; Shao, Jian; Gao, Xingyu; Xu, Xiaoshan; Wu, Xiaoshan; Dong, Shuai; Yin, Lifeng; Shen, Jian

    2016-01-01

    For strongly correlated oxides, it has been a long-standing issue regarding the role of the chemical ordering of the dopants on the physical properties. Here, using unit cell by unit cell superlattice growth technique, we determine the role of chemical ordering of the Pr dopant in a colossal magnetoresistant (La1−yPry)1−xCaxMnO3 (LPCMO) system, which has been well known for its large length-scale electronic phase separation phenomena. Our experimental results show that the chemical ordering of Pr leads to marked reduction of the length scale of electronic phase separations. Moreover, compared with the conventional Pr-disordered LPCMO system, the Pr-ordered LPCMO system has a metal–insulator transition that is ∼100 K higher because the ferromagnetic metallic phase is more dominant at all temperatures below the Curie temperature. PMID:27053071

  12. Magnetoresistance of Au films

    DOE PAGES

    Zhang, D. L.; Song, X. H.; Zhang, X.; ...

    2014-12-10

    Measurement of the magnetoresistance (MR) of Au films as a function of temperature and film thickness reveals a strong dependence on grain size distribution and clear violation of the Kohler s rule. Using a model of random resistor network, we show that this result can be explained if the MR arises entirely from inhomogeneity due to grain boundary scattering and thermal activation of grain boundary atoms.

  13. Giant magnetoresistive sensor

    DOEpatents

    Stearns, Daniel G.; Vernon, Stephen P.; Ceglio, Natale M.; Hawryluk, Andrew M.

    1999-01-01

    A magnetoresistive sensor element with a three-dimensional micro-architecture is capable of significantly improved sensitivity and highly localized measurement of magnetic fields. The sensor is formed of a multilayer film of alternately magnetic and nonmagnetic materials. The sensor is optimally operated in a current perpendicular to plane mode. The sensor is useful in magnetic read/write heads, for high density magnetic information storage and retrieval.

  14. Negative magnetoresistivity in holography

    NASA Astrophysics Data System (ADS)

    Sun, Ya-Wen; Yang, Qing

    2016-09-01

    Negative magnetoresistivity is a special magnetotransport property associated with chiral anomaly in four dimensional chiral anomalous systems, which refers to the transport behavior that the DC longitudinal magnetoresistivity decreases with increasing magnetic field. We calculate the longitudinal magnetoconductivity in the presence of back-reactions of the magnetic field to gravity in holographic zero charge and axial charge density systems with and without axial charge dissipation. In the absence of axial charge dissipation, we find that the quantum critical conductivity grows with increasing magnetic field when the backreaction strength is larger than a critical value, in contrast to the monotonically decreasing behavior of quantum critical conductivity in the probe limit. With axial charge dissipation, we find the negative magnetoresistivity behavior. The DC longitudinal magnetoconductivity scales as B in the large magnetic field limit, which deviates from the exact B 2 scaling of the probe limit result. In both cases, the small frequency longitudinal magnetoconductivity still agrees with the formula obtained from the hydrodynamic linear response theory, even in the large magnetic field limit.

  15. Role of structure imperfection in the formation of the magnetotransport properties of rare-earth manganites with a perovskite structure

    NASA Astrophysics Data System (ADS)

    Pashchenko, A. V.; Pashchenko, V. P.; Prokopenko, V. K.; Turchenko, V. A.; Revenko, Yu. F.; Mazur, A. S.; Sycheva, V. Ya.; Liedienov, N. A.; Pitsyuga, V. G.; Levchenko, G. G.

    2017-01-01

    The structure, the structure imperfection, and the magnetoresistance, magnetotransport, and microstructure properties of rare-earth perovskite La0.3Ln0.3Sr0.3Mn1.1O3-δ manganites are studied by X-ray diffraction, thermogravimetry, electrical resistivity measurement, magnetic, 55Mn NMR, magnetoresistance measurement, and scanning electron microscopy. It is found that the structure imperfection increases, and the symmetry of a rhombohedrally distorted R3̅ c perovskite structure changes into its pseudocubic type during isovalent substitution for Ln = La3+, Pr3+, Nd3+, Sm3+, or Eu3+ when the ionic radius of an A cation decreases. Defect molar formulas are determined for a real perovskite structure, which contains anion and cation vacancies. The decrease in the temperatures of the metal-semiconductor ( T ms) and ferromagnet-paramagnet ( T C) phase transitions and the increase in electrical resistivity ρ and activation energy E a with increasing serial number of Ln are caused by an increase in the concentration of vacancy point defects, which weaken the double exchange 3 d 4(Mn3+)-2 p 6(O2-)-3 d 3(Mn4+)- V ( a)-3 d 4(Mn3+). The crystal structure of the compositions with Ln = La contains nanostructured planar clusters, which induce an anomalous magnetic hysteresis at T = 77 K. Broad and asymmetric 55Mn NMR spectra support the high-frequency electronic double exchange Mn3+(3 d 4) ↔ O2-(2 p 6) ↔ Mn4+(3 d 3) and indicate a heterogeneous surrounding of manganese by other ions and vacancies. A correlation is revealed between the tunneling magnetoresistance effect and the crystallite size. A composition-structure imperfection-property experimental phase diagram is plotted. This diagram supports the conclusion about a strong influence of structure imperfection on the formation of the magnetic, magnetotransport, and magnetoresistance properties of rare-earth perovskite manganites.

  16. Fabrication of 0-3 type manganite/insulator composites and manipulation of their magnetotransport properties

    NASA Astrophysics Data System (ADS)

    Yang, H.; Cao, Z. E.; Shen, X.; Xian, T.; Feng, W. J.; Jiang, J. L.; Feng, Y. C.; Wei, Z. Q.; Dai, J. F.

    2009-11-01

    In order to promote the technological applications of perovskite manganites, a great fundamental interest has been devoted to tailoring and/or enhancing their magnetotransport properties. Design and fabrication of manganite-based nanocomposites offer great potential to tailor the magnetotransport properties. In this work, we illustrate the promising concept of 0-3 type manganite/insulator composites (where manganite nanoparticles are uniformly and discretely embedded in a three-dimensional-connectivity insulator matrix) through the example of the La0.67Ca0.33MnO3 (LCMO)/MgO system. We present a promising strategy, which is based on the creation of core (LCMO)-shell (MgO) composite powders, for the synthesis of 0-3 type LCMO/MgO composites. A modified polyacrylamide gel method has been developed to prepare the core-shell structured LCMO/MgO composite powders. Besides its ability to create well-defined core-shell composite structures, the present gel method also allows the production of nanopowders with uniform particle size and in spherical shape. In our (1-x)LCMO/xMgO composite system, the lattice of LCMO is found to expand with rising MgO concentration x, yielding a bulk tensile strain. The increase in the tensile strain with x yields to a structural phase transition in the LCMO phase from an orthorhombic Pnma structure (x ≤0.2) to a rhombohedral R3¯c structure (x ≥0.3), and this structural transition leads to a relaxation of the strain. The strain effects induced by the MgO second phase exert a great influence on the ferromagnetic transition temperature TC. The composite system exhibits a percolative behavior in the conductivity, and the metal-insulator transition temperature TM-I decreases with x and is finally suppressed as the MgO content increases up to x =0.3. An enhancement in magnetoresistance (MR) is observed at low temperatures for the composites, and the low-field sensitivity of MR gets enhanced with the increase in MgO content. This work provides

  17. Electrical, thermal and magnetic studies on Bi-substituted LSMO manganites

    NASA Astrophysics Data System (ADS)

    Daivajna, Mamatha D.; Rao, Ashok; Okram, G. S.

    2015-08-01

    In the present investigation detailed electrical, magnetic and thermoelectric measurements on Bi-doped L0.6-xBixSr0.4MnO3 (0≤x≤0.3) manganites have been done. All the samples are single phased. The metal-insulator transition temperatures (TMI) as well as the Curie temperature (TC) are both found to decrease with Bi-content. Magneto-resistance (MR) data shows that MR (%) increases with Bi-content thereby showing it can be used in magnetic memory based devices. Resistivity data shows that small polaron hopping (SPH) model is valid in high temperature regime. Low temperature resistivity data depicts that electron-electron scattering is mainly responsible for the conduction mechanism. High temperature thermoelectric power (TEP) data reaffirms the validity of SPH model.

  18. Atomic manipulation with Scanning Tunneling Microscopy on the surface of a manganite thin film

    NASA Astrophysics Data System (ADS)

    Vasudevan, Rama; Tselev, Alexander; Baddorf, Arthur; Kalinin, Sergei

    2014-03-01

    Manganites have attracted significant attention in the past two decades, due to an extraordinarily rich spectrum of phenomena stemming from inherent complexity linking spin, charge, lattice and orbital degrees of freedom that result in properties including half-metallicity and giant magnetoresistance. Here, we report atomic manipulation with STM on the surfaces of 25 unit-cell thick La5/8Ca3/8MnO3 (LCMO) SrTiO3 (STO) substrates. We demonstrate that by applying triangular first-order reversal curve (FORC) waveforms of increasing amplitude to STM tips in-situ, it is possible from both A and B terminations to individually extract single units, form vacancies, remove units from layers below, rearrange atoms in the surrounding lattice, and therefore cause reactions to occur at the atomic level. These experiments point to the possibility of STM to manipulate atoms on the surfaces of manganites, opening up further avenues of research into fundamental physical properties defined at atomic scales. This research was sponsored by the Division of Materials Sciences and Engineering (RKV, AT, SVK) and by the Scientific User Facilities Division (APB) of BES, DOE. Research was conducted at the CNMS, which is sponsored at ORNL by the Scientific User Facilities Division, BES, DOE.

  19. Non-saturating magnetoresistance of La0.7Sr0.3MnO3 thin films in pulsed magnetic fields up to 60T

    NASA Astrophysics Data System (ADS)

    Niu, Wei; Gao, Ming; Wang, Xuefeng

    The mixed-valence manganite La0.7Sr0.3MnO3 (LSMO) is an interesting material for spintronics due to its intrinsic magnetoresistance properties. In this work, high quality LSMO films with atomic terraces are epitaxially grown on SrTiO3 (100) substrates by laser molecular beam epitaxy. The magnetoresistance of LSMO thin films has been measured in pulsed magnetic fields up to 60T over a wide temperature range. Unsaturated magnetoresistances and resistance relaxation of LSMO thin films have been found at different temperatures. Unlike polycrystalline manganites, a linear increase with fields of the magnetoconductance at low temperature which is attributed to the spin-dependent tunneling via grain boundaries. However, the unsaturation magnetoresistances of our LSMO thin films at different temperature show two kinds of trends: quadratic at low temperature; qusi-linear at high temperature. We attribute the unsaturation behavior to the scattering of domain walls. National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China.

  20. Wireless power transfer based on dielectric resonators with colossal permittivity

    NASA Astrophysics Data System (ADS)

    Song, Mingzhao; Belov, Pavel; Kapitanova, Polina

    2016-11-01

    Magnetic resonant wireless power transfer system based on dielectric disk resonators made of colossal permittivity (ɛ = 1000) and low loss (tan δ = 2.5 × 10-4) microwave ceramic is experimentally investigated. The system operates at the magnetic dipole mode excited in the resonators providing maximal power transfer efficiency of 90% at the frequency 232 MHz. By applying an impedance matching technique, the efficiency of 50% is achieved within the separation between the resonators d = 16 cm (3.8 radii of the resonator). The separation, misalignment and rotation dependencies of wireless power transfer efficiency are experimentally studied.

  1. Giant magnetoimpedance and permeability change in La 2/3Sr 1/3MnO 3 manganite under low fields

    NASA Astrophysics Data System (ADS)

    Hu, Jifan; Qin, Hongwei; Wang, Yifei; Li, Bo

    2010-11-01

    We demonstrated that La 2/3Sr 1/3MnO 3 sintered manganite could exhibit a magnetoreactance Δ X/ X0 of -25.5% at 100 kHz, a giant magnetoimpedance Δ Z/ Z0 of -20% at 1-2 MHz and a giant AC magnetoresistance Δ R/ R0 of -39.3% at 5 MHz under a very low field of 300 Oe at room temperature, whereas the DC magnetoresistance Δ ρ/ ρ0 was -3.95% under H=10 kOe and only about -0.18% under H=300 Oe. Large field-induced change of real and imaginary circular permeabilities ( Δμ/ μ(0) and Δμ/ μ(0)) were obtained for La 2/3Sr 1/3MnO 3 sintered manganite. The giant magnetoreactance (giant magneto-inductive effect) at very low frequencies originates from the field induced change of transverse permeability. At 100 kHz under H=300 Oe, La 2/3Sr 1/3MnO 3 sintered manganite has Δμ/ μ(0)=-25.8% and Δμ/ μ(0)=-10.9%. The values of Δ R/ R0 and Δ Z/ Z0 are very small under 300 Oe at 100 kHz. The giant magnetoimpedance at high frequencies mainly originates from the large transverse permeability change induced by DC magnetic fields, via the penetration depth. Under H=300 Oe, La 2/3Sr 1/3MnO 3 sintered manganite presents values of Δμ/ μ(0)=-24.9%, Δμ/ μ(0)=-49.8% at 1 MHz, and Δμ/ μ(0)=-21.2%, Δμ/ μ(0)=-58.2% at 5 MHz.

  2. Magnetoresistance of Au films

    SciTech Connect

    Zhang, D. L. Song, X. H.; Zhang, X.; Zhang, X.-G.

    2014-12-14

    Classical magnetoresistance (MR) in nonmagnetic metals are conventionally understood in terms of the Kohler rule, with violation usually viewed as anomalous electron transport, in particular, as evidence of non-Fermi liquid behavior. Measurement of the MR of Au films as a function of temperature and film thickness reveals a strong dependence on grain size distribution and clear violation of the Kohler rule. Using a model of random resistor network, we show that this result can be explained if the MR arises entirely from inhomogeneity due to grain boundary scattering and thermal activation of grain boundary atoms. Consequently, the Kohler rule should not be used to distinguish normal and anomalous electron transport in solids.

  3. Tunnel magnetoresistance of diamondoids

    NASA Astrophysics Data System (ADS)

    Matsuura, Yukihito

    2016-10-01

    Tunnel magnetoresistance (TMR) of diamondoids has been predicted by first principles density functional theory. Diamantane was used as a basic molecular proxy for diamondoids because hydrogen atoms in the apical position are easily substituted for a thiol group. The pristine diamantane exhibited a low TMR ratio of 7%, and boron-substitution considerably decreased the TMR ratio. Conversely, nitrogen-substitution enhanced the TMR ratio by up to 20%. Heteroatom-substitution changes the tunneling probabilities by varying the molecular bond lengths. Furthermore, when the spins of the electrodes are parallel, the heteroatoms resulted in transmittance probabilities at an energy range near the Fermi level. Consequently, heteroatom-substitution can control the TMR ratios of diamondoids very well.

  4. Anomalous magnetoresistance in Fibonacci multilayers.

    SciTech Connect

    Machado, L. D.; Bezerra, C. G.; Correa, M. A.; Chesman, C.; Pearson, J. E.; Hoffmann, A.

    2012-01-01

    We theoretically investigated magnetoresistance curves in quasiperiodic magnetic multilayers for two different growth directions, namely, [110] and [100]. We considered identical ferromagnetic layers separated by nonmagnetic layers with two different thicknesses chosen based on the Fibonacci sequence. Using parameters for Fe/Cr multilayers, four terms were included in our description of the magnetic energy: Zeeman, cubic anisotropy, bilinear coupling, and biquadratic coupling. The minimum energy was determined by the gradient method and the equilibrium magnetization directions found were used to calculate magnetoresistance curves. By choosing spacers with a thickness such that biquadratic coupling is stronger than bilinear coupling, unusual behaviors for the magnetoresistance were observed: (i) for the [110] case, there is a different behavior for structures based on even and odd Fibonacci generations, and, more interesting, (ii) for the [100] case, we found magnetic field ranges for which the magnetoresistance increases with magnetic field.

  5. Transversal magnetoresistance in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Klier, J.; Gornyi, I. V.; Mirlin, A. D.

    2015-11-01

    We explore theoretically the magnetoresistivity of three-dimensional Weyl and Dirac semimetals in transversal magnetic fields within two alternative models of disorder: (i) short-range impurities and (ii) charged (Coulomb) impurities. Impurity scattering is treated using the self-consistent Born approximation. We find that an unusual broadening of Landau levels leads to a variety of regimes of the resistivity scaling in the temperature-magnetic field plane. In particular, the magnetoresistance is nonmonotonous for the white-noise disorder model. For H →0 the magnetoresistance for short-range impurities vanishes in a nonanalytic way as H1 /3. In the limits of strongest magnetic fields H , the magnetoresistivity vanishes as 1 /H for pointlike impurities, while it is linear and positive in the model with Coulomb impurities.

  6. Tunable epitaxial growth of magnetoresistive La2/3Sr1/3MnO3 thin films

    NASA Astrophysics Data System (ADS)

    Fontcuberta, J.; Bibes, M.; Martínez, B.; Trtik, V.; Ferrater, C.; Sánchez, F.; Varela, M.

    1999-04-01

    We report on the growth of epitaxial La2/3Sr1/3MnO3 thin films on buffered Si(001) substrates. We show that a suitable choice of the buffer heterostructure allows one to obtain epitaxial (00h), (0hh), and (hhh) manganite thin films. The magnetotransport properties are investigated and we have found that the low-field magnetoresistance is directly related to the width of the normal-to-plane rocking curves, irrespective of the film orientation. The magnetic anisotropy of these films has also been determined.

  7. Giant electric field modulation of double exchange ferromagnetism at room temperature in the perovskite manganite/titanate p-n junction.

    PubMed

    Tanaka, Hidekazu; Zhang, Jun; Kawai, Tomoji

    2002-01-14

    We report on the electrical modulation of double exchange ferromagnetism at room temperature in hole-doped manganites of a metal oxide p-n junction. In this (La0.9Ba0.1)MnO(3)/Nb doped SrTiO3 p-n junction, the temperature dependence of the junction resistance shows a metal-insulator transition whose temperature, corresponding to that of ferromagnetic transition, is hugely modulated from 290 to 340 K by a bias voltage increasing from +1.0 to +1.8 V. The magnetoresistance can also be modulated electrically.

  8. Positive magnetoresistance of La0.7Sr0.3MnO3/C composites

    NASA Astrophysics Data System (ADS)

    Kabirov, Yu. V.; Gavrilyachenko, V. G.; Bogatin, A. S.

    2016-07-01

    The perovskite manganite La0.7Sr0.3MnO3 compound is used as a component in ceramic (1-x)(La0.7Sr0.3MnO3)-xC composites at x = 0.15-0.85. It is found that every studied specimen is characterized by the linear dependence of the positive magnetoresistance (PMR) on the magnetic field strength at room temperature. The 0.6(La0.7Sr0.3MnO3)-0.4C composite has the largest magnetoresistance value (15%) at room temperature and intensity of magnetic field H=15kOe. A possible mechanism for the PMR of (1-x)(La0.7Sr0.3MnO3)-xC composites is discussed.

  9. Tunable positive magnetoresistance effect of Co-doped amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Jiang, Y. C.; Wu, Z. P.; Bao, W.; Xu, S. J.; Gao, J.

    2012-04-01

    Co-doped amorphous carbon (a-C:Co) films were deposited on n-type Si substrates by pulsed-laser deposition method. A positive magnetoresistance (PMR) effect has been observed after Co doped into a-C films. Such a PMR is tuned by the bias voltage and reaches a peak at a particular voltage, as observed from the Current-voltage relations of the a-C:Co/Si junctions at various magnetic fields. MR-H characteristics were further studied at the temperatures of 65 K, which showed that under the reverse electric field the a-C:Co/Si junctions had a colossal PMR (over 100%). Raman spectra results demonstrate that Co doping favors the formation of graphitic sp2 sites. The mechanism of the PMR effect is attributed to the interactions between the applied magnetic field and Co ions, which leads to the transition from sp2 sites to sp3 sites and increase the resistance.

  10. Colossal Tooling Design: 3D Simulation for Ergonomic Analysis

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Thomas, Robert E.; Babai, Majid

    2003-01-01

    The application of high-level 3D simulation software to the design phase of colossal mandrel tooling for composite aerospace fuel tanks was accomplished to discover and resolve safety and human engineering problems. The analyses were conducted to determine safety, ergonomic and human engineering aspects of the disassembly process of the fuel tank composite shell mandrel. Three-dimensional graphics high-level software, incorporating various ergonomic analysis algorithms, was utilized to determine if the process was within safety and health boundaries for the workers carrying out these tasks. In addition, the graphical software was extremely helpful in the identification of material handling equipment and devices for the mandrel tooling assembly/disassembly process.

  11. Fully magnetic manganite spin filter tunnel junctions

    NASA Astrophysics Data System (ADS)

    Prasad, Bhagwati; Blamire, Mark G.

    2016-09-01

    In this paper we demonstrate spintronic devices which combine magnetic tunnel junctions with a spin-filtering tunnel barrier. These consist of an ultrathin ferromagnetic insulating barrier, Sm0.75Sr0.25MnO3, sandwiched between two ferromagnetic half-metallic manganite electrodes, La0.7Sr0.3MnO3 and La0.7Ca0.3MnO3, in a nanopillar structure. Depending on the relative magnetic configurations of barrier and electrode layers, three resistance states are well defined, which therefore represent a potential three-state memory concept. These results open the way for the development of spintronic devices by exploiting the many degrees of freedom of perovskite manganite heterostructure systems.

  12. Tunneling magnetoresistance in Si nanowires

    NASA Astrophysics Data System (ADS)

    Montes, E.; Rungger, I.; Sanvito, S.; Schwingenschlögl, U.

    2016-11-01

    We investigate the tunneling magnetoresistance of small diameter semiconducting Si nanowires attached to ferromagnetic Fe electrodes, using first principles density functional theory combined with the non-equilibrium Green’s functions method for quantum transport. Silicon nanowires represent an interesting platform for spin devices. They are compatible with mature silicon technology and their intrinsic electronic properties can be controlled by modifying the diameter and length. Here we systematically study the spin transport properties for neutral nanowires and both n and p doping conditions. We find a substantial low bias magnetoresistance for the neutral case, which halves for an applied voltage of about 0.35 V and persists up to 1 V. Doping in general decreases the magnetoresistance, as soon as the conductance is no longer dominated by tunneling.

  13. Origin of nonsaturating linear magnetoresistivity

    NASA Astrophysics Data System (ADS)

    Kisslinger, Ferdinand; Ott, Christian; Weber, Heiko B.

    2017-01-01

    The observation of nonsaturating classical linear magnetoresistivity has been an enigmatic phenomenon in solid-state physics. We present a study of a two-dimensional ohmic conductor, including local Hall effect and a self-consistent consideration of the environment. An equivalent-circuit scheme delivers a simple and convincing argument why the magnetoresistivity is linear in strong magnetic field, provided that current and biasing electric field are misaligned by a nonlocal mechanism. A finite-element model of a two-dimensional conductor is suited to display the situations that create such deviating currents. Besides edge effects next to electrodes, charge carrier density fluctuations are efficiently generating this effect. However, mobility fluctuations that have frequently been related to linear magnetoresistivity are barely relevant. Despite its rare observation, linear magnetoresitivity is rather the rule than the exception in a regime of low charge carrier densities, misaligned current pathways and strong magnetic field.

  14. Thermal conductivity analysis of lanthanum doped manganites

    SciTech Connect

    Mansuri, Irfan; Shaikh, M. W.; Khan, E.; Varshney, Dinesh

    2014-04-24

    The temperature-dependent thermal conductivity of the doped manganites La{sub 0.7}Ca{sub 0.3}MnO{sub 3} is theoretically analyzed within the framework of Kubo formulae. The Hamiltonian consists of phonon, electron and magnon thermal conductivity contribution term. In this process we took defects, carrier, grain boundary, scattering process term and then calculate phonon, electron and magnon thermal conductivity.

  15. Intrinsic interfacial phenomena in manganite heterostructures.

    PubMed

    Vaz, C A F; Walker, F J; Ahn, C H; Ismail-Beigi, S

    2015-04-01

    We review recent advances in our understanding of interfacial phenomena that emerge when dissimilar materials are brought together at atomically sharp and coherent interfaces. In particular, we focus on phenomena that are intrinsic to the interface and review recent work carried out on perovskite manganites interfaces, a class of complex oxides whose rich electronic properties have proven to be a useful playground for the discovery and prediction of novel phenomena.

  16. Magnetoresistance of multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lu, Li; Kang, N.; Kong, W. J.; Hu, J. S.; Pan, Z. W.; Xie, S. S.

    2002-03-01

    We have investigated the magnetoresistance of multiwall carbon nanotubes bundles. At temperatures above 15 K, the magnetoresistance was found to follow exactly a scaling law as predicted by the theory of two-dimensional (2D) weak localization. Below 15 K, the 2D weak localization behavior is modified due to the formation of a Coulomb gap. This modification does not fit to those theories which treat electron-electron interaction as a perturbation. Altshular-Aronov-Spivak (AAS) resistance oscillation was observed in milli-Kelvin temperature range. The results will be discussed in terms of the interplay between electron-electron interaction and disorder scattering in multiwall carbon nanotube.

  17. Anomalous Magnetoresistance in the Lanthanide Manganites and Its Relation to High-Tc Superconductivity.

    DTIC Science & Technology

    1996-05-01

    Goodenough, G. Demazeau, M. Pouchard, and P. Hagenmüller, "Sur une nouvelle phase oxygenee du cuivre +JII:SrLaCu04," /. Solid State Chem. 8, 325 (1973). 21...expensive dynamic excitation takes place by charge trans- fer between cations through the covalent interaction with intermediate oxygen anions. Where

  18. Large linear magnetoresistance in heavily-doped Nb:SrTiO3 epitaxial thin films.

    PubMed

    Jin, Hyunwoo; Lee, Keundong; Baek, Seung-Hyub; Kim, Jin-Sang; Cheong, Byung-Ki; Park, Bae Ho; Yoon, Sungwon; Suh, B J; Kim, Changyoung; Seo, S S A; Lee, Suyoun

    2016-10-05

    Interaction between electrons has long been a focused topic in condensed-matter physics since it has led to the discoveries of astonishing phenomena, for example, high-Tc superconductivity and colossal magnetoresistance (CMR) in strongly-correlated materials. In the study of strongly-correlated perovskite oxides, Nb-doped SrTiO3 (Nb:SrTiO3) has been a workhorse not only as a conducting substrate, but also as a host possessing high carrier mobility. In this work, we report the observations of large linear magnetoresistance (LMR) and the metal-to-insulator transition (MIT) induced by magnetic field in heavily-doped Nb:STO (SrNb0.2Ti0.8O3) epitaxial thin films. These phenomena are associated with the interplay between the large classical MR due to high carrier mobility and the electronic localization effect due to strong spin-orbit coupling, implying that heavily Nb-doped Sr(Nb0.2Ti0.8)O3 is promising for the application in spintronic devices.

  19. Large linear magnetoresistance in heavily-doped Nb:SrTiO3 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Jin, Hyunwoo; Lee, Keundong; Baek, Seung-Hyub; Kim, Jin-Sang; Cheong, Byung-Ki; Park, Bae Ho; Yoon, Sungwon; Suh, B. J.; Kim, Changyoung; Seo, S. S. A.; Lee, Suyoun

    2016-10-01

    Interaction between electrons has long been a focused topic in condensed-matter physics since it has led to the discoveries of astonishing phenomena, for example, high-Tc superconductivity and colossal magnetoresistance (CMR) in strongly-correlated materials. In the study of strongly-correlated perovskite oxides, Nb-doped SrTiO3 (Nb:SrTiO3) has been a workhorse not only as a conducting substrate, but also as a host possessing high carrier mobility. In this work, we report the observations of large linear magnetoresistance (LMR) and the metal-to-insulator transition (MIT) induced by magnetic field in heavily-doped Nb:STO (SrNb0.2Ti0.8O3) epitaxial thin films. These phenomena are associated with the interplay between the large classical MR due to high carrier mobility and the electronic localization effect due to strong spin-orbit coupling, implying that heavily Nb-doped Sr(Nb0.2Ti0.8)O3 is promising for the application in spintronic devices.

  20. Large linear magnetoresistance in heavily-doped Nb:SrTiO3 epitaxial thin films

    PubMed Central

    Jin, Hyunwoo; Lee, Keundong; Baek, Seung-Hyub; Kim, Jin-Sang; Cheong, Byung-ki; Park, Bae Ho; Yoon, Sungwon; Suh, B. J.; Kim, Changyoung; Seo, S. S. A.; Lee, Suyoun

    2016-01-01

    Interaction between electrons has long been a focused topic in condensed-matter physics since it has led to the discoveries of astonishing phenomena, for example, high-Tc superconductivity and colossal magnetoresistance (CMR) in strongly-correlated materials. In the study of strongly-correlated perovskite oxides, Nb-doped SrTiO3 (Nb:SrTiO3) has been a workhorse not only as a conducting substrate, but also as a host possessing high carrier mobility. In this work, we report the observations of large linear magnetoresistance (LMR) and the metal-to-insulator transition (MIT) induced by magnetic field in heavily-doped Nb:STO (SrNb0.2Ti0.8O3) epitaxial thin films. These phenomena are associated with the interplay between the large classical MR due to high carrier mobility and the electronic localization effect due to strong spin-orbit coupling, implying that heavily Nb-doped Sr(Nb0.2Ti0.8)O3 is promising for the application in spintronic devices. PMID:27703222

  1. Colossal Ultraviolet Photoresponsivity of Few-Layer Black Phosphorus.

    PubMed

    Wu, Jing; Koon, Gavin Kok Wai; Xiang, Du; Han, Cheng; Toh, Chee Tat; Kulkarni, Eeshan S; Verzhbitskiy, Ivan; Carvalho, Alexandra; Rodin, Aleksandr S; Koenig, Steven P; Eda, Goki; Chen, Wei; Neto, A H Castro; Özyilmaz, Barbaros

    2015-08-25

    Black phosphorus has an orthorhombic layered structure with a layer-dependent direct band gap from monolayer to bulk, making this material an emerging material for photodetection. Inspired by this and the recent excitement over this material, we studied the optoelectronics characteristics of high-quality, few-layer black phosphorus-based photodetectors over a wide spectrum ranging from near-ultraviolet (UV) to near-infrared (NIR). It is demonstrated for the first time that black phosphorus can be configured as an excellent UV photodetector with a specific detectivity ∼3 × 10(13) Jones. More critically, we found that the UV photoresponsivity can be significantly enhanced to ∼9 × 10(4) A W(-1) by applying a source-drain bias (VSD) of 3 V, which is the highest ever measured in any 2D material and 10(7) times higher than the previously reported value for black phosphorus. We attribute such a colossal UV photoresponsivity to the resonant-interband transition between two specially nested valence and conduction bands. These nested bands provide an unusually high density of states for highly efficient UV absorption due to the singularity of their nature.

  2. Colossal magnetocaloric effect in magneto-auxetic systems

    NASA Astrophysics Data System (ADS)

    Dudek, M. R.; Wojciechowski, K. W.; Grima, J. N.; Caruana-Gauci, R.; Dudek, K. K.

    2015-08-01

    We show that a mechanically driven magnetocaloric effect (MCE) in magneto-auxetic systems (MASs) in the vicinity of room temperature is possible and the effect can be colossal. Even at zero external magnetic field, the magnetic entropy change in this reversible process can be a few times larger in magnitude than in the case of the giant MCE discovered by Pecharsky and Gschneidner in Gd5(Si2Ge2). MAS represent a novel class of metamaterials having magnetic insertions embedded within a non-magnetic matrix which exhibits a negative Poisson’s ratio. The auxetic behaviour of the non-magnetic matrix may either enhance the magnetic ordering process or it may result in a transition to the disordered phase. In the MAS under consideration, a spin 1/2 system is chosen for the magnetic component and the well-known Onsager solution for the two-dimensional square lattice Ising model at zero external magnetic field is used to show that the isothermal change in magnetic entropy accompanying the auxetic behaviour can take a large value at room temperature. The practical importance of our findings is that MCE materials used in present engineering applications may be further enhanced by changing their geometry such that they exhibit auxetic behaviour.

  3. Giant enhancement of magnetocrystalline anisotropy in ultrathin manganite films via nanoscale 1D periodic depth modulation

    NASA Astrophysics Data System (ADS)

    Rajapitamahuni, Anil; Zhang, Le; Singh, Vijay; Burton, John; Koten, Mak; Shield, Jeffrey; Tsymbal, Evgeny; Hong, Xia

    We report a unusual giant enhancement of in-plane magnetocrystalline anisotropy (MCA) in ultrathin colossal magnetoresistive oxide films due to 1D nanoscale periodic depth modulation. High quality epitaxial thin films of La0.67Sr0.33MnO3 (LSMO) of thickness 6 nm were grown on (001) SrTiO3 substrates via off-axis radio frequency magnetron sputtering. The top 2 nm of LSMO films are patterned into periodic nano-stripes using e-beam lithography and reactive ion etching. The resulting structure consists of nano-stripes of 2 nm height and 100-200 nm width on top of a 4 nm thick continuous base layer. We employed planar Hall effect measurements to study the in-plane magnetic anisotropy of the unpatterned and nanopatterned films. The unpatterned films show a biaxial anisotropy with easy axis along [110]. The extracted anisotropy energy density is ~1.1 x 105 erg/cm3, comparable to previously reported values. In the nanopatterned films, a strong uniaxial anisotropy is developed along one of the biaxial easy axes. The corresponding anisotropy energy density is ~5.6 x 106 erg/cm3 within the nano-striped volume, comparable to that of Co. We attribute the observed uniaxial MCA to MnO6 octahedral rotations/tilts and the enhancement in the anisotropy energy density to the strain gradient within the nano-stripes.

  4. Sign reversal of junction magnetoresistance in p-La0.7Ca0.3MnO3/SiO2/n-Si heterostructure: a possibility in spintronics application.

    PubMed

    Giri, S K; Nath, T K

    2012-10-01

    We have fabricated a p-La0.7Ca0.3MnO3/SiO2/n-Si heterostructure, consisting of a p-type manganite (La0.7Ca0.3MnO3) and n-type Si with a interfacial layer of SiO2 with typical thickness of about 9 nm using pulsed laser deposition technique. The junction exhibits rectifying behavior over the temperature range of 10-300 K with rectification factor 52 at room temperature. Investigation on the electrical properties of p-La0.7Ca0.3MnO3/SiO2/n-Si heterostructure exhibits nonlinear J-V characteristics in a wide temperature range. A crossover from negative to positive junction magnetoresistance (JMR) is observed in p-La0.7Ca0.3MnO3/SiO2/n-Si heterostructure in current perpendicular to film plane (CPP) geometry. The temperature dependent sign of junction magnetoresistance of the heterojunction has been investigated carefully in details. It is found that the junction exhibits the positive junction magnetoresistance when the temperature is greater than the ferromagnetic to paramagnetic transition temperature (Tc) of the top highly spin-polarized half-metallic ferromagnetic La0.7Ca0.3MnO3 manganite film layer. The relation between junction magnetoresistance and external magnetic field is found to be of (delta rho/rho approximately equal alphaHbeta) type having both alpha and beta temperature dependent. We attribute the emergence of negative JMR at lower temperature (< Tc) and positive JMR at higher temperature (> Tc) to the quantum mechanical tunneling transport mechanism across the heterojunction. Our results might be very useful to fabricate artificial devices using the manganite-based heterojunction grown on single crystalline n-Si (100) in spintronics device applications.

  5. Giant tunneling magnetoresistance in silicene

    SciTech Connect

    Wang, Yu; Lou, Yiyi

    2013-11-14

    We have theoretically studied ballistic electron transport in silicene under the manipulation of a pair of ferromagnetic gate. Transport properties like transmission and conductance have been calculated by the standard transfer matrix method for parallel and antiparallel magnetization configurations. It is demonstrated here that, due to the stray field-induced wave-vector filtering effect, remarkable difference in configuration-dependent transport gives rise to a giant tunneling magnetoresistance. In combination with the peculiar buckled structure of silicene and its electric tunable energy gap, the receiving magnetoresistance can be efficiently modulated by the externally-tunable stray field, electrostatic potential, and staggered sublattice potential, providing some flexible strategies to construct silicene-based nanoelectronic device.

  6. Extraordinary magnetoresistance: sensing the future

    NASA Astrophysics Data System (ADS)

    Hewett, Thomas; Kusmartsev, Feodor

    2012-06-01

    Simulations utilising the finite element method (FEM) have been produced in order to investigate aspects of circular extraordinary magnetoresistance (EMR) devices. The effect of three specific features on the resultant magnetoresistance were investigated: the ratio of the metallic to semiconducting conductivities (σ M/σ S); the semiconductor mobility; and the introduction of an intermediate region at the semiconductormetal interface in order to simulate a contact resistance. In order to obtain a large EMR effect the conductivity ratio (σ M/σ S) is required to be larger than two orders of magnitude; below this critical value the resultant magnetoresistance effect is dramatically reduced. Large mobility semiconductors exhibit larger EMR values for a given field (below saturation) and reduce the magnetic field required to produce saturation of the magnetoresistance. This is due to a larger Hall angle produced at a given magnetic field and is consistent with the mechanism of the EMR effect. Since practical magnetic field sensors are required to operate at low magnetic fields, high mobility semiconductors are required in the production of more sensitive EMR sensors. The formation of a Schottky barrier at the semiconductor-metal interface has been modelled with the introduction of a contact resistance at the semiconductor-metal interface. Increasing values of contact resistance are found to reduce the EMR effect with it disappearing altogether for large values. This has been shown explicitly by looking at the current flow in the system and is consistent with the mechanism of the EMR effect. The interface resistance was used to fit the simulated model to existing experimental data. The best fit occurred with an interface with resistivity of 1.55×10-4 m (overestimate). The EMR effect holds great potential with regard to its future application to magnetic field sensors. The design of any such devices should incorporate high mobility materials (such as graphene) along

  7. Extraordinary magnetoresistance: sensing the future

    NASA Astrophysics Data System (ADS)

    Hewett, Thomas H.; Kusmartsev, Feodor V.

    2012-06-01

    Simulations utilising the finite element method (FEM) have been produced in order to investigate aspects of circular extraordinary magnetoresistance (EMR) devices. The effect of three specific features on the resultant magnetoresistance were investigated: the ratio of the metallic to semiconducting conductivities ( σ M / σ S ); the semiconductor mobility; and the introduction of an intermediate region at the semiconductormetal interface in order to simulate a contact resistance. In order to obtain a large EMR effect the conductivity ratio ( σ M / σ S ) is required to be larger than two orders of magnitude; below this critical value the resultant magnetoresistance effect is dramatically reduced. Large mobility semiconductors exhibit larger EMR values for a given field (below saturation) and reduce the magnetic field required to produce saturation of the magnetoresistance. This is due to a larger Hall angle produced at a given magnetic field and is consistent with the mechanism of the EMR effect. Since practical magnetic field sensors are required to operate at low magnetic fields, high mobility semiconductors are required in the production of more sensitive EMR sensors. The formation of a Schottky barrier at the semiconductor-metal interface has been modelled with the introduction of a contact resistance at the semiconductor-metal interface. Increasing values of contact resistance are found to reduce the EMR effect with it disappearing altogether for large values. This has been shown explicitly by looking at the current flow in the system and is consistent with the mechanism of the EMR effect. The interface resistance was used to fit the simulated model to existing experimental data. The best fit occurred with an interface with resistivity of 1.55×10-4 m (overestimate). The EMR effect holds great potential with regard to its future application to magnetic field sensors. The design of any such devices should incorporate high mobility materials (such as graphene

  8. Magnetoresistive sensors for string instruments

    NASA Astrophysics Data System (ADS)

    Lenssen, K.-M. H.; Somers, G. H. J.; van Zon, J. B. A. D.

    2002-05-01

    Pickup elements for string instruments, in particular for electric guitars, represent a new application area for magnetoresistive sensors. Recently we developed a sensor configuration with permanent magnets for this purpose. For the first experiments we used commercial anisotropic magnetoresistance sensors (Philips KMZ10) mounted on small ferrite bias magnets. Recently we equipped an electric guitar with prototypes comprising giant magnetoresistance (GMR) sensors. These prototype MR pickup elements showed several clear advantages compared to the presently commonly used inductive pickup units. They are much less sensitive to disturbing electromagnetic fields (>1000×at 5 kHz), mainly because their active sensor area is several orders of magnitude smaller (a few mm2 instead of cm2). Also the larger freedom in the choice of the permanent magnets (due to the larger sensitivity of the GMR elements) is advantageous: employing smaller magnets reduces the damping and thus significantly improves the sustain, the magnets can be less expensive and more stable magnet materials can be chosen so that aging effects are eliminated.

  9. Frequency dependence of organic magnetoresistance

    NASA Astrophysics Data System (ADS)

    Wang, Fujian; Rybicki, James; Lin, Ran; Hutchinson, Kent; Hou, Jia; Wohlgenannt, Markus

    2011-03-01

    Organic magnetoresistive (OMAR) devices show a large enough magnetoresistive response (typically 10%) for potential applications as magnetic field sensors. However, applications often require sensing high frequency magnetic fields, and the examination of the frequency-dependent magnetoresistive response is therefore required. Analysis of time constants that limit the frequency response may also shed light on the mechanism behind the OMAR effect, because different OMAR mechanisms occur at different time scales In our experiments, the AC magnetic field is supplied by a coil with a ferrite core which is driven by a function generator The AC magnet shows a frequency response that is almost flat up to 1MHz. We found that the OMAR frequency limit is about 10 kHz for a typical organic semiconductor device and at least 100 kHz for devices made from a doped polymer film. We also performed capacitance and conductance vs. frequency measurements to understand the origin of the observed limit frequencies. This work was supported by Army MURI under GrantNo. W911NF-08-1-0317 and NSF under Grant No. ECS 0725280.

  10. Spin transport in epitaxial magnetic manganite/ruthenate heterostructures with an LaMnO{sub 3} layer

    SciTech Connect

    Petrzhik, A. M. Ovsyannikov, G. A.; Shadrin, A. V.; Khaidukov, Yu. N.; Mustafa, L.

    2014-12-15

    Epitaxial La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/LaMnO{sub 3}/SrRuO{sub 3} (LSMO/LMO/SRO) heterostructures with an LMO layer 0–35 nm thick are grown by laser ablation on an NdGaO{sub 3} substrate at a high temperature. X-ray diffraction and transmission electron microscopy demonstrate sharp interfaces and epitaxial growth of the LSMO and SRO layers in the heterostructures at an LMO layer thickness of 0–35 nm. SQUID measurements of the magnetic moment of the heterostructures with an LMO layer and the data obtained with reflectometry of polarized neutrons show that the manganite LMO layer is a ferromagnet at a temperature below 150 K and strongly affects the magnetic moment of the heterostructures at low temperatures. The magnetoresistance of the mesostructure created from the heterostructure using lithography and ion etching decreases with increasing LMO layer thickness and weakly depends on the direction of an applied magnetic field. If the LMP layer is absent, a negative magnetoresistance is detected; it is likely to be caused by a negative magnetization of the SRO layer.

  11. Gate control of percolative conduction in strongly correlated manganite films.

    PubMed

    Hatano, Takafumi; Sheng, Zhigao; Nakamura, Masao; Nakano, Masaki; Kawasaki, Masashi; Iwasa, Yoshihiro; Tokura, Yoshinori

    2014-05-01

    Gate control of percolative conduction in a phase-separated manganite system is demonstrated in a field-effect transistor geometry, resulting in ambipolar switching from a metallic state to an insulating state.

  12. Colossal injection of catalyst atoms into silicon nanowires.

    PubMed

    Moutanabbir, Oussama; Isheim, Dieter; Blumtritt, Horst; Senz, Stephan; Pippel, Eckhard; Seidman, David N

    2013-04-04

    The incorporation of impurities during the growth of nanowires from the vapour phase alters their basic properties substantially, and this process is critical in an extended range of emerging nanometre-scale technologies. In particular, achieving precise control of the behaviour of group III and group V dopants has been a crucial step in the development of silicon (Si) nanowire-based devices. Recently it has been demonstrated that the use of aluminium (Al) as a growth catalyst, instead of the usual gold, also yields an effective p-type doping, thereby enabling a novel and efficient route to functionalizing Si nanowires. Besides the technological implications, this self-doping implies the detachment of Al from the catalyst and its injection into the growing nanowire, involving atomic-scale processes that are crucial for the fundamental understanding of the catalytic assembly of nanowires. Here we present an atomic-level, quantitative study of this phenomenon of catalyst dissolution by three-dimensional atom-by-atom mapping of individual Al-catalysed Si nanowires using highly focused ultraviolet-laser-assisted atom-probe tomography. Although the observed incorporation of the catalyst atoms into nanowires exceeds by orders of magnitude the equilibrium solid solubility and solid-solution concentrations in known non-equilibrium processes, the Al impurities are found to be homogeneously distributed in the nanowire and do not form precipitates or clusters. As well as the anticipated effect on the electrical properties, this kinetics-driven colossal injection also has direct implications for nanowire morphology. We discuss the observed strong deviation from equilibrium using a model of solute trapping at step edges, and identify the key growth parameters behind this phenomenon on the basis of a kinetic model of step-flow growth of nanowires. The control of this phenomenon provides opportunities to create a new class of nanoscale devices by precisely tailoring the shape and

  13. Multiple crossovers between positive and negative magnetoresistance versus field due to fragile spin structure in metallic GdPd3

    PubMed Central

    Pandey, Abhishek; Mazumdar, Chandan; Ranganathan, R.; Johnston, D. C.

    2017-01-01

    Studies on the phenomenon of magnetoresistance (MR) have produced intriguing and application-oriented outcomes for decades–colossal MR, giant MR and recently discovered extremely large MR of millions of percents in semimetals can be taken as examples. We report here the discovery of novel multiple sign changes versus applied magnetic field of the MR in the cubic intermetallic compound GdPd3. Our study shows that a very strong correlation between magnetic, electrical and magnetotransport properties is present in this compound. The magnetic structure in GdPd3 is highly fragile since applied magnetic fields of moderate strength significantly alter the spin arrangement within the system–a behavior that manifests itself in the oscillating MR. Intriguing magnetotransport characteristics of GdPd3 are appealing for field-sensitive device applications, especially if the MR oscillation could materialize at higher temperature by manipulating the magnetic interaction through perturbations caused by chemical substitutions. PMID:28211520

  14. Multiple crossovers between positive and negative magnetoresistance versus field due to fragile spin structure in metallic GdPd3

    NASA Astrophysics Data System (ADS)

    Pandey, Abhishek; Mazumdar, Chandan; Ranganathan, R.; Johnston, D. C.

    2017-02-01

    Studies on the phenomenon of magnetoresistance (MR) have produced intriguing and application-oriented outcomes for decades–colossal MR, giant MR and recently discovered extremely large MR of millions of percents in semimetals can be taken as examples. We report here the discovery of novel multiple sign changes versus applied magnetic field of the MR in the cubic intermetallic compound GdPd3. Our study shows that a very strong correlation between magnetic, electrical and magnetotransport properties is present in this compound. The magnetic structure in GdPd3 is highly fragile since applied magnetic fields of moderate strength significantly alter the spin arrangement within the system–a behavior that manifests itself in the oscillating MR. Intriguing magnetotransport characteristics of GdPd3 are appealing for field-sensitive device applications, especially if the MR oscillation could materialize at higher temperature by manipulating the magnetic interaction through perturbations caused by chemical substitutions.

  15. High-temperature magnetic anomalies in Sr-doped La manganite structures

    SciTech Connect

    Potter, C.D.; Swiatek, M.; Mitchell, J.F.; Hinks, D.G.; Jorgensen, J.D.; Bader, S.D.; Argyriou, D.N.

    1996-12-31

    The temperature dependence of the magnetization M, susceptibility {chi}, and magnetoresistance MR for 3 perovskite-variant manganite structures were studied: monoclinic (x=0.075) and orthorhombic (x=0. 125) La{sub 1-x}Sr{sub x}MnO{sub 3}, and tetragonal layered La{sub 2- 2x}Sr{sub 1+2x}Mn{sub 2}O{sub 7} (x=0.4) with x also indicating the nominal fraction of Mn{sup 4+}. In each case, evidence is found for unusual magnetic states at temperatures T above their primary magnetic transitions. In the first case, the high-T {chi} deviates from Curie-Weiss expectations, in the second case the MR extends to high T, and in the last, M and {chi} exhibit short-range anomalies at high T. This suggests that a key feature of these systems is the existence of multiple magnetic energy scales, independent of structure, dimensionality, or doping levels.

  16. Quantum criticality and DBI magneto-resistance

    NASA Astrophysics Data System (ADS)

    Kiritsis, Elias; Li, Li

    2017-03-01

    We use the DBI action from string theory and holography to study the magneto-resistance at quantum criticality with hyperscaling violation. We find and analyze a rich class of scaling behaviors for the magneto-resistance. A special case describes the scaling results found in pnictides by Hayers et al in 2014 (arXiv:1412.6484).

  17. Rashba-Edelstein Magnetoresistance in Metallic Heterostructures

    NASA Astrophysics Data System (ADS)

    Nakayama, Hiroyasu; Kanno, Yusuke; An, Hongyu; Tashiro, Takaharu; Haku, Satoshi; Nomura, Akiyo; Ando, Kazuya

    2016-09-01

    We report the observation of magnetoresistance originating from Rashba spin-orbit coupling (SOC) in a metallic heterostructure: the Rashba-Edelstein (RE) magnetoresistance. We show that the simultaneous action of the direct and inverse RE effects in a Bi /Ag /CoFeB trilayer couples current-induced spin accumulation to the electric resistance. The electric resistance changes with the magnetic-field angle, reminiscent of the spin Hall magnetoresistance, despite the fact that bulk SOC is not responsible for the magnetoresistance. We further found that, even when the magnetization is saturated, the resistance increases with increasing the magnetic-field strength, which is attributed to the Hanle magnetoresistance in this system.

  18. Frequency dependence of organic magnetoresistance

    NASA Astrophysics Data System (ADS)

    Wagemans, W.; Janssen, P.; van der Heijden, E. H. M.; Kemerink, M.; Koopmans, B.

    2010-09-01

    To identify the microscopic mechanisms of organic magnetoresistance (OMAR), the dependency on the frequency of the applied magnetic field is explored, which consists of a dc and ac component. The measured magnetoconductance decreases when the frequency is increased. The decrease is stronger for lower voltages, which is shown to be linked to the presence of a negative capacitance, as measured with admittance spectroscopy. The negative capacitance disappears when the frequency becomes comparable to the inverse transit time of the minority carriers. These results are in agreement with recent interpretations that magnetic field effects on minority carrier mobility dominate OMAR.

  19. Phase Stability of the Lanthanum Strontium Manganites

    NASA Astrophysics Data System (ADS)

    Zheng, Feng; Pederson, Larry

    1996-03-01

    Phase diagram and thermodynamic data of the La-Sr-Mn-O system has been studied. The ABO3 -type perovskite of this system is presently the preferred cathode material for application in solid oxide fuel cells. And the phase stability of the lanthanum strontium manganites at elevated temperature is vital to fuel cell operation. Measuring the electromotive force through solid galvanic cell (-) Air,Pt|SrF_2,SrO||CaF_2||La_1-xSr_xMnO_3,SrF_2|Pt,Air (+) and the like enable us to derive the strontium oxide activity and other thermodynamic parameters such as Gibbs free energy of reaction, etc, which help us to understand the materials in using.

  20. Charge Transfer in Iridate-Manganite Superlattices.

    PubMed

    Okamoto, Satoshi; Nichols, John; Sohn, Changhee; Kim, So Yeun; Noh, Tae Won; Lee, Ho Nyung

    2017-03-07

    Charge transfer in superlattices consisting of SrIrO3 and SrMnO3 is investigated using density functional theory. Despite the nearly identical work function and nonpolar interfaces between SrIrO3 and SrMnO3, rather large charge transfer was experimentally reported at the interface between them. Here, we report a microscopic model that captures the mechanism behind this phenomenon, providing a qualitative understanding of the experimental observation. This leads to unique strain dependence of such charge transfer in iridate-manganite superlattices. The predicted behavior is consistently verified by experiment with soft X-ray and optical spectroscopy. Our work thus demonstrates a new route to control electronic states in nonpolar oxide heterostructures.

  1. Structural domain walls in polar hexagonal manganites

    NASA Astrophysics Data System (ADS)

    Kumagai, Yu

    2014-03-01

    The domain structure in the multiferroic hexagonal manganites is currently intensely investigated, motivated by the observation of intriguing sixfold topological defects at their meeting points [Choi, T. et al,. Nature Mater. 9, 253 (2010).] and nanoscale electrical conductivity at the domain walls [Wu, W. et al., Phys. Rev. Lett. 108, 077203 (2012).; Meier, D. et al., Nature Mater. 11, 284 (2012).], as well as reports of coupling between ferroelectricity, magnetism and structural antiphase domains [Geng, Y. et al., Nano Lett. 12, 6055 (2012).]. The detailed structure of the domain walls, as well as the origin of such couplings, however, was previously not fully understood. In the present study, we have used first-principles density functional theory to calculate the structure and properties of the low-energy structural domain walls in the hexagonal manganites [Kumagai, Y. and Spaldin, N. A., Nature Commun. 4, 1540 (2013).]. We find that the lowest energy domain walls are atomically sharp, with {210}orientation, explaining the orientation of recently observed stripe domains and suggesting their topological protection [Chae, S. C. et al., Phys. Rev. Lett. 108, 167603 (2012).]. We also explain why ferroelectric domain walls are always simultaneously antiphase walls, propose a mechanism for ferroelectric switching through domain-wall motion, and suggest an atomistic structure for the cores of the sixfold topological defects. This work was supported by ETH Zurich, the European Research Council FP7 Advanced Grants program me (grant number 291151), the JSPS Postdoctoral Fellowships for Research Abroad, and the MEXT Elements Strategy Initiative to Form Core Research Center TIES.

  2. Nonlinear alternating current conduction in polycrystalline manganites

    SciTech Connect

    Ghosh, T. N.; Nandi, U. N.; Jana, D.; Dey, K.; Giri, S.

    2014-06-28

    The real part of ac conductance Σ(T, f) of yttrium-doped mixed-valent polycrystalline manganite systems La{sub 1−x−y}Y{sub y}Ca{sub x}MnO{sub 3} with x = 0.33 and 0.05 and y = 0.07 and iron doped LaMn{sub 1−x}Fe{sub x}O{sub 3} with x = 0.15 is measured as a function of frequency f by varying zero-frequency Ohmic conductance Σ{sub 0} by T. The former shows a metal-insulator transition, whereas the latter exhibits insulating character throughout the measured temperature range. At a fixed temperature T, Σ(T, f) remains almost constant to the value Σ{sub 0} up to a certain frequency, known as the onset frequency f{sub c} and increases from Σ{sub 0} as frequency is increased from f{sub c}. Scaled appropriately, the data for Σ(T, f) at different T fall on the same universal curve, indicating the existence of a general scaling formalism for the ac conductance. f{sub c} scales with Σ{sub 0} as f{sub c}∼Σ{sub 0}{sup x{sub f}}, where x{sub f} is the nonlinearity exponent characterising the onset. With the help of data for ac conduction, it is shown that x{sub f} is very much phase sensitive and can be used to characterize the different phases in a manganite system originated due to change in temperature or disorder. Scaling theories and existing theoretical models are used to analyze the results of ac conduction and the nonlinearity exponent x{sub f}.

  3. Griffiths phase and temporal effects in phase separated manganites

    NASA Astrophysics Data System (ADS)

    Krivoruchko, V. N.; Marchenko, M. A.

    2016-08-01

    Phenomenological description of relaxation phenomena in magnetic and transport properties of perovskite manganites has been presented. The approach is based on generalization of some hypotheses appropriate to the Preisach picture of magnetization process for half-metallic ferromagnets and on an assumption that in doped manganites the phase separated state exists near the magnetic ordering temperature. For systems with the percolation type of a ferromagnet-paramagnet transition, distinctive features in relaxation of magnetization and resistivity have been found. The relaxation is shown to be most pronounced near the transition temperature, and to be an approximately logarithmic function of time. The theoretical results replicate a broad spectrum of behavior observed experimentally on time dependence of magnetization and resistivity of CMR systems and allow a direct comparison with available experimental data. We propose an additional experimental test to distinguish between the percolation scenario of magnetic and transport transitions in doped manganites, and the ferromagnetic polaron picture. In particular, an anomalously slow relaxation to zero of the order parameter can be considered as a key feature of the Griffiths-like phase transition in doped manganites. It is also shown that a system with the Griffiths-like state will exhibit nonequilibrium aging and rejuvenation phenomena, which in many aspects resemble that of a spin glass. We hope that experimental observation of a set of time decay properties will provide a settlement of apparently conflicting results obtained for different characteristics of phase-separated manganites.

  4. Combustion Synthesis and Properties of Fine Particle Spinel Manganites

    NASA Astrophysics Data System (ADS)

    Dhas, N. Arul; Patil, K. C.

    1993-02-01

    Fine particle spinel manganites have been prepared by thermal decomposition of the precursors N2H5M1/3Mn2/3(N2H3COO)3 · H2O (M = Co and Ni) and M1/3 Mn2/3(N2H3COO)2 · 2H2O (M = Mg and Zn), as well as by the combustion of redox mixtures containing M(II) nitrate (M = Mg, Co, Ni, Cu, and Zn), Mn(II) nitrate, and maleic hydrazide (MH) in the required molar ratio. Both the precursor and redox mixtures undergo self-propagating, gas-producing, exothermic reactions once ignited at 250-375°C to yield corresponding manganites in less than 5 min. Formation of single phase products was confirmed by X-ray powder diffraction patterns. The manganites are of submicrometer size and have surface area in the range 20-76 m2/g.

  5. Visualization of a ferromagnetic metallic edge state in manganite strips.

    PubMed

    Du, Kai; Zhang, Kai; Dong, Shuai; Wei, Wengang; Shao, Jian; Niu, Jiebin; Chen, Jinjie; Zhu, Yinyan; Lin, Hanxuan; Yin, Xiaolu; Liou, Sy-Hwang; Yin, Lifeng; Shen, Jian

    2015-02-04

    Recently, broken symmetry effect induced edge states in two-dimensional electronic systems have attracted great attention. However, whether edge states may exist in strongly correlated oxides is not yet known. In this work, using perovskite manganites as prototype systems, we demonstrate that edge states do exist in strongly correlated oxides. Distinct appearance of ferromagnetic metallic phase is observed along the edge of manganite strips by magnetic force microscopy. The edge states have strong influence on the transport properties of the strips, leading to higher metal-insulator transition temperatures and lower resistivity in narrower strips. Model calculations show that the edge states are associated with the broken symmetry effect of the antiferromagnetic charge-ordered states in manganites. Besides providing a new understanding of the broken symmetry effect in complex oxides, our discoveries indicate that novel edge state physics may exist in strongly correlated oxides beyond the current two-dimensional electronic systems.

  6. Viscous magnetoresistance of correlated electron liquids

    NASA Astrophysics Data System (ADS)

    Levchenko, Alex; Xie, Hong-Yi; Andreev, A. V.

    2017-03-01

    We develop a theory of magnetoresistance of two-dimensional electron systems in a smooth disorder potential in the hydrodynamic regime. Our theory applies to two-dimensional semiconductor structures with strongly correlated carriers when the mean free path due to electron-electron collisions is sufficiently short. The dominant contribution to magnetoresistance arises from the modification of the flow pattern by the Lorentz force, rather than the magnetic field dependence of the kinetic coefficients of the electron liquid. The resulting magnetoresistance is positive and quadratic at weak fields. Although the resistivity is governed by both the viscosity and thermal conductivity of the electron fluid, the magnetoresistance is controlled by the viscosity only. This enables the extraction of viscosity of the electron liquid from magnetotransport measurements.

  7. Magnetoresistance in inhomogeneous graphene/metal hybrids

    NASA Astrophysics Data System (ADS)

    Moktadir, Zakaria; Mizuta, Hiroshi

    2013-02-01

    We investigate extraordinary magnetoresistance (EMR) of inhomogeneous graphene-metal hybrids using finite element modelling. Inhomogeneous graphene is a binary system made of electron and hole puddles. Two geometries of the embedded metallic structure were considered: circular and fishbone geometries. We found that the breaking of graphene into charge puddles weakens the magnetoresistance of the hybrid system compared to a homogeneous graphene-metal system. For a fixed value of the magnetic field, the magnetoresistance increases with decreasing area fraction occupied by electrons puddles. Fishbone geometry showed an enhanced magnetoresistance compared to circular geometry. The EMR is also investigated as a function of the contact resistance for the fishbone geometry where it was found that a minimal contact resistance is essential to obtain enhanced EMR in graphene-metal hybrid devices.

  8. Competing Mechanisms in Organic Magnetoresistance

    NASA Astrophysics Data System (ADS)

    Koopmans, Bert

    2013-03-01

    A surprisingly large ``organic magnetoresistance'' (OMAR) has been found in both polymers and small molecule organic semiconductors at relatively small applied magnetic fields (~ 5 mT) and at room temperature. Unlike spin-injection devices, where the occurrence of a finite spin polarization of the current is essential for measuring a finite magnetoresistance, OMAR is generally considered to be due to spin correlations between spin carrying particles in the organic material. Although the microscopic mechanisms of hyperfine field induced spin mixing are relatively well understood, it is still intensively debated which particles are involved and how they can affect the current in such a drastic manner. In this presentation recent developments and new insights as to the underlying physics are discussed. Quantitative models will be introduced, based on different pairs of particles and mechanisms, and giving rise to effects at a variety of field scales. It will be discussed how specific device physics causes a non-trivial relation between microscopic spin-dependent reactions and macroscopic device behaviour. Finally, it will be shown how comprehensive studies on especially engineered organic systems, including polymer-fullerene blends and molecular doping, can be used to pinpoint the relevance of different mechanisms in the complementary regimes. The experimentally observed linewidth, sign and amplitude of both ``high-field'' (>100 mT) and ``low-field'' (~ 5 mT) effects, as well as their bias voltage dependence display very pronounced features as a function of fullerene doping. They provide unique fingerprints for which mechanism is of relevance. After careful analysis, this allows for identification of three earlier proposed mechanisms, involving exciton-charge, electron-hole and bipolaron (polarons of like charge) reactions. Present activities are aiming at using this insight for tailoring OMAR response by design.

  9. Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Li, Huan-Huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-Tao; Tian, Yu-Feng; Yan, Shi-Shen; Lin, Zhao-Jun; Kang, Shi-Shou; Chen, Yan-Xue; Liu, Guo-Lei; Mei, Liang-Mo

    2015-09-01

    Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current voltage, and this rectification voltage strongly varies with the external magnetic field. We find that the rectification magnetoresistance in Al/Ge Schottky heterojunctions is as large as 250% at room temperature, which is greatly enhanced as compared with the conventional magnetoresistance of 70%. The findings of rectification magnetoresistance open the way to the new nonmagnetic Ge-based spintronics devices of large rectification magnetoresistance at ambient temperature under the alternating-current due to the simultaneous implementation of the rectification and magnetoresistance in the same devices.

  10. Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions

    PubMed Central

    Zhang, Kun; Li, Huan-huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-tao; Tian, Yu-feng; Yan, Shi-shen; Lin, Zhao-jun; Kang, Shi-shou; Chen, Yan-xue; Liu, Guo-lei; Mei, Liang-mo

    2015-01-01

    Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current voltage, and this rectification voltage strongly varies with the external magnetic field. We find that the rectification magnetoresistance in Al/Ge Schottky heterojunctions is as large as 250% at room temperature, which is greatly enhanced as compared with the conventional magnetoresistance of 70%. The findings of rectification magnetoresistance open the way to the new nonmagnetic Ge-based spintronics devices of large rectification magnetoresistance at ambient temperature under the alternating-current due to the simultaneous implementation of the rectification and magnetoresistance in the same devices. PMID:26387967

  11. Organic magnetoresistance based on hopping theory

    NASA Astrophysics Data System (ADS)

    Yang, Fu-Jiang; Xie, Shi-Jie

    2014-09-01

    For the organic magnetoresistance (OMAR) effect, we suggest a spin-related hopping of carriers (polarons) based on Marcus theory. The mobility of polarons is calculated with the master equation (ME) and then the magnetoresistance (MR) is obtained. The theoretical results are consistent with the experimental observation. Especially, the sign inversion of the MR under different driving bias voltages found in the experiment is predicted. Besides, the effects of molecule disorder, hyperfine interaction (HFI), polaron localization, and temperature on the MR are investigated.

  12. Giant magnetoresistance through a single molecule.

    PubMed

    Schmaus, Stefan; Bagrets, Alexei; Nahas, Yasmine; Yamada, Toyo K; Bork, Annika; Bowen, Martin; Beaurepaire, Eric; Evers, Ferdinand; Wulfhekel, Wulf

    2011-03-01

    Magnetoresistance is a change in the resistance of a material system caused by an applied magnetic field. Giant magnetoresistance occurs in structures containing ferromagnetic contacts separated by a metallic non-magnetic spacer, and is now the basis of read heads for hard drives and for new forms of random access memory. Using an insulator (for example, a molecular thin film) rather than a metal as the spacer gives rise to tunnelling magnetoresistance, which typically produces a larger change in resistance for a given magnetic field strength, but also yields higher resistances, which are a disadvantage for real device operation. Here, we demonstrate giant magnetoresistance across a single, non-magnetic hydrogen phthalocyanine molecule contacted by the ferromagnetic tip of a scanning tunnelling microscope. We measure the magnetoresistance to be 60% and the conductance to be 0.26G(0), where G(0) is the quantum of conductance. Theoretical analysis identifies spin-dependent hybridization of molecular and electrode orbitals as the cause of the large magnetoresistance.

  13. Seed layer technique for high quality epitaxial manganite films

    PubMed Central

    Graziosi, P.; Gambardella, A.; Calbucci, M.; O’Shea, K.; MacLaren, D. A.; Bergenti, I.; Homonnay, N.; Schmidt, G.; Pullini, D.; Busquets-Mataix, D.; Dediu, V.

    2016-01-01

    We introduce an innovative approach to the simultaneous control of growth mode and magnetotransport properties of manganite thin films, based on an easy-to-implement film/substrate interface engineering. The deposition of a manganite seed layer and the optimization of the substrate temperature allows a persistent bi-dimensional epitaxy and robust ferromagnetic properties at the same time. Structural measurements confirm that in such interface-engineered films, the optimal properties are related to improved epitaxy. A new growth scenario is envisaged, compatible with a shift from heteroepitaxy towards pseudo-homoepitaxy. Relevant growth parameters such as formation energy, roughening temperature, strain profile and chemical states are derived. PMID:27648371

  14. Seed layer technique for high quality epitaxial manganite films.

    PubMed

    Graziosi, P; Gambardella, A; Calbucci, M; O'Shea, K; MacLaren, D A; Riminucci, A; Bergenti, I; Fugattini, S; Prezioso, M; Homonnay, N; Schmidt, G; Pullini, D; Busquets-Mataix, D; Dediu, V

    2016-08-01

    We introduce an innovative approach to the simultaneous control of growth mode and magnetotransport properties of manganite thin films, based on an easy-to-implement film/substrate interface engineering. The deposition of a manganite seed layer and the optimization of the substrate temperature allows a persistent bi-dimensional epitaxy and robust ferromagnetic properties at the same time. Structural measurements confirm that in such interface-engineered films, the optimal properties are related to improved epitaxy. A new growth scenario is envisaged, compatible with a shift from heteroepitaxy towards pseudo-homoepitaxy. Relevant growth parameters such as formation energy, roughening temperature, strain profile and chemical states are derived.

  15. Seed layer technique for high quality epitaxial manganite films

    NASA Astrophysics Data System (ADS)

    Graziosi, P.; Gambardella, A.; Calbucci, M.; O'Shea, K.; MacLaren, D. A.; Riminucci, A.; Bergenti, I.; Fugattini, S.; Prezioso, M.; Homonnay, N.; Schmidt, G.; Pullini, D.; Busquets-Mataix, D.; Dediu, V.

    2016-08-01

    We introduce an innovative approach to the simultaneous control of growth mode and magnetotransport properties of manganite thin films, based on an easy-to-implement film/substrate interface engineering. The deposition of a manganite seed layer and the optimization of the substrate temperature allows a persistent bi-dimensional epitaxy and robust ferromagnetic properties at the same time. Structural measurements confirm that in such interface-engineered films, the optimal properties are related to improved epitaxy. A new growth scenario is envisaged, compatible with a shift from heteroepitaxy towards pseudo-homoepitaxy. Relevant growth parameters such as formation energy, roughening temperature, strain profile and chemical states are derived.

  16. The role of thermal coupling on avalanches in manganites.

    PubMed

    Macià, F; Abril, G; Hernandez, J M; Tejada, J

    2009-10-07

    We report here a study on the environmental dependence of the occurrence, at low temperature, of ultra-sharp field induced avalanches in phase separated manganites. Despite the high reproducibility of avalanches, it has already been observed that the critical fields shift with the magnetic field sweep rate and that different sample sizes lead to different ignition fields for the avalanches. Critical growing rates have been suggested to describe the avalanche ignition though the role of thermal coupling has hardly been considered. We qualitatively analyze here a set of experimental data on avalanches in manganites and discuss the role of thermal coupling as a key parameter of the instability in a dynamical system.

  17. Chemical Pressure Effects in Layered Manganites

    NASA Astrophysics Data System (ADS)

    Moritomo, Yutaka; Maruyama, Yousuke; Nakamura, Arao

    1998-03-01

    Lattice effects on the magnetic and transport properties have been investigated for layered-type doped mangaites. The insulator-to-metal transition temperature for La_1.2Sr_1.8Mn_2O7 (T_C=130 K) is significantly suppressed with chemical substitution of the trivalent La^3+ ions to smaller Nd^3+ (or Sm^3+) ions(Y. Moritomo et al), Phys. Rev. B56(1997)R7057. Similarly, the charge-ordering temperature for La_0.5Sr_1.5MnO4 (T_CO=230 K) is suppresses with chemical substitution(Y. Moritomo et al), Phys. Rev. B56, in press. Systematic x-ray as well as neutron diffraction measurements have revealed that above chemical pressure enhances the static Jahn-Teller distortion of the MnO6 octahedra in both the system. We will explain the suppressions of TC and T_CO in terms of the increasing d_3z^2-r^2 character in the occupied eg state. Our observation indicates that the chemical pressure effects are qualitatively different between the cubic and layered manganites systems. The authors are grateful to K. Ohoyama and M. Ohashi for their help in neutron diffraction measurements, and to S. Mori for his help in electron diffraction measurements. This work was supported by a Grant-In-Aid for Scientific Research from the Ministry of Education, Science, Sport and Culture and from PRESTO, Japan Scienece and Technology Corporation (JST), Japan.

  18. Designing new ferrite/manganite nanocomposites.

    PubMed

    Muscas, G; Anil Kumar, P; Barucca, G; Concas, G; Varvaro, G; Mathieu, R; Peddis, D

    2016-01-28

    Two kinds of nanocomposites of transition metal oxides were synthesized and investigated. Each nanocomposite comprises nanoparticles of La0.67Ca0.33MnO3 and CoFe2O4 in similar volume fractions, however arranged with different morphologies. The temperature-dependent magnetic and electrical properties of the two systems are found to greatly differ, suggesting different degrees of interaction and coupling of their constituents. This is confirmed by magnetic field-dependent experiments, which reveal contrasted magnetization reversal and magnetoresistance in the systems. We discuss this morphology-physical property relationship, and the possibility to further tune the magnetism and magneto-transport in such nanocomposites.

  19. Unconventional proximity effect and inverse spin-switch behavior in a model manganite-cuprate-manganite trilayer system

    SciTech Connect

    Salafranca Laforga, Juan I; Okamoto, Satoshi

    2010-01-01

    The proximity effect in a model manganite-cuprate system is investigated theoretically. We consider a situation in which spin-polarized electrons in manganite layers antiferromagnetically couple with electrons in cuprate layers as observed experimentally. The effect of the interfacial magnetic coupling is found to be much stronger than the injection of spin-polarized electrons into the cuprate region. As a result, the superconducting transition temperature depends on the thickness of the cuprate layer significantly. Since the magnetic coupling creates negative polarization, an applied magnetic field and the negative polarization compete, resulting in the inverse spin-switch behavior where the superconducting transition temperature is increased by applying a magnetic field.

  20. Unconventional proximity effect and inverse spin-switch behavior in a model manganite-cuprate-manganite trilayer system.

    PubMed

    Salafranca, Juan; Okamoto, Satoshi

    2010-12-17

    The proximity effect in a model manganite-cuprate system is investigated theoretically. We consider a situation in which spin-polarized electrons in manganite layers antiferromagnetically couple with electrons in cuprate layers as observed experimentally. The effect of the interfacial magnetic coupling is found to be much stronger than the injection of spin-polarized electrons into the cuprate region. As a result, the superconducting transition temperature depends on the thickness of the cuprate layer significantly. Since the magnetic coupling creates negative polarization, an applied magnetic field and the negative polarization compete, resulting in the inverse spin-switch behavior where the superconducting transition temperature is increased by applying a magnetic field.

  1. Spin relaxation signature of colossal magnetic anisotropy in platinum atomic chains

    NASA Astrophysics Data System (ADS)

    Bergman, Anders; Hellsvik, Johan; Bessarab, Pavel F.; Delin, Anna

    2016-11-01

    Recent experimental data demonstrate emerging magnetic order in platinum atomically thin nanowires. Furthermore, an unusual form of magnetic anisotropy - colossal magnetic anisotropy (CMA) - was earlier predicted to exist in atomically thin platinum nanowires. Using spin dynamics simulations based on first-principles calculations, we here explore the spin dynamics of atomically thin platinum wires to reveal the spin relaxation signature of colossal magnetic anisotropy, comparing it with other types of anisotropy such as uniaxial magnetic anisotropy (UMA). We find that the CMA alters the spin relaxation process distinctly and, most importantly, causes a large speed-up of the magnetic relaxation compared to uniaxial magnetic anisotropy. The magnetic behavior of the nanowire exhibiting CMA should be possible to identify experimentally at the nanosecond time scale for temperatures below 5 K. This time-scale is accessible in e.g., soft x-ray free electron laser experiments.

  2. Spin relaxation signature of colossal magnetic anisotropy in platinum atomic chains

    PubMed Central

    Bergman, Anders; Hellsvik, Johan; Bessarab, Pavel F.; Delin, Anna

    2016-01-01

    Recent experimental data demonstrate emerging magnetic order in platinum atomically thin nanowires. Furthermore, an unusual form of magnetic anisotropy – colossal magnetic anisotropy (CMA) – was earlier predicted to exist in atomically thin platinum nanowires. Using spin dynamics simulations based on first-principles calculations, we here explore the spin dynamics of atomically thin platinum wires to reveal the spin relaxation signature of colossal magnetic anisotropy, comparing it with other types of anisotropy such as uniaxial magnetic anisotropy (UMA). We find that the CMA alters the spin relaxation process distinctly and, most importantly, causes a large speed-up of the magnetic relaxation compared to uniaxial magnetic anisotropy. The magnetic behavior of the nanowire exhibiting CMA should be possible to identify experimentally at the nanosecond time scale for temperatures below 5 K. This time-scale is accessible in e.g., soft x-ray free electron laser experiments. PMID:27841287

  3. Ferromagnetic and antiferromagnetic orders of a phase-separated manganite probed throughout the B -T phase diagram

    NASA Astrophysics Data System (ADS)

    Windsor, Y. W.; Tanaka, Yoshikazu; Scagnoli, V.; Garganourakis, M.; de Souza, R. A.; Medarde, M.; Cheong, S.-W.; Staub, U.

    2016-12-01

    We employ resonant soft x-ray diffraction (RSXD) to isolate the signal from the CE-type antiferromagnetic phase of (La,Pr)1- xC axMn O3 (with x ≈3 /8 ), and follow only this phase through the known phases of the material in the B -T phase diagram. This material is known to exhibit a range of electronic ordering phenomena, most notably a metal-insulator transition (associated with colossal magnetoresistance) and phase separation between the antiferromagnetic phase and a ferromagnetic phase. Bulk magnetization measurements under the same B -T conditions were also conducted, giving a full picture of both phases for direct side-by-side comparison. The comparison specifically focuses on the metal-insulator transition. Upon magnetic field ramping to this transition, we find that the CE-type order undergoes a sharp quench at high temperatures (above phase coexistence temperatures) but that at lower temperatures, where the CE order is metastable, the transition broadens significantly. At the lowest temperatures, where a spin glass-type phase is expected, a slow annihilation of remanent CE domains is observed. Finally, a refined phase diagram is presented.

  4. Iron Manganites Synthesis by the Soft Chemistry Method

    DTIC Science & Technology

    2001-04-01

    Tailhades and Abel Rousset Centre Interuniversitaire de Recherche et d’Ingenierie des Materiaux , UMR CNRS 5085, LCMIE, Universite Paul Sabatier, 118... resistance effects have been found in similar spinel phases [4]. The aim of this work is to improve the synthesis of iron manganites Mn(3x)FexO 4, using

  5. Tunneling magnetoresistive heads for magnetic data storage.

    PubMed

    Mao, Sining

    2007-01-01

    Spintronics is emerging to be a new form of nanotechnologies, which utilizes not only the charge but also spin degree of freedom of electrons. Spin-dependent tunneling transport is one of the many kinds of physical phenomena involving spintronics, which has already found industrial applications. In this paper, we first provide a brief review on the basic physics and materials for magnetic tunnel junctions, followed more importantly by a detailed coverage on the application of magnetic tunneling devices in magnetic data storage. The use of tunneling magnetoresistive reading heads has helped to maintain a fast growth of areal density, which is one of the key advantages of hard disk drives as compared to solid-state memories. This review is focused on the first commercial tunneling magnetoresistive heads in the industry at an areal density of 80 approximately 100 Gbit/in2 for both laptop and desktop Seagate hard disk drive products using longitudinal media. The first generation tunneling magnetoresistive products utilized a bottom stack of tunnel junctions and an abutted hard bias design. The output signal amplitude of these heads was 3 times larger than that of comparable giant magnetoresistive devices, resulting in a 0.6 decade bit error rate gain over the latter. This has enabled high component and drive yields. Due to the improved thermal dissipation of vertical geometry, the tunneling magnetoresistive head runs cooler with a better lifetime performance, and has demonstrated similar electrical-static-discharge robustness as the giant magnetoresistive devices. It has also demonstrated equivalent or better process and wafer yields compared to the latter. The tunneling magnetoresistive heads are proven to be a mature and capable reader technology. Using the same head design in conjunction with perpendicular recording media, an areal density of 274 Gbit/in2 has been demonstrated, and advanced tunneling magnetoresistive heads can reach 311 Gbit/in2. Today, the

  6. Classical and quantum routes to linear magnetoresistance

    NASA Astrophysics Data System (ADS)

    Hu, Jingshi

    The transverse, positive magnetoresistance of suitably doped silver chalcogenides and indium antimonides changes linearly with magnetic field by thousands of percent, with no sign of saturation up to MegaGauss. A precise characterization of these unexpected observations has led to two very different, yet equally interesting magnetotransport mechanisms: the classical inhomogeneity-induced current jetting, and quantum linear magnetoresistance. The inhomogeneous distribution of excess/deficient silver atoms lies behind the anomalous magnetoresistive response of silver chalcogenides, introducing spatial conductivity fluctuations with length scales independent of the cyclotron radius. We show that a systematic investigation of the resistivity tensor in longitudinal field could be used to identify the spatial inhomogeneities and determine the associated length scale of the current distortion. By contrast, the linear magnetoresistance observed in single-crystalline InSb presents a spectacular manifestation of magnetotransport in the extreme quantum limit, when only one Landau band is partially filled. Harnessing both the classical and quantum effects opens the gate to artificial fabrication of conducting networks with micron scale unit size for enhanced magnetoresistive sensitivity.

  7. Observation of large thermoelectric power in charge ordered La1-xLixMnO3 (x = 0.25) manganite system

    NASA Astrophysics Data System (ADS)

    Taran, S.; Yang, H. D.

    2016-12-01

    In the present investigation detailed structural, electrical, magnetic and thermoelectric measurements on bulk samples of Li-doped La1-xLixMnO3+δ (0.05 ≤ x ≤ 0.3) manganites have been done. The samples are synthesized by wet-chemical mixing route and XRD analysis using Rietveld refinement revealed single phase behaviour upto Li-concentration x = 0.25. All the samples in the present series show ferromagnetic behaviour while metallic behaviour is shown by the samples upto Li concentration x = 0.2. Beyond x = 0.2 the sample (i.e., La0.75Li0.25MnO3) show insulating behaviour for the entire temperature range accompanied by charge-order transition around T = 225 K. The low temperature resistivity data are best fitted by ρ(T) = ρ0 + ρ4.5T 4.5 + C/sinh2(hυs/2kBT), where C is a constant. Such behaviour might be an indication of the small-polaron coherent motion which involves a relaxation due to a soft optical phonon mode that is strongly coupled to the carriers. Thermoelectric power (TEP) measurements reveal interesting results showing a colossal value of -340 μV/K around 25 K for the CO sample in the present series. The probable mechanism responsible for the observed large TEP has been discussed here.

  8. Giant Magneto-Resistance in Epitaxial (La0.7Sr0.3MnO3)0.5: (ZnO)0.5 Nanocomposites

    SciTech Connect

    Pan, Wei; Jiang, Y. X.; Ihlefeld, Jon; Lu, Ping; Lee, Stephen R.

    2015-12-01

    A great deal of research has been carried out in oxide material systems. Among them, ZnO and La0.7Sr0.3MnO3 (LSMO) are of particular interest due to their superb optical properties and colossal magneto-resistive effect. Here, we report our recent results of magneto-transport studies in self-assembled, epitaxial (ZnO)0.5:(La0.7Sr0.3MnO3)0.5 nanocomposite films.

  9. Enhanced magnetoresistance induced by oxygen deficiency in La{sub 0.4}Ca{sub 0.6}MnO{sub 3-δ} oxides

    SciTech Connect

    Triki, M. Dhahri, E.; Hlil, E. K.; Garden, J. L.

    2014-03-14

    We report electrical features and magnetoresistance behavior of the oxygen deficient La{sub 0.4}Ca{sub 0.6}MnO{sub 3-δ} perovskites (δ = 0, 0.15, and 0.2). These samples will be referred to as S0, S15, and S20, respectively. The dependence of electrical transport on temperature and magnetic field is systematically investigated between 2 K and 400 K in magnetic field ranging up to 5 T. The parent compound shows a stable charge ordering/antiferromagnetic state with a semiconductor-like behavior in all considered temperature range. The variable range hopping and thermally activated hopping models are found to fit well with the electrical resistivity data at low and high temperatures, respectively. Oxygen deficiency tends to weaken the charge ordering and induce ferromagnetism and metallicity at low temperature. Metal insulator transition appears at higher fields for lower oxygen deficit (S15 sample) and without field for the S20 sample. The resistivity data for S15 sample are discussed in the framework of the variable-range hopping model. Abnormal transport properties were observed in the S20 sample, characterized by the double metal-insulator transitions and low minimum behavior. These results are discussed in terms of phenomenological percolation model, based on the phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions. While the parent compound shows no magnetoresistance, a large magnetoresistance is observed in the deficient samples at low temperature reaching 90% and 75% at 2 T for S15 and S20 samples, respectively. Noticeably, these values reached 98% and 91% at 5 T. The appearance of colossal magnetoresistance is attributed to the spin dependent hopping between spin clusters and/or ferromagnetic domains.

  10. Spin Hall magnetoresistance at high temperatures

    SciTech Connect

    Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Iguchi, Ryo; Saitoh, Eiji

    2015-02-02

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y{sub 3}Fe{sub 5}O{sub 12} (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface.

  11. Magnetoresistive Sensors in Biological Assays

    NASA Astrophysics Data System (ADS)

    Tondra, Mark

    2010-03-01

    Magnetic beads or nanoparticles can be used as ``labels'' in biochemical assays by attaching the beads to the biospecies of interest using a bio-specific attachment. Once the labels are attached, they can be used to manipulate, capture, and detect the species to be analyzed. Magnetoresistive (MR) sensors may be used to detect and count these labels, and thus make an inference about the concentration of the species of interest. MR technology is especially promising for biosensor applications where making the detector small and integrated with related sample handling tools to form a ``lab-on-a-chip'' miniaturized system. The function of the MR sensors is to detect stray magnetic fields from the beads while they are exposed to a magnetic excitation field. Generally, the stray fields from beads and clusters of beads are complicated functions of geometry, so some care is required to relate the detected magnetic signal to the number and location of the bead labels. This presentation will begin with a broad overview of results from many groups working in this area. For convenience, the applications are divided into three categories, detection of: flowing magnetic beads, immobilized beads, and scanned samples. Next will be some discussion of how the choice of spintronic sensor technology might affect detection capabilities (AMR, GMR, TMR, Hall effect, etc). Then, challenges relating to integration of MR sensors into microfluidic products will be discussed. This is the focus of the presenter's current day-to-day work on developing and producing MR-based biosensors. And finally, a description of possible future avenues of study and development will be presented.

  12. Magnetic, electrical, magnetoelectrical, and magnetoelastic properties of La0.9Sr0.1MnO3 - y manganites

    NASA Astrophysics Data System (ADS)

    Koroleva, L. I.; Zashchirinskiĭ, D. M.; Khapaeva, T. M.; Gurskiĭ, L. I.; Kalanda, N. A.; Trukhan, V. M.; Szymczak, R.; Krzumanska, B.

    2010-01-01

    This paper reports on a study of the influence of oxygen deficiency on the magnetization, paramagnetic susceptibility, electrical resistivity, magnetoresistance, and volume magnetostriction of the La0.9Sr0.1MnO3 - y manganite with y = 0.03, 0.10, and 0.15. The magnetization M( T) behaves in a complex way with temperature; for T < 80 K, it only weakly depends on T, and at 80 ≤ T ≤ 300 K, the M( T) curve shows a falloff. Within the interval 240 K ≤ T ≤ 300 K, the long-range magnetic order breaks up into superparamagnetic clusters. For T < 80 K, the magnetic moment per formula unit is about one-fourth that which should be expected for complete ferromagnetic alignment of Mn ion moments. Although the composition with y = 0.03, in which part of acceptor centers is compensated by donors (oxygen vacancies), the negative magnetoresistance Δρ/ρ and volume magnetostriction ω are observed to pass through maxima near the Curie point, their values are one to two orders of magnitude smaller than those for the y = 0 composition. In compositions with y = 0.10 and 0.15 with electronic doping, the values of Δρ/ρ and ω are smaller by one to two orders of magnitude than those observed for the y = 0.03 composition. They do not display giant magnetoresistance and volume magnetostriction effects, which evidences the absence of ferrons near unionized oxygen vacancies. This allows the conclusion that the part played by both compensated and uncompensated doubly charged donors consists in forming dangling Mn-O-Mn bonds, which lead to a decrease in the Curie temperature with increasing y and to the formation above it of superparamagnetic clusters of the nonferron type.

  13. Monte Carlo calculations of the magnetoresistance in magnetic multilayer structures with giant magnetoresistance effects

    NASA Astrophysics Data System (ADS)

    Prudnikov, V. V.; Prudnikov, P. V.; Romanovskiy, D. E.

    2016-06-01

    A Monte Carlo study of trilayer and spin-valve magnetic structures with giant magnetoresistance effects is carried out. The anisotropic Heisenberg model is used for description of magnetic properties of ultrathin ferromagnetic films forming these structures. The temperature and magnetic field dependences of magnetic characteristics are considered for ferromagnetic and antiferromagnetic configurations of these multilayer structures. The methodology for determination of the magnetoresistance by the Monte Carlo method is introduced; this permits us to calculate the magnetoresistance of multilayer structures for different thicknesses of the ferromagnetic films. The calculated temperature dependence of the magnetoresistance agrees very well with the experimental results measured for the Fe(0 0 1)-Cr(0 0 1) multilayer structure and CFAS-Ag-CFAS-IrMn spin-valve structure based on the half-metallic Heusler alloy Co2FeAl0.5Si0.5.

  14. Transient electronic structure of the photoinduced phase of Pr0.7Ca0.3MnO3 probed with soft x-ray pulses

    SciTech Connect

    Rini, M.; Zhu, Y.; Wall, S.; Tobey, R. I.; Ehrke, H.; Garl, T.; Freeland, J. W.; Tomioka, Y.; Tokura, Y.; Cavalleri, A.; Schoenlein, R. W.

    2009-04-01

    We use time-resolved x-ray absorption near-edge structure spectroscopy to investigate the electronic dynamics associated with the photoinduced insulator-to-metal phase transition in the colossal magnetoresistive manganite Pr{sub 0.7}Ca{sub 0.3}MnO{sub 3}. Absorption changes at the O K and Mn L edges directly monitor the evolution of the density of unoccupied states in the transient photoinduced phase. We show that the electronic structure of the photoinduced phase is remarkably similar to that of the ferromagnetic metallic phase reached in related manganites upon cooling below the Curie temperature.

  15. Nonlocal quartic interactions and universality classes in perovskite manganites.

    PubMed

    Singh, Rohit; Dutta, Kishore; Nandy, Malay K

    2015-07-01

    A modified Ginzburg-Landau model with a screened nonlocal interaction in the quartic term is treated via Wilson's renormalization-group scheme at one-loop order to explore the critical behavior of the paramagnetic-to-ferromagnetic phase transition in perovskite manganites. We find the Fisher exponent η to be O(ε) and the correlation exponent to be ν=1/2+O(ε) through epsilon expansion in the parameter ε=d(c)-d, where d is the space dimension, d(c)=4+2σ is the upper critical dimension, and σ is a parameter coming from the nonlocal interaction in the model Hamiltonian. The ensuing critical exponents in three dimensions for different values of σ compare well with various existing experimental estimates for perovskite manganites with various doping levels. This suggests that the nonlocal model Hamiltonian contains a wide variety of such universality classes.

  16. Novel Resistive Switching Behavior in Phase Separated Manganites

    NASA Astrophysics Data System (ADS)

    Guo, Hangwen; Ward, T. Zac; Sun, Dali; Snijders, Paul C.; Gai, Zheng; Shen, Jian

    2011-03-01

    Electronic phase separation plays a key role in many novel phenomena in complex materials. Manganites are a prime example of this class of materials and have recently come under increase scrutiny for possible application in resistive random-access memory (RRAM) technology. Here, we will discuss our recent work on spatially confined La5/8-xPrxCa3/8MnO3. We have discovered that it is possible to drive single electronic domain formation/annihilation through electric field pulsing. By measuring the I-V curve, we find such resistive switching is different from normal RRAM mechanisms in manganites and is closely related to the nature of electronic phase separation. These findings open these systems to a new understanding of the nature of electronic phase separation and begin the development of manganites for future applications in RRAM devices. Research sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy.

  17. Electroresistance and field effect studies on manganite based heterostructure

    SciTech Connect

    Solanki, P. S.; Khachar, Uma; Vagadia, Megha; Ravalia, Ashish; Katba, Savan; Kuberkar, D. G.

    2015-04-14

    Electronic properties of manganites are significantly important for various spintronic applications such as microelectronics, magnetic data storage, communication technologies, and memory devices. Influence of applied electric field on the room temperature charge transport in ZnO/La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrNb{sub 0.002}Ti{sub 0.998}O{sub 3} (SNTO) heterostructure has been investigated using field effect studies. Large negative and positive electroresistance has been observed in heterostructure under various possible circuit geometries. Field effect studies have been carried out using three different circuit geometries, namely: (i) ZnO as a control electrode (E{sub LZ}), (ii) SNTO as a control electrode (E{sub LS}), and (iii) shorted ZnO and SNTO as control electrodes (E{sub LZS}). For this, channel electric field (E{sub CH}) dependent variation in channel resistance (R{sub C}) (of manganite channel) and I-V (across manganite channel) under various control fields (E{sub C}) have been studied. Variation in barrier height (Φ{sub B}) with control field (E{sub C}) for different geometries has been discussed.

  18. Metastability and inverse magnetocaloric effect in doped manganite (Nd(0.25)Sm(0.25)Sr(0.5)MnO3) and ferromagnetic shape memory alloy (Ni2Mn(1.36)Sn(0.64)): a comparison.

    PubMed

    Chatterjee, S; Giri, S; Majumdar, S

    2012-09-12

    The manganite Nd(0.25)Sm(0.25)Sr(0.5)MnO(3) (NSSMO) shows a first-order metal to insulator transition on cooling, which is concomitant with a magnetic transition from the ferromagnetic to antiferromagnetic state. In some respect the sample shows a striking similarity with Ni-Mn-Sn based ferromagnetic shape memory alloys (FSMAs) undergoing a first-order magneto-structural transition, and efforts have been made to highlight the similarities and dissimilarities of the studied manganite with one such FSMA of composition Ni(2)Mn(1.36)Sn(0.64). From our transport and magnetic investigations, the region of transition in the NSSMO is found to be highly metastable, with a clear indication of a magnetically arrested state which persists even when the sample is cooled down to the lowest temperature of measurement. Interestingly, the studied manganite shows an inverse magnetocaloric effect similar to the FSMA. However, a striking difference between the two compositions is evident in the low-temperature magneto-transport behavior: while a clear signature of tunneling magnetoresistance is present in NSSMO due to the coexisting metallic and insulating clusters of nanometer dimension, the studied FSMA do not show such behavior due to the absence of any insulating phase in the intermetallic alloy.

  19. Magnetoresistive system with concentric ferromagnetic asymmetric nanorings

    SciTech Connect

    Avila, J. I. Tumelero, M. A.; Pasa, A. A.; Viegas, A. D. C.

    2015-03-14

    A structure consisting of two concentric asymmetric nanorings, each displaying vortex remanent states, is studied with micromagnetic calculations. By orienting in suitable directions, both the asymmetry of the rings and a uniform magnetic field, the vortices chiralities can be switched from parallel to antiparallel, obtaining in this way the analogue of the ferromagnetic and antiferromagnetic configurations found in bar magnets pairs. Conditions on the thickness of single rings to obtain vortex states, as well as formulas for their remanent magnetization are given. The concentric ring structure enables the creation of magnetoresistive systems comprising the qualities of magnetic nanorings, such as low stray fields and high stability. A possible application is as contacts in spin injection in semiconductors, and estimations obtained here of magnetoresistance change for a cylindrical spin injection based device show significant variations comparable to linear geometries.

  20. Dirac State in Giant Magnetoresistive Materials

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Jo, N. H.; Ochi, M.; Huang, L.; Mou, D.; Kong, T.; Mun, E.; Wang, L.; Lee, Y.; Bud'Ko, S. L.; Canfield, P. C.; Trivedi, N.; Arito, R.; Kaminski, A.

    We use ultrahigh resolution, tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy (ARPES) to study the electronic properties of materials that recently were discovered to display titanic magnetoresistance. We find that that several of these materials have Dirac-like features in their band structure. In some materials those features are ``ordinary'' Dirac cones, while in others the linear Dirac dispersion of two crossing bands forms a linear object in 3D momentum space. Our observation poses an important question about the role of Dirac dispersion in the unusually high, non-saturating magnetoresistance of these materials. Research was supported by the US DOE, Office of Basic Energy Sciences under Contract No. DE-AC02-07CH11358; Gordon and Betty Moore Foundation EPiQS Initiative (Grant No. GBMF4411); CEM, a NSF MRSEC, under Grant No. DMR-1420451.

  1. Ultra-Sensitive Magnetoresistive Displacement Sensing Device

    NASA Technical Reports Server (NTRS)

    Olivas, John D. (Inventor); Lairson, Bruce M. (Inventor); Ramesham, Rajeshuni (Inventor)

    2003-01-01

    An ultrasensitive displacement sensing device for use in accelerometers, pressure gauges, temperature transducers, and the like, comprises a sputter deposited, multilayer, magnetoresistive field sensor with a variable electrical resistance based on an imposed magnetic field. The device detects displacement by sensing changes in the local magnetic field about the magnetoresistive field sensor caused by the displacement of a hard magnetic film on a movable microstructure. The microstructure, which may be a cantilever, membrane, bridge, or other microelement, moves under the influence of an acceleration a known displacement predicted by the configuration and materials selected, and the resulting change in the electrical resistance of the MR sensor can be used to calculate the displacement. Using a micromachining approach, very thin silicon and silicon nitride membranes are fabricated in one preferred embodiment by means of anisotropic etching of silicon wafers. Other approaches include reactive ion etching of silicon on insulator (SOI), or Low Pressure Chemical Vapor Deposition of silicon nitride films over silicon substrates. The device is found to be improved with the use of giant magnetoresistive elements to detect changes in the local magnetic field.

  2. Multiple crossovers between positive and negative magnetoresistance versus field due to fragile spin structure in metallic GdPd3 [Oscillating magnetoresistance due to fragile spin structure in metallic GdPd3

    DOE PAGES

    Pandey, Abhishek; Mazumdar, Chandan; Ranganathan, R.; ...

    2017-02-17

    Here, studies on the phenomenon of magnetoresistance (MR) have produced intriguing and application-oriented outcomes for decades–colossal MR, giant MR and recently discovered extremely large MR of millions of percents in semimetals can be taken as examples. We report here the discovery of novel multiple sign changes versus applied magnetic field of the MR in the cubic intermetallic compound GdPd3. Our study shows that a very strong correlation between magnetic, electrical and magnetotransport properties is present in this compound. The magnetic structure in GdPd3 is highly fragile since applied magnetic fields of moderate strength significantly alter the spin arrangement within themore » system–a behavior that manifests itself in the oscillating MR. Intriguing magnetotransport characteristics of GdPd3 are appealing for field-sensitive device applications, especially if the MR oscillation could materialize at higher temperature by manipulating the magnetic interaction through perturbations caused by chemical substitutions.« less

  3. Magnetoresistive phenomena in nanoscale magnetic systems

    NASA Astrophysics Data System (ADS)

    Burton, John D.

    Nanomagnetic materials are playing an increasingly important role in modern technologies. A particular area of interest involves the interplay between magnetism and electric transport, i.e. magnetoresistive properties. Future generations of field sensors and memory elements will have to be on a length scale of a few nanometers or smaller. Magnetoresistive properties of such nanoscale objects exhibit novel features due to reduced dimensionality, complex surfaces and interfaces, and quantum effects. In this dissertation theoretical aspects of three such nanoscale magnetoresistive phenomena are discussed. Very narrow magnetic domain walls can strongly scatter electrons leading to an increased resistance. Specifically, this dissertation will cover the newly predicted effect of magnetic moment softening in magnetic nanocontacts or nanowires. Atomically thin domain walls in Ni exhibit a reduction, or softening, of the local magnetic moments due to the noncollinearity of the magnetization. This effect leads to a strong enhancement of the resistance of a domain wall. Magnetic tunnel junctions (MTJs) consist of two ferromagnetic electrodes separated by a thin layer of insulating material through which current can be carried by electron tunneling. The resistance of an MTJ depends on the relative orientation of the magnetization of the two ferromagnetic layers, an effect known as tunneling magnetoresistance (TMR). A first-principles analysis of CoFeB|MgO|CoFeB MTJs will be presented. Calculations reveal that it is energetically favorable for interstitial boron atoms to reside at the interface between the electrode and MgO tunneling barrier, which can be detrimental to the TMR effect. Anisotropic magnetoresistance (AMR) is the change in resistance of a ferromagnetic system as the orientation of the magnetization is altered. In this dissertation, the focus will be on AMR in the tunneling regime. Specifically we will present new theoretical results on tunneling AMR (TAMR) in two

  4. Manipulation of ferroelectric vortex domains in hexagonal manganites

    NASA Astrophysics Data System (ADS)

    Lilienblum, M.; Soergel, E.; Fiebig, M.

    2011-09-01

    The modification of ferroelectric vortex domain patterns in hexagonal manganites (here exemplified by YMnO3 and HoMnO3) owing to chemical treatment, thermal annealing, and local electric-field poling is investigated by piezoresponse force microscopy. Chemical treatment transfers the domain pattern into a topographical pattern by domain selective etching. Thermal annealing alters the domain pattern without any sign of temperature memory effects. Local electric fields affect the domain structure with possible signs of electric memory effects. These observations are important for future investigations of the microscopic mechanisms and macroscopic parameters defining the formation of ferroelectric domains in this unusual multiferroic.

  5. Driving magnetic order in a manganite by ultrafast lattice excitation.

    SciTech Connect

    Forst, M.; Tobey, R. I.; Wall, S.; Bromberger, H.; Khanna, V.; Cavalieri, A. L.; Chuang, Y.-D.; Lee, W. S.; Moore, R.; Schlotter, W. F.; Turner, J. J.; Krupin, O.; Trigo, M.; Zheng, H.; Mitchell, J. F.; Dhesi, S. S.; Hill, J. P.; Cavalleri, A.

    2011-01-01

    Femtosecond midinfrared pulses are used to directly excite the lattice of the single-layer manganite La{sub 0.5}Sr{sub 1.5}MnO{sub 4}. Magnetic and orbital orders, as measured by femtosecond resonant soft x-ray diffraction with an x-ray free-electron laser, are reduced within a few picoseconds. This effect is interpreted as a displacive exchange quench, a prompt shift in the equilibrium value of the magnetic- and orbital-order parameters after the lattice has been distorted. Control of magnetism through ultrafast lattice excitation may be of use for high-speed optomagnetism.

  6. Coexistence of colossal stress and texture gradients in sputter deposited nanocrystalline ultra-thin metal films

    SciTech Connect

    Kuru, Yener; Welzel, Udo; Mittemeijer, Eric J.

    2014-12-01

    This paper demonstrates experimentally that ultra-thin, nanocrystalline films can exhibit coexisting colossal stress and texture depth gradients. Their quantitative determination is possible by X-ray diffraction experiments. Whereas a uniform texture by itself is known to generally cause curvature in so-called sin{sup 2}ψ plots, it is shown that the combined action of texture and stress gradients provides a separate source of curvature in sin{sup 2}ψ plots (i.e., even in cases where a uniform texture does not induce such curvature). On this basis, the texture and stress depth profiles of a nanocrystalline, ultra-thin (50 nm) tungsten film could be determined.

  7. Colossal Aggregations of Giant Alien Freshwater Fish as a Potential Biogeochemical Hotspot

    PubMed Central

    Boulêtreau, Stéphanie; Cucherousset, Julien; Villéger, Sébastien; Masson, Rémi; Santoul, Frédéric

    2011-01-01

    The ubiquity and fascinating nature of animal aggregations are widely recognised. We report here consistent and previously undocumented occurences of aggregations of a giant alien freshwater fish, the Wels catfish (Silurus glanis). Aggregative groups were on average composed of 25 (±10 SD, ranging from 15 to 44) adults with estimated average total biomass of 651 kg (386 – 1132) and biomass density of 23 kg m−2 (14 – 40). Aggregations always occurred within the same location. No foraging, reproductive or anti-predator behaviour were observed during the aggregations. A mass-balance model estimated that these colossal aggregations of an alien species can locally release, through excretion only, up to 70 mg P m−2 h−1 and 400 mg N m−2 h−1, potentially representing the highest biogeochemical hotspots reported in freshwater ecosystems and another unexpected ecological effect of alien species. PMID:21998687

  8. Crystalline Structure, Defect Chemistry and Room Temperature Colossal Permittivity of Nd-doped Barium Titanate

    NASA Astrophysics Data System (ADS)

    Sun, Qiaomei; Gu, Qilin; Zhu, Kongjun; Jin, Rongying; Liu, Jinsong; Wang, Jing; Qiu, Jinhao

    2017-02-01

    Dielectric materials with high permittivity are strongly demanded for various technological applications. While polarization inherently exists in ferroelectric barium titanate (BaTiO3), its high permittivity can only be achieved by chemical and/or structural modification. Here, we report the room-temperature colossal permittivity (~760,000) obtained in xNd: BaTiO3 (x = 0.5 mol%) ceramics derived from the counterpart nanoparticles followed by conventional pressureless sintering process. Through the systematic analysis of chemical composition, crystalline structure and defect chemistry, the substitution mechanism involving the occupation of Nd3+ in Ba2+ -site associated with the generation of Ba vacancies and oxygen vacancies for charge compensation has been firstly demonstrated. The present study serves as a precedent and fundamental step toward further improvement of the permittivity of BaTiO3-based ceramics.

  9. Colossal dielectric constant and relaxation behaviors in Pr:SrTiO{sub 3} ceramics

    SciTech Connect

    Liu Cheng; Liu Peng; Zhou Jianping; Su Lina; Cao Lei; He Ying; Zhang Huaiwu

    2010-05-15

    Sr{sub 1-x}Pr{sub x}TiO{sub 3} ceramics (0.00{<=}x{<=}0.03) were prepared by a traditional solid-state reaction method. Two relaxation processes (marked as A and B) of the Sr{sub 0.09}Pr{sub 0.01}TiO{sub 3} ceramics were investigated by analyzing the E{sub a} values obtained from the Arrhenius law. Colossal dielectric constant (CDC) was first obtained in Sr{sub 0.09}Pr{sub 0.01}TiO{sub 3} ceramics, whose permittivity was up to 3000 (1 kHz, room temperature), greater than that of pure SrTiO{sub 3} ceramics and samples with more Pr addition (x=0.02 and 0.03). This CDC behavior was related to the internal barrier layer capacitance mechanism.

  10. Crystalline Structure, Defect Chemistry and Room Temperature Colossal Permittivity of Nd-doped Barium Titanate

    PubMed Central

    Sun, Qiaomei; Gu, Qilin; Zhu, Kongjun; Jin, Rongying; Liu, Jinsong; Wang, Jing; Qiu, Jinhao

    2017-01-01

    Dielectric materials with high permittivity are strongly demanded for various technological applications. While polarization inherently exists in ferroelectric barium titanate (BaTiO3), its high permittivity can only be achieved by chemical and/or structural modification. Here, we report the room-temperature colossal permittivity (~760,000) obtained in xNd: BaTiO3 (x = 0.5 mol%) ceramics derived from the counterpart nanoparticles followed by conventional pressureless sintering process. Through the systematic analysis of chemical composition, crystalline structure and defect chemistry, the substitution mechanism involving the occupation of Nd3+ in Ba2+ -site associated with the generation of Ba vacancies and oxygen vacancies for charge compensation has been firstly demonstrated. The present study serves as a precedent and fundamental step toward further improvement of the permittivity of BaTiO3-based ceramics. PMID:28205559

  11. Crystalline Structure, Defect Chemistry and Room Temperature Colossal Permittivity of Nd-doped Barium Titanate.

    PubMed

    Sun, Qiaomei; Gu, Qilin; Zhu, Kongjun; Jin, Rongying; Liu, Jinsong; Wang, Jing; Qiu, Jinhao

    2017-02-13

    Dielectric materials with high permittivity are strongly demanded for various technological applications. While polarization inherently exists in ferroelectric barium titanate (BaTiO3), its high permittivity can only be achieved by chemical and/or structural modification. Here, we report the room-temperature colossal permittivity (~760,000) obtained in xNd: BaTiO3 (x = 0.5 mol%) ceramics derived from the counterpart nanoparticles followed by conventional pressureless sintering process. Through the systematic analysis of chemical composition, crystalline structure and defect chemistry, the substitution mechanism involving the occupation of Nd(3+) in Ba(2+) -site associated with the generation of Ba vacancies and oxygen vacancies for charge compensation has been firstly demonstrated. The present study serves as a precedent and fundamental step toward further improvement of the permittivity of BaTiO3-based ceramics.

  12. Colossal aggregations of giant alien freshwater fish as a potential biogeochemical hotspot.

    PubMed

    Boulêtreau, Stéphanie; Cucherousset, Julien; Villéger, Sébastien; Masson, Rémi; Santoul, Frédéric

    2011-01-01

    The ubiquity and fascinating nature of animal aggregations are widely recognised. We report here consistent and previously undocumented occurences of aggregations of a giant alien freshwater fish, the Wels catfish (Silurus glanis). Aggregative groups were on average composed of 25 (± 10 SD, ranging from 15 to 44) adults with estimated average total biomass of 651 kg (386 - 1132) and biomass density of 23 kg m(-2) (14 - 40). Aggregations always occurred within the same location. No foraging, reproductive or anti-predator behaviour were observed during the aggregations. A mass-balance model estimated that these colossal aggregations of an alien species can locally release, through excretion only, up to 70 mg P m(-2) h(-1) and 400 mg N m(-2) h(-1), potentially representing the highest biogeochemical hotspots reported in freshwater ecosystems and another unexpected ecological effect of alien species.

  13. Magnetically-driven colossal supercurrent enhancement in InAs nanowire Josephson junctions.

    PubMed

    Tiira, J; Strambini, E; Amado, M; Roddaro, S; San-Jose, P; Aguado, R; Bergeret, F S; Ercolani, D; Sorba, L; Giazotto, F

    2017-04-12

    The Josephson effect is a fundamental quantum phenomenon where a dissipationless supercurrent is introduced in a weak link between two superconducting electrodes by Andreev reflections. The physical details and topology of the junction drastically modify the properties of the supercurrent and a strong enhancement of the critical supercurrent is expected to occur when the topology of the junction allows an emergence of Majorana bound states. Here we report charge transport measurements in mesoscopic Josephson junctions formed by InAs nanowires and Ti/Al superconducting leads. Our main observation is a colossal enhancement of the critical supercurrent induced by an external magnetic field applied perpendicular to the substrate. This striking and anomalous supercurrent enhancement cannot be described by any known conventional phenomenon of Josephson junctions. We consider these results in the context of topological superconductivity, and show that the observed critical supercurrent enhancement is compatible with a magnetic field-induced topological transition.

  14. Dramatically decreased magnetoresistance in non-stoichiometric WTe2 crystals

    NASA Astrophysics Data System (ADS)

    Lv, Yang-Yang; Zhang, Bin-Bin; Li, Xiao; Pang, Bin; Zhang, Fan; Lin, Da-Jun; Zhou, Jian; Yao, Shu-Hua; Chen, Y. B.; Zhang, Shan-Tao; Lu, Minghui; Liu, Zhongkai; Chen, Yulin; Chen, Yan-Feng

    2016-05-01

    Recently, the layered semimetal WTe2 has attracted renewed interest owing to the observation of a non-saturating and giant positive magnetoresistance (~105%), which can be useful for magnetic memory and spintronic devices. However, the underlying mechanisms of the giant magnetoresistance are still under hot debate. Herein, we grew the stoichiometric and non-stoichiometric WTe2 crystals to test the robustness of giant magnetoresistance. The stoichiometric WTe2 crystals have magnetoresistance as large as 3100% at 2 K and 9-Tesla magnetic field. However, only 71% and 13% magnetoresistance in the most non-stoichiometry (WTe1.80) and the highest Mo isovalent substitution samples (W0.7Mo0.3Te2) are observed, respectively. Analysis of the magnetic-field dependent magnetoresistance of non-stoichiometric WTe2 crystals substantiates that both the large electron-hole concentration asymmetry and decreased carrier mobility, induced by non-stoichiometry, synergistically lead to the decreased magnetoresistance. This work sheds more light on the origin of giant magnetoresistance observed in WTe2.

  15. Hall effect and magnetoresistivity in the ternary molybdenum sulfides

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Haugland, E. J.; Alterovitz, S. A.

    1978-01-01

    The Hall coefficient and magnetoresistance of sputtered films of Cu(x)Mo6S8 and PbMo6S8 have been measured, as well as the magnetoresistance in sintered samples of the same materials. Assuming a single band model, net carrier densities and mean mobilities are determined

  16. Strain heterogeneity and magnetoelastic behaviour of nanocrystalline half-doped La, Ca manganite, La0.5Ca0.5MnO3.

    PubMed

    Pagliari, L; Dapiaggi, M; Maglia, F; Sarkar, T; Raychaudhuri, A K; Chatterji, T; Carpenter, M A

    2014-10-29

    Elastic and anelastic properties of La0.5Ca0.5MnO3 determined by resonant ultrasound spectroscopy in the frequency range ∼100-1200 kHz have been used to evaluate the role of grain size in determining the competition between ferromagnetism and Jahn-Teller/charge order of manganites which show colossal magneto resistance. At crystallite sizes of ∼75 and ∼135 nm the dominant feature is softening of the shear modulus as the charge order transition point, Tco (∼225 K), is approached from above and below, matching the form of softening seen previously in samples with 'bulk' properties. This is consistent with a bilinear dominant strain/order parameter coupling, which occurs between the tetragonal shear strain and the Jahn-Teller (Γ3(+)) order parameter. At crystallite sizes of ∼34 and ∼42 nm the charge ordered phase is suppressed but there is still softening of the shear modulus, with a minimum near Tco. This indicates that some degree of pseudoproper ferroelastic behaviour is retained. The primary cause of the suppresion of the charge ordered structure in nanocrystalline samples is therefore considered to be due to suppression of macroscopic strain, even though MnO6 octahedra must develop some Jahn-Teller distortions on a local length scale. This mechanism for stabilizing ferromagnetism differs from imposition of either an external magnetic field or a homogeneous external strain field (from a substrate), and is likely to lead both to local strain heterogeneity within the nanocrystallites and to different tilting of octahedra within the orthorhombic structure. An additional first order transition occurs near 40 K in all samples and appears to involve some very small strain contrast between two ferromagnetic structures.

  17. Extraordinary Magnetoresistance in Hybrid Semiconductor-Metal Systems

    NASA Astrophysics Data System (ADS)

    Hewett, T. H.; Kusmartsev, F. V.

    We show that extraordinary magnetoresistance (EMR) arises in systems consisting of two components; a semiconducting ring with a metallic inclusion embedded. The important aspect of this discovery is that the system must have a quasi-two-dimensional character. Using the same materials and geometries for the samples as in experiments by Solin et al.1,2, we show that such systems indeed exhibit a huge magnetoresistance. The magnetoresistance arises due to the switching of electrical current paths passing through the metallic inclusion. Diagrams illustrating the flow of the current density within the samples are utilised in discussion of the mechanism responsible for the magnetoresistance effect. Extensions are then suggested which may be applicable to the silver chalcogenides. Our theory offers an excellent description and explanation of experiments where a huge magnetoresistance has been discovered2,3.

  18. Extraordinary Magnetoresistance in Hybrid Semiconductor-Metal Systems

    NASA Astrophysics Data System (ADS)

    Hewett, T. H.; Kusmartsev, F. V.

    2010-12-01

    We show that extraordinary magnetoresistance (EMR) arises in systems consisting of two components; a semiconducting ring with a metallic inclusion embedded. The important aspect of this discovery is that the system must have a quasi-two-dimensional character. Using the same materials and geometries for the samples as in experiments by Solin et al.1,2, we show that, such systems indeed exhibit a huge magnetoresistance. The magnetoresistance arises due to the switching of electrical current paths passing through the metallic inclusion. Diagrams illustrating the flow of the current density within the samples are utilised in discussion of the mechanism responsible for the magnetoresistance effect. Extensions are then suggested which may be applicable to the silver chalcogenides. Our theory offers an excellent description and explanation of experiments where a huge magnetoresistance has been discovered2,3.

  19. Technology Trend of Sputtering System for Magnetoresistive Devices

    NASA Astrophysics Data System (ADS)

    Tsunekawa, Koji

    Magnetoresistive films used for read-heads of hard disc drives, magnetic random access memory devices, and magnetic sensors are fabricated by magnetron sputtering method. Since giant magnetoresistive and tunnel magnetoresistive films are composed of multilayered films, in which the thickness of each layer is in the nanometer range, high accuracy in thickness control and thickness uniformity is required for the sputtering systems. Film properties are also influenced by the quality of the vacuum during the fabrication process. This article addresses such issues on the deposition of magnetoresistive films, and introduces mass-production sputtering technologies capable of fabricating high quality multilayers. Furthermore, fabrication methods of the tunnel barrier in tunnel magnetoresistive devices are also described.

  20. Spatial anisotropy of topological domain structure in hexagonal manganites

    NASA Astrophysics Data System (ADS)

    Yang, K. L.; Zhang, Y.; Zheng, S. H.; Lin, L.; Yan, Z. B.; Liu, J.-M.; Cheong, S.-W.

    2017-01-01

    The domain structure of hexagonal manganites is simulated based on the phenomenological Ginzburg-Landau theory, and special attention is paid to the evolution of a topological vortex-antivortex pattern with the varying out-of-plane anisotropies of two stiffness parameters for the in-plane (x y -plane) trimerization amplitude Q and out-of-plane (z -axis) polarization P . It is revealed that the topological domain structure can be remarkably modulated by the stiffness anisotropies. A larger stiffness for Q along the z axis causes the trajectory lines of the vortex nodes and antivortex nodes to be seriously stretched along the z axis, eventually leading to the topological stripelike domain pattern. The larger stiffness for either Q or P along the z axis makes the domain walls perpendicular to the z axis wider, while the domain walls parallel to the z axis remain less affected. The present work suggests that the topological domain structure may be controlled by some approaches (e.g., lattice strain) which can change the trimerization stiffness and polarization stiffness in hexagonal manganites.

  1. Emerging single-phase state in small manganite nanodisks

    PubMed Central

    Shao, Jian; Liu, Hao; Zhang, Kai; Yu, Yang; Yu, Weichao; Lin, Hanxuan; Niu, Jiebin; Du, Kai; Kou, Yunfang; Wei, Wengang; Lan, Fanli; Zhu, Yinyan; Wang, Wenbin; Xiao, Jiang; Yin, Lifeng; Plummer, E. W.; Shen, Jian

    2016-01-01

    In complex oxides systems such as manganites, electronic phase separation (EPS), a consequence of strong electronic correlations, dictates the exotic electrical and magnetic properties of these materials. A fundamental yet unresolved issue is how EPS responds to spatial confinement; will EPS just scale with size of an object, or will the one of the phases be pinned? Understanding this behavior is critical for future oxides electronics and spintronics because scaling down of the system is unavoidable for these applications. In this work, we use La0.325Pr0.3Ca0.375MnO3 (LPCMO) single crystalline disks to study the effect of spatial confinement on EPS. The EPS state featuring coexistence of ferromagnetic metallic and charge order insulating phases appears to be the low-temperature ground state in bulk, thin films, and large disks, a previously unidentified ground state (i.e., a single ferromagnetic phase state emerges in smaller disks). The critical size is between 500 nm and 800 nm, which is similar to the characteristic length scale of EPS in the LPCMO system. The ability to create a pure ferromagnetic phase in manganite nanodisks is highly desirable for spintronic applications. PMID:27482108

  2. Chemically induced Jahn-Teller ordering on manganite surfaces.

    PubMed

    Gai, Zheng; Lin, Wenzhi; Burton, J D; Fuchigami, K; Snijders, P C; Ward, T Z; Tsymbal, Evgeny Y; Shen, J; Jesse, Stephen; Kalinin, Sergei V; Baddorf, Arthur P

    2014-07-24

    Physical and electrochemical phenomena at the surfaces of transition metal oxides and their coupling to local functionality remains one of the enigmas of condensed matter physics. Understanding the emergent physical phenomena at surfaces requires the capability to probe the local composition, map order parameter fields and establish their coupling to electronic properties. Here we demonstrate that measuring the sub-30-pm displacements of atoms from high-symmetry positions in the atomically resolved scanning tunnelling microscopy allows the physical order parameter fields to be visualized in real space on the single-atom level. Here, this local crystallographic analysis is applied to the in-situ-grown manganite surfaces. In particular, using direct bond-angle mapping we report direct observation of structural domains on manganite surfaces, and trace their origin to surface-chemistry-induced stabilization of ordered Jahn-Teller displacements. Density functional calculations provide insight into the intriguing interplay between the various degrees of freedom now resolved on the atomic level.

  3. Emerging single-phase state in small manganite nanodisks.

    PubMed

    Shao, Jian; Liu, Hao; Zhang, Kai; Yu, Yang; Yu, Weichao; Lin, Hanxuan; Niu, Jiebin; Du, Kai; Kou, Yunfang; Wei, Wengang; Lan, Fanli; Zhu, Yinyan; Wang, Wenbin; Xiao, Jiang; Yin, Lifeng; Plummer, E W; Shen, Jian

    2016-08-16

    In complex oxides systems such as manganites, electronic phase separation (EPS), a consequence of strong electronic correlations, dictates the exotic electrical and magnetic properties of these materials. A fundamental yet unresolved issue is how EPS responds to spatial confinement; will EPS just scale with size of an object, or will the one of the phases be pinned? Understanding this behavior is critical for future oxides electronics and spintronics because scaling down of the system is unavoidable for these applications. In this work, we use La0.325Pr0.3Ca0.375MnO3 (LPCMO) single crystalline disks to study the effect of spatial confinement on EPS. The EPS state featuring coexistence of ferromagnetic metallic and charge order insulating phases appears to be the low-temperature ground state in bulk, thin films, and large disks, a previously unidentified ground state (i.e., a single ferromagnetic phase state emerges in smaller disks). The critical size is between 500 nm and 800 nm, which is similar to the characteristic length scale of EPS in the LPCMO system. The ability to create a pure ferromagnetic phase in manganite nanodisks is highly desirable for spintronic applications.

  4. Emerging single-phase state in small manganite nanodisks

    NASA Astrophysics Data System (ADS)

    Shao, Jian; Liu, Hao; Zhang, Kai; Yu, Yang; Yu, Weichao; Lin, Hanxuan; Niu, Jiebin; Du, Kai; Kou, Yunfang; Wei, Wengang; Lan, Fanli; Zhu, Yinyan; Wang, Wenbin; Xiao, Jiang; Yin, Lifeng; Plummer, E. W.; Shen, Jian

    2016-08-01

    In complex oxides systems such as manganites, electronic phase separation (EPS), a consequence of strong electronic correlations, dictates the exotic electrical and magnetic properties of these materials. A fundamental yet unresolved issue is how EPS responds to spatial confinement; will EPS just scale with size of an object, or will the one of the phases be pinned? Understanding this behavior is critical for future oxides electronics and spintronics because scaling down of the system is unavoidable for these applications. In this work, we use La0.325Pr0.3Ca0.375MnO3 (LPCMO) single crystalline disks to study the effect of spatial confinement on EPS. The EPS state featuring coexistence of ferromagnetic metallic and charge order insulating phases appears to be the low-temperature ground state in bulk, thin films, and large disks, a previously unidentified ground state (i.e., a single ferromagnetic phase state emerges in smaller disks). The critical size is between 500 nm and 800 nm, which is similar to the characteristic length scale of EPS in the LPCMO system. The ability to create a pure ferromagnetic phase in manganite nanodisks is highly desirable for spintronic applications.

  5. Giant magnetoresistance in organic spin valves

    SciTech Connect

    Sun, Da-Li; Yin, Lifeng; Sun, Chengjun; Guo, Hangwen; Gai, Zheng; Zhang, Xiaoguang; Ward, Thomas Z; Cheng, Zhaohua; Shen, Jian

    2010-01-01

    Interfacial diffusion between magnetic electrodes and organic spacer layers is a serious problem in the organic spintronics which complicates attempts to understand the spin-dependent transport mechanism and hurts the achievement of a desirably high magnetoresistance (MR). We deposit nanodots instead of atoms onto the organic layer using buffer layer assist growth. Spin valves using this method exhibit a sharper interface and a giant MR of up to {approx}300%. Analysis of the current-voltage characteristics indicates that the spin-dependent carrier injection correlates with the observed MR.

  6. Diluted magnetic semiconductor nanowires exhibiting magnetoresistance

    DOEpatents

    Yang, Peidong; Choi, Heonjin; Lee, Sangkwon; He, Rongrui; Zhang, Yanfeng; Kuykendal, Tevye; Pauzauskie, Peter

    2011-08-23

    A method for is disclosed for fabricating diluted magnetic semiconductor (DMS) nanowires by providing a catalyst-coated substrate and subjecting at least a portion of the substrate to a semiconductor, and dopant via chloride-based vapor transport to synthesize the nanowires. Using this novel chloride-based chemical vapor transport process, single crystalline diluted magnetic semiconductor nanowires Ga.sub.1-xMn.sub.xN (x=0.07) were synthesized. The nanowires, which have diameters of .about.10 nm to 100 nm and lengths of up to tens of micrometers, show ferromagnetism with Curie temperature above room temperature, and magnetoresistance up to 250 Kelvin.

  7. Giant magnetoresistance in bilayer graphene nanoflakes

    NASA Astrophysics Data System (ADS)

    Farghadan, Rouhollah; Farekiyan, Marzieh

    2016-09-01

    Coherent spin transport through bilayer graphene (BLG) nanoflakes sandwiched between two electrodes made of single-layer zigzag graphene nanoribbon was investigated by means of Landauer-Buttiker formalism. Application of a magnetic field only on BLG structure as a channel produces a perfect spin polarization in a large energy region. Moreover, the conductance could be strongly modulated by magnetization of the zigzag edge of AB-stacked BLG, and the junction, entirely made of carbon, produces a giant magnetoresistance (GMR) up to 100%. Intestinally, GMR and spin polarization could be tuned by varying BLG width and length. Generally, MR in a AB-stacked BLG strongly increases (decreases) with length (width).

  8. Influence of magnetic field on electric-field-induced local polar states in manganites

    SciTech Connect

    Mamin, R. F.; Strle, J.; Kabanov, V. V.; Kranjec, A.; Borovsak, M.; Mihailovic, D.; Bizyaev, D. A.; Yusupov, R. V.; Bukharaev, A. A.

    2015-11-09

    It is shown that creation of local charged states at the surface of the lanthanum-strontium manganite single crystals by means of bias application via a conducting atomic force microscope tip is strongly affected by magnetic field. Both a charge and a size of created structures increase significantly on application of the magnetic field during the induction. We argue that the observed phenomenon originates from a known tendency of manganites toward charge segregation and its intimate relation to magnetic ordering.

  9. Systematic study of doping dependence on linear magnetoresistance in p-PbTe

    SciTech Connect

    Schneider, J. M.; Chitta, V. A.; Oliveira, N. F.; Peres, M. L. Castro, S. de; Soares, D. A. W.; Wiedmann, S.; Zeitler, U.; Abramof, E.; Rappl, P. H. O.; Mengui, U. A.

    2014-10-20

    We report on a large linear magnetoresistance effect observed in doped p-PbTe films. While undoped p-PbTe reveals a sublinear magnetoresistance, p-PbTe films doped with BaF{sub 2} exhibit a transition to a nearly perfect linear magnetoresistance behaviour that is persistent up to 30 T. The linear magnetoresistance slope ΔR/ΔB is to a good approximation, independent of temperature. This is in agreement with the theory of Quantum Linear Magnetoresistance. We also performed magnetoresistance simulations using a classical model of linear magnetoresistance. We found that this model fails to explain the experimental data. A systematic study of the doping dependence reveals that the linear magnetoresistance response has a maximum for small BaF{sub 2} doping levels and diminishes rapidly for increasing doping levels. Exploiting the huge impact of doping on the linear magnetoresistance signal could lead to new classes of devices with giant magnetoresistance behavior.

  10. Nonlocal Magnetoresistance Mediated by Spin Superfluidity.

    PubMed

    Takei, So; Tserkovnyak, Yaroslav

    2015-10-09

    The electrical response of two diffusive metals is studied when they are linked by a magnetic insulator hosting a topologically stable (superfluid) spin current. We discuss how charge currents in the metals induce a spin supercurrent state, which in turn generates a magnetoresistance that depends on the topology of the electrical circuit. This magnetoresistance relies on phase coherence over the entire magnet and gives direct evidence for spin superfluidity. We show that driving the magnet with an ac current allows coherent spin transport even in the presence of U(1)-breaking magnetic anisotropy that can preclude dc superfluid transport. Spin transmission in the ac regime shows a series of resonance peaks as a function of frequency. The peak locations, heights, and widths can be used to extract static interfacial properties, e.g., the spin-mixing conductance and effective spin Hall angle, and to probe dynamic properties such as the spin-wave dispersion. Thus, ac transport may provide a simpler route to realizing nonequilbrium coherent spin transport and a useful way to characterize the magnetic system, serving as a precursor to the realization of dc superfluid spin transport.

  11. Magnetoresistive flux focusing eddy current flaw detection

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Namkung, Min (Inventor); Simpson, John W. (Inventor)

    2005-01-01

    A giant magnetoresistive flux focusing eddy current device effectively detects deep flaws in thick multilayer conductive materials. The probe uses an excitation coil to induce eddy currents in conducting material perpendicularly oriented to the coil's longitudinal axis. A giant magnetoresistive (GMR) sensor, surrounded by the excitation coil, is used to detect generated fields. Between the excitation coil and GMR sensor is a highly permeable flux focusing lens which magnetically separates the GMR sensor and excitation coil and produces high flux density at the outer edge of the GMR sensor. The use of feedback inside the flux focusing lens enables complete cancellation of the leakage fields at the GMR sensor location and biasing of the GMR sensor to a location of high magnetic field sensitivity. In an alternate embodiment, a permanent magnet is positioned adjacent to the GMR sensor to accomplish the biasing. Experimental results have demonstrated identification of flaws up to 1 cm deep in aluminum alloy structures. To detect deep flaws about circular fasteners or inhomogeneities in thick multilayer conductive materials, the device is mounted in a hand-held rotating probe assembly that is connected to a computer for system control, data acquisition, processing and storage.

  12. Magnetoresistive Flux Focusing Eddy Current Flaw Detection

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Namkung, Min (Inventor); Simpson, John W. (Inventor)

    2005-01-01

    A giant magnetoresistive flux focusing eddy current device effectively detects deep flaws in thick multilayer conductive materials. The probe uses an excitation coil to induce eddy currents in conducting material perpendicularly oriented to the coil s longitudinal axis. A giant magnetoresistive (GMR) sensor, surrounded by the excitation coil, is used to detect generated fields. Between the excitation coil and GMR sensor is a highly permeable flux focusing lens which magnetically separates the GMR sensor and excitation coil and produces high flux density at the outer edge of the GMR sensor. The use of feedback inside the flux focusing lens enables complete cancellation of the leakage fields at the GMR sensor location and biasing of the GMR sensor to a location of high magnetic field sensitivity. In an alternate embodiment, a permanent magnet is positioned adjacent to the GMR sensor to accomplish the biasing. Experimental results have demonstrated identification of flaws up to 1 cm deep in aluminum alloy structures. To detect deep flaws about circular fasteners or inhomogeneities in thick multi-layer conductive materials, the device is mounted in a hand-held rotating probe assembly that is connected to a computer for system control, data acquisition, processing and storage.

  13. Advanced giant magnetoresistance technology for measurement applications

    NASA Astrophysics Data System (ADS)

    Weiss, Roland; Mattheis, Roland; Reiss, Günter

    2013-08-01

    Giant magnetoresistance (GMR) sensors are considered one of the first real applications of nanotechnology. They consist of nm-thick layered structures where ferromagnetic metals are sandwiched by nonmagnetic metals. Such multilayered films produce a large change in resistance (typically 10 to 20%) when subjected to a magnetic field, compared with a maximum change of a few per cent for other types of magnetic sensors. This technology has been intensively used in read heads for hard disk drives and now increasingly finds applications due to the high sensitivity and signal-to-noise ratio. Additionally these sensors are compatible with miniaturization and thus offer a high spatial resolution combined with a frequency range up to the 100 MHz regime and simple electronic conditioning. In this review, we first discuss the basics of the underlying magnetoresistance effects in layered structures and then present three prominent examples for future applications: in the field of current sensing the new GMR sensors offer high bandwidth and good accuracy in a space-saving open loop measurement configuration. In rotating systems they can be used for multiturn angle measurements, and in biotechnology the detection of magnetic particles enables the quantitative measurement of biomolecule concentrations.

  14. Linearization strategies for high sensitivity magnetoresistive sensors

    NASA Astrophysics Data System (ADS)

    Silva, Ana V.; Leitao, Diana C.; Valadeiro, João; Amaral, José; Freitas, Paulo P.; Cardoso, Susana

    2015-10-01

    Ultrasensitive magnetic field sensors envisaged for applications on biomedical imaging require the detection of low-intensity and low-frequency signals. Therefore linear magnetic sensors with enhanced sensitivity low noise levels and improved field detection at low operating frequencies are necessary. Suitable devices can be designed using magnetoresistive sensors, with room temperature operation, adjustable detected field range, CMOS compatibility and cost-effective production. The advent of spintronics set the path to the technological revolution boosted by the storage industry, in particular by the development of read heads using magnetoresistive devices. New multilayered structures were engineered to yield devices with linear output. We present a detailed study of the key factors influencing MR sensor performance (materials, geometries and layout strategies) with focus on different linearization strategies available. Furthermore strategies to improve sensor detection levels are also addressed with best reported values of ˜40 pT/√Hz at 30 Hz, representing a step forward the low field detection at room temperature.

  15. Charge transport mechanisms in sol-gel grown La0.7Pb0.3MnO3/LaAlO3 manganite films.

    PubMed

    Vaghela, Eesh; Keshvani, M J; Gadani, Keval; Joshi, Zalak; Boricha, Hetal; Asokan, K; Venkateshwarlu, D; Ganesan, V; Shah, N A; Solanki, P S

    2017-02-15

    In this communication, structural, microstructural, transport and magnetotransport properties are reported for La0.7Pb0.3MnO3/LaAlO3 (LPMO/LAO) manganite films having different thicknesses. All the films were irradiated with 200 MeV Ag(+15) swift heavy ions (SHI). Films were grown using the sol-gel method by employing the acetate precursor route. Structural measurements were carried out using the X-ray diffraction (XRD) method at room temperature, while atomic force microscopy (AFM) was performed for the surface morphology. Temperature dependent resistivity under different applied magnetic fields for all the films shows metal to insulator transition at temperature TP. In addition to the metal to insulator transition at TP, the films also exhibit low temperature resistivity upturn behavior. Resistivity, TP and upturn behavior are highly influenced by the film thickness, applied magnetic field and irradiation. To understand the nature of charge transport for the low temperature resistivity behavior and metallic and insulating (semiconducting) regions, various models and mechanisms have been verified and the most suitable mechanism has been found for each region in the resistivity curves. Magnetoresistance (MR) is affected by temperature, film thickness and irradiation. MR behavior has been understood in terms of combined and separate contributions from grains and grain boundaries in the films.

  16. Charge, orbital and spin ordering phenomena in the mixed valence manganite (NaMn3+(3))(Mn3+(2)Mn4+(2))O12.

    PubMed

    Prodi, A; Gilioli, E; Gauzzi, A; Licci, F; Marezio, M; Bolzoni, F; Huang, Q; Santoro, A; Lynn, J W

    2004-01-01

    Mixed-valence manganites with the ABO3 perovskite structure display a variety of magnetic and structural transitions, dramatic changes of electrical conductivity and magnetoresistance effects. The physical properties vary with the relative concentration of Mn3+ and Mn4+ in the octahedral corner-sharing network, and the proportion of these two cations is usually changed by doping the trivalent large A cation (for example, La3+) with divalent cations. As the dopant and the original cation have, in general, different sizes, and as they are distributed randomly in the structure, such systems are characterized by local distortions that make it difficult to obtain direct information about their crystallographic and physical properties. On the other hand, the double oxides of formula AA'3Mn4O12 contain a perovskite-like network of oxygen octahedra centred on the Mn cations, coupled with an ordered arrangement of the A and A' cations, whose valences control the proportion of Mn3+ and Mn4+ in the structure. The compound investigated in this work, (NaMn3+(3))(Mn3+(2)Mn4+(2))O12, contains an equal number of Mn3+ and Mn4+ in the octahedral sites. We show that the absence of disorder enables the unambiguous determination of symmetry, the direct observation of full, or nearly full, charge ordering of Mn3+ and Mn4+ in distinct crystallographic sites, and a nearly perfect orbital ordering of the Mn3+ octahedra.

  17. Comparative Study of Magnetic Ordering and Electrical Transport in Bulk and Nano-Grained Nd0.67Sr0.33MnO3 Manganites

    NASA Astrophysics Data System (ADS)

    Arun, B.; Suneesh, M. V.; Vasundhara, M.

    2016-11-01

    We have prepared bulk and nano-sized Nd0.67Sr0.33MnO3 manganites by solid state and low-temperature mild solgel methods respectively. Both the compounds crystallized into an orthorhombic structure with Pbnm space group confirmed from Rietveld refinement of X-ray powder diffraction patterns. Nano-grained compound shows an average particle size of 22 nm with broad grain size distribution revealed from the Transmission electron micrographs. It appeared that the long range ferromagnetic order becomes unstable upon the reduction of the samples dimension down to nano meter scale. DC magnetization and AC susceptibility results showed frustration of spins in nano-grained compound and thereby it could lead to a cluster glass-like behaviour. Temperature dependence of electrical resistivity under different magnetic fields shows the broad maxima at higher temperatures and a low temperature upturn in both the compounds, however, the latter is more prominent in the nano grained compound. Combination of Kondo effect with electron and phonon interactions govern the low temperature resistivity and a small polaron hopping mechanism dominates at high temperatures for both the compounds. The magnetoresistance is understood by the effect of spin polarized tunneling through the grain boundary. The experimental results revealed that the reduction in particle size influences severely on the magnetic, electrical and magneto transport properties.

  18. Charge, orbital and spin ordering phenomena in the mixed valence manganite (NaMn3+3)(Mn3+2Mn4+2)O12

    NASA Astrophysics Data System (ADS)

    Prodi, A.; Gilioli, E.; Gauzzi, A.; Licci, F.; Marezio, M.; Bolzoni, F.; Huang, Q.; Santoro, A.; Lynn, J. W.

    2004-01-01

    Mixed-valence manganites with the ABO3 perovskite structure display a variety of magnetic and structural transitions, dramatic changes of electrical conductivity and magnetoresistance effects. The physical properties vary with the relative concentration of Mn3+ and Mn4+ in the octahedral corner-sharing network, and the proportion of these two cations is usually changed by doping the trivalent large A cation (for example, La3+) with divalent cations. As the dopant and the original cation have, in general, different sizes, and as they are distributed randomly in the structure, such systems are characterized by local distortions that make it difficult to obtain direct information about their crystallographic and physical properties. On the other hand, the double oxides of formula AA'3Mn4O12 contain a perovskite-like network of oxygen octahedra centred on the Mn cations, coupled with an ordered arrangement of the A and A' cations, whose valences control the proportion of Mn3+ and Mn4+ in the structure. The compound investigated in this work, (NaMn3+3)(Mn3+2Mn4+2)O12, contains an equal number of Mn3+ and Mn4+ in the octahedral sites. We show that the absence of disorder enables the unambiguous determination of symmetry, the direct observation of full, or nearly full, charge ordering of Mn3+ and Mn4+ in distinct crystallographic sites, and a nearly perfect orbital ordering of the Mn3+ octahedra.

  19. Non-local magnetoresistance in YIG/Pt nanostructures

    SciTech Connect

    Goennenwein, Sebastian T. B. Pernpeintner, Matthias; Gross, Rudolf; Huebl, Hans; Schlitz, Richard; Ganzhorn, Kathrin; Althammer, Matthias

    2015-10-26

    We study the local and non-local magnetoresistance of thin Pt strips deposited onto yttrium iron garnet. The local magnetoresistive response, inferred from the voltage drop measured along one given Pt strip upon current-biasing it, shows the characteristic magnetization orientation dependence of the spin Hall magnetoresistance. We simultaneously also record the non-local voltage appearing along a second, electrically isolated, Pt strip, separated from the current carrying one by a gap of a few 100 nm. The corresponding non-local magnetoresistance exhibits the symmetry expected for a magnon spin accumulation-driven process, confirming the results recently put forward by Cornelissen et al. [“Long-distance transport of magnon spin information in a magnetic insulator at room temperature,” Nat. Phys. (published online 14 September 2015)]. Our magnetotransport data, taken at a series of different temperatures as a function of magnetic field orientation, rotating the externally applied field in three mutually orthogonal planes, show that the mechanisms behind the spin Hall and the non-local magnetoresistance are qualitatively different. In particular, the non-local magnetoresistance vanishes at liquid Helium temperatures, while the spin Hall magnetoresistance prevails.

  20. Ultra-sharp oscillatory magneto-resistance in spatially confined La{sub 0.3}Pr{sub 0.4}Ca{sub 0.3}MnO{sub 3} epitaxial thin films

    SciTech Connect

    Alagoz, H. S. Jeon, J.; Boos, R.; Ahangharnejhad, R. H.; Chow, K. H. Jung, J.

    2014-10-20

    Our investigations of magneto-transport properties of La{sub 0.3}Pr{sub 0.4}Ca{sub 0.3}MnO{sub 3} manganite thin films of reduced dimensions revealed dramatic changes in R(θ), the dependence of resistivity on the angle between the magnetic field direction and the current direction, and consequently in the anisotropic magneto-resistance. A regular oscillatory  sin{sup 2}θ form of R(θ) is replaced by a very sharp rectangular-shaped ones when the dimensions of the system become comparable to the size of the intrinsic electronic domains. We discuss possible mechanisms that could be responsible for these changes.

  1. Magnetoresistance and Hall resistivity of semimetal WTe2 ultrathin flakes.

    PubMed

    Luo, Xin; Fang, Chi; Wan, Caihua; Cai, Jialin; Liu, Yong; Han, Xiufeng; Lu, Zhihong; Shi, Wenhua; Xiong, Rui; Zeng, Zhongming

    2017-04-07

    This article reports the characterization of WTe2 thin flake magnetoresistance and Hall resistivity. We found it does not exhibit magnetoresistance saturation when subject to high fields, in a manner similar to their bulk characteristics. The linearity of Hall resistivity in our devices confirms the compensation of electrons and holes. By relating experimental results to a classic two-band model, the lower magnetoresistance values in our samples is demonstrated to be caused by decreased carrier mobility. The dependence of mobility on temperature indicates the main role of optical phonon scattering at high temperatures. Our results provide more detailed information on carrier behavior and scattering mechanisms in WTe2 thin films.

  2. Magnetoresistance and Hall resistivity of semimetal WTe2 ultrathin flakes

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Fang, Chi; Wan, Caihua; Cai, Jialin; Liu, Yong; Han, Xiufeng; Lu, Zhihong; Shi, Wenhua; Xiong, Rui; Zeng, Zhongming

    2017-04-01

    This article reports the characterization of WTe2 thin flake magnetoresistance and Hall resistivity. We found it does not exhibit magnetoresistance saturation when subject to high fields, in a manner similar to their bulk characteristics. The linearity of Hall resistivity in our devices confirms the compensation of electrons and holes. By relating experimental results to a classic two-band model, the lower magnetoresistance values in our samples is demonstrated to be caused by decreased carrier mobility. The dependence of mobility on temperature indicates the main role of optical phonon scattering at high temperatures. Our results provide more detailed information on carrier behavior and scattering mechanisms in WTe2 thin films.

  3. Large magnetoresistance of insulating silicon films with superconducting nanoprecipitates

    NASA Astrophysics Data System (ADS)

    Heera, V.; Fiedler, J.; Skorupa, W.

    2016-10-01

    We report on large negative and positive magnetoresistance in inhomogeneous, insulating Si:Ga films below a critical temperature of about 7 K. The magnetoresistance effect exceeds 300 % at temperatures below 3 K and fields of 8 T. The comparison of the transport properties of superconducting samples with that of insulating ones reveals that the large magnetoresistance is associated with the appearance of local superconductivity. A simple phenomenological model based on localized Cooper pairs and hopping quasiparticles is able to describe the temperature and magnetic field dependence of the sheet resistance of such films.

  4. Transport and magnetic properties of CMR manganites with antidot arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Du, Kai; Niu, Jiebin; Wei, Wengang; Chen, Jinjie; Yin, Lifeng; Shen, Jian

    2014-03-01

    We fabricated and characterized a series of manganites thin film samples with different densities of antidots. With increasing antidot density, the samples show higher MIT temperature and lower resistivity under zero and low magnetic fields. These differences become smaller and finally vanished when the magnetic field is large enough to melt the charge ordered phase in the system, which is expected in our theoretical explanations. We believe that emerging edge states at the ring of antidotes play a significant role for observed metal-insulator transition and electrical transport properties, which are of great importance of real storage and sensor device design. Magnetic property measurements and theoretical simulation also support the conclusion. These results open up new ways to control and tune the strongly correlated oxides without introduce any new material or field.

  5. Asymmetric electroresistance of cluster glass state in manganites

    SciTech Connect

    Lourembam, James; Lin, Weinan; Ding, Junfeng; Bera, Ashok; Wu, Tom

    2014-03-31

    We report the electrostatic modulation of transport in strained Pr{sub 0.65}(Ca{sub 0.75}Sr{sub 0.25}){sub 0.35}MnO{sub 3} thin films grown on SrTiO{sub 3} by gating with ionic liquid in electric double layer transistors (EDLT). In such manganite films with strong phase separation, a cluster glass magnetic state emerges at low temperatures with a spin freezing temperature of about 99 K, which is accompanied by the reentrant insulating state with high resistance below 30 K. In the EDLT, we observe bipolar and asymmetric modulation of the channel resistance, as well as an enhanced electroresistance up to 200% at positive gate bias. Our results provide insights on the carrier-density-dependent correlated electron physics of cluster glass systems.

  6. Surface-stabilized nonferromagnetic ordering of a layered ferromagnetic manganite.

    PubMed

    Nascimento, V B; Freeland, J W; Saniz, R; Moore, R G; Mazur, D; Liu, H; Pan, M H; Rundgren, J; Gray, K E; Rosenberg, R A; Zheng, H; Mitchell, J F; Freeman, A J; Veltruska, K; Plummer, E W

    2009-11-27

    An outstanding question regarding the probing or possible device applications of correlated electronic materials (CEMs) with layered structure is the extent to which their bulk and surface properties differ or not. The broken translational symmetry at the surface can lead to distinct functionality due to the charge, lattice, orbital, and spin coupling. Here we report on the case of bilayered manganites with hole doping levels corresponding to bulk ferromagnetic order. We find that, although the hole doping level is measured to be the same as in the bulk, the surface layer is not ferromagnetic. Further, our low-energy electron diffraction and x-ray measurements show that there is a c-axis collapse in the outermost layer. Bulk theoretical calculations reveal that, even at fixed doping level, the relaxation of the Jahn-Teller distortion at the surface is consistent with the stabilization of an A-type antiferromagnetic state.

  7. Structural and Oxygen Storage Properties of Hexagonal Manganites

    NASA Astrophysics Data System (ADS)

    Abughayada, Castro; Dabrowski, Bogdan; Kolesnik, Stan; Chmaissem, Omar; NIU Team

    2013-03-01

    Complex oxides exhibiting superior reversible oxygen absorption/release capacities have been generating a great deal of interest due to their critical role in the development of energy related technologies, such as oxy-fuel and chemical looping combustion. Based on our previous studies of tolerance factor, we have successfully synthesized hexagonal (P63cm) RMnO3+δ manganites (R =Dy, Ho, Y) for which we discovered a large reversible oxygen storage/release capacities (within the range of oxygen content 3.0 - 3.4) at unusually low temperatures near 300 °C which make them excellent candidates for air separation and production of high purity oxygen. Resistivity, structural, magnetic, and thermal expansion properties are correlated with the oxygen content 3 + δ for these compounds. Work supported by NIU Great Journey Assistantship.

  8. Spin Glass Behaviour in Fe-substituted LPMO Manganite

    NASA Astrophysics Data System (ADS)

    Bitla, Yugandhar; Kaul, S. N.; Barquín, L. Fernández

    2011-07-01

    Study of the nonlinear magnetic susceptibility, χnl, of La0.7Pb0.3(Mn1-xFex)O3 manganite reveals that, as in an archetypical spin glass (SG), χnl in La0.7Pb0.3Mn0.8Fe0.2O3 diverges at the SG freezing temperature, Tg = 80.0(5)K, with a critical exponent γ = 1.80(5) and satisfies the static and dynamic scaling equations of state with the order-parameter critical exponent β = 0.56(4) and the dynamic critical exponent zνξ = 10.0(5). The SG behaviour stems from the competition between the ferromagnetic double-exchange and antiferromagnetic superexchange interactions.

  9. Co-adsorption of cadmium(II) and glyphosate at the water-manganite (gamma-MnOOH) interface.

    PubMed

    Ramstedt, Madeleine; Norgren, Caroline; Shchukarev, Andrei; Sjöberg, Staffan; Persson, Per

    2005-05-15

    The co-adsorption of Cd(II) and glyphosate (N-(phosphonomethyl)glycine, PMG) at the manganite (gamma-MnOOH) surface has been studied in the pH range 6-10 at 25 degrees C and with 0.1 M Na(Cl) as ionic medium. Batch adsorption experiments, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS) spectroscopy were used for the quantitative analysis and the determination of the molecular structure of the surface complexes. The adsorption of Cd(II) and PMG in the ternary Cd(II)-PMG-manganite system was compared with the adsorption in the binary Cd(II)-manganite and PMG-manganite systems. The formation of three inner sphere surface complexes was observed, a ternary Cd(II)-PMG-manganite complex, a binary Cd(II)-manganite complex and a binary PMG-manganite complex. The surface concentration of the ternary complex and the Cd(II)-manganite complex was more or less constant throughout the pH range studied. However, the surface concentration of the binary PMG-manganite complex decreased with increasing pH. The major part of the binary PMG-surface complex was protonated. The ternary surface complex displayed a type B structure (Cd(II)-PMG-manganite). The average Cd-Mn distance obtained from EXAFS (3.26 A) indicates that the binary and ternary Cd(II)-surface complexes are formed by edge-sharing of Mn and Cd octahedra on the (010) plane of the manganite crystals.

  10. Electromechanical and electro-optical functions of plasticized PVC with colossal dielectric constant

    NASA Astrophysics Data System (ADS)

    Sato, Hiromu; Hirai, Toshihiro

    2013-04-01

    A soft dielectric polymer, plasticized poly(vinyl chloride) (PVC gel), has been known as a characteristic actuator with electrotactic creep deformation. The deformation can be applied for bending and contraction. The mechanism of the deformation has been attributed to the colossal dielectric constant of the gel induced by dc field. The dielectric constant at 1 Hz, jumps from less than10 to thousand times larger value. The huge dielectric constant suggests the gel can have electro-optic function. In this paper, we introduce the gel can bend light direction by applying a dc electric field. The PVC gel can bend light direction depending on the electric field. Detailed feature of the light bending will be introduced and discussed. Bending angle can be controlled by dielectric plasticizer and electric field. The components of the gel, PVC and plasticizer themselves, did not show any effect of electro-optical function like the PVC gel. The same feature can be observed in other polymer, like poly(vinyl alcohol)-dimethyl sulphoxide gel, too.

  11. Structure and colossal dielectric permittivity of Ca2TiCrO6 ceramics

    NASA Astrophysics Data System (ADS)

    Yan-Qing, Tan; Meng, Yan; Yong-Mei, Hao

    2013-01-01

    A colossal permittivity ceramic material, Ca2TiCrO6, was successfully synthesized by the conventional solid-state reaction, and was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), x-ray photoemission spectroscopy (XPS) and x-ray diffraction (XRD). Rietveld refinement of XRD data indicated that the material crystallized in orthorhombic structure with space group pbnm. SEM displayed Ca2TiCrO6 ceramic grains packed uniformly with the size range 5-20 µm. XPS analyses indicated that elemental chromium and titanium of the material were in mixed valence. The corresponding dielectric property was tested in the frequency range 1 kHz-1 MHz and the temperature range 213-453 K, and the ceramics exhibited a relaxation-like dielectric behaviour. Importantly, the permittivity of Ca2TiCrO6 could reach 80 000 at 298 K (100 Hz) and was maintained at 40 000 up to 398 K at 1 MHz, which could be attributed to the ion disorder and mixed valence of Cr3+/Cr6+ and Ti3+/Ti4+.

  12. Colossal terahertz nonlinearity of tunneling van der Waals gap (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bahk, Young-Mi; Kang, Bong Joo; Kim, Yong Seung; Kim, Joon-Yeon; Kim, Won Tae; Kim, Tae Yun; Kang, Taehee; Rhie, Ji Yeah; Han, Sanghoon; Park, Cheol-Hwan; Rotermund, Fabian; Kim, Dai-Sik

    2016-09-01

    We manufactured an array of three angstrom-wide, five millimeter-long van der Waals gaps of copper-graphene-copper composite, in which unprecedented nonlinearity was observed. To probe and manipulate van der Waals gaps with long wavelength electromagnetic waves such as terahertz waves, one is required to fabricate vertically oriented van der Waals gaps sandwiched between two metal planes with an infinite length in the sense of being much larger than any of the wavelengths used. By comparison with the simple vertical stacking of metal-graphene-metal structure, in our structure, background signals are completely blocked enabling all the light to squeeze through the gap without any strays. When the angstrom-sized van der Waals gaps are irradiated with intense terahertz pulses, the transient voltage across the gap reaches up to 5 V with saturation, sufficiently strong to deform the quantum barrier of angstrom gaps. The large transient potential difference across the gap facilitates electron tunneling through the quantum barrier, blocking terahertz waves completely. This negative feedback of electron tunneling leads to colossal nonlinear optical response, a 97% decrease in the normalized transmittance. Our technology for infinitely long van der Waals gaps can be utilized for other atomically thin materials than single layer graphene, enabling linear and nonlinear angstrom optics in a broad spectral range.

  13. A new class of magnetoresistive compounds ^1

    NASA Astrophysics Data System (ADS)

    Xu, R.; Husmann, A.; Rosenbaum, T. F.; Saboungi, M.-L.; Enderby, J. E.; Price, D. L.

    1997-03-01

    We have measured a significant magnetoresistance (MR) in some silver selenide and silver telluride compounds from 4.5 K up to room termperature; the composition is such that these compounds are narrow gap self-doped degenerate n-type semiconductors. Our results show no evidence of saturation up to at least 5.5 T for transverse MR and the field dependences are rather linear ^2. A comparison is being made with that of other traditional and novel materials. Studies are under way to determine the origin of this phenomenom and the physical factors which may further enhance the MR. Supported by NSF-MRSEC at Chicago and by U.S.DOE contrac W-31-109-ENG-38 at ANL. R. Xu, A. Husmann, T.F. Rosenbaum, M.-L. Saboungi, D.L. Price, J.E. Enderby, in preparation.

  14. Magnetocardiography with sensors based on giant magnetoresistance

    NASA Astrophysics Data System (ADS)

    Pannetier-Lecoeur, M.; Parkkonen, L.; Sergeeva-Chollet, N.; Polovy, H.; Fermon, C.; Fowley, C.

    2011-04-01

    Biomagnetic signals, mostly due to the electrical activity in the body, are very weak and they can only be detected by the most sensitive magnetometers, such as Superconducting Quantum Interference Devices (SQUIDs). We report here biomagnetic recordings with hybrid sensors based on Giant MagnetoResistance (GMR). We recorded magnetic signatures of the electric activity of the human heart (magnetocardiography) in healthy volunteers. The P-wave and QRS complex, known from the corresponding electric recordings, are clearly visible in the recordings after an averaging time of about 1 min. Multiple recordings at different locations over the chest yielded a dipolar magnetic field map and allowed localizing the underlying current sources. The sensitivity of the GMR-based sensors is now approaching that of SQUIDs and paves way for spin electronics devices for functional imaging of the body.

  15. Negative Magnetoresistance in Amorphous Indium Oxide Wires

    NASA Astrophysics Data System (ADS)

    Mitra, Sreemanta; Tewari, Girish C.; Mahalu, Diana; Shahar, Dan

    2016-11-01

    We study magneto-transport properties of several amorphous Indium oxide nanowires of different widths. The wires show superconducting transition at zero magnetic field, but, there exist a finite resistance at the lowest temperature. The R(T) broadening was explained by available phase slip models. At low field, and far below the superconducting critical temperature, the wires with diameter equal to or less than 100 nm, show negative magnetoresistance (nMR). The magnitude of nMR and the crossover field are found to be dependent on both temperature and the cross-sectional area. We find that this intriguing behavior originates from the interplay between two field dependent contributions.

  16. Giant Magnetoresistive Sensors for DNA Microarray

    PubMed Central

    Xu, Liang; Yu, Heng; Han, Shu-Jen; Osterfeld, Sebastian; White, Robert L.; Pourmand, Nader; Wang, Shan X.

    2009-01-01

    Giant magnetoresistive (GMR) sensors are developed for a DNA microarray. Compared with the conventional fluorescent sensors, GMR sensors are cheaper, more sensitive, can generate fully electronic signals, and can be easily integrated with electronics and microfluidics. The GMR sensor used in this work has a bottom spin valve structure with an MR ratio of 12%. The single-strand target DNA detected has a length of 20 bases. Assays with DNA concentrations down to 10 pM were performed, with a dynamic range of 3 logs. A double modulation technique was used in signal detection to reduce the 1/f noise in the sensor while circumventing electromagnetic interference. The logarithmic relationship between the magnetic signal and the target DNA concentration can be described by the Temkin isotherm. Furthermore, GMR sensors integrated with microfluidics has great potential of improving the sensitivity to 1 pM or below, and the total assay time can be reduced to less than 1 hour. PMID:20824116

  17. Low field magnetoresistance of gadolinium nanowire

    SciTech Connect

    Chakravorty, Manotosh Raychaudhuri, A. K.

    2014-02-07

    We report low field (μ{sub 0}H < 0.2 T) magnetoresistance (MR) studies on a single Gd nanowire patterned from a nano-structured film (average grain size ∼ 35 nm) by focused ion beam. For comparison, we did similar MR measurements on a polycrystalline sample with large crystallographic grains (∼4 μm). It is observed that in the low field region where the MR is due to motion of magnetic domains, the MR in the large grained sample shows a close relation to the characteristic temperature dependent magnetocrystalline anisotropy including a sharp rise in MR at the spin reorientation transition at 235 K. In stark contrast, in the nanowire, the MR shows complete suppression of the above behaviours and it shows predominance of the grain boundary and spin disorder controlling the domain response.

  18. Negative Magnetoresistance in Amorphous Indium Oxide Wires

    PubMed Central

    Mitra, Sreemanta; Tewari, Girish C; Mahalu, Diana; Shahar, Dan

    2016-01-01

    We study magneto-transport properties of several amorphous Indium oxide nanowires of different widths. The wires show superconducting transition at zero magnetic field, but, there exist a finite resistance at the lowest temperature. The R(T) broadening was explained by available phase slip models. At low field, and far below the superconducting critical temperature, the wires with diameter equal to or less than 100 nm, show negative magnetoresistance (nMR). The magnitude of nMR and the crossover field are found to be dependent on both temperature and the cross-sectional area. We find that this intriguing behavior originates from the interplay between two field dependent contributions. PMID:27876859

  19. Hyperfine interaction and magnetoresistance in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Sheng, Y.; Nguyen, T. D.; Veeraraghavan, G.; Mermer, Ö.; Wohlgenannt, M.; Qiu, S.; Scherf, U.

    2006-07-01

    We explore the possibility that hyperfine interaction causes the recently discovered organic magnetoresistance (OMAR) effect. We deduce a simple fitting formula from the hyperfine Hamiltonian that relates the saturation field of the OMAR traces to the hyperfine coupling constant. We compare the fitting results to literature values for this parameter. Furthermore, we apply an excitonic pair mechanism model based on hyperfine interaction, previously suggested by others to explain various magnetic-field effects in organics, to the OMAR data. Whereas this model can explain a few key aspects of the experimental data, we uncover several fundamental contradictions as well. By varying the injection efficiency for minority carriers in the devices, we show experimentally that OMAR is only weakly dependent on the ratio between excitons formed and carriers injected, likely excluding any excitonic effect as the origin of OMAR.

  20. Molecular hyperfine fields in organic magnetoresistance devices

    NASA Astrophysics Data System (ADS)

    Giro, Ronaldo; Rosselli, Flávia P.; dos Santos Carvalho, Rafael; Capaz, Rodrigo B.; Cremona, Marco; Achete, Carlos A.

    2013-03-01

    We calculate molecular hyperfine fields in organic magnetoresistance (OMAR) devices using ab initio calculations. To do so, we establish a protocol for the accurate determination of the average hyperfine field Bhf and apply it to selected molecular ions: NPB, TPD, and Alq3. Then, we make devices with precisely the same molecules and perform measurements of the OMAR effect, in order to address the role of hole-transport layer in the characteristic magnetic field B0 of OMAR. Contrary to common belief, we find that molecular hyperfine fields are not only caused by hydrogen nuclei. We also find that dipolar contributions to the hyperfine fields can be comparable to the Fermi contact contributions. However, such contributions are restricted to nuclei located in the same molecular ion as the charge carrier (intramolecular), as extramolecular contributions are negligible.

  1. Evaluation of Magnetoresistive RAM for Space Applications

    NASA Technical Reports Server (NTRS)

    Heidecker, Jason

    2014-01-01

    Magnetoresistive random-access memory (MRAM) is a non-volatile memory that exploits electronic spin, rather than charge, to store data. Instead of moving charge on and off a floating gate to alter the threshold voltage of a CMOS transistor (creating different bit states), MRAM uses magnetic fields to flip the polarization of a ferromagnetic material thus switching its resistance and bit state. These polarized states are immune to radiation-induced upset, thus making MRAM very attractive for space application. These magnetic memory elements also have infinite data retention and erase/program endurance. Presented here are results of reliability testing of two space-qualified MRAM products from Aeroflex and Honeywell.

  2. Anomalous magnetoresistance in magnetized topological insulator cylinders

    SciTech Connect

    Siu, Zhuo Bin; Jalil, Mansoor B. A.

    2015-05-07

    The close coupling between the spin and momentum degrees of freedom in topological insulators (TIs) presents the opportunity for the control of one to manipulate the other. The momentum can, for example, be confined on a curved surface and the spin influenced by applying a magnetic field. In this work, we study the surface states of a cylindrical TI magnetized in the x direction perpendicular to the cylindrical axis lying along the z direction. We show that a large magnetization leads to an upwards bending of the energy bands at small |k{sub z}|. The bending leads to an anomalous magnetoresistance where the transmission between two cylinders magnetized in opposite directions is higher than when the cylinders are magnetized at intermediate angles with respect to each other.

  3. Recent Developments of Magnetoresistive Sensors for Industrial Applications

    PubMed Central

    Jogschies, Lisa; Klaas, Daniel; Kruppe, Rahel; Rittinger, Johannes; Taptimthong, Piriya; Wienecke, Anja; Rissing, Lutz; Wurz, Marc Christopher

    2015-01-01

    The research and development in the field of magnetoresistive sensors has played an important role in the last few decades. Here, the authors give an introduction to the fundamentals of the anisotropic magnetoresistive (AMR) and the giant magnetoresistive (GMR) effect as well as an overview of various types of sensors in industrial applications. In addition, the authors present their recent work in this field, ranging from sensor systems fabricated on traditional substrate materials like silicon (Si), over new fabrication techniques for magnetoresistive sensors on flexible substrates for special applications, e.g., a flexible write head for component integrated data storage, micro-stamping of sensors on arbitrary surfaces or three dimensional sensing under extreme conditions (restricted mounting space in motor air gap, high temperatures during geothermal drilling). PMID:26569263

  4. High speed magneto-resistive random access memory

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan (Inventor); Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor)

    1992-01-01

    A high speed read MRAM memory element is configured from a sandwich of magnetizable, ferromagnetic film surrounding a magneto-resistive film which may be ferromagnetic or not. One outer ferromagnetic film has a higher coercive force than the other and therefore remains magnetized in one sense while the other may be switched in sense by a switching magnetic field. The magneto-resistive film is therefore sensitive to the amplitude of the resultant field between the outer ferromagnetic films and may be constructed of a high resistivity, high magneto-resistive material capable of higher sensing currents. This permits higher read voltages and therefore faster read operations. Alternate embodiments with perpendicular anisotropy, and in-plane anisotropy are shown, including an embodiment which uses high permeability guides to direct the closing flux path through the magneto-resistive material. High density, high speed, radiation hard, memory matrices may be constructed from these memory elements.

  5. Effect of quantum tunneling on spin Hall magnetoresistance.

    PubMed

    Ok, Seulgi; Chen, Wei; Sigrist, Manfred; Manske, Dirk

    2017-02-22

    We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y3Fe5O12) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.

  6. Recent Developments of Magnetoresistive Sensors for Industrial Applications.

    PubMed

    Jogschies, Lisa; Klaas, Daniel; Kruppe, Rahel; Rittinger, Johannes; Taptimthong, Piriya; Wienecke, Anja; Rissing, Lutz; Wurz, Marc Christopher

    2015-11-12

    The research and development in the field of magnetoresistive sensors has played an important role in the last few decades. Here, the authors give an introduction to the fundamentals of the anisotropic magnetoresistive (AMR) and the giant magnetoresistive (GMR) effect as well as an overview of various types of sensors in industrial applications. In addition, the authors present their recent work in this field, ranging from sensor systems fabricated on traditional substrate materials like silicon (Si), over new fabrication techniques for magnetoresistive sensors on flexible substrates for special applications, e.g., a flexible write head for component integrated data storage, micro-stamping of sensors on arbitrary surfaces or three dimensional sensing under extreme conditions (restricted mounting space in motor air gap, high temperatures during geothermal drilling).

  7. Linear magnetoresistance in a topological insulator Ru2Sn3

    NASA Astrophysics Data System (ADS)

    Shiomi, Y.; Saitoh, E.

    2017-03-01

    We have studied magnetotransport properties of a topological insulator material Ru2Sn3. Bulk single crystals of Ru2Sn3 were grown by a Bi flux method. The resistivity is semiconducting at high temperatures above 160 K, while it becomes metallic below 160 K. Nonlinear field dependence of Hall resistivity in the metallic region shows conduction of multiple carriers at low temperatures. In the high-temperature semiconducting region, magnetoresistance exhibits a conventional quadratic magnetic-field dependence. In the low-temperature metallic region, however, high-field magnetoresistance is clearly linear with magnetic fields, signaling a linear dispersion in the low-temperature electronic structure. Small changes in the magnetoresistance magnitude with respect to the magnetic field angle indicate that bulk electron carriers are responsible mainly for the observed linear magnetoresistance.

  8. Effect of quantum tunneling on spin Hall magnetoresistance

    NASA Astrophysics Data System (ADS)

    Ok, Seulgi; Chen, Wei; Sigrist, Manfred; Manske, Dirk

    2017-02-01

    We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y3Fe5O12) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.

  9. Theory of organic magnetoresistance in disordered organic semiconductors

    NASA Astrophysics Data System (ADS)

    Harmon, Nicholas J.; Flatté, Michael E.

    2012-10-01

    The understanding of spin transport in organics has been challenged by the discovery of large magnetic field effects on properties such as conductivity and electroluminescence in a wide array of organic systems. To explain the large organic magnetoresistance (OMAR) phenomenon, we present and solve a model for magnetoresistance in positionally disordered organic materials using percolation theory. The model describes the effects of singlettriplet spin transitions on hopping transport by considering the role of spin dynamics on an effective density of hopping sites. Faster spin transitions open up `spin-blocked' pathways to become viable conduction channels and hence produce magnetoresistance. We concentrate on spin transitions under the effects of the hyperfine (isotropic and anisotropic), exchange, and dipolar interactions. The magnetoresistance can be found analytically in several regimes and explains several experimental observations

  10. Magnetoresistive smart fluid (marsonpol) and devices

    NASA Astrophysics Data System (ADS)

    Reji, John; Suresh, G.; Narayanadas, D. J.

    2003-10-01

    Magnetorheological fluid, Electrorheological fluid and ferro fluids are the smart fluids known today. These fluids are either electrically conductive or non conductive. They do not exhibit variable electrical resistance or switching behavior. Of recent interest to researchers has been the development of new types of magnetoresistive materials. Such materials can be of large practical importance, as they will change their electrical resistance in the presence of a magnetic field. However, most materials only exhibit appreciable magnetoresistance under extreme conditions, such as high magnetic fields or low temperatures. A smart fluid whose electrical resistance can be varied by several orders of magnitude under nominal level of magnetic field is reported in this paper (designated MARSONPOL). In the absence of a magnetic field the fluid is an insulator having electrical resistance in the order of 108 ohm-meter and in the presence of a magnetic field the resistance of the material reduces to less than 1 ohm-meter, at room temperature of 30°C. The sharp and reversible change in resistivity makes the material transform from an insulator to conductor, rendering properties characteristic of either state, within a fraction of a second. Fluids with such characteristics are not reported in the literature making this development a breakthrough and opening up potentials for the development of several smart devices. One such device is the magnetic field sensor probe currently under development at NPOL. A capsule of MARSONPOL forms the basic sensor element. Depending on the strength of the Magnetic field, the electrical resistivity of the capsule undergoes changes. The present paper will discuss details of the smart fluid as well as features of the magnetic field sensor.

  11. Graphene magnetoresistance device in van der Pauw geometry.

    PubMed

    Lu, Jianming; Zhang, Haijing; Shi, Wu; Wang, Zhe; Zheng, Yuan; Zhang, Ting; Wang, Ning; Tang, Zikang; Sheng, Ping

    2011-07-13

    We have fabricated extraordinary magnetoresistance (EMR) device, comprising a monolayer graphene with an embedded metallic disk, that exhibits large room temperature magnetoresistance (MR) enhancement of up to 55,000% at 9 T. Finite element simulations yield predictions in excellent agreement with the experiment and show possibility for even better performance. Simplicity, ease of implementation and high sensitivity of this device imply great potential for practical applications.

  12. A two-site bipolaron model for organic magnetoresistance

    NASA Astrophysics Data System (ADS)

    Wagemans, W.; Bloom, F. L.; Bobbert, P. A.; Wohlgenannt, M.; Koopmans, B.

    2008-04-01

    The recently proposed bipolaron model for large "organic magnetoresistance" (OMAR) at room temperature is extended to an analytically solvable two-site scheme. It is shown that even this extremely simplified approach reproduces some of the key features of OMAR, viz., the possibility to have both positive and negative magnetoresistance, as well as its universal line shapes. Specific behavior and limiting cases are discussed. Extensions of the model, to guide future experiments and numerical Monte Carlo studies, are suggested.

  13. Research progress on electronic phase separation in low-dimensional perovskite manganite nanostructures.

    PubMed

    Liang, Lizhi; Li, Lei; Wu, Heng; Zhu, Xinhua

    2014-01-01

    Perovskite oxide manganites with a general formula of R1-x AxMnO3 (where R is a trivalent rare-earth element such as La, Pr, Sm, and A is a divalent alkaline-earth element such as Ca, Sr, and Ba) have received much attention due to their unusual electron-transport and magnetic properties, which are indispensable for applications in microelectronic, magnetic, and spintronic devices. Recent advances in the science and technology have resulted in the feature sizes of microelectronic devices based on perovskite manganite oxides down-scaling into nanoscale dimensions. At the nanoscale, low-dimensional perovskite manganite oxide nanostructures display novel physical properties that are different from their bulk and film counterparts. Recently, there is strong experimental evidence to indicate that the low-dimensional perovskite manganite oxide nanostructures are electronically inhomogeneous, consisting of different spatial regions with different electronic orders, a phenomenon that is named as electronic phase separation (EPS). As the geometry sizes of the low-dimensional manganite nanostructures are reduced to the characteristic EPS length scale (typically several tens of nanometers in manganites), the EPS is expected to be strongly modulated, leading to quite dramatic changes in functionality and more emergent phenomena. Therefore, reduced dimensionality opens a door to the new functionalities in perovskite manganite oxides and offers a way to gain new insight into the nature of EPS. During the past few years, much progress has been made in understanding the physical nature of the EPS in low-dimensional perovskite manganite nanostructures both from experimentalists and theorists, which have a profound impact on the oxide nanoelectronics. This nanoreview covers the research progresses of the EPS in low-dimensional perovskite manganite nanostructures such as nanoparticles, nanowires/nanotubes, and nanostructured films and/or patterns. The possible physical origins of the

  14. Research progress on electronic phase separation in low-dimensional perovskite manganite nanostructures

    PubMed Central

    2014-01-01

    Perovskite oxide manganites with a general formula of R1-x AxMnO3 (where R is a trivalent rare-earth element such as La, Pr, Sm, and A is a divalent alkaline-earth element such as Ca, Sr, and Ba) have received much attention due to their unusual electron-transport and magnetic properties, which are indispensable for applications in microelectronic, magnetic, and spintronic devices. Recent advances in the science and technology have resulted in the feature sizes of microelectronic devices based on perovskite manganite oxides down-scaling into nanoscale dimensions. At the nanoscale, low-dimensional perovskite manganite oxide nanostructures display novel physical properties that are different from their bulk and film counterparts. Recently, there is strong experimental evidence to indicate that the low-dimensional perovskite manganite oxide nanostructures are electronically inhomogeneous, consisting of different spatial regions with different electronic orders, a phenomenon that is named as electronic phase separation (EPS). As the geometry sizes of the low-dimensional manganite nanostructures are reduced to the characteristic EPS length scale (typically several tens of nanometers in manganites), the EPS is expected to be strongly modulated, leading to quite dramatic changes in functionality and more emergent phenomena. Therefore, reduced dimensionality opens a door to the new functionalities in perovskite manganite oxides and offers a way to gain new insight into the nature of EPS. During the past few years, much progress has been made in understanding the physical nature of the EPS in low-dimensional perovskite manganite nanostructures both from experimentalists and theorists, which have a profound impact on the oxide nanoelectronics. This nanoreview covers the research progresses of the EPS in low-dimensional perovskite manganite nanostructures such as nanoparticles, nanowires/nanotubes, and nanostructured films and/or patterns. The possible physical origins of the

  15. Striction-Coupled Magnetoresistance in Perovskite-type Manganese Oxides (Nd,Sm)_1/2Sr_1/2MnO_3

    NASA Astrophysics Data System (ADS)

    Kuwahara, H.; Tomioka, Y.; Moritomo, Y.; Asamitsu, A.; Tokura, Y.

    1996-03-01

    Magnetoresistance (MR) of more than three orders of magnitude, which is strongly coupled to lattice striction, has been observed under a relatively low magnetic field (e.g., 0.4 T at 115 K) for a single crystal of perovskite-type manganese oxide with finely controlled ionic radii of the A-sites, (Nd,Sm)_1/2Sr_1/2MnO_3. The colossal MR phenomena are viewed as a first-order insulator-to-metal phase transition induced by a magnetic field, which accompanies a metamagnetic (antiferromagnetic-to-ferromagnetic) transition as well as a lattice-structural change. Clear hystereses as well as switching-like changes of magnetization, striction, and resistivity are observed in increasing and decreasing magnetic field at temperatures (113-160K) near above the Curie temperature. In this temperature region, the ferromagnetic double exchange interaction seems to be suppressed by localization of carriers and/or antiferromagnetic interaction. We speculate that this antiferromagnetic interaction is relevant to a charge-ordering instability, the real space ordering of doped holes, observed in many of the similar manganese oxides. This work was supported by New Energy and Industrial Technology Development Organization (NEDO) of Japan.

  16. Resistivity dependence of magnetoresistance in Co/ZnO films.

    PubMed

    Quan, Zhi-Yong; Zhang, Li; Liu, Wei; Zeng, Hao; Xu, Xiao-Hong

    2014-01-06

    We report the dependence of magnetoresistance effect on resistivity (ρ) in Co/ZnO films deposited by magnetron sputtering at different sputtering pressures with different ZnO contents. The magnitude of the resistivity reflects different carrier transport regimes ranging from metallic to hopping behaviors. Large room-temperature magnetoresistance greater than 8% is obtained in the resistivity range from 0.08 to 0.5 Ω · cm. The magnetoresistance value decreases markedly when the resistivity of the films is less than 0.08 Ω · cm or greater than 0.5 Ω · cm. When 0.08 Ω · cm < ρ < 0.5 Ω · cm, the conduction contains two channels: the spin-dependent tunneling channel and the spin-independent second-order hopping (N = 2). The former gives rise to a high room-temperature magnetoresistance effect. When ρ > 0.5 Ω · cm, the spin-independent higher-order hopping (N > 2) comes into play and decreases the tunneling magnetoresistance value. For the samples with ρ < 0.08 Ω · cm, reduced magnetoresistance is mainly ascribed to the formation of percolation paths through interconnected elongated metallic Co particles. This observation is significant for the improvement of room-temperature magnetoresistance value for future spintronic devices.

  17. A Minimal tight-binding model for ferromagnetic canted bilayer manganites

    PubMed Central

    Baublitz, M.; Lane, C.; Lin, Hsin; Hafiz, Hasnain; Markiewicz, R. S.; Barbiellini, B.; Sun, Z.; Dessau, D. S.; Bansil, A.

    2014-01-01

    Half-metallicity in materials has been a subject of extensive research due to its potential for applications in spintronics. Ferromagnetic manganites have been seen as a good candidate, and aside from a small minority-spin pocket observed in La2−2xSr1+2xMn2O7 (x = 0.38), transport measurements show that ferromagnetic manganites essentially behave like half metals. Here we develop robust tight-binding models to describe the electronic band structure of the majority as well as minority spin states of ferromagnetic, spin-canted antiferromagnetic, and fully antiferromagnetic bilayer manganites. Both the bilayer coupling between the MnO2 planes and the mixing of the |x2 − y2 > and |3z2 − r2 > Mn 3d orbitals play an important role in the subtle behavior of the bilayer splitting. Effects of kz dispersion are included. PMID:25522737

  18. Visible light induced oxidation of water by rare earth manganites, cobaltites and related oxides

    NASA Astrophysics Data System (ADS)

    Naidu, B. S.; Gupta, Uttam; Maitra, Urmimala; Rao, C. N. R.

    2014-01-01

    A study of the visible light induced oxidation of water by perovskite oxides of the formula LaMO3 (M = transition metal) has revealed the best activity with LaCoO3 which contains Co3+ in the intermediate-spin (IS) with one eg electron. Among the rare earth manganites, only orthorhombic manganites with octahedral Mn3+ ions exhibit good catalytic activity, but hexagonal manganites are poor catalysts. Interestingly, not only the perovskite rare earth cobaltites but also solid solutions of Co3+ in cubic rare earth sesquioxides exhibit catalytic activity comparable to LaCoO3, the Co3+ ion in all these oxides also being in the IS t2g5 e g 1 state.

  19. Evolution and control of the phase competition morphology in a manganite film.

    PubMed

    Zhou, Haibiao; Wang, Lingfei; Hou, Yubin; Huang, Zhen; Lu, Qingyou; Wu, Wenbin

    2015-11-25

    The competition among different phases in perovskite manganites is pronounced since their energies are very close under the interplay of charge, spin, orbital and lattice degrees of freedom. To reveal the roles of underlying interactions, many efforts have been devoted towards directly imaging phase transitions at microscopic scales. Here we show images of the charge-ordered insulator (COI) phase transition from a pure ferromagnetic metal with reducing field or increasing temperature in a strained phase-separated manganite film, using a home-built magnetic force microscope. Compared with the COI melting transition, this reverse transition is sharp, cooperative and martensitic-like with astonishingly unique yet diverse morphologies. The COI domains show variable-dimensional growth at different temperatures and their distribution can illustrate the delicate balance of the underlying interactions in manganites. Our findings also display how phase domain engineering is possible and how the phase competition can be tuned in a controllable manner.

  20. Colossal Kerr nonlinearity based on electromagnetically induced transparency in a five-level double-ladder atomic system.

    PubMed

    Hamedi, H R; Gharamaleki, Ali Hamrah; Sahrai, Mostafa

    2016-08-01

    The paper is aimed at modeling the enhanced Kerr nonlinearity in a five-level double-ladder-type atomic system based on electromagnetically induced transparency (EIT) by using the semi-classical density matrix method. We present an analytical model to explain the origin of Kerr nonlinearity enhancement. The scheme also results in a several orders of magnitude increase in the Kerr nonlinearity in comparison with the well-known four- and three-level atomic systems. In addition to the steady-state case, the time-dependent Kerr nonlinearity and the switching feature of EIT-based colossal Kerr nonlinearity is investigated for the proposed system.

  1. One-Dimensional Perovskite Manganite Oxide Nanostructures: Recent Developments in Synthesis, Characterization, Transport Properties, and Applications.

    PubMed

    Li, Lei; Liang, Lizhi; Wu, Heng; Zhu, Xinhua

    2016-12-01

    One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, and mechanical performances, and in constructing nanoscale electronic and optoelectronic devices. Among the one-dimensional nanostructures, one-dimensional perovskite manganite nanostructures have been received much attention due to their unusual electron transport and magnetic properties, which are indispensable for the applications in microelectronic, magnetic, and spintronic devices. In the past two decades, much effort has been made to synthesize and characterize one-dimensional perovskite manganite nanostructures in the forms of nanorods, nanowires, nanotubes, and nanobelts. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, crystalline structure, defects, and homogenous stoichiometry of the one-dimensional perovskite manganite nanostructures. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, fundamental properties, and unique applications of one-dimensional perovskite manganite nanostructures in nanotechnology. It begins with the rational synthesis of one-dimensional perovskite manganite nanostructures and then summarizes their structural characterizations. Fundamental physical properties of one-dimensional perovskite manganite nanostructures are also highlighted, and a range of unique applications in information storages, field-effect transistors, and spintronic devices are discussed. Finally, we conclude this review with some perspectives/outlook and future

  2. Reinforcement of double-exchange ferromagnetic coupling by Ru in La{sub 1.24}Sr{sub 1.76}Mn{sub 2-y}Ru{sub y}O{sub 7} manganite system

    SciTech Connect

    Kumaresavanji, M.; Fontes, M.B.; Lopes, A.M.L.; Araujo, J.P.

    2014-03-01

    Highlights: • Effect of Mn-site doping by Ru has been studied in La{sub 1.24}Sr{sub 1.76}Mn{sub 2-y}Ru{sub y}O{sub 7}. • Electrical resistance, magnetoresistance and magnetic properties were measured. • Ru substitution enhances the ferromagnetism and metallicity. • Results were interpreted by the ferromagnetically coupled Ru with Mn ions in Mn–O–Ru network. - Abstract: The effect of Mn-site doping on magnetic and transport properties in the bilayer manganites La{sub 1.24}Sr{sub 1.76}Mn{sub 2-y}Ru{sub y}O{sub 7} (y = 0.0, 0.04, 0.08 and 0.15) has been studied. The undoped compound La{sub 1.24}Sr{sub 1.76}Mn{sub 2}O{sub 7} exhibits a ferromagnetic metal to paramagnetic insulator transition at T{sub C} = 130 K and the substitution of Ru shifts the transition temperatures to higher temperature values. The increased metal–insulator transition by Ru substitution, obtained from temperature dependence of resistivity measurements, indicates that the Ru substitution enhances the metallic state at low temperature regime and favours the Mn–Ru pairs in the Ru doped samples. Moreover, the activation energy values calculated from the temperature dependence of resistivity curves suggest that the Ru substitution weakens the formation of polarons. The increased magnetoresistance ratio from 108% to 136% by Ru substitution, measured at 5 K, points out that the Ru substitution also enhances the inter-grain tunneling magnetoresistance. Thus, the ferromagnetic order and metallic state in La{sub 1.24}Sr{sub 1.76}Mn{sub 2}O{sub 7} system have been enhanced by the presence of Ru in the Mn-site. These reinforcements of ferromagnetic metallic state and magnetoresistance have been interpreted by the ferromagnetically coupled high spin states of Ru with Mn ions in the Mn–O–Ru network.

  3. Giant magnetoresistance materials for magnetic recording technology

    SciTech Connect

    Heffner, R.H.; Adams, C.D.; Brosha, E.L.

    1997-12-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This work focused on a class of transition-metal-oxide (TMO) materials (LaMnO{sub 3} doped with Ca, Ba, or Sr) that exhibits an insulator-to-metal transition near a ferromagnetic phase transition temperature. This yields a very large magnetoresistance; thus these materials may have important uses as magnetic sensors in a variety of applications, ranging from automobiles to read heads for magnetic storage. In addition, the transport current in the ferromagnetic state is likely to be very highly polarized, which means that additional device applications using the phenomena of spin-polarized tunneling can be envisioned. Use of these materials as magnetic sensors depends upon learning to control the synthesis parameters (principally temperature, pressure and composition) to achieve a specific carrier concentration and/or mobility. A second challenge is the high magnetic fields ({ge}1 Tesla) currently required to achieve a large change in resistance. The authors began an investigation of two novel approaches to this field-sensitivity problem, involving the development of multilayer structures of the TMO materials. Finally, they began to explore the use of epitaxial strain as a means of changing the transport properties in thin-film multilayers.

  4. Tunneling magnetoresistance phenomenon utilizing graphene magnet electrode

    SciTech Connect

    Hashimoto, T.; Kamikawa, S.; Haruyama, J.; Soriano, D.; Pedersen, J. G.; Roche, S.

    2014-11-03

    Using magnetic rare-metals for spintronic devices is facing serious problems for the environmental contamination and the limited material-resource. In contrast, by fabricating ferromagnetic graphene nanopore arrays (FGNPAs) consisting of honeycomb-like array of hexagonal nanopores with hydrogen-terminated zigzag-type atomic structure edges, we reported observation of polarized electron spins spontaneously driven from the pore edge states, resulting in rare-metal-free flat-energy-band ferromagnetism. Here, we demonstrate observation of tunneling magnetoresistance (TMR) behaviors on the junction of cobalt/SiO{sub 2}/FGNPA electrode, serving as a prototype structure for future rare-metal free TMR devices using magnetic graphene electrodes. Gradual change in TMR ratios is observed across zero-magnetic field, arising from specified alignment between pore-edge- and cobalt-spins. The TMR ratios can be controlled by applying back-gate voltage and by modulating interpore distance. Annealing the SiO{sub 2}/FGNPA junction also drastically enhances TMR ratios up to ∼100%.

  5. Noncontact vibration measurements using magnetoresistive sensing elements

    NASA Astrophysics Data System (ADS)

    Tomassini, R.; Rossi, G.

    2016-06-01

    Contactless instrumentations is more and more used in turbomachinery testing thanks to the non-intrusive character and the possibility to monitor all the components of the machine at the same time. Performances of blade tip timing (BTT) measurement systems, used for noncontact turbine blade vibration measurements, in terms of uncertainty and resolution are strongly affected by sensor characteristics and processing methods. The sensors used for BTT generate pulses, used for precise measurements of turbine blades time of arrival. Nowadays proximity sensors used in this application are based on optical, capacitive, eddy current and microwave measuring principle. Pressure sensors has been also tried. This paper summarizes the results achieved using a novel instrumentation based on the magnetoresistive sensing elements. The characterization of the novel probe has been already published. The measurement system was validated in test benches and in a real jet-engine comparing different sensor technologies. The whole instrumentation was improved. The work presented in this paper focuses on the current developments. In particular, attention is given to the data processing software and new sensor configurations.

  6. Anomalous Magnetoresistance Phenomena in Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Bergeson, Jeremy D.; Lincoln, Derek M.; Shima Edelstein, Ruth; Prigodin, Vladimir N.; Epstein, Arthur J.

    2006-03-01

    We report magnetoresistance (MR) phenomena with temperature and bias dependence in organic semiconductor thin films with either nonmagnetic or magnetic contacts through high field reaching 9T. For nonmagnetic organic thin films such as Alq3 we find a low field MR up to 15%. A similar magnetic field effect has been reported earlier^1 but, as noted, the mechanism remains unclear. We propose a model of the anomalous MR where charge transport is space-charge limited. The current is determined by the e-h recombination rate. The recombination rate is field dependent, analogous to the chemical yield for radical pairs^2. Using an organic- based magnetic semiconductor^3, V[TCNE]x, and Co as magnetic contacts, with a nonmagnetic organic semiconductor (α-6T) leads to an order-of-magnitude broader zero-centered MR peak superimposed on a spin-valve effect. Possible origins of this broader MR will be discussed. 1. Francis, et al., New J. Phys. 6 185 (2004); Frankevich, et al., Phys. Rev. B 53 4498 (1996) 2. Steiner and Ulrich, Chem. Rev. 89 51 (1989) 3. Pokhodnya, et al., Adv. Mater. 12 410 (2000); Prigodin, et al., Adv. Mater. 14 1230 (2002); Shima Edelstein, et al., Mater. Res. Soc. Symp. Proc. 871E I7.3 (2005)

  7. Hopping magnetoresistance in ion irradiated monolayer graphene

    NASA Astrophysics Data System (ADS)

    Shlimak, I.; Zion, E.; Butenko, A. V.; Wolfson, L.; Richter, V.; Kaganovskii, Yu.; Sharoni, A.; Haran, A.; Naveh, D.; Kogan, E.; Kaveh, M.

    2016-02-01

    Magnetoresistance (MR) of ion irradiated monolayer graphene samples with a variable-range hopping (VRH) mechanism of conductivity was measured at temperatures down to T=1.8 K in magnetic fields up to B=8 T. It was observed that in perpendicular magnetic fields, hopping resistivity R decreases, which corresponds to negative MR (NMR), while parallel magnetic field results in positive MR (PMR) at low temperatures. NMR is explained on the basis of the "orbital" model in which perpendicular magnetic field suppresses the destructive interference of many paths through the intermediate sites in the total probability of the long-distance tunneling in the VRH regime. At low fields, a quadratic dependence (| ΔR / R | ∼ B2) of NMR is observed, while at B > B*, the quadratic dependence is replaced by the linear one. It was found that all NMR curves for different samples and different temperatures could be merged into common dependence when plotted as a function of B/B*. It is shown that B* ∼ T1/2 in agreement with predictions of the "orbital" model. The obtained values of B* also allowed us to estimate the localization radius ξ of charge carriers for samples with a different degree of disorder. PMR in parallel magnetic fields is explained by suppression of hopping transitions via double occupied states due to alignment of electron spins.

  8. Giant magnetoresistance of copper/permalloy multilayers

    NASA Astrophysics Data System (ADS)

    Holody, P.; Chiang, W. C.; Loloee, R.; Bass, J.; Pratt, W. P., Jr.; Schroeder, P. A.

    1998-11-01

    Current perpendicular (CPP) and current in-plane (CIP) magnetoresistances (MR) have been measured on sputtered Cu/Py (Py=Permalloy) multilayers at 4.2 K. The CPP-MR is several times larger than the CIP-MR. For fixed Py layer thickness, tPy=1.5 nm, both the CPP and CIP MR's show oscillations with increasing tCu with a period similar to that previously reported for the CIP-MR. The CPP data for Cu thicknesses large enough that exchange interactions between Py layers are small are analyzed using the two spin-current model for both infinite and finite spin-diffusion length in Py. The very low coercive field of Py leads to a larger than usual uncertainty in the derived parameters, because of the uncertainty in the degree of antiparallel alignment required for the analysis. Three alternative analyses give bulk and interface spin-dependent anisotropy parameters, β, and γ, of comparable size, so that both must be considered in determining the CPP-MR. Our preferred values, based upon an assumed IPysf=5.5+/-1 nm, are β=0.65+/-0.1 and γ=0.76+/-0.1. These values produce good fits to the CPP-MR's of Co/Cu/Py/Cu multilayers.

  9. Planar Hall magnetoresistive aptasensor for thrombin detection.

    PubMed

    Sinha, B; Ramulu, T S; Kim, K W; Venu, R; Lee, J J; Kim, C G

    2014-09-15

    The use of aptamer-based assays is an emerging and attractive approach in disease research and clinical diagnostics. A sensitive aptamer-based sandwich-type sensor is presented to detect human thrombin using a planar Hall magnetoresistive (PHR) sensor in cooperation with superparamagnetic labels. A PHR sensor has the great advantages of a high signal-to-noise ratio, a small offset voltage and linear response in the low-field region, allowing it to act as a high-resolution biosensor. In the system presented here, the sensor has an active area of 50 µm × 50 µm with a 10-nm gold layer deposited onto the sensor surface prior to the binding of thiolated DNA primary aptamer. A polydimethylsiloxane well of 600-µm radius and 1-mm height was prepared around the sensor surface to maintain the same specific area and volume for each sensor. The sensor response was traced in real time upon the addition of streptavidin-functionalized magnetic labels on the sensor. A linear response to the thrombin concentration in the range of 86 pM-8.6 µM and a lower detection limit down to 86 pM was achieved by the proposed present method with a sample volume consumption of 2 µl. The proposed aptasensor has a strong potential for application in clinical diagnosis.

  10. Lateral flow immunoassay using magnetoresistive sensors

    NASA Astrophysics Data System (ADS)

    Taton, Kristin; Johnson, Diane; Guire, Patrick; Lange, Erik; Tondra, Mark

    2009-05-01

    Magnetic particles have been adapted for use as labels in biochemical lateral flow strip tests. Standard gold particle lateral flow assays are generally qualitative; however, with magnetic particles, quantitative results can be obtained by using electronic detection systems with giant magnetoresistive (GMR) sensors. As described here, these small integrated sensor chips can detect the presence of magnetic labels in capture spots whose volume is approximately 150 μm×150 μm×150 μm. The range of linear detection is better than two orders of magnitude; the total range is up to four orders of magnitude. The system was demonstrated with both indirect and sandwich enzyme-linked immunosorbent assays (ELISAs) for protein detection of rabbit IgG and interferon-γ, respectively, achieving detection of 12 pg/ml protein. Ultimately, the goal is for the detector to be fully integrated into the lateral flow strip backing to form a single consumable item that is interrogated by a handheld electronic reader.

  11. Controlling organic magnetoresistance via interface engineering

    NASA Astrophysics Data System (ADS)

    Richter, C. A.; Jang, H.-J.; Pookpanratana, S. J.; Basham, J. I.; Hacker, C. A.; Kirillov, O. A.; Kline, R. J.; Jurchescu, O. D.; Gundlach, D. J.

    2014-03-01

    We present the results of experiments in which we manipulate organic magnetoresistance (OMAR) in devices based on Alq3 (tris-(8-hydroxyquinoline) aluminum) and TPD (N,N '-Bis(3-methylphenyl)-N,N '-diphenylbenzidine) by adding a self-assembled monolayer (SAM). The results of OMAR measurements on this OLED-like architecture are correlated with impedance spectroscopy results to elucidate charge carrier transport and accumulation. We observe competing OMAR mechanisms in these devices, the relative strength of which can be tuned by adding SAMs at electrode interfaces. To determine how the interfacial and structural properties of these organic devices effect the OMAR, we obtained a complete picture of the interfacial, topological, and crystalline properties of these devices by performing UPS (Ultraviolet Photoelectron Spectroscopy), XPS (X-ray PS), XRD (X-ray diffraction), and AFM (atomic force microscopy). To verify our understanding of how interfacial changes affect OMAR, we characterized simple Alq3-only devices: one with a SAM and one without it. Despite having the same current density at room temperature, the latter shows a negative MR while the former displays a positive MR.

  12. Organic magnetoresistance under resonant ac drive

    NASA Astrophysics Data System (ADS)

    Roundy, R. C.; Raikh, M. E.

    2013-09-01

    Motivated by a recent experiment, we develop a theory of organic magnetoresistance (OMAR) in the presence of a resonant ac drive. To this end, we perform a thorough analysis of the dynamics of ac-driven electron-hole polaron pair in magnetic field, which is a sum of external and random hyperfine fields. Resonant ac drive affects the OMAR by modifying the singlet content of the eigenmodes. This, in turn, leads to the change of recombination rate, and ultimately, to the change of the spin-blocking that controls the current. Our analysis demonstrates that, upon increasing the drive amplitude, the blocking eigenmodes of the triplet type acquire a singlet admixture and become unblocking. Most surprisingly, the opposite process goes in parallel: new blocking modes emerge from nonblocking precursors as the drive increases. These emergent blocking modes are similar to subradiant modes in the Dicke effect. A nontrivial evolution of eigenmodes translates into a nontrivial behavior of OMAR with the amplitude of the ac drive: it is initially linear, then passes through a maximum, drops, and finally saturates.

  13. Linear unsaturating magnetoresistance in disordered systems

    NASA Astrophysics Data System (ADS)

    Lai, Ying Tong; Lara, Silvia; Love, Cameron; Ramakrishnan, Navneeth; Adam, Shaffique

    Theoretical works have shown that disordered systems exhibit classical magnetoresistance (MR). In this talk, we examine a variety of experimental systems that observe linear MR at high magnetic fields, including silver chalcogenides, graphene, graphite and Weyl semimetals. We show that a careful analysis of the magnitude of the MR, as well as the field strength at which the MR changes from quadratic to linear, reveal important properties of the system, such as the ratio of the root-mean-square fluctuations in the carrier density and the average carrier density. By looking at other properties such as the zero-field mobility, we show that this carrier density inhomogeneity is consistent with what is known about the microscopic impurities in these experiments. The application of this disorder-induced MR to a variety of different experimental scenarios underline the universality of these theoretical models. This work is supported by the Singapore National Research Foundation (NRF-NRFF2012-01) and the Singapore Ministry of Education and Yale-NUS College through Grant Number R-607-265-01312.

  14. Magnetoresistance in paramagnetic heavy fermion metals.

    PubMed

    Parihari, D; Vidhyadhiraja, N S

    2009-10-07

    A theoretical study of magnetic field (h) effects on single-particle spectra and the transport quantities of heavy fermion metals in the paramagnetic phase is carried out. We have employed a non-perturbative local moment approach (LMA) to the asymmetric periodic Anderson model within the dynamical mean field framework. The lattice coherence scale ω(L), which is proportional within the LMA to the spin-flip energy scale, and has been shown in earlier studies to be the energy scale at which crossover to single-impurity physics occurs, increases monotonically with increasing magnetic field. The many body Kondo resonance in the density of states at the Fermi level splits into two, with the splitting being proportional to the field itself. For h≥0, we demonstrate adiabatic continuity from the strongly interacting case to a corresponding non-interacting limit, thus establishing Fermi liquid behaviour for heavy fermion metals in the presence of a magnetic field. In the Kondo lattice regime, the theoretically computed magnetoresistance is found to be negative in the entire temperature range. We argue that such a result could be understood at [Formula: see text] by field-induced suppression of spin-flip scattering and at [Formula: see text] through lattice coherence. The coherence peak in the heavy fermion resistivity diminishes and moves to higher temperatures with increasing field. Direct comparison of the theoretical results to the field dependent resistivity measurements in CeB(6) yields good agreement.

  15. Ultrafast structural and electronic dynamics of the metallic phase in a layered manganite.

    PubMed

    Piazza, L; Ma, C; Yang, H X; Mann, A; Zhu, Y; Li, J Q; Carbone, F

    2014-01-01

    The transition between different states in manganites can be driven by various external stimuli. Controlling these transitions with light opens the possibility to investigate the microscopic path through which they evolve. We performed femtosecond (fs) transmission electron microscopy on a bi-layered manganite to study its response to ultrafast photoexcitation. We show that a photoinduced temperature jump launches a pressure wave that provokes coherent oscillations of the lattice parameters, detected via ultrafast electron diffraction. Their impact on the electronic structure are monitored via ultrafast electron energy loss spectroscopy, revealing the dynamics of the different orbitals in response to specific structural distortions.

  16. Unraveling electronic and magnetic structure at cuprate-manganite interfaces

    NASA Astrophysics Data System (ADS)

    Freeland, John

    2014-03-01

    Oxide interfaces offer a rich variety of physics and a pathway to create new classes of functional oxide materials. The interface between the cuprate high-temperature superconductors and ferromagnetic manganites is of particular interest due to the strongly antagonistic nature of the superconducting and ferromagnetic phases. Advancements in the synthesis of oxide heterostructure offers the opportunity to merge these two dissimilar oxides with atomic precision to understand the fundamental limits of bringing such states into close proximity. However, the main challenge is to understand the physical framework that describes the behavior of strongly correlated electrons near oxide interfaces. One aspect that will be addressed here is the use of advanced tools to gain detailed electronic and magnetic information from the boundary region. In this talk, recent work will be addressed both in connection to visualizing the interface with spatially resolved tools as well as harnessing layer-by-layer growth to explore the limits in ultrathin superlattices. These insights allow us to better understand the physics behind the interfacial spin and orbital reconstruction observed in this system. Work at Argonne is supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.

  17. Photocreating supercooled spiral-spin states in a multiferroic manganite

    NASA Astrophysics Data System (ADS)

    Sheu, Y. M.; Ogawa, N.; Kaneko, Y.; Tokura, Y.

    2016-08-01

    We demonstrate that the dynamics of the a b -spiral-spin order in a magnetoelectric multiferroic Eu0.55Y0.45MnO3 can be unambiguously probed through optical second harmonic signals, generated via spin-induced ferroelectric polarization. In the case of weak excitation, the ferroelectric and the spiral-spin order remains interlocked, both relaxing through spin-lattice relaxation in the nonequilibrium state. When the additional optical pulse illuminating the sample is intense enough to induce a local phase transition thermally, the system creates a metastable state of the b c -spiral-spin order (with the electric polarization P ∥c ) via supercooling across the first-order phase transition between the a b and b c spiral. The supercooled state of the b c -spiral spin is formed in the thermodynamical ground state of the a b spiral (P ∥a ), displaying a prolonged lifetime with strong dependence on the magnetic field along the a axis. The observed phenomena provide a different paradigm for photoswitching between the two distinct multiferroic states, motivating further research into a direct observation of the photocreated supercooled b c -spiral spin in multiferroic manganites.

  18. Synthesis and magnetic properties of manganite multiple heterostructure nanoribbons.

    PubMed

    Yu, Jiangying; Huang, Kai; Wu, Heyun; Li, Ping

    2012-09-14

    The fabrication and applications of two-dimensional complex oxide heterostructures have gained great attention. However, the achievement of these materials in one-dimensional form with multiple interfaces is still elusive. Here, we report the growth of manganite CaMn(3)O(6)/CaMn(2)O(4) heterostructure nanoribbons via the use of CaMnO(3) powders as the precursor for the molten-salt process. In contrast with the antiferromagnetism in CaMn(3)O(6) and CaMn(2)O(4) in the bulk, magnetization measurements indicate the coexistence of a ferromagnetic phase with a spin-glass-like component in CaMn(3)O(6)/CaMn(2)O(4) heterostructure nanoribbons. An asymmetric magnetization hysteresis loop observed in the applied magnetic field H≤ 3 T is attributed to the coupling between the antiferromagnetic phase and the ferromagnetic or spin-glass-like phase in CaMn(3)O(6)/CaMn(2)O(4) heterostructure nanoribbons.

  19. Intrinsic antiferromagnetic/insulating phase at manganite surfaces and interfaces.

    PubMed

    Valencia, S; Peña, L; Konstantinovic, Z; Balcells, Ll; Galceran, R; Schmitz, D; Sandiumenge, F; Casanove, M; Martínez, B

    2014-04-23

    In this work we investigate interfacial effects in bilayer systems integrated by La(2/3)Sr(1/3)MnO(3) (LSMO) thin films and different capping layers by means of surface-sensitive synchrotron radiation techniques and transport measurements. Our data reveal a complex scenario with a capping-dependent variation of the Mn oxidation state by the interface. However, irrespective of the capping material, an antiferromagnetic/insulating phase is also detected at the interface, which is likely to originate from a preferential occupancy of Mn 3d 3z(2)-r(2) e(g) orbitals. This phase, which extends approximately to two unit cells, is also observed in uncapped LSMO reference samples, thus pointing to an intrinsic interfacial phase separation phenomenon, probably promoted by the structural disruption and inversion symmetry breaking at the LSMO free surface/interface. These experimental observations strongly suggest that the structural disruption, with its intrinsic inversion symmetry breaking at the LSMO interfaces, plays a major role in the observed depressed magnetotransport properties in manganite-based magnetic tunneling junctions and explains the origin of the so-called dead layer.

  20. Spectroscopic Evidence of Formation of Small Polarons in Doped Manganites

    NASA Astrophysics Data System (ADS)

    Moritomo, Yutaka; Machida, Akihiko; Nakamura, Arao

    1998-03-01

    Temperature dependence of absorption spectra for thin films of doped manganites R_0.6Sr_0.4MnO_3, where R is rare-earth atom, has been investigated systematically changing averaged ionic radius < rA > of perovskite A-site. We have observed a specific absorption band at ~1.5eV due to optical excitations from small polarons (SP)(Machida et al.), submitted.. Spectral weight of the SP band increases with decreasing temperature and eventually disappears at the insulator-metal (IM) transition, indicating that SP in the paramagnetic state (T >= T_C) changes into bare electrons (or large polarons) in the ferromagnetic state due to the enhanced one-electron bandwidth W. We further derived important physical quantities, i.e., W, on-site exchange interaction J and binding energy Ep of SP, and discuss material dependence of stability of SP. This work was supported by a Grant-In-Aid for Scientific Research from the Ministry of Education, Science, Sport and Culture and from PRESTO, Japan Scienece and Technology Corporation (JST), Japan.

  1. Hybrid superconducting mesa-heterostructure with manganite-ruthenate interlayer

    NASA Astrophysics Data System (ADS)

    Constantinian, K. Y.; Ovsyannikov, G. A.; Sheyerman, A. E.; Shadrin, A. V.; Kislinskii, Y. V.; Kalabukhov, A.; Winkler, D.

    2014-05-01

    We present experimental data on Josephson effect in hybrid superconducting mesa-heterostructures (HSMH) with composite manganite-ruthenate interlayer. The HSMH base electrode consisted of the cuprate superconductor YBa2Cu3O7 grown epitaxially on a NdGaO substrate using laser ablation. The interlayer was composed from in-situ deposited SrRuO3 (F1) and La0.7Sr0.3MnO3 (F2) thin films, each characterized by different directions of magnetization. The top electrode was Nb/Au thin film. A superconducting current was observed when the interlayer thickness was well above the correlation length, determined by the exchange field in F1 and F2. Obtained IC(H) dependences and non-sinusoidal current-phase relation evaluated from microwave measurements are discussed in terms of generation of long-range spin triplet superconducting current component in heterostructures with interfaces of singlet superconductors and bilayer ferromagnetic materials with different spatial directions of magnetization.

  2. Magnetoresistance of heavy and light metal/ferromagnet bilayers

    SciTech Connect

    Avci, Can Onur; Garello, Kevin; Mendil, Johannes; Ghosh, Abhijit; Blasakis, Nicolas; Gabureac, Mihai; Trassin, Morgan; Fiebig, Manfred; Gambardella, Pietro

    2015-11-09

    We studied the magnetoresistance of normal metal (NM)/ferromagnet (FM) bilayers in the linear and nonlinear (current-dependent) regimes and compared it with the amplitude of the spin-orbit torques and thermally induced electric fields. Our experiments reveal that the magnetoresistance of the heavy NM/Co bilayers (NM = Ta, W, and Pt) is phenomenologically similar to the spin Hall magnetoresistance (SMR) of YIG/Pt, but has a much larger anisotropy of the order of 0.5%, which increases with the atomic number of the NM. This SMR-like behavior is absent in light NM/Co bilayers (NM = Ti and Cu), which present the standard anisotropic magnetoresistance expected from polycrystalline FM layers. In the Ta, W, and Pt/Co bilayers, we find an additional magnetoresistance directly proportional to the current and to the transverse component of the magnetization. This so-called unidirectional SMR, of the order of 0.005%, is largest in W and correlates with the amplitude of the antidamping spin-orbit torque. The unidirectional SMR is below the accuracy of our measurements in YIG/Pt.

  3. The Effects of Fringe Fields on Organic Magnetoresistance

    NASA Astrophysics Data System (ADS)

    Harmon, Nicholas; Macià, Ferran; Wang, Fujian; Wohlgenannt, Markus; Kent, Andrew; Flatté, Michael

    2013-03-01

    The importance of random hyperfine fields is now widely acknowledged as a vital ingredient for the phenomena of organic magnetoresistance (OMAR). Recent experiments (Phys. Rev. X 2 021013 (2012)) have shown that another type of random field - fringe fields due to a nearby ferromagnet - can also dramatically affect magnetoconductivity. A theoretical analysis of the fringe field OMAR is challenging due to the different properties of the fringe fields when compared to the hyperfine fields. For instance, the range of fringe field strengths is 1-2 orders of magnitude larger than that of the hyperfine couplings. The correlation length between fringe fields is also larger by the same degree. We use a recent theory of OMAR that is well-suited to numerically calculate the magnetoresistance with both hyperfine and fringe fields present. We find agreement with key features of experimental fringe-field magnetoresistance dependences on applied magnetic field, including the field values of extrema of the magnetoresistance, the region of large magnetoresistance effects from the fringe fields, and the sign of the effect. This work was supported by an ARO MURI.

  4. Experimental evidence for the formation of CoFe{sub 2}C phase with colossal magnetocrystalline-anisotropy

    SciTech Connect

    El-Gendy, Ahmed A. E-mail: ecarpenter2@vcu.edu; Bertino, Massimo; Qian, Meichun; Khanna, Shiv N. E-mail: ecarpenter2@vcu.edu; Clifford, Dustin; Carpenter, Everett E. E-mail: ecarpenter2@vcu.edu

    2015-05-25

    Attainment of magnetic order in nanoparticles at room temperature is an issue of critical importance for many different technologies. For ordinary ferromagnetic materials, a reduction in size leads to decreased magnetic anisotropy and results in superparamagnetic relaxations. If, instead, anisotropy could be enhanced at reduced particle sizes, then it would be possible to attain stable magnetic order at room temperature. Herein, we provide experimental evidence substantiating the synthesis of a cobalt iron carbide phase (CoFe{sub 2}C) of nanoparticles. Structural characterization of the CoFe{sub 2}C carbide phase was performed by transmission electron microscopy, electron diffraction and energy electron spectroscopy. X-ray diffraction was also performed as a complimentary analysis. Magnetic characterization of the carbide phase revealed a blocking temperature, T{sub B}, of 790 K for particles with a domain size as small as 5 ± 1 nm. The particles have magnetocrystalline anisotropy of 4.6 ± 2 × 10{sup 6 }J/m{sup 3}, which is ten times larger than that of Co nanoparticles. Such colossal anisotropy leads to thermally stable long range magnetic order. Moreover, the thermal stability constant is much larger than that of the commonly used FePt nanoparticles. With thermal stability and colossal anisotropy, the CoFe{sub 2}C nanoparticles have huge potential for enhanced magnetic data storage devices.

  5. Impact of metallophilicity on "colossal" positive and negative thermal expansion in a series of isostructural dicyanometallate coordination polymers.

    PubMed

    Korcok, Jasmine L; Katz, Michael J; Leznoff, Daniel B

    2009-04-08

    Five isostructural dicyanometallate coordination polymers containing metallophilic interactions (In[M(CN)(2)](3) (M = Ag, Au), KCd[M(CN)(2)](3), and KNi[Au(CN)(2)](3)) were synthesized and investigated by variable-temperature powder X-ray diffraction to probe their thermal expansion properties. The compounds have a trigonal unit cell and show positive thermal expansion (PTE) in the ab plane, where Kagome sheets of M atoms reside, and negative thermal expansion (NTE) along the trigonal c axis, perpendicular to these sheets. The magnitude of thermal expansion is unusually large in all cases (40 x 10(-6) K(-1) < |alpha| < 110 x 10(-6) K(-1)). The system with the weakest metallophilic interactions, In[Ag(CN)(2)](3), shows the most "colossal" thermal expansion of the series (alpha(a) = 105(2) x 10(-6) K(-1), alpha(c) = -84(2) x 10(-6) K(-1) at 295 K), while systems containing stronger Au-Au interactions show relatively reduced thermal expansion. Thus, it appears that strong metallophilic interactions hinder colossal thermal expansion behavior. Additionally, the presence of K(+) counterions also reduces the magnitude of thermal expansion.

  6. Tuning of colossal dielectric constant in gold-polypyrrole composite nanotubes using in-situ x-ray diffraction techniques

    SciTech Connect

    Sarma, Abhisakh; Sanyal, Milan K.

    2014-09-15

    In-situ x-ray diffraction technique has been used to study the growth process of gold incorporated polypyrrole nanotubes that exhibit colossal dielectric constant due to existence of quasi-one-dimensional charge density wave state. These composite nanotubes were formed within nanopores of a polycarbonate membrane by flowing pyrrole monomer from one side and mixture of ferric chloride and chloroauric acid from other side in a sample cell that allows collection of x-ray data during the reaction. The size of the gold nanoparticle embedded in the walls of the nanotubes was found to be dependent on chloroauric acid concentration for nanowires having diameter more than 100 nm. For lower diameter nanotubes the nanoparticle size become independent of chloroauric acid concentration and depends on the diameter of nanotubes only. The result of this study also shows that for 50 nm gold-polypyrrole composite nanotubes obtained with 5.3 mM chloroauric acid gives colossal dielectric constant of about 10{sup 7}. This value remain almost constant over a frequency range from 1Hz to 10{sup 6} Hz even at 80 K temperature.

  7. Electronic structure basis for the extraordinary magnetoresistance in WTe2

    DOE PAGES

    Pletikosić, I.; Ali, Mazhar N.; Fedorov, A. V.; ...

    2014-11-19

    The electronic structure basis of the extremely large magnetoresistance in layered non-magnetic tungsten ditelluride has been investigated by angle-resolved photoelectron spectroscopy. Hole and electron pockets of approximately the same size were found at the Fermi level, suggesting that carrier compensation should be considered the primary source of the effect. The material exhibits a highly anisotropic, quasi one-dimensional Fermi surface from which the pronounced anisotropy of the magnetoresistance follows. As a result, a change in the Fermi surface with temperature was found and a high-density-of-states band that may take over conduction at higher temperatures and cause the observed turn-on behavior ofmore » the magnetoresistance in WTe₂ was identified.« less

  8. Anomalous electronic structure and magnetoresistance in TaAs2

    PubMed Central

    Luo, Yongkang; McDonald, R. D.; Rosa, P. F. S.; Scott, B.; Wakeham, N.; Ghimire, N. J.; Bauer, E. D.; Thompson, J. D.; Ronning, F.

    2016-01-01

    The change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. Density functional calculations find that TaAs2 is a new topological semimetal [ℤ2 invariant (0;111)] without Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions. PMID:27271852

  9. Anomalous electronic structure and magnetoresistance in TaAs2

    DOE PAGES

    Luo, Yongkang; McDonald, R. D.; Rosa, P. F. S.; ...

    2016-01-01

    We report that the change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. In conclusion, density functional calculations find that TaAs2 is a new topological semimetal [Z2 invariant (0;111)] withoutmore » Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions.« less

  10. Magnetoresistive junctions based on epitaxial graphene and h-BN

    NASA Astrophysics Data System (ADS)

    Yazyev, Oleg; Pasquarello, Alfredo

    2009-03-01

    Using a first-principles approach, we investigate the structural, magnetic and transport properties of interfaces based on epitaxially grown monolayer graphene and hexagonal boron nitride (h-BN) in combination with ferromagnetic transition metals (Fe, Co and Ni). Such structurally well defined interfaces based on (111) fcc or (0001) hcp transition metals can be produced using simple manufacturing processes. Our calculations predict magnetoresistance ratios over 100% for certain junction compositions. In addition, such systems feature strong antiparallel (Fe and Co) and parallel (Ni) exchange coupling across the interface combined with low junction resistance. The predicted properties position such magnetoresistive junctions as an interesting alternative to the currently used giant and tunneling magnetoresistance systems and make them suitable for practical applications.

  11. Rectification magnetoresistance device: Experimental realization and theoretical simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Huang, Qikun; Yan, Yi; Wang, Xiaolin; Wang, Jing; Kang, Shishou; Tian, Yufeng

    2016-11-01

    A unique technique has been proposed to realize rectification magnetoresistance (RMR) by combining a commercial diode and a magnetoresistance component in parallel. The observed RMR could be greatly tuned in a wide range by applying direct current and alternating current simultaneously to the device. Moreover, a quantitative theoretical model has been established, which well explained both the observed RMR and the electrical manipulation behavior. The highly tunable RMR and the correlated magnetoelectric functionalities provide an alternative route for developing multi-functional spintronics devices.

  12. Detection of magnetic resonance signals using a magnetoresistive sensor

    SciTech Connect

    Budker, Dmitry; Pines, Alexander; Xu, Shoujun; Hilty, Christian; Ledbetter, Micah P; Bouchard, Louis S

    2013-10-01

    A method and apparatus are described wherein a micro sample of a fluidic material may be assayed without sample contamination using NMR techniques, in combination with magnetoresistive sensors. The fluidic material to be assayed is first subject to pre-polarization, in one embodiment, by passage through a magnetic field. The magnetization of the fluidic material is then subject to an encoding process, in one embodiment an rf-induced inversion by passage through an adiabatic fast-passage module. Thereafter, the changes in magnetization are detected by a pair of solid-state magnetoresistive sensors arranged in gradiometer mode. Miniaturization is afforded by the close spacing of the various modules.

  13. Analog isolated electronic dynamometer based on a magnetoresistive current sensor

    NASA Astrophysics Data System (ADS)

    Arcos Carrasco, C.; Ramírez Muñoz, D.; Ravelo Arias, S. I.; Sánchez Moreno, J.; Maset Sancho, E.; Garrigós Sirvent, A.

    2017-03-01

    In this work, an electronic system is presented to measure the force applied by a solenoid. The originality of the work is focused on the use of a magnetoresistive current sensor to provide the isolation barrier needed in the actual industrial plant where the solenoids are working. The design of the electronic system is presented as well as experimental measurements as a result of a calibration process showing a negligible hysteresis with that specific sensor. The magnetoresistive current sensor is used to develop transmission functions rather than playing its usual sensing roles.

  14. Oxygen Isotope Evidence for Mn(II)-Catalyzed Recrystallization of Manganite (γ-MnOOH).

    PubMed

    Frierdich, Andrew J; Spicuzza, Michael J; Scherer, Michelle M

    2016-06-21

    Manganese is biogeochemically cycled between aqueous Mn(II) and Mn(IV) oxides. Aqueous Mn(II) often coexists with Mn(IV) oxides, and redox reactions between the two (e.g., comproportionation) are well known to result in the formation of Mn(III) minerals. It is unknown, however, whether aqueous Mn(II) exchanges with structural Mn(III) in manganese oxides in the absence of any mineral transformation (similar to what has been reported for aqueous Fe(II) and some Fe(III) minerals). To probe whether atoms exchange between a Mn(III) oxide and water, we use a (17)O tracer to measure oxygen isotope exchange between structural oxygen in manganite (γ-MnOOH) and water. In the absence of aqueous Mn(II), about 18% of the oxygen atoms in manganite exchange with the aqueous phase, which is close to the estimated surface oxygen atoms (∼11%). In the presence of aqueous Mn(II), an additional 10% (for a total of 28%) of the oxygen atoms exchange with water, suggesting that some of the bulk manganite mineral (i.e., beyond surface) is exchanging with the fluid. Exchange of manganite oxygen with water occurs without any observable change in mineral phase and appears to be independent of the rapid Mn(II) sorption kinetics. These experiments suggest that Mn(II) catalyzes manganese oxide recrystallization and illustrate a new pathway by which these ubiquitous minerals interact with their surrounding fluid.

  15. Tunneling Spectroscopy Study of Spin-Polarized Quasiparticle Injection Effects in Cuparate/Manganite Heterostructures

    NASA Technical Reports Server (NTRS)

    Wei, J. Y. T.; Yeh, N. C.; Vasquez, R. P.

    1998-01-01

    Scanning tunneling spectroscopy was performed at 4.2K on epitaxial thin-film heterostructures comprising YBa2Cu3O7 and La0.7Ca0.3MnO3, to study the microscopic effects of spin-polarized quasiparticle injection from the half-metallic ferromagnetic manganite on the high-Tc cuprate superconductor.

  16. Ferroelectric switching dynamics of topological vortex domains in a hexagonal manganite.

    PubMed

    Han, Myung-Geun; Zhu, Yimei; Wu, Lijun; Aoki, Toshihiro; Volkov, Vyacheslav; Wang, Xueyun; Chae, Seung Chul; Oh, Yoon Seok; Cheong, Sang-Wook

    2013-05-07

    Field-induced switching of ferroelectric domains with a topological vortex configuration is studied by atomic imaging and electrical biasing in an electron microscope, revealing the role of topological defects on the topologically-guided change of domain-wall pairs in a hexagonal manganite.

  17. Room temperature electrically tunable rectification magnetoresistance in Ge-based Schottky devices

    NASA Astrophysics Data System (ADS)

    Huang, Qi-Kun; Yan, Yi; Zhang, Kun; Li, Huan-Huan; Kang, Shishou; Tian, Yu-Feng

    2016-11-01

    Electrical control of magnetotransport properties is crucial for device applications in the field of spintronics. In this work, as an extension of our previous observation of rectification magnetoresistance, an innovative technique for electrical control of rectification magnetoresistance has been developed by applying direct current and alternating current simultaneously to the Ge-based Schottky devices, where the rectification magnetoresistance could be remarkably tuned in a wide range. Moreover, the interface and bulk contribution to the magnetotransport properties has been effectively separated based on the rectification magnetoresistance effect. The state-of-the-art electrical manipulation technique could be adapt to other similar heterojunctions, where fascinating rectification magnetoresistance is worthy of expectation.

  18. Room temperature electrically tunable rectification magnetoresistance in Ge-based Schottky devices

    PubMed Central

    Huang, Qi-kun; Yan, Yi; Zhang, Kun; Li, Huan-huan; Kang, Shishou; Tian, Yu-feng

    2016-01-01

    Electrical control of magnetotransport properties is crucial for device applications in the field of spintronics. In this work, as an extension of our previous observation of rectification magnetoresistance, an innovative technique for electrical control of rectification magnetoresistance has been developed by applying direct current and alternating current simultaneously to the Ge-based Schottky devices, where the rectification magnetoresistance could be remarkably tuned in a wide range. Moreover, the interface and bulk contribution to the magnetotransport properties has been effectively separated based on the rectification magnetoresistance effect. The state-of-the-art electrical manipulation technique could be adapt to other similar heterojunctions, where fascinating rectification magnetoresistance is worthy of expectation. PMID:27876868

  19. Anisotropic magnetoresistance and planar Hall effect in La2/3Ca1/3MnO3 thin films with misfit strain

    NASA Astrophysics Data System (ADS)

    Li, J.; Wang, S. G.; Zhang, Y.; Cui, L. M.; Jin, Y. R.; Deng, H.; Zheng, D. N.; Zimmers, A.; Aubin, H.; Lang, P. L.

    2013-02-01

    In our previous study anisotropic magnetoresistance (AMR) and planar Hall effect (PHE) of epitaxial La2/3Ca1/3MnO3 (LCMO) thin films grown on SrTiO3(001) (STO) substrates were studied, and a phenomenological model in the high field limit was developed based on the 4/mmm point group. The derived longitudinal resistivity includes a four-fold as well as a two-fold symmetry term of the in-plane field angle, which can fit the experimental results well. In this study, to highlight the effects of misfit strain, AMR and PHE of LCMO thin films epitaxially grown on LaAlO3(001) substrates were studied, along either the [110] or the [100] direction. Both values are around a few percent, comparable to those measured in films on STO. Nevertheless, only tiny four-fold oscillations appear below the metal-insulator transition temperature Tp along the [110] direction, in contrast to the case of STO, where the four-fold term is prominent. The relationship between this four-fold symmetry and the misfit strain is then discussed in terms of the partial recovery of orbital magnetic moment. The mechanism for AMR and PHE in manganites then can be understood as an anisotropic percolation at metal-insulator transition resulting in the peak, and the spin-orbital coupling effect that accounts for the remnant far below Tp.

  20. Observation of complex magnetic behaviour in calcium doped neodymium manganites

    NASA Astrophysics Data System (ADS)

    Sudakshina, B.; Devi Chandrasekhar, K.; Yang, H. D.; Vasundhara, M.

    2017-02-01

    Crystal structure and magnetic properties of polycrystalline Nd1-x Ca x MnO3 (x  =  0.0, 0.2, 0.3, 0.33, 0.4, 0.5, 0.6 and 0.8) manganites were investigated. The fine structural refinement using GSAS was found to undergo a transition from Pnma reflections to Pbnm reflections associated with the Ca substitution at x  =  0.3. The magnetic ordering of these compounds witnessed distinct magnetic phases with variations of Ca substitution. Magnetic ordering of the parent compound, NdMnO3, was found as A-type antiferromagnetic (AFM) in accordance with the earlier reports, which progressively undergoes to canted A-type AFM for x  =  0.2, pseudo CE-type AFM for the intermediate compositions, i.e. x  =  0.3 to x  =  0.5 and CE-type AFM for x  >  0.5. The x  =  0.2 compound exhibited ferromagnetic like (weak AFM) behaviour, and the critical exponent study reinforced the magnetic inhomogeneity of the compound. Hysteresis curves of all the compounds measured at different temperatures implied the presence of metamagnetic like transitions for the intermediate compositions (0.3  ⩽  x  ⩽  0.5). Relative cooling power (RCP) value of Nd0.8Ca0.2MnO3 was observed to be 900 J Kg-1, at the higher magnetic field, making it a promising candidate for magnetic refrigeration applications.

  1. Magnetoresistive performance and comparison of supermagnetic nanoparticles on giant magnetoresistive sensor-based detection system.

    PubMed

    Wang, Wei; Wang, Yi; Tu, Liang; Feng, Yinglong; Klein, Todd; Wang, Jian-Ping

    2014-07-21

    Giant magnetoresistive (GMR) biosensors have emerged as powerful tools for ultrasensitive, multiplexed, real-time electrical readout, and rapid biological/chemical detection while combining with magnetic particles. Finding appropriate magnetic nanoparticles (MNPs) and its influences on the detection signal is a vital aspect to the GMR bio-sensing technology. Here, we report a GMR sensor based detection system capable of stable and convenient connection, and real-time measurement. Five different types of MNPs with sizes ranging from 10 to 100 nm were investigated for GMR biosensing. The experiments were accomplished with the aid of DNA hybridization and detection architecture on GMR sensor surface. We found that different MNPs markedly affected the final detection signal, depending on their characteristics of magnetic moment, size, and surface-based binding ability, etc. This work may provide a useful guidance in selecting or preparing MNPs to enhance the sensitivity of GMR biosensors, and eventually lead to a versatile and portable device for molecular diagnostics.

  2. Magnetoresistive performance and comparison of supermagnetic nanoparticles on giant magnetoresistive sensor-based detection system

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Wang, Yi; Tu, Liang; Feng, Yinglong; Klein, Todd; Wang, Jian-Ping

    2014-07-01

    Giant magnetoresistive (GMR) biosensors have emerged as powerful tools for ultrasensitive, multiplexed, real-time electrical readout, and rapid biological/chemical detection while combining with magnetic particles. Finding appropriate magnetic nanoparticles (MNPs) and its influences on the detection signal is a vital aspect to the GMR bio-sensing technology. Here, we report a GMR sensor based detection system capable of stable and convenient connection, and real-time measurement. Five different types of MNPs with sizes ranging from 10 to 100 nm were investigated for GMR biosensing. The experiments were accomplished with the aid of DNA hybridization and detection architecture on GMR sensor surface. We found that different MNPs markedly affected the final detection signal, depending on their characteristics of magnetic moment, size, and surface-based binding ability, etc. This work may provide a useful guidance in selecting or preparing MNPs to enhance the sensitivity of GMR biosensors, and eventually lead to a versatile and portable device for molecular diagnostics.

  3. Magnetoresistance, electrical conductivity, and Hall effect of glassy carbon

    SciTech Connect

    Baker, D.F.

    1983-02-01

    These properties of glassy carbon heat treated for three hours between 1200 and 2700/sup 0/C were measured from 3 to 300/sup 0/K in magnetic fields up to 5 tesla. The magnetoresistance was generally negative and saturated with reciprocal temperature, but still increased as a function of magnetic field. The maximum negative magnetoresistance measured was 2.2% for 2700/sup 0/C material. Several models based on the negative magnetoresistance being proportional to the square of the magnetic moment were attempted; the best fit was obtained for the simplest model combining Curie and Pauli paramagnetism for heat treatments above 1600/sup 0/C. Positive magnetoresistance was found only in less than 1600/sup 0/C treated glassy carbon. The electrical conductivity, of the order of 200 (ohm-cm)/sup -1/ at room temperature, can be empirically written as sigma = A + Bexp(-CT/sup -1/4) - DT/sup -1/2. The Hall coefficient was independent of magnetic field, insensitive to temperature, but was a strong function of heat treatment temperature, crossing over from negative to positive at about 1700/sup 0/C and ranging from -0.048 to 0.126 cm/sup 3//coul. The idea of one-dimensional filaments in glassy carbon suggested by the electrical conductivity is compatible with the present consensus view of the microstructure.

  4. Giant Magnetoresistance: Basic Concepts, Microstructure, Magnetic Interactions and Applications

    PubMed Central

    Ennen, Inga; Kappe, Daniel; Rempel, Thomas; Glenske, Claudia; Hütten, Andreas

    2016-01-01

    The giant magnetoresistance (GMR) effect is a very basic phenomenon that occurs in magnetic materials ranging from nanoparticles over multilayered thin films to permanent magnets. In this contribution, we first focus on the links between effect characteristic and underlying microstructure. Thereafter, we discuss design criteria for GMR-sensor applications covering automotive, biosensors as well as nanoparticular sensors. PMID:27322277

  5. Low temperature magnetoresistance measurements on bismuth nanowire arrays.

    PubMed

    Kaiser, Ch; Weiss, G; Cornelius, T W; Toimil-Molares, M E; Neumann, R

    2009-05-20

    We present low temperature resistance R(T) and magnetoresistance measurements for Bi nanowires with diameters between 100 and 500 nm, which are close to being single-crystalline. The nanowires were fabricated by electrochemical deposition in pores of polycarbonate membranes. R(T) varies as T(2) in the low temperature range 1.5 Kmagnetoresistance. The transverse magnetoresistance of all samples shows a clear B(1.5) variation. Its size depends strongly on the diameter of the wires but only weakly on temperature. Finally, a steplike increase in the magnetoresistance of our sample with a wire diameter of 100 nm was found and this might be attributed to a transition from one-dimensional to three-dimensional localization.

  6. Tuning spin transport properties and molecular magnetoresistance through contact geometry

    SciTech Connect

    Ulman, Kanchan; Narasimhan, Shobhana; Delin, Anna

    2014-01-28

    Molecular spintronics seeks to unite the advantages of using organic molecules as nanoelectronic components, with the benefits of using spin as an additional degree of freedom. For technological applications, an important quantity is the molecular magnetoresistance. In this work, we show that this parameter is very sensitive to the contact geometry. To demonstrate this, we perform ab initio calculations, combining the non-equilibrium Green's function method with density functional theory, on a dithienylethene molecule placed between spin-polarized nickel leads of varying geometries. We find that, in general, the magnetoresistance is significantly higher when the contact is made to sharp tips than to flat surfaces. Interestingly, this holds true for both resonant and tunneling conduction regimes, i.e., when the molecule is in its “closed” and “open” conformations, respectively. We find that changing the lead geometry can increase the magnetoresistance by up to a factor of ∼5. We also introduce a simple model that, despite requiring minimal computational time, can recapture our ab initio results for the behavior of magnetoresistance as a function of bias voltage. This model requires as its input only the density of states on the anchoring atoms, at zero bias voltage. We also find that the non-resonant conductance in the open conformation of the molecule is significantly impacted by the lead geometry. As a result, the ratio of the current in the closed and open conformations can also be tuned by varying the geometry of the leads, and increased by ∼400%.

  7. Effect of a-site cation deficiency and YSZ additions on sintering and properties of doped lanthanum manganite

    SciTech Connect

    Stevenson, J.W.; Armstrong, T.R.; Weber, W.J.

    1995-06-01

    The sintering behavior of Ca- and Sr-doped lanthanum manganite (the preferred SOFC cathode material) is highly dependent on the relative proportion of A and B site cations in the material. In general, A-site cation deficiency increases sintered density. The effect of additions of YSZ to lanthanum manganite (to expand the reactive region at the cathode/electrolyte interface and improve thermal expansion and sintering shrinkage matches) on sintering and other properties will also be reported.

  8. Estimation of Curie temperature of manganite-based materials for magnetic refrigeration application using hybrid gravitational based support vector regression

    NASA Astrophysics Data System (ADS)

    Owolabi, Taoreed O.; Akande, Kabiru O.; Olatunji, Sunday O.; Alqahtani, Abdullah; Aldhafferi, Nahier

    2016-10-01

    Magnetic refrigeration (MR) technology stands a good chance of replacing the conventional gas compression system (CGCS) of refrigeration due to its unique features such as high efficiency, low cost as well as being environmental friendly. Its operation involves the use of magnetocaloric effect (MCE) of a magnetic material caused by application of magnetic field. Manganite-based material demonstrates maximum MCE at its magnetic ordering temperature known as Curie temperature (TC). Consequently, manganite-based material with TC around room temperature is essentially desired for effective utilization of this technology. The TC of manganite-based materials can be adequately altered to a desired value through doping with appropriate foreign materials. In order to determine a manganite with TC around room temperature and to circumvent experimental challenges therein, this work proposes a model that can effectively estimates the TC of manganite-based material doped with different materials with the aid of support vector regression (SVR) hybridized with gravitational search algorithm (GSA). Implementation of GSA algorithm ensures optimum selection of SVR hyper-parameters for improved performance of the developed model using lattice distortions as the descriptors. The result of the developed model is promising and agrees excellently with the experimental results. The outstanding estimates of the proposed model suggest its potential in promoting room temperature magnetic refrigeration through quick estimation of the effect of dopants on TC so as to obtain manganite that works well around the room temperature.

  9. Direct view at colossal permittivity in donor-acceptor (Nb, In) co-doped rutile TiO2

    NASA Astrophysics Data System (ADS)

    Mandal, Suman; Pal, Somnath; Kundu, Asish K.; Menon, Krishnakumar S. R.; Hazarika, Abhijit; Rioult, Maxime; Belkhou, Rachid

    2016-08-01

    Topical observations of colossal permittivity (CP) with low dielectric loss in donor-acceptor cations co-doped rutile TiO2 have opened up several possibilities in microelectronics and energy-storage devices. Yet, the precise origin of the CP behavior, knowledge of which is essential to empower the device integration suitably, is highly disputed in the literature. From spectromicroscopic approach besides dielectric measurements, we explore that microscopic electronic inhomogeneities along with the nano-scale phase boundaries and the low temperature polaronic relaxation are mostly responsible for such a dielectric behavior, rather than electron-pinned defect-dipoles/grain-boundary effects as usually proposed. Donor-acceptor co-doping results in a controlled carrier-hopping inevitably influencing the dielectric loss while invariably upholding the CP value.

  10. Structural and magnetotransport properties of the Y doped A-site deficient double layered manganites La1.2-x□0.2YxCa1.6Mn2O7

    NASA Astrophysics Data System (ADS)

    Mahamdioua, N.; Amira, A.; Altintas, S. P.; Varilci, A.; Terzioglu, C.

    2016-08-01

    We present structural, magnetic and electrical properties of the polycrystalline A-site-deficient yttrium doped double layered manganites La1.2-x□0.2YxCa1.6Mn2O7 (x=0.2, 0.3 and 0.4) prepared by a solid state reaction method. The samples crystallize in the tetragonal structure with the space group I4/mmm. Doping with Y decreases the cell parameters and causes a decrease of the metal-insulator transition temperature. The same evolution with doping is also seen for the deduced Curie temperature from susceptibility curves which present a clear paramagnetic-ferromagnetic transition. The significant positive intrinsic magnetoresistance, shown in all samples, reaches 85% at 122 K under 7 T for 0.3 doped sample and can be attributed to the suppression of spin fluctuations via aligning the spins under external magnetic field, while the extrinsic one is attributed to the inter-grain spin-polarized tunneling across the grain boundaries. The simulation of the resistivity curves in the entire temperature range show that the percolation model is suitable to fit our results. The applied magnetic field increases the density of states near the Fermi level, which is in accordance with the observed decrease of resistivity.

  11. Direct Imaging of Dynamic Glassy Behavior in a Strained Manganite Film

    NASA Astrophysics Data System (ADS)

    Kundhikanjana, Worasom; Sheng, Zhigao; Yang, Yongliang; Lai, Keji; Ma, Eric Yue; Cui, Yong-Tao; Kelly, Michael A.; Nakamura, Masao; Kawasaki, Masashi; Tokura, Yoshinori; Tang, Qiaochu; Zhang, Kun; Li, Xinxin; Shen, Zhi-Xun

    2015-12-01

    Complex many-body interaction in perovskite manganites gives rise to a strong competition between ferromagnetic metallic and charge-ordered phases with nanoscale electronic inhomogeneity and glassy behaviors. Investigating this glassy state requires high-resolution imaging techniques with sufficient sensitivity and stability. Here, we present the results of a near-field microwave microscope imaging on the strain-driven glassy state in a manganite film. The high contrast between the two electrically distinct phases allows direct visualization of the phase separation. The low-temperature microscopic configurations differ upon cooling with different thermal histories. At sufficiently high temperatures, we observe switching between the two phases in either direction. The dynamic switching, however, stops below the glass transition temperature. Compared with the magnetization data, the phase separation was microscopically frozen, while spin relaxation was found in a short period of time.

  12. Magnetical and electrical tuning of transient photovoltaic effects in manganite-based heterojunctions.

    PubMed

    Ni, Hao; Yue, Zengji; Zhao, Kun; Xiang, Wenfeng; Zhao, Songqing; Wang, Aijun; Kong, Yu-Chau; Wong, Hong-Kuen

    2012-05-07

    Magnetically and bias current tunable transient photovoltaic (TPV) responses have been investigated in a manganite-based heterojunction composed of a La2/3Ca1/3MnO3 film and an n-type Si substrate at ambient temperature. Under irradiation of 248 nm pulsed laser with 20 ns duration the TPV peak values can be modulated in a range of -125 to 138 mV when the applied magnetic field perpendicular to the interface changes from -6.4 to + 6.4 kOe, and the relative variations (TPV(H) - TPV(0))/TPV(0) reach up to about 1000%. In addition, TPV responses can be also affected by bias current, and the photoresponse peaks change from positive to negative with the currents from -350 to 350 μA. These results indicate that the manganite-based heterojunction can be used for magnetically and electrically tunable ultraviolet photodetectors.

  13. Direct Imaging of Dynamic Glassy Behavior in a Strained Manganite Film.

    PubMed

    Kundhikanjana, Worasom; Sheng, Zhigao; Yang, Yongliang; Lai, Keji; Ma, Eric Yue; Cui, Yong-Tao; Kelly, Michael A; Nakamura, Masao; Kawasaki, Masashi; Tokura, Yoshinori; Tang, Qiaochu; Zhang, Kun; Li, Xinxin; Shen, Zhi-Xun

    2015-12-31

    Complex many-body interaction in perovskite manganites gives rise to a strong competition between ferromagnetic metallic and charge-ordered phases with nanoscale electronic inhomogeneity and glassy behaviors. Investigating this glassy state requires high-resolution imaging techniques with sufficient sensitivity and stability. Here, we present the results of a near-field microwave microscope imaging on the strain-driven glassy state in a manganite film. The high contrast between the two electrically distinct phases allows direct visualization of the phase separation. The low-temperature microscopic configurations differ upon cooling with different thermal histories. At sufficiently high temperatures, we observe switching between the two phases in either direction. The dynamic switching, however, stops below the glass transition temperature. Compared with the magnetization data, the phase separation was microscopically frozen, while spin relaxation was found in a short period of time.

  14. Current-pulse-induced enhancement of transient photodetective effect in tilted manganite film.

    PubMed

    Ni, H; Zhao, K; Xi, J F; Feng, X; Xiang, W F; Zhao, S Q; Kong, Y-C; Wong, H K

    2012-12-17

    A current-pulse-induced enhancement effect of transient photovoltage has been discovered in tilted manganite La(2/3)Ca(1/3)MnO(3) film at room temperature. Here, by applying a pulsed current stimulus before pulse laser irradiation, we observed a significant enhancement of more than 50% in photovoltaic sensitivity. The current-pulse-induced photovoltaic enhancement can be tuned not only by the stimulating current value but also by the stimulating time. Such enhancement is time-sensitive and reproducible. This electrically induced effect, observed at room temperature, has both the benefit of a discovery in materials properties and the promise of applications for thin film manganites in photodetectors.

  15. Interfacial phase competition induced Kondo-like effect in manganite-insulator composites

    NASA Astrophysics Data System (ADS)

    Lin, Ling-Fang; Wu, Ling-Zhi; Dong, Shuai

    2016-12-01

    A Kondo-like effect, namely, the upturn of resistivity at low temperatures, is observed in perovskite manganite when nonmagnetic insulators are doped as secondary phase. In this paper, the low-temperature resistivity upturn effect has been argued to originate from interfacial magnetic phase reconstruction. Heisenberg spin lattices have been simulated using the Monte Carlo method to reveal phase competition around secondary phase boundary, namely, manganite-insulator boundary that behaves with a weak antiferromagnetic tendency. Moreover, the resistor network model based on double-exchange conductive mechanism reproduces the low-temperature resistivity upturn effect. Our work provides a reasonable physical mechanism to understand the novel transport behaviors in microstructures of correlated electron systems.

  16. Structural and electrical studies of sol-gel synthesized nanocrystalline hexagonal yttrium iron manganite ceramics

    NASA Astrophysics Data System (ADS)

    Touthang, Jangkhohao; Maisnam, Mamata

    2017-03-01

    Hexagonal yttrium manganites, YMnO3, are interesting materials for their multiferroic behavior. Substituting suitable cations either at the Y-site or Mn-site offers great opportunities to produce a variety of manganites and tune their properties. Nanocrystalline yttrium iron manganites with the compositional formula Y1‑xFexMnO3, x = 0.0, 0.10, 0.15, 0.20 and 0.25, were synthesized by sol-gel autocombustion method. The prepared samples were heated at 1100∘C for 1 h. Another set of samples with compositional formula YFexMn1‑xO3, x = 0.0, 0.10, 0.15, 0.20 and 0.25, were also synthesized by the same method and heated at 1100∘C for 1 h. Various characterizations were done on these manganite systems synthesized by substituting iron at different sites. X-ray diffraction (XRD) technique studied the structure of the samples and analysis of XRD patterns confirmed the formation of hexagonal phase in the samples. Structural parameters such as lattice constants, crystallite size, theoretical density, etc. were determined using the XRD data. The unit cell dimensions have been found to agree with the standard data and the Debye-Scherrer crystallite size obtained from XRD data ranges from 42 nm to 77 nm. The room temperature frequency variations of electrical properties such as dielectric constant, dielectric loss and AC conductivity were measured in the range of 100 Hz-2 MHz and the variations showed a dispersive behavior for all the samples. The various measurements and the results obtained were studied and discussed in the paper.

  17. Silica-coated manganite and Mn-based ferrite nanoparticles: a comparative study focused on cytotoxicity

    NASA Astrophysics Data System (ADS)

    Kaman, Ondřej; Dědourková, Tereza; Koktan, Jakub; Kuličková, Jarmila; Maryško, Miroslav; Veverka, Pavel; Havelek, Radim; Královec, Karel; Turnovcová, Karolína; Jendelová, Pavla; Schröfel, Adam; Svoboda, Ladislav

    2016-04-01

    Magnetic oxide nanoparticles provide a fascinating tool for biological research and medicine, serving as contrast agents, magnetic carriers, and core materials of theranostic systems. Although the applications rely mostly on iron oxides, more complex oxides such as perovskite manganites may provide a much better magnetic performance. To assess the risk of their potential use, in vitro toxicity of manganite nanoparticles was thoroughly analysed and compared with another prospective system of Mn-Zn ferrite nanoparticles. Magnetic nanoparticles of La0.63Sr0.37MnO3 manganite were prepared by two distinct methods, namely the molten salt synthesis and the traditional sol-gel route, whereas nanoparticles of Mn0.61Zn0.42Fe1.97O4 ferrite, selected as a comparative material, were synthesized by a new procedure under hydrothermal conditions. Magnetic cores were coated with silica and, moreover, several samples of manganite nanoparticles with different thicknesses of silica shell were prepared. The size-fractionated and purified products were analysed using transmission electron microscopy, dynamic light scattering, measurement of the zeta-potential dependence on pH, IR spectroscopy, and SQUID magnetometry. The silica-coated products with accurately determined concentration by atomic absorption spectroscopy were subjected to a robust evaluation of their cytotoxicity by four different methods, including detailed analysis of the concentration dependence of toxicity, analysis of apoptosis, and experiments on three different cell lines. The results, comparing two manganese-containing systems, clearly indicated superior properties of the Mn-Zn ferrite, whose silica-coated nanoparticles show very limited toxic effects and thus constitute a promising material for bioapplications.

  18. Ag-doped manganite nanoparticles: new materials for temperature-controlled medical hyperthermia.

    PubMed

    Melnikov, O V; Gorbenko, O Yu; Markelova, M N; Kaul, A R; Atsarkin, V A; Demidov, V V; Soto, C; Roy, E J; Odintsov, B M

    2009-12-15

    The purpose of this study was to introduce newly synthesized nanomaterials as an alternative to superparamagnetic ironoxide based particles (SPIO) and thus to launch a new platform for highly controllable hyperthermia cancer therapy and imaging. The new material that forms the basis for this article is lanthanum manganite particles with silver ions inserted into the perovskite lattice: La(1-x)Ag(x)MnO(3+delta). Adjusting the silver doping level, it is possible to control the Curie temperature (T(c)) in the hyperthermia range of interest (41-44 degrees C). A new class of nanoparticles based on silver-doped manganites La(1-x)Ag(x)MnO(3+delta) is suggested. New nanoparticles are stable, and their properties were not affected by the typical ambient conditions in the living tissue. It is possible to monitor the particle uptake and retention by MRI. When these particles are placed into an alternating magnetic field, their temperature increases to the definite value near T(c) and then remains constant if the magnetic field is maintained. During the hyperthermia procedure, the temperature can be restricted, thereby preventing the necrosis of normal tissue. A new class of nanoparticles based on silver-doped manganites La(1-x)Ag(x)MnO(3+delta) was suggested. Ag-doped perovskite manganites particles clearly demonstrated the effect of adjustable Curie temperature necessary for highly controllable cellular hyperthermia. The magnetic relaxation properties of the particles are comparable with that of SPIO, and so we were able to monitor the particle movement and retention by MRI. Thus, the new material combines the MRI contrast enhancement capability with targeted hyperthermia treatment.

  19. A Magnetoresistive Tactile Sensor for Harsh Environment Applications

    PubMed Central

    Alfadhel, Ahmed; Khan, Mohammed Asadullah; Cardoso, Susana; Leitao, Diana; Kosel, Jürgen

    2016-01-01

    A magnetoresistive tactile sensor is reported, which is capable of working in high temperatures up to 140 °C. Hair-like bioinspired structures, known as cilia, made out of permanent magnetic nanocomposite material on top of spin-valve giant magnetoresistive (GMR) sensors are used for tactile sensing at high temperatures. The magnetic nanocomposite, consisting of iron nanowires incorporated into the polymer polydimethylsiloxane (PDMS), is very flexible, biocompatible, has high remanence, and is also resilient to antagonistic sensing ambient. When the cilia come in contact with a surface, they deflect in compliance with the surface topology. This yields a change of the GMR sensor signal, enabling the detection of extremely fine features. The spin-valve is covered with a passivation layer, which enables adequate performance in spite of harsh environmental conditions, as demonstrated in this paper for high temperature. PMID:27164113

  20. Coexistence of tunneling magnetoresistance and Josephson effects in SFIFS junctions

    NASA Astrophysics Data System (ADS)

    Vávra, O.; Soni, R.; Petraru, A.; Himmel, N.; Vávra, I.; Fabian, J.; Kohlstedt, H.; Strunk, Ch.

    2017-02-01

    We demonstrate an integration of tunneling magnetoresistance and the Josephson effects within one tunneling junction. Several sets of Nb-Fe-Al-Al2O3-Fe-Nb wafers with varying Al and Fe layers thickness were prepared to systematically explore the competition of TMR and Josephson effects. A coexistence of the critical current IC(dFe) and the tunneling magnetoresistance ratio T M R(dFe) is observed for iron layer dFe thickness range 1.9 and 2.9 nm. Further optimization such as thinner Al2O3 layer leads to an enhancement of the critical current and thus to an extension of the coexistence regime up to dFe≃3.9 nm Fe.

  1. Development of eddy current probes based on magnetoresistive sensors arrays

    NASA Astrophysics Data System (ADS)

    Sergeeva-Chollet, N.; Decitre, J.-M.; Fermon, C.; Pelkner, M.; Reimund, V.; Kreutzbruck, M.

    2014-02-01

    Eddy Current Technique is a powerful method for detection of surface notches and of buried flaws during inspection of metallic parts. Recent EC array probes have demonstrated a fast and efficient control of large surfaces. Nevertheless, when the size of flaws decreases or the defect is rather deep, traditional winding coil probes turn out to be useless. Magnetoresistive sensors present the advantages of flat frequency response and micron size. These sensors are hence very attractive for the detection of buried defects that require low frequencies because of skin depth effect. An optimization of the probe with magnetoresistive sensors as receivers has been made by simulations using CIVA software and finite elements methods with OPERA. EC probes for buried flaw detection have been designed. Experimental results have been compared with simulations.

  2. Giant magnetoresistance in the variable-range hopping regime

    SciTech Connect

    Ioffe, L. B.; Spivak, B. Z.

    2013-09-15

    We predict the universal power-law dependence of the localization length on the magnetic field in the strongly localized regime. This effect is due to the orbital quantum interference. Physically, this dependence shows up in an anomalously large negative magnetoresistance in the hopping regime. The reason for the universality is that the problem of the electron tunneling in a random media belongs to the same universality class as the directed polymer problem even in the case of wave functions of random sign. We present numerical simulations that prove this conjecture. We discuss the existing experiments that show anomalously large magnetoresistance. We also discuss the role of localized spins in real materials and the spin polarizing effect of the magnetic field.

  3. Insensitivity of tunneling anisotropic magnetoresistance to non-magnetic electrodes

    SciTech Connect

    Wang, Y. Y.; Song, C. Wang, G. Y.; Zeng, F.; Pan, F.

    2013-11-11

    Ferromagnetic electrodes play a crucial role in magnetoresistance effect and spin injection, whereas the essential features of non-magnetic metal electrodes in spintronics are commonly ignored except for their electrical conductivity. Here, we verify that the room-temperature tunneling anisotropic magnetoresistance (TAMR) behavior in antiferromagnet-based [Pt/Co]/IrMn/AlO{sub x}/metal (metal = Pt, Au, Cu, Al) junctions is insensitive to the top metal electrodes. Similar out-of-plane signals are detected for different electrodes, in contrast to the varied shapes of in-plane TAMR curves which are most likely attributed to the differences in the multidomain structure of the magnetic electrode. This would add a different dimension to spintronics.

  4. Geometrically enhanced extraordinary magnetoresistance in semiconductor-metal hybrids

    NASA Astrophysics Data System (ADS)

    Hewett, T. H.; Kusmartsev, F. V.

    2010-12-01

    Extraordinary magnetoresistance (EMR) arises in hybrid systems consisting of semiconducting material with an embedded metallic inclusion. We have investigated such systems with the use of finite-element modeling, with our results showing good agreement to existing experimental data. We show that this effect can be dramatically enhanced by over four orders of magnitude as a result of altering the geometry of the conducting region. The significance of this result lies in its potential application to EMR magnetic field sensors utilizing more familiar semiconducting materials with nonoptimum material parameters, such as silicon. Our model has been extended further with a geometry based on the microstructure of the silver chalcogenides, consisting of a randomly sized and positioned metallic network with interspersed droplets. This model has shown a large and quasilinear magnetoresistance analogous to experimental findings.

  5. Separating Positive and Negative Magnetoresistance in Organic Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Bloom, F. L.; Wagemans, W.; Kemerink, M.; Koopmans, B.

    2007-12-01

    We study the transition between positive and negative organic magnetoresistance (OMAR) in tris-(8 hydroxyquinoline) aluminium (Alq3), in order to identify the elementary mechanisms governing this phenomenon. We show how the sign of OMAR changes as function of the applied voltage and temperature. The transition from negative to positive magnetoresistance (MR) is found to be accompanied by an increase in slope of log⁡(I) versus log⁡(V). ac admittance measurements show this transition coincides with the onset of minority charge (hole) injection in the device. All these observations are consistent with two simultaneous contributions with opposite sign of MR, which may be assigned to holes and electrons having different magnetic field responses.

  6. Magnetoresistance in organic light-emitting diode structures under illumination

    NASA Astrophysics Data System (ADS)

    Desai, P.; Shakya, P.; Kreouzis, T.; Gillin, W. P.

    2007-12-01

    We have investigated the effect of illumination on the organic magnetoresistance (OMR) in organic light-emitting diode (OLED) structures. The results show that it is possible to obtain OMR at voltages below “turn-on,” where no OMR was visible for devices operated in the dark. The photoinduced OMR has a field dependence that is identical to that obtained for OLEDs containing very thin layers, where triplet dissociation at the cathode was a major component of the OMR. At voltages around the open circuit voltage, where the current through the device is very small, very large OMRs of ˜300% can be observed. The results support our proposed model for organic magnetoresistance as being caused in part by the interaction of free carriers with triplet excitons within the device. The results suggest that the introduction of a low field magnet could provide a simple means of improving the efficiency of organic photovoltaic cells.

  7. Enhancing magnetoresistance in tetrathiafulvalene carboxylate modified iron oxide nanoparticle assemblies

    NASA Astrophysics Data System (ADS)

    Lv, Zhong-Peng; Luan, Zhong-Zhi; Cai, Pei-Yu; Wang, Tao; Li, Cheng-Hui; Wu, Di; Zuo, Jing-Lin; Sun, Shouheng

    2016-06-01

    We report a facile approach to stabilize Fe3O4 nanoparticles (NPs) by using tetrathiafulvalene carboxylate (TTF-COO-) and to control electron transport with an enhanced magnetoresistance (MR) effect in TTF-COO-Fe3O4 NP assemblies. This TTF-COO-coating is advantageous over other conventional organic coatings, making it possible to develop stable Fe3O4 NP arrays for sensitive spintronics applications.We report a facile approach to stabilize Fe3O4 nanoparticles (NPs) by using tetrathiafulvalene carboxylate (TTF-COO-) and to control electron transport with an enhanced magnetoresistance (MR) effect in TTF-COO-Fe3O4 NP assemblies. This TTF-COO-coating is advantageous over other conventional organic coatings, making it possible to develop stable Fe3O4 NP arrays for sensitive spintronics applications. Electronic supplementary information (ESI) available: Experimental details; supplementary figures and tables. See DOI: 10.1039/c6nr03311c

  8. Colossal negative thermal expansion with an extended temperature interval covering room temperature in fine-powdered Mn0.98CoGe

    NASA Astrophysics Data System (ADS)

    Lin, Jianchao; Tong, Peng; Zhang, Kui; Tong, Haiyun; Guo, Xinge; Yang, Cheng; Wu, Ying; Wang, Meng; Lin, Shuai; Chen, Li; Song, Wenhai; Sun, Yuping

    2016-12-01

    MnM'X (M' = Co, Ni; X = Ge, Si, etc.) alloys usually present a large volumetric change during the Martensitic (MA) transformation. This offers a great opportunity for exploring new negative thermal expansion (NTE) materials if the temperature interval of NTE can be extended. Here, we report colossal NTE in fine-powdered Mn0.98CoGe prepared by repeated thermal cycling (TC) through the MA transition or ball milling. Both treatments can expand the MA transformation, and thus broaden the NTE temperature window (ΔT). For the powders that have gone through TC for ten times, ΔT reaches 90 K (309 K-399 K), and the linear expansion coefficient (αL) is about -141 ppm/K, which rank among the largest values of colossal NTE materials. The difference between two kinds of treatments and the possible mechanisms of the extended MA transformation window are discussed based on the introduced strain.

  9. Chemical nature of colossal dielectric constant of CaCu3Ti4O12 thin film by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Deng, Guochu; Xanthopoulos, Nicolas; Muralt, Paul

    2008-04-01

    Epitaxial CaCu3Ti4O12 thin films grown by pulsed laser deposition were studied in the as-deposited and oxygen annealed state. The first one exhibited the usual transition from dielectric to colossal dielectric behavior upon increasing the temperature to above 100K. This transition disappeared after annealing at 900°C in air. The two states significantly differ in their x-ray photoelectron spectra. The state of colossal dielectric constant corresponds to a bulk material with considerable amounts of Cu + and Ti3+, combined with Cu species enrichment at the surface. The annealed state exhibited a nearly stoichiometric composition with no Cu+ and Ti3+. The previously observed p-type conduction in the as-deposited state is thus related to oxygen vacancies compensated by the point defects of Cu+ and Ti3+.

  10. Highly Sensitive Flexible Magnetic Sensor Based on Anisotropic Magnetoresistance Effect.

    PubMed

    Wang, Zhiguang; Wang, Xinjun; Li, Menghui; Gao, Yuan; Hu, Zhongqiang; Nan, Tianxiang; Liang, Xianfeng; Chen, Huaihao; Yang, Jia; Cash, Syd; Sun, Nian-Xiang

    2016-11-01

    A highly sensitive flexible magnetic sensor based on the anisotropic magnetoresistance effect is fabricated. A limit of detection of 150 nT is observed and excellent deformation stability is achieved after wrapping of the flexible sensor, with bending radii down to 5 mm. The flexible AMR sensor is used to read a magnetic pattern with a thickness of 10 μm that is formed by ferrite magnetic inks.

  11. Magnetoresistance and magnetic properties in amorphous Fe-based wires

    NASA Astrophysics Data System (ADS)

    Bordin, G.; Buttino, G.; Cecchetti, A.; Poppi, M.

    2001-06-01

    The longitudinal and transverse magnetoresistances in amorphous Fe 77.5Si 7.5B 15 wires are studied at different values of the DC-bias currents in order to clarify the mechanism of the magnetization according to a 'core-shell' domain model. The role of closure domain structures in the magnetization process of the wires is analysed. Moreover, the effects of the Joule heating on the internal stresses, introduced during the rapid quenching in the sample preparation, are examined.

  12. [Oxidation Process of Dissolvable Sulfide by Manganite and Its Influencing Factors].

    PubMed

    Luo, Yao; Li, Shan; Tan, Wen-feng; Liu, Fan; Cai, Chong-fa; Qiu, Guo-hong

    2016-04-15

    As one of the manganese oxides, which are easily generated and widely distributed in supergene environment, manganite participates in the oxidation of dissolvable sulfide (S²⁻), and affects the migration, transformation, and the fate of sulfides. In the present work, the redox mechanism was studied by determining the intermediates, and the influence of initial pH and oxygen atmosphere on the processes were studied. The chemical composition, crystal structures and micromorphologies were characterized by XRD, FTIR and TEM. The concentration of S²⁻ and its oxidation products were analyzed using spectrophotometer, high performance liquid chromatograph and ion chromatograph. The results indicated that elemental sulfur was formed as the major oxidation product of S²⁻ oxidation, and decreased pH could accelerate the oxidation rate of S²⁻ in the initial stage, however, there was no significant influence on final products. Elemental S could be further oxidized to S₂O₃²⁻ when the reaction system was bubbled with oxygen, and manganite exhibited excellent catalytic performance and chemical stability during the oxidation of dissolvable sulfide by oxygen. After reaction of more than 10 h, the crystal structure of manganite remained stable.

  13. Siderophore-manganese(lll) Interactions. II. Manganite dissolution promoted by desferrioxamine B.

    PubMed

    Duckworth, Owen W; Sposito, Garrison

    2005-08-15

    Recent laboratory and field studies suggest that Mn(lll) forms persistent aqueous complexes with high-affinity ligands. Aqueous Mn(lll) species thus may play a significant but largely unexplored role in biogeochemical processes. One formation mechanism for these species is the dissolution of Mn(lll)-bearing minerals. To investigate this mechanism, we measured the steady-state dissolution rates of manganite (gamma-MnOOH) in the presence of desferrioxamine B (DFOB), a common trihydroxamate siderophore. We find that DFOB dissolves manganite by both reductive and nonreductive reaction pathways. For pH > 6.5, a nonreductive ligand-promoted reaction is the dominant dissolution pathway, with a steady-state dissolution rate proportional to the surface concentration of DFOB. In the absence of reductants, the aqueous Mn(lIl)HDFOB+ complex resulting from dissolution is stable for at least several weeks at circumneutral to alkaline pH and at 25 degrees C. For pH < 6.5, Mn2+ is the dominant aqueous species resulting from manganite dissolution, implicating a reductive dissolution pathway. These results have important implications for the biogeochemical cycling of both manganese and siderophores--as well as Fe(lll)--in natural waters and soils.

  14. Flat magnetic exchange springs as mechanism for additional magnetoresistance in magnetic nanoisland arrays

    NASA Astrophysics Data System (ADS)

    Boltaev, A. P.; Pudonin, F. A.; Sherstnev, I. A.; Egorov, D. A.; Kozmin, A. M.

    2017-04-01

    Process of magnetization and magnetoresistance have been studied in nanoisland bilayer systems of FeNi-Co. Hysteresis loops show characteristic features (steps) most clearly observed in certain orientations of the sample in a magnetic field. To explain these features the concept of flat magnetic exchange spring has been introduced for nanoisland bilayers. It has been proposed that additional magnetoresistance can be the result of spin-dependent scattering of electrons in the area of flat magnetic exchange spring. Magnetoresistance studies of bilayer systems has shown that additional magnetoresistance occurs at the same magnetic fields as steps on hysteresis loops.

  15. Preparation and magnetoresistance of silver and copper chalcogenide thin films

    NASA Astrophysics Data System (ADS)

    Chuprakov, Ilya; Watts, Steven; Wirth, Steffen; von Molnár, Stephan; Dahmen, Klaus-Hermann

    1998-03-01

    An unexpected giant positive magnetoresitance was recently discovered in non-stoichiometric crystals of Ag_2Te and Ag_2Se [1]. There, a linear magnetoresistance effect as high as 120% was observed in fields of 4 T at room temperature. Here we report on thin films of copper and silver chalcogenides prepared by a vapor phase transport method. A prefered grain orientation is found in the films after annealing. Resistance, magnetoresistance and Hall effect were measured. Typically, the resistivity is temperature independent below 70 K with a value of 1 mΩ cm. As in the crystals, there is a large positive magnetoresistance, but the field dependence is non-linear with a typical value of 50% at room temperature and 200% at temperatures below 100 K for applied fields of 6 T. Variations of the deposition techniques are explored in order to establish the relationship between the deposition conditions and transport properties. [0.25cm] [1] R. Xu, A. Husmann, T.F. Rosenbaum, M.-L. Saboungi, E.J. Enderby and P.B. Littlewood, Nature 390, 57 (1997).

  16. Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn

    NASA Astrophysics Data System (ADS)

    Galceran, R.; Fina, I.; Cisneros-Fernández, J.; Bozzo, B.; Frontera, C.; López-Mir, L.; Deniz, H.; Park, K.-W.; Park, B.-G.; Balcells, Ll.; Martí, X.; Jungwirth, T.; Martínez, B.

    2016-10-01

    Antiferromagnetic spintronics is an emerging field; antiferromagnets can improve the functionalities of ferromagnets with higher response times, and having the information shielded against external magnetic field. Moreover, a large list of aniferromagnetic semiconductors and metals with Néel temperatures above room temperature exists. In the present manuscript, we persevere in the quest for the limits of how large can anisotropic magnetoresistance be in antiferromagnetic materials with very large spin-orbit coupling. We selected IrMn as a prime example of first-class moment (Mn) and spin-orbit (Ir) combination. Isothermal magnetotransport measurements in an antiferromagnetic-metal(IrMn)/ferromagnetic-insulator thin film bilayer have been performed. The metal/insulator structure with magnetic coupling between both layers allows the measurement of the modulation of the transport properties exclusively in the antiferromagnetic layer. Anisotropic magnetoresistance as large as 0.15% has been found, which is much larger than that for a bare IrMn layer. Interestingly, it has been observed that anisotropic magnetoresistance is strongly influenced by the field cooling conditions, signaling the dependence of the found response on the formation of domains at the magnetic ordering temperature.

  17. Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn

    PubMed Central

    Galceran, R.; Fina, I.; Cisneros-Fernández, J.; Bozzo, B.; Frontera, C.; López-Mir, L.; Deniz, H.; Park, K.-W.; Park, B.-G.; Balcells, Ll.; Martí, X.; Jungwirth, T.; Martínez, B.

    2016-01-01

    Antiferromagnetic spintronics is an emerging field; antiferromagnets can improve the functionalities of ferromagnets with higher response times, and having the information shielded against external magnetic field. Moreover, a large list of aniferromagnetic semiconductors and metals with Néel temperatures above room temperature exists. In the present manuscript, we persevere in the quest for the limits of how large can anisotropic magnetoresistance be in antiferromagnetic materials with very large spin-orbit coupling. We selected IrMn as a prime example of first-class moment (Mn) and spin-orbit (Ir) combination. Isothermal magnetotransport measurements in an antiferromagnetic-metal(IrMn)/ferromagnetic-insulator thin film bilayer have been performed. The metal/insulator structure with magnetic coupling between both layers allows the measurement of the modulation of the transport properties exclusively in the antiferromagnetic layer. Anisotropic magnetoresistance as large as 0.15% has been found, which is much larger than that for a bare IrMn layer. Interestingly, it has been observed that anisotropic magnetoresistance is strongly influenced by the field cooling conditions, signaling the dependence of the found response on the formation of domains at the magnetic ordering temperature. PMID:27762278

  18. Negative magnetoresistance in Dirac semimetal Cd3As2

    PubMed Central

    Li, Hui; He, Hongtao; Lu, Hai-Zhou; Zhang, Huachen; Liu, Hongchao; Ma, Rong; Fan, Zhiyong; Shen, Shun-Qing; Wang, Jiannong

    2016-01-01

    A large negative magnetoresistance (NMR) is anticipated in topological semimetals in parallel magnetic fields, demonstrating the chiral anomaly, a long-sought high-energy-physics effect, in solid-state systems. Recent experiments reveal that the Dirac semimetal Cd3As2 has the record-high mobility and positive linear magnetoresistance in perpendicular magnetic fields. However, the NMR has not yet been unveiled. Here we report the observation of NMR in Cd3As2 microribbons in parallel magnetic fields up to 66% at 50 K and visible at room temperatures. The NMR is sensitive to the angle between magnetic and electrical fields, robust against temperature and dependent on the carrier density. The large NMR results from low carrier densities in our Cd3As2 samples, ranging from 3.0 × 1017 cm−3 at 300 K to 2.2 × 1016 cm−3 below 50 K. We therefore attribute the observed NMR to the chiral anomaly. In perpendicular magnetic fields, a positive linear magnetoresistance up to 1,670% at 14 T and 2 K is also observed. PMID:26744088

  19. Negative magnetoresistance in Dirac semimetal Cd3As2

    NASA Astrophysics Data System (ADS)

    Li, Hui; He, Hongtao; Lu, Hai-Zhou; Zhang, Huachen; Liu, Hongchao; Ma, Rong; Fan, Zhiyong; Shen, Shun-Qing; Wang, Jiannong

    2016-01-01

    A large negative magnetoresistance (NMR) is anticipated in topological semimetals in parallel magnetic fields, demonstrating the chiral anomaly, a long-sought high-energy-physics effect, in solid-state systems. Recent experiments reveal that the Dirac semimetal Cd3As2 has the record-high mobility and positive linear magnetoresistance in perpendicular magnetic fields. However, the NMR has not yet been unveiled. Here we report the observation of NMR in Cd3As2 microribbons in parallel magnetic fields up to 66% at 50 K and visible at room temperatures. The NMR is sensitive to the angle between magnetic and electrical fields, robust against temperature and dependent on the carrier density. The large NMR results from low carrier densities in our Cd3As2 samples, ranging from 3.0 × 1017 cm-3 at 300 K to 2.2 × 1016 cm-3 below 50 K. We therefore attribute the observed NMR to the chiral anomaly. In perpendicular magnetic fields, a positive linear magnetoresistance up to 1,670% at 14 T and 2 K is also observed.

  20. Enhancement of Low-field Magnetoresistance in Self-Assembled Epitaxial La0.67Ca0.33MnO3:NiO and La0.67Ca0.33MnO3:Co3O4 Composite Films via Polymer-Assisted Deposition

    PubMed Central

    Zhou, Meng; Li, Yuling; Jeon, Il; Yi, Qinghua; Zhu, Xuebin; Tang, Xianwu; Wang, Haiyan; Fei, Ling; Sun, Yuping; Deng, Shuguang; Matsuo, Yutaka; Luo, Hongmei; Zou, Guifu

    2016-01-01

    Polymer-assisted deposition method has been used to fabricate self-assembled epitaxial La0.67Ca0.33MnO3:NiO and La0.67Ca0.33MnO3:Co3O4 films on LaAlO3 substrates. Compared to pulsed-laser deposition method, polymer-assisted deposition provides a simpler and lower-cost approach to self-assembled composite films with enhanced low-field magnetoresistance effect. After the addition of NiO or Co3O4, triangular NiO and tetrahedral Co3O4 nanoparticles remain on the surface of La0.67Ca0.33MnO3 films. This results in a dramatic increase in resistivity of the films from 0.0061 Ω•cm to 0.59 Ω•cm and 1.07 Ω•cm, and a decrease in metal-insulator transition temperature from 270 K to 180 K and 172 K by the addition of 10%-NiO and 10%-Co3O4, respectively. Accordingly, the maximum absolute magnetoresistance value is improved from −44.6% to −59.1% and −52.7% by the addition of 10%-NiO and 10%-Co3O4, respectively. The enhanced low-field magnetoresistance property is ascribed to the introduced insulating phase at the grain boundaries. The magnetism is found to be more suppressed for the La0.67Ca0.33MnO3:Co3O4 composite films than the La0.67Ca0.33MnO3:NiO films, which can be attributed to the antiferromagnetic properties of the Co3O4 phase. The solution-processed composite films show enhanced low-field magnetoresistance effect which are crucial in practical applications. We expect our polymer-assisted deposited films paving the pathway in the field of hole-doped perovskites with their intrinsic colossal magnetoresistance. PMID:27381661

  1. Enhancement of Low-field Magnetoresistance in Self-Assembled Epitaxial La0.67Ca0.33MnO3:NiO and La0.67Ca0.33MnO3:Co3O4 Composite Films via Polymer-Assisted Deposition

    NASA Astrophysics Data System (ADS)

    Zhou, Meng; Li, Yuling; Jeon, Il; Yi, Qinghua; Zhu, Xuebin; Tang, Xianwu; Wang, Haiyan; Fei, Ling; Sun, Yuping; Deng, Shuguang; Matsuo, Yutaka; Luo, Hongmei; Zou, Guifu

    2016-07-01

    Polymer-assisted deposition method has been used to fabricate self-assembled epitaxial La0.67Ca0.33MnO3:NiO and La0.67Ca0.33MnO3:Co3O4 films on LaAlO3 substrates. Compared to pulsed-laser deposition method, polymer-assisted deposition provides a simpler and lower-cost approach to self-assembled composite films with enhanced low-field magnetoresistance effect. After the addition of NiO or Co3O4, triangular NiO and tetrahedral Co3O4 nanoparticles remain on the surface of La0.67Ca0.33MnO3 films. This results in a dramatic increase in resistivity of the films from 0.0061 Ω•cm to 0.59 Ω•cm and 1.07 Ω•cm, and a decrease in metal-insulator transition temperature from 270 K to 180 K and 172 K by the addition of 10%-NiO and 10%-Co3O4, respectively. Accordingly, the maximum absolute magnetoresistance value is improved from ‑44.6% to ‑59.1% and ‑52.7% by the addition of 10%-NiO and 10%-Co3O4, respectively. The enhanced low-field magnetoresistance property is ascribed to the introduced insulating phase at the grain boundaries. The magnetism is found to be more suppressed for the La0.67Ca0.33MnO3:Co3O4 composite films than the La0.67Ca0.33MnO3:NiO films, which can be attributed to the antiferromagnetic properties of the Co3O4 phase. The solution-processed composite films show enhanced low-field magnetoresistance effect which are crucial in practical applications. We expect our polymer-assisted deposited films paving the pathway in the field of hole-doped perovskites with their intrinsic colossal magnetoresistance.

  2. Competition between covalent bonding and charge transfer at complex-oxide interfaces.

    PubMed

    Salafranca, Juan; Rincón, Julián; Tornos, Javier; León, Carlos; Santamaria, Jacobo; Dagotto, Elbio; Pennycook, Stephen J; Varela, Maria

    2014-05-16

    Here we study the electronic properties of cuprate-manganite interfaces. By means of atomic resolution electron microscopy and spectroscopy, we produce a subnanometer scale map of the transition metal oxidation state profile across the interface between the high Tc superconductor YBa2Cu3O7-δ and the colossal magnetoresistance compound (La,Ca)MnO3. A net transfer of electrons from manganite to cuprate with a peculiar nonmonotonic charge profile is observed. Model calculations rationalize the profile in terms of the competition between standard charge transfer tendencies (due to band mismatch), strong chemical bonding effects across the interface, and Cu substitution into the Mn lattice, with different characteristic length scales.

  3. Effect of interface-induced exchange fields on cuprate-manganite spin switches.

    PubMed

    Liu, Yaohua; Visani, C; Nemes, N M; Fitzsimmons, M R; Zhu, L Y; Tornos, J; Garcia-Hernandez, M; Zhernenkov, M; Hoffmann, A; Leon, C; Santamaria, J; te Velthuis, S G E

    2012-05-18

    We examine the anomalous inverse spin switch behavior in La0.7Ca0.3MnO3(LCMO)/YBa2Cu3O7-δ (YBCO)/LCMO trilayers by combined transport studies and polarized neutron reflectometry. Measuring magnetization profiles and magnetoresistance in an in-plane rotating magnetic field, we prove that, contrary to many accepted theoretical scenarios, the relative orientation between the two LCMO's magnetizations is not sufficient to determine the magnetoresistance. Rather the field dependence of magnetoresistance is explained by the interplay between the applied magnetic field and the (exponential tail of the) induced exchange field in YBCO, the latter originating from the electronic reconstruction at the LCMO/YBCO interfaces.

  4. Structural and magnetic heterogeneities, phase transitions, and magnetoresistance and magnetoresonance properties of the composition ceramic La{sub 0.7}Pb{sub 0.3-x}Sn{sub x}MnO{sub 3}

    SciTech Connect

    Pashchenko, V. P. Pashchenko, A. V.; Prokopenko, V. K.; Revenko, Yu. F.; Burkhovetskii, V. V.; Shemyakov, A. A.; Sil'cheva, A. G.; Levchenko, G. G.

    2012-03-15

    The La{sub 0.7}Pb{sub 0.3-x}Sn{sub x}MnO{sub 3} composition ceramic is studied by X-ray diffraction, resistive, magnetic, electron-microscopic, magnetoresistance, and NMR ({sup 55}Mn, {sup 139}La) methods. The substitution of tin for lead results in structural phase separation into the basic perovskite (R3-bar c) and spinell (Fd3m), phases: La{sub 0.7}Pb{sub 0.3-x}Sn{sub x}MnO{sub 3} {yields} La{sub 0.7-x}Pb{sub 0.3-x}MnO{sub 3} + 0.5xLa{sub 2}Sn{sub 2}O{sub 7}. Changes in the lattice parameter of the basic perovskite R3-bar c structure, the electrical resistivity, and the magnetic and magnetoresistance properties are caused by changes in the composition and content of a conducting perovskite ferromagnetic phase, the Mn{sup 3+}/Mn{sup 4+} ratio, and the imperfection of vacancy and cluster types. An in-plane nanostructured cluster is formed by Mn{sup 2+} ions located in distorted A-positions. The detected anomalous magnetic hysteresis is induced by the appearance of a unidirectional exchange anisotropy at the boundary of an in-plane antifer-romagnetic cluster coherently joined with a ferromagnetic matrix structure. The broad asymmetric NMR spectra of {sup 55}Mn and {sup 139}La indicate a high-frequency Mn{sup 3+} {r_reversible} Mn{sup 4+} superexchange and a nonuniform distribution of ions and defects. The constructed phase diagram characterizes a strong relation between the magnetic and transport properties in rare-earth manganites.

  5. Fermi surfaces, spin-mixing parameter, and colossal anisotropy of spin relaxation in transition metals from ab initio theory

    NASA Astrophysics Data System (ADS)

    Zimmermann, Bernd; Mavropoulos, Phivos; Long, Nguyen H.; Gerhorst, Christian-Roman; Blügel, Stefan; Mokrousov, Yuriy

    2016-04-01

    The Fermi surfaces and Elliott-Yafet spin-mixing parameter (EYP) of several elemental metals are studied by ab initio calculations. We focus first on the anisotropy of the EYP as a function of the direction of the spin-quantization axis [B. Zimmermann et al., Phys. Rev. Lett. 109, 236603 (2012), 10.1103/PhysRevLett.109.236603]. We analyze in detail the origin of the gigantic anisotropy in 5 d hcp metals as compared to 5 d cubic metals by band structure calculations and discuss the stability of our results against an applied magnetic field. We further present calculations of light (4 d and 3 d ) hcp crystals, where we find a huge increase of the EYP anisotropy, reaching colossal values as large as 6000 % in hcp Ti. We attribute these findings to the reduced strength of spin-orbit coupling, which promotes the anisotropic spin-flip hot loops at the Fermi surface. In order to conduct these investigations, we developed an adapted tetrahedron-based method for the precise calculation of Fermi surfaces of complicated shape and accurate Fermi-surface integrals within the full-potential relativistic Korringa-Kohn-Rostoker Green function method.

  6. Successive Magnetic-Field-Induced Transitions and Colossal Magnetoelectric Effect in Ni3TeO6

    DOE PAGES

    Kim, Jae Wook; Artyukhin, Sergei; Mun, Eun Deok; ...

    2015-09-24

    In this paper, we report the discovery of a metamagnetic phase transition in a polar antiferromagnet Ni3TeO6 that occurs at 52 T. The new phase transition accompanies a colossal magnetoelectric effect, with a magnetic-field-induced polarization change of 0.3 μC/cm2, a value that is 4 times larger than for the spin-flop transition at 9 T in the same material, and also comparable to the largest magnetically induced polarization changes observed to date. Via density-functional calculations we construct a full microscopic model that describes the data. We model the spin structures in all fields and clarify the physics behind the 52 Tmore » transition. The high-field transition involves a competition between multiple different exchange interactions which drives the polarization change through the exchange-striction mechanism. Finally, the resultant spin structure is rather counterintuitive and complex, thus providing new insights on design principles for materials with strong magnetoelectric coupling.« less

  7. Colossal low-frequency resonant magnetomechanical and magnetoelectric effects in a three-phase ferromagnetic/elastic/piezoelectric composite

    NASA Astrophysics Data System (ADS)

    Liu, Guoxi; Li, Xiaotian; Chen, Jianguo; Shi, Huaduo; Xiao, Wenlei; Dong, Shuxiang

    2012-10-01

    Colossal low-frequency resonant magnetomechanical (MM) and magnetoelectric (ME) coupling effects have been found in a three-phase composite made of Pb(Zr,Ti)O3 ceramic fibers/phosphor copper-sheet unimorph and NdFeB magnets. The experimental results revealed that the ferromagnetic/elastic/piezoelectric three-phase composite with a cantilever beam structure could show huge bending MM coefficient of ˜145.9 × 10-3/Oe (unit in bending radian per Oe) and ME voltage coefficient of ˜16 000 V/cm.Oe at the first-order bending resonance frequency of ˜5 Hz. The achieved results related to ME effect are at least one order of magnitude higher over those of other ME materials and devices reported ever. The extremely strong MM and ME couplings in the three-phase composite are due to strong magnetic force moment effect induced by the interaction between NdFeB magnets and the applied magnetic field, and further resonant enhancement via the strain-mediated phosphor copper-sheet with a relatively high mechanical quality factor.

  8. Zener double exchange polynomial law for metallic region of La1-xKxMnO3 manganites

    NASA Astrophysics Data System (ADS)

    Gadani, Keval; Dhruv, Davit; Joshi, Zalak; Boricha, Hetal; Vaghela, Eash; Pandya, D. D.; Shah, N. A.; Solanki, P. S.

    2016-05-01

    In this communication, we present the results of the studied on the charge transport mechanism of well reported La1-xKxMnO3 manganites using various theoretical models and laws. Structural properties and phase quality of the samples have been studied using XRD measurements and analyzed by performing Rietveld refinements. Single phasic nature with doping level dependent structural phase transition has been observed for the presently studied manganite system. Metallic region of the reported resistivity data has been explained using two different theoretical models, namely, small polaron conduction (SPC) mechanism and zener double exchange (ZDE) polynomial law. ZDE polynomial law is found to be an appropriate mechanism to understand the charge transport in metallic region of presently studied manganites and has been discussed in the context of one magnon scattering law.

  9. Visualizing the interfacial evolution from charge compensation to metallic screening across the manganite metal-insulator transition.

    PubMed

    Mundy, Julia A; Hikita, Yasuyuki; Hidaka, Takeaki; Yajima, Takeaki; Higuchi, Takuya; Hwang, Harold Y; Muller, David A; Kourkoutis, Lena F

    2014-03-17

    Electronic changes at polar interfaces between transition metal oxides offer the tantalizing possibility to stabilize novel ground states yet can also cause unintended reconstructions in devices. The nature of these interfacial reconstructions should be qualitatively different for metallic and insulating films as the electrostatic boundary conditions and compensation mechanisms are distinct. Here we directly quantify with atomic-resolution the charge distribution for manganite-titanate interfaces traversing the metal-insulator transition. By measuring the concentration and valence of the cations, we find an intrinsic interfacial electronic reconstruction in the insulating films. The total charge observed for the insulating manganite films quantitatively agrees with that needed to cancel the polar catastrophe. As the manganite becomes metallic with increased hole doping, the total charge build-up and its spatial range drop substantially. Direct quantification of the intrinsic charge transfer and spatial width should lay the framework for devices harnessing these unique electronic phases.

  10. Enhanced magnetoresistance and pinning–depinning processes of vortex domain walls in ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Soledade, P. R.; Brandão, J.; Mello, A.; Sampaio, L. C.

    2017-02-01

    We have investigated the pinning–depinning processes of vortex domain walls (VDW) in Permalloy nanowires with asymmetric triangular notches by means of magnetoresistance measurements and micromagnetic simulations. Through a model based on the anisotropic magnetoresistance (AMR) and the magnetization structure obtained from simulations, the magnetoresistance when the VDW passes stretched through the notch was calculated. Besides the depinning field, as it is known, also the magnetoresistance drop depends on the domain wall chirality. Measurements show that the resistance drop for clockwise (CW) chirality is  ≈180 m Ω (38%) larger than for the counterclockwise (CCW) chirality. From the VDW resistance calculations it becomes clear which domain wall parameters, like domain wall structure, chirality and wall width, play a role on the magnetoresistance. These results offer an additional route to better controlling the VDW motion, which can be beneficial to applications.

  11. Magnetoresistance in nanostructured Tb/Ti and Tb/Si multilayers

    SciTech Connect

    Svalov, A. V.; Kurlyandskaya, G. V.; Vas'kovskiy, V. O.; Sorokin, A. N.; Diercks, D.

    2011-01-15

    Magnetic, magnetoresistive and structural properties were studied for [Tb/Ti]{sub n} and [Tb/Si]{sub n} multilayers which were prepared by rf-sputtering. The thickness of the Tb layers varied from 1.5 to 12 nm. The thickness of 2 nm nonmagnetic spacers of Ti or Si was kept constant. Both anisotropic and isotropic magnetoresistance was observed in [Tb/Ti]{sub n} and [Tb/Si]{sub n} multilayers. A decrease in the thickness of the terbium layers led to a decrease in the anisotropic contribution to the total magnetoresistance. The negative isotropic magnetoresistanse in [Tb/Ti]{sub n} and [Tb/Si]{sub n} multilayers can be attributed to the giant magnetoresistance (GMR) and/or high field isotropic magnetoresistance. The structure of the samples of both types enabled the existence of the GMR effect.

  12. Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride.

    PubMed

    Kang, Defen; Zhou, Yazhou; Yi, Wei; Yang, Chongli; Guo, Jing; Shi, Youguo; Zhang, Shan; Wang, Zhe; Zhang, Chao; Jiang, Sheng; Li, Aiguo; Yang, Ke; Wu, Qi; Zhang, Guangming; Sun, Liling; Zhao, Zhongxian

    2015-07-23

    The recent discovery of large magnetoresistance in tungsten ditelluride provides a unique playground to find new phenomena and significant perspective for potential applications. The large magnetoresistance effect originates from a perfect balance of hole and electron carriers, which is sensitive to external pressure. Here we report the suppression of the large magnetoresistance and emergence of superconductivity in pressurized tungsten ditelluride via high-pressure synchrotron X-ray diffraction, electrical resistance, magnetoresistance and alternating current magnetic susceptibility measurements. Upon increasing pressure, the positive large magnetoresistance effect is gradually suppressed and turned off at a critical pressure of 10.5 GPa, where superconductivity accordingly emerges. No structural phase transition is observed under the pressure investigated. In situ high-pressure Hall coefficient measurements at low temperatures demonstrate that elevating pressure decreases the population of hole carriers but increases that of the electron ones. Significantly, at the critical pressure, a sign change of the Hall coefficient is observed.

  13. Systematic Angular Study of Magnetoresistance in Permalloy Connected Kagome Artificial Spin Ice

    NASA Astrophysics Data System (ADS)

    Park, Jungsik; Le, Brian; Watts, Justin; Leighton, Chris; Samarth, Nitin; Schiffer, Peter

    Artificial spin ices are nanostructured two-dimensional arrays of ferromagnetic elements, where frustrated interactions lead to unusual collective magnetic behavior. Here we report a room-temperature magnetoresistance study of connected permalloy (Ni81Fe19) kagome artificial spin ice networks, wherein the direction of the applied in-plane magnetic field is systematically varied. We measure both the longitudinal and transverse magnetoresistance in these structures, and we find certain transport geometries of the network show strong angular sensitivity - even small variations in the applied field angle lead to dramatic changes of the magnetoresistance response. We also investigate the magnetization reversal of the networks using magnetic force microscopy (MFM), demonstrating avalanche behavior in the magnetization reversal. The magnetoresistance features are analyzed using an anisotropic magnetoresistance (AMR) model. Supported by the US Department of Energy. Work at the University of Minnesota was supported by Seagate Technology, NSF MRSEC, and a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme.

  14. Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride

    PubMed Central

    Kang, Defen; Zhou, Yazhou; Yi, Wei; Yang, Chongli; Guo, Jing; Shi, Youguo; Zhang, Shan; Wang, Zhe; Zhang, Chao; Jiang, Sheng; Li, Aiguo; Yang, Ke; Wu, Qi; Zhang, Guangming; Sun, Liling; Zhao, Zhongxian

    2015-01-01

    The recent discovery of large magnetoresistance in tungsten ditelluride provides a unique playground to find new phenomena and significant perspective for potential applications. The large magnetoresistance effect originates from a perfect balance of hole and electron carriers, which is sensitive to external pressure. Here we report the suppression of the large magnetoresistance and emergence of superconductivity in pressurized tungsten ditelluride via high-pressure synchrotron X-ray diffraction, electrical resistance, magnetoresistance and alternating current magnetic susceptibility measurements. Upon increasing pressure, the positive large magnetoresistance effect is gradually suppressed and turned off at a critical pressure of 10.5 GPa, where superconductivity accordingly emerges. No structural phase transition is observed under the pressure investigated. In situ high-pressure Hall coefficient measurements at low temperatures demonstrate that elevating pressure decreases the population of hole carriers but increases that of the electron ones. Significantly, at the critical pressure, a sign change of the Hall coefficient is observed. PMID:26203807

  15. A phenomenological approach to the anisotropic magnetoresistance and planar Hall effect in tetragonal La(2/3)Ca(1/3)MnO3 thin films.

    PubMed

    Li, J; Li, S L; Wu, Z W; Li, S; Chu, H F; Wang, J; Zhang, Y; Tian, H Y; Zheng, D N

    2010-04-14

    A La(2/3)Ca(1/3)MnO(3) Hall bar with its long dimension roughly along the hard axis [110] was fabricated on a single-crystal-like tensilely strained film on SrTiO(3)(001). The anisotropic magnetoresistance (AMR) and planar Hall effect (PHE) have been studied at various external magnetic fields and temperatures. A phenomenological model in the high field limit is developed, and the galvanomagnetic tensor based on a tetragonal symmetry 4/mmm (D(4h)), applicable to epitaxial films on a substrate, has been obtained by expanding the tensor to the sixth order. The derived in-plane transverse resistance R(xy) shows a sin2φ(M) angular dependence, while the longitudinal R(xx) is constituted by not only a two-fold cos2φ(M) term, but also a four-fold cos4φ(M) term due to the square symmetry of the lattice. The model is in good agreement with the experimental results in high fields, while deviations are observed near the {100} easy axis with the decreasing field. Close inspection of the fitting parameters reveals the evolution of these term weights with temperature and magnetic field, which is distinct from conventional ferromagnetic metals and cannot be explained by the phenomenological model. An alternative mechanism for AMR, stemming from the magnetization-induced local orbit deformation through spin-orbit interaction, as previously proposed by O'Donnell et al, may be prevalent in manganites and other systems of complicated crystal structure.

  16. Magnetoresistance of galfenol-based magnetic tunnel junction

    NASA Astrophysics Data System (ADS)

    Gobaut, B.; Vinai, G.; Castán-Guerrero, C.; Krizmancic, D.; Rafaqat, H.; Roddaro, S.; Rossi, G.; Panaccione, G.; Eddrief, M.; Marangolo, M.; Torelli, P.

    2015-12-01

    The manipulation of ferromagnetic layer magnetization via electrical pulse is driving an intense research due to the important applications that this result will have on memory devices and sensors. In this study we realized a magnetotunnel junction in which one layer is made of Galfenol (Fe1-xGax) which possesses one of the highest magnetostrictive coefficient known. The multilayer stack has been grown by molecular beam epitaxy and e-beam evaporation. Optical lithography and physical etching have been combined to obtain 20x20 micron sized pillars. The obtained structures show tunneling conductivity across the junction and a tunnel magnetoresistance (TMR) effect of up to 11.5% in amplitude.

  17. Giant Magnetoresistive Biochips for Biomarker Detection and Genotyping: An Overview

    NASA Astrophysics Data System (ADS)

    Wang, Shan X.

    2008-06-01

    Giant magnetoresistive biochips based on spin valve sensor arrays and magnetic nanoparticle labels have been successfully applied to the detection of biological events in the form of both protein and DNA assays with great speed, sensitivity, selectivity and economy. The technology is highly scalable to deep multiplex detection of biomarkers in a complex disease, and amenable to integration of microfluidics and CMOS electronics for portable applications. The results suggest that a magneto-nano biochip holds great promises in biomedicine, particularly for point of care molecular diagnostics of cancer, infectious diseases, radiation injury, cardiac and other diseases.

  18. Angular dependence of anisotropic magnetoresistance in magnetic systems

    NASA Astrophysics Data System (ADS)

    Zhang, Steven S.-L.; Zhang, Shufeng

    2014-05-01

    Anisotropic magnetoresistance (AMR), whose physical origin is attributed to the combination of spin dependent scattering and spin orbital coupling (SOC), usually displays simple angular dependence for polycrystalline ferromagnetic metals. By including generic spin dependent scattering and spin Hall (SH) terms in the Ohm's law, we explicitly show that various magneto-transport phenomena such as anomalous Hall (AH), SH, planar Hall (PH) and AMR could be quantitatively related for bulk polycrystalline ferromagnetic metals. We also discuss how AMR angular dependence is affected by the presence of interfacial SOC in magnetic layered structure.

  19. Magnetoresistance of polycrystalline gadolinium with varying grain size

    SciTech Connect

    Chakravorty, Manotosh Raychaudhuri, A. K.

    2015-01-21

    In this paper, we report a study of evolution of low field magnetoresistance (MR) of Gadolinium as the grain size in the sample is changed from few microns (∼4 μm) to the nanoscopic regime (∼35 nm). The low field MR has a clear effect on varying grain size. In large grain sample (few μm), the magnetic domains are controlled by local anisotropy field determined mainly by the magnetocrystalline anisotropy. The low field MR clearly reflects the temperature dependence of the magnetocrystalline anisotropy. For decreasing gain size, the contribution of spin disorder at the grain boundary increases and enhances the local anisotropy field.

  20. Negative magnetoresistance in a low-k dielectric

    SciTech Connect

    McGowan, B. T.; Lloyd, J. R.

    2014-12-22

    We observed negative magnetoresistance in amorphous SiCOH, a low-k dielectric, applying modest magnetic fields (<150 Gauss) at room temperature. The conductivity increases with increasing magnetic field. The change in conductivity due to the applied magnetic field increases with electric field and has little or no temperature dependence over the range studied. The magnitude of the effect is independent of the orientation of magnetic field relative to the direction of current flow. The effect is attributed to spin constraints associated with double occupancy of a trap site under the assumption that trap sites which have double occupancy have lower hopping frequencies than traps that have single occupancy.

  1. Distinct electronic structure for the extreme magnetoresistance in YSb

    SciTech Connect

    He, Junfeng; Zhang, Chaofan; Ghimire, Nirmal J.; Liang, Tian; Jia, Chunjing; Jiang, Juan; Tang, Shujie; Chen, Sudi; He, Yu; Mo, S. -K.; Hwang, C. C.; Hashimoto, M.; Lu, D. H.; Moritz, B.; Devereaux, T. P.; Chen, Y. L.; Mitchell, J. F.; Shen, Z. -X.

    2016-12-23

    An extreme magnetoresistance (XMR) has recently been observed in several nonmagnetic semimetals. Increasing experimental and theoretical evidence indicates that the XMR can be driven by either topological protection or electron-hole compensation. Moreover, by investigating the electronic structure of a XMR material, YSb, we present spectroscopic evidence for a special case which lacks topological protection and perfect electron-hole compensation. Further investigations reveal that a cooperative action of a substantial difference between electron and hole mobility and a moderate carrier compensation might contribute to the XMR in YSb.

  2. Percolation Blocking as the Origin of Organic Magneto-resistance

    NASA Astrophysics Data System (ADS)

    Zhao, Jun-Qing; Sun, Ling-Ling; Wang, Ting

    2016-05-01

    In order to identify the elementary mechanisms governing the organic magneto-resistance (OMAR) phenomenon, we demonstrated how the applied magnetic field acts on the variable hopping mobility. Based on a percolation model of hopping between localized states, we introduced an analytic expression for magneto-mobility and thus the OMAR, and discussed the influence of inter-site electronic interaction, operating bias, film thickness, temperature, and material parameters on the OMAR. The double occupied states and the spin selection rules play a major role in the mechanism.

  3. The electrical conductivity and longitudinal magnetoresistance of metallic nanotubes

    NASA Astrophysics Data System (ADS)

    Moraga, Luis; Henriquez, Ricardo; Bravo, Sergio; Solis, Basilio

    2017-03-01

    Proceeding from exact solutions of the Boltzmann transport equation in the relaxation time approximation, we present formulas for the electrical conductivity and longitudinal magnetoresistance of single-crystalline cylindrical nanotubes. The effects of surface scattering are taken into account by introducing different specularity parameters at the inner and outer surfaces. For small values of the inner diameter, these formulas reduce to the respective expressions for cylindrical nanowires. It is found that the existing measurements of the resistivity of nanotubes (Venkata Kamalakar and Raychaudhuri, New J. Phys. 14, 043032 (2012)) can be accurately described by this formalism.

  4. Angular dependence of anisotropic magnetoresistance in magnetic systems

    SciTech Connect

    Zhang, Steven S.-L. Zhang, Shufeng

    2014-05-07

    Anisotropic magnetoresistance (AMR), whose physical origin is attributed to the combination of spin dependent scattering and spin orbital coupling (SOC), usually displays simple angular dependence for polycrystalline ferromagnetic metals. By including generic spin dependent scattering and spin Hall (SH) terms in the Ohm's law, we explicitly show that various magneto-transport phenomena such as anomalous Hall (AH), SH, planar Hall (PH) and AMR could be quantitatively related for bulk polycrystalline ferromagnetic metals. We also discuss how AMR angular dependence is affected by the presence of interfacial SOC in magnetic layered structure.

  5. Perovskite-structure TlMnO₃: a new manganite with new properties.

    PubMed

    Yi, Wei; Kumagai, Yu; Spaldin, Nicola A; Matsushita, Yoshitaka; Sato, Akira; Presniakov, Igor A; Sobolev, Alexey V; Glazkova, Yana S; Belik, Alexei A

    2014-09-15

    We synthesize a new member of the AMnO3 perovskite manganite family (where A is a trivalent cation)--thallium manganite, TlMnO3--under high-pressure (6 GPa) and high-temperature (1500 K) conditions and show that the structural and magnetic properties are distinct from those of all other AMnO3 manganites. The crystal structure of TlMnO3 is solved and refined using single-crystal X-ray diffraction data. We obtain a triclinically distorted structure with space group P1̅ (No. 2), Z = 4, and lattice parameters a = 5.4248(2) Å, b = 7.9403(2) Å, c = 5.28650(10) Å, α = 87.8200(10)°, β = 86.9440(10)°, and γ = 89.3130(10)° at 293 K. There are four crystallographic Mn sites in TlMnO3 forming two groups based on the degree of their Jahn-Teller distortions. Physical properties of insulating TlMnO3 are investigated with Mössbauer spectroscopy and resistivity, specific heat, and magnetization measurements. The orbital ordering, which persists to the decomposition temperature of 820 K, suggests A-type antiferromagnetic ordering with the ferromagnetic planes along the [-101] direction, consistent with the measured collinear antiferromagnetism below the Néel temperature of 92 K. Hybrid density functional calculations are consistent with the experimentally identified structure, insulating ground state, and suggested magnetism, and show that the low symmetry originates from the strongly Jahn-Teller distorted Mn(3+) ions combined with the strong covalency of the Tl(3+)-O bonds.

  6. Microstructural and electrical changes in nickel manganite powder induced by mechanical activation

    SciTech Connect

    Savic, S.M.; Mancic, L.; Stojanovic, G.; Brankovic, Z.; Aleksic, O.S.; Brankovic, G.

    2011-07-15

    Highlights: {yields} The influence of mechanical activation on microstructure evolution in the nickel manganite powder was investigated as well as electrical properties of the sintered samples. {yields} Structural refinement obtained by Topas-Academic software based on Rietveld analysis showed that the milling process remarkably changed the powder morphology and microstructure. {yields} SEM studies of sintered samples also revealed the strong influence of milling time on ceramics density (increases with milling time). {yields} The electrical properties of ceramic samples are clearly conditioned by terms of synthesis, in our case the time of mechanical activation. {yields} The highest density and higher values of dielectric constant were achieved at the sample activated for 45 min. -- Abstract: Nickel manganite powder synthesized by calcination of a stoichiometric mixture of manganese and nickel oxide was additionally mechanically activated in a high energy planetary ball mill for 5-60 min in order to obtain a pure NiMn{sub 2}O{sub 4} phase. The as-prepared powders were uniaxially pressed into disc shape pellets and then sintered for 60 min at 1200 {sup o}C. Changes in the particle morphology induced by mechanical activation were monitored using scanning electron microscopy, while changes in powder structural characteristics were followed using X-ray powder diffraction. The ac impedance spectroscopy was performed on sintered nickel manganite samples at 25 {sup o}C, 50 {sup o}C and 80 {sup o}C. It was shown that mechanical activation intensifies transport processes causing a decrease in the average crystallites size, while longer activation times can lead to the formation of aggregates, defects and increase of lattice microstrains. The observed changes in microstructures were correlated with measured electrical properties in order to define optimal processing conditions.

  7. Magnetic Exchange Interaction between Rare-Earth and Mn Ions in Multiferroic Hexagonal Manganites

    NASA Astrophysics Data System (ADS)

    Talbayev, D.; Laforge, A. D.; Trugman, S. A.; Hur, N.; Taylor, A. J.; Averitt, R. D.; Basov, D. N.

    2008-12-01

    We report a study of magnetic dynamics in multiferroic hexagonal manganite HoMnO3 by far-infrared spectroscopy. The low-temperature magnetic excitation spectrum of HoMnO3 consists of magnetic-dipole transitions of Ho ions within the crystal-field split J=8 manifold and of the triangular antiferromagnetic resonance of Mn ions. We determine the effective spin Hamiltonian for the Ho ion ground state. The magnetic-field splitting of the Mn antiferromagnetic resonance allows us to measure the magnetic exchange coupling between the rare-earth and Mn ions.

  8. Electric field control of terahertz polarization in a multiferroic manganite with electromagnons.

    PubMed

    Shuvaev, A; Dziom, V; Pimenov, Anna; Schiebl, M; Mukhin, A A; Komarek, A C; Finger, T; Braden, M; Pimenov, A

    2013-11-27

    All-electrical control of a dynamic magnetoelectric effect is demonstrated in a classical multiferroic manganite DyMnO3, a material containing coupled antiferromagnetic and ferroelectric orders. Because of intrinsic magnetoelectric coupling with electromagnons a linearly polarized terahertz light rotates upon passing through the sample. The amplitude and the direction of the polarization rotation are defined by the orientation of ferroelectric domains and can be switched by static voltage. These experiments allow the terahertz polarization to be tuned using the dynamic magnetoelectric effect.

  9. Magnetic exchange interaction between rare-earth and Mn ions in multiferroic hexagonal manganites

    SciTech Connect

    Talbayev, Diyar; Trugman, Stuart A; Taylor, Antoinette J; Averitt, Richard D; Namjung, Hur; Andrew, Laforge D; Dimitri, Basov N

    2008-01-01

    The authors report a study of magnetic dynamics in multiferroic hexagonal manganite HoMnO{sub 3} by far-infrared spectroscopy. Low-temperature magnetic excitation spectrum of HoMnO{sub 3} consists of magnetic-dipole transitions of Ho ions within the crystal-field split J = 8 manifold and of the triangular antiferromagnetic resonance of Mn ions. They determine the effective spin Hamiltonian for the Ho ion ground state. The magnetic-field splitting of the Mn antiferromagnetic resonance allows us to measure the magnetic exchange coupling between the rare-earth and Mn ions.

  10. Advances in the Low Temperature Preparation and Structural Characterization of Lanthanum Strontium Manganite Powder

    DTIC Science & Technology

    2001-04-01

    with divalent Sr 2+ cations [16,17]. U3.3.1 The aim of this work is to synthesize , by "chimie douce" technique, lanthanum strontium manganite powders...simple citrates in hot ammoniacal solution. The solution is then evaporated and grounded. TGA and TPR analyses show that the heating of citrates leads to...close to the x = 0.10 single crystal synthesized at 1200’C by A. Urushibara et al. [22] which is orthorhombic. A less oxidizing atmosphere during the

  11. Effect of chromium doping on the resistivity behavior of gadolinium manganite

    NASA Astrophysics Data System (ADS)

    Modi, Anchit; Thakur, Rajesh K.; Thakur, Rasna; Okram, G. S.; Gaur, N. K.

    2013-02-01

    Systematic investigation of structure and resistivity behaviour of GdMnO3 with 20% Cr doping has been undertaken that papered by conventional solid state reaction method. Upon Cr doping on the Mn site the lattice parameters and unit cell volume were reduced due to slight difference between the ionic radii of Cr3+ and Mn3+ compare with Pure GdMnO3 (according to JCPDS: 25-0337). The Cr-doped manganites exhibit a large variation in resistivity values. Cr3+ doping makes the material to exhibit a semiconductor behavior, for which the electronic transport can be explained by small polaron hopping (SPH) model.

  12. Phase separation and size effects in Pr(0.70)Ba(0.30)MnO(3+δ) perovskite manganites.

    PubMed

    Trukhanov, S V; Trukhanov, A V; Botez, C E; Adair, A H; Szymczak, H; Szymczak, R

    2007-07-04

    The crystal structure and magnetotransport properties of the A-site ionic ordered state in Pr(0.70)Ba(0.30)MnO(3+δ) (δ = 0, 0.025) have been investigated. It is shown that such a state can be formed in complex manganites with cation ratios [Formula: see text] by using a 'two-step' reduction-reoxidization method. The parent A-site ionic disordered Pr(0.70)Ba(0.30)MnO(3+δ) (δ = 0) compound is an orthorhombic (SG = Imma, Z = 4) ferromagnet with Curie temperature T(C)≈173 K and ground-state spontaneous magnetic moment σ(S)∼3.70 µ(B)/f.u. It exhibits two metal-insulator transitions, at T(I)∼128 K and T(II)∼173 K, as well as two peaks of magnetoresistance ∼74% and ∼79% in a field of 50 kOe. The parent A-site ionic disordered Pr(0.70)Ba(0.30)MnO(3+δ) (δ = 0) sample used in our studies has an average grain size [Formula: see text]. Successive annealing of this sample in vacuum P[O(2)]≈10(-4) Pa and then in air at T = 800 °C leads to the destruction of its initial grain structure and to its chemical separation into two phases: (i) oxygen stoichiometric A-site ordered PrBaMn(2)O(6) with a tetragonal (SG = P4/mmm, Z = 2) perovskite-like unit cell and Curie temperature T(C)≈313 K and (ii) oxygen superstoichiometric A-site disordered Pr(0.90)Ba(0.10)MnO(3.05) with an orthorhombic (SG = Pnma, Z = 4) perovskite-like unit cell and Curie temperature T(C)≈133 K. This processed sample has a spontaneous magnetic moment σ(S)∼2.82 µ(B)/f.u. in its ground state, and σ(S)∼0.59 μ(B)/f.u. at T∼300 K. It also exhibits a magnetoresistance of ∼14% at ∼313 K in a field of 50 kOe. This processed sample has a reduced average grain size [Formula: see text] nm. The two magnetic phases, Pr(0.90)Ba(0.10)MnO(3.05) and PrBaMn(2)O(6), are exchange-coupled. For Pr(0.90)Ba(0.10)MnO(3.05) the temperature hysteresis is ∼22 K in a field of 10 Oe and ∼5 K in a field of 1 kOe. The observed magnetic properties are interpreted in terms of chemical

  13. Magnetoresistance of Tl_2Mo_6Se_6

    NASA Astrophysics Data System (ADS)

    Kuh, Jayong; Mengistu, E. H.; McCarten, J. C.; Tessema, G. X.; Skove, M. J.; Saffar, Hugo

    1997-03-01

    We present results of high precision R vs T and magnetoresistance measurements on Tl_2Mo_6Se_6. The high precision resistance results corroborate the thermopwer and Hall results which indicate that an electronic instability of a density wave type develops in this compound around 80 K^1. This is further confirmed by the high field, up to 20T, magnetoresistance for 2K

  14. Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers

    NASA Astrophysics Data System (ADS)

    Avci, Can Onur; Garello, Kevin; Ghosh, Abhijit; Gabureac, Mihai; Alvarado, Santos F.; Gambardella, Pietro

    2015-07-01

    Magnetoresistive effects are usually invariant on inversion of the magnetization direction. In non-centrosymmetric conductors, however, nonlinear resistive terms can give rise to a current dependence that is quadratic in the applied voltage and linear in the magnetization. Here we demonstrate that such conditions are realized in simple bilayer metal films where the spin-orbit interaction and spin-dependent scattering couple the current-induced spin accumulation to the electrical conductivity. We show that the longitudinal resistance of Ta|Co and Pt|Co bilayers changes when reversing the polarity of the current or the sign of the magnetization. This unidirectional magnetoresistance scales linearly with current density and has opposite sign in Ta and Pt, which we associate with the modification of the interface scattering potential induced by the spin Hall effect in these materials. Our results suggest a route to control the resistance and detect magnetization switching in spintronic devices using a two-terminal geometry, which applies also to heterostructures including topological insulators.

  15. Recent observations of negative longitudinal magnetoresistance in semimetal

    NASA Astrophysics Data System (ADS)

    Xu, Xi-Tong; Jia, Shuang

    2016-11-01

    The discovery of Dirac semimetal and Weyl semimetal has motivated a growing passion for investigating the unique magneto-transport properties in the topological materials. A Weyl semimetal can host Weyl fermions as its low-energy quasi-particle excitations, and therefore perform exotic features analogous to those in high-energy physics, such as the violation of the chiral charge conservation known as the chiral anomaly. One of the electrical transport signatures of the chiral anomaly is the Adler-Bell-Jackiw (ABJ) anomaly which presents as a negative magnetoresistance when the magnetic field and the current are parallel. Very recently, numerous experiments reported negative longitudinal magnetoresistance (NLMR) in topological materials, but the details of the measurement results are various. Here the materials and the corresponding experiment results are briefly reviewed. Besides the plausible explanation of the ABJ anomaly, some other origins of the NLMR are also discussed. Project supported by the National Basic Research Program of China (Grant Nos. 2013CB921901 and 2014CB239302).

  16. Frequency dependence of magnetoresistance in MEH-PPV

    NASA Astrophysics Data System (ADS)

    Kamdem Djidjou, Thaddee; Nguyen, Tho; Valy Vardeny, Z.; Rogachev, Andrey

    2012-02-01

    The organic magnetoresistance (OMAR) in organic light emitting diodes (OLED) made of MEH-PPV was investigated by means of DC transport and the admittance spectroscopy in the range of 1 Hz to 10 MHz at room temperature. The measurements were carried out on unipolar and bipolar OLEDs made of pristine MEH-PPV as well as MEH-PPV with traps introduced by the UV light irradiation. We found that in bipolar, UV-exposed OLEDs, the magnitude of magnetoresistance effect in real part of admittance increases with DC bias, reaches very high value of 35 % (in the field 30mT) at bias 4.8 V and decreases at higher bias voltages. Also, we observed that the cutoff frequency of OMAR effect monotonically increases with DC bias voltage. The cutoff has extrinsic origin and is likely caused by a dissipative process related to the reorientation of permanent dipoles. At the highest tested bias voltage 6.7 V, we were able to detect the OMAR at the highest frequency of our system, 10 MHz. We have found that imaginary part of the admittance is also affected by magnetic field. The effect of magnetic field on dynamical capacitance of the device at low frequencies is very strong and opens up a possibility of using these devices as magnetic field sensors.

  17. Structural and magnetic inhomogeneities, phase transitions, 55Mn nuclear magnetic resonance, and magnetoresistive properties of La0.6 - x Nd x Sr0.3Mn1.1O3-δ ceramics

    NASA Astrophysics Data System (ADS)

    Pashchenko, A. V.; Pashchenko, V. P.; Prokopenko, V. K.; Revenko, Yu. F.; Kisel, N. G.; Kamenev, V. I.; Sil'cheva, A. G.; Ledenev, N. A.; Burkhovetskii, V. V.; Levchenko, G. G.

    2014-05-01

    The structure, lattice imperfection, and properties of ceramic samples La0.6 - x Nd x Sr0.3Mn1.1O3-δ ( x = 0-0.4) have been investigated using the X-ray diffraction, resistive, magnetic (χac, 55Mn NMR), magnetoresistive and microscopic methods. It has been shown that there is a satisfactory agreement between the concentration decrease in the lattice parameters a of the rhombohedral ( x = 0, 0.1, 0.2) and cubic ( x = 0.3, 0.4) perovskite structures and the average ionic radii for the lattice containing anion vacancies, cation vacancies, and nanostructured clusters with Mn2+ ions in A-positions. With an increase in the neodymium concentration x, the vacancy-type imperfection increases, the cluster-type imperfection decreases, the temperatures of metal-semiconductor phase transition T ms and ferromagnetic-paramagnetic phase transition T C decrease, and the content of the ferromagnetic phase decreases. The anomalous hysteresis is associated with the appearance of unidirectional exchange anisotropy induced in a clustered perovskite structure consisting of a ferromagnetic matrix and a planar antiferromagnetic cluster coherently coupled with it. An analysis of the asymmetrically broadened 55Mn NMR spectra has revealed a high-frequency electronic double exchange (Mn3+-O2--Mn4+) ↔ (Mn4+-O2--Mn3+) and an inhomogeneity of the magnetic and charge states of manganese due to the heterogeneous environment of the manganese ions by other ions and defects. The observed changes in the resonant frequency and width of the resonance curve are caused by changes in the ratio Mn3+/Mn4+ and magnetic inhomogeneity. An increase in the neodymium concentration x leads to a decrease in the ferromagnetic phase content determined from the dependences 4π Nχac( T) and the 55Mn NMR curves. The phase diagram characterizes an interrelation between the composition, the imperfection of the structure, and the transport, magnetic, and magnetoresistive properties of lanthanum neodymium manganite

  18. Extremely large magnetoresistance in few-layer graphene/boron–nitride heterostructures

    PubMed Central

    Gopinadhan, Kalon; Shin, Young Jun; Jalil, Rashid; Venkatesan, Thirumalai; Geim, Andre K.; Neto, Antonio H. Castro; Yang, Hyunsoo

    2015-01-01

    Understanding magnetoresistance, the change in electrical resistance under an external magnetic field, at the atomic level is of great interest both fundamentally and technologically. Graphene and other two-dimensional layered materials provide an unprecedented opportunity to explore magnetoresistance at its nascent stage of structural formation. Here we report an extremely large local magnetoresistance of∼2,000% at 400 K and a non-local magnetoresistance of >90,000% in an applied magnetic field of 9 T at 300 K in few-layer graphene/boron–nitride heterostructures. The local magnetoresistance is understood to arise from large differential transport parameters, such as the carrier mobility, across various layers of few-layer graphene upon a normal magnetic field, whereas the non-local magnetoresistance is due to the magnetic field induced Ettingshausen–Nernst effect. Non-local magnetoresistance suggests the possibility of a graphene-based gate tunable thermal switch. In addition, our results demonstrate that graphene heterostructures may be promising for magnetic field sensing applications. PMID:26388149

  19. Theory of magnetoresistance due to lattice dislocations in face-centred cubic metals

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2016-06-01

    A theoretical model to describe the low temperature magneto-resistivity of high purity copper single and polycrystals containing different density and distribution of dislocations has been developed. In the model, magnetoresistivity tensor is evaluated numerically using the effective medium approximation. The anisotropy of dislocation-induced relaxation time is considered by incorporating two independent energy bands with different relaxation times and the spherical and cylindrical Fermi surfaces representing open, extended and closed electron orbits. The effect of dislocation microstructure is introduced by means of two adjustable parameters corresponding to the length and direction of electron orbits in the momentum space, which permits prediction of magnetoresistance of FCC metals containing different density and distribution of dislocations. The results reveal that dislocation microstructure influences the character of the field-dependent magnetoresistivity. In the orientation of the open orbits, the quadratic variation in magnetoresistivity changes to quasi-linear as the density of dislocations increases. In the closed orbit orientation, dislocations delay the onset of magnetoresistivity saturation. The results indicate that in the open orbit orientations of the crystals, the anisotropic relaxation time due to small-angle dislocation scattering induces the upward deviation from Kohler's rule. In the closed orbit orientations Kohler's rule holds, independent of the density of dislocations. The results obtained with the model show good agreement with the experimental measurements of transverse magnetoresistivity in deformed single and polycrystal samples of copper at 2 K.

  20. Surface properties of hydrous manganite (gamma-MnOOH). A potentiometric, electroacoustic, and X-ray photoelectron spectroscopy study.

    PubMed

    Ramstedt, Madeleine; Andersson, Britt M; Shchukarev, Andrei; Sjöberg, Staffan

    2004-09-14

    The acid-base characteristics of the manganite (gamma-MnOOH) surface have been studied at pH above 6, where dissolution is negligible. Synthetic microcrystalline particles of manganite were used in the experiments. From potentiometric titrations, electrophoretic mobility measurements, and X-ray photoelectron spectroscopy (XPS), a one pK(a) model was constructed that describes the observed behavior. The data show no ionic strength effect at pH < 8.2, which is the pH at the isoelectric point (pH(iep)), but ionic strength effects were visible above this pH. To explain these observations, Na(+) ions were suggested to form a surface complex. The following equilibria were established: =MnOH(2)(+1/2) right harpoon over left harpoon =MnOH(-)(1/2) + H(+), log beta(0) (intr.) = -8.20; =MnOH(2)(+1/2) + Na(+) right harpoon over left harpoon =MnOHNa(+1/2) + H(+), log beta(0) (intr.) = -9.64. The excess of Na(+) at the surface was supported by XPS measurements of manganite suspensions containing 10 mM NaCl. The dielectric constant of synthetic manganite powder was also determined in this study.

  1. Spin-current-induced magnetoresistance in trilayer structure with nonmagnetic metallic interlayer

    NASA Astrophysics Data System (ADS)

    Iguchi, Ryo; Sato, Koji; Uchida, Ken-ichi; Saitoh, Eiji

    2017-04-01

    We have theoretically investigated the spin Hall magnetoresistance (SMR) and Rashba–Edelstein magnetoresistance (REMR), mediated by spin currents, in a ferrimagnetic insulator/nonmagnetic metal/heavy metal system in the diffusive regime. The magnitude of both SMR and REMR decreases with increasing thickness of the interlayer because of the current shunting effect and the reduction in spin accumulation across the interlayer. The latter contribution is due to driving a spin current and persists even in the absence of spin relaxation, which is essential for understanding the magnetoresistance ratio in trilayer structures.

  2. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Magnetoresistance of Multiwalled Carbon Nanotube Yarns

    NASA Astrophysics Data System (ADS)

    Sheng, Lei-Mei; Gao, Wei; Cao, Shi-Xun; Zhang, Jin-Cang

    2008-09-01

    We measure zero-Geld resistivity and magnetoresistance of multiwalled carbon nanotube yarns (CNTYs). The CNTYs are drawn from superaligned multiwalled carbon nanotube arrays synthesized by the low-pressure chemical vapour deposition method. The zero-Geld resistivity shows a logarithmic decrease from 2K to 300 K. In the presence of a magnetic Geld applied perpendicular to the yarn axis, a pronounced negative magnetoresistance is observed. A magnetoresistance ratio of 22% is obtained. These behaviours can be explained by the weak localization effect.

  3. Electrical Conductivity and Chemical Diffusion Coefficient of Strontium-Doped Lanthanum Manganites

    NASA Astrophysics Data System (ADS)

    Yasuda, Isamu; Hishinuma, Masakazu

    1996-05-01

    Electrical conductivity and chemical diffusion coefficient of Sr-doped lanthanum manganites, La 1- xSr xMnO 3±δ( x= 0.05 - 0.20), were measured by the dc four-probe technique and relaxation type experiments where a sudden change of oxygen chemical potential was imposed on the pre-equilibrated sample and the change of electrical conductivity was followed as a function of elapsed time. A defect model is proposed to elucidate the oxygen partial pressure dependence of the measured conductivity and the reported oxygen nonstoichiometry. The transient conductivity behavior after an abrupt change of oxygen partial pressure was successfully described by a diffusion model with consideration of partial control by surface reaction. The determined chemical diffusion coefficients, of the order of 10 -5to 10 -4cm 2s -1at 1000°C, increased with decreased oxygen partial pressure due to the thermodynamic enhancement effect. Using the enhancement factor estimated by combination of the proposed defect model and the ambipolar diffusion theory, the oxygen vacancy diffusion coefficients were derived. High vacancy diffusivity comparable to that of Fe- or Co-based perovskites predicts fast oxide ion diffusion under conditions where the manganites show oxygen deficient type non-stoichiometry.

  4. Quantum Percolation and Magnetic Nanodroplet States in Electronically Phase-Separated Manganite Nanowires.

    PubMed

    Zhang, Kaixuan; Li, Lin; Li, Hui; Feng, Qiyuan; Zhang, Nan; Cheng, Long; Fan, Xiaodong; Hou, Yubin; Lu, Qingyou; Zhang, Zhenyu; Zeng, Changgan

    2017-03-08

    One-dimensional (1D) confinement has been revealed to effectively tune the properties of materials in homogeneous states. The 1D physics can be further enriched by electronic inhomogeneity, which unfortunately remains largely unknown. Here we demonstrate the ultrahigh sensitivity to magnetic fluctuations and the tunability of phase stability in the electronic transport properties of self-assembled electronically phase-separated manganite nanowires with extreme aspect ratio. The onset of magnetic nanodroplet state, a precursor to the ferromagnetic metallic state, is unambiguously revealed, which is attributed to the small lateral size of the nanowires that is comparable to the droplet size. Moreover, the quasi-1D anisotropy stabilizes thin insulating domains to form intrinsic tunneling junctions in the low temperature range, which is robust even under magnetic field up to 14 T and thus essentially modifies the classic 1D percolation picture to stabilize a novel quantum percolation state. A new phase diagram is therefore established for the manganite system under quasi-1D confinement for the first time. Our findings offer new insight into understanding and manipulating the colorful properties of the electronically phase-separated systems via dimensionality engineering.

  5. Emergent ferroelectricity in disordered tri-color multilayer structure comprised of ferromagnetic manganites

    NASA Astrophysics Data System (ADS)

    Niu, Li-Wei; Chen, Chang-Le; Dong, Xiang-Lei; Xing, Hui; Luo, Bing-Cheng; Jin, Ke-Xin

    2016-10-01

    Multiferroic materials, showing the coexistence and coupling of ferroelectric and magnetic orders, are of great technological and fundamental importance. However, the limitation of single phase multiferroics with robust magnetization and polarization hinders the magnetoelectric effect from being applied practically. Magnetic frustration, which can induce ferroelectricity, gives rise to multiferroic behavior. In this paper, we attempt to construct an artificial magnetically frustrated structure comprised of manganites to induce ferroelectricity. A disordered stacking of manganites is expected to result in frustration at interfaces. We report here that a tri-color multilayer structure comprised of non-ferroelectric La0.9Ca0.1MnO3(A)/Pr0.85Ca0.15MnO3(B)/Pr0.85Sr0.15MnO3(C) layers with the disordered arrangement of ABC-ACB-CAB-CBA-BAC-BCA is prepared to form magnetoelectric multiferroics. The multilayer film exhibits evidence of ferroelectricity at room temperature, thus presenting a candidate for multiferroics. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471301, 61078057, 51172183, 51402240, and 51471134), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20126102110045), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JQ5125), and the Fundamental Research Funds for the Central Universities, China (Grant No. 3102015ZY078).

  6. Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling

    NASA Astrophysics Data System (ADS)

    Huijben, Mark

    Ultimate miniaturization of magnetic random access memory (MRAM) devices is expected by the utilization of spin-transfer torques, because they present an efficient means to switch elements with a very high magnetic anisotropy. To overcome the low switching speed in current collinearly magnetized devices, new routes are being explored to realize magnetic tunnel junction stacks with non-collinear magnetization between two magnetic electrodes. Controlled in-plane rotation of the magnetic easy axis in manganite heterostructures by tailoring the interface oxygen network would provide a promising direction for non-collinear magnetization in correlated oxide magnetic tunneling junctions. Here, we demonstrate how to manipulate magnetic and electronic anisotropic properties in manganite heterostructures by engineering the oxygen network on the unit-cell level. The strong oxygen octahedral coupling is found to transfer the octahedral rotation, present in the NdGaO3 (NGO) substrate, to the La2/3Sr1/3MnO3 (LSMO) film in the interface region. This causes an unexpected realignment of the magnetic easy axis along the short axis of the LSMO unit cell as well as the presence of a giant anisotropic transport in these ultrathin LSMO films. As a result we possess control of the lateral magnetic and electronic anisotropies by atomic scale design of the oxygen octahedral rotation. Membership Pending.

  7. Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling

    NASA Astrophysics Data System (ADS)

    Liao, Z.; Huijben, M.; Zhong, Z.; Gauquelin, N.; Macke, S.; Green, R. J.; van Aert, S.; Verbeeck, J.; van Tendeloo, G.; Held, K.; Sawatzky, G. A.; Koster, G.; Rijnders, G.

    2016-04-01

    Controlled in-plane rotation of the magnetic easy axis in manganite heterostructures by tailoring the interface oxygen network could allow the development of correlated oxide-based magnetic tunnelling junctions with non-collinear magnetization, with possible practical applications as miniaturized high-switching-speed magnetic random access memory (MRAM) devices. Here, we demonstrate how to manipulate magnetic and electronic anisotropic properties in manganite heterostructures by engineering the oxygen network on the unit-cell level. The strong oxygen octahedral coupling is found to transfer the octahedral rotation, present in the NdGaO3 (NGO) substrate, to the La2/3Sr1/3MnO3 (LSMO) film in the interface region. This causes an unexpected realignment of the magnetic easy axis along the short axis of the LSMO unit cell as well as the presence of a giant anisotropic transport in these ultrathin LSMO films. As a result we possess control of the lateral magnetic and electronic anisotropies by atomic-scale design of the oxygen octahedral rotation.

  8. Digital Layered-Manganites: Madelung Energy Effects on Atomic Structure and Properties

    NASA Astrophysics Data System (ADS)

    Nelson-Cheeseman, B.; Rondinelli, J.; Zhou, H.; Nikiforov, M.; Barnes, E.; Shah, A.; Bader, S.; Gopalan, V.; Bhattacharya, A.

    2012-02-01

    The atomic monolayer control of molecular beam epitaxy allows one to explore non-equilibrium dopant-cation configurations in correlated oxide thin films, enabling new electronic phases and magnetic properties to emerge. We report the effects of digital A-site cation doping on electronic phase stability and competition in perovskite-derived manganites. In such digitally synthesized films, Madelung energy constraints are expected to play a primary role in minimizing local Coulomb forces. We correlate changes in the electrical and magnetic properties of the ordered manganites and the resulting crystal structures (Mn-O bond lengths and O-Mn-O bond angles) to the compositionally equivalent control films, i.e. those with randomly distributed A-site dopant-cations. DFT calculations predict that these different layering patterns produce different local and extended crystallographic distortions, including a potential multiferroicity induced by a hitherto unknown mechanism. Synchrotron surface X-ray diffraction measurements in combination with COherant Bragg Rod Analysis at the Advanced Photon Source is used to investigate the resulting atomic structure of the different layering variants, while Second Harmonic Generation and Piezoforce Microscopy investigate the ferroelectric properties.

  9. Evolution of in Fe-doped manganites synthesized by the ball-milling method

    NASA Astrophysics Data System (ADS)

    Cherif, W.; Alonso, J. A.; Elhalouani, F.

    2017-01-01

    Manganites-based perovskites, having the general formula Ln0.67A0.33Mn1- x M x O3 where Ln is a rare earth element (Ln = Pr, La, ldots) and A is an alkaline earth element (A = Sr, Ba, Ca, ldots), were the center of interest of many studies because of their outstanding physicochemical properties and because they can play an important role in various applications. The aim of this work is the development with mechanical alloying method and study of physicochemical properties of new manganites. This work focuses on the development and characterization of series La0.67Ca0.11Sr0.22Mn1- x Fe x O3 ( 0≤ x≤ 0.3. The structural study showed that the cell parameters of the samples increase with the increase in the rate of iron and causing the expansion of the orthorhombic distortion. This result is confirmed by the tolerance factor tg (0.75 < tg < 0.95: orthorhombic structure). The magnetic study showed that the substitution of Mn by Fe in these series indicates a ferromagnetic-paramagnetic transition. This transition accompanied with a decrease in the Curie temperature (T_C).

  10. Manganite-based three level memristive devices with self-healing capability

    NASA Astrophysics Data System (ADS)

    Acevedo, W. Román; Rubi, D.; Lecourt, J.; Lüders, U.; Gomez-Marlasca, F.; Granell, P.; Golmar, F.; Levy, P.

    2016-08-01

    We report on non-volatile memory devices based on multifunctional manganites. The electric field induced resistive switching of Ti/La1/3Ca2/3MnO3/n-Si devices is explored using different measurement protocols. We show that using current as the electrical stimulus (instead of standard voltage-controlled protocols) improves the electrical performance of our devices and unveils an intermediate resistance state. We observe three discrete resistance levels (low, intermediate and high), which can be set either by the application of current-voltage ramps or by means of single pulses. These states exhibit retention and endurance capabilities exceeding 104 s and 70 cycles, respectively. We rationalize our experimental observations by proposing a mixed scenario were a metallic filament and a SiOx layer coexist, accounting for the observed resistive switching. Overall electrode area dependence and temperature dependent resistance measurements support our scenario. After device failure takes place, the system can be turned functional again by heating up to low temperature (120 °C), a feature that could be exploited for the design of memristive devices with self-healing functionality. These results give insight into the existence of multiple resistive switching mechanisms in manganite-based memristive systems and provide strategies for controlling them.

  11. Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling.

    PubMed

    Liao, Z; Huijben, M; Zhong, Z; Gauquelin, N; Macke, S; Green, R J; Van Aert, S; Verbeeck, J; Van Tendeloo, G; Held, K; Sawatzky, G A; Koster, G; Rijnders, G

    2016-04-01

    Controlled in-plane rotation of the magnetic easy axis in manganite heterostructures by tailoring the interface oxygen network could allow the development of correlated oxide-based magnetic tunnelling junctions with non-collinear magnetization, with possible practical applications as miniaturized high-switching-speed magnetic random access memory (MRAM) devices. Here, we demonstrate how to manipulate magnetic and electronic anisotropic properties in manganite heterostructures by engineering the oxygen network on the unit-cell level. The strong oxygen octahedral coupling is found to transfer the octahedral rotation, present in the NdGaO3 (NGO) substrate, to the La2/3Sr1/3MnO3 (LSMO) film in the interface region. This causes an unexpected realignment of the magnetic easy axis along the short axis of the LSMO unit cell as well as the presence of a giant anisotropic transport in these ultrathin LSMO films. As a result we possess control of the lateral magnetic and electronic anisotropies by atomic-scale design of the oxygen octahedral rotation.

  12. Tailoring transport properties of phase-separated manganite films with ordered magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Vlaminck, V.; Yánez, W.; Hoffman, J.; Hoffmann, A.; Niebieskikwiat, D.

    2016-08-01

    The magnetotransport properties of thin manganite films (La0.7Ca0.3MnO3 ) coupled with arrays of permalloy (Py) nanodots deposited on the surface of the film are studied as a function of temperature, magnetic field, and the size of the dots. In the presence of the magnetic dots, a reduction of the electrical resistivity is observed, especially at the insulator-to-metal transition, as well as a shift of the transition peak towards higher temperatures. This indicates that, due to local interface exchange coupling, highly conductive ferromagnetic domains are nucleated in the manganite film underneath the Py nanodots. The use of a simplified resistor network model allows us to estimate the size of the metallic regions induced by exchange coupling. At low temperatures, these regions extend ˜70 nm beyond the edge of the nanodots, a length scale comparable to the correlation length of the ferromagnetic clusters in the phase-separated state of La0.7Ca0.3MnO3 .

  13. Tailoring transport properties of phase-separated manganite films with ordered magnetic nanostructures

    SciTech Connect

    Vlaminck, V.; Yanez, W.; Hoffman, J.; Hoffmann, A.; Niebieskikwiat, D.

    2016-08-02

    Here, the magnetotransport properties of thin manganite films (La0.7Ca0.3MnO3) coupled with arrays of permalloy (Py) nanodots deposited on the surface of the film are studied as a function of temperature, magnetic field, and the size of the dots. In the presence of the magnetic dots, a reduction of the electrical resistivity is observed, especially at the insulator-to-metal transition, as well as a shift of the transition peak towards higher temperatures. This indicates that, due to local interface exchange coupling, highly conductive ferromagnetic domains are nucleated in the manganite film underneath the Py nanodots. The use of a simplified resistor network model allows us to estimate the size of the metallic regions induced by exchange coupling. At low temperatures, these regions extend ~70 nm beyond the edge of the nanodots, a length scale comparable to the correlation length of the ferromagnetic clusters in the phase-separated state of La0.7Ca0.3MnO3.

  14. Tailoring transport properties of phase-separated manganite films with ordered magnetic nanostructures

    DOE PAGES

    Vlaminck, V.; Yanez, W.; Hoffman, J.; ...

    2016-08-02

    Here, the magnetotransport properties of thin manganite films (La0.7Ca0.3MnO3) coupled with arrays of permalloy (Py) nanodots deposited on the surface of the film are studied as a function of temperature, magnetic field, and the size of the dots. In the presence of the magnetic dots, a reduction of the electrical resistivity is observed, especially at the insulator-to-metal transition, as well as a shift of the transition peak towards higher temperatures. This indicates that, due to local interface exchange coupling, highly conductive ferromagnetic domains are nucleated in the manganite film underneath the Py nanodots. The use of a simplified resistor networkmore » model allows us to estimate the size of the metallic regions induced by exchange coupling. At low temperatures, these regions extend ~70 nm beyond the edge of the nanodots, a length scale comparable to the correlation length of the ferromagnetic clusters in the phase-separated state of La0.7Ca0.3MnO3.« less

  15. Evidence of weak localization in quantum interference effects observed in epitaxial La0.7Sr0.3MnO3 ultrathin films

    PubMed Central

    Niu, Wei; Gao, Ming; Wang, Xuefeng; Song, Fengqi; Du, Jun; Wang, Xinran; Xu, Yongbing; Zhang, Rong

    2016-01-01

    Quantum interference effects (QIEs) dominate the appearance of low-temperature resistivity minimum in colossal magnetoresistance manganites. The T1/2 dependent resistivity under high magnetic field has been evidenced as electron-electron (e-e) interaction. However, the evidence of the other source of QIEs, weak localization (WL), still remains insufficient in manganites. Here we report on the direct experimental evidence of WL in QIEs observed in the single-crystal La0.7Sr0.3MnO3 (LSMO) ultrathin films deposited by laser molecular beam epitaxy. The sharp cusps around zero magnetic field in magnetoresistance measurements is unambiguously observed, which corresponds to the WL effect. This convincingly leads to the solid conclusion that the resistivity minima at low temperatures in single-crystal manganites are attributed to both the e-e interaction and the WL effect. Moreover, the temperature-dependent phase-coherence length corroborates the WL effect of LSMO ultrathin films is within a two-dimensional localization theory. PMID:27181882

  16. Potential energy mapping of the excited-states of (η6-arene)Cr(CO)3 complexes: the evolution toward CO-loss or haptotropic shift processes.

    PubMed

    Long, Conor

    2012-06-28

    The potential energy profiles of the optically accessible excited states of two model (η(6)-arene)Cr(CO)(3) systems were explored using Time-Dependent Density Functional Theory. Two photochemical reactions were investigated, CO-loss and the haptotropic or ring-slip of the arene ligand. In both cases the photochemical reaction requires the surmounting of a small thermal barrier in the lowest energy excited state. In the case of (η(6)-benzene)Cr(CO)(3) only one excited state is populated following 400 nm excitation and this leads to the release of CO. The calculated energy barrier to this process is 13 kJ mol(-1). In the case of (η(6)-thiophenol)Cr(CO)(3) two excited states are accessible one leading to CO-loss while the other results in the ring-slip process. The calculated barrier to the ring-slip process is 11 kJ mol(-1). The calculations are consistent with the results of picosecond time-resolved infrared studies.

  17. Colossal negative thermal expansion induced by magnetic phase competition on frustrated lattices in Laves phase compound (Hf,Ta)Fe2

    NASA Astrophysics Data System (ADS)

    Li, B.; Luo, X. H.; Wang, H.; Ren, W. J.; Yano, S.; Wang, C.-W.; Gardner, J. S.; Liss, K.-D.; Miao, P.; Lee, S.-H.; Kamiyama, T.; Wu, R. Q.; Kawakita, Y.; Zhang, Z. D.

    2016-06-01

    Competition between ferromagnetic and antiferromagnetic phases on frustrated lattices in hexagonal Laves phase compound Hf0.86Ta0.14Fe2 is investigated by using neutron diffraction as a function of temperature and magnetic fields and density-functional-theory calculations. At 325 K, the compound orders into the 120° frustrated antiferromagnetic state with a well-reduced magnetic moment, and an in-plane lattice contraction simultaneously sets in. With further cooling down, however, the accumulated distortion in turn destabilizes this susceptible frustrated structure. The frustration is completely relieved at 255 K when the first-order transition to the ferromagnetic state takes place, where a colossal negative volumetric thermal expansion, -123 ×10-6 /K, is obtained. Meanwhile, the antiferromagnetic state can be suppressed by few-tesla magnetic fields, which results in a colossal positive magnetostriction. Such delicate competition is attributed to the giant magnetic fluctuation inherent in the frustrated antiferromagnetic state. Therefore, the magnetoelastic instability is approached even under a small perturbation.

  18. A Magnetoresistive Heat Switch for the Continuous ADR

    NASA Technical Reports Server (NTRS)

    Canavan, E. R.; Dipirro, M. J.; Jackson, M.; Panek, J.; Shirron, P. J.; Tuttle, J. G.; Krebs, C. (Technical Monitor)

    2001-01-01

    In compensated elemental metals at low temperature, a several Tesla field can suppress electronic heat conduction so thoroughly that heat is effectively carried by phonons alone. In approximately one mm diameter single crystal samples with impurity concentrations low enough that electron conduction is limited by surface scattering, the ratio of zerofield to high-field thermal conductivity can exceed ten thousand. We have used this phenomenon to build a compact, solid-state heat switch with no moving parts and no enclosed fluids. The time scale for switching states is limited by time scale for charging the magnet that supplies the controlling field. Our design and fabrication techniques overcome the difficulties associated with manufacturing and assembling parts from single crystal tungsten. A clear disadvantage of the magnetoresistive switch is the mass and complexity of the magnet system for the controlling field. We have discovered a technique of minimizing this mass and complexity, applicable to the continuous adiabatic demagnetization refrigerator.

  19. Gamma irradiation of magnetoresistive sensors for planetary exploration.

    PubMed

    Sanz, Ruy; Fernández, Ana B; Dominguez, Jose A; Martín, Boris; Michelena, Marina D

    2012-01-01

    A limited number of Anisotropic Magnetoresistive (AMR) commercial-off-the-shelf (COTS) magnetic sensors of the HMC series by Honeywell, with and without integrated front-end electronics, were irradiated with gamma rays up to a total irradiation dose of 200 krad (Si), following the ESCC Basic Specification No. 22900. Due to the magnetic cleanliness required for these tests a special set-up was designed and successfully employed. Several parameters of the sensors were monitored during testing and the results are reported in this paper. The authors conclude that AMR sensors without front-end electronics seem to be robust against radiation doses of up to 200 krad (Si) with a dose rate of 5 krad (Si)/hour and up to a resolution of tens of nT, but sensors with an integrated front-end seem to be more vulnerable to radiation.

  20. Giant magnetoresistive heterogeneous alloys and method of making same

    DOEpatents

    Bernardi, Johannes J.; Thomas, Gareth; Huetten, Andreas R.

    1998-01-01

    The inventive material exhibits giant magnetoresistance upon application of an external magnetic field at room temperature. The hysteresis is minimal. The inventive material has a magnetic phase formed by eutectic decomposition. The bulk material comprises a plurality of regions characterized by a) the presence of magnetic lamellae wherein the lamellae are separated by a distance smaller than the mean free path of the conduction electrons, and b) a matrix composition having nonmagnetic properties that is interposed between the lamellae within the regions. The inventive, rapidly quenched, eutectic alloys form microstructure lamellae having antiparallel antiferromagnetic coupling and give rise to GMR properties. The inventive materials made according to the inventive process yielded commercially acceptable quantities and timeframes. Annealing destroyed the microstructure lamellae and the GMR effect. Noneutectic alloys did not exhibit the antiparallel microstructure lamellae and did not possess GMR properties.

  1. Giant magnetoresistive heterogeneous alloys and method of making same

    DOEpatents

    Bernardi, Johannes J.; Thomas, Gareth; Huetten, Andreas R.

    1999-01-01

    The inventive material exhibits giant magnetoresistance upon application of an external magnetic field at room temperature. The hysteresis is minimal. The inventive material has a magnetic phase formed by eutectic decomposition. The bulk material comprises a plurality of regions characterized by a) the presence of magnetic lamellae wherein the lamellae are separated by a distance smaller than the mean free path of the conduction electrons, and b) a matrix composition having nonmagnetic properties that is interposed between the lamellae within the regions. The inventive, rapidly quenched, eutectic alloys form microstructure lamellae having antiparallel antiferromagnetic coupling and give rise to GMR properties. The inventive materials made according to the inventive process yielded commercially acceptable quantities and timeframes. Annealing destroyed the microstructure lamellae and the GMR effect. Noneutectic alloys did not exhibit the antiparallel microstructure lamellae and did not possess GMR properties.

  2. Giant magnetoresistive heterogeneous alloys and method of making same

    DOEpatents

    Bernardi, J.J.; Thomas, G.; Huetten, A.R.

    1999-03-16

    The inventive material exhibits giant magnetoresistance upon application of an external magnetic field at room temperature. The hysteresis is minimal. The inventive material has a magnetic phase formed by eutectic decomposition. The bulk material comprises a plurality of regions characterized by (a) the presence of magnetic lamellae wherein the lamellae are separated by a distance smaller than the mean free path of the conduction electrons, and (b) a matrix composition having nonmagnetic properties that is interposed between the lamellae within the regions. The inventive, rapidly quenched, eutectic alloys form microstructure lamellae having antiparallel antiferromagnetic coupling and give rise to GMR properties. The inventive materials made according to the inventive process yielded commercially acceptable quantities and timeframes. Annealing destroyed the microstructure lamellae and the GMR effect. Noneutectic alloys did not exhibit the antiparallel microstructure lamellae and did not possess GMR properties. 7 figs.

  3. Giant magnetoresistive heterogeneous alloys and method of making same

    DOEpatents

    Bernardi, J.J.; Thomas, G.; Huetten, A.R.

    1998-10-20

    The inventive material exhibits giant magnetoresistance upon application of an external magnetic field at room temperature. The hysteresis is minimal. The inventive material has a magnetic phase formed by eutectic decomposition. The bulk material comprises a plurality of regions characterized by (a) the presence of magnetic lamellae wherein the lamellae are separated by a distance smaller than the mean free path of the conduction electrons, and (b) a matrix composition having nonmagnetic properties that is interposed between the lamellae within the regions. The inventive, rapidly quenched, eutectic alloys form microstructure lamellae having antiparallel antiferromagnetic coupling and give rise to GMR properties. The inventive materials made according to the inventive process yielded commercially acceptable quantities and timeframes. Annealing destroyed the microstructure lamellae and the GMR effect. Noneutectic alloys did not exhibit the antiparallel microstructure lamellae and did not possess GMR properties. 7 figs.

  4. Space magnetometer based on an anisotropic magnetoresistive hybrid sensor.

    PubMed

    Brown, P; Whiteside, B J; Beek, T J; Fox, P; Horbury, T S; Oddy, T M; Archer, M O; Eastwood, J P; Sanz-Hernández, D; Sample, J G; Cupido, E; O'Brien, H; Carr, C M

    2014-12-01

    We report on the design and development of a low resource, dual sensor vector magnetometer for space science applications on very small spacecraft. It is based on a hybrid device combining an orthogonal triad of commercial anisotropic magnetoresistive (AMR) sensors with a totem pole H-Bridge drive on a ceramic substrate. The drive enables AMR operation in the more sensitive flipped mode and this is achieved without the need for current spike transmission down a sensor harness. The magnetometer has sensitivity of better than 3 nT in a 0-10 Hz band and a total mass of 104 g. Three instruments have been launched as part of the TRIO-CINEMA space weather mission, inter-calibration against the International Geomagnetic Reference Field model makes it possible to extract physical signals such as field-aligned current deflections of 20-60 nT within an approximately 45,000 nT ambient field.

  5. Space magnetometer based on an anisotropic magnetoresistive hybrid sensor

    NASA Astrophysics Data System (ADS)

    Brown, P.; Whiteside, B. J.; Beek, T. J.; Fox, P.; Horbury, T. S.; Oddy, T. M.; Archer, M. O.; Eastwood, J. P.; Sanz-Hernández, D.; Sample, J. G.; Cupido, E.; O'Brien, H.; Carr, C. M.

    2014-12-01

    We report on the design and development of a low resource, dual sensor vector magnetometer for space science applications on very small spacecraft. It is based on a hybrid device combining an orthogonal triad of commercial anisotropic magnetoresistive (AMR) sensors with a totem pole H-Bridge drive on a ceramic substrate. The drive enables AMR operation in the more sensitive flipped mode and this is achieved without the need for current spike transmission down a sensor harness. The magnetometer has sensitivity of better than 3 nT in a 0-10 Hz band and a total mass of 104 g. Three instruments have been launched as part of the TRIO-CINEMA space weather mission, inter-calibration against the International Geomagnetic Reference Field model makes it possible to extract physical signals such as field-aligned current deflections of 20-60 nT within an approximately 45 000 nT ambient field.

  6. Chiral magnetoresistance in the Weyl semimetal NbP

    PubMed Central

    Niemann, Anna Corinna; Gooth, Johannes; Wu, Shu-Chun; Bäßler, Svenja; Sergelius, Philip; Hühne, Ruben; Rellinghaus, Bernd; Shekhar, Chandra; Süß, Vicky; Schmidt, Marcus; Felser, Claudia; Yan, Binghai; Nielsch, Kornelius

    2017-01-01

    NbP is a recently realized Weyl semimetal (WSM), hosting Weyl points through which conduction and valence bands cross linearly in the bulk and exotic Fermi arcs appear. The most intriguing transport phenomenon of a WSM is the chiral anomaly-induced negative magnetoresistance (NMR) in parallel electric and magnetic fields. In intrinsic NbP the Weyl points lie far from the Fermi energy, making chiral magneto-transport elusive. Here, we use Ga-doping to relocate the Fermi energy in NbP sufficiently close to the W2 Weyl points, for which the different Fermi surfaces are verified by resultant quantum oscillations. Consequently, we observe a NMR for parallel electric and magnetic fields, which is considered as a signature of the chiral anomaly in condensed-matter physics. The NMR survives up to room temperature, making NbP a versatile material platform for the development of Weyltronic applications. PMID:28262790

  7. Chiral magnetoresistance in the Weyl semimetal NbP

    NASA Astrophysics Data System (ADS)

    Niemann, Anna Corinna; Gooth, Johannes; Wu, Shu-Chun; Bäßler, Svenja; Sergelius, Philip; Hühne, Ruben; Rellinghaus, Bernd; Shekhar, Chandra; Süß, Vicky; Schmidt, Marcus; Felser, Claudia; Yan, Binghai; Nielsch, Kornelius

    2017-03-01

    NbP is a recently realized Weyl semimetal (WSM), hosting Weyl points through which conduction and valence bands cross linearly in the bulk and exotic Fermi arcs appear. The most intriguing transport phenomenon of a WSM is the chiral anomaly-induced negative magnetoresistance (NMR) in parallel electric and magnetic fields. In intrinsic NbP the Weyl points lie far from the Fermi energy, making chiral magneto-transport elusive. Here, we use Ga-doping to relocate the Fermi energy in NbP sufficiently close to the W2 Weyl points, for which the different Fermi surfaces are verified by resultant quantum oscillations. Consequently, we observe a NMR for parallel electric and magnetic fields, which is considered as a signature of the chiral anomaly in condensed-matter physics. The NMR survives up to room temperature, making NbP a versatile material platform for the development of Weyltronic applications.

  8. Magnetoresistance in a strongly interacting two-dimensional metal

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. P.

    1992-07-01

    Using a gauge-theory formulation of the fluxless metallic phase of the t-J model in two dimensions, it is shown that the soft chiral spin fluctuations existing in this phase are suppressed by the introduction of a small transverse magnetic field, while soft charge fluctuations are enhanced. This effect results in the reduction of the predicted linear-in-temperature resistance by an amount proportional to the square of the Hall conductance in the strong-correlation limit near half filling. However, away from this limit, the magnetoresistance may be positive. A similar effect is also shown to exist for the thermal resistance and the specific heat. A comparison with available data on the oxide superconductors is made.

  9. Magic angle effects and angular magnetoresistance oscillations as dimensional crossovers.

    PubMed

    Lebed, A G; Bagmet, N N; Naughton, M J

    2004-10-08

    Interference effects between velocity and density of states, which occur as electrons move along open orbits in the extended Brillouin zone in anisotropic conductors, result in a change of wave functions' dimensionality at magic angle (MA) directions of a magnetic field. In particular, these 1D-->2D dimensional crossovers result in the appearance of sharp minima in a resistivity component rho perpendicular (H,alpha), perpendicular to conducting layers. This explains the main qualitative features of MA and angular magnetoresistance oscillations' phenomena observed due to the existence of quasi-one-dimensional sheets of Fermi surface in (TMTSF)2X, (DMET-TSeF)2X, and kappa-(ET)2Cu(NCS)(2) conductors.

  10. Compensated Semimetal LaSb with Unsaturated Magnetoresistance

    NASA Astrophysics Data System (ADS)

    Zeng, L.-K.; Lou, R.; Wu, D.-S.; Xu, Q. N.; Guo, P.-J.; Kong, L.-Y.; Zhong, Y.-G.; Ma, J.-Z.; Fu, B.-B.; Richard, P.; Wang, P.; Liu, G. T.; Lu, L.; Huang, Y.-B.; Fang, C.; Sun, S.-S.; Wang, Q.; Wang, L.; Shi, Y.-G.; Weng, H. M.; Lei, H.-C.; Liu, K.; Wang, S.-C.; Qian, T.; Luo, J.-L.; Ding, H.

    2016-09-01

    By combining angle-resolved photoemission spectroscopy and quantum oscillation measurements, we performed a comprehensive investigation on the electronic structure of LaSb, which exhibits near-quadratic extremely large magnetoresistance (XMR) without any sign of saturation at magnetic fields as high as 40 T. We clearly resolve one spherical and one intersecting-ellipsoidal hole Fermi surfaces (FSs) at the Brillouin zone (BZ) center Γ and one ellipsoidal electron FS at the BZ boundary X . The hole and electron carriers calculated from the enclosed FS volumes are perfectly compensated, and the carrier compensation is unaffected by temperature. We further reveal that LaSb is topologically trivial but shares many similarities with the Weyl semimetal TaAs family in the bulk electronic structure. Based on these results, we have examined the mechanisms that have been proposed so far to explain the near-quadratic XMR in semimetals.

  11. Magnetoresistance of galfenol-based magnetic tunnel junction

    SciTech Connect

    Gobaut, B.; Vinai, G.; Castán-Guerrero, C.; Krizmancic, D.; Panaccione, G.; Torelli, P.; Rafaqat, H.; Roddaro, S.; Rossi, G.; Eddrief, M.; Marangolo, M.

    2015-12-15

    The manipulation of ferromagnetic layer magnetization via electrical pulse is driving an intense research due to the important applications that this result will have on memory devices and sensors. In this study we realized a magnetotunnel junction in which one layer is made of Galfenol (Fe{sub 1-x}Ga{sub x}) which possesses one of the highest magnetostrictive coefficient known. The multilayer stack has been grown by molecular beam epitaxy and e-beam evaporation. Optical lithography and physical etching have been combined to obtain 20x20 micron sized pillars. The obtained structures show tunneling conductivity across the junction and a tunnel magnetoresistance (TMR) effect of up to 11.5% in amplitude.

  12. GMR sensors: magnetoresistive behaviour optimization for biological detection by means of superparamagnetic nanoparticles.

    PubMed

    Manteca, A; Mujika, M; Arana, S

    2011-04-15

    An immunomagnetic method for the selective and quantitative detection of biological species by means of a magnetoresistive biosensor and superparamagnetic particles has been optimized. In order to achieve this, a giant magnetoresistive [Co (5.10nm)/Cu (2.47 nm)](20) multilayer structure has been chosen as the sensitive material, showing a magnetoresistance of 3.60% at 215 Oe and a sensitivity up to 0.19 Ω/Oe between 145 Oe and 350 Oe. The outward gold surface of the sensor is biofunctionalized with a Self-Assembled Monolayer (SAM). In addition, three different types of magnetic labels have been tested. 2 μm diameter magnetic carriers (7.68 pg ferrite/particle) have shown the best response and they have induced a shift in the magnetoresistive hysteresis loops up to 9% at 175 Oe.

  13. Magnetoresistance manipulation and sign reversal in Mn-doped ZnO nanowires

    PubMed Central

    Sapkota, Keshab R.; Chen, Weimin; Maloney, F. Scott; Poudyal, Uma; Wang, Wenyong

    2016-01-01

    We report magnetoresistance (MR) manipulation and sign reversal induced by carrier concentration modulation in Mn-doped ZnO nanowires. At low temperatures positive magnetoresistance was initially observed. When the carrier concentration was increased through the application of a gate voltage, the magnetoresistance also increased and reached a maximum value. However, further increasing the carrier concentration caused the MR to decrease, and eventually an MR sign reversal from positive to negative was observed. An MR change from a maximum positive value of 25% to a minimum negative value of 7% was observed at 5 K and 50 KOe. The observed MR behavior was modeled by considering combined effects of quantum correction to carrier conductivity and bound magnetic polarons. This work could provide important insights into the mechanisms that govern magnetotransport in dilute magnetic oxides, and it also demonstrated an effective approach to manipulating magnetoresistance in these materials that have important spintronic applications. PMID:27739442

  14. A simple formulation for magnetoresistance in metal-insulator granular films with increased current

    NASA Astrophysics Data System (ADS)

    Boff, M. A. S.; Canto, B.; Baibich, M. N.; Pereira, L. G.

    2013-02-01

    We studied the tunnel magnetoresistance in metal/insulator granular films when the applied current is varied. The tunnel magnetoresistance shows a strong modification related to a non-Ohmic behaviour of theses materials. It was verified that spin-dependent tunnelling is the main mechanism for magnetoresistance at low applied current. However, when the current is high, another mechanism gets to be important: it is independent of the magnetization and is associated to variable range hopping between metallic grains. In this work, we propose a simple modification of Inoue and Maekawa's model for tunnelling magnetoresistance in granulars, rewriting the expression for resistance as a function of magnetic field and temperature, also taking into account the two different contributions.

  15. Theory of unidirectional spin Hall magnetoresistance in heavy-metal/ferromagnetic-metal bilayers

    NASA Astrophysics Data System (ADS)

    Zhang, Steven S.-L.; Vignale, Giovanni

    2016-10-01

    Recent experiments have revealed nonlinear features of the magnetoresistance in metallic bilayers consisting of a heavy metal (HM) and a ferromagnetic metal (FM). A small change in the longitudinal resistance of the bilayer has been observed when reversing the direction of either the applied in-plane current or the magnetization. We attribute such nonlinear transport behavior to the spin-polarization dependence of the electron mobility in the FM layer acting in concert with the spin accumulation induced in that layer by the spin Hall current originating in the bulk of the HM layer. An explicit expression for the nonlinear magnetoresistance is derived based on a simple drift-diffusion model, which shows that the nonlinear magnetoresistance appears at the first order of the spin Hall angle, and changes sign when the current is reversed, in agreement with the experimental observations. We also discuss possible ways to control sign of the nonlinear magnetoresistance and to enhance the magnitude of the effect.

  16. Monte Carlo simulation of multilayer magnetic structures and calculation of the magnetoresistance coefficient

    NASA Astrophysics Data System (ADS)

    Prudnikov, V. V.; Prudnikov, P. V.; Romanovskii, D. E.

    2015-11-01

    The Monte Carlo study of three-layer and spin-valve magnetic structures with giant magnetoresistance effects has been performed with the application of the Heisenberg anisotropic model to the description of the magnetic properties of thin ferromagnetic films. The dependences of the magnetic characteristics on the temperature and external magnetic field have been obtained for the ferromagnetic and antiferromagnetic configurations of these structures. A Monte Carlo method for determining the magnetoresistance coefficient has been developed. The magnetoresistance coefficient has been calculated for three-layer and spin-valve magnetic structures at various thicknesses of ferromagnetic films. It has been shown that the calculated temperature dependence of the magnetoresistance coefficient is in good agreement with experimental data obtained for the Fe(001)/Cr(001) multilayer structure and the CFAS/Ag/CFAS/IrMn spin valve based on the Co2FeAl0.5Si0.5 (CFAS) Heusler alloy.

  17. Magnetoresistance manipulation and sign reversal in Mn-doped ZnO nanowires.

    PubMed

    Sapkota, Keshab R; Chen, Weimin; Maloney, F Scott; Poudyal, Uma; Wang, Wenyong

    2016-10-14

    We report magnetoresistance (MR) manipulation and sign reversal induced by carrier concentration modulation in Mn-doped ZnO nanowires. At low temperatures positive magnetoresistance was initially observed. When the carrier concentration was increased through the application of a gate voltage, the magnetoresistance also increased and reached a maximum value. However, further increasing the carrier concentration caused the MR to decrease, and eventually an MR sign reversal from positive to negative was observed. An MR change from a maximum positive value of 25% to a minimum negative value of 7% was observed at 5 K and 50 KOe. The observed MR behavior was modeled by considering combined effects of quantum correction to carrier conductivity and bound magnetic polarons. This work could provide important insights into the mechanisms that govern magnetotransport in dilute magnetic oxides, and it also demonstrated an effective approach to manipulating magnetoresistance in these materials that have important spintronic applications.

  18. Hanle Magnetoresistance in Thin Metal Films with Strong Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Vélez, Saül; Golovach, Vitaly N.; Bedoya-Pinto, Amilcar; Isasa, Miren; Sagasta, Edurne; Abadia, Mikel; Rogero, Celia; Hueso, Luis E.; Bergeret, F. Sebastian; Casanova, Fèlix

    2016-01-01

    We report measurements of a new type of magnetoresistance in Pt and Ta thin films. The spin accumulation created at the surfaces of the film by the spin Hall effect decreases in a magnetic field because of the Hanle effect, resulting in an increase of the electrical resistance as predicted by Dyakonov [Phys. Rev. Lett. 99, 126601 (2007)]. The angular dependence of this magnetoresistance resembles the recently discovered spin Hall magnetoresistance in Pt /Y3Fe5O12 bilayers, although the presence of a ferromagnetic insulator is not required. We show that this Hanle magnetoresistance is an alternative simple way to quantitatively study the coupling between charge and spin currents in metals with strong spin-orbit coupling.

  19. The tunneling magnetoresistance current dependence on cross sectional area, angle and temperature

    SciTech Connect

    Zhang, Z. H. Bai, Lihui; Hu, C.-M.; Hemour, S.; Wu, K.; Fan, X. L.; Xue, D. S.; Houssameddine, D.

    2015-03-15

    The magnetoresistance of a MgO-based magnetic tunnel junction (MTJ) was studied experimentally. The magnetoresistance as a function of current was measured systematically on MTJs for various MgO cross sectional areas and at various temperatures from 7.5 to 290.1 K. The resistance current dependence of the MTJ was also measured for different angles between the two ferromagnetic layers. By considering particle and angular momentum conservation of transport electrons, the current dependence of magnetoresistance can be explained by the changing of spin polarization in the free magnetic layer of the MTJ. The changing of spin polarization is related to the magnetoresistance, its angular dependence and the threshold current where TMR ratio equals zero. A phenomenological model is used which avoid the complicated barrier details and also describes the data.

  20. Immunohistochemistry Successfully Uncovers Intratumoral Heterogeneity and Widespread Co-Losses of Chromatin Regulators in Clear Cell Renal Cell Carcinoma

    PubMed Central

    Devarajan, Karthik; Parsons, Theodore; Wang, Qiong; Liao, Lili; Cho, Eun-Ah; O'Neill, Raymond; Solomides, Charalambos; Peiper, Stephen C.; Testa, Joseph R.; Uzzo, Robert; Yang, Haifeng

    2016-01-01

    Recent studies have shown that intratumoral heterogeneity (ITH) is prevalent in clear cell renal cell carcinoma (ccRCC), based on DNA sequencing and chromosome aberration analysis of multiple regions from the same tumor. VHL mutations were found to be universal throughout individual tumors when it occurred (ubiquitous), while the mutations in other tumor suppressor genes tended to be detected only in parts of the tumors (subclonal). ITH has been studied mostly by DNA sequencing in limited numbers of samples, either by whole genome sequencing or by targeted sequencing. It is not known whether immunohistochemistry (IHC) can be used as a tool to study ITH. To address this question, we examined the protein expression of PBRM1, and PBRM1-related proteins such as ARID1A, SETD2, BRG1, and BRM. Altogether, 160 ccRCC (40 per stage) were used to generate a tissue microarray (TMA), with four foci from each tumor included. Loss of expression was defined as 0–5% of tumor cells with positive nuclear staining in an individual focus. We found that 49/160 (31%), 81/160 (51%), 23/160 (14%), 24/160 (15%), and 61/160 (38%) of ccRCC showed loss of expression of PBRM1, ARID1A, SETD2, BRG1, and BRM, respectively, and that IHC could successfully detect a high prevalence of ITH. Phylogenetic trees were constructed that reflected the ITH. Striking co-losses among proteins were also observed. For instance, ARID1A loss almost always accompanied PBRM1 loss, whereas BRM loss accompanied loss of BRG1, PBRM1 or ARID1A. SETD2 loss frequently occurred with loss of one or more of the other four proteins. Finally, in order to learn the impact of combined losses, we compared the tumor growth after cells acquired losses of ARID1A, PBRM1, or both in a xenograft model. The results suggest that ARID1A loss has a greater tumor-promoting effect than PBRM1 loss, indicating that xenograft analysis is a useful tool to investigate how these losses impact on tumor behavior, either alone or in combination. PMID

  1. Electromotive force and huge magnetoresistance in magnetic tunnel junctions.

    PubMed

    Pham, Nam Hai; Ohya, Shinobu; Tanaka, Masaaki; Barnes, Stewart E; Maekawa, Sadamichi

    2009-03-26

    The electromotive force (e.m.f.) predicted by Faraday's law reflects the forces acting on the charge, -e, of an electron moving through a device or circuit, and is proportional to the time derivative of the magnetic field. This conventional e.m.f. is usually absent for stationary circuits and static magnetic fields. There are also forces that act on the spin of an electron; it has been recently predicted that, for circuits that are in part composed of ferromagnetic materials, there arises an e.m.f. of spin origin even for a static magnetic field. This e.m.f. can be attributed to a time-varying magnetization of the host material, such as the motion of magnetic domains in a static magnetic field, and reflects the conversion of magnetic to electrical energy. Here we show that such an e.m.f. can indeed be induced by a static magnetic field in magnetic tunnel junctions containing zinc-blende-structured MnAs quantum nanomagnets. The observed e.m.f. operates on a timescale of approximately 10(2)-10(3) seconds and results from the conversion of the magnetic energy of the superparamagnetic MnAs nanomagnets into electrical energy when these magnets undergo magnetic quantum tunnelling. As a consequence, a huge magnetoresistance of up to 100,000 per cent is observed for certain bias voltages. Our results strongly support the contention that, in magnetic nanostructures, Faraday's law of induction must be generalized to account for forces of purely spin origin. The huge magnetoresistance and e.m.f. may find potential applications in high sensitivity magnetic sensors, as well as in new active devices such as 'spin batteries'.

  2. Magneto-Resistance Anisotropy in Uncompensated Ca:YIG Films

    NASA Astrophysics Data System (ADS)

    Li, Donglei; Wigen, Philip E.

    2000-03-01

    : A magneto-resistance (MR) in an uncompensated p-type Ca:YIG film having a bulk resistivity of 400 ohm.cm at 300K has been observed using an AC signal modulating method. For the geometry of the magnetic field (H) in the plane of the film and parallel to the current, the resistivity increases by 4 parts in 10000 where H varies from 0 to ±10G without hysteresis. The dependence of the MR as a function of the angle (theta) between the direction of the current and the applied H varies as cos2theta. At the perpendicular orientation the MR initially increases up to 6 pts in 10000 as H varies from 0 to ±300G, and then reverses sign and changes by -12 parts per 10000 at H=±2000G where the film magnetization is saturated. For higher H the resistance increases by 4 pts in 10000 at H=±4000G. The origin of the conductivity in these Ca doped garnets is due to a hopping of small polarons along various spin channels in the garnet structure [1,2]. The MR is then consistent with a hopping mechanism being more favorable when the magnetization is oriented perpendicular to the current. The temperature dependence between 240 K and 320 K will be reviewed. Any magneto-resistance present in n-type Si:YIG or Ge:YIG was too small to detect. A small variation in the amplitude and phase of the MR response with the AC frequency will be discussed. [1] G.B. Turpin, Ph.D. Thesis, The Ohio State University (1996). [2] S. Batra, Andrea Lehman-Szweykowska, and P.E. Wigen, J. Appl. Phys., 61, 3274 (1987).

  3. Resistance transition assisted geometry enhanced magnetoresistance in semiconductors

    SciTech Connect

    Luo, Zhaochu; Zhang, Xiaozhong

    2015-05-07

    Magnetoresistance (MR) reported in some non-magnetic semiconductors (particularly silicon) has triggered considerable interest owing to the large magnitude of the effect. Here, we showed that MR in lightly doped n-Si can be significantly enhanced by introducing two diodes and proper design of the carrier path [Wan, Nature 477, 304 (2011)]. We designed a geometrical enhanced magnetoresistance (GEMR) device whose room-temperature MR ratio reaching 30% at 0.065 T and 20 000% at 1.2 T, respectively, approaching the performance of commercial MR devices. The mechanism of this GEMR is: the diodes help to define a high resistive state (HRS) and a low resistive state (LRS) in device by their openness and closeness, respectively. The ratio of apparent resistance between HRS and LRS is determined by geometry of silicon wafer and electrodes. Magnetic field could induce a transition from LRS to HRS by reshaping potential and current distribution among silicon wafer, resulting in a giant enhancement of intrinsic MR. We expect that this GEMR could be also realized in other semiconductors. The combination of high sensitivity to low magnetic fields and large high-field response should make this device concept attractive to the magnetic field sensing industry. Moreover, because this MR device is based on a conventional silicon/semiconductor platform, it should be possible to integrate this MR device with existing silicon/semiconductor devices and so aid the development of silicon/semiconductor-based magnetoelectronics. Also combining MR devices and semiconducting devices in a single Si/semiconductor chip may lead to some novel devices with hybrid function, such as electric-magnetic-photonic properties. Our work demonstrates that the charge property of semiconductor can be used in the magnetic sensing industry, where the spin properties of magnetic materials play a role traditionally.

  4. Interaction Effects and its Influence on Magnetoresistances in Two-Dimensional Hole Systems

    NASA Astrophysics Data System (ADS)

    Zheng, Houzhi

    Magnetoresistances of two-dimensional holes in GaAs/p-AlzGal-zAs heterostructures have been investigated in the context of particle-hole (p-h) Hartree interactions. Aplication of a magnetic field is to suppress the Hartree contribution between two different heavy holes, hh+ and hh-, and leads to an orbit-related magnetoresistence with a proper functional form and a positive sign in consistence with experiments.

  5. Anisotropic magnetoresistance and current-perpendicular-to-plane giant magnetoresistance in epitaxial NiMnSb-based multilayers

    NASA Astrophysics Data System (ADS)

    Kwon, B.; Sakuraba, Y.; Sukegawa, H.; Li, S.; Qu, G.; Furubayashi, T.; Hono, K.

    2016-01-01

    We fabricated (001)-oriented C1b-NiMnSb epitaxial films on MgO substrate by a magnetron sputtering system and systematically investigated the structure, magnetic property, and anisotropic magnetoresistance (AMR) effect. NiMnSb film was deposited using a stoichiometric NiMnSb target which has Mn-deficient (Mn ˜ 28.7 at. %) off-stoichiometric composition ratio. We have investigated bulk spin-polarization in NiMnSb films by measuring AMR on the basis of recent study for half-metallic L21-Heusler compounds. Although the negative sign of AMR ratio, which is indicative of half-metallic nature, was observed in the single layer NiMnSb films, the magnitude of AMR ratio (-0.10% at RT) was about half of the largest value reported for half-metallic L21-Heusler compounds. The current-perpendicular-to-plane (CPP) giant magnetoresistance (GMR) devices of NiMnSb/Ag/NiMnSb show MR ratio of 13.2% at 10 K and 4.2% at 300 K, which is higher than the previous result for NiMnSb/Cu/NiMnSb CPP-GMR devices [Caballero et al., J. Magn. Magn. Mater. 198-199, 55 (1999)], but much less than the CPP-GMR using L21-Heusler electrodes. The reduction of intrinsic bulk spin-polarization originating from the Mn-deficiency in NiMnSb layer is expected to be the main reason for small MR values.

  6. Anisotropic magnetoresistance and current-perpendicular-to-plane giant magnetoresistance in epitaxial NiMnSb-based multilayers

    SciTech Connect

    Kwon, B.; Sakuraba, Y. Sukegawa, H.; Li, S.; Furubayashi, T.; Qu, G.; Hono, K.

    2016-01-14

    We fabricated (001)-oriented C1{sub b}-NiMnSb epitaxial films on MgO substrate by a magnetron sputtering system and systematically investigated the structure, magnetic property, and anisotropic magnetoresistance (AMR) effect. NiMnSb film was deposited using a stoichiometric NiMnSb target which has Mn-deficient (Mn ∼ 28.7 at. %) off-stoichiometric composition ratio. We have investigated bulk spin-polarization in NiMnSb films by measuring AMR on the basis of recent study for half-metallic L2{sub 1}-Heusler compounds. Although the negative sign of AMR ratio, which is indicative of half-metallic nature, was observed in the single layer NiMnSb films, the magnitude of AMR ratio (−0.10% at RT) was about half of the largest value reported for half-metallic L2{sub 1}-Heusler compounds. The current-perpendicular-to-plane (CPP) giant magnetoresistance (GMR) devices of NiMnSb/Ag/NiMnSb show MR ratio of 13.2% at 10 K and 4.2% at 300 K, which is higher than the previous result for NiMnSb/Cu/NiMnSb CPP-GMR devices [Caballero et al., J. Magn. Magn. Mater. 198–199, 55 (1999)], but much less than the CPP-GMR using L2{sub 1}-Heusler electrodes. The reduction of intrinsic bulk spin-polarization originating from the Mn-deficiency in NiMnSb layer is expected to be the main reason for small MR values.

  7. Crossover from negative to positive magnetoresistance in a Si delta-doped GaAs single quantum well

    NASA Astrophysics Data System (ADS)

    Lo, Shun-Tsung; Chen, Kuang Yao; Su, Yi-Chun; Liang, C.-T.; Chang, Y. H.; Kim, Gil-Ho; Wu, J.-Y.; Lin, Sheng-Di

    2010-07-01

    We have performed magnetoresistance measurements on a Si delta-doped GaAs single quantum well. With increasing temperature T, a crossover from negative magnetoresistance (NMR) to positive magnetoresistance (PMR) can be observed. Our experimental results suggest that such a crossover corresponds to a transition from variable range hopping regime to activated electron transport. This is also consistent with the measured non-monotonic carrier density dependence on T.

  8. Static and high-frequency magnetic properties of Fe and Cr substituted lanthanum manganites

    NASA Astrophysics Data System (ADS)

    Srinivasan, G.; Hanna, D.; Suryanarayanan, R.; Berthon, J.

    2000-03-01

    Studies aimed at the nature of magnetic interactions in Fe and Cr substituted lanthanum deficient manganites, La 0.88Mn 1- xFe xO 3 ( x=0-0.15) and La 0.88Mn 1- yCr yO 3 ( y=0-0.175) are reported. The oxides order ferromagnetically for the entire range of x- and y-values. A decrease in the Curie temperature Tc with increasing substitution is observed for both compounds, but the decrease in Tc is large for Fe substitution. A large decrease was also seen in the low-temperature magnetic moment of Fe substituted samples. The data indicate possible ferromagnetic ordering of Cr and antiferromagnetic ordering of Fe moments in the oxides. Ferromagnetic resonance studies indicate (i) strong spin-lattice effects in the paramagnetic state, (ii) valence-exchange effects in the ferromagnetic state, and (iii) possible microscopic inhomogeneities in Cr-substituted samples

  9. Electron-lattice coupling and partial nesting as the origin of Fermi-Arcs in manganites

    SciTech Connect

    Salafranca Laforga, Juan I; Alvarez, Gonzalo; Dagotto, Elbio R

    2009-01-01

    A tight-binding model for e{sub g} electrons coupled to Jahn-Teller lattice distortions is studied via Monte Carlo simulations. By focusing on the periodicity of the cooperative Jahn-Teller distortions, and the one-particle spectral function, our results clarify the physical origin of the Fermi-arcs phase observed in layered manganites. In a range of parameters where no broken symmetry phase exists, the nearly nested Fermi surface favors certain correlations between Jahn-Teller distortions. The spectral weight near the Brillouin zone edge is suppressed, leading to the pseudogap in the density of states. We discuss the stability of this phase as a function of temperature and coupling strength for different hole dopings.

  10. Nonuniversal scaling of the magnetocaloric effect as an insight into spin-lattice interactions in manganites

    NASA Astrophysics Data System (ADS)

    Smith, Anders; Nielsen, Kaspar K.; Bez, Henrique N.; Bahl, Christian R. H.

    2016-08-01

    We measure the magnetocaloric effect of the manganite series La0.67Ca0.33 -xSrxMnO3 by determining the isothermal entropy change upon magnetization, using variable-field calorimetry. The results demonstrate that the field dependence of the magnetocaloric effect close to the critical temperature is not given uniquely by the critical exponents of the ferromagnetic-paramagnetic phase transition, i.e., the scaling is nonuniversal. A theoretical description based on the Bean-Rodbell model and taking into account compositional inhomogeneities is shown to be able to account for the observed field dependence. In this way the determination of the nonuniversal field dependence of the magnetocaloric effect close to a phase transition can be used as a method to gain insight into the strength of the spin-lattice interactions of magnetic materials. The approach is shown also to be applicable to first-order transitions.

  11. Effect of CO2 on the stability of strontium doped lanthanum manganite cathode

    NASA Astrophysics Data System (ADS)

    Hu, Boxun; Mahapatra, Manoj K.; Keane, Michael; Zhang, Heng; Singh, Prabhakar

    2014-12-01

    Strontium doped lanthanum manganite cathode stability in 0-10% carbon dioxide containing air has been studied in the temperature range of 1023-1123 K with cathodic biases of 0 V and 0.5 V. The current density of the LSM cathode remains stable after an initial decrease. Surface analyses of the pre-test and post-test LSM cathodes using Auger electron spectroscopy (AES) and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) techniques suggest that the formation of SrCO3 at the LSM surface leads to initial performance degradation. Our observations also indicate that CO2 does not affect the current density after an initial LSM activation in air. Overall, the LSM performance degradation in CO2-containing air is less severe than in humidified air.

  12. The effect of external magnetic field on the Raman peaks in manganites

    SciTech Connect

    Sahu, A. K.; Rout, G. C.

    2014-04-24

    We report here a microscopic theoretical model study exhibiting the effect of external magnetic field on the Raman excitation peaks in the CMR manganite system. The Hamiltonian consists of Jahn-Teller (J-T) distortion in e{sub g} band, the double exchange interaction and the Heisenberg spin-spin interaction. Further the phonons are coupled to e{sub g} band electrons, J-T distorted e{sub g} band and the double exchange interaction. The Raman spectral intensity is calculated from the imaginary part of the phonon Green function. The spectra exhibits three peaks besides a very weak high energy peak. The magnetic field effect on these peaks are reported.

  13. Ground State in a Half-Doped Manganite Distinguished by Neutron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnstone, G. E.; Perring, T. G.; Sikora, O.; Prabhakaran, D.; Boothroyd, A. T.

    2012-12-01

    We have measured the spin-wave spectrum of the half-doped bilayer manganite Pr(Ca,Sr)2Mn2O7 in its spin, charge, and orbital ordered phase. The measurements, which extend throughout the Brillouin zone and cover the entire one-magnon spectrum, are compared critically with spin-wave calculations for different models of the electronic ground state. The data are described very well by the Goodenough model, which has weakly interacting ferromagnetic zig-zag chains in the CE-type arrangement. A model that allows ferromagnetic dimers to form within the zigzags is inconsistent with the data. The analysis conclusively rules out the strongly bound dimer (Zener polaron) model.

  14. Proximity-Induced Spin Polarization of Graphene in Contact with Half-Metallic Manganite.

    PubMed

    Sakai, Seiji; Majumdar, Sayani; Popov, Zakhar I; Avramov, Pavel V; Entani, Shiro; Hasegawa, Yuri; Yamada, Yoichi; Huhtinen, Hannu; Naramoto, Hiroshi; Sorokin, Pavel B; Yamauchi, Yasushi

    2016-08-23

    The role of proximity contact with magnetic oxides is of particular interest from the expectations of the induced spin polarization and weak interactions at the graphene/magnetic oxide interfaces, which would allow us to achieve efficient spin-polarized injection in graphene-based spintronic devices. A combined approach of topmost-surface-sensitive spectroscopy utilizing spin-polarized metastable He atoms and ab initio calculations provides us direct evidence for the magnetic proximity effect in the junctions of single-layer graphene and half-metallic manganite La0.7Sr0.3MnO3 (LSMO). It is successfully demonstrated that in the graphene/LSMO junctions a sizable spin polarization is induced at the Fermi level of graphene in parallel to the spin polarization direction of LSMO without giving rise to a significant modification in the π band structure.

  15. Evidence of photo-induced dynamic competition of metallic and insulating phase in a layered manganite.

    PubMed

    Li, Yuelin; Walko, Donald A; Li, Qing'an; Liu, Yaohua; Rosenkranz, Stephan; Zheng, Hong; Mitchell, J F

    2015-12-16

    We show evidence that the competition between the antiferromagetic metallic phase and the charge- and orbital-ordered insulating phase at the reentrant phase boundary of a layered manganite, La0.99Sr2.01Mn2O7, can be manipulated using ultrafast optical excitation. The time-dependent evolution of the Jahn-Teller superlattice reflection, which indicates the formation of the charge and orbital order, was measured at different laser fluences. The laser-induced enhancement and reduction the Jahn-Teller reflection intensity shows a reversal of sign between earlier (~10 ns) and later (~150 ns) time delays during the relaxation after photo excitation. This effect is consistent with a scenario whereby the laser excitation modulates the local competition between the metallic and the insulating phases.

  16. Modulated spin helicity stabilized by incommensurate orbital density waves in a quadruple perovskite manganite

    NASA Astrophysics Data System (ADS)

    Johnson, R. D.; Khalyavin, D. D.; Manuel, P.; Bombardi, A.; Martin, C.; Chapon, L. C.; Radaelli, P. G.

    2016-05-01

    Through a combination of neutron diffraction and Landau theory we describe the spin ordering in the ground state of the quadruple perovskite manganite CaMn7O12 —a magnetic multiferroic supporting an incommensurate orbital density wave that onsets above the magnetic ordering temperature, TN 1=90 K. The multi-k magnetic structure in the ground state was found to be a nearly-constant-moment helix with modulated spin helicity, which oscillates in phase with the orbital occupancies on the Mn3 + sites via trilinear magneto-orbital coupling. Our phenomenological model also shows that, above TN 2=48 K, the primary magnetic order parameter is locked into the orbital wave by an admixture of helical and collinear spin density wave structures. Furthermore, our model naturally explains the lack of a sharp dielectric anomaly at TN 1 and the unusual temperature dependence of the electrical polarization.

  17. Finite-size effect on evolution of Griffiths phase in manganite nanoparticles

    NASA Astrophysics Data System (ADS)

    Pramanik, A. K.; Banerjee, A.

    2016-09-01

    The finite-size effect on the evolution of the Griffiths phase (GP) is studied using nanoparticles of half-doped manganite Pr0.5Sr0.5MnO3 with different average particle sizes but with similar structural parameters. All the samples exhibit pronounced GP behavior. With reducing the particle size, the Griffiths temperature remains almost unchanged but the characteristic critical temperature T\\text{c}R decreases and the GP properties are strengthened. It is noteworthy that the shift of T\\text{c}R follows finite-size scaling with the particle size revealing an exotic interplay between the GP properties and the sample dimension. This reinforces an earlier proposal of length-scale related evolution of GP.

  18. Charge-order domain walls with enhanced conductivity in a layered manganite.

    PubMed

    Ma, Eric Yue; Bryant, Benjamin; Tokunaga, Yusuke; Aeppli, Gabriel; Tokura, Yoshinori; Shen, Zhi-Xun

    2015-07-03

    Interfaces and boundaries in condensed-matter systems often have electronic properties distinct from the bulk material and thus have become a topic of both fundamental scientific interest and technological importance. Here we identify, using microwave impedance microscopy, enhanced conductivity of charge-order domain walls in the layered manganite Pr(Sr0.1Ca0.9)2Mn2O7. We obtain a complete mesoscopic map of surface topography, crystalline orientation and electronic phase, and visualize the thermal phase transition between two charge-ordered phases. In both phases, charge-order domains occur with domain walls showing enhanced conductivity likely due to local lifting of the charge order. Finite element analysis shows that the resolved domain walls can be as narrow as few nanometres. The domain walls are stabilized by structural twins and have a strong history dependence, suggesting that they may be manipulated to create novel devices.

  19. Electronic effects in manganite/insulator interfaces: interfacial enhancement of the insulating tunneling barriers.

    PubMed

    Balcells, Lluis; Abad, Llibertat; Rojas, Humberto; Perez del Pino, Angel; Estrade, Sonia; Arbiol, Jordi; Peiro, Francisca; Martínez, Benjamin

    2008-03-01

    The transport properties across perovskite oxides heterointerfaces are analyzed. Epitaxial La(2/3)Ca(1/3)MnO3/SrTiO3 (LCMO/STO) heterostructures with different STO insulating-barrier thicknesses are systematically investigated and their behavior compared with LCMO/metal junctions. Atomic force microscopy (AFM) measurements in current-sensing mode show typical features associated with tunneling conduction. Careful analysis of the I-V curves across LCMO/STO heterointerfaces, using the Simmons model in the intermediate voltage range, clearly shows the existence of an interface-induced enhancement of the tunneling barrier of about 1.6 nm on the LCMO side. These results confirm recent theoretical studies predicting electronic phase segregation and the formation of an orbital-ordered insulating phase at the manganite-insulator interface that is a result of the reduction in the number of charge carriers at the interface.

  20. Coupled magnetic and elastic properties in LaPr(CaSr)MnO manganites

    NASA Astrophysics Data System (ADS)

    Eslava, G. G.; Parisi, F.; Bernardo, P. L.; Quintero, M.; Leyva, G.; Cohen, L. F.; Ghivelder, L.

    2016-09-01

    We investigate a series of manganese oxides, the La0.225Pr0.4(Ca1-xSrx)0.375MnO3 system. The x = 0 sample is a prototype compound for the study of phase separation in manganites, where ferromagnetic and charge ordered antiferromagnetic phases coexist. Replacing Ca2+ by Sr2+ gradually turns the system into a homogeneous ferromagnet. Our results show that the material structure plays a major role in the observed magnetic properties. On cooling, at temperatures below ∼ 100 K, a strong contraction of the lattice is followed by an increase in the magnetization. This is observed both through thermal expansion and magnetostriction measurements, providing distinct evidence of magneto-elastic coupling in these phase separated compounds.

  1. Finite-size effect on evolution of Griffiths phase in manganite nanoparticles.

    PubMed

    Pramanik, A K; Banerjee, A

    2016-09-07

    The finite-size effect on the evolution of the Griffiths phase (GP) is studied using nanoparticles of half-doped manganite Pr0.5Sr0.5MnO3 with different average particle sizes but with similar structural parameters. All the samples exhibit pronounced GP behavior. With reducing the particle size, the Griffiths temperature remains almost unchanged but the characteristic critical temperature [Formula: see text] decreases and the GP properties are strengthened. It is noteworthy that the shift of [Formula: see text] follows finite-size scaling with the particle size revealing an exotic interplay between the GP properties and the sample dimension. This reinforces an earlier proposal of length-scale related evolution of GP.

  2. Manganite-based memristive heterojunction with tunable non-linear I-V characteristics.

    PubMed

    Lee, Hong-Sub; Park, Hyung-Ho; Rozenberg, M J

    2015-04-21

    A resistive random access memory (ReRAM) based on the memristive effect allows high-density integration through a cross-point array (CPA) structure. However, a significant common drawback of the CPA configuration is the crosstalk between cells. Here, we introduce a solution based on a novel heterojunction stack solely made of members of the perovskite manganite family Pr(1-x)Ca(x)MnO3 (PCMO) and CaMnO(3-δ) (CMO) which show electroforming-free bipolar resistive switching. The heterojunction consists of rectifying interfaces and shows a symmetrical and tunable non-linear current-voltage curve. The spectromicroscopic measurements support the scenario of specialized roles, with the memristive effect taking place at the active Al-PCMO interface via a redox mechanism, while non-linearity was achieved by adopting a rectifying double interface PCMO-CMO-PCMO.

  3. Biskyrmion states and their current-driven motion in a layered manganite.

    PubMed

    Yu, X Z; Tokunaga, Y; Kaneko, Y; Zhang, W Z; Kimoto, K; Matsui, Y; Taguchi, Y; Tokura, Y

    2014-01-01

    The magnetic skyrmion is a topologically stable spin texture in which the constituent spins point to all the directions wrapping a sphere. Generation and control of nanometric magnetic skyrmions have large potential, for example, reduced power consumption, in spintronics device applications. Here we show the real-space observation of a biskyrmion, as defined by a molecular form of two bound skyrmions with the total topological charge of 2, realized under magnetic field applied normal to a thin plate of a bilayered manganite with centrosymmetric structure. In terms of a Lorentz transmission electron microscopy (TEM), we have observed a distorted-triangle lattice of biskyrmion crystal, each composed of two bound skyrmions with oppositely swirling spins (magnetic helicities). Furthermore, we demonstrate that these biskyrmions can be electrically driven with orders of magnitude lower current density (<10(8) A m(-2)) than that for the conventional ferromagnetic domain walls.

  4. Critical dynamics of a nonlocal model and critical behavior of perovskite manganites

    NASA Astrophysics Data System (ADS)

    Singh, Rohit; Dutta, Kishore; Nandy, Malay K.

    2016-05-01

    We investigate the nonconserved critical dynamics of a nonlocal model Hamiltonian incorporating screened long-range interactions in the quartic term. Employing dynamic renormalization group analysis at one-loop order, we calculate the dynamic critical exponent z =2 +ɛ f1(σ ,κ ,n ) +O (ɛ2) and the linewidth exponent w =-σ +ɛ f2(σ ,κ ,n ) +O (ɛ2) in the leading order of ɛ , where ɛ =4 -d +2 σ , with d the space dimension, n the number of components in the order parameter, and σ and κ the parameters coming from the nonlocal interaction term. The resulting values of linewidth exponent w for a wide range of σ is found to be in good agreement with the existing experimental estimates from spin relaxation measurements in perovskite manganite samples.

  5. Ground state in a half-doped manganite distinguished by neutron spectroscopy.

    PubMed

    Johnstone, G E; Perring, T G; Sikora, O; Prabhakaran, D; Boothroyd, A T

    2012-12-07

    We have measured the spin-wave spectrum of the half-doped bilayer manganite Pr(Ca,Sr)(2)Mn(2)O(7) in its spin, charge, and orbital ordered phase. The measurements, which extend throughout the Brillouin zone and cover the entire one-magnon spectrum, are compared critically with spin-wave calculations for different models of the electronic ground state. The data are described very well by the Goodenough model, which has weakly interacting ferromagnetic zig-zag chains in the CE-type arrangement. A model that allows ferromagnetic dimers to form within the zigzags is inconsistent with the data. The analysis conclusively rules out the strongly bound dimer (Zener polaron) model.

  6. Critical dynamics of a nonlocal model and critical behavior of perovskite manganites.

    PubMed

    Singh, Rohit; Dutta, Kishore; Nandy, Malay K

    2016-05-01

    We investigate the nonconserved critical dynamics of a nonlocal model Hamiltonian incorporating screened long-range interactions in the quartic term. Employing dynamic renormalization group analysis at one-loop order, we calculate the dynamic critical exponent z=2+εf_{1}(σ,κ,n)+O(ε^{2}) and the linewidth exponent w=-σ+εf_{2}(σ,κ,n)+O(ε^{2}) in the leading order of ε, where ε=4-d+2σ, with d the space dimension, n the number of components in the order parameter, and σ and κ the parameters coming from the nonlocal interaction term. The resulting values of linewidth exponent w for a wide range of σ is found to be in good agreement with the existing experimental estimates from spin relaxation measurements in perovskite manganite samples.

  7. Charge-order domain walls with enhanced conductivity in a layered manganite

    PubMed Central

    Ma, Eric Yue; Bryant, Benjamin; Tokunaga, Yusuke; Aeppli, Gabriel; Tokura, Yoshinori; Shen, Zhi-Xun

    2015-01-01

    Interfaces and boundaries in condensed-matter systems often have electronic properties distinct from the bulk material and thus have become a topic of both fundamental scientific interest and technological importance. Here we identify, using microwave impedance microscopy, enhanced conductivity of charge-order domain walls in the layered manganite Pr(Sr0.1Ca0.9)2Mn2O7. We obtain a complete mesoscopic map of surface topography, crystalline orientation and electronic phase, and visualize the thermal phase transition between two charge-ordered phases. In both phases, charge-order domains occur with domain walls showing enhanced conductivity likely due to local lifting of the charge order. Finite element analysis shows that the resolved domain walls can be as narrow as few nanometres. The domain walls are stabilized by structural twins and have a strong history dependence, suggesting that they may be manipulated to create novel devices. PMID:26139185

  8. Evidence of photo-induced dynamic competition of metallic and insulating phase in a layered manganite

    DOE PAGES

    Li, Yuelin; Walko, Daonld A.; Li, Qing'an; ...

    2015-11-17

    We show evidence that the competition between the antiferromagetic metallic phase and the charge- and orbital-ordered insulating phase at the reentrant phase boundary of a layered manganite, LaSr2Mn2O7, can be manipulated using ultrafast optical excitation. The time-dependent evolution of the Jahn-Teller superlattice reflection, which indicates the formation of the charge and orbital order, was measured at different laser fluences. The laser-induced enhancement and reduction the Jahn-Teller reflection intensity shows a reversal of sign between earlier (~10 ns) and later (~150 ns) time delays during the relaxation after photo excitation. This effect is consistent with a scenario whereby the laser excitationmore » modulates the local competition between the metallic and the insulating phases.« less

  9. Evidence of photo-induced dynamic competition of metallic and insulating phase in a layered manganite

    SciTech Connect

    Li, Yuelin; Walko, Daonld A.; Li, Qing'an; Liu, Yaohua; Rosenkranz, Stephen; Zheng, Hong; Mitchell, J. F.

    2015-11-17

    We show evidence that the competition between the antiferromagetic metallic phase and the charge- and orbital-ordered insulating phase at the reentrant phase boundary of a layered manganite, LaSr2Mn2O7, can be manipulated using ultrafast optical excitation. The time-dependent evolution of the Jahn-Teller superlattice reflection, which indicates the formation of the charge and orbital order, was measured at different laser fluences. The laser-induced enhancement and reduction the Jahn-Teller reflection intensity shows a reversal of sign between earlier (~10 ns) and later (~150 ns) time delays during the relaxation after photo excitation. This effect is consistent with a scenario whereby the laser excitation modulates the local competition between the metallic and the insulating phases.

  10. Evidence of Photo-induced Dynamic Competition of Metallic and Insulating Phase in a Layered Manganite.

    SciTech Connect

    Li, Yuelin; Walko, Donald A.; Li, Qing'an; Liu, Yaohua; Rosenkranz, Stephan; Zheng, Hong; Mitchell, J. F.

    2015-12-16

    We show evidence that the competition between the antiferromagetic metallic phase and the charge- and orbital-ordered insulating phase at the reentrant phase boundary of a layered manganite, LaSr2Mn2O7, can be manipulated using ultrafast optical excitation. The time- dependent evolution of the Jahn-Teller superlattice reflection, which indicates the formation of the charge and orbital order, was measured at different laser fluences. The laser-induced enhancement and reduction the Jahn-Teller reflection intensity shows a reversal of sign between earlier (~10 ns) and later (~150 ns) time delays during the relaxation after photo excitation. This effect is consistent with a scenario whereby the laser excitation modulates the local competition between the metallic and the insulating phases.

  11. Carrier-induced noncollinear magnetism in perovskite manganites by first-principles calculations.

    PubMed

    Sawada, K; Ishii, F

    2009-02-11

    We have performed noncollinear first-principles density-functional calculations of carrier-doped perovskite manganites La(1-x)Sr(x)MnO(3) (0.0≤x≤1.0). In the calculated magnetic phase diagram (T = 0) within the collinear magnetic configurations, ferromagnetic and several antiferromagnetic configurations successively appeared as a ground state with increasing x. The calculated total energies of the ferromagnetic and A-type antiferromagnetic phases are almost degenerate around the phase boundary, x = 0.5. We found that the noncollinear magnetic configurations are stable in a wide range of carrier concentrations 0.3≤x≤0.6. We discuss the effect of lattice distortions on the stability of the noncollinear magnetic phase.

  12. Study of spin-ordering and spin-reorientation transitions in hexagonal manganites through Raman spectroscopy.

    PubMed

    Chen, Xiang-Bai; Hien, Nguyen Thi Minh; Han, Kiok; Nam, Ji-Yeon; Huyen, Nguyen Thi; Shin, Seong-Il; Wang, Xueyun; Cheong, S W; Lee, D; Noh, T W; Sung, N H; Cho, B K; Yang, In-Sang

    2015-08-24

    Spin-wave (magnon) scattering, when clearly observed by Raman spectroscopy, can be simple and powerful for studying magnetic phase transitions. In this paper, we present how to observe magnon scattering clearly by Raman spectroscopy, then apply the Raman method to study spin-ordering and spin-reorientation transitions of hexagonal manganite single crystal and thin films and compare directly with the results of magnetization measurements. Our results show that by choosing strong resonance condition and appropriate polarization configuration, magnon scattering can be clearly observed, and the temperature dependence of magnon scattering can be simple and powerful quantity for investigating spin-ordering as well as spin-reorientation transitions. Especially, the Raman method would be very helpful for investigating the weak spin-reorientation transitions by selectively probing the magnons in the Mn(3+) sublattices, while leaving out the strong effects of paramagnetic moments of the rare earth ions.

  13. Nonuniform paramagnetic state in nonstoichiometric lanthanum manganites La1- x Mn1- y O3

    NASA Astrophysics Data System (ADS)

    Arbuzova, T. I.; Naumov, S. V.

    2016-06-01

    The magnetic properties of nonstoichiometric lanthanum manganites La1- x Mn1- y O3 have been studied in the temperature range 80 K < T < 650 K. The Curie temperature T C changes nonmonotonically as the number of Mn4+ ions increases. In the paramagnetic region, there exist isolated Mn ions and magnetic polarons which can be conserved to T ⩽ 4 T C, independent of the lattice symmetry. In the T C < T < T pol region, the temperature dependences of the magnetic susceptibility are nonlinear and can be described by the Curie law with a temperature-dependent Curie constant C. The sample has been prepared having a composition near the O' → O structural transition; the spontaneous magnetization of the sample at T ⩽ 1.6 T C is associated to correlated polarons forming due to the double exchange in chains of the E-type antiferromagnetic phase.

  14. Homotopy-Theoretic Study & Atomic-Scale Observation of Vortex Domains in Hexagonal Manganites

    PubMed Central

    Li, Jun; Chiang, Fu-Kuo; Chen, Zhen; Ma, Chao; Chu, Ming-Wen; Chen, Cheng-Hsuan; Tian, Huanfang; Yang, Huaixin; Li, Jianqi

    2016-01-01

    Essential structural properties of the non-trivial “string-wall-bounded” topological defects in hexagonal manganites are studied through homotopy group theory and spherical aberration-corrected scanning transmission electron microscopy. The appearance of a “string-wall-bounded” configuration in RMnO3 is shown to be strongly linked with the transformation of the degeneracy space. The defect core regions (~50 Å) mainly adopt the continuous U(1) symmetry of the high-temperature phase, which is essential for the formation and proliferation of vortices. Direct visualization of vortex strings at atomic scale provides insight into the mechanisms and macro-behavior of topological defects in crystalline materials. PMID:27324701

  15. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    PubMed Central

    Ye, Tianyu; Liu, Han-Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.

    2015-01-01

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. For circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ. PMID:26450679

  16. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    SciTech Connect

    Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.

    2015-10-09

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ.

  17. Measurement and simulation of anisotropic magnetoresistance in single GaAs/MnAs core/shell nanowires

    NASA Astrophysics Data System (ADS)

    Liang, J.; Wang, J.; Paul, A.; Cooley, B. J.; Rench, D. W.; Dellas, N. S.; Mohney, S. E.; Engel-Herbert, R.; Samarth, N.

    2012-04-01

    We report four probe measurements of the low field magnetoresistance (MR) in single core/shell GaAs/MnAs nanowires (NWs) synthesized by molecular beam epitaxy, demonstrating clear signatures of anisotropic magnetoresistance that track the field-dependent magnetization. A comparison with micromagnetic simulations reveals that the principal characteristics of the magnetoresistance data can be unambiguously attributed to the nanowire segments with a zinc blende GaAs core. The direct correlation between magnetoresistance, magnetization, and crystal structure provides a powerful means of characterizing individual hybrid ferromagnet/semiconductor nanostructures.

  18. Effect of copper on the magnetism of half doped bilayer manganite

    NASA Astrophysics Data System (ADS)

    Bhatia, S. N.; Mohapatra, Niharika

    2016-08-01

    We have studied the effect of substituting copper at the manganese site on the structure, resistivity and magnetism of the bilayer manganite LaSr2Mn2-xCuxO7 (0≤x≤0.3). All samples form in tetragonal structure with I4/mmm space group. Copper was established to be present in the +2 state by the ESCA spectra. Although no structural transition was observed with this substitution, the electrical transport and magnetic properties change significantly. The parent composition consists of an antiferromagnetic phase ordering at 210 K (=TN(x)) and a ferromagnetic phase with its spins ordering at 135 K (=TC(x)). Charge ordering is not observed. These transition temperatures agree with those of the majority La0.96Sr2.04Mn2O7 and minority La1.2Sr1.8Mn2O7 phases observed by Battle et al. The transport data is also more consistent with two manganites conducting in parallel. A freezing transition appears just above the TN(x) of each composition x≤0.15. The transition temperatures of both phases decrease with increasing copper concentration due to the replacement of the strong intersheet antiferromagnetic (AFM) superexchange Mnn+-Mnn+(n=3,4) with a much weaker Cu2+-Mn3+interaction. But in the ferromagnetic (FM) composition this substitution replaces the FM intersheet interaction with an AFM interaction and thereby produces heterogeneity in the intersheet interactions leading to a canonical spin glass transition in the minority phase of the x=0.2 composition.

  19. The Colossal Cosmic Eye

    NASA Astrophysics Data System (ADS)

    2005-09-01

    Eighty-five million years ago on small planet Earth, dinosaurs ruled, ignorant of their soon-to-come demise in the great Jurassic extinction, while mammals were still small and shy creatures. The southern Andes of Bolivia, Chile, and Argentina were not yet formed and South America was still an island continent. Eighty-five million years ago, our Sun and its solar system was 60,000 light years away from where it now stands [1]. Eighty-five million years ago, in another corner of the Universe, light left the beautiful spiral galaxy NGC 1350, for a journey across the universe. Part of this light was recorded at the beginning of the year 2000 AD by ESO's Very Large Telescope, located on the 2,600m high Cerro Paranal in the Chilean Andes on planet Earth. Astronomers classify NGC 1350 as an Sa(r) type galaxy, meaning it is a spiral with large central regions. In fact, NGC 1350 lies at the border between the broken-ring spiral type and a grand design spiral with two major outer arms. It is about 130,000 light-years across and, hence, is slightly larger than our Milky Way. The rather faint and graceful outer arms originate at the inner main ring and can be traced for almost half a circle when they each meet the opposite arm, giving the impression of completing a second outer ring, the "eye". The arms are given a blue tint as a result of the presence of very young and massive stars. The amount of dust, seen as small fragmented dust spirals in the central part of the galaxy and producing a fine tapestry that bear resemblance with blood vessels in the eye, is also a signature of the formation of stars.

  20. High-sensitivity photovoltaic responses in manganite-based heterojunctions on Si substrates for weak light detection.

    PubMed

    Zhao, S S; Ni, H; Zhao, K; Zhao, S Q; Kong, Y C; Wong, H K

    2011-06-10

    We have fabricated and characterized a weak light photodetector in a heterojunction composed of manganite La0.4Ca0.6MnO3 and n-type Si. High-sensitivity photoresponse properties were investigated. The responsivities of open-circuit photovoltage and short-circuit photocurrent reach ∼1000  V/mJ and ∼30  A/mJ, respectively, without any amplification bias under irradiation by 20-ps-wide and 355, 532, and 1064-nm-wavelength laser pulses in nanojoule to microjoule order. The present results demonstrate that the manganite-based heterojunction on Si substrate has potential applications in weak light detection from ultraviolet to near-infrared light.