Science.gov

Sample records for colrs two-component system

  1. Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system.

    PubMed

    Adams, Mark D; Nickel, Gabrielle C; Bajaksouzian, Saralee; Lavender, Heather; Murthy, A Rekha; Jacobs, Michael R; Bonomo, Robert A

    2009-09-01

    The mechanism of colistin resistance (Col(r)) in Acinetobacter baumannii was studied by selecting in vitro Col(r) derivatives of the multidrug-resistant A. baumannii isolate AB0057 and the drug-susceptible strain ATCC 17978, using escalating concentrations of colistin in liquid culture. DNA sequencing identified mutations in genes encoding the two-component system proteins PmrA and/or PmrB in each strain and in a Col(r) clinical isolate. A colistin-susceptible revertant of one Col(r) mutant strain, obtained following serial passage in the absence of colistin selection, carried a partial deletion of pmrB. Growth of AB0057 and ATCC 17978 at pH 5.5 increased the colistin MIC and conferred protection from killing by colistin in a 1-hour survival assay. Growth in ferric chloride [Fe(III)] conferred a small protective effect. Expression of pmrA was increased in Col(r) mutants, but not at a low pH, suggesting that additional regulatory factors remain to be discovered.

  2. The ColRS system of Xanthomonas oryzae pv. oryzae is required for virulence and growth in iron-limiting conditions.

    PubMed

    Subramoni, Sujatha; Pandey, Alok; Vishnu Priya, M R; Patel, Hitendra Kumar; Sonti, Ramesh V

    2012-09-01

    Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight of rice, produces siderophores only under iron-limiting conditions. We screened 15 400 mTn5-induced mutants of X. oryzae pv. oryzae and isolated 27 mutants that produced siderophores even under iron-replete conditions. We found that the mTn5 insertions in 25 of these mutants were in or close to six genes. Mutants with insertions in five of these genes [colS, XOO1806 (a conserved hypothetical protein), acnB, prpR and prpB] exhibited a deficiency for growth on iron-limiting medium and a decrease in virulence. Insertions in a sixth gene, XOO0007 (a conserved hypothetical protein), were found to affect the ability to grow on iron-limiting medium, but did not affect the virulence. Targeted gene disruptants for colR (encoding the predicted cognate regulatory protein for ColS) also exhibited a deficiency for growth on iron-limiting medium and a decrease in virulence. colR and colS mutants were defective in the elicitation of hypersensitive response symptoms on the nonhost tomato. In addition, colR and colS mutants induced a rice basal defence response, suggesting that they are compromised in the suppression of host innate immunity. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated that a functional ColRS system is required for the optimal expression of several genes encoding components of the type 3 secretion system (T3SS) of X. oryzae pv. oryzae. Our results demonstrate the role of several novel genes, including colR/colS, in the promotion of growth on iron-limiting medium and the virulence of X. oryzae pv. oryzae.

  3. Conductivity of two-component systems

    SciTech Connect

    Kuijper, A. de; Hofman, J.P.; Waal, J.A. de

    1996-01-01

    The authors present measurements and computer simulation results on the electrical conductivity of nonconducting grains embedded in a conductive brine host. The shapes of the grains ranged from prolate-ellipsoidal (with an axis ratio of 5:1) through spherical to oblate-ellipsoidal (with an axis ratio of 1:5). The conductivity was studied as a function of porosity and packing, and Archie`s cementation exponent was found to depend on porosity. They used spatially regular and random configurations with aligned and nonaligned packings. The experimental results agree well with the computer simulation data. This data set will enable extensive tests of models for calculating the anisotropic conductivity of two-component systems.

  4. Crystallization in two-component Coulomb systems.

    PubMed

    Bonitz, M; Filinov, V S; Fortov, V E; Levashov, P R; Fehske, H

    2005-12-02

    The analysis of Coulomb crystallization is extended from one-component to two-component plasmas. Critical parameters for the existence of Coulomb crystals are derived for both classical and quantum crystals. In the latter case, a critical mass ratio of the two charged components is found, which is of the order of 80. Thus, holes in semiconductors with sufficiently flat valence bands are predicted to spontaneously order into a regular lattice. Such hole crystals are intimately related to ion Coulomb crystals in white dwarf and neutron stars as well as to ion crystals produced in the laboratory. A unified phase diagram of two-component Coulomb crystals is presented and is verified by first-principles computer simulations.

  5. A new two-component integrable system with peakon solutions

    PubMed Central

    Xia, Baoqiang; Qiao, Zhijun

    2015-01-01

    A new two-component system with cubic nonlinearity and linear dispersion: mt=bux+12[m(uv−uxvx)]x−12m(uvx−uxv),nt=bvx+12[n(uv−uxvx)]x+12n(uvx−uxv),m=u−uxx,n=v−vxx,where b is an arbitrary real constant, is proposed in this paper. This system is shown integrable with its Lax pair, bi-Hamiltonian structure and infinitely many conservation laws. Geometrically, this system describes a non-trivial one-parameter family of pseudo-spherical surfaces. In the case b=0, the peaked soliton (peakon) and multi-peakon solutions to this two-component system are derived. In particular, the two-peakon dynamical system is explicitly solved and their interactions are investigated in details. Moreover, a new integrable cubic nonlinear equation with linear dispersion mt=bux+12[m(|u|2−|ux|2)]x−12m(uux∗−uxu∗),m=u−uxx,is obtained by imposing the complex conjugate reduction v=u* to the two-component system. The complex-valued N-peakon solution and kink wave solution to this complex equation are also derived. PMID:25792956

  6. Summary of useful methods for two-component system research.

    PubMed

    Scharf, Birgit E

    2010-04-01

    Since the discovery of protein phosphorylation in bacterial nitrogen assimilation and chemotaxis more than 30 years ago, many biochemical techniques for the analysis of two-component signal transduction systems have been developed. Over time the experimental conditions to follow the flow of phosphate groups from histidine kinases to the cognate response regulators in vitro have been fine tuned. Several approaches were applied to circumvent the instability of the phosphorylated form of response regulator proteins to analyze the structures of their activated forms. Recently, a FRET (fluorescence resonance energy transfer) assay was developed to monitor interactions of chemotaxis proteins in vivo. The availability of bacterial genome sequence databases has facilitated the identification of two-component systems and enabled prediction of interacting kinase-response regulators pairs.

  7. Theory of Ostwald ripening in a two-component system

    NASA Technical Reports Server (NTRS)

    Baird, J. K.; Lee, L. K.; Frazier, D. O.; Naumann, R. J.

    1986-01-01

    When a two-component system is cooled below the minimum temperature for its stability, it separates into two or more immiscible phases. The initial nucleation produces grains (if solid) or droplets (if liquid) of one of the phases dispersed in the other. The dynamics by which these nuclei proceed toward equilibrium is called Ostwald ripening. The dynamics of growth of the droplets depends upon the following factors: (1) The solubility of the droplet depends upon its radius and the interfacial energy between it and the surrounding (continuous) phase. There is a critical radius determined by the supersaturation in the continuous phase. Droplets with radii smaller than critical dissolve, while droplets with radii larger grow. (2) The droplets concentrate one component and reject the other. The rate at which this occurs is assumed to be determined by the interdiffusion of the two components in the continuous phase. (3) The Ostwald ripening is constrained by conservation of mass; e.g., the amount of materials in the droplet phase plus the remaining supersaturation in the continuous phase must equal the supersaturation available at the start. (4) There is a distribution of droplet sizes associated with a mean droplet radius, which grows continuously with time. This distribution function satisfies a continuity equation, which is solved asymptotically by a similarity transformation method.

  8. Two-component systems and toxinogenesis regulation in Clostridium botulinum.

    PubMed

    Connan, Chloé; Popoff, Michel R

    2015-05-01

    Botulinum neurotoxins (BoNTs) are the most potent toxins ever known. They are mostly produced by Clostridium botulinum but also by other clostridia. BoNTs associate with non-toxic proteins (ANTPs) to form complexes of various sizes. Toxin production is highly regulated through complex networks of regulatory systems involving an alternative sigma factor, BotR, and at least 6 recently described two-component systems (TCSs). TCSs allow bacteria to sense environmental changes and to respond to various stimuli by regulating the expression of specific genes at a transcriptional level. Several environmental stimuli have been identified to positively or negatively regulate toxin synthesis; however, the link between environmental stimuli and TCSs is still elusive. This review aims to highlight the role of TCSs as a central point in the regulation of toxin production in C. botulinum.

  9. Sensor domains of two-component regulatory systems.

    PubMed

    Cheung, Jonah; Hendrickson, Wayne A

    2010-04-01

    Two-component systems regulate crucial cellular processes in microorganisms, and each comprises a homodimeric histidine kinase receptor and a cytoplasmic response regulator. Histidine kinases, often membrane associated, detect environmental input at sensor domains and propagate resulting signals to catalytic cytoplasmic transmitter domains. Recent studies on the great diversity of sensor domains reveal patterns of domain organization and biochemical properties that provide insight into mechanisms of signaling. Despite the enormous sequence variability found within sensor input domains, they fall into a relatively small number of discrete structural classes. Subtle rearrangements along a structurally labile dimer interface, in the form of possible sliding or rotational motions, are propagated from the sensor domain to the transmitter domain to modulate activity of the receptor.

  10. Characterizing the regulon of the two-component system, PSPTO_3380 and PSPTO_3381

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The two-component system, PSPTO_3380 (3380) and PSPTO_3381 (3381) in Pseudomonas syringae pv. tomato DC3000 (Pst) is involved in pathogenicity. We have reported that addition of a number of divalent cations to the medium induces expression of this two-component system. 3380/3381 regulates transcrip...

  11. Perturbational Blowup Solutions to the Two-Component Dullin-Gottwald-Holm System

    PubMed Central

    2016-01-01

    We construct a family of nonradially symmetric exact solutions for the two-component DGH system by the perturbational method. Depending on the parameters, the class of solutions includes both blowup type and global existence type. PMID:27127801

  12. Comparative Analysis of Wolbachia Genomes Reveals Streamlining and Divergence of Minimalist Two-Component Systems

    PubMed Central

    Christensen, Steen; Serbus, Laura Renee

    2015-01-01

    Two-component regulatory systems are commonly used by bacteria to coordinate intracellular responses with environmental cues. These systems are composed of functional protein pairs consisting of a sensor histidine kinase and cognate response regulator. In contrast to the well-studied Caulobacter crescentus system, which carries dozens of these pairs, the streamlined bacterial endosymbiont Wolbachia pipientis encodes only two pairs: CckA/CtrA and PleC/PleD. Here, we used bioinformatic tools to compare characterized two-component system relays from C. crescentus, the related Anaplasmataceae species Anaplasma phagocytophilum and Ehrlichia chaffeensis, and 12 sequenced Wolbachia strains. We found the core protein pairs and a subset of interacting partners to be highly conserved within Wolbachia and these other Anaplasmataceae. Genes involved in two-component signaling were positioned differently within the various Wolbachia genomes, whereas the local context of each gene was conserved. Unlike Anaplasma and Ehrlichia, Wolbachia two-component genes were more consistently found clustered with metabolic genes. The domain architecture and key functional residues standard for two-component system proteins were well-conserved in Wolbachia, although residues that specify cognate pairing diverged substantially from other Anaplasmataceae. These findings indicate that Wolbachia two-component signaling pairs share considerable functional overlap with other α-proteobacterial systems, whereas their divergence suggests the potential for regulatory differences and cross-talk. PMID:25809075

  13. Comparative analysis of wolbachia genomes reveals streamlining and divergence of minimalist two-component systems.

    PubMed

    Christensen, Steen; Serbus, Laura Renee

    2015-03-24

    Two-component regulatory systems are commonly used by bacteria to coordinate intracellular responses with environmental cues. These systems are composed of functional protein pairs consisting of a sensor histidine kinase and cognate response regulator. In contrast to the well-studied Caulobacter crescentus system, which carries dozens of these pairs, the streamlined bacterial endosymbiont Wolbachia pipientis encodes only two pairs: CckA/CtrA and PleC/PleD. Here, we used bioinformatic tools to compare characterized two-component system relays from C. crescentus, the related Anaplasmataceae species Anaplasma phagocytophilum and Ehrlichia chaffeensis, and 12 sequenced Wolbachia strains. We found the core protein pairs and a subset of interacting partners to be highly conserved within Wolbachia and these other Anaplasmataceae. Genes involved in two-component signaling were positioned differently within the various Wolbachia genomes, whereas the local context of each gene was conserved. Unlike Anaplasma and Ehrlichia, Wolbachia two-component genes were more consistently found clustered with metabolic genes. The domain architecture and key functional residues standard for two-component system proteins were well-conserved in Wolbachia, although residues that specify cognate pairing diverged substantially from other Anaplasmataceae. These findings indicate that Wolbachia two-component signaling pairs share considerable functional overlap with other α-proteobacterial systems, whereas their divergence suggests the potential for regulatory differences and cross-talk.

  14. Quasistationary Solution of a Two-Component Hyperbolic System on an Interval

    NASA Astrophysics Data System (ADS)

    Isakov, K. A.; Shapovalov, A. V.

    2017-01-01

    A quasistationary solution of a two-component system of first-order telegraph equations on an interval with time-dependent conditions is constructed, where these conditions are prescribed at interior points of the interval. Application of the obtained solution as a criterion for leakage detection is considered.

  15. The Pseudomonas aeruginosa AlgZR two-component system coordinates multiple phenotypes

    PubMed Central

    Okkotsu, Yuta; Little, Alexander S.; Schurr, Michael J.

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes a multitude of infections. These infections can occur at almost any site in the body and are usually associated with a breach of the innate immune system. One of the prominent sites where P. aeruginosa causes chronic infections is within the lungs of cystic fibrosis patients. P. aeruginosa uses two-component systems that sense environmental changes to differentially express virulence factors that cause both acute and chronic infections. The P. aeruginosa AlgZR two component system is one of its global regulatory systems that affects the organism's fitness in a broad manner. This two-component system is absolutely required for two P. aeruginosa phenotypes: twitching motility and alginate production, indicating its importance in both chronic and acute infections. Additionally, global transcriptome analyses indicate that it regulates the expression of many different genes, including those associated with quorum sensing, type IV pili, type III secretion system, anaerobic metabolism, cyanide and rhamnolipid production. This review examines the complex AlgZR regulatory network, what is known about the structure and function of each protein, and how it relates to the organism's ability to cause infections. PMID:24999454

  16. The Pseudomonas aeruginosa AlgZR two-component system coordinates multiple phenotypes.

    PubMed

    Okkotsu, Yuta; Little, Alexander S; Schurr, Michael J

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes a multitude of infections. These infections can occur at almost any site in the body and are usually associated with a breach of the innate immune system. One of the prominent sites where P. aeruginosa causes chronic infections is within the lungs of cystic fibrosis patients. P. aeruginosa uses two-component systems that sense environmental changes to differentially express virulence factors that cause both acute and chronic infections. The P. aeruginosa AlgZR two component system is one of its global regulatory systems that affects the organism's fitness in a broad manner. This two-component system is absolutely required for two P. aeruginosa phenotypes: twitching motility and alginate production, indicating its importance in both chronic and acute infections. Additionally, global transcriptome analyses indicate that it regulates the expression of many different genes, including those associated with quorum sensing, type IV pili, type III secretion system, anaerobic metabolism, cyanide and rhamnolipid production. This review examines the complex AlgZR regulatory network, what is known about the structure and function of each protein, and how it relates to the organism's ability to cause infections.

  17. Engineering bacterial two-component system PmrA/PmrB to sense lanthanide ions.

    PubMed

    Liang, Haihua; Deng, Xin; Bosscher, Mike; Ji, Quanjiang; Jensen, Mark P; He, Chuan

    2013-02-13

    The Salmonella PmrA/PmrB two-component system uses an iron(III)-binding motif on the cell surface to sense the environmental or host ferric level and regulate PmrA-controlled gene expression. We replaced the iron(III)-binding motif with a lanthanide-binding peptide sequence that is known to selectively recognize trivalent lanthanide ions. The newly engineered two-component system (PmrA/PmrB) can effectively sense lanthanide ion and regulate gene expression in E. coli . This work not only provides the first known lanthanide-based sensing and response in live cells but also demonstrates that the PmrA/PmrB system is a suitable template for future synthetic biology efforts to construct bacteria that can sense and respond to other metal ions in remediation or sequestration.

  18. The CpxRA two-component system is essential for Citrobacter rodentium virulence.

    PubMed

    Thomassin, Jenny-Lee; Giannakopoulou, Natalia; Zhu, Lei; Gross, Jeremy; Salmon, Kristiana; Leclerc, Jean-Mathieu; Daigle, France; Le Moual, Hervé; Gruenheid, Samantha

    2015-05-01

    Citrobacter rodentium is a murine intestinal pathogen used as a model for the foodborne human pathogens enterohemorrhagic Escherichia coli and enteropathogenic E. coli. During infection, these pathogens use two-component signal transduction systems to detect and adapt to changing environmental conditions. In E. coli, the CpxRA two-component signal transduction system responds to envelope stress by modulating the expression of a myriad of genes. Quantitative real-time PCR showed that cpxRA was expressed in the colon of C57BL/6J mice infected with C. rodentium. To determine whether CpxRA plays a role during C. rodentium infection, a cpxRA deletion strain was generated and found to have a colonization defect during infection. This defect was independent of an altered growth rate or a defective type III secretion system, and single-copy chromosomal complementation of cpxRA restored virulence. The C. rodentium strains were then tested in C3H/HeJ mice, a lethal intestinal infection model. Mice infected with the ΔcpxRA strain survived infection, whereas mice infected with the wild-type or complemented strains succumbed to infection. Furthermore, we found that the cpxRA expression level was higher during early infection than at a later time point. Taken together, these data demonstrate that the CpxRA two-component signal transduction system is essential for the in vivo virulence of C. rodentium. In addition, these data suggest that fine-tuned cpxRA expression is important for infection. This is the first study that identifies a C. rodentium two-component transduction system required for pathogenesis. This study further indicates that CpxRA is an interesting target for therapeutics against enteric pathogens.

  19. The CpxRA Two-Component System Is Essential for Citrobacter rodentium Virulence

    PubMed Central

    Thomassin, Jenny-Lee; Giannakopoulou, Natalia; Zhu, Lei; Gross, Jeremy; Salmon, Kristiana; Leclerc, Jean-Mathieu; Daigle, France; Le Moual, Hervé

    2015-01-01

    Citrobacter rodentium is a murine intestinal pathogen used as a model for the foodborne human pathogens enterohemorrhagic Escherichia coli and enteropathogenic E. coli. During infection, these pathogens use two-component signal transduction systems to detect and adapt to changing environmental conditions. In E. coli, the CpxRA two-component signal transduction system responds to envelope stress by modulating the expression of a myriad of genes. Quantitative real-time PCR showed that cpxRA was expressed in the colon of C57BL/6J mice infected with C. rodentium. To determine whether CpxRA plays a role during C. rodentium infection, a cpxRA deletion strain was generated and found to have a colonization defect during infection. This defect was independent of an altered growth rate or a defective type III secretion system, and single-copy chromosomal complementation of cpxRA restored virulence. The C. rodentium strains were then tested in C3H/HeJ mice, a lethal intestinal infection model. Mice infected with the ΔcpxRA strain survived infection, whereas mice infected with the wild-type or complemented strains succumbed to infection. Furthermore, we found that the cpxRA expression level was higher during early infection than at a later time point. Taken together, these data demonstrate that the CpxRA two-component signal transduction system is essential for the in vivo virulence of C. rodentium. In addition, these data suggest that fine-tuned cpxRA expression is important for infection. This is the first study that identifies a C. rodentium two-component transduction system required for pathogenesis. This study further indicates that CpxRA is an interesting target for therapeutics against enteric pathogens. PMID:25712925

  20. On the crystallography and thermodynamics in orientationally disordered phases in two-component systems

    SciTech Connect

    Salud, J.; Lopez, D.O.; Barrio, M.

    1997-11-01

    The experimental two-component phase diagram between the orientationally disordered crystals 2-amino-2-methyl-1,3-propanediol (AMP) and 1,1,1-tris(hydroxymethyl)propane (PG) has been established from room temperature to the liquid state using thermal analysis and X-ray powder diffraction techniques. The intermolecular interactions in the orientationally disordered mixed crystals of the mentioned system and other related two-component systems are discussed by analyzing the evolution of the packing coefficient as a function of the composition. A thermodynamic analysis of the presented phase diagram and the redetermined AMP/NPG (2,2-dimethyl-1,3-propanediol) is reported on the basis of the enthalpy-entropy compensation theory.

  1. Multistability in an optomechanical system with a two-component Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Dong, Ying; Ye, Jinwu; Pu, Han

    2011-03-01

    We investigate a system consisting of a two-component Bose-Einstein condensate interacting dispersively with a Fabry-Perot optical cavity where the two components of the condensate are resonantly coupled to each other by another classical field. The key feature of this system is that the atomic motional degrees of freedom and the internal pseudospin degrees of freedom are coupled to the cavity field simultaneously, hence an effective spin-orbital coupling within the condensate is induced by the cavity. The interplay among the atomic center-of-mass motion, the atomic collective spin, and the cavity field leads to a strong nonlinearity, resulting in multistable behavior in both matter wave and light wave at the few-photon level.

  2. A Novel Two-Component System Involved in the Transition to Secondary Metabolism in Streptomyces coelicolor

    PubMed Central

    Rozas, Daniel; Gullón, Sonia; Mellado, Rafael P.

    2012-01-01

    Background Bacterial two-component signal transduction regulatory systems are the major set of signalling proteins frequently mediating responses to changes in the environment. They typically consist of a sensor, a membrane-associated histidine kinase and a cytoplasmic response regulator. The membrane-associated sensor detects the environmental signal or stress, whereas the cytoplasmic regulatory protein controls the cellular response usually by gene transcription modulation. Methodology/PrincipalFindings The Streptomyces coelicolor two genes operon SCO5784-SCO5785 encodes a two-component system, where SCO5784 encodes a histidine-kinase sensor and SCO5785 encodes a response regulator protein. When the expression level of the regulator gene decreases, the antibiotic synthesis and sporulation is delayed temporarily in addition to some ribosomal genes became up regulated, whereas the propagation of the regulatory gene in high copy number results in the earlier synthesis of antibiotics and sporulation, as well as the down regulation of some ribosomal genes and, moreover, in the overproduction of several extracellular proteins. Therefore, this two-component system in S. coelicolor seems to influence various processes characterised by the transition from primary to secondary metabolism, as determined by proteomic and transcriptomic analyses. Conclusions/Significance Propagation of SCO5785 in multicopy enhances the production of antibiotics as well as secretory proteins. In particular, the increase in the expression level of secretory protein encoding genes, either as an artefactual or real effect of the regulator, could be of potential usefulness when using Streptomyces strains as hosts for homologous or heterologous extracellular protein production. PMID:22347508

  3. Characterization of a temperature-responsive two component regulatory system from the Antarctic archaeon, Methanococcoides burtonii

    PubMed Central

    Najnin, T.; Siddiqui, K. S.; Taha, T; Elkaid, N.; Kornfeld, G.; Curmi, P. M. G.; Cavicchioli, R.

    2016-01-01

    Cold environments dominate the Earth’s biosphere and the resident microorganisms play critical roles in fulfilling global biogeochemical cycles. However, only few studies have examined the molecular basis of thermosensing; an ability that microorganisms must possess in order to respond to environmental temperature and regulate cellular processes. Two component regulatory systems have been inferred to function in thermal regulation of gene expression, but biochemical studies assessing these systems in Bacteria are rare, and none have been performed in Archaea or psychrophiles. Here we examined the LtrK/LtrR two component regulatory system from the Antarctic archaeon, Methanococcoides burtonii, assessing kinase and phosphatase activities of wild-type and mutant proteins. LtrK was thermally unstable and had optimal phosphorylation activity at 10 °C (the lowest optimum activity for any psychrophilic enzyme), high activity at 0 °C and was rapidly thermally inactivated at 30 °C. These biochemical properties match well with normal environmental temperatures of M. burtonii (0–4 °C) and the temperature this psychrophile is capable of growing at in the laboratory (−2 to 28 °C). Our findings are consistent with a role for LtrK in performing phosphotransfer reactions with LtrR that could lead to temperature-dependent gene regulation. PMID:27052690

  4. Novel Two-Component Systems Implied in Antibiotic Production in Streptomyces coelicolor

    PubMed Central

    Yepes, Ana; Rico, Sergio; Rodríguez-García, Antonio; Santamaría, Ramón I.; Díaz, Margarita

    2011-01-01

    The abundance of two-component systems (TCSs) in Streptomyces coelicolor A3(2) genome indicates their importance in the physiology of this soil bacteria. Currently, several TCSs have been related to antibiotic regulation, and the purpose in this study was the characterization of five TCSs, selected by sequence homology with the well-known absA1A2 system, that could also be associated with this important process. Null mutants of the five TCSs were obtained and two mutants (ΔSCO1744/1745 and ΔSCO4596/4597/4598) showed significant differences in both antibiotic production and morphological differentiation, and have been renamed as abr (antibiotic regulator). No detectable changes in antibiotic production were found in the mutants in the systems that include the ORFs SCO3638/3639, SCO3640/3641 and SCO2165/2166 in any of the culture conditions assayed. The system SCO1744/1745 (AbrA1/A2) was involved in negative regulation of antibiotic production, and acted also as a negative regulator of the morphological differentiation. By contrast, the system SCO4596/4597/4598 (AbrC1/C2/C3), composed of two histidine kinases and one response regulator, had positive effects on both morphological development and antibiotic production. Microarray analyses of the ΔabrC1/C2/C3 and wild-type transcriptomes revealed downregulation of actII-ORF4 and cdaR genes, the actinorhodin and calcium-dependent antibiotic pathway-specific regulators respectively. These results demonstrated the involvement of these new two-component systems in antibiotic production and morphological differentiation by different approaches. One is a pleiotropic negative regulator: abrA1/A2. The other one is a positive regulator composed of three elements, two histidine kinases and one response regulator: abrC1/C2/C3. PMID:21625497

  5. Characterization of a Ferrous Iron-Responsive Two-Component System in Nontypeable Haemophilus influenzae

    PubMed Central

    Steele, Kendra H.; O'Connor, Lauren H.; Burpo, Nicole; Kohler, Katharina

    2012-01-01

    Nontypeable Haemophilus influenzae (NTHI), an opportunistic pathogen that is commonly found in the human upper respiratory tract, has only four identified two-component signal transduction systems. One of these, an ortholog to the QseBC (quorum-sensing Escherichia coli) system, was characterized. This system, designated firRS, was found to be transcribed in an operon with a gene encoding a small, predicted periplasmic protein with an unknown function, ygiW. The ygiW-firRS operon exhibited a unique feature with an attenuator present between ygiW and firR that caused the ygiW transcript level to be 6-fold higher than the ygiW-firRS transcript level. FirRS induced expression of ygiW and firR, demonstrating that FirR is an autoactivator. Unlike the QseBC system of E. coli, FirRS does not respond to epinephrine or norepinephrine. FirRS signal transduction was stimulated when NTHI cultures were exposed to ferrous iron or zinc but was unresponsive to ferric iron. Notably, the ferrous iron-responsive activation only occurred when a putative iron-binding site in FirS and the key phosphorylation aspartate in FirR were intact. FirRS was also activated when cultures were exposed to cold shock. Mutants in ygiW, firR, and firS were attenuated during pulmonary infection, but not otitis media. These data demonstrate that the H. influenzae strain 2019 FirRS is a two-component regulatory system that senses ferrous iron and autoregulates its own operon. PMID:22961857

  6. A two-component regulatory system modulates twitching motility in Dichelobacter nodosus.

    PubMed

    Kennan, Ruth M; Lovitt, Carrie J; Han, Xiaoyan; Parker, Dane; Turnbull, Lynne; Whitchurch, Cynthia B; Rood, Julian I

    2015-08-31

    Dichelobacter nodosus is the essential causative agent of footrot in sheep and type IV fimbriae-mediated twitching motility has been shown to be essential for virulence. We have identified a two-component signal transduction system (TwmSR) that shows similarity to chemosensory systems from other bacteria. Insertional inactivation of the gene encoding the response regulator, TwmR, led to a twitching motility defect, with the mutant having a reduced rate of twitching motility when compared to the wild-type and a mutant complemented with the wild-type twmR gene. The reduced rate of twitching motility was not a consequence of a reduced growth rate or decreased production of surface located fimbriae, but video microscopy indicated that it appeared to result from an overall loss of twitching directionality. These results suggest that a chemotactic response to environmental factors may play an important role in the D. nodosus-mediated disease process.

  7. The SaeRS Two-Component System of Staphylococcus aureus

    PubMed Central

    Liu, Qian; Yeo, Won-Sik; Bae, Taeok

    2016-01-01

    In the Gram-positive pathogenic bacterium Staphylococcus aureus, the SaeRS two-component system (TCS) plays a major role in controlling the production of over 20 virulence factors including hemolysins, leukocidins, superantigens, surface proteins, and proteases. The SaeRS TCS is composed of the sensor histidine kinase SaeS, response regulator SaeR, and two auxiliary proteins SaeP and SaeQ. Since its discovery in 1994, the sae locus has been studied extensively, and its contributions to staphylococcal virulence and pathogenesis have been well documented and understood; however, the molecular mechanism by which the SaeRS TCS receives and processes cognate signals is not. In this article, therefore, we review the literature focusing on the signaling mechanism and its interaction with other global regulators. PMID:27706107

  8. The sae locus of Staphylococcus aureus encodes a two-component regulatory system.

    PubMed

    Giraudo, A T; Calzolari, A; Cataldi, A A; Bogni, C; Nagel, R

    1999-08-01

    Sae is a regulatory locus that activates the production of several exoproteins in Staphylococcus aureus. A 3.4-kb fragment of a S. aureus genomic library, screened with a probe adjacent to the transposon insertion of a sae::Tn551 mutant, was cloned into a bifunctional vector. This fragment was shown to carry the sae locus by restoration of exoprotein production in sae mutants. The sae locus was mapped to the SmaI-D fragment of the staphylococcal chromosome by pulse-field electrophoresis. Sequence analysis of the cloned fragment revealed the presence of two genes, designated saeR and saeS, encoding a response regulator and a histidine protein kinase, respectively, with high homology to other bacterial two-component regulatory systems.

  9. Different evolutionary modifications as a guide to rewire two-component systems.

    PubMed

    Krueger, Beate; Friedrich, Torben; Förster, Frank; Bernhardt, Jörg; Gross, Roy; Dandekar, Thomas

    2012-01-01

    Two-component systems (TCS) are short signalling pathways generally occurring in prokaryotes. They frequently regulate prokaryotic stimulus responses and thus are also of interest for engineering in biotechnology and synthetic biology. The aim of this study is to better understand and describe rewiring of TCS while investigating different evolutionary scenarios. Based on large-scale screens of TCS in different organisms, this study gives detailed data, concrete alignments, and structure analysis on three general modification scenarios, where TCS were rewired for new responses and functions: (i) exchanges in the sequence within single TCS domains, (ii) exchange of whole TCS domains; (iii) addition of new components modulating TCS function. As a result, the replacement of stimulus and promotor cassettes to rewire TCS is well defined exploiting the alignments given here. The diverged TCS examples are non-trivial and the design is challenging. Designed connector proteins may also be useful to modify TCS in selected cases.

  10. Addition Formulae of Discrete KP, q-KP and Two-Component BKP Systems

    NASA Astrophysics Data System (ADS)

    Gao, Xu; Li, Chuan-Zhong; He, Jing-Song

    2016-04-01

    In this paper, we construct the addition formulae for several integrable hierarchies, including the discrete KP, the q-deformed KP, the two-component BKP and the D type Drinfeld-Sokolov hierarchies. With the help of the Hirota bilinear equations and τ functions of different kinds of KP hierarchies, we prove that these addition formulae are equivalent to these hierarchies. These studies show that the addition formula in the research of the integrable systems has good universality. Supported by the Zhejiang Provincial Natural Science Foundation under Grant No. LY15A010004, the National Natural Science Foundation of China under Grant Nos. 11201251, 11571192 and the Natural Science Foundation of Ningbo under Grant No. 2015A610157. Jingsong He is supported by the National Natural Science Foundation of China under Grant No. 11271210, K.C. Wong Magna Fund in Ningbo University

  11. Different Evolutionary Modifications as a Guide to Rewire Two-Component Systems

    PubMed Central

    Krueger, Beate; Friedrich, Torben; Förster, Frank; Bernhardt, Jörg; Gross, Roy; Dandekar, Thomas

    2012-01-01

    Two-component systems (TCS) are short signalling pathways generally occurring in prokaryotes. They frequently regulate prokaryotic stimulus responses and thus are also of interest for engineering in biotechnology and synthetic biology. The aim of this study is to better understand and describe rewiring of TCS while investigating different evolutionary scenarios. Based on large-scale screens of TCS in different organisms, this study gives detailed data, concrete alignments, and structure analysis on three general modification scenarios, where TCS were rewired for new responses and functions: (i) exchanges in the sequence within single TCS domains, (ii) exchange of whole TCS domains; (iii) addition of new components modulating TCS function. As a result, the replacement of stimulus and promotor cassettes to rewire TCS is well defined exploiting the alignments given here. The diverged TCS examples are non-trivial and the design is challenging. Designed connector proteins may also be useful to modify TCS in selected cases. PMID:22586357

  12. WalRK two component system of Bacillus anthracis responds to temperature and antibiotic stress.

    PubMed

    Dhiman, Alisha; Gopalani, Monisha; Bhatnagar, Rakesh

    2015-04-17

    WalRK Two Component System (TCS) of Bacillus anthracis forms a functional TCS. This report elaborates upon the WalRK genomic architecture, promoter structure, promoter activity and expression under various stress conditions in B. anthracis. 5' RACE located the WalRK functional promoter within 317 bp region upstream of WalR. Reporter gene assays demonstrated maximal promoter activity during early growth phases indicating utility in exponential stages of growth. qRT-PCR showed upregulation of WalRK transcripts during temperature and antibiotic stress. However, WalR overexpression did not affect the tested antibiotic MIC values in B. anthracis. Collectively, these results confirm that WalRK responds to cell envelope stress in B. anthracis.

  13. Identification of a two-component signal transduction system that regulates maltose genes in Clostridium perfringens.

    PubMed

    Hiscox, Thomas J; Ohtani, Kaori; Shimizu, Tohru; Cheung, Jackie K; Rood, Julian I

    2014-12-01

    Clostridium perfringens is a Gram-positive rod that is widely distributed in nature and is the etiological agent of several human and animal diseases. The complete genome sequence of C. perfringens strain 13 has been determined and multiple two-component signal transduction systems identified. One of these systems, designated here as the MalNO system, was analyzed in this study. Microarray analysis was used to carry out functional analysis of a malO mutant. The results, which were confirmed by quantitative reverse-transcriptase PCR, indicated that genes putatively involved in the uptake and metabolism of maltose were up-regulated in the malO mutant. These effects were reversed by complementation with the wild-type malO gene. Growth of these isogenic strains in medium with and without maltose showed that the malO mutant recovered more quickly from maltose deprivation when compared to the wild-type and complemented strains, leading to the conclusion that the MalNO system regulates maltose utilization in C. perfringens. It is postulated that this regulatory network may allow this soil bacterium and opportunistic pathogen to respond to environmental conditions where there are higher concentrations of maltose or maltodextrins, such as in the presence of decaying plant material in rich soil.

  14. Photoisomerization-induced morphology and transparency transition in an azobenzene based two-component organogel system.

    PubMed

    Cao, Xinhua; Liu, Xue; Chen, Liming; Mao, Yueyuan; Lan, Haichuang; Yi, Tao

    2015-11-15

    A two-component gel containing long chain alkylated gallic acid (GA) and photochromic phenazopyridine (PAP) was prepared. The gel was thoroughly characterized by UV-visible and IR spectra, SEM and POM images, XRD diffraction and dynamic oscillatory measurements. The structure and transparency of the two-component gel can be reversibly changed by alternative UV light irradiation and warming in the palm of the hand. This kind of soft material has potential application in upscale surface functional materials.

  15. A Crp-Dependent Two-Component System Regulates Nitrate and Nitrite Respiration in Shewanella oneidensis

    PubMed Central

    Dong, Yangyang; Wang, Jixuan; Fu, Huihui; Zhou, Guangqi; Shi, Miaomiao; Gao, Haichun

    2012-01-01

    We have previously illustrated the nitrate/nitrite respiratory pathway of Shewanella oneidensis, which is renowned for its remarkable versatility in respiration. Here we investigated the systems regulating the pathway with a reliable approach which enables characterization of mutants impaired in nitrate/nitrite respiration by guaranteeing biomass. The S. oneidensis genome encodes an Escherichia coli NarQ/NarX homolog SO3981 and two E. coli NarP/NarL homologs SO1860 and SO3982. Results of physiological characterization and mutational analyses demonstrated that S. oneidensis possesses a single two-component system (TCS) for regulation of nitrate/nitrite respiration, consisting of the sensor kinase SO3981(NarQ) and the response regulator SO3982(NarP). The TCS directly controls the transcription of nap and nrfA (genes encoding nitrate and nitrite reductases, respectively) but regulates the former less tightly than the latter. Additionally, phosphorylation at residue 57 of SO3982 is essential for its DNA-binding capacity. At the global control level, Crp is found to regulate expression of narQP as well as nap and nrfA. In contrast to NarP-NarQ, Crp is more essential for nap rather than nrfA. PMID:23240049

  16. The Evolution of Two-Component Systems in Bacteria RevealsDifferent Strategies for Niche Adaptation

    SciTech Connect

    Alm, Eric; Huang, Katherine; Arkin, Adam

    2006-09-13

    Two-component systems including histidine protein kinasesrepresent the primary signal transduction paradigm in prokaryoticorganisms. To understand how these systems adapt to allow organisms todetect niche-specific signals, we analyzed the phylogenetic distributionof nearly 5000 histidine protein kinases from 207 sequenced prokaryoticgenomes. We found that many genomes carry a large repertoire of recentlyevolved signaling genes, which may reflect selective pressure to adapt tonew environmental conditions. Both lineage-specific gene family expansionand horizontal gene transfer play major roles in the introduction of newhistidine kinases into genomes; however, there are differences in howthese two evolutionary forces act. Genes imported via horizontal transferare more likely to retain their original functionality as inferred from asimilar complement of signaling domains, while gene family expansionaccompanied by domain shuffling appears to be a major source of novelgenetic diversity. Family expansion is the dominantsource of newhistidine kinase genes in the genomes most enriched in signalingproteins, and detailed analysis reveals that divergence in domainstructure and changes in expression patterns are hallmarks of recentexpansions. Finally, while these two modes of gene acquisition arewidespread across bacterial taxa, there are clear species-specificpreferences for which mode is used.

  17. Adaptation to environmental stimuli within the host: two-component signal transduction systems of Mycobacterium tuberculosis.

    PubMed

    Bretl, Daniel J; Demetriadou, Chrystalla; Zahrt, Thomas C

    2011-12-01

    Pathogenic microorganisms encounter a variety of environmental stresses following infection of their respective hosts. Mycobacterium tuberculosis, the etiological agent of tuberculosis, is an unusual bacterial pathogen in that it is able to establish lifelong infections in individuals within granulomatous lesions that are formed following a productive immune response. Adaptation to this highly dynamic environment is thought to be mediated primarily through transcriptional reprogramming initiated in response to recognition of stimuli, including low-oxygen tension, nutrient depletion, reactive oxygen and nitrogen species, altered pH, toxic lipid moieties, cell wall/cell membrane-perturbing agents, and other environmental cues. To survive continued exposure to these potentially adverse factors, M. tuberculosis encodes a variety of regulatory factors, including 11 complete two-component signal transduction systems (TCSSs) and several orphaned response regulators (RRs) and sensor kinases (SKs). This report reviews our current knowledge of the TCSSs present in M. tuberculosis. In particular, we discuss the biochemical and functional characteristics of individual RRs and SKs, the environmental stimuli regulating their activation, the regulons controlled by the various TCSSs, and the known or postulated role(s) of individual TCSSs in the context of M. tuberculosis physiology and/or pathogenesis.

  18. Intrinsic Negative Feedback Governs Activation Surge in Two-Component Regulatory Systems

    PubMed Central

    Yeo, Won-Sik; Zwir, Igor; Huang, Henry V.; Shin, Dongwoo; Kato, Akinori; Groisman, Eduardo A.

    2013-01-01

    SUMMARY PhoP and PhoQ comprise a two-component system in the bacterium Salmonella enterica. PhoQ is the sensor kinase/phosphatase that modifies the phosphorylation state of the regulator PhoP in response to stimuli. The amount of phosphorylated PhoP surges after activation, then declines to reach a steady-state level. We now recapitulate this surge in vitro by incubating PhoP and PhoQ with ATP and ADP. Mathematical modeling identified PhoQ’s affinity for ADP as the key parameter dictating phosphorylated PhoP levels, as ADP promotes PhoQ’s phosphatase activity toward phosphorylated PhoP. The lid covering the nucleotide-binding pocket of PhoQ governs the kinase to phosphatase switch because a lid mutation that decreased ADP binding compromised PhoQ’s phosphatase activity in vitro and resulted in sustained expression of PhoP-dependent mRNAs in vivo. This feedback mechanism may curtail futile ATP consumption because ADP not only stimulates PhoQ’s phosphatase activity but also inhibits ATP binding necessary for the kinase reaction. PMID:22325356

  19. Evolution of prokaryotic two-component systems: insights from comparative genomics.

    PubMed

    Whitworth, David E; Cock, Peter J A

    2009-09-01

    Two-component systems (TCSs) are diverse and abundant signal transduction pathways found predominantly in prokaryotes. This review focuses on insights into TCS evolution made possible by the sequencing of whole prokaryotic genomes. Typical TCSs comprise an autophosphorylating protein (a histidine kinase), which transfers a phosphoryl group onto an effector protein (a response regulator), thus modulating its activity. Histidine kinases and response regulators are usually found encoded as pairs of adjacent genes within a genome, with multiple examples in most prokaryotes. Recent studies have shed light on major themes of TCS evolution, including gene duplication, gene gain/loss, gene fusion/fission, domain gain/loss, domain shuffling and the emergence of complexity. Coupled with an understanding of the structural and biophysical properties of many TCS proteins, it has become increasingly possible to draw inferences regarding the functional consequences of such evolutionary changes. In turn, this increase in understanding has the potential to enhance both our ability to rationally engineer TCSs, and also allow us to more powerfully correlate TCS evolution with behavioural phenotypes and ecological niche occupancy.

  20. Adaptation to Environmental Stimuli within the Host: Two-Component Signal Transduction Systems of Mycobacterium tuberculosis

    PubMed Central

    Bretl, Daniel J.; Demetriadou, Chrystalla; Zahrt, Thomas C.

    2011-01-01

    Summary: Pathogenic microorganisms encounter a variety of environmental stresses following infection of their respective hosts. Mycobacterium tuberculosis, the etiological agent of tuberculosis, is an unusual bacterial pathogen in that it is able to establish lifelong infections in individuals within granulomatous lesions that are formed following a productive immune response. Adaptation to this highly dynamic environment is thought to be mediated primarily through transcriptional reprogramming initiated in response to recognition of stimuli, including low-oxygen tension, nutrient depletion, reactive oxygen and nitrogen species, altered pH, toxic lipid moieties, cell wall/cell membrane-perturbing agents, and other environmental cues. To survive continued exposure to these potentially adverse factors, M. tuberculosis encodes a variety of regulatory factors, including 11 complete two-component signal transduction systems (TCSSs) and several orphaned response regulators (RRs) and sensor kinases (SKs). This report reviews our current knowledge of the TCSSs present in M. tuberculosis. In particular, we discuss the biochemical and functional characteristics of individual RRs and SKs, the environmental stimuli regulating their activation, the regulons controlled by the various TCSSs, and the known or postulated role(s) of individual TCSSs in the context of M. tuberculosis physiology and/or pathogenesis. PMID:22126994

  1. Functional characterization of WalRK: A two-component signal transduction system from Bacillus anthracis.

    PubMed

    Dhiman, Alisha; Bhatnagar, Sonika; Kulshreshtha, Parul; Bhatnagar, Rakesh

    2014-01-01

    Two-component signal transduction systems (TCS), consisting of a sensor histidine protein kinase and its cognate response regulator, are an important mode of environmental sensing in bacteria. Additionally, they have been found to regulate virulence determinants in several pathogens. Bacillus anthracis, the causative agent of anthrax and a bioterrorism agent, harbours 41 pairs of TCS. However, their role in its pathogenicity has remained largely unexplored. Here, we show that WalRK of B. anthracis forms a functional TCS which exhibits some species-specific functions. Biochemical studies showed that domain variants of WalK, the histidine kinase, exhibit classical properties of autophosphorylation and phosphotransfer to its cognate response regulator WalR. Interestingly, these domain variants also show phosphatase activity towards phosphorylated WalR, thereby making WalK a bifunctional histidine kinase/phosphatase. An in silico regulon determination approach, using a consensus binding sequence from Bacillus subtilis, provided a list of 30 genes that could form a putative WalR regulon in B. anthracis. Further, electrophoretic mobility shift assay was used to show direct binding of purified WalR to the upstream regions of three putative regulon candidates, an S-layer protein EA1, a cell division ABC transporter FtsE and a sporulation histidine kinase KinB3. Our work lends insight into the species-specific functions and mode of action of B. anthracis WalRK.

  2. Site-Directed Mutagenesis to Improve Sensitivity of a Synthetic Two-Component Signaling System.

    PubMed

    Olshefsky, Audrey; Shehata, Laila; Kuldell, Natalie

    2016-01-01

    Two-component signaling (2CS) systems enable bacterial cells to respond to changes in their local environment, often using a membrane-bound sensor protein and a cytoplasmic responder protein to regulate gene expression. Previous work has shown that Escherichia coli's natural EnvZ/OmpR 2CS could be modified to construct a light-sensing bacterial photography system. The resulting bacterial photographs, or "coliroids," rely on a phosphotransfer reaction between Cph8, a synthetic version of EnvZ that senses red light, and OmpR. Gene expression changes can be visualized through upregulation of a LacZ reporter gene by phosphorylated OmpR. Unfortunately, basal LacZ expression leads to a detectable reporter signal even when cells are grown in the light, diminishing the contrast of the coliroids. We performed site-directed mutagenesis near the phosphotransfer site of Cph8 to isolate mutants with potentially improved image contrast. Five mutants were examined, but only one of the mutants, T541S, increased the ratio of dark/light gene expression, as measured by β-galactosidase activity. The ratio changed from 2.57 fold in the starting strain to 5.59 in the T541S mutant. The ratio decreased in the four other mutant strains we examined. The phenotype observed in the T541S mutant strain may arise because the serine sidechain is chemically similar but physically smaller than the threonine sidechain. This may minimally change the protein's local structure, but may be less sterically constrained when compared to threonine, resulting in a higher probability of a phosphotransfer event. Our initial success pairing synthetic biology and site-directed mutagenesis to optimize the bacterial photography system's performance encourages us to imagine further improvements to the performance of this and other synthetic systems, especially those based on 2CS signaling.

  3. Site-Directed Mutagenesis to Improve Sensitivity of a Synthetic Two-Component Signaling System

    PubMed Central

    Kuldell, Natalie

    2016-01-01

    Two-component signaling (2CS) systems enable bacterial cells to respond to changes in their local environment, often using a membrane-bound sensor protein and a cytoplasmic responder protein to regulate gene expression. Previous work has shown that Escherichia coli’s natural EnvZ/OmpR 2CS could be modified to construct a light-sensing bacterial photography system. The resulting bacterial photographs, or “coliroids,” rely on a phosphotransfer reaction between Cph8, a synthetic version of EnvZ that senses red light, and OmpR. Gene expression changes can be visualized through upregulation of a LacZ reporter gene by phosphorylated OmpR. Unfortunately, basal LacZ expression leads to a detectable reporter signal even when cells are grown in the light, diminishing the contrast of the coliroids. We performed site-directed mutagenesis near the phosphotransfer site of Cph8 to isolate mutants with potentially improved image contrast. Five mutants were examined, but only one of the mutants, T541S, increased the ratio of dark/light gene expression, as measured by β-galactosidase activity. The ratio changed from 2.57 fold in the starting strain to 5.59 in the T541S mutant. The ratio decreased in the four other mutant strains we examined. The phenotype observed in the T541S mutant strain may arise because the serine sidechain is chemically similar but physically smaller than the threonine sidechain. This may minimally change the protein’s local structure, but may be less sterically constrained when compared to threonine, resulting in a higher probability of a phosphotransfer event. Our initial success pairing synthetic biology and site-directed mutagenesis to optimize the bacterial photography system’s performance encourages us to imagine further improvements to the performance of this and other synthetic systems, especially those based on 2CS signaling. PMID:26799494

  4. Lipase expression in Pseudomonas alcaligenes is under the control of a two-component regulatory system.

    PubMed

    Krzeslak, Joanna; Gerritse, Gijs; van Merkerk, Ronald; Cool, Robbert H; Quax, Wim J

    2008-03-01

    Preliminary observations in a large-scale fermentation process suggested that the lipase expression of Pseudomonas alcaligenes can be switched on by the addition of certain medium components, such as soybean oil. In an attempt to elucidate the mechanism of induction of lipase expression, we have set up a search method for genes controlling lipase expression by use of a cosmid library containing fragments of P. alcaligenes genomic DNA. A screen for lipase hyperproduction resulted in the selection of multiple transformants, of which the best-producing strains comprised cosmids that shared an overlapping genomic fragment. Within this fragment, two previously unidentified genes were found and named lipQ and lipR. Their encoded proteins belong to the NtrBC family of regulators that regulate gene expression via binding to a specific upstream activator sequence (UAS). Such an NtrC-like UAS was identified in a previous study in the P. alcaligenes lipase promoter, strongly suggesting that LipR acts as a positive regulator of lipase expression. The regulating role could be confirmed by down-regulated lipase expression in a strain with an inactivated lipR gene and a threefold increase in lipase yield in a large-scale fermentation when expressing the lipQR operon from the multicopy plasmid pLAFR3. Finally, cell extracts of a LipR-overexpressing strain caused a retardation of the lipase promoter fragment in a band shift assay. Our results indicate that lipase expression in Pseudomonas alcaligenes is under the control of the LipQR two-component system.

  5. Characterization of an Archaeal Two-Component System That Regulates Methanogenesis in Methanosaeta harundinacea

    PubMed Central

    Guo, Xiaopeng; Qi, Lei; Dong, Xiuzhu

    2014-01-01

    Two-component signal transduction systems (TCSs) are a major mechanism used by bacteria in response to environmental changes. Although many sequenced archaeal genomes encode TCSs, they remain poorly understood. Previously, we reported that a methanogenic archaeon, Methanosaeta harundinacea, encodes FilI, which synthesizes carboxyl-acyl homoserine lactones, to regulate transitions of cellular morphology and carbon metabolic fluxes. Here, we report that filI, the cotranscribed filR2, and the adjacent filR1 constitute an archaeal TCS. FilI possesses a cytoplasmic kinase domain (histidine kinase A and histidine kinase-like ATPase) and its cognate response regulator. FilR1 carries a receiver (REC) domain coupled with an ArsR-related domain with potential DNA-binding ability, while FilR2 carries only a REC domain. In a phosphorelay assay, FilI was autophosphorylated and specifically transferred the phosphoryl group to FilR1 and FilR2, confirming that the three formed a cognate TCS. Through chromatin immunoprecipitation–quantitative polymerase chain reaction (ChIP-qPCR) using an anti-FilR1 antibody, FilR1 was shown to form in vivo associations with its own promoter and the promoter of the filI-filR2 operon, demonstrating a regulatory pattern common among TCSs. ChIP-qPCR also detected FilR1 associations with key genes involved in acetoclastic methanogenesis, acs4 and acs1. Electrophoretic mobility shift assays confirmed the in vitro tight binding of FilR1 to its own promoter and those of filI-filR2, acs4, and mtrABC. This also proves the DNA-binding ability of the ArsR-related domain, which is found primarily in Archaea. The archaeal promoters of acs4, filI, acs1, and mtrABC also initiated FilR1-modulated expression in an Escherichia coli lux reporter system, suggesting that FilR1 can up-regulate both archaeal and bacterial transcription. In conclusion, this work identifies an archaeal FilI/FilRs TCS that regulates the methanogenesis of M. harundinacea. PMID:24748383

  6. Two-Component Systems Involved in Susceptibility to Nisin A in Streptococcus pyogenes

    PubMed Central

    Kawada-Matsuo, Miki; Tatsuno, Ichiro; Arii, Kaoru; Zendo, Takeshi; Oogai, Yuichi; Noguchi, Kazuyuki; Hasegawa, Tadao; Sonomoto, Kenji

    2016-01-01

    ABSTRACT Two-component systems (TCSs) are regulatory systems in bacteria that play important roles in sensing and adapting to the environment. In this study, we systematically evaluated the roles of TCSs in the susceptibility of the group A Streptococcus (GAS; Streptococcus pyogenes) SF370 strain to several types of lantibiotics. Using individual TCS deletion mutants, we found that the deletion of srtRK (spy_1081–spy_1082) in SF370 increased the susceptibility to nisin A, which is produced by Lactococcus lactis ATCC 11454, but susceptibility to other types of lantibiotics (nukacin ISK-1, produced by Staphylococcus warneri, and staphylococcin C55, produced by Staphylococcus aureus) was not altered in the TCS mutants tested. The expression of srtFEG (spy_1085 to spy_1087), which is located downstream of srtRK and is homologous to ABC transporters, was increased in response to nisin A. However, srtEFG expression was not induced by nisin A in the srtRK mutant. The inactivation of srtFEG increased the susceptibility to nisin A. These results suggest that SrtRK controls SrtFEG expression to alter the susceptibility to nisin A. Further experiments showed that SrtRK is required for coexistence with L. lactis ATCC 11454, which produces nisin A. Our results elucidate the important roles of S. pyogenes TCSs in the interactions between different bacterial species, including bacteriocin-producing bacteria. IMPORTANCE In this study, we focused on the association of TCSs with susceptibility to bacteriocins in S. pyogenes SF370, which has no ability to produce bacteriocins, and reported two major new findings. We demonstrated that the SrtRK TCS is related to susceptibility to nisin A by controlling the ABC transporter SrtFEG. We also showed that S. pyogenes SrtRK is important for survival when the bacteria are cocultured with nisin A-producing Lactococcus lactis. This report highlights the roles of TCSs in the colocalization of bacteriocin-producing bacteria and non

  7. The global phase behavior of the two-component systems with intracomponent association: Flory approach

    NASA Astrophysics Data System (ADS)

    Belousov, M. V.; Tamm, M. V.; Erukhimovich, I. Ya.

    2008-03-01

    Within the Flory approach we study the phase diagrams of two-component fluids, the molecules of each component AfA, BfB bearing fA (fB) functional groups capable of forming thermoreversible A -A and B -B bonds. We develop a general procedure to classify these diagrams depending on the values of four governing parameters—entropies and normalized energies of A -A and B -B bonds, and give full topological classification of phase diagrams with fA,B⩾3. We show that these phase diagrams can have immiscibility loops and up to four critical points.

  8. The curvature of semidirect product groups associated with two-component Hunter-Saxton systems

    NASA Astrophysics Data System (ADS)

    Kohlmann, Martin

    2011-06-01

    In this paper, we study two-component versions of the periodic Hunter-Saxton equation and its μ-variant. Considering both equations as a geodesic flow on the semidirect product of the circle diffeomorphism group Diff( S) with a space of scalar functions on S we show that both equations are locally well posed. The main result of this paper is that the sectional curvature associated with the 2HS is constant and positive and that 2µHS allows for a large subspace of positive sectional curvature. The issues of this paper are related to some of the results for 2CH and 2DP presented in Escher et al (2011 J. Geom. Phys. 61 436-52).

  9. Identification of the Geobacter metallireducens BamVW Two-Component System, Involved in Transcriptional Regulation of Aromatic Degradation▿

    PubMed Central

    Juárez, Javier F.; Zamarro, María Teresa; Barragán, María J. L.; Blázquez, Blas; Boll, Matthias; Kuntze, Kevin; García, José Luis; Díaz, Eduardo; Carmona, Manuel

    2010-01-01

    Regulation of aromatic degradation in obligate anaerobes was studied in the Fe(III)-respiring model organism Geobacter metallireducens GS-15. A two-component system and a σ54-dependent promoter were identified that are both involved in the regulation of the gene coding for benzoate-coenzyme A ligase, catalyzing the initial step of benzoate degradation. PMID:19915033

  10. The Campylobacter jejuni CprRS two-component regulatory system regulates aspects of the cell envelope

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a leading cause of foodborne bacterial gastroenteritis, Campylobacter jejuni is a significant human pathogen. C. jejuni lives commensally in the gastrointestinal tract of animals, but tolerates variable environments during transit to a susceptible host. A two-component regulatory system, CprRS, w...

  11. Connecting two-component regulatory systems by a protein that protects a response regulator from dephosphorylation by its cognate sensor

    PubMed Central

    Kato, Akinori; Groisman, Eduardo A.

    2004-01-01

    A fundamental question in signal transduction is how an organism integrates multiple signals into a cellular response. Here we report the mechanism by which the Salmonella PmrA/PmrB two-component system responds to the signal controlling the PhoP/PhoQ two-component system. We establish that the PhoP-activated PmrD protein binds to the phosphorylated form of the response regulator PmrA, preventing both its intrinsic dephosphorylation and that promoted by its cognate sensor kinase PmrB. This results in PmrA-mediated transcription because phosphorylated PmrA exhibits higher affinity for its target promoters than unphosphorylated PmrA. A PmrD-independent form of the PmrA protein was resistant to PmrB-catalyzed dephosphorylation and promoted transcription of PmrA-activated genes in the absence of inducing signals. This is the first example of a protein that enables a two-component system to respond to the signal governing a different two-component system by protecting the phosphorylated form of a response regulator. PMID:15371344

  12. The multi-step phosphorelay mechanism of unorthodox two-component systems in E. coli realizes ultrasensitivity to stimuli while maintaining robustness to noises.

    PubMed

    Kim, Jeong-Rae; Cho, Kwang-Hyun

    2006-12-01

    E. coli has two-component systems composed of histidine kinase proteins and response regulator proteins. For a given extracellular stimulus, a histidine kinase senses the stimulus, autophosphorylates and then passes the phosphates to the cognate response regulators. The histidine kinase in an orthodox two-component system has only one histidine domain where the autophosphorylation occurs, but a histidine kinase in some unusual two-component systems (unorthodox two-component systems) has two histidine domains and one aspartate domain. So, the unorthodox two-component systems have more complex phosphorelay mechanisms than orthodox two-component systems. In general, the two-component systems are required to promptly respond to external stimuli for survival of E. coli. In this respect, the complex multi-step phosphorelay mechanism seems to be disadvantageous, but there are several unorthodox two-component systems in E. coli. In this paper, we investigate the reason why such unorthodox two-component systems are present in E. coli. For this purpose, we have developed simplified mathematical models of both orthodox and unorthodox two-component systems and analyzed their dynamical characteristics through extensive computer simulations. We have finally revealed that the unorthodox two-component systems realize ultrasensitive responses to external stimuli and also more robust responses to noises than the orthodox two-component systems.

  13. Vortices with scalar condensates in two-component Ginzburg-Landau systems

    NASA Astrophysics Data System (ADS)

    Forgács, Péter; Lukács, Árpád

    2016-11-01

    In a class of two-component Ginzburg-Landau models (TCGL) with a U(1) × U(1) symmetric potential, vortices with a condensate at their core may have significantly lower energies than the Abrikosov-Nielsen-Olesen (ANO) ones. On the example of liquid metallic hydrogen (LMH) above the critical temperature for protons we show that the ANO vortices become unstable against core-condensation, while condensate-core (CC) vortices are stable. For LMH the ratio of the masses of the two types of condensates, M =m2 /m1 is large, and then as a consequence the energy per flux quantum of the vortices, En / n becomes a non-monotonous function of the number of flux quanta, n. This leads to yet another manifestation of neither type 1 nor type 2, (type 1.5) superconductivity: superconducting and normal domains coexist while various "giant" vortices form. We note that LMH provides a particularly clean example of type 1.5 state as the interband coupling between electronic and protonic Cooper-pairs is forbidden.

  14. Salmonella enterica serovar Typhimurium BaeSR two-component system positively regulates sodA in response to ciprofloxacin.

    PubMed

    Guerrero, P; Collao, B; Álvarez, R; Salinas, H; Morales, E H; Calderón, I L; Saavedra, C P; Gil, F

    2013-10-01

    In response to antibiotics, bacteria activate regulatory systems that control the expression of genes that participate in detoxifying these compounds, like multidrug efflux systems. We previously demonstrated that the BaeSR two-component system from Salmonella enterica serovar Typhimurium (S. Typhimurium) participates in the detection of ciprofloxacin, a bactericidal antibiotic, and in the positive regulation of mdtA, an efflux pump implicated in antibiotic resistance. In the present work, we provide further evidence for a role of the S. Typhimurium BaeSR two-component system in response to ciprofloxacin treatment and show that it regulates sodA expression. We demonstrate that, in the absence of BaeSR, the transcript levels of sodA and the activity of its gene product are lower. Using electrophoretic mobility shift assays and transcriptional fusions, we demonstrate that BaeR regulates sodA by a direct interaction with the promoter region.

  15. Nutritional control of antibiotic resistance via an interface between the phosphotransferase system and a two-component signaling system.

    PubMed

    Snyder, Holly; Kellogg, Stephanie L; Skarda, Laura M; Little, Jaime L; Kristich, Christopher J

    2014-01-01

    Enterococci are ubiquitous inhabitants of the gastrointestinal (GI) tract. However, antibiotic-resistant enterococci are also major causes of hospital-acquired infections. Enterococci are intrinsically resistant to cephalosporins, enabling growth to abnormally high densities in the GI tract in patients during cephalosporin therapy, thereby promoting dissemination to other sites where they cause infection. Despite its importance, many questions about the underlying basis for cephalosporin resistance remain. A specific two-component signaling system, composed of the CroS sensor kinase and its cognate response regulator (CroR), is required for cephalosporin resistance in Enterococcus faecalis, but little is known about the factors that control this signaling system to modulate resistance. To explore the signaling network in which CroR participates to influence cephalosporin resistance, we employed a protein fragment complementation assay to detect protein-protein interactions in E. faecalis cells, revealing a previously unknown association of CroR with the HPr protein of the phosphotransferase system (PTS) responsible for carbohydrate uptake and catabolite control of gene expression. Genetic and physiological analyses indicate that association with HPr restricts the ability of CroR to promote cephalosporin resistance and gene expression in a nutrient-dependent manner. Mutational analysis suggests that the interface used by HPr to associate with CroR is distinct from the interface used to associate with other cellular partners. Our results define a physical and functional connection between a critical nutrient-responsive signaling system (the PTS) and a two-component signaling system that drives antibiotic resistance in E. faecalis, and they suggest a general strategy by which bacteria can integrate their nutritional status with diverse environmental stimuli.

  16. Gac two-component system in Pseudomonas syringae pv. tabaci is required for virulence but not for hypersensitive reaction.

    PubMed

    Marutani, Mizuri; Taguchi, Fumiko; Ogawa, Yujiro; Hossain, Md Mijan; Inagaki, Yoshishige; Toyoda, Kazuhiro; Shiraishi, Tomonori; Ichinose, Yuki

    2008-04-01

    Pseudomonas syringae pv. tabaci 6605 causes wildfire disease on host tobacco plants. To investigate the regulatory mechanism of the expression of virulence, Gac two-component system-defective mutants, DeltagacA and DeltagacS, and a double mutant, DeltagacADeltagacS, were generated. These mutants produced smaller amounts of N-acyl homoserine lactones required for quorum sensing, had lost swarming motility, and had reduced expression of virulence-related hrp genes and the algT gene required for exopolysaccharide production. The ability of the mutants to cause disease symptoms in their host tobacco plant was remarkably reduced, while they retained the ability to induce hypersensitive reaction (HR) in the nonhost plants. These results indicated that the Gac two-component system of P. syringae pv. tabaci 6605 is indispensable for virulence on the host plant, but not for HR induction in the nonhost plants.

  17. The Vibrio cholerae VprA-VprB Two-Component System Controls Virulence Through Endotoxin Modification

    DTIC Science & Technology

    2014-12-23

    novel moiety, amino acids. Remarkably, glycine or diglycine addition to lipid A alters the surface charge of the bacteria to help evade the cationic...alters the surface charge of the bacteria to help evade the cationic antimicrobial peptide polymyxin. However, the regulatory mechanisms of lipid A...the lipid A domain of lipopolysaccharide, a major surface component of Gram-negative bacteria . Here, we identify the VprAB two-component system that

  18. The two-component system CpxAR is Essential for Virulence in the phytopathogen bacteria Dickeya dadantii EC3937

    PubMed Central

    Bontemps-Gallo, Sébastien; Madec, Edwige; Lacroix, Jean-Marie

    2015-01-01

    The CpxAR two-component system is present in many Proteobacteria. It controls expression of genes required to maintain envelope integrity in response to environmental injury. Consequently, this two-component system was shown to be required for virulence of several zoo-pathogens but it has never been investigated in phyto-pathogens. In this paper, we investigate the role of the CpxAR two-component system in vitro and in vivo in Dickeya dadantii, an enterobacterial phytopathogen that causes soft-rot disease in a large variety of plant species. cpxA null mutant displays a constitutively phosphorylated CpxR phenotype as shown by direct analysis of phosphorylation of CpxR by a Phos-Tag retardation gel approach. Virulence in plants is completely abolished in cpxA or cpxR mutants of D. dadantii. In planta, CpxAR is only activated at an early stage of the infection process as shown by Phos-Tag and gene fusion analyses. To our knowledge, this is the first time that the timing of CpxAR phosphorelay activation has been investigated during the infection process by direct monitoring of response regulator phosphorylation. PMID:25856505

  19. Two-Component Signal Transduction Systems That Regulate the Temporal and Spatial Expression of Myxococcus xanthus Sporulation Genes.

    PubMed

    Sarwar, Zaara; Garza, Anthony G

    2015-09-14

    When starved for nutrients, Myxococcus xanthus produces a biofilm that contains a mat of rod-shaped cells, known as peripheral rods, and aerial structures called fruiting bodies, which house thousands of dormant and stress-resistant spherical spores. Because rod-shaped cells differentiate into spherical, stress-resistant spores and spore differentiation occurs only in nascent fruiting bodies, many genes and multiple levels of regulation are required. Over the past 2 decades, many regulators of the temporal and spatial expression of M. xanthus sporulation genes have been uncovered. Of these sporulation gene regulators, two-component signal transduction circuits, which typically contain a histidine kinase sensor protein and a transcriptional regulator known as response regulator, are among the best characterized. In this review, we discuss prototypical two-component systems (Nla6S/Nla6 and Nla28S/Nla28) that regulate an early, preaggregation phase of sporulation gene expression during fruiting body development. We also discuss orphan response regulators (ActB and FruA) that regulate a later phase of sporulation gene expression, which begins during the aggregation stage of fruiting body development. In addition, we summarize the research on a complex two-component system (Esp) that is important for the spatial regulation of sporulation.

  20. Two-Component Signal Transduction Systems That Regulate the Temporal and Spatial Expression of Myxococcus xanthus Sporulation Genes

    PubMed Central

    Sarwar, Zaara

    2015-01-01

    When starved for nutrients, Myxococcus xanthus produces a biofilm that contains a mat of rod-shaped cells, known as peripheral rods, and aerial structures called fruiting bodies, which house thousands of dormant and stress-resistant spherical spores. Because rod-shaped cells differentiate into spherical, stress-resistant spores and spore differentiation occurs only in nascent fruiting bodies, many genes and multiple levels of regulation are required. Over the past 2 decades, many regulators of the temporal and spatial expression of M. xanthus sporulation genes have been uncovered. Of these sporulation gene regulators, two-component signal transduction circuits, which typically contain a histidine kinase sensor protein and a transcriptional regulator known as response regulator, are among the best characterized. In this review, we discuss prototypical two-component systems (Nla6S/Nla6 and Nla28S/Nla28) that regulate an early, preaggregation phase of sporulation gene expression during fruiting body development. We also discuss orphan response regulators (ActB and FruA) that regulate a later phase of sporulation gene expression, which begins during the aggregation stage of fruiting body development. In addition, we summarize the research on a complex two-component system (Esp) that is important for the spatial regulation of sporulation. PMID:26369581

  1. The influence of rotational depolarization on the mechanism of energy transport in two-component systems: The nature of correlations.

    PubMed

    Bojarski, P; Kawski, A

    1993-06-01

    The correlation effect in two-component systems of different viscosities was analyzed based on a concentration depolarization experiment. The inclusion of a correlation effect was found to be fully justified only in systems for which the localization time, τl, is considerably shorter than that of the rotational relaxation, τrot. On the grounds of an approximate analysis, taking into account the competition between the concentration and the rotational depolarization, it was possible to explain the concentration changes in the emission anisotropy in the systems investigated.

  2. Reciprocal regulation as a source of ultrasensitivity in two-component systems with a bifunctional sensor kinase.

    PubMed

    Straube, Ronny

    2014-05-01

    Two-component signal transduction systems, where the phosphorylation state of a regulator protein is modulated by a sensor kinase, are common in bacteria and other microbes. In many of these systems, the sensor kinase is bifunctional catalyzing both, the phosphorylation and the dephosphorylation of the regulator protein in response to input signals. Previous studies have shown that systems with a bifunctional enzyme can adjust the phosphorylation level of the regulator protein independently of the total protein concentrations--a property known as concentration robustness. Here, I argue that two-component systems with a bifunctional enzyme may also exhibit ultrasensitivity if the input signal reciprocally affects multiple activities of the sensor kinase. To this end, I consider the case where an allosteric effector inhibits autophosphorylation and, concomitantly, activates the enzyme's phosphatase activity, as observed experimentally in the PhoQ/PhoP and NRII/NRI systems. A theoretical analysis reveals two operating regimes under steady state conditions depending on the effector affinity: If the affinity is low the system produces a graded response with respect to input signals and exhibits stimulus-dependent concentration robustness--consistent with previous experiments. In contrast, a high-affinity effector may generate ultrasensitivity by a similar mechanism as phosphorylation-dephosphorylation cycles with distinct converter enzymes. The occurrence of ultrasensitivity requires saturation of the sensor kinase's phosphatase activity, but is restricted to low effector concentrations, which suggests that this mode of operation might be employed for the detection and amplification of low abundant input signals. Interestingly, the same mechanism also applies to covalent modification cycles with a bifunctional converter enzyme, which suggests that reciprocal regulation, as a mechanism to generate ultrasensitivity, is not restricted to two-component systems, but may

  3. Physical properties of a two-component system at the Fermi and Sharvin length scales

    NASA Astrophysics Data System (ADS)

    Armstrong, Jason N.; Gande, Eric M.; Vinti, John W.; Hua, Susan Z.; Deep Chopra, Harsh

    2012-11-01

    Previously, we have reported the measurement of various physical properties at the Fermi and Sharvin length scales in pure elements (1-component systems). In the present study, the evolution of physical properties is mapped in a 2-component system at these length scales, using Au-Ag alloys. These alloys are well known to have complete solubility in each other at all compositions in the bulk and an ideal system to vary the surface energy of the alloy simply by changing the alloy composition. At sample sizes where surface effects dominate (less than ˜2-3 nm), varying the alloy composition is found to cause dramatic changes in force required to rupture the bonds (strength) as well as atomic cohesion (modulus) and can be directly attributed to segregation of higher surface energy Au from the lower surface energy Ag. In other words, the Au-Ag system with complete solubility in the bulk exhibits segregation at these length scales. This breakdown of bulk solubility rules for alloying (the so-called Hume-Rothery rules) even in near-ideal solid solutions has consequences for future atomic-scale devices.

  4. Interface-induced disassembly of a self-assembled two-component nanoparticle system.

    PubMed

    Gao, Yan; Duc, Le T; Ali, Affira; Liang, Beverly; Liang, Jenn-Tai; Dhar, Prajnaparamita

    2013-03-19

    We present a study of static and dynamic interfacial properties of self-assembled polyelectrolyte complex nanoparticles (size 110-120 nm) containing entrapped surfactant molecules at a fluid/fluid interface. Surface tension vs time measurements of an aqueous solution of these polyelectrolyte complex nanoparticles (PCNs) show a concentration-dependent biphasic adsorption to the air/water interface while interfacial microrheology data show a concentration-dependent initial increase in the surface viscosity (up to 10(-7) N·m/s), followed by a sharp decrease (10(-9) N·m/s). Direct visualization of the air/water interface shows disappearance of particles from the interface over time. On the basis of these observations, we propose that the PCNs at fluid/fluid interfaces exist in two states: initial accumulation of PCNs at the air/water interface as nanoparticles, followed by interface induced disassembly of the accumulated PCNs into their components. The lack of change in particle size, charge, and viscosity of the bulk aqueous solution of PCNs with time indicates that this disintegration of the self-assembled PCNs is an interfacial phenomenon. Changes in energy encountered by the PCNs at the interface lead to instability of the self-assembled system and dissociation into its components. Such systems can be used for applications requiring directed delivery and triggered release of entrapped surfactants or macromolecules at fluid/fluid interfaces.

  5. Mean-square radii of two-component three-body systems in two spatial dimensions

    NASA Astrophysics Data System (ADS)

    Sandoval, J. H.; Bellotti, F. F.; Jensen, A. S.; Yamashita, M. T.

    2016-08-01

    We calculate root-mean-square radii for a three-body system confined to two spatial dimensions and consisting of two identical bosons (A ) and one distinguishable particle (B ). We use zero-range two-body interactions between each of the pairs, and focus thereby directly on universal properties. We solve the Faddeev equations in momentum space and express the mean-square radii in terms of first-order derivatives of the Fourier transforms of densities. The strengths of the interactions are adjusted for each set of masses to produce equal two-body bound-state energies between different pairs. The mass ratio, A =mB/mA , between particles B and A are varied from 0.01 to 100, providing a number of bound states decreasing from 8 to 2. Energies and mean-square radii of these states are analyzed for small A by use of the Born-Oppenheimer potential between the two heavy A particles. For large A the radii of the two bound states are consistent with a slightly asymmetric three-body structure. When A approaches thresholds for binding of the three-body excited states, the corresponding mean-square radii diverge inversely proportional to the deviation of the three-body energy from the two-body thresholds. The structures at these three-body thresholds correspond to bound A B dimers and one loosely bound A particle.

  6. Transcriptional regulation of drug efflux genes by EvgAS, a two-component system in Escherichia coli.

    PubMed

    Eguchi, Yoko; Oshima, Taku; Mori, Hirotada; Aono, Rikizo; Yamamoto, Kaneyoshi; Ishihama, Akira; Utsumi, Ryutaro

    2003-10-01

    A constitutively active mutant of histidine kinase sensor EvgS was found to confer multi-drug resistance (MDR) to an acrA-deficient Escherichia coli, indicating the relationship between the two-component system EvgAS and the expression of the MDR system. The observed MDR also depended on an outer-membrane channel, TolC. Microarray and S1 mapping assays indicated that, in the presence of this constitutive mutant EvgS, the level of transcription increased for some MDR genes, including the drug efflux genes emrKY, yhiUV, acrAB, mdfA and tolC. Transcription in vitro of emrK increased by the addition of phosphorylated EvgA. Transcription activation of tolC by the activated EvgS was, however, dependent on both EvgAS and PhoPQ (Mg(2+)-responsive two-component system), in agreement with the presence of the binding site (PhoP box) for the regulator PhoP in the tolC promoter region. Transcription in vitro of yhiUV also appears to require an as-yet-unidentified additional transcriptional factor besides EvgA. Taken together we propose that the expression of the MDR system is under a complex regulatory network, including the phosphorylated EvgA serving as the master regulator.

  7. Stochastic kinetic model of two component system signalling reveals all-or-none, graded and mixed mode stochastic switching responses.

    PubMed

    Kierzek, Andrzej M; Zhou, Lu; Wanner, Barry L

    2010-03-01

    Two-component systems (TCSs) are prevalent signal transduction systems in bacteria that control innumerable adaptive responses to environmental cues and host-pathogen interactions. We constructed a detailed stochastic kinetic model of two component signalling based on published data. Our model has been validated with flow cytometry data and used to examine reporter gene expression in response to extracellular signal strength. The model shows that, depending on the actual kinetic parameters, TCSs exhibit all-or-none, graded or mixed mode responses. In accordance with other studies, positively autoregulated TCSs exhibit all-or-none responses. Unexpectedly, our model revealed that TCSs lacking a positive feedback loop exhibit not only graded but also mixed mode responses, in which variation of the signal strength alters the level of gene expression in induced cells while the regulated gene continues to be expressed at the basal level in a substantial fraction of cells. The graded response of the TCS changes to mixed mode response by an increase of the translation initiation rate of the histidine kinase. Thus, a TCS is an evolvable design pattern capable of implementing deterministic regulation and stochastic switches associated with both graded and threshold responses. This has implications for understanding the emergence of population diversity in pathogenic bacteria and the design of genetic circuits in synthetic biology applications. The model is available in systems biology markup language (SBML) and systems biology graphical notation (SBGN) formats and can be used as a component of large-scale biochemical reaction network models.

  8. Bacillus subtilis Two-Component System Sensory Kinase DegS Is Regulated by Serine Phosphorylation in Its Input Domain

    PubMed Central

    Jers, Carsten; Kobir, Ahasanul; Søndergaard, Elsebeth Oline; Jensen, Peter Ruhdal; Mijakovic, Ivan

    2011-01-01

    Bacillus subtilis two-component system DegS/U is well known for the complexity of its regulation. The cytosolic sensory kinase DegS does not receive a single predominant input signal like most two-component kinases, instead it integrates a wide array of metabolic inputs that modulate its activity. The phosphorylation state of the response regulator DegU also does not confer a straightforward “on/off” response; it is fine-tuned and at different levels triggers different sub-regulons. Here we describe serine phosphorylation of the DegS sensing domain, which stimulates its kinase activity. We demonstrate that DegS phosphorylation can be carried out by at least two B. subtilis Hanks-type kinases in vitro, and this stimulates the phosphate transfer towards DegU. The consequences of this process were studied in vivo, using phosphomimetic (Ser76Asp) and non-phosphorylatable (Ser76Ala) mutants of DegS. In a number of physiological assays focused on different processes regulated by DegU, DegS S76D phosphomimetic mutant behaved like a strain with intermediate levels of DegU phosphorylation, whereas DegS S76A behaved like a strain with lower levels of DegU phophorylation. These findings suggest a link between DegS phosphorylation at serine 76 and the level of DegU phosphorylation, establishing this post-translational modification as an additional trigger for this two-component system. PMID:21304896

  9. Qualitative Analysis for a New Integrable Two-Component Camassa-Holm System with Peakon and Weak Kink Solutions

    NASA Astrophysics Data System (ADS)

    Yan, Kai; Qiao, Zhijun; Yin, Zhaoyang

    2015-06-01

    This paper is devoted to a new integrable two-component Camassa-Holm system with peaked solitons (peakons) and weak-kink solutions. It is the first integrable system that admits weak kink and kink-peakon interactional solutions. In addition, the new system includes both standard (quadratic) and cubic Camassa-Holm equations as two special cases. In the paper, we first establish the local well-posedness for the Cauchy problem of the system, and then derive a precise blow-up scenario and a new blow-up result for strong solutions to the system with both quadratic and cubic nonlinearity. Furthermore, its peakon and weak kink solutions are discussed as well.

  10. Novel two-component regulatory systems play a role in biofilm formation of Lactobacillus reuteri rodent isolate 100-23.

    PubMed

    Su, Marcia Shu-Wei; Gänzle, Michael G

    2014-04-01

    This study characterized the two-component regulatory systems encoded by bfrKRT and cemAKR, and assessed their influence on biofilm formation by Lactobacillus reuteri 100-23. A method for deletion of multiple genes was employed to disrupt the genetic loci of two-component systems. The operons bfrKRT and cemAKR showed complementary organization. Genes bfrKRT encode a histidine kinase, a response regulator and an ATP-binding cassette-type transporter with a bacteriocin-processing peptidase domain, respectively. Genes cemAKR code for a signal peptide, a histidine kinase and a response regulator, respectively. Deletion of single or multiple genes in the operons bfrKRT and cemAKR did not affect cell morphology, growth or the sensitivity to various stressors. However, gene disruption affected biofilm formation; this effect was dependent on the carbon source. Deletion of bfrK or cemA increased sucrose-dependent biofilm formation in vitro. Glucose-dependent biofilm formation was particularly increased by deletion of cemK. The expression of cemK and cemR was altered by deletion of bfrK, indicating cross-talk between these two regulatory systems. These results may contribute to our understanding of the genetic factors related to the biofilm formation and competitiveness of L. reuteri in intestinal ecosystems.

  11. Bioorthogonal, two-component delivery systems based on antibody and drug-loaded nanocarriers for enhanced internalization of nanotherapeutics

    PubMed Central

    Hapuarachchige, Sudath; Zhu, Wenlian; Kato, Yoshinori; Artemov, Dmitri

    2015-01-01

    Nanocarriers play an important role in targeted cancer chemotherapy. The optimal nanocarrier delivery system should provide efficient and highly specific recognition of the target cells and rapid internalization of the therapeutic cargo to reduce systemic toxicity as well as to increase the cytotoxicity to cancer cells. To this end, we developed a two-step, two-component targeted delivery system based on antibody and drug-loaded nanocarrier that uses bioorthogonal click reactions for specific internalization of nanotherapeutics. The pretargeting component, anti-HER2 humanized monoclonal antibody, trastuzumab, functionalized with azide groups labels cancer cells that overexpress HER2 surface receptors. The drug carrier component, dibenzylcyclooctyne substituted albumin conjugated with paclitaxel, reacts specifically with the pretargeting component. These two components form cross-linked clusters on the cell surface, which facilitates the internalization of the complex. This strategy demonstrated substantial cellular internalization of clusters consisted of HER2 receptors, modified trastuzumab and paclitaxel-loaded albumin nanocarriers, and subsequent significant cytotoxicity in HER2-positive BT-474 breast cancer cells. Our results show high efficacy of this strategy for targeted nanotherapeutics. We foresee to broaden the applications of this strategy using agents such as radionuclides, toxins, and interfering RNA. PMID:24342725

  12. Origin and evolution of two-component debris discs and an application to the q1 Eridani system

    NASA Astrophysics Data System (ADS)

    Schüppler, Christian; Krivov, Alexander V.; Löhne, Torsten; Booth, Mark; Kirchschlager, Florian; Wolf, Sebastian

    2016-09-01

    Many debris discs reveal a two-component structure, with an outer Kuiper-belt analogue and a warm inner component whose origin is still a matter of debate. One possibility is that warm emission stems from an `asteroid belt' closer in to the star. We consider a scenario in which a set of giant planets is formed in an initially extended planetesimal disc. These planets carve a broad gap around their orbits, splitting up the disc into the outer and the inner belts. After the gas dispersal, both belts undergo collisional evolution in a steady-state regime. This scenario is explored with detailed collisional simulations involving realistic physics to describe a long-term collisional depletion of the two-component disc. We find that the inner disc may be able to retain larger amounts of material at older ages than thought before on the basis of simplified analytic models. We show that the proposed scenario is consistent with a suite of thermal emission and scattered light observational data for a bright two-temperature debris disc around a nearby solar-type star q1 Eridani. This implies a Solar system-like architecture of the system, with an outer massive `Kuiper belt', an inner `asteroid belt', and a few Neptune- to Jupiter-mass planets in between.

  13. The 1910HK/RR two-component system is essential for the virulence of Streptococcus suis serotype 2.

    PubMed

    Yuan, Fangyan; Tan, Chen; Liu, Zewen; Yang, Keli; Zhou, Danna; Liu, Wei; Duan, Zhengying; Guo, Rui; Chen, Huanchun; Tian, Yongxiang; Bei, Weicheng

    2017-03-01

    Streptococcus suis serotype 2 is a major zoonotic pathogen, and the two-component system plays an important role in bacterial pathogenesis. The present study targeted the 1910HK/RR two-component system of S. suis 2. A 1910HK/RR deletion mutant (Δ1910HK/RR) and the corresponding complementation strain (CΔ1910HK/RR) were constructed in S. suis 2 strain 05ZYH33. 1910HK/RR deletion had no effect on S. suis 2 growth, but significantly inhibited the adherence and invasion of S. suis 2 to HEp-2 cells. Analysis of the role of 1910HK/RR in murine and pig infection models demonstrated that 1910HK/RR played a distinct role in the virulence of S. suis 2. In addition, deletion of 1910HK/RR significantly impaired the survival of 05ZYH33 in human blood. These data provided important insights into the pathogenesis of S. suis 2.

  14. A Two-Component System Regulates the Expression of an ABC Transporter for Xylo-Oligosaccharides in Geobacillus stearothermophilus▿

    PubMed Central

    Shulami, Smadar; Zaide, Galia; Zolotnitsky, Gennady; Langut, Yael; Feld, Geoff; Sonenshein, Abraham L.; Shoham, Yuval

    2007-01-01

    Geobacillus stearothermophilus T-6 utilizes an extensive and highly regulated hemicellulolytic system. The genes comprising the xylanolytic system are clustered in a 39.7-kb chromosomal segment. This segment contains a 6-kb transcriptional unit (xynDCEFG) coding for a potential two-component system (xynDC) and an ATP-binding cassette (ABC) transport system (xynEFG). The xynD promoter region contains a 16-bp inverted repeat resembling the operator site for the xylose repressor, XylR. XylR was found to bind specifically to this sequence, and binding was efficiently prevented in vitro in the presence of xylose. The ABC transport system was shown to comprise an operon of three genes (xynEFG) that is transcribed from its own promoter. The nonphosphorylated fused response regulator, His6-XynC, bound to a 220-bp fragment corresponding to the xynE operator. DNase I footprinting analysis showed four protected zones that cover the −53 and the +34 regions and revealed direct repeat sequences of a GAAA-like motif. In vitro transcriptional assays and quantitative reverse transcription-PCR demonstrated that xynE transcription is activated 140-fold in the presence of 1.5 μM XynC. The His6-tagged sugar-binding lipoprotein (XynE) of the ABC transporter interacted with different xylosaccharides, as demonstrated by isothermal titration calorimetry. The change in the heat capacity of binding (ΔCp) for XynE with xylotriose suggests a stacking interaction in the binding site that can be provided by a single Trp residue and a sugar moiety. Taken together, our data show that XynEFG constitutes an ABC transport system for xylo-oligosaccharides and that its transcription is negatively regulated by XylR and activated by the response regulator XynC, which is part of a two-component sensing system. PMID:17142383

  15. Role of two-component sensory systems of Salmonella enterica serovar Dublin in the pathogenesis of systemic salmonellosis in cattle.

    PubMed

    Pullinger, Gillian D; van Diemen, Pauline M; Dziva, Francis; Stevens, Mark P

    2010-10-01

    Salmonella enterica serovar Dublin (S. Dublin) is associated with enteritis, typhoid and abortion in cattle. Infections are acquired by the oral route, and the bacteria transit through varied anatomical and cellular niches to elicit systemic disease. S. Dublin must therefore sense and respond to diverse extrinsic stimuli to control gene expression in a spatial and temporal manner. Two-component systems (TCSs) play key roles in such processes, and typically contain a membrane-associated sensor kinase (SK) that modifies a cognate response regulator. Analysis of the genome sequence of S. Dublin identified 31 conserved SK genes. Each SK gene was separately disrupted by lambda Red recombinase-mediated insertion of transposons harbouring unique sequence tags. Calves were challenged with a pool of the mutants together with control strains of defined virulence by the oral and intravenous routes. Quantification of tagged mutants in output pools derived from various tissues and cannulated lymphatic vessels allowed the assignment of spatial roles for each SK following oral inoculation or when the intestinal barrier was bypassed by intravenous delivery. Mutant phenotypes were also assigned in cultured intestinal epithelial cells. Mutants with insertions in barA, envZ, phoQ, ssrA or qseC were significantly negatively selected at all enteric and systemic sites sampled after oral dosing. Mutants lacking baeS, dpiB or citA were negatively selected at some but not all sites. After intravenous inoculation, only barA and phoQ mutants were significantly under-represented at systemic sites. The novel role of baeS in intestinal colonization was confirmed by oral co-infection studies, with a mutant exhibiting modest but significant attenuation at a number of enteric sites. This is the first systematic analysis of the role of all Salmonella TCSs in a highly relevant model of enteric fever. Spatial roles were assigned to eight S. Dublin SKs, but most were not essential for intestinal or

  16. Calprotectin Increases the Activity of the SaeRS Two Component System and Murine Mortality during Staphylococcus aureus Infections.

    PubMed

    Cho, Hoonsik; Jeong, Do-Won; Liu, Qian; Yeo, Won-Sik; Vogl, Thomas; Skaar, Eric P; Chazin, Walter J; Bae, Taeok

    2015-07-01

    Calprotectin, the most abundant cytoplasmic protein in neutrophils, suppresses the growth of Staphylococcus aureus by sequestering the nutrient metal ions Zn and Mn. Here we show that calprotectin can also enhance the activity of the SaeRS two component system (TCS), a signaling system essential for production of over 20 virulence factors in S. aureus. The activity of the SaeRS TCS is repressed by certain divalent ions found in blood or neutrophil granules; however, the Zn bound-form of calprotectin relieves this repression. During staphylococcal encounter with murine neutrophils or staphylococcal infection of the murine peritoneal cavity, calprotectin increases the activity of the SaeRS TCS as well as the production of proinflammatory cytokines such as IL-1β and TNF-α, resulting in higher murine mortality. These results suggest that, under certain conditions, calprotectin can be exploited by S. aureus to increase bacterial virulence and host mortality.

  17. Characterization of virulence factor regulation by SrrAB, a two-component system in Staphylococcus aureus.

    PubMed

    Pragman, Alexa A; Yarwood, Jeremy M; Tripp, Timothy J; Schlievert, Patrick M

    2004-04-01

    Workers in our laboratory have previously identified the staphylococcal respiratory response AB (SrrAB), a Staphylococcus aureus two-component system that acts in the global regulation of virulence factors. This system down-regulates production of agr RNAIII, protein A, and toxic shock syndrome toxin 1 (TSST-1), particularly under low-oxygen conditions. In this study we investigated the localization and membrane orientation of SrrA and SrrB, transcription of the srrAB operon, the DNA-binding properties of SrrA, and the effect of SrrAB expression on S. aureus virulence. We found that SrrA is localized to the S. aureus cytoplasm, while SrrB is localized to the membrane and is properly oriented to function as a histidine kinase. srrAB has one transcriptional start site which results in either an srrA transcript or a full-length srrAB transcript; srrB must be cotranscribed with srrA. Gel shift assays of the agr P2, agr P3, protein A (spa), TSST-1 (tst), and srr promoters revealed SrrA binding at each of these promoters. Analysis of SrrAB-overexpressing strains by using the rabbit model of bacterial endocarditis demonstrated that overexpression of SrrAB decreased the virulence of the organisms compared to the virulence of isogenic strains that do not overexpress SrrAB. We concluded that SrrAB is properly localized and oriented to function as a two-component system. Overexpression of SrrAB, which represses agr RNAIII, TSST-1, and protein A in vitro, decreases virulence in the rabbit endocarditis model. Repression of these virulence factors is likely due to a direct interaction between SrrA and the agr, tst, and spa promoters.

  18. Two-Component Signal Transduction Systems of Desulfovibrio Vulgaris: Structural and Phylogenetic Analysis and Deduction of Putative Cognate Pairs

    SciTech Connect

    Zhang, Weiwen; Culley, David E.; Wu, Gang; Brockman, Fred J.

    2006-01-20

    ABSTRACT-Two-component signal transduction systems (TCSTS) composed of sensory histidine kinases (HK) and response regulators (RR), constitute a key element of the mechanism by which bacteria sense and respond to changes in environments. A large number of TCSTSs including 59 putative HKs and 55 RRs were identified from the Desulfovibrio vulgaris genome, indicating their important roles in regulation of cellular metabolism. In this study, the structural and phylogenetic analysis of all putative TCSTSs in D. vulgaris was performed. The results showed D. vulgaris contained an unexpectedly large number of hybrid-type HKs, implying that multiple-step phosphorelay may be a common signal transduction mechanism in D. vulgaris. Most TCSTS components of D. vulgaris were found clustered into several subfamilies previously recognized in other bacteria and extensive co-evolution between D. vulgaris HKs and RRs was observed, suggesting that the concordance of HKs and RRs in cognate phylogenetic groups could be indicative of cognate TCSTSs...

  19. Structure of the response regulator ChrA in the haem-sensing two-component system of Corynebacterium diphtheriae.

    PubMed

    Doi, Akihiro; Nakamura, Hiro; Shiro, Yoshitsugu; Sugimoto, Hiroshi

    2015-08-01

    ChrA is a response regulator (RR) in the two-component system involved in regulating the degradation and transport of haem (Fe-porphyrin) in the pathogen Corynebacterium diphtheriae. Here, the crystal structure of full-length ChrA is described at a resolution of 1.8 Å. ChrA consists of an N-terminal regulatory domain, a long linker region and a C-terminal DNA-binding domain. A structural comparison of ChrA with other RRs revealed substantial differences in the relative orientation of the two domains and the conformation of the linker region. The structural flexibility of the linker could be an important feature in rearrangement of the domain orientation to create a dimerization interface to bind DNA during haem-sensing signal transduction.

  20. Two-component signal transduction system SaeRS is involved in competence and penicillin susceptibility in Staphylococcus epidermidis.

    PubMed

    Lou, Qiang; Ma, Yuanfang; Qu, Di

    2016-04-01

    Staphylococcus epidermidis, which is a causative pathogen of nosocomial infection, expresses its virulent traits such as biofilm and autolysis regulated by two-component signal transduction system SaeRS. In this study, the S. epidermidis SaeRS was identified to negatively regulate the expression of genes involved in competence (comF, murF), cytolysis (lrgA), and autolysis (lytS) by DNA microarray or real-time RT-PCR analysis. In addition, saeRS mutant showed increased competence and higher susceptibility to antibiotics such as penicillin and oxacillin than the wild-type strain. The study will be helpful for understanding the characterization of the SaeRS in S. epidermidis.

  1. Characterization of the yehUT two-component regulatory system of Salmonella enterica Serovar Typhi and Typhimurium.

    PubMed

    Wong, Vanessa K; Pickard, Derek J; Barquist, Lars; Sivaraman, Karthikeyan; Page, Andrew J; Hart, Peter J; Arends, Mark J; Holt, Kathryn E; Kane, Leanne; Mottram, Lynda F; Ellison, Louise; Bautista, Ruben; McGee, Chris J; Kay, Sally J; Wileman, Thomas M; Kenney, Linda J; MacLennan, Calman A; Kingsley, Robert A; Dougan, Gordon

    2013-01-01

    Proteins exhibiting hyper-variable sequences within a bacterial pathogen may be associated with host adaptation. Several lineages of the monophyletic pathogen Salmonella enterica serovar Typhi (S. Typhi) have accumulated non-synonymous mutations in the putative two-component regulatory system yehUT. Consequently we evaluated the function of yehUT in S. Typhi BRD948 and S. Typhimurium ST4/74. Transcriptome analysis identified the cstA gene, encoding a carbon starvation protein as the predominantly yehUT regulated gene in both these serovars. Deletion of yehUT had no detectable effect on the ability of these mutant Salmonella to invade cultured epithelial cells (S. Typhi and S. Typhimurium) or induce colitis in a murine model (S. Typhimurium only). Growth, metabolic and antimicrobial susceptibility tests identified no obvious influences of yehUT on these phenotypes.

  2. Complexation precedes phosphorylation for two-component regulatory system FixL/FixJ of Sinorhizobium meliloti.

    PubMed

    Tuckerman, J R; Gonzalez, G; Gilles-Gonzalez, M A

    2001-05-04

    The FixL/FixJ two-component regulatory system of Sinorhizobium meliloti controls the expression of nitrogen fixation genes in response to O2. When phosphorylated, the transcription factor FixJ binds to the nifA and fixK promoters in S. meliloti and induces expression of the corresponding genes, both of which encode key transcription activators. Phosphorylation of FixJ has been proposed to occur via the following cascade. The sensor kinase FixL reacts with ATP independently of FixJ, transferring a phosphoryl group to one of its own histidine residues. Dissociation of O2 from a heme-binding PAS domain in FixL greatly accelerates the rate of this autophosphorylation. The phosphoryl group is rapidly transferred from phospho-FixL to an aspartate residue on FixJ. The resulting phospho-FixJ is short-lived, due to a FixL-catalyzed hydrolysis of the aspartyl phosphate. Here, we show that phosphorylation of FixLJ, i.e. the complex of FixL with FixJ, is at least tenfold faster than the phosphorylation of FixL without FixJ. We further show that a phospho-FixJ phosphatase, thought to reside in FixL, is absent from this complex. These results indicate that FixLJ reacts with ATP as a unit and much more efficiently than FixL alone, and that autophosphorylation and phosphoryl transfer do not occur independently, in sequence, but rather in a closely coupled processive reaction. These findings highlight the possible influence of synergistic interactions of the regulatory components in two-component-system signal transduction.

  3. Two-Component Signaling System VgrRS Directly Senses Extracytoplasmic and Intracellular Iron to Control Bacterial Adaptation under Iron Depleted Stress

    PubMed Central

    Wang, Li; Pan, Yue; Yuan, Zhi-Hui; Zhang, Huan; Peng, Bao-Yu; Wang, Fang-Fang

    2016-01-01

    Both iron starvation and excess are detrimental to cellular life, especially for animal and plant pathogens since they always live in iron-limited environments produced by host immune responses. However, how organisms sense and respond to iron is incompletely understood. Herein, we reveal that in the phytopathogenic bacterium Xanthomonas campestris pv. campestris, VgrS (also named ColS) is a membrane-bound receptor histidine kinase that senses extracytoplasmic iron limitation in the periplasm, while its cognate response regulator, VgrR (ColR), detects intracellular iron excess. Under iron-depleted conditions, dissociation of Fe3+ from the periplasmic sensor region of VgrS activates the VgrS autophosphorylation and subsequent phosphotransfer to VgrR, an OmpR-family transcription factor that regulates bacterial responses to take up iron. VgrR-VgrS regulon and the consensus DNA binding motif of the transcription factor VgrR were dissected by comparative proteomic and ChIP-seq analyses, which revealed that in reacting to iron-depleted environments, VgrR directly or indirectly controls the expressions of hundreds of genes that are involved in various physiological cascades, especially those associated with iron-uptake. Among them, we demonstrated that the phosphorylated VgrR tightly represses the transcription of a special TonB-dependent receptor gene, tdvA. This regulation is a critical prerequisite for efficient iron uptake and bacterial virulence since activation of tdvA transcription is detrimental to these processes. When the intracellular iron accumulates, the VgrR-Fe2+ interaction dissociates not only the binding between VgrR and the tdvA promoter, but also the interaction between VgrR and VgrS. This relieves the repression in tdvA transcription to impede continuous iron uptake and avoids possible toxic effects of excessive iron accumulation. Our results revealed a signaling system that directly senses both extracytoplasmic and intracellular iron to modulate

  4. Two-component regulatory systems in Pseudomonas aeruginosa: an intricate network mediating fimbrial and efflux pump gene expression

    PubMed Central

    Sivaneson, Melissa; Mikkelsen, Helga; Ventre, Isabelle; Bordi, Christophe; Filloux, Alain

    2011-01-01

    Pseudomonas aeruginosa is responsible for chronic and acute infections in humans. Chronic infections are associated with production of fimbriae and the formation of a biofilm. The two-component system Roc1 is named after its role in the regulation of cup genes, which encode components of a machinery allowing assembly of fimbriae. A non-characterized gene cluster, roc2, encodes components homologous to the Roc1 system. We show that cross-regulation occurs between the Roc1 and Roc2 signalling pathways. We demonstrate that the sensors RocS2 and RocS1 converge on the response regulator RocA1 to control cupC gene expression. This control is independent of the response regulator RocA2. Instead, we show that these sensors act via the RocA2 response regulator to repress the mexAB-oprM genes. These genes encode a multidrug efflux pump and are upregulated in the rocA2 mutant, which is less susceptible to antibiotics. It has been reported that in cystic fibrosis lungs, in which P. aeruginosa adopts the biofilm lifestyle, most isolates have an inactive MexAB-OprM pump. The concomitant RocS2-dependent upregulation of cupC genes (biofilm formation) and downregulation of mexAB-oprM genes (antibiotic resistance) is in agreement with this observation. It suggests that the Roc systems may sense the environment in the cystic fibrosis lung. PMID:21205015

  5. The two-component system BfrAB regulates expression of ABC transporters in Streptococcus gordonii and Streptococcus sanguinis

    PubMed Central

    Zhang, Yongshu; Whiteley, Marvin; Kreth, Jens; Lei, Yu; Khammanivong, Ali; Evavold, Jamie N.; Fan, Jingyuan; Herzberg, Mark C.

    2009-01-01

    The putative two-component system BfrAB is involved in Streptococcus gordonii biofilm development. Here, we provide evidence that BfrAB regulates the expression of bfrCD and bfrEFG, which encode two ABC transporters, and bfrH, which encodes a CAAX amino-terminal protease family protein. BfrC and BfrE are ATP-binding proteins and BfrD, BfrF and BfrG are homologous membrane- spanning polypeptides. Similarly, BfrABss, the BfrAB homologous system in S. sanguinis controls the expression of two bfrCD-homologous operons (bfrCDss and bfrXYss), a bfrH-homologous gene (bfrH1ss) and another CAAX amino- terminal protease family protein gene (bfrH2ss). Furthermore, we demonstrate that the purified BfrA DNA-binding domain from S. gordonii binds to the promoter regions of bfrCD, bfrEFG, bfrH, bfrCDss, bfrXYss, and bfrH1ss in vitro. Finally, we show that the BfrA DNA-binding domain recognizes a conserved DNA motif with a consensuses sequence of TTTCTTTAGAAATATTTTAGAATT. These data suggest, therefore, that S. gordonii BfrAB could control biofilm formation by regulating multiple ABC-transporter systems. PMID:19118357

  6. Inactivation of a Two-Component Signal Transduction System, SaeRS, Eliminates Adherence and Attenuates Virulence of Staphylococcus aureus

    PubMed Central

    Liang, Xudong; Yu, Chuanxin; Sun, Junsong; Liu, Hong; Landwehr, Christina; Holmes, David; Ji, Yinduo

    2006-01-01

    Staphylococcus aureus is a major human and animal pathogen. During infection, this organism not only is able to attach to and enter host cells by using its cell surface-associated factors but also exports toxins to induce apoptosis and kill invaded cells. In this study, we identified the regulon of a two-component signal transduction system, SaeRS, and demonstrated that the SaeRS system is required for S. aureus to cause infection both in vitro and in vivo. Using microarray and real-time reverse transcriptase PCR analyses, we found that SaeRS regulates the expression of genes involved in adhesion and invasion (such as those encoding fibronectin-binding proteins and fibrinogen-binding proteins) and genes encoding α-, β-, and γ-hemolysins. Surprisingly, we found that SaeRS represses the Agr regulatory system since the mutation of saeS up-regulates agrA expression, which was confirmed by using an agr promoter-reporter fusion system. More importantly, we demonstrated that inactivation of the SaeRS system significantly decreases the bacterium-induced apoptosis and/or death of lung epithelial cells (A549) and attenuates virulence in a murine infection model. Moreover, we found that inactivation of the SaeRS system eliminates staphylococcal adhesion and internalization of lung epithelial cells. We also found that both a novel hypothetical protein (the SA1000 protein) and a bifunctional protein (Efb), which binds to extracellular fibrinogen and complement factor C3, might partially contribute to bacterial adhesion to and invasion of epithelial cells. Our results indicate that activation of the SaeRS system may be required for S. aureus to adhere to and invade epithelial cells. PMID:16861653

  7. A Conserved Two-Component Signal Transduction System Controls the Response to Phosphate Starvation in Bifidobacterium breve UCC2003

    PubMed Central

    Alvarez-Martin, Pablo; Fernández, Matilde; O'Connell-Motherway, Mary; O'Connell, Kerry Joan; Sauvageot, Nicolas; Fitzgerald, Gerald F.; MacSharry, John; Zomer, Aldert

    2012-01-01

    This work reports on the identification and molecular characterization of the two-component regulatory system (2CRS) PhoRP, which controls the response to inorganic phosphate (Pi) starvation in Bifidobacterium breve UCC2003. The response regulator PhoP was shown to bind to the promoter region of pstSCAB, specifying a predicted Pi transporter system, as well as that of phoU, which encodes a putative Pi-responsive regulatory protein. This interaction is assumed to cause transcriptional modulation under conditions of Pi limitation. Our data suggest that the phoRP genes are subject to positive autoregulation and, together with pstSCAB and presumably phoU, represent the complete regulon controlled by the phoRP-encoded 2CRS in B. breve UCC2003. Determination of the minimal PhoP binding region combined with bioinformatic analysis revealed the probable recognition sequence of PhoP, designated here as the PHO box, which together with phoRP is conserved among many high-GC-content Gram-positive bacteria. The importance of the phoRP 2CRS in the response of B. breve to Pi starvation conditions was confirmed by analysis of a B. breve phoP insertion mutant which exhibited decreased growth under phosphate-limiting conditions compared to its parent strain UCC2003. PMID:22635988

  8. The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate

    PubMed Central

    2009-01-01

    Background Secondary metabolism in Serratia sp. ATCC 39006 (Serratia 39006) is controlled via a complex network of regulators, including a LuxIR-type (SmaIR) quorum sensing (QS) system. Here we investigate the molecular mechanism by which phosphate limitation controls biosynthesis of two antibiotic secondary metabolites, prodigiosin and carbapenem, in Serratia 39006. Results We demonstrate that a mutation in the high affinity phosphate transporter pstSCAB-phoU, believed to mimic low phosphate conditions, causes upregulation of secondary metabolism and QS in Serratia 39006, via the PhoBR two-component system. Phosphate limitation also activated secondary metabolism and QS in Serratia 39006. In addition, a pstS mutation resulted in upregulation of rap. Rap, a putative SlyA/MarR-family transcriptional regulator, shares similarity with the global regulator RovA (regulator of virulence) from Yersina spp. and is an activator of secondary metabolism in Serratia 39006. We demonstrate that expression of rap, pigA-O (encoding the prodigiosin biosynthetic operon) and smaI are controlled via PhoBR in Serratia 39006. Conclusion Phosphate limitation regulates secondary metabolism in Serratia 39006 via multiple inter-linked pathways, incorporating transcriptional control mediated by three important global regulators, PhoB, SmaR and Rap. PMID:19476633

  9. A Two-Component Regulatory System Impacts Extracellular Membrane-Derived Vesicle Production in Group A Streptococcus

    PubMed Central

    Resch, Ulrike; Tsatsaronis, James Anthony; Le Rhun, Anaïs; Stübiger, Gerald; Rohde, Manfred; Kasvandik, Sergo; Holzmeister, Susanne; Tinnefeld, Philip; Wai, Sun Nyunt

    2016-01-01

    ABSTRACT Export of macromolecules via extracellular membrane-derived vesicles (MVs) plays an important role in the biology of Gram-negative bacteria. Gram-positive bacteria have also recently been reported to produce MVs; however, the composition and mechanisms governing vesiculogenesis in Gram-positive bacteria remain undefined. Here, we describe MV production in the Gram-positive human pathogen group A streptococcus (GAS), the etiological agent of necrotizing fasciitis and streptococcal toxic shock syndrome. M1 serotype GAS isolates in culture exhibit MV structures both on the cell wall surface and in the near vicinity of bacterial cells. A comprehensive analysis of MV proteins identified both virulence-associated protein substrates of the general secretory pathway in addition to “anchorless surface proteins.” Characteristic differences in the contents, distributions, and fatty acid compositions of specific lipids between MVs and GAS cell membrane were also observed. Furthermore, deep RNA sequencing of vesicular RNAs revealed that GAS MVs contained differentially abundant RNA species relative to bacterial cellular RNA. MV production by GAS strains varied in a manner dependent on an intact two-component system, CovRS, with MV production negatively regulated by the system. Modulation of MV production through CovRS was found to be independent of both GAS cysteine protease SpeB and capsule biosynthesis. Our data provide an explanation for GAS secretion of macromolecules, including RNAs, lipids, and proteins, and illustrate a regulatory mechanism coordinating this secretory response. PMID:27803183

  10. The RssB/RssA two-component system regulates biosynthesis of the tripyrrole antibiotic, prodigiosin, in Serratia marcescens.

    PubMed

    Horng, Yu-Tze; Chang, Kai-Chih; Liu, Yen-Ni; Lai, Hsin-Chih; Soo, Po-Chi

    2010-06-01

    Serratia marcescens CH-1 produces a red, cell-associated pigment, prodigiosin, synthesized by enzymes encoded in the pig operon. The underlying regulatory mechanism, especially its relationship with the RssAB two-component system signaling, remained uncharacterized. Here, we show that phosphorylated RssB (RssB-P) directly binds to the promoter region of the pig operon (pigA promoter), as observed using an electrophoretic mobility shift assay. Furthermore, we identify the RssB-P binding site located downstream of the -10 and -35 regions in pigA using a DNase I footprinting assay. A compilation of the RssB-P binding sites in flhDC, rssB and pigA promoter regions reveals the presence of a conserved core sequence, GAGATTTTAGCTAAATTAATBTTT (B=C, G, or T), which we believe is the RssB binding sequence. Site-specific mutation of conserved nucleotides within the conserved RssB binding sequence in the pigA promoter region leads to absence of retardation in the presence of RssB-P in vitro and elevated transcription of pigA in vivo. These data suggest that RssAB signaling negatively regulates prodigiosin production, and such inhibition is mediated through direct and specific repression of transcriptional activity of the pig operon.

  11. Two-component systems are involved in the regulation of botulinum neurotoxin synthesis in Clostridium botulinum type A strain Hall.

    PubMed

    Connan, Chloé; Brüggemann, Holger; Brueggemann, Holger; Mazuet, Christelle; Raffestin, Stéphanie; Cayet, Nadège; Popoff, Michel R

    2012-01-01

    Clostridium botulinum synthesizes a potent neurotoxin (BoNT) which associates with non-toxic proteins (ANTPs) to form complexes of various sizes. The bont and antp genes are clustered in two operons. In C. botulinum type A, bont/A and antp genes are expressed during the end of the exponential growth phase and the beginning of the stationary phase under the control of an alternative sigma factor encoded by botR/A, which is located between the two operons. In the genome of C. botulinum type A strain Hall, 30 gene pairs predicted to encode two-component systems (TCSs) and 9 orphan regulatory genes have been identified. Therefore, 34 Hall isogenic antisense strains on predicted regulatory genes (29 TCSs and 5 orphan regulatory genes) have been obtained by a mRNA antisense procedure. Two TCS isogenic antisense strains showed more rapid growth kinetics and reduced BoNT/A production than the control strain, as well as increased bacterial lysis and impairment of the bacterial cell wall structure. Three other TCS isogenic antisense strains induced a low level of BoNT/A and ANTP production. Interestingly, reduced expression of bont/A and antp genes was shown to be independent of botR/A. These results indicate that BoNT/A synthesis is under the control of a complex network of regulation including directly at least three TCSs.

  12. Signal Perception by the Secretion Stress-Responsive CssRS Two-Component System in Bacillus subtilis

    PubMed Central

    Botella, Eric; Butler, Clodagh; Hansen, Annette; Jende, Inga; Devine, Kevin M.

    2012-01-01

    The CssRS two-component system responds to heat and secretion stresses in Bacillus subtilis by controlling expression of HtrA and HtrB chaperone-type proteases and positively autoregulating its own expression. Here we report on the features of the CssS extracellular loop domain that are involved in signal perception and on CssS subcellular localization. Individual regions of the CssS extracellular loop domain contribute differently to signal perception and activation. The conserved hydrophilic 26-amino-acid segment juxtaposed to transmembrane helix 1 is involved in the switch between the deactivated and activated states, while the conserved 19-amino-acid hydrophobic segment juxtaposed to transmembrane 2 is required for signal perception and/or transduction. Perturbing the size of the extracellular loop domain increases CssS kinase activity and makes it unresponsive to secretion stress. CssS is localized primarily at the septum but is also found in a punctate pattern with lower intensity throughout the cell cylinder. Moreover, the CssRS-controlled HtrA and HtrB proteases are randomly distributed in foci throughout the cell surface, with more HtrB than HtrA foci in unstressed cells. PMID:22307758

  13. A hybrid two-component system of Tannerella forsythia affects autoaggregation and post-translational modification of surface proteins.

    PubMed

    Niwa, Daisuke; Nishikawa, Kiyoshi; Nakamura, Hiroshi

    2011-05-01

    Tannerella forsythia is a Gram-negative oral anaerobe closely associated with both periodontal and periapical diseases. The ORF TF0022 of strain ATCC 43037 encodes a hybrid two-component system consisting of an N-terminal histidine kinase and a C-terminal response regulator. Disruption of the TF0022 locus enhanced autoaggregation of the broth-cultured cells. Comparative proteome analyses revealed that two S-layer proteins in the TF0022 mutant exhibited decreased apparent masses by denaturing gel electrophoresis, suggesting a deficiency in post-translational modification. Furthermore, the mutant decreased the production of a glycosyltransferase encoded by TF1061 that is located in a putative glycosylation-related gene cluster. Quantitative real-time PCR revealed reduced transcription of TF1061 and the associated genes in the TF0022 mutant. These results indicate that TF0022 upregulates the expression of the glycosylation-related genes and suggest modulation of the autoaggregation of T. forsythia cells by a possible post-translational modification of cell-surface components.

  14. The Two-Component System GrvRS (EtaRS) Regulates ace Expression in Enterococcus faecalis OG1RF

    PubMed Central

    Singh, Kavindra V.; La Rosa, Sabina Leanti; Cohen, Ana Luisa V.; Murray, Barbara E.

    2014-01-01

    Expression of ace (adhesin to collagen of Enterococcus faecalis), encoding a virulence factor in endocarditis and urinary tract infection models, has been shown to increase under certain conditions, such as in the presence of serum, bile salts, urine, and collagen and at 46°C. However, the mechanism of ace/Ace regulation under different conditions is still unknown. In this study, we identified a two-component regulatory system GrvRS as the main regulator of ace expression under these stress conditions. Using Northern hybridization and β-galactosidase assays of an ace promoter-lacZ fusion, we found transcription of ace to be virtually absent in a grvR deletion mutant under the conditions that increase ace expression in wild-type OG1RF and in the complemented strain. Moreover, a grvR mutant revealed decreased collagen binding and biofilm formation as well as attenuation in a murine urinary tract infection model. Here we show that GrvR plays a major role in control of ace expression and E. faecalis virulence. PMID:25385790

  15. Structure and mechanism of the essential two-component signal-transduction system WalKR in Staphylococcus aureus

    DOE PAGES

    Ji, Quanjiang; Chen, Peter J.; Qin, Guangrong; ...

    2016-03-18

    Most low GC Gram-positive bacteria possess an essential walKR two-component system (TCS) for signal transduction involved in regulating cell wall homoeostasis. Despite the well-established intracellular regulatory mechanism, the role of this TCS in extracellular signal recognition and factors that modulate the activity of this TCS remain largely unknown. Here we identify the extracellular receptor of the kinase ‘WalK’ (erWalK) as a key hub for bridging extracellular signal input and intracellular kinase activity modulation in Staphylococcus aureus. Characterization of the crystal structure of erWalK revealed a canonical Per-Arnt-Sim (PAS) domain for signal sensing. Single amino-acid mutation of potential signal-transduction residues resultedmore » in severely impaired function of WalKR. A small molecule derived from structure-based virtual screening against erWalK is capable of selectively activating the walKR TCS. Lastly, the molecular level characterization of erWalK will not only facilitate exploration of natural signal(s) but also provide a template for rational design of erWalK inhibitors.« less

  16. Two-Component Systems Are Involved in the Regulation of Botulinum Neurotoxin Synthesis in Clostridium botulinum Type A Strain Hall

    PubMed Central

    Connan, Chloé; Brueggemann, Holger; Mazuet, Christelle; Raffestin, Stéphanie; Cayet, Nadège; Popoff, Michel R.

    2012-01-01

    Clostridium botulinum synthesizes a potent neurotoxin (BoNT) which associates with non-toxic proteins (ANTPs) to form complexes of various sizes. The bont and antp genes are clustered in two operons. In C. botulinum type A, bont/A and antp genes are expressed during the end of the exponential growth phase and the beginning of the stationary phase under the control of an alternative sigma factor encoded by botR/A, which is located between the two operons. In the genome of C. botulinum type A strain Hall, 30 gene pairs predicted to encode two-component systems (TCSs) and 9 orphan regulatory genes have been identified. Therefore, 34 Hall isogenic antisense strains on predicted regulatory genes (29 TCSs and 5 orphan regulatory genes) have been obtained by a mRNA antisense procedure. Two TCS isogenic antisense strains showed more rapid growth kinetics and reduced BoNT/A production than the control strain, as well as increased bacterial lysis and impairment of the bacterial cell wall structure. Three other TCS isogenic antisense strains induced a low level of BoNT/A and ANTP production. Interestingly, reduced expression of bont/A and antp genes was shown to be independent of botR/A. These results indicate that BoNT/A synthesis is under the control of a complex network of regulation including directly at least three TCSs. PMID:22848632

  17. The two-component system CBO2306/CBO2307 is important for cold adaptation of Clostridium botulinum ATCC 3502.

    PubMed

    Derman, Yağmur; Isokallio, Marita; Lindström, Miia; Korkeala, Hannu

    2013-10-01

    Clostridium botulinum is a notorious foodborne pathogen. Its ability to adapt to and grow at low temperatures is of interest for food safety. Two-component systems (TCSs) have been reported to be involved in cold-shock and growth at low temperatures. Here we show the importance of TCS CBO2306/CBO2307 in the cold-shock response of C. botulinum ATCC 3502. The relative expression levels of the cbo2306 and cbo2307 were up to 4.4-fold induced in the cold-shocked cultures but negatively regulated in the late-log and stationary growth phase in relation to early logarithmic growth phase in non-shocked cultures. Importance of the CBO2306/CBO2307 in the cold stress was further demonstrated by impaired growth of insertional cbo2306 or cbo2307 knockout mutants in relation to the wild-type strain ATCC 3502. The results suggest that the TCS CBO2306/CBO2307 is important for cold-shock response and adaptation of C. botulinum ATCC 3502 to low temperature.

  18. Identification of a U/Zn/Cu responsive global regulatory two-component system in Caulobacter crescentus.

    PubMed

    Park, Dan M; Overton, K Wesley; Liou, Megan J; Jiao, Yongqin

    2016-12-30

    Despite the well-known toxicity of uranium (U) to bacteria, little is known about how cells sense and respond to U. The recent finding of a U-specific stress response in Caulobacter crescentus has provided a foundation for studying the mechanisms of U- perception in bacteria. To gain insight into this process, we used a forward genetic screen to identify the regulatory components governing expression of the urcA promoter (PurcA ) that is strongly induced by U. This approach unearthed a previously uncharacterized two-component system, named UzcRS, which is responsible for U-dependent activation of PurcA . UzcRS is also highly responsive to zinc and copper, revealing a broader specificity than previously thought. Using ChIP-seq, we found that UzcR binds extensively throughout the genome in a metal-dependent manner and recognizes a noncanonical DNA-binding site. Coupling the genome-wide occupancy data with RNA-seq analysis revealed that UzcR is a global regulator of transcription, predominately activating genes encoding proteins that are localized to the cell envelope; these include metallopeptidases, multidrug-resistant efflux (MDR) pumps, TonB-dependent receptors and many proteins of unknown function. Collectively, our data suggest that UzcRS couples the perception of U, Zn and Cu with a novel extracytoplasmic stress response.

  19. A Blue Light Inducible Two-Component Signal Transduction System in the Plant Pathogen Pseudomonas syringae pv. tomato☆

    PubMed Central

    Cao, Z.; Buttani, V.; Losi, A.; Gärtner, W.

    2008-01-01

    Abstract The open reading frame PSPTO2896 from the plant pathogen Pseudomonas syringae pv. tomato encodes a protein of 534 amino acids showing all salient features of a blue light-driven two-component system. The N-terminal LOV (light, oxygen, voltage) domain, potentially binding a flavin chromophore, is followed by a histidine kinase (HK) motif and a response regulator (RR). The full-length protein (PST-LOV) and, separately, the RR and the LOV+HK part (PST-LOVΔRR) were heterologously expressed and functionally characterized. The two LOV proteins showed typical LOV-like spectra and photochemical reactions, with the blue light-driven, reversible formation of a covalent flavin-cysteine bond. The fluorescence changes in the lit state of full-length PST-LOV, but not in PST-LOVΔRR, indicating a direct interaction between the LOV core and the RR module. Experiments performed with radioactive ATP uncover the light-driven kinase activity. For both PST-LOV and PST-LOVΔRR, much more radioactivity is incorporated when the protein is in the lit state. Furthermore, addition of the RR domain to the fully phosphorylated PST-LOVΔRR leads to a very fast transfer of radioactivity, indicating a highly efficient HK activity and a tight interaction between PST-LOVΔRR and RR, possibly facilitated by the LOV core itself. PMID:17905842

  20. Structure and mechanism of the essential two-component signal-transduction system WalKR in Staphylococcus aureus

    PubMed Central

    Ji, Quanjiang; Chen, Peter J.; Qin, Guangrong; Deng, Xin; Hao, Ziyang; Wawrzak, Zdzislaw; Yeo, Won-Sik; Quang, Jenny Winjing; Cho, Hoonsik; Luo, Guan-Zheng; Weng, Xiaocheng; You, Qiancheng; Luan, Chi-Hao; Yang, Xiaojing; Bae, Taeok; Yu, Kunqian; Jiang, Hualiang; He, Chuan

    2016-01-01

    Most low GC Gram-positive bacteria possess an essential walKR two-component system (TCS) for signal transduction involved in regulating cell wall homoeostasis. Despite the well-established intracellular regulatory mechanism, the role of this TCS in extracellular signal recognition and factors that modulate the activity of this TCS remain largely unknown. Here we identify the extracellular receptor of the kinase ‘WalK' (erWalK) as a key hub for bridging extracellular signal input and intracellular kinase activity modulation in Staphylococcus aureus. Characterization of the crystal structure of erWalK revealed a canonical Per-Arnt-Sim (PAS) domain for signal sensing. Single amino-acid mutation of potential signal-transduction residues resulted in severely impaired function of WalKR. A small molecule derived from structure-based virtual screening against erWalK is capable of selectively activating the walKR TCS. The molecular level characterization of erWalK will not only facilitate exploration of natural signal(s) but also provide a template for rational design of erWalK inhibitors. PMID:26987594

  1. The Role of CzcRS Two-Component Systems in the Heavy Metal Resistance of Pseudomonas putida X4

    PubMed Central

    Liu, Pulin; Chen, Xi; Huang, Qiaoyun; Chen, Wenli

    2015-01-01

    The role of different czcRS genes in metal resistance and the cross-link between czcRS and czcCBA in Pseudomonas putida X4 were studied to advance understanding of the mechanisms by which P. putida copes with metal stress. Similar to P. putida KT2440, two complete czcRS1 and czcRS2 two-component systems, as well as a czcR3 without the corresponding sensing component were amplified in P. putida X4. The histidine kinase genes czcS1 and czcS2 were inactivated and fused to lacZ by homologous recombination. The lacZ fusion assay revealed that Cd2+ and Zn2+ caused a decrease in the transcription of czcRS1, whereas Cd2+ treatment enhanced the transcription of czcRS2. The mutation of different czcRSs showed that all czcRSs are necessary to facilitate full metal resistance in P. putida X4. A putative gene just downstream of czcR3 is related to metal ion resistance, and its transcription was activated by Zn2+. Data from quantitative real-time polymerase chain reaction (qRT-PCR) strongly suggested that czcRSs regulate the expression of czcCBA, and a cross-link exists between different czcRSs. PMID:26225958

  2. RavA/RavR two-component system regulates Xanthomonas campestris pathogenesis and c-di-GMP turnover.

    PubMed

    Tao, Jun; Li, Chunxia; Luo, Chao; He, Chaozu

    2014-09-01

    The two-component system (TCS), consisting of a response regulator (RR) and a cognate histidine kinase (HK), responds to extra-/intercellular cues and triggers adaptive changes. The RR, RavR, has been reported to act as a positive virulence regulator and a c-di-GMP hydrolase in Xanthomonas campestris pv. campestris (Xcc). Here, we identified the cognate HK, RavA, that regulate RavR phosphorylation levels and bacterial pathogenesis. Deletion of ravA, a putative HK gene flanking ravR, dramatically attenuated Xcc virulence. Phenotypes of the double mutant ΔravR/ΔravA were similar to those of ΔravR, suggesting that RavR is a downstream component of RavA signaling. RavA interacts with RavR and positively influences the phosphorylated RavR levels. In vitro analysis suggests that RavR is a bifunctional enzyme involved in c-di-GMP synthesis and degradation. Importantly, mutation and enzyme activity assays indicate that the phosphorylation level affects RavR c-di-GMP turnover activity. These results show that RavA acts as the RavR cognate HK, which fine-tunes RavR functions and enables bacteria to adapt quickly to intracellular changes.

  3. The two-component signal transduction system YvcPQ regulates the bacterial resistance to bacitracin in Bacillus thuringiensis.

    PubMed

    Zhang, Shumeng; Li, Xinfeng; Wang, Xun; Li, Zhou; He, Jin

    2016-10-01

    YvcPQ is one of the two-component signal transduction systems that respond to specific stimuli and enable cells to adjust multiple cellular functions. It consists of a histidine kinase YvcQ and a response regulator YvcP. In this study, through searching the consensus sequence recognized by YvcP, we found four YvcP-binding motifs in the promoter regions of genes yvcR (BMB171_C4100), BMB171_C4385, kapD (BMB171_C4525) and BMB171_C4835 in Bacillus thuringiensis BMB171 which is a representative of Bacillus cereus group, and confirmed that these genes are regulated by YvcP. We compared the sequence of yvcPQ and its downstream genes in genus Bacillus, and found two different kinds of yvc locus, one was the yvcPQ-RS in B. subtilis species and the other was the yvcPQ-R-S1S2 in B. cereus group. Furthermore, we found that YvcP activates the transcription of yvcS1S2 (downstream of yvcR) to promote bacterial resistance to bacitracin and deletion of either yvcPQ operon or yvcS1S2 operon renders the bacterial cells more sensitive to bacitracin. This study enriched our understanding of both the YvcPQ's function and the mechanism of bacterial resistance to bacitracin.

  4. Analysis of the virulence-associated RevSR two-component signal transduction system of Clostridium perfringens.

    PubMed

    Cheung, Jackie K; Wisniewski, Jessica A; Adams, Vicki M; Quinsey, Noelene S; Rood, Julian I

    2016-09-01

    Clostridium perfringens is a Gram-positive, anaerobic, spore-forming bacterium that causes human gas gangrene (clostridial myonecrosis) and food poisoning. Early studies showed that virulence was regulated by the VirSR two-component signal transduction system. However, our identification of the RevR orphan response regulator indicated that more than one system was involved in controlling virulence. To further characterize this virulence-associated regulator, gel mobility shift experiments, coupled with DNase I footprinting, were used to identify the RevR DNA binding sequence. Bioinformatics analysis suggested that an orphan sensor histidine kinase, CPE1757 (renamed RevS), was the cognate sensor of RevR. Interaction between RevS and RevR was demonstrated by use of a bacterial two-hybrid system and validated by protein-protein interaction studies using biolayer interferometry. To assess the involvement of RevS in virulence regulation, the revS gene was inactivated by Targetron insertion. When isogenic wild-type, revS and complemented revS strains were tested in a mouse myonecrosis model, the revS mutant was found to be attenuated in virulence, which was similar to the attenuation observed previously with the revR mutant. However, transcriptional analysis of selected RevR-regulated genes in the revS mutant revealed a different pattern of expression to a revR mutant, suggesting that the RevSR system is more complex than originally thought. Taken together, the results have led to the identification and characterization of the two essential parts of a new regulatory network that is involved in the regulation of virulence in C. perfringens.

  5. A two-component system regulates gene expression of the type IX secretion component proteins via an ECF sigma factor

    PubMed Central

    Kadowaki, Tomoko; Yukitake, Hideharu; Naito, Mariko; Sato, Keiko; Kikuchi, Yuichiro; Kondo, Yoshio; Shoji, Mikio; Nakayama, Koji

    2016-01-01

    The periodontopathogen Porphyromonas gingivalis secretes potent pathogenic proteases, gingipains, via the type IX secretion system (T9SS). This system comprises at least 11 components; however, the regulatory mechanism of their expression has not yet been elucidated. Here, we found that the PorY (PGN_2001)-PorX (PGN_1019)-SigP (PGN_0274) cascade is involved in the regulation of T9SS. Surface plasmon resonance (SPR) analysis revealed a direct interaction between a recombinant PorY (rPorY) and a recombinant PorX (rPorX). rPorY autophosphorylated and transferred a phosphoryl group to rPorX in the presence of Mn2+. These results demonstrate that PorX and PorY act as a response regulator and a histidine kinase, respectively, of a two component system (TCS), although they are separately encoded on the chromosome. T9SS component-encoding genes were down-regulated in a mutant deficient in a putative extracytoplasmic function (ECF) sigma factor, PGN_0274 (SigP), similar to the porX mutant. Electrophoretic gel shift assays showed that rSigP bound to the putative promoter regions of T9SS component-encoding genes. The SigP protein was lacking in the porX mutant. Co-immunoprecipitation and SPR analysis revealed the direct interaction between SigP and PorX. Together, these results indicate that the PorXY TCS regulates T9SS-mediated protein secretion via the SigP ECF sigma factor. PMID:26996145

  6. Two-Component System Cross-Regulation Integrates Bacillus anthracis Response to Heme and Cell Envelope Stress

    PubMed Central

    Mike, Laura A.; Choby, Jacob E.; Brinkman, Paul R.; Olive, Lorenzo Q.; Dutter, Brendan F.; Ivan, Samuel J.; Gibbs, Christopher M.; Sulikowski, Gary A.; Stauff, Devin L.; Skaar, Eric P.

    2014-01-01

    Two-component signaling systems (TCSs) are one of the mechanisms that bacteria employ to sense and adapt to changes in the environment. A prototypical TCS functions as a phosphorelay from a membrane-bound sensor histidine kinase (HK) to a cytoplasmic response regulator (RR) that controls target gene expression. Despite significant homology in the signaling domains of HKs and RRs, TCSs are thought to typically function as linear systems with little to no cross-talk between non-cognate HK-RR pairs. Here we have identified several cell envelope acting compounds that stimulate a previously uncharacterized Bacillus anthracis TCS. Furthermore, this TCS cross-signals with the heme sensing TCS HssRS; therefore, we have named it HssRS interfacing TCS (HitRS). HssRS reciprocates cross-talk to HitRS, suggesting a link between heme toxicity and cell envelope stress. The signaling between HssRS and HitRS occurs in the parental B. anthracis strain; therefore, we classify HssRS-HitRS interactions as cross-regulation. Cross-talk between HssRS and HitRS occurs at both HK-RR and post-RR signaling junctions. Finally, HitRS also regulates a previously unstudied ABC transporter implicating this transporter in the response to cell envelope stress. This chemical biology approach to probing TCS signaling provides a new model for understanding how bacterial signaling networks are integrated to enable adaptation to complex environments such as those encountered during colonization of the vertebrate host. PMID:24675902

  7. Genome-Wide Identification of Two-Component System Genes in Cucurbitaceae Crops and Expression Profiling Analyses in Cucumber.

    PubMed

    He, Yanjun; Liu, Xue; Zou, Tao; Pan, Changtian; Qin, Li; Chen, Lifei; Lu, Gang

    2016-01-01

    Cucumber and watermelon, which belong to Cucurbitaceae family, are economically important cultivated crops worldwide. However, these crops are vulnerable to various adverse environments. Two-component system (TCS), consisting of histidine kinases (HKs), phosphotransfers (HPs), and response regulator proteins (RRs), plays important roles in various plant developmental processes and signaling transduction in responses to a wide range of biotic and abiotic stresses. No systematic investigation has been conducted on TCS genes in Cucurbitaceae species. Based on the completion of the cucumber and watermelon genome draft, we identified 46 and 49 TCS genes in cucumber and watermelon, respectively. The cucumber TCS members included 18 HK(L)s, 7 HPs, and 21 RRs, whereas the watermelon TCS system consisted of 19 HK(L)s, 6 HPs, and 24 RRs. The sequences and domains of TCS members from these two species were highly conserved. Gene duplication events occurred rarely, which might have resulted from the absence of recent whole-genome duplication event in these two Cucurbitaceae crops. Numerous stress- and hormone-responsive cis-elements were detected in the putative promoter regions of the cucumber TCS genes. Meanwhile, quantitative real-time PCR indicated that most of the TCS genes in cucumber were specifically or preferentially expressed in certain tissues or organs, especially in the early developing fruit. Some TCS genes exhibited diverse patterns of gene expression in response to abiotic stresses as well as exogenous trans-zeatin (ZT) and abscisic acid (ABA) treatment, suggesting that TCS genes might play significant roles in responses to various abiotic stresses and hormones in Cucurbitaceae crops.

  8. Genome-Wide Identification of Two-Component System Genes in Cucurbitaceae Crops and Expression Profiling Analyses in Cucumber

    PubMed Central

    He, Yanjun; Liu, Xue; Zou, Tao; Pan, Changtian; Qin, Li; Chen, Lifei; Lu, Gang

    2016-01-01

    Cucumber and watermelon, which belong to Cucurbitaceae family, are economically important cultivated crops worldwide. However, these crops are vulnerable to various adverse environments. Two-component system (TCS), consisting of histidine kinases (HKs), phosphotransfers (HPs), and response regulator proteins (RRs), plays important roles in various plant developmental processes and signaling transduction in responses to a wide range of biotic and abiotic stresses. No systematic investigation has been conducted on TCS genes in Cucurbitaceae species. Based on the completion of the cucumber and watermelon genome draft, we identified 46 and 49 TCS genes in cucumber and watermelon, respectively. The cucumber TCS members included 18 HK(L)s, 7 HPs, and 21 RRs, whereas the watermelon TCS system consisted of 19 HK(L)s, 6 HPs, and 24 RRs. The sequences and domains of TCS members from these two species were highly conserved. Gene duplication events occurred rarely, which might have resulted from the absence of recent whole-genome duplication event in these two Cucurbitaceae crops. Numerous stress- and hormone-responsive cis-elements were detected in the putative promoter regions of the cucumber TCS genes. Meanwhile, quantitative real-time PCR indicated that most of the TCS genes in cucumber were specifically or preferentially expressed in certain tissues or organs, especially in the early developing fruit. Some TCS genes exhibited diverse patterns of gene expression in response to abiotic stresses as well as exogenous trans-zeatin (ZT) and abscisic acid (ABA) treatment, suggesting that TCS genes might play significant roles in responses to various abiotic stresses and hormones in Cucurbitaceae crops. PMID:27446129

  9. The Staphylococcus aureus Two-Component Regulatory System, GraRS, Senses and Confers Resistance to Selected Cationic Antimicrobial Peptides

    PubMed Central

    Yang, Soo-Jin; Mishra, Nagendra N.; Meehl, Michael; Ledala, Nagender; Yeaman, Michael R.; Xiong, Yan Q.; Cheung, Ambrose L.

    2012-01-01

    The two-component regulatory system, GraRS, appears to be involved in staphylococcal responses to cationic antimicrobial peptides (CAPs). However, the mechanism(s) by which GraRS is induced, regulated, and modulated remain undefined. In this study, we used two well-characterized MRSA strains (Mu50 and COL) and their respective mutants of graR and vraG (encoding the ABC transporter-dependent efflux pump immediately downstream of graRS), and show that (i) the expression of two key determinants of net positive surface charge (mprF and dlt) is dependent on the cotranscription of both graR and vraG, (ii) reduced expression of mprF and dlt in graR mutants was phenotypically associated with reduced surface-positive charge, (iii) this net reduction in surface-positive charge in graR and vraG mutants, in turn, correlated with enhanced killing by a range of CAPs of diverse structure and origin, including those from mammalian platelets (tPMPs) and neutrophils (hNP-1) and from bacteria (polymyxin B), and (iv) the synthesis and translocation of membrane lysyl-phosphatidylglycerol (an mprF-dependent function) was substantially lower in graR and vraG mutants than in parental strains. Importantly, the inducibility of mprF and dlt transcription via the graRS-vraFG pathway was selective, with induction by sublethal exposure to the CAPs, RP-1 (platelets), and polymyxin B, but not by other cationic molecules (hNP-1, vancomycin, gentamicin, or calcium-daptomycin). Although graR regulates expression of vraG, the expression of graR was codependent on an intact downstream vraG locus. Collectively, these data support an important role of the graRS and vraFG loci in the sensing of and response to specific CAPs involved in innate host defenses. PMID:21986630

  10. Unexpected properties of sRNA promoters allow feedback control via regulation of a two-component system

    PubMed Central

    Brosse, Anaïs; Korobeinikova, Anna; Gottesman, Susan; Guillier, Maude

    2016-01-01

    Two-component systems (TCS) and small regulatory RNAs (sRNAs) are both widespread regulators of gene expression in bacteria. TCS are in most cases transcriptional regulators. A large class of sRNAs act as post-transcriptional regulators of gene expression that modulate the translation and/or stability of target-mRNAs. Many connections have been recently unraveled between these two types of regulators, resulting in mixed regulatory circuits with poorly characterized properties. This study focuses on the negative feedback circuit that exists between the EnvZ-OmpR TCS and the OmrA/B sRNAs. We have shown that OmpR directly activates transcription from the omrA and omrB promoters, allowing production of OmrA/B sRNAs that target multiple mRNAs, including the ompR-envZ mRNA. This control of ompR-envZ by the Omr sRNAs does not affect the amount of phosphorylated OmpR, i.e. the presumably active form of the regulator. Accordingly, expression of robust OmpR targets, such as the ompC or ompF porin genes, is not affected by OmrA/B. However, we find that several OmpR targets, including OmrA/B themselves, are sensitive to changing total OmpR levels. As a result, OmrA/B limit their own synthesis. These findings unravel an additional layer of control in the expression of some OmpR targets and suggest the existence of differential regulation within the OmpR regulon. PMID:27439713

  11. A non-hydrolyzable ATP derivative generates a stable complex in a light-inducible two-component system.

    PubMed

    Sharda, Shivani; Koay, Melissa S T; Kim, Young-Jun; Engelhard, Martin; Gärtner, Wolfgang

    2009-12-04

    Isothermal calorimetry (ITC) measurements yielded the binding constants during complex formation of light-inducible histidine kinases (HK) and their cognate CheY-type response regulators (RR). HK-RR interactions represent the core function of the bacterial two-component system, which is also present in many bacterial phytochromes. Here, we have studied the recombinant forms of phytochromes CphA and CphB from the cyanobacterium Tolypothrix PCC7601 and their cognate RRs RcpA and RcpB. The interaction between the two reaction partners (HK and RR) was studied in the presence and absence of ATP. A complex formation was observable in the presence of ATP, but specific interactions were only found when a non-hydrolyzable ATP derivative was added to the mixture. Also, the incubation of the HK domain alone (expressed as a recombinant protein) with the RR did not yield specific interactions, indicating that the HK domain is only active as a component of the full-length phytochrome. Considering also previous studies on the same proteins (Hübschmann, T., Jorissen, H. J. M. M., Börner, T., Gärtner, W., and de Marsac, N. (2001) Eur. J. Biochem. 268, 3383-3389) we now conclude that the HK domains of these phytochromes are active only when the chromophore domain is in its Pr form. The formerly documented phosphate transfer between the HK domain and the RR takes place via a transiently formed protein-protein complex, which becomes detectable by ITC in the presence of a non-hydrolyzable ATP derivative. This finding is of interest also in relation to the function of some (blue light-sensitive) photoreceptors that carry the HK domain and the RR fused together in one single protein.

  12. First Insights into the Unexplored Two-Component System YehU/YehT in Escherichia coli

    PubMed Central

    Kraxenberger, Tobias; Fried, Luitpold; Behr, Stefan

    2012-01-01

    Two-component systems (TCSs) consisting of a membrane-anchored histidine kinase (HK) and a response regulator (RR) with DNA-binding activity. are major players in signal transduction in prokaryotes. Whereas most TCSs in Escherichia coli are well characterized, almost nothing is known about the LytS-like HK YehU and the corresponding LytTR-like RR YehT. To identify YehT-regulated genes, we compared the transcriptomes of E. coli cells overproducing either YehT or the RR KdpE (control). The expression levels of 32 genes differed more than 8-fold between the two strains. A comprehensive evaluation of these genes identified yjiY as a target of YehT. Electrophoretic mobility shift assays with purified YehT confirmed that YehT interacts directly with the yjiY promoter. Specifically, YehT binds to two direct repeats of the motif ACC(G/A)CT(C/T)A separated by a 13-bp spacer in the yjiY promoter. The target gene yjiY encodes an inner membrane protein belonging to the CstA superfamily of transporters. In E. coli cells growing in media containing peptides or amino acids as a carbon source, yjiY is strongly induced at the onset of the stationary-growth phase. Moreover, expression was found to be dependent on cyclic AMP (cAMP)/cAMP receptor protein (CRP). It is suggested that YehU/YehT participates in the stationary-phase control network. PMID:22685278

  13. Evolutionary history of the OmpR/IIIA family of signal transduction two component systems in Lactobacillaceae and Leuconostocaceae

    PubMed Central

    2011-01-01

    Background Two component systems (TCS) are signal transduction pathways which typically consist of a sensor histidine kinase (HK) and a response regulator (RR). In this study, we have analyzed the evolution of TCS of the OmpR/IIIA family in Lactobacillaceae and Leuconostocaceae, two families belonging to the group of lactic acid bacteria (LAB). LAB colonize nutrient-rich environments such as foodstuffs, plant materials and the gastrointestinal tract of animals thus driving the study of this group of both basic and applied interest. Results The genomes of 19 strains belonging to 16 different species have been analyzed. The number of TCS encoded by the strains considered in this study varied between 4 in Lactobacillus helveticus and 17 in Lactobacillus casei. The OmpR/IIIA family was the most prevalent in Lactobacillaceae accounting for 71% of the TCS present in this group. The phylogenetic analysis shows that no new TCS of this family has recently evolved in these Lactobacillaceae by either lineage-specific gene expansion or domain shuffling. Furthermore, no clear evidence of non-orthologous replacements of either RR or HK partners has been obtained, thus indicating that coevolution of cognate RR and HKs has been prevalent in Lactobacillaceae. Conclusions The results obtained suggest that vertical inheritance of TCS present in the last common ancestor and lineage-specific gene losses appear as the main evolutionary forces involved in their evolution in Lactobacillaceae, although some HGT events cannot be ruled out. This would agree with the genomic analyses of Lactobacillales which show that gene losses have been a major trend in the evolution of this group. PMID:21284862

  14. A New Two-Component Regulatory System Involved in Adhesion, Autolysis, and Extracellular Proteolytic Activity of Staphylococcus aureus

    PubMed Central

    Fournier, Bénédicte; Hooper, David C.

    2000-01-01

    A transposition mutant of Staphylococcus aureus was selected from the parent strain MT23142, a derivative of strain 8325. The site of transposition was near the 5′ terminus of the gene arlS. ArlS exhibits strong similarities with histidine protein kinases. Sequence analysis suggested that arlS forms an operon with upstream gene arlR. The predicted product of arlR is a member of the OmpR-PhoB family of response regulators. The arlS mutant formed a biofilm on a polystyrene surface unlike the parent strain and the complemented mutant. Biofilm formation was associated with increased primary adherence to polystyrene, whereas cellular adhesion was only slightly decreased. In addition, the arlS mutant exhibited increased autolysis and altered peptidoglycan hydrolase activity compared to the parental strain and to the complemented mutant. As it has been shown for coagulase-negative staphylococci that some autolysins are able to bind polymer surfaces, these data suggest that the two-component regulatory system ArlS-ArlR may control attachment to polymer surfaces by affecting secreted peptidoglycan hydrolase activity. Finally, the arlS mutant showed a dramatic decrease of extracellular proteolytic activity, including serine protease activity, in comparison to the wild-type strain and the complemented mutant, and cells grown in the presence of phenylmethylsulfonyl fluoride (a serine protease inhibitor) showed an increased autolysin activity. Since the locus arlR-arlS strikingly modifies extracellular proteolytic activity, this locus might also be involved in the virulence of S. aureus. PMID:10869073

  15. Extrusion foaming of thermoplastic cellulose acetate from renewable resources using a two-component physical blowing agent system

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Windeck, C.; Hendriks, S.; Zepnik, S.; Wodke, T.

    2014-05-01

    Thermoplastic cellulose acetate (CA) is a bio-based polymer with optical, mechanical and thermal properties comparable to those of polystyrene (PS). The substitution of the predominant petrol-based PS in applications like foamed food trays can lead to a more sustainable economic practice. However, CA is also suitable for more durable applications as the biodegradability rate can be controlled by adjusting the degree of substitutions. The extrusion foaming of CA still has to overcome certain challenges. CA is highly hydrophilic and can suffer from hydrolytic degradation if not dried properly. Therefore, the influence of residual moisture on the melt viscosity is rather high. Beyond, the surface quality of foam CA sheets is below those of PS due to the particular foaming behaviour. This paper presents results of a recent study on extrusion foamed CA, using a two-component physical blowing agent system compromising HFO 1234ze as blowing agent and organic solvents as co-propellant. Samples with different co-propellants are processed on a laboratory single screw extruder at IKV. Morphology and surface topography are investigated with respect to the blowing agent composition and the die pressure. In addition, relationships between foam density, foam morphology and the propellants are analysed. The choice of the co-propellant has a significant influence on melt-strength, foaming behaviour and the possible blow-up ratio of the sheet. Furthermore, a positive influence of the co-propellant on the surface quality can be observed. In addition, the focus is laid on the effect of external contact cooling of the foamed sheets after the die exit.

  16. Two-Component-System Histidine Kinases Involved in Growth of Listeria monocytogenes EGD-e at Low Temperatures

    PubMed Central

    Markkula, Annukka; Lindström, Miia; Korkeala, Hannu

    2015-01-01

    Two-component systems (TCSs) aid bacteria in adapting to a wide variety of stress conditions. While the role of TCS response regulators in the cold tolerance of the psychrotrophic foodborne pathogen Listeria monocytogenes has been demonstrated previously, no comprehensive studies showing the role of TCS histidine kinases of L. monocytogenes at low temperature have been performed. We compared the expression levels of each histidine kinase-encoding gene of L. monocytogenes EGD-e in logarithmic growth phase at 3°C and 37°C, as well as the expression levels 30 min, 3 h, and 7 h after cold shock at 5°C and preceding cold shock (at 37°C). We constructed a deletion mutation in each TCS histidine kinase gene, monitored the growth of the EGD-e wild-type and mutant strains at 3°C and 37°C, and measured the minimum growth temperature of each strain. Two genes, yycG and lisK, proved significant in regard to induced relative expression levels under cold conditions and cold-sensitive mutant phenotypes. Moreover, the ΔresE mutant showed a lower growth rate than that of wild-type EGD-e at 3°C. Eleven other genes showed upregulated gene expression but revealed no cold-sensitive phenotypes. The results show that the histidine kinases encoded by yycG and lisK are important for the growth and adaptation of L. monocytogenes EGD-e at low temperature. PMID:25841007

  17. Identification, Functional Characterization and Regulon Prediction of a Novel Two Component System Comprising BAS0540-BAS0541 of Bacillus anthracis

    PubMed Central

    Gopalani, Monisha; Kandari, Divya; Bhatnagar, Rakesh

    2016-01-01

    Two component systems (TCSs) can be envisaged as complex molecular devices that help the bacteria to sense its environment and respond aptly. 41 TCSs are predicted in Bacillus anthracis, a potential bioterrorism agent, of which only four have been studied so far. Thus, the intricate signaling network contributed by TCSs remains largely unmapped in B. anthracis and needs comprehensive exploration. In this study, we functionally characterized one such system composed of BAS0540 (Response regulator) and BAS0541 (Histidine kinase). BAS0540-BAS0541, the closest homolog of CiaRH of Streptococcus in B. anthracis, forms a functional TCS with BAS0541 displaying autophosphorylation and subsequent phosphotransfer to BAS0540. BAS0540 was also found to accept phosphate from physiologically relevant small molecule phosphodonors like acetyl phosphate and carbamoyl phosphate. Results of qRT-PCR and immunoblotting demonstrated that BAS0540 exhibits a constitutive expression throughout the growth of B. anthracis. Regulon prediction for BAS0540 in B. anthracis was done in silico using the consensus DNA binding sequence of CiaR of Streptococcus. The predicted regulon of BAS0540 comprised of 23 genes, which could be classified into 8 functionally diverse categories. None of the proven virulence factors were a part of the predicted regulon, an observation contrasting with the regulon of CiaRH in Streptococci. Electrophoretic mobility shift assay was used to show direct binding of purified BAS0540 to the upstream regions of 5 putative regulon candidates- BAS0540 gene itself; a gene predicted to encode cell division protein FtsA; a self–immunity gene; a RND family transporter gene and a gene encoding stress (heat) responsive protein. A significant enhancement in the DNA binding ability of BAS0540 was observed upon phosphorylation. Overexpression of response regulator BAS0540 in B. anthracis led to a prodigious increase of ~6 folds in the cell length, thereby conferring it a filamentous

  18. The CroRS Two-Component Regulatory System Is Required for Intrinsic β-Lactam Resistance in Enterococcus faecalis

    PubMed Central

    Comenge, Yannick; Quintiliani, Richard; Li, Ling; Dubost, Lionnel; Brouard, Jean-Paul; Hugonnet, Jean-Emmanuel; Arthur, Michel

    2003-01-01

    Enterococcus faecalis produces a specific penicillin-binding protein (PBP5) that mediates high-level resistance to the cephalosporin class of β-lactam antibiotics. Deletion of a locus encoding a previously uncharacterized two-component regulatory system of E. faecalis (croRS) led to a 4,000-fold reduction in the MIC of the expanded-spectrum cephalosporin ceftriaxone. The cytoplasmic domain of the sensor kinase (CroS) was purified and shown to catalyze ATP-dependent autophosphorylation followed by transfer of the phosphate to the mated response regulator (CroR). The croR and croS genes were cotranscribed from a promoter (croRp) located in the rrnC-croR intergenic region. A putative seryl-tRNA synthetase gene (serS) located immediately downstream from croS did not appear to be a target of CroRS regulation or to play a role in ceftriaxone resistance. A plasmid-borne croRp-lacZ fusion was trans-activated by the CroRS system in response to the presence of ceftriaxone in the culture medium. The fusion was also induced by representatives of other classes of β-lactam antibiotics and by inhibitors of early and late steps of peptidoglycan synthesis. The croRS null mutant produced PBP5, and expression of an additional copy of pbp5 under the control of a heterologous promoter did not restore ceftriaxone resistance. Deletion of croRS was not associated with any defect in the synthesis of the nucleotide precursor UDP-MurNAc-pentapeptide or of the d-Ala4→l-Ala-l-Ala-Lys3 peptidoglycan cross-bridge. Thus, the croRS mutant was susceptible to ceftriaxone despite the production of PBP5 and the synthesis of wild-type peptidoglycan precursors. These observations constitute the first description of regulatory genes essential for PBP5-mediated β-lactam resistance in enterococci. PMID:14645279

  19. An Oxygen-Sensing Two-Component System in the Burkholderia cepacia Complex Regulates Biofilm, Intracellular Invasion, and Pathogenicity.

    PubMed

    Schaefers, Matthew M; Liao, Tiffany L; Boisvert, Nicole M; Roux, Damien; Yoder-Himes, Deborah; Priebe, Gregory P

    2017-01-01

    Burkholderia dolosa is a member of the Burkholderia cepacia complex (BCC), which is a group of bacteria that cause chronic lung infection in patients with cystic fibrosis (CF) and can be associated with outbreaks carrying high morbidity and mortality. While investigating the genomic diversity of B. dolosa strains collected from an outbreak among CF patients, we previously identified fixL as a gene showing signs of strong positive selection. This gene has homology to fixL of the rhizobial FixL/FixJ two-component system. The goals of this study were to determine the functions of FixLJ and their role in virulence in B. dolosa. We generated a fixLJ deletion mutant and complemented controls in B. dolosa strain AU0158. Using a fixK-lacZ reporter we found that FixLJ was activated in low oxygen in multiple BCC species. In a murine pneumonia model, the B. dolosa fixLJ deletion mutant was cleared faster from the lungs and spleen than wild-type B. dolosa strain AU0158 at 7 days post infection. Interestingly, the fixLJ deletion mutant made more biofilm, albeit with altered structure, but was less motile than strain AU0158. Using RNA-seq with in vitro grown bacteria, we found ~11% of the genome was differentially expressed in the fixLJ deletion mutant relative to strain AU0158. Multiple flagella-associated genes were down-regulated in the fixLJ deletion mutant, so we also evaluated virulence of a fliC deletion mutant, which lacks a flagellum. We saw no difference in the ability of the fliC deletion mutant to persist in the murine model relative to strain AU0158, suggesting factors other than flagella caused the phenotype of decreased persistence. We found the fixLJ deletion mutant to be less invasive in human lung epithelial and macrophage-like cells. In conclusion, B. dolosa fixLJ is a global regulator that controls biofilm formation, motility, intracellular invasion/persistence, and virulence.

  20. An Oxygen-Sensing Two-Component System in the Burkholderia cepacia Complex Regulates Biofilm, Intracellular Invasion, and Pathogenicity

    PubMed Central

    Liao, Tiffany L.; Boisvert, Nicole M.; Priebe, Gregory P.

    2017-01-01

    Burkholderia dolosa is a member of the Burkholderia cepacia complex (BCC), which is a group of bacteria that cause chronic lung infection in patients with cystic fibrosis (CF) and can be associated with outbreaks carrying high morbidity and mortality. While investigating the genomic diversity of B. dolosa strains collected from an outbreak among CF patients, we previously identified fixL as a gene showing signs of strong positive selection. This gene has homology to fixL of the rhizobial FixL/FixJ two-component system. The goals of this study were to determine the functions of FixLJ and their role in virulence in B. dolosa. We generated a fixLJ deletion mutant and complemented controls in B. dolosa strain AU0158. Using a fixK-lacZ reporter we found that FixLJ was activated in low oxygen in multiple BCC species. In a murine pneumonia model, the B. dolosa fixLJ deletion mutant was cleared faster from the lungs and spleen than wild-type B. dolosa strain AU0158 at 7 days post infection. Interestingly, the fixLJ deletion mutant made more biofilm, albeit with altered structure, but was less motile than strain AU0158. Using RNA-seq with in vitro grown bacteria, we found ~11% of the genome was differentially expressed in the fixLJ deletion mutant relative to strain AU0158. Multiple flagella-associated genes were down-regulated in the fixLJ deletion mutant, so we also evaluated virulence of a fliC deletion mutant, which lacks a flagellum. We saw no difference in the ability of the fliC deletion mutant to persist in the murine model relative to strain AU0158, suggesting factors other than flagella caused the phenotype of decreased persistence. We found the fixLJ deletion mutant to be less invasive in human lung epithelial and macrophage-like cells. In conclusion, B. dolosa fixLJ is a global regulator that controls biofilm formation, motility, intracellular invasion/persistence, and virulence. PMID:28046077

  1. Analysis of the activity and regulon of the two-component regulatory system encoded by Cjj1484 and Cjj1483 of Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is a leading cause of bacterial diarrheal disease throughout the world and a frequent commensal in the intestinal tract of poultry and many other animals. For maintaining optimal growth and ability to colonize various hosts, C. jejuni depends upon two-component regulatory system...

  2. Dissecting the regulon of the two-component system CvsSR: Identifying new virulence genes in Pseudomonas syringae pv. tomato DC3000

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recognition of environmental changes and regulation of genes that allow for adaption to those changes is essential for survival of bacteria. Two-component systems (TCSs) allow bacteria to sense and adapt to their environment. We previously identified the TCS CvsSR in the bacterial plant pathogen Pse...

  3. PSPTO_3380 and PSPTO_3381: A two-component system that influences the virulence of Pseudomonas syringae pv. tomato DC3000

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major factor in pathogenesis is the ability of the pathogen to respond and react to the host environment during the infection cycle. For bacteria, external stimuli are mainly sensed by two-component systems (TCS) composed of histidine kinases with external recognition domains and cytoplasmic respo...

  4. Characterization of a Novel Two-Component Regulatory System, HptRS, the Regulator for the Hexose Phosphate Transport System in Staphylococcus aureus

    PubMed Central

    Park, Joo Youn; Kim, Jong Wan; Moon, Bo Youn; Lee, Juyeun; Fortin, Ye Ji; Austin, Frank W.; Yang, Soo-Jin

    2015-01-01

    Hexose phosphate is an important carbon source within the cytoplasm of host cells. Bacterial pathogens that invade, survive, and multiply within various host epithelial cells exploit hexose phosphates from the host cytoplasm through the hexose phosphate transport (HPT) system to gain energy and synthesize cellular components. In Escherichia coli, the HPT system consists of a two-component regulatory system (UhpAB) and a phosphate sensor protein (UhpC) that tightly regulate expression of a hexose phosphate transporter (UhpT). Although growing evidence suggests that Staphylococcus aureus also can invade, survive, and multiply within various host epithelial cells, the genetic elements involved in the HPT system in S. aureus have not been characterized yet. In this study, we identified and characterized the HPT system in S. aureus that includes the hptRS (a novel two-component regulatory system), the hptA (a putative phosphate sensor), and the uhpT (a hexose phosphate transporter) genes. The hptA, hptRS, and uhpT markerless deletion mutants were generated by an allelic replacement method using a modified pMAD-CM-GFPuv vector system. We demonstrated that both hptA and hptRS are required to positively regulate transcription of uhpT in response to extracellular phosphates, such as glycerol-3-phosphate (G3P), glucose-6-phosphate (G6P), and fosfomycin. Mutational studies revealed that disruption of the hptA, hptRS, or uhpT gene impaired the growth of bacteria when the available carbon source was limited to G6P, impaired survival/multiplication within various types of host cells, and increased resistance to fosfomycin. The results of this study suggest that the HPT system plays an important role in adaptation of S. aureus within the host cells and could be an important target for developing novel antistaphylococcal therapies. PMID:25644013

  5. The development of a two-component force dynamometer and tool control system for dynamic machine tool research

    NASA Technical Reports Server (NTRS)

    Sutherland, I. A.

    1973-01-01

    The development is presented of a tooling system that makes a controlled sinusoidal oscillation simulating a dynamic chip removal condition. It also measures the machining forces in two mutually perpendicular directions without any cross sensitivity.

  6. A two-component enhancer-inhibitor transposon mutagenesis system for functional analysis of the Arabidopsis genome.

    PubMed Central

    Speulman, E; Metz, P L; van Arkel, G; te Lintel Hekkert, B; Stiekema, W J; Pereira, A

    1999-01-01

    A modified Enhancer-Inhibitor transposon system was used to generate a series of mutant lines by single-seed descent such that multiple I insertions occurred per plant. The distribution of original insertions in the population was assessed by isolating transposon-flanking DNA, and a database of insertion sites was created. Approximately three-quarters of the identified insertion sites show similarity to sequences stored in public databases, which demonstrates the power of this regimen of insertional mutagenesis. To isolate insertions in specific genes, we developed three-dimensional pooling and polymerase chain reaction strategies that we then validated by identifying mutants for the regulator genes APETALA1 and SHOOT MERISTEMLESS. The system then was used to identify inserts in a class of uncharacterized genes involved in lipid biosynthesis; one such insertion conferred a fiddlehead mutant phenotype. PMID:10521517

  7. Pattern formation in a two-component reaction-diffusion system with delayed processes on a network

    NASA Astrophysics Data System (ADS)

    Petit, Julien; Asllani, Malbor; Fanelli, Duccio; Lauwens, Ben; Carletti, Timoteo

    2016-11-01

    Reaction-diffusion systems with time-delay defined on complex networks have been studied in the framework of the emergence of Turing instabilities. The use of the Lambert W-function allowed us to get explicit analytic conditions for the onset of patterns as a function of the main involved parameters, the time-delay, the network topology and the diffusion coefficients. Depending on these parameters, the analysis predicts whether the system will evolve towards a stationary Turing pattern or rather to a wave pattern associated to a Hopf bifurcation. The possible outcomes of the linear analysis overcome the respective limitations of the single-species case with delay, and that of the classical activator-inhibitor variant without delay. Numerical results gained from the Mimura-Murray model support the theoretical approach.

  8. A model system for pathogen detection using a two-component bacteriophage/bioluminescent signal amplification assay

    NASA Astrophysics Data System (ADS)

    Bright, Nathan G.; Carroll, Richard J.; Applegate, Bruce M.

    2004-03-01

    Microbial contamination has become a mounting concern the last decade due to an increased emphasis of minimally processed food products specifically produce, and the recognition of foodborne pathogens such as Campylobacter jejuni, Escherichia coli O157:H7, and Listeria monocytogenes. This research investigates a detection approach utilizing bacteriophage pathogen specificity coupled with a bacterial bioluminescent bioreporter utilizing the quorum sensing molecule from Vibrio fischeri, N-(3-oxohexanoyl)-homoserine lactone (3-oxo-C6-HSL). The 3-oxo-C6-HSL molecules diffuse out of the target cell after infection and induce bioluminescence from a population of 3-oxo-C6-HSL bioreporters (ROLux). E. coli phage M13, a well-characterized bacteriophage, offers a model system testing the use of bacteriophage for pathogen detection through cell-to-cell communication via a LuxR/3-oxo-C6-HSL system. Simulated temperate phage assays tested functionality of the ROLux reporter and production of 3-oxo-C6-HSL by various test strains. These assays showed detection limits of 102cfu after 24 hours in a varietry of detection formats. Assays incorporating the bacteriophage M13-luxI with the ROLux reporter and a known population of target cells were subsequently developed and have shown consistent detection limits of 105cfu target organisms. Measurable light response from high concentrations of target cells was almost immediate, suggesting an enrichment step to further improve detection limits and reduce assay time.

  9. Thermal analysis of reactions in soda-lime silicate glass batches containing melting accelerants: I, one- and two-component systems

    SciTech Connect

    Hong, Kug Sun; Speyer, R.F. )

    1993-03-01

    To identify each glass melting reaction in a multicomponent system, one-component and two-component reaction processes were studied using DTA, TGA, and XRD. Two-component mixtures were prepared by choosing pairs in the same ratio as in a commercial container glass batch composition (sand-soda ash-calcite-dolomite-feldspar). The presence of silica in the silicia-calcite system decreased the termination temperature of the decomposition of calcite, but did not alter the onset of decomposition. Similar behavior was found in the dolomite-silica system. A double carbonate (Na[sub 2]Ca(CO[sub 3])[sub 2]) formed via solid-state reaction in the calcite-soda ash system, and metasilicate/disilicate phases were detected during the fusion process in the soda ash-silica system. The effects of reaction accelerant additions in the soda ash-silica system were investigated using 1 wt% additions of sodium sulfate, sodium nitrate, and sodium chloride. Sodium chloride was the most effective melting accelerant, lowering the termination temperature of CO[sub 2] release by [approximately]80C compared with the soda ash-silica system with no additives. NaCl additions caused complete reaction and/or fusion of Na[sub 2]CO[sub 3] prior to its melting temperature. Sodium sulfate additions acted to suppress metasilicate/disilicate formation by coating quartz grains and shifted consequent CO[sub 2] release to higher temperature.

  10. Component A3 of the methylcoenzyme M methylreductase system of Methanobacterium thermoautotrophicum delta H: resolution into two components.

    PubMed Central

    Rouvière, P E; Wolfe, R S

    1989-01-01

    Component A3 of the methylcoenzyme M methylreductase system of Methanobacterium thermoautotrophicum (strain delta H) has been resolved into two fractions. One, named component A3a, was defined as the fraction required along with components A2 and C to produce methane from 2-(methylthio)ethanesulfonate when titanium(III) citrate was used as the sole source of electrons. The second one, named component A3b, was required when H2 and 7-mercapto-N-heptanoyl-O-phospho-L-threonine were provided as the dual source of electrons. Component A3a was a large iron-sulfur protein aggregate (Mr 500,000) and is most likely involved in providing electrons at a low potential for the reductive activation of component C. PMID:2768183

  11. THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS: Topological aspects in a two-component Bose condensed system in a neutron star

    NASA Astrophysics Data System (ADS)

    Ren, Ji-Rong; Guo, Heng

    2009-08-01

    By making use of Duan-Ge's decomposition theory of gauge potential and the topological current theory proposed by Prof. Duan Yi-Shi, we study a two-component superfluid Bose condensed system, which is supposed to be realized in the interior of neutron stars in the form of the coexistence of a neutron superfluid and a protonic superconductor. We propose that this system possesses vortex lines. The topological charges of the vortex lines are characterized by the Hopf indices and the Brower degrees of ø-mapping.

  12. The IRF5-TNPO3 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share.

    PubMed

    Kottyan, Leah C; Zoller, Erin E; Bene, Jessica; Lu, Xiaoming; Kelly, Jennifer A; Rupert, Andrew M; Lessard, Christopher J; Vaughn, Samuel E; Marion, Miranda; Weirauch, Matthew T; Namjou, Bahram; Adler, Adam; Rasmussen, Astrid; Glenn, Stuart; Montgomery, Courtney G; Hirschfield, Gideon M; Xie, Gang; Coltescu, Catalina; Amos, Chris; Li, He; Ice, John A; Nath, Swapan K; Mariette, Xavier; Bowman, Simon; Rischmueller, Maureen; Lester, Sue; Brun, Johan G; Gøransson, Lasse G; Harboe, Erna; Omdal, Roald; Cunninghame-Graham, Deborah S; Vyse, Tim; Miceli-Richard, Corinne; Brennan, Michael T; Lessard, James A; Wahren-Herlenius, Marie; Kvarnström, Marika; Illei, Gabor G; Witte, Torsten; Jonsson, Roland; Eriksson, Per; Nordmark, Gunnel; Ng, Wan-Fai; Anaya, Juan-Manuel; Rhodus, Nelson L; Segal, Barbara M; Merrill, Joan T; James, Judith A; Guthridge, Joel M; Scofield, R Hal; Alarcon-Riquelme, Marta; Bae, Sang-Cheol; Boackle, Susan A; Criswell, Lindsey A; Gilkeson, Gary; Kamen, Diane L; Jacob, Chaim O; Kimberly, Robert; Brown, Elizabeth; Edberg, Jeffrey; Alarcón, Graciela S; Reveille, John D; Vilá, Luis M; Petri, Michelle; Ramsey-Goldman, Rosalind; Freedman, Barry I; Niewold, Timothy; Stevens, Anne M; Tsao, Betty P; Ying, Jun; Mayes, Maureen D; Gorlova, Olga Y; Wakeland, Ward; Radstake, Timothy; Martin, Ezequiel; Martin, Javier; Siminovitch, Katherine; Moser Sivils, Kathy L; Gaffney, Patrick M; Langefeld, Carl D; Harley, John B; Kaufman, Kenneth M

    2015-01-15

    Exploiting genotyping, DNA sequencing, imputation and trans-ancestral mapping, we used Bayesian and frequentist approaches to model the IRF5-TNPO3 locus association, now implicated in two immunotherapies and seven autoimmune diseases. Specifically, in systemic lupus erythematosus (SLE), we resolved separate associations in the IRF5 promoter (all ancestries) and with an extended European haplotype. We captured 3230 IRF5-TNPO3 high-quality, common variants across 5 ethnicities in 8395 SLE cases and 7367 controls. The genetic effect from the IRF5 promoter can be explained by any one of four variants in 5.7 kb (P-valuemeta = 6 × 10(-49); OR = 1.38-1.97). The second genetic effect spanned an 85.5-kb, 24-variant haplotype that included the genes IRF5 and TNPO3 (P-valuesEU = 10(-27)-10(-32), OR = 1.7-1.81). Many variants at the IRF5 locus with previously assigned biological function are not members of either final credible set of potential causal variants identified herein. In addition to the known biologically functional variants, we demonstrated that the risk allele of rs4728142, a variant in the promoter among the lowest frequentist probability and highest Bayesian posterior probability, was correlated with IRF5 expression and differentially binds the transcription factor ZBTB3. Our analytical strategy provides a novel framework for future studies aimed at dissecting etiological genetic effects. Finally, both SLE elements of the statistical model appear to operate in Sjögren's syndrome and systemic sclerosis whereas only the IRF5-TNPO3 gene-spanning haplotype is associated with primary biliary cirrhosis, demonstrating the nuance of similarity and difference in autoimmune disease risk mechanisms at IRF5-TNPO3.

  13. Unsteady fluid dynamics of several mechanical prosthetic heart valves using a two component laser Doppler anemometer system.

    PubMed

    Akutsu, T; Modi, V J

    1997-10-01

    Five typical mechanical heart valves (Starr-Edwards, Björk-Shiley convexo-concave (c-c), Björk-Shiley monostrut, Bicer-Val, and St. Jude Medical) were tested in the mitral position under the pulsatile flow condition. The test program included measurements of velocity and turbulent stresses at 5 downstream locations. The study was carried out using a sophisticated cardiac simulator in conjunction with a highly sensitive 2 component laser Doppler anemometer (LDA) system. The continuous monitoring of parametric time histories revealed useful details about the complex flow and helped to establish the locations and times of the peak parameter values. Based upon the nondimensional presentation of data, the following general conclusions can be made. First, all the 5 valve designs created elevated turbulent stresses during the accelerating and peak flow phases, presenting the possibility of thromboembolism and perhaps hemolysis. Second, the difference in valve configuration seemed to affect the flow characteristics; third, the bileaflet design of the St. Jude valve appeared to create a lower turbulence stress level.

  14. On the characterization of dynamic supramolecular systems: a general mathematical association model for linear supramolecular copolymers and application on a complex two-component hydrogen-bonding system.

    PubMed

    Odille, Fabrice G J; Jónsson, Stefán; Stjernqvist, Susann; Rydén, Tobias; Wärnmark, Kenneth

    2007-01-01

    A general mathematical model for the characterization of the dynamic (kinetically labile) association of supramolecular assemblies in solution is presented. It is an extension of the equal K (EK) model by the stringent use of linear algebra to allow for the simultaneous presence of an unlimited number of different units in the resulting assemblies. It allows for the analysis of highly complex dynamic equilibrium systems in solution, including both supramolecular homo- and copolymers without the recourse to extensive approximations, in a field in which other analytical methods are difficult. The derived mathematical methodology makes it possible to analyze dynamic systems such as supramolecular copolymers regarding for instance the degree of polymerization, the distribution of a given monomer in different copolymers as well as its position in an aggregate. It is to date the only general means to characterize weak supramolecular systems. The model was fitted to NMR dilution titration data by using the program Matlab, and a detailed algorithm for the optimization of the different parameters has been developed. The methodology is applied to a case study, a hydrogen-bonded supramolecular system, salen 4+porphyrin 5. The system is formally a two-component system but in reality a three-component system. This results in a complex dynamic system in which all monomers are associated to each other by hydrogen bonding with different association constants, resulting in homo- and copolymers 4n5m as well as cyclic structures 6 and 7, in addition to free 4 and 5. The system was analyzed by extensive NMR dilution titrations at variable temperatures. All chemical shifts observed at different temperatures were used in the fitting to obtain the DeltaH degrees and DeltaS degrees values producing the best global fit. From the derived general mathematical expressions, system 4+5 could be characterized with respect to above-mentioned parameters.

  15. Phosphatase activity of the histidine kinases ensures pathway specificity of the ChrSA and HrrSA two-component systems in Corynebacterium glutamicum.

    PubMed

    Hentschel, Eva; Mack, Christina; Gätgens, Cornelia; Bott, Michael; Brocker, Melanie; Frunzke, Julia

    2014-06-01

    The majority of bacterial genomes encode a high number of two-component systems controlling gene expression in response to a variety of different stimuli. The Gram-positive soil bacterium Corynebacterium glutamicum contains two homologous two-component systems (TCS) involved in the haem-dependent regulation of gene expression. Whereas the HrrSA system is crucial for utilization of haem as an alternative iron source, ChrSA is required to cope with high toxic haem levels. In this study, we analysed the interaction of HrrSA and ChrSA in C. glutamicum. Growth of TCS mutant strains, in vitro phosphorylation assays and promoter assays of P(hrtBA) and P(hmuO) fused to eyfp revealed cross-talk between both systems. Our studies further indicated that both kinases exhibit a dual function as kinase and phosphatase. Mutation of the conserved glutamine residue in the putative phosphatase motif DxxxQ of HrrS and ChrS resulted in a significantly increased activity of their respective target promoters (P(hmuO) and P(hrtBA) respectively). Remarkably, phosphatase activity of both kinases was shown to be specific only for their cognate response regulators. Altogether our data suggest the phosphatase activity of HrrS and ChrS as key mechanism to ensure pathway specificity and insulation of these two homologous systems.

  16. CitA/CitB two-component system regulating citrate fermentation in Escherichia coli and its relation to the DcuS/DcuR system in vivo.

    PubMed

    Scheu, P D; Witan, J; Rauschmeier, M; Graf, S; Liao, Y-F; Ebert-Jung, A; Basché, T; Erker, W; Unden, G

    2012-02-01

    Citrate fermentation by Escherichia coli requires the function of the citrate/succinate antiporter CitT (citT gene) and of citrate lyase (citCDEFXG genes). Earlier experiments suggested that the two-component system CitA/CitB, consisting of the membrane-bound sensor kinase CitA and the response regulator CitB, stimulates the expression of the genes in the presence of citrate, similarly to CitA/CitB of Klebsiella pneumoniae. In this study, the expression of a chromosomal citC-lacZ gene fusion was shown to depend on CitA/CitB and citrate. CitA/CitB is related to the DcuS/DcuR two-component system which induces the expression of genes for fumarate respiration in response to C(4)-dicarboxylates and citrate. Unlike DcuS, CitA required none of the cognate transporters (CitT, DcuB, or DcuC) for function, and the deletion of the corresponding genes showed no effect on the expression of citC-lacZ. The citAB operon is preceded by a DcuR binding site. Phosphorylated DcuR bound specifically to the promoter region, and the deletion of dcuS or dcuR reduced the expression of citC. The data indicate the presence of a regulatory cascade consisting of DcuS/DcuR modulating citAB expression (and CitA/CitB levels) and CitA/CitB controlling the expression of the citCDEFXGT gene cluster in response to citrate. In vivo fluorescence resonance energy transfer (FRET) and the bacterial two-hybrid system (BACTH) showed interaction between the DcuS and CitA proteins. However, BACTH and expression studies demonstrated the lack of interaction and cross-regulation between CitA and DcuR or DcuS and CitB. Therefore, there is only linear phosphoryl transfer (DcuS→DcuR and CitA→CitB) without cross-regulation between DcuS/DcuR and CitA/CitB.

  17. The Role of the Two-Component System BaeSR in Disposing Chemicals through Regulating Transporter Systems in Acinetobacter baumannii

    PubMed Central

    Lin, Ming-Feng; Lin, Yun-You; Lan, Chung-Yu

    2015-01-01

    Bacterial two-component regulatory systems (TCSs) facilitate changes in gene expression in response to environmental stimuli. TCS BaeR regulons influence tigecycline susceptibility in Acinetobacter baumannii through positively regulating the pump genes adeA and adeB. In this study, we demonstrate that an additional two transport systems, AdeIJK and MacAB-TolC, are also regulated by BaeSR. In the wild type and clinical tigecycline-resistant A. baumannii strains, gene expression of AdeIJK and MacAB-TolC increased after tigecycline induction, implicating their importance to tigecycline resistance in addition to AdeABC. Phenotypic microarray results showed that A. baumannii is vulnerable to certain chemicals, especially tannic acid, after deleting baeR, which was confirmed using the spot assay. The wild-type strain of A. baumannii also exhibited 1.6-fold and 4.4-fold increase in gene expression of adeJ and macB in the medium with 100 μg/mL tannic acid, but the increase was fully inhibited by baeR deletion. An electrophoretic motility shift assay based on an interaction between His-BaeR and the adeA, adeI and macA promoter regions did not demonstrate direct binding. In conclusion, A. baumannii can use the TCS BaeSR in disposing chemicals, such as tannic acid and tigecycline, through regulating the efflux pumps. PMID:26161744

  18. The PprA-PprB two-component system activates CupE, the first non-archetypal Pseudomonas aeruginosa chaperone-usher pathway system assembling fimbriae.

    PubMed

    Giraud, Caroline; Bernard, Christophe S; Calderon, Virginie; Yang, Liang; Filloux, Alain; Molin, Søren; Fichant, Gwennaele; Bordi, Christophe; de Bentzmann, Sophie

    2011-03-01

    The opportunistic pathogen Pseudomonas aeruginosa has redundant molecular systems that contribute to its pathogenicity. Those assembling fimbrial structures promote complex organized community lifestyle. We characterized a new 5.8 kb genetic locus, cupE, that includes the conserved usher- and chaperone-encoding genes. This locus, widely conserved in different bacterial species, contains four additional genes encoding non-archetypal fimbrial subunits. We first evidenced that the cupE gene cluster was specifically expressed in biofilm conditions and was responsible for fibre assembly containing at least CupE1 protein, at the bacterial cell surface. These fimbriae not only played a significant role in the early stages (microcolony and macrocolony formation) but also in shaping 3D mushrooms during P. aeruginosa biofilm development. Using wide-genome transposon mutagenesis, we identified the PprAB two-component system (TCS) as a regulator of cupE expression, and further demonstrated the involvement of the PprAB TCS in direct CupE fimbrial assembly activation. Thus, this TCS represents a new regulatory element controlling the transition between planktonic and community lifestyles in P. aeruginosa.

  19. The BatR/BatS Two-Component Regulatory System Controls the Adaptive Response of Bartonella henselae during Human Endothelial Cell Infection ▿ † ‡

    PubMed Central

    Quebatte, Maxime; Dehio, Michaela; Tropel, David; Basler, Andrea; Toller, Isabella; Raddatz, Guenter; Engel, Philipp; Huser, Sonja; Schein, Hermine; Lindroos, Hillevi L.; Andersson, Siv G. E.; Dehio, Christoph

    2010-01-01

    Here, we report the first comprehensive study of Bartonella henselae gene expression during infection of human endothelial cells. Expression of the main cluster of upregulated genes, comprising the VirB type IV secretion system and its secreted protein substrates, is shown to be under the positive control of the transcriptional regulator BatR. We demonstrate binding of BatR to the promoters of the virB operon and a substrate-encoding gene and provide biochemical evidence that BatR and BatS constitute a functional two-component regulatory system. Moreover, in contrast to the acid-inducible (pH 5.5) homologs ChvG/ChvI of Agrobacterium tumefaciens, BatR/BatS are optimally activated at the physiological pH of blood (pH 7.4). By conservation analysis of the BatR regulon, we show that BatR/BatS are uniquely adapted to upregulate a genus-specific virulence regulon during hemotropic infection in mammals. Thus, we propose that BatR/BatS two-component system homologs represent vertically inherited pH sensors that control the expression of horizontally transmitted gene sets critical for the diverse host-associated life styles of the alphaproteobacteria. PMID:20418395

  20. Cross-talk Suppression between the CpxA-CpxR and EnvZ-OmpR Two-Component Systems in E. coli

    PubMed Central

    Siryaporn, Albert; Goulian, Mark

    2009-01-01

    Many bacteria possess large numbers of two-component signaling systems, which are composed of histidine kinase-response regulator pairs. The high level of sequence similarity between some systems raises the possibility of undesired cross-talk between a histidine kinase and a non-cognate response regulator. Although molecular specificity ensures that phospho-transfer occurs primarily between correct partners, even a low level of inappropriate cross-talk could lead to unacceptable levels of noise or interference in signal transduction. To explore mechanisms that provide insulation against such interference, we have examined cross-talk between the histidine kinase CpxA and non-cognate response regulator OmpR in Escherichia coli. Our results show that there are two mechanisms that suppress cross-talk between these two proteins, which depend on the corresponding cognate partners CpxR and EnvZ and on the bifunctional nature of the histidine kinases CpxA and EnvZ. When cross-talk is detectable, we find it is independent of CpxA stimulus. We also show that cross-talk suppression leads to mutational robustness, i.e. it masks the effects of mutations that would otherwise lead to increased cross-talk. The mechanisms that provide insulation against interference described here may be applicable to many other two-component systems. PMID:18761686

  1. A subfamily of putative cytokinin receptors is revealed by an analysis of the evolution of the two-component signaling system of plants.

    PubMed

    Gruhn, Nijuscha; Halawa, Mhyeddeen; Snel, Berend; Seidl, Michael F; Heyl, Alexander

    2014-05-01

    The two-component signaling system--the major signaling pathway of bacteria--is found among higher eukaryotes only in plants, where it regulates diverse processes, such as the signaling of the phytohormone cytokinin. Cytokinin is perceived by a hybrid histidine (His) kinase receptor, and the signal is transduced by a multistep phosphorelay system of His phosphotransfer proteins and different classes of response regulators (RRs). To shed light on the origin and evolution of the two-component signaling system members in plants, we conducted a comprehensive domain-based phylogenetic study across the relevant kingdoms, including Charophyceae algae, the group of green algae giving rise to land plants. Surprisingly, we identified a subfamily of cytokinin receptors with members only from the early diverging land plants Marchantia polymorpha and Physcomitrella patens and then experimentally characterized two members of this subfamily. His phosphotransfer proteins of Charophyceae seemed to be more closely related to land plants than to other groups of green algae. Farther down the signaling pathway, the type-B RRs were found across all plant clades, but many members lack either the canonical Asp residue or the DNA binding domain. In contrast, the type-A RRs seemed to be limited to land plants. Finally, the analysis provided hints that one additional group of RRs, the type-C RRs, might be degenerated receptors and thus, of a different evolutionary origin than bona fide RRs.

  2. The VanS-VanR two-component regulatory system controls synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147.

    PubMed Central

    Arthur, M; Molinas, C; Courvalin, P

    1992-01-01

    Plasmid pIP816 of Enterococcus faecium BM4147 confers inducible resistance to vancomycin and encodes the VanH dehydrogenase and the VanA ligase for synthesis of depsipeptide-containing peptidoglycan precursors which bind the antibiotic with reduced affinity. We have characterized a cluster of five genes of pIP816 sufficient for peptidoglycan synthesis in the presence of vancomycin. The distal part of the van cluster encodes VanH, VanA, and a third enzyme, VanX, all of which are necessary for resistance. Synthesis of these enzymes was regulated at the transcriptional level by the VanS-VanR two-component regulatory system encoded by the proximal part of the cluster. VanR was a transcriptional activator related to response regulators of the OmpR subclass. VanS stimulated VanR-dependent transcription and was related to membrane-associated histidine protein kinases which control the level of phosphorylation of response regulators. Analysis of transcriptional fusions with a reporter gene and RNA mapping indicated that the VanR-VanS two-component regulatory system activates a promoter used for cotranscription of the vanH, vanA, and vanX resistance genes. Images PMID:1556077

  3. A Two-Component Alkyne Metathesis Catalyst System with an Improved Substrate Scope and Functional Group Tolerance: Development and Applications to Natural Product Synthesis.

    PubMed

    Schaubach, Sebastian; Gebauer, Konrad; Ungeheuer, Felix; Hoffmeister, Laura; Ilg, Marina K; Wirtz, Conny; Fürstner, Alois

    2016-06-13

    Although molybdenum alkylidyne complexes such as 1 endowed with triarylsilanolate ligands are excellent catalysts for alkyne metathesis, they can encounter limitations when (multiple) protic sites are present in a given substrate and/or when forcing conditions are necessary. In such cases, a catalyst formed in situ upon mixing of the trisamidomolybenum alkylidyne complex 3 and the readily available trisilanol derivatives 8 or 11 shows significantly better performance. This two-component system worked well for a series of model compounds comprising primary, secondary or phenolic -OH groups, as well as for a set of challenging (bis)propargylic substrates. Its remarkable efficiency is also evident from applications to the total syntheses of manshurolide, a highly strained sesquiterpene lactone with kinase inhibitory activity, and the structurally demanding immunosuppressive cyclodiyne ivorenolide A; in either case, the standard catalyst 1 largely failed to effect the critical macrocyclization, whereas the two-component system was fully operative. A study directed toward the quinolizidine alkaloid lythrancepine I features yet another instructive example, in that a triyne substrate was metathesized with the help of 3/11 such that two of the triple bonds participated in ring closure, while the third one passed uncompromised. As a spin-off of this project, a much improved ruthenium catalyst for the redox isomerization of propargyl alcohols to the corresponding enones was developed.

  4. The two-component systems PrrBA and NtrYX co-ordinately regulate the adaptation of Brucella abortus to an oxygen-limited environment.

    PubMed

    Carrica, Mariela Del Carmen; Fernandez, Ignacio; Sieira, Rodrigo; Paris, Gastón; Goldbaum, Fernando Alberto

    2013-04-01

    Brucella is the causative agent of the zoonotic disease brucellosis, which is endemic in many parts of the world. The success of Brucella as pathogen relies in its ability to adapt to the harsh environmental conditions found in mammalian hosts. One of its main adaptations is the induction of the expression of different genes involved in respiration at low oxygen tension. In this report we describe a regulatory network involved in this adaptation. We show that Brucella abortus PrrBA is a functional two-component signal transduction system that responds to the redox status and acts as a global regulator controlling the expression of the regulatory proteins NtrY, FnrN and NnrA, which are involved in the adaptation to survive at low oxygen tension. We also show that the two-component systems PrrBA and NtrYX co-ordinately regulate the expression of denitrification and high-affinity cytochrome oxidase genes. Strikingly, a double mutant strain in the prrB and ntrY genes is severely impaired in growth and virulence, while the ntrY and prrB single mutant strains are similar to wild-type B. abortus. The proposed regulatory network may contribute to understand the mechanisms used by Brucella for a successful adaptation to its replicative niche inside mammalian cells.

  5. Contributions of two-component regulatory systems, alternative sigma factors, and negative regulators to Listeria monocytogenes cold adaptation and cold growth.

    PubMed

    Chan, Yvonne C; Hu, Yuewei; Chaturongakul, Soraya; Files, Kali D; Bowen, Barbara M; Boor, Kathryn J; Wiedmann, Martin

    2008-02-01

    The ability of Listeria monocytogenes to grow at refrigeration temperatures is critical for transmission of this foodborne pathogen. We evaluated the contributions of different transcriptional regulators and two-component regulatory systems to L. monocytogenes cold adaptation and cold growth. L. monocytogenes parent strain 10403S and selected isogenic null mutants in genes encoding four alternative sigma factors (sigB, sigH, sigC, and sigL), two regulators of sigmaB (rsbT and rsbV), two negative regulators (ctsR and hrcA), and 15 two-component response regulators were grown in brain heart infusion broth at 4 degrees C with (i) a high-concentration starting inoculum (10(8) CFU/ml), (ii) a low-concentration starting inoculum (102 CFU/ml), and (iii) a high-concentration starting inoculum of cold-adapted cells. With a starting inoculum of 10(8) CFU/ml, null mutants in genes encoding selected alternative sigma factors (DeltasigH, DeltasigC, and DeltasigL), a negative regulator (DeltactsR), regulators of sigmaB (DeltarsbT and DeltarsbV), and selected two-component response regulators (DeltalisR, Deltalmo1172, and Deltalmo1060) had significantly reduced growth (P < 0.05) compared with the parent strain after 12 days at 4 degrees C. The growth defect for DeltasigL was limited and was not confirmed by optical density (OD600) measurement data. With a starting inoculum of 102 CFU/ml and after monitoring growth at 4 degrees C over 84 days, only the DeltactsR strain had a consistent but limited growth defect; the other mutant strains had either no growth defects or limited growth defects apparent at only one or two of the nine sampling points evaluated during the 84-day growth period (DeltasigB, DeltasigC, and Deltalmo1172). With a 10(8) CFU/ml starting inoculum of cold-adapted cells, none of the mutant strains that had a growth defect when inoculation was performed with cells pregrown at 37 degrees C had reduced growth as compared with the parent strain after 12 days at 4

  6. The VirS/VirR two-component system regulates the anaerobic cytotoxicity, intestinal pathogenicity, and enterotoxemic lethality of Clostridium perfringens type C isolate CN3685.

    PubMed

    Ma, Menglin; Vidal, Jorge; Saputo, Juliann; McClane, Bruce A; Uzal, Francisco

    2011-01-25

    Clostridium perfringens vegetative cells cause both histotoxic infections (e.g., gas gangrene) and diseases originating in the intestines (e.g., hemorrhagic necrotizing enteritis or lethal enterotoxemia). Despite their medical and veterinary importance, the molecular pathogenicity of C. perfringens vegetative cells causing diseases of intestinal origin remains poorly understood. However, C. perfringens beta toxin (CPB) was recently shown to be important when vegetative cells of C. perfringens type C strain CN3685 induce hemorrhagic necrotizing enteritis and lethal enterotoxemia. Additionally, the VirS/VirR two-component regulatory system was found to control CPB production by CN3685 vegetative cells during aerobic infection of cultured enterocyte-like Caco-2 cells. Using an isogenic virR null mutant, the current study now reports that the VirS/VirR system also regulates CN3685 cytotoxicity during infection of Caco-2 cells under anaerobic conditions, as found in the intestines. More importantly, the virR mutant lost the ability to cause hemorrhagic necrotic enteritis in rabbit small intestinal loops. Western blot analyses demonstrated that the VirS/VirR system mediates necrotizing enteritis, at least in part, by controlling in vivo CPB production. In addition, vegetative cells of the isogenic virR null mutant were, relative to wild-type vegetative cells, strongly attenuated in their lethality in a mouse enterotoxemia model. Collectively, these results identify the first regulator of in vivo pathogenicity for C. perfringens vegetative cells causing disease originating in the complex intestinal environment. Since VirS/VirR also mediates histotoxic infections, this two-component regulatory system now assumes a global role in regulating a spectrum of infections caused by C. perfringens vegetative cells.

  7. The VirS/VirR Two-Component System Regulates the Anaerobic Cytotoxicity, Intestinal Pathogenicity, and Enterotoxemic Lethality of Clostridium perfringens Type C Isolate CN3685

    PubMed Central

    Ma, Menglin; Vidal, Jorge; Saputo, Juliann; McClane, Bruce A.; Uzal, Francisco

    2011-01-01

    Clostridium perfringens vegetative cells cause both histotoxic infections (e.g., gas gangrene) and diseases originating in the intestines (e.g., hemorrhagic necrotizing enteritis or lethal enterotoxemia). Despite their medical and veterinary importance, the molecular pathogenicity of C. perfringens vegetative cells causing diseases of intestinal origin remains poorly understood. However, C. perfringens beta toxin (CPB) was recently shown to be important when vegetative cells of C. perfringens type C strain CN3685 induce hemorrhagic necrotizing enteritis and lethal enterotoxemia. Additionally, the VirS/VirR two-component regulatory system was found to control CPB production by CN3685 vegetative cells during aerobic infection of cultured enterocyte-like Caco-2 cells. Using an isogenic virR null mutant, the current study now reports that the VirS/VirR system also regulates CN3685 cytotoxicity during infection of Caco-2 cells under anaerobic conditions, as found in the intestines. More importantly, the virR mutant lost the ability to cause hemorrhagic necrotic enteritis in rabbit small intestinal loops. Western blot analyses demonstrated that the VirS/VirR system mediates necrotizing enteritis, at least in part, by controlling in vivo CPB production. In addition, vegetative cells of the isogenic virR null mutant were, relative to wild-type vegetative cells, strongly attenuated in their lethality in a mouse enterotoxemia model. Collectively, these results identify the first regulator of in vivo pathogenicity for C. perfringens vegetative cells causing disease originating in the complex intestinal environment. Since VirS/VirR also mediates histotoxic infections, this two-component regulatory system now assumes a global role in regulating a spectrum of infections caused by C. perfringens vegetative cells. PMID:21264065

  8. The CopRS Two-Component System Is Responsible for Resistance to Copper in the Cyanobacterium Synechocystis sp. PCC 68031[C][W][OA

    PubMed Central

    Giner-Lamia, Joaquín; López-Maury, Luis; Reyes, José C.; Florencio, Francisco J.

    2012-01-01

    Photosynthetic organisms need copper for cytochrome oxidase and for plastocyanin in the fundamental processes of respiration and photosynthesis. However, excess of free copper is detrimental inside the cells and therefore organisms have developed homeostatic mechanisms to tightly regulate its acquisition, sequestration, and efflux. Herein we show that the CopRS two-component system (also known as Hik31-Rre34) is essential for copper resistance in Synechocystis sp. PCC 6803. It regulates expression of a putative heavy-metal efflux-resistance nodulation and division type copper efflux system (encoded by copBAC) as well as its own expression (in the copMRS operon) in response to the presence of copper in the media. Mutants in this two-component system or the efflux system render cells more sensitive to the presence of copper in the media and accumulate more intracellular copper than the wild type. Furthermore, CopS periplasmic domain is able to bind copper, suggesting that CopS could be able to detect copper directly. Both operons (copMRS and copBAC) are also induced by the photosynthetic inhibitor 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone but this induction requires the presence of copper in the media. The reduced response of two mutant strains to copper, one lacking plastocyanin and a second one impaired in copper transport to the thylakoid, due to the absence of the PI-type ATPases PacS and CtaA, suggests that CopS can detect intracellular copper. In addition, a tagged version of CopS with a triple HA epitope localizes to both the plasma and the thylakoid membranes, suggesting that CopS could be involved in copper detection in both the periplasm and the thylakoid lumen. PMID:22715108

  9. The Eukaryotic-Like Ser/Thr Kinase PrkC Regulates the Essential WalRK Two-Component System in Bacillus subtilis.

    PubMed

    Libby, Elizabeth A; Goss, Lindsie A; Dworkin, Jonathan

    2015-06-01

    Most bacteria contain both eukaryotic-like Ser/Thr kinases (eSTKs) and eukaryotic-like Ser/Thr phosphatases (eSTPs). Their role in bacterial physiology is not currently well understood in large part because the conditions where the eSTKs are active are generally not known. However, all sequenced Gram-positive bacteria have a highly conserved eSTK with extracellular PASTA repeats that bind cell wall derived muropeptides. Here, we report that in the Gram-positive bacterium Bacillus subtilis, the PASTA-containing eSTK PrkC and its cognate eSTP PrpC converge with the essential WalRK two-component system to regulate WalR regulon genes involved in cell wall metabolism. By continuously monitoring gene expression throughout growth, we consistently find a large PrkC-dependent effect on expression of several different WalR regulon genes in early stationary phase, including both those that are activated by WalR (yocH) as well as those that are repressed (iseA, pdaC). We demonstrate that PrkC phosphorylates WalR in vitro and in vivo on a single Thr residue located in the receiver domain. Although the phosphorylated region of the receiver domain is highly conserved among several B. subtilis response regulators, PrkC displays specificity for WalR in vitro. Consistently, strains expressing a nonphosphorylatable WalR point mutant strongly reduce both PrkC dependent activation and repression of yocH, iseA, and pdaC. This suggests a model where the eSTK PrkC regulates the essential WalRK two-component signaling system by direct phosphorylation of WalR Thr101, resulting in the regulation of WalR regulon genes involved in cell wall metabolism in stationary phase. As both the eSTK PrkC and the essential WalRK two-component system are highly conserved in Gram-positive bacteria, these results may be applicable to further understanding the role of eSTKs in Gram-positive physiology and cell wall metabolism.

  10. The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans

    PubMed Central

    Sola-Landa, A.; Moura, R. S.; Martín, J. F.

    2003-01-01

    The biosynthesis of most secondary metabolites in different bacteria is strongly depressed by inorganic phosphate. The two-component phoR-phoP system of Streptomyces lividans has been cloned and characterized. PhoR showed all of the characteristics of the membrane-bound sensor proteins, whereas PhoP is a member of the DNA-binding OmpR family. Deletion mutants lacking phoP or phoR-phoP, were unable to grow in minimal medium at low phosphate concentration (10 μM). Growth was fully restored by complementation with the phoR-phoP genes. Both S. lividans ΔphoP and ΔphoR-phoP deletion mutants were unable to synthesize extracellular alkaline phosphatase (AP) as shown by immunodetection with anti-AP antibodies and by enzymatic analysis, suggesting that the PhoR-PhoP system is required for expression of the AP gene (phoA). Synthesis of AP was restored by complementation of the deletion mutants with phoR-phoP. The biosynthesis of two secondary metabolites, actinorhodin and undecylprodigiosin, was significantly increased in both solid and liquid medium in the ΔphoP or ΔphoR-phoP deletion mutants. Negative phosphate control of both secondary metabolites was restored by complementation with the phoR-phoP cluster. These results prove that expression of both phoA and genes implicated in the biosynthesis of secondary metabolites in S. lividans is regulated by a mechanism involving the two-component PhoR-PhoP system. PMID:12730372

  11. Development and validation of a high-throughput cell-based screen to identify activators of a bacterial two-component signal transduction system.

    PubMed

    van Rensburg, Julia J; Fortney, Kate R; Chen, Lan; Krieger, Andrew J; Lima, Bruno P; Wolfe, Alan J; Katz, Barry P; Zhang, Zhong-Yin; Spinola, Stanley M

    2015-07-01

    CpxRA is a two-component signal transduction system (2CSTS) found in many drug-resistant Gram-negative bacteria. In response to periplasmic stress, CpxA autophosphorylates and donates a phosphoryl group to its cognate response regulator, CpxR. Phosphorylated CpxR (CpxR-P) upregulates genes involved in membrane repair and downregulates multiple genes that encode virulence factors, which are trafficked across the cell membrane. Mutants that constitutively activate CpxRA in Salmonella enterica serovar Typhimurium and Haemophilus ducreyi are avirulent in mice and humans, respectively. Thus, the activation of CpxRA has high potential as a novel antimicrobial/antivirulence strategy. Using a series of Escherichia coli strains containing a CpxR-P-responsive lacZ reporter and deletions in genes encoding CpxRA system components, we developed and validated a novel cell-based high-throughput screen (HTS) for CpxRA activators. A screen of 36,000 compounds yielded one hit compound that increased reporter activity in wild-type cells. This is the first report of a compound that activates, rather than inhibits, a 2CSTS. The activity profile of the compound against CpxRA pathway mutants in the presence of glucose suggested that the compound inhibits CpxA phosphatase activity. We confirmed that the compound induced the accumulation of CpxR-P in treated cells. Although the hit compound contained a nitro group, a derivative lacking this group retained activity in serum and had lower cytotoxicity than that of the initial hit. This HTS is amenable for the screening of larger libraries to find compounds that activate CpxRA by other mechanisms, and it could be adapted to find activators of other two-component systems.

  12. Transcription of emrKY is regulated by the EvgA-EvgS two-component system in Escherichia coli K-12.

    PubMed

    Kato, A; Ohnishi, H; Yamamoto, K; Furuta, E; Tanabe, H; Utsumi, R

    2000-06-01

    Spontaneous mutations have been isolated in Escherichia coli that result in the constitutive expression of an emrKY promoter. These mutations were found to be single-nucleotide substitutions within the linker region of the sensor protein EvgS, which is part of a two-component regulatory system along with EvgA. In the linker mutants (evgSI and evgS4), emrKY expression became constitutive and MIC against sodium deoxycholate was 20 mg/ml, eight-fold higher than in the wild type. Furthermore, the start site of transcription from the promoter of emrKY was identified; EvgA was shown to bind at the -52 to -84 region by the footprinting experiment.

  13. Role of Salmonella enterica Serovar Typhimurium Two-Component System PreA/PreB in Modulating PmrA-Regulated Gene Transcription

    PubMed Central

    Merighi, Massimo; Carroll-Portillo, Amanda; Septer, Alecia N.; Bhatiya, Aditi; Gunn, John S.

    2006-01-01

    The PmrA/PmrB two-component system encoded by the pmrCAB operon regulates the modification of Salmonella enterica serovar Typhimurium lipopolysaccharide leading to polymyxin B resistance. PmrA and PhoP are the only known activators of pmrCAB. A transposon mutagenesis screen for additional regulators of a pmrC::MudJ fusion led to the identification of a two-component system, termed PreA/PreB (pmrCAB regulators A and B), that controls the transcription of the pmrCAB operon in response to unknown signals. The initial observations indicated that insertions in, or a deletion of, the preB sensor, but not the preA response regulator, caused upregulation of pmrCAB. Interestingly, the expression of pmrCAB was not upregulated in a preAB mutant grown in LB broth, implicating PreA in the increased expression of pmrCAB in the preB strain. This was confirmed by overexpression of preA+ in preAB or preB backgrounds, which resulted in significant upregulation or further upregulation of pmrCAB. No such effect was observed in any tested preB+ backgrounds. Additionally, an ectopic construct expressing a preA[D51A] allele also failed to upregulate pmrC in any of the pre backgrounds tested, which implies that there is a need for phosphorylation in the activation of the target genes. The observed upregulation of pmrCAB occurred independently of the response regulators PmrA and PhoP. Although a preB mutation led to increased transcription of pmrCAB, this did not result in a measurable effect on polymyxin B resistance. Our genetic data support a model of regulation whereby, in response to unknown signals, the PreB sensor activates PreA, which in turn indirectly upregulates pmrCAB transcription. PMID:16352830

  14. The Hybrid Histidine Kinase LadS Forms a Multicomponent Signal Transduction System with the GacS/GacA Two-Component System in Pseudomonas aeruginosa

    PubMed Central

    Redelberger, David; Fadel, Firas; Filloux, Alain; Sivaneson, Melissa; de Bentzmann, Sophie; Bordi, Christophe

    2016-01-01

    In response to environmental changes, Pseudomonas aeruginosa is able to switch from a planktonic (free swimming) to a sessile (biofilm) lifestyle. The two-component system (TCS) GacS/GacA activates the production of two small non-coding RNAs, RsmY and RsmZ, but four histidine kinases (HKs), RetS, GacS, LadS and PA1611, are instrumental in this process. RetS hybrid HK blocks GacS unorthodox HK autophosphorylation through the formation of a heterodimer. PA1611 hybrid HK, which is structurally related to GacS, interacts with RetS in P. aeruginosa in a very similar manner to GacS. LadS hybrid HK phenotypically antagonizes the function of RetS by a mechanism that has never been investigated. The four sensors are found in most Pseudomonas species but their characteristics and mode of signaling may differ from one species to another. Here, we demonstrated in P. aeruginosa that LadS controls both rsmY and rsmZ gene expression and that this regulation occurs through the GacS/GacA TCS. We additionally evidenced that in contrast to RetS, LadS signals through GacS/GacA without forming heterodimers, either with GacS or with RetS. Instead, we demonstrated that LadS is involved in a genuine phosphorelay, which requires both transmitter and receiver LadS domains. LadS signaling ultimately requires the alternative histidine-phosphotransfer domain of GacS, which is here used as an Hpt relay by the hybrid kinase. LadS HK thus forms, with the GacS/GacA TCS, a multicomponent signal transduction system with an original phosphorelay cascade, i.e. H1LadS→D1LadS→H2GacS→D2GacA. This highlights an original strategy in which a unique output, i.e. the modulation of sRNA levels, is controlled by a complex multi-sensing network to fine-tune an adapted biofilm and virulence response. PMID:27176226

  15. The Two-Component System RsrS-RsrR Regulates the Tetrathionate Intermediate Pathway for Thiosulfate Oxidation in Acidithiobacillus caldus

    PubMed Central

    Wang, Zhao-Bao; Li, Ya-Qing; Lin, Jian-Qun; Pang, Xin; Liu, Xiang-Mei; Liu, Bing-Qiang; Wang, Rui; Zhang, Cheng-Jia; Wu, Yan; Lin, Jian-Qiang; Chen, Lin-Xu

    2016-01-01

    Acidithiobacillus caldus (A. caldus) is a common bioleaching bacterium that possesses a sophisticated and highly efficient inorganic sulfur compound metabolism network. Thiosulfate, a central intermediate in the sulfur metabolism network of A. caldus and other sulfur-oxidizing microorganisms, can be metabolized via the tetrathionate intermediate (S4I) pathway catalyzed by thiosulfate:quinol oxidoreductase (Tqo or DoxDA) and tetrathionate hydrolase (TetH). In A. caldus, there is an additional two-component system called RsrS-RsrR. Since rsrS and rsrR are arranged as an operon with doxDA and tetH in the genome, we suggest that the regulation of the S4I pathway may occur via the RsrS-RsrR system. To examine the regulatory role of the two-component system RsrS-RsrR on the S4I pathway, ΔrsrR and ΔrsrS strains were constructed in A. caldus using a newly developed markerless gene knockout method. Transcriptional analysis of the tetH cluster in the wild type and mutant strains revealed positive regulation of the S4I pathway by the RsrS-RsrR system. A 19 bp inverted repeat sequence (IRS, AACACCTGTTACACCTGTT) located upstream of the tetH promoter was identified as the binding site for RsrR by using electrophoretic mobility shift assays (EMSAs) in vitro and promoter-probe vectors in vivo. In addition, ΔrsrR, and ΔrsrS strains cultivated in K2S4O6-medium exhibited significant growth differences when compared with the wild type. Transcriptional analysis indicated that the absence of rsrS or rsrR had different effects on the expression of genes involved in sulfur metabolism and signaling systems. Finally, a model of tetrathionate sensing by RsrS, signal transduction via RsrR, and transcriptional activation of tetH-doxDA was proposed to provide insights toward the understanding of sulfur metabolism in A. caldus. This study also provided a powerful genetic tool for studies in A. caldus. PMID:27857710

  16. Brillouin spectroscopy studies of two-component polymerizable liquid system: 2,2-bis[4-(2-hydroxymethacryloxypropoxy)phenyl]propane/benzyl methacrylate.

    PubMed

    Łapsa, K; Marcinkowska, A; Andrzejewska, E; Drozdowski, M

    2011-08-15

    Brillouin spectroscopy was used to investigate viscoelastic properties of a two-component system consisting of a high viscosity liquid (HVL) and a low viscosity liquid (LVL), both able to polymerize. The model liquids were: 2,2-bis[4-(2-hydroxymethacryloxypropoxy)phenyl]propane (abbreviated as bis-GMA, HVL) and benzyl methacrylate (BzMA, LVL). The viscosity of the system was regulated by changing the monomer ratio. Hypersonic velocity and attenuation coefficient were investigated in a temperature range covering viscoelastic relaxation process. The dependence of the longitudinal viscosity on the system composition was determined. Additionally, the Brillouin studies were accompanied by some supplementary experimental methods, like low frequency shear viscosity measurements and observations of phase transitions by differential scanning calorimetry (DSC). The investigated monomer mixtures were then polymerized in a light-induced process and the polymerization kinetic curves were measured to find the possible correlation between the viscoelastic properties of the monomer mixture (as observed by Brillouin spectroscopy) and the polymerization course.

  17. Brillouin spectroscopy studies of two-component polymerizable liquid system: 2,2-Bis[4-(2-hydroxymethacryloxypropoxy)phenyl]propane/benzyl methacrylate

    NASA Astrophysics Data System (ADS)

    Łapsa, K.; Marcinkowska, A.; Andrzejewska, E.; Drozdowski, M.

    2011-08-01

    Brillouin spectroscopy was used to investigate viscoelastic properties of a two-component system consisting of a high viscosity liquid (HVL) and a low viscosity liquid (LVL), both able to polymerize. The model liquids were: 2,2-bis[4-(2-hydroxymethacryloxypropoxy)phenyl]propane (abbreviated as bis-GMA, HVL) and benzyl methacrylate (BzMA, LVL). The viscosity of the system was regulated by changing the monomer ratio. Hypersonic velocity and attenuation coefficient were investigated in a temperature range covering viscoelastic relaxation process. The dependence of the longitudinal viscosity on the system composition was determined. Additionally, the Brillouin studies were accompanied by some supplementary experimental methods, like low frequency shear viscosity measurements and observations of phase transitions by differential scanning calorimetry (DSC). The investigated monomer mixtures were then polymerized in a light-induced process and the polymerization kinetic curves were measured to find the possible correlation between the viscoelastic properties of the monomer mixture (as observed by Brillouin spectroscopy) and the polymerization course.

  18. The Pseudomonas aeruginosa CreBC Two-Component System Plays a Major Role in the Response to β-Lactams, Fitness, Biofilm Growth, and Global Regulation

    PubMed Central

    Zamorano, Laura; Juan, Carlos; Mulet, Xavier; Blázquez, Jesús

    2014-01-01

    Pseudomonas aeruginosa is a ubiquitous versatile environmental microorganism with a remarkable ability to grow under diverse environmental conditions. Moreover, P. aeruginosa is responsible for life-threatening infections in immunocompromised and cystic fibrosis patients, as the extraordinary capacity of this pathogen to develop antimicrobial resistance dramatically limits our therapeutic arsenal. Its large genome carries an outstanding number of genes belonging to regulatory systems, including multiple two-component sensor-regulator systems that modulate the response to the different environmental stimuli. Here, we show that one of two systems, designated CreBC (carbon source responsive) and BlrAB (β-lactam resistance), might be of particular relevance. We first identified the stimuli triggering the activation of the CreBC system, which specifically responds to penicillin-binding protein 4 (PBP4) inhibition by certain β-lactam antibiotics. Second, through an analysis of a large comprehensive collection of mutants, we demonstrate an intricate interconnection between the CreBC system, the peptidoglycan recycling pathway, and the expression of the concerning chromosomal β-lactamase AmpC. Third, we show that the CreBC system, and particularly its effector inner membrane protein CreD, plays a major role in bacterial fitness and biofilm development, especially in the presence of subinhibitory concentrations of β-lactams. Finally, global transcriptomics reveals broad regulatory functions of CreBC in basic physiological aspects, particularly anaerobic respiration, in both the presence and absence of antibiotics. Therefore, the CreBC system is envisaged as a potentially interesting target for improving the efficacy of β-lactams against P. aeruginosa infections. PMID:24936599

  19. Legionella pneumophila OxyR Is a Redundant Transcriptional Regulator That Contributes to Expression Control of the Two-Component CpxRA System.

    PubMed

    Tanner, Jennifer R; Patel, Palak G; Hellinga, Jacqueline R; Donald, Lynda J; Jimenez, Celine; LeBlanc, Jason J; Brassinga, Ann Karen C

    2017-03-01

    Nominally an environmental organism, Legionella pneumophila is an intracellular parasite of protozoa but is also the causative agent of the pneumonia termed Legionnaires' disease, which results from inhalation of aerosolized bacteria by susceptible humans. Coordination of gene expression by a number of identified regulatory factors, including OxyR, assists L. pneumophila in adapting to the stresses of changing environments. L. pneumophila OxyR (OxyRLp) is an ortholog of Escherichia coli OxyR; however, OxyRLp was shown elsewhere to be functionally divergent, such that it acts as a transcription regulator independently of the oxidative stress response. In this study, the use of improved gene deletion methods has enabled us to generate an unmarked in-frame deletion of oxyR in L. pneumophila Lack of OxyRLp did not affect in vitro growth or intracellular growth in Acanthamoeba castellanii protozoa and U937-derived macrophages. The expression of OxyRLp does not appear to be regulated by CpxR, even though purified recombinant CpxR bound a DNA sequence similar to that reported for CpxR elsewhere. Surprisingly, a lack of OxyRLp resulted in elevated activity of the promoters located upstream of icmR and the lpg1441-cpxA operon, and OxyRLp directly bound to these promoter regions, suggesting that OxyRLp is a direct repressor. Interestingly, a strain overexpressing OxyRLp demonstrated reduced intracellular growth in A. castellanii but not in U937-derived macrophages, suggesting that balanced expression control of the two-component CpxRA system is necessary for survival in protozoa. Taken together, this study suggests that OxyRLp is a functionally redundant transcriptional regulator in L. pneumophila under the conditions evaluated herein.IMPORTANCELegionella pneumophila is an environmental pathogen, with its transmission to the human host dependent upon its ability to replicate in protozoa and survive within its aquatic niche. Understanding the genetic factors that contribute

  20. TceSR two-component regulatory system of Brucella melitensis 16M is involved in invasion, intracellular survival and regulated cytotoxicity for macrophages.

    PubMed

    Li, Z; Fu, Q; Wang, Z; Li, T; Zhang, H; Guo, F; Wang, Y; Zhang, J; Chen, C

    2015-06-01

    The mechanisms of invasion and intracellular survival of Brucella are still poorly understood. Previous studies showed that the two-component regulatory systems (TCSs) play an important role in the intracellular survival of Brucella. To investigate if TCSs involve in the virulence and cytotoxicity of Brucella melitensis, we introduced a mutation into one of the TCSs in chromosome II in Br. melitensis 16M strain, and generated 16MΔTceSR, a mutant of Br. melitensis 16M strain. In vitro infection experiments using murine macrophage cell line (RAW 264.7) showed that the survival of 16MΔTceSR mutant in macrophages decreased 0·91-log compared with that of wild type Br. melitensis 16M strain at 2 h postinfection, replication of 16MΔTceSR mutant in macrophages was 5·65-log, which was much lower than that wild type strain. Results of lactate dehydrogenase cytotoxicity assays in macrophages demonstrated high dose infection with wide type strain produced high level cytotoxicity to macrophages, but 16MΔTceSR mutant had very low level cytotoxicity, indicating mutation of TCSs impaired the cytotoxicity of Br. melitensis to macrophages. Animal experiments showed that the spleen colonization of 16MΔTceSR was significantly reduced compared with its wild type strains. The lower levels of survival of 16MΔTceSR in various stress conditions suggested that the mutation of the TCSs of Br. melitensis was the causative factor of its reduced resistance to stress conditions. Taken together, our results demonstrated TCS TceSR involves in the intracellular survival, virulence and cytotoxicity of Br. melitensis during its infection. Significance and impact of the study: Two-component systems (TCSs) are predominant bacterial signal transduction mechanisms. The pathogenicity of Brucella is due to its ability to adapt to the intracellular environment including low levels of acidic pH, high-salt and heat shock. TCSs are designed to sense diverse stimuli, transfer signals and enact an

  1. SalK/SalR, a Two-Component Signal Transduction System, Is Essential for Full Virulence of Highly Invasive Streptococcus suis Serotype 2

    PubMed Central

    Pan, Xiuzhen; Cheng, Gong; Wang, Jing; Ge, Junchao; Zheng, Feng; Cao, Min; Dong, Yaqing; Liu, Di; Wang, Jufang; Lin, Ying; Du, Hongli; Gao, George F.; Wang, Xiaoning; Hu, Fuquan; Tang, Jiaqi

    2008-01-01

    Background Streptococcus suis serotype 2 (S. suis 2, SS2) has evolved into a highly infectious entity, which caused the two recent large-scale outbreaks of human SS2 epidemic in China, and is characterized by a toxic shock-like syndrome. However, the molecular pathogenesis of this new emerging pathogen is still poorly understood. Methodology/Principal Findings 89K is a newly predicted pathogenicity island (PAI) which is specific to Chinese epidemic strains isolated from these two SS2 outbreaks. Further bioinformatics analysis revealed a unique two-component signal transduction system (TCSTS) located in the candidate 89K PAI, which is orthologous to the SalK/SalR regulatory system of Streptococcus salivarius. Knockout of salKR eliminated the lethality of SS2 in experimental infection of piglets. Functional complementation of salKR into the isogenic mutant ΔsalKR restored its soaring pathogenicity. Colonization experiments showed that the ΔsalKR mutant could not colonize any susceptible tissue of piglets when administered alone. Bactericidal assays demonstrated that resistance of the mutant to polymorphonuclear leukocyte (PMN)-mediated killing was greatly decreased. Expression microarray analysis exhibited a transcription profile alteration of 26 various genes down-regulated in the ΔsalKR mutant. Conclusions/Significance These findings suggest that SalK/SalR is requisite for the full virulence of ethnic Chinese isolates of highly pathogenic SS2, thus providing experimental evidence for the validity of this bioinformatically predicted PAI. PMID:18461172

  2. Bacteriochlorophyll-dependent expression of genes for pigment-binding proteins in Rhodobacter capsulatus involves the RegB/RegA two-component system.

    PubMed

    Abada, E M; Balzer, A; Jäger, A; Klug, G

    2002-04-01

    Expression of the puf and puc operons, which encode proteins of the photosynthetic apparatus of Rhodobacter capsulatus, is regulated by oxygen. A drop in the oxygen tension in the environment leads to an increase in the levels of puf and puc mRNAs. In strains lacking bacteriochlorophyll (Bchl) due to mutations in bch genes, the rise in puf and puc mRNA levels observed on reduction of oxygen tension is much less pronounced than in wild-type cells, indicating co-regulation of the syntheses of pigments and pigment-binding proteins. Here we show that Bchl synthesis also affects the expression of the bchC gene, which codes for a subunit of bacteriochlorophyll synthase, suggesting an autoregulatory mechanism for the Bchl biosynthetic pathway. Furthermore, our data provide evidence that the RegB/RegA two-component system, which is known to play a central role in oxygen-controlled expression of photosynthesis genes, is also involved in the Bchl-dependent regulation. Mutant strains which do not synthesize RegB or RegA show similar oxygen-dependent puf and puc expression in the presence and absence of Bchl. Our results support the view that the RegB/RegA system can directly or indirectly sense whether Bchl synthesis takes place or not.

  3. The unphosphorylated form of the PilR two-component system regulates pilA gene expression in Geobacter sulfurreducens.

    PubMed

    Hernández-Eligio, Alberto; Andrade, Ángel; Soto, Lizeth; Morett, Enrique; Juárez, Katy

    2016-02-18

    In Geobacter sulfurreducens, metal reduction and generation of bioelectricity require the participation of several elements, and among them, the type IV pili has an essential role. The pilus is composed of multiple PilA monomers. Expression of pilA gene depends mainly on the σ54 factor and the response regulator protein PilR. In this work, we characterized the role of the PilS-PilR two-component system in the regulation of the pilA gene expression. Experimental evidence indicates that PilS is autophosphorylated at the His-334 residue, which in turn is transferred to the conserved Asp-53 in PilR. Contrary to other PilS-PilR systems, substitution D53N in PilR resulted in higher activation of the pilA gene. By using a pilA::luxCDABE fusion with different promoter fragments and in vitro DNA-binding assays, we demonstrated the existence of multiple functional PilR binding sites. A regulatory model in which the non-phosphorylated PilR protein directs activation of pilA expression by binding to two sites in the promoter region of this gene is presented.

  4. Chemotaxis without Conventional Two-Component System, Based on Cell Polarity and Aerobic Conditions in Helicity-Switching Swimming of Spiroplasma eriocheiris

    PubMed Central

    Liu, Peng; Zheng, Huajun; Meng, Qingguo; Terahara, Natsuho; Gu, Wei; Wang, Shengyue; Zhao, Guoping; Nakane, Daisuke; Wang, Wen; Miyata, Makoto

    2017-01-01

    Spiroplasma eriocheiris is a pathogen that causes mass mortality in Chinese mitten crab, Eriocheir sinensis. S. eriocheiris causes tremor disease and infects almost all of the artificial breeding crustaceans, resulting in disastrous effects on the aquaculture economy in China. S. eriocheiris is a wall-less helical bacterium, measuring 2.0 to 10.0 μm long, and can swim up to 5 μm per second in a viscous medium without flagella by switching the cell helicity at a kink traveling from the front to the tail. In this study, we showed that S. eriocheiris performs chemotaxis without the conventional two-component system, a system commonly found in bacterial chemotaxis. The chemotaxis of S. eriocheiris was observed more clearly when the cells were cultivated under anaerobic conditions. The cells were polarized as evidenced by a tip structure, swimming in the direction of the tip, and were shown to reverse their swimming direction in response to attractants. Triton X-100 treatment revealed the internal structure, a dumbbell-shaped core in the tip that is connected by a flat ribbon, which traces the shortest line in the helical cell shape from the tip to the other pole. Sixteen proteins were identified as the components of the internal structure by mass spectrometry, including Fibril protein and four types of MreB proteins. PMID:28217108

  5. The Acinetobacter baumannii Two-Component System AdeRS Regulates Genes Required for Multidrug Efflux, Biofilm Formation, and Virulence in a Strain-Specific Manner

    PubMed Central

    Richmond, Grace E.; Evans, Laura P.; Anderson, Michele J.; Wand, Matthew E.; Bonney, Laura C.; Ivens, Alasdair; Chua, Kim Lee; Webber, Mark A.; Sutton, J. Mark; Peterson, Marnie L.

    2016-01-01

    ABSTRACT The opportunistic pathogen Acinetobacter baumannii is able to persist in the environment and is often multidrug resistant (MDR), causing difficulties in the treatment of infections. Here, we show that the two-component system AdeRS, which regulates the production of the AdeABC multidrug resistance efflux pump, is required for the formation of a protective biofilm in an ex vivo porcine mucosal model, which mimics a natural infection of the human epithelium. Interestingly, deletion of adeB impacted only on the ability of strain AYE to form a biofilm on plastic and only on the virulence of strain Singapore 1 for Galleria mellonella. RNA-Seq revealed that loss of AdeRS or AdeB significantly altered the transcriptional landscape, resulting in the changed expression of many genes, notably those associated with antimicrobial resistance and virulence interactions. For example, A. baumannii lacking AdeRS displayed decreased expression of adeABC, pil genes, com genes, and a pgaC-like gene, whereas loss of AdeB resulted in increased expression of pil and com genes and decreased expression of ferric acinetobactin transport system genes. These data define the scope of AdeRS-mediated regulation, show that changes in the production of AdeABC mediate important phenotypes controlled by AdeRS, and suggest that AdeABC is a viable target for antimicrobial drug and antibiofilm discovery. PMID:27094331

  6. The CasKR Two-Component System Is Required for the Growth of Mesophilic and Psychrotolerant Bacillus cereus Strains at Low Temperatures

    PubMed Central

    Diomandé, Sara Esther; Chamot, Stéphanie; Antolinos, Vera; Vasai, Florian; Guinebretière, Marie-Hélène; Bornard, Isabelle; Nguyen-the, Christophe; Broussolle, Véronique

    2014-01-01

    The different strains of Bacillus cereus can grow at temperatures covering a very diverse range. Some B. cereus strains can grow in chilled food and consequently cause food poisoning. We have identified a new sensor/regulator mechanism involved in low-temperature B. cereus growth. Construction of a mutant of this two-component system enabled us to show that this system, called CasKR, is required for growth at the minimal temperature (Tmin). CasKR was also involved in optimal cold growth above Tmin and in cell survival below Tmin. Microscopic observation showed that CasKR plays a key role in cell shape during cold growth. Introducing the casKR genes in a ΔcasKR mutant restored its ability to grow at Tmin. Although it was first identified in the ATCC 14579 model strain, this mechanism has been conserved in most strains of the B. cereus group. We show that the role of CasKR in cold growth is similar in other B. cereus sensu lato strains with different growth temperature ranges, including psychrotolerant strains. PMID:24509924

  7. A conserved two-component regulatory system, PidS/PidR, globally regulates pigmentation and virulence-related phenotypes of Burkholderia glumae.

    PubMed

    Karki, Hari Sharan; Barphagha, Inderjit Kaur; Ham, Jong Hyun

    2012-09-01

    Burkholderia glumae is a rice pathogenic bacterium that causes bacterial panicle blight. Some strains of this pathogen produce dark brown pigments when grown on casamino-acid peptone glucose (CPG) agar medium. A pigment-positive and highly virulent strain of B. glumae, 411gr-6, was randomly mutagenized with mini-Tn5gus, and the resulting mini-Tn5gus derivatives showing altered pigmentation phenotypes were screened on CPG agar plates to identify the genetic elements governing the pigmentation of B. glumae. In this study, a novel two-component regulatory system (TCRS) composed of the PidS sensor histidine kinase and the PidR response regulator was identified as an essential regulatory factor for pigmentation. Notably, the PidS/PidR TCRS was also required for the elicitation of the hypersensitive response on tobacco leaves, indicating the dependence of the hypersensitive response and pathogenicity (Hrp) type III secretion system of B. glumae on this regulatory factor. In addition, B. glumae mutants defective in the PidS/PidR TCRS showed less production of the phytotoxin, toxoflavin, and less virulence on rice panicles and onion bulbs relative to the parental strain, 411gr-6. The presence of highly homologous PidS and PidR orthologues in other Burkholderia species suggests that PidS/PidR-family TCRSs may exert the same or similar functions in different Burkholderia species, including both plant and animal pathogens.

  8. Mutation of the Streptococcus gordonii Thiol-Disulfide Oxidoreductase SdbA Leads to Enhanced Biofilm Formation Mediated by the CiaRH Two-Component Signaling System

    PubMed Central

    Davey, Lauren; Halperin, Scott A.; Lee, Song F.

    2016-01-01

    Streptococcus gordonii is a commensal inhabitant of human oral biofilms. Previously, we identified an enzyme called SdbA that played an important role in biofilm formation by S. gordonii. SdbA is thiol-disulfide oxidoreductase that catalyzes disulfide bonds in secreted proteins. Surprisingly, inactivation of SdbA results in enhanced biofilm formation. In this study we investigated the basis for biofilm formation by the ΔsdbA mutant. The results revealed that biofilm formation was mediated by the interaction between the CiaRH and ComDE two-component signalling systems. Although it did not affect biofilm formation by the S. gordonii parent strain, CiaRH was upregulated in the ΔsdbA mutant and it was essential for the enhanced biofilm phenotype. The biofilm phenotype was reversed by inactivation of CiaRH or by the addition of competence stimulating peptide, the production of which is blocked by CiaRH activity. Competition assays showed that the enhanced biofilm phenotype also corresponded to increased oral colonization in mice. Thus, the interaction between SdbA, CiaRH and ComDE affects biofilm formation both in vitro and in vivo. PMID:27846284

  9. Functional characterization of the histidine kinase of the E. coli two-component signal transduction system AtoS-AtoC.

    PubMed

    Filippou, Panagiota S; Kasemian, Lucy D; Panagiotidis, Christos A; Kyriakidis, Dimitrios A

    2008-09-01

    The Escherichia coli AtoS-AtoC two-component signal transduction system regulates the expression of the atoDAEB operon genes, whose products are required for short-chain fatty acid catabolism. In this study purified his-tagged wild-type and mutant AtoS proteins were used to prove that these proteins are true sensor kinases. The phosphorylated residue was identified as the histidine-398, which was located in a conserved Eta-box since AtoS carrying a mutation at this site failed to phosphorylate. This inability to phosphorylate was not due to gross structural alterations of AtoS since the H398L mutant retained its capability to bind ATP. Furthermore, the H398L mutant AtoS was competent to catalyze the trans-phosphorylation of an AtoS G-box (G565A) mutant protein which otherwise failed to autophosphorylate due to its inability to bind ATP. The formation of homodimers between the various AtoS proteins was also shown by cross-linking experiments both in vitro and in vivo.

  10. The Myxococcus xanthus two-component system CorSR regulates expression of a gene cluster involved in maintaining copper tolerance during growth and development.

    PubMed

    Sánchez-Sutil, María Celestina; Pérez, Juana; Gómez-Santos, Nuria; Shimkets, Lawrence J; Moraleda-Muñoz, Aurelio; Muñoz-Dorado, José

    2013-01-01

    Myxococcus xanthus is a soil-dwelling member of the δ-Proteobacteria that exhibits a complex developmental cycle upon starvation. Development comprises aggregation and differentiation into environmentally resistant myxospores in an environment that includes fluctuations in metal ion concentrations. While copper is essential for M. xanthus cells because several housekeeping enzymes use it as a cofactor, high copper concentrations are toxic. These opposing effects force cells to maintain a tight copper homeostasis. A plethora of paralogous genes involved in copper detoxification, all of which are differentially regulated, have been reported in M. xanthus. The use of in-frame deletion mutants and fusions with the reporter gene lacZ has allowed the identification of a two-component system, CorSR, that modulates the expression of an operon termed curA consisting of nine genes whose expression slowly increases after metal addition, reaching a plateau. Transcriptional regulation of this operon is complex because transcription can be initiated at different promoters and by different types of regulators. These genes confer copper tolerance during growth and development. Copper induces carotenoid production in a ΔcorSR mutant at lower concentrations than with the wild-type strain due to lack of expression of a gene product resembling subunit III of cbb3-type cytochrome c oxidase. This data may explain why copper induces carotenoid biosynthesis at suboptimal rather than optimal growth conditions in wild-type strains.

  11. Regulation of natural competence by the orphan two-component system sensor kinase ChiS involves a non-canonical transmembrane regulator in Vibrio cholerae.

    PubMed

    Yamamoto, Shouji; Mitobe, Jiro; Ishikawa, Takahiko; Wai, Sun Nyunt; Ohnishi, Makoto; Watanabe, Haruo; Izumiya, Hidemasa

    2014-01-01

    In Vibrio cholerae, 41 chitin-inducible genes, including the genes involved in natural competence for DNA uptake, are governed by the orphan two-component system (TCS) sensor kinase ChiS. However, the mechanism by which ChiS controls the expression of these genes is currently unknown. Here, we report the involvement of a novel transcription factor termed 'TfoS' in this process. TfoS is a transmembrane protein that contains a large periplasmic domain and a cytoplasmic AraC-type DNA-binding domain, but lacks TCS signature domains. Inactivation of tfoS abolished natural competence as well as transcription of the tfoR gene encoding a chitin-induced small RNA essential for competence gene expression. A TfoS fragment containing the DNA-binding domain specifically bound to and activated transcription from the tfoR promoter. Intracellular TfoS levels were unaffected by disruption of chiS and coexpression of TfoS and ChiS in Escherichia coli recovered transcription of the chromosomally integrated tfoR::lacZ gene, suggesting that TfoS is post-translationally modulated by ChiS during transcriptional activation; however, this regulation persisted when the canonical phosphorelay residues of ChiS were mutated. The results presented here suggest that ChiS operates a chitin-induced non-canonical signal transduction cascade through TfoS, leading to transcriptional activation of tfoR.

  12. Genome-Wide Expression Profiling of Soybean Two-Component System Genes in Soybean Root and Shoot Tissues under Dehydration Stress

    PubMed Central

    Le, Dung Tien; Nishiyama, Rie; Watanabe, Yasuko; Mochida, Keiichi; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Tran, Lam-Son Phan

    2011-01-01

    Two-component systems (TCSs) play vital functions in the adaptation of plants to environmental stresses. To identify soybean TCS genes involved in the regulation of drought stress response, we performed tissue-specific expression profiling of all 83 putative TCS genes in plants subjected to dehydration. Under well-watered conditions, the majority of soybean TCS genes were expressed higher in the root tissues. Additionally, a high variability in transcript abundance was observed for the TCS genes in both roots and shoots. Under dehydration, TCS genes were more responsive in shoots than in roots. Further analysis indicated that 50% more TCS genes were repressed by dehydration than induced. Specifically, 18 genes were induced by 2-fold or more, whereas 33 genes were down-regulated at least 2-fold by dehydration. TCS genes putatively involved in cytokinin and ethylene signallings strongly responded to dehydration, suggesting that crosstalk exists between different hormonal and stress pathways. Our study provides the first glance into the complex regulatory roles of soybean TCSs underlying their functions in response to dehydration. Additionally, these systematic expression analyses identified excellent dehydration-responsive candidate genes to further clarify soybean TCS functions in drought response and to enable the development of improved drought tolerance in transgenic soybeans. PMID:21208938

  13. Acid-Induced Activation of the Urease Promoters Is Mediated Directly by the ArsRS Two-Component System of Helicobacter pylori

    PubMed Central

    Pflock, Michael; Kennard, Simone; Delany, Isabel; Scarlato, Vincenzo; Beier, Dagmar

    2005-01-01

    The nickel-containing enzyme urease is an essential colonization factor of the human gastric pathogen Helicobacter pylori which enables the bacteria to survive the low-pH conditions of the stomach. Transcription of the urease genes is positively controlled in response to increasing concentrations of nickel ions and acidic pH. Here we demonstrate that acid-induced transcription of the urease genes is mediated directly by the ArsRS two-component system. Footprint analyses identify binding sites of the phosphorylated ArsR response regulator within the ureA and ureI promoters. Furthermore, deletion of a distal upstream ArsR binding site of the ureA promoter demonstrates its role in acid-dependent activation of the promoter. In addition, acid-induced transcription of the ureA gene is unaltered in a nikR mutant, providing evidence that pH-responsive regulation and nickel-responsive regulation of the ureA promoter are mediated by independent mechanisms involving the ArsR response regulator and the NikR protein. PMID:16177315

  14. The CLO3403/CLO3404 two-component system of Clostridium botulinum E1 Beluga is important for cold shock response and growth at low temperatures.

    PubMed

    Mascher, Gerald; Derman, Yagmur; Kirk, David G; Palonen, Eveliina; Lindström, Miia; Korkeala, Hannu

    2014-01-01

    In order to survive a temperature downshift, bacteria have to sense the changing environment and adjust their metabolism and structure. Two-component signal transduction systems (TCSs) play a central role in sensing and responding to many different environmental stimuli. Although the nonproteolytic (group II) Clostridium botulinum represents a major hazard in chilled foods, the cold adaption mechanisms of group II C. botulinum organisms are not known. Here, we show that the CLO3403/CLO3404 TCS of C. botulinum E1 Beluga is involved in the cold shock response and growth at 12°C. Cold shock induced the expression of the genes encoding the histidine kinase (clo3403) and the response regulator (clo3404) by more than 100-fold after 5 h relative to their expression in a nonshocked culture at the corresponding time point. The involvement of CLO3403/CLO3404 in growth at low temperature was demonstrated by impaired growth of the insertional clo3403 and clo3404 knockout mutants at 12°C compared to the growth of the wild-type culture. Additionally, the inactivation of clo3403 had a negative effect on motility. The growth efficiency at 12°C of the TCS mutants and the motility of the kinase mutants were restored by introducing a plasmid harboring the operon of the CLO3403/CLO3404 TCS. The results suggest that the CLO3403/CLO3404 TCS is important for the cold tolerance of C. botulinum E1 Beluga.

  15. Mry, a trans-acting positive regulator of the M protein gene of Streptococcus pyogenes with similarity to the receptor proteins of two-component regulatory systems.

    PubMed Central

    Perez-Casal, J; Caparon, M G; Scott, J R

    1991-01-01

    In the Streptococcus pyogenes M6 strain D471, an insertion of the conjugative transposon Tn916 into a region 2 kb upstream of the promoter of emm6 (the structural gene for the M protein) rendered the strain M negative (M. G. Caparon and J. R. Scott, Proc. Natl. Acad. Sci. USA 84:8677-8681, 1987). In the present work, we show that this insertion mutation, mry-1, is 244 bp upstream of an open reading frame encoding a protein we call Mry. This protein is visible on a gel after transcription and translation in vitro. We have developed a technique for complementation analysis in S. pyogenes and have used it to show that the wild-type mry gene is dominant to two mutant alleles. This dominance indicates that Mry acts in trans as a positive regulator of the emm6 gene. The translated DNA sequence of mry has two regions of similarity to the motif common to the receptor protein of two-component regulatory systems. In addition, the N terminus of Mry has two regions resembling a helix-turn-helix motif. Mry does not appear to be a global regulator of virulence determinants in the group A streptococcus because there is no effect of the mry-1 mutation on production of the hyaluronic acid capsule or streptokinase. Images PMID:1849511

  16. Genome-wide identification, phylogeny, duplication, and expression analyses of two-component system genes in Chinese cabbage (Brassica rapa ssp. pekinensis).

    PubMed

    Liu, Zhenning; Zhang, Mei; Kong, Lijun; Lv, Yanxia; Zou, Minghua; Lu, Gang; Cao, Jiashu; Yu, Xiaolin

    2014-08-01

    In plants, a two component system (TCS) composed of sensor histidine kinases (HKs), histidine phosphotransfer proteins (HPs), and response regulators (RRs) has been employed in cytokinin signal transduction. A TCS exhibits important functions in diverse biological processes, including plant growth, development, and response to environmental stimuli. Conducting an exhaustive search of the Chinese cabbage genome, a total of 20 HK(L) (11 HKs and 9 HKLs), 8 HP (7 authentic and 1 pseudo), and 57 RR (21 Type-A, 17 Type-B, 4 Type-C, and 15 pseudo) proteins were identified. The structures, conserved domains, and phylogenetic relationships of these protein-coding genes were analysed in detail. The duplications, evolutionary patterns, and divergence of the TCS genes were investigated. The transcription levels of TCS genes in various tissues, organs, and developmental stages were further analysed to obtain information of the functions of these genes. Cytokinin-related binding elements were found in the putative promoter regions of Type-A BrRR genes. Furthermore, gene expression patterns to adverse environmental stresses (drought and high salinity) and exogenous phytohormones (tZ and ABA) were investigated. Numerous stress-responsive candidate genes were obtained. Our systematic analyses provided insights into the characterization of the TCS genes in Chinese cabbage and basis for further functional studies of such genes.

  17. The Myxococcus xanthus Two-Component System CorSR Regulates Expression of a Gene Cluster Involved in Maintaining Copper Tolerance during Growth and Development

    PubMed Central

    Sánchez-Sutil, María Celestina; Pérez, Juana; Gómez-Santos, Nuria; Shimkets, Lawrence J.; Moraleda-Muñoz, Aurelio; Muñoz-Dorado, José

    2013-01-01

    Myxococcus xanthus is a soil-dwelling member of the δ–Proteobacteria that exhibits a complex developmental cycle upon starvation. Development comprises aggregation and differentiation into environmentally resistant myxospores in an environment that includes fluctuations in metal ion concentrations. While copper is essential for M. xanthus cells because several housekeeping enzymes use it as a cofactor, high copper concentrations are toxic. These opposing effects force cells to maintain a tight copper homeostasis. A plethora of paralogous genes involved in copper detoxification, all of which are differentially regulated, have been reported in M. xanthus. The use of in-frame deletion mutants and fusions with the reporter gene lacZ has allowed the identification of a two-component system, CorSR, that modulates the expression of an operon termed curA consisting of nine genes whose expression slowly increases after metal addition, reaching a plateau. Transcriptional regulation of this operon is complex because transcription can be initiated at different promoters and by different types of regulators. These genes confer copper tolerance during growth and development. Copper induces carotenoid production in a ΔcorSR mutant at lower concentrations than with the wild-type strain due to lack of expression of a gene product resembling subunit III of cbb3-type cytochrome c oxidase. This data may explain why copper induces carotenoid biosynthesis at suboptimal rather than optimal growth conditions in wild-type strains. PMID:23874560

  18. Structure and mechanism of the essential two-component signal-transduction system WalKR in Staphylococcus aureus

    SciTech Connect

    Ji, Quanjiang; Chen, Peter J.; Qin, Guangrong; Deng, Xin; Hao, Ziyang; Wawrzak, Zdzislaw; Yeo, Won -Sik; Quang, Jenny Winjing; Cho, Hoonsik; Luo, Guan -Zheng; Weng, Xiaocheng; You, Qiancheng; Luan, Chi -Hao; Yang, Xiaojing; Bae, Taeok; Yu, Kunqian; Jiang, Hualiang; He, Chuan

    2016-03-18

    Most low GC Gram-positive bacteria possess an essential walKR two-component system (TCS) for signal transduction involved in regulating cell wall homoeostasis. Despite the well-established intracellular regulatory mechanism, the role of this TCS in extracellular signal recognition and factors that modulate the activity of this TCS remain largely unknown. Here we identify the extracellular receptor of the kinase ‘WalK’ (erWalK) as a key hub for bridging extracellular signal input and intracellular kinase activity modulation in Staphylococcus aureus. Characterization of the crystal structure of erWalK revealed a canonical Per-Arnt-Sim (PAS) domain for signal sensing. Single amino-acid mutation of potential signal-transduction residues resulted in severely impaired function of WalKR. A small molecule derived from structure-based virtual screening against erWalK is capable of selectively activating the walKR TCS. Lastly, the molecular level characterization of erWalK will not only facilitate exploration of natural signal(s) but also provide a template for rational design of erWalK inhibitors.

  19. A genetic approach for finding small RNAs regulators of genes of interest identifies RybC as regulating the DpiA/DpiB two-component system.

    PubMed

    Mandin, Pierre; Gottesman, Susan

    2009-05-01

    In Escherichia coli, the largest class of small regulatory RNAs binds to the RNA chaperone Hfq and regulates the stability and/or translation of specific mRNAs. While recent studies have shown that some mRNAs could be subject to post-transcriptional regulation by sRNAs (e.g. mRNAs found by co-immunoprecipitation with Hfq), no method has yet been described to identify small RNAs that regulate them. We developed a method to easily make translational fusions of genes of interest to the lacZ reporter gene, under the control of a P(BAD)-inducible promoter. A multicopy plasmid library of the E. coli genome can then be used to screen for small RNAs that affect the activity of the fusion. This screening method was first applied to the dpiB gene from the dpiBA operon, which encodes a two-component signal transduction system involved in the SOS response to beta-lactams. One small RNA, RybC, was found to negatively regulate the expression of dpiB. Using mutants in the dpiB-lacZ fusion and compensatory mutations in the RybC sRNA, we demonstrate that RybC directly base pairs with the dpiBA mRNA.

  20. Two overlapping two-component systems in Xanthomonas oryzae pv. oryzae contribute to full fitness in rice by regulating virulence factors expression

    PubMed Central

    Zheng, Dehong; Yao, Xiaoyan; Duan, Meng; Luo, Yufeng; Liu, Biao; Qi, Pengyuan; Sun, Ming; Ruan, Lifang

    2016-01-01

    Two-component signal transduction systems (TCSs) are widely used by bacteria to adapt to the environment. In the present study, StoS (stress tolerance-related oxygen sensor) and SreKRS (salt response kinase, regulator, and sensor) were found to positively regulate extracellular polysaccharide (EPS) production and swarming in the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo). Surprisingly, the absence of stoS or sreKRS did not attenuate virulence. To better understand the intrinsic functions of StoS and SreKRS, quantitative proteomics isobaric tags for relative and absolute quantitation (iTRAQ) was employed. Consistent with stoS and sreK mutants exhibiting a similar phenotype, the signalling circuits of StoS and SreKRS overlapped. Carbohydrate metabolism proteins and chemotaxis proteins, which could be responsible for EPS and swarming regulation, respectively, were reprogrammed in stoS and sreK mutants. Moreover, StoS and SreKRS demonstrated moderate expression of the major virulence factor, hypersensitive response and pathogenicity (Hrp) proteins through the HrpG-HrpX circuit. Most importantly, Xoo equipped with StoS and SreKRS outcompetes strains without StoS or SreKRS in co-infected rice and grows outside the host. Therefore, we propose that StoS and SreKRS adopt a novel strategy involving the moderation of Hrp protein expression and the promotion of EPS and motility to adapt to the environment. PMID:26957113

  1. Requirement of the Lactobacillus casei MaeKR two-component system for L-malic acid utilization via a malic enzyme pathway.

    PubMed

    Landete, José María; García-Haro, Luisa; Blasco, Amalia; Manzanares, Paloma; Berbegal, Carmen; Monedero, Vicente; Zúñiga, Manuel

    2010-01-01

    Lactobacillus casei can metabolize L-malic acid via malolactic enzyme (malolactic fermentation [MLF]) or malic enzyme (ME). Whereas utilization of L-malic acid via MLF does not support growth, the ME pathway enables L. casei to grow on L-malic acid. In this work, we have identified in the genomes of L. casei strains BL23 and ATCC 334 a cluster consisting of two diverging operons, maePE and maeKR, encoding a putative malate transporter (maeP), an ME (maeE), and a two-component (TC) system belonging to the citrate family (maeK and maeR). Homologous clusters were identified in Enterococcus faecalis, Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus uberis. Our results show that ME is essential for L-malic acid utilization in L. casei. Furthermore, deletion of either the gene encoding the histidine kinase or the response regulator of the TC system resulted in the loss of the ability to grow on L-malic acid, thus indicating that the cognate TC system regulates and is essential for the expression of ME. Transcriptional analyses showed that expression of maeE is induced in the presence of L-malic acid and repressed by glucose, whereas TC system expression was induced by L-malic acid and was not repressed by glucose. DNase I footprinting analysis showed that MaeR binds specifically to a set of direct repeats [5'-TTATT(A/T)AA-3'] in the mae promoter region. The location of the repeats strongly suggests that MaeR activates the expression of the diverging operons maePE and maeKR where the first one is also subjected to carbon catabolite repression.

  2. In silico characterization of three two-component systems of Ehrlichia canis and evaluation of a natural plant-derived inhibitor.

    PubMed

    Santos, E V; Silva, G; Cardozo, G P; Bitencourt, T A; França, S C; Fachin, A L; Marins, M

    2012-10-04

    Two-component signal transduction systems (TCS) are important elements in the interaction of endobacteria with host cells. They are basically composed of two proteins, an environmental signal sensor and a response regulator, which activate genes involved in a wide range of bacterial responses to their environment. We analyzed three sets of genes corresponding to TCS of Ehrlichia canis, a common tick-borne canine pathogen and the etiologic agent of canine monocytic ehrlichiosis, in order to identify the characteristic domains of the sensor and response regulator components. Analysis of sequence alignments of the corresponding proteins indicated a high degree of similarity to other members of the Anaplasmataceae TCS proteins, demonstrating that they could be useful as universal targets for development of new drugs against these bacteria. We also evaluated by quantitative PCR inhibition of E. canis by (2H)-1,4-benzoxazin-3(4H)-one (BOA), the core compound of the plant phenolic compound DIMBOA, which shows inhibitory action against TCS of the phytopathogen Agrobacterium tumefasciens. This bacterium exerts its pathogenicity by transferring oncogenic DNA (T-DNA) into plant cells; this transfer is mediated through a type-IV secretion system, which is regulated by the VirA/VirG TCS. The process of infection and pathogenesis of E. canis is associated with the secretion of effector proteins into the host cell cytoplasm through a T4SS system, which blocks the cell defense response. We suggest that BOA, and possibly other plant phenolic compounds that are TCS inhibitors, can be exploited in the search for new antiehrlichial drugs to be used alone or as complements in the treatment of canine monocytic ehrlichiosis.

  3. Molecular Characterization of a Theta Replication Plasmid and Its Use for Development of a Two-Component Food-Grade Cloning System for Lactococcus lactis

    PubMed Central

    Émond, Éric; Lavallée, Richard; Drolet, Geneviève; Moineau, Sylvain; LaPointe, Gisèle

    2001-01-01

    pCD4, a small, highly stable theta-replicating lactococcal plasmid, was used to develop a food-grade cloning system. Sequence analysis revealed five open reading frames and two putative cis-acting regions. None appears to code for undesirable phenotypes with regard to food applications. Functional analysis of the replication module showed that only the cis-acting ori region and the repB gene coding for the replication initiator protein were needed for the stable replication and maintenance of pCD4 derivatives in Lactococcus lactis. A two-component food-grade cloning system was derived from the pCD4 replicon. The vector pVEC1, which carries the functional pCD4 replicon, is entirely made up of L. lactis DNA and has no selection marker. The companion pCOM1 is a repB-deficient pCD4 derivative that carries an erythromycin resistance gene as a dominant selection marker. The pCOM1 construct can only replicate in L. lactis if trans complemented by the RepB initiator provided by pVEC1. Since only the cotransformants that carry both pVEC1 and pCOM1 can survive on plates containing erythromycin, pCOM1 can be used transiently to select cells that have acquired pVEC1. Due to the intrinsic incompatibility between these plasmids, pCOM1 can be readily cured from the cells grown on an antibiotic-free medium after the selection step. The system was used to introduce a phage resistance mechanism into the laboratory strain MG1363 of L. lactis and two industrial strains. The introduction of the antiphage barrier did not alter the wild-type plasmid profile of the industrial strains. The phenotype was stable after 100 generations and conferred an effective resistance phenotype against phages of the 936 and c2 species. PMID:11282624

  4. Role of the BaeSR two-component regulatory system in resistance of Escherichia coli O157:H7 to allyl isothiocyanate.

    PubMed

    Cordeiro, Roniele Peixoto; Krause, Denis Otto; Doria, Juan Hernandez; Holley, Richard Alan

    2014-09-01

    Allyl isothiocyanate (AITC) is an essential oil with antimicrobial activity against Escherichia coli O157:H7. The ability of E. coli O157:H7 to withstand inhibitory AITC concentrations and the role of the two-component BaeSR system as a defense mechanism against AITC was studied. Optimal conditions for AITC stability in an aqueous medium were 25 °C and pH 5. The minimum inhibitory (MIC) and minimum bactericidal (MBC) concentrations of AITC against wild-type E. coli O157:H7 were 51 and 412 ppm, respectively. After growing E. coli O157:H7 in stepwise increased concentrations of AITC, the strain withstood concentrations beyond its MIC (206 ppm), but resistance was reversed when AITC exposure was interrupted. Deletion of either the sensor or regulator genes, baeS or baeR, yielded cells only as resistant as the wild-type, but the complete deletion of the BaeSR system decreased AITC resistance of E. coli O157:H7 to half that of wild-type cells. This is the first demonstration that the ability of E. coli O157:H7 to withstand AITC challenge is compromised by the deletion of the BaeSR system. It also indicates that temporary adaptive bacterial resistance to repeated incremental AITC exposure may occur, but it is unlikely to restrict the importance of AITC as an antimicrobial against E. coli O157:H7.

  5. Higher-order rogue waves with new spatial distributions for the (2 + 1) -dimensional two-component long-wave-short-wave resonance interaction system

    NASA Astrophysics Data System (ADS)

    Yang, Jin-Wei; Gao, Yi-Tian; Sun, Yu-Hao; Shen, Yu-Jia; Su, Chuan-Qi

    2016-11-01

    In this paper, a two-component (2 + 1) -dimensional long-wave-short-wave (LWSW) system with nonlinearity coefficients, which describes the nonlinear resonance interaction between two short waves and a long wave, is studied. Via the Hirota's bilinear method and Pfaffian, N -order rogue waves for the LWSW system are constructed. Furthermore, correction of the N -order rogue waves is proved directly via the Pfaffian, which is cumbersome or inaccessible in other methods. Results of the first- and second-order rogue waves are presented: 1) For the first-order rogue waves, the two short-wave components are bright, while the long-wave component is dark. The position of maximum amplitude of the rogue wave is analyzed. Evolution process for the first-order rogue wave is also presented and discussed. 2) Choosing different forms of the elements defined in the Pfaffian, we obtain some kinds of the second-order rogue waves with new spatial distributions: when the elements defined in Pfaffian are the same as the first-order rogue waves, we find that the second-order rogue waves for the two short-wave components are split into two first-order rogue waves and the two bumps coexist and interact with each other; when we change the combination of the elements in Pfaffian, we find that the second-order rogue waves for the two short-wave components are split into three and four first-order rogue waves. 3) N -order rogue waves for a general M -component LWSW system are constructed.

  6. The essential yhcSR two-component signal transduction system directly regulates the lac and opuCABCD operons of Staphylococcus aureus.

    PubMed

    Yan, Meiying; Hall, Jeffrey W; Yang, Junshu; Ji, Yinduo

    2012-01-01

    Our previous studies suggested that the essential two-component signal transduction system, YhcSR, regulates the opuCABCD operon at the transcriptional level, and the Pspac-driven opuCABCD partially complements the lethal effects of yhcS antisense RNA expression in Staphylococcus aureus. However, the reason why yhcSR regulon is required for growth is still unclear. In this report, we present that the lac and opuC operons are directly transcriptionally regulated by YhcSR. Using real-time RT-PCR we showed that the down-regulation of yhcSR expression affected the transcription of lacA encoding galactose-6-phosphotase isomerase subunit LacA, and opuCA encoding a subunit of a glycine betaine/carnitine/choline ABC transporter. Promoter-lux reporter fusion studies further confirmed the transcriptional regulation of lac by YhcSR. Gel shift assays revealed that YhcR binds to the promoter regions of the lac and opuC operons. Moreover, the Pspac-driven lacABC expression in trans was able to partially complement the lethal effect of induced yhcS antisense RNA. Likewise, the Pspac-driven opuCABCD expression in trans complemented the growth defect of S. aureus in a high osmotic strength medium during the depletion of YhcSR. Taken together, the above data indicate that the yhcSR system directly regulates the expression of lac and opuC operons, which, in turn, may be partially associated with the essentiality of yhcSR in S. aureus. These results provide a new insight into the biological functions of the yhcSR, a global regulator.

  7. The Two-Component Signal Transduction System CopRS of Corynebacterium glutamicum Is Required for Adaptation to Copper-Excess Stress

    PubMed Central

    Schelder, Stephanie; Zaade, Daniela; Litsanov, Boris; Bott, Michael; Brocker, Melanie

    2011-01-01

    Copper is an essential cofactor for many enzymes but at high concentrations it is toxic for the cell. Copper ion concentrations ≥50 µM inhibited growth of Corynebacterium glutamicum. The transcriptional response to 20 µM Cu2+ was studied using DNA microarrays and revealed 20 genes that showed a ≥ 3-fold increased mRNA level, including cg3281-cg3289. Several genes in this genomic region code for proteins presumably involved in the adaption to copper-induced stress, e. g. a multicopper oxidase (CopO) and a copper-transport ATPase (CopB). In addition, this region includes the copRS genes (previously named cgtRS9) which encode a two-component signal transduction system composed of the histidine kinase CopS and the response regulator CopR. Deletion of the copRS genes increased the sensitivity of C. glutamicum towards copper ions, but not to other heavy metal ions. Using comparative transcriptome analysis of the ΔcopRS mutant and the wild type in combination with electrophoretic mobility shift assays and reporter gene studies the CopR regulon and the DNA-binding motif of CopR were identified. Evidence was obtained that CopR binds only to the intergenic region between cg3285 (copR) and cg3286 in the genome of C. glutamicum and activates expression of the divergently oriented gene clusters cg3285-cg3281 and cg3286-cg3289. Altogether, our data suggest that CopRS is the key regulatory system in C. glutamicum for the extracytoplasmic sensing of elevated copper ion concentrations and for induction of a set of genes capable of diminishing copper stress. PMID:21799779

  8. A Moraxella catarrhalis Two-Component Signal Transduction System Necessary for Growth in Liquid Media Affects Production of Two Lysozyme Inhibitors

    PubMed Central

    Joslin, Stephanie N.; Pybus, Christine; Labandeira-Rey, Maria; Evans, Amanda S.; Attia, Ahmed S.; Brautigam, Chad A.

    2014-01-01

    There are a paucity of data concerning gene products that could contribute to the ability of Moraxella catarrhalis to colonize the human nasopharynx. Inactivation of a gene (mesR) encoding a predicted response regulator of a two-component signal transduction system in M. catarrhalis yielded a mutant unable to grow in liquid media. This mesR mutant also exhibited increased sensitivity to certain stressors, including polymyxin B, SDS, and hydrogen peroxide. Inactivation of the gene (mesS) encoding the predicted cognate sensor (histidine) kinase yielded a mutant with the same inability to grow in liquid media as the mesR mutant. DNA microarray and real-time reverse transcriptase PCR analyses indicated that several genes previously shown to be involved in the ability of M. catarrhalis to persist in the chinchilla nasopharynx were upregulated in the mesR mutant. Two other open reading frames upregulated in the mesR mutant were shown to encode small proteins (LipA and LipB) that had amino acid sequence homology to bacterial adhesins and structural homology to bacterial lysozyme inhibitors. Inactivation of both lipA and lipB did not affect the ability of M. catarrhalis O35E to attach to a human bronchial epithelial cell line in vitro. Purified recombinant LipA and LipB fusion proteins were each shown to inhibit human lysozyme activity in vitro and in saliva. A lipA lipB deletion mutant was more sensitive than the wild-type parent strain to killing by human lysozyme in the presence of human apolactoferrin. This is the first report of the production of lysozyme inhibitors by M. catarrhalis. PMID:25312959

  9. The cold-induced two-component system CBO0366/CBO0365 regulates metabolic pathways with novel roles in group I Clostridium botulinum ATCC 3502 cold tolerance.

    PubMed

    Dahlsten, Elias; Zhang, Zhen; Somervuo, Panu; Minton, Nigel P; Lindström, Miia; Korkeala, Hannu

    2014-01-01

    The two-component system CBO0366/CBO0365 was recently demonstrated to have a role in cold tolerance of group I Clostridium botulinum ATCC 3502. The mechanisms under its control, ultimately resulting in increased sensitivity to low temperature, are unknown. A transcriptomic analysis with DNA microarrays was performed to identify the differences in global gene expression patterns of the wild-type ATCC 3502 and a derivative mutant with insertionally inactivated cbo0365 at 37 and 15°C. Altogether, 150 or 141 chromosomal coding sequences (CDSs) were found to be differently expressed in the cbo0365 mutant at 37 or 15°C, respectively, and thus considered to be under the direct or indirect transcriptional control of the response regulator CBO0365. Of the differentially expressed CDSs, expression of 141 CDSs was similarly affected at both temperatures investigated, suggesting that the putative CBO0365 regulon was practically not affected by temperature. The regulon involved genes related to acetone-butanol-ethanol (ABE) fermentation, motility, arsenic resistance, and phosphate uptake and transport. Deteriorated growth at 17°C was observed for mutants with disrupted ABE fermentation pathway components (crt, bcd, bdh, and ctfA), arsenic detoxifying machinery components (arsC and arsR), or phosphate uptake mechanism components (phoT), suggesting roles for these mechanisms in cold tolerance of group I C. botulinum. Electrophoretic mobility shift assays showed recombinant CBO0365 to bind to the promoter regions of crt, arsR, and phoT, as well as to the promoter region of its own operon, suggesting direct DNA-binding transcriptional activation or repression as a means for CBO0365 in regulating these operons. The results provide insight to the mechanisms group I C. botulinum utilizes in coping with cold.

  10. Gene expression analysis of two extensively drug-resistant tuberculosis isolates show that two-component response systems enhance drug resistance.

    PubMed

    Yu, Guohua; Cui, Zhenling; Sun, Xian; Peng, Jinfu; Jiang, Jun; Wu, Wei; Huang, Wenhua; Chu, Kaili; Zhang, Lu; Ge, Baoxue; Li, Yao

    2015-05-01

    Global analysis of expression profiles using DNA microarrays was performed between a reference strain H37Rv and two clinical extensively drug-resistant isolates in response to three anti-tuberculosis drug exposures (isoniazid, capreomycin, and rifampicin). A deep analysis was then conducted using a combination of genome sequences of the resistant isolates, resistance information, and related public microarray data. Certain known resistance-associated gene sets were significantly overrepresented in upregulated genes in the resistant isolates relative to that observed in H37Rv, which suggested a link between resistance and expression levels of particular genes. In addition, isoniazid and capreomycin response genes, but not rifampicin, either obtained from published works or our data, were highly consistent with the differentially expressed genes of resistant isolates compared to those of H37Rv, indicating a strong association between drug resistance of the isolates and genes differentially regulated by isoniazid and capreomycin exposures. Based on these results, 92 genes of the studied isolates were identified as candidate resistance genes, 10 of which are known resistance-related genes. Regulatory network analysis of candidate resistance genes using published networks and literature mining showed that three two-component regulatory systems and regulator CRP play significant roles in the resistance of the isolates by mediating the production of essential envelope components. Finally, drug sensitivity testing indicated strong correlations between expression levels of these regulatory genes and sensitivity to multiple anti-tuberculosis drugs in Mycobacterium tuberculosis. These findings may provide novel insights into the mechanism underlying the emergence and development of drug resistance in resistant tuberculosis isolates and useful clues for further studies on this issue.

  11. Purification and some properties of 2-halobenzoate 1,2-dioxygenase, a two-component enzyme system from Pseudomonas cepacia 2CBS.

    PubMed Central

    Fetzner, S; Müller, R; Lingens, F

    1992-01-01

    The two components of the inducible 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS were purified to homogeneity. Yellow component B is a monomer (Mr, 37,500) with NADH-acceptor reductase activity. Ferricyanide, 2,6-dichlorophenol indophenol, and cytochrome c acted as electron acceptors. Component B was identified as an iron-sulfur flavoprotein containing 0.8 mol of flavin adenine dinucleotide, 1.7 mol of iron, and 1.7 mol of acid-labile sulfide per mol of enzyme. The isoelectric point was estimated to be pH 4.2. Component B was reduced by the addition of NADH. Red-brown component A (Mr, 200,000 to 220,000) is an iron-sulfur protein containing 5.8 mol of iron and 6.0 mol of acid-labile sulfide. The isoelectric point was within the range of pH 4.5 to 5.3. Component A could be reduced by dithionite or by NADH plus catalytic amounts of component B. Component A consisted of nonidentical subunits alpha (Mr, 52,000) and beta (Mr, 20,000). It contained approximately equimolar amounts of alpha and beta, and cross-linking studies suggested an alpha 3 beta 3 subunit structure of component A. The NADH- and Fe(2+)-dependent enzyme system was named 2-halobenzoate 1,2-dioxygenase, because it catalyzes the conversion of 2-fluoro-, 2-bromo-, 2-chloro-, and 2-iodobenzoate to catechol. 2-Halobenzoate 1,2-dioxygenase exhibited a very broad substrate specificity, but benzoate analogs with electron-withdrawing substituents at the ortho position were transformed preferentially. Images PMID:1370284

  12. A gene cluster involved in aerial mycelium formation in Streptomyces griseus encodes proteins similar to the response regulators of two-component regulatory systems and membrane translocators.

    PubMed Central

    Ueda, K; Miyake, K; Horinouchi, S; Beppu, T

    1993-01-01

    Mutants of Streptomyces griseus deficient in A-factor production are sporulation negative, since A-factor is an essential hormonal regulator for the induction of morphological and physiological differentiation in this bacterium. A DNA fragment which induced aerial mycelium formation and sporulation in an A-factor-deficient mutant strain, S. griseus HH1, was cloned from this mutant strain. Subcloning experiments and nucleotide sequencing showed that two open reading frames, ORF1 with 656 amino acids and ORF2 with 201 amino acids, were required in order to induce sporulation. The amino acid sequence of ORF1 significantly resembled that of the Escherichia coli HlyB protein, a member of a family of bacterial membrane proteins engaged in ATP-dependent secretion mechanisms. Conserved features of this surface translocator family, such as the transmembrane structure predicted by their hydropathy profiles and the amino acid sequence forming an ATP-binding fold, were also conserved in ORF1. The ORF1 gene appeared to constitute a transcriptional unit with an additional upstream gene encoding ORF3, which was greatly similar to ORF1 in size and amino acid sequence. The other protein, ORF2, showed significant end-to-end homology with the E. coli uhpA product, a regulatory protein for the uptake of sugar phosphates. Like UhpA as a response regulator of a bacterial two-component regulatory system, ORF2 contained a helix-turn-helix DNA-binding domain at its COOH-terminal portion and an Asp residue (Asp-54) probably to be phosphorylated at its NH2-terminal portion. An amino acid replacement from Asp-54 to Asn resulted in the loss of the ability of ORF2 to induce sporulation in strain HH1. Images PMID:8458843

  13. Three distinct two-component systems are involved in resistance to the class I bacteriocins, Nukacin ISK-1 and nisin A, in Staphylococcus aureus.

    PubMed

    Kawada-Matsuo, Miki; Yoshida, Yuuma; Zendo, Takeshi; Nagao, Junichi; Oogai, Yuichi; Nakamura, Yasunori; Sonomoto, Kenji; Nakamura, Norifumi; Komatsuzawa, Hitoshi

    2013-01-01

    Staphylococcus aureus uses two-component systems (TCSs) to adapt to stressful environmental conditions. To colonize a host, S. aureus must resist bacteriocins produced by commensal bacteria. In a comprehensive analysis using individual TCS inactivation mutants, the inactivation of two TCSs, graRS and braRS, significantly increased the susceptibility to the class I bacteriocins, nukacin ISK-1 and nisin A, and inactivation of vraSR slightly increased the susceptibility to nukacin ISK-1. In addition, two ABC transporters (BraAB and VraDE) regulated by BraRS and one transporter (VraFG) regulated by GraRS were associated with resistance to nukacin ISK-1 and nisin A. We investigated the role of these three TCSs of S. aureus in co-culture with S. warneri, which produces nukacin ISK-1, and Lactococcus lactis, which produces nisin A. When co-cultured with S. warneri or L. lactis, the braRS mutant showed a significant decrease in its population compared with the wild-type, whereas the graRS and vraSR mutants showed slight decreases. Expression of vraDE was elevated significantly in S. aureus co-cultured with nisin A/nukacin ISK-1-producing strains. These results suggest that three distinct TCSs are involved in the resistance to nisin A and nukacin ISK-1. Additionally, braRS and its related transporters played a central role in S. aureus survival in co-culture with the strains producing nisin A and nukacin ISK-1.

  14. Signaling mechanism by the Staphylococcus aureus two-component system LytSR: role of acetyl phosphate in bypassing the cell membrane electrical potential sensor LytS

    PubMed Central

    Patel, Kevin; Golemi-Kotra, Dasantila

    2016-01-01

    The two-component system LytSR has been linked to the signal transduction of cell membrane electrical potential perturbation and is involved in the adaptation of Staphylococcus aureus to cationic antimicrobial peptides. It consists of a membrane-bound histidine kinase, LytS, which belongs to the family of multiple transmembrane-spanning domains receptors, and a response regulator, LytR, which belongs to the novel family of non-helix-turn-helix DNA-binding domain proteins. LytR regulates the expression of cidABC and lrgAB operons, the gene products of which are involved in programmed cell death and lysis. In vivo studies have demonstrated involvement of two overlapping regulatory networks in regulating the lrgAB operon, both depending on LytR. One regulatory network responds to glucose metabolism and the other responds to changes in the cell membrane potential. Herein, we show that LytS has autokinase activity and can catalyze a fast phosphotransfer reaction, with 50% of its phosphoryl group lost within 1 minute of incubation with LytR. LytS has also phosphatase activity. Notably, LytR undergoes phosphorylation by acetyl phosphate at a rate that is 2-fold faster than the phosphorylation by LytS. This observation is significant in lieu of the in vivo observations that regulation of the lrgAB operon is LytR-dependent in the presence of excess glucose in the medium. The latter condition does not lead to perturbation of the cell membrane potential but rather to the accumulation of acetate in the cell. Our study provides insights into the molecular basis for regulation of lrgAB in a LytR-dependent manner under conditions that do not involve sensing by LytS. PMID:27127614

  15. The Two-Component System CpxRA Negatively Regulates the Locus of Enterocyte Effacement of Enterohemorrhagic Escherichia coli Involving σ(32) and Lon protease.

    PubMed

    De la Cruz, Miguel A; Morgan, Jason K; Ares, Miguel A; Yáñez-Santos, Jorge A; Riordan, James T; Girón, Jorge A

    2016-01-01

    Enterohemorrhagic Escherichia coli (EHEC) is a significant cause of serious human gastrointestinal disease worldwide. EHEC strains contain a pathogenicity island called the locus of enterocyte effacement (LEE), which encodes virulence factors responsible for damaging the gut mucosa. The Cpx envelope stress response of E. coli is controlled by a two-component system (TCS) consisting of a sensor histidine kinase (CpxA) and a cytoplasmic response regulator (CpxR). In this study, we investigated the role of CpxRA in the expression of LEE-encoded virulence factors of EHEC. We found that a mutation in cpxA significantly affected adherence of EHEC to human epithelial cells. Analysis of this mutant revealed the presence of high levels of CpxR which repressed transcription of grlA and ler, the main positive virulence regulators of the LEE, and influenced negatively the production of the type 3 secretion system-associated EspABD translocator proteins. It is known that CpxR activates rpoH (Sigma factor 32), which in turns activates transcription of the lon protease gene. We found that transcription levels of ler and grlA were significantly increased in the lon and cpxA lon mutants suggesting that lon is involved in down-regulating LEE genes. In addition, the Galleria mellonella model of infection was used to analyze the effect of the loss of the cpx and lon genes in EHEC's ability to kill the larvae. We found that the cpxA mutant was significantly deficient at killing the larvae however, the cpxA lon mutant which overexpresses LEE genes in vitro, was unable to kill the larvae, suggesting that virulence in the G. mellonella model is T3SS independent and that CpxA modulates virulence through a yet unknown EHEC-specific factor. Our data provides new insights and broadens our scope into the complex regulatory network of the LEE in which the CpxA sensor kinase plays an important role in a cascade involving both global and virulence regulators.

  16. Functional Characterization of a Novel Outer Membrane Porin KpnO, Regulated by PhoBR Two-Component System in Klebsiella pneumoniae NTUH-K2044

    PubMed Central

    Srinivasan, Vijaya Bharathi; Venkataramaiah, Manjunath; Mondal, Amitabha; Vaidyanathan, Vasanth; Govil, Tanvi; Rajamohan, Govindan

    2012-01-01

    Background The diffusion of antibiotics through the outer membrane is primarily affected by the porin super family, changes contribute to antibiotic resistance. Recently we demonstrated that the CpxAR two-component signaling system alters the expression of an uncharacterized porin OmpCKP, to mediate antimicrobial resistance in K. pneumoniae. Principal Findings In this study, functional characterization of the putative porin OmpCKP (denoted kpnO) with respect to antimicrobial susceptibility and virulence was evaluated by generating an isogenic mutant, ΔkpnO in a clinical isolate of K. pneumoniae. Estimation of uronic acid content confirmed that ΔkpnO produced ∼2.0 fold lesser capsular polysaccharide than the wild-type. The ΔkpnO displayed higher sensitivity to hyper osmotic and bile conditions. Disruption of kpnO increased the susceptibility of K. pneumoniae to oxidative and nitrostative stress by ∼1.6 fold and >7 fold respectively. The loss of the Klebsiella porin led to an increase in the minimum inhibitory concentration of tetracycline (3-fold), nalidixic acid (4-fold), tobramycin (4-fold), streptomycin (10-fold), and spectinomycin (10-fold), which could be restored following complementation. The single deletion of kpnO reduced the survival of the pathogen by 50% when exposed to disinfectants. In Caenorhabditis elegans model, the kpnO mutant exhibited significantly (P<0.01) lower virulence. To dissect the role of PhoBR signaling system in regulating the expression of the kpnO, a phoBKP isogenic mutant was constructed. The phoBKP mutant exhibited impaired gastrointestinal stress response and decreased antimicrobial susceptibility. The mRNA levels of kpnO were found to be 4-fold less in phoBKP mutant compared to wild type. A regulatory role of PhoBKP for the expression of kpnO was further supported by the specific binding of PhoBKP to the putative promoter of kpnO. Conclusions and Significance Loss of PhoBR regulated porin KpnO resulted in increased

  17. The two-component system CpxR/A represses the expression of Salmonella virulence genes by affecting the stability of the transcriptional regulator HilD

    PubMed Central

    De la Cruz, Miguel A.; Pérez-Morales, Deyanira; Palacios, Irene J.; Fernández-Mora, Marcos; Calva, Edmundo; Bustamante, Víctor H.

    2015-01-01

    Salmonella enterica can cause intestinal or systemic infections in humans and animals mainly by the presence of pathogenicity islands SPI-1 and SPI-2, containing 39 and 44 genes, respectively. The AraC-like regulator HilD positively controls the expression of the SPI-1 genes, as well as many other Salmonella virulence genes including those located in SPI-2. A previous report indicates that the two-component system CpxR/A regulates the SPI-1 genes: the absence of the sensor kinase CpxA, but not the absence of its cognate response regulator CpxR, reduces their expression. The presence and absence of cell envelope stress activates kinase and phosphatase activities of CpxA, respectively, which in turn controls the level of phosphorylated CpxR (CpxR-P). In this work, we further define the mechanism for the CpxR/A-mediated regulation of SPI-1 genes. The negative effect exerted by the absence of CpxA on the expression of SPI-1 genes was counteracted by the absence of CpxR or by the absence of the two enzymes, AckA and Pta, which render acetyl-phosphate that phosphorylates CpxR. Furthermore, overexpression of the lipoprotein NlpE, which activates CpxA kinase activity on CpxR, or overexpression of CpxR, repressed the expression of SPI-1 genes. Thus, our results provide several lines of evidence strongly supporting that the absence of CpxA leads to the phosphorylation of CpxR via the AckA/Pta enzymes, which represses both the SPI-1 and SPI-2 genes. Additionally, we show that in the absence of the Lon protease, which degrades HilD, the CpxR-P-mediated repression of the SPI-1 genes is mostly lost; moreover, we demonstrate that CpxR-P negatively affects the stability of HilD and thus decreases the expression of HilD-target genes, such as hilD itself and hilA, located in SPI-1. Our data further expand the insight on the different regulatory pathways for gene expression involving CpxR/A and on the complex regulatory network governing virulence in Salmonella. PMID:26300871

  18. High temperature two component explosive

    DOEpatents

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  19. The Two-Component System CpxRA Negatively Regulates the Locus of Enterocyte Effacement of Enterohemorrhagic Escherichia coli Involving σ32 and Lon protease

    PubMed Central

    De la Cruz, Miguel A.; Morgan, Jason K.; Ares, Miguel A.; Yáñez-Santos, Jorge A.; Riordan, James T.; Girón, Jorge A.

    2016-01-01

    Enterohemorrhagic Escherichia coli (EHEC) is a significant cause of serious human gastrointestinal disease worldwide. EHEC strains contain a pathogenicity island called the locus of enterocyte effacement (LEE), which encodes virulence factors responsible for damaging the gut mucosa. The Cpx envelope stress response of E. coli is controlled by a two-component system (TCS) consisting of a sensor histidine kinase (CpxA) and a cytoplasmic response regulator (CpxR). In this study, we investigated the role of CpxRA in the expression of LEE-encoded virulence factors of EHEC. We found that a mutation in cpxA significantly affected adherence of EHEC to human epithelial cells. Analysis of this mutant revealed the presence of high levels of CpxR which repressed transcription of grlA and ler, the main positive virulence regulators of the LEE, and influenced negatively the production of the type 3 secretion system–associated EspABD translocator proteins. It is known that CpxR activates rpoH (Sigma factor 32), which in turns activates transcription of the lon protease gene. We found that transcription levels of ler and grlA were significantly increased in the lon and cpxA lon mutants suggesting that lon is involved in down-regulating LEE genes. In addition, the Galleria mellonella model of infection was used to analyze the effect of the loss of the cpx and lon genes in EHEC's ability to kill the larvae. We found that the cpxA mutant was significantly deficient at killing the larvae however, the cpxA lon mutant which overexpresses LEE genes in vitro, was unable to kill the larvae, suggesting that virulence in the G. mellonella model is T3SS independent and that CpxA modulates virulence through a yet unknown EHEC-specific factor. Our data provides new insights and broadens our scope into the complex regulatory network of the LEE in which the CpxA sensor kinase plays an important role in a cascade involving both global and virulence regulators. PMID:26904510

  20. Crosstalk between the HpArsRS two-component system and HpNikR is necessary for maximal activation of urease transcription

    PubMed Central

    Carpenter, Beth M.; West, Abby L.; Gancz, Hanan; Servetas, Stephanie L.; Pich, Oscar Q.; Gilbreath, Jeremy J.; Hallinger, Daniel R.; Forsyth, Mark H.; Merrell, D. Scott; Michel, Sarah L. J.

    2015-01-01

    Helicobacter pylori NikR (HpNikR) is a nickel dependent transcription factor that directly regulates a number of genes in this important gastric pathogen. One key gene that is regulated by HpNikR is ureA, which encodes for the urease enzyme. In vitro DNA binding studies of HpNikR with the ureA promoter (PureA) previously identified a recognition site that is required for high affinity protein/DNA binding. As a means to determine the in vivo significance of this recognition site and to identify the key DNA sequence determinants required for ureA transcription, herein, we have translated these in vitro results to analysis directly within H. pylori. Using a series of GFP reporter constructs in which the PureA DNA target was altered, in combination with mutant H. pylori strains deficient in key regulatory proteins, we confirmed the importance of the previously identified HpNikR recognition sequence for HpNikR-dependent ureA transcription. Moreover, we identified a second factor, the HpArsRS two-component system that was required for maximum transcription of ureA. While HpArsRS is known to regulate ureA in response to acid shock, it was previously thought to function independently of HpNikR and to have no role at neutral pH. However, our qPCR analysis of ureA expression in wildtype, ΔnikR and ΔarsS single mutants as well as a ΔarsS/nikR double mutant strain background showed reduced basal level expression of ureA when arsS was absent. Additionally, we determined that both HpNikR and HpArsRS were necessary for maximal expression of ureA under nickel, low pH and combined nickel and low pH stresses. In vitro studies of HpArsR-P with the PureA DNA target using florescence anisotropy confirmed a direct protein/DNA binding interaction. Together, these data support a model in which HpArsRS and HpNikR cooperatively interact to regulate ureA transcription under various environmental conditions. This is the first time that direct “cross-talk” between HpArsRS and HpNikR at

  1. Transcriptional profiling of the two-component regulatory system VraSR in Staphylococcus aureus with low-level vancomycin resistance.

    PubMed

    Chen, Hongbin; Xiong, Zhujia; Liu, Kuoyue; Li, Shuguang; Wang, Ruobing; Wang, Xiaojuan; Zhang, Yawei; Wang, Hui

    2016-05-01

    The objective of this study was to comprehensively identify the target genes regulated by the two-component regulatory system VraSR in Staphylococcus aureus and to clarify the role of VraSR in low-level vancomycin resistance. Expression of vraS was determined by real-time quantitative reverse transcriptase PCR (qRT-PCR). A clinical heterogeneous vancomycin-intermediate S. aureus (hVISA) strain B6D and a vancomycin-intermediate S. aureus (VISA) strain D7 that was induced from a meticillin-resistant S. aureus strain were selected to construct vraSR null mutants by allelic replacement. The vraSR-complemented strain B6D_c was also constructed by allelic replacement. Genes differentially expressed in the wild-type, vraSR null mutant and complemented strains were detected using RNA-Seq and were validated by qRT-PCR. Compared with vancomycin-susceptible S. aureus strains, expression of vraS was upregulated in all four isogenic hVISA strains. Vancomycin minimum inhibitory concentrations (MICs) in the vraSR null mutants B6D-ΔvraSR and D7-ΔvraSR were significantly lower than in the wild-type strains B6D and D7 and the complemented strain B6D_c. RNA-Seq and qRT-PCR data showed that expression of genes encoding FmtA protein, foldase protein PrsA, capsular polysaccharide biosynthesis glycosyltransferase, TcaA, a putative membrane protein, and six hypothetical proteins was down regulated in both vraSR-null mutants B6D-ΔvraSR and D7-ΔvraSR. Most of these differentially expressed proteins are involved in cell wall biosynthesis, which is associated with vancomycin resistance in S. aureus. In conclusion, VraSR plays an important role in S. aureus strains with low-level vancomycin resistance. PrsA, FmtA, glycosyltransferase and TcaA are regulated directly or indirectly by VraSR.

  2. Inactivation of SmeSyRy Two-Component Regulatory System Inversely Regulates the Expression of SmeYZ and SmeDEF Efflux Pumps in Stenotrophomonas maltophilia

    PubMed Central

    Lin, Yi-Tsung; Ning, Hsiao-Chen; Yang, Tsuey-Ching

    2016-01-01

    SmeYZ efflux pump is a critical pump responsible for aminoglycosides resistance, virulence-related characteristics (oxidative stress susceptibility, motility, and secreted protease activity), and virulence in Stenotrophomonas maltophilia. However, the regulatory circuit involved in SmeYZ expression is little known. A two-component regulatory system (TCS), smeRySy, transcribed divergently from the smeYZ operon is the first candidate to be considered. To assess the role of SmeRySy in smeYZ expression, the smeRySy isogenic deletion mutant, KJΔRSy, was constructed by gene replacement strategy. Inactivation of smeSyRy correlated with a higher susceptibility to aminoglycosides concomitant with an increased resistance to chloramphenicol, ciprofloxacin, tetracycline, and macrolides. To elucidate the underlying mechanism responsible for the antimicrobials susceptibility profiles, the SmeRySy regulon was firstly revealed by transcriptome analysis and further confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and promoter transcription fusion constructs assay. The results demonstrate that inactivation of smeRySy decreased the expression of SmeYZ pump and increased the expression of SmeDEF pump, which underlies the ΔsmeSyRy-mediated antimicrobials susceptibility profile. To elucidate the cognate relationship between SmeSy and SmeRy, a single mutant, KJΔRy, was constructed and the complementation assay of KJΔRSy with smeRy were performed. The results support that SmeSy-SmeRy TCS is responsible for the regulation of smeYZ operon; whereas SmeSy may be cognate with another unidentified response regulator for the regulation of smeDEF operon. The impact of inverse expression of SmeYZ and SmeDEF pumps on physiological functions was evaluated by mutants construction, H2O2 susceptibility test, swimming, and secreted protease activity assay. The increased expression of SmeDEF pump in KJΔRSy may compensate, to some extents, the SmeYZ downexpression

  3. Crosstalk between the HpArsRS two-component system and HpNikR is necessary for maximal activation of urease transcription.

    PubMed

    Carpenter, Beth M; West, Abby L; Gancz, Hanan; Servetas, Stephanie L; Pich, Oscar Q; Gilbreath, Jeremy J; Hallinger, Daniel R; Forsyth, Mark H; Merrell, D Scott; Michel, Sarah L J

    2015-01-01

    Helicobacter pylori NikR (HpNikR) is a nickel dependent transcription factor that directly regulates a number of genes in this important gastric pathogen. One key gene that is regulated by HpNikR is ureA, which encodes for the urease enzyme. In vitro DNA binding studies of HpNikR with the ureA promoter (PureA ) previously identified a recognition site that is required for high affinity protein/DNA binding. As a means to determine the in vivo significance of this recognition site and to identify the key DNA sequence determinants required for ureA transcription, herein, we have translated these in vitro results to analysis directly within H. pylori. Using a series of GFP reporter constructs in which the PureA DNA target was altered, in combination with mutant H. pylori strains deficient in key regulatory proteins, we confirmed the importance of the previously identified HpNikR recognition sequence for HpNikR-dependent ureA transcription. Moreover, we identified a second factor, the HpArsRS two-component system that was required for maximum transcription of ureA. While HpArsRS is known to regulate ureA in response to acid shock, it was previously thought to function independently of HpNikR and to have no role at neutral pH. However, our qPCR analysis of ureA expression in wildtype, ΔnikR and ΔarsS single mutants as well as a ΔarsS/nikR double mutant strain background showed reduced basal level expression of ureA when arsS was absent. Additionally, we determined that both HpNikR and HpArsRS were necessary for maximal expression of ureA under nickel, low pH and combined nickel and low pH stresses. In vitro studies of HpArsR-P with the PureA DNA target using florescence anisotropy confirmed a direct protein/DNA binding interaction. Together, these data support a model in which HpArsRS and HpNikR cooperatively interact to regulate ureA transcription under various environmental conditions. This is the first time that direct "cross-talk" between HpArsRS and HpNikR at

  4. Ab initio two-component Ehrenfest dynamics

    SciTech Connect

    Ding, Feizhi; Goings, Joshua J.; Liu, Hongbin; Lingerfelt, David B.; Li, Xiaosong

    2015-09-21

    We present an ab initio two-component Ehrenfest-based mixed quantum/classical molecular dynamics method to describe the effect of nuclear motion on the electron spin dynamics (and vice versa) in molecular systems. The two-component time-dependent non-collinear density functional theory is used for the propagation of spin-polarized electrons while the nuclei are treated classically. We use a three-time-step algorithm for the numerical integration of the coupled equations of motion, namely, the velocity Verlet for nuclear motion, the nuclear-position-dependent midpoint Fock update, and the modified midpoint and unitary transformation method for electronic propagation. As a test case, the method is applied to the dissociation of H{sub 2} and O{sub 2}. In contrast to conventional Ehrenfest dynamics, this two-component approach provides a first principles description of the dynamics of non-collinear (e.g., spin-frustrated) magnetic materials, as well as the proper description of spin-state crossover, spin-rotation, and spin-flip dynamics by relaxing the constraint on spin configuration. This method also holds potential for applications to spin transport in molecular or even nanoscale magnetic devices.

  5. Markov random fields reveal an N-terminal double beta-propeller motif as part of a bacterial hybrid two-component sensor system

    PubMed Central

    Menke, Matt; Berger, Bonnie; Cowen, Lenore

    2010-01-01

    The recent explosion in newly sequenced bacterial genomes is outpacing the capacity of researchers to try to assign functional annotation to all the new proteins. Hence, computational methods that can help predict structural motifs provide increasingly important clues in helping to determine how these proteins might function. We introduce a Markov Random Field approach tailored for recognizing proteins that fold into mainly β-structural motifs, and apply it to build recognizers for the β-propeller shapes. As an application, we identify a potential class of hybrid two-component sensor proteins, that we predict contain a double-propeller domain. PMID:20147619

  6. Spontaneous Breaking of Translational Invariance and Spatial Condensation in Stationary States on a Ring. II. The Charged System and the Two-Component Burgers Equations

    NASA Astrophysics Data System (ADS)

    Arndt, Peter F.; Rittenberg, Vladimir

    2002-06-01

    We further study the stochastic model discussed in ref. 2 in which positive and negative particles diffuse in an asymmetric, CP invariant way on a ring. The positive particles hop clockwise, the negative counter-clockwise and oppositely-charged adjacent particles may swap positions. We extend the analysis of this model to the case when the densities of the charged particles are not the same. The mean-field equations describing the model are coupled nonlinear differential equations that we call the two-component Burgers equations. We find roundabout weak solutions of these equations. These solutions are used to describe the properties of the stationary states of the stochastic model. The values of the currents and of various two-point correlation functions obtained from Monte-Carlo simulations are compared with the mean-field results. Like in the case of equal densities, one finds a pure phase, a mixed phase and a disordered phase.

  7. Vancomycin susceptibility in methicillin-resistant Staphylococcus aureus is mediated by YycHI activation of the WalRK essential two-component regulatory system

    PubMed Central

    Cameron, David R.; Jiang, Jhih-Hang; Kostoulias, Xenia; Foxwell, Daniel J.; Peleg, Anton Y.

    2016-01-01

    The treatment of infections caused by methicillin-resistant Staphylococcus aureus is complicated by the emergence of strains with intermediate-level resistance to vancomycin (termed VISA). We have characterised a molecular pathway involved in the in vivo evolution of VISA mediated by the regulatory proteins YycH and YycI. In contrast to their function in other bacterial species, we report a positive role for these auxiliary proteins in regulation of the two-component regulator WalRK. Transcriptional profiling of yycH and yycI deletion mutants revealed downregulation of the ‘WalRK regulon’ including cell wall hydrolase genes atlA and sle1, with functional autolysis assays supporting these data by showing an impaired autolytic phenotype for each deletion strain. Using bacterial-two hybrid assays, we showed that YycH and YycI interact, and that YycHI also interacts with the sensor kinase WalK, forming a ternary protein complex. Mutation to YycH or YycI associated with clinical VISA strains had a deleterious impact on the YycHI/WalK complex, suggesting that the interaction is important for the regulation of WalRK. Taken together, we have described a novel antibiotic resistance strategy for the human pathogen S. aureus, whereby YycHI mutations are selected for in vivo leading to reduced WalRK activation, impaired cell wall turnover and ultimately reduced vancomycin efficacy. PMID:27600558

  8. Detection of the Vascular Endothelial Growth Factor with a Novel Bioluminescence Resonance Energy Transfer Pair Using a Two-Component System

    PubMed Central

    Wimmer, Tobias; Schroeter, Eva; Lorenz, Birgit; Stieger, Knut

    2017-01-01

    In this paper we describe a two-component BRET (bioluminescence resonance energy transfer)-based method to detect vascular endothelial growth factor (VEGF) molecules in unknown samples as the basis for subsequent in vivo use. A luminescent VEGF binding molecule, which binds in the receptor binding motif of VEGF, is used as the energy donor, transferred to a fluorophore-coupled VEGF binding molecule (acceptor), which binds to the neuropilin binding motif of VEGF, thus enabling energy transfer from the donor to the acceptor molecule. This leads to the emission of light at a longer wavelength and thus the generation of an increased BRET signal only when VEGF is bound to both the donor and acceptor molecules. We further describe a novel BRET pair that uses the Renilla reniformis mutant luciferase RLuc8 and the chemically engineered fluorophore PerCP-Cy5.5®, which exhibits superior peak separation of approximately 300 nm. The implantation of capsules consisting of the two BRET components in solution, permeable for VEGF for its in vivo detection, would provide a new and improved method for monitoring VEGF-induced pathologies and thus an adjustment of therapy to patient needs. PMID:28098756

  9. Systemic antibody responses induced by a two-component Clostridium difficile toxoid vaccine protect against C. difficile-associated disease in hamsters.

    PubMed

    Anosova, Natalie G; Brown, Anna M; Li, Lu; Liu, Nana; Cole, Leah E; Zhang, Jinrong; Mehta, Hersh; Kleanthous, Harry

    2013-09-01

    Clostridium difficile infection (CDI) has been identified as the leading cause of nosocomial diarrhoea and pseudomembranous colitis associated with antibiotic therapy. Recent epidemiological changes as well as increases in the number of outbreaks of strains associated with increased virulence and higher mortality rates underscore the importance of identifying alternatives to antibiotics to manage this important disease. Animal studies have clearly demonstrated the roles that toxins A and B play in gut inflammation as well as diarrhoea; therefore it is not surprising that serum anti-toxin A and B IgG are associated with protection against recurrent CDI. In humans, strong humoral toxin-specific immune responses elicited by natural C. difficile infection is associated with recovery and lack of disease recurrence, whereas insufficient humoral responses are associated with recurrent CDI. The first generation of C. difficile vaccine that contained inactivated toxin A and B was found to be completely protective against death and diarrhoea in the hamster C. difficile challenge model. When tested in young healthy volunteers in Phase I clinical trials, this investigational vaccine was shown to be safe and immunogenic. Moreover, in a separate study this vaccine was able to prevent further relapses in three out of three patients who had previously suffered from chronic relapsing C. difficile-associated diarrhoea. Herein we examined the immunogenicity and protective activity of a next-generation Sanofi Pasteur two-component highly purified toxoid vaccine in a C. difficile hamster model. This model is widely recognized as a stringent and relevant choice for the evaluation of novel treatment strategies against C. difficile and was used in preclinical testing of the first-generation vaccine candidate. Intramuscular (i.m.) immunizations with increasing doses of this adjuvanted toxoid vaccine protected hamsters from mortality and disease symptoms in a dose-dependent manner. ELISA

  10. Two Component Signal Transduction in Desulfovibrio Species

    SciTech Connect

    Luning, Eric; Rajeev, Lara; Ray, Jayashree; Mukhopadhyay, Aindrila

    2010-05-17

    The environmentally relevant Desulfovibrio species are sulfate-reducing bacteria that are of interest in the bioremediation of heavy metal contaminated water. Among these, the genome of D. vulgaris Hildenborough encodes a large number of two component systems consisting of 72 putative response regulators (RR) and 64 putative histidinekinases (HK), the majority of which are uncharacterized. We classified the D. vulgaris Hildenborough RRs based on their output domains and compared the distribution of RRs in other sequenced Desulfovibrio species. We have successfully purified most RRs and several HKs as His-tagged proteins. We performed phospho-transfer experiments to verify relationships between cognate pairs of HK and RR, and we have also mapped a few non-cognate HK-RR pairs. Presented here are our discoveries from the Desulfovibrio RR categorization and results from the in vitro studies using purified His tagged D. vulgaris HKs and RRs.

  11. Complete solution of the problem of one-dimensional non-covalent non-cooperative self-assembly in two-component systems.

    PubMed

    Evstigneev, V P; Mosunov, A A; Buchelnikov, A S; Hernandez Santiago, A A; Evstigneev, M P

    2011-05-21

    Equations for the mass conservation law and the molecular parameters observed in spectroscopic experiments have been derived for non-covalent, non-cooperative, one-dimensional self-assembly in systems containing two types of interacting molecules (hetero-association), taking into account "reflected" complexes and "edge effects."

  12. Monoclonal antibody heterogeneity analysis and deamidation monitoring with high-performance cation-exchange chromatofocusing using simple, two component buffer systems.

    PubMed

    Kang, Xuezhen; Kutzko, Joseph P; Hayes, Michael L; Frey, Douglas D

    2013-03-29

    The use of either a polyampholyte buffer or a simple buffer system for the high-performance cation-exchange chromatofocusing of monoclonal antibodies is demonstrated for the case where the pH gradient is produced entirely inside the column and with no external mixing of buffers. The simple buffer system used was composed of two buffering species, one which becomes adsorbed onto the column packing and one which does not adsorb, together with an adsorbed ion that does not participate in acid-base equilibrium. The method which employs the simple buffer system is capable of producing a gradual pH gradient in the neutral to acidic pH range that can be adjusted by proper selection of the starting and ending pH values for the gradient as well as the buffering species concentration, pKa, and molecular size. By using this approach, variants of representative monoclonal antibodies with isoelectric points of 7.0 or less were separated with high resolution so that the approach can serve as a complementary alternative to isoelectric focusing for characterizing a monoclonal antibody based on differences in the isoelectric points of the variants present. Because the simple buffer system used eliminates the use of polyampholytes, the method is suitable for antibody heterogeneity analysis coupled with mass spectrometry. The method can also be used at the preparative scale to collect highly purified isoelectric variants of an antibody for further study. To illustrate this, a single isoelectric point variant of a monoclonal antibody was collected and used for a stability study under forced deamidation conditions.

  13. Physiological responses induced in tomato plants by a two-component nanostructural system composed of carbon nanotubes conjugated with quantum dots and its in vivo multimodal detection.

    PubMed

    Alimohammadi, Mohammad; Xu, Yang; Wang, Daoyuan; Biris, Alexandru S; Khodakovskaya, Mariya V

    2011-07-22

    Plant seedlings were exposed to single-walled carbon nanotube-quantum dot conjugates (SWCNT-QD) mixed in the growth medium in order to understand the interactions between these multicomponent nanosystems and plants. A combination of fluorescent and Raman-scattering 2D mapping analysis was used to clearly monitor the presence of the SWCNT-QD conjugates in various parts of the tomato seedlings. We found that the addition of QDs to SWCNTs dramatically changed the biological viability of the tomato plants by significantly accelerating leaf senescence and inhibiting root formation. Although the exposure of SWCNTs only to the plants induced positive effects, the chlorophyll content decreased by 1.5-fold in leaves, and the total weight of the root system decreased four times for the tomato plants exposed to SWCNT-QDs (50 µg ml(-1)) compared to plants grown on regular medium as controls. Our results clearly indicate that the exposure of plants to multicomponent nanomaterials is highly influenced by the presence and bioactivity of each component, individually. Such studies could be the foundation for understanding how complex nanosized systems affect the activity of various biological systems with a major impact on ecotoxicology.

  14. Physiological responses induced in tomato plants by a two-component nanostructural system composed of carbon nanotubes conjugated with quantum dots and its in vivo multimodal detection

    NASA Astrophysics Data System (ADS)

    Alimohammadi, Mohammad; Xu, Yang; Wang, Daoyuan; Biris, Alexandru S.; Khodakovskaya, Mariya V.

    2011-07-01

    Plant seedlings were exposed to single-walled carbon nanotube-quantum dot conjugates (SWCNT-QD) mixed in the growth medium in order to understand the interactions between these multicomponent nanosystems and plants. A combination of fluorescent and Raman-scattering 2D mapping analysis was used to clearly monitor the presence of the SWCNT-QD conjugates in various parts of the tomato seedlings. We found that the addition of QDs to SWCNTs dramatically changed the biological viability of the tomato plants by significantly accelerating leaf senescence and inhibiting root formation. Although the exposure of SWCNTs only to the plants induced positive effects, the chlorophyll content decreased by 1.5-fold in leaves, and the total weight of the root system decreased four times for the tomato plants exposed to SWCNT-QDs (50 µg ml - 1) compared to plants grown on regular medium as controls. Our results clearly indicate that the exposure of plants to multicomponent nanomaterials is highly influenced by the presence and bioactivity of each component, individually. Such studies could be the foundation for understanding how complex nanosized systems affect the activity of various biological systems with a major impact on ecotoxicology.

  15. Preliminary Crystallographic Studies of the Regulatory Domain of Response Regulator YycF from an Essential Two-Component Signal Transduction System

    SciTech Connect

    Zhao, H.; Heroux, A; Sequeira, R; Tang, L

    2009-01-01

    YycGF is a crucial signal transduction system for the regulation of cell-wall metabolism in low-G+C Gram-positive bacteria, which include many important human pathogens. The response regulator YycF receives signals from its cognate histidine kinase YycG through a phosphotransfer reaction and elicits responses through regulation of gene expression. The N-terminal regulatory domain of YycF from Bacillus subtilis was overproduced and purified. The protein was crystallized and X-ray data were collected to 1.95 A resolution with a completeness of 97.7% and an overall Rmerge of 7.7%. The crystals belonged to space group P3121, with unit-cell parameters a = b = 59.50, c = 79.06 A.

  16. Two-component Bose gases under rotation

    SciTech Connect

    Bargi, S.; Kaerkkaeinen, K.; Christensson, J.; Reimann, S. M.; Kavoulakis, G. M.; Manninen, M.

    2008-04-04

    We examine the formation of vortices in a one- and two-component gas of bosonic atoms in a harmonic trap that is set rotating. Both the mean-field Gross-Pitaevskii approach, and the numerical diagonalization method are employed. For a two-component Bose gas, we show that beside the well-known coreless vortices of single quantization, the interatomic interactions between the two species may lead to coreless vortices of multiple quantization. We furthermore comment on the geometries of the interlaced vortex patterns. In the limit of weak interactions, we finally demonstrate a number of exact results.

  17. Symbiotic two-component gap solitons.

    PubMed

    Roeksabutr, Athikom; Mayteevarunyoo, Thawatchai; Malomed, Boris A

    2012-10-22

    We consider a two-component one-dimensional model of gap solitons (GSs), which is based on two nonlinear Schrödinger equations, coupled by repulsive XPM (cross-phase-modulation) terms, in the absence of the SPM (self-phase-modulation) nonlinearity. The equations include a periodic potential acting on both components, thus giving rise to GSs of the "symbiotic" type, which exist solely due to the repulsive interaction between the two components. The model may be implemented for "holographic solitons" in optics, and in binary bosonic or fermionic gases trapped in the optical lattice. Fundamental symbiotic GSs are constructed, and their stability is investigated, in the first two finite bandgaps of the underlying spectrum. Symmetric solitons are destabilized, including their entire family in the second bandgap, by symmetry-breaking perturbations above a critical value of the total power. Asymmetric solitons of intra-gap and inter-gap types are studied too, with the propagation constants of the two components falling into the same or different bandgaps, respectively. The increase of the asymmetry between the components leads to shrinkage of the stability areas of the GSs. Inter-gap GSs are stable only in a strongly asymmetric form, in which the first-bandgap component is a dominating one. Intra-gap solitons are unstable in the second bandgap. Unstable two-component GSs are transformed into persistent breathers. In addition to systematic numerical considerations, analytical results are obtained by means of an extended ("tailed") Thomas-Fermi approximation (TFA).

  18. Epsilon-Toxin Production by Clostridium perfringens Type D Strain CN3718 Is Dependent upon the agr Operon but Not the VirS/VirR Two-Component Regulatory System

    PubMed Central

    Chen, Jianming; Rood, Julian I.; McClane, Bruce A.

    2011-01-01

    ABSTRACT Clostridium perfringens type B and D strains cause enterotoxemias and enteritis in livestock after proliferating in the intestines and producing epsilon-toxin (ETX), alpha-toxin (CPA), and, usually, perfringolysin O (PFO). Although ETX is one of the most potent bacterial toxins, the regulation of ETX production by type B or D strains remains poorly understood. The present work determined that the type D strain CN3718 upregulates production of ETX upon close contact with enterocyte-like Caco-2 cells. This host cell-induced upregulation of ETX expression was mediated at the transcriptional level. Using an isogenic agrB null mutant and complemented strain, the agr operon was shown to be required when CN3718 produces ETX in broth culture or, via a secreted signal consistent with a quorum-sensing (QS) effect, upregulates ETX production upon contact with host cells. These findings provide the first insights into the regulation of ETX production, as well as additional evidence that the Agr-like QS system functions as a global regulator of C. perfringens toxin production. Since it was proposed previously that the Agr-like QS system regulates C. perfringens gene expression via the VirS/VirR two-component regulatory system, an isogenic virR null mutant of CN3718 was constructed to evaluate the importance of VirS/VirR for CN3718 toxin production. This mutation affected production of CPA and PFO, but not ETX, by CN3718. These results provide the first indication that C. perfringens toxin expression regulation by the Agr-like quorum-sensing system may not always act via the VirS/VirR two-component system. PMID:22167225

  19. Polyphosphate kinase 1, a central node in the stress response network of Mycobacterium tuberculosis, connects the two-component systems MprAB and SenX3-RegX3 and the extracytoplasmic function sigma factor, sigma E.

    PubMed

    Sanyal, Sourav; Banerjee, Srijon Kaushik; Banerjee, Rajdeep; Mukhopadhyay, Jayanta; Kundu, Manikuntala

    2013-10-01

    Polyphosphate (poly P) metabolism regulates the stress response in mycobacteria. Here we describe the regulatory architecture of a signal transduction system involving the two-component system (TCS) SenX3-RegX3, the extracytoplasmic function sigma factor sigma E (SigE) and the poly P-synthesizing enzyme polyphosphate kinase 1 (PPK1). The ppk1 promoter of Mycobacterium tuberculosis is activated under phosphate starvation. This is attenuated upon deletion of an imperfect palindrome likely representing a binding site for the response regulator RegX3, a component of the two-component system SenX3-RegX3 that responds to phosphate starvation. Binding of phosphorylated RegX3 to this site was confirmed by electrophoretic mobility shift assay. The activity of the ppk1 promoter was abrogated upon deletion of a putative SigE binding site. Pull-down of SigE from M. tuberculosis lysates of phosphate-starved cells with a biotinylated DNA harbouring the SigE binding site confirmed the likely binding of SigE to the ppk1 promoter. In vitro transcription corroborated the involvement of SigE in ppk1 transcription. Finally, the overexpression of RseA (anti-SigE) attenuated ppk1 expression under phosphate starvation, supporting the role of SigE in ppk1 transcription. The regulatory elements identified in ppk1 transcription in this study, combined with our earlier observation that PPK1 is itself capable of regulating sigE expression via the MprAB TCS, suggest the presence of multiple positive-feedback loops in this signalling circuit. In combination with the sequestering effect of RseA, we hypothesize that this architecture could be linked to bistability in the system that, in turn, could be a key element of persistence in M. tuberculosis.

  20. In Vivo Characterization of the Activation and Interaction of the VanR-VanS Two-Component Regulatory System Controlling Glycopeptide Antibiotic Resistance in Two Related Streptomyces Species

    PubMed Central

    Novotna, Gabriela Balikova; Kwun, Min Jung

    2015-01-01

    The VanR-VanS two-component system is responsible for inducing resistance to glycopeptide antibiotics in various bacteria. We have performed a comparative study of the VanR-VanS systems from two streptomyces strains, Streptomyces coelicolor and Streptomyces toyocaensis, to characterize how the two proteins cooperate to signal the presence of antibiotics and to define the functional nature of each protein in each strain background. The results indicate that the glycopeptide antibiotic inducer specificity is determined solely by the differences between the amino acid sequences of the VanR-VanS two-component systems present in each strain rather than by any inherent differences in general cell properties, including cell wall structure and biosynthesis. VanR of S. coelicolor (VanRsc) functioned with either sensor kinase partner, while VanR of S. toyocaensis (VanRst) functioned only with its cognate partner, S. toyocaensis VanS (VanSst). In contrast to VanRsc, which is known to be capable of phosphorylation by acetylphosphate, VanRst could not be activated in vivo independently of a VanS sensor kinase. A series of amino acid sequence modifications changing residues in the N-terminal receiver (REC) domain of VanRst to the corresponding residues present in VanRsc failed to create a protein capable of being activated by VanS of S. coelicolor (VanSsc), which suggests that interaction of the response regulator with its cognate sensor kinase may require a region more extended than the REC domain. A T69S amino acid substitution in the REC domain of VanRst produced a strain exhibiting weak constitutive resistance, indicating that this particular amino acid may play a key role for VanS-independent phosphorylation in the response regulator protein. PMID:26711760

  1. Citrate utilization by Corynebacterium glutamicum is controlled by the CitAB two-component system through positive regulation of the citrate transport genes citH and tctCBA.

    PubMed

    Brocker, Melanie; Schaffer, Steffen; Mack, Christina; Bott, Michael

    2009-06-01

    In this work, the molecular basis of aerobic citrate utilization by the gram-positive bacterium Corynebacterium glutamicum was studied. Genome analysis revealed the presence of two putative citrate transport systems. The permease encoded by citH belongs to the citrate-Mg(2+):H(+)/citrate-Ca(2+):H(+) symporter family, whereas the permease encoded by the tctCBA operon is a member of the tripartite tricarboxylate transporter family. The expression of citH or tctCBA in Escherichia coli enabled this species to utilize citrate aerobically, indicating that both CitH and TctABC are functional citrate transporters. Growth tests with the recombinant E. coli strains indicated that CitH is active with Ca(2+) or Sr(2+) but not with Mg(2+) and that TctABC is active with Ca(2+) or Mg(2+) but not with Sr(2+). We could subsequently show that, with 50 mM citrate as the sole carbon and energy source, the C. glutamicum wild type grew best when the minimal medium was supplemented with CaCl(2) but that MgCl(2) and SrCl(2) also supported growth. Each of the two transporters alone was sufficient for growth on citrate. The expression of citH and tctCBA was activated by citrate in the growth medium, independent of the presence or absence of glucose. This activation was dependent on the two-component signal transduction system CitAB, composed of the sensor kinase CitA and the response regulator CitB. CitAB belongs to the CitAB/DcuSR family of two-component systems, whose members control the expression of genes that are involved in the transport and catabolism of tricarboxylates or dicarboxylates. C. glutamicum CitAB is the first member of this family studied in Actinobacteria.

  2. Two-component Abelian sandpile models.

    PubMed

    Alcaraz, F C; Pyatov, P; Rittenberg, V

    2009-04-01

    In one-component Abelian sandpile models, the toppling probabilities are independent quantities. This is not the case in multicomponent models. The condition of associativity of the underlying Abelian algebras imposes nonlinear relations among the toppling probabilities. These relations are derived for the case of two-component quadratic Abelian algebras. We show that Abelian sandpile models with two conservation laws have only trivial avalanches.

  3. Exposure of a 23F Serotype Strain of Streptococcus pneumoniae to Cigarette Smoke Condensate Is Associated with Selective Upregulation of Genes Encoding the Two-Component Regulatory System 11 (TCS11)

    PubMed Central

    Herbert, Jenny A.; Mitchell, Timothy J.; Dix-Peek, Thérèse; Dickens, Caroline; Anderson, Ronald; Feldman, Charles

    2014-01-01

    Alterations in whole genome expression profiles following exposure of the pneumococcus (strain 172, serotype 23F) to cigarette smoke condensate (160 μg/mL) for 15 and 60 min have been determined using the TIGR4 DNA microarray chip. Exposure to CSC resulted in the significant (P < 0.014–0.0006) upregulation of the genes encoding the two-component regulatory system 11 (TCS11), consisting of the sensor kinase, hk11, and its cognate response regulator, rr11, in the setting of increased biofilm formation. These effects of cigarette smoke on the pneumococcus may contribute to colonization of the airways by this microbial pathogen. PMID:25013815

  4. Two-component phosphorelays in fungal mitochondria and beyond.

    PubMed

    Chauhan, Neeraj

    2015-05-01

    Prokaryotes, eukaryotic microorganisms and plants utilize two-component signal transduction pathways to detect and respond to various environmental cues. These signaling cascades were acquired by eukaryotes via horizontal gene transfer events from ancestral bacteria. Recent exciting discoveries have identified two-component signaling systems in mitochondria and chloroplasts of several eukaryotic microorganisms and plants, therefore providing important clues to the evolutionary transition of these signaling cascades from prokaryotes to eukaryotes. This review will focus on the role of two-component signal transduction pathways in fungal pathogenesis and also discuss key new discoveries of presence of proteins participating in these signaling pathways in mitochondrion. Before addressing these issues, I first briefly describe the magnitude and the economic impact of the healthcare problems caused by fungal pathogens.

  5. Correlation Energies from the Two-Component Random Phase Approximation.

    PubMed

    Kühn, Michael

    2014-02-11

    The correlation energy within the two-component random phase approximation accounting for spin-orbit effects is derived. The resulting plasmon equation is rewritten-analogously to the scalar relativistic case-in terms of the trace of two Hermitian matrices for (Kramers-restricted) closed-shell systems and then represented as an integral over imaginary frequency using the resolution of the identity approximation. The final expression is implemented in the TURBOMOLE program suite. The code is applied to the computation of equilibrium distances and vibrational frequencies of heavy diatomic molecules. The efficiency is demonstrated by calculation of the relative energies of the Oh-, D4h-, and C5v-symmetric isomers of Pb6. Results within the random phase approximation are obtained based on two-component Kohn-Sham reference-state calculations, using effective-core potentials. These values are finally compared to other two-component and scalar relativistic methods, as well as experimental data.

  6. The ABC transporter HrtAB confers resistance to hemin toxicity and is regulated in a hemin-dependent manner by the ChrAS two-component system in Corynebacterium diphtheriae.

    PubMed

    Bibb, Lori A; Schmitt, Michael P

    2010-09-01

    Corynebacterium diphtheriae, the causative agent of the severe respiratory disease diphtheria, utilizes hemin and hemoglobin as iron sources for growth in iron-depleted environments. Because of the toxicity of high levels of hemin and iron, these compounds are often tightly regulated in bacterial systems. In this report, we identify and characterize the C. diphtheriae hrtAB genes, which encode a putative ABC type transporter involved in conferring resistance to the toxic effects of hemin. Deletion of the hrtAB genes in C. diphtheriae produced increased sensitivity to hemin, which was complemented by a plasmid harboring the cloned hrtAB locus. The HrtAB system was not involved in the uptake and use of hemin as an iron source. The hrtAB genes are located on the C. diphtheriae genome upstream from the chrSA operon, which encodes a previously characterized two-component signal transduction system that regulates gene expression in a heme-dependent manner. The hrtB promoter is activated by the ChrAS system in the presence of hemin or hemoglobin, and mutations in the chrSA genes abolish heme-activated expression from the hrtB promoter. It was also observed that transcription from the hrtB promoter is reduced in a dtxR deletion mutant, suggesting that DtxR is required for optimal expression of hrtAB. Previous studies proposed that the ChrS sensor kinase may be responsive to an environmental signal, such as hemin. We show that specific point mutations in the ChrS N-terminal transmembrane domain result in a reduced ability to activate the hrtB promoter in the presence of a heme source, suggesting that this putative sensor region is essential for the detection of a signal produced in response to hemin exposure. This study shows that the HrtAB system is required for protection from hemin toxicity and that expression of the hrtAB genes is regulated by the ChrAS two-component system. This study demonstrates a direct correlation between the detection of heme or a heme

  7. Exact two-component Hamiltonians revisited.

    PubMed

    Liu, Wenjian; Peng, Daoling

    2009-07-21

    Two routes for deriving the exact two-component Hamiltonians are compared. In the first case, as already known, we start directly from the matrix representation of the Dirac operator in a restricted kinetically balanced basis and make a single block diagonalization. In the second case, not considered before, we start instead from the Foldy-Wouthuysen operator and make proper use of resolutions of the identity. The expressions are surprisingly different. It turns out that a mistake was made in the former formulation when going from the Dirac to the Schrodinger picture. The two formulations become equivalent after the mistake is corrected.

  8. Exact two-component Hamiltonians revisited

    SciTech Connect

    Liu Wenjian; Peng Daoling

    2009-07-21

    Two routes for deriving the exact two-component Hamiltonians are compared. In the first case, as already known, we start directly from the matrix representation of the Dirac operator in a restricted kinetically balanced basis and make a single block diagonalization. In the second case, not considered before, we start instead from the Foldy-Wouthuysen operator and make proper use of resolutions of the identity. The expressions are surprisingly different. It turns out that a mistake was made in the former formulation when going from the Dirac to the Schroedinger picture. The two formulations become equivalent after the mistake is corrected.

  9. Collective behaviors of two-component swarms.

    PubMed

    You, Sang Koo; Kwon, Dae Hyuk; Park, Yong-ik; Kim, Sun Myong; Chung, Myung-Hoon; Kim, Chul Koo

    2009-12-07

    We present a particle-based simulation study on two-component swarms where there exist two different types of groups in a swarm. Effects of different parameters between the two groups are studied systematically based on Langevin's equation. It is shown that the mass difference can introduce a protective behavior for the lighter members of the swarm in a vortex state. When the self-propelling strength is allowed to differ between two groups, it is observed that the swarm becomes spatially segregated and finally separated into two components at a certain critical value. We also investigate effects of different preferences for shelters on their collective decision making. In particular, it is found that the probability of selecting a shelter from the other varies sigmoidally as a function of the number ratio. The model is shown to describe the dynamics of the shelter choosing process of the cockroach-robot mixed group satisfactorily. It raises the possibility that the present model can be applied to the problems of pest control and fishing using robots and decoys.

  10. Two-component generalizations of the Camassa-Holm equation

    NASA Astrophysics Data System (ADS)

    Hone, Andrew N. W.; Novikov, Vladimir; Wang, Jing Ping

    2017-02-01

    A classification of integrable two-component systems of non-evolutionary partial differential equations that are analogous to the Camassa-Holm equation is carried out via the perturbative symmetry approach. Independently, a classification of compatible pairs of Hamiltonian operators of specific forms is carried out, in order to obtain bi-Hamiltonian structures for the same systems of equations. Using reciprocal transformations, some exact solutions and Lax pairs are also constructed for the systems considered.

  11. In the Staphylococcus aureus two-component system sae, the response regulator SaeR binds to a direct repeat sequence and DNA binding requires phosphorylation by the sensor kinase SaeS.

    PubMed

    Sun, Fei; Li, Chunling; Jeong, Dowon; Sohn, Changmo; He, Chuan; Bae, Taeok

    2010-04-01

    Staphylococcus aureus uses the SaeRS two-component system to control the expression of many virulence factors such as alpha-hemolysin and coagulase; however, the molecular mechanism of this signaling has not yet been elucidated. Here, using the P1 promoter of the sae operon as a model target DNA, we demonstrated that the unphosphorylated response regulator SaeR does not bind to the P1 promoter DNA, while its C-terminal DNA binding domain alone does. The DNA binding activity of full-length SaeR could be restored by sensor kinase SaeS-induced phosphorylation. Phosphorylated SaeR is more resistant to digestion by trypsin, suggesting conformational changes. DNase I footprinting assays revealed that the SaeR protection region in the P1 promoter contains a direct repeat sequence (GTTAAN(6)GTTAA [where N is any nucleotide]). This sequence is critical to the binding of phosphorylated SaeR. Mutational changes in the repeat sequence greatly reduced both the in vitro binding of SaeR and the in vivo function of the P1 promoter. From these results, we concluded that SaeR recognizes the direct repeat sequence as a binding site and that binding requires phosphorylation by SaeS.

  12. Domain Analysis of ArcS, the Hybrid Sensor Kinase of the Shewanella oneidensis MR-1 Arc Two-Component System, Reveals Functional Differentiation of Its Two Receiver Domains

    PubMed Central

    Bubendorfer, Sebastian

    2013-01-01

    In all species of the genus Shewanella, the redox-sensing Arc two-component system consists of the response regulator ArcA, the sensor kinase ArcS, and the separate phosphotransfer protein HptA. Compared to its counterpart ArcB in Escherichia coli, ArcS has a significantly different domain structure. Resequencing and reannotation revealed that in the N-terminal part, ArcS possesses a periplasmic CaChe-sensing domain bracketed by two transmembrane domains and, moreover, that ArcS has two cytoplasmic PAS-sensing domains and two receiver domains, compared to a single one of each in ArcB. Here, we used a combination of in vitro phosphotransfer studies on purified proteins and phenotypic in vivo mutant analysis to determine the roles of the different domains in ArcS function. The analysis revealed that phosphotransfer occurs from and toward the response regulator ArcA and involves mainly the C-terminal RecII domain. However, RecI also can receive a phosphate from HptA. In addition, the PAS-II domain, located upstream of the histidine kinase domain, is crucial for function. The results support a model in which phosphorylation of RecI stimulates histidine kinase activity of ArcS in order to maintain an appropriate level of phosphorylated ArcA according to environmental conditions. In addition, the study reveals some fundamental mechanistic differences between ArcS/HptA and ArcB with respect to signal perception and phosphotransfer despite functional conservation of the Arc system in Shewanella and E. coli. PMID:23161031

  13. The two-component system BvrR/BvrS essential for Brucella abortus virulence regulates the expression of outer membrane proteins with counterparts in members of the Rhizobiaceae

    PubMed Central

    Guzmán-Verri, C.; Manterola, L.; Sola-Landa, A.; Parra, A.; Cloeckaert, A.; Garin, J.; Gorvel, J.-P.; Moriyón, I.; Moreno, E.; López-Goñi, I.

    2002-01-01

    The Brucella BvrR/BvrS two-component regulatory system is homologous to the ChvI/ChvG systems of Sinorhizobium meliloti and Agrobacterium tumefaciens necessary for endosymbiosis and pathogenicity in plants. BvrR/BvrS controls cell invasion and intracellular survival. Probing the surface of bvrR and bvrS transposon mutants with monoclonal antibodies showed all described major outer membrane proteins (Omps) but Omp25, a protein known to be involved in Brucella virulence. Absence of Omp25 expression was confirmed by two-dimensional electrophoresis of envelope fractions and by gene reporter studies. The electrophoretic analysis also revealed reduction or absence in the mutants of a second set of protein spots that by matrix-assisted laser desorption ionization MS and peptide mass mapping were identified as a non-previously described Omp (Omp3b). Because bvrR and bvrS mutants are also altered in cell-surface hydrophobicity, permeability, and sensitivity to surface-targeted bactericidal peptides, it is proposed that BvrR/BvrS controls cell envelope changes necessary to transit between extracellular and intracellular environments. A genomic search revealed that Omp25 (Omp3a) and Omp3b belong to a family of Omps of plant and animal cell-associated α-Proteobacteria, which includes Rhizobium leguminosarum RopB and A. tumefaciens AopB. Previous work has shown that RopB is not expressed in bacteroids, that AopB is involved in tumorigenesis, and that dysfunction of A. tumefaciens ChvI/ChvG alters surface properties. It is thus proposed that the BvrR/BvrS and Omp3 homologues of the cell-associated α-Proteobacteria play a role in bacterial surface control and host cell interactions. PMID:12218183

  14. Complement-mediated Opsonization of Invasive Group A Streptococcus pyogenes Strain AP53 Is Regulated by the Bacterial Two-component Cluster of Virulence Responder/Sensor (CovRS) System*

    PubMed Central

    Agrahari, Garima; Liang, Zhong; Mayfield, Jeffrey A.; Balsara, Rashna D.; Ploplis, Victoria A.; Castellino, Francis J.

    2013-01-01

    Group A Streptococcus pyogenes (GAS) strain AP53 is a primary isolate from a patient with necrotizing fasciitis. These AP53 cells contain an inactivating mutation in the sensor component of the cluster of virulence (cov) responder (R)/sensor (S) two-component gene regulatory system (covRS), which enhances the virulence of the primary strain, AP53/covR+S−. However, specific mechanisms by which the covRS system regulates the survival of GAS in humans are incomplete. Here, we show a key role for covRS in the regulation of opsonophagocytosis of AP53 by human neutrophils. AP53/covR+S− cells displayed potent binding of host complement inhibitors of C3 convertase, viz. Factor H (FH) and C4-binding protein (C4BP), which concomitantly led to minimal C3b deposition on AP53 cells, further showing that these plasma protein inhibitors are active on GAS cells. This resulted in weak killing of the bacteria by human neutrophils and a corresponding high death rate of mice after injection of these cells. After targeted allelic alteration of covS− to wild-type covS (covS+), a dramatic loss of FH and C4BP binding to the AP53/covR+S+ cells was observed. This resulted in elevated C3b deposition on AP53/covR+S+ cells, a high level of opsonophagocytosis by human neutrophils, and a very low death rate of mice infected with AP53/covR+S+. We show that covRS is a critical transcriptional regulator of genes directing AP53 killing by neutrophils and regulates the levels of the receptors for FH and C4BP, which we identify as the products of the fba and enn genes, respectively. PMID:23928307

  15. The PorX Response Regulator of the Porphyromonas gingivalis PorXY Two-Component System Does Not Directly Regulate the Type IX Secretion Genes but Binds the PorL Subunit

    PubMed Central

    Vincent, Maxence S.; Durand, Eric; Cascales, Eric

    2016-01-01

    The Type IX secretion system (T9SS) is a versatile multi-protein complex restricted to bacteria of the Bacteriodetes phylum and responsible for the secretion or cell surface exposition of diverse proteins that participate to S-layer formation, gliding motility or pathogenesis. The T9SS is poorly characterized but a number of proteins involved in the assembly of the secretion apparatus in the oral pathogen Porphyromonas gingivalis have been identified based on genome substractive analyses. Among these proteins, PorY, and PorX encode typical two-component system (TCS) sensor and CheY-like response regulator respectively. Although the porX and porY genes do not localize at the same genetic locus, it has been proposed that PorXY form a bona fide TCS. Deletion of porX in P. gingivalis causes a slight decrease of the expression of a number of other T9SS genes, including sov, porT, porP, porK, porL, porM, porN, and porY. Here, we show that PorX and the soluble cytoplasmic domain of PorY interact. Using electrophoretic mobility shift, DNA-protein co-purification and heterologous host expression assays, we demonstrate that PorX does not bind T9SS gene promoters and does not directly regulate expression of the T9SS genes. Finally, we show that PorX interacts with the cytoplasmic domain of PorL, a component of the T9SS membrane core complex and propose that the CheY-like PorX protein might be involved in the dynamics of the T9SS. PMID:27630829

  16. Kinetic characterization of the WalRKSpn (VicRK) two-component system of Streptococcus pneumoniae: dependence of WalKSpn (VicK) phosphatase activity on its PAS domain.

    PubMed

    Gutu, Alina D; Wayne, Kyle J; Sham, Lok-To; Winkler, Malcolm E

    2010-05-01

    The WalRK two-component system plays important roles in maintaining cell wall homeostasis and responding to antibiotic stress in low-GC Gram-positive bacteria. In the major human pathogen, Streptococcus pneumoniae, phosphorylated WalR(Spn) (VicR) response regulator positively controls the transcription of genes encoding the essential PcsB division protein and surface virulence factors. WalR(Spn) is phosphorylated by the WalK(Spn) (VicK) histidine kinase. Little is known about the signals sensed by WalK histidine kinases. To gain information about WalK(Spn) signal transduction, we performed a kinetic characterization of the WalRK(Spn) autophosphorylation, phosphoryltransferase, and phosphatase reactions. We were unable to purify soluble full-length WalK(Spn). Consequently, these analyses were performed using two truncated versions of WalK(Spn) lacking its single transmembrane domain. The longer version (Delta35 amino acids) contained most of the HAMP domain and the PAS, DHp, and CA domains, whereas the shorter version (Delta195 amino acids) contained only the DHp and CA domains. The autophosphorylation kinetic parameters of Delta35 and Delta195 WalK(Spn) were similar [K(m)(ATP) approximately 37 microM; k(cat) approximately 0.10 min(-1)] and typical of those of other histidine kinases. The catalytic efficiency of the two versions of WalK(Spn) approximately P were also similar in the phosphoryltransfer reaction to full-length WalR(Spn). In contrast, absence of the HAMP-PAS domains significantly diminished the phosphatase activity of WalK(Spn) for WalR(Spn) approximately P. Deletion and point mutations confirmed that optimal WalK(Spn) phosphatase activity depended on the PAS domain as well as residues in the DHp domain. In addition, these WalK(Spn) DHp domain and DeltaPAS mutations led to attenuation of virulence in a murine pneumonia model.

  17. The VanRS Homologous Two-Component System VnlRSAb of the Glycopeptide Producer Amycolatopsis balhimycina Activates Transcription of the vanHAXSc Genes in Streptomyces coelicolor, but not in A. balhimycina

    PubMed Central

    Kilian, Regina; Frasch, Hans-Joerg; Kulik, Andreas; Wohlleben, Wolfgang

    2016-01-01

    In enterococci and in Streptomyces coelicolor, a glycopeptide nonproducer, the glycopeptide resistance genes vanHAX are colocalized with vanRS. The two-component system (TCS) VanRS activates vanHAX transcription upon sensing the presence of glycopeptides. Amycolatopsis balhimycina, the producer of the vancomycin-like glycopeptide balhimycin, also possesses vanHAXAb genes. The genes for the VanRS-like TCS VnlRSAb, together with the carboxypeptidase gene vanYAb, are part of the balhimycin biosynthetic gene cluster, which is located 2 Mb separate from the vanHAXAb. The deletion of vnlRSAb did not affect glycopeptide resistance or balhimycin production. In the A. balhimycina vnlRAb deletion mutant, the vanHAXAb genes were expressed at the same level as in the wild type, and peptidoglycan (PG) analyses proved the synthesis of resistant PG precursors. Whereas vanHAXAb expression in A. balhimycina does not depend on VnlRAb, a VnlRAb-depending regulation of vanYAb was demonstrated by reverse transcriptase polymerase chain reaction (RT-PCR) and RNA-seq analyses. Although VnlRAb does not regulate the vanHAXAb genes in A. balhimycina, its heterologous expression in the glycopeptide-sensitive S. coelicolor ΔvanRSSc deletion mutant restored glycopeptide resistance. VnlRAb activates the vanHAXSc genes even in the absence of VanS. In addition, expression of vnlRAb increases actinorhodin production and influences morphological differentiation in S. coelicolor. PMID:27420548

  18. Molecular properties of the two-component cell lysis system encoded by prophage phigaY of Lactobacillus gasseri JCM 1131T: cloning, sequencing, and expression in Escherichia coli.

    PubMed

    Yokoi, Ken-ji; Shinohara, Masayuki; Kawahigashi, Nobutaka; Nakagawa, Kazuaki; Kawasaki, Ken-Ichi; Nakamura, Shogo; Taketo, Akira; Kodaira, Ken-Ichi

    2005-04-01

    Shotgun cloning of the Lactobacillus gasseri JCM 1131T whole DNA yielded two recombinant plasmids, p118gaY1 and p118gaY2, which directed cell lysis activity. Sequencing analysis revealed that the two plasmids carried almost identical inserted genes in following orders (truncated genes, in parentheses): in p118gaY1, (orf149)-orf92-holgaY-lysgaY-orf35-attL-(mnaAgaY1); in p118gaY2, (orfXgaY1)-orf169-orf149-orf92-holgaY-lysgaY-orf35-attP-(intgaY). The lysgaY-encoded protein (designated as LysgaY, 33.7 kDa) showed significant homology with putative muramidases (peptidoglycan-degrading enzyme) of the Lactobacillus phage phiadh, Lj965, Lj928, LL-H, mv4, and mv1. By zymogram analysis, LysgaY overproduced in Escherichia coli exhibited lytic activity towards 17 Gram-positive bacterial strains, including lactobacilli, lactococci, and staphylococci. The holgaY-encoded protein (15.7 kDa) contained three potential transmembrane helices, resembling putative holins (cytoplasmic membrane-disrupting protein) of Lj928 and Lj965. On the other hand, another clone p118gaYR obtained by EcoRI-shotgun cloning carried the (ptsCgaY1)-attR-(intgaY) genes. Three sequences, attL, attP, and attR, had a 47-bp common (core) sequence, and the core of attR was located in 3' region of a potential tRNA(Arg) gene. These results suggested that (i) attL and attR are phage-host junctions, left- and right-arms, respectively, (ii) attP is a phage attachment site, and (iii) intgaY is an integrase gene for phage integration and/or excision. After mitomycin C-induction, phage particles were demonstrated by electron microscopy. The prophage (phigaY) is somewhat leaky in the host, and has the two-component lysis system (HolgaY-LysgaY), closely resembling that of Lj928 as well as Lj965.

  19. Auxiliary phosphatases in two-component signal transduction.

    PubMed

    Silversmith, Ruth E

    2010-04-01

    Signal termination in two-component systems occurs by loss of the phosphoryl group from the response regulator protein. This review explores our current understanding of the structures, catalytic mechanisms and means of regulation of the known families of phosphatases that catalyze response regulator dephosphorylation. The CheZ and CheC/CheX/FliY families, despite different overall structures, employ identical catalytic strategies using an amide side chain to orient a water molecule for in-line attack of the aspartyl phosphate. Spo0E phosphatases contain sequence and structural features that suggest a strategy similar to the chemotaxis phosphatases but the mechanism used by the Rap phosphatases is not yet elucidated. Identification of features shared by phosphatase families may aid in the identification of currently unrecognized classes of response regulator phosphatases.

  20. Budding transition of asymmetric two-component lipid domains

    NASA Astrophysics Data System (ADS)

    Wolff, Jean; Komura, Shigeyuki; Andelman, David

    2016-09-01

    We propose a model that accounts for the budding transition of asymmetric two-component lipid domains, where the two monolayers (leaflets) have different average compositions controlled by independent chemical potentials. Assuming a coupling between the local curvature and local lipid composition in each of the leaflets, we discuss the morphology and thermodynamic behavior of asymmetric lipid domains. The membrane free-energy contains three contributions: the bending energy, the line tension, and a Landau free-energy for a lateral phase separation. Within a mean-field treatment, we obtain various phase diagrams containing fully budded, dimpled, and flat states as a function of the two leaflet compositions. The global phase behavior is analyzed, and depending on system parameters, the phase diagrams include one-phase, two-phase, and three-phase regions. In particular, we predict various phase coexistence regions between different morphologies of domains, which may be observed in multicomponent membranes or vesicles.

  1. An Introductory Idea for Teaching Two-Component Phase Diagrams

    ERIC Educational Resources Information Center

    Peckham, Gavin D.; McNaught, Ian J.

    2011-01-01

    The teaching of two-component phase diagrams has attracted little attention in this "Journal," and it is hoped that this article will make a useful contribution. Current physical chemistry textbooks describe two-component phase diagrams adequately, but do so in a piecemeal fashion one section at a time; first solid-liquid equilibria, then…

  2. Role of functionality in two-component signal transduction: A stochastic study

    NASA Astrophysics Data System (ADS)

    Maity, Alok Kumar; Bandyopadhyay, Arnab; Chaudhury, Pinaki; Banik, Suman K.

    2014-03-01

    We present a stochastic formalism for signal transduction processes in a bacterial two-component system. Using elementary mass action kinetics, the proposed model takes care of signal transduction in terms of a phosphotransfer mechanism between the cognate partners of a two-component system, viz., the sensor kinase and the response regulator. Based on the difference in functionality of the sensor kinase, the noisy phosphotransfer mechanism has been studied for monofunctional and bifunctional two-component systems using the formalism of the linear noise approximation. Steady-state analysis of both models quantifies different physically realizable quantities, e.g., the variance, the Fano factor (variance/mean), and mutual information. The resultant data reveal that both systems reliably transfer information of extracellular environment under low external stimulus and in a high-kinase-and-phosphatase regime. We extend our analysis further by studying the role of the two-component system in downstream gene regulation.

  3. Hamiltonian of a homogeneous two-component plasma.

    PubMed

    Essén, Hanno; Nordmark, A

    2004-03-01

    The Hamiltonian of one- and two-component plasmas is calculated in the negligible radiation Darwin approximation. Since the Hamiltonian is the phase space energy of the system its form indicates, according to statistical mechanics, the nature of the thermal equilibrium that plasmas strive to attain. The main issue is the length scale of the magnetic interaction energy. In the past a screening length lambda=1/square root of r(e)n], with n number density and r(e) classical electron radius, has been derived. We address the question whether the corresponding longer screening range obtained from the classical proton radius is physically relevant and the answer is affirmative. Starting from the Darwin Lagrangian it is nontrivial to find the Darwin Hamiltonian of a macroscopic system. For a homogeneous system we resolve the difficulty by temporarily approximating the particle number density by a smooth constant density. This leads to Yukawa-type screened vector potential. The nontrivial problem of finding the corresponding, divergence free, Coulomb gauge version is solved.

  4. The Two-Component GacS-GacA System Activates lipA Translation by RsmE but Not RsmA in Pseudomonas protegens Pf-5

    PubMed Central

    Zha, Daiming; Xu, Li; Zhang, Houjin

    2014-01-01

    In Pseudomonas spp., the Gac-Rsm signal transduction system is required for the production of lipases. The current model assumes that the system induces lipase gene transcription mediated through the quorum-sensing (QS) system. However, there are no reports of a QS system based upon N-acyl homoserine lactones or the regulation of lipase gene expression in Pseudomonas protegens. In this study, we investigated the regulatory mechanism acting on lipA expression activated by the Gac-Rsm system in P. protegens Pf-5 through deletion and overexpression of gacA, overexpression of rsmA or rsmE, expression of various lacZ fusions, reverse transcription-PCR analysis, and determination of whole-cell lipase activity. The results demonstrated that the GacS-GacA (GacS/A) system activates lipA expression at both the transcriptional and the translational levels but that the translational level is the key regulatory pathway. Further results showed that the activation of lipA translation by the GacS/A system is mediated through RsmE, which inhibits lipA translation by binding to the ACAAGGAUGU sequence overlapping the Shine-Dalgarno (SD) sequence of lipA mRNA to hinder the access of the 30S ribosomal subunit to the SD sequence. Moreover, the GacS/A system promotes lipA transcription through the mediation of RsmA inhibiting lipA transcription via an unknown pathway. Besides the transcriptional repression, RsmA mainly activates lipA translation by negatively regulating rsmE translation. In summary, in P. protegens Pf-5, the Gac-RsmE system mainly and directly activates lipA translation and the Gac-RsmA system indirectly enhances lipA transcription. PMID:25128345

  5. Complexation in two-component chlortetracycline-melanin solutions

    NASA Astrophysics Data System (ADS)

    Lapina, V. A.; Pershukevich, P. P.; Dontsov, A. E.; Bel'Kov, M. V.

    2008-01-01

    The spectra and kinetics of fluorescence of two-component solutions of the chlortetracycline (CHTC)-DOPA-melanin (melanin or ME) system in water have been investigated. The data obtained have been compared to similar data for solutions of CHTC-melanosome from bull eye (MB), which contains natural melanin, in K-phosphate buffer at pH 7.4. The overall results indicate the occurrence of complexation between molecules of CHTC and ME as they are being excited. The studies of complexation in the solution of CHTC-MB in the buffer are complicated by the formation of a CHTC-buffer complex. The effect of optical radiation in the range 330-750 nm on the CHTC-ME complex shows selectivity: the greatest change in the spectrum occurs when the wavelength of the exciting radiation coincides with the long-wavelength band maximum of the fluorescence excitation spectrum of the CHTC-ME complex in aqueous solution. In this range, CHTC and especially ME show high photochemical stability. The nature of the radiation effect on the studied compounds in the hard UV range (λ < 330 nm) differs greatly from that in the range 330-750 nm. It is apparently accompanied by significant photochemical transmutations of all system components. By comparing the characteristics of the CHTC-ME systems with those of the related drug doxycycline (DC-ME), the conclusion has been made that the chlorine atom plays a vital role in formation of the short-wavelength band in the fluorescence spectrum of the CHTC-ME complex.

  6. Identification and functional assay of the interaction motifs in the partner protein OsNAR2.1 of the two-component system for high-affinity nitrate transport.

    PubMed

    Liu, Xiaoqin; Huang, Daimin; Tao, Jinyuan; Miller, Anthony J; Fan, Xiaorong; Xu, Guohua

    2014-10-01

    A partner protein, NAR2, is essential for high-affinity nitrate transport of the NRT2 protein in plants. However, the NAR2 motifs that interact with NRT2s for their plasma membrane (PM) localization and nitrate transporter activity have not been functionally characterized. In this study, OsNAR2.1 mutations with different carbon (C)-terminal deletions and nine different point mutations in the conserved regions of NAR2 homologs in plants were generated to explore the essential motifs involved in the interaction with OsNRT2.3a. Screening using the membrane yeast two-hybrid system and Xenopus oocytes for nitrogen-15 ((15)N) uptake demonstrated that either R100G or D109N point mutations impaired the OsNAR2.1 interaction with OsNRT2.3a. Western blotting and visualization using green fluorescent protein fused to either the N- or C-terminus of OsNAR2.1 indicated that OsNAR2.1 is expressed in both the PM and cytoplasm. The split-yellow fluorescent protein (YFP)/BiFC analyses indicated that OsNRT2.3a was targeted to the PM in the presence of OsNAR2.1, while either R100G or D109N mutation resulted in the loss of OsNRT2.3a-YFP signal in the PM. Based on these results, arginine 100 and aspartic acid 109 of the OsNAR2.1 protein are key amino acids in the interaction with OsNRT2.3a, and their interaction occurs in the PM but not cytoplasm.

  7. Goal-Directed Aiming: Two Components but Multiple Processes

    ERIC Educational Resources Information Center

    Elliott, Digby; Hansen, Steve; Grierson, Lawrence E. M.; Lyons, James; Bennett, Simon J.; Hayes, Spencer J.

    2010-01-01

    This article reviews the behavioral literature on the control of goal-directed aiming and presents a multiple-process model of limb control. The model builds on recent variants of Woodworth's (1899) two-component model of speed-accuracy relations in voluntary movement and incorporates ideas about dynamic online limb control based on prior…

  8. To ~P or Not to ~P? Non-canonical activation by two-component response regulators

    PubMed Central

    Desai, Stuti K.; Kenney, Linda J.

    2016-01-01

    Summary Bacteria sense and respond to their environment through the use of two-component regulatory systems. The ability to adapt to a wide range of environmental stresses is directly related to the number of two-component systems an organism possesses. Recent advances in this area have identified numerous variations on the archetype systems that employ a sensor kinase and a response regulator. It is now evident that many orphan regulators that lack cognate kinases do not rely on phosphorylation for activation and new roles for unphosphorylated response regulators have been identified. The significance of recent findings and suggestions for further research are discussed. PMID:27656860

  9. Solitary wave complexes in two-component condensates.

    PubMed

    Berloff, Natalia G

    2005-04-01

    Axisymmetric three-dimensional solitary waves in uniform two-component mixture Bose-Einstein condensates are obtained as solutions of the coupled Gross-Pitaevskii equations with equal intracomponent but varying intercomponent interaction strengths. Several families of solitary wave complexes are found: (1) vortex rings of various radii in each of the components; (2) a vortex ring in one component coupled to a rarefaction solitary wave of the other component; (3) two coupled rarefaction waves; (4) either a vortex ring or a rarefaction pulse coupled to a localized disturbance of a very low momentum. The continuous families of such waves are shown in the momentum-energy plane for various values of the interaction strengths and the relative differences between the chemical potentials of two components. Solitary wave formation, their stability, and solitary wave complexes in two dimensions are discussed.

  10. Dynamics of Two-Component Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Baik, Eunsil

    I explored the vortex dynamics in homonuclear species two-component Bose-Einstein condensates (BECs) based on the knowledge of vortex dynamics in one-component BECs. The vortex dynamics in BECs depends on the background fields induced by different external potentials and other vortices. The motion of vortices is numerically computed and the numerical results are compared to the theoretical formulas where possible. In the study of the vortex-vortex interaction dynamics in one-component BECs, a power law relationship between the motion of the vortices and their separation distance is depicted. In addition to that, the relationship between the linear and the angular velocities of the vortices is found to be similar to the relationship between the tangential and the angular velocities of classical fluid vortices. In the case of two-component BEC dynamics, two different cases are studied: one without atomic inter-conversion between the two components and the other with atomic inter-conversion. The stability analysis of the two-component BECs is conducted to identify the stable regions as well as the regions of mixed and separated states. When a vortex is seeded in one component, this vortex induces a hump in the other component at the same location as the vortex, which leads to the vortex-hump dynamics. The vortex-hump-vortex-hump interaction dynamics without atomic inter-conversion depicts a power law relation between the motion of vortex-humps and the separation distance; whereas, the vortex-hump-vortex-hump interaction dynamics with atomic inter-conversion reveals a more complex relation between the motion of vortex-humps and the separation distance.

  11. Block algebra in two-component BKP and D type Drinfeld-Sokolov hierarchies

    NASA Astrophysics Data System (ADS)

    Li, Chuanzhong; He, Jingsong

    2013-11-01

    We construct generalized additional symmetries of a two-component BKP hierarchy defined by two pseudo-differential Lax operators. These additional symmetry flows form a Block type algebra with some modified (or additional) terms because of a B type reduction condition of this integrable hierarchy. Further we show that the D type Drinfeld-Sokolov hierarchy, which is a reduction of the two-component BKP hierarchy, possess a complete Block type additional symmetry algebra. That D type Drinfeld-Sokolov hierarchy has a similar algebraic structure as the bigraded Toda hierarchy which is a differential-discrete integrable system.

  12. A two-component rain model for the prediction of attenuation statistics

    NASA Technical Reports Server (NTRS)

    Crane, R. K.

    1982-01-01

    A two-component rain model has been developed for calculating attenuation statistics. In contrast to most other attenuation prediction models, the two-component model calculates the occurrence probability for volume cells or debris attenuation events. The model performed significantly better than the International Radio Consultative Committee model when used for predictions on earth-satellite paths. It is expected that the model will have applications in modeling the joint statistics required for space diversity system design, the statistics of interference due to rain scatter at attenuating frequencies, and the duration statistics for attenuation events.

  13. Machine for applying a two component resin to a roadway surface

    DOEpatents

    Huszagh, Donald W.

    1985-01-01

    A portable machine for spraying two component resins onto a roadway, the machine having a pneumatic control system, including apparatus for purging the machine of mixed resin with air and then removing remaining resin with solvent. Interlocks prevent contamination of solvent and resin, and mixed resin can be purged in the event of a power failure.

  14. Machine for applying a two component resin to a roadway surface

    DOEpatents

    Huszagh, D.W.

    1984-01-01

    A portable machine for spraying two component resins onto a roadway, the machine having a pneumatic control system, including means for purging the machine of mixed resin with air and then removing remaining resin with solvent. Interlocks prevent contamination of solvent and resin, and mixed resin can be purged in the event of a power failure.

  15. Surface characteristics of two-component thallium-bismuth melts

    NASA Astrophysics Data System (ADS)

    Ashkhotov, O. G.; Ashkhotova, I. B.; Aleroev, M. A.; Bliev, A. P.; Magkoev, T. T.

    2017-02-01

    The surface tension of pure Tl and Bi, and two-component alloys of them over the range of volume concentrations and temperatures starting from the liquidus temperature up to 623 K are measured by the lying-drop method with strong control over the surface condition by means of Auger electron spectroscopy. The results from in situ measurements of the surface tensions of Tl and Bi with surfactant impurities, and for atomically pure surfaces and Tl-Bi solutions, are given. It is shown that surfaces are enriched by bismuth, the concentration of which grows along with temperature.

  16. Electric micro fields in simulated two component plasmas

    SciTech Connect

    Calisti, A.; Talin, B.; Ferri, S.; Mosse, C.; Lisitsa, V.; Bureyeva, L.; Gigosos, M. A.; Gonzalez, M. A.; Rio Gaztelurrutia, T. del

    2008-10-22

    The statistical properties of local electric fields in an classical plasma are investigated by molecular dynamics (MD) simulation. Two-component plasma simulations of neutral hydrogen, protons and electrons for intermediate plasma coupling conditions, typically N{sub e}{approx_equal}10{sup 18}cm{sup -3}, T{sub e}{approx_equal}1eV, have been carried out. These simulations appear as a possible and very useful way to generate relevant microfield sample-sets appropriate for ion emitter lineshape simulations for plasma spectroscopy and to provide guidance for line shape modeling.

  17. Laser cooling of a trapped two-component Fermi gas

    SciTech Connect

    Idziaszek, Z.; Santos, L.; Lewenstein, M.; Baranov, M.

    2003-04-01

    We study the collective Raman cooling of a trapped two-component Fermi gas using quantum master equation in the festina lente regime, where the heating due to photon reabsorption can be neglected. The Monte Carlo simulations show that three-dimensional temperatures of the order of 0.008T{sub F} can be achieved. We analyze the heating related to background losses, and show that our laser-cooling scheme can maintain the temperature of the gas without significant additional losses.

  18. Measurement of two-component flow using ultrasonic flowmeters

    NASA Astrophysics Data System (ADS)

    Whitehouse, J. C.; Eghbali, D. A.; Flitton, V. E.; Anderson, D. G.

    Calibration of transit-time and Doppler ultrasonic flowmeters under two-component flow conditions has been conducted on 400 mm (16-in.) pipe. Testing covered total flows of 0.19 to 1.89 m(exp 3)/s (3000 to 30,000 gpm) and void fractions up to 40 percent. Both flowmeter types accurately measured total volumetric flow over a portion of their ranges. Pipe average void fraction, based on a three-beam gamma densitometer, was used to determine water component flow under stratified flow conditions, with similar results.

  19. Two-component proton spectra in the inner Saturnian magnetosphere

    NASA Technical Reports Server (NTRS)

    Krimigis, S. M.; Armstrong, T. P.

    1982-01-01

    Measurements obtained by the Pioneer-11 spacecraft in Saturn's inner magnetosphere revealed the presence of a high energy proton component, primarily confined within the orbits of satellites Enceladus and Mimas. The high energy component was interpreted as due to protons from cosmic ray neutron albedo decay interactions with the Saturnian rings and, secondarily, the planetary atmosphere, but without detailed knowledge of the differential or integral spectrum. The main objective of the present investigation is to examine in some detail the ion spectra in the considered region of the magnetosphere, and to provide some of the basic input necessary in evaluating various models of energetic particle-ring interactions. The conducted measurements clearly show the presence of low energy ions and electrons inside the orbit of Mimas and provide a measure of the evolution of the hot ion spectrum observed inside the orbit of Rhea into a two-component power law spectrum inside the orbits of Enceladus and Mimas.

  20. Toxicological study of ''Aralhex Brush'' and its two components

    SciTech Connect

    London, J.E.; Smith, D.M.

    1985-09-01

    The acute oral LD/sub 50/ values for the adhesive ''Aralhex Brush'' for mice and rats are greater than 5g/kg. According to classified guidelines, the mixture would be considered only slightly toxic or practically nontoxic in both species. Skin application studies in the rabbit with the adhesive demonstrated that it was cutaneously mildly irritating; however, based on the primary irritation index, the adhesive's two precursor components were nonirritating. The adhesive and components I were mildly irritating in the rabbit eye application studies and component II was non-irritating. The sensitization study in the guinea pig did not show ''Aralhex Brush'' or its two components to be sensitizers. 5 refs., 3 tabs.

  1. No electrostatic supersolitons in two-component plasmas

    SciTech Connect

    Verheest, Frank; Lakhina, Gurbax S.; Hellberg, Manfred A.

    2014-06-15

    The concept of acoustic supersolitons was introduced for a very specific plasma with five constituents, and discussed only for a single set of plasma parameters. Supersolitons are characterized by having subsidiary extrema on the sides of a typical bipolar electric field signature, or by association with a root beyond double layers in the fully nonlinear Sagdeev pseudopotential description. It was subsequently found that supersolitons could exist in several plasma models having three constituent species, rather than four or five. In the present paper, it is proved that standard two-component plasma models cannot generate supersolitons, by recalling and extending results already in the literature, and by establishing the necessary properties of a more recent model.

  2. Dynamics of two-component membranes surrounded by viscoelastic media.

    PubMed

    Komura, Shigeyuki; Yasuda, Kento; Okamoto, Ryuichi

    2015-11-04

    We discuss the dynamics of two-component fluid membranes which are surrounded by viscoelastic media. We assume that membrane-embedded proteins can diffuse laterally and induce a local membrane curvature. The mean squared displacement of a tagged membrane segment is obtained as a generalized Einstein relation. When the elasticity of the surrounding media obeys a power-law behavior in frequency, an anomalous diffusion of the membrane segment is predicted. We also consider the situation where the proteins generate active non-equilibrium forces. The generalized Einstein relation is further modified by an effective temperature that depends on the force dipole energy. The obtained generalized Einstein relations are useful for membrane microrheology experiments.

  3. Two component mie scattering models of sargasso sea particles.

    PubMed

    Brown, O B; Gordon, H R

    1973-10-01

    The volume scattering function is calculated for particle suspensions consisting of two components systematically distributed in a manner consistent with Coulter Counter observations in the Sargasso Sea. The components are assigned refractive indices 1.01-0.01i and 1.15 to represent organic and inorganic particles, respectively. The only models found that reproduce observed scattering functions require a considerable fraction of the suspended particle volume to be organic in nature. This fraction, however, contributes less than 10% to the total scattering function. The model finally chosen indicates that the inorganic particles smaller than 2.5 micro do not occur in large enough concentrations to have a significant effect on the volume scattering function.

  4. Two-component coupled KdV equations and its connection with the generalized Harry Dym equations

    SciTech Connect

    Popowicz, Ziemowit

    2014-01-15

    It is shown that three different Lax operators in the Dym hierarchy produce three generalized coupled Harry Dym equations. These equations transform, via the reciprocal link, to the coupled two-component Korteweg de Vries (KdV) system. The first equation gives us known integrable two-component KdV system, while the second reduces to the known symmetrical two-component KdV equation. The last one reduces to the Drienfeld-Sokolov equation. This approach gives us new Lax representation for these equations.

  5. Wall-vortex composite solitons in two-component Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Kasamatsu, Kenichi; Takeuchi, Hiromitsu; Tsubota, Makoto; Nitta, Muneto

    2013-07-01

    We study composite solitons, consisting of domain walls and vortex lines attaching to the walls in two-component Bose-Einstein condensates. When the total density of the two components is homogeneous, the system can be mapped to the O(3) nonlinear σ model for the pseudospin representing the two-component order parameter, and the analytical solutions of the composite solitons can be obtained. Based on the analytical solutions, we discuss the detailed structure of the composite solitons in two-component condensates by employing the generalized nonlinear σ model, where all degrees of freedom of the original Gross-Pitaevskii theory are active. The domain wall pulled by a vortex is logarithmically bent as a membrane pulled by a pin. It bends more flexibly than the domain wall in the σ model, because the density inhomogeneity results in a reduction of the domain wall tension from that in the σ model limit. We find, however, that the curvature of the wall bending pulled by a vortex is still greater than that expected from the reduced tension due to only the density inhomogeneity. Finally, we study the composite soliton structure for actual experimental situations with trapped immiscible condensates under rotation, through numerical simulations of the coupled Gross-Pitaevskii equations.

  6. General aspects of two-component regulatory circuits in bacteria: Domains, signals and roles.

    PubMed

    Padilla-Vaca, Felipe; Mondragón-Jaimes, Verónica; Franco, Bernardo

    2016-08-09

    All living organisms are subject to changing environments, which must be sensed in order to respond swiftly and efficiently. Two-component systems (TCS) are signal transduction regulatory circuits based typically on a membrane bound sensor kinase and a cytoplasmic response regulator, that is activated through a histidine to aspartate phosphorelay reactions. Activated response regulator acts usually as a transcription factor. The best known examples were identified in bacteria, but they are also found in fungi, algae and plants. Thus far, they are not found in mammals. Regulatory circuits coupled to two-component systems exhibit a myriad of responses to environmental stimuli such as: redox potential, pH, specific metabolites, pressure, light and more recently to specific antimicrobial peptides that activate a sensor kinase responsible for expressing virulence factors through the active response regulator. In this review we explore general aspects on two-component systems that ultimately can play a role on virulence regulation, also the intriguing domain properties of the sensor kinases that can be a potential target for antimicrobial compounds. Only a handful of sensor kinases are extensively characterized, the vast majority belong to what we call 'the dark matter of bacterial signal transduction' since no known signal, structure and biochemical properties are available. Regulatory circuits from vertebrate pathogenic organisms can explain virulence in terms of either response to environmental factors or specific niche occupancy. Hopefully, knowledge on these signal transduction systems can lead to identify novel molecules that target two-component systems, since the increase of drug resistant microorganisms is worrisome.

  7. Scattering by two-component random distributions of spheres.

    PubMed

    Burke, J E; Kays, T H; Kulp, J L; Twersky, V

    1968-12-01

    Theory and prototype (at wavelength lambda = 5 mm) partial coherence scattering data for optical applications in diagnostic measurements on two component suspensions or gases are presented. Results are given for equal volume mixtures of two sizes of moving randomly distributed large spheres for all realizable values of the fractional volume w (the fraction of the slab region container filled by scattering material). The relative index of refraction of the spheres was about 1.017, and their diameters were 6.52lambda and 3.33lambda (so that we used about eight times as many small spheres as large ones for each value of w). The spheres were of lightweight Styrofoam, and their motion arose from turbulent air streams (flowing through grids that form the top and bottom of a Styrofoam container), and the data were obtained in real time by processing the instantaneous phase quadrature components of the scattered field with an electronic analog computer. We give results for the forward scattered coherent phase, for the coherent, incoherent, and total intensities, and for the covariant magnitude and phase which (together with the incoherent intensity) provide the variances and covariance of the instantaneous phase quadrature components. We also consider certain reduced data records (from which the major effects of scatterer size and material have been eliminated) to indicate the dependence of the scattering on the fractional volume and to facilitate comparison with earlier data for distributions of identical spheres.

  8. Goal-directed aiming: two components but multiple processes.

    PubMed

    Elliott, Digby; Hansen, Steve; Grierson, Lawrence E M; Lyons, James; Bennett, Simon J; Hayes, Spencer J

    2010-11-01

    This article reviews the behavioral literature on the control of goal-directed aiming and presents a multiple-process model of limb control. The model builds on recent variants of Woodworth's (1899) two-component model of speed-accuracy relations in voluntary movement and incorporates ideas about dynamic online limb control based on prior expectations about the efferent and afferent consequences of a planned movement. The model considers the relationship between movement speed and accuracy, and how performers adjust their trial-to-trial aiming behavior to find a safe, but fast, zone for movement execution. The model also outlines how the energy and safety costs associated with different movement outcomes contribute to movement planning processes and the control of aiming trajectories. Our theoretical position highlights the importance of advance knowledge about the sensory information that will be available for online control and the need to develop a robust internal representation of expected sensory consequences. We outline how early practice contributes to optimizing strategic planning to avoid worst-case outcomes associated with inherent neural-motor variability. Our model considers the role of both motor development and motor learning in refining feed-forward and online control. The model reconciles procedural and representational accounts of the specificity-of-learning phenomenon. Finally, we examine the breakdown of perceptual-motor precision in several special populations (i.e., Down syndrome, Williams syndrome, autism spectrum disorder, normal aging) within the framework of a multiple-process approach to goal-directed aiming.

  9. Two-Component Models of Dwarf Galaxy Tidal Disruption

    NASA Astrophysics Data System (ADS)

    Bauer, Jacob; Newberg, Heidi Jo; Judd, Roland; Widrow, Larry; Shelton, Siddhartha; Thompson, Jeffery; Weiss, Jake

    2015-01-01

    Using MilkyWay@Home, a distributed computing platform running BOINC (Berkley Open Infrastructure for Network Computing), we employ 0.5 PFLOPs of computational power to recover the parameters that define a two-component dSph (dark matter and baryons) that has been tidally disrupted in the Milky Way galaxy. Our model consists of nested spherical profiles, each contributing independent scale parameters to the optimization problem, and exploits the properties of the linear Boltzmann equation and statistical equilibrium properties of dSph distributions. The n-body code is based on NEMO Stellar Toolbox and is shown to agree with this software package in the one-component limit. In addition, we employ a new 2D Earth Mover Distance (EMD) algorithm to calculate the similarity between the results of the simulations and the actual distribution of stars in tidal streams. The model has been distributed over approximately 30,000 computers each using a different parameter set; asynchronous optimization algorithms are used to find an optimal set of parameters to generate the Orphan Stream. Our method is calibrated and tested on mock data, and the stability of our model is explored. This work is funded by NSF grant AST 10-09670 and crowd funding from the MilkyWay@home volunteers.

  10. Ferrofluidity in a Two-Component Dipolar Bose-Einstein Condensate

    SciTech Connect

    Saito, Hiroki; Kawaguchi, Yuki; Ueda, Masahito

    2009-06-12

    It is shown that the interface in a two-component Bose-Einstein condensate (BEC) with a dipole-dipole interaction spontaneously develops patterns similar to those formed in a ferrofluid. Hexagonal, labyrinthine, solitonlike structures, and hysteretic behavior are numerically demonstrated. Superflow is found to circulate around the hexagonal pattern at rest, offering evidence of supersolidity. The system sustains persistent current with a vortex line pinned by the hexagonal pattern. These phenomena may be realized using a {sup 52}Cr BEC.

  11. Capillary instability in a two-component Bose-Einstein condensate

    SciTech Connect

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki

    2011-05-15

    Capillary instability and the resulting dynamics in an immiscible two-component Bose-Einstein condensate are investigated using the mean-field and Bogoliubov analyses. A long, cylindrical condensate surrounded by the other component is dynamically unstable against breakup into droplets due to the interfacial tension arising from the quantum pressure and interactions. A heteronuclear system confined in a cigar-shaped trap is proposed for realizing this phenomenon experimentally.

  12. Two component laser velocimeter measurements of turbulence parameters downstream of an axisymmetric sudden expansion

    NASA Technical Reports Server (NTRS)

    Gould, Richard D.; Stevenson, Warren H.; Thompson, H. Doyle

    1986-01-01

    Simultaneous two-component laser velocimeter measurements were made in an axisymmetric sudden expansion flowfield. A specially designed correction lens was employed to correct optical aberrations introduced by the circular tube. This lens system allowed the accurate simultaneous measurement of axial and radial velocities in the test section. The experimental measurements were compared to predictions generated by a code which employed the k-epsilon turbulence model. Possible sources of differences observed between model predictions and the measurements are discussed.

  13. Monte Carlo simulation of two-component aerosol processes

    NASA Astrophysics Data System (ADS)

    Huertas, Jose Ignacio

    Aerosol processes have been extensively used for production of nanophase materials. However when temperatures and number densities are high, particle agglomeration is a serious drawback for these techniques. This problem can be addressed by encapsulating the particles with a second material before they agglomerate. These particles will agglomerate but the primary particles within them will not. When the encapsulation is later removed, the resulting powder will contain only weakly agglomerated particles. To demonstrate the applicability of the particle encapsulation method for the production of high purity unagglomerated nanosize materials, tungsten (W) and tungsten titanium alloy (W-Ti) particles were synthesized in a sodium/halide flame. The particles were characterized by XRD, SEM, TEM and EDAX. The particles appeared unagglomerated, cubic and hexagonal in shape, and had a size of 30-50 nm. No contamination was detected even after extended exposure to atmospheric conditions. The nanosized W and W-Ti particles were consolidated into pellets of 6 mm diameter and 6-8 mm long. Hardness measurements indicate values 4 times that of conventional tungsten. 100% densification was achieved by hipping the samples. To study the particle encapsulation method, a code to simulate particle formation in two component aerosols was developed. The simulation was carried out using a Monte Carlo technique. This approach allowed for the treatment of both probabilistic and deterministic events. Thus, the coagulation term of the general dynamic equation (GDE) was Monte Carlo simulated, and the condensation term was solved analytically and incorporated into the model. The model includes condensation, coagulation, sources, and sinks for two-component aerosol processes. The Kelvin effect has been included in the model as well. The code is general and does not suffer from problems associated with mass conservation, high rates of condensation and approximations on particle composition. It has

  14. Trapped unitary two-component Fermi gases with up to ten particles

    NASA Astrophysics Data System (ADS)

    Yin, X. Y.; Blume, D.

    2015-05-01

    The properties of two-component Fermi gases with zero-range interactions are universal. We use an explicitly correlated Gaussian basis set expansion approach to investigate small equal-mass two-component Fermi gases under spherically symmetric external harmonic confinement. At unitarity, we determine the ground state energy for systems with up to ten particles interacting through finite-range two-body potentials for both even and odd number of particles. We extrapolate the energies to the zero-range limit using a novel scheme that removes the linear and quadratic dependence of the ground state energies on the two-body range. Our extrapolated zero-range energies are compared with results from the literature. We also calculate structural properties and the two-body Tan contact. We acknowledge support by the NSF through Grant No. PHY-1205443. This work used the XSEDE, which is supported by NSF Grant No. ACI-1053575.

  15. Design of Novel Mixer and Applicator for Two-Component Surgical Adhesives

    PubMed Central

    Go, Kevin; Kim, Yeong; Lee, Andy H.; Staricha, Kelly; Messersmith, Phillip; Glucksberg, Matthew

    2015-01-01

    Current mixer and applicator devices on the market are not able to properly and efficiently mix two-component surgical adhesives in small volumes necessary to achieve economic viability. Furthermore, in these devices a significant amount of adhesive is wasted during the application process, as material within the dead space of the mixing chamber must be discarded. We have designed and demonstrated a new active mixer and applicator system capable of rapidly and efficiently mixing two components of an adhesive and applying it to the surgical site. Recently, Messersmith et al. have developed a tissue adhesive inspired by the mussel byssus and have shown that it is effective as a surgical sealant, and is especially suited for wet environments such as in fetal surgery. Like some other tissue sealants, this one requires that two components of differing viscosities be thoroughly mixed within a specified and short time period. Through a combination of compression and shear testing, we demonstrated that our device could effectively mix the adhesive developed by Messersmith et al. and improve its shear strength to significantly higher values than what has been reported for vortex mixing. Overall, our mixer and applicator system not only has potential applications in mixing and applying various adhesives in multiple surgical fields but also makes this particular adhesive viable for clinical use. PMID:26421090

  16. Quantum Turbulence Arising from Countersuperflow Instability in Miscible Two-component Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Takeuchi, Hiromitsu; Ishino, Shungo; Tsubota, Makoto

    2014-05-01

    Turbulence is one of the great unsolved problems in physics. Quantum turbulence (QT) in superfluids is expected to give a prototype of turbulence much simpler than usual classical turbulence and has recently become one of the most important fields in low-temperature physics. Recent development of experimental technique enable us to study QT in atomic Bose-Einstein condensates (BECs). Recently, we proposed that countersuperflow, a flow state of miscible superfluids with a relative velocity, can lead to turbulence after the characteristic instability development of vortex nucleation and vortex reconnection in miscible two-component BECs. QT of two-component BECs can provide another prototype of turbulence because eddies in classical turbulence may be mimicked by vorticity distribution without singularity in this system. In this presentation, we will report on our numerical analysis of the parameter dependence of the statistical property, such as energy spectrum and enstrophy distribution, of the QT arising from countersuperflow instability (CSI) in two-component condensates. This work was supported by JSPS KAKENHI Grant Numbers 25887042, 26870500 and the MEXT KAKENHI (No. 22103003).

  17. Positional isomers of cyanostilbene: two-component molecular assembly and multiple-stimuli responsive luminescence

    PubMed Central

    Fan, Guoling; Yan, Dongpeng

    2014-01-01

    An understanding of the aggregates and properties of positional isomers can not only uncover how a slight difference in molecular structure alter crystal packing and bulk solid-state properties, but also plays an important role in developing new types of molecule-based functional materials. Herein, we report a study of the molecular packing and static/dynamic luminescence properties of three cyanostilbene (CS)-based isomers (CS1, CS2, CS3) within their single- and two-component molecular solids. Changing the positions of the cyano substitutents in the CS isomers has a marked influence on their packing modes and luminescent properties. Moreover, two-component CS-based materials have been constructed, which exhibit tunable conformations and packing fashions, as well as fluorescence properties, which differ from the pristine CS solids. The CS-based two-component molecular materials show solvent-responsive luminescence due to the dynamic disassembly of the samples. Moreover, it was found that the system based on CS2 and octafluoronaphthalene shows reversible photochromic fluorescence upon alternating light illumination and grinding. Such co-assembly procedures provide a facile way to fabricate patterned luminescent film materials. Therefore, this work not only affords new insight into the relationship between isomers and luminescence from molecular and supramolecular perspectives, but provides an effective strategy to develop multiple-stimuli-responsive luminescent materials. PMID:24816686

  18. Positional isomers of cyanostilbene: two-component molecular assembly and multiple-stimuli responsive luminescence

    NASA Astrophysics Data System (ADS)

    Fan, Guoling; Yan, Dongpeng

    2014-05-01

    An understanding of the aggregates and properties of positional isomers can not only uncover how a slight difference in molecular structure alter crystal packing and bulk solid-state properties, but also plays an important role in developing new types of molecule-based functional materials. Herein, we report a study of the molecular packing and static/dynamic luminescence properties of three cyanostilbene (CS)-based isomers (CS1, CS2, CS3) within their single- and two-component molecular solids. Changing the positions of the cyano substitutents in the CS isomers has a marked influence on their packing modes and luminescent properties. Moreover, two-component CS-based materials have been constructed, which exhibit tunable conformations and packing fashions, as well as fluorescence properties, which differ from the pristine CS solids. The CS-based two-component molecular materials show solvent-responsive luminescence due to the dynamic disassembly of the samples. Moreover, it was found that the system based on CS2 and octafluoronaphthalene shows reversible photochromic fluorescence upon alternating light illumination and grinding. Such co-assembly procedures provide a facile way to fabricate patterned luminescent film materials. Therefore, this work not only affords new insight into the relationship between isomers and luminescence from molecular and supramolecular perspectives, but provides an effective strategy to develop multiple-stimuli-responsive luminescent materials.

  19. High-temperature superfluidity of the two-component Bose gas in a transition metal dichalcogenide bilayer

    NASA Astrophysics Data System (ADS)

    Berman, Oleg L.; Kezerashvili, Roman Ya.

    2016-06-01

    The high-temperature superfluidity of two-dimensional dipolar excitons in two parallel transition metal dichalcogenide (TMDC) layers is predicted. We study Bose-Einstein condensation in the two-component system of dipolar A and B excitons. The effective mass, energy spectrum of the collective excitations, the sound velocity, and critical temperature are obtained for different TMDC materials. It is shown that in the Bogoliubov approximation, the sound velocity in the two-component dilute exciton Bose gas is always larger than in any one-component exciton system. The difference between the sound velocities for two-component and one-component dilute gases is caused by the fact that the sound velocity for a two-component system depends on the reduced mass of A and B excitons, which is always smaller than the individual mass of A or B exciton. Due to this fact, the critical temperature Tc for superfluidity for the two-component exciton system in a TMDC bilayer is about one order of magnitude higher than Tc in any one-component exciton system. We propose to observe the superfluidity of two-dimensional dipolar excitons in two parallel TMDC layers, which causes two opposite superconducting currents in each TMDC layer.

  20. Equilibrium thermodynamic properties of interacting two-component bosons in one dimension

    SciTech Connect

    Klauser, Antoine; Caux, Jean-Sebastien

    2011-09-15

    The interplay of quantum statistics, interactions, and temperature is studied within the framework of the bosonic two-component theory with repulsive delta-function interaction in one dimension. We numerically solve the thermodynamic Bethe ansatz and obtain the equation of state as a function of temperature and of the interaction strength, the relative chemical potential, and either the total chemical potential or a fixed number of particles, allowing quantification of the full crossover behavior of the system between its low-temperature ferromagnetic and high-temperature unpolarized regime, and from the low coupling decoherent regime to the fermionization regime at high interaction.

  1. Collinear Four-Wave Mixing of Two-Component Matter Waves

    SciTech Connect

    Pertot, Daniel; Gadway, Bryce; Schneble, Dominik

    2010-05-21

    We demonstrate atomic four-wave mixing of two-component matter waves in a collinear geometry. Starting from a single-species Bose-Einstein condensate, seed and pump modes are prepared through microwave state transfer and state-selective Kapitza-Dirac diffraction. Four-wave mixing then populates the initially empty output modes. Simulations based on a coupled-mode expansion of the Gross-Pitaevskii equation are in very good agreement with the experimental data. We show that four-wave mixing can play an important role in studies of bosonic mixtures in optical lattices. Moreover, our system should be of interest in the context of quantum atom optics.

  2. Collinear four-wave mixing of two-component matter waves.

    PubMed

    Pertot, Daniel; Gadway, Bryce; Schneble, Dominik

    2010-05-21

    We demonstrate atomic four-wave mixing of two-component matter waves in a collinear geometry. Starting from a single-species Bose-Einstein condensate, seed and pump modes are prepared through microwave state transfer and state-selective Kapitza-Dirac diffraction. Four-wave mixing then populates the initially empty output modes. Simulations based on a coupled-mode expansion of the Gross-Pitaevskii equation are in very good agreement with the experimental data. We show that four-wave mixing can play an important role in studies of bosonic mixtures in optical lattices. Moreover, our system should be of interest in the context of quantum atom optics.

  3. Improved Convergence for Two-Component Activity Expansions

    SciTech Connect

    DeWitt, H E; Rogers, F J; Sonnad, V

    2007-03-06

    It is well known that an activity expansion of the grand canonical partition function works well for attractive interactions, but works poorly for repulsive interactions, such as occur between atoms and molecules. The virial expansion of the canonical partition function shows just the opposite behavior. This poses a problem for applications that involve both types of interactions, such as occur in the outer layers of low-mass stars. We show that it is possible to obtain expansions for repulsive systems that convert the poorly performing Mayer activity expansion into a series of rational polynomials that converge uniformly to the virial expansion. In the current work we limit our discussion to the second virial approximation. In contrast to the Mayer activity expansion the activity expansion presented herein converges for both attractive and repulsive systems.

  4. Momentum flux in two phase two component low quality flow

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Graham, R. W.; Henry, R. E.

    1972-01-01

    In two phase flow systems line losses comprise frictional and momentum pressure drops. For design purposes, it would be desirable to estimate the line losses employing a one-dimensional calculation. Two methods for computing one-dimensional momentum flux at a test section discharge station are compared to the experimental value for a range of two-phase flow conditions. The one-dimensional homogeneous model appears to be more accurate generally in predicting the momentum than the variable slip model.

  5. Structural evolution of a two-component organogel.

    PubMed

    Singh, Mohit; Tan, Grace; Agarwal, Vivek; Fritz, Gerhard; Maskos, Karol; Bose, Arijit; John, Vijay; McPherson, Gary

    2004-08-31

    Dry reverse micelles of AOT in isooctane spontaneously undergo a microstructural transition to an organogel upon the addition of a phenolic dopant, p-chlorophenol. This microstructural evolution has been studied through a combination of light scattering, small-angle neutron scattering (SANS), NMR, and rheology. Several equilibrium stages between the system of dry reverse micelles of AOT and a 1:1 AOT/p-chlorophenol (molar ratio) gel in isooctane have been examined. To achieve this, p-chlorophenol is added progressively to the dilute solutions of AOT in isooctane, and this concentration series is then analyzed. The dry micelles of AOT in isooctane do not undergo any detectable structural change up to a certain p-chlorophenol concentration. Upon a very small increment in the concentration of p-chlorophenol beyond this "threshold" concentration, large strandlike aggregates are observed which then evolve to the three-dimensional gel network.

  6. Instabilities in relativistic two-component (super)fluids

    NASA Astrophysics Data System (ADS)

    Haber, Alexander; Schmitt, Andreas; Stetina, Stephan

    2016-01-01

    We study two-fluid systems with nonzero fluid velocities and compute their sound modes, which indicate various instabilities. For the case of two zero-temperature superfluids we employ a microscopic field-theoretical model of two coupled bosonic fields, including an entrainment coupling and a nonentrainment coupling. We analyze the onset of the various instabilities systematically and point out that the dynamical two-stream instability can occur only beyond Landau's critical velocity, i.e., in an already energetically unstable regime. A qualitative difference is found for the case of two normal fluids, where certain transverse modes suffer a two-stream instability in an energetically stable regime if there is entrainment between the fluids. Since we work in a fully relativistic setup, our results are very general and are of potential relevance for (super)fluids in neutron stars and, in the nonrelativistic limit of our results, in the laboratory.

  7. Mapping the Two-component Regulatory Networks in Desulfovibrio vulgaris

    SciTech Connect

    Rajeev, Lara; Luning, Eric; Dehal, Paramvir; Joachimiak, Marcin; Mukhopadhyay, Aindrila

    2010-05-17

    D. vulgaris Hildenborough has 72 response regulators. The Desulfovibrio are sulfate reducing bacteria that are important in the sulfur and carbon cycles in anoxic habitats. Its large number of two componenent systems are probably critical to its ability to sense and respond to its environment. Our goal is to map these RRs to the genes they regulate using a DNA-affinity-purification-chip (DAP-chip) protocol. First target determined usuing EMSA. A positive target was determined for as many RRs as possible using EMSA. Targets were selected based on gene proximity, regulon predictions and/or predicted sigma54 dependent promoters. qPCR was used to ensure that the target was enriched from sheared genomic DNA before proceeding to the DAP-chip.

  8. Symmetry breaking of solitons in two-component Gross-Pitaevskii equations.

    PubMed

    Sakaguchi, Hidetsugu; Malomed, Boris A

    2011-03-01

    We revisit the problem of the spontaneous symmetry breaking (SSB) of solitons in two-component linearly coupled nonlinear systems, adding the nonlinear interaction between the components. With this feature, the system may be realized in new physical settings, in terms of optics and the Bose-Einstein condensate (BEC). SSB bifurcation points are found analytically, for both symmetric and antisymmetric solitons (the symmetry between the two components is meant here). Asymmetric solitons, generated by the bifurcations, are described by means of the variational approximation (VA) and numerical methods, demonstrating good accuracy of the variational results. In the space of the self-phase-modulation (SPM) parameter and soliton's norm, a border separating stable symmetric and asymmetric solitons is identified. The nonlinear coupling may change the character of the SSB bifurcation, from subcritical to supercritical. Collisions between moving asymmetric and symmetric solitons are investigated too. Antisymmetric solitons are destabilized by a supercritical bifurcation, which gives rise to self-confined modes featuring Josephson oscillations, instead of stationary states with broken antisymmetry. An additional instability against delocalized perturbations is also found for the antisymmetric solitons.

  9. Symmetry breaking of solitons in two-component Gross-Pitaevskii equations

    SciTech Connect

    Sakaguchi, Hidetsugu; Malomed, Boris A.

    2011-03-15

    We revisit the problem of the spontaneous symmetry breaking (SSB) of solitons in two-component linearly coupled nonlinear systems, adding the nonlinear interaction between the components. With this feature, the system may be realized in new physical settings, in terms of optics and the Bose-Einstein condensate (BEC). SSB bifurcation points are found analytically, for both symmetric and antisymmetric solitons (the symmetry between the two components is meant here). Asymmetric solitons, generated by the bifurcations, are described by means of the variational approximation (VA) and numerical methods, demonstrating good accuracy of the variational results. In the space of the self-phase-modulation (SPM) parameter and soliton's norm, a border separating stable symmetric and asymmetric solitons is identified. The nonlinear coupling may change the character of the SSB bifurcation, from subcritical to supercritical. Collisions between moving asymmetric and symmetric solitons are investigated too. Antisymmetric solitons are destabilized by a supercritical bifurcation, which gives rise to self-confined modes featuring Josephson oscillations, instead of stationary states with broken antisymmetry. An additional instability against delocalized perturbations is also found for the antisymmetric solitons.

  10. Kinetic Buffering of Cross Talk between Bacterial Two-Component Sensors

    PubMed Central

    Groban, Eli S.; Clarke, Elizabeth J.; Salis, Howard M.; Miller, Susan M.; Voigt, Christopher A.

    2010-01-01

    Two-component systems are a class of sensors that enable bacteria to respond to environmental and cell-state signals. The canonical system consists of a membrane-bound sensor histidine kinase that autophosphorylates in response to a signal and transfers the phosphate to an intracellular response regulator. Bacteria typically have dozens of two-component systems. The key questions are whether these systems are linear and, if they are, how cross talk between systems is buffered. In this work, we studied the EnvZ/OmpR and CpxA/CpxR systems from Escherichia coli, which have been shown previously to exhibit slow cross talk in vitro. Using in vitro radiolabeling and a rapid quenched-flow apparatus, we experimentally measured 10 biochemical parameters capturing the cognate and non-cognate phosphotransfer reactions between the systems. These data were used to parameterize a mathematical model that was used to predict how cross talk is affected as different genes are knocked out. It was predicted that significant cross talk between EnvZ and CpxR only occurs for the triple mutant ΔompR ΔcpxA ΔactA-pta. All seven combinations of these knockouts were made to test this prediction and only the triple mutant demonstrated significant cross talk, where the cpxP promoter was induced 280-fold upon the activation of EnvZ. Furthermore, the behavior of the other knockouts agrees with the model predictions. These results support a kinetic model of buffering where both the cognate bifunctional phosphatase activity and the competition between regulator proteins for phosphate prevent cross talk in vivo. PMID:19445950

  11. Supramolecular Chirality of the Two-Component Supramolecular Copolymer Gels: Who Determines the Handedness?

    PubMed

    Liu, Yaqing; Chen, Chunfeng; Wang, Tianyu; Liu, Minghua

    2016-01-12

    Natural supramolecular systems typically contain a wide variety of chiral molecules. Studying the chiral conflict within different supramolecular assemblies not only can be very helpful for understanding the inherent principles of supramolecular chirality but also can guide the preparation of many functional chiral soft matters. For assemblies containing only structurally similar molecules, supramolecular chirality is determined by enantiomeric excess of molecular building blocks. For supramolecular systems assembled by structurally different chiral molecules, however, the optical activity of the systems and the chiral conflict among different chiral molecules can be very complex. We found rather unexpected results regarding the chiral conflict within two-component supramolecular copolymer gels in this study. The handedness of the chirality of supramolecular copolymer gels, which were formed by the coassembly of bolaamphiphilic L-histidine derivatives and tartaric acids, was found to be dependent on the ordering molecular packing, instead of the preponderance of certain chiral molecules.

  12. Dynamical quantum phase transition of a two-component Bose-Einstein condensate in an optical lattice

    SciTech Connect

    Collin, Anssi; Martikainen, Jani-Petri; Larson, Jonas

    2010-01-15

    We study the dynamics of a two-component Bose-Einstein condensate where the two components are coupled via an optical lattice. In particular, we focus on the dynamics as one drives the system through a critical point of a first-order phase transition characterized by a jump in the internal populations. Solving the time-dependent Gross-Pitaevskii equation, we analyze the breakdown of adiabaticity, impact of nonlinear atom-atom scattering, and role of a harmonic trapping potential. Our findings demonstrate that the phase transition is resilient to both contact interaction between atoms and external trapping confinement.

  13. Negative control in two-component signal transduction by transmitter phosphatase activity.

    PubMed

    Huynh, TuAnh Ngoc; Stewart, Valley

    2011-10-01

    Bifunctional sensor transmitter modules of two-component systems exert both positive and negative control on the receiver domain of the cognate response regulator. In negative control, the transmitter module accelerates the rate of phospho-receiver dephosphorylation. This transmitter phosphatase reaction serves the important physiological functions of resetting response regulator phosphorylation level and suppressing cross-talk. Although the biochemical reactions underlying positive control are reasonably well understood, the mechanism for transmitter phosphatase activity has been unknown. A recent hypothesis is that the transmitter phosphatase reaction is catalysed by a conserved Gln, Asn or Thr residue, via a hydrogen bond between the amide or hydroxyl group and the nucleophilic water molecule in acyl-phosphate hydrolysis. This hypothetical mechanism closely resembles the established mechanisms of auxiliary phosphatases such as CheZ and CheX, and may be widely conserved in two-component signal transduction. In addition to the proposed catalytic residues, transmitter phosphatase activity also requires the correct transmitter conformation and appropriate interactions with the receiver. Evidence suggests that the phosphatase-competent and autokinase-competent states are mutually exclusive, and the corresponding negative and positive activities are likely to be reciprocally regulated through dynamic control of transmitter conformations.

  14. Nonlinear polarization waves in a two-component Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Kamchatnov, A. M.; Kartashov, Y. V.; Larré, P.-É.; Pavloff, N.

    2014-03-01

    A two-component Bose-Einstein condensate whose dynamics is described by a system of coupled Gross-Pitaevskii equations accommodates waves with different symmetries. A first type of waves corresponds to excitations for which the motion of both components is locally in phase. For the second type of waves, the two components have a counterphase local motion. When the values of the inter- and intracomponent interaction constants are different, the long-wavelength behavior of these two modes corresponds to two types of sound with different velocities. In the limit of weak nonlinearity and small dispersion, the first mode is described by the well-known Korteweg-de Vries equation. In the same limit, we show that the second mode can be described by the Gardner equation if the values of the two intracomponent interaction constants are sufficiently close. This leads to a rich variety of nonlinear excitations (solitons, kinks, algebraic solitons, breathers) which do not exist in the Korteweg-de Vries description.

  15. Two-component hybrid time-dependent density functional theory within the Tamm-Dancoff approximation

    SciTech Connect

    Kühn, Michael; Weigend, Florian

    2015-01-21

    We report the implementation of a two-component variant of time-dependent density functional theory (TDDFT) for hybrid functionals that accounts for spin-orbit effects within the Tamm-Dancoff approximation (TDA) for closed-shell systems. The influence of the admixture of Hartree-Fock exchange on excitation energies is investigated for several atoms and diatomic molecules by comparison to numbers for pure density functionals obtained previously [M. Kühn and F. Weigend, J. Chem. Theory Comput. 9, 5341 (2013)]. It is further related to changes upon switching to the local density approximation or using the full TDDFT formalism instead of TDA. Efficiency is demonstrated for a comparably large system, Ir(ppy){sub 3} (61 atoms, 1501 basis functions, lowest 10 excited states), which is a prototype molecule for organic light-emitting diodes, due to its “spin-forbidden” triplet-singlet transition.

  16. Two-component hybrid time-dependent density functional theory within the Tamm-Dancoff approximation

    NASA Astrophysics Data System (ADS)

    Kühn, Michael; Weigend, Florian

    2015-01-01

    We report the implementation of a two-component variant of time-dependent density functional theory (TDDFT) for hybrid functionals that accounts for spin-orbit effects within the Tamm-Dancoff approximation (TDA) for closed-shell systems. The influence of the admixture of Hartree-Fock exchange on excitation energies is investigated for several atoms and diatomic molecules by comparison to numbers for pure density functionals obtained previously [M. Kühn and F. Weigend, J. Chem. Theory Comput. 9, 5341 (2013)]. It is further related to changes upon switching to the local density approximation or using the full TDDFT formalism instead of TDA. Efficiency is demonstrated for a comparably large system, Ir(ppy)3 (61 atoms, 1501 basis functions, lowest 10 excited states), which is a prototype molecule for organic light-emitting diodes, due to its "spin-forbidden" triplet-singlet transition.

  17. Two-component hybrid time-dependent density functional theory within the Tamm-Dancoff approximation.

    PubMed

    Kühn, Michael; Weigend, Florian

    2015-01-21

    We report the implementation of a two-component variant of time-dependent density functional theory (TDDFT) for hybrid functionals that accounts for spin-orbit effects within the Tamm-Dancoff approximation (TDA) for closed-shell systems. The influence of the admixture of Hartree-Fock exchange on excitation energies is investigated for several atoms and diatomic molecules by comparison to numbers for pure density functionals obtained previously [M. Kühn and F. Weigend, J. Chem. Theory Comput. 9, 5341 (2013)]. It is further related to changes upon switching to the local density approximation or using the full TDDFT formalism instead of TDA. Efficiency is demonstrated for a comparably large system, Ir(ppy)3 (61 atoms, 1501 basis functions, lowest 10 excited states), which is a prototype molecule for organic light-emitting diodes, due to its "spin-forbidden" triplet-singlet transition.

  18. Comparing numerical and analytical approaches to strongly interacting two-component mixtures in one dimensional traps

    NASA Astrophysics Data System (ADS)

    Bellotti, Filipe F.; Dehkharghani, Amin S.; Zinner, Nikolaj T.

    2017-02-01

    We investigate one-dimensional harmonically trapped two-component systems for repulsive interaction strengths ranging from the non-interacting to the strongly interacting regime for Fermi-Fermi mixtures. A new and powerful mapping between the interaction strength parameters from a continuous Hamiltonian and a discrete lattice Hamiltonian is derived. As an example, we show that this mapping does not depend neither on the state of the system nor on the number of particles. Energies, density profiles and correlation functions are obtained both numerically (density matrix renormalization group (DMRG) and exact diagonalization) and analytically. Since DMRG results do not converge as the interaction strength is increased, analytical solutions are used as a benchmark to identify the point where these calculations become unstable. We use the proposed mapping to set a quantitative limit on the interaction parameter of a discrete lattice Hamiltonian above which DMRG gives unrealistic results.

  19. Blue-light-activated histidine kinases: two-component sensors in bacteria.

    PubMed

    Swartz, Trevor E; Tseng, Tong-Seung; Frederickson, Marcus A; Paris, Gastón; Comerci, Diego J; Rajashekara, Gireesh; Kim, Jung-Gun; Mudgett, Mary Beth; Splitter, Gary A; Ugalde, Rodolfo A; Goldbaum, Fernando A; Briggs, Winslow R; Bogomolni, Roberto A

    2007-08-24

    Histidine kinases, used for environmental sensing by bacterial two-component systems, are involved in regulation of bacterial gene expression, chemotaxis, phototaxis, and virulence. Flavin-containing domains function as light-sensory modules in plant and algal phototropins and in fungal blue-light receptors. We have discovered that the prokaryotes Brucella melitensis, Brucella abortus, Erythrobacter litoralis, and Pseudomonas syringae contain light-activated histidine kinases that bind a flavin chromophore and undergo photochemistry indicative of cysteinyl-flavin adduct formation. Infection of macrophages by B. abortus was stimulated by light in the wild type but was limited in photochemically inactive and null mutants, indicating that the flavin-containing histidine kinase functions as a photoreceptor regulating B. abortus virulence.

  20. TASI 2011 Lectures Notes:. Two-Component Fermion Notation and Supersymmetry

    NASA Astrophysics Data System (ADS)

    Martin, Stephen P.

    2013-12-01

    These notes, based on work with Herbi Dreiner and Howie Haber, discuss how to do practical calculations of cross sections and decay rates using two-component fermion notation, as appropriate for supersymmetry and other beyond-the-Standard-Model theories. Included are a list of two-component fermion Feynman rules for the Minimal Supersymmetric Standard Model, and some example calculations.

  1. Symmetry-Broken Phase Separation of a Two-Component Dipolar Fermi Gas in a Spherically Symmetric Harmonic Trap

    NASA Astrophysics Data System (ADS)

    Miyakawa, Takahiko; Nakamura, Shin; Yabu, Hiroyuki

    2017-03-01

    We study the ground state of a two-component dipolar Fermi gas in a spherically symmetric harmonic trap at zero temperature. On the basis of the Thomas-Fermi-von Weizsäcker approximation, we obtain a phase diagram of the system with equal but opposite values of the magnetic moment. We find that a phase-separated state, which spontaneously breaks the spherical symmetry of the system, emerges.

  2. Comparison of Dynamical Behaviors Between Monofunctional and Bifunctional Two-Component Signaling Modules

    NASA Astrophysics Data System (ADS)

    Yang, Xiyan; Wu, Yahao; Yuan, Zhanjiang

    2015-06-01

    Two-component signaling modules exist extensively in bacteria and microbes. These modules can be, based on their distinct network structures, divided into two types: the monofunctional system (denoted by MFS) where the sensor kinase (SK) modulates only phosphorylation of the response regulator (RR), and the bifunctional system (denoted by BFS) where the SK catalyzes both phosphorylation and dephosphorylation of the RR. Here, we analyze dynamical behaviors of these two systems based on stability theory, focusing on differences between them. The analysis of the deterministic behavior indicates that there is no difference between the two modules, that is, each system has the unique stable steady state. However, there are significant differences in stochastic behavior between them. Specifically, if the mean phosphorylated SK level is kept the same for the two modules, then the variance and the Fano factor for the phosphorylated RR in the BFS are always no less than those in the MFS, indicating that bifunctionality always enhances fluctuations. The correlation between the phosphorylated SK and the phosphorylated RR in the BFS is always positive mainly due to competition between system components, but this correlation in the MFS may be positive, almost zero, or negative, depending on the ratio between two rate constants. Our overall analysis indicates that differences between dynamical behaviors of monofunctional and bifunctional signaling modules are mainly in the stochastic rather than deterministic aspect.

  3. Nondissipative drag of superflow in a two-component Bose gas

    SciTech Connect

    Fil, D.V.; Shevchenko, S.I.

    2005-07-15

    A microscopic theory of a nondissipative drag in a two-component superfluid Bose gas is developed. The expression for the drag current in the system with the components of different atomic masses, densities, and scattering lengths is derived. It is shown that the drag current is proportional to the square root of the gas parameter. The temperature dependence of the drag current is studied and it is shown that at temperature of order or smaller than the interaction energy the temperature reduction of the drag current is rather small. A possible way of measuring the drag factor is proposed. A toroidal system with the drag component confined in two half-ring wells separated by two Josephson barriers is considered. Under certain condition such a system can be treated as a Bose-Einstein counterpart of the Josephson charge qubit in an external magnetic field. It is shown that the measurement of the difference of number of atoms in two wells under a controlled evolution of the state of the qubit allows one to determine the drag factor.

  4. Bioorthogonal two-component drug delivery in HER2(+) breast cancer mouse models

    PubMed Central

    Hapuarachchige, Sudath; Kato, Yoshinori; Artemov, Dmitri

    2016-01-01

    The HER2 receptor is overexpressed in approximately 20% of breast cancers and is associated with tumorigenesis, metastasis, and a poor prognosis. Trastuzumab is a first-line targeted drug used against HER2(+) breast cancers; however, at least 50% of HER2(+) tumors develop resistance to trastuzumab. To treat these patients, trastuzumab-based antibody-drug conjugates (ACDs) have been developed and are currently used in the clinic. Despite their high efficacy, the long circulation half-life and non-specific binding of cytotoxic ADCs can result in systemic toxicity. In addition, standard ADCs do not provide an image-guided mode of administration. Here, we have developed a two-component, two-step, pre-targeting drug delivery system integrated with image guidance to circumvent these issues. In this strategy, HER2 receptors are pre-labeled with a functionalized trastuzumab antibody followed by the delivery of drug-loaded nanocarriers. Both components are cross-linked by multiple bioorthogonal click reactions in situ on the surface of the target cell and internalized as nanoclusters. We have explored the efficacy of this delivery strategy in HER2(+) human breast cancer models. Our therapeutic study confirms the high therapeutic efficacy of the new delivery system, with no significant toxicity. PMID:27068794

  5. Direct molecular dynamics simulation of liquid-solid phase equilibria for two-component plasmas.

    PubMed

    Schneider, A S; Hughto, J; Horowitz, C J; Berry, D K

    2012-06-01

    We determine the liquid-solid phase diagram for carbon-oxygen and oxygen-selenium plasma mixtures using two-phase molecular dynamics simulations. We identify liquid, solid, and interface regions using a bond angle metric. To study finite-size effects, we perform 27,648- and 55,296-ion simulations. To help monitor nonequilibrium effects, we calculate diffusion constants D(i). For the carbon-oxygen system we find that D(O) for oxygen ions in the solid is much smaller than D(C) for carbon ions and that both diffusion constants are 80 or more times smaller than diffusion constants in the liquid phase. There is excellent agreement between our carbon-oxygen phase diagram and that predicted by Medin and Cumming. This suggests that errors from finite-size and nonequilibrium effects are small and that the carbon-oxygen phase diagram is now accurately known. The oxygen-selenium system is a simple two-component model for more complex rapid proton capture nucleosynthesis ash compositions for an accreting neutron star. Diffusion of oxygen, in a predominantly selenium crystal, is remarkably fast, comparable to diffusion in the liquid phase. We find a somewhat lower melting temperature for the oxygen-selenium system than that predicted by Medin and Cumming. This is probably because of electron screening effects.

  6. Bioorthogonal two-component drug delivery in HER2(+) breast cancer mouse models.

    PubMed

    Hapuarachchige, Sudath; Kato, Yoshinori; Artemov, Dmitri

    2016-04-12

    The HER2 receptor is overexpressed in approximately 20% of breast cancers and is associated with tumorigenesis, metastasis, and a poor prognosis. Trastuzumab is a first-line targeted drug used against HER2(+) breast cancers; however, at least 50% of HER2(+) tumors develop resistance to trastuzumab. To treat these patients, trastuzumab-based antibody-drug conjugates (ACDs) have been developed and are currently used in the clinic. Despite their high efficacy, the long circulation half-life and non-specific binding of cytotoxic ADCs can result in systemic toxicity. In addition, standard ADCs do not provide an image-guided mode of administration. Here, we have developed a two-component, two-step, pre-targeting drug delivery system integrated with image guidance to circumvent these issues. In this strategy, HER2 receptors are pre-labeled with a functionalized trastuzumab antibody followed by the delivery of drug-loaded nanocarriers. Both components are cross-linked by multiple bioorthogonal click reactions in situ on the surface of the target cell and internalized as nanoclusters. We have explored the efficacy of this delivery strategy in HER2(+) human breast cancer models. Our therapeutic study confirms the high therapeutic efficacy of the new delivery system, with no significant toxicity.

  7. Bioorthogonal two-component drug delivery in HER2(+) breast cancer mouse models

    NASA Astrophysics Data System (ADS)

    Hapuarachchige, Sudath; Kato, Yoshinori; Artemov, Dmitri

    2016-04-01

    The HER2 receptor is overexpressed in approximately 20% of breast cancers and is associated with tumorigenesis, metastasis, and a poor prognosis. Trastuzumab is a first-line targeted drug used against HER2(+) breast cancers; however, at least 50% of HER2(+) tumors develop resistance to trastuzumab. To treat these patients, trastuzumab-based antibody-drug conjugates (ACDs) have been developed and are currently used in the clinic. Despite their high efficacy, the long circulation half-life and non-specific binding of cytotoxic ADCs can result in systemic toxicity. In addition, standard ADCs do not provide an image-guided mode of administration. Here, we have developed a two-component, two-step, pre-targeting drug delivery system integrated with image guidance to circumvent these issues. In this strategy, HER2 receptors are pre-labeled with a functionalized trastuzumab antibody followed by the delivery of drug-loaded nanocarriers. Both components are cross-linked by multiple bioorthogonal click reactions in situ on the surface of the target cell and internalized as nanoclusters. We have explored the efficacy of this delivery strategy in HER2(+) human breast cancer models. Our therapeutic study confirms the high therapeutic efficacy of the new delivery system, with no significant toxicity.

  8. Rayleigh-Taylor instability and mushroom-pattern formation in a two-component Bose-Einstein condensate

    SciTech Connect

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki; Akamatsu, Daisuke

    2009-12-15

    The Rayleigh-Taylor instability at the interface in an immiscible two-component Bose-Einstein condensate is investigated using the mean field and Bogoliubov theories. Rayleigh-Taylor fingers are found to grow from the interface and mushroom patterns are formed. Quantized vortex rings and vortex lines are then generated around the mushrooms. The Rayleigh-Taylor instability and mushroom-pattern formation can be observed in a trapped system.

  9. Distribution, structure and diversity of "bacterial" genes encoding two-component proteins in the Euryarchaeota.

    PubMed

    Ashby, Mark K

    2006-08-01

    The publicly available annotated archaeal genome sequences (23 complete and three partial annotations, October 2005) were searched for the presence of potential two-component open reading frames (ORFs) using gene category lists and BLASTP. A total of 489 potential two-component genes were identified from the gene category lists and BLASTP. Two-component genes were found in 14 of the 21 Euryarchaeal sequences (October 2005) and in neither the Crenarchaeota nor the Nanoarchaeota. A total of 20 predicted protein domains were identified in the putative two-component ORFs that, in addition to the histidine kinase and receiver domains, also includes sensor and signalling domains. The detailed structure of these putative proteins is shown, as is the distribution of each class of two-component genes in each species. Potential members of orthologous groups have been identified, as have any potential operons containing two or more two-component genes. The number of two-component genes in those Euryarchaeal species which have them seems to be linked more to lifestyle and habitat than to genome complexity, with most examples being found in Methanospirillum hungatei, Haloarcula marismortui, Methanococcoides burtonii and the mesophilic Methanosarcinales group. The large numbers of two-component genes in these species may reflect a greater requirement for internal regulation. Phylogenetic analysis of orthologous groups of five different protein classes, three probably involved in regulating taxis, suggests that most of these ORFs have been inherited vertically from an ancestral Euryarchaeal species and point to a limited number of key horizontal gene transfer events.

  10. Surfactant effect on cloud condensation nuclei for two-component internally mixed aerosols

    NASA Astrophysics Data System (ADS)

    Petters, Sarah Suda; Petters, Markus Dirk

    2016-02-01

    This work presents experimental data on the cloud condensation nuclei (CCN) activity of two-component mixtures containing surfactants. Nine binary systems were tested combining strong ionic (sodium dodecyl sulfate) and nonionic surfactants (Zonyl FS-300 and Triton X-100) with nonsurfactant compounds (glucose, ammonium sulfate, or sodium chloride). Control tests were performed for systems combining organic (glucose) and inorganic compounds (ammonium sulfate or sodium chloride). Results show that CCN activity deviates strongly relative to predictions made from measurements of bulk surface tension. Köhler theory accounting for surface tension reduction and surface partitioning underpredicts the CCN activity of particles containing Zonyl FS-300 and Triton X-100. Partitioning theory better describes data for Zonyl FS-300 and Triton X-100 when limiting surface adsorption to 1.5 monolayers of the growing drop. Deviations from predictions were observed. Likely explanations include solute-solute interactions and nonspherical particle shape. The findings presented here examine in detail the perturbation of CCN activity by surfactants and may offer insight into both the success and limitations of physical models describing CCN activity of surface active molecules.

  11. Two-Component Elements Mediate Interactions between Cytokinin and Salicylic Acid in Plant Immunity

    PubMed Central

    Argueso, Cristiana T.; Ferreira, Fernando J.; Epple, Petra; To, Jennifer P. C.; Hutchison, Claire E.; Schaller, G. Eric; Dangl, Jeffery L.; Kieber, Joseph J.

    2012-01-01

    Recent studies have revealed an important role for hormones in plant immunity. We are now beginning to understand the contribution of crosstalk among different hormone signaling networks to the outcome of plant–pathogen interactions. Cytokinins are plant hormones that regulate development and responses to the environment. Cytokinin signaling involves a phosphorelay circuitry similar to two-component systems used by bacteria and fungi to perceive and react to various environmental stimuli. In this study, we asked whether cytokinin and components of cytokinin signaling contribute to plant immunity. We demonstrate that cytokinin levels in Arabidopsis are important in determining the amplitude of immune responses, ultimately influencing the outcome of plant–pathogen interactions. We show that high concentrations of cytokinin lead to increased defense responses to a virulent oomycete pathogen, through a process that is dependent on salicylic acid (SA) accumulation and activation of defense gene expression. Surprisingly, treatment with lower concentrations of cytokinin results in increased susceptibility. These functions for cytokinin in plant immunity require a host phosphorelay system and are mediated in part by type-A response regulators, which act as negative regulators of basal and pathogen-induced SA–dependent gene expression. Our results support a model in which cytokinin up-regulates plant immunity via an elevation of SA–dependent defense responses and in which SA in turn feedback-inhibits cytokinin signaling. The crosstalk between cytokinin and SA signaling networks may help plants fine-tune defense responses against pathogens. PMID:22291601

  12. Dynamics of coupled simplest chaotic two-component electronic circuits and its potential application to random bit generation

    SciTech Connect

    Modeste Nguimdo, Romain; Tchitnga, Robert; Woafo, Paul

    2013-12-15

    We numerically investigate the possibility of using a coupling to increase the complexity in simplest chaotic two-component electronic circuits operating at high frequency. We subsequently show that complex behaviors generated in such coupled systems, together with the post-processing are suitable for generating bit-streams which pass all the NIST tests for randomness. The electronic circuit is built up by unidirectionally coupling three two-component (one active and one passive) oscillators in a ring configuration through resistances. It turns out that, with such a coupling, high chaotic signals can be obtained. By extracting points at fixed interval of 10 ns (corresponding to a bit rate of 100 Mb/s) on such chaotic signals, each point being simultaneously converted in 16-bits (or 8-bits), we find that the binary sequence constructed by including the 10(or 2) least significant bits pass statistical tests of randomness, meaning that bit-streams with random properties can be achieved with an overall bit rate up to 10×100 Mb/s =1Gbit/s (or 2×100 Mb/s =200 Megabit/s). Moreover, by varying the bias voltages, we also investigate the parameter range for which more complex signals can be obtained. Besides being simple to implement, the two-component electronic circuit setup is very cheap as compared to optical and electro-optical systems.

  13. Vapour-mediated sensing and motility in two-component droplets

    NASA Astrophysics Data System (ADS)

    Cira, N. J.; Benusiglio, A.; Prakash, M.

    2015-03-01

    Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings and lubrication. Liquid behaviour on a surface can range from complete spreading, as in the `tears of wine' effect, to minimal wetting as observed on a superhydrophobic lotus leaf. Controlling droplet movement is important in microfluidic liquid handling, on self-cleaning surfaces and in heat transfer. Droplet motion can be achieved by gradients of surface energy. However, existing techniques require either a large gradient or a carefully prepared surface to overcome the effects of contact line pinning, which usually limit droplet motion. Here we show that two-component droplets of well-chosen miscible liquids such as propylene glycol and water deposited on clean glass are not subject to pinning and cause the motion of neighbouring droplets over a distance. Unlike the canonical predictions for these liquids on a high-energy surface, these droplets do not spread completely but exhibit an apparent contact angle. We demonstrate experimentally and analytically that these droplets are stabilized by evaporation-induced surface tension gradients and that they move in response to the vapour emitted by neighbouring droplets. Our fundamental understanding of this robust system enabled us to construct a wide variety of autonomous fluidic machines out of everyday materials.

  14. Vapour-mediated sensing and motility in two-component droplets.

    PubMed

    Cira, N J; Benusiglio, A; Prakash, M

    2015-03-26

    Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings and lubrication. Liquid behaviour on a surface can range from complete spreading, as in the 'tears of wine' effect, to minimal wetting as observed on a superhydrophobic lotus leaf. Controlling droplet movement is important in microfluidic liquid handling, on self-cleaning surfaces and in heat transfer. Droplet motion can be achieved by gradients of surface energy. However, existing techniques require either a large gradient or a carefully prepared surface to overcome the effects of contact line pinning, which usually limit droplet motion. Here we show that two-component droplets of well-chosen miscible liquids such as propylene glycol and water deposited on clean glass are not subject to pinning and cause the motion of neighbouring droplets over a distance. Unlike the canonical predictions for these liquids on a high-energy surface, these droplets do not spread completely but exhibit an apparent contact angle. We demonstrate experimentally and analytically that these droplets are stabilized by evaporation-induced surface tension gradients and that they move in response to the vapour emitted by neighbouring droplets. Our fundamental understanding of this robust system enabled us to construct a wide variety of autonomous fluidic machines out of everyday materials.

  15. Two-component dark-bright solitons in three-dimensional atomic Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Wang, Wenlong; Kevrekidis, P. G.

    2017-03-01

    In the present work, we revisit two-component Bose-Einstein condensates in their fully three-dimensional (3D) form. Motivated by earlier studies of dark-bright solitons in the 1D case, we explore the stability of these structures in their fully 3D form in two variants. In one the dark soliton is planar and trapping a planar bright (disk) soliton. In the other case, a dark spherical shell soliton creates an effective potential in which a bright spherical shell of atoms is trapped in the second component. We identify these solutions as numerically exact states (up to a prescribed accuracy) and perform a Bogolyubov-de Gennes linearization analysis that illustrates that both structures can be dynamically stable in suitable intervals of sufficiently low chemical potentials. We corroborate this finding theoretically by analyzing the stability via degenerate perturbation theory near the linear limit of the system. When the solitary waves are found to be unstable, we explore their dynamical evolution via direct numerical simulations which, in turn, reveal wave forms that are more robust. Finally, using the SO (2 ) symmetry of the model, we produce multi-dark-bright planar or shell solitons involved in pairwise oscillatory motion.

  16. Mechanisms of reduced flavin transfer in the two-component flavin-dependent monooxygenases.

    PubMed

    Sucharitakul, Jeerus; Tinikul, Ruchanok; Chaiyen, Pimchai

    2014-08-01

    Two-component flavin-dependent enzymes are abundant in nature and are involved in a wide variety of biological reactions. These enzymes consist of a reductase which generates a reduced flavin and a monooxygenase that utilizes the reduced flavin as a substrate for monooxygenation. As reduced flavin is unstable and can be oxidized by oxygen, these enzymes must have a means to efficiently coordinate the transfer of the reduced flavin such that auto-oxidation can be minimized. Various types of experiments and methodologies have been used to probe the mode of reduced flavin transfer. Results from many systems have indicated that the transfer can be achieved by free diffusion and that the presence of one component has no influence on the kinetics of the other component. Contradicting results indicating that the transfer of the reduced flavin may be achieved via protein-protein mediation also exist. Regardless of the mode of reduced flavin transfer, these enzymes have a means to control their overall kinetics such that the reaction rate is slow when the demand for oxygenation is not high.

  17. Stationary States and Modulational Instability of Coupled Two-Component Bose-Einstein Condensates in a Ring Trap

    NASA Astrophysics Data System (ADS)

    Deng, Hai-Ming; Zhong, Hong-Hua; Huang, Jia-Hao; Dai, Hui; Yao, Min; Huang, Xiao-Yi

    2015-08-01

    We investigate modulational instability (MI) of a coupled two-component Bose-Einstein condensates in a rotating ring trap. The excitation spectrum and the MI condition of the system are presented analytically. We find that the coupling between the two components strongly modifies the MI condition, and the MI condition is phase-dependent. Furthermore, we discuss the effect of MI on both density excitation and spin excitation. If the inter- and intra-component interaction strengths are all equal, the MI causes density excitation but not spin excitation, and if the inter- and intra-component interaction strengths are different, the MI causes both density excitation and spin excitation. Our results provide a promising approach for controlling the stability and excitation of a rotating two-component Bose-Einstein condensates by modulating its coupling strength and interaction strength. Supported by the National Natural Science Foundation of China under Grant No. 11465008, the Hunan Provincial Natural Science Foundation under Grant No. 2015JJ2114, the Scientific Research Fund of Hunan Provincial Education Department under Grant Nos. 14A118, 13C881, Science and Technology Innovative Research Team in Higher Educational Instituions of Hunan Province, and Science Research Foundation of Xiangnan University under Grant No. 2012-126(41)

  18. Stochastic simulation of prokaryotic two-component signalling indicates stochasticity-induced active-state locking and growth-rate dependent bistability.

    PubMed

    Wei, Katy; Moinat, Maxim; Maarleveld, Timo R; Bruggeman, Frank J

    2014-07-29

    Signal transduction by prokaryotes almost exclusively relies on two-component systems for sensing and responding to (extracellular) signals. Here, we use stochastic models of two-component systems to better understand the impact of stochasticity on the fidelity and robustness of signal transmission, the outcome of autoregulatory gene expression and the influence of cell growth and division. We report that two-component systems are remarkably robust against copy number fluctuations of the signalling proteins they are composed of, which enhances signal transmission fidelity. Furthermore, we find that due to stochasticity these systems can get locked in an active state for extended time periods when (initially high) signal levels drop to zero. This behaviour can contribute to a bet-hedging adaptation strategy, aiding survival in fluctuating environments. Additionally, autoregulatory gene expression can cause two-component systems to become bistable at realistic parameter values. As a result, two sub-populations of cells can co-exist-active and inactive cells, which contributes to fitness in unpredictable environments. Bistability proved robust with respect to cell growth and division, and is tunable by the growth rate. In conclusion, our results indicate how single cells can cope with the inevitable stochasticity occurring in the activity of their two-component systems. They are robust to disadvantageous fluctuations that scramble signal transduction and they exploit beneficial stochasticity that generates fitness-enhancing heterogeneity across an isogenic population of cells.

  19. Two components in charged particle production in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Bylinkin, A. A.; Chernyavskaya, N. S.; Rostovtsev, A. A.

    2016-02-01

    Transverse momentum spectra of charged particle production in heavy-ion collisions are considered in terms of a recently introduced Two Component parameterization combining exponential ("soft") and power-law ("hard") functional forms. The charged hadron densities calculated separately for them are plotted versus number of participating nucleons, Npart. The obtained dependences are discussed and the possible link between the two component parameterization introduced by the authors and the two component model historically used for the case of heavy-ion collisions is established. Next, the variations of the parameters of the introduced approach with the center of mass energy and centrality are studied using the available data from RHIC and LHC experiments. The spectra shapes are found to show universal dependences on Npart for all investigated collision energies.

  20. MODELING THERMAL DUST EMISSION WITH TWO COMPONENTS: APPLICATION TO THE PLANCK HIGH FREQUENCY INSTRUMENT MAPS

    SciTech Connect

    Meisner, Aaron M.; Finkbeiner, Douglas P. E-mail: dfinkbeiner@cfa.harvard.edu

    2015-01-10

    We apply the Finkbeiner et al. two-component thermal dust emission model to the Planck High Frequency Instrument maps. This parameterization of the far-infrared dust spectrum as the sum of two modified blackbodies (MBBs) serves as an important alternative to the commonly adopted single-MBB dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. based on FIRAS and DIRBE. We also derive full-sky 6.'1 resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.'1 FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration et al. single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz, and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales.

  1. Exact two-component relativistic theory for nuclear magnetic resonance parameters.

    PubMed

    Sun, Qiming; Liu, Wenjian; Xiao, Yunlong; Cheng, Lan

    2009-08-28

    An exact two-component (X2C) relativistic theory for nuclear magnetic resonance parameters is obtained by first a single block-diagonalization of the matrix representation of the Dirac operator in a magnetic-field-dependent basis and then a magnetic perturbation expansion of the resultant two-component Hamiltonian and transformation matrices. Such a matrix formulation is not only simple but also general in the sense that the various ways of incorporating the field dependence can be treated in a unified manner. The X2C dia- and paramagnetic terms agree individually with the corresponding four-component ones up to machine accuracy for any basis.

  2. Generating ring dark solitons in two-component Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Ji, Shen-Tong; Liu, Xue-Shen

    2014-01-01

    The dynamical evolution of two-component Bose-Einstein condensates trapped in cylindrical well is numerically investigated by solving the coupled Gross-Pitaevskii equations. We illustrate that, due to intercomponent interaction and different initial component populations (n1two components at same time. These solitons have density zeros (minima) accompanied with phase jumps, which cause large superfluid velocities. We also illustrate that at phase jump points ring dark solitons have zero superfluid currents, while ring gray solitons have large superfluid currents. They are unstable and will evolve into other soliton states after a brief time.

  3. Transcriptional and proteomic analyses of two-component response regulators in multidrug-resistant Mycobacterium tuberculosis.

    PubMed

    Zhou, Lei; Yang, Liu; Zeng, Xianfei; Danzheng, Jiacuo; Zheng, Qing; Liu, Jiayun; Liu, Feng; Xin, Yijuan; Cheng, Xiaodong; Su, Mingquan; Ma, Yueyun; Hao, Xiaoke

    2015-07-01

    Two-component systems (TCSs) have been reported to exhibit a sensing and responding role under drug stress that induces drug resistance in several bacterial species. However, the relationship between TCSs and multidrug resistance in Mycobacterium tuberculosis has not been comprehensively analysed to date. In this study, 90 M. tuberculosis clinical isolates were analysed using 15-loci mycobacterial interspersed repetitive unit (MIRU)-variable number tandem repeat (VNTR) typing and repetitive extragenic palindromic (rep)-PCR-based DNA fingerprinting. The results showed that all of the isolates were of the Beijing lineage, and strains with a drug-susceptible phenotype had not diverged into similar genotype clusters. Expression analysis of 13 response regulators of TCSs using real-time PCR and tandem mass spectrometry (MS/MS) proteomic analysis demonstrated that four response regulator genes (devR, mtrA, regX3 and Rv3143) were significantly upregulated in multidrug-resistant (MDR) strains compared with the laboratory strain H37Rv as well as drug-susceptible and isoniazid-monoresistant strains (P<0.05). DNA sequencing revealed that the promoter regions of devR, mtrA, regX3 and Rv3143 did not contain any mutations. Moreover, expression of the four genes could be induced by most of the four first-line antitubercular agents. In addition, either deletion or overexpression of devR in Mycobacterium bovis BCG did not alter its sensitivity to the four antitubercular drugs. This suggests that upregulation of devR, which is common in MDR-TB strains, might be induced by drug stress and hypoxic adaptation following the acquisition of multidrug resistance.

  4. Two-component physics of cuprates and superconductor-insulator transitions

    NASA Astrophysics Data System (ADS)

    Kusmartsev, F. V.; Saarela, Mikko

    2009-01-01

    We show that superconductor-insulator transitions (SIT) may arise due to a charge density wave instability induced by the over-screened Coulomb interaction modified due to decreasing carrier density. Within this new insulating state a novel quasiparticle entity, a microscopic Coulomb bubble (CB), emerges. These bubbles are embedded inside the superconductor and form nuclei of the new insulating state. The growth of a bubble is terminated by the Coulomb force and each bubble has a quantized charge and a fluctuating phase. When bubbles first appear they are covered by superfluid liquid due to a proximity effect and are invisible. However, when the carrier density decreases further, the bubbles' size increases and the superconducting proximity inside the bubbles vanishes. The insulating state arises via a percolation of insulating islands originating inside the CBs, which form a giant percolating cluster that prevents the flow of the electrical supercurrent through the system. We also show the formation of two groups of charge carriers in these compounds associated with free and localized states. The localized component arises due to Coulomb clumps. Our results are completely consistent with the two-component picture of cuprates deduced earlier by Gorkov and Teitelbaum (GT) (Gorkov and Teitelbaum 2006 Phys. Rev. Lett. 97 247003, Gorkov and Teitelbaum 2008 J. Phys.: Conf. Ser. 108 012009) from the analysis of Hall effect data and the ARPES spectra. These CBs induce nanoscale superstructures observed in scanning tunneling microscope (STM) experiments (Gorkov and Teitelbaum 2008 J. Phys.: Conf. Ser. 108 012009, Pan et al 2001 Nature 413 282-5, Dubi et al 2007 Nature 449 876-9, Gomes et al 2007 Nature 447 569, Lee et al 2006 Nature 442 546, McElroy et al 2005 Science 309 1048, Zhu et al 2006 Phys. Rev. Lett. 97 177001) and responsible for the pseudogap and Nernst effect in HTSC.

  5. Structural studies of the activation of the two component receiver domain NTRC by multidimensional heteronuclear NMR

    SciTech Connect

    Nohaile, Michael James

    1996-05-01

    Multidimensional heteronuclear NMR spectroscopy was used to investigate the N-terminal domain of the transcriptional enhancer NTRC (NiTrogen Regulatory protein C). This domain belongs to the family of receiver domains of two-component regulatory systems involved in signal transduction. Phosphorylation of NTRC at D54 leads to an activated form of the molecule which stimulates transcription of genes involved in nitrogen regulation. Three and four dimensional NMR techniques were used to determine an intermediate resolution structure of the unphosphorylated, inactive form of the N-terminal domain of NTRC. The structure is comprised of five α-helices and a five-stranded β-sheet in a (β/α)5 topology. Analysis of the backbone dynamics of NTRC indicate that helix 4 and strand 5 are significantly more flexible than the rest of the secondary structure of the protein and that the loops making up the active site are flexible. The short lifetime of phospho-NTRC hampers the study of this form. However, conditions for determining the resonance assignments and, possibly, the three dimensional structure of phosphorylated NTRC have been obtained. Tentative assignments of the phosphorylated form indicate that the majority of the changes that NTRC experiences upon phosphorylation occur in helix 3, strand 4, helix 4, strand 5, and the loop between strand 5 and helix 5 (the 3445 face of NTRC) as well as near the site of phosphorylation. In order to examine a stable, activated form of the protein, constitutively active mutants of NTRC were investigated.

  6. Temporal Variability from the Two-Component Advective Flow Solution and Its Observational Evidence

    NASA Astrophysics Data System (ADS)

    Dutta, Broja G.; Chakrabarti, Sandip K.

    2016-09-01

    In the propagating oscillatory shock model, the oscillation of the post-shock region, i.e., the Compton cloud, causes the observed low-frequency quasi-periodic oscillations (QPOs). The evolution of QPO frequency is explained by the systematic variation of the Compton cloud size, i.e., the steady radial movement of the shock front, which is triggered by the cooling of the post-shock region. Thus, analysis of the energy-dependent temporal properties in different variability timescales can diagnose the dynamics and geometry of accretion flows around black holes. We study these properties for the high-inclination black hole source XTE J1550-564 during its 1998 outburst and the low-inclination black hole source GX 339-4 during its 2006-07 outburst using RXTE/PCA data, and we find that they can satisfactorily explain the time lags associated with the QPOs from these systems. We find a smooth decrease of the time lag as a function of time in the rising phase of both sources. In the declining phase, the time lag increases with time. We find a systematic evolution of QPO frequency and hard lags in these outbursts. In XTE J1550-564, the lag changes from hard to soft (i.e., from a positive to a negative value) at a crossing frequency (ν c) of ˜3.4 Hz. We present possible mechanisms to explain the lag behavior of high and low-inclination sources within the framework of a single two-component advective flow model.

  7. Intracavity Rayleigh/Mie Scattering for Multipoint, Two-Component Velocity Measurement

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Danehy, Paul M.; Lee, Joseph W.

    2006-01-01

    A simultaneous multi-point two-component Doppler velocimeter is described. The system uses two optical cavities: a Fabry-Perot etalon and an optical cavity for collecting and re-circulating the Rayleigh/Mie scattered light that is collected from the measurement volume in two parallel, but opposite directions. Single-pulse measurements of two orthogonal components of the velocity vector in a supersonic free jet were performed to demonstrate the technique. The re-circulation of the light rejected by the interferometer input mirror also increased the signal intensity by a factor of 3.5. 2005 Optical Society of America Interferometric Rayleigh scattering has previously been used for single-point velocity measurements in unseeded gas flow. However, this past work has generally been limited to probing with continuous-wave lasers resulting in time-averaged measurements of velocity. Multiple velocity components have been measured simultaneously by separate instruments.1,2 It has also been demonstrated that two orthogonal velocity components can be measured simultaneously at one point using one interferometer by reflecting back the probing laser beam, although this approach results in directional ambiguity of the flow velocity vector.3 This measurement ambiguity was removed by prior knowledge of the approximate magnitude and sign of the velocity components. Furthermore, it was shown that multiple points could be measured simultaneously with a Rayleigh scattering interferometric approach, but only one component of velocity was measured.4 Another method of performing multiple component velocity measurements with Rayleigh scattering uses a pair of cameras to image the flow, one of which views the flow through an iodine gas filter. This iodine-filter technique has the advantage of allowing high-resolution velocity imaging, but it generally has a lower dynamic range.

  8. Large Deviations for the Two-Dimensional Two-Component Plasma

    NASA Astrophysics Data System (ADS)

    Leblé, Thomas; Serfaty, Sylvia; Zeitouni, Ofer

    2016-08-01

    We derive a large deviations principle for the two-dimensional two-component plasma in a box. As a consequence, we obtain a variational representation for the free energy, and also show that the macroscopic empirical measure of either positive or negative charges converges to the uniform measure. An appendix, written by Wei Wu, discusses applications to the subcritical complex Gaussian multiplicative chaos.

  9. Two component model for X-ray emission of radio selected QSO's

    NASA Technical Reports Server (NTRS)

    Isobe, T.; Feigelson, E. D.; Singh, K. P.; Kembhavi, A.

    1986-01-01

    Using a large database of radio, optical, and x ray luminosities of AGNs with survival analysis, it was found that the x ray emission of the radio selected quasars has two components. One is related to the optical luminosity and the other is related to the radio luminosity.

  10. Concentration Fluctuation in a Two-Component Fluid Membrane Surrounded with Three-Dimensional Fluids

    NASA Astrophysics Data System (ADS)

    Inaura, Keiichiro; Fujitani, Youhei

    2008-11-01

    We calculate the relaxation rate of the critical concentration fluctuation in a two-component fluid membrane by considering hydrodynamics of the surrounding fluids. Results are compared with the previous results obtained by Seki, Komura, and Imai (2007), who treated the momentum flux from the membrane to its environments using the friction coefficient.

  11. On bi-Hamiltonian structure of two-component Novikov equation

    NASA Astrophysics Data System (ADS)

    Li, Nianhua; Liu, Q. P.

    2013-01-01

    In this Letter, we present a bi-Hamiltonian structure for the two-component Novikov equation. We also show that proper reduction of this bi-Hamiltonian structure leads to the Hamiltonian operators found by Hone and Wang for the Novikov equation.

  12. Quantum particle-number fluctuations in a two-component Bose gas in a double-well potential

    SciTech Connect

    Zin, Pawel; Oles, Bartlomiej; Sacha, Krzysztof

    2011-09-15

    A two-component Bose gas in a double-well potential with repulsive interactions may undergo a phase separation transition if the interspecies interactions outweigh the intraspecies ones. We analyze the transition in the strong interaction limit within the two-mode approximation. Numbers of particles in each potential well are equal and constant. However, at the transition point, the ground state of the system reveals huge fluctuations of numbers of particles belonging to the different gas components; that is, the probability for observation of any mixture of particles in each potential well becomes uniform.

  13. Two-component Fermi-liquid theory - Equilibrium properties of liquid metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Oliva, J.; Ashcroft, N. W.

    1981-01-01

    It is reported that the transition of condensed hydrogen from an insulating molecular crystal phase to a metallic liquid phase, at zero temperature and high pressure, appears possible. Liquid metallic hydrogen (LMH), comprising interpenetrating proton and electron fluids, would constitute a two-component Fermi liquid with both a very high component-mass ratio and long-range, species-dependent bare interactions. The low-temperature equilibrium properties of LMH are examined by means of a generalization to the case of two components of the phenomenological Landau Fermi-liquid theory, and the low-temperature specific heat, compressibility, thermal expansion coefficient and spin susceptibility are given. It is found that the specific heat and the thermal expansion coefficient are vastly greater in the liquid than in the corresponding solid, due to the presence of proton quasiparticle excitations in the liquid.

  14. The role of the Kubo number in two-component turbulence

    SciTech Connect

    Qin, G.; Shalchi, A.

    2013-09-15

    We explore the random walk of magnetic field lines in two-component turbulence by using computer simulations. It is often assumed that the two-component model provides a good approximation for solar wind turbulence. We explore the dependence of the field line diffusion coefficient on the Kubo number which is a fundamental and characteristic quantity in the theory of turbulence. We show that there are two transport regimes. One is the well-known quasilinear regime in which the diffusion coefficient is proportional to the Kubo number squared, and the second one is a nonlinear regime in which the diffusion coefficient is directly proportional to the Kubo number. The so-called percolative transport regime which is often discussed in the literature cannot be found. The numerical results obtained in the present paper confirm analytical theories for random walking field lines developed in the past.

  15. Countersuperflow instability in miscible two-component Bose-Einstein condensates

    SciTech Connect

    Ishino, Shungo; Tsubota, Makoto; Takeuchi, Hiromitsu

    2011-06-15

    We study theoretically the instability of countersuperflow, i.e., two counterpropagating miscible superflows, in uniform two-component Bose-Einstein condensates. Countersuperflow instability causes mutual friction between the superfluids, causing a momentum exchange between the two condensates, when the relative velocity of the counterflow exceeds a critical value. The momentum exchange leads to nucleation of vortex rings from characteristic density patterns due to the nonlinear development of the instability. Expansion of the vortex rings drastically accelerates the momentum exchange, leading to a highly nonlinear regime caused by intervortex interaction and vortex reconnection between the rings. For a sufficiently large interaction between the two components, rapid expansion of the vortex rings causes isotropic turbulence and the global relative motion of the two condensates relaxes. The maximum vortex line density in the turbulence is proportional to the square of the relative velocity.

  16. A hydrodynamic scheme for two-component winds from hot stars

    NASA Astrophysics Data System (ADS)

    Votruba, V.; Feldmeier, A.; Kubát, J.; Rätzel, D.

    2007-11-01

    Aims:We have developed a time-dependent two-component hydrodynamics code to simulate radiatively-driven stellar winds from hot stars. Methods: We use a time-explicit van Leer scheme to solve the hydrodynamic equations of a two-component stellar wind. Dynamical friction due to Coulomb collisions between the passive bulk plasma and the line-scattering ions is treated by a time-implicit, semi-analytic method using a polynomial fit to the Chandrasekhar function. This gives stable results despite the stiffness of the problem. Results: This method was applied to model stars with winds that are both poorly and well-coupled. While for the former case we reproduce the mCAK solution, for the latter case our solution leads to wind decoupling.

  17. Nonlinear mode coupling and resonant excitations in two-component Bose-Einstein condensates.

    PubMed

    Xue, Ju-Kui; Li, Guan-Qiang; Zhang, Ai-Xia; Peng, Ping

    2008-01-01

    Nonlinear excitations in two-component Bose-Einstein condensates (BECs) described by two coupled Gross-Pitaevskii equations are investigated analytically and numerically. The beating phenomenon, the higher-harmonic generation, and the mixing of the excited modes are revealed by both variational approximation and numerical method. The strong excitations induced by the parametric resonance are also studied by time-periodic modulation for the intercomponent interaction. The resonance conditions in terms of the modulation frequency and the strength of intercomponent interaction are obtained analytically, which are confirmed by numerical method. Direct numerical simulations show that, when the resonance takes place, periodic phase separation and multisoliton configurations (including soliton trains, soliton pairs, and multidomain walls) can be excited. In particular, we demonstrate a method for formation of multisoliton configurations through parametric resonance in two-component BECs.

  18. Effective one-component description of two-component Bose-Einstein condensate dynamics

    SciTech Connect

    Dutton, Zachary; Clark, Charles W.

    2005-06-15

    We investigate dynamics in two-component Bose-Einstein condensates in the context of coupled Gross-Pitaevskii equations and derive results for the evolution of the total density fluctuations. Using these results, we show how, in many cases of interest, the dynamics can be accurately described with an effective one-component Gross-Pitaevskii equation for one of the components, with the trap and interaction coefficients determined by the relative differences in the scattering lengths. We discuss the model in various regimes, where it predicts breathing excitations, and the formation of vector solitons. An effective nonlinear evolution is predicted for some cases of current experimental interest. We then apply the model to construct quasistationary states of two-component condensates.

  19. util_2comp: Planck-based two-component dust model utilities

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron

    2014-11-01

    The util_2comp software utilities generate predictions of far-infrared Galactic dust emission and reddening based on a two-component dust emission model fit to Planck HFI, DIRBE and IRAS data from 100 GHz to 3000 GHz. These predictions and the associated dust temperature map have angular resolution of 6.1 arcminutes and are available over the entire sky. Implementations in IDL and Python are included.

  20. On the spin separation of algebraic two-component relativistic Hamiltonians

    SciTech Connect

    Li Zhendong; Xiao Yunlong; Liu Wenjian

    2012-10-21

    The separation of the spin-free and spin-dependent terms of a given relativistic Hamiltonian is usually facilitated by the Dirac identity. However, this is no longer possible for the recently developed exact two-component relativistic Hamiltonians derived from the matrix representation of the Dirac equation in a kinetically balanced basis. This stems from the fact that the decoupling matrix does not have an explicit form. To resolve this formal difficulty, we first define the spin-dependent term as the difference between a two-component Hamiltonian corresponding to the full Dirac equation and its one-component counterpart corresponding to the spin-free Dirac equation. The series expansion of the spin-dependent term is then developed in two different ways. One is in the spirit of the Douglas-Kroll-Hess (DKH) transformation and the other is based on the perturbative expansion of a two-component Hamiltonian of fixed structure, either the two-step Barysz-Sadlej-Snijders (BSS) or the one-step exact two-component (X2C) form. The algorithms for constructing arbitrary order terms are proposed for both schemes and their convergence patterns are assessed numerically. Truncating the expansions to finite orders leads naturally to a sequence of novel spin-dependent Hamiltonians. In particular, the order-by-order distinctions among the DKH, BSS, and X2C approaches can nicely be revealed. The well-known Pauli, zeroth-order regular approximation, and DKH1 spin-dependent Hamiltonians can also be recovered naturally by appropriately approximating the decoupling and renormalization matrices. On the practical side, the sf-X2C+so-DKH3 Hamiltonian, together with appropriately constructed generally contracted basis sets, is most promising for accounting for relativistic effects in two steps, first spin-free and then spin-dependent, with the latter applied either perturbatively or variationally.

  1. Kinetics and mechanism of the oxidation process of two-component Fe-Al alloys

    NASA Technical Reports Server (NTRS)

    Przewlocka, H.; Siedlecka, J.

    1982-01-01

    The oxidation process of two-component Fe-Al alloys containing up to 7.2% Al and from 18 to 30% Al was studied. Kinetic measurements were conducted using the isothermal gravimetric method in the range of 1073-1223 K and 1073-1373 K for 50 hours. The methods used in studies of the mechanism of oxidation included: X-ray microanalysis, X-ray structural analysis, metallographic analysis and marker tests.

  2. Evaluation of the operational parameters for NBI-driven fusion in low-gain tokamaks with two-component plasma

    NASA Astrophysics Data System (ADS)

    Chirkov, A. Yu.

    2015-09-01

    Low gain (Q ~ 1) fusion plasma systems are of interest for concepts of fusion-fission hybrid reactors. Operational regimes of large modern tokamaks are close to Q  ≈  1. Therefore, they can be considered as prototypes of neutron sources for fusion-fission hybrids. Powerful neutral beam injection (NBI) can support the essential population of fast particles compared with the Maxwellial population. In such two-component plasma, fusion reaction rate is higher than for Maxwellian plasma. Increased reaction rate allows the development of relatively small-size and relatively inexpensive neutron sources. Possible operating regimes of the NBI-heated tokamak neutron source are discussed. In a relatively compact device, the predictions of physics of two-component fusion plasma have some volatility that causes taking into account variations of the operational parameters. Consequent parameter ranges are studied. The feasibility of regimes with Q  ≈  1 is shown for the relatively small and low-power system. The effect of NBI fraction in total heating power is analyzed.

  3. Vortices in a rotating two-component Bose–Einstein condensate with tunable interactions and harmonic potential

    SciTech Connect

    Zhang, Xiao-Fei; Du, Zhi-Jing; Tan, Ren-Bing; Dong, Rui-Fang; Chang, Hong; Zhang, Shou-Gang

    2014-07-15

    We consider a pair of coupled nonlinear Schrödinger equations modeling a rotating two-component Bose–Einstein condensate with tunable interactions and harmonic potential, with emphasis on the structure of vortex states by varying the strength of inter-component interaction, rotational frequency, and the aspect ratio of the harmonic potential. Our results show that the inter-component interaction greatly enhances the effect of rotation. For the case of isotropic harmonic potential and small inter-component interaction, the initial vortex structure remains unchanged. As the ratio of inter- to intra-component interactions increases, each component undergoes a transition from a vortex lattice (vortex line) in an isotropic (anisotropic) harmonic potential to an alternatively arranged stripe pattern, and eventually to the interwoven “serpentine” vortex sheets. Moreover, in the case of anisotropic harmonic potential the system can develop to a rotating droplet structure. -- Highlights: •Different vortex structures are obtained within the full parameter space. •Effects of system parameters on the ground state structure are discussed. •Phase transition between different vortex structures is also examined. •Present one possible way to obtain the rotating droplet structure. •Provide many possibilities to manipulate vortex in two-component BEC.

  4. Two-component flux explanation for the high energy neutrino events at IceCube

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Yi; Dev, P. S. Bhupal; Soni, Amarjit

    2015-10-01

    Understanding the spectral and flavor composition of the astrophysical neutrino flux responsible for the recently observed ultrahigh-energy events at IceCube is of great importance for both astrophysics and particle physics. We perform a statistical likelihood analysis to the three-year IceCube data and derive the allowed range of the spectral index and flux normalization for various well-motivated physical flavor compositions at the source. While most of the existing analyses so far assume the flavor composition of the neutrinos at an astrophysical source to be (1:2:0), it seems rather unnatural to assume only one type of source, once we recognize the possibility of at least two physical sources. Bearing this in mind, we entertain the possibility of a two-component source for the analysis of IceCube data. It appears that our two-component hypothesis explains some key features of the data better than a single-component scenario; i.e. it addresses the apparent energy gap between 400 TeV and about 1 PeV and easily accommodates the observed track-to-shower ratio. Given the extreme importance of the flavor composition for the correct interpretation of the underlying astrophysical processes as well as for the ramification for particle physics, this two-component flux should be tested as more data is accumulated.

  5. Phase winding a two-component Bose-Einstein condensate in an elongated trap: experimental observation of moving magnetic orders and dark-bright solitons.

    PubMed

    Hamner, C; Zhang, Yongping; Chang, J J; Zhang, Chuanwei; Engels, P

    2013-12-27

    We investigate the phase winding dynamics of a harmonically trapped two-component BEC subject to inhomogeneous Rabi oscillations between two pseudospin components. While the single-particle dynamics can be explained by mapping the system to a two-component Bose-Hubbard model, nonlinearities due to the interatomic repulsion lead to new effects observed in the experiments: In the presence of a linear magnetic field gradient, a qualitatively stable moving magnetic order that is similar to antiferromagnetic order is observed after critical winding is achieved. We also demonstrate how the phase winding can be used to generate copious dark-bright solitons in a two-component BEC, opening the door for new experimental studies of these nonlinear features.

  6. Studies of one and two component aerosols using IR/VUV single particle mass spectrometry: Insights into the vaporization process and quantitative limitations.

    PubMed

    Simpson, Emily A; Campuzano-Jost, Pedro; Hanna, Sarah J; Kanan, Khalid M M; Hepburn, John W; Blades, Michael W; Bertram, Allan K

    2010-10-07

    This paper presents the studies of one and two component particles using a CO(2) laser for vaporization and VUV ionization in an ion trap mass spectrometer. The degree of fragmentation for a one component system was demonstrated to be a function of CO(2) laser energy. In a two component system, the degree of fragmentation was shown to be a function of the particle composition. This observation indicates that the analysis of mixed particles may be far more complicated than anticipated for a two step process with soft vaporization. In addition to showing that fragmentation is a function of CO(2) laser energy and particle composition, we also show that a key parameter that determines the extent of fragmentation is the energy absorbed by the particle during desorption. The ionization delay profile in a one component system is also shown to be strongly dependent on the vaporization energy. In a two component system, the delay profile is shown to strongly depend on the composition of the particle. The combined data suggest that the key parameter that governs the delay profile is the energy absorbed by the particle during desorption. This finding has implications for potential field measurements. Finally, for a two component system where the absorption crosssections are different, the change in the degree of fragmentation with particle composition resulted in a non-linear dependence of ion signal on composition. This makes any attempt at quantification difficult.

  7. Analysis and resolution of the ground-state degeneracy of the two-component Bose-Hubbard model.

    PubMed

    Wang, Wei; Penna, Vittorio; Capogrosso-Sansone, Barbara

    2014-08-01

    We study the degeneracy of the ground-state energy E of the two-component Bose-Hubbard model and of the perturbative correction E(1). We show that the degeneracy properties of E and E(1) are closely related to the connectivity properties of the lattice. We determine general conditions under which E is nondegenerate. This analysis is then extended to investigate the degeneracy of E(1). In this case, in addition to the lattice structure, the degeneracy also depends on the number of particles present in the system. After identifying the cases in which E(1) is degenerate and observing that the standard (degenerate) perturbation theory is not applicable, we develop a method to determine the zeroth-order correction to the ground state by exploiting the symmetry properties of the lattice. This method is used to implement the perturbative approach to the two-component Bose-Hubbard model in the case of degenerate E(1) and is expected to be a valid tool to perturbatively study the asymmetric character of the Mott insulator to superfluid transition between the particle and hole side.

  8. Genomic and transcriptomic analyses of colistin-resistant clinical isolates of Klebsiella pneumoniae reveal multiple pathways of resistance.

    PubMed

    Wright, Meredith S; Suzuki, Yo; Jones, Marcus B; Marshall, Steven H; Rudin, Susan D; van Duin, David; Kaye, Keith; Jacobs, Michael R; Bonomo, Robert A; Adams, Mark D

    2015-01-01

    The emergence of multidrug-resistant (MDR) Klebsiella pneumoniae has resulted in a more frequent reliance on treatment using colistin. However, resistance to colistin (Col(r)) is increasingly reported from clinical settings. The genetic mechanisms that lead to Col(r) in K. pneumoniae are not fully characterized. Using a combination of genome sequencing and transcriptional profiling by RNA sequencing (RNA-Seq) analysis, distinct genetic mechanisms were found among nine Col(r) clinical isolates. Col(r) was related to mutations in three different genes in K. pneumoniae strains, with distinct impacts on gene expression. Upregulation of the pmrH operon encoding 4-amino-4-deoxy-L-arabinose (Ara4N) modification of lipid A was found in all Col(r) strains. Alteration of the mgrB gene was observed in six strains. One strain had a mutation in phoQ. Common among these seven strains was elevated expression of phoPQ and unaltered expression of pmrCAB, which is involved in phosphoethanolamine addition to lipopolysaccharide (LPS). In two strains, separate mutations were found in a previously uncharacterized histidine kinase gene that is part of a two-component regulatory system (TCRS) now designated crrAB. In these strains, expression of pmrCAB, crrAB, and an adjacent glycosyltransferase gene, but not that of phoPQ, was elevated. Complementation with the wild-type allele restored colistin susceptibility in both strains. The crrAB genes are present in most K. pneumoniae genomes, but not in Escherichia coli. Additional upregulated genes in all strains include those involved in cation transport and maintenance of membrane integrity. Because the crrAB genes are present in only some strains, Col(r) mechanisms may be dependent on the genetic background.

  9. Genomic and Transcriptomic Analyses of Colistin-Resistant Clinical Isolates of Klebsiella pneumoniae Reveal Multiple Pathways of Resistance

    PubMed Central

    Wright, Meredith S.; Suzuki, Yo; Jones, Marcus B.; Marshall, Steven H.; Rudin, Susan D.; van Duin, David; Kaye, Keith; Jacobs, Michael R.

    2014-01-01

    The emergence of multidrug-resistant (MDR) Klebsiella pneumoniae has resulted in a more frequent reliance on treatment using colistin. However, resistance to colistin (Colr) is increasingly reported from clinical settings. The genetic mechanisms that lead to Colr in K. pneumoniae are not fully characterized. Using a combination of genome sequencing and transcriptional profiling by RNA sequencing (RNA-Seq) analysis, distinct genetic mechanisms were found among nine Colr clinical isolates. Colr was related to mutations in three different genes in K. pneumoniae strains, with distinct impacts on gene expression. Upregulation of the pmrH operon encoding 4-amino-4-deoxy-l-arabinose (Ara4N) modification of lipid A was found in all Colr strains. Alteration of the mgrB gene was observed in six strains. One strain had a mutation in phoQ. Common among these seven strains was elevated expression of phoPQ and unaltered expression of pmrCAB, which is involved in phosphoethanolamine addition to lipopolysaccharide (LPS). In two strains, separate mutations were found in a previously uncharacterized histidine kinase gene that is part of a two-component regulatory system (TCRS) now designated crrAB. In these strains, expression of pmrCAB, crrAB, and an adjacent glycosyltransferase gene, but not that of phoPQ, was elevated. Complementation with the wild-type allele restored colistin susceptibility in both strains. The crrAB genes are present in most K. pneumoniae genomes, but not in Escherichia coli. Additional upregulated genes in all strains include those involved in cation transport and maintenance of membrane integrity. Because the crrAB genes are present in only some strains, Colr mechanisms may be dependent on the genetic background. PMID:25385117

  10. A Sinorhizobium meliloti osmosensory two-component system required for cyclic glucan export and symbiosis.

    PubMed

    Griffitts, Joel S; Carlyon, Rebecca E; Erickson, Jacob H; Moulton, Jason L; Barnett, Melanie J; Toman, Carol J; Long, Sharon R

    2008-07-01

    screen for novel symbiotic mutants of the nitrogen-fixing legume symbiont Sinorhizobium meliloti uncovered a crucial role for the putative response regulator FeuP in the symbiotic infection process. Transcriptome analysis shows that FeuP controls the transcription of at least 16 genes, including ndvA, which encodes an ATP-dependent exporter of cyclic beta glucans. Loss of feuP function gives rise to traits associated with cyclic beta glucan biosynthetic defects, including poor growth and motility under hypoosmotic conditions, and the inability to invade plant tissue during the early stages of symbiotic infection. Analysis of cyclic glucans indicates that the feuP mutant is able to synthesize intracellular cyclic beta glucans, but is unable to export them. Cyclic beta glucan export can be restored to feuP mutant cells by constitutive expression of ndvA; likewise, the symbiotic phenotype of a feuP mutant is rescued by ectopic ndvA expression. We further show that the linked sensor kinase gene, feuQ, is also important for modulating ndvA transcription, and that signalling through the FeuP/FeuQ pathway is responsive to extracellular osmotic conditions, with low osmolarity stimulating ndvA expression.

  11. Thermal Regulation of Membrane Lipid Fluidity by a Two-Component System in "Bacillus Subtilis"

    ERIC Educational Resources Information Center

    Bredeston, L. M.; Marciano, D.; Albanesi, D.; De Mendoza, D.; Delfino, J. M.

    2011-01-01

    This article describes a simple and robust laboratory exercise on the regulation of membrane unsaturated fatty acid composition in bacteria by a decrease in growth temperature. We take advantage of the well characterized Des pathway of "Bacillus subtilis", composed of a [delta]5-desaturase (encoded by the "des" gene) and the canonical…

  12. Lateral organization and domain formation in a two-component lipid membrane system.

    PubMed Central

    Leidy, C; Wolkers, W F; Jørgensen, K; Mouritsen, O G; Crowe, J H

    2001-01-01

    The thermodynamic phase behavior and lateral lipid membrane organization of unilamellar vesicles made from mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2 distearoyl-sn-glycero-3-phosphocholine (DSPC) were investigated by fluorescence resonance energy transfer (FRET) as a function of temperature and composition. This was done by incorporating a headgroup-labeled lipid donor (NBD-DPPE) and acceptor (N-Rh-DPPE) in low concentrations into the binary mixtures. Two instances of increased energy transfer efficiency were observed close to the phase lines in the DMPC/DSPC phase diagram. The increase in energy transfer efficiency was attributed to a differential preference of the probes for dynamic and fluctuating gel/fluid coexisting phases. This differential preference causes the probes to segregate (S. Pedersen, K. Jørgensen, T. R. Baekmark, and O. G. Mouritsen, 1996, Biophys. J. 71:554-560). The observed increases in energy transfer match with the boundaries of the DMPC/DSPC phase diagram, as measured by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). We propose that the two instances of probe segregation are due to the presence of DMPC-rich and DSPC-rich domains, which form a dynamic structure of gel/fluid coexisting phases at two different temperatures. Monitoring the melting profile of each lipid component independently by FTIR shows that the domain structure is formed by DMPC-rich and DSPC-rich domains rather than by pure DMPC and DSPC domains. PMID:11259295

  13. Predictions of Phase Distribution in Liquid-Liquid Two-Component Flow

    NASA Astrophysics Data System (ADS)

    Wang, Xia; Sun, Xiaodong; Duval, Walter M.

    2011-06-01

    Ground-based liquid-liquid two-component flow can be used to study reduced-gravity gas-liquid two-phase flows provided that the two liquids are immiscible with similar densities. In this paper, we present a numerical study of phase distribution in liquid-liquid two-component flows using the Eulerian two-fluid model in FLUENT, together with a one-group interfacial area transport equation (IATE) that takes into account fluid particle interactions, such as coalescence and disintegration. This modeling approach is expected to dynamically capture changes in the interfacial structure. We apply the FLUENT-IATE model to a water-Therminol 59® two-component vertical flow in a 25-mm inner diameter pipe, where the two liquids are immiscible with similar densities (3% difference at 20°C). This study covers bubbly (drop) flow and bubbly-to-slug flow transition regimes with area-averaged void (drop) fractions from 3 to 30%. Comparisons of the numerical results with the experimental data indicate that for bubbly flows, the predictions of the lateral phase distributions using the FLUENT-IATE model are generally more accurate than those using the model without the IATE. In addition, we demonstrate that the coalescence of fluid particles is dominated by wake entrainment and enhanced by increasing either the continuous or dispersed phase velocity. However, the predictions show disagreement with experimental data in some flow conditions for larger void fraction conditions, which fall into the bubbly-to-slug flow transition regime. We conjecture that additional fluid particle interaction mechanisms due to the change of flow regimes are possibly involved.

  14. Condensates of p-Wave Pairs Are Exact Solutions for Rotating Two-Component Bose Gases

    SciTech Connect

    Papenbrock, T; Kavoulakis, G. M.

    2012-01-01

    We derive exact analytical results for the wave functions and energies of harmonically trapped two-component Bose-Einstein condensates with weakly repulsive interactions under rotation. The isospin symmetric wave functions are universal and do not depend on the matrix elements of the two-body interaction. The comparison with the results from numerical diagonalization shows that the ground state and low-lying excitations consist of condensates of p-wave pairs for repulsive contact interactions, Coulomb interactions, and the repulsive interactions between aligned dipoles.

  15. Condensates of p-wave pairs are exact solutions for rotating two-component Bose gases.

    PubMed

    Papenbrock, T; Reimann, S M; Kavoulakis, G M

    2012-02-17

    We derive exact analytical results for the wave functions and energies of harmonically trapped two-component Bose-Einstein condensates with weakly repulsive interactions under rotation. The isospin symmetric wave functions are universal and do not depend on the matrix elements of the two-body interaction. The comparison with the results from numerical diagonalization shows that the ground state and low-lying excitations consist of condensates of p-wave pairs for repulsive contact interactions, Coulomb interactions, and the repulsive interactions between aligned dipoles.

  16. Asymmetric diffraction from two-component optical gratings made of passive and lossy materials.

    PubMed

    Liang, Guanquan; Abouraddy, Ayman; Christodoulides, Demetrios; Thomas, Edwin L

    2016-12-26

    Diffraction with asymmetric enhancement and suppression, and alternating contrast for symmetric diffraction orders is demonstrated from planar two-component optical gratings made of passive/lossy materials. Simulations agree well with the experimental diffraction pattern of the fabricated sample. Our fabrication approach uses simple, standard planar micro/nano lithography employing one photoresist and one dye. No 3D profiling is needed. The phenomena is due to the left-right asymmetric material distribution in the periodic grating, which gives rise to non-reciprocal light coupling for diffraction to the positive and negative orders.

  17. Disorder-Induced Order in Two-Component Bose-Einstein Condensates

    SciTech Connect

    Niederberger, A.; Schulte, T.; Wehr, J.; Lewenstein, M.; Sanchez-Palencia, L.; Sacha, K.

    2008-01-25

    We propose and analyze a general mechanism of disorder-induced order in two-component Bose-Einstein condensates, analogous to corresponding effects established for XY spin models. We show that a random Raman coupling induces a relative phase of {pi}/2 between the two BECs and that the effect is robust. We demonstrate it in one, two, and three dimensions at T=0 and present evidence that it persists at small T>0. Applications to phase control in ultracold spinor condensates are discussed.

  18. A hybrid two-component Bose-Einstein condensate interferometer for measuring magnetic field gradients

    NASA Astrophysics Data System (ADS)

    Xu, Fei; Huang, Jiahao; Liu, Quan

    2017-03-01

    We have proposed a scheme to detect magnetic field gradients via an interferometer based on a double-well two-component Bose-Einstein condensate (BEC). Utilizing a sequence of quantum control operations on both external and internal degree of the BEC, one can extract the magnetic field gradients by measuring either the population in one component or the fidelity between the final external state and the initial ground state. Our scheme can be implemented by current experimental techniques of manipulating ultracold atoms.

  19. Two-component Thermal Dust Emission Model: Application to the Planck HFI Maps

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2014-06-01

    We present full-sky, 6.1 arcminute resolution maps of dust optical depth and temperature derived by fitting the Finkbeiner et al. (1999) two-component dust emission model to the Planck HFI and IRAS 100 micron maps. This parametrization of the far infrared thermal dust SED as the sum of two modified blackbodies serves as an important alternative to the commonly adopted single modified blackbody dust emission model. We expect our Planck-based maps of dust temperature and optical depth to form the basis for a next-generation, high-resolution extinction map which will additionally incorporate small-scale detail from WISE imaging.

  20. Effect of scattering lengths on the dynamics of a two-component Bose-Einstein condensate

    SciTech Connect

    Csire, Gabor; Apagyi, Barnabas

    2010-12-15

    We examine the effect of the intra- and interspecies scattering lengths on the dynamics of a two-component Bose-Einstein condensate, particularly focusing on the existence and stability of solitonic excitations. For each type of possible soliton pairs, stability ranges are presented in tabulated form. We also compare the numerically established stability of bright-bright, bright-dark, and dark-dark solitons with our analytical prediction and with that of Painleve analysis of the dynamical equation. We demonstrate that tuning the interspecies scattering length away from the predicted value (keeping the intraspecies coupling fixed) breaks the stability of the soliton pairs.

  1. Optimization and control of two-component radially self-accelerating beams

    SciTech Connect

    Vetter, Christian; Eichelkraut, Toni; Ornigotti, Marco; Szameit, Alexander

    2015-11-23

    We report on the properties of radially self-accelerating intensity distributions consisting of two components in the angular frequency domain. We show how this subset of solutions, in literature also known as helicon beams, possesses peculiar characteristics that enable a better control over its properties. In this work, we present a step-by-step optimization procedure to achieve the best possible intensity contrast, a distinct rotation rate and long propagation lengths. All points are discussed on a theoretical basis and are experimentally verified.

  2. Modulation instability and solitary-wave formation in two-component Bose-Einstein condensates

    SciTech Connect

    Kasamatsu, Kenichi; Tsubota, Makoto

    2006-07-15

    We investigate nonlinear dynamics induced by the modulation instability of a two-component mixture in an atomic Bose-Einstein condensate. The nonlinear dynamics is examined using numerical simulations of the time-dependent coupled Gross-Pitaevskii equations. The unstable modulation grows from initially miscible condensates into various types of vector solitary waves, depending on the combinations of the sign of the coupling constants (intracomponent and intercomponent). We discuss the detailed features of the modulation instability, dynamics of solitary wave formation, and an analogy with the collapsing dynamics in a single-component condensate with attractive interactions.

  3. Exact soliton-on-plane-wave solutions for two-component Bose-Einstein condensates.

    PubMed

    Li, Lu; Malomed, Boris A; Mihalache, Dumitru; Liu, W M

    2006-06-01

    By means of the Darboux transformation, we obtain analytical solutions for a soliton set on top of a plane-wave background in coupled Gross-Pitaevskii equations describing a binary Bose-Einstein condensate. We consider basic properties of the solutions with and without the cross interaction [cross phase modulation (XPM)] between the two components of the background. In the absence of the XPM, this solutions maintain properties of one-component condensates, such as the modulation instability (MI); in the presence of the cross interaction, the solutions exhibit different properties, such as restriction of the MI and soliton splitting.

  4. Exact soliton-on-plane-wave solutions for two-component Bose-Einstein condensates

    SciTech Connect

    Li Lu; Malomed, Boris A.; Mihalache, Dumitru; Liu, W. M.

    2006-06-15

    By means of the Darboux transformation, we obtain analytical solutions for a soliton set on top of a plane-wave background in coupled Gross-Pitaevskii equations describing a binary Bose-Einstein condensate. We consider basic properties of the solutions with and without the cross interaction [cross phase modulation (XPM)] between the two components of the background. In the absence of the XPM, this solutions maintain properties of one-component condensates, such as the modulation instability (MI); in the presence of the cross interaction, the solutions exhibit different properties, such as restriction of the MI and soliton splitting.

  5. Dynamics of bubbles in a two-component Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki

    2011-03-01

    The dynamics of a phase-separated two-component Bose-Einstein condensate are investigated, in which a bubble of one component moves through the other component. Numerical simulations of the Gross-Pitaevskii equation reveal a variety of dynamics associated with the creation of quantized vortices. In two dimensions, a circular bubble deforms into an ellipse and splits into fragments with vortices, which undergo the Magnus effect. The Bénard-von Kármán vortex street is also generated. In three dimensions, a spherical bubble deforms into toruses with vortex rings. When two rings are formed, they exhibit leapfrogging dynamics.

  6. Dynamics of bubbles in a two-component Bose-Einstein condensate

    SciTech Connect

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki

    2011-03-15

    The dynamics of a phase-separated two-component Bose-Einstein condensate are investigated, in which a bubble of one component moves through the other component. Numerical simulations of the Gross-Pitaevskii equation reveal a variety of dynamics associated with the creation of quantized vortices. In two dimensions, a circular bubble deforms into an ellipse and splits into fragments with vortices, which undergo the Magnus effect. The Benard-von Karman vortex street is also generated. In three dimensions, a spherical bubble deforms into toruses with vortex rings. When two rings are formed, they exhibit leapfrogging dynamics.

  7. Critical point of gas-liquid type phase transition and phase equilibrium functions in developed two-component plasma model

    SciTech Connect

    Butlitsky, M. A.; Zelener, B. V.

    2014-07-14

    A two-component plasma model, which we called a “shelf Coulomb” model has been developed in this work. A Monte Carlo study has been undertaken to calculate equations of state, pair distribution functions, internal energies, and other thermodynamics properties. A canonical NVT ensemble with periodic boundary conditions was used. The motivation behind the model is also discussed in this work. The “shelf Coulomb” model can be compared to classical two-component (electron-proton) model where charges with zero size interact via a classical Coulomb law. With important difference for interaction of opposite charges: electrons and protons interact via the Coulomb law for large distances between particles, while interaction potential is cut off on small distances. The cut off distance is defined by an arbitrary ε parameter, which depends on system temperature. All the thermodynamics properties of the model depend on dimensionless parameters ε and γ = βe{sup 2}n{sup 1/3} (where β = 1/k{sub B}T, n is the particle's density, k{sub B} is the Boltzmann constant, and T is the temperature) only. In addition, it has been shown that the virial theorem works in this model. All the calculations were carried over a wide range of dimensionless ε and γ parameters in order to find the phase transition region, critical point, spinodal, and binodal lines of a model system. The system is observed to undergo a first order gas-liquid type phase transition with the critical point being in the vicinity of ε{sub crit}≈13(T{sub crit}{sup *}≈0.076),γ{sub crit}≈1.8(v{sub crit}{sup *}≈0.17),P{sub crit}{sup *}≈0.39, where specific volume v* = 1/γ{sup 3} and reduced temperature T{sup *} = ε{sup −1}.

  8. Modulational instability in two-component discrete media with cubic-quintic nonlinearity.

    PubMed

    Baizakov, B B; Bouketir, A; Messikh, A; Umarov, B A

    2009-04-01

    The effect of cubic-quintic nonlinearity and associated intercomponent couplings on the modulational instability (MI) of plane-wave solutions of the two-component discrete nonlinear Schrödinger (DNLS) equation is considered. Conditions for the onset of MI are revealed and the growth rate of small perturbations is analytically derived. For the same set of initial parameters as equal amplitudes of plane waves and intercomponent coupling coefficients, the effect of quintic nonlinearity on MI is found to be essentially stronger than the effect of cubic nonlinearity. Analytical predictions are supported by numerical simulations of the underlying coupled cubic-quintic DNLS equation. Relevance of obtained results to dense Bose-Einstein condensates (BECs) in deep optical lattices, when three-body processes are essential, is discussed. In particular, the phase separation under the effect of MI in a two-component repulsive BEC loaded in a deep optical lattice is predicted and found in numerical simulations. Bimodal light propagation in waveguide arrays fabricated from optical materials with non-Kerr nonlinearity is discussed as another possible physical realization for the considered model.

  9. Implications of two-component dark matter induced by forbidden channels and thermal freeze-out

    NASA Astrophysics Data System (ADS)

    Aoki, Mayumi; Toma, Takashi

    2017-01-01

    We consider a model of two-component dark matter based on a hidden U(1)D symmetry, in which relic densities of the dark matter are determined by forbidden channels and thermal freeze-out. The hidden U(1)D symmetry is spontaneously broken to a residual Bbb Z4 symmetry, and the lightest Bbb Z4 charged particle can be a dark matter candidate. Moreover, depending on the mass hierarchy in the dark sector, we have two-component dark matter. We show that the relic density of the lighter dark matter component can be determined by forbidden annihilation channels which require larger couplings compared to the normal freeze-out mechanism. As a result, a large self-interaction of the lighter dark matter component can be induced, which may solve small scale problems of ΛCDM model. On the other hand, the heavier dark matter component is produced by normal freeze-out mechanism. We find that interesting implications emerge between the two dark matter components in this framework. We explore detectabilities of these dark matter particles and show some parameter space can be tested by the SHiP experiment.

  10. A theory of scintillation for two-component power law irregularity spectra: Overview and numerical results

    NASA Astrophysics Data System (ADS)

    Carrano, Charles S.; Rino, Charles L.

    2016-06-01

    We extend the power law phase screen theory for ionospheric scintillation to account for the case where the refractive index irregularities follow a two-component inverse power law spectrum. The two-component model includes, as special cases, an unmodified power law and a modified power law with spectral break that may assume the role of an outer scale, intermediate break scale, or inner scale. As such, it provides a framework for investigating the effects of a spectral break on the scintillation statistics. Using this spectral model, we solve the fourth moment equation governing intensity variations following propagation through two-dimensional field-aligned irregularities in the ionosphere. A specific normalization is invoked that exploits self-similar properties of the structure to achieve a universal scaling, such that different combinations of perturbation strength, propagation distance, and frequency produce the same results. The numerical algorithm is validated using new theoretical predictions for the behavior of the scintillation index and intensity correlation length under strong scatter conditions. A series of numerical experiments are conducted to investigate the morphologies of the intensity spectrum, scintillation index, and intensity correlation length as functions of the spectral indices and strength of scatter; retrieve phase screen parameters from intensity scintillation observations; explore the relative contributions to the scintillation due to large- and small-scale ionospheric structures; and quantify the conditions under which a general spectral break will influence the scintillation statistics.

  11. Two-component vector solitons in defocusing Kerr-type media with spatially modulated nonlinearity

    SciTech Connect

    Zhong, Wei-Ping; Belić, Milivoj

    2014-12-15

    We present a class of exact solutions to the coupled (2+1)-dimensional nonlinear Schrödinger equation with spatially modulated nonlinearity and a special external potential, which describe the evolution of two-component vector solitons in defocusing Kerr-type media. We find a robust soliton solution, constructed with the help of Whittaker functions. For specific choices of the topological charge, the radial mode number and the modulation depth, the solitons may exist in various forms, such as the half-moon, necklace-ring, and sawtooth vortex-ring patterns. Our results show that the profile of such solitons can be effectively controlled by the topological charge, the radial mode number, and the modulation depth. - Highlights: • Two-component vector soliton clusters in defocusing Kerr-type media are reported. • These soliton clusters are constructed with the help of Whittaker functions. • The half-moon, necklace-ring and vortex-ring patterns are found. • The profile of these solitons can be effectively controlled by three soliton parameters.

  12. Investigation of K-shell radiation from two-component wire arrays

    NASA Astrophysics Data System (ADS)

    Papp, Daniel; Ivanov, Vladimir; Mancini, Roberto; Hakel, Peter; Altemara, Sara; Anderson, Austin

    2012-10-01

    Two-component plasma was studied in star and planar wire-array Z pinches. Arrays consisted of Al wires as the first component in all shots and Ti, Cu, Ni, Mo, and Au wires as the second component. Cascading implosion in star arrays provides the mixing of wire materials in one ray during implosion. The implosion dynamic was not affected by variation of materials in wire arrays that allows observation of features of the two-component plasma. Compared to pure Al plasmas, decreased Al K-shell radiation and increased soft x-ray radiation were observed in Al-Au and Al-W plasma. Mixt plasma with 80-90% of Al ions displayed radiative properties similar to pure W or Au Z-pinch plasma. Al K-shell x-ray spectra simulations with the PrismSpect code showed a fall of the electron temperature from 400 eV in Al plasma to 250-300 eV in the Al-W and Al-Au mix. There was no corresponding cooling effect when the second component was Ti, Cu, and Ni. Spectra of the Z-pinch plasmas were compared with the spectra from laser produced Al-Au plasma experiments carried out at the Leopard laser. Work was supported by the DOE/NNSA under UNR grant DE-FC52-06NA27616.

  13. Odd-parity superconductors with two-component order parameters: Nematic and chiral, full gap, and Majorana node

    NASA Astrophysics Data System (ADS)

    Venderbos, Jörn W. F.; Kozii, Vladyslav; Fu, Liang

    2016-11-01

    Motivated by the recent experiment indicating that superconductivity in the doped topological insulator CuxBi2Se3 has an odd-parity pairing symmetry with rotational symmetry breaking, we study the general class of odd-parity superconductors with two-component order parameters in trigonal and hexagonal crystal systems. In the presence of strong spin-orbit interaction, we find two possible superconducting phases below Tc, a time-reversal-breaking (i.e., chiral) phase and an anisotropic (i.e., nematic) phase, and determine their relative energetics from the gap function in momentum space. The nematic superconductor generally has a full quasiparticle gap, whereas the chiral superconductor with a three-dimensional (3D) Fermi surface has point nodes with lifted spin degeneracy, resulting in itinerant Majorana fermions in the bulk and topological Majorana arcs on the surface.

  14. Thomas-Fermi Approximation for Coexisting Two Component Bose-Einstein Condensates and Nonexistence of Vortices for Small Rotation

    NASA Astrophysics Data System (ADS)

    Aftalion, Amandine; Noris, Benedetta; Sourdis, Christos

    2015-06-01

    We study minimizers of a Gross-Pitaevskii energy describing a two- component Bose-Einstein condensate confined in a radially symmetric harmonic trap and set into rotation. We consider the case of coexistence of the components in the Thomas-Fermi regime, where a small parameter conveys a singular perturbation. The minimizer of the energy without rotation is determined as the positive solution of a system of coupled PDEs, for which we show uniqueness. The limiting problem for has degenerate and irregular behavior at specific radii, where the gradient blows up. By means of a perturbation argument, we obtain precise estimates for the convergence of the minimizer to this limiting profile, as tends to 0. For low rotation, based on these estimates, we can show that the ground states remain real valued and do not have vortices, even in the region of small density.

  15. Surface State Tunneling Signatures in the Two-Component Superconductor UPt3

    NASA Astrophysics Data System (ADS)

    Lambert, Fabian; Akbari., Alireza; Thalmeier, Peter; Eremin, Ilya

    2017-02-01

    Quasiparticle interference (QPI) imaging of Bogoliubov excitations in quasi-two-dimensional unconventional superconductors has become a powerful technique for measuring the superconducting gap and its symmetry. Here, we present the extension of this method to three-dimensional superconductors and analyze the expected QPI spectrum for the two-component heavy-fermion superconductor UPt3 whose gap structure is still controversial. Starting from a 3D electronic structure and the three proposed chiral gap models E1 g ,u or E2 u, we perform a slab calculation that simultaneously gives extended bulk states and topologically protected in-gap dispersionless surface states. We show that the number of Weyl arcs and their hybridization with the line node provides a fingerprint that may finally determine the true nodal structure of the UPt3 superconductor.

  16. Two-component mixture model: Application to palm oil and exchange rate

    NASA Astrophysics Data System (ADS)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad

    2014-12-01

    Palm oil is a seed crop which is widely adopt for food and non-food products such as cookie, vegetable oil, cosmetics, household products and others. Palm oil is majority growth in Malaysia and Indonesia. However, the demand for palm oil is getting growth and rapidly running out over the years. This phenomenal cause illegal logging of trees and destroy the natural habitat. Hence, the present paper investigates the relationship between exchange rate and palm oil price in Malaysia by using Maximum Likelihood Estimation via Newton-Raphson algorithm to fit a two components mixture model. Besides, this paper proposes a mixture of normal distribution to accommodate with asymmetry characteristics and platykurtic time series data.

  17. Phase scintillations due to equatorial F region irregularities with two-component power law spectrum

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, A.; Rastogi, R. G.

    1986-10-01

    Power spectra of weak phase scintillations on a 140-MHz signal, transmitted from the geostationary satellite ATS 6 and observed during premidnight and postmidnight periods at an equatorial station Ootacamund (magnetic dip 6 N), show that the nighttime equatorial F region irregularities in the wavelength range of about hundred meters to a few kilometers exhibit a two-component power law spectrum. The long- and short-wavelength spectral indices and the break scale at which the transition from a shallow to a steep slope occurs are determined self-consistently using both the phase and amplitude scintillation data. As the power spectra of phase scintillations do not exhibit the effect of Fresnel filtering, they provide fairly accurate estimates of the spectral indices and the break scale. These estimated parameters are utilized in a model calculation of the dependence of the S4 index on signal frequency based on weak scattering theory.

  18. Multiple domain formation induced by modulation instability in two-component Bose-Einstein condensates.

    PubMed

    Kasamatsu, Kenichi; Tsubota, Makoto

    2004-09-03

    The dynamics of multiple domain formation caused by the modulation instability of two-component Bose-Einstein condensates in an axially symmetric trap are studied by numerically integrating the coupled Gross-Pitaevskii equations. The modulation instability induced by the intercomponent mean-field coupling occurs in the out-of-phase fluctuation of the wave function and leads to the formation of multiple domains that alternate from one domain to another, where the phase of one component jumps across the density dips where the domains of the other exist. This behavior is analogous to a soliton train, which explains the origin of the long lifetime of the spin domains observed by Miesner et al. [Phys. Rev. Lett. 82, 2228 (1999)

  19. Two components of muscarine-sensitive membrane current in rat sympathetic neurones.

    PubMed Central

    Brown, D A; Selyanko, A A

    1985-01-01

    Membrane currents induced by muscarine (Imus) were recorded in voltage-clamped neurones in isolated rat superior cervical ganglia. Two components of Imus were regularly recorded: an inward current resulting from inhibition of the outward K+ current, IM; and an outward current attributable to the reduction of a steady inward current. The presence of these two components caused a 'cross-over' in the current-voltage curves at -50 +/- 3 mV in neurones impaled with KCl-filled micro-electrodes or at -63 +/- 4 mV in neurones impaled with K-acetate-filled electrodes. Both components of Imus were prevented by atropine. Both persisted in Krebs solution containing tetrodotoxin (1 microM), Cd2+ (200 microM) or 0 Ca2+. When IM was inhibited by external Ba2+ or internal Cs+ only the outward component of Imus could be detected. This component reversed at +3 +/- 2 mV in cells impaled with CsCl-filled electrodes or at -20 +/- 3 mV in cells impaled with Cs-acetate-filled electrodes. The reversal potentials agreed with those for the currents induced by gamma-aminobutyric acid (+4 +/- 2 mV and -16 +/- 3 mV with CsCl and Cs acetate electrodes respectively). Replacement of external NaCl with Na acetate (so reducing external Cl- concentration ( [Cl-]o) from 155 to 22 mM) shifted the reversal potential for Imus by +25 and +14.5 mV in two cells impaled with CsCl-filled electrodes. A tenfold reduction of external [Na+] (by glucosamine replacement) did not significantly alter the reversal potential for Imus in KCl or CsCl-impaled cells. Under conditions where IM is already inhibited, the residual outward component of Imus can lead to hyperpolarization and inhibition of neuronal activity in unclamped cells. We conclude that both inward and outward components of Imus result from direct activation of muscarinic receptors on the ganglion cells. The inward component results from IM inhibition. We suggest that the outward component results from inhibition of another, voltage-independent current IX

  20. Communication: Two-component ring-coupled-cluster computation of the correlation energy in the random-phase approximation

    NASA Astrophysics Data System (ADS)

    Krause, Katharina; Klopper, Wim

    2013-11-01

    Within the framework of density-functional theory, the correlation energy is computed in the random-phase approximation (RPA) using spinors obtained from a two-component relativistic Kohn-Sham calculation accounting for spin-orbit interactions. Ring-coupled-cluster equations are solved to obtain the two-component RPA correlation energy. Results are presented for the hydrides of the halogens Br, I, and At as well as of the coinage metals Cu, Ag, and Au, based on two-component relativistic exact-decoupling Kohn-Sham calculations.

  1. Communication: Two-component ring-coupled-cluster computation of the correlation energy in the random-phase approximation

    SciTech Connect

    Krause, Katharina; Klopper, Wim

    2013-11-21

    Within the framework of density-functional theory, the correlation energy is computed in the random-phase approximation (RPA) using spinors obtained from a two-component relativistic Kohn–Sham calculation accounting for spin–orbit interactions. Ring-coupled-cluster equations are solved to obtain the two-component RPA correlation energy. Results are presented for the hydrides of the halogens Br, I, and At as well as of the coinage metals Cu, Ag, and Au, based on two-component relativistic exact-decoupling Kohn–Sham calculations.

  2. Two-component laser Doppler anemometer for measurement of velocity and turbulent shear stress near prosthetic heart valves.

    PubMed

    Woo, Y R; Yoganathan, A P

    1985-01-01

    The velocity and turbulent shear stress measured in the immediate vicinity of prosthetic heart valves play a vital role in the design and evaluation of these devices. In the past hot wire/film and one-component laser Doppler anemometer (LDA) systems were used extensively to obtain these measurements. Hot wire/film anemometers, however, have some serious disadvantages, including the inability to measure the direction of the flow, the disturbance of the flow field caused by the probe, and the need for frequent calibration. One-component LDA systems do not have these problems, but they cannot measure turbulent shear stresses directly. Since these measurements are essential and are not available in the open literature, a two-component LDA system for measuring velocity and turbulent shear stress fields under pulsatile flow conditions was assembled under an FDA contract. The experimental methods used to create an in vitro data base of velocity and turbulent shear stress fields in the immediate vicinity of prosthetic heart valves of various designs in current clinical use are also discussed.

  3. Osmotic Second Virial Coefficients of Aqueous Solutions from Two-Component Equations of State.

    PubMed

    Cerdeiriña, Claudio A; Widom, B

    2016-12-29

    Osmotic second virial coefficients in dilute aqueous solutions of small nonpolar solutes are calculated from three different two-component equations of state. The solutes are five noble gases, four diatomics, and six hydrocarbons in the range C1-C4. The equations of state are modified versions of the van der Waals, Redlich-Kwong, and Peng-Robinson equations, with an added hydrogen-bonding term for the solvent water. The parameters in the resulting equations of state are assigned so as to reproduce the experimental values and temperature dependence of the density, vapor pressure, and compressibility of the solvent, the gas-phase second virial coefficient of the pure solute, the solubility and partial molecular volume of the solute, and earlier estimates of the solutes' molecular radii. For all 15 solutes, the calculations are done for 298.15 K, whereas for CH4, C2H6, and C3H8 in particular, they are also done as functions of temperature over the full range 278.15-348.15 K. The calculated osmotic virial coefficients are compared with earlier calculations of these coefficients for these solutes and also with the results derived from earlier computer simulations of model aqueous solutions of methane. They are also compared with the experimental gas-phase second virial coefficients of the pure gaseous solutes to determine the effect the mediation of the solvent has on the resulting solute-solute interactions in the solution.

  4. Freshwater DOM quantity and quality from a two-component model of UV absorbance

    USGS Publications Warehouse

    Carter, Heather T.; Tipping, Edward; Koprivnjak, Jean-Francois; Miller, Matthew P.; Cookson, Brenda; Hamilton-Taylor, John

    2012-01-01

    We present a model that considers UV-absorbing dissolved organic matter (DOM) to consist of two components (A and B), each with a distinct and constant spectrum. Component A absorbs UV light strongly, and is therefore presumed to possess aromatic chromophores and hydrophobic character, whereas B absorbs weakly and can be assumed hydrophilic. We parameterised the model with dissolved organic carbon concentrations [DOC] and corresponding UV spectra for c. 1700 filtered surface water samples from North America and the United Kingdom, by optimising extinction coefficients for A and B, together with a small constant concentration of non-absorbing DOM (0.80 mg DOC L-1). Good unbiased predictions of [DOC] from absorbance data at 270 and 350 nm were obtained (r2 = 0.98), the sum of squared residuals in [DOC] being reduced by 66% compared to a regression model fitted to absorbance at 270 nm alone. The parameterised model can use measured optical absorbance values at any pair of suitable wavelengths to calculate both [DOC] and the relative amounts of A and B in a water sample, i.e. measures of quantity and quality. Blind prediction of [DOC] was satisfactory for 9 of 11 independent data sets (181 of 213 individual samples).

  5. Competing interactions in population-imbalanced two-component Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Galteland, Peder Notto; Sudbø, Asle

    2016-08-01

    We consider a two-component Bose-Einstein condensate with and without synthetic "spin-orbit" interactions in two dimensions. Density and phase fluctuations of the condensate are included, allowing us to study the impact of thermal fluctuations and density-density interactions on the physics originating with spin-orbit interactions. In the absence of spin-orbit interactions, we find that intercomponent density interactions deplete the minority condensate. The thermally driven phase transition is driven by coupled density and phase-fluctuations, but is nevertheless shown to be a phase-transition in the Kosterlitz-Thouless universality class with close to universal amplitude ratios irrespective of whether both the minority- and majority condensates exist in the ground state, or only one condensate exists. In the presence of spin-orbit interactions we observe three separate phases, depending on the strength of the spin-orbit coupling and intercomponent density-density interactions: a phase-modulated phase with uniform amplitudes for small intercomponent interactions, a completely imbalanced, effectively single-component condensate for intermediate spin-orbit coupling strength and sufficiently large intercomponent interactions, and a phase-modulated and amplitude-modulated phase for sufficiently large values of both the spin-orbit coupling and the intercomponent density-density interactions. The phase that is modulated by a single q -vector only is observed to transition into an isotropic liquid through a strong depinning transition with periodic boundary conditions, which weakens with open boundaries.

  6. Short and medium range order in two-component silica glasses by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Inoue, K.; Kataoka, H.; Nagai, Y.; Hasegawa, M.; Kobayashi, Y.

    2014-05-01

    The dependence of chemical composition on the average sizes of subnanometer-scale intrinsic structural open spaces surrounded by glass random networks in two-component silica-based glasses was investigated systematically using positronium (Ps) confined in the open spaces. The average sizes of the open spaces for SiO2-B2O3 and SiO2-GeO2 glasses are only slightly dependent on the chemical compositions because the B2O3 and GeO2 are glass network formers that are incorporated into the glass network of the base SiO2. However, the open space sizes for all SiO2-R2O (R = Li, Na, K) glasses, where R2O is a glass network modifier that occupies the open spaces, decrease rapidly with an increase in the R2O concentration. Despite the large difference in the ionic radii of the alkali metal (R) atoms, the open space sizes decrease similarly for all the alkali metal atoms studied. This dependence of the chemical composition on the open space sizes in SiO2-R2O observed by Ps shows that the alkali metal atoms do not randomly occupy the structural open spaces, but filling of the open spaces by R2O proceeds selectively from the larger to the smaller open spaces as the R2O concentrations are increased.

  7. Missense substitutions reflecting regulatory control of transmitter phosphatase activity in two-component signalling.

    PubMed

    Huynh, TuAnh Ngoc; Noriega, Chris E; Stewart, Valley

    2013-05-01

    Negative control in two-component signal transduction results from sensor transmitter phosphatase activity for phospho-receiver dephosphorylation. A hypothetical mechanism for this reaction involves a catalytic residue in the H-box active-site region. However, a complete understanding of transmitter phosphatase regulation is hampered by the abundance of kinase-competent, phosphatase-defective missense substitutions (K(+) P(-) phenotype) outside of the active-site region. For the Escherichia coli NarX sensor, a model for the HisKA_3 sequence family, DHp domain K(+) P(-) mutants defined two classes. Interaction mutants mapped to the active site-distal base of the DHp helix 1, whereas conformation mutants were affected in the X-box region of helix 2. Thus, different types of perturbations can influence transmitter phosphatase activity indirectly. By comparison, K(+) P(-) substitutions in the HisKA sensors EnvZ and NtrB additionally map to a third region, at the active site-proximal top of the DHp helix 1, independently identified as important for DHp-CA domain interaction in this sensor class. Moreover, the NarX transmitter phosphatase activity was independent of nucleotides, in contrast to the activity for many HisKA family sensors. Therefore, distinctions involving both the DHp and the CA domains suggest functional diversity in the regulation of HisKA and HisKA_3 transmitter phosphatase activities.

  8. Rotational properties of two-component Bose gases in the lowest Landau level

    NASA Astrophysics Data System (ADS)

    Meyer, Marius; Sreejith, Ganesh Jaya; Viefers, Susanne

    2015-03-01

    We study the rotational (yrast) spectra of dilute two-component atomic Bose gases in the low angular momentum regime, assuming equal interspecies and intraspecies interaction. Our analysis employs the composite fermion (CF) approach including a pseudospin degree of freedom. While the CF approach is not a priori expected to work well in this angular momentum regime, we show that composite fermion diagonalization gives remarkably accurate approximations to low energy states in the spectra. For angular momenta 0 < L < M (where N and M denote the numbers of particles of the two species, and M >= N), we find that the CF states span the full Hilbert space and provide a convenient set of basis states which, by construction, are eigenstates of the symmetries of the Hamiltonian. Within this CF basis, we identify a subset of the basis states with the lowest Λ-level kinetic energy. Diagonalization within this significally smaller subspace constitutes a major computational simplification and provides very close approximations to ground states and a number of low-lying states within each pseudospin and angular momentum channel. This work was financially supported by the Research Council of Norway and by NORDITA.

  9. Rotational properties of two-component Bose gases in the lowest Landau level

    NASA Astrophysics Data System (ADS)

    Meyer, M. L.; Sreejith, G. J.; Viefers, S.

    2014-04-01

    We study the rotational (yrast) spectra of dilute two-component atomic Bose gases in the low angular momentum regime, assuming equal interspecies and intraspecies interaction. Our analysis employs the composite fermion (CF) approach including a pseudospin degree of freedom. While the CF approach is not a priori expected to work well in this angular momentum regime, we show that composite fermion diagonalization gives remarkably accurate approximations to low-energy states in the spectra. For angular momenta 0

  10. Monte Carlo simulations of two-component drop growth by stochastic coalescence

    NASA Astrophysics Data System (ADS)

    Alfonso, L.; Raga, G. B.; Baumgardner, D.

    2009-02-01

    The evolution of two-dimensional drop distributions is simulated in this study using a Monte Carlo method. The stochastic algorithm of Gillespie (1976) for chemical reactions in the formulation proposed by Laurenzi et al. (2002) was used to simulate the kinetic behavior of the drop population. Within this framework, species are defined as droplets of specific size and aerosol composition. The performance of the algorithm was checked by a comparison with the analytical solutions found by Lushnikov (1975) and Golovin (1963) and with finite difference solutions of the two-component kinetic collection equation obtained for the Golovin (sum) and hydrodynamic kernels. Very good agreement was observed between the Monte Carlo simulations and the analytical and numerical solutions. A simulation for realistic initial conditions is presented for the hydrodynamic kernel. As expected, the aerosol mass is shifted from small to large particles due to collection process. This algorithm could be extended to incorporate various properties of clouds such several crystals habits, different types of soluble CCN, particle charging and drop breakup.

  11. Two components of photoreceptor potential in phototaxis of the flagellated green alga Haematococcus pluvialis

    PubMed Central

    Sineshchekov, Oleg A.; Litvin, Felix F.; Keszthelyi, Lajos

    1990-01-01

    The kinetics of the photoreceptor potential of phototaxis in biflagellated green alga Haematococcus pluvialis in response to a 10-ns laser pulse of three wavelengths (465, 550, and 590 nm) were measured in single cells with 30 μs time resolution. The rise and the decay of photoinduced potential are both at least biphasic. The first component of the rise is very stable and has no measurable (<30 μs) time delay. The second component is triggered after a 120-400-μs lag period, depending on flash intensity. Its appearance is sensitive to the physiological state of the cell and the amplitude can be increased by phototactically ineffective red background illumination. The electrical generators for both components are localized in the same region of the cell membrane (on the stigma-bearing side) and these components have the same depolarizing sign. The results indicate that the photoreceptor potential in phototaxis comprises two components, which could be interpreted as light-induced charge movement within the photoreceptor molecules and changes in ion permeability of the cell membrane. PMID:19431753

  12. Second osmotic virial coefficient from the two-component van der Waals equation of state.

    PubMed

    Widom, B; Underwood, Robin C

    2012-08-09

    The second osmotic virial coefficient is in principle obtained from the second-order term in the expansion of the osmotic pressure Π or solute activity z(2) in powers of the solute density ρ(2) at fixed solvent activity z(1) and temperature T. It is remarked that the second-order terms in the analogous expansions at fixed pressure p or at liquid-vapor coexistence instead of at fixed z(1) also provide measures of the effective, solvent-mediated solute-solute interactions, but these are different measures. It is shown here how the function z(2)(ρ(2), z(1), T) required to obtain the second osmotic virial coefficient B from an expansion in ρ(2) may be obtained from an equation of state of the form p = p(ρ(1), ρ(2), T) with ρ(1) the solvent density, and also how the analogous coefficient B' in the fixed-p expansion may be so obtained. The magnitude of the difference B - B' is often much smaller than that of B and B' separately, so B' is sometimes an acceptable approximation to B. That is not true of the analogous coefficient in the expansion at liquid-vapor coexistence. These calculations are illustrated with the van der Waals two-component equation of state and applied to solutions of propane in water as an example.

  13. Probing bilayer-cytoskeletal interactions in erythrocytes using a two-component dissipative particle dynamics model

    NASA Astrophysics Data System (ADS)

    Peng, Zhangli; Li, Xuejin; Pivkin, Igor; Dao, Ming; Karniadakis, George

    2013-11-01

    We develop a two-component dissipative particle dynamics (DPD) model of the red blood cell (RBC) membrane by modeling the lipid bilayer and the cytoskeleton separately. By applying this model to simulate four different experiments on RBCs, including micropipette aspiration, membrane fluctuations, tank-treading motions in shear flow and bilayer tethering in a flow channel, we validated our model and studied the mechanical properties of the bilayer-cytoskeletal interaction in a systematic and controlled manner, such as its elastic stiffness, viscous friction and strength. In the same time, we also resolved several controversies in RBC mechanics, e.g., the dependence of tank-treading frequency on shear rates and the possibility of bilayer-cytoskeletal slip. Furthermore, to investigate RBC dynamics in the microcirculation, we simulated the passages of RBCs through narrow channels of the flow cytometer in vitro and their passages through the splenic inter-endothelial slits in vivo. The effects of RBC geometry and membrane stiffness on the critical pressure gradient of passage were studied, and the simulation results agree well with experimental measurements. This work was supported by National Institutes of Health Grant R01HL094270 and the new Department of Energy Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4).

  14. Quantum hydrodynamics in one- and two-component Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Chang, JiaJia

    Several prototypical experiments concerning quantum hydrodynamics are realized in this thesis using one and two-component Bose-Einstein condensates (BECs). The experiments are conducted with an experimental apparatus built at WSU that is capable of reliably producing 87Rb BECs and 40K degenerate Fermi gases (DFGs). The apparatus, which has undergone many modifications and upgrades since it was first built, will be described in detail. The upgrades include the addition of fermionic potassium atoms, installation of a fully electromagnetic Ioffe-Pritchard type trap with excellent optical access to the BEC, and the addition of an optical dipole trap (and optical lattices). In the first set of experiments, I describe studies in which the dynamics of merging and splitting single component BECs lead to the observation of dispersive shock waves and soliton formation. In splitting a BEC, the transition from sound wave excitations to dispersive shock formation is examined. Motivated by our single component BEC experiments, we go on to study superfluid-superfluid counterflow using BECs containing two different hyperfine states. Surprisingly rich dynamics are observed for counterflow speeds exceeding a critical velocity. Above this critical velocity, a counterflow-induced modulational instability sets in and drives excitations in the form of dark-bright solitons and novel oscillating dark-dark solitons, which have previously been theoretically described (e.g. in the context of nonlinear optics), but never before been observed in the laboratory.

  15. Synthesis and structural analysis of C60-C70 two-component fullerene nanowhiskers

    NASA Astrophysics Data System (ADS)

    Konno, Toshio; Wakahara, Takatsugu; Miyazawa, Kun'ichi

    2015-04-01

    C60-C70 two-component fullerene nanowhiskers (C60-C70NWs) were synthesized by liquid-liquid interfacial precipitation (LLIP) using various ratios of C70 to C60 and then analyzed using a focused ion beam processing apparatus (FIB-SEM), scanning electron microscopy (SEM), Raman spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD) and high-performance liquid chromatography (HPLC). Both C60 and C70 were saturated in the supernatant solutions with fullerene compositions in the mother solutions ranging from 12.4 mass% C70 to 73.4 mass% C70. C60-C70NWs contained a small amount of rhombohedral phase, indicating polymerization of C60. The solid solubility limit of C70 in the C60 matrix was found to be 13.7 mass%. In addition to fine C60-C70NWs, thick C60-C70 needle-like crystals were formed. The thick C60-C70 needle-like crystals were fractured using a molybdenum probe in the FIB. The fractured surfaces of the C60-C70 needle-like crystals showed modulated structures with chemical compositions characteristic of spinodal decomposition. The activation energy of diffusion was determined to be 37.1 kJ/mol.

  16. Photonic-band-gap properties for two-component slow light

    SciTech Connect

    Ruseckas, J.; Kudriasov, V.; Juzeliunas, G.; Unanyan, R. G.; Otterbach, J.; Fleischhauer, M.

    2011-06-15

    We consider two-component ''spinor'' slow light in an ensemble of atoms coherently driven by two pairs of counterpropagating control laser fields in a double tripod-type linkage scheme. We derive an equation of motion for the spinor slow light (SSL) representing an effective Dirac equation for a massive particle with the mass determined by the two-photon detuning. By changing the detuning the atomic medium acts as a photonic crystal with a controllable band gap. If the frequency of the incident probe light lies within the band gap, the light experiences reflection from the sample and can tunnel through it. For frequencies outside the band gap, the transmission and reflection probabilities oscillate with the increasing length of the sample. In both cases the reflection takes place into the complementary mode of the probe field. We investigate the influence of the finite excited state lifetime on the transmission and reflection coefficients of the probe light. We discuss possible experimental implementations of the SSL using alkali-metal atoms such as rubidium or sodium.

  17. Two-component dipolar Bose-Einstein condensate in concentrically coupled annular traps

    PubMed Central

    Zhang, Xiao-Fei; Han, Wei; Wen, Lin; Zhang, Peng; Dong, Rui-Fang; Chang, Hong; Zhang, Shou-Gang

    2015-01-01

    Dipolar Bosonic atoms confined in external potentials open up new avenues for quantum-state manipulation and will contribute to the design and exploration of novel functional materials. Here we investigate the ground-state and rotational properties of a rotating two-component dipolar Bose-Einstein condensate, which consists of both dipolar bosonic atoms with magnetic dipole moments aligned vertically to the condensate and one without dipole moments, confined in concentrically coupled annular traps. For the nonrotational case, it is found that the tunable dipolar interaction can be used to control the location of each component between the inner and outer rings, and to induce the desired ground-state phase. Under finite rotation, it is shown that there exists a critical value of rotational frequency for the nondipolar case, above which vortex state can form at the trap center, and the related vortex structures depend strongly on the rotational frequency. For the dipolar case, it is found that various ground-state phases and the related vortex structures, such as polygonal vortex clusters and vortex necklaces, can be obtained via a proper choice of the dipolar interaction and rotational frequency. Finally, we also study and discuss the formation process of such vortex structures. PMID:25731962

  18. Adhesion-induced phase behavior of two-component membranes and vesicles.

    PubMed

    Rouhiparkouhi, Tahereh; Weikl, Thomas R; Discher, Dennis E; Lipowsky, Reinhard

    2013-01-22

    The interplay of adhesion and phase separation is studied theoretically for two-component membranes that can phase separate into two fluid phases such as liquid-ordered and liquid-disordered phases. Many adhesion geometries provide two different environments for these membranes and then partition the membranes into two segments that differ in their composition. Examples are provided by adhering vesicles, by hole- or pore-spanning membranes, and by membranes supported by chemically patterned surfaces. Generalizing a lattice model for binary mixtures to these adhesion geometries, we show that the phase behavior of the adhering membranes depends, apart from composition and temperature, on two additional parameters, the area fraction of one membrane segment and the affinity contrast between the two segments. For the generic case of non-vanishing affinity contrast, the adhering membranes undergo two distinct phase transitions and the phase diagrams in the composition/temperature plane have a generic topology that consists of two two-phase coexistence regions separated by an intermediate one-phase region. As a consequence, phase separation and domain formation is predicted to occur separately in each of the two membrane segments but not in both segments simultaneously. Furthermore, adhesion is also predicted to suppress the phase separation process for certain regions of the phase diagrams. These generic features of the adhesion-induced phase behavior are accessible to experiment.

  19. Two-component coarse-grained molecular-dynamics model for the human erythrocyte membrane.

    PubMed

    Li, He; Lykotrafitis, George

    2012-01-04

    We present a two-component coarse-grained molecular-dynamics model for simulating the erythrocyte membrane. The proposed model possesses the key feature of combing the lipid bilayer and the erythrocyte cytoskeleton, thus showing both the fluidic behavior of the lipid bilayer and the elastic properties of the erythrocyte cytoskeleton. In this model, three types of coarse-grained particles are introduced to represent clusters of lipid molecules, actin junctions, and band-3 complexes, respectively. The proposed model facilitates simulations that span large length scales (approximately micrometers) and timescales (approximately milliseconds). By tuning the interaction potential parameters, we were able to control the diffusivity and bending rigidity of the membrane model. We studied the membrane under shearing and found that at a low shear strain rate, the developed shear stress was due mainly to the spectrin network, whereas the viscosity of the lipid bilayer contributed to the resulting shear stress at higher strain rates. In addition, we investigated the effects of a reduced spectrin network connectivity on the shear modulus of the membrane.

  20. On the spin separation of algebraic two-component relativistic Hamiltonians: molecular properties.

    PubMed

    Li, Zhendong; Xiao, Yunlong; Liu, Wenjian

    2014-08-07

    The idea for separating the algebraic exact two-component (X2C) relativistic Hamiltonians into spin-free (sf) and spin-dependent terms [Z. Li, Y. Xiao, and W. Liu, J. Chem. Phys. 137, 154114 (2012)] is extended to both electric and magnetic molecular properties. Taking the spin-free terms (which are correct to infinite order in α ≈ 1/137) as zeroth order, the spin-dependent terms can be treated to any desired order via analytic derivative technique. This is further facilitated by unified Sylvester equations for the response of the decoupling and renormalization matrices to single or multiple perturbations. For practical purposes, explicit expressions of order α(2) in spin are also given for electric and magnetic properties, as well as two-electron spin-orbit couplings. At this order, the response of the decoupling and renormalization matrices is not required, such that the expressions are very compact and completely parallel to those based on the Breit-Pauli (BP) Hamiltonian. However, the former employ sf-X2C wave functions, whereas the latter can only use nonrelativistic wave functions. As the sf-X2C terms can readily be interfaced with any nonrelativistic program, the implementation of the O(α²) spin-orbit corrections to sf-X2C properties requires only marginal revisions of the routines for evaluating the BP type of corrections.

  1. On the spin separation of algebraic two-component relativistic Hamiltonians: Molecular properties

    SciTech Connect

    Li, Zhendong; Xiao, Yunlong; Liu, Wenjian

    2014-08-07

    The idea for separating the algebraic exact two-component (X2C) relativistic Hamiltonians into spin-free (sf) and spin-dependent terms [Z. Li, Y. Xiao, and W. Liu, J. Chem. Phys. 137, 154114 (2012)] is extended to both electric and magnetic molecular properties. Taking the spin-free terms (which are correct to infinite order in α ≈ 1/137) as zeroth order, the spin-dependent terms can be treated to any desired order via analytic derivative technique. This is further facilitated by unified Sylvester equations for the response of the decoupling and renormalization matrices to single or multiple perturbations. For practical purposes, explicit expressions of order α{sup 2} in spin are also given for electric and magnetic properties, as well as two-electron spin-orbit couplings. At this order, the response of the decoupling and renormalization matrices is not required, such that the expressions are very compact and completely parallel to those based on the Breit-Pauli (BP) Hamiltonian. However, the former employ sf-X2C wave functions, whereas the latter can only use nonrelativistic wave functions. As the sf-X2C terms can readily be interfaced with any nonrelativistic program, the implementation of the O(α{sup 2}) spin-orbit corrections to sf-X2C properties requires only marginal revisions of the routines for evaluating the BP type of corrections.

  2. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    NASA Astrophysics Data System (ADS)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar; Grunwald, Ingo

    2013-05-01

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  3. The Physarum polycephalum Genome Reveals Extensive Use of Prokaryotic Two-Component and Metazoan-Type Tyrosine Kinase Signaling.

    PubMed

    Schaap, Pauline; Barrantes, Israel; Minx, Pat; Sasaki, Narie; Anderson, Roger W; Bénard, Marianne; Biggar, Kyle K; Buchler, Nicolas E; Bundschuh, Ralf; Chen, Xiao; Fronick, Catrina; Fulton, Lucinda; Golderer, Georg; Jahn, Niels; Knoop, Volker; Landweber, Laura F; Maric, Chrystelle; Miller, Dennis; Noegel, Angelika A; Peace, Rob; Pierron, Gérard; Sasaki, Taeko; Schallenberg-Rüdinger, Mareike; Schleicher, Michael; Singh, Reema; Spaller, Thomas; Storey, Kenneth B; Suzuki, Takamasa; Tomlinson, Chad; Tyson, John J; Warren, Wesley C; Werner, Ernst R; Werner-Felmayer, Gabriele; Wilson, Richard K; Winckler, Thomas; Gott, Jonatha M; Glöckner, Gernot; Marwan, Wolfgang

    2015-11-27

    Physarum polycephalum is a well-studied microbial eukaryote with unique experimental attributes relative to other experimental model organisms. It has a sophisticated life cycle with several distinct stages including amoebal, flagellated, and plasmodial cells. It is unusual in switching between open and closed mitosis according to specific life-cycle stages. Here we present the analysis of the genome of this enigmatic and important model organism and compare it with closely related species. The genome is littered with simple and complex repeats and the coding regions are frequently interrupted by introns with a mean size of 100 bases. Complemented with extensive transcriptome data, we define approximately 31,000 gene loci, providing unexpected insights into early eukaryote evolution. We describe extensive use of histidine kinase-based two-component systems and tyrosine kinase signaling, the presence of bacterial and plant type photoreceptors (phytochromes, cryptochrome, and phototropin) and of plant-type pentatricopeptide repeat proteins, as well as metabolic pathways, and a cell cycle control system typically found in more complex eukaryotes. Our analysis characterizes P. polycephalum as a prototypical eukaryote with features attributed to the last common ancestor of Amorphea, that is, the Amoebozoa and Opisthokonts. Specifically, the presence of tyrosine kinases in Acanthamoeba and Physarum as representatives of two distantly related subdivisions of Amoebozoa argues against the later emergence of tyrosine kinase signaling in the opisthokont lineage and also against the acquisition by horizontal gene transfer.

  4. The Physarum polycephalum Genome Reveals Extensive Use of Prokaryotic Two-Component and Metazoan-Type Tyrosine Kinase Signaling

    PubMed Central

    Schaap, Pauline; Barrantes, Israel; Minx, Pat; Sasaki, Narie; Anderson, Roger W.; Bénard, Marianne; Biggar, Kyle K.; Buchler, Nicolas E.; Bundschuh, Ralf; Chen, Xiao; Fronick, Catrina; Fulton, Lucinda; Golderer, Georg; Jahn, Niels; Knoop, Volker; Landweber, Laura F.; Maric, Chrystelle; Miller, Dennis; Noegel, Angelika A.; Peace, Rob; Pierron, Gérard; Sasaki, Taeko; Schallenberg-Rüdinger, Mareike; Schleicher, Michael; Singh, Reema; Spaller, Thomas; Storey, Kenneth B.; Suzuki, Takamasa; Tomlinson, Chad; Tyson, John J.; Warren, Wesley C.; Werner, Ernst R.; Werner-Felmayer, Gabriele; Wilson, Richard K.; Winckler, Thomas; Gott, Jonatha M.; Glöckner, Gernot; Marwan, Wolfgang

    2016-01-01

    Physarum polycephalum is a well-studied microbial eukaryote with unique experimental attributes relative to other experimental model organisms. It has a sophisticated life cycle with several distinct stages including amoebal, flagellated, and plasmodial cells. It is unusual in switching between open and closed mitosis according to specific life-cycle stages. Here we present the analysis of the genome of this enigmatic and important model organism and compare it with closely related species. The genome is littered with simple and complex repeats and the coding regions are frequently interrupted by introns with a mean size of 100 bases. Complemented with extensive transcriptome data, we define approximately 31,000 gene loci, providing unexpected insights into early eukaryote evolution. We describe extensive use of histidine kinase-based two-component systems and tyrosine kinase signaling, the presence of bacterial and plant type photoreceptors (phytochromes, cryptochrome, and phototropin) and of plant-type pentatricopeptide repeat proteins, as well as metabolic pathways, and a cell cycle control system typically found in more complex eukaryotes. Our analysis characterizes P. polycephalum as a prototypical eukaryote with features attributed to the last common ancestor of Amorphea, that is, the Amoebozoa and Opisthokonts. Specifically, the presence of tyrosine kinases in Acanthamoeba and Physarum as representatives of two distantly related subdivisions of Amoebozoa argues against the later emergence of tyrosine kinase signaling in the opisthokont lineage and also against the acquisition by horizontal gene transfer. PMID:26615215

  5. A two-component generalization of the reduced Ostrovsky equation and its integrable semi-discrete analogue

    NASA Astrophysics Data System (ADS)

    Feng, Bao-Feng; Maruno, Ken-ichi; Ohta, Yasuhiro

    2017-02-01

    In the present paper, we propose a two-component generalization of the reduced Ostrovsky (Vakhnenko) equation, whose differential form can be viewed as the short-wave limit of a two-component Degasperis-Procesi (DP) equation. They are integrable due to the existence of Lax pairs. Moreover, we have shown that the two-component reduced Ostrovsky equation can be reduced from an extended BKP hierarchy with negative flow through a pseudo 3-reduction and a hodograph (reciprocal) transform. As a by-product, its bilinear form and N-soliton solution in terms of pfaffians are presented. One- and two-soliton solutions are provided and analyzed. In the second part of the paper, we start with a modified BKP hierarchy, which is a Bäcklund transformation of the above extended BKP hierarchy, an integrable semi-discrete analogue of the two-component reduced Ostrovsky equation is constructed by defining an appropriate discrete hodograph transform and dependent variable transformations. In particular, the backward difference form of above semi-discrete two-component reduced Ostrovsky equation gives rise to the integrable semi-discretization of the short wave limit of a two-component DP equation. Their N-soliton solutions in terms of pffafians are also provided.

  6. Two-Component Fitting of Coronal-Hole and Quiet-Sun He I 1083 Spectra

    NASA Technical Reports Server (NTRS)

    Jones, Harrison P.; Malanushenko, Elena V.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present reduction techniques and first results for detailed fitting of solar spectra obtained with the NASA/National Solar Observatory Spectromagnetograph (NASA/NSO SPM over a 2 nm bandpass centered on the He 1 1083 nm line. The observation for this analysis was a spectra-spectroheliogram obtained at the NSO/Kitt Peak Vacuum Telescope (KPVT) on 00 Apr 17 at 21:46 UT spanning an area of 512 x 900 arc-seconds; the field of view included a coronal hole near disk center as well as surrounding quiet sun. Since the He I line is very weak and blended with nearby solar and telluric lines, accurate determination of the continuum intensity as a function of wavelength is crucial. We have modified the technique of Malanushenko {\\it et al.) (1992; {\\it AA) (\\bf 259), 567) to tie regions of continuua and the wings of spectral lines which show little variation over the image to standard reference spectra such as the NSO Fourier Transform Spectrometer atlas (Wallace {\\it et al). 1993; NSO Tech Report \\#93-001). We performed detailed least-squares fits of spectra from selected areas, accounting for all the known telluric and solar absorbers in the spectral bandpass. The best physically consistent fits to the Helium lines were obtained with Gaussian profiles from two components (one ''cool'', characteristic of the upper chromosphere; one ''hot'', representing the cool transition region at 2-3 x 10$^{4)$ K). In the coronal hole, the transition-region component, shifted by 6-7 km/s to the blue, is mildly dominant, consistent with mass outflow as suggested by Dupree {\\it et all. (1996; {\\it Ap. J.}-{\\bf 467), 121). In quiet-sun spectra there is less evidence of outward flow, and the chromospheric component is more important. All our fitted spectra show a very weak unidentified absorption feature at 1082.880 nm in the red wing of the nearby Si I line.

  7. Perturbative treatment of spin-orbit coupling within spin-free exact two-component theory

    SciTech Connect

    Cheng, Lan; Gauss, Jürgen

    2014-10-28

    This work deals with the perturbative treatment of spin-orbit-coupling (SOC) effects within the spin-free exact two-component theory in its one-electron variant (SFX2C-1e). We investigate two schemes for constructing the SFX2C-1e SOC matrix: the SFX2C-1e+SOC [der] scheme defines the SOC matrix elements based on SFX2C-1e analytic-derivative theory, hereby treating the SOC integrals as the perturbation; the SFX2C-1e+SOC [fd] scheme takes the difference between the X2C-1e and SFX2C-1e Hamiltonian matrices as the SOC perturbation. Furthermore, a mean-field approach in the SFX2C-1e framework is formulated and implemented to efficiently include two-electron SOC effects. Systematic approximations to the two-electron SOC integrals are also proposed and carefully assessed. Based on benchmark calculations of the second-order SOC corrections to the energies and electrical properties for a set of diatomic molecules, we show that the SFX2C-1e+SOC [der] scheme performs very well in the computation of perturbative SOC corrections and that the “2eSL” scheme, which neglects the (SS|SS)-type two-electron SOC integrals, is both efficient and accurate. In contrast, the SFX2C-1e+SOC [fd] scheme turns out to be incompatible with a perturbative treatment of SOC effects. Finally, as a first chemical application, we report high-accuracy calculations of the {sup 201}Hg quadrupole-coupling parameters of the recently characterized ethylmercury hydride (HHgCH{sub 2}CH{sub 3}) molecule based on SFX2C-1e coupled-cluster calculations augmented with second-order SOC corrections obtained at the Hartree-Fock level using the SFX2C-1e+SOC [der]/2eSL scheme.

  8. Perturbative treatment of spin-orbit coupling within spin-free exact two-component theory.

    PubMed

    Cheng, Lan; Gauss, Jürgen

    2014-10-28

    This work deals with the perturbative treatment of spin-orbit-coupling (SOC) effects within the spin-free exact two-component theory in its one-electron variant (SFX2C-1e). We investigate two schemes for constructing the SFX2C-1e SOC matrix: the SFX2C-1e+SOC [der] scheme defines the SOC matrix elements based on SFX2C-1e analytic-derivative theory, hereby treating the SOC integrals as the perturbation; the SFX2C-1e+SOC [fd] scheme takes the difference between the X2C-1e and SFX2C-1e Hamiltonian matrices as the SOC perturbation. Furthermore, a mean-field approach in the SFX2C-1e framework is formulated and implemented to efficiently include two-electron SOC effects. Systematic approximations to the two-electron SOC integrals are also proposed and carefully assessed. Based on benchmark calculations of the second-order SOC corrections to the energies and electrical properties for a set of diatomic molecules, we show that the SFX2C-1e+SOC [der] scheme performs very well in the computation of perturbative SOC corrections and that the "2eSL" scheme, which neglects the (SS|SS)-type two-electron SOC integrals, is both efficient and accurate. In contrast, the SFX2C-1e+SOC [fd] scheme turns out to be incompatible with a perturbative treatment of SOC effects. Finally, as a first chemical application, we report high-accuracy calculations of the (201)Hg quadrupole-coupling parameters of the recently characterized ethylmercury hydride (HHgCH2CH3) molecule based on SFX2C-1e coupled-cluster calculations augmented with second-order SOC corrections obtained at the Hartree-Fock level using the SFX2C-1e+SOC [der]/2eSL scheme.

  9. Large-scale Models Reveal the Two-component Mechanics of Striated Muscle

    PubMed Central

    Jarosch, Robert

    2008-01-01

    This paper provides a comprehensive explanation of striated muscle mechanics and contraction on the basis of filament rotations. Helical proteins, particularly the coiled-coils of tropomyosin, myosin and α-actinin, shorten their H-bonds cooperatively and produce torque and filament rotations when the Coulombic net-charge repulsion of their highly charged side-chains is diminished by interaction with ions. The classical “two-component model” of active muscle differentiated a “contractile component” which stretches the “series elastic component” during force production. The contractile components are the helically shaped thin filaments of muscle that shorten the sarcomeres by clockwise drilling into the myosin cross-bridges with torque decrease (= force-deficit). Muscle stretch means drawing out the thin filament helices off the cross-bridges under passive counterclockwise rotation with torque increase (= stretch activation). Since each thin filament is anchored by four elastic α-actinin Z-filaments (provided with force-regulating sites for Ca2+ binding), the thin filament rotations change the torsional twist of the four Z-filaments as the “series elastic components”. Large scale models simulate the changes of structure and force in the Z-band by the different Z-filament twisting stages A, B, C, D, E, F and G. Stage D corresponds to the isometric state. The basic phenomena of muscle physiology, i. e. latency relaxation, Fenn-effect, the force-velocity relation, the length-tension relation, unexplained energy, shortening heat, the Huxley-Simmons phases, etc. are explained and interpreted with the help of the model experiments. PMID:19330099

  10. Short and medium range order in two-component silica glasses by positron annihilation spectroscopy

    SciTech Connect

    Inoue, K.; Kataoka, H.; Nagai, Y.; Hasegawa, M.; Kobayashi, Y.

    2014-05-28

    The dependence of chemical composition on the average sizes of subnanometer-scale intrinsic structural open spaces surrounded by glass random networks in two-component silica-based glasses was investigated systematically using positronium (Ps) confined in the open spaces. The average sizes of the open spaces for SiO{sub 2}-B{sub 2}O{sub 3} and SiO{sub 2}-GeO{sub 2} glasses are only slightly dependent on the chemical compositions because the B{sub 2}O{sub 3} and GeO{sub 2} are glass network formers that are incorporated into the glass network of the base SiO{sub 2}. However, the open space sizes for all SiO{sub 2}-R{sub 2}O (R = Li, Na, K) glasses, where R{sub 2}O is a glass network modifier that occupies the open spaces, decrease rapidly with an increase in the R{sub 2}O concentration. Despite the large difference in the ionic radii of the alkali metal (R) atoms, the open space sizes decrease similarly for all the alkali metal atoms studied. This dependence of the chemical composition on the open space sizes in SiO{sub 2}-R{sub 2}O observed by Ps shows that the alkali metal atoms do not randomly occupy the structural open spaces, but filling of the open spaces by R{sub 2}O proceeds selectively from the larger to the smaller open spaces as the R{sub 2}O concentrations are increased.

  11. A two-component Bayesian mixture model to identify implausible gestational age

    PubMed Central

    Mohammadian-Khoshnoud, Maryam; Moghimbeigi, Abbas; Faradmal, Javad; Yavangi, Mahnaz

    2016-01-01

    Background: Birth weight and gestational age are two important variables in obstetric research. The primary measure of gestational age is based on a mother’s recall of her last menstrual period. This recall may cause random or systematic errors. Therefore, the objective of this study is to utilize Bayesian mixture model in order to identify implausible gestational age. Methods: In this cross-sectional study, medical documents of 502 preterm infants born and hospitalized in Hamadan Fatemieh Hospital from 2009 to 2013 were gathered. Preterm infants were classified to less than 28 weeks and 28 to 31 weeks. A two-component Bayesian mixture model was utilized to identify implausible gestational age; the first component shows the probability of correct and the second one shows the probability of incorrect classification of gestational ages. The data were analyzed through OpenBUGS 3.2.2 and 'coda' package of R 3.1.1. Results: The mean (SD) of the second component of less than 28 weeks and 28 to 31 weeks were 1179 (0.0123) and 1620 (0.0074), respectively. These values were larger than the mean of the first component for both groups which were 815.9 (0.0123) and 1061 (0.0074), respectively. Conclusion: Errors occurred in recording the gestational ages of these two groups of preterm infants included recording the gestational age less than the actual value at birth. Therefore, developing scientific methods to correct these errors is essential to providing desirable health services and adjusting accurate health indicators. PMID:28210605

  12. Two-component relativistic density-functional calculations of the dimers of the halogens from bromine through element 117 using effective core potential and all-electron methods.

    PubMed

    Mitin, Alexander V; van Wüllen, Christoph

    2006-02-14

    A two-component quasirelativistic Hamiltonian based on spin-dependent effective core potentials is used to calculate ionization energies and electron affinities of the heavy halogen atom bromine through the superheavy element 117 (eka-astatine) as well as spectroscopic constants of the homonuclear dimers of these atoms. We describe a two-component Hartree-Fock and density-functional program that treats spin-orbit coupling self-consistently within the orbital optimization procedure. A comparison with results from high-order Douglas-Kroll calculations--for the superheavy systems also with zeroth-order regular approximation and four-component Dirac results--demonstrates the validity of the pseudopotential approximation. The density-functional (but not the Hartree-Fock) results show very satisfactory agreement with theoretical coupled cluster as well as experimental data where available, such that the theoretical results can serve as an estimate for the hitherto unknown properties of astatine, element 117, and their dimers.

  13. Interface and vortex motion in the two-component complex dissipative Ginzburg-Landau equation in two-dimensional space.

    PubMed

    Yabunaka, Shunsuke

    2014-10-01

    We study interface and vortex motion in the two-component dissipative Ginzburg-Landau equation in two-dimensional space. We consider cases where the whole system is divided into several domains, and we assume that these domains are separated by interfaces and each domain contains quantized vortices. The equations for interface and vortex motion will be derived by means of a variational approach by Kawasaki. These equations indicate that, along an interface, the phase gradient fields of the complex order parameters is parallel to the interface. They also indicate that the interface motion is driven by the curvature and the phase gradient fields along the interface, and vortex motion is driven by the phase gradient field around the vortex. With respect to the static interactions between defects, we find an analogy between quantized vortices in a domain and electric charges in a vacuum domain surrounded by a metallic object in electrostatic. This analogy indicates that there is an attractive interaction between an interface and a quantized vortex with any charge. We also discuss several examples of interface and vortex motion.

  14. Characterization of GX 339-4 outburst of 2010-11: analysis by XSPEC using two component advective flow model

    NASA Astrophysics Data System (ADS)

    Debnath, Dipak; Mondal, Santanu; Chakrabarti, Sandip K.

    2015-02-01

    We study spectral properties of GX 339-4 during its 2010-11 outburst with two component advective flow (TCAF) model after its inclusion in XSPEC as a table model. We compare results fitted by TCAF model with combined disc blackbody and power-law model. For a spectral fit, we use 2.5-25 keV spectral data of the Proportional Counter Array instrument onboard RXTE satellite. From our fit, accretion flow parameters such as Keplerian (disc) rate, sub-Keplerian (halo) rate, location and strength of shock are extracted. We quantify how the disc and the halo rates vary during the entire outburst. We study how the halo to disc accretion rate ratio (ARR), quasi-periodic oscillations (QPOs), shock locations and its strength vary when the system passes through hard, hard-intermediate, soft-intermediate and soft states. We find pieces of evidence of monotonically increasing and decreasing nature of QPO frequencies depending on the variation of ARR during rising and declining phases. Interestingly, on days of transition from hard state to hard-intermediate spectral state (during the rising phase) or vice-versa (during decline phase), ARR is observed to be locally maximum. Non-constancy of ARR while obtaining reasonable fits points to the presence of two independent components in the flow.

  15. Laplace-transformed atomic orbital-based Møller-Plesset perturbation theory for relativistic two-component Hamiltonians.

    PubMed

    Helmich-Paris, Benjamin; Repisky, Michal; Visscher, Lucas

    2016-07-07

    We present a formulation of Laplace-transformed atomic orbital-based second-order Møller-Plesset perturbation theory (MP2) energies for two-component Hamiltonians in the Kramers-restricted formalism. This low-order scaling technique can be used to enable correlated relativistic calculations for large molecular systems. We show that the working equations to compute the relativistic MP2 energy differ by merely a change of algebra (quaternion instead of real) from their non-relativistic counterparts. With a proof-of-principle implementation we study the effect of the nuclear charge on the magnitude of half-transformed integrals and show that for light elements spin-free and spin-orbit MP2 energies are almost identical. Furthermore, we investigate the effect of separation of charge distributions on the Coulomb and exchange energy contributions, which show the same long-range decay with the inter-electronic/atomic distance as for non-relativistic MP2. A linearly scaling implementation is possible if the proper distance behavior is introduced to the quaternion Schwarz-type estimates as for non-relativistic MP2.

  16. Wind Variability of B Supergiants. No. 2; The Two-component Stellar Wind of gamma Arae

    NASA Technical Reports Server (NTRS)

    Prinja, R. K.; Massa, D.; Fullerton, A. W.; Howarth, I. D.; Pontefract, M.

    1996-01-01

    The stellar wind of the rapidly rotating early-B supergiant, gamma Ara, is studied using time series, high-resolution IUE spectroscopy secured over approx. 6 days in 1993 March. Results are presented based on an analysis of several line species, including N(N), C(IV), Si(IV), Si(III), C(II), and Al(III). The wind of this star is grossly structured, with evidence for latitude-dependent mass loss which reflects the role of rapid rotation. Independent, co-existing time variable features are identified at low-velocity (redward of approx. -750 km/s) and at higher-speeds extending to approx. -1500 km/s. The interface between these structures is 'defined' by the appearance of a discrete absorption component which is extremely sharp (in velocity space). The central velocity of this 'Super DAC' changes only gradually, over several days, between approx. -400 and -750 km/s in most of the ions. However, its location is shifted redward by almost 400 km/s in Al(III) and C(II), indicating that the physical structure giving rise to this feature has a substantial velocity and ionization jump. Constraints on the relative ionization properties of the wind structures are discussed, together with results based on SEI line-profile-fitting methods. The overall wind activity in gamma Ara exhibits a clear ion dependence, such that low-speed features are promoted in low-ionization species, including Al(III), C(II), and Si(III). We also highlight that - in contrast to most OB stars - there are substantial differences in the epoch-to-epoch time-averaged wind profiles of gamma Ara. We interpret the results in terms of a two-component wind model for gamma Ara, with an equatorially compressed low ionization region, and a high speed, higher-ionization polar outflow. This picture is discussed in the context of the predicted bi-stability mechanism for line-driven winds in rapidly rotating early-B type stars, and the formation of compressed wind regions in rapidly rotating hot stars. The apparent

  17. Measurement of s-wave scattering lengths in a two-component Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Egorov, M.; Opanchuk, B.; Drummond, P.; Hall, B. V.; Hannaford, P.; Sidorov, A. I.

    2013-05-01

    We use collective oscillations of a two-component Bose-Einstein condensate (2CBEC) of 87Rb atoms prepared in the internal states |1>≡|F=1,mF=-1> and |2>≡|F=2,mF=1> for the precision measurement of the interspecies scattering length a12 with a relative uncertainty of 1.6×10-4. We show that in a cigar-shaped trap the three-dimensional (3D) dynamics of a component with a small relative population can be conveniently described by a one-dimensional (1D) Schrödinger equation for an effective harmonic oscillator. The frequency of the collective oscillations is defined by the axial trap frequency and the ratio a12/a11, where a11 is the intraspecies scattering length of a highly populated component 1 and is largely decoupled from the scattering length a22, the total atom number and loss terms. By fitting numerical simulations of the coupled Gross-Pitaevskii equations to the recorded temporal evolution of the axial width we obtain the value a12=98.006(16)a0, where a0 is the Bohr radius. Our reported value is in reasonable agreement with the theoretical prediction a12=98.13(10)a0 but deviates significantly from the previously measured value a12=97.66a0 [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.99.190402 99, 190402 (2007)] which is commonly used in the characterization of spin dynamics in degenerate 87Rb atoms. Using Ramsey interferometry of the 2CBEC we measure the scattering length a22=95.44(7)a0 which also deviates from the previously reported value a22=95.0a0 [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.99.190402 99, 190402 (2007)]. We characterize two-body losses for component 2 and obtain the loss coefficients γ12=1.51(18)×10-14cm3/s and γ22=8.1(3)×10-14cm3/s.

  18. The Two Components of the Evolved Massive Binary LZ Cephei: Testing the Effects of Binarity on Stellar Evolution

    NASA Technical Reports Server (NTRS)

    Mahy, L.; Martins, F.; Donati, J.-F.; Bouret, J.-C.

    2011-01-01

    We present an in-dep(h study of the two components of the binary system LZ Cep to constrain the effects of binarity on the evolution of massive stars. Methods. We analyzed a set of high-resolution, high signal-to-noise ratio optical spectra obtained over the orbital period of the system to perform a spectroscopic disentangling and derive an orbital solution. We subsequently determine the stellar properties of each component by means of an analysis with the CMFGEN atmosphere code. Finally, with the derived stellar parameters, we model the Hipparcos photometric light curve using the program NIGHTFALL to obtain the orbit inclination and the stellar masses. Results.LZ Cep is a O9III+ON9.7V binary. It is as a semi-detailed system in which either the primary or the secondary star almost fills up its Roche lobe. The dynamical masses are about 16.0 Stellar Mass (primary) and 6.5 Stellar Mass (secondary). The latter is lower than the typical mass of late-type O stars. The secondary component is chemically more evolved than the primary (which barely shows any sign of CNO processing), with strong helium and nitrogen enhancements as well as carbon and oxygen depletions. These properties (surface abundances and mass) are typical of Wolf-Rayet stars, although the spectral type is ON9.7V. The luminosity of the secondary is consistent with that of core He-burning objects. The preferred, tentative evolutionary scenario to explain abe observed properties involves mass transfer from the secondary - which was initially more massive- towards the primary. The secondary is now almost a core He-burning object, probably with only a thin envelope of H-rich and CNO processed material. A very inefficient mass transfer is necessary to explain the chemical appearance of the primary. Alternative scenarios are discussed but they are affected by greater uncertainties.

  19. Two-component few-fermion mixtures in a one-dimensional trap: Numerical versus analytical approach

    NASA Astrophysics Data System (ADS)

    Brouzos, Ioannis; Schmelcher, Peter

    2013-02-01

    We explore a few-fermion mixture consisting of two components that are repulsively interacting and confined in a one-dimensional harmonic trap. Different scenarios of population imbalance ranging from the completely imbalanced case where the physics of a single impurity in the Fermi sea is discussed to the partially imbalanced and equal population configurations are investigated. For the numerical calculations the multiconfigurational time-dependent Hartree method is employed, extending its application to few-fermion systems. Apart from numerical calculations we generalize our ansatz for a correlated pair wave function proposed recently [I. Brouzos and P. Schmelcher, Phys. Rev. Lett.0031-900710.1103/PhysRevLett.108.045301 108, 045301 (2012)] for bosons to mixtures of fermions. From weak to strong coupling between the components the energies, the densities and the correlation properties of one-dimensional systems change vastly with an upper limit set by fermionization where for infinite repulsion all fermions can be mapped to identical ones. The numerical and analytical treatments are in good agreement with respect to the description of this crossover. We show that for equal populations each pair of different component atoms splits into two single peaks in the density while for partial imbalance additional peaks and plateaus arise for very strong interaction strengths. The case of a single-impurity atom shows rich behavior of the energy and density as we approach fermionization and is directly connected to recent experiments [G. Zürn , Phys. Rev. Lett.0031-900710.1103/PhysRevLett.108.075303 108, 075303 (2012)].

  20. A two-component model of variations of Lyman-alpha emission with solar-activity level

    NASA Astrophysics Data System (ADS)

    Katiushina, V. V.; Krasinets, M. V.; Nusinov, A. A.; Bart, Ch. A.; Rottman, G. J.

    1991-02-01

    The relationship between the intensity of solar UV radiation in the Lyman-alpha line and the 10.7-cm emission is analyzed on the basis of SME data for 1982-1988. It is shown that the closest correlation between these parameters corresponds to the hypothesis that the Lyman-alpha radiation is a superposition of two components: background and upwelling from active regions. It is pointed out that various characteristics of Lyman-alpha variations in an activity cycle can be explained with the two-component model.

  1. The Two-Component Monooxygenase MeaXY Initiates the Downstream Pathway of Chloroacetanilide Herbicide Catabolism in Sphingomonads.

    PubMed

    Cheng, Minggen; Meng, Qiang; Yang, Youjian; Chu, Cuiwei; Chen, Qing; Li, Yi; Cheng, Dan; Hong, Qing; Yan, Xin; He, Jian

    2017-04-01

    Due to the extensive use of chloroacetanilide herbicides over the past 60 years, bacteria have evolved catabolic pathways to mineralize these compounds. In the upstream catabolic pathway, chloroacetanilide herbicides are transformed into the two common metabolites 2-methyl-6-ethylaniline (MEA) and 2,6-diethylaniline (DEA) through N-dealkylation and amide hydrolysis. The pathway downstream of MEA is initiated by the hydroxylation of aromatic rings, followed by its conversion to a substrate for ring cleavage after several steps. Most of the key genes in the pathway have been identified. However, the genes involved in the initial hydroxylation step of MEA are still unknown. As a special aniline derivative, MEA cannot be transformed by the aniline dioxygenases that have been characterized. Sphingobium baderi DE-13 can completely degrade MEA and use it as a sole carbon source for growth. In this work, an MEA degradation-deficient mutant of S. baderi DE-13 was isolated. MEA catabolism genes were predicted through comparative genomic analysis. The results of genetic complementation and heterologous expression demonstrated that the products of meaX and meaY are responsible for the initial step of MEA degradation in S. baderi DE-13. MeaXY is a two-component flavoprotein monooxygenase system that catalyzes the hydroxylation of MEA and DEA using NADH and flavin mononucleotide (FMN) as cofactors. Nuclear magnetic resonance (NMR) analysis confirmed that MeaXY hydroxylates MEA and DEA at the para-position. Transcription of meaX was enhanced remarkably upon induction of MEA or DEA in S. baderi DE-13. Additionally, meaX and meaY were highly conserved among other MEA-degrading sphingomonads. This study fills a gap in our knowledge of the biochemical pathway that carries out mineralization of chloroacetanilide herbicides in sphingomonads.IMPORTANCE Much attention has been paid to the environmental fate of chloroacetanilide herbicides used for the past 60 years. Microbial degradation

  2. Screening of an electrically charged particle in a two-dimensional two-component plasma at Γ = 2

    NASA Astrophysics Data System (ADS)

    Ferrero, Alejandro; Téllez, Gabriel

    2014-11-01

    We consider the thermodynamic effects of an electrically charged impurity immersed in a two-dimensional two-component plasma, composed of particles with charges ±e, at temperature T, at coupling Γ = e2/(kBT) = 2, confined in a large disk of radius R. In particular, we focus on the analysis of the charge density, the correlation functions and the grand potential. Our analytical results show how the charges are redistributed in the circular geometry considered here. When we consider a positively charged impurity, the negative ions accumulate close to the impurity leaving an excess of positive charge that accumulates at the boundary of the disk. Due to the symmetry under charge exchange, the opposite effect takes place when we place a negative impurity. Both cases in which the impurity charge is an integer multiple of the particle charges in the plasma, ±e, and where a fraction of them are considered, require a slightly different mathematical treatment, showing the effect of the quantization of plasma charges. The bulk and the tension effects in the plasma described by the grand potential are not modified by the introduction of the charged particle. Apart from the effects due to the collapse coming from the attraction between oppositely charged ions, an additional topological term appears in the grand potential, proportional to -n2 ln(mR), with n the dimensionless charge of the particle. This term modifies the central charge of the system, from c = 1 to c = 1 - 6n2, when considered in the context of conformal field theories.

  3. Butanol tolerance regulated by a two-component response regulator Slr1037 in photosynthetic Synechocystis sp. PCC 6803

    PubMed Central

    2014-01-01

    Background Butanol production directly from CO2 in photosynthetic cyanobacteria is restricted by the high toxicity of butanol to the hosts. In previous studies, we have found that a few two-component signal transduction systems (TCSTSs) were differentially regulated in Synechocystis sp. PCC 6803 after butanol treatment. Results To explore regulatory mechanisms of butanol tolerance, in this work, by constructing gene knockout mutants of the butanol-responsive TCSTS genes and conducting tolerance analysis, we uncovered that an orphan slr1037 gene encoding a novel response regulator was involved in butanol tolerance in Synechocystis. Interestingly, the ∆slr1037 mutant grew similarly to the wild type under several other stress conditions tested, which suggests that its regulation on butanol tolerance is specific. Using a quantitative iTRAQ LC-MS/MS proteomics approach coupled with real-time reverse transcription PCR, we further determined the possible butanol-tolerance regulon regulated by Slr1037. The results showed that, after slr1037 deletion, proteins involved in photosynthesis and glycolysis/gluconeogenesis of central metabolic processes, and glutaredoxin, peptide methionine sulfoxide reductase and glucosylglycerol-phosphate synthase with stress-responsive functions were down-regulated, suggesting that Slr1037 may exhibit regulation to a wide range of cellular functions in combating butanol stress. Conclusions The study provided a proteomic description of the putative butanol-tolerance regulon regulated by the slr1037 gene. As the first signal transduction protein identified directly related to butanol tolerance, response regulator Slr1037 could be a natural candidate for transcriptional engineering to improve butanol tolerance in Synechocystis. PMID:24932218

  4. Engineering bright solitons to enhance the stability of two-component Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Radha, R.; Vinayagam, P. S.; Sudharsan, J. B.; Liu, Wu-Ming; Malomed, Boris A.

    2015-12-01

    We consider a system of coupled Gross-Pitaevskii (GP) equations describing a binary quasi-one-dimensional Bose-Einstein condensate (BEC) with intrinsic time-dependent attractive interactions, placed in a time-dependent expulsive parabolic potential, in a special case when the system is integrable (a deformed Manakov's system). Since the nonlinearity in the integrable system which represents binary attractive interactions exponentially decays with time, solitons are also subject to decay. Nevertheless, it is shown that the robustness of bright solitons can be enhanced in this system, making their respective lifetime longer, by matching the time dependence of the interaction strength (adjusted with the help of the Feshbach-resonance management) to the time modulation of the strength of the parabolic potential. The analytical results, and their stability, are corroborated by numerical simulations. In particular, we demonstrate that the addition of random noise does not impact the stability of the solitons.

  5. The influence of reverse energy transport on emission anisotropy in two-component viscous solutions.

    PubMed

    Bojarski, P; Kawski, A

    1992-06-01

    The effect of nonradiative reverse energy transport (NRET) in two donor-acceptor systems was studied experimentally. It was found that the NRET occurring in system I; rhodamine 6G (donor) and rhodamine B (acceptor), considerably lowers the emission anisotropy at medium and high concentrations. These results qualitatively confirm the predictions of the approximate theoretical approach of L. Kulak and C. Bojarski (see the preceding paper). In system II; rhodamine 6G (donor) and Nile Blue (acceptor), for which the NRET process does not occur, a good agreement with no-back-transport theory was obtained.

  6. Two-Component Signaling Regulates Osmotic Stress Adaptation via SskA and the High-Osmolarity Glycerol MAPK Pathway in the Human Pathogen Talaromyces marneffei

    PubMed Central

    Cao, Cunwei; Andrianopoulos, Alex

    2016-01-01

    ABSTRACT For successful infection to occur, a pathogen must be able to evade or tolerate the host’s defense systems. This requires the pathogen to first recognize the host environment and then signal this response to elicit a complex adaptive program in order to activate its own defense strategies. In both prokaryotes and eukaryotes, two-component signaling systems are utilized to sense and respond to changes in the external environment. The hybrid histidine kinases (HHKs) at the start of the two-component signaling pathway have been well characterized in human pathogens. However, how these HHKs regulate processes downstream currently remains unclear. This study describes the role of a response regulator downstream of these HHKs, sskA, in Talaromyces marneffei, a dimorphic human pathogen. sskA is required for asexual reproduction, hyphal morphogenesis, cell wall integrity, osmotic adaptation, and the morphogenesis of yeast cells both in vitro at 37°C and during macrophage infection, but not during dimorphic switching. Comparison of the ΔsskA mutant with a strain in which the mitogen-activated protein kinase (MAPK) of the high-osmolarity glycerol pathway (SakA) has been deleted suggests that SskA acts upstream of this pathway in T. marneffei to regulate these morphogenetic processes. This was confirmed by assessing the amount of phosphorylated SakA in the ΔsskA mutant, antifungal resistance due to a lack of SakA activation, and the ability of a constitutively active sakA allele (sakAF316L) to suppress the ΔsskA mutant phenotypes. We conclude that SskA regulates morphogenesis and osmotic stress adaptation in T. marneffei via phosphorylation of the SakA MAPK of the high-osmolarity glycerol pathway. IMPORTANCE This is the first study in a dimorphic fungal pathogen to investigate the role of a response regulator downstream of two-component signaling systems and its connection to the high-osmolarity glycerol pathway. This study will inspire further research into

  7. Effects of geometrical and energetic nonadditivity on the phase behavior of two-component symmetric mixtures

    NASA Astrophysics Data System (ADS)

    Patrykiejew, A.

    2017-01-01

    Using Monte Carlo simulation methods in the grand-canonical ensemble, we have studied the phase behavior of three-dimensional symmetric binary mixtures of Lennard-Jones particles. We have also elucidated the effects of geometric and energetic nonadditivity on the phase behavior. Phase diagrams for several systems have been evaluated. We have demonstrated that in completely miscible mixtures the geometrical nonadditivity (negative as well as positive) stabilizes a liquid phase leading to a gradual increase of the critical temperature. The mechanism leading to such behavior is different when the system shows negative and positive geometrical nonadditivity. In the case of systems with negative energetic nonadditivity, which may exhibit demixing transition in the liquid phase, their phase behavior is also strongly affected by the geometric non-additivity. The systems with negative geometric nonadditivity have been demonstrated to show reentrant miscibility, while those with positive geometric nonadditivity show enhanced tendency toward mixing at sufficiently high temperatures. We have evaluated phase diagrams for several systems.

  8. Internal Josephson phenomena in a coupled two-component Bose condensate

    NASA Astrophysics Data System (ADS)

    Voronova, Nina S.; Lozovik, Yurii E.

    2015-11-01

    We discuss coherent oscillations between two coupled quantum states of a Bose-Einstein condensate in two-dimensional space at zero temperature. In the system we consider, weak interparticle repulsive interactions occur between the particles in state one only, while the state two particles remain non-interacting. Our theoretical analysis of the coupled generalized Gross-Pitaevskii equations reveals various regimes of oscillatory dynamics for the relative phase and population imbalance between the two subsystems of the condensate, with the energy detuning between the two states being the controlling parameter of the system.

  9. Binary Quantum Turbulence Arising from Countersuperflow Instability in Two-Component Bose-Einstein Condensates

    SciTech Connect

    Takeuchi, Hiromitsu; Ishino, Shungo; Tsubota, Makoto

    2010-11-12

    We theoretically study the development of quantum turbulence from two counter-propagating superfluids of miscible Bose-Einstein condensates by numerically solving the coupled Gross-Pitaevskii equations. When the relative velocity exceeds a critical value, the countersuperflow becomes unstable and quantized vortices are nucleated, which leads to isotropic quantum turbulence consisting of two superflows. It is shown that the binary turbulence can be realized experimentally in a trapped system.

  10. Binary quantum turbulence arising from countersuperflow instability in two-component Bose-Einstein condensates.

    PubMed

    Takeuchi, Hiromitsu; Ishino, Shungo; Tsubota, Makoto

    2010-11-12

    We theoretically study the development of quantum turbulence from two counter-propagating superfluids of miscible Bose-Einstein condensates by numerically solving the coupled Gross-Pitaevskii equations. When the relative velocity exceeds a critical value, the countersuperflow becomes unstable and quantized vortices are nucleated, which leads to isotropic quantum turbulence consisting of two superflows. It is shown that the binary turbulence can be realized experimentally in a trapped system.

  11. Direct-View Multi-Point Two-Component Interferometric Rayleigh Scattering Velocimeter

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Danehy, Paul M.; Gaffney, Richard L., Jr.; Cutler, Andrew D.

    2008-01-01

    This paper describes an instantaneous velocity measurement system based on the Doppler shift of elastically scattered laser light from gas molecules (Rayleigh scattering) relative to an incident laser. The system uses a pulsed laser as the light source, direct-viewing optics to collect the scattered light, an interferometer to analyze spectrally the scattered light mixed with the incident laser light, and a CCD camera to capture the resulting interferogram. The system is capable of simultaneous, spatially (approximately 0.2 mm(exp 3)) and temporally (approximately 40 ns) resolved, multiple point measurements of two orthogonal components of flow velocity in the presence of background scattered light, acoustic noise and vibrations, and flow particulates. Measurements in a large-scale axi-symmetric Mach 1.6 H2-air combustion-heated jet running at a flow sensible enthalpy specific to Mach 5.5 hypersonic flight are performed to demonstrate the technique. The measurements are compared with CFD calculations using a finite-volume discretization of the Favre-averaged Navier-Stokes equations (VULCAN code).

  12. Pair-correlation functions and phase separation in a two-component point Yukawa fluid

    NASA Astrophysics Data System (ADS)

    Hopkins, P.; Archer, A. J.; Evans, R.

    2006-02-01

    We investigate the structure of a binary mixture of particles interacting via purely repulsive point Yukawa pair potentials with a common inverse screening length λ. Using the hypernetted chain closure to the Ornstein-Zernike equations, we find that for a system with "ideal" (Berthelot mixing rule) pair-potential parameters for the interaction between unlike species, the asymptotic decay of the total correlation functions crosses over from monotonic to damped oscillatory on increasing the fluid total density at fixed composition. This gives rise to a Kirkwood line in the phase diagram. We also consider a "nonideal" system, in which the Berthelot mixing rule is multiplied by a factor (1+δ). For any δ >0 the system exhibits fluid-fluid phase separation and remarkably the ultimate decay of the correlation functions is now monotonic for all (mixture) state points. Only in the limit of vanishing concentration of either species does one find oscillatory decay extending to r =∞. In the nonideal case the simple random-phase approximation provides a good description of the phase separation and the accompanying Lifshitz line.

  13. Spatially Resolved Imaging of the Two-component η Crv Debris Disk with Herschel

    NASA Astrophysics Data System (ADS)

    Duchêne, G.; Arriaga, P.; Wyatt, M.; Kennedy, G.; Sibthorpe, B.; Lisse, C.; Holland, W.; Wisniewski, J.; Clampin, M.; Kalas, P.; Pinte, C.; Wilner, D.; Booth, M.; Horner, J.; Matthews, B.; Greaves, J.

    2014-04-01

    We present far-infrared and submillimeter images of the η Crv debris disk system obtained with Herschel and SCUBA-2, as well as Hubble Space Telescope visible and near-infrared coronagraphic images. In the 70 μm Herschel image, we clearly separate the thermal emission from the warm and cold belts in the system, find no evidence for a putative dust population located between them, and precisely determine the geometry of the outer belt. We also find marginal evidence for azimuthal asymmetries and a global offset of the outer debris ring relative to the central star. Finally, we place stringent upper limits on the scattered light surface brightness of the outer ring. Using radiative transfer modeling, we find that it is impossible to account for all observed properties of the system under the assumption that both rings contain dust populations with the same properties. While the outer belt is in reasonable agreement with the expectations of steady-state collisional cascade models, albeit with a minimum grain size that is four times larger than the blow-out size, the inner belt appears to contain copious amounts of small dust grains, possibly below the blow-out size. This suggests that the inner belt cannot result from a simple transport of grains from the outer belt and rather supports a more violent phenomenon as its origin. We also find that the emission from the inner belt has not declined over three decades, a much longer timescale than its dynamical timescale, which indicates that the belt is efficiently replenished.

  14. FRAN and RBF-PSO as two components of a hyper framework to recognize protein folds.

    PubMed

    Abbasi, Elham; Ghatee, Mehdi; Shiri, M E

    2013-09-01

    In this paper, an intelligent hyper framework is proposed to recognize protein folds from its amino acid sequence which is a fundamental problem in bioinformatics. This framework includes some statistical and intelligent algorithms for proteins classification. The main components of the proposed framework are the Fuzzy Resource-Allocating Network (FRAN) and the Radial Bases Function based on Particle Swarm Optimization (RBF-PSO). FRAN applies a dynamic method to tune up the RBF network parameters. Due to the patterns complexity captured in protein dataset, FRAN classifies the proteins under fuzzy conditions. Also, RBF-PSO applies PSO to tune up the RBF classifier. Experimental results demonstrate that FRAN improves prediction accuracy up to 51% and achieves acceptable multi-class results for protein fold prediction. Although RBF-PSO provides reasonable results for protein fold recognition up to 48%, it is weaker than FRAN in some cases. However the proposed hyper framework provides an opportunity to use a great range of intelligent methods and can learn from previous experiences. Thus it can avoid the weakness of some intelligent methods in terms of memory, computational time and static structure. Furthermore, the performance of this system can be enhanced throughout the system life-cycle.

  15. Recovering four-component solutions by the inverse transformation of the infinite-order two-component wave functions

    SciTech Connect

    Barysz, Maria; Mentel, Lukasz; Leszczynski, Jerzy

    2009-04-28

    The two-component Hamiltonian of the infinite-order two-component (IOTC) theory is obtained by a unitary block-diagonalizing transformation of the Dirac-Hamiltonian. Once the IOTC spin orbitals are calculated, they can be back transformed into four-component solutions. The transformed four component solutions are then used to evaluate different moments of the electron density distribution. This formally exact method may, however, suffer from certain approximations involved in its numerical implementation. As shown by the present study, with sufficiently large basis set of Gaussian functions, the Dirac values of these moments are fully recovered in spite of using the approximate identity resolution into eigenvectors of the p{sup 2} operator.

  16. Localized nonlinear matter waves in two-component Bose-Einstein condensates with time- and space-modulated nonlinearities

    SciTech Connect

    Wang Dengshan; Hu Xinghua; Liu, W. M.

    2010-08-15

    We investigate the localized nonlinear matter waves in the two-component Bose-Einstein condensates with time- and space-modulated nonlinearities analytically and numerically. The similarity transformations are developed to solve the coupled Gross-Pitaevskii equations and two families of explicitly exact solutions are derived. Our results show that not only the attractive spatiotemporal inhomogeneous interactions but the repulsive ones support novel localized nonlinear matter waves in two-component Bose-Einstein condensates. The dynamics of these matter waves, including the breathing solitons, quasibreathing solitons, resonant solitons, and moving solitons, is discussed. We confirm the stability of the exact solutions by adding various initial stochastic noise and study the general cases of the interaction parameters numerically. We also provide the experimental parameters to produce these phenomena in future experiments.

  17. Intermediate and High-Frequency Acoustic Backscattering Cross Sections for Water-Ice Interfaces: I. Two-Component Profile Models.

    DTIC Science & Technology

    2014-09-26

    Ice Research in the Arctic Ocean via Submarine," Trans. N.Y. Acad. of Sciences 23, 662-674, 1961. [2]. R. H. Mellen, "Underwater Acoustic Scattering...Backscattenng Cross Sections for Water- Ice Interfaces: I. Two.Component Profile Models r2avid Middleton CV) (Consultant) Associate Technical Director LC...Distribution unlimited. --. Preface This work was accomplished under NUSC’s Arctic Program, Code 01Y and Code 10. The sponsoring activity is the Naval

  18. Rabi-coupled two-component Bose-Einstein condensates: Classification of the ground states, defects, and energy estimates

    NASA Astrophysics Data System (ADS)

    Aftalion, Amandine; Mason, Peter

    2016-08-01

    We classify the ground states and topological defects of two-component Bose-Einstein condensates under the effect of internal coherent Rabi coupling. We present numerical phase diagrams which show the boundaries between symmetry-breaking components and various vortex patterns (triangular, square, bound state between vortices). We estimate the Rabi energy in the Thomas-Fermi limit which allows us to have an analytical description of the point energy leading to the formation of the various vortex patterns.

  19. Enhanced Spectral Anisotropies Near the Proton-Cyclotron Scale: Possible Two-Component Structure in Hall-FLR MHD Turbulence Simulations

    NASA Technical Reports Server (NTRS)

    Ghosh, Sanjoy; Goldstein, Melvyn L.

    2011-01-01

    Recent analysis of the magnetic correlation function of solar wind fluctuations at 1 AU suggests the existence of two-component structure near the proton-cyclotron scale. Here we use two-and-one-half dimensional and three-dimensional compressible MHD models to look for two-component structure adjacent the proton-cyclotron scale. Our MHD system incorporates both Hall and Finite Larmor Radius (FLR) terms. We find that strong spectral anisotropies appear adjacent the proton-cyclotron scales depending on selections of initial condition and plasma beta. These anisotropies are enhancements on top of related anisotropies that appear in standard MHD turbulence in the presence of a mean magnetic field and are suggestive of one turbulence component along the inertial scales and another component adjacent the dissipative scales. We compute the relative strengths of linear and nonlinear accelerations on the velocity and magnetic fields to gauge the relative influence of terms that drive the system with wave-like (linear) versus turbulent (nonlinear) dynamics.

  20. Comparative transcriptome analysis of Brucella melitensis in an acidic environment: Identification of the two-component response regulator involved in the acid resistance and virulence of Brucella.

    PubMed

    Liu, Qianhong; Liu, Xingyu; Yan, Feng; He, Yuhua; Wei, Jie; Zhang, Yuanyuan; Liu, Lu; Sun, Youpeng

    2016-02-01

    Brucella melitensis, encounters a very stressful environment in phagosomes, especially low pH levels. So identifying the genes that contribute to the replication and survival within an acidic environment is critical in understanding the pathogenesis of the Brucella bacteria. In our research, comparative transcriptome with RNA-seq were used to analyze the changes of genes in normal-medium culture and in pH4.4-medium culture. The results reveal that 113 genes expressed with significant differences (|log2Ratio| ≥ 3); about 44% genes expressed as up-regulated. With GO term analysis, structural constituent of the ribosome, rRNA binding, structural molecule activity, and cation-transporting ATPase activity were significantly enriched (p-value ≤ 0.05). These genes distributed in 51 pathways, in which ribosome and photosynthesis pathways were significantly enriched. Six pathways (oxidative phosphorylation, iron-transporting, bacterial secretion system, transcriptional regulation, two-component system, and ABC transporters pathways) tightly related to the intracellular survival and virulence of Brucella were analyzed. A two-component response regulator gene in the transcriptional regulation pathway, identified through gene deletion and complementary technologies, played an important role in the resistance to the acid-resistance and virulence of Brucella.

  1. A comparative experimental evaluation of uncertainty estimation methods for two-component PIV

    NASA Astrophysics Data System (ADS)

    Boomsma, Aaron; Bhattacharya, Sayantan; Troolin, Dan; Pothos, Stamatios; Vlachos, Pavlos

    2016-09-01

    Uncertainty quantification in planar particle image velocimetry (PIV) measurement is critical for proper assessment of the quality and significance of reported results. New uncertainty estimation methods have been recently introduced generating interest about their applicability and utility. The present study compares and contrasts current methods, across two separate experiments and three software packages in order to provide a diversified assessment of the methods. We evaluated the performance of four uncertainty estimation methods, primary peak ratio (PPR), mutual information (MI), image matching (IM) and correlation statistics (CS). The PPR method was implemented and tested in two processing codes, using in-house open source PIV processing software (PRANA, Purdue University) and Insight4G (TSI, Inc.). The MI method was evaluated in PRANA, as was the IM method. The CS method was evaluated using DaVis (LaVision, GmbH). Utilizing two PIV systems for high and low-resolution measurements and a laser doppler velocimetry (LDV) system, data were acquired in a total of three cases: a jet flow and a cylinder in cross flow at two Reynolds numbers. LDV measurements were used to establish a point validation against which the high-resolution PIV measurements were validated. Subsequently, the high-resolution PIV measurements were used as a reference against which the low-resolution PIV data were assessed for error and uncertainty. We compared error and uncertainty distributions, spatially varying RMS error and RMS uncertainty, and standard uncertainty coverages. We observed that qualitatively, each method responded to spatially varying error (i.e. higher error regions resulted in higher uncertainty predictions in that region). However, the PPR and MI methods demonstrated reduced uncertainty dynamic range response. In contrast, the IM and CS methods showed better response, but under-predicted the uncertainty ranges. The standard coverages (68% confidence interval) ranged from

  2. Localization of a two-component Bose-Einstein condensate in a one-dimensional random potential

    NASA Astrophysics Data System (ADS)

    Xi, Kui-Tian; Li, Jinbin; Shi, Da-Ning

    2015-02-01

    We consider a weakly interacting two-component Bose-Einstein condensate (BEC) in a one-dimensional random speckle potential. The problem is studied with solutions of Gross-Pitaevskii (GP) equations by means of numerical method in Crank-Nicolson scheme. Properties of various cases owing to the competition of disorder and repulsive interactions of a cigar-shaped two-component BEC are discussed in detail. It is shown that in the central region, phase separation of a two-component BEC is not only affected by the intra- and inter-component interactions, but also influenced by the strength of the random speckle potential. Due to the strong disorder of the potential, the criterion of phase separation which is independent of the trap strength in an ordered potential, such as a harmonic potential, is no longer available. The influence of different random numbers generated by distinct processes on localization of BEC in the random potential is also investigated, as well as the configurations of the density profiles in the tail regions.

  3. Biomimetic Nanofibrillation in Two-Component Biopolymer Blends with Structural Analogs to Spider Silk

    NASA Astrophysics Data System (ADS)

    Xie, Lan; Xu, Huan; Li, Liang-Bin; Hsiao, Benjamin S.; Zhong, Gan-Ji; Li, Zhong-Ming

    2016-10-01

    Despite the enormous potential in bioinspired fabrication of high-strength structure by mimicking the spinning process of spider silk, currently accessible routes (e.g., microfluidic and electrospinning approaches) still have substantial function gaps in providing precision control over the nanofibrillar superstructure, crystalline morphology or molecular orientation. Here the concept of biomimetic nanofibrillation, by copying the spiders’ spinning principles, was conceived to build silk-mimicking hierarchies in two-phase biodegradable blends, strategically involving the stepwise integration of elongational shear and high-pressure shear. Phase separation confined on nanoscale, together with deformation of discrete phases and pre-alignment of polymer chains, was triggered in the elongational shear, conferring the readiness for direct nanofibrillation in the latter shearing stage. The orderly aligned nanofibrils, featuring an ultralow diameter of around 100 nm and the “rigid‑soft” system crosslinked by nanocrystal domains like silk protein dopes, were secreted by fine nanochannels. The incorporation of multiscale silk-mimicking structures afforded exceptional combination of strength, ductility and toughness for the nanofibrillar polymer composites. The proposed spider spinning-mimicking strategy, offering the biomimetic function integration unattainable with current approaches, may prompt materials scientists to pursue biopolymer mimics of silk with high performance yet light weight.

  4. A two-component volatile atmosphere for Pluto. I. The bulk hydrodynamic escape regime

    SciTech Connect

    Trafton, L. )

    1990-08-01

    The seasonal effects on Pluto's atmosphere of a simplified system of CH{sub 4} and N{sub 2} saturated over a solid solution are investigated, and the results are compared with previous CH{sub 4} models. It is found that bulk escape occurs for CH{sub 4} mole fractions less than 0.7 of Pluto's volatile reservoir. Greater CH{sub 4} abundance leads to diffusive separation during the escape of both species and an atmospheric mixing ratio of about Xc(0). If Xc(0) is in the range 0.02-0.10, Pluto's atmosphere remains largely intact at aphelion rather than virtually freezing out as it does for Xc(0) greater than 0.3 or less than 0.001, or form an atmosphere with only a single volatile gas. An upper limit for the CH{sub 4} mixing ratio is about 0.07 if N{sub 2} is the second gas. On the other hand, CH{sub 4} is the dominant surface constituent of the volatile deposit if Xc(0) is greater than 0.0001. 29 refs.

  5. Phase equilibria in DOPC/DPPC: Conversion from gel to subgel in two component mixtures.

    PubMed

    Schmidt, Miranda L; Ziani, Latifa; Boudreau, Michelle; Davis, James H

    2009-11-07

    Biological membranes contain a mixture of phospholipids with varying degrees of hydrocarbon chain unsaturation. Mixtures of long chain saturated and unsaturated lipids with cholesterol have attracted a lot of attention because of the formation of two coexisting fluid bilayer phases in such systems over a broad range of temperature and composition. Interpretation of the phase behavior of such ternary mixtures must be based on a thorough understanding of the phase behavior of the binary mixtures formed with the same components. This article describes the phase behavior of mixtures of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) with 1,2-di-d(31)-palmitoyl-sn-glycero-3-phosphocholine (DPPC) between -20 and 50 degrees C. Particular attention has been paid to the phase coexistence below about 16 degrees C where the subgel phase appears. The changes in the shape of the spectrum (and its spectral moments) during the slow transformation process leads to the conclusion that below 16 degrees C the gel phase is metastable and the gel component of the two-phase mixture slowly transforms to the subgel phase with a slightly different composition. This results in a line of three-phase coexistence near 16 degrees C. Analysis of the transformation of the metastable gel domains into the subgel phase using the nucleation and growth model shows that the subgel domain growth is a two dimensional process.

  6. Biomimetic Nanofibrillation in Two-Component Biopolymer Blends with Structural Analogs to Spider Silk

    PubMed Central

    Xie, Lan; Xu, Huan; Li, Liang-Bin; Hsiao, Benjamin S.; Zhong, Gan-Ji; Li, Zhong-Ming

    2016-01-01

    Despite the enormous potential in bioinspired fabrication of high-strength structure by mimicking the spinning process of spider silk, currently accessible routes (e.g., microfluidic and electrospinning approaches) still have substantial function gaps in providing precision control over the nanofibrillar superstructure, crystalline morphology or molecular orientation. Here the concept of biomimetic nanofibrillation, by copying the spiders’ spinning principles, was conceived to build silk-mimicking hierarchies in two-phase biodegradable blends, strategically involving the stepwise integration of elongational shear and high-pressure shear. Phase separation confined on nanoscale, together with deformation of discrete phases and pre-alignment of polymer chains, was triggered in the elongational shear, conferring the readiness for direct nanofibrillation in the latter shearing stage. The orderly aligned nanofibrils, featuring an ultralow diameter of around 100 nm and the “rigid−soft” system crosslinked by nanocrystal domains like silk protein dopes, were secreted by fine nanochannels. The incorporation of multiscale silk-mimicking structures afforded exceptional combination of strength, ductility and toughness for the nanofibrillar polymer composites. The proposed spider spinning-mimicking strategy, offering the biomimetic function integration unattainable with current approaches, may prompt materials scientists to pursue biopolymer mimics of silk with high performance yet light weight. PMID:27694989

  7. Nonequilibrium phenomena in the phase separation of a two-component lipid bilayer.

    PubMed Central

    de Almeida, Rodrigo F M; Loura, Luís M S; Fedorov, Aleksandre; Prieto, Manuel

    2002-01-01

    Lipid bilayers composed of two phospholipids with significant acyl-chain mismatch behave as nonideal mixtures. Although many of these systems are well characterized from the equilibrium point of view, studies concerning their nonequilibrium dynamics are still rare. The kinetics of lipid demixing (phase separation) was studied in model membranes (large unilamellar vesicles of 1:1 dilauroylphosphatidylcholine (C(12) acyl chain) and distearoylphosphatidylcholine (C(18) acyl chain)). For this purpose, photophysical techniques (fluorescence intensity, anisotropy, and fluorescence resonance energy transfer) were applied using suitable probes (gel phase probe trans-parinaric acid and fluid phase probe N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-dilauroylphosphatidylethanolamine). The nonequilibrium situation was induced by a sudden thermal quench from a one-fluid phase equilibrium situation (higher temperature) to the gel/fluid coexistence range (lower temperature). We verified that the attainment of equilibrium is a very slow process (occurs in a time scale of hours), leading to large domains at infinite time. The nonequilibrium structure stabilization is due essentially to temporarily rigidified C(12) chains in the interface between gel/fluid domains, which decrease the interfacial tension by acting as surfactants. The relaxation process becomes faster with the increase of the temperature drop. In addition, heterogeneity is already present in the supposed homogeneous fluid mixture at the higher temperature. PMID:11806924

  8. Magnons and a two-component spin gap in FeV2O4

    SciTech Connect

    MacDougall, Prof. Gregory J.; Brodsky, Mr. Isaac; Aczel, Adam A; Garlea, Vasile O; Granroth, Garrett E; Christianson, Andrew D; Hong, Tao; Zhou, Prof. Haidong; Nagler, Stephen E

    2014-01-01

    The spinel vanadates have become a model family for exploring orbital order on the frustrated pyrochlore lattice, and recent debate has focused on the symmetry of local crystal fields at the cation sites. Here, we present neutron scattering measurements of the magnetic excitation spectrum in FeV2O4, a recent example of a ferrimagnetic spinel vanadate which is available in single-crystal form.We report the existence of two emergent magnon modes at low temperatures, which draw strong parallels with the closely related material, MnV2O4. We were able to reproduce the essential elements of both the magnetic ordering pattern and the dispersion of the inelastic modes with semiclassical spin-wave calculations, using a minimal model that implies a sizable single-ion anisotropy on the vanadium sublattice. Taking into account the direction of ordered spins, we associate this anisotropy with the large trigonal distortion of VO6 octahedra, previously observed via neutron powder diffractionmeasurements. We further report on the spin gap, which is an order of magnitude larger than that observed in MnV2O4. By looking at the overall temperature dependence, we were able to show that the gap magnitude is largely associated with the ferro-orbital order known to exist on the iron sublattice, but the contribution to the gap from the vanadium sublattice is in fact comparable to what is reported in the Mn compound. This reinforces the conclusion that the spin canting transition is associated with the ordering of vanadium orbitals in this system, and closer analysis indicates closely related physics underlying orbital transitions in FeV2O4 and MnV2O4.

  9. Fitting a Two-Component Scattering Model to Polarimetric SAR Data from Forests

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony

    2007-01-01

    Two simple scattering mechanisms are fitted to polarimetric synthetic aperture radar (SAR) observations of forests. The mechanisms are canopy scatter from a reciprocal medium with azimuthal symmetry and a ground scatter term that can represent double-bounce scatter from a pair of orthogonal surfaces with different dielectric constants or Bragg scatter from a moderately rough surface, which is seen through a layer of vertically oriented scatterers. The model is shown to represent the behavior of polarimetric backscatter from a tropical forest and two temperate forest sites by applying it to data from the National Aeronautic and Space Agency/Jet Propulsion Laboratory's Airborne SAR (AIRSAR) system. Scattering contributions from the two basic scattering mechanisms are estimated for clusters of pixels in polarimetric SAR images. The solution involves the estimation of four parameters from four separate equations. This model fit approach is justified as a simplification of more complicated scattering models, which require many inputs to solve the forward scattering problem. The model is used to develop an understanding of the ground-trunk double-bounce scattering that is present in the data, which is seen to vary considerably as a function of incidence angle. Two parameters in the model fit appear to exhibit sensitivity to vegetation canopy structure, which is worth further exploration. Results from the model fit for the ground scattering term are compared with estimates from a forward model and shown to be in good agreement. The behavior of the scattering from the ground-trunk interaction is consistent with the presence of a pseudo-Brewster angle effect for the air-trunk scattering interface. If the Brewster angle is known, it is possible to directly estimate the real part of the dielectric constant of the trunks, a key variable in forward modeling of backscatter from forests. It is also shown how, with a priori knowledge of the forest height, an estimate for the

  10. A two-component monooxygenase catalyzes both the hydroxylation of p-nirophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905

    SciTech Connect

    Kadiyala, V.; Spain, J.C.

    1998-07-01

    Bacteria that metabolize p-nitrophenol (PNP) oxidize the substrate to 3-ketoadipic acid via either hydroquinone or 1,2,4-trihydroxybenzene (THB); however, initial steps in the pathway for PNP biodegradation via THB are unclear. The product of initial hydroxylation of PNP could be either 4-nitrocatechol or 4-nitroresorcinol. Here the authors describe the complete pathway for aerobic PNP degradation by Bacillus sphaericus JS905 that was isolated by selective enrichment from an agricultural soil in India. Washed cells of PNP-grown JS905 released nitrite in stoichiometric amounts from PNP and 4-nitrocatechol. Experiments with extracts obtained from PNP-grown cells revealed that the initial reaction is a hydroxylation of PNP to yield 4-nitrocatechol. 4-nitrocatechol is subsequently oxidized to THB with the concomitant removal of the nitro group as nitrite. The enzyme that catalyzed the two sequential monooxygenations of PNP was partially purified and separated into two components by anion-exchange chromatography and size exclusion chromatography. Both components were required for NADH-dependent oxidative release of nitrite from PNP or 4-nitrocatechol. One of the components was identified as a reductase based on its ability to catalyze the NAD(P)H-dependent reduction of 2,6-dichlorophenolindophenol and nitroblue tetrazolium. Nitrite release from either PNP or 4-nitrocatechol was inhibited by the flavoprotein inhibitor methimazole. Their results indicate that the two monooxygenations of PNP to THB are catalyzed by a single two-component enzyme system comprising a flavoprotein reductase and an oxygenase.

  11. A novel two-component response regulator links rpf with biofilm formation and virulence of Xanthomonas axonopodis pv. citri.

    PubMed

    Huang, Tzu-Pi; Lu, Kuan-Min; Chen, Yu-Hsuan

    2013-01-01

    Citrus bacterial canker caused by Xanthomonas axonopodis pv. citri is a serious disease that impacts citrus production worldwide, and X. axonopodis pv. citri is listed as a quarantine pest in certain countries. Biofilm formation is important for the successful development of a pathogenic relationship between various bacteria and their host(s). To understand the mechanisms of biofilm formation by X. axonopodis pv. citri strain XW19, the strain was subjected to transposon mutagenesis. One mutant with a mutation in a two-component response regulator gene that was deficient in biofilm formation on a polystyrene microplate was selected for further study. The protein was designated as BfdR for biofilm formation defective regulator. BfdR from strain XW19 shares 100% amino acid sequence identity with XAC1284 of X. axonopodis pv. citri strain 306 and 30-100% identity with two-component response regulators in various pathogens and environmental microorganisms. The bfdR mutant strain exhibited significantly decreased biofilm formation on the leaf surfaces of Mexican lime compared with the wild type strain. The bfdR mutant was also compromised in its ability to cause canker lesions. The wild-type phenotype was restored by providing pbfdR in trans in the bfdR mutant. Our data indicated that BfdR did not regulate the production of virulence-related extracellular enzymes including amylase, lipase, protease, and lecithinase or the expression of hrpG, rfbC, and katE; however, BfdR controlled the expression of rpfF in XVM2 medium, which mimics cytoplasmic fluids in planta. In conclusion, biofilm formation on leaf surfaces of citrus is important for canker development in X. axonopodis pv. citri XW19. The process is controlled by the two-component response regulator BfdR via regulation of rpfF, which is required for the biosynthesis of a diffusible signal factor.

  12. Positron States at Li- and O-adsorbed Fe(001) Ferromagnetic Surfaces Studied by Two-Component Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Hagiwara, Satoshi; Watanabe, Kazuyuki

    2016-11-01

    The positron states for Li- and O-adsorbed Fe(001) ferromagnetic surfaces are studied by using two-component density functional theory. Positron surface lifetimes and positron binding energies are found to be sensitive to changes in the surface structure and the dipole barrier induced by adatoms, which can be understood by the positron density distribution and surface potential. Spin-dependent positron lifetime fractions are in excellent agreement with spin-polarization fractions at the topmost surface, because the localized positrons at the surface are sensitive to the surface magnetic state. Therefore, the present results show that spin-polarized positron annihilation spectroscopy can extract the outermost surface magnetic state.

  13. Classification of the ground states and topological defects in a rotating two-component Bose-Einstein condensate

    SciTech Connect

    Mason, Peter; Aftalion, Amandine

    2011-09-15

    We classify the ground states and topological defects of a rotating two-component condensate when varying several parameters: the intracomponent coupling strengths, the intercomponent coupling strength, and the particle numbers. No restriction is placed on the masses or trapping frequencies of the individual components. We present numerical phase diagrams which show the boundaries between the regions of coexistence, spatial separation, and symmetry breaking. Defects such as triangular coreless vortex lattices, square coreless vortex lattices, and giant skyrmions are classified. Various aspects of the phase diagrams are analytically justified thanks to a nonlinear {sigma} model that describes the condensate in terms of the total density and a pseudo-spin representation.

  14. Superfluidity and solid order in a two-component Bose gas with dipolar interactions in an optical lattice

    NASA Astrophysics Data System (ADS)

    Kuno, Yoshihito; Suzuki, Keita; Ichinose, Ikuo

    2014-12-01

    In this paper, we study an extended bosonic t-J model in an optical lattice, which describes two-component hard-core bosons with nearest-neighbor pseudospin interactions and, also, inter- and intraspecies dipole-dipole interactions. In particular, we focus on the case in which two-component hard-core bosons have antiparallel polarized dipoles with each other. The global phase diagram is studied by means of the Gutzwiller variational method and also quantum Monte Carlo (QMC) simulations. Both calculations show that a striped solid order, besides a checkerboard one, appears as a result of the dipole-dipole interactions. By QMC, we find that two kinds of supersolids (SSs) form, i.e., checkerboard SS and striped SS, and we also verify the existence of an exotic phase between the striped solid and the checkerboard SS. Finally, by QMC, we study the t-J-like model, which was recently realized experimentally by A. de Paz et al. [Phys. Rev. Lett. 111, 185305 (2013), 10.1103/PhysRevLett.111.185305].

  15. Stable and unstable vector dark solitons of coupled nonlinear Schroedinger equations: Application to two-component Bose-Einstein condensates

    SciTech Connect

    Brazhnyi, V.A.; Konotop, V.V.

    2005-08-01

    The dynamics of vector dark solitons in two-component Bose-Einstein condensates is studied within the framework of coupled one-dimensional nonlinear Schroedinger (NLS) equations. We consider the small-amplitude limit in which the coupled NLS equations are reduced to coupled Korteweg-de Vries (KdV) equations. For a specific choice of the parameters the obtained coupled KdV equations are exactly integrable. We find that there exist two branches of (slow and fast) dark solitons corresponding to the two branches of the sound waves. Slow solitons, corresponding to the lower branch of the acoustic wave, appear to be unstable and transform during the evolution into stable fast solitons (corresponding to the upper branch of the dispersion law). Vector dark solitons of arbitrary depths are studied numerically. It is shown that effectively different parabolic traps, to which the two components are subjected, cause an instability of the solitons, leading to a splitting of their components and subsequent decay. A simple phenomenological theory, describing the oscillations of vector dark solitons in a magnetic trap, is proposed.

  16. Competition between attractive and repulsive interactions in two-component Bose-Einstein condensates trapped in an optical lattice

    SciTech Connect

    Matuszewski, Michal; Malomed, Boris A.; Trippenbach, Marek

    2007-10-15

    We consider effects of interspecies attraction on two-component gap solitons (GSs) in the binary BEC with intraspecies repulsion, trapped in the one-dimensional optical lattice (OL). Systematic simulations of the coupled Gross-Pitaevskii equations corroborate an assumption that, because the effective mass of GSs is negative, the interspecies attraction may split the two-component soliton. Two critical values, {kappa}{sub 1} and {kappa}{sub 2}, of the OL strength ({kappa}) are identified. Two-species GSs with fully overlapping wave functions are stable in strong lattices ({kappa}>{kappa}{sub 1}). In an intermediate region, {kappa}{sub 1}>{kappa}>{kappa}{sub 2}, the soliton splits into a double-humped state with separated components. Finally, in weak lattices ({kappa}<{kappa}{sub 2}), the splitting generates a pair of freely moving single-species GSs. We present and explain the dependence of {kappa}{sub 1} and {kappa}{sub 2} on the number of atoms (total norm), and on the relative strength of the competing interspecies attraction and intraspecies repulsion. The splitting of asymmetric solitons, with unequal norms of the two species, is briefly considered too. It is found and explained that the splitting threshold grows with the increase of the asymmetry.

  17. An efficient spectral method for computing dynamics of rotating two-component Bose-Einstein condensates via coordinate transformation

    NASA Astrophysics Data System (ADS)

    Ming, Ju; Tang, Qinglin; Zhang, Yanzhi

    2014-02-01

    In this paper, we propose an efficient and accurate numerical method for computing the dynamics of rotating two-component Bose-Einstein condensates (BECs) which is described by the coupled Gross-Pitaevskii equations (CGPEs) with an angular momentum rotation term and an external driving field. By introducing rotating Lagrangian coordinates, we eliminate the angular momentum rotation term from the CGPEs, which allows us to develop an efficient numerical method. Our method has spectral accuracy in all spatial dimensions and moreover it can be easily implemented in practice. To examine its performance, we compare our method with those reported in the literature. Numerical results show that to achieve the same accuracy, our method takes much shorter computing time. We also apply our method to study issues such as dynamics of vortex lattices and giant vortices in rotating two-component BECs. Furthermore, we generalize our method to solve the vector Gross-Pitaevskii equations (VGPEs) which is used to study rotating multi-component BECs.

  18. The NMR structure of the sensory domain of the membranous two-component fumarate sensor (histidine protein kinase) DcuS of Escherichia coli.

    PubMed

    Pappalardo, Lucia; Janausch, Ingo G; Vijayan, Vinesh; Zientz, Eva; Junker, Jochen; Peti, Wolfgang; Zweckstetter, Markus; Unden, Gottfried; Griesinger, Christian

    2003-10-03

    The structure of the water-soluble, periplasmic domain of the fumarate sensor DcuS (DcuS-pd) has been determined by NMR spectroscopy in solution. DcuS is a prototype for a sensory histidine kinase with transmembrane signal transfer. DcuS belongs to the CitA family of sensors that are specific for sensing di- and tricarboxylates. The periplasmic domain is folded autonomously and shows helices at the N and the C terminus, suggesting direct linking or connection to helices in the two transmembrane regions. The structure constitutes a novel fold. The nearest structural neighbor is the Per-Arnt-Sim domain of the photoactive yellow protein that binds small molecules covalently. Residues Arg107, His110, and Arg147 are essential for fumarate sensing and are found clustered together. The structure constitutes the first periplasmic domain of a two component sensory system and is distinctly different from the aspartate sensory domain of the Tar chemotaxis sensor.

  19. Formation of supramolecular hydrogels with controlled microstructures and stability via molecular assembling in a two-component system.

    PubMed

    Wu, Jiwei; Tang, Liming; Chen, Kai; Yan, Liang; Li, Fei; Wang, Yujiang

    2007-03-01

    Two isomeric building units, 4-oxo-4-(2-pyridinylamino) butanoic acid (defined as G1) and 4-oxo-4-(3-pyridinylamino) butanoic acid (defined as G2) formed fiber- and tree-like crystals in aqueous solutions, respectively. The crystal formation process of G1 was suggested based on the layered cross section of an individual crystal and the single crystal structure. Through cooling the aqueous solutions of their mixtures under G1/G2 molar ratios ranged from 7/1 to 1/3, a series of supramolecular hydrogels were formed based on hydrogen bonds as the main driving force. As decreasing G1/G2 ratios, the first observed aggregates in solution changed from fiber to particle form, while the gelating time became longer and longer. At the collapsing temperature, the gels formed at G1/G2 ratio 3/1 kept the original gel shape but released water, while at G1/G2 ratio 2/1 they broke into pieces without releasing water. The "dropping ball" experiment indicated that the highest gel-to-sol dissociation temperature (T(gel)) is obtained at G1/G2 ratio of 2/1. As measured by UV-vis spectroscopy, the two building units distributed uniformly within the gel formed at G1/G2 ratio of 1/1, indicating they assembled together in forming hydrogel. The scanning electron microscope (SEM) and infrared spectrometer (FT-IR) analysis of the dried samples indicated that the backbone shape changed from fiber to sheet and the content of free carboxyl groups increased with decreasing G1/G2 ratios, therefore resulting in hydrogels with different stability. The simple gelator structures and the possibility in controlling gel structure and stability make the hydrogels suitable for various uses.

  20. RegB/RegA, a Highly Conserved Redox-Responding Global Two-Component Regulatory System

    PubMed Central

    Elsen, Sylvie; Swem, Lee R.; Swem, Danielle L.; Bauer, Carl E.

    2004-01-01

    The Reg regulon from Rhodobacter capsulatus and Rhodobacter sphaeroides encodes proteins involved in numerous energy-generating and energy-utilizing processes such as photosynthesis, carbon fixation, nitrogen fixation, hydrogen utilization, aerobic and anaerobic respiration, denitrification, electron transport, and aerotaxis. The redox signal that is detected by the membrane-bound sensor kinase, RegB, appears to originate from the aerobic respiratory chain, given that mutations in cytochrome c oxidase result in constitutive RegB autophosphorylation. Regulation of RegB autophosphorylation also involves a redox-active cysteine that is present in the cytosolic region of RegB. Both phosphorylated and unphosphorylated forms of the cognate response regulator RegA are capable of activating or repressing a variety of genes in the regulon. Highly conserved homologues of RegB and RegA have been found in a wide number of photosynthetic and nonphotosynthetic bacteria, with evidence suggesting that RegB/RegA plays a fundamental role in the transcription of redox-regulated genes in many bacterial species. PMID:15187184

  1. Characterization of a two-component regulatory system that regulates succinate-mediated catabolite repression in Sinorhizobium meliloti.

    PubMed

    Garcia, Preston P; Bringhurst, Ryan M; Arango Pinedo, Catalina; Gage, Daniel J

    2010-11-01

    When they are available, Sinorhizobium meliloti utilizes C(4)-dicarboxylic acids as preferred carbon sources for growth while suppressing the utilization of some secondary carbon sources such as α- and β-galactosides. The phenomenon of using succinate as the sole carbon source in the presence of secondary carbon sources is termed succinate-mediated catabolite repression (SMCR). Genetic screening identified the gene sma0113 as needed for strong SMCR when S. meliloti was grown in succinate plus lactose, maltose, or raffinose. sma0113 and the gene immediately downstream, sma0114, encode the proteins Sma0113, an HWE histidine kinase with five PAS domains, and Sma0114, a CheY-like response regulator lacking a DNA-binding domain. sma0113 in-frame deletion mutants show a relief of catabolite repression compared to the wild type. sma0114 in-frame deletion mutants overproduce polyhydroxybutyrate (PHB), and this overproduction requires sma0113. Sma0113 may use its five PAS domains for redox level or energy state monitoring and use that information to regulate catabolite repression and related responses.

  2. Development of a Two-Component Strain-Gauge-Balance Load-Measurement System for the DSTO Water Tunnel

    DTIC Science & Technology

    2006-03-01

    normal forces (Z) and pitching moments (m). The strain gauges have been glued onto the balance using a bonding material designated M-BOND 6003...compound designated M-coat C3, a solvent-thinned (naptha) RTV (room temperature vulcanizing ) silicone rubber. Care was taken to not use excessive...70º delta wing at high angles of attack and sideslip. Masters Thesis, Aeronautical Engineering Department, The Wichita State University, USA

  3. Raman-shifted eye-safe aerosol lidar (REAL) in 2010: instrument status and two-component wind measurements

    NASA Astrophysics Data System (ADS)

    Mayor, Shane D.

    2010-10-01

    This paper and corresponding seminar given on 20 September 2010 at the 16th International School for Quantum Electronics in Nesebar, Bulgaria, will describe the key hardware aspects of the Raman-shifted Eye-safe Aerosol Lidar (REAL) and recent advances in extracting two-component wind vector fields from the images it produces. The REAL is an eye-safe, ground-based, scanning, elastic aerosol backscatter lidar operating at 1.54 microns wavelength. Operation at this wavelength offers several advantages compared to other laser wavelengths including: (1) maximum eye-safety, (2) invisible beam, (3) superior performance photodetectors compared with those used at longer wavelengths, (4) low atmospheric molecular scattering when compared with operation at shorter wavelengths, (5) good aerosol backscattering, (6) atmospheric transparency, and (7) availability of optical and photonic components used in the modern telecommunations industry. A key issue for creating a high-performance direct-detection lidar at 1.5 microns is the use of InGaAs avalanche photodetectors that have active areas of at most 200 microns in diameter. The small active area imposes a maximum limitation on the field-of-view of the receiver (about 0.54 mrad full-angle for REAL). As a result, a key requirement is a transmitter that can produce a pulsed (>10 Hz) beam with low divergence (<0.25 mrad full-angle), high pulse-energy (>150 mJ), and short pulse-duration (<10 ns). The REAL achieves this by use of a commercially-available flashlamp-pumped Nd:YAG laser and a custom high-pressure methane gas cell for wavelength shifting via stimulated Raman scattering. The atmospheric aerosol features in the images that REAL produces can be tracked to infer horizontal wind vectors. The method of tracking macroscopic aerosol features has an advantage over Doppler lidars in that two components of motion can be sensed. (Doppler lidars can sense only the radial component of flow.) Two-component velocity estimation is done

  4. Influence of quantum diffraction and shielding on electron-ion collision in two-component semiclassical plasmas

    SciTech Connect

    Hong, Woo-Pyo; Jung, Young-Dae

    2015-01-15

    The influence of quantum diffraction and shielding on the electron-ion collision process is investigated in two-component semiclassical plasmas. The eikonal method and micropotential taking into account the quantum diffraction and shielding are used to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the collision energy, density parameter, Debye length, electron de Broglie wavelength, and the impact parameter. The result shows that the quantum diffraction and shielding effects suppress the eikonal scattering phase shift as well as the differential eikonal collision cross section, especially, in small-impact parameter regions. It is also shown that the quantum shielding effect on the eikonal collision cross section is more important in low-collision energies. In addition, it is found that the eikonal collision cross section increases with an increase in the density parameter. The variations of the eikonal cross section due to the quantum diffraction and shielding effects are also discussed.

  5. Steady-state composition of a two-component gas bubble growing in a liquid solution: self-similar approach.

    PubMed

    Gor, G Yu; Kuchma, A E

    2009-12-21

    The paper presents an analytical description of the growth of a two-component bubble in a binary liquid-gas solution. We obtain asymptotic self-similar time dependence of the bubble radius and analytical expressions for the nonsteady profiles of dissolved gases around the bubble. We show that the necessary condition for the self-similar regime of bubble growth is the constant, steady-state composition of the bubble. The equation for the steady-state composition is obtained. We reveal the dependence of the steady-state composition on the solubility laws of the bubble components. Besides, the universal, independent from the solubility laws, expressions for the steady-state composition are obtained for the case of strong supersaturations, which are typical for the homogeneous nucleation of a bubble.

  6. Quantum diffraction and shielding effects on the low-energy electron-ion bremsstrahlung in two-component semiclassical plasmas

    SciTech Connect

    Lee, Myoung-Jae; Jung, Young-Dae

    2015-10-15

    The quantum diffraction and shielding effects on the low-energy bremsstrahlung process are investigated in two-component semiclassical plasmas. The impact-parameter analysis with the micropotential taking into account the quantum diffraction and shielding effects is employed to obtain the electron-ion bremsstrahlung radiation cross section as a function of the de Broglie wavelength, density parameter, impact parameter, photon energy, and projectile energy. The result shows that the influence of quantum diffraction and shielding strongly suppresses the bremsstrahlung radiation spectrum in semiclassical plasmas. It is found that the quantum diffraction and shielding effects have broaden the photon emission domain. It is also found that the photon emission domain is almost independent of the radiation photon energy. In addition, it is found that the influence of quantum diffraction and shielding on the bremsstrahlung spectrum decreases with an increase of the projectile energy. The density effect on the electron-ion bremsstrahlung cross section is also discussed.

  7. Self-diffusion, conductivity, and long-wavelength plasma oscillations in strongly coupled two-component plasmas

    NASA Astrophysics Data System (ADS)

    Sjogren, L.; Hansen, J. P.; Pollock, E. L.

    1981-09-01

    The autocorrelation functions of the microscopic electric current J(t) and the electron velocity Z2(t) are calculated for strongly coupled semiclassical two-component plasmas. The corresponding memory functions are expressed in terms of mode-coupling integrals involving density- and energy-correlation functions in the framework of a microscopic kinetic theory which preserves the exact statics. The theory is applied to weakly degenerate hydrogen and carbon plasmas for values of the plasma parameter of order 1. The resulting correlation functions J(t) and Z2(t) and their integrals, the electrical conductivity, and the electron self-diffusion constant, agree reasonably well with the molecular dynamics data of Hansen and McDonald and with additional simulation results presented here.

  8. Blocking two-component signalling enhances Candida albicans virulence and reveals adaptive mechanisms that counteract sustained SAPK activation

    PubMed Central

    Ikeh, Mélanie A. C.; Haider, Mohammed; Brown, Alistair J. P.; Morgan, Brian A.; Erwig, Lars P.; Quinn, Janet

    2017-01-01

    The Ypd1 phosphorelay protein is a central constituent of fungal two-component signal transduction pathways. Inhibition of Ypd1 in Saccharomyces cerevisiae and Cryptococcus neoformans is lethal due to the sustained activation of the ‘p38-related’ Hog1 stress-activated protein kinase (SAPK). As two-component signalling proteins are not found in animals, Ypd1 is considered to be a prime antifungal target. However, a major fungal pathogen of humans, Candida albicans, can survive the concomitant sustained activation of Hog1 that occurs in cells lacking YPD1. Here we show that the sustained activation of Hog1 upon Ypd1 loss is mediated through the Ssk1 response regulator. Moreover, we present evidence that C. albicans survives SAPK activation in the short-term, following Ypd1 loss, by triggering the induction of protein tyrosine phosphatase-encoding genes which prevent the accumulation of lethal levels of phosphorylated Hog1. In addition, our studies reveal an unpredicted, reversible, mechanism that acts to substantially reduce the levels of phosphorylated Hog1 in ypd1Δ cells following long-term sustained SAPK activation. Indeed, over time, ypd1Δ cells become phenotypically indistinguishable from wild-type cells. Importantly, we also find that drug-induced down-regulation of YPD1 expression actually enhances the virulence of C. albicans in two distinct animal infection models. Investigating the underlying causes of this increased virulence, revealed that drug-mediated repression of YPD1 expression promotes hyphal growth both within murine kidneys, and following phagocytosis, thus increasing the efficacy by which C. albicans kills macrophages. Taken together, these findings challenge the targeting of Ypd1 proteins as a general antifungal strategy and reveal novel cellular adaptation mechanisms to sustained SAPK activation. PMID:28135328

  9. Purification and characterization of a two-component monooxygenase that hydroxylates nitrilotriacetate from "Chelatobacter" strain ATCC 29600.

    PubMed Central

    Uetz, T; Schneider, R; Snozzi, M; Egli, T

    1992-01-01

    An assay based on the consumption of nitrilotriacetate (NTA) was developed to measure the activity of NTA monooxygenase (NTA-Mo) in cell extracts of "Chelatobacter" strain ATCC 29600 and to purify a functional, NTA-hydroxylating enzyme complex. The complex consisted of two components that easily dissociated during purification and upon dilution. Both components were purified to more than 95% homogeneity, and it was possible to reconstitute the functional, NTA-hydroxylating enzyme complex from pure component A (cA) and component B (cB). cB exhibited NTA-stimulated NADH oxidation but was unable to hydroxylate NTA. It had a native molecular mass of 88 kDa and contained flavin mononucleotide (FMN). cA had a native molecular mass of 99 kDa. No catalytic activity has yet been shown for cA alone. Under unfavorable conditions, NADH oxidation was partly or completely uncoupled from hydroxylation, resulting in the formation of H2O2. Optimum hydroxylating activity was found to be dependent on the molar ratio of the two components, the absolute concentration of the enzyme complex, and the presence of FMN. Uncoupling of the reaction was favored in the presence of high salt concentrations and in the presence of flavin adenine dinucleotide. The NTA-Mo complex was sensitive to sulfhydryl reagents, but inhibition was reversible by addition of excess dithiothreitol. The Km values for Mg(2+)-NTA, FMN, and NADH were determined as 0.5 mM, 1.3 microM, and 0.35 mM, respectively. Of 26 tested compounds, NTA was the only substrate for NTA-Mo. Images PMID:1735711

  10. Temperature-Controlled Structure and Kinetics of Ripple Phases in One- and Two-Component Supported Lipid Bilayers

    PubMed Central

    Kaasgaard, Thomas; Leidy, Chad; Crowe, John H.; Mouritsen, Ole G.; Jørgensen, Kent

    2003-01-01

    Temperature-controlled atomic force microscopy (AFM) has been used to visualize and study the structure and kinetics of ripple phases in one-component dipalmitoylphosphatidylcholine (DPPC) and two-component dimyristoylphosphatidylcholine-distearoylphosphatidylcholine (DMPC-DSPC) lipid bilayers. The lipid bilayers are mica-supported double bilayers in which ripple-phase formation occurs in the top bilayer. In one-component DPPC lipid bilayers, the stable and metastable ripple phases were observed. In addition, a third ripple structure with approximately twice the wavelength of the metastable ripples was seen. From height profiles of the AFM images, estimates of the amplitudes of the different ripple phases are reported. To elucidate the processes of ripple formation and disappearance, a ripple-phase DPPC lipid bilayer was taken through the pretransition in the cooling and the heating direction and the disappearance and formation of ripples was visualized. It was found that both the disappearance and formation of ripples take place virtually one ripple at a time, thereby demonstrating the highly anisotropic nature of the ripple phase. Furthermore, when a two-component DMPC-DSPC mixture was heated from the ripple phase and into the ripple-phase/fluid-phase coexistence temperature region, the AFM images revealed that several dynamic properties of the ripple phase are important for the melting behavior of the lipid mixture. Onset of melting is observed at grain boundaries between different ripple types and different ripple orientations, and the longer-wavelength metastable ripple phase melts before the shorter-wavelength stable ripple phase. Moreover, it was observed that the ripple phase favors domain growth along the ripple direction and is responsible for creating straight-edged domains with 60° and 120° angles, as reported previously. PMID:12829489

  11. Thusin, a Novel Two-Component Lantibiotic with Potent Antimicrobial Activity against Several Gram-Positive Pathogens

    PubMed Central

    Xin, Bingyue; Zheng, Jinshui; Liu, Hualin; Li, Junhua; Ruan, Lifang; Peng, Donghai; Sajid, Muhammad; Sun, Ming

    2016-01-01

    Due to the rapidly increasing prevalence of multidrug-resistant bacterial strains, the need for new antimicrobial drugs to treat infections has become urgent. Bacteriocins, which are antimicrobial peptides of bacterial origin, are considered potential alternatives to conventional antibiotics and have attracted widespread attention in recent years. Among these bacteriocins, lantibiotics, especially two-component lantibiotics, exhibit potent antimicrobial activity against some clinically relevant Gram-positive pathogens and have potential applications in the pharmaceutical industry. In this study, we characterized a novel two-component lantibiotic termed thusin that consists of Thsα, Thsβ, and Thsβ' (mutation of Thsβ, A14G) and that was isolated from a B. thuringiensis strain BGSC 4BT1. Thsα and Thsβ (or Thsβ') exhibit optimal antimicrobial activity at a 1:1 ratio and act sequentially to affect target cells, and they are all highly thermostable (100°C for 30 min) and pH tolerant (pH 2.0 to 9.0). Thusin shows remarkable efficacy against all tested Gram-positive bacteria and greater activities than two known lantibiotics thuricin 4A-4 and ticin A4, and one antibiotic vancomycin against various bacterial pathogens (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus (MRSA), Staphylococcus sciuri, Enterococcus faecalis, and Streptococcus pneumoniae). Moreover, thusin is also able to inhibit the outgrowth of B. cereus spores. The potent antimicrobial activity of thusin against some Gram-positive pathogens indicates that it has potential for the development of new drugs. PMID:27486447

  12. SPECIAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATION OF A TWO-COMPONENT OUTFLOW POWERED BY MAGNETIC EXPLOSION ON COMPACT STARS

    SciTech Connect

    Matsumoto, Jin; Asano, Eiji; Shibata, Kazunari; Masada, Youhei

    2011-05-20

    The nonlinear dynamics of outflows driven by magnetic explosion on the surface of a compact star is investigated through special relativistic magnetohydrodynamic simulations. We adopt, as the initial equilibrium state, a spherical stellar object embedded in hydrostatic plasma which has a density {rho}(r) {proportional_to} r{sup -}{alpha} and is threaded by a dipole magnetic field. The injection of magnetic energy at the surface of a compact star breaks the equilibrium and triggers a two-component outflow. At the early evolutionary stage, the magnetic pressure increases rapidly around the stellar surface, initiating a magnetically driven outflow. A strong forward shock driven outflow is then excited. The expansion velocity of the magnetically driven outflow is characterized by the Alfven velocity on the stellar surface and follows a simple scaling relation v{sub mag} {proportional_to} v{sub A}{sup 1/2}. When the initial density profile declines steeply with radius, the strong shock is accelerated self-similarly to relativistic velocity ahead of the magnetically driven component. We find that it evolves according to a self-similar relation {Gamma}{sub sh} {proportional_to} r{sub sh}, where {Gamma}{sub sh} is the Lorentz factor of the plasma measured at the shock surface r{sub sh}. A purely hydrodynamic process would be responsible for the acceleration mechanism of the shock driven outflow. Our two-component outflow model, which is the natural outcome of the magnetic explosion, can provide a better understanding of the magnetic active phenomena on various magnetized compact stars.

  13. The oligomeric assembly of the novel haem-degrading protein HbpS is essential for interaction with its cognate two-component sensor kinase.

    PubMed

    Ortiz de Orué Lucana, Darío; Bogel, Gabriele; Zou, Peijian; Groves, Matthew R

    2009-03-06

    HbpS, a novel protein of previously unknown function from Streptomyces reticuli, is up-regulated in response to haemin- and peroxide-based oxidative stress and interacts with the SenS/SenR two-component signal transduction system. In this study, we report the high-resolution crystal structures (2.2 and 1.6 A) of octomeric HbpS crystallized in the presence and in the absence of haem and demonstrate that iron binds to surface-exposed lysine residues of an octomeric assembly. Based on an analysis of the crystal structures, we propose that the iron atom originates from the haem group and report subsequent biochemical experiments that demonstrate that HbpS possesses haem-degrading activity in vitro. Further examination of the crystal structures has identified amino acids that are essential for assembly of the octomer. The role of these residues is confirmed by biophysical experiments. Additionally, we show that while the octomeric assembly state of HbpS is not essential for haem-degrading activity, the assembly of HbpS is required for its interaction with the cognate sensor kinase, SenS. Homologs of HbpS and SenS/SenR have been identified in a number of medically and ecologically relevant bacterial species (including Vibrio cholerae, Klebsiella pneumoniae, Corynebacterium diphtheriae, Arthrobacter aurescens and Pseudomonas putida), suggesting the existence of a previously undescribed bacterial oxidative stress-response pathway common to Gram-negative and Gram-positive bacteria. Thus, the data presented provide the first insight into the function of a novel protein family and an example of an iron-mediated interaction between an accessory protein and its cognate two-component sensor kinase.

  14. Test of Clausius' Virial Dynamical Theory of Fundamental Plane By Homogeneous + γ-Free Two Component Galaxy Model

    NASA Astrophysics Data System (ADS)

    Bindoni, D.; Secco, L.; Caimmi, R.; D'Onofrio, M.; Valentinuzzi, T.

    2007-05-01

    Introduction: the theory of the Fundamental Plane (FP) proposed by Secco (2000, 2001,2005) is based on the existence of a maximum in the Clausius' Virial potential energy (CV) of a stellar component when it is completely embedded inside a dark matter (DM) halo. At the first order approximation the theory was developed by modeling the two-components with two power-law density profiles and two homogeneous cores. In order to test the extension of the theory to an higher order we explore the effect on an homogeneous stellar component due to a DM halo with a density profile characterized by a inner slope γfree and an outer slope -3, according to high resolution rotation curves of Sps (Garrido et al. 2004). The aim is to investigate the role of the dark to bright mass ratio m and of the halo concentration C[D] in order to produce the maximum of CV. Particular attention is devoted to the slope of the density halo profile at the maximum location, to its height in comparison with the CV value when the two component coincide, V[n.] For all the models we choose γ=0. Method: we follow the general method proposed by Caimmi (1993) for two striated ellipsoidals with Zhao-density profiles. Virial equilibrium is described by tensor virial equations extended to two subcomponents (Caimmi & Secco,1992). The interaction terms are numerically performed for different values of m and C [D] and sequences of CV as function of the ratio baryonic to halo virial semi-axis are taken into account. Results: the special configuration at the CV maximum with all the properties discovered with the theory of first order appears if m is greater than a given threshold .The corresponding slope (in absolute value) on the halo DM profile decreases either as m increases at fixed C[D] or as C[D] decreases at fixed m. The same conspiracy between m and C[D] appears in order to obtain the highest values of V[n]. Discussion: the test is relevant in order to confirm the main results of the first order approach

  15. Images and spectral properties of two-component advective flows around black holes: effects of photon bending

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arka; Chakrabarti, Sandip K.; Ghosh, Himadri

    2017-03-01

    Two-component advective flow (TCAF) successfully explains spectral and timing properties of black hole candidates. We study the nature of photon trajectories in the vicinity of a Schwarzschild black hole and incorporate this in predicting images of TCAF with a black hole at the Centre. We also compute the emitted spectra. We employ a Monte Carlo simulation technique to achieve our goal. For accurate prediction of the image and the spectra, null trajectories are generated without constraining the motion to any specific plane. Redshift, bolometric flux and corresponding temperature have been calculated with appropriate relativistic consideration. The CENtrifugal pressure supported BOundary Layer or CENBOL near the inner region of the disc, which acts as the Compton cloud, is appropriately modelled as a thick accretion disc in Schwarzschild geometry for the purpose of imaging and computing spectra. The variations of spectra and image with physical parameters such as the accretion rate (dot{m}_d) and inclination angle are presented. We show that the gravitational bending effects of photons do change the spectral shape to some extent.

  16. Micro-Structured Two-Component 3D Metamaterials with Negative Thermal-Expansion Coefficient from Positive Constituents

    NASA Astrophysics Data System (ADS)

    Qu, Jingyuan; Kadic, Muamer; Naber, Andreas; Wegener, Martin

    2017-01-01

    Controlling the thermal expansion of materials is of great technological importance. Uncontrolled thermal expansion can lead to failure or irreversible destruction of structures and devices. In ordinary crystals, thermal expansion is governed by the asymmetry of the microscopic binding potential, which cannot be adjusted easily. In artificial crystals called metamaterials, thermal expansion can be controlled by structure. Here, following previous theoretical work, we fabricate three-dimensional (3D) two-component polymer micro-lattices by using gray-tone laser lithography. We perform cross-correlation analysis of optical microscopy images taken at different sample temperatures. The derived displacement-vector field reveals that the thermal expansion and resulting bending of the bi-material beams leads to a rotation of the 3D chiral crosses arranged onto a 3D checkerboard pattern within one metamaterial unit cell. These rotations can compensate the expansion of the all positive constituents, leading to an effectively near-zero thermal length-expansion coefficient, or over-compensate the expansion, leading to an effectively negative thermal length-expansion coefficient. This evidences a striking level of thermal-expansion control.

  17. A TWO-COMPONENT JET MODEL FOR THE TIDAL DISRUPTION EVENT SWIFT J164449.3+573451

    SciTech Connect

    Liu, Dangbo; Pe'er, Asaf; Loeb, Abraham

    2015-01-01

    We analyze both the early- and late-time radio and X-ray data of the tidal disruption event (TDE) Swift J1644+57. The data at early times (≲ 5 days) necessitate separation of the radio and X-ray emission regions, either spatially or in velocity space. This leads us to suggest a two-component jet model, in which the inner jet is initially relativistic with Lorentz factor Γ ≈ 15, while the outer jet is trans-relativistic, with Γ ≲ 1.2. This model enables a self-consistent interpretation of the late-time radio data, both in terms of peak frequency and flux. We solve the dynamics, radiative cooling, and expected radiation from both jet components. We show that while during the first month synchrotron emission from the outer jet dominates the radio emission, at later times, radiation from ambient gas collected by the inner jet dominates. This provides a natural explanation to the observed re-brightening, without the need for late-time inner engine activity. After 100 days, the radio emission peak is in the optically thick regime, leading to a decay of both the flux and peak frequency at later times. Our model's predictions for the evolution of radio emission in jetted TDEs can be tested by future observations.

  18. Micro-Structured Two-Component 3D Metamaterials with Negative Thermal-Expansion Coefficient from Positive Constituents

    PubMed Central

    Qu, Jingyuan; Kadic, Muamer; Naber, Andreas; Wegener, Martin

    2017-01-01

    Controlling the thermal expansion of materials is of great technological importance. Uncontrolled thermal expansion can lead to failure or irreversible destruction of structures and devices. In ordinary crystals, thermal expansion is governed by the asymmetry of the microscopic binding potential, which cannot be adjusted easily. In artificial crystals called metamaterials, thermal expansion can be controlled by structure. Here, following previous theoretical work, we fabricate three-dimensional (3D) two-component polymer micro-lattices by using gray-tone laser lithography. We perform cross-correlation analysis of optical microscopy images taken at different sample temperatures. The derived displacement-vector field reveals that the thermal expansion and resulting bending of the bi-material beams leads to a rotation of the 3D chiral crosses arranged onto a 3D checkerboard pattern within one metamaterial unit cell. These rotations can compensate the expansion of the all positive constituents, leading to an effectively near-zero thermal length-expansion coefficient, or over-compensate the expansion, leading to an effectively negative thermal length-expansion coefficient. This evidences a striking level of thermal-expansion control. PMID:28079161

  19. Flavin-Dependent Redox Transfers by the Two-Component Diketocamphane Monooxygenases of Camphor-Grown Pseudomonas putida NCIMB 10007

    PubMed Central

    Willetts, Andrew; Kelly, David

    2016-01-01

    The progressive titres of key monooxygenases and their requisite native donors of reducing power were used to assess the relative contribution of various camphor plasmid (CAM plasmid)- and chromosome-coded activities to biodegradation of (rac)-camphor at successive stages throughout growth of Pseudomonas putida NCIMB 10007 on the bicylic monoterpenoid. A number of different flavin reductases (FRs) have the potential to supply reduced flavin mononucleotide to both 2,5- and 3,6-diketocamphane monooxygenase, the key isoenzymic two-component monooxygenases that delineate respectively the (+)- and (−)-camphor branches of the convergent degradation pathway. Two different constitutive chromosome-coded ferric reductases able to act as FRs can serve such as role throughout all stages of camphor-dependent growth, whereas Fred, a chromosome-coded inducible FR can only play a potentially significant role in the relatively late stages. Putidaredoxin reductase, an inducible CAM plasmid-coded flavoprotein that serves an established role as a redox intermediate for plasmid-coded cytochrome P450 monooxygenase also has the potential to serve as an important FR for both diketocamphane monooxygenases (DKCMOs) throughout most stages of camphor-dependent growth. PMID:27754389

  20. Phosphorescence lifetimes of organic light-emitting diodes from two-component time-dependent density functional theory

    SciTech Connect

    Kühn, Michael; Weigend, Florian

    2014-12-14

    “Spin-forbidden” transitions are calculated for an eight-membered set of iridium-containing candidate molecules for organic light-emitting diodes (OLEDs) using two-component time-dependent density functional theory. Phosphorescence lifetimes (obtained from averaging over relevant excitations) are compared to experimental data. Assessment of parameters like non-distorted and distorted geometric structures, density functionals, relativistic Hamiltonians, and basis sets was done by a thorough study for Ir(ppy){sub 3} focussing not only on averaged phosphorescence lifetimes, but also on the agreement of the triplet substate structure with experimental data. The most favorable methods were applied to an eight-membered test set of OLED candidate molecules; Boltzmann-averaged phosphorescence lifetimes were investigated concerning the convergence with the number of excited states and the changes when including solvent effects. Finally, a simple model for sorting out molecules with long averaged phosphorescence lifetimes is developed by visual inspection of computationally easily achievable one-component frontier orbitals.

  1. Micro-Structured Two-Component 3D Metamaterials with Negative Thermal-Expansion Coefficient from Positive Constituents.

    PubMed

    Qu, Jingyuan; Kadic, Muamer; Naber, Andreas; Wegener, Martin

    2017-01-12

    Controlling the thermal expansion of materials is of great technological importance. Uncontrolled thermal expansion can lead to failure or irreversible destruction of structures and devices. In ordinary crystals, thermal expansion is governed by the asymmetry of the microscopic binding potential, which cannot be adjusted easily. In artificial crystals called metamaterials, thermal expansion can be controlled by structure. Here, following previous theoretical work, we fabricate three-dimensional (3D) two-component polymer micro-lattices by using gray-tone laser lithography. We perform cross-correlation analysis of optical microscopy images taken at different sample temperatures. The derived displacement-vector field reveals that the thermal expansion and resulting bending of the bi-material beams leads to a rotation of the 3D chiral crosses arranged onto a 3D checkerboard pattern within one metamaterial unit cell. These rotations can compensate the expansion of the all positive constituents, leading to an effectively near-zero thermal length-expansion coefficient, or over-compensate the expansion, leading to an effectively negative thermal length-expansion coefficient. This evidences a striking level of thermal-expansion control.

  2. Preparation and properties of high storage stability polyester polyol dispersion for two-component waterborne polyurethane coating

    NASA Astrophysics Data System (ADS)

    Hao, H.; Hu, J. Q.; Wang, F.; Tu, W. P.

    2017-01-01

    A new type of polyester polyol dispersion with good storage stability was prepared based on a hydrophilic monomer 5-sodium sulfodimethyl isophthalate (5-SIPM), and frequently-used monomers such as neopentyl glycol (NPG), dimethyl terephthalate (DMT), dimethyl phthalate (DMP) and trimethylolpropane (TMP) by the transpolycondensation and polycondensation method. The polyester polyol dispersion was characterized by FTIR and GPC. The proper content of these monomers were determined by the performance of polyester dispersion: the content of TMP was 15wt%, the content of NPG was 7.5wt% and the hydrophilic monomer 5-SIPM content was 5wt%. Two-component waterborne polyurethane (2K-WPU) coatings were prepared by Bayhydur® XP2487/1 and polyester polyol dispersions, which were stored before and after at 40 ° for 6 weeks, the prepared films have no differences in drying time, adhesion, pencil hardness, gloss and chemical resistance, the result also reveals that the polyester polyol dispersion have excellent storage stability resistance.

  3. Promoter Escape with Bacterial Two-component σ Factor Suggests Retention of σ Region Two in the Elongation Complex.

    PubMed

    Sengupta, Shreya; Prajapati, Ranjit Kumar; Mukhopadhyay, Jayanta

    2015-11-20

    The transition from the formation of the RNA polymerase (RNAP)-promoter open complex step to the productive elongation complex step involves "promoter escape" of RNAP. From the structure of RNAP, a promoter escape model has been proposed that suggests that the interactions between σR4 and RNAP and σR4 and DNA are destabilized upon transition to elongation. This accounts for the reduced affinity of σ to RNAP and stochastic release of σ. However, as the loss of interaction of σR4 with RNAP results in the release of intact σ, assessing this interaction remains challenging to be experimentally verified. Here we study the promoter escape model using a two-component σ factor YvrI and YvrHa from Bacillus subtilis that independently contributes to the functions of σR4 and σR2 in a RNAP-promoter complex. Our results show that YvrI, which mimics σR4, is released gradually as transcription elongation proceeds, whereas YvrHa, which mimics σR2 is retained throughout the elongation complexes. Thus our result validates the proposed model for promoter escape and also suggests that promoter escape involves little or no change in the interaction of σR2 with RNAP.

  4. High-energy positrons and gamma radiation from decaying constituents of a two-component dark atom model

    NASA Astrophysics Data System (ADS)

    Belotsky, K.; Khlopov, M.; Kouvaris, C.; Laletin, M.

    2015-09-01

    We study a two-component dark matter candidate inspired by the minimal walking technicolor (WTC) model. Dark matter consists of a dominant strongly interactive massive particle (SIMP)-like dark atom component made of bound states between primordial helium nuclei and a doubly charged technilepton and a small WIMP-like component made of another dark atom bound state between a doubly charged technibaryon and a technilepton. This scenario is consistent with direct search experimental findings because the dominant SIMP component interacts too strongly to reach the depths of current detectors with sufficient energy to recoil and the WIMP-like component is too small to cause significant amount of events. In this context, a metastable technibaryon that decays to e+e+, μ+μ+ and τ+τ+ can, in principle, explain the observed positron excess by AMS-02 and PAMELA, while being consistent with the photon flux observed by FERMI/LAT. We scan the parameters of the model and we find the best possible fit to the latest experimental data. We find that there is a small range of parameter space that this scenario can be realized under certain conditions regarding the cosmic ray propagation and the final state radiation (FSR). This range of parameters fall inside the region where the current run of large hadron collider (LHC) can probe, and therefore it will soon be possible to either verify or exclude conclusively this model of dark matter.

  5. Quadrupole and scissors modes and nonlinear mode coupling in trapped two-component Bose-Einstein condensates

    SciTech Connect

    Kasamatsu, Kenichi; Tsubota, Makoto; Ueda, Masahito

    2004-04-01

    We theoretically investigate quadrupolar collective excitations in two-component Bose-Einstein condensates and their nonlinear dynamics associated with harmonic generation and mode coupling. Under the Thomas-Fermi approximation and the quadratic polynomial ansatz for density fluctuations, the linear analysis of the superfluid hydrodynamic equations predicts excitation frequencies of three normal modes constituted from monopole and quadrupole oscillations, and those of three scissors modes. These six modes are bifurcated into in-phase and out-of-phase modes by the intercomponent interaction, yielding the nonlinear dynamics that are absent in a single-component condensate. We obtain analytically the resonance conditions for the second-harmonic generation in terms of the trap aspect ratio and the strength of intercomponent interaction. The numerical simulation of the coupled Gross-Pitaevskii equations vindicates the validity of the analytical results and reveals the dynamics of the second-harmonic generation and nonlinear mode coupling that lead to nonlinear oscillations of the condensate with damping and recurrence reminiscent of the Fermi-Pasta-Ulam problem.

  6. Calculations of atomic magnetic nuclear shielding constants based on the two-component normalized elimination of the small component method.

    PubMed

    Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter

    2017-04-07

    A new method for calculating nuclear magnetic resonance shielding constants of relativistic atoms based on the two-component (2c), spin-orbit coupling including Dirac-exact NESC (Normalized Elimination of the Small Component) approach is developed where each term of the diamagnetic and paramagnetic contribution to the isotropic shielding constant σiso is expressed in terms of analytical energy derivatives with regard to the magnetic field B and the nuclear magnetic moment . The picture change caused by renormalization of the wave function is correctly described. 2c-NESC/HF (Hartree-Fock) results for the σiso values of 13 atoms with a closed shell ground state reveal a deviation from 4c-DHF (Dirac-HF) values by 0.01%-0.76%. Since the 2-electron part is effectively calculated using a modified screened nuclear shielding approach, the calculation is efficient and based on a series of matrix manipulations scaling with (2M)(3) (M: number of basis functions).

  7. Promoter Escape with Bacterial Two-component σ Factor Suggests Retention of σ Region Two in the Elongation Complex*

    PubMed Central

    Sengupta, Shreya; Prajapati, Ranjit Kumar; Mukhopadhyay, Jayanta

    2015-01-01

    The transition from the formation of the RNA polymerase (RNAP)-promoter open complex step to the productive elongation complex step involves “promoter escape” of RNAP. From the structure of RNAP, a promoter escape model has been proposed that suggests that the interactions between σR4 and RNAP and σR4 and DNA are destabilized upon transition to elongation. This accounts for the reduced affinity of σ to RNAP and stochastic release of σ. However, as the loss of interaction of σR4 with RNAP results in the release of intact σ, assessing this interaction remains challenging to be experimentally verified. Here we study the promoter escape model using a two-component σ factor YvrI and YvrHa from Bacillus subtilis that independently contributes to the functions of σR4 and σR2 in a RNAP-promoter complex. Our results show that YvrI, which mimics σR4, is released gradually as transcription elongation proceeds, whereas YvrHa, which mimics σR2 is retained throughout the elongation complexes. Thus our result validates the proposed model for promoter escape and also suggests that promoter escape involves little or no change in the interaction of σR2 with RNAP. PMID:26400263

  8. A highly efficient white-light-emitting diode based on a two-component polyfluorene/quantum dot composite

    NASA Astrophysics Data System (ADS)

    Dayneko, S. V.; Samokhvalov, P. S.; Lypenko, D.; Nosova, G. I.; Berezin, I. A.; Yakimanskii, A. V.; Chistyakov, A. A.; Nabiev, I.

    2017-01-01

    Organic light-emitting diodes (OLEDs) are attracting great interest of the scientific community and industry because they can be grown on flexible substrates using relatively simple and inexpensive technologies (solution processes). However, a problem in the fabrication of white OLEDs is that it is difficult to achieve a balance between the intensities of individual emission components in the blue, green, and red spectral regions. In this work, we try to solve this problem by creating a two-component light-emitting diode based on modified polyfluorene (PF-BT), which efficiently emits in the blue-green region, and CdSe/ZnS/CdS/ZnS semiconductor quantum dots emitting in the orange-red region with a fluorescence quantum yield exceeding 90%. By changing the mass ratio of components in the active light-emitting composite within 40-50%, it is possible to transform the diode emission spectrum from cold to warm white light without loss of the diode efficiency. It is very likely that optimization of the morphology of multilayer light-emitting diodes will lead to further improvement of their characteristics.

  9. Numerical modeling of Non-isothermal two-phase two-component flow process with phase change phenomena in the porous media

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Shao, H.; Thullner, M.; Kolditz, O.

    2014-12-01

    In applications of Deep Geothermal reservoirs, thermal recovery processes, and contaminated groundwater sites, the multiphase multicomponent flow and transport processes are often considered the most important underlying physical process. In particular, the behavior of phase appearance and disappearance is the critical to the performance of many geo-reservoirs, and great interests exit in the scientific community to simulate this coupled process. This work is devoted to the modeling and simulation of two-phase, two components flow and transport in the porous medium, whereas the phase change behavior in non-isothermal conditions is considered. In this work, we have implemented the algorithm developed by Marchand, et al., into the open source scientific software OpenGeoSys. The governing equation is formulated in terms of molar fraction of the light component and mean pressure as the persistent primary variables, which leads to a fully coupled nonlinear PDE system. One of the important advantages of this approach is avoiding the primary variables switching between single phase and two phase zones, so that this uniform system can be applied to describe the behavior of phase change. On the other hand, due to the number of unkown variables closure relationships are also formulated to close the whole equation system by using the approach of complementarity constrains. For the numerical technical scheme: The standard Galerkin Finite element method is applied for space discretization, while a fully implicit scheme for the time discretization, and Newton-Raphson method is utilized for the global linearization, as well as the closure relationship. This model is verified based on one test case developed to simulate the heat pipe problem. This benchmark involves two-phase two-component flow in saturated/unsaturated porous media under non-isothermal condition, including phase change and mineral-water geochemical reactive transport processes. The simulation results will be

  10. Explaining low energy γ-ray excess from the galactic centre using a two-component dark matter model

    NASA Astrophysics Data System (ADS)

    Biswas, Anirban

    2016-06-01

    Over the past few years, there has been a hint of the γ-ray excess observed by the Fermi-LAT satellite-borne telescope from the regions surrounding the galactic centre (GC) at an energy range of ˜1-3 GeV. The nature of this excess γ-ray spectrum is found to be consistent with the γ-ray emission expected from dark matter (DM) annihilation at the GC while disfavouring other known astrophysical sources as the possible origin of this phenomena. It is also reported that the spectrum and morphology of this excess γ-rays can well be explained by the DM particles having mass in the range 30{--}40 {{GeV}} annihilating significantly into b\\bar{b} final state with an annihilation cross section σ v˜ (1.4-2.0)× {10}-26 cm{}3 {{{s}}}-1 at the GC. In this work, we propose a two-component DM model where two different types of DM particles, namely a complex scalar and a Dirac fermion are considered. The stability of both the dark sector particles are maintained by virtue of an additional local {{U}}{(1)}X gauge symmetry. We find that our proposed scenario can provide a viable explanation for this anomalous excess γ-rays besides satisfying all the existing relevant theoretical as well as experimental and observational bounds from LHC, PLANCK and LUX collaborations. The allowed range of ‘effective annihilation cross section’ of lighter DM particle for the b\\bar{b} annihilation channel thus obtained is finally compared with the limits reported by the Fermi-LAT and DES collaborations using data from various dwarf spheroidal galaxies.

  11. Microfluidic device for robust generation of two-component liquid-in-air slugs with individually controlled composition

    PubMed Central

    Liu, Kan; Chen, Yi-Chun; Tseng, Hsian-Rong

    2010-01-01

    Using liquid slugs as microreactors and microvessels enable precise control over the conditions of their contents on short-time scales for a wide variety of applications. Particularly for screening applications, there is a need for control of slug parameters such as size and composition. We describe a new microfluidic approach for creating slugs in air, each comprising a size and composition that can be selected individually for each slug. Two-component slugs are formed by first metering the desired volume of each reagent, merging the two volumes into an end-to-end slug, and propelling the slug to induce mixing. Volume control is achieved by a novel mechanism: two closed chambers on the chip are initially filled with air, and a valve in each is briefly opened to admit one of the reagents. The pressure of each reagent can be individually selected and determines the amount of air compression, and thus the amount of liquid that is admitted into each chamber. We describe the theory of operation, characterize the slug generation chip, and demonstrate the creation of slugs of different compositions. The use of microvalves in this approach enables robust operation with different liquids, and also enables one to work with extremely small samples, even down to a few slug volumes. The latter is important for applications involving precious reagents such as optimizing the reaction conditions for radiolabeling biological molecules as tracers for positron emission tomography. Electronic supplementary material The online version of this article (doi:10.1007/s10404-010-0617-0) contains supplementary material, which is available to authorized users. PMID:20930933

  12. In vivo kinematics of two-component total ankle arthroplasty during non-weightbearing and weightbearing dorsiflexion/plantarflexion.

    PubMed

    Yamaguchi, Satoshi; Tanaka, Yasuhito; Kosugi, Shinichi; Takakura, Yoshinori; Sasho, Takahisa; Banks, Scott A

    2011-04-07

    Relatively high rates of loosening and implant failure have been reported after total ankle arthroplasty, especially in first and second generation implants. Abnormal kinematics and incongruency of the articular surface may cause increased loads applied to the implant with concomitant polyethylene wear, resulting in loosening and implant failure. The purpose of this study was to measure three-dimensional kinematics of two-component total ankle arthroplasty during non-weightbearing and weightbearing activities, and to investigate incongruency of the articular surfaces during these activities. Forty-seven patients with a mean age of 71 years were enrolled. Radiographs were taken at non-weightbearing maximal dorsiflexion and plantarflexion, and weightbearing maximal dorsiflexion, plantarflexion, and neutral position. 3D-2D model-image registration was performed using the radiographs and the three-dimensional implant models, and three-dimensional joint angles were determined. The implanted ankles showed 18.1±8.6° (mean±standard deviation) of plantarflexion, 0.1±0.7° of inversion, 1.2±2.0° of internal rotation, and 0.8±0.6mm of posterior translation of the talar component in the non-weightbearing activity, and 17.8±7.5° of plantarflexion, 0.4±0.5° of inversion, 1.8±2.0° of internal rotation, and 0.7±0.5mm of posterior translation in the weightbearing activity. There were no significant differences between the non-weightbearing and weightbearing kinematics except for the plantarflexion angle. Incongruency of the articular surface occurred in more than 75% of the ankles. Our observations will provide useful data against which kinematics of other implant designs, such as three-component total ankle arthroplasty, can be compared.

  13. Regrowth of stellar discs in mature galaxies: the two-component nature of NGC 7217 revisited with VIRUS-W

    NASA Astrophysics Data System (ADS)

    Fabricius, Maximilian H.; Coccato, Lodovico; Bender, Ralf; Drory, Niv; Gössl, Claus.; Landriau, Martin; Saglia, Roberto P.; Thomas, Jens; Williams, Michael J.

    2014-07-01

    Previous studies have reported the existence of two counter-rotating stellar discs in the early-type spiral galaxy NGC 7217. We have obtained high-resolution optical spectroscopic data (R ≈ 9000) with the new fibre-based Integral Field Unit instrument VIRUS-W at the 2.7-m telescope of the McDonald Observatory in Texas. Our analysis confirms the existence of two components. However, we find them to be corotating. The first component is the more luminous (≈77 per cent of the total light), has the higher velocity dispersion (≈170 km s-1) and rotates relatively slowly (projected vmax = 50 km s-1). The lower luminosity second component (≈23 per cent of the total light) has a low velocity dispersion (≈20 km s-1) and rotates quickly (projected vmax = 150 km s-1). The difference in the kinematics of the two stellar components allows us to perform a kinematic decomposition and to measure the strengths of their Mg and Fe Lick indices separately. The rotational velocities and dispersions of the less luminous and faster component are very similar to those of the interstellar gas as measured from the [O III] emission. Morphological evidence of active star formation in this component further suggests that NGC 7217 may be in the process of (re)growing a disc inside a more massive and higher dispersion stellar halo. The kinematically cold and regular structure of the gas disc in combination with the central almost dust-free morphology allows us to compare the dynamical mass inside of the central 500 pc with predictions from a stellar population analysis. We find agreement between the two if a Kroupa stellar initial mass function is assumed.

  14. Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives.

    PubMed

    Furuya, Toshiki; Kino, Kuniki

    2014-02-01

    4-Hydroxyphenylacetate 3-hydroxylases (HPAHs) of the two-component flavin-dependent monooxygenase family are attractive enzymes that possess the catalytic potential to synthesize valuable ortho-diphenol compounds from simple monophenol compounds. In this study, we investigated the catalytic activity of HPAH from Pseudomonas aeruginosa strain PAO1 toward cinnamic acid derivatives. We prepared Escherichia coli cells expressing the hpaB gene encoding the monooxygenase component and the hpaC gene encoding the oxidoreductase component. E. coli cells expressing HpaBC exhibited no or very low oxidation activity toward cinnamic acid, o-coumaric acid, and m-coumaric acid, whereas they rapidly oxidized p-coumaric acid to caffeic acid. Interestingly, after p-coumaric acid was almost completely consumed, the resulting caffeic acid was further oxidized to 3,4,5-trihydroxycinnamic acid. In addition, HpaBC exhibited oxidation activity toward 3-(4-hydroxyphenyl)propanoic acid, ferulic acid, and coniferaldehyde to produce the corresponding ortho-diphenols. We also investigated a flask-scale production of caffeic acid from p-coumaric acid as the model reaction for HpaBC-catalyzed syntheses of hydroxycinnamic acids. Since the initial concentrations of the substrate p-coumaric acid higher than 40 mM markedly inhibited its HpaBC-catalyzed oxidation, the reaction was carried out by repeatedly adding 20 mM of this substrate to the reaction mixture. Furthermore, by using the HpaBC whole-cell catalyst in the presence of glycerol, our experimental setup achieved the high-yield production of caffeic acid, i.e., 56.6 mM (10.2 g/L) within 24 h. These catalytic activities of HpaBC will provide an easy and environment-friendly synthetic approach to hydroxycinnamic acids.

  15. Two-component mantle melting-mixing model for the generation of mid-ocean ridge basalts: Implications for the volatile content of the Pacific upper mantle

    NASA Astrophysics Data System (ADS)

    Shimizu, Kei; Saal, Alberto E.; Myers, Corinne E.; Nagle, Ashley N.; Hauri, Erik H.; Forsyth, Donald W.; Kamenetsky, Vadim S.; Niu, Yaoling

    2016-03-01

    We report major, trace, and volatile element (CO2, H2O, F, Cl, S) contents and Sr, Nd, and Pb isotopes of mid-ocean ridge basalt (MORB) glasses from the Northern East Pacific Rise (NEPR) off-axis seamounts, the Quebrada-Discovery-GoFar (QDG) transform fault system, and the Macquarie Island. The incompatible trace element (ITE) contents of the samples range from highly depleted (DMORB, Th/La ⩽ 0.035) to enriched (EMORB, Th/La ⩾ 0.07), and the isotopic composition spans the entire range observed in EPR MORB. Our data suggest that at the time of melt generation, the source that generated the EMORB was essentially peridotitic, and that the composition of NMORB might not represent melting of a single upper mantle source (DMM), but rather mixing of melts from a two-component mantle (depleted and enriched DMM or D-DMM and E-DMM, respectively). After filtering the volatile element data for secondary processes (degassing, sulfide saturation, assimilation of seawater-derived component, and fractional crystallization), we use the volatiles to ITE ratios of our samples and a two-component