Mohammadianpanah, Mohammad; Torabinejad, Simin; Bagheri, Mohammad Hadi; Omidvari, Shapour; Mosalaei, Ahmad; Ahmadloo, Niloofar
2004-09-02
Hemangiopericytoma is an uncommon mesenchymal neoplasm that rarely affects the spinal canal. Primary malignant hemangiopericytoma of the spinal column is extremely rare. We report on a case of primary epidural malignant hemangiopericytoma of the thoracic spinal column that invaded vertebral bone and caused spinal cord compression in a 21-year-old man. The patient presented with progressive back pain over a four-month period that progressed to paraparesis, bilateral leg paresthesia and urinary incontinence. The surgical intervention involved laminectomy and subtotal resection of the tumor, with posterior vertebral fixation. Postoperative involved-field radiotherapy was administered. A marked neurological improvement was subsequently observed. We describe the clinical, radiological, and histological features of this tumor and review the literature.
Spinal cord aspergillus invasion--complication of an aspergilloma.
Sheth, N K; Varkey, B; Wagner, D K
1985-12-01
Acute paraplegia developed in a 53-year-old man with pulmonary aspergilloma because of contiguous extension of Aspergillus infection to the epidural and subdural spaces and spinal cord. Histopathologic findings of the spinal cord showed Aspergillus hyphae penetrating the myelin sheath and myelomalacia, predominantly in the anterior and lateral columns. To the authors' knowledge, there have been no previous descriptions or illustrations of spinal cord involvement and the pathologic changes caused by Aspergillus infection.
Studies on the cellular localization of spinal cord substance P receptors.
Helke, C J; Charlton, C G; Wiley, R G
1986-10-01
Substance P-immunoreactivity and specific substance P binding sites are present in the spinal cord. Receptor autoradiography showed the discrete localization of substance P binding sites in both sensory and motor regions of the spinal cord and functional studies suggested an important role for substance P receptor activation in autonomic outflow, nociception, respiration and somatic motor function. In the current studies, we investigated the cellular localization of substance P binding sites in rat spinal cord using light microscopic autoradiography combined with several lesioning techniques. Unilateral injections of the suicide transport agent, ricin, into the superior cervical ganglion reduced substance P binding and cholinesterase-stained preganglionic sympathetic neurons in the intermediolateral cell column. However, unilateral electrolytic lesions of ventral medullary substance P neurons which project to the intermediolateral cell column did not alter the density of substance P binding in the intermediolateral cell column. Likewise, 6-hydroxydopamine and 5,7-dihydroxytryptamine, which destroy noradrenergic and serotonergic nerve terminals, did not reduce the substance P binding in the intermediolateral cell column. It appears, therefore, that the substance P binding sites are located postsynaptically on preganglionic sympathetic neurons rather than presynaptically on substance P-immunoreactive processes (i.e. as autoreceptors) or on monoamine nerve terminals. Unilateral injections of ricin into the phrenic nerve resulted in the unilateral destruction of phrenic motor neurons in the cervical spinal cord and caused a marked reduction in the substance P binding in the nucleus. Likewise, sciatic nerve injections of ricin caused a loss of associated motor neurons in the lateral portion of the ventral horn of the lumbar spinal cord and a reduction in the substance P binding. Sciatic nerve injections of ricin also destroyed afferent nerves of the associated dorsal root ganglia and increased the density of substance P binding in the dorsal horn. Capsaicin, which destroys small diameter primary sensory neurons, similarly increased the substance P binding in the dorsal horn. These studies show that the cellular localization of substance P binding sites can be determined by analysis of changes in substance P binding to discrete regions of spinal cord after selective lesions of specific groups of neurons. The data show the presence of substance P binding sites on preganglionic sympathetic neurons in the intermediolateral cell column and on somatic motor neurons in the ventral horn, including the phrenic motor nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)
Yang, Jae Hyuk; Suh, Seung Woo; Modi, Hitesh N; Ramani, Easwar T; Hong, Jae Young; Hwang, Jin Ho; Jung, Woon Yong
2013-05-01
Spinal cord injury can occur following surgical procedures for correction of scoliosis and kyphosis, as these procedures produce lengthening of the vertebral column. The objective of this study was to cause spinal cord injury by vertebral column distraction and evaluate the histological changes in the spinal cord in relationship to the pattern of recovery from the spinal cord injury. Global osteotomy of all three spinal columns was performed on the ninth thoracic vertebra of sixteen pigs. The osteotomized vertebra was distracted until transcranial electrical stimulation-motor evoked potential (TES-MEP) signals disappeared or decreased by >80% compared with the baseline amplitude; this was defined as spinal cord injury. The distraction distance at which spinal cord injury occurred was measured, the distraction was released, and the TES-MEP recovery pattern was observed. A wake-up test was performed, two days of observations were made, and histological changes were evaluated in relationship to the recovery pattern. Spinal cord injury developed at a distraction distance of 20.2 ± 4.7 mm, equivalent to 3.6% of the thoracolumbar spinal length, and the distraction distance was correlated with the thoracolumbar spinal length (r = 0.632, p = 0.009). No animals exhibited complete recovery according to TES-MEP testing, eleven exhibited incomplete recovery, and five exhibited no recovery. During the two days of observation, all eleven animals with incomplete recovery showed positive responses to sensory and motor tests, whereas none of the five animals with no recovery had positive responses. On histological evaluation, three animals that exhibited no recovery all showed complete severance of nerve fibers (axotomy), whereas six animals that exhibited incomplete recovery all showed partial white-matter injury. Parallel distraction of approximately 3.6% of the thoracolumbar length after global osteotomy resulted in spinal cord injury and histological evidence of spinal cord damage. The pattern of recovery from the spinal cord injury after release of the distraction was consistent with the degree of axonal damage. Axotomy was observed in animals that exhibited no recovery on TES-MEP, and only hemorrhagic changes in the white matter were observed in animals that exhibited incomplete recovery.
Mutations in FLVCR1 Cause Posterior Column Ataxia and Retinitis Pigmentosa
Rajadhyaksha, Anjali M.; Elemento, Olivier; Puffenberger, Erik G.; Schierberl, Kathryn C.; Xiang, Jenny Z.; Putorti, Maria L.; Berciano, José; Poulin, Chantal; Brais, Bernard; Michaelides, Michel; Weleber, Richard G.; Higgins, Joseph J.
2010-01-01
The study of inherited retinal diseases has advanced our knowledge of the cellular and molecular mechanisms involved in sensory neural signaling. Dysfunction of two specific sensory modalities, vision and proprioception, characterizes the phenotype of the rare, autosomal-recessive disorder posterior column ataxia and retinitis pigmentosa (PCARP). Using targeted DNA capture and high-throughput sequencing, we analyzed the entire 4.2 Mb candidate sequence on chromosome 1q32 to find the gene mutated in PCARP in a single family. Employing comprehensive bioinformatic analysis and filtering, we identified a single-nucleotide coding variant in the feline leukemia virus subgroup C cellular receptor 1 (FLVCR1), a gene encoding a heme-transporter protein. Sanger sequencing confirmed the FLVCR1 mutation in this family and identified different homozygous missense mutations located within the protein's transmembrane channel segment in two other unrelated families with PCARP. To determine whether the selective pathologic features of PCARP correlated with FLVCR1 expression, we examined wild-type mouse Flvcr1 mRNA levels in the posterior column of the spinal cord and the retina via quantitative real-time reverse-transcriptase PCR. The Flvcr1 mRNA levels were most abundant in the retina, followed by the posterior column of the spinal cord and other brain regions. These results suggest that aberrant FLVCR1 causes a selective degeneration of a subpopulation of neurons in the retina and the posterior columns of the spinal cord via dysregulation of heme or iron homeostasis. This finding broadens the molecular basis of sensory neural signaling to include common mechanisms that involve proprioception and vision. PMID:21070897
Significance of fixation of the vertebral column for spinal cord injury experiments.
Liu, Fei; Luo, Zhuo-Jin; You, Si-Wei; Jiao, Xi-Ying; Meng, Xiao-Mei; Shi, Ming; Wang, Chun-Ting; Ju, Gong
2003-08-01
Thoracic spinal cord transections were performed in adult rats. The animals were divided into two groups, with or without internal fixation of the involved vertebral column. Histologic and immunohistochemical studies were performed to compare the effect of internal fixation of the vertebral column. To find out the aspects and extent of beneficial effects of vertebral column fixation for spinal cord repair. Vertebral column fixation is a routine procedure in clinical spinal cord surgery. Paradoxically, most, if not all, animal spinal cord experiments seem to have ignored the importance of vertebral column fixation. During trunk movements, the vertebral column flexes to different directions, accompanied by bending of the spinal cord. Following spinal cord lesions, with frequent bending of the cord there will be repeated bleeding, inflammation, and other pathologic processes at the lesion site. Thus, the healing process will be hampered. The severity of the damages that will be brought about by bending of the cord is, to a certain degree, unpredictable. There will be rather big individual variations in injury and repair among the same type of experiments, rendering quantification and conclusion difficult. Adult Sprague-Dawley rats were used. The thoracic spinal cord was transected. Strong stainless steel wires were used for internal fixation of the vertebral column. The histology of the horizontal sections of the spinal cord segment, which included the lesion site, was examined at the 14th postoperative day. The volumes of the secondary degeneration and meningeal scar, the gap between the borders of the proximal and distal stumps of the transected spinal cord, the thickness of the meningeal scar, the astrocytic reaction, and the abundance of regenerating nerve fibers at the lesion site were compared between the vertebral column fixed and nonfixed groups. Whenever possible, the results were evaluated quantitatively. In all these aspects, the internally fixed group was consistently far better than the unfixed group. The quantitative analyses were as follows (fixed/unfixed): 1)volume of secondary degeneration: 1.07 +/- 0.20/1.81 +/- 0.43 mm3 (P < 0.01); 2) volume of meningeal scar: 2.38 +/- 0.55/4.34 +/- 1.40 mm3 (P < 0.05); 3) distance between cord stumps: 1.38 +/- 0.34/2.35 +/- 0.79 mm (P < 0.05); 4) the mean thinnest dimension of the meningeal scar: 0.90 +/- 0.43/1.98 +/- 0.85 mm (P < 0.05). Vertebral column fixation is a crucial procedure for spinal cord animal experiments.
Vinay, S; Khan, S K; Braybrooke, J R
2011-01-01
Vertebral haemangiomas are recognized to be one of the commonest benign tumours of the vertebral column, occurring mostly in the thoracic spine. The vast majority of these are asymptomatic. Infrequently, these can turn symptomatic and cause neurological deficit (cord compression) through any of four reported mechanisms: (1) epidural extension; (2) expansion of the involved vertebra(e) causing spinal canal stenosis; (3) spontaneous epidural haemorrhage; (4) pathological burst fracture. Thoracic haemangiomas have been reported to be more likely to produce cord compression than lumbar haemangiomas. A forty-nine year old male with acute onset spinal cord compression from a pathological fracture in a first lumbar vertebral haemangioma. An MRI delineated the haemangioma and extent of bleeding that caused the cord compression. These were confirmed during surgery and the haematoma was evacuated. The spine was instrumented from T12 to L2, and a cement vertebroplasty was performed intra-operatively. Written consent for publication was obtained from the patient. The junctional location of the first lumbar vertebra, and the structural weakness from normal bone being replaced by the haemangioma, probably caused it to fracture under axial loading. This pathological fracture caused bleeding from the vascularized bone, resulting in cord compression.
Vinay, S; Khan, SK; Braybrooke, JR
2011-01-01
Context Vertebral haemangiomas are recognized to be one of the commonest benign tumours of the vertebral column, occurring mostly in the thoracic spine. The vast majority of these are asymptomatic. Infrequently, these can turn symptomatic and cause neurological deficit (cord compression) through any of four reported mechanisms: (1) epidural extension; (2) expansion of the involved vertebra(e) causing spinal canal stenosis; (3) spontaneous epidural haemorrhage; (4) pathological burst fracture. Thoracic haemangiomas have been reported to be more likely to produce cord compression than lumbar haemangiomas. Findings A forty-nine year old male with acute onset spinal cord compression from a pathological fracture in a first lumbar vertebral haemangioma. An MRI delineated the haemangioma and extent of bleeding that caused the cord compression. These were confirmed during surgery and the haematoma was evacuated. The spine was instrumented from T12 to L2, and a cement vertebroplasty was performed intra-operatively. Written consent for publication was obtained from the patient. Clinical Relevance The junctional location of the first lumbar vertebra, and the structural weakness from normal bone being replaced by the haemangioma, probably caused it to fracture under axial loading. This pathological fracture caused bleeding from the vascularized bone, resulting in cord compression. PMID:21756575
Coupling between the spinal cord and cervical vertebral column under tensile loading.
Kroeker, Shannon G; Ching, Randal P
2013-02-22
Current neck injury criteria are based on structural failure of the spinal (vertebral) column without consideration of injury to the spinal cord. Since one of the primary functions of the vertebral column is to protect the cord, it stands to reason that a more refined measure of neck injury threshold would be the onset of spinal cord injury (SCI). This study investigated the relationship between axial strains in the cervical vertebral column and the spinal cord using an in vitro primate model (n=10) under continuous tensile loading. Mean failure loads occurred at 1951.5±396N with failure strains in the vertebral column of 16±5% at the level of failure. Average tensile strains in the spinal cord at failure were 11±5% resulting in a mean coupling ratio of 0.54±0.17 between C1 and C7. The level of peak strain measured in the spinal cord did not always occur at the location of vertebral column failure. Spinal cord strains were less than spine strains and coupling ratios were not significantly different along the length of the spine. The largest coupling ratio was measured in the atlanto-occipital joint whereas the smallest coupling ratio occurred at the adjacent C1-C2 joint. Copyright © 2012 Elsevier Ltd. All rights reserved.
Danner, Simon M.; Hofstoetter, Ursula S.; Ladenbauer, Josef; Rattay, Frank; Minassian, Karen
2014-01-01
Stimulation of different spinal cord segments in humans is a widely developed clinical practice for modification of pain, altered sensation and movement. The human lumbar cord has become a target for modification of motor control by epidural and more recently by transcutaneous spinal cord stimulation. Posterior columns of the lumbar spinal cord represent a vertical system of axons and when activated can add other inputs to the motor control of the spinal cord than stimulated posterior roots. We used a detailed three-dimensional volume conductor model of the torso and the McIntyre-Richard-Grill axon model to calculate the thresholds of axons within the posterior columns in response to transcutaneous lumbar spinal cord stimulation. Superficially located large diameter posterior column fibers with multiple collaterals have a threshold of 45.4 V, three times higher than posterior root fibers (14.1 V). With the stimulation strength needed to activate posterior column axons, posterior root fibers of large and small diameters as well as anterior root fibers are co-activated. The reported results inform on these threshold differences, when stimulation is applied to the posterior structures of the lumbar cord at intensities above the threshold of large-diameter posterior root fibers. PMID:21401670
The Epidemiology of Back-Related Hospitalizations Among U.S. Navy Personnel
1988-06-21
Sacroiliac Joint (12.5%), and Fracture/Fracture- Dislocation of Vertebral Column Without Spinal Cord Lesion (12.0%). Table 1 Demographic Summary of Navy...Other or Unspecified 2,302 17.6 Back Part Sprain/Strain Sacroiliac Joint 1,636 12.5 Fracture/Fracture-Dislocation of 1,575 12.0 Vertebral Column...Without Spinal Cord Lesion Affection of Sacroiliac Joint 197 1.5 Fracture/Fracture-Dislocation of 115 .9 Vertebral Column With Spinal Cord Lesion Open
Pritz, M B
1996-01-01
Interconnections between the dorsal column nucleus and the spinal cord were investigated in a reptile, Caiman crocodilus. After placement of an anterograde tracer into the dorsal column nucleus, descending fibers are seen to leave this nucleus to enter the dorsal funiculus where they course ventrally to terminate in lamina V of the spinal cord as far caudally as C2. Placement of a retrograde tracer into cut fibers of the cervical spinal cord identified the relay cells of the dorsal column nucleus that project to the spinal cord. These neurons were mainly clustered in a caudal and ventral part of this nucleus. The soma of these spinally projecting cells were small and were generally round or oval in shape. A number of these neurons had the long axis of their soma oriented dorsoventrally, with a primary dendrite extending dorsally. Fibers in the dorsal funiculus that originated from the spinal cord enter the caudal part of the dorsal column nucleus and turn ventral. In the dorsal column nucleus, these axons run parallel to the vertically oriented dendrites of these spinally projecting cells before termination in close relation to the cell bodies of these neurons. Quantitative observations (mean +/- standard error) were made on well labeled neurons and included several measurements: area, perimeter, and degree of eccentricity (greatest width/greatest length) in both the transverse as well as the sagittal plane. These spinally projecting neurons in Caiman are located in the dorsal column nucleus in a position similar to that of spinally projecting cells in cats.
Chu, Winnie Cw; Lam, Wynnie Mw; Ng, Bobby Kw; Tze-Ping, Lam; Lee, Kwong-Man; Guo, Xia; Cheng, Jack Cy; Burwell, R Geoffrey; Dangerfield, Peter H; Jaspan, Tim
2008-06-27
There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). As part of its mission to widen understanding of scoliosis etiology, the International Federated Body on Scoliosis Etiology (IBSE) introduced the electronic focus group (EFG) as a means of increasing debate on knowledge of important topics. This has been designated as an on-line Delphi discussion. The Statement for this debate was written by Dr WCW Chu and colleagues who examine the spinal cord to vertebral growth interaction during adolescence in scoliosis. Using the multi-planar reconstruction technique of magnetic resonance imaging they investigated the relative length of spinal cord to vertebral column including ratios in 28 girls with AIS (mainly thoracic or double major curves) and 14 age-matched normal girls. Also evaluated were cerebellar tonsillar position, somatosensory evoked potentials (SSEPs), and clinical neurological examination. In severe AIS compared with normal controls, the vertebral column is significantly longer without detectable spinal cord lengthening. They speculate that anterior spinal column overgrowth relative to a normal length spinal cord exerts a stretching tethering force between the two ends, cranially and caudally leading to the initiation and progression of thoracic AIS. They support and develop the Roth-Porter concept of uncoupled neuro-osseous growth in the pathogenesis of AIS which now they prefer to term 'asynchronous neuro-osseous growth'. Morphological evidence about the curve apex suggests that the spinal cord is also affected, and a 'double pathology' is suggested. AIS is viewed as a disorder with a wide spectrum and a common neuroanatomical abnormality namely, a spinal cord of normal length but short relative to an abnormally lengthened anterior vertebral column. Neuroanatomical changes and/or abnormal neural function may be expressed only in severe cases. This asynchronous neuro-osseous growth concept is regarded as one component of a larger concept. The other component relates to the brain and cranium of AIS subjects because abnormalities have been found in brain (infratentorial and supratentorial) and skull (vault and base). The possible relevance of systemic melatonin-signaling pathway dysfunction, platelet calmodulin levels and putative vertebral vascular biology to the asynchronous neuro-osseous growth concept is discussed. A biomechanical model to test the spinal component of the concept is in hand. There is no published research on the biomechanical properties of the spinal cord for scoliosis specimens. Such research on normal spinal cords includes movements (kinematics), stress-strain responses to uniaxial loading, and anterior forces created by the stretched cord in forward flexion that may alter sagittal spinal shape during adolescent growth. The asynchronous neuro-osseous growth concept for the spine evokes controversy. Dr Chu and colleagues respond to five other concepts of pathogenesis for AIS and suggest that relative anterior spinal overgrowth and biomechanical growth modulation may also contribute to AIS pathogenesis.
Lhermitte's sign: Review with special emphasis in oncology practice.
Gemici, Cengiz
2010-05-01
Lhermitte's sign (LS) is characterized by electric shock like sensation, spreading along the spine in a cervico-caudal direction and also into both arms and legs, which is felt upon forward flexion of the neck. It is a myelopathy resulting from damage to sensory axons at the dorsal columns of the cervical or thoracic spinal cord and a well-known clinical sign in neurology practice. Patients with cancer may present with LS due to various causes either related to the tumor itself or to its treatment. Spinal cord tumors, radiotherapy and chemotherapy are possible causes of LS observed in oncology practice. While LS is observed with a frequency of 3.6-13% in large patient groups receiving radiotherapy for head and neck and thoracic malignancies, the true incidence of chemotherapy and spinal cord tumor induced LS is unknown with only few reported cases in the literature. In the present article, various pathologies causing Lhermitte's sign are reviewed with special emphasis on the implications of this sign in oncology practice. 2009 Elsevier Ireland Ltd. All rights reserved.
Martin-Vaquero, Paula; da Costa, Ronaldo C.
2014-01-01
Objective To characterize and compare the MRI morphological features of the cervical vertebral column of Great Danes with and without clinical signs of cervical spondylomyelopathy (CSM). Design Prospective cohort study. Animals 30 Great Danes (15 clinically normal and 15 CSM-affected). Procedures All dogs underwent MRI of the cervical vertebral column (C2–3 through T1–2). Features evaluated included sites of subarachnoid space compression, spinal cord compression, or both; degree, cause, and direction of compression; MRI signal changes of the spinal cord; articular process (facet) joint characteristics; internal vertebral venous plexus visibility; and presence of extradural synovial cysts as well as presence and degree of intervertebral disk degeneration and foraminal stenosis. Results Clinically normal and CSM-affected dogs had 11 and 61 compressive sites, respectively, detected with MRI. All CSM-affected dogs had ≥ 1 site of spinal cord compression. No signal changes were observed in spinal cords of normal dogs, whereas 14 sites of hyperintensity were found in 9 CSM-affected dogs. Foraminal stenosis was present in 11 clinically normal and all CSM-affected dogs. The number of stenotic foraminal sites was significantly greater in the CSM-affected group, and severe stenosis appeared to be more common in this group than in the clinically normal group. Significant differences were identified between clinically normal and CSM-affected dogs with regard to amount of synovial fluid evident, regularity of articular surfaces, degree of articular process joint proliferation, and internal vertebral venous plexus visibility. Conclusions and Clinical Relevance Abnormalities were detected with MRI in several clinically normal Great Danes. Severe spinal cord compression, number of stenotic foraminal sites, and signal changes within the spinal cord distinguished CSM-affected from clinically normal Great Danes. PMID:25075822
Martin-Vaquero, Paula; da Costa, Ronaldo C
2014-08-15
To characterize and compare the MRI morphological features of the cervical vertebral column of Great Danes with and without clinical signs of cervical spondylomyelopathy (CSM). Prospective cohort study. 30 Great Danes (15 clinically normal and 15 CSM-affected). All dogs underwent MRI of the cervical vertebral column (C2-3 through T1-2). Features evaluated included sites of subarachnoid space compression, spinal cord compression, or both; degree, cause, and direction of compression; MRI signal changes of the spinal cord; articular process (facet) joint characteristics; internal vertebral venous plexus visibility; and presence of extradural synovial cysts as well as presence and degree of intervertebral disk degeneration and foraminal stenosis. Clinically normal and CSM-affected dogs had 11 and 61 compressive sites, respectively, detected with MRI. All CSM-affected dogs had ≥ 1 site of spinal cord compression. No signal changes were observed in spinal cords of normal dogs, whereas 14 sites of hyperintensity were found in 9 CSM-affected dogs. Foraminal stenosis was present in 11 clinically normal and all CSM-affected dogs. The number of stenotic foraminal sites was significantly greater in the CSM-affected group, and severe stenosis appeared to be more common in this group than in the clinically normal group. Significant differences were identified between clinically normal and CSM-affected dogs with regard to amount of synovial fluid evident, regularity of articular surfaces, degree of articular process joint proliferation, and internal vertebral venous plexus visibility. Abnormalities were detected with MRI in several clinically normal Great Danes. Severe spinal cord compression, number of stenotic foraminal sites, and signal changes within the spinal cord distinguished CSM-affected from clinically normal Great Danes.
Lima Filho, José Admirço; Fin, Natalia Castro; Valerini, Felipe Gilberto; Machado, Vania Maria; Marques, Mariangela Ester; Miot, Hélio; Lima, Lais Helena Navarro E; Ganen, Eliana Marisa
2014-07-01
To evaluate the effect of ketamine S (+) 5% with no preservatives and administered as a subarachnoid single puncture on the spinal cord and meninges of rabbits. Twenty young adult female rabbits, each weighing 3500-5000 g and having a spine length between 34 and 38 cm, were divided by lot into two groups (G): 0.9% saline in G1 and ketamine S (+) 5% in G2, by volume of 5 μg per cm column (0.18 mL). After intravenous anaesthesia with ketamine and xylazine, the subarachnoid space was punctured at S1-S2 under ultrasound guidance, and a random solution was injected. The animals remained in captivity for 21 days under medical observation and were sacrificed by decapitation. The lumbosacral spinal cord portion was removed for immunohistochemistry to assess the glial fibrillary acidic protein (GFAP), and histology was assessed using hematoxylin and eosin (HE) stain. No histological lesions were found in the nervous tissue (roots and cord) or meninges in either group. The ketamine S (+) 5% unpreserved triggered no neurological or histological lesions in the spinal cord or meninges of rabbits.
Connections from the rat dorsal column nuclei (DCN) to the periaqueductal gray matter (PAG).
Barbaresi, Paolo; Mensà, Emanuela
2016-08-01
Electrical stimulation of the dorsal columns (DCs; spinal cord stimulation; SCS) has been proposed to treat chronic neuropathic pain. SCS may activate a dual mechanism that would affect both the spinal cord and supraspinal levels. Stimulation of DCs or DC nuclei (DCN) in animals where neuropathic pain has been induced causes activation of brainstem centers including the periaqueductal gray (PAG), which is involved in the endogenous pain suppression system. Biotinylated dextran-amine (BDA) was iontophoretically injected into the DCN to analyze the ascending projection directed to the PAG. Separate injections into the gracile nucleus (GrN) and the cuneate nucleus (CunN) showed BDA-positive fibers terminating in different regions of the contralateral PAG. GrN-PAG afferents terminated in the caudal and middle portions of PAG-l, whereas CunN-PAG fibers terminated in the middle and rostral portions of PAG-l. Based on the DCN somatotopic map, the GrN sends information to the PAG from the contralateral hindlimb and the tail and the CunN from the contralateral forelimb, shoulder, neck and ear. This somatotopic organization is consistent with earlier electrophysiological and PAG stimulation studies. These fibers could form part of the DCs-brainstem-spinal cord loop, which may be involved in the inhibitory effects of SCS on neuropathic pain. Copyright © 2016. Published by Elsevier Ireland Ltd.
Involvement of the Spinal Cord in Mitochondrial Disorders.
Finsterer, Josef; Zarrouk-Mahjoub, Sinda
2018-01-01
This review aims at summarising and discussing the current status concerning the clinical presentation, pathogenesis, diagnosis, and treatment of spinal cord affection in mitochondrial disorders (MIDs). A literature search using the database Pubmed was carried out by application of appropriate search terms and their combinations. Involvement of the spinal cord in MIDs is more frequent than anticipated. It occurs in specific and non-specific MIDs. Among the specific MIDs it has been most frequently described in LBSL, LS, MERRF, KSS, IOSCA, MIRAS, and PCH and only rarely in MELAS, CPEO, and LHON. Clinically, spinal cord involvement manifests as monoparesis, paraparesis, quadruparesis, sensory disturbances, hypotonia, spasticity, urinary or defecation dysfunction, spinal column deformities, or as transverse syndrome. Diagnosing spinal cord involvement in MIDs requires a thoroughly taken history, clinical exam, and imaging studies. Additionally, transcranial magnetic stimulation, somato-sensory-evoked potentials, and cerebro-spinal fluid can be supportive. Treatment is generally not at variance compared to the underlying MID but occasionally surgical stabilisation of the spinal column may be necessary. It is concluded that spinal cord involvement in MIDs is more frequent than anticipated but may be missed if cerebral manifestations prevail. Spinal cord involvement in MIDs may strongly determine the mobility of these patients.
Variations in the formation of the human caudal spinal cord.
Saraga-Babić, M; Sapunar, D; Wartiovaara, J
1995-01-01
Collection of 15 human embryos between 4-8 developmental weeks was used to histologically investigate variations in the development of the caudal part of the spinal cord and the neighboring axial organs (notochord and vertebral column). In the 4-week embryo, two types of neurulation were parallelly observed along the anteroposterior body axis: primary in the areas cranial to the neuroporus caudalis and secondary in the more caudal tail regions. In the 5-week embryos, both parts of the neural tube fused, forming only one continuous lumen in the developing spinal cord. In the three examined embryos we found anomalous pattern of spinal cord formation. Caudal parts of these spinal cords displayed division of their central canal into two or three separate lumina, each surrounded by neuroepithelial layer. In the caudal area of the spinal cord, derived by secondary neurulation, formation of separate lumina was neither connected to any anomalous notochord or vertebral column formation, nor the appearance of any major axial disturbances. We suggest that development of the caudal part of the spinal cord differs from its cranial region not only in the type of neurulation, but also in the destiny of its derivatives and possible modes of abnormality formation.
[Anesthesia for surgery of degenerative and abnormal cervical spine].
Béal, J L; Lopin, M C; Binnert, M
1993-01-01
A feature common to all congenital or inflammatory abnormalities of the cervical spine is an actual or potential reduction in the lumen of the spinal canal. The spinal cord and nerve roots are at risk. During intubation, and positioning the patient on the table, all untoward movements of the cervical spine may lead to spinal cord compression. Abnormalities of the cervical spine carry the risk of a difficult intubation. If there is much debate as to what constitutes optimum management of the airway, there is no evidence that any one method is the best. Recognizing the possible instability and intubating with care, are probably much more important in preserving neurological function than any particular mode of intubation. During maintenance of anaesthesia, the main goal is to preserve adequate spinal cord perfusion in order to prevent further damage. Spinal cord blood flow seems to be regulated by the same factors as cerebral blood flow. Hypercapnia increases cord blood flow while hypocapnia decreases it. Therefore, normocapnia or mild hypocapnia is recommended. Induced hypotension is frequently used to decrease blood loss. However, in patients with a marginally perfused spinal cord, the reduction in blood flow may cause ischaemia of the spinal cord and may therefore be relatively contraindicated. In addition to standard intraoperative monitoring, spinal cord monitoring is almost mandatory. Monitoring somatosensory evoked potentials is used routinely. However, the major limitation is that this technique only monitors dorsal column function; theoretically, motor paralysis can occur despite a lack of change in recorded signals. Neurogenic motor evoked potentials may now be used to monitor anterior spinal cord integrity.(ABSTRACT TRUNCATED AT 250 WORDS)
Workshop: The Technical Requirements for Image-Guided Therapy (Focus: Spinal Cord and Spinal Column)
2000-02-01
degenerative disease, spondylosis , ligamental ossification, fractures, tumors, and other causes. Compression is a painful condition that may require...series of 7000 patients who underwent lumbar disk surgery, Long indicates three reasons for failed surgery: 1. Failure of the patient to meet the...validated outcomes measures in the lumbar area, is used for a 70-year-old patient with osteoarthritis of the knees and low back pain as well as problems
Tucer, Bulent; Ekici, Mehmet Ali; Menku, Ahmet; Koc, Rahmi Kemal; Guclu, Bulent
2013-01-01
Vertebral hemangiomas are benign vascular lesions of the vertebral column; only 0.9-1.2% of all vertebral hemangiomas cause spinal cord compression. We report a 34-year-old female who was admitted to the neurosurgery clinic with a history of back pain, poor quality of life and easy fatigability for 1.5 years. Her medical history revealed a fall from a height of 2 meters 1.5 years ago. Neurology examination revealed bilateral hypoesthesia below the T8 level and hyperactive deep tendon reflexes in her left leg. Computed tomography scan of the thoracic spine showed T8 vertebral hemangioma, and magnetic resonance imaging showed a T8 hemangioma compressing the spinal cord. Surgical intervention was planned and T8 total laminectomy was performed. The tumor extending into the anterior spinal cord was resected, and T8 vertebroplasty with short segment posterior stabilization and fusion was performed. We aimed to present a new treatment approach for symptomatic vertebral hemangiomas and reviewed the relevant literature.
Legatt, Alan D; Fried, Stephen J; Amaral, Terry D; Sarwahi, Vishal; Moguilevitch, Marina
2014-04-01
To report a case of motor evoked potential changes and spinal cord injury during the initial dissection in scoliosis surgery. Motor evoked potentials to transcranial electrical stimulation were recorded from multiple muscles. Somatosensory evoked potentials to limb nerve stimulation were recorded from the scalp. Clear motor evoked potentials were initially present in all monitored muscles. The patient was then pharmacologically paralyzed for the initial dissection. More than usual bleeding was encountered during that dissection, prompting transfusion. As the neuromuscular blockade subsided, motor evoked potentials persisted in the hand muscles but disappeared and remained absent in all monitored leg muscles. The spine had not been instrumented. A wake-up test demonstrated paraplegia; the surgery was aborted. There were no adverse somatosensory evoked potential changes. MRI showed an anterior spinal cord infarct. Copious soft tissue bleeding during the initial dissection might have lowered pressures in critical segmental arteries enough to cause spinal cord infarction through a steal phenomenon. The lack of somatosensory evoked potential changes reflected sparing of the dorsal columns. When neuromuscular blockade is used during the initial soft tissue dissection, motor evoked potentials should be assessed after this, but before spinal instrumentation, to determine whether there had been any spinal cord compromise during the initial dissection.
Effects of space plasma discharge on the performance of large antenna structures in low Earth orbit
NASA Technical Reports Server (NTRS)
Blume, Hans-Juergen C.
1987-01-01
The anomalous plasma around spacecrafts in low Earth orbit represents the coma of an artificial comet. The plasma discharge is caused by an energetic disturbance of charged particles which were formerly in a state of equilibrium. The plasma can effect the passive and active radio frequency operation of large space antennas by inducing corona discharge or strong arcing in the antenna feeds. One such large space antenna is the 15-meter hoop column antenna which consists of a mesh membrane material (tricot knitted gold plated wire) reflector and carbon fiber tension cords. The atomic oxygen in the plasma discharge state can force the wire base metal particles through the gold lattice and oxydize the metal particles to build a Schottky-barrier contact at the point where the wires meet. This effect can cause strong deviations in the reflector performance in terms of antenna pattern and losses. Also, the carbon-fiber cords can experience a strength reduction of 30 percent over a 40-hour exposure time.
Man-in-the-barrel. A case of cervical spinal cord infarction and review of the literature.
Antelo, María José García; Facal, Teresa Lema; Sánchez, Tamara Pablos; Facal, María Soledad López; Nazabal, Eduardo Rubio
2013-01-01
Man-in-the-barrel syndrome was initially observed in patients with signs of serious cerebral hypoperfusion, in the border zone of the anterior and medial cerebral artery, but other causes were communicated later. a healthy 43-year-old woman who showed intense cervical pain, irradiating over both shoulders and arms. Physical examination on admission highlighted notable brachial diparesis, tacto-algesic hypoesthesia of both arms and sensory level C4-D9. cervical Magnetic Resonance Imaging (MRI) on admission revealed a hyperintense intramedullar lesion at C3-C7 level, due to a cervical cord infarction. our case reveals that conventional neurological consideration about the specific anatomical location of man-in-the-barrel syndrome in the brain should be extended to other locations such as the cervical column and not only the brain area.
Transverse tripolar spinal cord stimulation: theoretical performance of a dual channel system.
Struijk, J J; Holsheimer, J
1996-07-01
A new approach to spinal cord stimulation is presented, by which several serious problems of conventional methods can be solved. A transverse tripolar electrode with a dual-channel voltage stimulator is evaluated theoretically by means of a volume conductor model, combined with nerve fibre models. The simulations predict that a high degree of freedom in the control of activation of dorsal spinal pathways may be obtained with the described system. This implies an easier control of paraesthesia coverage of skin areas and the possibility to correct undesired paraesthesia patterns, caused by lead migration, tissue growth, or anatomical asymmetries, for example, without surgical intervention. It will also be possible to preferentially activate either dorsal column or dorsal root fibres, which has some important clinical advantages. Compared to conventional stimulation systems, the new system has a relatively high current drain.
Gutierrez-Quintana, Rodrigo; Penderis, Jacques
2012-01-01
Cervical spondylomyelopathy or Wobbler syndrome commonly affects the cervical vertebral column of Great Dane dogs. Degenerative changes affecting the articular process joints are a frequent finding in these patients; however, the correlation between these changes and other features of cervical spondylomyelopathy are uncertain. We described and graded the degenerative changes evident in the cervical articular process joints from 13 Great Danes dogs with cervical spondylomyelopathy using MR imaging, and evaluated the relationship between individual features of cervical articular process joint degeneration and the presence of spinal cord compression, vertebral foraminal stenosis, intramedullary spinal cord changes, and intervertebral disc degenerative changes. Degenerative changes affecting the articular process joints were common, with only 13 of 94 (14%) having no degenerative changes. The most severe changes were evident between C4-C5 and C7-T1 intervertebral spaces. Reduction or loss of the hyperintense synovial fluid signal on T2-weighted MR images was the most frequent feature associated with articular process joint degenerative changes. Degenerative changes of the articular process joints affecting the synovial fluid or articular surface, or causing lateral hypertrophic tissue, were positively correlated with lateral spinal cord compression and vertebral foraminal stenosis. Dorsal hypertrophic tissue was positively correlated with dorsal spinal cord compression. Disc-associated spinal cord compression was recognized less frequently. © 2011 Veterinary Radiology & Ultrasound.
Ravindra, Vijay M; Eli, Ilyas M; Schmidt, Meic H; Brockmeyer, Douglas L
2016-08-01
Spinal column tumors are rare in children and young adults, accounting for only 1% of all spine and spinal cord tumors combined. They often present diagnostic and therapeutic challenges. In this article, the authors review the current management of primary osseous tumors of the pediatric spinal column and highlight diagnosis, management, and surgical decision making.
Griffin, John F; Archambault, Nicholas S; Mankin, Joseph M; Wall, Corey R; Thompson, James A; Padua, Abraham; Purdy, David; Kerwin, Sharon C
2013-11-15
Laboratory investigation, ex vivo. Postoperative complications are common after spinal implantation procedures, and magnetic resonance imaging (MRI) would be the ideal modality to image these patients. Unfortunately, the implants cause artifacts that can render MRI nondiagnostic. The WARP-turbo spin echo (TSE) sequence has been developed to mitigate artifacts caused by metal. The objective of this investigation was to evaluate the performance of the WARP-TSE sequence in canine cadaver specimens after implantation with metallic vertebral implants. Magnetic field strength, implant type, and MRI acquisition technique all play a role in the severity of susceptibility artifacts. The WARP-TSE sequence uses increased bandwidth, view angle tilting, and SEMAC (slice-encoding metal artifact correction) to correct for susceptibility artifact. The WARP-TSE technique has outperformed conventional techniques in patients, after total hip arthroplasty. However, published reports of its application in subjects with vertebral column implants are lacking. Ex vivo anterior stabilization of the atlantoaxial joint was performed on 6 adult small breed (<8 kg) cadaver dogs using stainless steel screws and polymethylmethacrylate. Axial and sagittal T2-weighted and short tau inversion recovery MRI was performed using conventional pulse sequences and WARP-TSE sequences at 3 T. Images were assessed qualitatively and quantitatively. Images made with the WARP-TSE sequence had smaller susceptibility artifacts and superior spinal cord margin depiction. WARP-TSE sequences reduced the length over which susceptibility artifacts caused spinal cord margin depiction interference by 24.9% to 71.5% with scan times of approximately 12 to 16 minutes. The WARP-TSE sequence is a viable option for evaluating the vertebral column after implantation with stainless steel implants. N/A.
Epidemiology of Aquatic and Recreational Water Sport Injuries: A Case-Control Analysis.
Kane, Ian; Ong, Alvin; Radcliff, Kris E; Austin, Luke S; Maltenfort, Mitchell; Tjoumakaris, Fotios
2015-09-01
The purposes of the current investigation are to evaluate the epidemiology of water sport injuries at a coastal tertiary trauma center and to determine the association of these activities with spinal column injury and to determine whether aquatic trauma injuries differ significantly from those that occur terrestrially. A retrospective review of a consecutive series of 105 patients with aquatic-based mechanisms of injury admitted to a Level II trauma center over a 3-year period, as well as a matched control cohort with terrestrial-based mechanisms of injury, was conducted. Patients were treated at a Level II trauma center from January 1, 2008, to December 31, 2010. All patients received a full trauma work-up on arrival. Patients were identified retrospectively from a prospectively collected database (N=5298). Eligible patients were identified from billing/coding data as having mechanisms of injury related to an aquatic setting. Patients were evaluated using standard trauma protocols. Spinal column and cord injury occurrence and differences between groups were reviewed. Personal watercrafts accounted for the majority of injuries (n=39). Cervical (33.3%), closed-head (25.7%), and thoracolumbar (21.9%) injuries accounted for the majority of injury types. The cervical spinal column and the spinal cord were at an increased risk of injury in the aquatic injury cohort (P<.0001). The current data show the high incidence of spinal column and cord injuries in this patient population relative to controls. Practitioners who care for trauma patients near an aquatic environment should be aware of the high prevalence of these injuries, with proper spinal cord preservation protocols in place to optimize outcome. Copyright 2015, SLACK Incorporated.
Part 1: recognizing neonatal spinal cord injury.
Brand, M Colleen
2006-02-01
Neonatal spinal cord injury can occur in utero, as well as after either a difficult delivery or a nontraumatic delivery. Spinal cord injury can also be related to invasive nursery procedures or underlying neonatal pathology. Early clinical signs of spinal cord injury that has occurred in utero or at delivery includes severe respiratory compromise and profound hypotonia. Knowledge of risk factors and awareness of symptoms is required for early recognition and appropriate treatment. This article reviews the embryological development of the spinal column highlighting mechanisms of injury and identifying underlying factors that increase the risk of spinal cord injury in newborns. Signs and symptoms of injury, cervical spine immobilization, and the differential diagnosis are discussed. Nursing implications, general prognosis, and research in spinal cord injury are provided.
Ye, Da-Wei; Liu, Cheng; Tian, Xue-Bi; Xiang, Hong-Bing
2014-01-01
To determine the spinal innervation and neuronal connections is important for studying gastric carbohydrate metabolism and motor responses. Neurons involved in the efferent control of the stomach were identified following visualization of pseudorabies virus (PRV)-614 retrograde tracing. PRV-614 was injected into the ventral stomach wall in 13 adult C57BL/6J strain male mice. On the fifth day postinjection, animals were humanely sacrificed, and spinal cords were removed and sectioned, and processed for PRV visualization. The virus injected into the ventral stomach wall was specifically transported to the thoracic spinal cord. At 5 d after injection of the PRV-614, stomach enlargement and tissue edema were found, and PRV-614 positive cells were found in the intermediolateral cell column, the intercalates nucleus or the central autonomic nucleus of spinal cord segments T3 to L1, and major PRV-614 labeled cells were focused in the T6-10 segment. Our results revealed neuroanatomical circuits between stomach and the spinal intermediolateral cell column neurons.
Man-In-The-Barrel. A Case of Cervical Spinal Cord Infarction and Review of the Literature
Antelo, María José García; Facal, Teresa Lema; Sánchez, Tamara Pablos; Facal, María Soledad López; Nazabal, Eduardo Rubio
2013-01-01
Introduction: Man-in-the-barrel syndrome was initially observed in patients with signs of serious cerebral hypoperfusion, in the border zone of the anterior and medial cerebral artery, but other causes were communicated later. Methods: a healthy 43-year-old woman who showed intense cervical pain, irradiating over both shoulders and arms. Physical examination on admission highlighted notable brachial diparesis, tacto-algesic hypoesthesia of both arms and sensory level C4-D9. Results: cervical Magnetic Resonance Imaging (MRI) on admission revealed a hyperintense intramedullar lesion at C3-C7 level, due to a cervical cord infarction. Conclusions: our case reveals that conventional neurological consideration about the specific anatomical location of man-in-the-barrel syndrome in the brain should be extended to other locations such as the cervical column and not only the brain area. PMID:23407685
Advances in MR imaging for cervical spondylotic myelopathy.
Ellingson, Benjamin M; Salamon, Noriko; Holly, Langston T
2015-04-01
To outline the pathogenesis of cervical spondylotic myelopathy (CSM), the correlative abnormalities observed on standard magnetic resonance imaging (MRI), the biological implications and current status of diffusion tensor imaging (DTI), and MR spectroscopy (MRS) as clinical tools, and future directions of MR technology in the management of CSM patients. A systematic review of the pathogenesis and current state-of-the-art in MR imaging technology for CSM was performed. CSM is caused by progressive, degenerative, vertebral column abnormalities that result in spinal cord damage related to both primary mechanical and secondary biological injuries. The T2 signal change on conventional MRI is most commonly associated with neurological deficits, but tends not to be a sensitive predictor of recovery of function. DTI and MRS show altered microstructure and biochemistry that reflect patient-specific pathogenesis. Advanced imaging techniques, including DTI and MRS, show higher sensitivity to microstructural and biochemical changes within the cord, and may aid in management of CSM patients.
Mori, K; Koike, H; Misu, K; Hattori, N; Ichimura, M; Sobue, G
2001-01-01
OBJECTIVES—To determine spinal cord MRI findings in neuronopathy associated with Sjögren's syndrome and their correlation with severity of sensory impairment. METHODS—Clinical and electrophysiological features, pathological findings in the sural nerve, and hyperintensity on T2* weighted MRI in the spinal dorsal columns were evaluated in 14 patients with neuronopathy associated with Sjögren's syndrome. RESULTS—Of 14 patients, 12 showed high intensity by T2* weighted MRI in the posterior columns of the cervical cord. High intensity areas were seen in both the fasciculus cuneatus and gracilis in nine patients, who showed severe and widespread sensory deficits in the limbs and trunk; these patients also had a high frequency of autonomic symptoms. Somatosensory evoked potentials often could not be elicited. Hyperintensity restricted to the fasciculus gracilis was seen in three patients, who showed sensory deficits restricted to lower limbs without trunk involvement, or with only partial limb involvement; no autonomic symptoms were noted. The two patients who did not show high intensity areas in the dorsal columns showed restricted sensory involvement in the limbs. All patients showed axonal loss predominantly affecting large fibres, without axonal sprouting. CONCLUSIONS—High intensity areas on T2* weighted MRI in the spinal dorsal columns reflect the degree of sensory neuronal involvement in neuronopathy associated with Sjögren's syndrome; this finding could also be a helpful marker for estimating severity of this neuronopathy. PMID:11561032
The crossed phrenic phenomenon
Ghali, Michael George Zaki
2017-01-01
The cervical spine is the most common site of traumatic vertebral column injuries. Respiratory insufficiency constitutes a significant proportion of the morbidity burden and is the most common cause of mortality in these patients. In seeking to enhance our capacity to treat specifically the respiratory dysfunction following spinal cord injury, investigators have studied the “crossed phrenic phenomenon”, wherein contraction of a hemidiaphragm paralyzed by a complete hemisection of the ipsilateral cervical spinal cord above the phrenic nucleus can be induced by respiratory stressors and recovers spontaneously over time. Strengthening of latent contralateral projections to the phrenic nucleus and sprouting of new descending axons have been proposed as mechanisms contributing to the observed recovery. We have recently demonstrated recovery of spontaneous crossed phrenic activity occurring over minutes to hours in C1-hemisected unanesthetized decerebrate rats. The specific neurochemical and molecular pathways underlying crossed phrenic activity following injury require further clarification. A thorough understanding of these is necessary in order to develop targeted therapies for respiratory neurorehabilitation following spinal trauma. Animal studies provide preliminary evidence for the utility of neuropharmacological manipulation of serotonergic and adenosinergic pathways, nerve grafts, olfactory ensheathing cells, intraspinal microstimulation and a possible role for dorsal rhizotomy in recovering phrenic activity following spinal cord injury PMID:28761411
Chemical hazard information profile of triphenyl phosphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faust, R.A.; Wiedow, M.A.; Daugherty, M.W.
1986-12-01
The only human study located showed that triphenyl phosphite applied to the skin in a 1:3 dilution with cold cream for 48 h caused slight irritation, and challenge with the compound 14 days later produced a moderate sensitization reaction. The most significant health effects described in experimental animals are those affecting the nervous system. In adult rats, subacute exposure to the chemical produced gross ataxia and spinal cord neuropathy which predominantly affected the lateral and ventral columns of the lumber and sacral regions. Other symptoms included hyperexcitability and agitation after several days, muscle wasting, asymmetric gait, and hind-limb paralysis. Allmore » animals developed tail rigidity with a kinky appearance, and some animals displayed a circling behavior. The compound appeared to only weakly inhibit acetylcholinesterase activity. Single oral doses of triphenyl phosphite Gallus domesticus produced ataxia, and spinal cord and peripheral nerve histopathology. Neurotoxicity in rats, cats, and chickens indicated that triphenyl phosphite caused two distinct stages of action. Rats given s.c. injections of the chemical exhibit rapidly-developing stage or fine or coarse tremors which disappeared after a few hours. The later stage, occurring several days after treatment, caused hyperexcitability, spasticity and incoordination, followed by partial flaccid paralysis of the extremities. 135 refs., 2 tabs.« less
Kridsada, Kim; Niu, Jingwen; Haldipur, Parthiv; Wang, Zhiping; Ding, Long; Li, Jian J; Lindgren, Anne G; Herrera, Eloisa; Thomas, Gareth M; Chizhikov, Victor V; Millen, Kathleen J; Luo, Wenqin
2018-06-05
Spinal cord longitudinal axons comprise some of the longest axons in our body. However, mechanisms that drive this extra long-distance axonal growth are largely unclear. We found that ascending axons of rapidly adapting (RA) mechanoreceptors closely abut a previously undescribed population of roof plate-derived radial glial-like cells (RGLCs) in the spinal cord dorsal column, which form a network of processes enriched with growth-promoting factors. In dreher mutant mice that lack RGLCs, the lengths of ascending RA mechanoreceptor axon branches are specifically reduced, whereas their descending and collateral branches, and other dorsal column and sensory pathways, are largely unaffected. Because the number and intrinsic growth ability of RA mechanoreceptors are normal in dreher mice, our data suggest that RGLCs provide critical non-cell autonomous growth support for the ascending axons of RA mechanoreceptors. Together, our work identifies a developmental mechanism specifically required for long-range spinal cord longitudinal axons. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
CT and MRI in the evaluation of extraspinal sciatica
Ergun, T; Lakadamyali, H
2010-01-01
Sciatica is the most frequently encountered symptom in neurosurgical practice and is observed in 40% of adults at some point in their lives. It is described as pain of the hip and the lower extremity secondary to pathologies affecting the sciatic nerve within its intraspinal or extraspinal course. The most frequent cause is a herniating lumbar disc pressing on the neural roots. Extraspinal causes of sciatic pain are usually overlooked because they are extremely rare and due to intraspinal causes (lumbar spinal stenosis, facet joint osteoarthritis, fracture, and tumors of the spinal cord and spinal column) being the main consideration. Early diagnosis of sciatica significantly improves the likelihood of relieving symptoms, as well as avoiding any additional neurologic injury and unnecessary surgery. We evaluate histolopathologically confirmed extraspinal causes of sciatica cases, accompanied by their presented computed tomography and/or magnetic resonance imaging findings. PMID:20647515
Brown-Sequard syndrome associated with unusual spinal cord injury by a screwdriver stab wound
Beer-Furlan, André Luiz; Paiva, Wellingson Silva; Tavares, Wagner Malagó; de Andrade, Almir Ferreira; Teixeira, Manoel Jacobsen
2014-01-01
Introduction: Stab wounds resulting in spinal cord injuries are very rare. In direct central back stabbings, the layers of muscles and the spinal column tends to deflect blades, rarely causing injuries to the spinal cord. We report an unusual case of traumatic spinal cord injury by a screwdriver stab, presented as Brown-Séquard syndrome and discuss possible pitfalls on the surgical treatment. Case report: A 34 year-old man was brought to the emergency department after a group assault with a single screwdriver stab wound on the back. Neurological examination revealed an incomplete Brown-Sequard syndrome, with grade IV motor deficit on the left leg and contralateral hemihypoalgesia below T9 level. Radiological evaluation showed a retained 9 cm screwdriver that entered and trespassed the spinal canal at T6 level, reaching the posterior mediastinum with close relation to the thoracic aorta. Vascular injury could not be excluded. The joint decision between the neurosurgery and the vascular surgery teams was the surgical removal of the screwdriver under direct visualization. A left mini-thoracotomy was performed. Simultaneously, a careful dissection was done and screwdriver was firmly pulled back on the opposite path of entry under direct visualization of the aorta. The neurological deficit was maintained immediately after the surgical procedure. Follow-up visit after 1 year showed minor motor deficit and good healing. Conclusions: It is important to consider all aspects of secondary injury on the surgical planning of penetrating spinal cord injury. The secondary injury can be minimized with multidisciplinary planning of the surgical procedure. PMID:24482724
... the spinal cord. These attachments cause an abnormal stretching of the spinal cord. The course of the ... the spinal cord. These attachments cause an abnormal stretching of the spinal cord. The course of the ...
Management of acute traumatic spinal cord injuries.
Shank, C D; Walters, B C; Hadley, M N
2017-01-01
Acute traumatic spinal cord injury (SCI) is a devastating disease process affecting tens of thousands of people across the USA each year. Despite the increase in primary prevention measures, such as educational programs, motor vehicle speed limits, automobile running lights, and safety technology that includes automobile passive restraint systems and airbags, SCIs continue to carry substantial permanent morbidity and mortality. Medical measures implemented following the initial injury are designed to limit secondary insult to the spinal cord and to stabilize the spinal column in an attempt to decrease devastating sequelae. This chapter is an overview of the contemporary management of an acute traumatic SCI patient from the time of injury through the stay in the intensive care unit. We discuss initial triage, immobilization, and transportation of the patient by emergency medical services personnel to a definitive treatment facility. Upon arrival at the emergency department, we review initial trauma protocols and the evidence-based recommendations for radiographic evaluation of the patient's vertebral column. Finally, we outline closed cervical spine reduction and various aggressive medical therapies aimed at improving neurologic outcome. © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Goddard, L.; Bodner, W.; Brodin, N. P.; Garg, M.; Lee, A.; Mani, K.; Tomé, W. A.
2017-01-01
Metastases of the spinal column are common amongst cancer patients with approximately 18,000 new cases in North America each year that require urgent treatment. Historically radiation therapy doses have been limited due to the proximity of the spinal cord. However as image guidance and localization techniques have improved it has become possible to deliver higher radiation doses to the tumour whilst sparing the spinal cord. This paper presents some of the techniques undertaken at our center.
... cord. This syndrome can be caused by stroke, multiple sclerosis, tumors, epilepsy, brain or spinal cord trauma, or ... cord. This syndrome can be caused by stroke, multiple sclerosis, tumors, epilepsy, brain or spinal cord trauma, or ...
Cheng, Jason S; Ivan, Michael E; Stapleton, Christopher J; Quinones-Hinojosa, Alfredo; Gupta, Nalin; Auguste, Kurtis I
2014-06-01
Intraoperative dorsal column mapping, transcranial motor evoked potentials (TcMEPs), and somatosensory evoked potentials (SSEPs) have been used in adults to assist with the resection of intramedullary spinal cord tumors (IMSCTs) and to predict postoperative motor deficits. The authors sought to determine whether changes in MEP and SSEP waveforms would similarly predict postoperative motor deficits in children. The authors reviewed charts and intraoperative records for children who had undergone resection for IMSCTs as well as dorsal column mapping and TcMEP and SSEP monitoring. Motor evoked potential data were supplemented with electromyography data obtained using a Kartush microstimulator (Medtronic Inc.). Motor strength was graded using the Medical Research Council (MRC) scale during the preoperative, immediate postoperative, and follow-up periods. Reductions in SSEPs were documented after mechanical traction, in response to maneuvers with the cavitational ultrasonic surgical aspirator (CUSA), or both. Data from 12 patients were analyzed. Three lesions were encountered in the cervical and 7 in the thoracic spinal cord. Two patients had lesions of the cervicomedullary junction and upper spinal cord. Intraoperative MEP changes were noted in half of the patients. In these cases, normal polyphasic signals converted to biphasic signals, and these changes correlated with a loss of 1-2 grades in motor strength. One patient lost MEP signals completely and recovered strength to MRC Grade 4/5. The 2 patients with high cervical lesions showed neither intraoperative MEP changes nor motor deficits postoperatively. Dorsal columns were mapped in 7 patients, and the midline was determined accurately in all 7. Somatosensory evoked potentials were decreased in 7 patients. Two patients each had 2 SSEP decreases in response to traction intraoperatively but had no new sensory findings postoperatively. Another 2 patients had 3 traction-related SSEP decreases intraoperatively, and both had new postoperative sensory deficits that resolved. One additional patient had a CUSA-related SSEP decrease intraoperatively, which resolved postoperatively, and the last patient had 3 traction-related sensory deficits and a CUSA-related sensory deficit postoperatively, none of which resolved. Intraoperative TcMEPs and SSEPs can predict the degree of postoperative motor deficit in pediatric patients undergoing IMSCT resection. This technique, combined with dorsal column mapping, is particularly useful in resecting lesions of the upper cervical cord, which are generally considered to be high risk in this population. Furthermore, the spinal cord appears to be less tolerant of repeated intraoperative SSEP decreases, with 3 successive insults most likely to yield postoperative sensory deficits. Changes in TcMEPs and SSEP waveforms can signal the need to guard against excessive manipulation thereby increasing the safety of tumor resection.
1928-01-01
(1).—Varieties of spinal injuries, the three groups of common usage: fractures, dislocations, fracture-dislocations. Shall not refer in detail to fractures of the spinous or transverse processes. (2) Mechanics of injury to vertebræ. Two variables: (1) the nature of the bones; (2) the qualities of the force. Spinal injury usually caused by indirect violence. (3) The different results of injuries applied to the head; may break skull, failing that, the neck. Atlas fracture. Difference in qualities of the force causing atlas fracture and low cervical dislocation. (4) The compound nature of the vertebral body. The two columns, anterior, spongy; posterior, compact. The nature of wedge-compression of the vertebral body. Variations in the shape of the wedge. Reasons. Occur at all levels, including cervical spine. (5) Frequency of injury at different levels of vertebral column. “Localization” of injury. The two places of the graph of injury. The cervical at C. 5. Reason. The thoracic-lumbar peak at T. 12, L. 1 industrial. Is there a third peak at C. 2? (6) The effects of violent flexion of the spine: cervical flexion causes luxation at C. 5 or so. Extension causes fracture of odontoid. Violent flexion and extension therefore cause injury at very different levels. Thoracic region, why is there no “peak” of injury at T.6, 7? Lumbar region. (7) Displacement of fragments. Continuation of violence after the essential injury has been effected. Kümmell's disease, no inflammatory process involved. (8) Injury to the intervertebral discs, essential for displacement. Imperfect rupture a cause for difficulty in reducing luxations. The worst cases those in which it is most easily done, but most of these have cord damage. (9) Spinal injury from minimal violence. Examples of trivial cases, diving, brushing hair and so forth. Vertebral displacement in disease a much more serious thing. (10) Curious stability of many cervical luxations. Reasons. Locking of the inferior zygaphophyses. (11) Injury to nervous elements left principally to other speakers. Cord compression very rare. Immediate and irremediable damage. Root injuries. Falling mortality of modern statistics due to better diagnosis. (12) Primary operation for fractures of spine relegated to oblivion. Rarity of indications for open operation. Reduction the best treatment. ImagesFig. 5Fig. 6 PMID:19986314
The Evoked Potential. An Experimental Method for Biomechanical Analysis of Brain and Spinal Injury
1980-01-01
Newtons produced marked changes in blood pressure, heart rate and distraction of the cervical spinal column with minimal ligamentous disruption...pathologic distraction and pathologic flexion of the thoracic ver- tebral column (8). Cerebral responses were lost within two minutes aftex complete...However, the immediate flexion and distraction responses were not altered. These findings suggest that mechanical trauma alters the spinal cord evoked
Kassem, Hassan; Wafaie, Ahmed; Abdelfattah, Sherif; Farid, Tarek
2014-01-01
Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation (LBSL) is a recently identified autosomal recessive disorder with early onset of symptoms and slowly progressive pyramidal, cerebellar and dorsal column dysfunction. LBSL is characterized by distinct white matter abnormalities and selective involvement of brainstem and spinal cord tracts. The purpose of this study is to assess the imaging features of the involved white matter tracts in cases of LBSL by MRI. We retrospectively reviewed the imaging features of the selectively involved white matter tracts in sixteen genetically proven cases of leukoencephalopathy with brainstem and spinal cord involvement and elevated brain lactate (LBSL). All patients presented with slowly progressive cerebellar sensory ataxia with spasticity and dorsal column dysfunction. MRI of the brain and spine using 1.5 T machine and proton magnetic resonance spectroscopy (1H MRS) on the abnormal white matter were done to all patients. The MRI and MRS data sets were analyzed according to lesion location, extent, distribution and signal pattern as well as metabolite values and ratios in MRS. Laboratory examinations ruled out classic leukodystrophies. In all cases, MRI showed high signal intensity in T2-weighted and FLAIR images within the cerebral subcortical, periventricular and deep white matter, posterior limbs of internal capsules, centrum semiovale, medulla oblongata, intraparenchymal trajectory of trigeminal nerves and deep cerebellar white matter. In the spine, the signal intensity of the dorsal column and lateral cortico-spinal tracts were altered in all patients. The subcortical U fibers, globi pallidi, thalami, midbrain and transverse pontine fibers were spared in all cases. In 11 cases (68.8%), the signal changes were inhomogeneous and confluent whereas in 5 patients (31.2%), the signal abnormalities were spotty. MRI also showed variable signal abnormalities in the sensory and pyramidal tracts in addition to the brainstem and cerebellar connections. Proton MRS showed consistent elevation of the lactate within the abnormal white matter. Distinct MRI findings in the form of selective affection of subcortical and deep white matter tracts of the brain (involving the posterior limb of internal capsules and sparing the subcortical U fibers), dorsal column and lateral cortico-spinal tracts of the spinal cord should lead to the diagnosis of LBSL supported by the presence of lactate peak in 1H MRS. The disease can be confirmed by the analysis of the disease gene DARS2.
Uluc, Kayihan; Baskan, Ozdil; Yildirim, Kadriye Agan; Ozsahin, Selda; Koseoglu, Mesrure; Isak, Baris; Scheper, G C; Gunal, Dilek Ince; van der Knaap, M S
2008-10-15
Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL) is a recently described disorder with autosomal recessive mode of inheritance. Lately, mutations in the DARS2 gene, which encodes mitochondrial aspartyl-tRNA synthetase, have been found as the underlying defect. We report a 19-year-old male patient with cerebellar, pyramidal and dorsal column dysfunctions and specific magnetic resonance imaging (MRI) and characteristic magnetic resonance spectroscopy (MRS) abnormalities. The patient was compound-heterozygous for two mutations in DARS2. MRI showed selective involvement of cerebral and cerebellar white matter and superior and inferior cerebellar peduncles, without contrast enhancement. The U-fibers were spared. The sensory and the pyramidal tracts were affected over their entire length. Involvement of the intraparenchymal trajectories of the trigeminal nerves and mesencephalic trigeminal tracts was demonstrated. In the spinal cord, signal abnormalities were identified in the dorsal columns and the lateral corticospinal tracts. Proton-MRS of the frontal and cerebellar white matter showed elevated lactate, reduced N-acetylaspartate, increased myoinositol and mildly elevated choline. In LBSL, distinct MRI findings should lead to the diagnosis, which can be confirmed by the analysis of the disease gene DARS2.
Vertebral column resection for the treatment of severe spinal deformity.
Lenke, Lawrence G; Sides, Brenda A; Koester, Linda A; Hensley, Marsha; Blanke, Kathy M
2010-03-01
The ability to treat severe pediatric and adult spinal deformities through an all-posterior vertebral column resection (VCR) has obviated the need for a circumferential approach in primary and revision surgery, but there is limited literature evaluating this new approach. Our purpose was therefore to provide further support of this technique. We reviewed 43 patients who underwent a posterior-only VCR using pedicle screws, anteriorly positioned cages, and intraoperative spinal cord monitoring between 2002 and 2006. Diagnoses included severe scoliosis, global kyphosis, angular kyphosis, or kyphoscoliosis. Forty (93%) procedures were performed at L1 or cephalad in the spinal cord (SC) territory. Seven patients (18%) lost intraoperative neurogenic monitoring evoked potentials (NMEPs) data during correction with data returning to baseline after prompt surgical intervention. All patients after surgery were at their baseline or showed improved SC function, whereas no one worsened. Two patients had nerve root palsies postoperatively, which resolved spontaneously at 6 months and 2 weeks. Spinal cord monitoring (specifically NMEP) is mandatory to prevent neurologic complications. Although technically challenging, a single-stage approach offers dramatic correction in both primary and revision surgery of severe spinal deformities. Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
[Causes of vocal cord dyscinesia and its original factors after endotracheal intubation].
Sun, Anke; Zhang, Tiezheng; Liu, Wenyuan; Tang, Weiwei; Guo, Xiaohong
2012-03-01
To research the causes of postintubation vocal cord dyskinesia and its contributing factors. The causes of vocal cord dyskinesia were confirmed by laryngoscope, three-dimensional spiral CT, stroboscope, and the analysis of therapy. The factors relevant to the causes of vocal cord dyskinesia were analysed based on the following elements: (1) the anatomic or pathological condition of patients or the technical skills of anesthetists. (2) emaciated or obese body and neck. (3) the age of patients. (4) the duration of endotracheal tube retention. (5) the types of operations. (6) anesthesia procedure. Among 135 patients, 128 cases (94.81%) manifested arytenoid dislocation, 7 cases (5.19%) vocal cord paralysis. The study showed that the vocal cord dyskinesia associated with anatomic or pathological condition of patients and technical skills of anesthetists (with intubation difficulty) accounted for 76.30%. The patients with relative emaciated body or neck accounted for 90.62% in cases without intubation difficulty. Age had no significant analytical relationship with vocal cord dyskinesia. Prolonged intubation (endotracheal tube retention over 12 hours) was accounted for only 17.64%. The incidence of vocal cord dyskinesia was nearly 0.5% in patients underwent cardio-thoracic surgery, accounting for 59.26% of all the patients. There are two major causes of vocal cord dyskinesia: arytenoid dislocation and vocal cord paralysis, and the rate of vocal cord dyskinesia could be reduced by the improvement of technical skill of anesthetists and/or sufficient attention to the intubation condition of patients.
Management of Sub-axial Cervical Spine Injuries
Zaveri, Gautam; Das, Gurdip
2017-01-01
Sub-axial cervical spine injuries are commonly seen in patients with blunt trauma. They may be associated with spinal cord injury resulting in tetraplegia and severe permanent disability. Immobilization of the neck, maintenance of blood pressure and oxygenation, rapid clinical and radiological assessment of all injuries, and realignment of the spinal column are the key steps in the emergency management of these injuries. The role of intravenous methylprednisolone administration in acute spinal cord injuries remains controversial. The definitive management of these injuries is based upon recognition of the fracture pattern, assessment of the degree of instability, the presence or absence of neurologic deficit, and other patient related factors that may influence the outcome. Nonoperative treatment comprises of some form of external immobilization for 8 to 12 weeks, followed by imaging to assess fracture healing, and to rule out instability. The goals of surgery are realignment of the vertebral column, decompression of the neural elements and instrumented stabilization. PMID:29200479
Analysis of on-orbit thermal characteristics of the 15-meter hoop/column antenna
NASA Technical Reports Server (NTRS)
Andersen, Gregory C.; Farmer, Jeffery T.; Garrison, James
1987-01-01
In recent years, interest in large deployable space antennae has led to the development of the 15 meter hoop/column antenna. The thermal environment the antenna is expected to experience during orbit is examined and the temperature distributions leading to reflector surface distortion errors are determined. Two flight orientations corresponding to: (1) normal operation, and (2) use in a Shuttle-attached flight experiment are examined. A reduced element model was used to determine element temperatures at 16 orbit points for both flight orientations. The temperature ranged from a minimum of 188 K to a maximum of 326 K. Based on the element temperatures, orbit position leading to possible worst case surface distortions were determined, and the subsequent temperatures were used in a static finite element analysis to quantify surface control cord deflections. The predicted changes in the control cord lengths were in the submillimeter ranges.
Early development of the circumferential axonal pathway in mouse and chick spinal cord.
Holley, J A
1982-03-10
The early development of the circumferential axonal pathway in the brachial and lumbar spinal cord of mouse and chick embryos was studied by scanning and transmission electron microscopy. The cellular processes which comprise this pathway grow in the transverse plane and along the lateral margin of the marginal zone (i.e., circumferentially oriented), as typified by the early embryonic commissural axons. The first formative event observed was in the ventrolateral margin of the primitive spinal cord ventricular zone. Cellular processes were found near the external limiting membrane that appeared to grow a variable distance either dorsally or ventrally. Later in development, presumptive motor column neurons migrated into the ventrolateral region, distal to these early circumferentially oriented processes. Concurrently, other circumferentially oriented perikarya and processes appeared along the dorsolateral margin. Due to their aligned sites of origin and parallel growth, the circumferential processes formed a more or less continuous line or pathway, which in about 10% of the scanned specimens could be followed along the entire lateral margin of the embryonic spinal cord. Several specimens later in development had two sets of aligned circumferential processes in the ventral region. Large numbers of circumferential axons were then found to follow the preformed pathway by fasciculation, after the primitive motor column had become established. Since the earliest circumferential processes appeared to differentiate into axons and were found nearly 24 hours prior to growth of most circumferential axons, their role in guidance as pioneering axons was suggested.
Spinal cord injury - Symptoms and causes
... are the leading cause of spinal cord injuries, accounting for almost half of new spinal cord injuries ... address these problems if they affect you. Respiratory system. Your injury may make it more difficult to ...
Multifocal Spinal Cord Nephroblastoma in a Dog.
Henker, L C; Bianchi, R M; Vargas, T P; de Oliveira, E C; Driemeier, D; Pavarini, S P
2018-01-01
A 1-year-old male American pit bull terrier was presented with a history of proprioceptive deficits and mild lameness of the right hindlimb, which progressed after 5 months to paraparesis, culminating in tetraparesis after 2 weeks. Necropsy findings were limited to the spinal cord and consisted of multiple, intradural, extramedullary, slightly red masses which produced segmental areas of medullary swelling located in the cervical intumescence, thoracolumbar column, sacral segment and cauda equina. Histological evaluation revealed a tumour, composed of epithelial, stromal and blastemal cells, with structures resembling tubules, acini and embryonic glomeruli. Immunohistochemical labelling for vimentin, cytokeratin and S100 was positive for the stromal, epithelial and blastemal cells, respectively. A final diagnosis of multifocal spinal cord nephroblastoma was established. This is the first report of such a tumour showing concomitant involvement of the cervicothoracic, thoracolumbar, sacral and cauda equina areas of the spinal cord. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simorgh, L; Torkaman, G; Firoozabadi, S M
2008-01-01
This study aimed at examining the effect of tripolar TENS of vertebral column on the activity of slow and fast motoneurons on 10 healthy non-athlete women aged 22.7 +/- 2.21 yrs. H-reflex recovery curve of soleus (slow) and gastrocnemius (fast) muscles were recorded before and after applying tripolar TENS. For recording of this curve, rectangular paired stimuli were applied on tibial nerve (with 40-520 ISI, frequency of 0.2 Hz and pulse width of 600 micros). Our findings showed that maximum H-reflex recovery in gastrocnemius muscle appeared in the shorter ISI, while in soleus muscle, it appeared in the longer ISI and its amplitude slightly decreased after applying tripolar TENS. It is suggested that tripolar TENS excites not only the skin but also Ia and Ib afferents in the dorsal column. A Synaptic interaction of these afferents in spinal cord causes the inhibition of type I MNs and facilitation of type II MNs. This effect can be used in muscle tone modulation.
Li, L
1997-05-01
As prostaglandin F2alpha is present in biological materials, and plays an important physiological role at trace level in the living body, then, highly sensitive determination of PGs is required. Various fluorescence derivatization reagents have been proposed for the determination of PGs. The 3-bromomethyl-6,7-methylenedioxyl-1-methyl-2(1H)-quinoxalinone was found to be a highly sensitive fluorescence derivatization reagent for PGF2alpha in HPLC with a detectable limit of 10-15 fmol for PGF2alpha. In this work we optimized its reaction conditions. Thus the PGF2alpha was extracted from the microdialysates with ethyl acetate at pH 3.0-3.5 following which the extracts were evaporated to dryness. The residue was derivatized by adding acetonitrile, KHCO3, Br-DMEQ and 18-crown-6-ether at 50 degrees C for 30min in the dark. The corresponding fluorescent derivatives produced were separated on a C8 column (Phase-Sep Ltd.), 5microm, 4.6mm x 150mm. Stepwise elution with different ratios of A and B was carried out. 30:10:60 of CHsCN:CH3OH:H2O constituted A solution and 35:30:35 made B solution. The A/B (97/3) was first run for 25 min and A/B (50/50) for the next 15min. Then the column was equilibrated with A/B (97/3) for 20min before the next sample injected. Fluorescence detector was used at lambdaEX 370nm and lambdaEM 455nm, and flow-rate of 2.0mL/min. Because the most evidence for a role of free radicals in tissue damage is indirect, we attempt to determine whether OH causes release of arachidonic acid products in vivo. We did this by (1) generating OH radical in vivo in rat spinal cord by administering H2O2 and FeCl2/EDTA through two parallel microdialysis fibers so they mixed in the cord, and (2) analyzing PGF2alpha in microdialysates in response to OH generation by HPLC. We utilized dialysis fibers of < or = 220microm external diameter including their coating except for a 2mm dialysis zone which was coated with a thin layer of silicon rubber. When the animal was clamped, two microdialysis fibers glued together were inserted through the cord until the dialysis zone just placed in the gray matters of the cord. The time course of changes in levels of PGF2alpha during OH generation by Fe/H2O2 is given. Typical chromatogram of the dialysate collected from one animal is illustrated. Prostaglandin F2alpha dramatically increased in response to hydroxyl radical generation from undetectable (basal level) to about 333 +/- 166nmol/L (SD, n = 5) in 90min, Prostaglandin F2alpha was undetectable when either H2O2 or FeCl2/EDTA was administered alone in control experiments, demonstrating that its formation was caused by generated hydroxyl radical.
Frequency Mapping of Rat Spinal Cord at 7T
NASA Astrophysics Data System (ADS)
Chen, Evan; Rauscher, Alexander; Kozlowski, Piotr; Yung, Andrew
2012-10-01
The spinal cord is an integral part of the nervous system responsible for sensory, motor, and reflex control crucial to all bodily function. Due to its non-invasive nature, MRI is well matched for characterizing and imaging of spinal cord, and is used extensively for clinical applications. Recent developments in magnetic resonance imaging (MRI) at high field (7T) using phase represents a new approach of characterizing spinal cord myelin. Theory suggests that microstructure differences in myelinated white matter (WM) and non-myelinated gray matter (GM) affect MR phase, measurable frequency shifts. Data from pilot experiments using a multi-gradient echo (MGE) sequence to image rat spinal cords placed parallel to main magnetic field B0 has shown frequency shifts between not only between WM and GM, but also between specific WM tracts of the dorsal column, including the fasciculus gracilis, fasciculus cuneatus, and corticospinal tract. Using MGE, frequency maps at multiple echo times (TE) between 4ms and 22ms show a non-linear relationship between WM frequency, contrary to what was previously expected. These results demonstrate the effectiveness of MGE in revealing new information about spinal cord tissue microstructure, and lays important groundwork for in-vivo and human studies.
Development of a finite element model of the ligamentous cervical vertebral column of a Great Dane.
Bonelli, Marília de Albuquerque; Shah, Anoli; Goel, Vijay; Costa, Fabiano Séllos; da Costa, Ronaldo Casimiro
2018-06-01
Cervical spondylomyelopathy (CSM), also known as wobbler syndrome, affects mainly large and giant-breed dogs, causing compression of the cervical spinal cord and/or nerve roots. Structural and dynamic components seem to play a role in the development of CSM; however, pathogenesis is not yet fully understood. Finite element models have been used for years in human medicine to study the dynamic behavior of structures, but it has been mostly overlooked in veterinary studies. To our knowledge, no specific ligamentous spine models have been developed to investigate naturally occurring canine myelopathies and possible surgical treatments. The goal of this study was to develop a finite element model (FEM) of the C 2 -C 7 segment of the ligamentous cervical vertebral column of a neurologically normal Great Dane without imaging changes. The FEM of the intact C 2 -C 7 cervical vertebral column had a total of 188,906 elements (175,715 tetra elements and 12,740 hexa elements). The range of motion (in degrees) for the FEM subjected to a moment of 2Nm was approximately 27.94 in flexion, 25.86 in extension, 24.14 in left lateral bending, 25.27 in right lateral bending, 17.44 in left axial rotation, and 16.72 in right axial rotation. We constructed a ligamentous FEM of the C 2 -C 7 vertebral column of a Great Dane dog, which can serve as a platform to be modified and adapted for studies related to biomechanics of the cervical vertebral column and to further improve studies on osseous-associated cervical spondylomyelopathy. Copyright © 2018 Elsevier Ltd. All rights reserved.
Russo, Marc; Cousins, Michael J; Brooker, Charles; Taylor, Nathan; Boesel, Tillman; Sullivan, Richard; Poree, Lawrence; Shariati, Nastaran Hesam; Hanson, Erin; Parker, John
2018-01-01
Conventional spinal cord stimulation (SCS) delivers a fixed-input of energy into the dorsal column. Physiologic effects such as heartbeat, respiration, spinal cord movement, and history of stimulation can cause both the perceived intensity and recruitment of stimulation to increase or decrease, with clinical consequences. A new SCS system controls stimulation dose by measuring the recruitment of fibers in the dorsal column and by using the amplitude of the evoked compound action potentials (ECAPs) to maintain stimulation within an individualized therapeutic range. Safety and efficacy of this closed-loop system was evaluated through six-month postimplantation. Chronic pain subjects with back and/or leg pain who were successfully trialed received a permanent system (Evoke; Saluda Medical, Sydney, Australia). Ratings of pain (100-mm visual analogue scale [VAS] and Brief Pain Instrument [BPI]), quality of life (EuroQol instrument [EQ-5D-5L]), function (Oswestry Disability Index [ODI]), and sleep (Pittsburgh Sleep Quality Index [PSQI]) were collected at baseline and repeated three and six months after implantation. Fifty-one subjects underwent a trial procedure; permanent implants were placed in 36 subjects. The proportion of subjects with ≥50% relief was 92.6% (back) and 91.3% (leg) at three months, and 85.7% (back) and 82.6% (leg) at six months. The proportion with ≥80% pain relief was 70.4% (back) and 56.5% (leg) at three months, and 64.3% (back) and 60.9% (leg) at six months. Statistically significant improvements in mean BPI, EQ-5D-5L, ODI, and PSQI were also observed at both time points. The majority of subjects experienced profound pain relief at three and six months, providing preliminary evidence for the effectiveness of the closed-loop SCS system. The exact mechanism of action for these outcomes is still being explored, although one likely hypothesis holds that ECAP feedback control may minimize recruitment of Aβ nociceptors and Aδ fibers during daily use of SCS. © 2017 International Neuromodulation Society.
Spinal column and spinal cord injuries in mountain bikers: a 13-year review.
Dodwell, Emily R; Kwon, Brian K; Hughes, Barbara; Koo, David; Townson, Andrea; Aludino, Allan; Simons, Richard K; Fisher, Charles G; Dvorak, Marcel F; Noonan, Vanessa K
2010-08-01
Multiple studies have described in general the injuries associated with mountain biking, and detailed accounts of spine injuries sustained in hockey, gymnastics, skiing, snowboarding, rugby, and paragliding have previously been published. However, no large-scale detailed assessment of mountain biking associated spinal fractures and spinal cord injuries has previously been published. This study was undertaken to describe the patient demographics, injuries, mechanisms, treatments, outcomes, and resource requirements associated with spine injuries sustained while mountain biking. Case series; Level of evidence, 4. Patients who were injured while mountain biking, and who were seen at a provincial spine referral center between 1995 and 2007 inclusive, with spinal cord injuries and/or spine fracture were included. A chart review was performed to obtain demographic data, and details of the injury, treatment, outcome, and resource requirements. A total of 102 men and 5 women were identified for inclusion. The mean age at injury was 32.7 years (95% confidence interval 30.6, 35.0). Seventy-nine patients (73.8%) sustained cervical injuries, while the remainder sustained thoracic or lumbar injuries. Forty-three patients (40.2%) sustained a spinal cord injury. Of those with cord injuries, 18 (41.9%) were American Spinal Injury Association (ASIA) A, 5 (11.6%) were ASIA B, 10 (23.3%) ASIA C, and 10 (23.3%) ASIA D. Sixty-seven patients (62.6%) required surgical treatment. The mean length of stay in an acute hospital bed was 16.9 days (95% confidence interval 13.1, 30.0). Thirty-three patients (30.8%) required intensive care unit attention, and 31 patients (29.0%) required inpatient rehabilitation. Of the 43 patients (40.2%) seen with spinal cord injuries, 14 (32.5%) improved by 1 ASIA category, and 1 (2.3%) improved by 2 ASIA categories. Two patients remained ventilator-dependent at discharge. Spine fractures and spinal cord injuries caused by mountain biking accidents typically affect young, male, recreational riders. The medical, personal, and societal costs of these injuries are high. Injury prevention should remain a primary goal, and further research is necessary to explore the utility of educational programs, and the effect of helmets and other protective gear on spine injuries sustained while mountain biking.
The dosimetric impact of implants on the spinal cord dose during stereotactic body radiotherapy.
Yazici, Gozde; Sari, Sezin Yuce; Yedekci, Fazli Yagiz; Yucekul, Altug; Birgi, Sumerya Duru; Demirkiran, Gokhan; Gultekin, Melis; Hurmuz, Pervin; Yazici, Muharrem; Ozyigit, Gokhan; Cengiz, Mustafa
2016-05-25
The effects of spinal implants on dose distribution have been studied for conformal treatment plans. However, the dosimetric impact of spinal implants in stereotactic body radiotherapy (SBRT) treatments has not been studied in spatial orientation. In this study we evaluated the effect of spinal implants placed in sawbone vertebra models implanted as in vivo instrumentations. Four different spinal implant reconstruction techniques were performed using the standard sawbone lumbar vertebrae model; 1. L2-L4 posterior instrumentation without anterior column reconstruction (PI); 2. L2-L4 anterior instrumentation, L3 corpectomy, and anterior column reconstruction with a titanium cage (AIAC); 3. L2-L4 posterior instrumentation, L3 corpectomy, and anterior column reconstruction with a titanium cage (PIAC); 4. L2-L4 anterior instrumentation, L3 corpectomy, and anterior column reconstruction with chest tubes filled with bone cement (AIABc). The target was defined as the spinous process and lamina of the lumbar (L) 3 vertebra. A thermoluminescent dosimeter (TLD, LiF:Mg,Ti) was located on the measurement point anterior to the spinal cord. The prescription dose was 8 Gy and the treatment was administered in a single fraction using a CyberKnife® (Accuray Inc., Sunnyvale, CA, USA). We performed two different treatment plans. In Plan A beam interaction with the rod was not limited. In plan B the rod was considered a structure of avoidance, and interaction between the rod and beam was prevented. TLD measurements were compared with the point dose calculated by the treatment planning system (TPS). In plan A, the difference between TLD measurement and the dose calculated by the TPS was 1.7 %, 2.8 %, and 2.7 % for the sawbone with no implant, PI, and PIAC models, respectively. For the AIAC model the TLD dose was 13.8 % higher than the TPS dose; the difference was 18.6 % for the AIABc model. In plan B for the AIAC and AIABc models, TLD measurement was 2.5 % and 0.9 % higher than the dose calculated by the TPS, respectively. Spinal implants may be present in the treatment field in patients scheduled to undergo SBRT. For the types of implants studied herein anterior rod instrumentation resulted in an increase in the spinal cord dose, whereas use of a titanium cage had a minimal effect on dose distribution. While planning SBRT in patients with spinal reconstructions, avoidance of the rod and preventing interaction between the rod and beam might be the optimal solution for preventing unexpectedly high spinal cord doses.
Zhao, Zhi; Xie, Jingming; Wang, Yingsong; Bi, Ni; Li, Tao; Zhang, Ying; Shi, Zhiyue
2017-07-01
In using posterior vertebral column resection (PVCR) to treat severe kyphoscoliosis, it is unavoidable to ligate and cut off several segmental arteries (SAs) of the spinal cord for exposure and hemostasis, but which would raise the neurological risks. The aim of this study is to explore the changes of intraoperative spinal cord monitoring (IOM) following ligating different numbers of SAs in PVCR. Twenty-one consecutive patients with severe kyphoscoliosis were included and treated by PVCR correction. In operation, according to ligate different numbers of SAs, the IOM changes were recorded, respectively. Examinations of the covariance between different numbers of SAs ligations and IOM changes were performed to reveal the effect to the spinal cord by SAs ligations. In all the 21 cases, averaging 1.9 pairs of SAs were ligated. With the increased numbers of ligations, SSEP amplitudes and latencies were changed more obviously: from 1 to 3 pairs ligations, the mean decreased percentages of amplitudes were from 53.20 to 78.15%, the mean increased percentages of latency were from 1.23 to 1.40%, and the mean durations of decreased SSEP amplitudes were from 3.23 to 5.2 min; but without abnormal MEP changes. None occurred postoperative or delayed neurological deficit. Correlation analysis identified significant correlations between the number of SAs ligation and decreased percentage of SSEP amplitude (r = 0.945, P < 0.0001), and between the number of SAs being ligated and the duration of SSEP change (r = 0.945, P = 0.0002). Following the increased number of SAs ligation, the amplitude of SSEP is decreased more obviously with a much longer duration of recovery and the risk to spinal cord will be increased greatly. In the PVCR correction on the basis of spinal shortening, the numbers of SAs ligations should be as less as possible for neurological safety.
Transverse tripolar spinal cord stimulation: results of an international multicenter study.
Oakley, John C; Espinosa, Francisco; Bothe, Hans; McKean, John; Allen, Peter; Burchiel, Kim; Quartey, Gilbert; Spincemaille, Geert; Nuttin, Bart; Gielen, Frans; King, Gary; Holsheimer, Jan
2006-07-01
Experienced neurosurgeons at eight spinal cord stimulation centers in the United States, Canada, and Europe participated in a study from 1997 to 2000 investigating the safety, performance, and efficacy of a Transverse Tripolar Stimulation (TTS) system invented at the University of Twente, the Netherlands. This device was proposed to improve the ability of spinal cord stimulation to adequately overlap paresthesia to perceived areas of pain. Fifty-six patients with chronic, intractable neuropathic pain of the trunk and/or limbs more than three months' duration (average 105 months) were enrolled with follow-up periods at 4, 12, 26, and 52 weeks. All patients had a new paddle-type lead implanted with four electrodes, three of them aligned in a row perpendicular to the cord. Fifteen of these patients did not undergo permanent implantation. Of the 41 patients internalized, 20 patients chose conventional programming using an implanted pulse generator to drive four electrodes, while 21 patients chose a tripole stimulation system, which used radiofrequency power and signal transmission and an implanted dual-channel receiver to drive three electrodes using simultaneous pulses of independently variable amplitude. On average, the visual analog scale scores dropped more for patients with TTS systems (32%) than for conventional polarity systems (16%). Conventional polarity systems were using higher frequencies on average, while usage range was similar. Most impressive was the well-controlled "steering" of the paresthesias according to the dermatomal topography of the dorsal columns when using the TTS-balanced pulse driver. The most common complication was lead migration. While the transverse stimulation system produced acceptable outcomes for overall pain relief, an analysis of individual pain patterns suggests that it behaves like spinal cord stimulation in general with the best control of extremity neuropathic pain. This transverse tripole lead and driving system introduced the concept of electrical field steering by selective recruitment of axonal nerve fiber tracts in the dorsal columns.
29 CFR 1910.334 - Use of equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (a) Portable electric equipment. This paragraph applies to the use of cord- and plug-connected... in a manner which will not cause damage. Flexible electric cords connected to equipment may not be...) Portable cord- and plug-connected equipment and flexible cord sets (extension cords) shall be visually...
Weirich, S D; Cotler, H B; Narayana, P A; Hazle, J D; Jackson, E F; Coupe, K J; McDonald, C L; Langford, L A; Harris, J H
1990-07-01
Magnetic resonance imaging (MRI) provides a noninvasive method of monitoring the pathologic response to spinal cord injury. Specific MR signal intensity patterns appear to correlate with degrees of improvement in the neurologic status in spinal cord injury patients. Histologic correlation of two types of MR signal intensity patterns are confirmed in the current study using a rat animal model. Adult male Sprague-Dawley rats underwent spinal cord trauma at the midthoracic level using a weight-dropping technique. After laminectomy, 5- and 10-gm brass weights were dropped from designated heights onto a 0.1-gm impounder placed on the exposed dura. Animals allowed to regain consciousness demonstrated variable recovery of hind limb paraplegia. Magnetic resonance images were obtained from 2 hours to 1 week after injury using a 2-tesla MRI/spectrometer. Sacrifice under anesthesia was performed by perfusive fixation; spinal columns were excised en bloc, embedded, sectioned, and observed with the compound light microscope. Magnetic resonance axial images obtained during the time sequence after injury demonstrate a distinct correlation between MR signal intensity patterns and the histologic appearance of the spinal cord. Magnetic resonance imaging delineates the pathologic processes resulting from acute spinal cord injury and can be used to differentiate the type of injury and prognosis.
NASA Astrophysics Data System (ADS)
Sankarasubramanian, V.; Buitenweg, J. R.; Holsheimer, J.; Veltink, P.
2011-02-01
The aim of this modeling study is to determine the influence of electrode alignment of transverse tripoles on the paresthesia coverage of the pain area in spinal cord stimulation, using a percutaneous triple-lead approach. Transverse tripoles, comprising a central cathode and two lateral anodes, were modeled on the low-thoracic vertebral region (T10-T12) using percutaneous triple-lead configurations, with the center lead on the spinal cord midline. The triple leads were oriented both aligned and staggered. In the staggered configuration, the anodes were offset either caudally (caudally staggered) or rostrally (rostrally staggered) with respect to the midline cathode. The transverse tripolar field steering with the aligned and staggered configurations enabled the estimation of dorsal column fiber thresholds (IDC) and dorsal root fiber thresholds (IDR) at various anodal current ratios. IDC and IDR were considerably higher for the aligned transverse tripoles as compared to the staggered transverse tripoles. The aligned transverse tripoles facilitated deeper penetration into the medial dorsal columns (DCs). The staggered transverse tripoles always enabled broad and bilateral DC activation, at the expense of mediolateral steerability. The largest DC recruited area was obtained with the rostrally staggered transverse tripole. Transverse tripolar geometries, using percutaneous leads, allow for selective targeting of either medial or lateral DC fibers, if and only if the transverse tripole is aligned. Steering of anodal currents between the lateral leads of the staggered transverse tripoles cannot target medially confined populations of DC fibers in the spinal cord. An aligned transverse tripolar configuration is strongly recommended, because of its ability to provide more post-operative flexibility than other configurations.
Jadhao, Arun G; Biswas, Saikat P; Bhoyar, Rahul C; Pinelli, Claudia
2017-04-01
Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) enzymatic activity has been reported in few amphibian species. In this study, we report its unusual localization in the medulla oblongata, spinal cord, cranial nerves, spinal nerves, and ganglions of the frog, Microhyla ornata. In the rhombencephalon, at the level of facial and vagus nerves, the NADPH-d labeling was noted in the nucleus of the abducent and facial nerves, dorsal nucleus of the vestibulocochlear nerve, the nucleus of hypoglossus nerve, dorsal and lateral column nucleus, the nucleus of the solitary tract, the dorsal field of spinal grey, the lateral and medial motor fields of spinal grey and radix ventralis and dorsalis (2-10). Many ependymal cells around the lining of the fourth ventricle, both facial and vagus nerves and dorsal root ganglion, were intensely labeled with NADPH-d. Most strikingly the NADPH-d activity was seen in small and large sized motoneurons in both medial and lateral motor neuron columns on the right and left sides of the brain. This is the largest stained group observed from the caudal rhombencephalon up to the level of radix dorsalis 10 in the spinal cord. The neurons were either oval or elongated in shape with long processes and showed significant variation in the nuclear and cellular diameter. A massive NADPH-d activity in the medulla oblongata, spinal cord, and spinal nerves implied an important role of this enzyme in the neuronal signaling as well as in the modulation of motor functions in the peripheral nervous systems of the amphibians. Copyright © 2017 Elsevier B.V. All rights reserved.
VGLUT1 and VGLUT2 innervation in autonomic regions of intact and transected rat spinal cord.
Llewellyn-Smith, Ida J; Martin, Carolyn L; Fenwick, Natalie M; Dicarlo, Stephen E; Lujan, Heidi L; Schreihofer, Ann M
2007-08-20
Fast excitatory neurotransmission to sympathetic and parasympathetic preganglionic neurons (SPN and PPN) is glutamatergic. To characterize this innervation in spinal autonomic regions, we localized immunoreactivity for vesicular glutamate transporters (VGLUTs) 1 and 2 in intact cords and after upper thoracic complete transections. Preganglionic neurons were retrogradely labeled by intraperitoneal Fluoro-Gold or with cholera toxin B (CTB) from superior cervical, celiac, or major pelvic ganglia or adrenal medulla. Glutamatergic somata were localized with in situ hybridization for VGLUT mRNA. In intact cords, all autonomic areas contained abundant VGLUT2-immunoreactive axons and synapses. CTB-immunoreactive SPN and PPN received many close appositions from VGLUT2-immunoreactive axons. VGLUT2-immunoreactive synapses occurred on Fluoro-Gold-labeled SPN. Somata with VGLUT2 mRNA occurred throughout the spinal gray matter. VGLUT2 immunoreactivity was not noticeably affected caudal to a transection. In contrast, in intact cords, VGLUT1-immunoreactive axons were sparse in the intermediolateral cell column (IML) and lumbosacral parasympathetic nucleus but moderately dense above the central canal. VGLUT1-immunoreactive close appositions were rare on SPN in the IML and the central autonomic area and on PPN. Transection reduced the density of VGLUT1-immunoreactive axons in sympathetic subnuclei but increased their density in the parasympathetic nucleus. Neuronal cell bodies with VGLUT1 mRNA occurred only in Clarke's column. These data indicate that SPN and PPN are densely innervated by VGLUT2-immunoreactive axons, some of which arise from spinal neurons. In contrast, the VGLUT1-immunoreactive innervation of spinal preganglionic neurons is sparse, and some may arise from supraspinal sources. Increased VGLUT1 immunoreactivity after transection may correlate with increased glutamatergic transmission to PPN. (c) 2007 Wiley-Liss, Inc.
Schneider, Torben; Solanky, Bhavana S.; Yiannakas, Marios C.; Altmann, Dan R.; Wheeler-Kingshott, Claudia A. M.; Peters, Amy L.; Day, Brian L.; Thompson, Alan J.; Ciccarelli, Olga
2015-01-01
Spinal neurodegeneration is an important determinant of disability progression in patients with primary progressive multiple sclerosis. Advanced imaging techniques, such as single-voxel 1H-magnetic resonance spectroscopy and q-space imaging, have increased pathological specificity for neurodegeneration, but are challenging to implement in the spinal cord and have yet to be applied in early primary progressive multiple sclerosis. By combining these imaging techniques with new clinical measures, which reflect spinal cord pathology more closely than conventional clinical tests, we explored the potential for spinal magnetic resonance spectroscopy and q-space imaging to detect early spinal neurodegeneration that may be responsible for clinical disability. Data from 21 patients with primary progressive multiple sclerosis within 6 years of disease onset, and 24 control subjects were analysed. Patients were clinically assessed on grip strength, vibration perception thresholds and postural stability, in addition to the Expanded Disability Status Scale, Nine Hole Peg Test, Timed 25-Foot Walk Test, Multiple Sclerosis Walking Scale-12, and Modified Ashworth Scale. All subjects underwent magnetic resonance spectroscopy and q-space imaging of the cervical cord and conventional brain and spinal magnetic resonance imaging at 3 T. Multivariate analyses and multiple regression models were used to assess the differences in imaging measures between groups and the relationship between magnetic resonance imaging measures and clinical scores, correcting for age, gender, spinal cord cross-sectional area, brain T2 lesion volume, and brain white matter and grey matter volume fractions. Although patients did not show significant cord atrophy when compared with healthy controls, they had significantly lower total N-acetyl-aspartate (mean 4.01 versus 5.31 mmol/l, P = 0.020) and glutamate-glutamine (mean 4.65 versus 5.93 mmol/l, P = 0.043) than controls. Patients showed an increase in q-space imaging-derived indices of perpendicular diffusivity in both the whole cord and major columns compared with controls (P < 0.05 for all indices). Lower total N-acetyl-aspartate was associated with higher disability, as assessed by the Expanded Disability Status Scale (coefficient = −0.41, 0.01 < P < 0.05), Modified Ashworth Scale (coefficient = −3.78, 0.01 < P < 0.05), vibration perception thresholds (coefficient = −4.37, P = 0.021) and postural sway (P < 0.001). Lower glutamate-glutamine predicted increased postural sway (P = 0.017). Increased perpendicular diffusivity in the whole cord and columns was associated with increased scores on the Modified Ashworth Scale, vibration perception thresholds and postural sway (P < 0.05 in all cases). These imaging findings indicate reduced structural integrity of neurons, demyelination, and abnormalities in the glutamatergic pathways in the cervical cord of early primary progressive multiple sclerosis, in the absence of extensive spinal cord atrophy. The observed relationship between imaging measures and disability suggests that early spinal neurodegeneration may underlie clinical impairment, and should be targeted in future clinical trials with neuroprotective agents to prevent the development of progressive disability. PMID:25863355
Spinal cord ischemia following thoracotomy without epidural anesthesia.
Raz, Aeyal; Avramovich, Aharon; Saraf-Lavi, Efrat; Saute, Milton; Eidelman, Leonid A
2006-06-01
Paraplegia is an uncommon yet devastating complication following thoracotomy, usually caused by compression or ischemia of the spinal cord. Ischemia without compression may be a result of global ischemia, vascular injury and other causes. Epidural anesthesia has been implicated as a major cause. This report highlights the fact that perioperative cord ischemia and paraplegia may be unrelated to epidural intervention. A 71-yr-old woman was admitted for a left upper lobectomy for resection of a non-small cell carcinoma of the lung. The patient refused epidural catheter placement and underwent a left T5-6 thoracotomy under general anesthesia. During surgery, she was hemodynamically stable and good oxygen saturation was maintained. Several hours following surgery the patient complained of loss of sensation in her legs. Neurological examination disclosed a complete motor and sensory block at the T5-6 level. Magnetic resonance imaging (MRI) revealed spinal cord ischemia. The patient received iv steroid treatment, but remained paraplegic. Five months following the surgery there was only partial improvement in her motor symptoms. A follow-up MRI study was consistent with a diagnosis of spinal cord ischemia. In this case of paraplegia following thoracic surgery for lung resection, epidural anesthesia/analgesia was not used. The MRI demonstrated evidence of spinal cord ischemia, and no evidence of cord compression. This case highlights that etiologies other than epidural intervention, such as injury to the spinal segmental arteries during thoracotomy, should be considered as potential causes of cord ischemia and resultant paraplegia in this surgical population.
Neural tube defects – disorders of neurulation and related embryonic processes
Copp, Andrew J.; Greene, Nicholas D. E.
2014-01-01
Neural tube defects (NTDs) are severe congenital malformations affecting 1 in every 1000 pregnancies. ‘Open’ NTDs result from failure of primary neurulation as seen in anencephaly, myelomeningocele (open spina bifida) and craniorachischisis. Degeneration of the persistently open neural tube in utero leads to loss of neurological function below the lesion level. ‘Closed’ NTDs are skin-covered disorders of spinal cord structure, ranging from asymptomatic spina bifida occulta to severe spinal cord tethering, and usually traceable to disruption of secondary neurulation. ‘Herniation’ NTDs are those in which meninges, with or without brain or spinal cord tissue, become exteriorised through a pathological opening in the skull or vertebral column (e.g. encephalocele and meningocele). NTDs have multifactorial etiology, with genes and environmental factors interacting to determine individual risk of malformation. While over 200 mutant genes cause open NTDs in mice, much less is known about the genetic causation of human NTDs. Recent evidence has implicated genes of the planar cell polarity signalling pathway in a proportion of cases. The embryonic development of NTDs is complex, with diverse cellular and molecular mechanisms operating at different levels of the body axis. Molecular regulatory events include the BMP and Sonic hedgehog pathways which have been implicated in control of neural plate bending. Primary prevention of NTDs has been implemented clinically following the demonstration that folic acid, when taken as a peri-conceptional supplement, can prevent many cases. Not all NTDs respond to folic acid, however, and adjunct therapies are required for prevention of this folic acid-resistant category. PMID:24009034
Hayek, Salim M; Veizi, Elias; Hanes, Michael
2015-10-01
The study aims to evaluate the long-term implant survival and complications of spinal cord stimulation (SCS) leading to surgical revision or explant in patients treated for chronic noncancer pain. This is a retrospective study of all patients who underwent a percutaneous spinal cord stimulation trial followed by implant in an academic Pain Medicine division by four practitioners from 2007 to 2013, with follow-up data through April 2014. A total of 345 patients were considered candidates for dorsal column stimulation and underwent a trial. Two hundred thirty-four patients were implanted with an implant-to-trial ratio of 67-86% across various chronic pain entities (postlaminectomy syndrome, complex regional pain syndrome, small-fiber peripheral neuropathy, abdominal/pelvic pain, nonsurgical candidates with lumbosacral neuropathy, and neuropathic pain not otherwise specified), with the exception of nonsurgical candidates with lumbosacral neuropathy who had an implant ratio of 43%. The complication rate was 34.6%, with the hardware related being the most common reason, comprising 74.1% of all complications. The revision and explant rates were 23.9% each. The most common reason for explant was loss of therapeutic effect (41.1%). SCS is an effective treatment for chronic noncancer pain. It is a minimally invasive procedure, safe, and with good long-term outcomes. However, the surgical revision and explant rates are relatively high. As the use of SCS continues to grow, research into the causes of and risk factors for SCS-related complications is paramount to decrease complication rates in the future. © 2015 International Neuromodulation Society.
Pattern and presentation of spine trauma in Gwagwalada-Abuja, Nigeria.
Kawu, A A
2012-01-01
The objective was to demonstrate the correlations and effects of age, gender, and cause of accident on the type of vertebral fracture as well as on the likelihood to sustain neurological deficit following trauma in Nigeria. Spinal column injury is a well-documented problem but literature has been mute on this problem in Nigeria unlike the many papers on spinal cord injury. A retrospective review of spinal cord injured (SCI) patients was performed. Age, sex, cause and level of injury, fracture pattern and distribution, and neurologic presentation of SCI patients from 1997 to 2007 were studied from case notes. There were 202 patients with male preponderance and a mean age of 38.9 ± 11.4 years over the 11-year period. The most common cause of spine injury was road traffic injury (79.7%). Cervical spine injury (10.4%) accounted for the highest number of cases with complete neurologic deficit. The majority of patients, 119 (58.9%) sustained a type A fracture, 37 (18.3%) a type B fracture, and 41(20.3%) patients experienced a type C fracture. All patients had neurologic deficits. Age (P=0.032) and road traffic injury (P=0.029) were independently associated with type of fracture after multivariate analysis. Age (P=0.038), road traffic injury (P=0.027), and cervical spine fracture (P=0.009) were also independently associated with neurologic deficit. These data showed the correlation between trauma mechanism and the type of fracture seen, and also the type of fracture and the incidence of neurologic deficit. The predictors of fracture types are age and road traffic injury while age, road traffic injury, and cervical spine fractures predict neurologic deficit.
Bulbospinal substance P and sympathetic regulation of the cardiovascular system: a review.
Helke, C J; Charlton, C G; Keeler, J R
1985-01-01
The neurotransmitter role of substance P in mediating sympathoexcitatory effects in the spinal cord and cardiovascular effects elicited from the ventral medulla is presented. SP neurons located in the ventral medulla project to the intermediolateral cell column (IML) of the thoracic spinal cord. Intrathecal administration of a SP analog excites sympathetic outflow to the cardiovascular system. Likewise, activation of the ventral medulla results in sympathetically mediated increases in blood pressure and heart rate which are blocked with SP antagonists. The IML contained a high density of SP binding sites through which the peptide likely exerts its sympathoexcitatory influence on the cardiovascular system.
[Spinal cord injury due to penetrating missiles].
Ohry, Avi
2003-10-01
Gunshot wound of the spine is a major cause of spinal cord injury among US civilian population, members of the military armed conflict personnel, or civilians injured in terrorists attacks. The bullet fragments cause damage to the spinal cord even without penetrating the spinal canal. Concussive effects, heat, fractures or vascular injury may cause the neurological damage. Unfortunately, bullet or shrapnel removal or laminectomy do not change the prognosis. In this article we review the historical background, the Israeli experience, ballistic-forensic considerations, complications, treatment and prognosis.
Abraira, Victoria E.; Ginty, David D.
2013-01-01
The somatosensory system decodes a wide range of tactile stimuli and thus endows us with a remarkable capacity for object recognition, texture discrimination, sensory-motor feedback and social exchange. The first step leading to perception of innocuous touch is activation of cutaneous sensory neurons called low-threshold mechanoreceptors (LTMRs). Here, we review the properties and functions of LTMRs, emphasizing the unique tuning properties of LTMR subtypes and the organizational logic of their peripheral and central axonal projections. We discuss the spinal cord neurophysiological representation of complex mechanical forces acting upon the skin and current views of how tactile information is processed and conveyed from the spinal cord to the brain. An integrative model in which ensembles of impulses arising from physiologically distinct LTMRs are integrated and processed in somatotopically aligned mechanosensory columns of the spinal cord dorsal horn underlies the nervous system’s enormous capacity for perceiving the richness of the tactile world. PMID:23972592
Causes and imaging manifestations of paralysis of the recurrent laryngeal nerve.
Méndez Garrido, S; Ocete Pérez, R F
2016-01-01
The vocal cords play a key role in the functions of the larynx. Their motor innervation depends on the recurrent laryngeal nerve (a branch of the tenth cranial nerve), which follows a long trajectory comprising intracranial, cervical, and mediastinal segments. Vocal cord paralysis usually manifests as dysphonia, the main symptom calling for CT study, the first-line imaging test to investigate the cause of the lesion. Patients are asymptomatic in a third of cases, so the incidental detection of signs of vocal cord paralysis in a CT study done for other reasons should prompt a search for a potentially severe occult lesion. This article aims to familiarize readers with the anatomy of the motor innervation of the glottis, the radiological presentation and most common causes of vocal cord paralysis, and conditions that can simulate vocal cord paralysis. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
“Neuropathology of amyotrophic lateral sclerosis and its variants”
Saberi, Shahram; Stauffer, Jennifer E.; Schulte, Derek J.; Ravits, John
2015-01-01
Summary Amyotrophic lateral sclerosis (ALS) is a clinical syndrome named for its neuropathological hallmark: degeneration of motor neurons in the spinal anterior horn and motor cortex and loss of axons in the lateral columns of the spinal cord. The signature neuropathological molecular signature common to almost all sporadic ALS and most familial ALS is TDP-43 immunoreactive neuronal cytoplasmic inclusions. The neuropathological and molecular neuropathological features of ALS variants primarly lateral sclerosis and progressive muscular atrophy are less certain, but also appear to share the primary features of ALS. A number of genetic causes including mutations in SOD1, FUS, and C9orf72 comprise a disease spectrum and all demonstrate distinctive molecular and neuropathological signatures. Neuropathology will continue to play to a key role in solving the puzzle of ALS pathogenesis. PMID:26515626
Quantitative aspects of the clinical performance of transverse tripolar spinal cord stimulation.
Wesselink, W A; Holsheimer, J; King, G W; Torgerson, N A; Boom, H B
1999-01-01
A multicenter study was initiated to evaluate the performance of the transverse tripolar system for spinal cord stimulation. Computer modeling had predicted steering of paresthesia with a dual channel stimulator to be the main benefit of the system. The quantitative analysis presented here includes the results of 484 tests in 30 patients. For each test, paresthesia coverage as a function of voltage levels was stored in a computerized database, including a body map which enabled calculation of the degree of paresthesia coverage of separate body areas, as well as the overlap with the painful areas. The results show that with the transverse tripolar system steering of the paresthesia is possible, although optimal steering requires proper placement of the electrode with respect to the spinal cord. Therefore, with this steering ability as well as a larger therapeutic stimulation window as compared to conventional systems, we expect an increase of the long-term efficacy of spinal cord stimulation. Moreover, in view of the stimulation-induced paresthesia patterns, the system allows selective stimulation of the medial dorsal columns.
Pain outcomes after surgery in patients with intramedullary spinal cord cavernous malformations.
Deutsch, Harel
2010-09-01
The objective of the study was to quantify the improvement in pain levels for patients who have undergone surgery for intramedullary spinal cord cavernous malformations (SCCMs). The author reviewed medical records of patients who underwent surgery for an intramedullary SCCM between 2003 and 2010. Numerical pain scores (range 0-10) were recorded preoperatively and at follow-up. The follow-up period exceeded 1 year. Neurological status and subjective outcomes were assessed. Each patient underwent follow-up MR imaging. Five patients were identified with SCCMs who underwent surgery: 4 with thoracic and 1 with cervical lesions. Patients had been conservatively managed for an average of 5 years prior to surgery, and none had a history of acute hemorrhage or neurological deterioration during the observation period. The primary indication for surgery in each patient was pain, although 4 of 5 patients had some evidence of myelopathy on examination. Pain improved from a mean preoperative score of 8.6 to mean score of 2.0 (p < 0.01) at 1 month. Pain scores then increased to 3.7 (p < 0.01) at 1 year. All patients had some improvement in pain. No new motor weakness was noted, but all patients had increased symptoms of posterior-column dysfunction and numbness after surgery. Spinal cord intramedullary cavernous malformations are increasingly being diagnosed early with patients presenting with mostly pain symptoms. Removal of the lesion is reliably associated with improvement in pain scores but often the pain improvement is transient. While long-term worsening of pain scores occurs, at 1-year follow-up, patients reported pain scores were improved over preoperative scores. In all patients some degree of postoperative posterior-column dysfunction was present. Some of the immediate pain relief may be due to analgesia related to the myelotomy of newly described posterior column pain pathways. In patients with severe pain, surgery to remove SCCMs reduced the overall pain level at 1 year.
Buvanendran, Asokumar; Lubenow, Timothy J
2008-01-01
Failed back surgery syndrome is a common clinical entity for which spinal cord stimulation has been found to be an effective mode of analgesia, but with variable success rates. To determine if focal stimulation of the dorsal columns with a transverse tripolar lead might achieve deeper penetration of the electrical stimulus into the spinal cord and therefore provide greater analgesia to the back. Case report. We describe a 42-year-old female with failed back surgery syndrome that had greater back pain than leg pain. The tripolar lead configuration was achieved by placing percutaneously an octapolar lead in the spinal midline followed by 2 adjacent quadripolar leads, advanced to the T7-T10 vertebral bodies. Tripolar stimulation pattern resulted in more than 70% pain relief in this patient during the screening trial, while stimulation of one or 2 electrodes only provided 20% pain relief. After implantation of a permanent tripolar electrode system with a single rechargeable battery, the pain relief was maintained for one year. This is case report describing a case of a patient with chronic low back pain with a diagnosis of failed back surgery syndrome in which transverse tripolar stimulation using an octapolar and 2 quadripolar leads appeared to be beneficial. The transverse tripolar system consists of a central cathode surrounded by anodes, using 3 leads. This arrangement may contribute to maximum dorsal column stimulation with minimal dorsal root stimulation and provide analgesia to the lower back.
2013-01-01
Background There is an increased risk of serious neonatal infection arising through exposure of the umbilical cord to invasive pathogen in home and facility births where hygienic practices are difficult to achieve. The World Health Organization currently recommends ‘dry cord care’ because of insufficient data in favor of or against topical application of an antiseptic. The primary objective of this meta-analysis is to evaluate the effects of application of chlorhexidine (CHX) to the umbilical cord to children born in low income countries on cord infection (omphalitis) and neonatal mortality. Standardized guidelines of Child Health Epidemiology Reference Group (CHERG) were followed to generate estimates of effectiveness of topical chlorhexidine application to umbilical cord for prevention of sepsis specific mortality, for inclusion in the Lives Saved Tool (LiST). Methods Systematic review and meta-analysis. Data sources included Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library, PubMed, CINHAL and WHO international clinical trials registry. Only randomized trials were included. Studies of children in hospital settings were excluded. The comparison group received no application to the umbilical cord (dry cord care), no intervention, or a non-CHX intervention. Primary outcomes were omphalitis and all-cause neonatal mortality. Results There were three cluster-randomised community trials (total participants 54,624) conducted in Nepal, Bangladesh and Pakistan that assessed impact of CHX application to the newborn umbilical cord for prevention of cord infection and mortality. Application of any CHX to the umbilical cord of the newborn led to a 23% reduction in all-cause neonatal mortality in the intervention group compared to control [RR 0.77, 95 % CI 0.63, 0.94; random effects model, I2=50 %]. The reduction in omphalitis ranged from 27 % to 56 % compared to control group depending on severity of infection. Based on CHERG rules, effect size for all-cause mortality was used for inclusion to LiST model as a proxy for sepsis specific mortality. Conclusions Application of CHX to newborn umbilical cord can significantly reduce incidence of umbilical cord infection and all-cause mortality among home births in community settings. This inexpensive and simple intervention can save a significant number of newborn lives in developing countries. PMID:24564621
An analysis-by-synthesis approach to the estimation of vocal cord polyp features.
Koizumi, T; Taniguchi, S; Itakura, F
1993-09-01
This paper deals with a new noninvasive method of estimating vocal cord polyp features through hoarse-voice analysis. A noteworthy feature of this method is that it enables us not only to discriminate hoarse voices caused by pathological vocal cords with a single golf-ball-like polyp from normal voices, but also to estimate polyp features such as the mass and dimension of polyp through the use of a novel model of pathological vocal cords which has been devised to simulate the subtle movement of the vocal cords. A synthetic hoarse voice produced with a hoarse-voice synthesizer is compared with a natural hoarse voice caused by the vocal cord polyp in terms of a distance measure and the polyp features are estimated by minimizing the distance measure. Some estimates of polyp dimension that have been obtained by applying this procedure to hoarse voices are found to compare favorably with actual polyp dimensions, demonstrating that the procedure is effective for estimating the features of golf-ball-like vocal cord polyps.
Invasive histiocytic sarcoma of the lumbar spine in a ferret (Mustela putorius furo).
Warschau, M; Hoffmann, M; Dziallas, P; Hansmann, F; Baumgärtner, W; Mischke, R; Cichowski, S; Fehr, M
2017-02-01
This report describes the history, clinical examination and histopathology of a histiocytic sarcoma in a domestic ferret. Clinical signs were acute paraplegia and dysuria. Physical examination revealed a firm, smooth, touch-sensitive mass in and around the lumbar vertebral column. Neurologic examination was consistent with a lesion between spinal cord segments T3 and L3. Magnetic resonance images revealed bone lesions of L2 and L3 combined with compression of the spinal cord due to a homogenous, isointense mass that was diagnosed as a malignant round cell tumour and the ferret was euthanased. Histopathology confirmed the diagnosis of an infiltrative histiocytic sarcoma. © 2017 British Small Animal Veterinary Association.
Abdel-Aziz, Khaled; Schneider, Torben; Solanky, Bhavana S; Yiannakas, Marios C; Altmann, Dan R; Wheeler-Kingshott, Claudia A M; Peters, Amy L; Day, Brian L; Thompson, Alan J; Ciccarelli, Olga
2015-06-01
Spinal neurodegeneration is an important determinant of disability progression in patients with primary progressive multiple sclerosis. Advanced imaging techniques, such as single-voxel (1)H-magnetic resonance spectroscopy and q-space imaging, have increased pathological specificity for neurodegeneration, but are challenging to implement in the spinal cord and have yet to be applied in early primary progressive multiple sclerosis. By combining these imaging techniques with new clinical measures, which reflect spinal cord pathology more closely than conventional clinical tests, we explored the potential for spinal magnetic resonance spectroscopy and q-space imaging to detect early spinal neurodegeneration that may be responsible for clinical disability. Data from 21 patients with primary progressive multiple sclerosis within 6 years of disease onset, and 24 control subjects were analysed. Patients were clinically assessed on grip strength, vibration perception thresholds and postural stability, in addition to the Expanded Disability Status Scale, Nine Hole Peg Test, Timed 25-Foot Walk Test, Multiple Sclerosis Walking Scale-12, and Modified Ashworth Scale. All subjects underwent magnetic resonance spectroscopy and q-space imaging of the cervical cord and conventional brain and spinal magnetic resonance imaging at 3 T. Multivariate analyses and multiple regression models were used to assess the differences in imaging measures between groups and the relationship between magnetic resonance imaging measures and clinical scores, correcting for age, gender, spinal cord cross-sectional area, brain T2 lesion volume, and brain white matter and grey matter volume fractions. Although patients did not show significant cord atrophy when compared with healthy controls, they had significantly lower total N-acetyl-aspartate (mean 4.01 versus 5.31 mmol/l, P = 0.020) and glutamate-glutamine (mean 4.65 versus 5.93 mmol/l, P = 0.043) than controls. Patients showed an increase in q-space imaging-derived indices of perpendicular diffusivity in both the whole cord and major columns compared with controls (P < 0.05 for all indices). Lower total N-acetyl-aspartate was associated with higher disability, as assessed by the Expanded Disability Status Scale (coefficient = -0.41, 0.01 < P < 0.05), Modified Ashworth Scale (coefficient = -3.78, 0.01 < P < 0.05), vibration perception thresholds (coefficient = -4.37, P = 0.021) and postural sway (P < 0.001). Lower glutamate-glutamine predicted increased postural sway (P = 0.017). Increased perpendicular diffusivity in the whole cord and columns was associated with increased scores on the Modified Ashworth Scale, vibration perception thresholds and postural sway (P < 0.05 in all cases). These imaging findings indicate reduced structural integrity of neurons, demyelination, and abnormalities in the glutamatergic pathways in the cervical cord of early primary progressive multiple sclerosis, in the absence of extensive spinal cord atrophy. The observed relationship between imaging measures and disability suggests that early spinal neurodegeneration may underlie clinical impairment, and should be targeted in future clinical trials with neuroprotective agents to prevent the development of progressive disability. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Josephson, A; Greitz, D; Klason, T; Olson, L; Spenger, C
2001-03-01
Spinal cord cysts are a devastating condition that occur secondary to obstructions of the spinal canal, which may be caused by congenital malformations, trauma, spinal canal stenosis, tumors, meningitis, or arachnoiditis. A hypothesis that could explain how spinal cord cysts form in these situations has been presented recently. Therefore, a novel spinal thecal sac constriction model was implemented to test various aspects of this hypothesis. Thecal sac constriction was achieved by subjecting rats to an extradural silk ligature at the T8 spinal cord level. Rats with complete spinal cord transection served as a second model for comparison. The animals underwent high-resolution magnetic resonance imaging and histological analysis. Thecal sac constriction caused edema cranial and caudal to the ligation within 3 weeks, and cysts developed after 8 to 13 weeks. In contrast, cysts in rats with spinal cord transection were located predominantly in the cranial spinal cord. Histological sections of spinal cords confirmed the magnetic resonance imaging results. Magnetic resonance imaging provided the specific advantage of enabling characterization of events as they occurred repeatedly over time in the spinal cords of individual living animals. The spinal thecal sac constriction model proved useful for investigation of features of the cerebrospinal fluid pulse pressure theory. Edema and cyst distributions were in accordance with this theory. We conclude that induced intramedullary pressure gradients originating from the cerebrospinal fluid pulse pressure may underlie cyst formation in the vicinity of spinal canal obstructions and that cysts are preceded by edema.
Burwell, R Geoffrey; Dangerfield, Peter H; Freeman, Brian J C
2008-01-01
There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). Encouraging advances thought to be related to AIS pathogenesis have recently been made in several fields including anthropometry of bone growth, bone mass, spinal growth modulation, extra-spinal left-right skeletal length asymmetries and disproportions, magnetic resonance imaging of vertebral column, spinal cord, brain, skull, and molecular pathogenesis. These advances are leading to the evaluation of new treatments including attempts at minimally invasive surgery on the spine and peri-apical ribs. Several concepts of AIS are outlined indicating their clinical applications but not their research potential. The concepts, by derivation morphological, molecular and mathematical, are addressed in 15 sections: 1) initiating and progressive factors; 2) relative anterior spinal overgrowth; 3) dorsal shear forces that create axial rotational instability; 4) rotational preconstraint; 5) uncoupled, or asynchronous, spinal neuro-osseous growth; 6) brain, nervous system and skull; 7) a novel neuro-osseous escalator concept based on a putative abnormality of two normal polarized processes namely, a) increasing skeletal dimensions, and b) the CNS body schema - both contained within a neuro-osseous timing of maturation (NOTOM) concept; 8) transverse plane pelvic rotation, skeletal asymmetries and developmental theory; 9) thoraco-spinal concept; 10) origin in contracture at the hips; 11) osteopenia; 12) melatonin deficiency; 13) systemic melatonin-signaling pathway dysfunction; 14) platelet calmodulin dysfunction; and 15) biomechanical spinal growth modulation. From these concepts, a collective model for AIS pathogenesis is formulated. The central concept of this model includes the body schema of the neural systems, widely-studied in adults, that control normal posture and coordinated movements with frames of reference in the posterior parietal cortex. The escalator concept has implications for the normal development of upright posture, and the evolution in humans of neural control, the trunk and unique bipedal gait.
Altered spinal cord activity during sexual stimulation in women with SCI: a pilot fMRI study.
Alexander, Marcalee; Kozyrev, Natalie; Figley, Chase R; Richards, J Scott
2017-01-01
The objective of this study was to assess the feasibility of the use of functional magnetic resonance imaging (fMRI) to evaluate the spinal activation during sexual response of the thoracic, lumbar and sacral spinal cord. This is a laboratory-based pilot study in human females at a University-based medical center in the United States. In three healthy spinal cord injury (SCI) females, spinal cord activations during sexual audiovisual stimulation (alone), genital self-stimulation (alone) and simultaneous audiovisual and genital self-stimulation (combined) were assessed and then compared with each subjects' remaining sensory and motor function. Spinal fMRI responses of the intermediolateral columns were found during audiovisual stimulation in both subjects with incomplete injuries, but they were not observed in the subject with a complete injury. Moreover, sacral responses to combined stimulation differed greatly between the subjects with complete and incomplete injuries. These results not only provide the first in vivo documentation of spinal fMRI responses associated with sexual arousal in women with SCIs, but also suggest that spinal cord fMRI is capable of distinguishing between injury subtypes. Therefore, although there are certain limitations associated with fMRI during sexual stimulation (for example, movement artifacts, an artificially controlled environment and so), these findings demonstrate the potential utility of incorporating spinal cord fMRI in future research to evaluate the impact of specific patterns of SCI on sexual responses and/or the effects of treatment.
Bilateral vocal cord paralysis secondary to head and neck surgery.
Tekin, Muhammet; Acar, Gul Ozbilen; Kaytaz, Asim; Savrun, Feray Karaali; Çelik, Melek; Cam, Osman Halit
2012-01-01
Even endotracheal intubation could be considered safe in operations under general anesthesia; rarely, it could cause recurrent laryngeal nerve paralysis as a complication. As mentioned in the literature, as a possible reason for this, anterior branches of the recurrent laryngeal nerve in the larynx could suffer from compression between the posteromedial part of the thyroid cartilage and the cuff of the tube. In the literature, unilateral vocal cord paralysis due to endotracheal intubation occurs more frequently in comparison to bilateral vocal cord paralysis. These types of palsies usually totally improve in approximately 6 months. A patient who experienced bilateral vocal cord paralysis in the early postoperative period after undergoing an endotracheal intubation process for general anesthesia and primary partial lip resection and supraomohyoid neck dissection due to lower lip carcinoma is presented in our article. Although vocal cord paralysis occurring after head and neck surgery is first thought as a complication of the surgery, endotracheal intubation should be considered as a possible cause of this paralysis. In relation with this patient, causes, clinical symptoms, and treatment procedures of vocal cord paralysis due to endotracheal intubation are discussed under guidance of the literature.
Ganglion cyst arising from the composite occipito-atlanto-axial joint cavity in a cat.
Aikawa, T; Sadahiro, S; Nishimura, M; Miyazaki, Y; Shibata, M
2014-01-01
A four-year-old, female spayed Domestic Longhaired cat was referred for evaluation with a two month history of initial inability to jump progressing to ambulatory tetraparesis. Magnetic resonance imaging studies demonstrated a cystic lesion arising from the composite occipito-atlanto-axial joint cavity and extending to the region of the occipital bone and the axis. The lesion surrounded the spinal canal, causing moderate dorsal spinal cord compression at the atlanto-occipital joint. A dynamic myelographic study demonstrated attenuation of the dorsal contrast column at the atlanto-occipital joint when the cervical spine was positioned in extension. Partial excision of the cyst capsule by a ventral approach resulted in long-term (64 months) resolution of clinical signs. Histological evaluation was consistent with a ganglion cyst. An intra-spinal ganglion cyst arising from the composite occipito-atlanto-axial joint cavity may be considered as an uncommon differential diagnosis for cats with cervical myelopathy.
... paralysis. Known causes may include: Injury to the vocal cord during surgery. Surgery on or near your neck or upper ... Factors that may increase your risk of developing vocal cord paralysis include: Undergoing throat or chest surgery. People who need surgery on their thyroid, throat ...
Acute quadriplegia in a young man secondary to prothrombin G20210A mutation.
Sawaya, R; Diken, Z; Mahfouz, R
2011-08-01
We present the case of an 18-year-old man, previously healthy, who presented with acute quadriplegia and respiratory failure. Physical examination was compatible with a high cervical anterior spinal cord lesion. We plan to evaluate the cause of such a neurological presentation in a healthy young man. American University Medical Center, Beirut, Lebanon. The patient underwent routine blood hematological and chemistry work-up, hypercoagulable profile studies, genetic profile for thrombophelias, radiographic studies of the brain and cervical cord, cerebrospinal analysis and extensive electrophyisological studies. Magnetic resonance imaging and magnetic resonance angiogram of the brain, carotid and intracranial vessels were normal. Cerebral angiography was normal. Magnetic resonance imaging of the cervical cord revealed lesion of the anterior segment of the cervical cord between C2 and C5 levels. Hypercoagulable profile studies were normal. Electrophysiological studies confirmed an isolated lesion of the descending cortico-spinal tracts. DNA analysis revealed the presence of a G20210A mutation-causing hyperprothrombinemia. We conclude that a G20210A mutation causing-hyperprothrombinemia can cause anterior spinal artery thrombosis and anterior spinal cord infarction with the resultant neurological deficits in otherwise healthy patients.
Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?
Sahin, Murat; Gullu, Huriye; Peker, Kemal; Sayar, Ilyas; Binici, Orhan; Yildiz, Huseyin
2015-01-01
The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg) was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia. PMID:26807119
Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?
Sahin, Murat; Gullu, Huriye; Peker, Kemal; Sayar, Ilyas; Binici, Orhan; Yildiz, Huseyin
2015-11-01
The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg) was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia.
Endoscopic laterofixation in bilateral vocal cords paralysis in children.
Lidia, Zawadzka-Glos; Magdalena, Frackiewicz; Mieczyslaw, Chmielik
2010-06-01
Vocal cords paralysis is the second most frequent cause of laryngeal stridor in children. Symptoms of congenital vocal cords paralysis can occur shortly after birth or later. Vocal cords paralysis can be unilateral or bilateral. Symptoms of unilateral paralysis include hoarse weeping or stridor during a deep inhalation. In children unilateral vocal cords paralysis often retreats spontaneously or can be completely compensated. Children with bilateral vocal cords paralysis present mainly breathing disorders while phonation is normal. Symptoms are different, starting from complete occlusion of respiratory tracts and ending on small symptoms connected with the lack of effort tolerance. When symptoms are severe, patients from this group require a tracheotomy. The lack of restoration of normal function of vocal cords or lack of complete compensation and maintenance of symptoms are an indication for surgical treatment. The aim of this study is to present results of the treatment of bilateral vocal cords paralysis in children using the endoscopic method of laterofixation of vocal cords. In the Pediatric ENT Department between 1998 and 2009 sixty four children with dyspnoea and/or phonation disorders caused by vocal cords paralysis were treated. In ten cases laterofixation of vocal cords was performed, in most cases with good result. In this article the authors present the method of endoscopic laterofixation and achieved results. Endoscopic laterofixation of vocal cords in children is a safe and an easy method of surgical treatment of bilateral vocal cords paralysis. This method can be used as a first and often as a one stage treatment of vocal cords paralysis. In some cases this procedure is insufficient and has to be completed with other methods. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Higashino, Kosaku; Matsuura, Tetsuya; Suganuma, Katsuyoshi; Yukata, Kiminori; Nishisho, Toshihiko; Yasui, Natsuo
2013-05-20
Spinal cord transection and peripheral nerve transection cause muscle atrophy and muscle fiber type conversion. It is still unknown how spinal cord transection and peripheral nerve transection each affect the differentiation of muscle fiber type conversion mechanism and muscle atrophy. The aim of our study was to evaluate the difference of muscle weight change, muscle fiber type conversion, and Peroxisome proliferator-activated receptor-γ coactivatior-1α (PGC-1α) expression brought about by spinal cord transection and by peripheral nerve transection. Twenty-four Wistar rats underwent surgery, the control rats underwent a laminectomy; the spinal cord injury group underwent a spinal cord transection; the denervation group underwent a sciatic nerve transection. The rats were harvested of the soleus muscle and the TA muscle at 0 week, 1 week and 2 weeks after surgery. Histological examination was assessed using hematoxylin and eosin (H&E) staining and immunofluorescent staing. Western blot was performed with 3 groups. Both sciatic nerve transection and spinal cord transection caused muscle atrophy with the effect being more severe after sciatic nerve transection. Spinal cord transection caused a reduction in the expression of both sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection produced an increase in expression of sMHC protein and PGC-1α protein in the soleus muscle. The results of the expression of PGC-1α were expected in other words muscle atrophy after sciatic nerve transection is less than after spinal cord transection, however muscle atrophy after sciatic nerve transection was more severe than after spinal cord transection. In the conclusion, spinal cord transection diminished the expression of sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection enhanced the expression of sMHC protein and PGC-1α protein in the soleus muscle.
Accelerated high-yield generation of limb-innervating motor neurons from human stem cells
Amoroso, Mackenzie W.; Croft, Gist F.; Williams, Damian J.; O’Keeffe, Sean; Carrasco, Monica A.; Davis, Anne R.; Roybon, Laurent; Oakley, Derek H.; Maniatis, Tom; Henderson, Christopher E.; Wichterle, Hynek
2013-01-01
Human pluripotent stem cells are a promising source of differentiated cells for developmental studies, cell transplantation, disease modeling, and drug testing. However, their widespread use even for intensely studied cell types like spinal motor neurons is hindered by the long duration and low yields of existing protocols for in vitro differentiation and by the molecular heterogeneity of the populations generated. We report a combination of small molecules that within 3 weeks induce motor neurons at up to 50% abundance and with defined subtype identities of relevance to neurodegenerative disease. Despite their accelerated differentiation, motor neurons expressed combinations of HB9, ISL1 and column-specific markers that mirror those observed in vivo in human fetal spinal cord. They also exhibited spontaneous and induced activity, and projected axons towards muscles when grafted into developing chick spinal cord. Strikingly, this novel protocol preferentially generates motor neurons expressing markers of limb-innervating lateral motor column motor neurons (FOXP1+/LHX3−). Access to high-yield cultures of human limb-innervating motor neuron subtypes will facilitate in-depth study of motor neuron subtype-specific properties, disease modeling, and development of large-scale cell-based screening assays. PMID:23303937
Southerland, E. Marie; Gibbons, David D.; Smith, S. Brooks; Sipe, Adam; Williams, Carole Ann; Beaumont, Eric; Armour, J. Andrew; Foreman, Robert D.; Ardell, Jeffrey L.
2012-01-01
To evaluate whether cervical spinal neurons can influence cardiac indices and myocyte viability in the acutely ischemic heart, the hearts of anesthetized rabbits subjected to 30 min of LAD coronary arterial occlusion (CAO) were studied 3 hours after reperfusion. Control animals were compared to those exposed to pre-emptive high cervical cord stimulation (SCS; the dorsal aspect of the C1-C2 spinal cord was stimulated electrically at 50 Hz; 0.2 ms; 90% of motor threshold, starting 15 min prior to and continuing throughout CAO). Four groups of animals were so tested: 1) neuroaxis intact; 2) prior cervical vagotomy; 3) prior transection of the dorsal spinal columns at C6; and 4) following pharmacological treatment [muscarinic (atropine) or adrenergic (atenolol, prazosin or yohimbine) receptor blockade]. Infarct size (IS) was measured by tetrazolium, expressed as percentage of risk zone. C1-C2 SCS reduced acute ischemia induced IS by 43%, without changing the incidence of sudden cardiac death (SCD). While SCS-induced reduction in IS was unaffected by vagotomy, it was no longer evident following transection of C6 dorsal columns or atropinization. Beta-adrenoceptor blockade eliminated ischemia induced SCD, while alpha-receptor blockade doubled its incidence. During SCS, myocardial ischemia induced SCD was eliminated following vagotomy while remaining unaffected by atropinization. These data indicate that, in contrast to thoracic spinal neurons, i) cranial cervical spinal neurons affect both adrenergic and cholinergic motor outflows to the heart such that ii) their activation modifies ventricular infarct size and lethal arrhythmogenesis. PMID:22502863
The forgotten cause of stridor in the emergency department.
Ng, Tian-Tee
2017-01-01
Paradoxical Vocal Fold Movement Disorder is where the larynx exhibits paradoxical vocal cords closure during respiration, creating partial airway obstruction. Causes of vocal fold movement disorder are multifactorial, and patients describe tightness of throat, difficulty getting air in, have stridor, and do not respond to inhalers. We propose using transnasal laryngoscopy examination, which will show narrowing of vocal cords on inspiration, and The Pittsburgh Vocal Cord Dysfunction Index with a cutoff score of ≥4 to distinguish vocal fold movement disorder from asthma and other causes of stridor. Management of paradoxical vocal fold movement disorder involves a combination of pharmacological, psychological, psychiatric, and speech training. Paradoxical vocal fold movement disorder is a very treatable cause of stridor, so long as it is identified and other organic causes are excluded.
Spinal cord stimulation paresthesia and activity of primary afferents.
North, Richard B; Streelman, Karen; Rowland, Lance; Foreman, P Jay
2012-10-01
A patient with failed back surgery syndrome reported paresthesia in his hands and arms during a spinal cord stimulation (SCS) screening trial with a low thoracic electrode. The patient's severe thoracic stenosis necessitated general anesthesia for simultaneous decompressive laminectomy and SCS implantation for chronic use. Use of general anesthesia gave the authors the opportunity to characterize the patient's unusual distribution of paresthesia. During SCS implantation, they recorded SCS-evoked antidromic potentials at physiologically relevant amplitudes in the legs to guide electrode placement and in the arms as controls. Stimulation of the dorsal columns at T-8 evoked potentials in the legs (common peroneal nerves) and at similar thresholds, consistent with the sensation of paresthesia in the arms, in the right ulnar nerve. The authors' electrophysiological observations support observations by neuroanatomical specialists that primary afferents can descend several (in this case, at least 8) vertebral segments in the spinal cord before synapsing or ascending. This report thus confirms a physiological basis for unusual paresthesia distribution associated with thoracic SCS.
Brommer, Benedikt; Engel, Odilo; Kopp, Marcel A.; Watzlawick, Ralf; Müller, Susanne; Prüss, Harald; Chen, Yuying; DeVivo, Michael J.; Finkenstaedt, Felix W.; Dirnagl, Ulrich; Liebscher, Thomas; Meisel, Andreas
2016-01-01
Pneumonia is the leading cause of death after acute spinal cord injury and is associated with poor neurological outcome. In contrast to the current understanding, attributing enhanced infection susceptibility solely to the patient’s environment and motor dysfunction, we investigate whether a secondary functional neurogenic immune deficiency (spinal cord injury-induced immune deficiency syndrome, SCI-IDS) may account for the enhanced infection susceptibility. We applied a clinically relevant model of experimental induced pneumonia to investigate whether the systemic SCI-IDS is functional sufficient to cause pneumonia dependent on spinal cord injury lesion level and investigated whether findings are mirrored in a large prospective cohort study after human spinal cord injury. In a mouse model of inducible pneumonia, high thoracic lesions that interrupt sympathetic innervation to major immune organs, but not low thoracic lesions, significantly increased bacterial load in lungs. The ability to clear the bacterial load from the lung remained preserved in sham animals. Propagated immune susceptibility depended on injury of central pre-ganglionic but not peripheral postganglionic sympathetic innervation to the spleen. Thoracic spinal cord injury level was confirmed as an independent increased risk factor of pneumonia in patients after motor complete spinal cord injury (odds ratio = 1.35, P < 0.001) independently from mechanical ventilation and preserved sensory function by multiple regression analysis. We present evidence that spinal cord injury directly causes increased risk for bacterial infection in mice as well as in patients. Besides obvious motor and sensory paralysis, spinal cord injury also induces a functional SCI-IDS (‘immune paralysis’), sufficient to propagate clinically relevant infection in an injury level dependent manner. PMID:26754788
Airway management in cervical spine injury
Austin, Naola; Krishnamoorthy, Vijay; Dagal, Arman
2014-01-01
To minimize risk of spinal cord injury, airway management providers must understand the anatomic and functional relationship between the airway, cervical column, and spinal cord. Patients with known or suspected cervical spine injury may require emergent intubation for airway protection and ventilatory support or elective intubation for surgery with or without rigid neck stabilization (i.e., halo). To provide safe and efficient care in these patients, practitioners must identify high-risk patients, be comfortable with available methods of airway adjuncts, and know how airway maneuvers, neck stabilization, and positioning affect the cervical spine. This review discusses the risks and benefits of various airway management strategies as well as specific concerns that affect patients with known or suspected cervical spine injury. PMID:24741498
NASA Technical Reports Server (NTRS)
Torigoe, Yasuhiro; Cernucan, Roxana D.; Nishimoto, Jo Ann S.; Blanks, Robert H. I.
1985-01-01
As a part of the study of the vestibular-autonomic pathways involved in motion sickness, the location and the morphology of preganglionic sympathetic neurons (PSNs) projecting via the greater splanchnic nerve were examined. Retrograde labeling of neurons was obtained by application of horseradish peroxidase to the cut end of the greater splanchnic nerve. Labeled PSNs were found, ipsilaterally, within the T1 to T11 spinal cord segments, with the highest density of neurons in T6. Most PSNs were located within the intermediolateral column, but a significant portion also occurred within the lateral funiculus, the intercalated region, and the central autonomic area; the proportion of labeling between the four regions depended on the spinal cord segment.
Patterns of morbidity and rehospitalisation following spinal cord injury.
Middleton, J W; Lim, K; Taylor, L; Soden, R; Rutkowski, S
2004-06-01
Longitudinal, descriptive design. The aim of this study was to investigate the frequency, cause and duration of rehospitalisations in individuals with spinal cord injury (SCI) living in the community. Australian spinal cord injury unit in collaboration with State Health Department. A data set was created by linking records from the NSW Department of Health Inpatient Statistics Collection between 1989-1990 and 1999-2000 with data from the Royal North Shore Hospital (RNSH) Spinal Cord Injuries Database using probabilistic record linkage techniques. Records excluded were nontraumatic injuries, age <16 years, spinal column injury without neurological deficit, full recovery (ASIA Grade E) and index admission not at RNSH. Descriptive statistics and time to readmission using survival analysis, stratified by ASIA impairment grade, were calculated. Over the 10-year period, 253 persons (58.6%) required one or more spinal-related readmissions, accounting for 977 rehospitalisations and 15,127 bed-days (average length of stay (ALOS) 15.5 days; median 5 days). The most frequent causes for rehospitalisation were genitourinary (24.1% of readmissions), gastrointestinal (11.0%), further rehabilitation (11.0%), skin-related (8.9%), musculoskeletal (8.6%) and psychiatric disorders (6.8%). Pressure sores accounted for only 6.6% of all readmissions, however, contributed a disproportionate number of bed-days (27.9%), with an ALOS of 65.9 (median 49) days and over 50% of readmissions (33 out of 64) occurred in only nine individuals aged under 30 years. Age, level and completeness of neurological impairment, all influenced differential rates of readmission depending on the type of complication. Overall rehospitalisation rates were high in the first 4 years after initial treatment episode, averaging 0.64 readmissions (12.6 bed-days) per person at risk in the first year and fluctuating between 0.52 and 0.61 readmissions (5.1-8.3 bed-days) per person at risk per year between the second to fourth years, before trending downwards to reach 0.35 readmissions (2.0 bed-days) as 10th year approaches. Time to readmission was influenced by degree of impairment, with significantly fewer people readmitted for ASIA D (43.2%) versus ASIA A, B and C (55.2-67.0%) impairments (P<0.0001). The mean duration to first readmission was 46 months overall, however, differed significantly between persons with ASIA A-C impairments (26-36 months) and ASIA D impairment (60 months). Identifying rates, causes and patterns of morbidity is important for future resource allocation and targeting preventative measures. For instance, the late complication of pressure sores in a small subgroup of young males, consuming disproportionately large resources, warrants further research to better understand the complex psychosocial and environmental factors involved and to develop effective countermeasures.
Spinal cord injury arising in anaesthesia practice.
Hewson, D W; Bedforth, N M; Hardman, J G
2018-01-01
Spinal cord injury arising during anaesthetic practice is a rare event, but one that carries a significant burden in terms of morbidity and mortality. In this article, we will review the pathophysiology of spinal cord injury. We will then discuss injuries relating to patient position, spinal cord hypoperfusion and neuraxial techniques. The most serious causes of spinal cord injury - vertebral canal haematoma, spinal epidural abscess, meningitis and adhesive arachnoiditis - will be discussed in turn. For each condition, we draw attention to practical, evidence-based measures clinicians can undertake to reduce their incidence, or mitigate their severity. Finally, we will discuss transient neurological symptoms. Some cases of spinal cord injury during anaesthesia can be ascribed to anaesthesia itself, arising as a direct consequence of its conduct. The injury to a spinal nerve root by inaccurate and/or incautious needling during spinal anaesthesia is an obvious example. But in many cases, spinal cord injury during anaesthesia is not caused by, related to, or even associated with, the conduct of the anaesthetic. Surgical factors, whether direct (e.g. spinal nerve root damage due to incorrect pedicle screw placement) or indirect (e.g. cord ischaemia following aortic surgery) are responsible for a significant proportion of spinal cord injuries that occur concurrently with the delivery of regional or general anaesthesia. © 2018 The Association of Anaesthetists of Great Britain and Ireland.
Secondary intracranial subarachnoid hemorrhage due to spinal missile injury.
Smialek, J E; Chason, J L; Kshirsagar, V; Spitz, W U
1981-04-01
Fresh intracranial subarachnoid hemorrhage may occur secondary to blast-type injury of the spinal cord. This phenomenon is demonstrated in four cases of gunshot and shotgun wounds involving the spinal column. The significance of such a finding is that the subarachnoid hemorrhage should not be construed to represent an independent injury. Such an erroneous conclusion could jeopardize a theory of self-defense in a homicidal shooting.
Activity-Based Therapies To Promote Forelimb Use after a Cervical Spinal Cord Injury
Dai, Haining; MacArthur, Linda; McAtee, Marietta; Hockenbury, Nicole; Tidwell, J. Lille; McHugh, Brian; Mansfield, Kevin; Finn, Tom; Hamers, Frank P.T.
2009-01-01
Abstract Significant interest exists in strategies for improving forelimb function following spinal cord injury. We investigated the effect of enriched housing combined with skilled training on the recovery of skilled and automatic forelimb function after a cervical spinal cord injury in adult rats. All animals were pretrained in skilled reaching, gridwalk crossing, and overground locomotion. Some received a cervical over-hemisection lesion at C4-5, interrupting the right side of the spinal cord and dorsal columns bilaterally, and were housed in standard housing alone or enriched environments with daily training. A subset of animals received rolipram to promote neuronal plasticity. Animals were tested weekly for 4 weeks to measure reaching, errors on the gridwalk, locomotion, and vertical exploration. Biotinylated dextran amine was injected into the cortex to label the corticospinal tract. Enriched environments/daily training significantly increased the number and success of left reaches compared to standard housing. Animals also made fewer errors on the gridwalk, a measure of coordinated forelimb function. However, there were no significant improvements in forelimb use during vertical exploration or locomotion. Likewise, rolipram did not improve any of the behaviors tested. Both enriched housing and rolipram increased plasticity of the corticospinal tract rostral to the lesion. These studies indicate that skilled training after a cervical spinal cord injury improves recovery of skilled forelimb use (reaching) and coordinated limb function (gridwalk) but does not improve automatic forelimb function (locomotion and vertical exploration). These studies suggest that rehabilitating forelimb function after spinal cord injury will require separate strategies for descending and segmental pathways. PMID:19317604
Kikura, Mutsuhito; Suzuki, Yuji; Itagaki, Taiga; Sato, Tsunehisa; Nishino, Junko
2015-01-01
Vocal cord paralysis after tracheal intubation is rare. It causes severe hoarseness and aspiration, and delays recovery and discharge. Arytenoid cartilage dislocation and recurrent nerve paralysis are main causes of vocal cord paralysis. Physical stimulation of the tracheal tube as well as patient and surgical characteristics also contribute. Vocal cord paralysis occurs in 1 (0.07%) of 1,500 general surgery patients and on the left side in 70% of cases. It is associated with surgery/anesthesia time (two-fold, 3-6 hours; 15-fold, over 6 hours), age (three-fold, over 50 years), and diabetes mellitus or hypertension (two-fold). Symptoms resolve in 2-3 months. In adult cardiovascular surgery, vocal cord paralysis occurs in 1 (0.7-2%) of 50-100 cardiac surgery patients and 1 (8.6-32%) of 3-10 thoracic aortic surgery patients. In pediatric cardiac surgery, vocal cord paralysis occurs in 1 (0.1-0.5%) of 200-1,000 patients. We classified the severity of vocal cord paralysis as I, severe hoarseness; II, aspiration or dysphagia; and III, bilateral vocal cord paralysis, aspiration pneumonia, or the need for tracheal re-intubation or tracheotomy. We discuss the importance of informed consent for the patient and family.
Thoracic arachnoid cyst resection.
Deutsch, Harel
2014-09-01
Arachnoid cysts in the spinal cord may be asymptomatic. In some cases arachnoid cysts may exert mass effect on the thoracic spinal cord and lead to pain and myelopathy symptoms. Arachnoid cysts may be difficult to visualize on an MRI scan because the thin walled arachnoid may not be visible. Focal displacement of the thoracic spinal cord and effacement of the spinal cord with apparent widening of the cerebrospinal fluid space is seen. This video demonstrates surgical techniques to remove a dorsal arachnoid cyst causing spinal cord compression. The surgery involves a thoracic laminectomy. The dura is opened sharply with care taken not to open the arachnoid so that the cyst can be well visualized. The thickened arachnoid walls of the cyst are removed to alleviate the compression caused by the arachnoid cyst. The video can be found here: http://youtu.be/pgUrl9xvsD0.
Childhood Brain and Spinal Cord Tumors Treatment Overview (PDQ®)—Patient Version
Brain and spinal cord tumors may be benign (not cancer) or malignant (cancer). Both types cause signs or symptoms and need treatment. Get information about the many kinds of brain and spinal cord tumors, signs and symptoms, tests to diagnose, and treatment in this expert-reviewed summary.
M, Irfan; Yaroko, Ali Ango; S M, Najeb; Periasamy, Centilnathan
2013-04-01
A massive goiter may constrict the trachea resulting in shortness of breath. Recurrent laryngeal nerve compression may cause vocal cord paralysis. We highlight a case of a 62- year-old female with a 30 year history of an anterior neck swelling gradually increasing in size. She presented with acute symptoms of upper airway obstruction and voice changes. Emergency thyroidectomy was performed by dividing the middle part of the gland using ultrasonic scissors. The recovery was uneventful and the patient regained normal vocal cord function post operatively.
Huang, Jing-Hui; Yang, Wei-Zhou; Shen, Chao; Chang, Michael S; Li, Huan; Luo, Zhuo-Jing; Tao, Hui-Ren
2015-10-15
Retrospective case series. To investigate the safety and efficacy of spine-shortening osteotomy for congenital scoliosis with tethered cord. Conventional surgery for congenital scoliosis associated with tethered cord risks the complications of detethering. Spine-shortening osteotomy holds the potential to correct scoliosis and decrease spinal cord tension simultaneously without an extra detethering procedure, but no data on this issue is available. 21 patients (14 females and 7 males, average age 15.4 yr) underwent spine-shortening osteotomy without detethering. All of the patients had tethered cord. Patients with main curve more than 90° underwent vertebral column resection (VCR), whereas the others had pedicle subtraction osteotomy (PSO) performed. The average postoperative follow-up period was 45.2 months. The mean operation time was 544.5 min with average blood loss of 2769.1 ml. The deformity correction was 61.3% in the coronal plane and 43.9° in the sagittal plane. 10 patients had neurological deficits preoperatively. At the final follow-up, the deficits in 8 (80%) patients were significantly improved, whereas 2 (20%) remained unchanged. At final follow-up, 71.4% (5/7) patients reported improvement in motor function, 100% (3/3) had improved pain scores, and 75% (3/4) reported better sensory function after the spine-shortening osteotomy. Urinary dysfunction and bowel incontinence present preoperatively in 3 patients all recovered by final follow-up. 5 (23.8%) patients incurred complications including temporary neurological deterioration in 1 patient, urinary tract infection in 2 patients, cerebrospinal fluid leakage in 1 patient, and blood loss more than 5000 ml in 1 patient. Spine-shortening osteotomy is a safe and effective procedure for congenital scoliosis associated with tethered cord. Spine-shortening osteotomy at the thoracic apical vertebrae level not only corrects the spine deformity but also simultaneously releases the tension of the tethered cord, resulting in improved neurologic function.
Discordant Umbilical Cord Drug Testing Results in Monozygotic Twins.
Alexander, Amy; Abbas, Liaqat; Jones, Mary; Jones, Joseph; Lewis, Douglas; Negrusz, Adam
2018-06-01
Our laboratory received segments of umbilical cord that originated from identical twins for routine toxicology analysis. The specimens were analyzed multiple times by liquid chromatography tandem mass spectrometry. The umbilical cord from newborn #1 was positive for hydromorphone only (1.06 ng/g), and the umbilical cord from newborn #2 was positive for hydromorphone (0.81 ng/g) and benzoylecgonine (5.41 ng/g). The hydromorphone results are consistent with maternal administration of hydromorphone; however, the cause of the discrepant benzoylecgonine results in the umbilical cords from the identical twins is unknown.
Catastrophic rugby injuries of the spinal cord: changing patterns of injury.
Scher, A T
1991-01-01
In reports from the UK and New Zealand, it is noted that the incidence of rugby injuries to the cervical spinal cord has dropped and that the percentage of players injured in the tackle has similarly decreased. In contrast, this does not appear to be the pattern in South Africa and an analysis has therefore been made of 40 rugby players sustaining injuries to the spinal cord during the period 1985 to 1989. The radiological appearances on admission have been correlated with the circumstances of injury, associated orthopaedic injuries and neurological deficits. The tackle was responsible for the majority of injuries, causing more than the scrum. Tackles were also responsible for more cases of complete, permanent quadriplegia than the scrum. The commonest cause of injury in players being tackled was the high tackle around the neck, while the commonest cause of injury in players making the tackle was the dive tackle. This survey has shown that the tackle is now the major cause of spinal cord injury in South African rugby, in contrast to earlier analyses in which the scrum was identified as the most common cause. Images Figure 1 Figure 2 PMID:1913034
Spinal cord lesions in Bangladesh: an epidemiological study 1994 - 1995.
Hoque, M F; Grangeon, C; Reed, K
1999-12-01
Spinal Cord Lesions are a major public health problem in Bangladesh. This epidemiological study was undertaken in order to identify the causes of spinal cord lesions and thus to allow prevention and control programs to be developed. The records of 247 patients with spinal cord lesions admitted to The Centre for the Rehabilitation of the Paralysed (CRP), Savar, Dhaka from January 1994 to June 1995 were reviewed retrospectively. Comparisons were made with the reports of studies from other countries, both developing and developed. The most common cause of traumatic lesions was a fall from a height followed by falling when carrying a heavy weight on the head and road traffic accidents. Most of the patients were between 20 - 40 years old and the overall age group ranged from 10 - 70 years. The male:female ratio was 7.5 : 1.0. Among the traumatic spinal cord lesions, 60% were paraplegics and 40% tetraplegics. Among the non-traumatic spinal cord lesions cases 84% were paraplegics and 16% tetraplegics. The leading cause of death resulted from respiratory complications and these deaths occurred in the very early period of admission. From the results it can be deduced that the high incidence of spinal cord lesion as a result from falls from a height, and from falling when carrying a heavy weight on the head, can be explained by the mainly agricultural based economy of Bangladesh. The most common age group (10 - 40 years) of patients reflects the socio-economic conditions of Bangladesh. The male:female ratio (7.5 : 1.0) of patients with a spinal cord lesion is due to the socio-economic status and to the traditional culture of the society.
Is early cord clamping, delayed cord clamping or cord milking best?
Vatansever, Binay; Demirel, Gamze; Ciler Eren, Elif; Erel, Ozcan; Neselioglu, Salim; Karavar, Hande Nur; Gundogdu, Semra; Ulfer, Gozde; Bahadir, Selcen; Tastekin, Ayhan
2018-04-01
To compare the antioxidant status of three cord clamping procedures (early clamping, delayed clamping and milking) by analyzing the thiol-disulfide balance. This randomized controlled study enrolled 189 term infants who were divided into three groups according to the cord clamping procedure: early clamping, delayed clamping and milking. Blood samples were collected from the umbilical arteries immediately after clamping, and the thiol/disulfide homeostasis was analyzed. The native and total thiol levels were significantly (p < .05) lower in the early cord clamping group compared with the other two groups. The disulfide/total thiol ratio was significantly (p = .026) lower in the delayed cord clamping and milking groups compared with the early clamping groups. Early cord clamping causes the production of more disulfide bonds and lower thiol levels, indicating that oxidation reactions are increased in the early cord clamping procedure compared with the delayed cord clamping and milking procedures. The oxidant capacity is greater with early cord clamping than with delayed clamping or cord milking. Delayed cord clamping or milking are beneficial in neonatal care, and we suggest that they be performed routinely in all deliveries.
Schoenfeld, Andrew J; Newcomb, Ronald L; Pallis, Mark P; Cleveland, Andrew W; Serrano, Jose A; Bader, Julia O; Waterman, Brian R; Belmont, Philip J
2013-04-01
This study sought to characterize spine injuries among soldiers killed in Iraq or Afghanistan whose autopsy results were stored by the Armed Forces Medical Examiner System. The Armed Forces Medical Examiner System data set was queried to identify American military personnel who sustained a spine injury in conjunction with wounds that resulted in death during deployment in Iraq or Afghanistan from 2003 to 2011. Demographic and injury-specific characteristics were abstracted for each individual identified. The raw incidence of spinal injuries was calculated and correlations were drawn between the presence of spinal trauma and military specialty, mechanism and manner of injury, and wounds in other body regions. Significant associations were also sought for specific injury patterns, including spinal cord injury, atlantooccipital injury, low lumbar vertebral fractures, and lumbosacral dissociation. Statistical calculations were performed using χ statistic, z test, t test with Satterthwaite correction, and multivariate logistic regression. Among 5,424 deceased service members, 2,089 (38.5%) were found to have sustained at least one spinal injury. Sixty-seven percent of all fatalities with spinal injury were caused by explosion, while 15% occurred by gunshot. Spinal fracture was the most common type of injury (n = 2,328), while spinal dislocations occurred in 378, and vertebral column transection occurred in 223. Fifty-two percent sustained at least one cervical spine injury, and spinal cord injury occurred in 40%. Spinal cord injuries were more likely to occur as a result of gunshot (p < 0.001), while atlantooccipital injuries (p < 0.001) and low lumbar fractures (p = 0.01) were significantly higher among combat specialty soldiers. No significant association was identified between spinal injury risk and the periods 2003 to 2007 and 2008 to 2011, although atlantooccipital injuries and spinal cord injury were significantly reduced beginning in 2008 (p < 0.001). The results of this study indicate that the incidence of spinal trauma in modern warfare seems to be higher than previously reported. Epidemiologic study, level III.
Holsheimer, Jan; Buitenweg, Jan R; Das, John; de Sutter, Paul; Manola, Ljubomir; Nuttin, Bart
2011-05-01
In spinal cord stimulation for the management of chronic, intractable pain, a satisfactory analgesic effect can be obtained only when the stimulation-induced paresthesias cover all painful body areas completely or partially. To investigate the effect of stimulus pulse width (PW) and contact configuration (CC) on the area of paresthesia (PA), perception threshold (VPT), discomfort threshold (VDT), and usage range (UR) in spinal cord stimulation. Chronic pain patients were tested during a follow-up visit. They were stimulated monopolarly and with the CC giving each patient the best analgesia. VPT, VDT, and UR were determined for PWs of 90, 210, and 450 microseconds. The paresthesia contours at VDT were drawn on a body map and digitized; PA was calculated; and its anatomic composition was described. The effects of PW and CC on PA, VPT, VDT, and UR were tested statistically. Twenty-four of 31 tests with low thoracic stimulation and 8 of 9 tests with cervical stimulation gave a significant extension of PA at increasing PW. In 14 of 18 tests (low thoracic), a caudal extension was obtained (primarily in L5-S2). In cervical stimulation the extension was predominantly caudal as well. In contrast to VPT and VDT, UR is not significantly different when stimulating with any CC. PA extends caudally with increasing PW. The mechanism includes that the larger and smaller dorsal column fibers have a different mediolateral distribution and that smaller dorsal column fibers have a smaller UR and can be activated only when PW is sufficiently large. A similar effect of CC on PA is unlikely as long as electrodes with a large intercontact distance are applied.
Hague, D W; Joslyn, S; Bush, W W; Glass, E N; Durham, A C
2015-01-01
Extraparenchymal spinal cord hematoma has been described in veterinary medicine in association with neoplasia, intervertebral disk disease, and snake envenomation. There are rare reports of spontaneous extraparenchymal spinal cord hematoma formation with no known cause in human medicine. Multiple cases of spontaneous extraparenchymal spinal cord hematoma have not been described previously in veterinary medicine. To describe the signalment, clinical findings, magnetic resonance imaging (MRI) features, and surgical outcomes in histopathologically confirmed extraparenchymal spinal cord hematomas in dogs with no identified underlying etiology. Six dogs had MRI of the spinal cord, decompressive spinal surgery, and histopathologic confirmation of extraparenchymal spinal cord hematoma not associated with an underlying cause. Multi-institutional retrospective study. Six patients had spontaneous extraparenchymal spinal cord hematoma formation. MRI showed normal signal within the spinal cord parenchyma in all patients. All hematomas had T2-weighted hyperintensity and the majority (5/6) had no contrast enhancement. All dogs underwent surgical decompression and most patients (5/6) returned to normal or near normal neurologic function postoperatively. Follow-up of the patients (ranging between 921 and 1,446 days) showed no progression of neurologic clinical signs or any conditions associated with increased bleeding tendency. Before surgery and histopathology confirming extraparenchymal hematoma, the primary differential in most cases was neoplasia, based on the MRI findings. This retrospective study reminds clinicians of the importance of the combination of advanced imaging combined with histopathologic diagnosis. The prognosis for spontaneous spinal cord extraparenchymal hematoma with surgical decompression appears to be favorable in most cases. Copyright © 2015 by the American College of Veterinary Internal Medicine.
Degenerative myelopathy and vitamin A deficiency in a young black-maned lion (Panthera leo).
Maratea, Kimberly A; Hooser, Stephen B; Ramos-Vara, José A
2006-11-01
Degenerative myelopathy and vitamin A deficiency were diagnosed in a 1-year-old, female, black-maned lion (Panthera leo). Diffuse white matter degeneration characterized by dilated myelin sheaths, Wallerian degeneration, and reactive astrocytosis was present at all levels of the spinal cord. With luxol fast blue-resyl echt violet stain, bilaterally symmetrical demyelination was observed in the fasciculus cuneatus of the cervical spinal cord and in peripheral white matter of cervical, thoracic, and lumbar segments. Additionally, the ventral gray columns and brain stem nuclei contained rare chromatolytic neurons with abnormal neurofilament accumulation. Leptomeninges of the cervical spinal cord were focally adhered to the dura and thickened by fibrosis and osseous metaplasia. Vitamin A deficiency was diagnosed based on hepatic vitamin A concentration of 1.71 microg/g dry weight. Adequate hepatic vitamin A concentration for yearling to adult domestic animals ranges between 150 and 1000 microg/g dry weight. Lesions were distinct from those previously described in young captive lions with vitamin A deficiency, which had thickened skull bones and cerebellar herniation. The pathogenesis of vitamin A-associated myelopathy in this lion may be similar to that described in adult cattle, which is believed to result from spinal cord compression secondary to elevated pressure of cerebrospinal fluid.
Hasegawa, Kazuhiro; Homma, Takao; Chiba, Yoshikazu
2007-03-15
Retrospective analysis. To test the hypothesis that spinal cord lesions cause postoperative upper extremity palsy. Postoperative paresis, so-called C5 palsy, of the upper extremities is a common complication of cervical surgery. Although there are several hypotheses regarding the etiology of C5 palsy, convincing evidence with a sufficient study population, statistical analysis, and clear radiographic images illustrating the nerve root impediment has not been presented. We hypothesized that the palsy is caused by spinal cord damage following the surgical decompression performed for chronic compressive cervical disorders. The study population comprised 857 patients with chronic cervical cord compressive lesions who underwent decompression surgery. Anterior decompression and fusion was performed in 424 cases, laminoplasty in 345 cases, and laminectomy in 88 cases. Neurologic characteristics of patients with postoperative upper extremity palsy were investigated. Relationships between the palsy, and patient sex, age, diagnosis, procedure, area of decompression, and preoperative Japanese Orthopaedic Association score were evaluated with a risk factor analysis. Radiographic examinations were performed for all palsy cases. Postoperative upper extremity palsy occurred in 49 cases (5.7%). The common features of the palsy cases were solely chronic compressive spinal cord disorders and decompression surgery to the cord. There was no difference in the incidence of palsy among the procedures. Cervical segments beyond C5 were often disturbed with frequent multiple segment involvement. There was a tendency for spontaneous improvement of the palsy. Age, decompression area (anterior procedure), and diagnosis (ossification of the posterior longitudinal ligament) are the highest risk factors of the palsy. The results of the present study support our hypothesis that the etiology of the palsy is a transient disturbance of the spinal cord following a decompression procedure. It appears to be caused by reperfusion after decompression of a chronic compressive lesion of the cervical cord. We recommend that physicians inform patients and surgeons of the potential risk of a spinal cord deficit after cervical decompression surgery.
Catán, Soledad Perez; Juarez, Natalia A; Bubach, Débora F
2016-10-01
This work supplies a characterization of the chemical properties, including data of dissolved major and minor components in surface and pore water collected in Argentinean lakes surrounding the impacted area of Puyehue-Cordón Caulle volcanic complex, in the 2011 eruption. The principal component analysis and Pollution Load Index were used for the identification of water changes by volcanic ashes deposited throughout 1 year of eruption. The element content between water column and pore water provided a direct evidence of the potential dissolution of the element. Many chemical transformations, after the pyroclastic material contacted with the freshwater, were observed such as large pH changes from 3.2 to 8.1, electrical conductivity of 28.9 to 457 μs/cm, and redox potential of 171 to 591 mV. The maximum concentrations measured of F, Al, and Hg were 600, 40, and 0.0382 μg/L respectively. These concentrations in water column were lower than the limit of aquatic life protection for chronic toxicity. The Pollution Load Index indicated very low pollution for sites far away from the volcano and moderated pollution in closely sites. The processes were stabilized at the end of the monitoring, 1 year after the eruption.
Akbaş, Mert; Yeğin, Mehmet Arif; Özdemir, İrem; Göksu, Ethem; Akyüz, Mahmut
2016-01-01
Spinal cord stimulation as treatment of chronic low back pain via neuromodulation has been frequently performed in recent years. The dorsal column is stimulated by an electrode placed at the epidural region. In the case presently described, subcutaneous lead was implanted in a patient with failed back syndrome after spinal cord stimulation was inadequate to treat back and gluteal pain. A 65-year-old male had undergone surgery to treat lumbar disc herniation, after which he received physical therapy and multiple steroid injections due to unrelieved pain. He was admitted to the pain clinic with pain radiating to right gluteal muscle and leg. Spinal cord stimulation was performed and, as pain was not relieved, subcutaneous lead was applied to the right cluneal nerve distribution. Following treatment, the patient scored 1-2 on visual analog scale. Pain had been reduced by over 80%. Octad electrode was placed between T8 and T10 vertebrae after Tuohy needle was introduced to intervertebral area between L1 and L2. Paresthesia occurred in the right extremity. Boundaries were determined by area of right gluteal region in which paresthesia did not occur. Octad electrode was placed subcutaneously after vertical line was drawn from center point. Paresthesia occurred throughout the region. Pulse wave was 390-450 msec; frequency was 10-30 Hz. Subcutaneous electrode replacement is effective additional therapy when pain is not relieved by spinal cord stimulation.
Gondim, J; Ramos Júnior, F
1998-06-01
Calcification and/or ossification of the ligamenta flava is a well reported clinicopathologic entity causing narrowing of the spinal canal cord compression. It has been described almost exclusively in Japanese people. The authors present the case of a non Japanese patient with thoracic myelopathy caused by ossification of the ligamentum flavum.
Umbilical cord rupture: a case report and review of literature.
Naidu, Madhusudhan; Nama, Vivek; Karoshi, Mahantesh; Kakumani, Vijayasri; Worth, Richard
2007-01-01
The umbilical cord acts as a mechanical conduit between the fetus and placenta, allowing movement of water and nutrient substances between the fetal circulation and the amniotic fluid. Complications can occur antenatally or intranatally and are usually acute events that require immediate delivery to prevent intrauterine death. Even though the majority of the cord complications are unpreventable, significant improvement in perinatal mortality and morbidity can be achieved if such an event can be predicted. Umbilical cord rupture is not uncommon, but significantly underreported. We present an unusual cause of umbilical cord rupture and a review of literature.
[Mason's lacing cord. Potential danger of severe open ocular injuries].
Tost, F; Großjohann, R; Schikorr, W; Tesch, R; Ekkernkamp, A; Lange, J; Langner, S; Bockholdt, B; Frank, M
2014-02-01
Introduction of new working equipment or the modification of established working routines could induce new trauma mechanisms. In all of theses cases ophthalmologists are not only responsible for ocular treatment they also have to act as assessors. This might include legal aspects, e.g. to validate the circumstances of an accident. We present a new trauma mechanism caused by a mason's lacing cord which was fixed with nails. In addition to two case studies we collected experimental data (maximum tension and maximum elongation of various mason's lacing cords) about the triggering event using standard test conditions. A tensile force of 96.2 N was needed to achieve maximum elongation of mason's lacing cords. With a cord length of 5 m, an elongation of 0.09 m was enough to cause penetrating injuries (for 10 m cord length the critical elongation was 0.13 m). Under these conditions a nail could be accelerated to a velocity of 18 m/s. This may lead to open eyeball injuries with severe visual loss. Nails fixed to elastic mason's lacing cords are potential risk factors for occupational ocular injuries and severe loss of vision. Caution labels should be attached to the work equipment and proper eye protection should be used to prevent severe occupational ocular injuries.
Jing, Hua-fang; Liao, Li-min; Fu, Guang; Wu, Juan; Ju, Yan-he; Chen, Guo-qing
2014-08-18
To evaluate the related factors of upper urinary tract deterioration in spinal cord injured patients. Medical records of spinal cord injured patients from Jan.2002 to Sep.2009 were retrospectively reviewed. All the patients were divided into the upper urinary tract deterioration group and non-deterioration group according to the diagnostic criteria. Indexes such as demographic characteristic (gender, age), spinal cord injury information (cause, level, completeness), statuses of urinary tract system (bladder management, urine routine, urine culture, ultrasound, serum creatinine, fever caused by urinary tract infection) and urodynamics information(bladder compliance, bladder stability, bladder sensation, detrusor sphincter dyssynergia, detrusor leak point pressure, maximum cystometric capacity, relative safe bladder capacity, maximum flow rate, maximum urethra closure pressure) were compared between the two groups.Then Logistic regression analysis were performed. There was significantly difference between the two groups in spinal cord injury level(χ(2) = 8.840, P = 0.031),bladder management(χ(2) = 11.362, P = 0.045), urinary rutine(χ(2) = 17.983, P = 0.000), fever caused by urinary tract infection(χ(2)= 64.472, P = 0.000), bladder compliance(χ(2) = 6.531, P = 0.011), bladder sensation(χ(2) = 11.505, P = 0.009), maximum cystometric capacity(t = 2.209, P = 0.043), and detrusor-sphincter dyssynergia(χ(2) = 4.247, P = 0.039). The multiple-factor non-conditional Logistic regression analysis showed that bladder management (OR = 1.114, P = 0.006), fever caused by urinary tract infection(OR = 1.018,P = 0.000), bladder compliance (OR = 1.588, P = 0.040) and detrusor-sphincter dyssynergia(OR = 1.023, P = 0.034) were the key factors of upper urinary tract deterioration in spinal cord injured patients. Urinary tract infection, lower bladder compliance, detrusor-sphincter dyssynergia and unreasonable bladder management are the risk factors of upper urinary tract deterioration in spinal cord injured patients.
Secondary damage in the spinal cord after motor cortex injury in rats.
Weishaupt, Nina; Silasi, Gergely; Colbourne, Frederick; Fouad, Karim
2010-08-01
When neurons within the motor cortex are fatally injured, their axons, many of which project into the spinal cord, undergo wallerian degeneration. Pathological processes occurring downstream of the cortical damage have not been extensively studied. We created a focal forelimb motor cortex injury in rats and found that axons from cell bodies located in the hindlimb motor cortex (spared by the cortical injury) become secondarily damaged in the spinal cord. To assess axonal degeneration in the spinal cord, we quantified silver staining in the corticospinal tract (CST) at 1 week and 4 weeks after the injury. We found a significant increase in silver deposition at the thoracic spinal cord level at 4 weeks compared to 1 week post-injury. At both time points, no degenerating neurons could be found in the hindlimb motor cortex. In a separate experiment, we showed that direct injury of neurons within the hindlimb motor cortex caused marked silver deposition in the thoracic CST at 1 week post-injury, and declined thereafter. Therefore, delayed axonal degeneration in the thoracic spinal cord after a focal forelimb motor cortex injury is indicative of secondary damage at the spinal cord level. Furthermore, immunolabeling of spinal cord sections showed that a local inflammatory response dominated by partially activated Iba-1-positive microglia is mounted in the CST, a viable mechanism to cause the observed secondary degeneration of fibers. In conclusion, we demonstrate that following motor cortex injury, wallerian degeneration of axons in the spinal cord leads to secondary damage, which is likely mediated by inflammatory processes.
Chronic spinal cord injury in the cervical spine of a young soccer player.
Kato, Yoshihiko; Koga, Michiaki; Taguchi, Toshihiko
2010-05-12
A 17-year-old male soccer player presented with numbness in the upper- and lower-left extremities of 6 months' duration. He had no apparent history of trauma but experienced neck pain during heading of the ball 5 years prior. A high-signal intensity area was seen on T2-weighted magnetic resonance imaging (MRI) of the cervical spine. No muscle weakness was observed. Hypoesthesia was observed in bilateral forearms, hands, and extremities below the inguinal region. Plain radiographs in the neutral position showed local kyphosis at C3/4. A small protrusion of the C3/4 disk was observed on T1-weighted MRI. A high-signal area in the spinal cord at the C3/4 level was observed on T2-weighted MRI, but this was not enhanced by gadolinium. Multiple sclerosis, intramedullary spinal cord tumor, sarcoidosis and malignant lymphoma, and spinal cord injury were all considered in the differential diagnosis. However, in view of the clinical, laboratory, and radiological investigations, we concluded that repeated impacts to the neck caused by heading of the ball during soccer induced a chronic, minor spinal cord injury. This contributed to the high-signal intensity change of the spinal cord in T2-weighted MRI. The present case demonstrates that repeated impact may cause chronic spinal cord injury. Soccer, American football, or rugby players presenting with neck or extremity symptoms should not be overlooked for the possibility of latent spinal cord injury, as this could present later development of more severe or unrecoverable spinal cord injuries. Copyright 2010, SLACK Incorporated.
The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats.
Guven, Mustafa; Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat
2015-05-01
The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (p<0.05). Catalase and superoxide dismutase levels of the kefir group were significantly higher than ischemia group (p<0.05). In histopathological samples, the kefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (p<0.05). In immunohistochemical staining, hipoxia-inducible factor-1α and caspase 3 immunopositive neurons were significantly decreased in kefir group compared with ischemia group (p<0.05). The neurological deficit scores of kefir group were significantly higher than ischemia group at 24 h (p<0.05). Our study revealed that kefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future.
Compressive mechanical characterization of non-human primate spinal cord white matter.
Jannesar, Shervin; Allen, Mark; Mills, Sarah; Gibbons, Anne; Bresnahan, Jacqueline C; Salegio, Ernesto A; Sparrey, Carolyn J
2018-05-02
The goal of developing computational models of spinal cord injury (SCI) is to better understand the human injury condition. However, finite element models of human SCI have used rodent spinal cord tissue properties due to a lack of experimental data. Central nervous system tissues in non human primates (NHP) closely resemble that of humans and therefore, it is expected that material constitutive models obtained from NHPs will increase the fidelity and the accuracy of human SCI models. Human SCI most often results from compressive loading and spinal cord white matter properties affect FE predicted patterns of injury; therefore, the objectives of this study were to characterize the unconfined compressive response of NHP spinal cord white matter and present an experimentally derived, finite element tractable constitutive model for the tissue. Cervical spinal cords were harvested from nine male adult NHPs (Macaca mulatta). White matter biopsy samples (3 mm in diameter) were taken from both lateral columns of the spinal cord and were divided into four strain rate groups for unconfined dynamic compression and stress relaxation (post-mortem <1-hour). The NHP spinal cord white matter compressive response was sensitive to strain rate and showed substantial stress relaxation confirming the viscoelastic behavior of the material. An Ogden 1st order model best captured the non-linear behavior of NHP white matter in a quasi-linear viscoelastic material model with 4-term Prony series. This study is the first to characterize NHP spinal cord white matter at high (>10/sec) strain rates typical of traumatic injury. The finite element derived material constitutive model of this study will increase the fidelity of SCI computational models and provide important insights for transferring pre-clinical findings to clinical treatments. Spinal cord injury (SCI) finite element (FE) models provide an important tool to bridge the gap between animal studies and human injury, assess injury prevention technologies (e.g. helmets, seatbelts), and provide insight into the mechanisms of injury. Although, FE model outcomes depend on the assumed material constitutive model, there is limited experimental data for fresh spinal cords and all was obtained from rodent, porcine or bovine tissues. Central nervous system tissues in non human primates (NHP) more closely resemble humans. This study characterizes fresh NHP spinal cord material properties at high strains rates and large deformations typical of SCI for the first time. A constitutive model was defined that can be readily implemented in finite strain FE analysis of SCI. Copyright © 2018. Published by Elsevier Ltd.
Gaudet, Andrew D; Mandrekar-Colucci, Shweta; Hall, Jodie C E; Sweet, David R; Schmitt, Philipp J; Xu, Xinyang; Guan, Zhen; Mo, Xiaokui; Guerau-de-Arellano, Mireia; Popovich, Phillip G
2016-08-10
Axon regeneration after spinal cord injury (SCI) fails due to neuron-intrinsic mechanisms and extracellular barriers including inflammation. microRNA (miR)-155-5p is a small, noncoding RNA that negatively regulates mRNA translation. In macrophages, miR-155-5p is induced by inflammatory stimuli and elicits a response that could be toxic after SCI. miR-155 may also independently alter expression of genes that regulate axon growth in neurons. Here, we hypothesized that miR-155 deletion would simultaneously improve axon growth and reduce neuroinflammation after SCI by acting on both neurons and macrophages. New data show that miR-155 deletion attenuates inflammatory signaling in macrophages, reduces macrophage-mediated neuron toxicity, and increases macrophage-elicited axon growth by ∼40% relative to control conditions. In addition, miR-155 deletion increases spontaneous axon growth from neurons; adult miR-155 KO dorsal root ganglion (DRG) neurons extend 44% longer neurites than WT neurons. In vivo, miR-155 deletion augments conditioning lesion-induced intraneuronal expression of SPRR1A, a regeneration-associated gene; ∼50% more injured KO DRG neurons expressed SPRR1A versus WT neurons. After dorsal column SCI, miR-155 KO mouse spinal cord has reduced neuroinflammation and increased peripheral conditioning-lesion-enhanced axon regeneration beyond the epicenter. Finally, in a model of spinal contusion injury, miR-155 deletion improves locomotor function at postinjury times corresponding with the arrival and maximal appearance of activated intraspinal macrophages. In miR-155 KO mice, improved locomotor function is associated with smaller contusion lesions and decreased accumulation of inflammatory macrophages. Collectively, these data indicate that miR-155 is a novel therapeutic target capable of simultaneously overcoming neuron-intrinsic and neuron-extrinsic barriers to repair after SCI. Axon regeneration after spinal cord injury (SCI) fails due to neuron-intrinsic mechanisms and extracellular barriers, including inflammation. Here, new data show that deleting microRNA-155 (miR-155) affects both mechanisms and improves repair and functional recovery after SCI. Macrophages lacking miR-155 have altered inflammatory capacity, which enhances neuron survival and axon growth of cocultured neurons. In addition, independent of macrophages, adult miR-155 KO neurons show enhanced spontaneous axon growth. Using either spinal cord dorsal column crush or contusion injury models, miR-155 deletion improves indices of repair and recovery. Therefore, miR-155 has a dual role in regulating spinal cord repair and may be a novel therapeutic target for SCI and other CNS pathologies. Copyright © 2016 the authors 0270-6474/16/368516-17$15.00/0.
Migration of luque rods through a laminectomy defect causing spinal cord compression.
Quint, D J; Salton, G
1993-01-01
Internal fixation of traumatic spinal injuries has been associated with spinal canal stenosis, spinal cord compression, and nerve root impingement. We present a case of spinal cord/cauda equina compression due to migration of intact, anchored thoracolumbar Luque rods into the spinal canal through a laminectomy defect, leading to neurologic complications 10 years after the original operation.
Laryngopharyngeal Reflux and Children
... with the voice box (larynx) and causes the vocal cords to close to prevent aspiration of the material ... as a narrowing of the area below the vocal cords (subglottic stenosis), hoarseness, and possibly eustachian tube dysfunction ...
Iwaki, Shinobu; Maeda, Tatsuyoshi; Saito, Miki; Otsuki, Naoki; Takahashi, Miki; Wakui, Emi; Shinomiya, Hirotaka; Morimoto, Koichi; Inoue, Hiroyuki; Masuoka, Hiroo; Miyauchi, Akira; Nibu, Ken-Ichi
2017-03-01
Quality of voice after immediate recurrent laryngeal nerve (RLN) reconstruction in thyroid cancers has not been thoroughly studied. Thirteen patients with fixed vocal cords (fixed vocal cord group) and 8 patients with intact or impaired mobile vocal cords (mobile vocal cord group) who had immediate RLN reconstruction simultaneously with total thyroidectomy, and patients who had arytenoid adduction and thyroplasty for vocal cord paralysis caused by previous surgery (arytenoid adduction thyroplasty group) were enrolled in this study. Preoperative phonation efficiency index was significantly lower (p = .008) in the fixed vocal cord group than in the mobile vocal cord group. One year after surgery, all voice parameters of the patients in the fixed vocal cord group had improved, compared with their preoperative data. The fixed vocal cord group had attained satisfactory voice qualities equivalent to those of the mobile vocal cord group in terms of various voice parameters. The present results support the idea that immediate RLN reconstruction at the time of surgery for thyroid cancers may spare the need for subsequent arytenoid adduction thyroplasty even in the patients with preoperatively fixed vocal cords. © 2016 Wiley Periodicals, Inc. Head Neck 39: 427-431, 2017. © 2016 Wiley Periodicals, Inc.
[Analysis of the causes of 117 infants with persistent hoarseness].
Li, Li; Yang, Teng-fei; Xu, Zheng-min
2011-04-01
To explore the causes of persistent hoarseness in infants. One hundred and seventeen infants with persistent hoarseness treated in the department of otorhinolaryngology in Children's Hospital of Fudan University between June 2008 and July 2010 were retrospectively analyzed (all patients received antibiotic therapy for 2 weeks and the symptoms were not relieved after that). The patients were divided into three groups according to the age at first visit: 22 newborns, < 6 months old in 60 cases, < 12 months old in 35 cases. All patients had video laryngoscope examinations. Some of them received CT scan, cardiac ultrasonography and pathological examination in additional. The diagnosis was established by clinical history and imaging modalities, and the causes were analyzed subsequently. Among the 117 patients, 45 cases were vocal hypertrophy and hyperplasia (37.81%), 39 cases were vocal cord paralyses (32.78%), 7 cases were laryngeal hemangiomas (5.89%), 4 cases were laryngeal webs and cyst (3.36%), 2 cases were vocal cord polyps (1.68%), 2 cases were glottic incompetence (1.68%), 1 case was laryngeal papillomas(0.84%), 1 case was vocal code granulomas (0.84%), 1 case was glottis restricted by neck lymphangioma (0.84%); 4 cases were undetermined and 13 cases were no abnormalities. The percentage of patients with congenital heart diseases (19 cases) in vocal cord paralysis was 48.72%. The proportion of vocal cord paralysis in younger group was higher than that in elder one, their percentage were 50.00%, 36.67% and 17.14% respectively (χ(2) = 7.18, P < 0.05). A variety of causes can lead to persistent hoarseness in infants. The majority of them are vocal hypertrophy and hyperplasia, followed by vocal cord paralyze. Vocal cord paralysis is more common in younger infants than in elder ones, and the main causes are post-cardiac surgery and congenital heart disease.
Development of the 15 meter diameter hoop column antenna
NASA Technical Reports Server (NTRS)
1986-01-01
The building of a deployable 15-meter engineering model of the 100 meter antenna based on the point-design of an earlier task of this contract, complete with an RF-capable surface is described. The 15 meter diameter was selected so that the model could be tested in existing manufacturing, near-field RF, thermal vacuum, and structural dynamics facilities. The antenna was designed with four offset paraboloidal reflector surfaces with a focal length of 366.85 in and a primary surface accuracy goal of .069 in rms. Surface adjustment capability was provided by manually resetting the length of 96 surface control cords which emanated from the lower column extremity. A detailed description of the 15-meter Hoop/Column Antenna, major subassemblies, and a history of its fabrication, assembly, deployment testing, and verification measurements are given. The deviation for one aperture surface (except the outboard extremity) was measured after adjustments in follow-on tests at the Martin Marietta Near-field Facility to be .061 in; thus the primary surface goal was achieved.
Pathology of radiation injury to the canine spinal cord.
Powers, B E; Beck, E R; Gillette, E L; Gould, D H; LeCouter, R A
1992-01-01
The histopathologic response of the canine spinal cord to fractionated doses of radiation was investigated. Forty-two dogs received 0, 44, 52, 60, or 68 Gy in 4 Gy fractions to the thoracic spinal cord. Dogs were evaluated for neurologic signs and were observed for 1 or 2 years after irradiation. Six major lesion types were observed; five in the irradiated spinal cord and one in irradiated dorsal root ganglia. The three most severe spinal cord lesions were white matter necrosis, massive hemorrhage, and segmental parenchymal atrophy which had an ED50 of 56.9 Gy (51.3-63.3 Gy 95% CI) in 4 Gy fractions. These lesions were consistently associated with abnormal neurologic signs. Radiation damage to the vasculature was the most likely cause of these three lesions. The two less severe spinal cord lesions were focal fiber loss, which had an ED50 of 49.5 Gy (44.8-53.6 Gy 95% CI) in 4 gy fractions and scattered white matter vacuolation that occurred at all doses. These less severe lesions were not consistently associated with neurologic signs and indicated the presence of residual damage that may occur after lower doses of radiation. Radiation damage to glial cells, axons, and/or vasculature were possible causes of these lesions. In the irradiated dorsal root ganglia, affected sensory neurons contained large intracytoplasmic vacuoles, and there was loss of neurons and satellite cells. Such alterations could affect sensory function. The dog is a good model for spinal cord irradiation studies as tolerance doses for lesions causing clinical signs are close to the estimated tolerance doses for humans, and studies involving volume and long-term observation can be done.
The changing nature of admissions to a spinal cord injury center: violence on the rise.
Farmer, J C; Vaccaro, A R; Balderston, R A; Albert, T J; Cotler, J
1998-10-01
The purpose of this study was to analyze changing etiologies for admission to a spinal cord injury center. This study was designed to retrospectively analyze the etiology of admissions to a spinal cord injury center during a 15-year period, specifically gunshot versus nongunshot wound injuries. Gunshot wounds are a well-recognized cause of spinal cord injury. In some centers, up to 52% of admissions are due to this, and these trends are believed to be increasing. All patients with spinal cord injury admitted to our center between 1979 and 1993 were analyzed. Frequencies of specific etiologies were determined and then comparisons were made between gunshot wound and nongunshot wound groups. Factors analyzed included age, male/female ratio, ethnic make-up, marital status, employment status, level of injury, and neurologic status. One thousand eight hundred seventeen patients were included. Overall, gunshot wound spinal cord injuries compromised 16.9% of injuries. A clear trend of increasing numbers of admissions was seen between 1984 and 1993 because of this. Gunshot wounds and nongunshot wounds differed dramatically in terms of age, ethnic make-up, marital status, employment status, and neurologic status. Cost attributed to treating gunshot wound injuries at our center for 1993 was 5.4 million dollars. Gunshot wounds as a cause of spinal cord injury are increasing at an alarming rate. The demographics of the gunshot wounds and nongunshot wound spine cord injuries differ significantly.
ERIC Educational Resources Information Center
Belciug, Marian P.
2012-01-01
The objective of this study was to examine the patients' perception of the causes of their success and lack of success in achieving their potential in rehabilitation and their emotional reactions to the outcome of their rehabilitation. Thirty-five patients with spinal cord injury who were participating in the Rehabilitation Program at Hamilton…
Occupational vocal cord dysfunction due to exposure to wood dust and xerographic toner.
Muñoz, Xavier; Roger, Alex; De la Rosa, David; Morell, Ferran; Cruz, Maria J
2007-04-01
Vocal cord dysfunction is a poorly understood entity that is often misdiagnosed as asthma. Both irritant and non-irritant vocal cord dysfunction have been described. This report presents two cases of irritant vocal cord dysfunction secondary to specific environmental exposure, the first to iroko and western red cedar wood (a carpenter) and the second to xerographic printing toner (a secretary). Several tests were performed, including chest radiographs, measurements of total serum immunoglobulin E, skin prick tests with common pneumoallergens (as well as iroko and western red cedar in the first case), pulmonary function studies, methacholine challenge testing, specific inhalation challenge performed with suspected agents in a single-blinded fashion, and peak expiratory flow testing and fiberoptic rhinolaryngoscopy (in case 1). During the specific inhalation challenge, the patients showed dysphonia, chest tightness, inspiratory stridor, and flattening of the inspiratory limb of the maximum flow-volume loop in spirometry, with no significant decreases in the level of forced expiratory volume in 1 second; fiberoptic rhinolaryngoscopy confirmed the diagnosis of vocal cord dysfunction in case 1. It is important to know that agents that can cause occupational asthma can also cause vocal cord dysfunction. The mechanisms by which these agents produce vocal cord dysfunction are unknown. The differences in the clinical presentation of the patients described relative to the reported cases suggest that more than one pathophysiological mechanism may be implicated in the genesis of this entity.
Back pain: a real target for spinal cord stimulation?
Rigoard, Philippe; Delmotte, Alexandre; D'Houtaud, Samuel; Misbert, Lorraine; Diallo, Bakari; Roy-Moreau, Aline; Durand, Sylvain; Royoux, Solène; Giot, Jean-Philippe; Bataille, Benoit
2012-03-01
Failed back surgery syndrome represents one of the most frequent etiologies of chronic back pain and is a major public health issue. Neurostimulation has currently not been validated in the treatment of back pain because of technological limitations in implantable spinal cord stimulation (SCS) systems. New-generation leads using several columns of stimulation can generate longitudinal and/or transverse stimulation fields into the spinal cord. To investigate, through extensive stimulation testing, the capacity of multicolumn tripolar leads to achieve back territory paresthesia coverage in refractory failed back surgery syndrome patients. Eleven patients implanted with a 16-contact spinal cord stimulation lead (Specify 5-6-5, Medtronic Inc) were assessed with a systematic exploration of 43 selected stimulation configurations to generate bilateral back paresthesia in addition to leg territory coverage. The tripolar lead successfully generated paresthesia in both bilateral back and leg territories in 9 patients (81.8%). Success rates of multicolumn stimulation patterns were significantly higher than for longitudinal configurations for lombodorsal paresthesia coverage. Six months after implantation, significant pain relief was obtained compared with preoperative evaluation for global pain (Visual Analog Scale, 2.25 vs 8.2 preoperatively; P < .05), leg pain (Visual Analog Scale, 0.5 vs 7.6 preoperatively; P < .05), and back pain (Visual Analog Scale, 1.5 vs 7.8 preoperatively; P < .05). These results suggest that multicolumn leads can reliably generate back pain coverage and favor pain relief outcomes. This may lead physicians to reconsider new indications for spinal cord stimulation. Expanding neurostimulation perspectives to intractable back pain syndromes could become realistic in the near future.
Electrically evoked compound action potentials recorded from the sheep spinal cord.
Parker, John L; Karantonis, Dean M; Single, Peter S; Obradovic, Milan; Laird, James; Gorman, Robert B; Ladd, Leigh A; Cousins, Michael J
2013-01-01
The study aims to characterize the electrical response of dorsal column axons to depolarizing stimuli to help understand the mechanisms of spinal cord stimulation (SCS) for the relief of chronic pain. We recorded electrically evoked compound action potentials (ECAPs) during SCS in 10 anesthetized sheep using stimulating and recording electrodes on the same epidural SCS leads. A novel stimulating and recording system allowed artifact contamination of the ECAP to be minimized. The ECAP in the sheep spinal cord demonstrates a triphasic morphology, with P1, N1, and P2 peaks. The amplitude of the ECAP varies along the length of the spinal cord, with minimum amplitudes recorded from electrodes positioned over each intervertebral disc, and maximum amplitudes recorded in the midvertebral positions. This anatomically correlated depression of ECAP also correlates with the areas of the spinal cord with the highest thresholds for stimulation; thus regions of weakest response invariably had least sensitivity to stimulation by as much as a factor of two. The choice of stimulating electrode location can therefore have a profound effect on the power consumption for an implanted stimulator for SCS. There may be optimal positions for stimulation in the sheep, and this observation may translate to humans. Almost no change in conduction velocity (∼100 ms) was observed with increasing currents from threshold to twice threshold, despite increased Aβ fiber recruitment. Amplitude of sheep Aβ fiber potentials during SCS exhibit dependence on electrode location, highlighting potential optimization of Aβ recruitment and power consumption in SCS devices. © 2013 International Neuromodulation Society.
Bilateral vocal cord paralysis in children.
Chen, Eunice Y; Inglis, Andrew F
2008-10-01
Bilateral vocal cord paralysis in children with its many causes presents a challenging problem to the pediatric otolaryngologist. Traditionally, management of bilateral vocal cord paralysis includes securing the airway with a tracheotomy and waiting for spontaneous recovery. Surgeons have tried a variety of surgical procedures in lieu of or in addition to tracheotomy, but none are perfect solutions to the problem. This article reviews the current surgical procedures for bilateral vocal cord paralysis in the pediatric population with a particular focus on the senior author's experience with the endoscopic posterior costal cartilage grafting procedure.
Wang, Xiaoming; Rytting, Erik; Abdelrahman, Doaa R.; Nanovskaya, Tatiana N.; Hankins, Gary D.V.; Ahmed, Mahmoud S.
2013-01-01
The liquid chromatography with electrospray ionization mass spectrometry for the quantitative determination of famotidine in human urine, maternal and umbilical cord plasma was developed and validated. The plasma samples were alkalized with ammonium hydroxide and extracted twice with ethyl acetate. The extraction recovery of famotidine in maternal and umbilical cord plasma ranged from 53% to 64% and 72% to 79%, respectively. Urine samples were directly diluted with the initial mobile phase then injected into the HPLC system. Chromatographic separation of famotidine was achieved by using a Phenomenex Synergi™ Hydro-RP™ column with a gradient elution of acetonitrile and 10 mM ammonium acetate aqueous solution (pH 8.3, adjusted with ammonium hydroxide). Mass Spectrometric detection of famotidine was set in the positive mode and used a selected ion monitoring method. Carbon-13-labeled famotidine was used as internal standard. The calibration curves were linear (r2> 0.99) in the concentration ranges of 0.631-252 ng/mL for umbilical and maternal plasma samples, and of 0.075-30.0 μg/mL for urine samples. The relative deviation of method was less than 14% for intra- and inter-day assays, and the accuracy ranged between 93% and 110%. The matrix effect of famotidine in human urine, maternal and umbilical cord plasma is less than 17%. PMID:23401067
Liang, Huazheng; Watson, Charles; Paxinos, George
2016-04-01
The present study investigated the projections of the gigantocellular reticular nucleus (Gi) and its neighbors--the dorsal paragigantocellular reticular nucleus (DPGi), the alpha/ventral part of the gigantocellular reticular nucleus (GiA/V), and the lateral paragigantocellular reticular nucleus (LPGi)--to the mouse spinal cord by injecting the anterograde tracer biotinylated dextran amine (BDA) into the Gi, DPGi, GiA/GiV, and LPGi. The Gi projected to the entire spinal cord bilaterally with an ipsilateral predominance. Its fibers traveled in both the ventral and lateral funiculi with a greater presence in the ventral funiculus. As the fibers descended in the spinal cord, their density in the lateral funiculus increased. The terminals were present mainly in laminae 7-10 with a dorsolateral expansion caudally. In the lumbar and sacral cord, a considerable number of terminals were also present in laminae 5 and 6. Contralateral fibers shared a similar pattern to their ipsilateral counterparts and some fibers were seen to cross the midline. Fibers arising from the DPGi were similarly distributed in the spinal cord except that there was no dorsolateral expansion in the lumbar and sacral segments and there were fewer fiber terminals. Fibers arising from GiA/V predominantly traveled in the ventral and lateral funiculi ipsilaterally. Ipsilaterally, the density of fibers in the ventral funiculus decreased along the rostrocaudal axis, whereas the density of fibers in the lateral funiculus increased. They terminate mainly in the medial ventral horn and lamina 10 with a smaller number of fibers in the dorsal horn. Fibers arising from the LPGi traveled in both the ventral and lateral funiculi and the density of these fibers in the ventral and lateral funiculi decreased dramatically in the lumbar and sacral segments. Their terminals were present in the ventral horn with a large portion of them terminating in the motor neuron columns. The present study is the first demonstration of the termination pattern of fibers arising from the Gi, DPGi, GiA/GiV, and LPGi in the mouse spinal cord. It provides an anatomical foundation for those who are conducting spinal cord injury and locomotion related research.
Early and extensive spinal white matter involvement in neuromyelitis optica.
Hayashida, Shotaro; Masaki, Katsuhisa; Yonekawa, Tomomi; Suzuki, Satoshi O; Hiwatashi, Akio; Matsushita, Takuya; Watanabe, Mitsuru; Yamasaki, Ryo; Suenaga, Toshihiko; Iwaki, Toru; Murai, Hiroyuki; Kira, Jun-Ichi
2017-05-01
Studies of longitudinally extensive spinal cord lesions (LESCLs) in neuromyelitis optica (NMO) have focused on gray matter, where the relevant antigen, aquaporin-4 (AQP4), is abundant. Because spinal white matter pathology in NMO is not well characterized, we aimed to clarify spinal white matter pathology of LESCLs in NMO. We analyzed 50 spinal cord lesions from eleven autopsied NMO/NMO spectrum disorder (NMOSD) cases. We also evaluated LESCLs with three or fewer spinal cord attacks by 3-tesla MRI in 15 AQP4 antibody-positive NMO/NMOSD patients and in 15 AQP4 antibody-negative multiple sclerosis (MS) patients. Pathological analysis revealed seven cases of AQP4 loss and four predominantly demyelinating cases. Forty-four lesions from AQP4 loss cases involved significantly more frequently posterior columns (PC) and lateral columns (LC) than anterior columns (AC) (59.1%, 63.6%, and 34.1%, respectively). The posterior horn (PH), central portion (CP), and anterior horn (AH) were similarly affected (38.6%, 36.4% and 31.8%, respectively). Isolated perivascular inflammatory lesions with selective loss of astrocyte endfoot proteins, AQP4 and connexin 43, were present only in white matter and were more frequent in PC and LC than in AC (22.7%, 29.5% and 2.3%, P corr = 0.020, and P corr = 0.004, respectively). MRI indicated LESCLs more frequently affected PC and LC than AC in anti-AQP4 antibody-seropositive NMO/NMOSD (86.7%, 60.0% and 20.0%, P corr = 0.005, and P corr = 0.043, respectively) and AQP4 antibody-seronegative MS patients (86.7%, 73.3% and 33.3%, P corr = 0.063, and P corr = 0.043, respectively). PH, CP and AH were involved in 93.3%, 86.7% and 73.3% of seropositive patients, respectively, and in 53.3%, 60.0% and 40.0% of seronegative patients, respectively. NMO frequently and extensively affects spinal white matter in addition to central gray matter, especially in PC and LC, where isolated perivascular lesions with astrocyte endfoot protein loss may emerge. Spinal white matter involvement may also appear in early NMO, similar to cerebral white matter lesions. © 2016 International Society of Neuropathology.
The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats
Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat
2015-01-01
Objective The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Methods Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. Results The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (p<0.05). Catalase and superoxide dismutase levels of the kefir group were significantly higher than ischemia group (p<0.05). In histopathological samples, the kefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (p<0.05). In immunohistochemical staining, hipoxia-inducible factor-1α and caspase 3 immunopositive neurons were significantly decreased in kefir group compared with ischemia group (p<0.05). The neurological deficit scores of kefir group were significantly higher than ischemia group at 24 h (p<0.05). Conclusion Our study revealed that kefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future. PMID:26113960
Umbilical Cord Care in the Newborn Infant.
Stewart, Dan; Benitz, William
2016-09-01
Postpartum infections remain a leading cause of neonatal morbidity and mortality worldwide. A high percentage of these infections may stem from bacterial colonization of the umbilicus, because cord care practices vary in reflection of cultural traditions within communities and disparities in health care practices globally. After birth, the devitalized umbilical cord often proves to be an ideal substrate for bacterial growth and also provides direct access to the bloodstream of the neonate. Bacterial colonization of the cord not infrequently leads to omphalitis and associated thrombophlebitis, cellulitis, or necrotizing fasciitis. Various topical substances continue to be used for cord care around the world to mitigate the risk of serious infection. More recently, particularly in high-resource countries, the treatment paradigm has shifted toward dry umbilical cord care. This clinical report reviews the evidence underlying recommendations for care of the umbilical cord in different clinical settings. Copyright © 2016 by the American Academy of Pediatrics.
Su, Hui-Yi; Wu, Yung-Tsan; Liu, Ming-Ying; Lin, Yu-Chun; Chu, Heng-Yi; Chang, Shin-Tsu
2013-01-01
We present the first case of concomitant intramedullary traumatic neuroma and spinal cord herniation. A 57-year-old woman injured her cervical spine with subluxation and cord compression at the C5-C6 level. After the operation, the patient received intensive rehabilitation for one year with well response. Unfortunately, she experienced weakness and progressive numbness extending to all the limbs later. Cervical magnetic resonance imaging revealed spinal cord herniation at the C5-C6 level and pathology proved intramedullary traumatic neuroma. After the second operation, the paresthesia over the trunk and limbs persisted, and the patient was nearly totally assisted in her activities of daily living. The intramedullary traumatic neuroma and spinal cord herniation are rare causes in patients with spinal cord dysfunction. The case presented here indicates the possibility of the coexisting conditions leading to progressive neurologic deficits in patients with old spinal cord injury.
Origin and plasticity of the subdivisions of the inferior olivary complex.
Hidalgo-Sánchez, Matías; Backer, Stéphanie; Puelles, Luis; Bloch-Gallego, Evelyne
2012-11-15
The precerebellar nuclei (PCN) originate from the rhombic lip, a germinal neuroepithelium adjacent to the roof plate of the fourth ventricle. We first report here that, in chicken, the Brn3a-expressing postmitotic medullary cells that produce the inferior olive (ION, the source of cerebellar climbing fibres) originate from a dorso-ventral domain roughly coinciding with the hindbrain vestibular column. Whereas Foxd3 expression labels the whole mature ION but is only detected in a subpopulation of ION neuroblasts initiating their migration, we report that Brn3a allows the visualization of the whole population of ION neurons from the very beginning of their migration. We show that Brn3a-positive neurons migrate tangentially ventralwards through a characteristic dorso-ventral double submarginal stream. Cath1 expressing progenitors lying just dorsal to the ION origin correlated dorso-ventral topography with the prospective cochlear column (caudal to it) and generate precerebellar nuclei emitting mossy-fiber cerebellar afferents. We used the chick-quail chimaera technique with homotopic grafts at HH10 to determine the precise fate map of ION precursors across the caudal cryptorhombomeric subdivisions of the medullary hindbrain (r8-r11). We demonstrate that each crypto-rhombomere contributes to two lamellae of the ION, while each ION sub-nucleus originates from at least two contiguous crypto-rhombomeres. We then questioned how rhombomere identity is related to the plasticity of cell type specification in the dorsal hindbrain. The potential plasticity of ectopically HH10 grafted ION progenitors to change their original fate in alternative rostrocaudal environments was examined. Heterotopic grafts from the presumptive ION territory to the pontine region (r4-r5) caused a change of fate, since the migrated derivatives adopted a pontine phenotype. The reverse experiment caused pontine progenitors to produce derivatives appropriately integrated into the ION complex. Grafts of ION progenitor domains to myelomeres (my) 2-3 also showed complete fate regulation, reproducing spinal cord-like structures, whereas the reverse experiment revealed the inability of my2-3 to generate ION cell types. This was not the case with more caudal, relatively less specified myelomeres (my5-6). Interestingly, when heterotopically grafted cells are integrated dorsally, they do not change their phenotype. Our results support the hypothesis that positional information present in the hindbrain and spinal cord at early neural tube stages controls the specific fates of ventrally migrating PCN precursors. Copyright © 2012 Elsevier Inc. All rights reserved.
Relation between functional dysphagia and vocal cord palsy after transhiatal oesophagectomy.
Pierie, J P; Goedegebuure, S; Schuerman, F A; Leguit, P
2000-03-01
To assess the incidence, natural course, and possible pathogenesis of dysphagia that is not caused by anastomotic stricture, after transhiatal oesophagectomy and gastric tube reconstruction. Prospective study. District teaching hospital, The Netherlands. 22 patients who had transhiatal oesophagectomy and gastric tube reconstruction for cancer. Incidence of dysphagia that is not caused by anastomotic stricture one week after operation, and presence of this functional dysphagia and correlation with vocal cord palsy at 4, 8, 12, and 16 weeks postoperatively. The incidence of functional dysphagia was 7 out of 22 (32%); it was self-limiting in 5 out of 7 (71%) of the cases and associated with the incidence of vocal cord palsy (p = 0.0006). Functional dysphagia after transhiatal oesophagectomy occurs frequently, but is self-limiting in most patients. Injury to branches of the recurrent laryngeal nerve is a likely cause.
Relationship between the tensile strengths and diameters of human umbilical cords.
Fernando, D M G; Gamage, S M K; Ranmohottige, S; Weerakkody, I; Abeyruwan, H; Parakrama, H
2018-05-01
Mothers of alleged infanticides might claim that umbilical cord broke during precipitate delivery causing injuries detected on baby at autopsy. There is paucity of evidence regarding this possibility. The objective of the study was to determine relationship between tensile strength and diameter or weight per unit length of cord. Diameters and weights per unit length of fresh umbilical cords were determined. Tensile strengths were measured by Hounsfield Testing Machine. Relationship between tensile strength versus cord diameter and weight per unit length were analyzed. Of 122 cords, average tensile strength, diameter and weight per centimeter were 50.4 N, 7.73 mm and 6.87 g respectively. The tensile strengths were directly proportional to diameter. There was no association between tensile strength and weight per centimeter. Measurement of the diameter of cord is important during autopsy to predict tensile strength and thereby to presume whether cord could have broken by the weight of the baby. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
AMSARA: Accession Medical Standards Analysis & Research Activity 2008 Annual Report
2009-02-01
service were prosthetic implants and diseases of the musculoskeletal system and impairments and diseases of the spine, skull, limbs, and extremities...waivers for deviations/curvature of the spine, and one had a waiver for a 15 fracture of the vertebral column (no mention of spinal cord injury). For...pathologic fractures , bone cysts, and aseptic necrosis. Please note, when a majority of codes examined out to the fourth digit do not have a fourth digit
Spinal cord tumors: new views and future directions.
Mechtler, Laszlo L; Nandigam, Kaveer
2013-02-01
Spinal cord tumors are uncommon neoplasms that, without treatment, can cause significant neurologic morbidity and mortality. The historic classification of spine tumors is based on the use of myelography with 3 main groups: (1) extramedullary extradural, (2) intradural extramedullary, and (3) intradural intramedullary. This chapter focuses on intramedullary spinal cord tumors (ISCTs), with an emphasis on new diagnostic imaging modalities and treatment options. The common ISCTs include ependymoma, astrocytoma and hemangioblastoma, which together account for over 90% of primary ISCTs. Rare tumors such as gangliglioma, oligodendroglioma, paraganglioma, melanocytoma, lipoma, and primary spinal cord lymphoma are also included in this review, in addition to spinal cord metastatic disease. Copyright © 2013 Elsevier Inc. All rights reserved.
Salit, R. B.; Shea, Y. R.; Gea-Banacloche, J.; Fahle, G. A.; Abu-Asab, M.; Sugui, J. A.; Carpenter, A. E.; Quezado, M. M.; Bishop, M. R.; Kwon-Chung, K. J.
2010-01-01
We describe a case of invasive fungal infection caused by Volvariella volvacea following double umbilical cord blood transplantation (UCBT). Although infections caused by several mushroom species have been documented, we believe this to be the first published report of invasive infection with Volvariella volvacea, an edible mushroom belonging to Agaricales. PMID:20826647
Cherian, Jacob; Sayama, Christina M; Adesina, Adekunle M; Lam, Sandi K; Luerssen, Thomas G; Jea, Andrew
2014-09-01
Vertebral hemangiomas are common benign vascular tumors of the spine. It is very rare for these lesions to symptomatically compress neural elements. If spinal cord compression does occur, it usually involves only a single level. Multilevel vertebral hemangiomas causing symptomatic spinal cord compression have never been reported in the pediatric population to the best of our knowledge. We report the case of a 15-year-old boy presenting with progressive paraparesis due to thoracic spinal cord compression from a multilevel thoracic hemangioma (T5-T10) with epidural extension. Because of his progressive neurological deficit, he was initially treated with urgent multilevel decompressive laminectomies from T4 to T11. This was to be followed by radiotherapy for residual tumor, but the patient was unfortunately lost to follow-up. He re-presented 3 years later with recurrent paraparesis and progressive disease. This was treated with urgent radiotherapy with good response. As of 6 months follow-up, he has made an excellent neurological recovery. In this report, we present the first case of a child with multilevel vertebral hemangiomas causing symptomatic spinal cord compression and review the literature to detail the pathophysiology, management, and treatment of other cases of spinal cord compression by vertebral hemangiomas.
Steward, Oswald; Sharp, Kelli; Yee, Kelly Matsudaira
2011-01-01
This study was undertaken as part of the NIH “Facilities of Research Excellence-Spinal Cord Injury”, which supports independent replication of published studies. Here, we repeat an experiment reporting that intracortical delivery of inosine promoted trans-midline growth of corticospinal tract (CST) axons in the spinal cord after unilateral injury to the medullary pyramid. Rats received unilateral transections of the medullary pyramid and 1 day later, a cannula assembly was implanted into the sensorimotor cortex contralateral to the pyramidotomy to deliver either inosine or vehicle. The cannula assembly was attached to an osmotic minipump that was implanted sub-cutaneously. Seventeen or 18 days post-injury, the CST was traced by making multiple injections of miniruby-BDA into the sensorimotor cortex. Rats were killed for tract tracing 14 days after the BDA injections. Sections through the cervical spinal cord were stained for BDA and immunostained for GAP43 and GFAP. Our results revealed no evidence for enhanced growth of CST axons across the midline of the dorsal column in rats that received intracortical infusion of inosine. Possible reasons for the failure to replicate are discussed. PMID:21946267
Treatment of spinal fractures with paraplegia.
Riska, E B; Myllynen, P
1981-01-01
Of 206 patients with vertebral fractures in the thoraco-lumbar spine with spinal cord injuries, an antero-lateral decompression with stabilization of the injured segment of the vertebral column was undertaken in 56 cases. In all these cases there was a compression of the spinal cord from the front. 8 patients made a complete recovery, 31 a good recovery, and 6 were improved. In 8 patients no improvement was noted. 2 patients developed pressure sores later and 1 patient died one year after the operation of uraemia. 22 patients out of 55 got a normal function of the bladder and 25 patients out of 54 a normal function of the anal sphincter. 16 patients out of 17 made a complete or good recovery after removal of a displaced rotated vertebral bony fragment from the spinal canal, and 7 patients out of 9 with wedge shaped fractures. In our clinic today, in cases of vertebral fractures with neural involvement, reduction and internal fixation with Harrington rods and fusion of the injured segment is undertaken as soon as possible, also during the night. If narrowing of the neural canal and compression of the spinal cord are verified, a decompression operation with interbody fusion is undertaken during the next days.
Spinal cord injury following operative shoulder intervention: A case report.
Cleveland, Christine; Walker, Heather
2015-07-01
Cervical myelopathy is a spinal cord dysfunction that results from extrinsic compression of the spinal cord, its blood supply, or both. It is the most common cause of spinal cord dysfunction in patients greater than 55 years of age. A 57-year-old male with right shoulder septic arthritis underwent surgical debridement of his right shoulder and sustained a spinal cord injury intraoperatively. The most likely etiology is damage to the cervical spinal cord during difficult intubation requiring multiple attempts in this patient with underlying asymptomatic severe cervical stenosis. Although it is not feasible to perform imaging studies on all patients undergoing intubation for surgery, this patient's outcome would suggest consideration of inclusion of additional pre-surgical screening examination techniques, such as testing for a positive Hoffman's reflex, is appropriate to detect asymptomatic patients who may have underlying cervical stenosis.
Idiopathic thoracic transdural intravertebral spinal cord herniation
Turel, Mazda K; Wewel, Joshua T; Kerolus, Mena G; O'Toole, John E
2017-01-01
Idiopathic spinal cord herniation is a rare and often missed cause of thoracic myelopathy. The clinical presentation and radiological appearance is inconsistent and commonly confused with a dorsal arachnoid cyst and often is a misdiagnosed entity. While ventral spinal cord herniation through a dural defect has been previously described, intravertebral herniation is a distinct entity and extremely rare. We present the case of a 70-year old man with idiopathic thoracic transdural intravertebral spinal cord herniation and discuss the clinico-radiological presentation, pathophysiology and operative management along with a review the literature of this unusual entity. PMID:29021685
NASA Astrophysics Data System (ADS)
Silva Parejas, C.; Lara, L. E.; Bertin, D.; Amigo, A.; Orozco, G.
2012-04-01
A new kind of integrated approach was for first time achieved during the eruptive crisis of Cordón Caulle volcano (Southern Andes, 40.59°S, 72.12°W) in Chile. The monitoring network of SERNAGEOMIN around the volcano detected the increasing precursory seismicity, alerting the imminence of an eruption about 5 hours before its onset, on June 4, 2011. In addition, SERNAGEOMIN generated daily forecasts of tephra dispersal and fall (ASHFALL advection-diffusion model), and prepared simulations of areas affected by the possible occurrence of lahars and pyroclastic flows. Models were improved with observed effects on the field and satellite imagery, resulting in a good correlation. The information was timely supplied to the authorities as well as recommendations in order to better precise the vulnerable areas. Eruption has initially occurred from a couple of overlapped cones located along the eastern fault scarp of the Pleistocene-Holocene extensional graben of Cordón Caulle. Eruptive products have virtually the same bulk composition as those of the historical 1921 and 1960 eruptions, corresponding to phenocryst-poor rhyodacites (67-70 % SiO2). During the first eruptive stage, a ca. 15-km strong Plinian column lasting 27 hours emitted 0.2-0.4 km3 of magma (DRE). Thick tephra deposits have been accumulated in Chile and Argentina, whereas fine particles and aerosols dispersion disrupted air navigation across the Southern Hemisphere. The second ongoing eruptive stage, which started in mid-June, has been characterized by lava emission already covering a total area comparable to the 1960 lava flows with a total estimated volume <0.25 km3 (at the end of December 2011). Weak but persistent plumes have caused preventive flight suspensions in Chile and Argentina until the end of the year. Main current hazards at Cordón Caulle volcano are fine tephra fallout, secondary lahars, minor explosions and lava flow front collapse. Even if this case can be considered successful from the point of view of eruption forecast and hazard assessment, a new protocol of volcanic alerts has been recently signed between SERNAGEOMIN and the National Emergency Agency (ONEMI) in order to improve the communication, information transfer and roles of those institutions during risky volcanic crises.
Release and repair of a ventral thoracic spinal cord herniation.
McCormick, Paul C
2014-09-01
Ventral thoracic spinal cord herniation is a rare but increasingly recognized cause of progressive myelopathy. This video demonstrates the imaging characteristics and surgical techniques for release and reduction of the spinal cord herniation as well as primary repair and reinforcement of the ventral dural hernia defect through an extended posterior approach. An instrumented fusion was concomitantly performed. The video can be found here: http://youtu.be/6Pcokep6Tug.
Robinson, Thomas N; Jones, Edward L; Dunn, Christina L; Dunne, Bruce; Johnson, Elizabeth; Townsend, Nicole T; Paniccia, Alessandro; Stiegmann, Greg V
2015-06-01
The monopolar "Bovie" is used in virtually every laparoscopic operation. The active electrode and its cord emit radiofrequency energy that couples (or transfers) to nearby conductive material without direct contact. This phenomenon is increased when the active electrode cord is oriented parallel to another wire/cord. The parallel orientation of the "Bovie" and laparoscopic camera cords cause transfer of energy to the camera cord resulting in cutaneous burns at the camera trocar incision. We hypothesized that separating the active electrode/camera cords would reduce thermal injury occurring at the camera trocar incision in comparison to parallel oriented active electrode/camera cords. In this prospective, blinded, randomized controlled trial, patients undergoing standardized laparoscopic cholecystectomy were randomized to separated active electrode/camera cords or parallel oriented active electrode/camera cords. The primary outcome variable was thermal injury determined by histology from skin biopsied at the camera trocar incision. Eighty-four patients participated. Baseline demographics were similar in the groups for age, sex, preoperative diagnosis, operative time, and blood loss. Thermal injury at the camera trocar incision was lower in the separated versus parallel group (31% vs 57%; P = 0.027). Separation of the laparoscopic camera cord from the active electrode cord decreases thermal injury from antenna coupling at the camera trocar incision in comparison to the parallel orientation of these cords. Therefore, parallel orientation of these cords (an arrangement promoted by integrated operating rooms) should be abandoned. The findings of this study should influence the operating room setup for all laparoscopic cases.
Origins of the sensory examination in neurology.
Freeman, Cassiopeia; Okun, Michael S
2002-12-01
Formal testing of sensation as part of the neurological examination followed the improvements in examination techniques as well as advances in neuroscience. By the 1890s, the observation that temperature sense was frequently impaired at the same time that pain was appreciated led to the supposition that the two paths traveled closely. Through the works of Brown-Séquard and Edinger the existence of a crossed afferent tract was verified. The distinction between two sensory pathways was clear by 1898, when van Gehuchten reported a case of syringomyelia and suggested that the pain and temperature fibers were carried anterolaterally and the position sense fibers carried posteriorly in the spinal cord. Many authors describing patients with tabes dorsalis suspected the posterior columns of the spinal cord played a key role in position sense. It is difficult to determine in the 19th century who first employed the use of movements of joints as a test for proprioceptive function; however, Bell in 1826 recognized what he termed a sixth sense, which later was characterized as proprioceptive function. Goldscheider went on to report the degrees of movement that were considered normal for each joint. Although vibratory sense had been described by Cardano and Ingrassia in the 16th century and tests had been developed by Rinne and Rumpf by the 19th century, it was not until 1903 that Rydel and Seiffer found that vibratory sense and proprioceptive sense were closely related and that both senses were carried in the posterior columns of the spinal cord. By 1955, the sensory examination included tests for light-touch, superficial pain, temperature, position sense, vibration, muscle (deep pain), and two-point discrimination. Tests for these sensibilities still remain in use. We will review the origins of the understanding of sensation, which ultimately led to the development of the sensory examination. We will highlight individuals who made important discoveries and observations, as well as review the history of each of the elements of the sensory examination.
1995-06-16
university of the Health Sciences ABSTRACT serotonin (5-HT), substance P (SP), neurokinin A (NKA) and thyrotropin-releasing hormone (TRH) coexist in the...intermediolateral cell column IML pars funiculars IML pars principal is immunoreactivity mean arterial pressure neurokinin A neurokinin B nucleus tractus...thyrotropin-releasing hormone (TRH) and neurokinin A (NKA) coexist in these IML-projecting neurons. We propose that each of these colocalized
Llorens-Fons, Marta; Pérez-Trujillo, Míriam; Julián, Esther; Brambilla, Cecilia; Alcaide, Fernando; Byrd, Thomas F.; Luquin, Marina
2017-01-01
Mycobacterium abscessus is a reemerging pathogen that causes pulmonary diseases similar to tuberculosis, which is caused by Mycobacterium tuberculosis. When grown in agar medium, M. abscessus strains generate rough (R) or smooth colonies (S). R morphotypes are more virulent than S morphotypes. In searching for the virulence factors responsible for this difference, R morphotypes have been found to form large aggregates (clumps) that, after being phagocytozed, result in macrophage death. Furthermore, the aggregates released to the extracellular space by damaged macrophages grow, forming unphagocytosable structures that resemble cords. In contrast, bacilli of the S morphotype, which do not form aggregates, do not damage macrophages after phagocytosis and do not form cords. Cording has also been related to the virulence of M. tuberculosis. In this species, the presence of mycolic acids and surface-exposed cell wall lipids has been correlated with the formation of cords. The objective of this work was to study the roles of the surface-exposed cell wall lipids and mycolic acids in the formation of cords in M. abscessus. A comparative study of the pattern and structure of mycolic acids was performed on R (cording) and S (non-cording) morphotypes derived from the same parent strains, and no differences were observed between morphotypes. Furthermore, cords formed by R morphotypes were disrupted with petroleum ether (PE), and the extracted lipids were analyzed by thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry. Substantial amounts of trehalose polyphleates (TPP) were recovered as major lipids from PE extracts, and images obtained by transmission electron microscopy suggested that these lipids are localized to the external surfaces of cords and R bacilli. The structure of M. abscessus TPP was revealed to be similar to those previously described in Mycobacterium smegmatis. Although the exact role of TPP is unknown, our results demonstrated that TPP are not toxic by themselves and have a function in the formation of clumps and cords in M. abscessus, thus playing an important role in the pathogenesis of this species. PMID:28790995
[Homogeneous spinal-shortening axial decompression procedure for tethered cord syndrome].
Wang, Haibo; Sun, Jingchuan; Wang, Yuan; Wu, Zhao; Xu, Tao; Chen, Kefu; Shi, Guodong; Yuan, Wen; Jia, Lianshun; Shi, Jiangang
2015-06-16
Surgical detethering is a traditional treatment for symptomatic tethered cord syndrome. However, such complications as cerebrospinal fluid leakage and neurologic deterioration are common. Homogeneous spinal-shortening axial decompression (HSAD) is a modified procedure of monosegmental spinal-shortening osteotomy and it is a novel surgical alternative of reducing neural tension indirectly. The objective was to evaluate the surgical outcomes of HSAD for tethered cord syndrome. The surgical outcomes were examined for 15 consecutive patients with tethered cord syndrome undergoing HSAD from April 2010 to July 2014. Improvements of neurological symptoms including urinary dysfunction, lower-extremity motor and sensory disturbances and/or gait abnormalities, low-back and/or lower-extremity pain, bowel incontinence and sexual dysfunction were evaluated. Their average follow-up period was 21.5 months. The length of spinal column shortening was 17.2 ± 2.9 mm. Urinary dysfunction (n = 9) was the most common residual deficit. All 9 patients with urological symptoms reported improvements, although deficits persisted at the last follow-up. All patients with lower-extremity motor dysfunction improved and 4 (50.0%) noted complete resolution of preoperative lower-extremity sensory symptoms. All patients reported immediate low-back or lower-extremity pain relief after HSAD. One patient reported improved sexual functioning and regained complete erectile capabilities. Two patients (11%) experienced less satisfactory symptomatic or functional benefit from HSAD. However, the main objective of surgery was to prevent further worsening of neurological status. Complete bone union at osteotomy site was noted in all cases at the last follow-up. As a novel surgical option for tethered cord syndrome, HSAD may avoid such complications as cerebrospinal fluid leakage or neurologic deterioration commonly encountered during traditional detethering surgery. All patients gain satisfactory functional outcomes without complications compared to their preoperative symptoms.
Patnaik, A K; Greenlee, P G
1987-11-01
In a retrospective study of 71 primary ovarian tumors in the dog, epithelial tumors (46%) were more common than sex cord stromal (34%) and germ cell tumors (20%). There were more adenocarcinomas (64%) than adenomas. Sex cord stromal tumors were equally divided into Sertoli-Leydig (12/24) and granulosa cell tumors (12/24). There were equal numbers (7/14) of dysgerminomas and teratomas among the germ cell tumors. Most teratomas (6/7) were malignant. Most granulosa cell tumors were solid; two were mostly cystic. Patterns included sheets of round and ovoid to spindle-shaped cells separated by thin, fibrovascular stroma; neoplastic cells formed rosettes or Call-Exner bodies. In some areas, neoplastic cells were in cords or columns and formed cyst-like structures. Four granulosa cell tumors were macrofollicular, having cysts lined with granulosa cells. Median ages of dogs with different ovarian neoplasms were similar; all were more than 10 years old, except the dogs with teratoma (mean age, 4 years). Most neoplasms were unilateral (84%), except the Sertoli-Leydig cell tumors, many of which were bilateral (36%). Size of ovarian neoplasms varied (2 cm3 to 15,000 cm3). Twenty-nine percent of neoplasms metastasized; adenocarcinomas (48%) and malignant teratomas (50%) had the highest rates, and distant metastasis was more common in malignant teratoma. Endometrial hyperplasia was in 67% of the dogs; it was most common in dogs with sex cord stromal tumors (95%). Uterine malignancy was not seen in dogs with granulosa cell tumors, although hyperplasia endometrium was in all dogs with this tumor. Cysts in the contralateral ovaries were most common in dogs with sex cord stromal tumors.
Aquaporin-4 in brain and spinal cord oedema.
Saadoun, S; Papadopoulos, M C
2010-07-28
Brain oedema is a major clinical problem produced by CNS diseases (e.g. stroke, brain tumour, brain abscess) and systemic diseases that secondarily affect the CNS (e.g. hyponatraemia, liver failure). The swollen brain is compressed against the surrounding dura and skull, which causes the intracranial pressure to rise, leading to brain ischaemia, herniation, and ultimately death. A water channel protein, aquaporin-4 (AQP4), is found in astrocyte foot processes (blood-brain border), the glia limitans (subarachnoid cerebrospinal fluid-brain border) and ependyma (ventricular cerebrospinal fluid-brain border). Experiments using mice lacking AQP4 or alpha syntrophin (which secondarily downregulate AQP4) showed that AQP4 facilitates oedema formation in diseases causing cytotoxic (cell swelling) oedema such as cerebral ischaemia, hyponatraemia and meningitis. In contrast, AQP4 facilitates oedema elimination in diseases causing vasogenic (vessel leak) oedema and therefore AQP4 deletion aggravates brain oedema produced by brain tumour and brain abscess. AQP4 is also important in spinal cord oedema. AQP4 deletion was associated with less cord oedema and improved outcome after compression spinal cord injury in mice. Here we consider the possible routes of oedema formation and elimination in the injured cord and speculate about the role of AQP4. Finally we discuss the role of AQP4 in neuromyelitis optica (NMO), an inflammatory demyelinating disease that produces oedema in the spinal cord and optic nerves. NMO patients have circulating AQP4 IgG autoantibody, which is now used for diagnosing NMO. We speculate how NMO-IgG might produce CNS inflammation, demyelination and oedema. Since AQP4 plays a key role in the pathogenesis of CNS oedema, we conclude that AQP4 inhibitors and activators may reduce CNS oedema in many diseases. Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Kuo, Chung-Feng Jeffrey; Chu, Yueng-Hsiang; Wang, Po-Chun; Lai, Chun-Yu; Chu, Wen-Lin; Leu, Yi-Shing; Wang, Hsing-Won
2013-12-01
The human larynx is an important organ for voice production and respiratory mechanisms. The vocal cord is approximated for voice production and open for breathing. The videolaryngoscope is widely used for vocal cord examination. At present, physicians usually diagnose vocal cord diseases by manually selecting the image of the vocal cord opening to the largest extent (abduction), thus maximally exposing the vocal cord lesion. On the other hand, the severity of diseases such as vocal palsy, atrophic vocal cord is largely dependent on the vocal cord closing to the smallest extent (adduction). Therefore, diseases can be assessed by the image of the vocal cord opening to the largest extent, and the seriousness of breathy voice is closely correlated to the gap between vocal cords when closing to the smallest extent. The aim of the study was to design an automatic vocal cord image selection system to improve the conventional selection process by physicians and enhance diagnosis efficiency. Also, due to the unwanted fuzzy images resulting from examination process caused by human factors as well as the non-vocal cord images, texture analysis is added in this study to measure image entropy to establish a screening and elimination system to effectively enhance the accuracy of selecting the image of the vocal cord closing to the smallest extent. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Cao, Xia; Fang, Le; Cui, Chuan-yu; Gao, Shi; Wang, Tian-wei
2018-01-01
Excessive radiation exposure may lead to edema of the spinal cord and deterioration of the nervous system. Magnetic resonance imaging can be used to judge and assess the extent of edema and to evaluate pathological changes and thus may be used for the evaluation of spinal cord injuries caused by radiation therapy. Radioactive 125I seeds to irradiate 90% of the spinal cord tissue at doses of 40–100 Gy (D90) were implanted in rabbits at T10 to induce radiation injury, and we evaluated their safety for use in the spinal cord. Diffusion tensor imaging showed that with increased D90, the apparent diffusion coefficient and fractional anisotropy values were increased. Moreover, pathological damage of neurons and microvessels in the gray matter and white matter was aggravated. At 2 months after implantation, obvious pathological injury was visible in the spinal cords of each group. Magnetic resonance diffusion tensor imaging revealed the radiation injury to the spinal cord, and we quantified the degree of spinal cord injury through apparent diffusion coefficient and fractional anisotropy. PMID:29623940
Monitoring somatosensory evoked potentials in spinal cord ischemia-reperfusion injury
Ji, Yiming; Meng, Bin; Yuan, Chenxi; Yang, Huilin; Zou, Jun
2013-01-01
It remains unclear whether spinal cord ischemia-reperfusion injury caused by ischemia and other non-mechanical factors can be monitored by somatosensory evoked potentials. Therefore, we monitored spinal cord ischemia-reperfusion injury in rabbits using somatosensory evoked potential detection technology. The results showed that the somatosensory evoked potential latency was significantly prolonged and the amplitude significantly reduced until it disappeared during the period of spinal cord ischemia. After reperfusion for 30–180 minutes, the amplitude and latency began to gradually recover; at 360 minutes of reperfusion, the latency showed no significant difference compared with the pre-ischemic value, while the somatosensory evoked potential amplitude in-creased, and severe hindlimb motor dysfunctions were detected. Experimental findings suggest that changes in somatosensory evoked potential latency can reflect the degree of spinal cord ischemic injury, while the amplitude variations are indicators of the late spinal cord reperfusion injury, which provide evidence for the assessment of limb motor function and avoid iatrogenic spinal cord injury. PMID:25206629
The change tendency of PI3K/Akt pathway after spinal cord injury
Zhang, Peixun; Zhang, Luping; Zhu, Lei; Chen, Fangmin; Zhou, Shuai; Tian, Ting; Zhang, Yuqiang; Jiang, Xiaorui; Li, Xuekun; Zhang, Chuansen; Xu, Lin; Huang, Fei
2015-01-01
Spinal cord injury (SCI) refers to the damage of spinal cord’s structure and function due to a variety of causes. At present, many scholars have confirmed that apoptosis is the main method of secondary injury in spinal cord injury. In view of understanding the function of PI3K/Akt pathway on spinal cord injury, this study observed the temporal variation of key molecules (PI3K, Akt, p-Akt) in the PI3K/Akt pathway after spinal cord injury by immunohistochemistry and Western-blot. The results showed that the expression of PI3K, Akt and p-Akt display a sharp increase one day after the spinal cord injury, and then it decreased gradually with the time passing by, but the absolute expression was certainly higher than the normal group. These results indicate that the PI3K/Akt signaling pathway is involved in the spinal cord injury and the mechanism may be related to apoptosis. PMID:26807170
[Expression and significance of p75NTR in dorsal root ganglia in different injury models].
Li, Fang; Cai, Yan; Zhang, Jian-Yi
2008-12-01
To determine the expression and significance of p75NTR in the neuron and glia of dorsal root ganglia (DRG) in different injury models. The models of sciatic nerve injury, spinal cord injury, and combined injury (sciatic nerve injury one week prior to spinal cord injury) were established. The rats were randomly divided into a normal group,a sciatic nerve injury group,a spinal cord injury group, and a combined injury group. The sensory neurons in the DRG were labeled by fast blue (FB) injected in the dorsal column of spinal cord 0.5mm rostral to the transection site. The expression of p75NTR in the neurons and glia of the DRG was examined with immunofluorescence histochemistry after different kinds of injury and its expression in the FB positive neurons was further observed with immunofluorescence histochemistry combined with FB retrograde labeling. The expression of p75NTR was increased in the glia, but was downregulated in sensory neurons in the sciatic nerve injury group compared with the normal group. p75NTR immunoreactive products were downregulated in the glia in the spinal cord injury group compared with the sciatic nerve injury group or the combined injury group. In the combined lesion animals, the expression of p75NTR was similar to that of the sciatic nerve injury group. Its expression in the sensory neurons of DRG was downregulated,but was upregulated in the glia. The majority of sensory neurons labeled by FB in the combined injury group were p75NTR-negative, but surrounded by p75NTR-positive glia. p75NTR immunoreactive products in the glia and neurons of DRG have significant discrepancy after injury. The glial p75NTR in the DRG may play a role in the enhanced regeneration of acsending tract in the injured spinal cord after combined injury.
Flegel, Thomas; Böttcher, Peter; Alef, Michaele; Kiefer, Ingmar; Ludewig, Eberhard; Thielebein, Jens; Grevel, Vera
2008-09-01
A 13-yr-old Amur tiger (Panthera tigris altaica) was presented for an acute onset of paraplegia. Spinal imaging that included plain radiographs, myelography, and computed tomography performed under general anesthesia revealed lateralized spinal cord compression at the intervertebral disc space L4-5 caused by intervertebral disc extrusion. This extrusion was accompanied by an extensive epidural hemorrhage from L3 to L6. Therefore, a continuous hemilaminectomy from L3 to L6 was performed, resulting in complete decompression of the spinal cord. The tiger was ambulatory again 10 days after the surgery. This case suggests that the potential benefit of complete spinal cord decompression may outweigh the risk of causing clinically significant spinal instability after extensive decompression.
Ha, Kee-Yong; Kim, Hyun-Woo
2013-01-01
Multiple myeloma, a multicentric hematological malignancy, is the most common primary tumor of the spine. As epidural myeloma causing spinal cord compression is a rare condition, its therapeutic approach and clinical results have been reported to be diverse, and no clear guidelines for therapeutic decision have been established. Three patients presented with progressive paraplegia and sensory disturbance. Image and serological studies revealed multiple myeloma and spinal cord compression caused by epidural myeloma. Emergency radiotherapy and steroid therapy were performed in all three cases. However, their clinical courses and results were distinctly different. Following review of our cases and the related literature, we suggest a systematic therapeutic approach for these patients to achieve better clinical results. PMID:24175035
Spinal cord infarction: Clinical and imaging insights from the periprocedural setting.
Zalewski, Nicholas L; Rabinstein, Alejandro A; Krecke, Karl N; Brown, Robert D; Wijdicks, Eelco F M; Weinshenker, Brian G; Doolittle, Derrick A; Flanagan, Eoin P
2018-05-15
Describe the range of procedures associated with spinal cord infarction (SCI) as a complication of a medical/surgical procedure and define clinical and imaging characteristics that could be applied to help diagnose spontaneous SCI, where the diagnosis is often less secure. We used an institution-based search tool to identify patients evaluated at Mayo Clinic, Rochester, MN from 1997 to 2016 with a periprocedural SCI. We performed a descriptive analysis of clinical features, MRI and other laboratory findings, and outcome. Seventy-five patients were identified with SCI related to an invasive or non-invasive surgery including: aortic aneurysm repair (49%); other aortic surgery (15%); and a variety of other procedures (e.g., cardiac surgery, spinal decompression, epidural injection, angiography, nerve block, embolization, other vascular surgery, thoracic surgery) (36%). Deficits were severe (66% para/quadriplegia) and maximal at first post-procedural evaluation in 61 patients (81%). Impaired dorsal column function was common on initial examination. Imaging features included classic findings of owl eyes or anterior pencil sign on MRI (70%), but several other T2-hyperintensity patterns were also seen. Gadolinium enhancement of the SCI and/or cauda equina was also common when assessed. Six patients (10%) had an initial normal MRI despite a severe deficit. Procedures associated with SCI are many, and this complication does not exclusively occur following aortic surgery. The clinical and radiologic findings that we describe with periprocedural SCI may be used in future studies to help distinguish spontaneous SCI from alternate causes of acute myelopathy. Copyright © 2018 Elsevier B.V. All rights reserved.
Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death
Liu, S; Sarkar, C; Dinizo, M; Faden, A I; Koh, E Y; Lipinski, M M; Wu, J
2015-01-01
Autophagy is a catabolic mechanism facilitating degradation of cytoplasmic proteins and organelles in a lysosome-dependent manner. Autophagy flux is necessary for normal neuronal homeostasis and its dysfunction contributes to neuronal cell death in several neurodegenerative diseases. Elevated autophagy has been reported after spinal cord injury (SCI); however, its mechanism, cell type specificity and relationship to cell death are unknown. Using a rat model of contusive SCI, we observed accumulation of LC3-II-positive autophagosomes starting at posttrauma day 1. This was accompanied by a pronounced accumulation of autophagy substrate protein p62, indicating that early elevation of autophagy markers reflected disrupted autophagosome degradation. Levels of lysosomal protease cathepsin D and numbers of cathepsin-D-positive lysosomes were also decreased at this time, suggesting that lysosomal damage may contribute to the observed defect in autophagy flux. Normalization of p62 levels started by day 7 after SCI, and was associated with increased cathepsin D levels. At day 1 after SCI, accumulation of autophagosomes was pronounced in ventral horn motor neurons and dorsal column oligodendrocytes and microglia. In motor neurons, disruption of autophagy strongly correlated with evidence of endoplasmic reticulum (ER) stress. As autophagy is thought to protect against ER stress, its disruption after SCI could contribute to ER-stress-induced neuronal apoptosis. Consistently, motor neurons showing disrupted autophagy co-expressed ER-stress-associated initiator caspase 12 and cleaved executioner caspase 3. Together, these findings indicate that SCI causes lysosomal dysfunction that contributes to autophagy disruption and associated ER-stress-induced neuronal apoptosis. PMID:25569099
ARTERIAL HYPERTENSION AND IRRADIATION DAMAGE TO THE NERVOUS SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asscher, A.W.; Anson, S.G.
1962-12-29
On the basis of previous studies it appeared that irradiation damage to the nervous system might be more severe and more easily produced in hypertensive than in normotensive subjects. This hypothesis was investigated by studying the frequency of neurological complications and vascular lesions in the spinal cord after x irradiation of the cord in hypertensive and normotensive rats. Two weeks before irradiation of the spinal cord, a clip was applied to the right renal artery of the animals to produce hypertension. Single doses of 1500, 2000, or 3000 r were administered to the spinal cord in the cervical and uppermore » thoracic region of hypertensive rats (systolic blood pressure higher than 145 mm Hg) and normotensive rats. After 1500 r to spinal cord, no abnormalities were noted in the normotensive controls during the period of observation. Some hypertensive animaIs showed transient abnormalities of gait, and during the following week died suddenly. Those remaining died unexpectedly 35-259 days after irradiation without apparent preceding neurological manifestations, although acute vascular lesions were found in the irradiated regions of the spinal cord. The normotensive controls of the 2000-r group showed no abnormalities of gait or of tail sensation, but the hypertensive rats died 67-243 days after irradiation, and ntaxic episodes preceding these unexpected deaths in one animal. Ristologically, the irradiated segments of the cords showed multiple focal acute vascular necrosis. The smaller arteries in irradiated segments of the cords showed hyaline thickening; some of the smaller vessels were widely dilated and filled with blood, and their walls were necrotic. The white matter of the irradiated parts of these cords showed numerous holes (status spongiosus) in the lateral and dorsal columns. The anterior-horn cells in the irradiated zones were swollen, their nuclei pyknotic and cytoplasm devoid of Nissl granules. No abnormalities, besides thickening of the meninges in the irradiated areas, were found in the cords of the normotensive controls. After 3000 r the normotensive animals of this group showed no abnormalities of gait and Survived normally; no vascular lesions were found in their spinal cords. The hypentensive animals died suddenly 43-70 days after irradiation of the cord, and in all, death was preceded by ataxic episodes. Postmortem, numerous foci of acute vascular necrosis were found in the irradiated cord. These experiments suggest that moderate arterial hypertension seriously modifies the effect of x irradiation of the spinal cord. The transience of the ataxia in irradiated hypertensive rats suggests a possible origin in reversible vasoconstriction. When such episodes were followed by sudden death, arterial necrosis was invariably present in the irradiated region of the cord. Moreover, in hypertensive animals in which paraplegia developed, there was widespread necrosis of nerve tissue as well as organized vascular necrosis. A search of hospital records revealed three cases in which high blood pressure was recorded along with necrosis of the brain or spinal cord following therapeutic irradiation. In two of these, large doses of irradiation had been administered, and the necrosis might have been due to irradiation alone. In the third case, however, necrosis of the spinal cord occurred artd one factor which may have determined this individual sensitivity was high blood pressure. (BBB)« less
Jahangiri, Faisal R; Al Eissa, Sami; Sayegh, Samir; Al Helal, Fahad; Al-Sharif, Shomoukh A; Annaim, Monerah M; Muhammad, Sheryar; Aziz, Tanweer
2016-08-31
A 16-year-old male patient with Ehler-Danlos syndrome (EDS) and a back deformity since birth presented with severe kyphoscoliosis. The patient was neurologically intact but had respiratory and cardiac insufficiencies. A two-stage vertebral column resection (VCR) at T9-T10 with multiple level fusion with multimodality intraoperative neurophysiological monitoring (IONM) was planned. During the first stage, pedicle screws were placed at multiple spinal levels above and below the VCR level. Upper and lower somatosensory evoked potentials (SSEP), transcranial electrical motor evoked potentials (TCeMEP), and electromyography were monitored continuously and showed no significant changes. The second stage was performed one week later. Baseline SSEP and TCeMEP responses were present in all extremities. The surgeon was informed of a sudden 70% amplitude drop in TCeMEP in the lower limbs with stable SSEP after ligating one of the left nerves/vessels fully stretching the spinal cord. The surgeon removed the ligation, and an improvement in motor responses followed. Surgery proceeded with the highest levels of caution. Later, there was a sudden loss of TCeMEP and SSEP in the lower limbs bilaterally. The correction was released, mean arterial pressure was increased, and intravenous dexamethasone was administered. The surgical correction was aborted, and the decision was made to close the site. Lower SSEP and TCeMEP responses remained absent until closing, while upper SSEP and TCeMEP responses remained stable. A wake-up test was done after closing. The patient moved his upper limbs but was unable to move his lower limbs bilaterally. The patient was sent for a magnetic resonance imaging scan while intubated and then sent to the intensive care unit. At 24 hours and 36 hours post-operation, the patient had no sensory and motor function below the T8 level. Forty-eight hours post-operation, the patient started to feel sensory stimuli at the T10 level. At one week post-operation, the patient regained sphincter functions, and at four weeks postoperatively, the patient's hip flexors started to recover. VCR in patients with EDS has a very high risk of damaging the spinal cord due to the fragile vasculature of the spinal cord. Real-time IONM is useful in the early identification of spinal cord injury in cases of this nature.
Al Eissa, Sami; Sayegh, Samir; Al Helal, Fahad; Al-Sharif, Shomoukh A; Annaim, Monerah M; Muhammad, Sheryar; Aziz, Tanweer
2016-01-01
A 16-year-old male patient with Ehler-Danlos syndrome (EDS) and a back deformity since birth presented with severe kyphoscoliosis. The patient was neurologically intact but had respiratory and cardiac insufficiencies. A two-stage vertebral column resection (VCR) at T9-T10 with multiple level fusion with multimodality intraoperative neurophysiological monitoring (IONM) was planned. During the first stage, pedicle screws were placed at multiple spinal levels above and below the VCR level. Upper and lower somatosensory evoked potentials (SSEP), transcranial electrical motor evoked potentials (TCeMEP), and electromyography were monitored continuously and showed no significant changes. The second stage was performed one week later. Baseline SSEP and TCeMEP responses were present in all extremities. The surgeon was informed of a sudden 70% amplitude drop in TCeMEP in the lower limbs with stable SSEP after ligating one of the left nerves/vessels fully stretching the spinal cord. The surgeon removed the ligation, and an improvement in motor responses followed. Surgery proceeded with the highest levels of caution. Later, there was a sudden loss of TCeMEP and SSEP in the lower limbs bilaterally. The correction was released, mean arterial pressure was increased, and intravenous dexamethasone was administered. The surgical correction was aborted, and the decision was made to close the site. Lower SSEP and TCeMEP responses remained absent until closing, while upper SSEP and TCeMEP responses remained stable. A wake-up test was done after closing. The patient moved his upper limbs but was unable to move his lower limbs bilaterally. The patient was sent for a magnetic resonance imaging scan while intubated and then sent to the intensive care unit. At 24 hours and 36 hours post-operation, the patient had no sensory and motor function below the T8 level. Forty-eight hours post-operation, the patient started to feel sensory stimuli at the T10 level. At one week post-operation, the patient regained sphincter functions, and at four weeks postoperatively, the patient’s hip flexors started to recover. VCR in patients with EDS has a very high risk of damaging the spinal cord due to the fragile vasculature of the spinal cord. Real-time IONM is useful in the early identification of spinal cord injury in cases of this nature. PMID:27766191
Recurrent ‘universal tumour’ of the spinal cord
O'Grady, John; Kaliaperumal, Chandrasekaran; O'Sullivan, Michael
2012-01-01
Lipoma is popularly known as the ‘universal tumour’ because of its ubiquitous presence anywhere in the body. This is the first documented case of recurrent thoracic spinal cord intramedullary lipoma in a 44-year-old man, with a background of spinal dysraphism, which recurred 15 years after initial surgery. He was followed up every 2 years and currently presented with an 8-month history of progressive weakness in his lower limbs. An MRI of the spine confirmed recurrence of lipoma. He underwent redo laminectomy and partial resection and spinal cord decompression with duroplasty. Lipoma, although a low-grade tumour, can cause significant neurological deficits because of its location. Surgical exploration and removal of lipoma is recommended. However, to preserve the functionality of the spinal cord, one may resort to partial resection and aim for spinal cord decompression. The literature on spinal cord lipoma is reviewed and the aetiopathogenesis of this rare occurrence is described. PMID:22675149
Systemic hypothermia for the treatment of acute cervical spinal cord injury in sports.
Dietrich, William Dalton; Cappuccino, Andrew; Cappuccino, Helen
2011-01-01
Spinal cord injury is a devastating condition that affects approximately 12,000 patients each year in the United States. Major causes for spinal cord injury include motor vehicle accidents, sports-related injuries, and direct trauma. Moderate hypothermia has gained attention as a potential therapy due to recent experimental and clinical studies and the use of modest systemic hypothermia (MSH) in high profile case of spinal cord injury in a National Football League (NFL) player. In experimental models of spinal cord injury, moderate hypothermia has been shown to improve functional recovery and reduce overall structural damage. In a recent Phase I clinical trial, systemic hypothermia has been shown to be safe and provide some encouraging results in terms of functional recovery. This review will summarize recent preclinical data, as well as clinical findings that support the continued investigations for the use of hypothermia in severe cervical spinal cord injury.
Spinal Cord Ischemia Secondary to Hypovolemic Shock
Kapoor, Siddhant; Koh, Roy KM; Yang, Eugene WR; Hee, Hwan-Tak
2014-01-01
A 44-year-old male presented with symptoms of spinal cord compression secondary to metastatic prostate cancer. An urgent decompression at the cervical-thoracic region was performed, and there were no complications intraoperatively. Three hours postoperatively, the patient developed acute bilateral lower-limb paralysis (motor grade 0). Clinically, he was in class 3 hypovolemic shock. An urgent magnetic resonance imaging (MRI) was performed, showing no epidural hematoma. He was managed aggressively with medical therapy to improve his spinal cord perfusion. The patient improved significantly, and after one week, he was able to regain most of his motor functions. Although not commonly reported, spinal cord ischemia post-surgery should be recognized early, especially in the presence of hypovolemic shock. MRI should be performed to exclude other potential causes of compression. Spinal cord ischemia needs to be managed aggressively with medical treatment to improve spinal cord perfusion. The prognosis depends on the severity of deficits, and is usually favorable. PMID:25558328
What are the Causes of Spinal Cord Injury?
... in a New Light An Honest Wheelchair Love Story Seven Helpful Smart Home Devices for People With Disabilities Can’t Work Because of a Spinal Cord Injury? Tags accessibility accident ADA adaptive adaptive equipment Adaptive technology Americans with Disabilities Act Ben Mattlin caregiver Cerebral ...
Pappou, Ioannis P; Papadopoulos, Elias C; Swanson, Andrew N; Mermer, Matthew J; Fantini, Gary A; Urban, Michael K; Russell, Linda; Cammisa, Frank P; Girardi, Federico P
2006-02-15
Case report. To report on a patient with Pott disease, progressive neurologic deficit, and severe kyphotic deformity, who had medical treatment fail and required posterior/anterior decompression with instrumented fusion. Treatment options will be discussed. Tuberculous spondylitis is an increasingly common disease worldwide, with an estimated prevalence of 800,000 cases. Surgical treatment consisting of extensive posterior decompression/instrumented fusion and 3-level posterior vertebral column resection, followed by anterior debridement/fusion with cage reconstruction. Neurologic improvement at 6-month follow-up (Frankel B to Frankel D), with evidence of radiographic fusion. A 70-year-old patient with progressive Pott paraplegia and severe kyphotic deformity, for whom medical treatment failed is presented. A posterior vertebral column resection, multiple level posterior decompression, and instrumented fusion, followed by an anterior interbody fusion with cage was used to decompress the spinal cord, restore sagittal alignment, and debride the infection. At 6-month follow-up, the patient obtained excellent pain relief, correction of deformity, elimination of the tuberculous foci, and significant recovery of neurologic function.
Progressive Paraplegia from Spinal Cord Stimulator Lead Fibrotic Encapsulation: A Case Report.
Benfield, Jon; Maknojia, Asif; Epstein, Franklin
2016-03-01
Ten years after placement of a spinal cord stimulator (SCS) and resolution of pain, this patient presented with progressive paraplegia, worsening thoracic radicular pain at the same dermatome level of the electrodes, and bowel and bladder incontinence. Computed tomographic myelogram confirmed thoracic spinal cord central canal stenosis at the level of electrodes. After removal of the fibrotic tissue and electrodes, the patient had resolution of his thoracic radicular pain and a return of his pre-SCS pain and minimal neurologic and functional return. To the authors' knowledge, no studies have been identified with thoracic SCS lead fibrosis in the United States causing permanent paraplegia. Only one other case has been reported in Madrid, Spain. Patients with SCS presenting with loss of pain relief, new-onset radicular or neuropathic pain in same dermatome(s) as SCS electrodes, worsening neuromuscular examination, or new bladder or bowel incontinence need to be evaluated for complications regarding SCS implantation causing spinal stenosis and subsequent cord compression to avoid permanent neurologic deficits.
A rare case of non-surgical vocal cord paralysis: Vocal cord hematoma.
Arıkan, Akif Enes; Teksöz, Serkan; Bilgin, İsmail Ahmet; Tarhan, Özge; Özyeğin, Ateş
2017-01-01
Although vocal cord paralysis (VCP) following thyroidectomy is primarily associated with surgical trauma, it is not the sole etiology. Vocal cord paralysis following thyroidectomy can be caused by a vocal cord hematoma with an incidence of 1.4% due to direct injury during orotracheal intubation. In this article, we present a case of VCP caused by vocal cord hematoma. A 32-year-old male patient who has been receiving propylthiouracil treatment for toxic multinodular goiter since 10 years was admitted to our hospital to be operated because of persisting complaints. The patient was hospitalized for sutureless thyroidectomy after he became euthyroid. Preoperative fiberoptic laryngoscopy performed by the ear, nose, and throat department revealed bilaterally motile vocal folds and a completely open airway. Patient underwent sutureless total thyroidectomy with a vessel sealing device (Ligasure TM LF1212, Covidien, CO), and a minivac drainage system was placed in the thyroid lodge. On the morning of the first postoperative day, 50 mL of serosanguinous fluid was drained. The patient's voice was normal, and there was no ecchymosis. Postoperative fiberoptic laryngoscopy revealed a hematoma near the right vocal fold and paralysis of the right vocal fold; however, the airway was open. It should be kept in mind that VCP is not solely due to surgery but can also result from intubation, as observed in this case.
A rare case of non-surgical vocal cord paralysis: Vocal cord hematoma
Arıkan, Akif Enes; Teksöz, Serkan; Bilgin, İsmail Ahmet; Tarhan, Özge; Özyeğin, Ateş
2017-01-01
Although vocal cord paralysis (VCP) following thyroidectomy is primarily associated with surgical trauma, it is not the sole etiology. Vocal cord paralysis following thyroidectomy can be caused by a vocal cord hematoma with an incidence of 1.4% due to direct injury during orotracheal intubation. In this article, we present a case of VCP caused by vocal cord hematoma. A 32-year-old male patient who has been receiving propylthiouracil treatment for toxic multinodular goiter since 10 years was admitted to our hospital to be operated because of persisting complaints. The patient was hospitalized for sutureless thyroidectomy after he became euthyroid. Preoperative fiberoptic laryngoscopy performed by the ear, nose, and throat department revealed bilaterally motile vocal folds and a completely open airway. Patient underwent sutureless total thyroidectomy with a vessel sealing device (LigasureTM LF1212, Covidien, CO), and a minivac drainage system was placed in the thyroid lodge. On the morning of the first postoperative day, 50 mL of serosanguinous fluid was drained. The patient’s voice was normal, and there was no ecchymosis. Postoperative fiberoptic laryngoscopy revealed a hematoma near the right vocal fold and paralysis of the right vocal fold; however, the airway was open. It should be kept in mind that VCP is not solely due to surgery but can also result from intubation, as observed in this case. PMID:29260141
Lau, Ernest W
2013-01-01
The mathematical modelling of column buckling or beam bending under an axial or transverse load is well established. However, the existent models generally assume a high degree of symmetry in the structure of the column and minor longitudinal and transverse displacements. The situation when the column is made of several components with different mechanical properties asymmetrically distributed in the transverse section, semi-rigid, and subjected to multiple axial loads with significant longitudinal and transverse displacements through compression and bending has not been well characterised. A more comprehensive theoretical model allowing for these possibilities and assuming a circular arc contour for the bend is developed, and used to establish the bending axes, balance between compression and bending, and equivalent stiffness of the column. In certain situations, such as with pull cable catheters commonly used for minimally invasive surgical procedures, the compression loads are applied via cables running through channels inside a semi-rigid column. The model predicts the mathematical relationships between the radius of curvature of the bend and the tension in and normal force exerted by such cables. Conjugate extension with reciprocal compression-bending is a special structural arrangement for a semi-rigid column such that extension of one segment is linked to compression-bending of another by inextensible cables running between them. Leads are cords containing insulated electrical conductor coil and cables between the heart muscle and cardiac implantable electronic devices. Leads can behave like pull cable catheters through differential component pulling, providing a possible mechanism for inside-out abrasion and conductor cable externalisation. Certain design features may predispose to this mode of structural failure. Copyright © 2012 Elsevier Ltd. All rights reserved.
Paralysis from sport and diving accidents.
Schmitt, H; Gerner, H J
2001-01-01
To examine the causes of sport-related spinal cord injuries that developed into paraplegia or tetraplegia, and to compare data from different sports with previous studies in the same geographical region. A retrospective epidemiological study and comparison with previous studies. The Orthopedic Department, specializing in the treatment and rehabilitation of paralyzed patients, at the University of Heidelberg, Germany. Between 1985 and 1997, 1,016 cases of traumatic spinal cord injury presented at the Orthopedic Department at the University of Heidelberg: 6.8% were caused by sport and 7.7% by diving accidents. Sport-related spinal cord injuries with paralysis. A total of 1.016 cases of traumatic spinal cord injury were reviewed. Of these, 14.5% were caused by sport accidents (n = 69) or diving accidents (n = 78). Age of patients ranged from 9 to 52 years. 83% were male. 77% of the patients developed tetraplegia, and 23%, paraplegia. 16 of the sport accidents resulted from downhill skiing, 9 resulted from horseback riding, 7 from modern air sports, 6 from gymnastics, 5 from trampolining, and 26 from other sports. Previous analyses had revealed that paraplegia had mainly occurred from gymnastics, trampolining, or high diving accidents. More recently, however, the number of serious spinal injuries caused by risk-filled sports such as hang gliding and paragliding has significantly increased (p = 0.095), as it has for horseback riding and skiing. Examinations have shown that all patients who were involved in diving accidents developed tetraplegia. An analysis of injury from specific sports is still under way. Analysis of accidents resulting in damage to the spinal cord in respect to different sports shows that sports that have become popular during the last 10 years show an increasing risk of injury. Modern air sports hold the most injuries. Injury-preventing strategies also are presented.
Keirstead, H S; Levine, J M; Blakemore, W F
1998-02-01
Elucidation of the response of oligodendrocyte progenitor cell populations to demyelination in the adult central nervous system (CNS) is critical to understanding why remyelination fails in multiple sclerosis. Using the anti-NG2 monoclonal antibody to identify oligodendrocyte progenitor cells, we have documented their response to antibody-induced demyelination in the dorsal column of the adult rat spinal cord. The number of NG2+ cells in the vicinity of demyelinated lesions increased by 72% over the course of 3 days following the onset of demyelination. This increase in NG2+ cell numbers did not reflect a nonspecific staining of reactive cells, as GFAP, OX-42, and Rip antibodies did not co-localise with NG2 + cells in double immunostained tissue sections. NG2 + cells incorporated BrdU 48-72 h following the onset of demyelination. After the onset of remyelination (10-14 days), the number of NG2+ cells decreased to 46% of control levels and remained consistently low for 2 months. When spinal cords were exposed to 40 Grays of x-irradiation prior to demyelination, the number of NG2+ cells decreased to 48% of control levels by 3 days following the onset of demyelination and remained unchanged at 3 weeks. Since 40 Grays of x-irradiation kills dividing cells, these studies illustrate a responsive and nonresponsive NG2+ cell population following demyelination in the adult spinal cord and suggest that the responsive NG2+ cell population does not renew itself.
Patil, Rahul; Jaiswal, Gaurav; Gupta, Tarun Kumar
2015-01-01
Penetrating spine injury (PSI) forms the third most common cause of spine injury, only next to road traffic accidents and fall. Gunshot wound (GSW) forms the major bulk of PSI. Due to easy availability of firearms and antisocial behavior, GSW which were predominant in military population is now increasingly seen in civilized society. Here, we present a detail case review of unique case of civilian GSW indirectly causing complete spinal cord injury due to shock wave generated by the bullet, along with its systematic management. PMID:26692690
Dorsal column stimulator applications
Yampolsky, Claudio; Hem, Santiago; Bendersky, Damián
2012-01-01
Background: Spinal cord stimulation (SCS) has been used to treat neuropathic pain since 1967. Following that, technological progress, among other advances, helped SCS become an effective tool to reduce pain. Methods: This article is a non-systematic review of the mechanism of action, indications, results, programming parameters, complications, and cost-effectiveness of SCS. Results: In spite of the existence of several studies that try to prove the mechanism of action of SCS, it still remains unknown. The mechanism of action of SCS would be based on the antidromic activation of the dorsal column fibers, which activate the inhibitory interneurons within the dorsal horn. At present, the indications of SCS are being revised constantly, while new applications are being proposed and researched worldwide. Failed back surgery syndrome (FBSS) is the most common indication for SCS, whereas, the complex regional pain syndrome (CRPS) is the second one. Also, this technique is useful in patients with refractory angina and critical limb ischemia, in whom surgical or endovascular treatment cannot be performed. Further indications may be phantom limb pain, chronic intractable pain located in the head, face, neck, or upper extremities, spinal lumbar stenosis in patients who are not surgical candidates, and others. Conclusion: Spinal cord stimulation is a useful tool for neuromodulation, if an accurate patient selection is carried out prior, which should include a trial period. Undoubtedly, this proper selection and a better knowledge of its underlying mechanisms of action, will allow this cutting edge technique to be more acceptable among pain physicians. PMID:23230533
Wang, Shengru; Aikenmu, Kahaer; Zhang, Jianguo; Qiu, Guixing; Guo, Jianwei; Zhang, Yanbin; Weng, Xisheng
2017-07-01
The aim of this retrospective study is to evaluate the efficacy and safety of posterior-only vertebral column resection (PVCR) for the treatment of angular and isolated congenital kyphosis. 24 patients with isolated angular congenital kyphosis treated by PVCR in our hospital were retrospectively studied. The patients' radiographs and hospital records were reviewed. Deformity in sagittal planes and global sagittal alignment were analyzed for correction and maintenance of the correction in preoperative, postoperative, and follow-up radiographs. The complications and related risk factors were analyzed. The average age was 13.9 (4-40) years. Three of them were revision surgeries. Two patients have intraspinal anomalies. The mean follow-up is 56.9 (26-129) months. The mean operation time was 293.1 (170-480) min. The averaged blood loss was 993.8 (250-3000) ml. The segmental kyphosis was 87.3° before surgery, 17.6° post surgery and 20.4° at the latest the follow-up. And the sagittal vertical axis was improved from 43.1 mm to 9.2 mm. Mean total score of SRS-22 was 89.3. Complications occurred in 4 patients, including 1 screw pullout due to pseudarthrosis, 1 proximal junctional kyphosis, 1 incomplete spinal cord injury and 1 root injuries. Posterior-only vertebral column resection is an ideal procedure for severe rigid congenital kyphosis. However, it is still a highly technical demanding procedure. Neurological compromises still remain the biggest challenges. Sufficient height of anterior reconstruction, avoidance sacrifice of bilateral roots in the same level in the thoracic spine, avoidance of the sagittal translation of the upper and lower vertebras, intra-operative neuromonitoring, and preoperative surgical release of diastematomyelia and tethered cord may help to improve the safety.
Tang, Ming-xing; Zhang, Hong-qi; Wang, Yu-xiang; Guo, Chao-feng; Liu, Jin-yang
2016-02-01
Surgical treatment for spinal tuberculosis includes focal tuberculosis debridement, segmental stability reconstruction, neural decompression and kyphotic deformity correction. For the lesions mainly involved anterior and middle column of the spine, anterior operation of debridement and fusion with internal fixation has been becoming the most frequently used surgical technique for the spinal tuberculosis. However, high risk of structural damage might relate with anterior surgery, such as damage in lungs, heart, kidney, ureter and bowel, and the deformity correction is also limited. Due to the organs are in the front of spine, there are less complications in posterior approach. Spinal pedicle screw passes through the spinal three-column structure, which provides more powerful orthopedic forces compared with the vertebral body screw, and the kyphotic deformity correction effect is better in posterior approach. In this paper, we report a 68-year-old male patient with thoracic tuberculosis who underwent surgical treatment by debridement, interbody fusion and internal fixation via posterior approach only. The patient was placed in prone position under general anesthesia. Posterior midline incision was performed, and the posterior spinal construction was exposed. Then place pedicle screw, and fix one side rod temporarily. Make the side of more bone destruction and larger abscess as lesion debridement side. Resect the unilateral facet joint, and retain contralateral structure integrity. Protect the spinal cord, nerve root. Clear sequestrum, necrotic tissue, abscess of paravertebral and intervertebral space. Specially designed titanium mesh cages or bone blocks were implanted into interbody. Fix both side rods and compress both sides to make the mesh cages and bone blocks tight. Reconstruct posterior column structure with allogeneic bone and autologous bone. Using this technique, the procedures of debridement, spinal cord decompression, deformity correction, bone grafting, and internal fixation can be completed with only one incision and surgical position, and the deformity correction efficiency is higher than anterior surgery. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
Low back pain, radiculopathy, and bilateral proximal hamstring ruptures: a case report.
Deren, Matthew E; DeFroda, Steven F; Mukand, Nita H; Mukand, Jon A
2015-12-01
Low back pain (LBP) is a common complaint in the United States, with an incidence of 6.3%-15.4% and yearly recurrence in 54%-90% of patients.1 Trends show more frequent diagnostic testing, opioid use, and surgical intervention as the incidence of LBP increases.2 LBP is defined as pain at and near the lumbosacral region that can vary with physical activity and time. LBP is usually related to pathology of muscles, ligaments, spinal column joints, nerve roots, and the spinal cord. During the assessment of LBP, practitioners must also consider less common causes of pain in that region. For instance, patients with indolent or nighttime pain may have infectious or malignant processes. Referred pain from injuries to pelvic musculature or abdominal contents should be considered, especially following a traumatic event. One of these injuries, which can present as acute low back pain, is rupture of the proximal hamstring tendon. On rare occasion, concomitant LBP, radiculopathy, and hamstring injuries can occur;. This diagnostic challenge is described in the following case.
[Etiology and diagnostic methods in vocal cord paralysis].
Jørgensen, Gita; Clausen, Eva Wiinstedt; Mantoni, Margit Y; Misciattelli, Lorenzo; Balle, Viggo
2003-02-10
The etiology of vocal cord paralysis (VCP) is varied. There is lack of consensus regarding the choice of investigations to be used in the evaluation of VCP. The aim of this study was to establish the etiology, assess the diagnostic methods used in the evaluation, and outline an algorithm for future evaluation of unilateral vocal cord paralysis (UVCP). Charts of all patients (n = 94) with the diagnostic code of VCP were reviewed, and reexaminations were performed of patients in whom no etiology was found after the initial symptoms. The etiology of UVCP was neoplasm in 34%, surgical trauma in 12%, and miscellaneous causes in 54%. The etiology of bilateral vocal cord paralysis (BVCP) was neoplasm in 24%, surgical trauma in 24%, and miscellaneous causes in 52%. The reexaminations did not reveal any cancer diseases in the patients concerned. The most effective diagnostic method was CT-scanning while the least effective was thyroid scanning. Because cancer is a common cause of VCP a thorough evaluation is necessary. For UVCP we recommend history and physical examination, X-ray of the chest, ultrasonography of the neck, and CT-scanning of the superior mediastinum. If these prove negative, panendoscopy should be performed. Workup of patients with idiopathic VCP should include examination, X-ray of the chest at 6-month intervals, and annual CT-scanning for two years.
Cardiovascular transition at birth: a physiological sequence.
Hooper, Stuart B; Te Pas, Arjan B; Lang, Justin; van Vonderen, Jeroen J; Roehr, Charles Christoph; Kluckow, Martin; Gill, Andrew W; Wallace, Euan M; Polglase, Graeme R
2015-05-01
The transition to newborn life at birth involves major cardiovascular changes that are triggered by lung aeration. These include a large increase in pulmonary blood flow (PBF), which is required for pulmonary gas exchange and to replace umbilical venous return as the source of preload for the left heart. Clamping the umbilical cord before PBF increases reduces venous return and preload for the left heart and thereby reduces cardiac output. Thus, if ventilation onset is delayed following cord clamping, the infant is at risk of superimposing an ischemic insult, due to low cardiac output, on top of an asphyxic insult. Much debate has centered on the timing of cord clamping at birth, focusing mainly on the potential for a time-dependent placental to infant blood transfusion. This has prompted recommendations for delayed cord clamping for a set time after birth in infants not requiring resuscitation. However, recent evidence indicates that ventilation onset before cord clamping mitigates the adverse cardiovascular consequences caused by immediate cord clamping. This indicates that the timing of cord clamping should be based on the infant's physiology rather than an arbitrary period of time and that delayed cord clamping may be of greatest benefit to apneic infants.
Spinal cord injury: overview of experimental approaches used to restore locomotor activity.
Fakhoury, Marc
2015-01-01
Spinal cord injury affects more than 2.5 million people worldwide and can lead to paraplegia and quadriplegia. Anatomical discontinuity in the spinal cord results in disruption of the impulse conduction that causes temporary or permanent changes in the cord's normal functions. Although axonal regeneration is limited, damage to the spinal cord is often accompanied by spontaneous plasticity and axon regeneration that help improve sensory and motor skills. The recovery process depends mainly on synaptic plasticity in the preexisting circuits and on the formation of new pathways through collateral sprouting into neighboring denervated territories. However, spontaneous recovery after spinal cord injury can go on for several years, and the degree of recovery is very limited. Therefore, the development of new approaches that could accelerate the gain of motor function is of high priority to patients with damaged spinal cord. Although there are no fully restorative treatments for spinal injury, various rehabilitative approaches have been tested in animal models and have reached clinical trials. In this paper, a closer look will be given at the potential therapies that could facilitate axonal regeneration and improve locomotor recovery after injury to the spinal cord. This article highlights the application of several interventions including locomotor training, molecular and cellular treatments, and spinal cord stimulation in the field of rehabilitation research. Studies investigating therapeutic approaches in both animal models and individuals with injured spinal cords will be presented.
Is repair of the protruded meninges sufficient for treatment of meningocele?
Yun-Hai, Song; Nan, Bao; Ping-Ping, Gao; Bo, Yang; Cheng, Chen
2015-11-01
The present study aimed to investigate the relationship between meningocele and tethered cord syndrome, diagnosis of meningocele associated with tethered cord syndrome, and when to perform surgery and the best surgical procedure. Sixty-nine children with meningocele who were admitted to Shanghai Children's Medical Center were analyzed. The relationship between meningocele and other lesions causing tethered cord syndrome was studied by combining magnetic resonance imaging (MRI) and intraoperative findings. The MRI results and intraoperative findings showed that 67 children (97%) had associated lesions such as tight filum terminale, fibrous band tethering, spinal cord or cauda equina adhesion, diastematomyelia, arachnoid cyst, and epidermoid cyst. The protruded meninges were repaired, and the intraspinal lesions were treated at the same time. Also, the tethered spinal cord was released. No neurological injuries were observed after surgery. The rate of meningocele associated with tethered cord syndrome is very high. MRI is necessary for the diagnosis of meningocele. Active surgical treatment is recommended immediately after definite diagnosis. During surgery, the surgeon should not only repair the protruded meninges but also explore the spinal canal and release the tethered cord.
Mukaigasa, Katsuki; Sakuma, Chie; Okada, Tomoaki; Homma, Shunsaku; Shimada, Takako; Nishiyama, Keiji; Sato, Noboru; Yaginuma, Hiroyuki
2017-12-15
In the developing chick embryo, a certain population of motor neurons (MNs) in the non-limb-innervating cervical spinal cord undergoes apoptosis between embryonic days 4 and 5. However, the characteristics of these apoptotic MNs remain undefined. Here, by examining the spatiotemporal profiles of apoptosis and MN subtype marker expression in normal or apoptosis-inhibited chick embryos, we found that this apoptotic population is distinguishable by Foxp1 expression. When apoptosis was inhibited, the Foxp1 + MNs survived and showed characteristics of lateral motor column (LMC) neurons, which are of a limb-innervating subtype, suggesting that cervical Foxp1 + MNs are the rostral continuation of the LMC. Knockdown and misexpression of Foxp1 did not affect apoptosis progression, but revealed the role of Foxp1 in conferring LMC identity on the cervical MNs. Furthermore, ectopic expression of Hox genes that are normally expressed in the brachial region prevented apoptosis, and directed Foxp1 + MNs to LMC neurons at the cervical level. These results indicate that apoptosis in the cervical spinal cord plays a role in sculpting Foxp1 + MNs committed to LMC neurons, depending on the Hox expression pattern. © 2017. Published by The Company of Biologists Ltd.
Cloutier, Frank; Siegenthaler, Monica M; Nistor, Gabriel; Keirstead, Hans S
2006-07-01
Demyelination contributes to loss of function following spinal cord injury. We have shown previously that transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into adult rat 200 kD contusive spinal cord injury sites enhances remyelination and promotes recovery of motor function. Previous studies using oligodendrocyte lineage cells have noted a correlation between the presence of demyelinating pathology and the survival and migration rate of the transplanted cells. The present study compared the survival and migration of human embryonic stem cell-derived oligodendrocyte progenitors injected 7 days after a 200 or 50 kD contusive spinal cord injury, as well as the locomotor outcome of transplantation. Our findings indicate that a 200 kD spinal cord injury induces extensive demyelination, whereas a 50 kD spinal cord injury induces no detectable demyelination. Cells transplanted into the 200 kD injury group survived, migrated, and resulted in robust remyelination, replicating our previous studies. In contrast, cells transplanted into the 50 kD injury group survived, exhibited limited migration, and failed to induce remyelination as demyelination in this injury group was absent. Animals that received a 50 kD injury displayed only a transient decline in locomotor function as a result of the injury. Importantly, human embryonic stem cell-derived oligodendrocyte progenitor transplants into the 50 kD injury group did not cause a further decline in locomotion. Our studies highlight the importance of a demyelinating pathology as a prerequisite for the function of transplanted myelinogenic cells. In addition, our results indicate that transplantation of human embryonic stem cell-derived oligodendrocyte progenitor cells into the injured spinal cord is not associated with a decline in locomotor function.
Zhang, Qiang; Shao, Yang; Zhao, Changsong; Cai, Juan; Sun, Sheng
2014-12-01
Spinal cord injury is the main cause of paraplegia, but effective therapies for it are lacking. Embryonic spinal cord transplantation is able to repair spinal cord injury, albeit with a large amount of neuronal apoptosis remaining in the spinal cord. MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, is able to reduce cell death by decreasing the concentration of excitatory amino acids and preventing extracellular calcium ion influx. In this study, the effect of MK-801 on the apoptosis of spinal cord neurons in rats that have received a fetal spinal cord (FSC) transplant following spinal hemisection was investigated. Wistar rats were divided into three groups: Spinal cord hemisection injury with a combination of FSC transplantation and MK-801 treatment (group A); spinal cord hemisection injury with FSC transplantation (group B); and spinal cord injury with insertion of a Gelfoam pledget (group C). The rats were sacrificed 1, 3, 7 and 14 days after the surgery. Apoptosis in spinal slices from the injured spinal cord was examined by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling reaction, and the expression of B-cell lymphoma-2 (Bcl-2) was measured by immunohistochemistry. The positive cells were quantitatively analyzed using a computer image analysis system. The rate of apoptosis and the positive expression of Bcl-2 protein in the spinal cord neurons in the three groups decreased in the following order: C>B>A (P<0.05) and A>B>C (P<0.05), respectively. This indicates that treatment with the NMDA receptor antagonist MK-801 prevents apoptosis in the spinal cord neurons of rats that have undergone FSC transplantation following spinal hemisection.
ZHANG, QIANG; SHAO, YANG; ZHAO, CHANGSONG; CAI, JUAN; SUN, SHENG
2014-01-01
Spinal cord injury is the main cause of paraplegia, but effective therapies for it are lacking. Embryonic spinal cord transplantation is able to repair spinal cord injury, albeit with a large amount of neuronal apoptosis remaining in the spinal cord. MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, is able to reduce cell death by decreasing the concentration of excitatory amino acids and preventing extracellular calcium ion influx. In this study, the effect of MK-801 on the apoptosis of spinal cord neurons in rats that have received a fetal spinal cord (FSC) transplant following spinal hemisection was investigated. Wistar rats were divided into three groups: Spinal cord hemisection injury with a combination of FSC transplantation and MK-801 treatment (group A); spinal cord hemisection injury with FSC transplantation (group B); and spinal cord injury with insertion of a Gelfoam pledget (group C). The rats were sacrificed 1, 3, 7 and 14 days after the surgery. Apoptosis in spinal slices from the injured spinal cord was examined by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling reaction, and the expression of B-cell lymphoma-2 (Bcl-2) was measured by immunohistochemistry. The positive cells were quantitatively analyzed using a computer image analysis system. The rate of apoptosis and the positive expression of Bcl-2 protein in the spinal cord neurons in the three groups decreased in the following order: C>B>A (P<0.05) and A>B>C (P<0.05), respectively. This indicates that treatment with the NMDA receptor antagonist MK-801 prevents apoptosis in the spinal cord neurons of rats that have undergone FSC transplantation following spinal hemisection. PMID:25371724
Enokizono, Mikako; Sato, Noriko; Morikawa, Minoru; Kimura, Yukio; Sugiyama, Atsuhiko; Maekawa, Tomoko; Sone, Daichi; Takewaki, Daiki; Okamoto, Tomoko; Takahashi, Yuji; Horie, Nobutaka; Matsuo, Takayuki
2017-08-15
A dural arteriovenous fistula (DAVF) with spinal perimedullary venous drainage can cause progressive myelopathy, and it is sometimes incorrectly diagnosed as another spinal cord disease. Here we report the cases of three individuals with a DAVF (one craniocervical junction DAVF and two tentorial DAVFs) with progressive myelopathy showing unique magnetic resonance (MR) imaging findings. MR T2*WI or susceptibility-weighted imaging (SWI) demonstrated symmetrical dark signal intensity lesions predominantly in the dorsal aspect of medulla and the central gray matter of cervical spinal cord that showed the "black butterfly" silhouette. Cerebral angiography revealed DAVFs draining into anterior and posterior spinal veins. Dark signals on T2*WI and SWI were presumed to be hemorrhages, which were probably caused by prolonged venous congestion. Identifying this "black butterfly" sign can facilitate the diagnosis of DAVF, differentiating DAVF from other spinal cord diseases such as demyelinating lesions and neoplasms. Copyright © 2017 Elsevier B.V. All rights reserved.
The Ongoing 2011 Eruption of Cordón Caulle (Southern Andes) and its Related Hazards
NASA Astrophysics Data System (ADS)
Amigo, A.; Lara, L. E.; Silva, C.; Orozco, G.; Bertin, D.
2011-12-01
On June 4, 2011, at 18:45 UTC, Cordón Caulle volcano (Southern Andes, 40.52S, 72.14W) erupted explosively after 51 years of quiescence. The last eruption occurred in 1960 and was triggered by the great Mw 9.5 Chile earthquake. The ongoing eruption started after 2 months of increased shallow seismicity as recorded by OVDAS (the volcano observatory at Sernageomin). This close monitoring effort allowed a timely eruption forecast with at least 3 hours of warning, which facilitated the crisis response. In addition to this successful performance, for the first time in Chile volcanic hazards were assessed in advance supporting the emergency management. In particular, tephra dispersal was daily forecasted using the ASHFALL advection-diffusion model and potential lahars and PDC impact zones were delineated according to numerical approaches. The first eruptive stage lasted 27 hours. It was characterized by ca. 15-km strong Plinian-like column, associated with the emission of 0.2 - 0.4 km3 of magma (DRE). Tephra fallout mostly occurred in Chile and Argentina, although fine particles and aerosols circumnavigated the globe twice, causing disruptions on air navigation across the Southern Hemisphere. The second ongoing eruptive stage has been characterized by persistent weak plumes and lava emission at effusion rates in the range of 20 and 60 m3/s, which total volume is estimated <0.20 km3 (at the end of July 2011). Eruptive products have virtually the same bulk composition as those of the historical 1921 and 1960 eruptions, corresponding to phenocryst-poor rhyodacites (67 - 70% SiO2) for what a pre-eruptive temperature of ca. 920C could be inferred. In contrast to the previous eruptive cycles, the ongoing eruption has not evolved (at the time of writing) as a fissure eruption although the vent is atop of fault scarp that borders the Pleistocene-Holocene extensional graben of the Cordón Caulle. This episode is a good case of successful eruption forecast and hazards assessment but it is also an important case-study of silicic eruptions in an arc segment where mostly mafic magmas have been erupted during the Holocene.
Recurrent largngeal nerve paralysis: a laryngographic and computed tomographic study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agha, F.P.
Vocal cord paralysis is a relatively common entity, usually resulting from a pathologic process of the vagus nerve or its recurrent larynegeal branch. It is rarely caused by intralargngeal lesions. Four teen patients with recurrent laryngeal nerve paralysis (RLNP) were evaluated by laryngography, computed tomography (CT), or both. In the evaluation of the paramedian cord, CT was limited in its ability to differentiate between tumor or RLNP as the cause of the fixed cord, but it yielded more information than laryngography on the structural abnormalities of the larynx and pre-epiglottic and paralaryngeal spaces. Laryngography revealed distinct features of RLNP andmore » is the procedure of choice for evaluation of functional abnormalities of the larynx until further experience with faster CT scanners and dynamic scanning of the larynx is gained.« less
Hannibal, Jens
2002-11-25
In the present study the localization of pituitary adenylate cyclase-activating peptide (PACAP)-expressing cell bodies and PACAP projections were mapped in the adult rat brain and spinal cord by using immunohistochemistry and in situ hybridization histochemistry. A widespread occurrence of PACAP-containing cell bodies was found, with the greatest accumulation in several hypothalamic nuclei and in several brainstem nuclei, especially the habenular nuclei, the pontine nucleus, the lateral parabrachial nucleus (LPB), and the vagal complex. PACAP was also present in cell bodies in the olfactory areas, in neocortical areas, in the hippocampus, in the vestibulo- and cochlear nuclei, in cell bodies of the intermediolateral cell column of the spinal cord and in Purkinje cells of the cerebellum, in the subfornical organ, and in the organum vasculosum of the lamina terminalis. An intense accumulation of PACAP-immunoreactive (-IR) nerve fibers was observed throughout the hypothalamus, in the amydaloid and extended amygdaloid complex, in the anterior and paraventricular thalamic nuclei, in the intergeniculate leaflet, in the pretectum, and in several brainstem nuclei, such as the parabrachial nucleus, the sensory trigeminal nucleus, and the nucleus of the solitary tract. PACAP-IR nerve fibers were also found in the area postrema, the posterior pituitary and the choroid plexus, and the dorsal and ventral horn of the spinal cord. The widespread distribution of PACAP in the brain and spinal cord suggests that PACAP is involved in the control of many autonomic and sensory functions as well as higher cortical processes. Copyright 2002 Wiley-Liss, Inc.
Jin, Wenjie; Sun, Xin; Shen, Kangping; Wang, Jia; Liu, Xingzhen; Shang, Xiushuai; Tao, Hairong; Zhu, Tong
2017-11-01
The mechanisms of late recurrent neurological deterioration after conservative treatment for acute traumatic central cord syndrome (ATCCS) remain unclear. Seventeen operative cases sustaining late recurrent neurological deterioration after conservative treatment for ATCCS were reviewed to investigate the mechanisms. The assessment of neurological status was based on International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI). Gender, age, cause of injury, results of image, conservative treatment and operative data, and neurological status at different time points were recorded. The mean age of 17 patients was 43.8 ± 2.3 years old, and the causes of the cervical injury were 14 vehicle accidents and 3 falls. The neurological deficits of 17 patients on admission were not serious, and patients recovered quickly after conservative treatment. No fractures or dislocation were found in any patient's radiographs or CT scan images. All 17 patients performed first MRI test in 4 days and there was a slight or mild compression on the spinal cord in 16 patients. Eight patients had a second MRI scan ∼6 weeks later, which showed that there was aggravated compression on the spinal cord in six patients. All patients underwent an anterior approach to cervical decompression and internal fixation operation. During the operation, there were loose discs found in all 17 patients, obvious ruptures of disks found in 3 patients, obvious ruptures of anterior longitudinal ligaments (ALLs) found in 8 patients, and obvious ruptures of posterior longitudinal ligaments (PLLs) found in 7 patients. There was serious adhesion between PLLs and cervical disks in 12 patients. In five patients, partial ossification of PLLs was detected. All patients had a good neurological outcome at 6 month follow-up. Ruptures of ALLs, PLLs, and discs resulting in cervical instability and secondary compression on the spinal cord were important causes for recurrent neurological deterioration after conservative treatment for ATCCS. With timely spinal decompression after recurrent neurological deterioration, patients could achieve a good neurological outcome.
Tethered cord release: a long-term study in 114 patients.
Bowman, Robin M; Mohan, Avinash; Ito, Joy; Seibly, Jason M; McLone, David G
2009-03-01
All children born with a myelomeningocele at the authors' institution undergo aggressive treatment to maintain or improve functional outcome. Consequently, when any neurological, orthopedic, and/or urological changes are noted, a search for the cause is initiated. The most common cause of decline in a child born with a myelomeningocele is shunt malfunction. The second most common cause is tethering of the distal spinal cord at the site of the original back closure. In this report, the authors review the indicators of symptomatic spinal cord tethering and discuss the surgical interventions and outcomes in the children with myelomeningocele who underwent treatment at Children's Memorial Hospital from 1975 to 2008. Among the 502 children who underwent original closure at Children's Memorial Hospital, a symptomatic tethered spinal cord developed in 114 (23%). Eighty-one patients (71%) have undergone 1 untethering procedure, and 33 patients (29%) have undergone multiple untetherings, for a total of 163 total surgeries. The indicators of symptomatic spinal cord tethering include scoliosis, decline in lower-extremity (LE) motor strength, LE contractures, LE spasticity, gait change, urinary changes, and pain. Pain has shown the best response to surgical untethering, with 100% of children experiencing postoperative improvement. The results of long-term follow-up (average 12 years, range 1 month-23.3 years) in this cohort demonstrated scoliosis progression after surgical untethering in 52% of patients, with 28% requiring spinal fusion. On the 3-month postoperative manual muscle test, 70% of patients showed improved LE muscle strength compared to preoperatively. Gait was also similarly improved after untethering as evaluated by an orthopedic surgeon. Spasticity improved in two-thirds of the cohort, and as expected, LE contractures were stable (78%) postoperatively, as assessed by orthopedic and rehabilitation medicine specialists. Urologically, 64% of patients showed improvements on postoperative bladder evaluation. Although this is a clinical outcome study with no control group, the authors' experience has been that tethered cord release is beneficial in maintaining neurological, urological, and orthopedic functioning in children born with a myelomeningocele.
... Prompt diagnosis and treatment can help prevent complications. Causes During pregnancy, the umbilical cord passes through a small opening ... abdominal pressure can cause an umbilical hernia. Possible causes in adults include: ... pregnancies Fluid in the abdominal cavity (ascites) Previous abdominal ...
Bilateral Cervical Contusion Spinal Cord Injury in Rats
Anderson, Kim D.; Sharp, Kelli G.; Steward, Oswald
2009-01-01
There is increasing motivation to develop clinically relevant experimental models for cervical SCI in rodents and techniques to assess deficits in forelimb function. Here we describe a bilateral cervical contusion model in rats. Female Sprague-Dawley rats received mild or moderate cervical contusion injuries (using the Infinite Horizons device) at C5, C6, or C7/8. Forelimb motor function was assessed using a Grip Strength Meter (GSM); sensory function was assessed by the von Frey hair test; the integrity of the corticospinal tract (CST) was assessed by biotinylated dextran amine (BDA) tract tracing. Mild contusions caused primarily dorsal column (DC) and gray matter (GM) damage while moderate contusions produced additional damage to lateral and ventral tissue. Forelimb and hindlimb function was severely impaired immediately post-injury, but all rats regained the ability to use their hindlimbs for locomotion. Gripping ability was abolished immediately after injury but recovered partially, depending upon the spinal level and severity of the injury. Rats exhibited a loss of sensation in both fore- and hindlimbs that partially recovered, and did not exhibit allodynia. Tract tracing revealed that the main contingent of CST axons in the DC was completely interrupted in all but one animal whereas the dorsolateral CST (dlCST) was partially spared, and dlCST axons gave rise to axons that arborized in the GM caudal to the injury. Our data demonstrate that rats can survive significant bilateral cervical contusion injuries at or below C5 and that forepaw gripping function recovers after mild injuries even when the main component of CST axons in the dorsal column is completely interrupted. PMID:19559699
Arle, Jeffrey E; Mei, Longzhi; Carlson, Kristen W; Shils, Jay L
2016-06-01
Spinal cord stimulation (SCS) treats neuropathic pain through retrograde stimulation of dorsal column axons and their inhibitory effects on wide dynamic range (WDR) neurons. Typical SCS uses frequencies from 50-100 Hz. Newer stimulation paradigms use high-frequency stimulation (HFS) up to 10 kHz and produce pain relief but without paresthesia. Our hypothesis is that HFS preferentially blocks larger diameter axons (12-15 µm) based on dynamics of ion channel gates and the electric potential gradient seen along the axon, resulting in inhibition of WDR cells without paresthesia. We input field potential values from a finite element model of SCS into an active axon model with ion channel subcomponents for fiber diameters 1-20 µm and simulated dynamics on a 0.001 msec time scale. Assuming some degree of wave rectification seen at the axon, action potential (AP) blockade occurs as hypothesized, preferentially in larger over smaller diameters with blockade in most medium and large diameters occurring between 4.5 and 10 kHz. Simulations show both ion channel gate and virtual anode dynamics are necessary. At clinical HFS frequencies and pulse widths, HFS preferentially blocks larger-diameter fibers and concomitantly recruits medium and smaller fibers. These effects are a result of interaction between ion gate dynamics and the "activating function" (AF) deriving from current distribution over the axon. The larger fibers that cause paresthesia in low-frequency simulation are blocked, while medium and smaller fibers are recruited, leading to paresthesia-free neuropathic pain relief by inhibiting WDR cells. © 2016 International Neuromodulation Society.
Spinal Cord Stimulation: Clinical Efficacy and Potential Mechanisms.
Sdrulla, Andrei D; Guan, Yun; Raja, Srinivasa N
2018-03-11
Spinal cord stimulation (SCS) is a minimally invasive therapy used for the treatment of chronic neuropathic pain. SCS is a safe and effective alternative to medications such as opioids, and multiple randomized controlled studies have demonstrated efficacy for difficult-to-treat neuropathic conditions such as failed back surgery syndrome. Conventional SCS is believed mediate pain relief via activation of dorsal column Aβ fibers, resulting in variable effects on sensory and pain thresholds, and measurable alterations in higher order cortical processing. Although potentiation of inhibition, as suggested by Wall and Melzack's gate control theory, continues to be the leading explanatory model, other segmental and supraspinal mechanisms have been described. Novel, non-standard, stimulation waveforms such as high-frequency and burst have been shown in some studies to be clinically superior to conventional SCS, however their mechanisms of action remain to be determined. Additional studies are needed, both mechanistic and clinical, to better understand optimal stimulation strategies for different neuropathic conditions, improve patient selection and optimize efficacy. © 2018 World Institute of Pain.
Theoretical performance and clinical evaluation of transverse tripolar spinal cord stimulation.
Struijk, J J; Holsheimer, J; Spincemaille, G H; Gielen, F L; Hoekema, R
1998-09-01
A new type of spinal cord stimulation electrode, providing contact combinations with a transverse orientation, is presented. Electrodes were implanted in the cervical area (C4-C5) of two chronic pain patients and the stimulation results were subsequently simulated with a computer model consisting of a volume conductor model and active nerve fiber models. For various contact combinations a good match was obtained between the modeling results and the measurement data with respect to load resistance (less than 20% difference), perception thresholds (16% difference), asymmetry of paresthesia (significant correlation) and paresthesia distributions (weak correlation). The transversally oriented combinations provided the possibility to select either a preferential dorsal column stimulation, a preferential dorsal root stimulation or a mixed stimulation. The (a)symmetry of paresthesia could largely be affected in a predictable way by the selection of contact combinations as well. The transverse tripolar combination was shown to give a higher selectivity of paresthesia than monopolar and longitudinal dipolar combinations, at the cost of an increased current (more than twice).
Bernal-Cano, F; Joseph, J T; Koralnik, I J
2007-10-01
Progressive multifocal leukoencephalopathy (PML) is a deadly demyelinating disease of the central nervous system, which occurs in immunosuppressed individuals. This disease is caused by a reactivation of the polyomavirus JC (JCV). Clinical presentation can be variable from patient to patient as lesions can occur anywhere in the CNS white matter; however, they appear to spare the optic nerves and the spinal cord. The authors present a case of PML in the setting of acquired immunodeficiency syndrome (AIDS) who developed PML lesions in the spinal cord, discovered during the postmortem examination. This finding is significant because PML has recently been diagnosed in patients with multiple sclerosis (MS) treated with the novel immunomodulatory medication natalizumab. Indeed, spinal cord lesions are frequent in MS. Therefore clinicians should be aware that in addition to the brain, PML may also affect the spinal cord white matter.
Congenital hernia of cord: an often misdiagnosed entity
Raju, Rubin; Satti, Mohamed; Lee, Quoc; Vettraino, Ivana
2015-01-01
Congenital hernia of the cord, also known as umbilical cord hernia, is an often misdiagnosed and under-reported entity, easily confused with a small omphalocele. It is different from postnatally diagnosed umbilical hernias and is believed to arise from persistent physiological mid-gut herniation. Its incidence is estimated to be 1 in 5000. Unlike an omphalocele, it is considered benign and is not linked with chromosomal anomalies. It has been loosely associated with intestinal anomalies, suggesting the need for a complete fetal anatomical ultrasound evaluation. We present a case of a fetal umbilical cord hernia diagnosed in a 28-year-old woman at 21 weeks gestation. The antenatal and intrapartum courses were uncomplicated. It was misdiagnosed postnatally as a small omphalocele, causing unwarranted anxiety in the parents. Increased awareness and knowledge of such an entity among health professionals is important to prevent unwarranted anxiety from misdiagnosis, and inadvertent bowel injury during cord clamping at delivery. PMID:25899514
Naess, Halvor; Romi, Fredrik
2011-01-01
To compare the clinical characteristics, and short-term outcome of spinal cord infarction and cerebral infarction. Risk factors, concomitant diseases, neurological deficits on admission, and short-term outcome were registered among 28 patients with spinal cord infarction and 1075 patients with cerebral infarction admitted to the Department of Neurology, Haukeland University Hospital, Bergen, Norway. Multivariate analyses were performed with location of stroke (cord or brain), neurological deficits on admission, and short-term outcome (both Barthel Index [BI] 1 week after symptom onset and discharge home or to other institution) as dependent variables. Multivariate analysis showed that patients with spinal cord infarction were younger, more often female, and less afflicted by hypertension and cardiac disease than patients with cerebral infarction. Functional score (BI) was lower among patients with spinal cord infarctions 1 week after onset of symptoms (P < 0.001). Odds ratio for being discharged home was 5.5 for patients with spinal cord infarction compared to cerebral infarction after adjusting for BI scored 1 week after onset (P = 0.019). Patients with spinal cord infarction have a risk factor profile that differs significantly from that of patients with cerebral infarction, although there are some parallels to cerebral infarction caused by atherosclerosis. Patients with spinal cord infarction were more likely to be discharged home when adjusting for early functional level on multivariate analysis.
Naess, Halvor; Romi, Fredrik
2011-01-01
Background: To compare the clinical characteristics, and short-term outcome of spinal cord infarction and cerebral infarction. Methods: Risk factors, concomitant diseases, neurological deficits on admission, and short-term outcome were registered among 28 patients with spinal cord infarction and 1075 patients with cerebral infarction admitted to the Department of Neurology, Haukeland University Hospital, Bergen, Norway. Multivariate analyses were performed with location of stroke (cord or brain), neurological deficits on admission, and short-term outcome (both Barthel Index [BI] 1 week after symptom onset and discharge home or to other institution) as dependent variables. Results: Multivariate analysis showed that patients with spinal cord infarction were younger, more often female, and less afflicted by hypertension and cardiac disease than patients with cerebral infarction. Functional score (BI) was lower among patients with spinal cord infarctions 1 week after onset of symptoms (P < 0.001). Odds ratio for being discharged home was 5.5 for patients with spinal cord infarction compared to cerebral infarction after adjusting for BI scored 1 week after onset (P = 0.019). Conclusion: Patients with spinal cord infarction have a risk factor profile that differs significantly from that of patients with cerebral infarction, although there are some parallels to cerebral infarction caused by atherosclerosis. Patients with spinal cord infarction were more likely to be discharged home when adjusting for early functional level on multivariate analysis. PMID:21915166
Gebre, Samrawit A; Reeber, Stacey L; Sillitoe, Roy V
2012-04-01
The cerebellum receives sensory signals from spinocerebellar (lower limbs) and dorsal column nuclei (upper limbs) mossy fibers. In the cerebellum, mossy fibers terminate in bands that are topographically aligned with stripes of Purkinje cells. While much is known about the molecular heterogeneity of Purkinje cell stripes, little is known about whether mossy fiber compartments have distinct molecular profiles. Here, we show that the vesicular glutamate transporters VGLUT1 and VGLUT2, which mediate glutamate uptake into synaptic vesicles of excitatory neurons, are expressed in complementary bands of mossy fibers in the adult mouse cerebellum. Using a combination of immunohistochemistry and anterograde tracing, we found heavy VGLUT2 and weak VGLUT1 expression in bands of spinocerebellar mossy fibers. The adjacent bands, which are in part comprised of dorsal column nuclei mossy fibers, strongly express VGLUT1 and weakly express VGLUT2. Simultaneous injections of fluorescent tracers into the dorsal column nuclei and lower thoracic-upper lumbar spinal cord revealed that upper and lower limb sensory pathways innervate adjacent VGLUT1/VGLUT2 parasagittal bands. In summary, we demonstrate that VGLUT1 and VGLUT2 are differentially expressed by dorsal column nuclei and spinocerebellar mossy fibers, which project to complementary cerebellar bands and respect common compartmental boundaries in the adult mouse cerebellum.
Manavalan, Mary Ann; Gaziova, Ivana; Bhat, Krishna Moorthi
2013-01-01
Guiding axon growth cones towards their targets is a fundamental process that occurs in a developing nervous system. Several major signaling systems are involved in axon-guidance, and disruption of these systems causes axon-guidance defects. However, the specific role of the environment in which axons navigate in regulating axon-guidance has not been examined in detail. In Drosophila, the ventral nerve cord is divided into segments, and half-segments and the precursor neuroblasts are formed in rows and columns in individual half-segments. The row-wise expression of segment-polarity genes within the neuroectoderm provides the initial row-wise identity to neuroblasts. Here, we show that in embryos mutant for the gene midline, which encodes a T-box DNA binding protein, row-2 neuroblasts and their neuroectoderm adopt a row-5 identity. This reiteration of row-5 ultimately creates a non-permissive zone or a barrier, which prevents the extension of interneuronal longitudinal tracts along their normal anterior-posterior path. While we do not know the nature of the barrier, the axon tracts either stall when they reach this region or project across the midline or towards the periphery along this zone. Previously, we had shown that midline ensures ancestry-dependent fate specification in a neuronal lineage. These results provide the molecular basis for the axon guidance defects in midline mutants and the significance of proper specification of the environment to axon-guidance. These results also reveal the importance of segmental polarity in guiding axons from one segment to the next, and a link between establishment of broad segmental identity and axon guidance. PMID:24385932
Spinal Meninges and Their Role in Spinal Cord Injury: A Neuroanatomical Review.
Grassner, Lukas; Grillhösl, Andreas; Griessenauer, Christoph J; Thomé, Claudius; Bühren, Volker; Strowitzki, Martin; Winkler, Peter A
2018-02-01
Current recommendations support early surgical decompression and blood pressure augmentation after traumatic spinal cord injury (SCI). Elevated intraspinal pressure (ISP), however, has probably been underestimated in the pathophysiology of SCI. Recent studies provide some evidence that ISP measurements and durotomy may be beneficial for individuals suffering from SCI. Compression of the spinal cord against the meninges in SCI patients causes a "compartment-like" syndrome. In such cases, intentional durotomy with augmentative duroplasty to reduce ISP and improve spinal cord perfusion pressure (SCPP) may be indicated. Prior to performing these procedures routinely, profound knowledge of the spinal meninges is essential. Here, we provide an in-depth review of relevant literature along with neuroanatomical illustrations and imaging correlates.
NASA Astrophysics Data System (ADS)
Wong, Kenneth H.; Choi, Jae; Wilson, William; Berry, Joel; Henderson, Fraser C., Sr.
2009-02-01
Abnormal stretch and strain is a major cause of injury to the spinal cord and brainstem. Such forces can develop from age-related degeneration, congenital malformations, occupational exposure, or trauma such as sporting accidents, whiplash and blast injury. While current imaging technologies provide excellent morphology and anatomy of the spinal cord, there is no validated diagnostic tool to assess mechanical stresses exerted upon the spinal cord and brainstem. Furthermore, there is no current means to correlate these stress patterns with known spinal cord injuries and other clinical metrics such as neurological impairment. We have therefore developed the spinal cord stress injury assessment (SCOSIA) system, which uses imaging and finite element analysis to predict stretch injury. This system was tested on a small cohort of neurosurgery patients. Initial results show that the calculated stress values decreased following surgery, and that this decrease was accompanied by a significant decrease in neurological symptoms. Regression analysis identified modest correlations between stress values and clinical metrics. The strongest correlations were seen with the Brainstem Disability Index (BDI) and the Karnofsky Performance Score (KPS), whereas the weakest correlations were seen with the American Spinal Injury Association (ASIA) scale. SCOSIA therefore shows encouraging initial results and may have wide applicability to trauma and degenerative disease involving the spinal cord and brainstem.
Mohammadianpanah, M; Vasei, M; Mosalaei, A; Omidvari, S; Ahmadloo, N
2006-12-01
Although it is quite rare, second primary neoplasms in cancer patients may present with the signs and symptoms of malignant spinal cord compression. Primary spinal cord tumours in the cancer patients may be deceptive and considered as the recurrent first cancer. Therefore, it should be precisely differentiated and appropriately managed. We report such a case of intramedullary ependymoma of the cervical spinal cord mimicking metatstatic recurrent lymphoma and causing cord compression. A 50-year-old man developed intramedullary ependymoma of the cervical spinal cord 1.5 years following chemoradiation for Waldeyer's ring lymphoma. He presented with a 2-month history of neck pain, progressive upper- and lower-extremity numbness and weakness, and bowel and bladder dysfunction. Magnetic resonance imaging revealed an intramedullary expansive lesion extending from C4 to C6 levels of the cervical spinal cord. The clinical and radiological findings were suggestive of malignant process. A comprehensive investigation failed to detect another site of disease. He underwent operation, and the tumour was subtotally resected. The patient's neurological deficits improved subsequently. The development of the intramedullary ependymoma following treating lymphoma has not been reported. We describe the clinical, radiological and pathological findings of this case and review the literature.
Unbonded Prestressed Columns for Earthquake Resistance
DOT National Transportation Integrated Search
2012-05-01
Modern structures are able to survive significant shaking caused by earthquakes. By implementing unbonded post-tensioned tendons in bridge columns, the damage caused by an earthquake can be significantly lower than that of a standard reinforced concr...
Squamous cell carcinoma causing dorsal atlantoaxial spinal cord compression in a dog
Miyazaki, Yuta; Aikawa, Takeshi; Nishimura, Masaaki; Iwata, Munetaka; Kagawa, Yumiko
2016-01-01
A 12-year-old Chihuahua dog was presented for cervical pain and progressive tetraparesis. Magnetic resonance imaging revealed spinal cord compression due to a mass in the dorsal atlantoaxial region. Surgical treatment was performed. The mass was histopathologically diagnosed as a squamous cell carcinoma. The dog recovered to normal neurologic status after surgery. PMID:27708441
Mishra, Asht M.; Pal, Ajay; Gupta, Disha
2017-01-01
Key points Pairing motor cortex stimulation and spinal cord epidural stimulation produced large augmentation in motor cortex evoked potentials if they were timed to converge in the spinal cord.The modulation of cortical evoked potentials by spinal cord stimulation was largest when the spinal electrodes were placed over the dorsal root entry zone.Repeated pairing of motor cortex and spinal cord stimulation caused lasting increases in evoked potentials from both sites, but only if the time between the stimuli was optimal.Both immediate and lasting effects of paired stimulation are likely mediated by convergence of descending motor circuits and large diameter afferents onto common interneurons in the cervical spinal cord. Abstract Convergent activity in neural circuits can generate changes at their intersection. The rules of paired electrical stimulation are best understood for protocols that stimulate input circuits and their targets. We took a different approach by targeting the interaction of descending motor pathways and large diameter afferents in the spinal cord. We hypothesized that pairing stimulation of motor cortex and cervical spinal cord would strengthen motor responses through their convergence. We placed epidural electrodes over motor cortex and the dorsal cervical spinal cord in rats; motor evoked potentials (MEPs) were measured from biceps. MEPs evoked from motor cortex were robustly augmented with spinal epidural stimulation delivered at an intensity below the threshold for provoking an MEP. Augmentation was critically dependent on the timing and position of spinal stimulation. When the spinal stimulation was timed to coincide with the descending volley from motor cortex stimulation, MEPs were more than doubled. We then tested the effect of repeated pairing of motor cortex and spinal stimulation. Repetitive pairing caused strong augmentation of cortical MEPs and spinal excitability that lasted up to an hour after just 5 min of pairing. Additional physiology experiments support the hypothesis that paired stimulation is mediated by convergence of descending motor circuits and large diameter afferents in the spinal cord. The large effect size of this protocol and the conservation of the circuits being manipulated between rats and humans makes it worth pursuing for recovery of sensorimotor function after injury to the central nervous system. PMID:28752624
Mishra, Asht M; Pal, Ajay; Gupta, Disha; Carmel, Jason B
2017-11-15
Pairing motor cortex stimulation and spinal cord epidural stimulation produced large augmentation in motor cortex evoked potentials if they were timed to converge in the spinal cord. The modulation of cortical evoked potentials by spinal cord stimulation was largest when the spinal electrodes were placed over the dorsal root entry zone. Repeated pairing of motor cortex and spinal cord stimulation caused lasting increases in evoked potentials from both sites, but only if the time between the stimuli was optimal. Both immediate and lasting effects of paired stimulation are likely mediated by convergence of descending motor circuits and large diameter afferents onto common interneurons in the cervical spinal cord. Convergent activity in neural circuits can generate changes at their intersection. The rules of paired electrical stimulation are best understood for protocols that stimulate input circuits and their targets. We took a different approach by targeting the interaction of descending motor pathways and large diameter afferents in the spinal cord. We hypothesized that pairing stimulation of motor cortex and cervical spinal cord would strengthen motor responses through their convergence. We placed epidural electrodes over motor cortex and the dorsal cervical spinal cord in rats; motor evoked potentials (MEPs) were measured from biceps. MEPs evoked from motor cortex were robustly augmented with spinal epidural stimulation delivered at an intensity below the threshold for provoking an MEP. Augmentation was critically dependent on the timing and position of spinal stimulation. When the spinal stimulation was timed to coincide with the descending volley from motor cortex stimulation, MEPs were more than doubled. We then tested the effect of repeated pairing of motor cortex and spinal stimulation. Repetitive pairing caused strong augmentation of cortical MEPs and spinal excitability that lasted up to an hour after just 5 min of pairing. Additional physiology experiments support the hypothesis that paired stimulation is mediated by convergence of descending motor circuits and large diameter afferents in the spinal cord. The large effect size of this protocol and the conservation of the circuits being manipulated between rats and humans makes it worth pursuing for recovery of sensorimotor function after injury to the central nervous system. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
... and spinal cord. This covering is called the meninges. Causes The most common causes of meningitis are ... Kernig's sign of meningitis Lumbar puncture (spinal tap) Meninges of the brain Meninges of the spine Haemophilus ...
Aseptic meningitis and viral myelitis.
Irani, David N
2008-08-01
Meningitis and myelitis represent common and very infrequent viral infections of the central nervous system, respectively. The number of cases of viral meningitis that occurs annually exceeds the total number of meningitis cases caused by all other etiologies combined. Focal central nervous system infections, such as occur in the spinal cord with viral myelitis, are much less common and may be confused with noninfectious disorders that cause acute flaccid paralysis. This article reviews some of the important clinical features, epidemiology, diagnostic approaches, and management strategies for patients with aseptic meningitis and viral myelitis. Particular focus is placed on the diseases caused by enteroviruses, which as a group account for most aseptic meningitis cases and many focal infections of the spinal cord.
Ha, Kee-Yong; Kim, Young-Hoon
2016-04-01
To investigate the causes of late-onset, progressive neurological deficits in patients with severe angular kyphosis caused by spondylitis secondary to tuberculosis (TB spondylitis). From 2000 to 2011, 36 patients with severe angular kyphosis secondary to TB spondylitis (TB kyphosis) were enrolled in the study. All patients had late-onset, progressive neurological deficits. The causes of these deficits were classified with respect to the level of the causative lesion. Group A (n = 25, 69.4%) comprised patients whose neurological deficits resulted from the kyphosis itself. Patients in group B (n = 11, 30.6%) had developed neurological symptoms related to a lesion cephalad or caudal from the kyphosis. Surgical intervention was performed in 23 patients; 13 patients were treated conservatively. Clinical outcomes were evaluated using the American Spinal Injury Association (ASIA) impairment scale. The late onset of neurological deficits was attributed to cord compression, pure cord distraction, stenosis, and instability above or below the level of the angular kyphosis. An improvement of the neurological symptoms at the cord level after surgical intervention, as indicated by a change from a non-ambulatory (ASIA impairment scale A/C) to an ambulatory (ASIA D/E) status, occurred in four of nine (44.4%) surgically treated patients. However, only 2 of 10 (20.0%) patients treated conservatively showed cord level improvement, as assessed using the ASIA impairment scale. In their evaluation of paraplegic patients, spine surgeons should consider the many potential causes of late-onset neurological deficits in TB spondylitis to avoid performing unnecessary surgery. A simpler procedure may yield equivalent results.
Degenerative spinal disease in large felids.
Kolmstetter, C; Munson, L; Ramsay, E C
2000-03-01
Degenerative spinal disorders, including intervertebral disc disease and spondylosis, seldom occur in domestic cats. In contrast, a retrospective study of 13 lions (Panthera leo), 16 tigers (Panthera tigris), 4 leopards (Panthera pardis), 1 snow leopard (Panthera uncia), and 3 jaguars (Panthera onca) from the Knoxville Zoo that died or were euthanatized from 1976 to 1996 indicated that degenerative spinal disease is an important problem in large nondomestic felids. The medical record, radiographic data, and the necropsy report of each animal were examined for evidence of intervertebral disc disease or spondylosis. Eight (three lions, four tigers, and one leopard) animals were diagnosed with degenerative spinal disease. Clinical signs included progressively decreased activity, moderate to severe rear limb muscle atrophy, chronic intermittent rear limb paresis, and ataxia. The age at onset of clinical signs was 10-19 yr (median = 18 yr). Radiographic evaluation of the spinal column was useful in assessing the severity of spinal lesions, and results were correlated with necropsy findings. Lesions were frequently multifocal, included intervertebral disc mineralization or herniation with collapsed intervertebral disc spaces, and were most common in the lumbar area but also involved cervical and thoracic vertebrae. Marked spondylosis was present in the cats with intervertebral disc disease, presumably subsequent to vertebral instability. Six of the animals' spinal cords were examined histologically, and five had acute or chronic damage to the spinal cord secondary to disc protrusion. Spinal disease should be suspected in geriatric large felids with decreased appetite or activity. Radiographic evaluation of the spinal column is the most useful method to assess the type and severity of spinal lesions.
Hoarseness caused by arytenoid dislocation after surgery for lung cancer.
Kurihara, Nobuyasu; Imai, Kazuhiro; Minamiya, Yoshihiro; Saito, Hajime; Takashima, Shinogu; Kudo, Satoshi; Kawaharada, Yasushi; Ogawa, Jun-Ichi
2014-12-01
The patient was a 64-year-old woman with no history of laryngeal disorders. She underwent video-assisted right lower lobectomy and node dissection for lung cancer. Using a stylet while the patient was under general anesthesia, tracheal intubation with a 35-French gauge left-sided double-lumen endobronchial tube was successfully performed on the first attempt. The patient developed slight hoarseness on postoperative day 1, and we initially suspected recurrent laryngeal nerve paralysis caused by the surgery, which we elected to treat conservatively. However, because her hoarseness had not improved 4 months after surgery, we evaluated her vocal cords using laryngoscopy. This revealed severe dysfunction of the right vocal cord and arytenoid dislocation, which we treated through reduction using a balloon catheter. By 6 months, the patient's vocal cord mobility had improved. Arytenoid dislocation is a rare complication, but should be suspected when patients have right vocal fold paralysis after lung cancer surgery.
NASA Technical Reports Server (NTRS)
Holland, L. Z.; Schubert, M.; Holland, N. D.; Neuman, T.
2000-01-01
Amphioxus, as the closest living invertebrate relative of the vertebrates, can give insights into the evolutionary origin of the vertebrate body plan. Therefore, to investigate the evolution of genetic mechanisms for establishing and patterning the neuroectoderm, we cloned and determined the embryonic expression of two amphioxus transcription factors, AmphiSox1/2/3 and AmphiNeurogenin. These genes are the earliest known markers for presumptive neuroectoderm in amphioxus. By the early neurula stage, AmphiNeurogenin expression becomes restricted to two bilateral columns of segmentally arranged neural plate cells, which probably include precursors of motor neurons. This is the earliest indication of segmentation in the amphioxus nerve cord. Later, expression extends to dorsal cells in the nerve cord, which may include precursors of sensory neurons. By the midneurula, AmphiSox1/2/3 expression becomes limited to the dorsal part of the forming neural tube. These patterns resemble those of their vertebrate and Drosophila homologs. Taken together with the evolutionarily conserved expression of the dorsoventral patterning genes, BMP2/4 and chordin, in nonneural and neural ectoderm, respectively, of chordates and Drosophila, our results are consistent with the evolution of the chordate dorsal nerve cord and the insect ventral nerve cord from a longitudinal nerve cord in a common bilaterian ancestor. However, AmphiSox1/2/3 differs from its vertebrate homologs in not being expressed outside the CNS, suggesting that additional roles for this gene have evolved in connection with gene duplication in the vertebrate lineage. In contrast, expression in the midgut of AmphiNeurogenin together with the gene encoding the insulin-like peptide suggests that amphioxus may have homologs of vertebrate pancreatic islet cells, which express neurogenin3. In addition, AmphiNeurogenin, like its vertebrate and Drosophila homologs, is expressed in apparent precursors of epidermal chemosensory and possibly mechanosensory cells, suggesting a common origin for protostome and deuterostome epidermal sensory cells in the ancestral bilaterian. Copyright 2000 Academic Press.
Spinal cord-specific deletion of the glutamate transporter GLT1 causes motor neuron death in mice.
Sugiyama, Kaori; Tanaka, Kohichi
2018-03-04
Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disorder characterized by the selective loss of motor neurons. The precise mechanisms that cause the selective death of motor neurons remain unclear, but a growing body of evidence suggests that glutamate-mediated excitotoxicity has been considered to play an important role in the mechanisms of motor neuron degeneration in ALS. Reductions in glutamate transporter GLT1 have been reported in animal models of ALS and the motor cortex and spinal cord of ALS patients. However, it remains unknown whether the reduction in GLT1 has a primary role in the induction of motor neuron degeneration in ALS. Here, we generated conditional knockout mice that lacked GLT1 specifically in the spinal cord by crossing floxed-GLT1 mice and Hoxb8-Cre mice. Hoxb8-Cre/GLT1 flox/flox mice showed motor deficits and motor neuron loss. Thus, loss of the glial glutamate transporter GLT1 is sufficient to cause motor neuron death in mice. Copyright © 2018 Elsevier Inc. All rights reserved.
Bittar, Cíntia Kelly; Cliquet, Alberto
2011-01-01
To assess epidemiological profile of spinal cord injury outpatients which have been participating of rehabilitation programme using neuromuscular electrical stimulation, in order to implement campaigns for preventing spinal cord trauma. From January to April 2009, 30 patients at the spinal cord injury ambulatory clinic at Hospital das Clínicas of Unicamp were analysed by some epidemiologic characteristics: age, profession, type and level of their paralysis, origin and time of injury. All patients had complete spinal cord injury (ASIA); 24 patients were men and six were women, the mean age was 34.6 years (range, 10-64 years), two patients were children. Twenty-one patients were paraplegic and nine were tetraplegic; causes included automobile accident (12), run over (three), diving (four), bicycle accident (one), motorcycle accident (three), gunshot wound (six), thoracic tuberculosis (one), and lumbar surgery (one). The mean lesion time was 8.2 years (range, 1-15 years). Two patients were retired. The results suggested that spinal cord injury affects mainly young active men. It is necessary to develop incisive actions to prevent accidents, specially directed to traffic security.
Right-sided vagus nerve stimulation inhibits induced spinal cord seizures.
Tubbs, R Shane; Salter, E George; Killingsworth, Cheryl; Rollins, Dennis L; Smith, William M; Ideker, Raymond E; Wellons, John C; Blount, Jeffrey P; Oakes, W Jerry
2007-01-01
We have previously shown that left-sided vagus nerve stimulation results in cessation of induced spinal cord seizures. To test our hypothesis that right-sided vagus nerve stimulation will also abort seizure activity, we have initiated seizures in the spinal cord and then performed right-sided vagus nerve stimulation in an animal model. Four pigs were anesthetized and placed in the lateral position and a small laminectomy performed in the lumbar region. Topical penicillin, a known epileptogenic drug to the cerebral cortex and spinal cord, was next applied to the dorsal surface of the exposed cord. With the exception of the control animal, once seizure activity was discernible via motor convulsion or increased electrical activity, the right vagus nerve previously isolated in the neck was stimulated. Following multiple stimulations of the vagus nerve and with seizure activity confirmed, the cord was transected in the midthoracic region and vagus nerve stimulation performed. Right-sided vagus nerve stimulation resulted in cessation of spinal cord seizure activity in all animals. Transection of the spinal cord superior to the site of seizure induction resulted in the ineffectiveness of vagus nerve stimulation in causing cessation of seizure activity in all study animals. As with left-sided vagus nerve stimulation, right-sided vagus nerve stimulation results in cessation of induced spinal cord seizures. Additionally, the effects of right-sided vagus nerve stimulation on induced spinal cord seizures involve descending spinal pathways. These data may aid in the development of alternative mechanisms for electrical stimulation for patients with medically intractable seizures and add to our knowledge regarding the mechanism for seizure cessation following peripheral nerve stimulation.
Clean cord care practices and neonatal mortality: evidence from rural Uttar Pradesh, India.
Agrawal, Praween K; Agrawal, Sutapa; Mullany, Luke C; Darmstadt, Gary L; Kumar, Vishwajeet; Kiran, Usha; Ahuja, Ramesh C; Srivastava, Vinod K; Santosham, Mathuram; Black, Robert E; Baqui, Abdullah H
2012-08-01
About a million newborns die each year in India, accounting for about a fourth of total global neonatal deaths. Infections are among the leading causes of neonatal mortality. Care practices immediately following delivery contribute to newborns' risk of infection and mortality. This study examined the association between clean cord care practices and neonatal mortality in rural Uttar Pradesh, India. The study used data from a household survey conducted to evaluate a community-based intervention program in two districts of Uttar Pradesh, India. Analysis included data from 5741 singleton live births delivered at home during 2005. The association between clean cord care (clean instrument used to cut cord, clean thread used to tie cord and antiseptics or nothing applied to the cord) and neonatal mortality was estimated using multivariate logistic regression models. Thirty per cent of the study mothers practiced clean cord care. Neonatal mortality rate was significantly lower among newborns exposed to clean cord care (36.5/1000 live births, 95% CI 28.0 to 46.8) than those who did not practice (53.0/1000 live births, 95% CI 46.1 to 60.6). Clean cord care was associated with 37% lower neonatal mortality (OR=0.63; 95% CI 0.46 to 0.87) after adjusting for mother's age, education, caste/tribe, religion, household wealth, newborn thermal care practice and care-seeking during the first week after birth and study arms. Promoting clean cord care practice among neonates in community-based maternal and newborn care programs has the potential to improve neonatal survival in rural India and similar other settings.
Ethical issues relating the the banking of umbilical cord blood in Mexico.
Serrano-Delgado, V Moises; Novello-Garza, Barbara; Valdez-Martinez, Edith
2009-08-14
Umbilical cord banks are a central component, as umbilical cord tissue providers, in both medical treatment and scientific research with stem cells. But, whereas the creation of umbilical cord banks is seen as successful practice, it is perceived as a risky style of play by others. This article examines and discusses the ethical, medical and legal considerations that arise from the operation of umbilical cord banks in Mexico. A number of experts have stated that the use of umbilical cord goes beyond the mere utilization of human tissues for the purpose of treatment. This tissue is also used in research studies: genetic studies, studies to evaluate the effectiveness of new antibiotics, studies to identify new proteins, etc. Meanwhile, others claim that the law and other norms for the functioning of cord banks are not consistent and are poorly defined. Some of these critics point out that the confidentiality of donor information is handled differently in different places. The fact that private cord banks offer their services as "biological insurance" in order to obtain informed consent by promising the parents that the tissue that will be stored insures the health of their child in the future raises the issue of whether the consent is freely given or given under coercion. Another consideration that must be made in relation to privately owned cord banks has to do with the ownership of the stored umbilical cord. Conflicts between moral principles and economic interests (non-moral principles) cause dilemmas in the clinical practice of umbilical cord blood storage and use especially in privately owned banks. This article presents a reflection and some of the guidelines that must be followed by umbilical cord banks in order to deal with these conflicts. This reflection is based on the fundamental notions of ethics and public health and seeks to be a contribution towards the improvement of umbilical cord banks' performance.
Ethical issues relating to the banking of umbilical cord blood in Mexico
2009-01-01
Background Umbilical cord banks are a central component, as umbilical cord tissue providers, in both medical treatment and scientific research with stem cells. But, whereas the creation of umbilical cord banks is seen as successful practice, it is perceived as a risky style of play by others. This article examines and discusses the ethical, medical and legal considerations that arise from the operation of umbilical cord banks in Mexico. Discussion A number of experts have stated that the use of umbilical cord goes beyond the mere utilization of human tissues for the purpose of treatment. This tissue is also used in research studies: genetic studies, studies to evaluate the effectiveness of new antibiotics, studies to identify new proteins, etc. Meanwhile, others claim that the law and other norms for the functioning of cord banks are not consistent and are poorly defined. Some of these critics point out that the confidentiality of donor information is handled differently in different places. The fact that private cord banks offer their services as "biological insurance" in order to obtain informed consent by promising the parents that the tissue that will be stored insures the health of their child in the future raises the issue of whether the consent is freely given or given under coercion. Another consideration that must be made in relation to privately owned cord banks has to do with the ownership of the stored umbilical cord. Summary Conflicts between moral principles and economic interests (non-moral principles) cause dilemmas in the clinical practice of umbilical cord blood storage and use especially in privately owned banks. This article presents a reflection and some of the guidelines that must be followed by umbilical cord banks in order to deal with these conflicts. This reflection is based on the fundamental notions of ethics and public health and seeks to be a contribution towards the improvement of umbilical cord banks' performance. PMID:19678958
ERIC Educational Resources Information Center
Wilroy, Jereme; Knowlden, Adam
2016-01-01
Background: Approximately 200,000 individuals have a spinal cord injury (SCI) and more than 12,000 new cases are diagnosed each year in the United States. Lowered physical functioning caused by SCI often leads to a sedentary lifestyle, increasing risk for chronic diseases, secondary medical conditions, and lower quality of life. Purpose: The aim…
A-Train Satellite Observations of Recent Explosive Eruptions in Iceland and Chile
NASA Astrophysics Data System (ADS)
Carn, S. A.; Yang, K.; Prata, A. J.
2012-04-01
The past few years have seen remarkable levels of explosive volcanic activity in Iceland and Chile, with four significant eruptions at Chaitén (May 2008), Eyjafjallajökull (April 2010), Grimsvötn (May 2011) and Cordón Caulle (June 2011 - ongoing). The tremendous disruption and economic impact of the Eyjafjallajökull eruption is well known, but each of these events had a significant impact on aviation, sometimes at great distances from the volcano. As of late 2011, volcanic ash from Cordón Caulle was still affecting airports in southern South America, highlighting the potential for extended disruption during long-lived eruptions. Serendipitously, this period of elevated volcanic activity has coincided with an era of unprecedented availability of satellite remote sensing data pertinent to volcanic cloud studies. In particular, NASA's A-Train satellite constellation (including the Aqua, CloudSat, CALIPSO, and Aura satellites) has been flying in formation since 2006, providing synergistic, multi- and hyper-spectral, passive and active observations. Measurements made by A-Train sensors include total column sulfur dioxide (SO2) by the Ozone Monitoring Instrument (OMI) on Aura, upper tropospheric and stratospheric (UTLS) SO2 column by the Atmospheric Infrared Sounder (AIRS) on Aqua and Microwave Limb Sounder (MLS) on Aura, ash mass loading from AIRS and the Moderate resolution Imaging Spectroradiometer (MODIS) on Aqua, UTLS HCl columns and ice water content (IWC) from MLS, aerosol vertical profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard CALIPSO, and hydrometeor profiles from the Cloud Profiling Radar (CPR) on CloudSat. The active vertical profiling capability of CALIPSO, CloudSat and MLS sychronized with synoptic passive sensing of trace gases and aerosols by OMI, AIRS and MODIS provides a unique perspective on the structure and composition of volcanic clouds. A-Train observations during the first hours of atmospheric residence are particularly valuable, as the fallout, segregation and stratification of material in this period determines the concentration and altitude of constituents that remain to be advected downwind. This represents the eruption 'source term' essential for ash dispersion modeling, and hence for aviation hazard mitigation. In this presentation we show how A-Train data have improved our understanding of the composition, structure and dynamics of volcanic eruption clouds, using examples from the recent Icelandic and Chilean eruptions. These events span a range of compositions and eruptive styles, including highly silicic, SO2-poor eruptions (Chaitén and Cordón Caulle), magma-ice interaction (Eyjafjallajökull and Grimsvötn), stratospheric eruption columns (Chaitén, Grimsvötn), and persistent, weak tropospheric plumes (Eyjafjallajökull). In each case, satellite remote sensing played a crucial role in characterizing the eruption, monitoring variations in intensity and tracking the dispersion of volcanic cloud constituents. We also describe plans for advanced SO2 and ash retrieval algorithms that will exploit the synergy between UV and IR sensors in the A-Train for improved quantification of ash and SO2 loading by volcanic eruptions.
Hypnosis for Asthma and Vocal Cord Dysfunction in a Patient With Autism.
Kaslovsky, Robert; Gottsegen, David
2015-10-01
Wheezing in children often is the result of asthma, but vocal cord dysfunction (VCD) may cause stridor or sounds that sometimes are misattributed to the wheezing of asthma. The frequent comorbidity of asthma and VCD also adds to the difficulty in making a clear diagnosis. The challenges of evaluating and treating wheezing are complicated further in children with developmental disorders, such as autism, because of the difficulties of obtaining an adequate history and assessing the clinical response to treatment. This article presents a patient with multiple psychiatric problems, including autism, with severe recurrent wheezing as a result of vocal cord dysfunction and asthma. Hypnosis has previously proven efficacious for treating vocal cord dysfunction, and in this case, hypnotic techniques were major factors in successful symptom control.
Zekaj, Edvin; Saleh, Christian; Servello, Domenico
2016-01-01
Background: A rare cause of spinal cord compression is spinal arachnoid cysts. Symptoms are caused by spinal cord compression, however, asymptomatic patients have been also reported. Treatment options depend upon symptom severity and clinical course. Case Description: We report the case of a 47-year-old patient who developed an intramedullary arachnoid cyst after removal of an intradural extramedullary cyst. Conclusion: Surgery should be considered early in a symptomatic disease course. Longstanding medullary compression may reduce the possibility of neurological recovery as well as secondary complications such as intramedullary cyst formation. PMID:27512608
An Unusual Cause of GI Bleeding in a Quadriplegic: Report of a Case and Review of the Literature
Joseph, Raymond E.; Epsten, Robert; Kowlessar, O. Dhodanand
1982-01-01
The authors report a case of upper gastrointestinal hemorrhage in a quadriplegic. The cause was a Mallory-Weiss tear, a previously unrecognized problem in these patients. The incidence of bleeding in patients with spinal cord injury is as high as 25 percent in the few reported series. We feel that with the increased risk of gastrointestinal bleeding in the spinal cord patient and the accompanying significant mortality, early endoscopy is essential for accurate diagnosis since clues to the presence, etiology, and severity of the bleeding are often lacking. PMID:6981707
Prenatal diagnosis of diastematomyelia.
Sonigo-Cohen, Pascale; Schmit, Pierre; Zerah, Michel; Chat, Latifa; Simon, Isabelle; Aubry, Marie Cécile; Gonzales, Marie; Pierre-Kahn, Alain; Brunelle, Francis
2003-08-01
Diastematomyelia, also termed split cord malformation, is a form of occult spinal dysraphism characterized by a cleft in the spinal cord. Prenatal diagnosis of this anomaly is possible by ultrasonography (US), and fetal MRI can be used to diagnose the type of diastematomyelia precisely. Diastematomyelia can be isolated or associated with other dysraphisms, segmental anomalies of the vertebral bodies, or visceral malformations (horseshoe or ectopic kidney, utero-ovarian malformation, and anorectal malformation). We present three cases of fetal diastematomyelia investigated using a multimodal prenatal work-up (US, MRI, 3D-CT). The first case, detected at 20 weeks' gestation, had a lumbar meningocele. At 30 weeks' gestation, direct US visualization revealed the division of the spinal cord into two hemicords. This patient illustrates an isolated type II diastematomyelia with a favorable prognosis. The second case, detected at 22 weeks' gestation, presented with disorganization of bony process of the vertebral column with a midline echogenic bony spur, asymmetrical hemicords, and a foot malposition. Fetal MRI at 26 weeks' gestation and CT/3D reconstructed at 32 weeks' gestation confirmed a type I diastematomyelia with orthopedic malposition. The third case, detected at 22 weeks' gestation, presented with widening of the lumbar canal and scoliosis. Prenatal work-up (US, MRI) disclosed other visceral malformations (pelvic kidney), which led to the assumption of a complex polymalformative syndrome. The pregnancy was terminated. Fetopathologic examination disclosed even more visceral malformations (anal atresia and unicorn uterus).
Effects of polarization in low-level laser therapy of spinal cord injury in rats
NASA Astrophysics Data System (ADS)
Ando, Takahiro; Sato, Shunichi; Kobayashi, Hiroaki; Nawashiro, Hiroshi; Ashida, Hiroshi; Hamblin, Michael R.; Obara, Minoru
2012-03-01
Low-level laser therapy (LLLT) is a promising approach to treat the spinal cord injury (SCI). Since nerve fibers have optical anisotropy, propagation of light in the spinal tissue might be affected by its polarization direction. However, the effect of polarization on the efficacy of LLLT has not been elucidated. In the present study, we investigated the effect of polarization on the efficacy of near-infrared LLLT for SCI. Rat spinal cord was injured with a weight-drop device. The lesion site was irradiated with an 808-nm diode laser beam that was transmitted through a polarizing filter immediately after injury and daily for five consecutive days. The laser power at the injured spinal cord surface was 25 mW, and the dosage per day was 9.6 J/cm2 (spot diameter, 2 cm; irradiation duration, 1200 s). Functional recovery was assessed daily by an open-field test. The results showed that the functional scores of the SCI rats that were treated with 808-nm laser irradiation were significantly higher than those of the SCI alone group (Group 1) from day 5 after injury, regardless of the polarization direction. Importantly, as compared to the locomotive function of the SCI rats that were treated with the perpendicularly-polarized laser parallel to the spinal column (Group 2), that of the SCI rats that were irradiated with the linearly aligned polarization (Group 3) was significantly improved from day 10 after injury. In addition, the ATP contents in the injured spinal tissue of Group 3, which were measured immediately after laser irradiation, were moderately higher than those of Group 2. These observations are attributable to the deeper penetration of the parallelpolarized light in the anisotropic spinal tissue, suggesting that polarization direction significantly affects the efficacy of LLLT for SCI.
Ashwell, Ken W S
2012-01-01
The modern monotremes (platypus and echidnas) are characterized by development of their young in a leathery egg that is laid into a nest or abdominal pouch. At hatching, the young are externally immature, with forelimbs capable of digitopalmar prehension, but hindlimbs little advanced beyond limb buds. The embryological collections at the Museum für Naturkunde in Berlin were used to examine the development of the spinal cord and early peripheral nervous system in developing monotremes and to correlate this with known behavioural development. Ventral root outgrowth to the bases of both the fore- and hindlimbs occurs at 6.0 mm crown-rump length (CRL), but invasion of both limbs does not happen until about 8.0-8.5 mm CRL. Differentiation of the ventral horn precedes the dorsal horn during incubation and separate medial and lateral motor columns can be distinguished before hatching. Rexed's laminae begin to appear in the dorsal horn in the first week after hatching, and gracile and cuneate fasciculi emerge during the first two post-hatching months. Qualitative and quantitative comparisons of the structure of the cervicothoracic junction spinal cord in the two monotremes with that in a diprotodont marsupial (the brush-tailed possum, Trichosurus vulpecula) of similar size at birth, did not reveal any significant structural differences between the monotremes and the marsupial. The precocious development of motor systems in the monotreme spinal cord is consistent with the behavioural requirements of the peri-hatching period, that is, rupture of embryonic membranes and egg, and digitopalmar prehension to grasp maternal hair or nest material.
Cheah, Menghon; Chew, Daniel J.; Moloney, Elizabeth B.; Verhaagen, Joost; Fässler, Reinhard
2016-01-01
After CNS injury, axon regeneration is blocked by an inhibitory environment consisting of the highly upregulated tenascin-C and chondroitin sulfate proteoglycans (CSPGs). Tenascin-C promotes growth of axons if they express a tenascin-binding integrin, particularly α9β1. Additionally, integrins can be inactivated by CSPGs, and this inhibition can be overcome by the presence of a β1-binding integrin activator, kindlin-1. We examined the synergistic effect of α9 integrin and kindlin-1 on sensory axon regeneration in adult rat spinal cord after dorsal root crush and adeno-associated virus transgene expression in dorsal root ganglia. After 12 weeks, axons from C6–C7 dorsal root ganglia regenerated through the tenascin-C-rich dorsal root entry zone into the dorsal column up to C1 level and above (>25 mm axon length) through a normal pathway. Animals also showed anatomical and electrophysiological evidence of reconnection to the dorsal horn and behavioral recovery in mechanical pressure, thermal pain, and ladder-walking tasks. Expression of α9 integrin or kindlin-1 alone promoted much less regeneration and recovery. SIGNIFICANCE STATEMENT The study demonstrates that long-distance sensory axon regeneration over a normal pathway and with sensory and sensory–motor recovery can be achieved. This was achieved by expressing an integrin that recognizes tenascin-C, one of the components of glial scar tissue, and an integrin activator. This enabled extensive long-distance (>25 mm) regeneration of both myelinated and unmyelinated sensory axons with topographically correct connections in the spinal cord. The extent of growth and recovery we have seen would probably be clinically significant. Restoration of sensation to hands, perineum, and genitalia would be a significant improvement for a spinal cord-injured patient. PMID:27383601
Persson, Stefan; Boulland, Jean-Luc; Aspling, Marie; Larsson, Max; Fremeau, Robert T; Edwards, Robert H; Storm-Mathisen, Jon; Chaudhry, Farrukh A; Broman, Jonas
2006-08-10
To evaluate whether the organization of glutamatergic fibers systems in the lumbar cord is also evident at other spinal levels, we examined the immunocytochemical distribution of vesicle glutamate transporters 1 and 2 (VGLUT1, VGLUT2) at several different levels of the rat spinal cord. We also examined the expression of VGLUTs in an ascending sensory pathway, the spinocervical tract, and colocalization of VGLUT1 and VGLUT2. Mainly small VGLUT2-immunoreactive varicosities occurred at relatively high densities in most areas, with the highest density in laminae I-II. VGLUT1 immunolabeling, including small and medium-sized to large varicosities, was more differentiated, with the highest density in the deep dorsal horn and in certain nuclei such as the internal basilar nucleus, the central cervical nucleus, and the column of Clarke. Lamina I and IIo displayed a moderate density of small VGLUT1 varicosities at all spinal levels, although in the spinal enlargements a uniform density of such varicosities was evident throughout laminae I-II in the medial half of the dorsal horn. Corticospinal tract axons displayed VGLUT1, indicating that the corticospinal tract is an important source of small VGLUT1 varicosities. VGLUT1 and VGLUT2 were cocontained in small numbers of varicosities in laminae III-IV and IX. Anterogradely labeled spinocervical tract terminals in the lateral cervical nucleus were VGLUT2 immunoreactive. In conclusion, the principal distribution patterns of VGLUT1 and VGLUT2 are essentially similar throughout the rostrocaudal extension of the spinal cord. The mediolateral differences in VGLUT1 distribution in laminae I-II suggest dual origins of VGLUT1-immunoreactive varicosities in this region.
Photothrombosis-induced Focal Ischemia as a Model of Spinal Cord Injury in Mice
Zhang, Nannan; Ding, Shinghua
2015-01-01
Spinal cord injury (SCI) is a devastating clinical condition causing permanent changes in sensorimotor and autonomic functions of the spinal cord (SC) below the site of injury. The secondary ischemia that develops following the initial mechanical insult is a serious complication of the SCI and severely impairs the function and viability of surviving neuronal and non-neuronal cells in the SC. In addition, ischemia is also responsible for the growth of lesion during chronic phase of injury and interferes with the cellular repair and healing processes. Thus there is a need to develop a spinal cord ischemia model for studying the mechanisms of ischemia-induced pathology. Focal ischemia induced by photothrombosis (PT) is a minimally invasive and very well established procedure used to investigate the pathology of ischemia-induced cell death in the brain. Here, we describe the use of PT to induce an ischemic lesion in the spinal cord of mice. Following retro-orbital sinus injection of Rose Bengal, the posterior spinal vein and other capillaries on the dorsal surface of SC were irradiated with a green light resulting in the formation of a thrombus and thus ischemia in the affected region. Results from histology and immunochemistry studies show that PT-induced ischemia caused spinal cord infarction, loss of neurons and reactive gliosis. Using this technique a highly reproducible and relatively easy model of SCI in mice can be achieved that would serve the purpose of scientific investigations into the mechanisms of ischemia induced cell death as well as the efficacy of neuroprotective drugs. This model will also allow exploration of the pathological changes that occur following SCI in live mice like axonal degeneration and regeneration, neuronal and astrocytic Ca2+ signaling using two-photon microscopy. PMID:26274772
The Edwin Smith papyrus: a clinical reappraisal of the oldest known document on spinal injuries
Sanchez, Gonzalo M.; Burridge, Alwyn L.
2010-01-01
Dating from the seventeenth century b.c. the Edwin Smith papyrus is a unique treatise containing the oldest known descriptions of signs and symptoms of injuries of the spinal column and spinal cord. Based on a recent “medically based translation” of the Smith papyrus, its enclosed treasures in diagnostic, prognostic and therapeutic reasoning are revisited. Although patient demographics, diagnostic techniques and therapeutic options considerably changed over time, the documented rationale on spinal injuries can still be regarded as the state-of-the-art reasoning for modern clinical practice. PMID:20697750
Inflammatory cascades mediate synapse elimination in spinal cord compression
2014-01-01
Background Cervical compressive myelopathy (CCM) is caused by chronic spinal cord compression due to spondylosis, a degenerative disc disease, and ossification of the ligaments. Tip-toe walking Yoshimura (twy) mice are reported to be an ideal animal model for CCM-related neuronal dysfunction, because they develop spontaneous spinal cord compression without any artificial manipulation. Previous histological studies showed that neurons are lost due to apoptosis in CCM, but the mechanism underlying this neurodegeneration was not fully elucidated. The purpose of this study was to investigate the pathophysiology of CCM by evaluating the global gene expression of the compressed spinal cord and comparing the transcriptome analysis with the physical and histological findings in twy mice. Methods Twenty-week-old twy mice were divided into two groups according to the magnetic resonance imaging (MRI) findings: a severe compression (S) group and a mild compression (M) group. The transcriptome was analyzed by microarray and RT-PCR. The cellular pathophysiology was examined by immunohistological analysis and immuno-electron microscopy. Motor function was assessed by Rotarod treadmill latency and stride-length tests. Results Severe cervical calcification caused spinal canal stenosis and low functional capacity in twy mice. The microarray analysis revealed 215 genes that showed significantly different expression levels between the S and the M groups. Pathway analysis revealed that genes expressed at higher levels in the S group were enriched for terms related to the regulation of inflammation in the compressed spinal cord. M1 macrophage-dominant inflammation was present in the S group, and cysteine-rich protein 61 (Cyr61), an inducer of M1 macrophages, was markedly upregulated in these spinal cords. Furthermore, C1q, which initiates the classical complement cascade, was more upregulated in the S group than in the M group. The confocal and electron microscopy observations indicated that classically activated microglia/macrophages had migrated to the compressed spinal cord and eliminated synaptic terminals. Conclusions We revealed the detailed pathophysiology of the inflammatory response in an animal model of chronic spinal cord compression. Our findings suggest that complement-mediated synapse elimination is a central mechanism underlying the neurodegeneration in CCM. PMID:24589419
On-line DNA analysis system with rapid thermal cycling
Swerdlow, Harold P.; Wittwer, Carl T.
1999-01-01
An apparatus particularly suited for subjecting biological samples to any necessary sample preparation tasks, subjecting the sample to rapid thermal cycling, and then subjecting the sample to subsequent on-line analysis using one or more of a number of analytical techniques. The apparatus includes a chromatography device including an injection means, a chromatography pump, and a chromatography column. In addition, the apparatus also contains a capillary electrophoresis device consisting of a capillary electrophoresis column with an inlet and outlet end, a means of injection, and means of applying a high voltage to cause the differential migration of species of interest through the capillary column. Effluent from the liquid chromatography column passes over the inlet end of the capillary electrophoresis column through a tee structure and when the loading of the capillary electrophoresis column is desired, a voltage supply is activated at a precise voltage and polarity over a specific duration to cause sample species to be diverted from the flowing stream to the capillary electrophoresis column. A laser induced fluorescence detector preferably is used to analyze the products separated while in the electrophoresis column.
On-line DNA analysis system with rapid thermal cycling
Swerdlow, H.P.; Wittwer, C.T.
1999-08-10
This application describes an apparatus particularly suited for subjecting biological samples to any necessary sample preparation tasks, subjecting the sample to rapid thermal cycling, and then subjecting the sample to subsequent on-line analysis using one or more of a number of analytical techniques. The apparatus includes a chromatography device including an injection means, a chromatography pump, and a chromatography column. In addition, the apparatus also contains a capillary electrophoresis device consisting of a capillary electrophoresis column with an inlet and outlet end, a means of injection, and means of applying a high voltage to cause the differential migration of species of interest through the capillary column. Effluent from the liquid chromatography column passes over the inlet end of the capillary electrophoresis column through a tee structure and when the loading of the capillary electrophoresis column is desired, a voltage supply is activated at a precise voltage and polarity over a specific duration to cause sample species to be diverted from the flowing stream to the capillary electrophoresis column. A laser induced fluorescence detector preferably is used to analyze the products separated while in the electrophoresis column. 6 figs.
MHD Waves in Coronal Loops with a Shell
NASA Astrophysics Data System (ADS)
Mikhalyaev, B. B.; Solov'ev, A. A.
2004-04-01
We consider a model of a coronal loop in the form of a cord surrounded by a coaxial shell. Two slow magnetosonic waves longitudinally propagate within a thin flux tube on the m = 0 cylindrical mode with velocities close to the tube velocities in the cord and the shell. One wave propagates inside the cord, while the other propagates inside the shell. A peculiar feature of the second wave is that the plasma in the cord and the shell oscillates with opposite phases. There are two fast magnetosonic waves on each of the cylindrical modes with m > 0. If the plasma density in the shell is lower than that in the surrounding corona, then one of the waves is radiated into the corona, which causes the loop oscillations to be damped, while the other wave is trapped by the cord, but can also be radiated out under certain conditions. If the plasma density in the shell is higher than that in the cord, then one of the waves is trapped by the shell, while the other wave can also be trapped by the shell under certain conditions. In the wave trapped by the shell and the wave radiated by the tube, the plasma in the cord and the shell oscillates with opposite phases.
Fonseca, Antonio F B DA; Scheffer, Jussara P; Coelho, Barbara P; Aiello, Graciane; Guimarães, Arthur G; Gama, Carlos R B; Vescovini, Victor; Cabral, Paula G A; Oliveira, André L A
2016-09-01
The most common cause of spinal cord injury are high impact trauma, which often result in some motor impairment, sensory or autonomic a greater or lesser extent in the distal areas the level of trauma. In terms of survival and complications due to sequelae, veterinary patients have a poor prognosis unfavorable. Therefore justified the study of experimental models of spinal cord injury production that could provide more support to research potential treatments for spinal cord injuries in medicine and veterinary medicine. Preclinical studies of acute spinal cord injury require an experimental animal model easily reproducible. The most common experimental animal model is the rat, and several techniques for producing a spinal cord injury. The objective of this study was to describe and evaluate the effectiveness of acute spinal cord injury production technique through inflation of Fogarty(r) catheter using rabbits as an experimental model because it is a species that has fewer conclusive publications and contemplating. The main requirements of a model as low cost, handling convenience, reproducibility and uniformity. The technique was adequate for performing preclinical studies in neuro-traumatology area, effectively leading to degeneration and necrosis of the nervous tissue fostering the emergence of acute paraplegia.
Penetrating ocular injury caused by nylon cord fragment from electric lawn trimmer.
Barr, C C; Mitchell, D
1983-09-01
A 58-year-old man sustained a penetrating injury in the left eye from a nylon cord fragment from an electric rotary weed trimmer. Repair of the corneal laceration, foreign body extraction, and anterior vitrectomy were performed. One year post injury the visual acuity was stable at 6/60. The need for protective eyewear when using power tools is emphasized.
Dynamic Detection of Spinal Cord Position During Postural Changes Using Near-Infrared Reflectometry.
Wolf, Erich W
2015-08-01
Motion of the spinal cord relative to a spinal cord stimulator epidural electrode array can cause suboptimal stimulation: either noxious, inefficient, or insufficient. Adaptive stimulation attempts to mitigate these effects by modulating stimulation parameters in a position-dependent fashion. Near-infrared (NIR) reflectometry is demonstrated to provide real-time direct measurement of spinal cord position at the site of stimulation, which can facilitate closed-loop adaptive stimulation during static and dynamic motion states. A miniature sensor array consisting of an NIR light emitting diode flanked by phototransistors potted in epoxy was placed in the dorsal epidural space of a human cadaver at the T8 level via laminotomy. Turgor of the subarachnoid space was maintained by intrathecal infusion of saline. NIR reflectance was measured as the cadaver was rotated about its longitudinal axis on a gantry. NIR reflectance was correlated with gantry position and velocity. NIR reflectometry suggests gravitational force is the primary determinant of cord position in static, ordinal positions. Under dynamic motion conditions, there was statistically significant cross-correlation between reflectometry data and the tangential velocity squared, suggesting that centripetal force was the primary determinant of cord position as the gantry was rotated. Reflectometry data strongly correlated with a simple geometric model of anticipated spinal cord precession within the spinal canal. Spinal cord position during dynamic motion has been shown to differ from static predictions due to additional influences such as centripetal force. These findings underscore limitations in extrapolating spinal cord position from surrogates such as body position or body acceleration at sites remote from the stimulating electrodes. NIR reflectometry offers a real-time direct measure of spinal cord position in both static and dynamic motion states, which may facilitate closed-loop adaptive stimulation applications. © 2015 International Neuromodulation Society.
Syringomyelia: A review of the biomechanics
NASA Astrophysics Data System (ADS)
Elliott, N. S. J.; Bertram, C. D.; Martin, B. A.; Brodbelt, A. R.
2013-07-01
Syringomyelia is a neurological disorder caused by the development of one or more macroscopic fluid-filled cavities in the spinal cord. While the aetiology remains uncertain, hydrodynamics appear to play a role. This has led to the involvement of engineers, who have modelled the system in silico and on the bench. In the process, hypotheses from the neurosurgical literature have been tested, and others generated, while aspects of the system mechanics have been clarified. The spinal cord is surrounded by cerebrospinal fluid (CSF) which is subject both to the periodic excitation of CSF expelled from the head with each heartbeat, and to intermittent larger transients from cough, sneeze, etc., via vertebral veins. The resulting pulsatile flow and pressure wave propagation, and their possible effects on cord cavities and cord stresses, have been elucidated. These engineering contributions are here reviewed for the first time.
Schallert, Timothy; Schmidt, Christine E.
2013-01-01
Cervical spinal cord injury (cSCI) can cause devastating neurological deficits, including impairment or loss of upper limb and hand function. A majority of the spinal cord injuries in humans occur at the cervical levels. Therefore, developing cervical injury models and developing relevant and sensitive behavioral tests is of great importance. Here we describe the use of a newly developed forelimb step-alternation test after cervical spinal cord injury in rats. In addition, we describe two behavioral tests that have not been used after spinal cord injury: a postural instability test (PIT), and a pasta-handling test. All three behavioral tests are highly sensitive to injury and are easy to use. Therefore, we feel that these behavioral tests can be instrumental in investigating therapeutic strategies after cSCI. PMID:24084700
Khaing, Zin Z; Geissler, Sydney A; Schallert, Timothy; Schmidt, Christine E
2013-09-16
Cervical spinal cord injury (cSCI) can cause devastating neurological deficits, including impairment or loss of upper limb and hand function. A majority of the spinal cord injuries in humans occur at the cervical levels. Therefore, developing cervical injury models and developing relevant and sensitive behavioral tests is of great importance. Here we describe the use of a newly developed forelimb step-alternation test after cervical spinal cord injury in rats. In addition, we describe two behavioral tests that have not been used after spinal cord injury: a postural instability test (PIT), and a pasta-handling test. All three behavioral tests are highly sensitive to injury and are easy to use. Therefore, we feel that these behavioral tests can be instrumental in investigating therapeutic strategies after cSCI.
Rohan, Zdeněk; Matěj, Radoslav
2015-01-01
Brain and spinal cord autopsies aimed at neuropathological diagnosis of the causes of dementia and motor abnormalities are of increasing importance. Neuropathological brain examination is often the only diagnostic modality capable of definitive diagnosis of a neurodegenerative disease and thus serves as invaluable feedback for clinicians and biochemical and imaging diagnostics. The brain and spinal cord autopsy is performed following a standardized protocol and its goal is to sample all diagnostically relevant structures. Subsequent diagnostics are then done using standard and special histologic stainings, however state-of-the-art diagnostics can be achieved only using immunohistochemical methods. The purpose of the article is to provide the pathologists with a brief and practical guideline for brain and spinal cord autopsy when diagnosis of a neurodegenerative disease is suspected.
Walters, Arthur S; Rye, David B
2009-05-01
Evidence is reviewed documenting an intimate relationship among restless legs syndrome (RLS) / periodic limb movements in sleep (PLMS) and hypertension and cardiovascular and cerebrovascular disease. Sympathetic overactivity is associated with RLS/PLMS, as manifested by increased pulse rate and blood pressure coincident with PLMS. Causality is far from definitive. Mechanisms are explored as to how RLS/PLMS may lead to high blood pressure, heart disease, and stroke: (a) the sympathetic hyperactivity associated with RLS/PLMS may lead to daytime hypertension that in turn leads to heart disease and stroke; (b) in the absence of daytime hypertension, this sympathetic hyperactivity may predispose to heart disease and stroke either directly or indirectly via atherosclerotic plaque formation and rupture; and (c) comorbidities associated with RLS/PLMS, such as renal failure, diabetes, iron deficiency, and insomnia, may predispose to heart disease and stroke. One theoretical cause for sympathetic hyperactivity is insufficient All diencephalospinal dopaminergic neuron inhibition of sympathetic preganglionic neurons residing in the intermediolateral cell columns of the spinal cord. We cannot exclude the possibility that peripheral vascular, cardiovascular, and cerebrovascular disease may also contribute to RLS/PLMS, and mechanisms for these possibilities are also discussed.
Brown, J. Howard; Orcutt, Marion L.
1920-01-01
Bacillus pyogenes is probably quite common in this country, as it is known to be in Europe. A careful study of twelve strains from cattle and one from a hog has disclosed the following characteristics which have not been reported or have been in dispute. Bacillus pyogenes is Gram-positive and pleomorphic, producing forms ranging from short chains of streptococcoid elements to branching filaments. It is hemolytic, producing the beta type of hemolysis in blood agar. It is not hemoglobinophilic, though its growth is greatly favored by some higher protein material such as egg albumin, serum, or blood. It ferments xylose in addition to the substances previously reported. The coagulation of milk by Bacillus pyogenes is primarily an enzyme coagulation and the subsequent digestion of the curd takes place in an acid medium. The intravenous injection of rabbits was invariably fatal. The lesions most commonly developed were those of the bones. Paralysis was frequently produced, and in each case was caused by lesions in the vertebrae exerting pressure against the ventral columns of the spinal cord. Muscle abscesses were also frequently produced. The authors regard the organism as belonging to the Corynebacteria rather than to the influenza group. PMID:19868442
Breaking the News in Spinal Cord Injury
Kirshblum, Steven; Fichtenbaum, Joyce
2008-01-01
Summary: Breaking the bad news in terms of prognosis for significant motor recovery following a neurologically complete spinal cord injury (SCI) is one of the most difficult tasks for the spinal cord medicine specialist. Learning the skills to facilitate this communication is extremely important to better assist patients to understand their prognosis as well as foster hope for their future. If bad news is delivered poorly it can cause confusion and long-lasting distress and resentment; if done well, it may assist understanding, adjustment, and acceptance. This article provides the physician who cares for patients with SCI with some concepts to consider when discussing prognosis with patients and their families. PMID:18533406
Martin, Bryn A; Labuda, Richard; Royston, Thomas J; Oshinski, John N; Iskandar, Bermans; Loth, Francis
2010-11-01
Full explanation for the pathogenesis of syringomyelia (SM), a neuropathology characterized by the formation of a cystic cavity (syrinx) in the spinal cord (SC), has not yet been provided. It has been hypothesized that abnormal cerebrospinal fluid (CSF) pressure, caused by subarachnoid space (SAS) flow blockage (stenosis), is an underlying cause of syrinx formation and subsequent pain in the patient. However, paucity in detailed in vivo pressure data has made theoretical explanations for the syrinx difficult to reconcile. In order to understand the complex pressure environment, four simplified in vitro models were constructed to have anatomical similarities with post-traumatic SM and Chiari malformation related SM. Experimental geometry and properties were based on in vivo data and incorporated pertinent elements such as a realistic CSF flow waveform, spinal stenosis, syrinx, flexible SC, and flexible spinal column. The presence of a spinal stenosis in the SAS caused peak-to-peak cerebrospinal fluid CSF pressure fluctuations to increase rostral to the stenosis. Pressure with both stenosis and syrinx present was complex. Overall, the interaction of the syrinx and stenosis resulted in a diastolic valve mechanism and rostral tensioning of the SC. In all experiments, the blockage was shown to increase and dissociate SAS pressure, while the axial pressure distribution in the syrinx remained uniform. These results highlight the importance of the properties of the SC and spinal SAS, such as compliance and permeability, and provide data for comparison with computational models. Further research examining the influence of stenosis size and location, and the importance of tissue properties, is warranted.
Role of MRI in differentiating various causes of non-traumatic paraparesis and tetraparesis.
Ahmed, Nisar; Akram, Hamid; Qureshi, Ishtiaq Ahmed
2004-10-01
To assess the frequency of various causes of non-traumatic paraparesis and tetraparesis in adults based only on the findings of magnetic resonance imaging (MRI). Non-interventional descriptive study carried out from May 2001 to October 2002 at Radiology Department, CMH, Rawalpindi. A total of 100 adult patients who presented with non-traumatic paraparesis or tetraparesis, were studied. MRI spine of all the patients and MRI brain of selected patients, was carried out. Based on MRI findings alone causes of non-traumatic paraparesis and tetraparesis were categorized. Paraparesis was more frequent than tetraparesis. Cord compression was found in 72% cases. Neoplastic compression, infective spondylitis and non-compressive myelopathies were the main causes of paraparesis while spondylotic myelopathy was the main cause of tetraparesis. Based upon MRI findings causes of non-traumatic paraparesis or tetraparesis can be subcategorized into spondylotic, infective or neoplastic cord compression and non-compressive myelopathies. Further subcategorization of neoplastic lesions according to their compartment of origin can also be done.
Büyükuslu, Nihal; Ovalı, Sema; Altuntaş, Şükriye Leyla; Batırel, Saime; Yiğit, Pakize; Garipağaoğlu, Muazzez
2017-10-01
Omega-3 fatty acids (n-3 FA), specifically DHA, are associated with fetal growth and development. We aimed to determine the levels of DHA and EPA in cord serum after n-3 FA supplementation during the last trimester of pregnancy. Among 55 women, 23 were administered daily one capsule of n-3 FA supplement, involving DHA/EPA in a ratio of 1/1.3. Twenty nine women were enrolled as control group. Blood samples were collected at 22-24 weeks of gestation and at delivery. Fatty acids were analyzed with the method of GC-MS. Cord DHA level increased and EPA level decreased in both groups between the days of 22-24 and delivery. However, decrease in cord EPA level was significant in control group (p < 0.001) but not in supplement group (p > 0.05). Supplementation of DHA/EPA in a ratio of 1/1.3 during the last trimester of pregnancy caused higher cord EPA level compared to control group indicating an accumulation in umbilical cord. Copyright © 2017 Elsevier Ltd. All rights reserved.
Risk and Protective Factors for Cause-Specific Mortality After Spinal Cord Injury.
Krause, James S; Cao, Yue; DeVivo, Michael J; DiPiro, Nicole D
2016-10-01
To investigate the association of multiple sets of risk and protective factors (biographic and injury, socioeconomic, health) with cause-specific mortality after spinal cord injury (SCI). Retrospective analysis of a prospectively created cohort. Spinal Cord Injury Model Systems facilities. Adults (N=8157) with traumatic SCI who were enrolled in a model systems facility after 1973 and received follow-up evaluation that included all study covariates (between November 1, 1995 and October 31, 2006). Not applicable. All-cause mortality was determined using the Social Security Death Index as of January 1, 2014. Causes of death were obtained from the National Death Index and classified as infective and parasitic diseases, neoplasms, respiratory system diseases, heart and blood vessel diseases, external causes, and other causes. Competing risk analysis, with time-dependent covariates, was performed with hazard ratios (HRs) for each cause of death. The HRs for injury severity indicators were highest for deaths due to respiratory system diseases (highest HR for injury level C1-4, 4.84) and infective and parasitic diseases (highest HR for American Spinal Injury Association Impairment Scale grade A, 5.70). In contrast, injury level and American Spinal Injury Association Impairment Scale grade were relatively unrelated to death due to neoplasms and external causes. Of the socioeconomic indicators, education and income were significantly predictive of a number of causes of death. Pressure ulcers were the only 1 of 4 secondary health condition indicators consistently related to cause of death. Injury severity was related to mortality due to infective disease and respiratory complications, suggesting that those with the most severe SCI should be targeted for prevention of these causes. Socioeconomic and health factors were more broadly related to a number of causes of death. Intervention strategies that enhance socioeconomic status and health may also result in reduced mortality due to multiple causes. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Mirabella, M; Servidei, S; Broccolini, A; Gandolfi, N; Ricci, E; Neri, G; Tonali, P; Brahe, C
1999-04-01
Spinal muscular atrophy (SMA) is caused by homozygous absence of the telomeric copy of the survival motor neuron (SMNt) gene. SMNt and its homologous centromeric copy (SMNc) encode the SMN protein, which is markedly reduced in SMA I patients. We have performed SMN transcript and protein studies on spinal cord sections of an SMA I patient using in situ hybridization and immunofluorescence. While the amount of protein was negligible, the level of transcripts was comparable with that of controls. These findings suggest that the reduced protein level is not caused by a deficient transcription of the SMNc gene.
Suresh Kumar, M. A.; Peluso, Michael; Chaudhary, Pankaj; ...
2015-07-24
Ionizing radiation causes degeneration of myelin, the insulating sheaths of neuronal axons, leading to neurological impairment. As radiation research on the central nervous system has predominantly focused on neurons, with few studies addressing the role of glial cells, we have focused our present research on identifying the latent effects of single/ fractionated -low dose of low/ high energy radiation on the role of base excision repair protein Apurinic Endonuclease-1, in the rat spinal cords oligodendrocyte progenitor cells ’ differentiation. Apurinic endonuclease-1 is predominantly upregulated in response to oxidative stress by low- energy radiation, and previous studies show significant induction ofmore » Apurinic Endonucle- ase-1 in neurons and astrocytes. Our studies show for the first time, that fractionation of pro- tons cause latent damage to spinal cord architecture while fractionation of HZE ( 28Si) induce increase in APE1 with single dose, which then decreased with fractionation. In conclusion, the oligoden- drocyte progenitor cells differentiation was skewed with increase in immature oligodendro- cytes and astrocytes, which likely cause the observed decrease in white matter, increased neuro-inflammation, together leading to the observed significant cognitive defects« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suresh Kumar, M. A.; Peluso, Michael; Chaudhary, Pankaj
Ionizing radiation causes degeneration of myelin, the insulating sheaths of neuronal axons, leading to neurological impairment. As radiation research on the central nervous system has predominantly focused on neurons, with few studies addressing the role of glial cells, we have focused our present research on identifying the latent effects of single/ fractionated -low dose of low/ high energy radiation on the role of base excision repair protein Apurinic Endonuclease-1, in the rat spinal cords oligodendrocyte progenitor cells ’ differentiation. Apurinic endonuclease-1 is predominantly upregulated in response to oxidative stress by low- energy radiation, and previous studies show significant induction ofmore » Apurinic Endonucle- ase-1 in neurons and astrocytes. Our studies show for the first time, that fractionation of pro- tons cause latent damage to spinal cord architecture while fractionation of HZE ( 28Si) induce increase in APE1 with single dose, which then decreased with fractionation. In conclusion, the oligoden- drocyte progenitor cells differentiation was skewed with increase in immature oligodendro- cytes and astrocytes, which likely cause the observed decrease in white matter, increased neuro-inflammation, together leading to the observed significant cognitive defects« less
Gressot, Loyola V; Mata, Javier A; Luerssen, Thomas G; Jea, Andrew
2015-02-01
Spondyloptosis refers to complete dislocation of a vertebral body onto another. The L5-S1 level is frequently affected. As this condition is rare, few published reports describing its clinical features and surgical outcomes exist, especially in the pediatric patient population. The authors report the presentation, pathological findings, and radiographic studies of a 2-year-old girl who presented to Texas Children's Hospital with a history since birth of progressive spastic paraparesis. Preoperative CT and MRI showed severe spinal cord compression associated with T11-12 spondyloptosis. The patient underwent a single-stage posterior approach for complete resection of the dysplastic vertebral bodies at the apex of the spinal deformity with reconstruction and stabilization of the vertebral column using a titanium expandable cage and pedicle screws. At the 12-month follow-up, the patient remained neurologically stable without any radiographic evidence of instrumentation failure or loss of alignment. To the best of the authors' knowledge, there have been only 2 other children with congenital thoracolumbar spondyloptosis treated with the above-described strategy. The authors describe their case and review the literature to discuss the aggregate clinical features, surgical strategies, and operative outcomes for congenital thoracolumbar spondyloptosis.
Partata, W A; Krepsky, A M R; Xavier, L L; Marques, M; Achaval, M
2003-04-01
Immunoreactive substance P was investigated in turtle lumbar spinal cord after sciatic nerve transection. In control animals immunoreactive fibers were densest in synaptic field Ia, where the longest axons invaded synaptic field III. Positive neuronal bodies were identified in the lateral column of the dorsal horn and substance P immunoreactive varicosities were observed in the ventral horn, in close relationship with presumed motoneurons. Other varicosities appeared in the lateral and anterior funiculi. After axotomy, substance P immunoreactive fibers were reduced slightly on the side of the lesion, which was located in long fibers that invaded synaptic field III and in the varicosities of the lateral and anterior funiculus. The changes were observed at 7 days after axonal injury and persisted at 15, 30, 60 and 90 days after the lesion. These findings show that turtles should be considered as a model to study the role of substance P in peripheral axonal injury, since the distribution and temporal changes of substance P were similar to those found in mammals.
'Crashing' the rugby scrum -- an avoidable cause of cervical spinal injury. Case reports.
Scher, A T
1982-06-12
Deliberate crashing of the opposing packs prior to a rugby scrum is an illegal but commonly practised manoeuvre which can lead to abnormal flexion forces being applied to players in the front row, with resultant cervical spine and spinal cord injury. Two cases of cervical spinal cord injury sustained in this manner are presented. The mechanism of injury, the forces involved and preventive measures are discussed.
Cherif, S; Danino, S; Yoganathan, K
2015-03-01
Hoarseness of voice due to vocal cord paresis as a result of recurrent laryngeal nerve palsy has been well recognised. Recurrent laryngeal nerve palsy is commonly caused by compression due to tumour or lymph nodes or by surgical damage. Vinca alkaloids are well known to cause peripheral neuropathy. However, vinca alkaloids causing recurrent laryngeal nerve palsy has been reported rarely in children. We report a case of an adult patient with HIV who developed hoarseness of voice due to vocal cord paralysis during vinblastine treatment for Hodgkin lymphoma. Mediastinal and hilar lymph node enlargement in such patients may distract clinicians from considering alternative causes of recurrent laryngeal nerve palsy, with potential ensuing severe or even life-threatening stridor. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Burk, Raymond F; Christensen, Joani M; Maguire, Mark J; Austin, Lori M; Whetsell, William O; May, James M; Hill, Kristina E; Ebner, Ford F
2006-06-01
A short period of combined deficiency of vitamins E and C causes profound central nervous system (CNS) dysfunction in guinea pigs. For this report, CNS histopathology was studied to define the nature and extent of injury caused by this double deficiency. Weanling guinea pigs were fed a vitamin E-deficient or -replete diet for 14 d. Then vitamin C was withdrawn from the diet of some guinea pigs. Four diet groups were thus formed: replete, vitamin E deficient, vitamin C deficient, and both vitamin E and C deficient. From 5 to 11 d after institution of the doubly deficient diet, 9 of 12 guinea pigs developed paralysis, and 2 more were found dead. The remaining guinea pig in the doubly deficient group and all animals in the other 3 groups survived without clinical impairment until the experiment was terminated at 13-15 d. Brains and spinal cords were serially sectioned and stained for examination. Only the combined deficiency produced damage in the CNS. The damage consisted mainly of nerve cell death, axonal degeneration, vascular injury, and associated glial cell responses. The spinal cord and the ventral pons in the brainstem were most severely affected, often exhibiting asymmetric cystic lesions. Several features of the lesions suggest that the primary damage was to blood vessels. These results indicate that the paralysis and death caused by combined deficiency of vitamins E and C in guinea pigs is caused by severe damage in the brainstem and spinal cord.
[Acute non-traumatic myelopathy in children and adolescents].
Arroyo, Hugo A
2013-09-06
The term 'acute myelopathies'--referred to a spinal cord dysfunction--represent a heterogeneous group of disorders with distinct etiologies, clinical and radiologic features, and prognoses. The objective of this review is to discuss the non-traumatic acute myelopathies. Acute myelopathy can be due to several causes as infective agents or inflammatory processes, such as in acute myelitis, compressive lesions, vascular lesions, etc. The clinical presentation is often dramatic with tetraparesis or paraparesis, sensory disturbances and bladder and/or bowel dysfunction. History and physical examination are used to localize the lesion to the root or specific level of the cord, which can guide imaging. Different syndromes are recognized: complete transverse lesion, central grey matter syndrome, anterior horn syndrome, anterior spinal artery syndrome, etc). The first priority is to rule out a compressive lesion. If a myelopathy is suspected, a gadolinium-enhanced MRI of the spinal cord should be obtained as soon as possible. If there is no structural lesion such as epidural blood or a spinal mass, then the presence or absence of spinal cord inflammation should be documented with a lumbar puncture. The absence of pleocytosis would lead to consideration of non inflammatory causes of myelopathy such as arteriovenous malformations, fibrocartilaginous embolism, or possibly early inflammatory myelopathy. In the presence of an inflammatory process (defined by gadolinium enhancement, cerebrospinal fluid pleocytosis, or elevated cerebrospinal fluid immunoglobulin index), one should determine whether there is an inflammatory or an infectious cause. Different virus, bacterias, parasites and fungi have to be considered as autoimmune and inflammatory diseases that involve the central nervous system.
Cannabidiol-treated rats exhibited higher motor score after cryogenic spinal cord injury.
Kwiatkoski, Marcelo; Guimarães, Francisco Silveira; Del-Bel, Elaine
2012-04-01
Cannabidiol (CBD), a non-psychoactive constituent of cannabis, has been reported to induce neuroprotective effects in several experimental models of brain injury. We aimed at investigating whether this drug could also improve locomotor recovery of rats submitted to spinal cord cryoinjury. Rats were distributed into five experimental groups. Animals were submitted to laminectomy in vertebral segment T10 followed or not by application of liquid nitrogen for 5 s into the spinal cord at the same level to cause cryoinjury. The animals received injections of vehicle or CBD (20 mg/kg) immediately before, 3 h after and daily for 6 days after surgery. The Basso, Beattie, and Bresnahan motor evaluation test was used to assess motor function post-lesion one day before surgery and on the first, third, and seventh postoperative days. The extent of injury was evaluated by hematoxylin-eosin histology and FosB expression. Cryogenic lesion of the spinal cord resulted in a significant motor deficit. Cannabidiol-treated rats exhibited a higher Basso, Beattie, and Bresnahan locomotor score at the end of the first week after spinal cord injury: lesion + vehicle, day 1: zero, day 7: four, and lesion + Cannabidiol 20 mg/kg, day 1: zero, day 7: seven. Moreover, at this moment there was a significant reduction in the extent of tissue injury and FosB expression in the ventral horn of the spinal cord. The present study confirmed that application of liquid nitrogen to the spinal cord induces reproducible and quantifiable spinal cord injury associated with locomotor function impairments. Cannabidiol improved locomotor functional recovery and reduced injury extent, suggesting that it could be useful in the treatment of spinal cord lesions.
Shroff, Geeta
2017-02-01
Introduction Spinal cord injury is a cause of severe disability and mortality. The pharmacological and non-pharmacological methods used, are unable to improve the quality of life in spinal cord injury. Spinal disorders have been treated with human embryonic stem cells. Magnetic resonance imaging and tractography were used as imaging modality to document the changes in the damaged cord, but the magnetic resonance imaging tractography was seen to be more sensitive in detecting the changes in the spinal cord. The present study was conducted to evaluate the diagnostic modality of magnetic resonance imaging tractography to determine the efficacy of human embryonic stem cells in chronic spinal cord injury. Materials and methods The study included the patients with spinal cord injury for whom magnetic resonance imaging tractography was performed before and after the therapy. Omniscan (gadodiamide) magnetic resonance imaging tractography was analyzed to assess the spinal defects and the improvement by human embryonic stem cell treatment. The patients were also scored by American Spinal Injury Association scale. Results Overall, 15 patients aged 15-44 years with clinical manifestations of spinal cord injury had magnetic resonance imaging tractography performed. The average treatment period was nine months. The majority of subjects ( n = 13) had American Spinal Injury Association score A, and two patients were at score C at the beginning of therapy. At the end of therapy, 10 patients were at score A, two patients were at score B and three patients were at score C. Improvements in patients were clearly understood through magnetic resonance imaging tractography as well as in clinical signs and symptoms. Conclusion Magnetic resonance imaging tractography can be a crucial diagnostic modality to assess the improvement in spinal cord injury patients.
Extraction of motor activity from the cervical spinal cord of behaving rats
NASA Astrophysics Data System (ADS)
Prasad, Abhishek; Sahin, Mesut
2006-12-01
Injury at the cervical region of the spinal cord results in the loss of the skeletal muscle control from below the shoulders and hence causes quadriplegia. The brain-computer interface technique is one way of generating a substitute for the lost command signals in these severely paralyzed individuals using the neural signals from the brain. In this study, we are investigating the feasibility of an alternative method where the volitional signals are extracted from the cervical spinal cord above the point of injury. A microelectrode array assembly was implanted chronically at the C5-C6 level of the spinal cord in rats. Neural recordings were made during the face cleaning behavior with forelimbs as this task involves cyclic forelimb movements and does not require any training. The correlation between the volitional motor signals and the elbow movements was studied. Linear regression technique was used to reconstruct the arm movement from the rectified-integrated version of the principal neural components. The results of this study demonstrate the feasibility of extracting the motor signals from the cervical spinal cord and using them for reconstruction of the elbow movements.
Clinical Response of 277 Patients with Spinal Cord Injury to Stem Cell Therapy in Iraq
Hammadi, Abdulmajeed Alwan; Marino, Andolina; Farhan, Saad
2012-01-01
Background and Objectives: Spinal cord injury is a common neurological problem secondary to car accidents, war injuries and other causes, it may lead to varying degrees of neurological disablement, and apart from physiotherapy there is no available treatment to regain neurological function loss. Our aim is to find a new method using autologous hematopoietic stem cells to gain some of the neurologic functions lost after spinal cord injury. Methods and Results: 277 patients suffering from spinal cord injury were submitted to an intrathecally treatment with peripheral stem cells. The cells were harvested from the peripheral blood after a treatment with G-CSF and then concentrated to 4∼ 6 ml. 43% of the patients improved; ASIA score shifted from A to B in 88 and from A to C in 32. The best results were achieved in patients treated within one year from the injury. Conclusions: Since mesenchymal cells increase in the peripheral blood after G-CSF stimulation, a peripheral blood harvest seems easier and cheaper than mesenchymal cell cultivation prior to injection. It seems reasonable treatment for spinal cord injury. PMID:24298358
Transcutaneous electrical neurostimulation in musculoskeletal pain of acute spinal cord injuries.
Richardson, R R; Meyer, P R; Cerullo, L J
1980-01-01
Cervical, thoracic, thoracolumbar, and lumbar fractures associated with physiologic complete or incomplete spinal cord injuries frequently have severe soft-tissue injury as well as severe pain associated with the site or area of injury. Transcutaneous electrical neurostimulation has proved effective in the treatment of various causes of severe acute and chronic intractable pains. We applied this modality to a group of 20 patients who had acute spinal cord injuries and pain associated with severe, extensive soft-tissue injury. Its advantages include ease of application, lack of major complications, increased intestinal peristalsis, and avoidance of narcotic analgesic medications. It also produced significant (greater than 50%) pain relief in 75% of patients treated by transcutaneous electrical neurostimulation.
Hamilton, Alexander J; Whitehead, Duncan J; Bull, Matthew D; D'Souza, Richard J
2010-11-30
We report on the case of an established perinuclear antineutrophil cytoplasmic antibody (pANCA) associated renal vasculitis being treated with prednisolone and rituximab, where the patient presented with leg weakness, urinary and faecal incontinence and buttock pain consistent with transverse myelitis. The patient underwent MRI scanning showing patchy cord enhancement from T10 to the conus, which was suggestive of a cord malignancy. Prior to a cord biopsy, he was treated with steroids and a repeat MRI showed resolution of the original lesion with a new similar lesion from C7 to T3. He made a marked recovery after further treatment with high dose steroids and plasma exchange.
Lusilla-Palacios, Pilar; Castellano-Tejedor, Carmina; Lucrecia-Ramírez-Garcerán; Navarro-Sanchís, José A; Rodríguez-Urrutia, Amanda; Parramon-Puig, Gemma; Valero-Ventura, Sergi; Cuxart-Fina, Ampar
2015-10-01
Acute spinal cord injury leaves patients severely impaired and generates high levels of psychological distress among them and their families, which can cause a less active role in rehabilitation, worse functional recovery, and less perceived satisfaction with the results. Additionally, rehabilitation professionals who deal with this psychological distress could ultimately experience higher stress and more risk of burnout. This article presents the study protocol of the ESPELMA project, aimed to train rehabilitation professionals in the clinical management of acute spinal cord injury-associated psychological distress, and to measure the impact of this training on the patients' perceived satisfaction with treatment. © The Author(s) 2013.
A 51-year-old man with intramedullary spinal cord abscess having a patent foramen ovale
Higuchi, Kanako; Ishihara, Hiroyuki; Okuda, Shiho; Kanda, Fumio
2011-01-01
The authors report a case of a 51-year-old man with intramedullary spinal cord abscess (ISCA) having a patent foramen ovale (PFO). He developed fever and tetraplegia after a recent dental treatment. MRI showed ISCA with longitudinal swelling from the upper cervical to the lumbar spinal cord. Cerebrospinal fluid (CSF) analysis indicated bacterial meningitis, and the culture of CSF revealed Streptococcus viridans. Transoesophageal echocardiography revealed the existence of a PFO. We suspected another possibility other than systemic bacteraemia, that paradoxical bacteric embolisation through PFO after the dental treatment caused ISCA. While several reports of brain abscess with PFO are available, this is the first report of ISCA with PFO. PMID:22696715
Central Pontine and Extrapontine Myelinolysis: The Great Masquerader—An Autopsy Case Report
Jacob, Sajish; Nikolic, Dejan; Gundogdu, Betul; Ong, Shirley
2014-01-01
Central pontine myelinolysis is a demyelinating disorder characterized by the loss of myelin in the center of the basis pontis usually caused by rapid correction of chronic hyponatremia. The clinical features vary depending on the extent of involvement. Demyelination can occur outside the pons as well and diagnosis can be challenging if both pontine and extrapontine areas are involved. We herein report a case of myelinolysis involving pons, lateral geniculate bodies, subependymal region, and spinal cord. To the best of our knowledge, this case represents the second case of spinal cord involvement in osmotic demyelination syndrome and the first case of involvement of thoracic region of spinal cord. PMID:24716023
Improved Characterization of Combat Injury
2010-05-01
cause and mechanism of injury, wound descriptions, injuries, outcomes, and patient management from point of wounding onward. Because of the high numbers...fourth cervical vertebra (C4) with cord contusion and incomplete cord syndrome 640214.4 640214.5 From 4 to 5 MAIS 4 5 From severe to critical 2...entered into the SWM database, and analyzed for entrance site and wounding path. Results: When data on 1,151 patients , who had a total of 3,500 surface
Smith, Justin S; Lafage, Virginie; Ryan, Devon J; Shaffrey, Christopher I; Schwab, Frank J; Patel, Alpesh A; Brodke, Darrel S; Arnold, Paul M; Riew, K Daniel; Traynelis, Vincent C; Radcliff, Kris; Vaccaro, Alexander R; Fehlings, Michael G; Ames, Christopher P
2013-10-15
Post hoc analysis of prospectively collected data. Development of methods to determine in vivo spinal cord dimensions and application to correlate preoperative alignment, myelopathy, and health-related quality-of-life scores in patients with cervical spondylotic myelopathy (CSM). CSM is the leading cause of spinal cord dysfunction. The association between cervical alignment, sagittal balance, and myelopathy has not been well characterized. This was a post hoc analysis of the prospective, multicenter AOSpine North America CSM study. Inclusion criteria for this study required preoperative cervical magnetic resonance imaging (MRI) and neutral sagittal cervical radiography. Techniques for MRI assessment of spinal cord dimensions were developed. Correlations between imaging and health-related quality-of-life scores were assessed. Fifty-six patients met inclusion criteria (mean age = 55.4 yr). The modified Japanese Orthopedic Association (mJOA) scores correlated with C2-C7 sagittal vertical axis (SVA) (r = -0.282, P = 0.035). Spinal cord volume correlated with cord length (r = 0.472, P < 0.001) and cord average cross-sectional area (r = 0.957, P < 0.001). For all patients, no correlations were found between MRI measurements of spinal cord length, volume, mean cross-sectional area or surface area, and outcomes. For patients with cervical lordosis, mJOA scores correlated positively with cord volume (r = 0.366, P = 0.022), external cord area (r = 0.399, P = 0.012), and mean cross-sectional cord area (r = 0.345, P = 0.031). In contrast, for patients with cervical kyphosis, mJOA scores correlated negatively with cord volume (r = -0.496, P = 0.043) and mean cross-sectional cord area (r = -0.535, P = 0.027). This study is the first to correlate cervical sagittal balance (C2-C7 SVA) to myelopathy severity. We found a moderate negative correlation in kyphotic patients of cord volume and cross-sectional area to mJOA scores. The opposite (positive correlation) was found for lordotic patients, suggesting a relationship of cord volume to myelopathy that differs on the basis of sagittal alignment. It is interesting to note that sagittal balance but not kyphosis is tied to myelopathy score. Future work will correlate alignment changes to cord morphology changes and myelopathy outcomes. SUMMARY STATEMENTS: This is the first study to correlate sagittal balance (C2-C7 SVA) to myelopathy severity. We found a moderate negative correlation in kyphotic patients of cord volume and cross-sectional area to mJOA scores. The opposite (positive correlation) was found for lordotic patients, suggesting a relationship of cord volume to myelopathy that differs on the basis of sagittal alignment.
Nitrous Oxide Abuse and Vitamin B12 Action in a 20-Year-Old Woman: A Case Report.
Duque, Miriam Andrea; Kresak, Jesse L; Falchook, Adam; Harris, Neil S
2015-01-01
Herein, we report a case of a 20-year-old (ethnicity not reported) woman with a history of nitrous oxide abuse and clinical symptoms consistent with spinal cord subacute combined degeneration with associated low serum concentrations of vitamin B12, elevated methylmalonic acid levels, and radiologic evidence of demyelination of the dorsal region of the spinal column. The health of the patient improved dramatically with B12 supplementation. In this case, we discuss the interaction of nitrous oxide with the enzymatic pathways involved in the biochemistry of vitamin B12. Copyright© by the American Society for Clinical Pathology (ASCP).
[Percutaneous needle aponeurotomy for Dupuytren's disease].
Spies, C K; Müller, L P; Skouras, E; Bassemir, D; Hahn, P; Unglaub, F
2016-02-01
Percutaneous transverse aponeurotomy of the cord by using a hypodermic needle as a scalpel blade in order to improve function of the hand. Symptomatic flexion contracture with positive table top test caused by a single, palpable cord within the palm (primarily Tubiana stages I and II). Multiple, infiltrating or broad-based cords within the palm; irritated skin conditions; exclusive digital cord localization; recurrence after aponeurectomy; previous surgical intervention at the site of interest, digital nerve lesions; lack of patient compliance. Pinpoint surface anesthesia is obtained by injecting each portal area subdermally with 0.1 ml of local anesthetic. These applications start from distally to proximally within the palm while the most distal injection site is located proximal to the distal palm crease. Then the needle tip is introduced perpendicular to the cord. Sawing movements through the cord are performed transversely. While passively extending the contracted finger, the cord is held under tension which guarantees safe cutting. Patients are encouraged to report immediate pain sensation or numbness in order to prevent injuries to neurovascular structures and active finger flexion excludes tendon lesions during the procedure. Introducing the needle tip may be performed at several sites along the cord, if necessary, from distal to proximal at least 5 mm apart with prior pinpoint surface anesthesia. Finally, cautious passive stretching may be done after each release. Bandaging allowing immediate motion; application of a hand-based extension splint-glove during the night for 3-6 months. Recurrence rate was 53% in 15 retrospectively examined patients after a mean interval of 40 months postoperatively.
Automatic 3D segmentation of spinal cord MRI using propagated deformable models
NASA Astrophysics Data System (ADS)
De Leener, B.; Cohen-Adad, J.; Kadoury, S.
2014-03-01
Spinal cord diseases or injuries can cause dysfunction of the sensory and locomotor systems. Segmentation of the spinal cord provides measures of atrophy and allows group analysis of multi-parametric MRI via inter-subject registration to a template. All these measures were shown to improve diagnostic and surgical intervention. We developed a framework to automatically segment the spinal cord on T2-weighted MR images, based on the propagation of a deformable model. The algorithm is divided into three parts: first, an initialization step detects the spinal cord position and orientation by using the elliptical Hough transform on multiple adjacent axial slices to produce an initial tubular mesh. Second, a low-resolution deformable model is iteratively propagated along the spinal cord. To deal with highly variable contrast levels between the spinal cord and the cerebrospinal fluid, the deformation is coupled with a contrast adaptation at each iteration. Third, a refinement process and a global deformation are applied on the low-resolution mesh to provide an accurate segmentation of the spinal cord. Our method was evaluated against a semi-automatic edge-based snake method implemented in ITK-SNAP (with heavy manual adjustment) by computing the 3D Dice coefficient, mean and maximum distance errors. Accuracy and robustness were assessed from 8 healthy subjects. Each subject had two volumes: one at the cervical and one at the thoracolumbar region. Results show a precision of 0.30 +/- 0.05 mm (mean absolute distance error) in the cervical region and 0.27 +/- 0.06 mm in the thoracolumbar region. The 3D Dice coefficient was of 0.93 for both regions.
Balykin, M V; Yakupov, R N; Mashin, V V; Kotova, E Yu; Balykin, Yu M; Gerasimenko, Yu P
The objective of the present study was to evaluate the influence of non-invasive (transcutaneous) electrical spinal cord stimulation on the locomotor function of the patients suffering from movement disorders. The study involved 10 patients of both sexes at the age from 32 to 70 years (including 40% of men and 60% of women) presenting with the compromised locomotor function of varying severity associated with the disturbances of cerebral blood circulation caused either by an injury to the brain and spinal cord or by stroke. The transcutaneous electrical spinal cord stimulation was applied using different frequency regimes with the placement of the electrodes in the projection onto the region of TXI-TXII vertebrae. The active factors were bipolar electrical stimuli 0.5 ms in duration; the current strength was chosen for each patient on an individual basis taking into consideration its threshold level. Electromyograms and evoked motor responses of selected muscles, viz. m. rectus femoris, m.biceps femoris, m. tibialis anterior, and m.gastrocnemius were recorded with the use of the 'Neuro-MVP-8 eight-channel electromyography' ('Neurosoft', Russia). The data obtained give evidence that the stimulation of the spinal cord with a frequency of 1 Hz induces reflectory responses with monosynaptic and polysynaptic components in the muscles of the lower extremities, with the thresholds of these responses being significantly higher in the patients presenting with serious neurological problems. Stimulation with the frequencies of 5 and 30 Hz caused in the patients with paresis the involuntary movement of the legs the characteristics of which were similar to those of the locomotor movements. It has been demonstrated that the application of transcutaneous electrical spinal cord stimulation leads to increased excitability of the lumbar spinal neural structures of the patients. The study has shown the possibility of regulation of the locomotor functions in the patients presenting with movement disorders of central genesis by means of non-invasive electrical stimulation of the spinal cord.
NASA Astrophysics Data System (ADS)
Fernandes, Sofia R.; Salvador, Ricardo; Wenger, Cornelia; de Carvalho, Mamede; Miranda, Pedro C.
2018-06-01
Objective. Our aim was to perform a computational study of the electric field (E-field) generated by transcutaneous spinal direct current stimulation (tsDCS) applied over the thoracic, lumbar and sacral spinal cord, in order to assess possible neuromodulatory effects on spinal cord circuitry related with lower limb functions. Approach. A realistic volume conductor model of the human body consisting of 14 tissues was obtained from available databases. Rubber pad electrodes with a metallic connector and a conductive gel layer were modelled. The finite element (FE) method was used to calculate the E-field when a current of 2.5 mA was passed between two electrodes. The main characteristics of the E-field distributions in the spinal grey matter (spinal-GM) and spinal white matter (spinal-WM) were compared for seven montages, with the anode placed either over T10, T8 or L2 spinous processes (s.p.), and the cathode placed over right deltoid (rD), umbilicus (U) and right iliac crest (rIC) areas or T8 s.p. Anisotropic conductivity of spinal-WM and of a group of dorsal muscles near the vertebral column was considered. Main results. The average E-field magnitude was predicted to be above 0.15 V m-1 in spinal cord regions located between the electrodes. L2-T8 and T8-rIC montages resulted in the highest E-field magnitudes in lumbar and sacral spinal segments (>0.30 V m-1). E-field longitudinal component is 3 to 6 times higher than the ventral-dorsal and right-left components in both the spinal-GM and WM. Anatomical features such as CSF narrowing due to vertebrae bony edges or disks intrusions in the spinal canal correlate with local maxima positions. Significance. Computational modelling studies can provide detailed information regarding the electric field in the spinal cord during tsDCS. They are important to guide the design of clinical tsDCS protocols that optimize stimulation of application-specific spinal targets.
Jun, Yi; Chunju, Yuan; Qi, Ai; Liuxia, Deng; Guolong, Yu
2014-04-01
The low frequency of survival of stem cells implanted in the myocardium after acute myocardial infarction may be caused by inflammation and oxidative stress in the myocardial microenvironment. We evaluated the effects of a traditional Chinese medicine, Compound Danshen Dripping Pills, on the cardiac microenvironment and cardiac function when used alone or in combination with human umbilical cord blood mononuclear cell transplant after acute myocardial infarction. After surgically induced acute myocardial infarction, rabbits were treated with Compound Danshen Dripping Pills alone or in combination with human umbilical cord blood mononuclear cell transplant. Evaluation included histology, measurement of left ventricular ejection fraction and fractional shortening, leukocyte count, count of green fluorescent protein positive cells, superoxide dismutase activity, and malondialdehyde content. Combination treatment with Compound Danshen Dripping Pills and human umbilical cord blood mononuclear cell transplant significantly increased the survival of implanted cells, inhibited cardiac cell apoptosis, decreased oxidative stress, decreased the inflammatory response, and improved cardiac function. Rabbits treated with either Compound Danshen Dripping Pills or human umbilical cord blood mononuclear cells alone had improvement in these effects compared with untreated control rabbits. Combination therapy with Compound Danshen Dripping Pills and human umbilical cord blood mononuclear cells may improve cardiac function and morphology after acute myocardial infarction.
Kitshoff, Adriaan Mynhardt; Van Goethem, Bart; Cornelis, Ine; Combes, Anais; Dvm, Ingeborgh Polis; Gielen, Ingrid; Vandekerckhove, Peter; de Rooster, Hilde
2016-01-01
A 14 mo old female neutered Doberman pinscher was evaluated for difficulty in rising, a wide based stance, pelvic limb gait abnormalities, and cervical pain of 2 mo duration. Neurologic examination revealed pelvic limb ataxia and cervical spinal hyperesthesia. Spinal reflexes and cranial nerve examination were normal. The pathology was localized to the C1-C5 or C6-T2 spinal cord segments. Computed tomography (CT) findings indicated bony proliferation of the caudal articular processes of C6 and the cranial articular processes of C7, resulting in bilateral dorsolateral spinal cord compression that was more pronounced on the left side. A limited dorsal laminectomy was performed at C6-C7. Due to progressive neurological deterioration, follow-up CT examination was performed 4 days postoperatively. At the level of the laminectomy defect, a subfacial seroma had developed, entering the spinal canal and causing significant spinal cord compression. Under ultrasonographic guidance a closed-suction wound catheter was placed. Drainage of the seroma successfully relieved its compressive effects on the spinal cord and the patient's neurological status improved. CT was a valuable tool in assessing spinal cord compression as a result of a postoperative subfascial seroma. Minimally invasive application of a wound catheter can be successfully used to manage this condition.
Boomerang deformity of cervical spinal cord migrating between split laminae after laminoplasty.
Kimura, S; Gomibuchi, F; Shimoda, H; Ikezawa, Y; Segawa, H; Kaneko, F; Uchiyama, S; Homma, T
2000-04-01
Patients with cervical compression myelopathy were studied to elucidate the mechanism underlying boomerang deformity, which results from the migration of the cervical spinal cord between split laminae after laminoplasty with median splitting of the spinous processes (boomerang sign). Thirty-nine cases, comprising 25 patients with cervical spondylotic myelopathy, 8 patients with ossification of the posterior longitudinal ligament, and 6 patients with cervical disc herniation with developmental canal stenosis, were examined. The clinical and radiological findings were retrospectively compared between patients with (B group, 8 cases) and without (C group, 31 cases) boomerang sign. Moderate increase of the grade of this deformity resulted in no clinical recovery, although there was no difference in clinical recovery between the two groups. Most boomerang signs developed at the C4/5 and/or C5/6 level, where maximal posterior movement of the spinal cord was achieved. Widths between lateral hinges and between split laminae in the B group were smaller than in the C group. Flatness of the spinal cord in the B group was more severe than in the C group. In conclusion, the boomerang sign was caused by posterior movement of the spinal cord, narrower enlargement of the spinal canal and flatness of the spinal cord.
Aseptic Meningitis and Viral Myelitis
Irani, David N.
2008-01-01
SYNOPSIS Meningitis and myelitis represent common and very infrequent viral infections of the central nervous system (CNS), respectively. Indeed, the number of cases of viral meningitis that occurs annually exceeds the total number of meningitis cases caused by all other etiologies combined. Focal CNS infections, on the other hand, such as occur in the spinal cord with viral myelitis, are much less common and may be confused with non-infectious disorders that cause acute flaccid paralysis (AFP). This chapter will review some of the important clinical features, epidemiology, diagnostic approaches, and management strategies for patients with aseptic meningitis and viral myelitis. Particular focus will be placed on the diseases caused by enteroviruses (EVs), which as a group account for the vast majority of all aseptic meningitis cases as well as many focal infections of the spinal cord. PMID:18657719
Preventing brachial plexus injury during shoulder surgery: a real-time cadaveric study.
Kam, Andrew W; Lam, Patrick H; Haen, Pieter S W A; Tan, Martin; Shamsudin, Aminudin; Murrell, George A C
2018-05-01
Brachial plexopathy is not uncommon after shoulder surgery. Although thought to be due to stretch neuropathy, its etiology is poorly understood. This study aimed to identify arm positions and maneuvers that may risk causing brachial plexopathy during shoulder arthroplasty. Tensions in the cords of the brachial plexuses of 6 human cadaveric upper limbs were measured using load cells while each limb was placed in different arm positions and while they underwent shoulder hemiarthroplasty and revision reverse arthroplasty. Arthroplasty procedures in 4 specimens were performed with standard limb positioning (unsupported), and 2 specimens were supported from under the elbow (supported). Each cord then underwent biomechanical testing to identify tension corresponding to 10% strain (the stretch neuropathy threshold in animal models). Tensions exceeding 15 N, 11 N, and 9 N in the lateral, medial, and posterior cords, respectively, produced 10% strain. Shoulder abduction >70° and combined external rotation >60° with extension >50° increased medial cord tension above the 10% strain threshold. Medial cord tensions (mean ± standard error of the mean) in unsupported specimens increased over baseline during hemiarthroplasty (sounder insertion [4.7 ± 0.6 N, P = .04], prosthesis impaction [6.1 ± 0.8 N, P = .04], and arthroplasty reduction [5.0 ± 0.7 N, P = .04]) and revision reverse arthroplasty (retractor positioning [7.2 ± 0.8 N, P = .02]). Supported specimens experienced lower tensions than unsupported specimens. Shoulder abduction >70°, combined external rotation >60° with extension >50°, and downward forces on the humeral shaft may risk causing brachial plexopathy. Retractor placement, sounder insertion, humeral prosthesis impaction, and arthroplasty reduction increase medial cord tensions during shoulder arthroplasty. Supporting the arm from under the elbow protected the brachial plexus in this cadaveric model. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Epidural varix at the cervicothoracic junction: unusual cause of quadriplegia: a case report.
Bapat, Mihir; Metkar, Umesh
2006-02-01
A case report describing an unusual incident of quadriplegia in a young adult male caused by an epidural varix at the cervicothoracic junction. To report an unusual case of quadriplegia caused by an epidural varix at the cervicothoracic junction. Epidural varices are dilated tortuous elongated veins inside the central canal. In degenerative spinal stenosis, these varices are a result of venous stagnation and contribute to the pathogenesis of radicular pain. In the absence of stenosis, primary varicosities develop as a result of dynamic obstruction to venous outflow during spinal movements. A primary epidural varix can produce neurologic deficit similar to a space occupying lesion within the spinal canal. The myeloradiculopathy is of a slow progressive nature. A young man presented with an acute onset flaccid quadriplegia in the absence of significant trauma. Magnetic resonance imaging revealed an extradural space occupying lesion at the cervicothoracic junction that was diagnosed as an isolated epidural varix during surgery. No neurologic recovery occurred. Postoperative magnetic resonance imaging revealed a syrinx in the cervicothoracic cord. In the absence of other precipitating factors, the cord injury was attributed to the epidural varix. A temporary impedance to the venous outflow with the increase in the venous pressure has been hypothesized as the mechanism of cord injury.
Pekcevik, Yeliz; Mitchell, Charles H; Mealy, Maureen A; Orman, Gunes; Lee, In H; Newsome, Scott D; Thompson, Carol B; Pardo, Carlos A; Calabresi, Peter A; Levy, Michael; Izbudak, Izlem
2016-01-01
Background Although spinal magnetic resonance imaging (MRI) findings of neuromyelitis optica (NMO) have been described, there is limited data available that help differentiate NMO from other causes of longitudinally extensive transverse myelitis (LETM). Objective To investigate the spinal MRI findings of LETM that help differentiate NMO at the acute stage from multiple sclerosis (MS) and other causes of LETM. Methods We enrolled 94 patients with LETM into our study. Bright spotty lesions (BSL), the lesion distribution and location were evaluated on axial T2-weighted images. Brainstem extension, cord expansion, T1 darkness and lesion enhancement were noted. We also reviewed the brain MRI of the patients during LETM. Results Patients with NMO had a greater amount of BSL and T1 dark lesions (p < 0.001 and 0.003, respectively). The lesions in NMO patients were more likely to involve greater than one-half of the spinal cord’s cross-sectional area; to enhance and be centrally-located, or both centrally- and peripherally-located in the cord. Of the 62 available brain MRIs, 14 of the 27 whom were NMO patients had findings that may be specific to NMO. Conclusions Certain spinal cord MRI features are more commonly seen in NMO patients and so obtaining brain MRI during LETM may support diagnosis. PMID:26209588
Abdou, Heba M; Yousef, Mokhtar I; El Mekkawy, Desouki A; Al-Shami, Ahmed S
2016-08-01
The present study was carried out to evaluate the potential protective role of co-administration of Ginkgo biloba, Trifolium pretenseagainst sodium arsenite-induced neurotoxicity in different parts of brain (Cerebral cortex, Hippocampus, striatum and Hind brain) and in the spinal cord of rats. Sodium arsenite caused impairment in the acquisition and learning in all the behavioral tasks and caused significant increase in tumor necrosis factor-α,thiobarbituric acid-reactive substances andlipid profile, while caused significant decrease in glutathione, total thiol content, total antioxidant capacity, acetylcholinesterase, monoamine oxidase and ATPases activities. These results were confirmed by histopathological, fluorescence and scanning electron microscopy examination of different regions of brain. From these results sodium arsenite-induced neurodegenerative disorder in different regions of brain and spinal cord and this could be mediated through modifying the intracellular brain ions homeostasis, cholinergic dysfunction and oxidative damage. The presence of Ginkgo biloba and/orTrifolium pretense with sodium arsenite minimized its neurological damages. It was pronounced that using Ginkgo biloba and Trifolium pretense in combination was more effective as protective agents compared to use eachone of them alone. Copyright © 2016 Elsevier Ltd. All rights reserved.
Childhood angular kyphosis: a plea for involvement of the pediatric neurosurgeon.
Cornips, E; Koudijs, S; Vles, J; van Rhijn, L
2017-06-01
Childhood angular kyphosis is rare, as most children are affected by a mixed kyphotic and scoliotic deformity. Published series involving a mix of kyphosis and kyphoscoliosis, pediatric and adult, congenital and acquired cases are almost exclusively authored by orthopedic surgeons, suggesting that (pediatric) neurosurgeons are not involved. We present five cases that illustrate the spectrum of angular kyphosis, and these were treated by a multidisciplinary team including child neurologist, orthopedic surgeon, and pediatric neurosurgeon as complementary partners. Angular kyphosis is a cosmetic problem but above all a serious threat to the spinal cord and as such to the child's ambulatory, sphincter, and genito-urinary functions. Spinal cord stretch over the internal kyphosis may cause pain and/or neurological deficit, often accompanied by myelomalacia or even segmental cord atrophy. Spinal cord function may be additionally affected by associated disorders such as syringomyelia or tethered cord, an orthopedic surgeon may be less familiar with. The decision when and how to proceed surgically should be made by a multidisciplinary team, including a pediatric neurosurgeon who actively participates in the operation and helps to safely achieve adequate spinal cord decompression and stabilization. Childhood angular kyphosis is a complex, heterogeneous disorder that should be managed by a multidisciplinary team in specialized pediatric spine centers. While every case is truly unique, the spinal cord is always at risk, especially during decompression, stabilization, and eventual correction of deformity. Pediatric neurosurgeons have an important role to play in preoperative work-up, actual operation, and follow-up.
Bourgeois, Quentin; Kroon, Erik
2017-01-01
The emergence of Corded Ware Groups throughout Europe in the 3rd millennium BC is one of the most defining events in European history. From the Wolga to the Rhine communities start to speak Indo-European languages and bury their dead in an extremely similar fashion. Recent ancient DNA-analyses identify a massive migration from the Eurasian steppe as the prime cause for this event. However, there is a fundamental difference between expressing a Corded Ware identity-the sharing of world views and ideas-and having a specific DNA-profile. Therefore, we argue that investigating the exchange of cultural information on burial rites between these communities serves as a crucial complement to the exchange of biological information. By adopting a practice perspective to 1161 Corded Ware burials throughout north-western Europe, combined with similarity indexes and network representations, we demonstrate a high degree of information sharing on the burial ritual between different regions. Moreover, we show that male burials are much more international in character than female burials and as such can be considered as the vector along which cultural information and Corded Ware identity was transmitted. This finding highlights an underlying complex societal organization of Corded Ware burial rites in which gender roles had a significant impact on the composition and transmission of cultural information. Our findings corroborate recent studies that suggest the Corded Ware was a male focused society.
Long term follow up of spinal cord injury caused by penetrating missiles.
Brooks, M E; Brouner, R; Ohry, A
1992-02-01
Eighty-four spinal cord injured patients (SCIP) injured as a result of penetrating missiles were categorised according to: neurological level of injury, age at time of injury, circumstances of injury, missile type, initial treatment, duration of injury, and ethnic background. Evaluations and comparisons were made concerning: life habits, family status, education, employment, and mental well being. A discussion of complicating factors, both physical and psychological, and their relation to the final rehabilitation result is presented.
Navolan, Dan Bogdan; Sas, Ioan; Grigoraş, Dorin; Moldovan, Mihaela; Cîrlan, Casius; Angheloiu Rîcă, Daiana Elena; Levai, Codrina Mihaela
2015-01-01
Umbilical cord knot (UCK) affects around 1% of pregnancies and tightening of UCK is a very rare and highly unpredictable complication of pregnancy that can lead to fetal demise or neonatal death. The majority of authors agree that very little could be done to prevent fetal deaths in pregnancies with undiagnosed tight UCK. We herein report the case of a 39-year-old, gravidity five, parity three, pregnant woman at 40 weeks and five days age of pregnancy, whose pregnancy evolved without complications and who was admitted to hospital for the management of the birth. Although the last ultrasound examination before birth showed a reversible arterial redistribution in the fetus dependent on the postural status of the pregnant women and other factors associated with umbilical cord knot were present, the diagnosis was missed because of the factors' non-specificity. After a spontaneous labor without complications a dead male fetus, weight 3300 g, without heartbeat, Apgar score 0 was delivered. Macroscopic and microscopic findings confirmed that the cause of neonatal death was asphyxia caused by a tight UCK. The aim of our paper is to present the dramatic outcome of a pregnancy with a fetus with a tight umbilical cord knot (UCK), to bring to attention the signs that suggested the diagnosis, and to review the literature on this subject.
The effect of extracorporeal shock wave lithotripsy on the rat spinal cord.
Karatas, A; Dosoglu, M; Zeyrek, T; Kayikci, A; Erol, A; Can, B
2008-09-01
Experimental study. To determine the effects of extracorporeal shock wave lithotripsy (ESWL) on the rat spinal cord. Animals were randomly divided into three groups. Groups 1 and 2 consisted of five rats each that underwent ESWL (2000 impulses at 15 kV and 2000 impulses at 18 kV, respectively) and group 3 contained five control rats (no shock wave treatment). ESWL-treated and control rats were compared with regard to light and electron microscopic findings of the adjacent spinal cord. Gross neurological outcomes were normal in all groups. Light microscopic examination of group 1 showed extensive extravasation of red blood cells over all the interstitial spaces. Group 2 also had haemorrhagic areas and an irregular organization of axons in the white matter. Transmission electron microscopic examination of group 1 indicated extravasated red blood cells through the endothelium and swollen axoplasm, degenerated mitochondria, destruction of myelin sheaths and a slight increase in the number of lysosomes. Extravasated red blood cells were also seen in group 2. The axoplasmic mitochondria were enlarged, but no sign of mitochondrial degeneration was observed. Lamellar degeneration of myelin sheaths and abundant lysosomes were more predominant in group 2 than in group 1. Extracorporeal shock wave lithotripsy caused not only haemorrhage but also damage to neuronal structures except the nucleus. Our findings showed that higher-energy ESWL caused more myelin degeneration in the spinal cord.
Usability of a New Writing Assistive Device for Persons with Cervical Spinal Cord Injury.
Lim, MyungJoon; Park, Jiyoung; Lee, Kuem Ju; Kweon, Hyosun; Kim, Byungchul; Cho, Kyujin; Choi, Hyun
2015-01-01
The hand function for persons with cervical spinal cord injury (PCSCI) is most frequently cause difficulties in leading normal lives. The purpose of this study was to test the usability of a new writing assistive device (NWAD) for PCSCI. To access its usability, the authors design usability testing method and test the NWAD to five individuals with cervical spinal cord injury. From the usability testing, we have found number of issues that lead us to key design concept about developing the NWAD. The NWAD will be redesigned based on the result of the present study. We expect that the NWAD will help PCSCI use their affected hand better and improve the level of independence and quality of life.
[Spinal cord injuries caused by aviation accidents].
Heim, M; Ohry, A; Zeilig, G; Gur, S
1992-05-15
During the past 15 years fewer than 1% of those treated in the National Spinal Cord Injury Center were injured as a result of aviation accidents. In addition to 9 such patients treated at the center since 1973, another 6 were found among the many hundreds receiving ambulatory care in our clinics. 3 patients had survived a helicopter crash, 2 were injured while ejecting from combat aircraft, 3 were injured in crashes of light aircraft, 1 fell from a hand glider and 6 were injured in parachute drops. Of the 15 reviewed, 6 use wheelchairs, 3 walk assisted by orthopedic devices, while 6 ambulate freely. Although initial hospitalization was not substantially longer than in other patients with spinal cord injuries, extended ambulatory psychological intervention was necessary.
Gormeli, Cemile Ayse; Sarac, Kaya; Ozdemir, Zeynep Maras; Gormeli, Gokay; Kahraman, Aysegul Sagir; Kahraman, Bayram; Oztanir, Mustafa Namik; Karadag, Nese
2016-09-01
Spinal cord haemangioblastomas are rare central nervous systems tumours, and haemorrhage.It is an uncommon occurance. We report a 28-year-old pregnant patient who presented with paraplegia due to acute haemorrhage of a spinal haemangioblastoma. Magnetic resonance imaging showed extensive syrinx cavities, an intramedullary lesion at the T4-T5 spinal cord level e, and a subarachnoid haemorrhage. Digital subtraction angiography showed the feeding artery and dilated tortuous draining vein within the dural sac. The lesion was deemed a haemangioblastoma. The histopathological examination confirmed the diagnosis. Postoperatively, the paraplegia improved and the patient was able to walk within 2 weeks. Imaging is important for early diagnosis to prevent patients persistent neurological deficits.
NASA Astrophysics Data System (ADS)
Ahmed, Zaghloul
2017-10-01
Objective. Lower urinary tract (LUT) dysfunction is a monumental problem affecting quality of life following neurotrauma, such as spinal cord injury (SCI). Proper function of the bladder and its associated structures depends on coordinated activity of the neuronal circuitry in the spinal cord and brain. Disconnection between the spinal and brain centers controlling the LUT causes fundamental changes in the mechanisms involved in the micturition and storage reflexes. We investigated the effects of cathodal trans-spinal direct current stimulation (c-tsDCS) of the lumbosacral spine on bladder and external urinary sphincter (EUS) functions. Approach. We used cystometry and electromyography (EMG), in mice with and without SCI. Main results. c-tsDCS caused initiation of the micturition reflex in urethane-anesthetized normal mice with depressed micturition reflexes. This effect was associated with normalized EUS-EMG activity. Moreover, in urethane-anesthetized normal mice with expressed micturition reflexes, c-tsDCS increased the firing frequency, amplitude, and duration of EUS-EMG activity. These effects were associated with increased maximum intravesical pressure (P max) and intercontraction interval (ICI). In conscious normal animals, c-tsDCS caused significant increases in P max, ICI, threshold pressure (P thres), baseline pressure (P base), and number and amplitude of non-voiding contractions (NVCnumb and P im, respectively). In conscious mice with severe contusive SCI and overactive bladder, c-tsDCS increased P max, ICI, and P thres, but decreased P base, NVCnumb, and P im. c-tsDCS reduced the detrusor-overactivity/cystometry ratio, which is a measure of bladder overactivity associated with renal deterioration. Significance. These results indicate that c-tsDCS induces robust modulation of the lumbosacral spinal-cord circuitry that controls the LUT.
Chen, Kinon; Liu, Jie; Assinck, Peggy; Bhatnagar, Tim; Streijger, Femke; Zhu, Qingan; Dvorak, Marcel F.; Kwon, Brian K.; Tetzlaff, Wolfram
2016-01-01
Abstract The objective of this study was to compare the long-term histological and behavioral outcomes after spinal cord injury (SCI) induced by one of three distinct biomechanical mechanisms: dislocation, contusion, and distraction. Thirty male Sprague-Dawley rats were randomized to incur a traumatic cervical SCI by one of these three clinically relevant mechanisms. The injured cervical spines were surgically stabilized, and motor function was assessed for the following 8 weeks. The spinal cords were then harvested for histologic analysis. Quantification of white matter sparing using Luxol fast blue staining revealed that dislocation injury caused the greatest overall loss of white matter, both laterally and along the rostrocaudal axis of the injured cord. Distraction caused enlarged extracellular spaces and structural alteration in the white matter but spared the most myelinated axons overall. Contusion caused the most severe loss of myelinated axons in the dorsal white matter. Immunohistochemistry for the neuronal marker NeuN combined with Fluoro Nissl revealed that the dislocation mechanism resulted in the greatest neuronal cell losses in both the ventral and dorsal horns. After the distraction injury mechanism, animals displayed no recovery of grip strength over time, in contrast to the animals subjected to contusion or dislocation injuries. After the dislocation injury mechanism, animals displayed no improvement in the grooming test, in contrast to the animals subjected to contusion or distraction injuries. These data indicate that different SCI mechanisms result in distinct patterns of histopathology and behavioral recovery. Understanding this heterogeneity may be important for the future development of therapeutic interventions that target specific neuropathology after SCI. PMID:26671448
McGrane, J; Carswell, S; Talbot, T
2017-01-01
We report a case of a 66-year-old man with locally advanced and metastatic basal cell carcinoma (BCC) causing spinal cord compression, which was treated with spinal surgery and subsequent vismodegib. The patient presented with a large fungating chest wall lesion and a metastasis in T8 that was causing cord compression. He had neurosurgical decompression of the T8 lesion and fixation of the spine. Punch biopsy from the fungating chest wall lesion showed a BCC with some malignant squamous differentiation (basosquamous). Histopathological examination of the metastatic lesion in T8 at the time of surgical decompression identified features identical to the punch biopsy. The patient was referred to the oncology clinic for adjuvant treatment. In light of his metastatic disease and the large area over his chest wall that could not fully be covered by radiotherapy, he was treated with the novel oral Hedgehog signalling pathway (HHSP) inhibitor vismodegib, which led to marked improvement. © 2016 British Association of Dermatologists.
46 CFR 174.085 - Flooding on column stabilized units.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the unit, and within 5 feet (1.5 meters) of an outer surface of a column or footing on the periphery... into watertight compartments by horizontal watertight flats, all compartments in the column within 5 feet (1.5 meters) of the unit's waterline before damage causing flooding must be assumed to be subject...
Zhang, Shu-xin; Huang, Fengfa; Gates, Mary; White, Jason; Holmberg, Eric G
2010-08-30
Intrathecal infusion has been widely used to directly deliver drugs or neurotrophins to a lesion site following spinal cord injury. Evidence shows that intrathecal infusion is efficient for 7 days but is markedly reduced after 14 days, due to time dependent occlusion. In addition, extensive fibrotic scarring is commonly observed with intrathecal infusion. These anomalies need to be clearly elucidated in histology. In the present study, all adult Long-Evans rats received a 25 mm contusion injury on spinal cord T10 produced using the NYU impactor device. Immediately after injury, catheter tubing with an outer diameter of 0.38 mm was inserted through a small dural opening at L3 into the subdural space with the tubing tip positioned near the injury site. The tubing was connected to an Alzet mini pump, which was filled with saline solution and was placed subcutaneously. Injured rats without tubing served as control. Rats were behaviorally tested for 6 weeks using the BBB locomotor rating scale and histologically assessed for tissue scarring. Six weeks later, we found that the intrathecal tubing caused extensive scarring and inflammation, related to neutrophils, macrophages and plasma cells. The tubing's tip was occluded by scar tissue and inflammatory cells. The scar tissue surrounding the tubing consists of 20-70 layers of fibroblasts and densely compacted collagen fibers, seriously compressing and damaging the cord tissue. BBB scores of rats with intrathecal tubing were significantly lower than control rats (p<0.01) from 2 weeks after injury, implying serious impairment of functional recovery caused by the scarring. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Duz, Bulent; Cansever, Tufan; Secer, Halil Ibrahim; Kahraman, Serdar; Daneyemez, Mehmet Kadri; Gonul, Engin
2008-09-15
Analysis of the patients with spinal missile injury (SMI). Choosing the optimum treatment for SMI with respect to bullet trajectory, evaluation of surgical indications, and timing of surgical intervention. A few guidelines were reported for the management of SMI. But there is still no consensus about the indication and timing of the surgery. The relationship between the surgery and bullet trajectory was not reported previously. One hundred twenty-nine patients with spinal missile injury were admitted to our department from 1994 to 2006 and 122 of them could be functionally monitored. Functional recovery and complications in surgical and conservative treatment groups were evaluated. Surgical indications were discussed. The injuries were classified with respect to the bullet's trajectory. Seventy-four patients were treated surgically, of whom 60 (81%) had incomplete injuries. All 17 patients whose vertebral column was injured with side-to-side trajectory were operated on because of instability. In the surgical group, 33 (56.9%) showed improvement, 20 (34.5%) showed no change, and 5 (8.6%) worsened. The best results were obtained by the patients who received operations because of rapid neurologic decline, compression, and instability in the spinal canal (P < 0.0001). Twenty-three (31%) complications and associated injuries were seen in the surgically treated patients and 18 (34.6%) were seen in the conservatively treated patients. Anteroposterior and oblique trajectories [Gulhane Military Medical Academy (GATA)-SMI I and GATA-SMI II] of SMI must be recognized as highly infective in the lumbar region. A side-to-side trajectory (GATA-SMI III) missile causing spinal cord injury is unstable and needs further stabilization. The spinal cord is not injured by the GATA-SMI IV trajectory, and thus, the best approach in this case is conservative. The best results from neurosurgical interventions may be achieved after rapid neurologic deteriorations because of spinal compression and/or instability.
Chaudhry, Rajeev; Madden-Fuentes, Ramiro J; Ortiz, Tara K; Balsara, Zarine; Tang, Yuping; Nseyo, Unwanaobong; Wiener, John S; Ross, Sherry S; Seed, Patrick C
2014-05-01
Urinary tract infections cause significant morbidity in patients with spinal cord injury. An in vivo spinal cord injured rat model of experimental Escherichia coli urinary tract infection mimics human disease with enhanced susceptibility to urinary tract infection compared to controls. We hypothesized that a dysregulated inflammatory response contributes to enhanced susceptibility to urinary tract infection. Spinal cord injured and sham injured rats were inoculated transurethrally with E. coli. Transcript levels of 84 inflammatory pathway genes were measured in bladder tissue of each group before infection, 24 hours after infection and after 5 days of antibiotic therapy. Before infection quantitative polymerase chain reaction array revealed greater than twofold up-regulation in the proinflammatory factor transcripts slc11a1, ccl4 and il1β, and down-regulation of the antimicrobial peptides lcn2 and mpo in spinal cord injured vs control bladders. At 24 hours after infection spinal cord injured bladders showed an attenuated innate immune response with decreased expression of il6, slc11a1, il1β and lcn2, and decreased il10 and slpi expression compared to controls. Despite clearance of bacteriuria with antibiotics spinal cord injured rats had delayed induction of il6 transcription and a delayed anti-inflammatory response with decreased il10 and slpi transcript levels relative to controls. Spinal cord injured bladders fail to mount a characteristic inflammatory response to E. coli infection and cannot suppress inflammation after infection is eliminated. This may lead to increased susceptibility to urinary tract infection and persistent chronic inflammation through neural mediated pathways, which to our knowledge remain to be defined. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Release of neuropeptide FF (FLFQPQRF-NH2) from rat spinal cord.
Zhu, J; Jhamandas, K; Yang, H Y
1992-10-02
Neuropeptide FF (FLFQPQRF-NH2), originally isolated from bovine brain, is an FMRF-NH2-like peptide with morphine-modulating activity. Neuropeptide FF (NPFF) is highly localized in the dorsal spinal cords where there are also specific NPFF binding sites. Furthermore, there have been studies indicating that NPFF may participate in the regulation of pain threshold in the spinal cord. However, whether NPFF can be released from the spinal cord is not known. The present experiments, using an in vitro superfusion of an isolated whole rat spinal cord, demonstrated that high concentrations of KCl or substance P caused a release of NPFF immunoreactive material (IR) from the spinal cord into the perfusion medium in a calcium-dependent manner. Substance P (1-11) also produced a detectable release of NPFF-IR in vivo although the response was quite variable. The released NPFF-IR was analyzed by an HPLC study and found to consist of NPFF and other minor immunoreactive peptides. Further studies with substance P-related peptides showed that the in vitro release of NPFF-IR could also be induced by substance P (1-7) but not by [pGlu5,Me-Phe8,Sar9]-substance P (5-11) or substance K. These results suggest that the specific substance P receptor (SP-N), which is recognized by both substance P (1-11) and substance P (1-7) rather than the tachykinin receptor, is involved in NPFF secretion from the spinal cord. In view of the role of substance P (1-11) and substance P (1-7) in sensory transmission, the results of this study further support the role of NPFF in the modulation of antinociception in the spinal cord.
Peterson, C A; Murphy, R J; Dupont-Versteegden, E E; Houlé, J D
2000-01-01
The potential of two interventions, alone or in combination, to restore chronic spinal cord transection-induced changes in skeletal muscles of adult Sprague-Dawley rats was studied. Hind limb skeletal muscles were examined in the following groups of animals: rats with a complete spinal cord transection (Tx) for 8 weeks; Tx with a 4-week delay before initiation of a 4-week motor-assisted cycling exercise (Ex) program; Tx with a 4-week delay before transplantation (Tp) of fetal spinal cord tissue into the lesion cavity; Tx with a 4-week delay before Tp and Ex; and uninjured control animals. Muscle mass, muscle to body mass ratios, and mean myofiber cross-sectional areas were significantly reduced 8 weeks after transection. Whereas transplantation of fetal spinal cord tissue did not reverse this atrophy and exercise alone had only a modest effect in restoring lost muscle mass, the combination of exercise and transplantation significantly increased muscle mass, muscle to body mass ratios, and mean myofiber cross-sectional areas in both soleus and plantaris muscles. Spinal cord injury (SCI) also caused changes in myosin heavy chain (MyHC) expression toward faster isoforms in both soleus and plantaris and increased soleus myofiber succinate dehydrogenase (SDH) activity. Combined exercise and transplantation led to a change in the expression of the fastest MyHC isoform in soleus but had no effect in the plantaris. Exercise alone and in combination with transplantation reduced SDH activity to control levels in the soleus. These results suggest a synergistic action of exercise and transplantation of fetal spinal cord tissue on skeletal muscle properties following SCI, even after an extended post-injury period before intervention.
Petteys, Rory J; Spitz, Steven M; Syed, Hasan; Rice, R Andrew; Sarabia-Estrada, Rachel; Goodwin, C Rory; Sciubba, Daniel M; Freedman, Brett A
2017-09-01
Spinal cord injury (SCI) causes debilitating neurological dysfunction and has been observed in warfighters injured in IED blasts. Clinical benefit of SCI treatment remains elusive and better large animal models are needed to assess treatment options. Here, we describe a controlled electromagnetic spinal cord impactor for use in large animal models of SCI. A custom spinal cord impactor and platform were fabricated for large animals (e.g., pig, sheep, dog, etc.). Impacts were generated by a voice coil actuator; force and displacement were measured with a load cell and potentiometer respectively. Labview (National Instruments, Austin, TX) software was used to control the impact cycle and import force and displacement data. Software finite impulse response (FIR) filtering was employed for all input data. Silicon tubing was used a surrogate for spinal cord in order to test the device; repeated impacts were performed at 15, 25, and 40 Newtons. Repeated impacts demonstrated predictable results at each target force. The average duration of impact was 71.2 ±6.1ms. At a target force of 40N, the output force was 41.5 ±0.7N. With a target of 25N, the output force was 23.5 ±0.6N; a target of 15Newtons revealed an output force of 15.2 ±1.4N. The calculated acceleration range was 12.5-21.2m/s 2 . This custom spinal cord impactor reliably delivers precise impacts to the spinal cord and will be utilized in future research to study acute traumatic SCI in a large animal. Published by Elsevier Ltd.
Agmatine Modulates the Phenotype of Macrophage Acute Phase after Spinal Cord Injury in Rats.
Kim, Jae Hwan; Kim, Jae Young; Mun, Chin Hee; Suh, Minah; Lee, Jong Eun
2017-10-01
Agmatine is a decarboxylated arginine by arginine decarboxylase. Agmatine is known to be a neuroprotective agent. It has been reported that agmatine works as a NMDA receptor blocker or a competitive nitric oxide synthase inhibitor in CNS injuries. In spinal cord injury, agmatine showed reduction of neuropathic pain, improvement of locomotor function, and neuroprotection. Macrophage is a key cellular component in neuroinflammation, a major cause of impairment after spinal cord injury. Macrophage has subtypes, M1 and M2 macrophages. M1 macrophage induces a pro-inflammatory response, but M2 inspires an anti-inflammatory response. In this study, it was clarified whether the neuroprotective effect of agmatine is related with the modulation of macrophage subdivision after spinal cord injury. Spinal cord injury was induced in rats with contusion using MASCIS. Animals received agmatine (100 mg/kg, IP) daily for 6 days beginning the day after spinal cord injury. The proportion of M1 and M2 macrophages are confirmed with immunohistochemistry and FACS. CD206 + & ED1 + cells were counted as M2 macrophages. The systemic treatment of agmatine increased M2 macrophages caudal side to epicenter 1 week after spinal cord injury in immunohistochemistry. M2 macrophage related markers, Arginase-1 and CD206 mRNA, were increased in the agmatine treatment group and M2 macrophage expressing and stimulated cytokine, IL-10 mRNA, also was significantly overexpressed by agmatine injection. Among BMPs, BMP2/4/7, agmatine significantly increased only the expression of BMP2 known to reduce M1 macrophage under inflammatory status. These results suggest that agmatine reduces impairment after spinal cord injury through modulating the macrophage phenotype.
Agmatine Modulates the Phenotype of Macrophage Acute Phase after Spinal Cord Injury in Rats
Kim, Jae Young; Mun, Chin Hee; Suh, Minah
2017-01-01
Agmatine is a decarboxylated arginine by arginine decarboxylase. Agmatine is known to be a neuroprotective agent. It has been reported that agmatine works as a NMDA receptor blocker or a competitive nitric oxide synthase inhibitor in CNS injuries. In spinal cord injury, agmatine showed reduction of neuropathic pain, improvement of locomotor function, and neuroprotection. Macrophage is a key cellular component in neuroinflammation, a major cause of impairment after spinal cord injury. Macrophage has subtypes, M1 and M2 macrophages. M1 macrophage induces a pro-inflammatory response, but M2 inspires an anti-inflammatory response. In this study, it was clarified whether the neuroprotective effect of agmatine is related with the modulation of macrophage subdivision after spinal cord injury. Spinal cord injury was induced in rats with contusion using MASCIS. Animals received agmatine (100 mg/kg, IP) daily for 6 days beginning the day after spinal cord injury. The proportion of M1 and M2 macrophages are confirmed with immunohistochemistry and FACS. CD206+ & ED1+ cells were counted as M2 macrophages. The systemic treatment of agmatine increased M2 macrophages caudal side to epicenter 1 week after spinal cord injury in immunohistochemistry. M2 macrophage related markers, Arginase-1 and CD206 mRNA, were increased in the agmatine treatment group and M2 macrophage expressing and stimulated cytokine, IL-10 mRNA, also was significantly overexpressed by agmatine injection. Among BMPs, BMP2/4/7, agmatine significantly increased only the expression of BMP2 known to reduce M1 macrophage under inflammatory status. These results suggest that agmatine reduces impairment after spinal cord injury through modulating the macrophage phenotype. PMID:29093636
Spinal cord injuries among paragliders in Norway.
Rekand, T; Schaanning, E E; Varga, V; Schattel, U; Gronning, M
2008-06-01
A national retrospective descriptive study. To study the clinical effects of spinal cord injuries (SCIs) caused by paragliding accidents in Norway. Spinal cord units at Haukeland University Hospital, Sunnaas Rehabilitation Hospital and St Olav Hospital in Norway. We studied the medical files for nine patients with SCI caused by paragliding accidents to evaluate the circumstances of the accidents, and clinical effects of injury. We obtained the data from hospital patient files at all three spinal units in Norway and crosschecked them through the Norwegian Paragliding Association's voluntary registry for injuries. All patients were hospitalized from 1997 to 2006, eight men and one woman, with mean age 30.7 years. The causes of the accidents were landing problems combined with unexpected wind whirls, technical problems and limited experience with unexpected events. All patients contracted fractures in the thoracolumbal junction of the spine, most commonly at the L1 level. At clinical follow-up, all patients presented clinically incomplete SCI (American Spinal Injury Association impairment scores B-D). Their main health problems differed widely, ranging from urinary and sexual disturbances to neuropathic pain and loss of motor functioning. Only three patients returned to full-time employment after rehabilitation. Paragliding accidents cause spinal fractures predominantly in the thoracolumbal junction with subsequent SCIs and increased morbidity. All patients experienced permanent health problems that influenced daily activities and required long-time clinical follow-up and medical intervention. Better education in landing techniques and understanding of aerodynamics may reduce the risk of paragliding accidents.
[Airway management in a man with ankylosing spondylitis].
Gil, S; Jamart, V; Borrás, R; Miranda, A
2007-02-01
We report a case of difficult airway management in a 41-year-old man with ankylosing spondylitis who was scheduled for total left hip replacement surgery. After several failed attempts to achieve regional anesthesia, we converted to general anesthesia with orotracheal intubation using a fiberoptic bronchoscope. Ankylosing spondylitis leads to fibrosis, ossification, and ankylosis along the spinal column and sacroiliac articulations. Cervical column and atlantooccipital articulation mobility are reduced and in severe cases the cervical vertebrae become fixed in a flexed position. This portion of the spine is also the most susceptible to fracture, particularly in hyperextension, an event that could lead to damage to the cervical spinal cord during maneuvers to manage the airway. Patients with this condition may also have temporomandibular joint involvement, further complicating airway management. We report the case of a patient with ankylosing spondylitis with fixation along the entire spine. The airway was managed by intubation with a fiberoptic bronchoscope. Spontaneous ventilation was maintained during the maneuver, and sedation was achieved with perfusion of remifentanil as the only anesthetic agent following failure of intradural anesthesia.
Wang, Zheng; Qi, Hui-Xin; Kaas, Jon H; Roe, Anna W; Chen, Li Min
2013-11-01
After disruption of dorsal column afferents at high cervical spinal levels in adult monkeys, somatosensory cortical neurons recover responsiveness to tactile stimulation of the hand; this reactivation correlates with a recovery of hand use. However, it is not known if all neuronal response properties recover, and whether different cortical areas recover in a similar manner. To address this, we recorded neuronal activity in cortical area 3b and S2 in adult squirrel monkeys weeks after unilateral lesion of the dorsal columns. We found that in response to vibrotactile stimulation, local field potentials remained robust at all frequency ranges. However, neuronal spiking activity failed to follow at high frequencies (≥15 Hz). We suggest that the failure to generate spiking activity at high stimulus frequency reflects a changed balance of inhibition and excitation in both area 3b and S2, and that this mismatch in spiking and local field potential is a signature of an early phase of recovering cortex (
Hong, Jae-Young; Park, Jung-Ho; Hur, Chang-Yong; Hong, Suk-Joo; Modi, Hitesh N
2011-01-01
Background Detection of postoperative spinal cord level change can provide basic information about the spinal cord status, and electrophysiological studies regarding this point should be conducted in the future. Methods To determine the changes in the spinal cord level postoperatively and the possible associated factors, we prospectively studied 31 patients with scoliosis. All the patients underwent correction and posterior fusion using pedicle screws and rods between January 2008 and March 2009. The pre- and postoperative conus medullaris levels were determined by matching the axial magnetic resonance image to the sagittal scout image. The patients were divided according to the change in the postoperative conus medullaris level. The change group was defined as the patients who showed a change of more than one divided section in the vertebral column postoperatively, and the parameters of the change and non-change groups were compared. Results The mean pre- and postoperative Cobb's angle of the coronal curve was 76.80° ± 17.19° and 33.23° ± 14.39°, respectively. Eleven of 31 patients showed a lower conus medullaris level postoperatively. There were no differences in the pre- and postoperative magnitude of the coronal curve, lordosis and kyphosis between the groups. However, the postoperative degrees of correction of the coronal curve and lumbar lordosis were higher in the change group. There were also differences in the disease entities between the groups. A higher percentage of patients with Duchene muscular dystrophy had a change in level compared to that of the patients with cerebral palsy (83.3% vs. 45.5%, respectively). Conclusions The conus medullaris level changed postoperatively in the patients with severe scoliosis. Overall, the postoperative degree of correction of the coronal curve was higher in the change group than that in the non-change group. The degrees of correction of the coronal curve and lumbar lordosis were related to the spinal cord level change after scoliosis correction. PMID:21369475
Wu, Mingyuan; Komori, Naoka; Qin, Chao; Farber, Jay P; Linderoth, Bengt; Foreman, Robert D
2006-08-30
Spinal cord stimulation (SCS) is used to improve peripheral blood flow in selected populations of patients with ischemia of the extremities. Previous studies show that antidromic activation of sensory fibers is an important mechanism that contributes to SCS-induced vasodilation. However, the characteristics of sensory fibers involved in vasodilation are not fully known. This study investigated the contribution of vanilloid receptor type 1 (VR-1) containing fibers to SCS-induced vasodilation. A unipolar ball electrode was placed on the left dorsal column at the lumbar 2-3 spinal cord segments (L2-L3) in sodium pentobarbital anesthetized, paralyzed and ventilated rats. Cutaneous blood flows from both ipsilateral (left) and contralateral (right) hind foot pads were recorded with laser Doppler flow perfusion monitors. SCS (50 Hz; 0.2 ms) was applied through the ball electrode at 30%, 60%, 90% and 300% of motor threshold (MT). Resiniferatoxin (RTX), an ultra potent analog of capsaicin and VR-1 receptor agonist, was used to suppress the activities of VR-1 containing sensory fibers. SCS at 30%, 60%, 90% and also at 300% of MT significantly increased cutaneous blood flow in the ipsilateral foot pad compared to that in the contralateral side. RTX (2 microg/kg, i.v.) significantly attenuated SCS-induced vasodilation of the ipsilateral side (P<0.05, n=7) compared with responses prior to RTX administration. A pledget of cotton soaked with RTX (2 microg/ml) placed on L2-L3 spinal cord significantly decreased SCS-induced vasodilation of the ipsilateral side at 30%, 60%, 90% and 300% of MT (P<0.05, n=7) compared with responses prior to RTX administration. Additionally, topical application of a pledget of cotton soaked with RTX (2 microg/ml) on the sciatic nerve at the middle level of the thigh or on the tibial nerve at the lower level of the lower hindlimb also decreased SCS-induced vasodilation (n=5). SCS-induced vasodilation is predominantly mediated via VR-1 containing sensory fibers.
Neurological function after total en bloc spondylectomy for thoracic spinal tumors.
Murakami, Hideki; Kawahara, Norio; Demura, Satoru; Kato, Satoshi; Yoshioka, Katsuhito; Tomita, Katsuro
2010-03-01
Total en bloc spondylectomy (TES) for thoracic spinal tumors may in theory produce neurological dysfunction as a result of ischemic or mechanical damage to the spinal cord. Potential insults include preoperative embolization at 3 levels, intraoperative ligation of segmental arteries, nerve root ligation, and circumferential dural dissection. The purpose of this study was to assess neurological function after thoracic TES. The authors performed a retrospective review of 79 patients with thoracic-level spinal tumors that had been treated with TES between 1989 and 2006. Neurological function was retrospectively analyzed according to the Frankel grading system. Of the 79 cases, 26 involved primary tumors and 53 involved metastatic tumors. The number of excised vertebrae was 1 in 60 cases, 2 in 13, and >or= 3 in 6. The Frankel grade before surgery was B in 1 case, C in 16, D in 29, and E in 33. At the follow-up, the Frankel grade was C in 2 cases, D in 24, and E in 53. Of 46 cases with neurological deficits before surgery, neurological improvement of at least 1 Frankel grade was achieved in 25 cases (54.3%). Although the Frankel grade did not change in 21 patients, improvement in neurological symptoms within the same Frankel grade did occur in these patients. There were no cases of neurological deterioration. There was no neurological deterioration due to preoperative embolization, ligation of segmental arteries, or ligation of thoracic nerve roots. Each of the cases with preoperative neurological deficits showed improvement in neurological symptoms. Data in the current study clinically proved that TES is a safe operation with respect to spinal cord blood flow. In TES, the spinal cord is circumferentially decompressed and the spinal column is shortened. An increase in spinal cord blood flow due to spinal shortening in addition to decompression was considered to have brought about a resolution of neurological symptoms with TES.
An Overview of Laryngeal Muscle Single Fiber Electromyography.
Bertorini, Tulio E; Sharaf, Aboubakar G
2015-08-01
Needle electromyography is an important tool in the diagnosis of neuromuscular diseases and has also been applied successfully in the evaluation of the vocal cord paralysis. Laryngeal electromyography, initially described by Weddell, is used to determine the cause of vocal cord paralysis and to differentiate organic from nonorganic causes of speech disorders. This test allows the diagnosis of lower motor neuron and nerve paralysis as well as myopathies. Laryngeal electromyography also helps to determine the prognosis of paralysis caused by traumatic injury of the laryngeal nerves and is used for guidance during botulinum toxin injection in spasmodic dysphonias. Single fiber electromyography is used to diagnose abnormalities of neuromuscular transmission and is applied in the study the architecture of the motor unit in muscles. This article reviews the techniques of laryngeal muscles single fiber electromyography, provides limited informative data, and discusses its potential value in the evaluation of patients with dysphonia.
Grau, Stefan J; Holtmannspoetter, Markus; Seelos, Klaus; Tonn, Joerg-Christian; Siefert, Axel
2009-06-15
Case report and clinical discussion. We intend to report a very rare case of a giant spinal hemangioma causing myelopathy. Multilevel symptomatic spinal hemangiomas causing acute neurologic symptoms are rare disorders. We found only sporadic reports in English literature. We describe a very rare case in which Klippel-Trenaunay-Weber syndrome is associated with a multisegmental vertebral hemangioma causing a rapidly progressing thoracic myelopathy. Because of the extension of the disease, surgical intervention was not feasible, the patient was treated by radiotherapy. The patient showed a complete regression of symptoms with stable condition after 3 months. In extensive spinal hemangiomas, radiotherapy may represent a safe treatment modality with rapid clinical improvement even in cases with spinal cord compression. This report contributes to a wide range of known vascular abnormalities in Klippel-Trenaunay-Weber syndrome and supports the need for a careful multisystemic evaluation of these patients.
Matsubara, Shigeki; Ueda, Yoshihiko; Takahashi, Hisako; Nagai, Takashi; Kuwata, Tomoyuki; Muto, Shigeaki; Yamaguchi, Takehiko; Takizawa, Toshihiro; Suzuki, Mitsuaki
2009-12-01
Alport syndrome is a familial progressive nephritis. The most frequent type is X-linked Alport syndrome, caused by genetic abnormalities in the alpha 5 chain of type IV collagen. Skin biopsy is a useful tool for diagnosing this disease. It is not well known how this syndrome affects pregnancy and how it is affected by pregnancy, or whether the umbilical cord may provide material for detecting this collagen abnormality. We report a primigravida with Alport syndrome with mild proteinuria who gave birth abdominally to a term male infant without deteriorating renal function during pregnancy. The umbilical cord from not only this infant but also from an Alport (-) control infant showed negative immunofluorescence staining for the alpha 5 chain of type IV collagen. Women with Alport syndrome without renal dysfunction may follow an uneventful obstetrical course until term. The cord may not be suitable for diagnosing Alport syndrome with immunofluorescence staining.
Insect GDNF:TTC fusion protein improves delivery of GDNF to mouse CNS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jianhong; Chian, Ru-Ju; Ay, Ilknur
2009-12-18
With a view toward improving delivery of exogenous glial cell line-derived neurotrophic factor (GDNF) to CNS motor neurons in vivo, we evaluated the bioavailability and pharmacological activity of a recombinant GDNF:tetanus toxin C-fragment fusion protein in mouse CNS. Following intramuscular injection, GDNF:TTC but not recombinant GDNF (rGDNF) produced strong GDNF immunostaining within ventral horn cells of the spinal cord. Intrathecal infusion of GDNF:TTC resulted in tissue concentrations of GDNF in lumbar spinal cord that were at least 150-fold higher than those in mice treated with rGDNF. While levels of immunoreactive choline acetyltransferase and GFR{alpha}-1 in lumbar cord were not alteredmore » significantly by intrathecal infusion of rGNDF, GDNF:TTC, or TTC, only rGDNF and GDNF:TTC caused significant weight loss following intracerebroventricular infusion. These studies indicate that insect cell-derived GDNF:TTC retains its bi-functional activity in mammalian CNS in vivo and improves delivery of GDNF to spinal cord following intramuscular- or intrathecal administration.« less
Boros, Ákos; Albert, Mihály; Pankovics, Péter; Bíró, Hunor; Pesavento, Patricia A.; Phan, Tung Gia; Delwart, Eric
2017-01-01
A large, highly prolific swine farm in Hungary had a 2-year history of neurologic disease among newly weaned (25- to 35-day-old) pigs, with clinical signs of posterior paraplegia and a high mortality rate. Affected pigs that were necropsied had encephalomyelitis and neural necrosis. Porcine astrovirus type 3 was identified by reverse transcription PCR and in situ hybridization in brain and spinal cord samples in 6 animals from this farm. Among tissues tested by quantitative RT-PCR, the highest viral loads were detected in brain stem and spinal cord. Similar porcine astrovirus type 3 was also detected in archived brain and spinal cord samples from another 2 geographically distant farms. Viral RNA was predominantly restricted to neurons, particularly in the brain stem, cerebellum (Purkinje cells), and cervical spinal cord. Astrovirus was generally undetectable in feces but present in respiratory samples, indicating a possible respiratory infection. Astrovirus could cause common, neuroinvasive epidemic disease. PMID:29148391
Boros, Ákos; Albert, Mihály; Pankovics, Péter; Bíró, Hunor; Pesavento, Patricia A; Phan, Tung Gia; Delwart, Eric; Reuter, Gábor
2017-12-01
A large, highly prolific swine farm in Hungary had a 2-year history of neurologic disease among newly weaned (25- to 35-day-old) pigs, with clinical signs of posterior paraplegia and a high mortality rate. Affected pigs that were necropsied had encephalomyelitis and neural necrosis. Porcine astrovirus type 3 was identified by reverse transcription PCR and in situ hybridization in brain and spinal cord samples in 6 animals from this farm. Among tissues tested by quantitative RT-PCR, the highest viral loads were detected in brain stem and spinal cord. Similar porcine astrovirus type 3 was also detected in archived brain and spinal cord samples from another 2 geographically distant farms. Viral RNA was predominantly restricted to neurons, particularly in the brain stem, cerebellum (Purkinje cells), and cervical spinal cord. Astrovirus was generally undetectable in feces but present in respiratory samples, indicating a possible respiratory infection. Astrovirus could cause common, neuroinvasive epidemic disease.
Dysuria due to discospondylitis and intervertebral disc herniation in a male alpaca (Vicugna pacos).
Sickinger, Marlene; Hirz, Manuela; Schmidt, Martin J; Reinacher, Manfred
2016-05-31
Dysuria in camelids is usually associated with the presence of lower urinary tract disease such as urolithiasis. As another differential diagnosis, urine retention may be caused by neurological disturbances resulting from infections of the spinal cord, discospondylitis or trauma. A 2.5-year-old male Huacaya alpaca (Vicugna pacos) presented with dysuria due to damage of the lumbosacral intumescence of the spinal cord. On presentation the alpaca was recumbent. Clinical examination revealed abdominal pain, oliguria, leucopenia with neutrophilia, and slightly elevated creatinine kinase. Ultrasonography of the abdomen showed an irregularly shaped, dilated urinary bladder with hyperechoic serosa. Magnetic resonance imaging revealed discospondylitis of the fourth and fifth lumbar vertebrae and herniation of the intervertebral disc between these vertebrae and the spinal cord. Postmortem examination confirmed severe chronic purulent discospondylitis with ventral spondylosis and narrowing of the spinal canal. Urolithiasis could not be verified. Although rare, diseases of the spinal cord should be considered as a differential diagnosis for impaired micturition in camelids.
Gowdappa, H Basavana; Mahesh, M; Murthy, K V K S N; Narahari, M G
2013-09-30
A 23-year-old man presented with weakness in the lower limbs, numbness in hands and feet over past 6 months. Examination revealed a combination of absent ankle jerk, extensor plantar response and reduced sensations in a glove and stocking distribution. MRI of the spinal cord was distinctive of subacute combined degeneration (SACD) of the spinal cord. Serum vitamin B12 was low and anti-intrinsic factor antibodies were positive. A biopsy of the stomach revealed intense inflammatory infiltrates in lamina propria with grade III Helicobacter pylori infection. Other work-up for the cause of vitamin B12 deficiency was unremarkable. H pylori infection triggers autoantibodies by a mechanism of molecular mimicry. This case report highlights H pylori as a causative agent in vitamin B12 deficiency and culminating in SACD of the spinal cord. H pylori treatment reverses the underlying pathogenesis and corrects vitamin B12 deficient state in selected individuals.
Targeting central plasticity: a new direction of finding painkillers.
Zhuo, Min
2005-01-01
It is well documented that sensory transmission, including pain, receives endogenous inhibitory modulatory influences at dorsal horn of the spinal cord. Recent results, from behavioral to molecular studies, demonstrate that injury caused plastic changes in forebrain areas. In addition to encoding pain, these supraspinal areas may also affect pain transmission in the spinal cord level by activating "top-down" descending facilitatory systems. In this review, I provide review of evidence related to these new progresses, from human brain imaging to work from genetically mutant mice.
Label-free imaging of rat spinal cords based on multiphoton microscopy
NASA Astrophysics Data System (ADS)
Liao, Chenxi; Wang, Zhenyu; Zhou, Linquan; Zhu, Xiaoqin; Liu, Wenge; Chen, Jianxin
2016-10-01
As an integral part of the central nervous system, the spinal cord is a communication cable between the body and the brain. It mainly contains neurons, glial cells, nerve fibers and fiber tracts. The recent development of the optical imaging technique allows high-resolution imaging of biological tissues with the great potential for non-invasively looking inside the body. In this work, we evaluate the imaging capacity of multiphoton microscopy (MPM) based on second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) for the cells and extracellular matrix in the spinal cord at molecular level. Rat spinal cord tissues were sectioned and imaged by MPM to demonstrate that MPM is able to show the microstructure including white matter, gray matter, ventral horns, dorsal horns, and axons based on the distinct intrinsic sources in each region of spinal cord. In the high-resolution and high-contrast MPM images, the cell profile can be clearly identified as dark shadows caused by nuclei and encircled by cytoplasm. The nerve fibers in white matter region emitted both SHG and TPEF signals. The multiphoton microscopic imaging technique proves to be a fast and effective tool for label-free imaging spinal cord tissues, based on endogenous signals in biological tissue. It has the potential to extend this optical technique to clinical study, where the rapid and damage-free imaging is needed.
A rare case of multifocal intramedullary germinoma in cervical spinal cord.
Wang, R; Fan, X; Zhang, B
2014-06-01
Case report. We present for the first time a patient with multifocal intramedullary cervical spinal cord germ cell tumors with elevated serum alpha-fetoprotein (AFP). Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China. A 19-year-old girl experienced numbness in her right leg 10 months before diagnosis. The numbness gradually became severe and extended up to the thorax. Magnetic resonance imaging (MRI) visualized several intramedullary masses with intensive enhancement and extensive peritumoral edema in the spinal cord at the C3-T1 vertebral body levels. Administration of methylprednisolone caused no treatment effect. The largest mass, which was located at the T1 level inside the normal spinal cord and confirmed by naked eye observation, was completely extracted under a microscope. Postoperative pathological examination demonstrated the so-called 'two-cell pattern,' which is typical of germinoma with placental alkaline phosphatase expression. The serum level of AFP was 64.50 ng ml(-1) (normal range: 0-5 ng ml(-1)). The residual tumor was eliminated through radiation therapy (local 30 Gy) following surgery. Afterward, the patient's neurological deficits were improved but not resolved. Six years after surgery, no recurrence was encountered and the patient remained stable. Radiotherapy is the salvage therapy for spinal cord germinoma. Steroids were of no therapeutic value in the treatment of intramedullary spinal cord germinoma.
Polgár, Erika; Thomson, Suzanne; Maxwell, David J; Al-Khater, Khulood; Todd, Andrew J
2007-01-01
The dorsal horn of the rat spinal cord contains a population of large neurons with cell bodies in laminae III or IV, that express the neurokinin 1 receptor (NK1r) and have long dorsal dendrites that branch extensively within the superficial laminae. In this study, we have identified a separate population of neurons that have similar dendritic morphology, but lack the NK1r. These cells also differ from the NK1r-expressing neurons in that they have significantly fewer contacts from substance P-containing axons and are not retrogradely labelled following injection of tracer into the caudal ventrolateral medulla. We also provide evidence that these cells do not belong to the postsynaptic dorsal column pathway or the spinothalamic tract. It is therefore likely that these cells do not have supraspinal projections. They may provide a route through which information transmitted by C fibres that lack neuropeptides is conveyed to deeper laminae. The present findings demonstrate the need for caution when attempting to classify neurons solely on the basis of somatodendritic morphology. PMID:17880393
Spinal cord stimulation modulates intraspinal colorectal visceroreceptive transmission in rats
Qin, C.; Lehew, R.T.; Khan, K.A.; Wienecke, G.M.; Foreman, R.D.
2007-01-01
Previous studies have shown that spinal cord stimulation (SCS) of upper lumbar segments decreases visceromotor responses to mechanical stimuli in a sensitized rat colon and reduces symptoms of irritable bowel syndrome in patients. SCS applied to the upper cervical spinal dorsal column reduces pain of chronic refractory angina. Further, chemical stimulation of C1-C2 propriospinal neurons in rats modulates the responses of lumbosacral spinal neurons to colorectal distension. The present study was designed to compare the effects of upper cervical and lumbar SCS on activity of lumbosacral neurons receiving noxious colorectal input. Extracellular potentials of L6-S2 spinal neurons were recorded in pentobarbital anesthetized, paralyzed and ventilated male rats. SCS (50 Hz, 0.2 ms) at low intensity (90% of motor threshold) was applied to the dorsal column of upper cervical (C1-C2) or upper lumbar (L2-L3) ipsilateral spinal segments. Colorectal distension (CRD, 20, 40, 60 mmHg, 20 s) was produced by air inflation of a latex balloon. Results showed that SCS applied to L2-L3 and C1-C2 segments significantly reduced the excitatory responses to noxious CRD from 417.6±68.0 imp to 296.3±53.6 imp (P<0.05, n=24) and from 336.2±64.5 imp to 225.0±73.3 imp (P<0.05, n= 18), respectively. Effects of L2-L3 and C1-C2 SCS lasted 10.2±1.9 min and 8.0±0.9 min after offset of CRD. Effects of SCS were observed on spinal neurons with either high or low threshold excitatory responses to CRD. However, L2-L3 or C1-C2 SCS did not significantly affect inhibitory neuronal responses to CRD. C1-C2 SCS-induced effects were abolished by cutting the C7-C8 dorsal column but not by spinal transection at cervicomedullary junction. These data demonstrated that upper cervical or lumbar SCS modulated responses of lumbosacral spinal neurons to noxious mechanical stimulation of the colon, thereby, proved two loci for a potential therapeutic effect of SCS in patients with irritable bowel syndrome and other colonic disorders. PMID:17324482
Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells
Muñoz, Rosana; Edwards-Faret, Gabriela; Moreno, Mauricio; Zuñiga, Nikole; Cline, Hollis; Larraín, Juan
2016-01-01
Spinal cord regeneration is very inefficient in humans, causing paraplegia and quadriplegia. Studying model organisms that can regenerate the spinal cord in response to injury could be useful for understanding the cellular and molecular mechanisms that explain why this process fails in humans. Here, we use Xenopus laevis as a model organism to study spinal cord repair. Histological and functional analyses showed that larvae at pre-metamorphic stages restore anatomical continuity of the spinal cord and recover swimming after complete spinal cord transection. These regenerative capabilities decrease with onset of metamorphosis. The ability to study regenerative and non-regenerative stages in Xenopus laevis makes it a unique model system to study regeneration. We studied the response of Sox2/3 expressing cells to spinal cord injury and their function in the regenerative process. We found that cells expressing Sox2 and/or Sox3 are present in the ventricular zone of regenerative animals and decrease in non-regenerative froglets. Bromodeoxyuridine (BrdU) experiments and in vivo time-lapse imaging studies using green fluorescent protein (GFP) expression driven by the Sox3 promoter showed a rapid, transient and massive proliferation of Sox2/3+ cells in response to injury in the regenerative stages. The in vivo imaging also demonstrated that Sox2/3+ neural progenitor cells generate neurons in response to injury. In contrast, these cells showed a delayed and very limited response in non-regenerative froglets. Sox2 knockdown and overexpression of a dominant negative form of Sox2 disrupts locomotor and anatomical-histological recovery. We also found that neurogenesis markers increase in response to injury in regenerative but not in non-regenerative animals. We conclude that Sox2 is necessary for spinal cord regeneration and suggest a model whereby spinal cord injury activates proliferation of Sox2/3 expressing cells and their differentiation into neurons, a mechanism that is lost in non-regenerative froglets. PMID:25797152
Hubscher, C H; Reed, W R; Kaddumi, E G; Armstrong, J E; Johnson, R D
2010-01-01
The specific white matter location of all the spinal pathways conveying penile input to the rostral medulla is not known. Our previous studies using rats demonstrated the loss of low but not high threshold penile inputs to medullary reticular formation (MRF) neurons after acute and chronic dorsal column (DC) lesions of the T8 spinal cord and loss of all penile inputs after lesioning the dorsal three-fifths of the cord. In the present study, select T8 lesions were made and terminal electrophysiological recordings were performed 45–60 days later in a limited portion of the nucleus reticularis gigantocellularis (Gi) and Gi pars alpha. Lesions included subtotal dorsal hemisections that spared only the lateral half of the dorsal portion of the lateral funiculus on one side, dorsal and over-dorsal hemisections, and subtotal transections that spared predominantly just the ventromedial white matter. Electrophysiological data for 448 single unit recordings obtained from 32 urethane-anaesthetized rats, when analysed in groups based upon histological lesion reconstructions, revealed (1) ascending bilateral projections in the dorsal, dorsolateral and ventrolateral white matter of the spinal cord conveying information from the male external genitalia to MRF, and (2) ascending bilateral projections in the ventrolateral white matter conveying information from the pelvic visceral organs (bladder, descending colon, urethra) to MRF. Multiple spinal pathways from the penis to the MRF may correspond to different functions, including those processing affective/pleasure/motivational, nociception, and mating-specific (such as for erection and ejaculation) inputs. PMID:20142271
Rana, Maunak V; Knezevic, Nebojsa Nick
2013-01-01
The objective of this case report is to describe the use of transverse tripolar dorsal column stimulation in a patient with a history of irritable bowel syndrome (IBS) associated with abdominal pain resistant to conservative treatments. We report a 36-year-old man who presented to the pain clinic with an eight-year history of IBS (constipation predominant with occasional diarrheal episodes), with "crampy and sharp" abdominal pain. He also had nonradicular thoracic spine pain due to thoracic scoliosis. Both pains were affecting his ability to function as an attorney. Prior conservative therapy, including psychologic treatment, antidepressants, and opioids, was without any benefits. The use of a spinal cord stimulator (SCS) was discussed with the patient. The procedure was performed after Institutional Review Board approval. A tripolar SCS was implanted at the T8 level using one-eight contact and two-four contact percutaneous leads based on paresthesia reproduction of patient's areas of discomfort. This tripolar spinal cord stimulation provided relief of abdominal and thoracic pain, and better management of gastrointestinal symptoms. The patient was followed-up for one year, and his quality of life also was improved via the IBS-Severity Scoring System quality of life tool. The use of the tripolar SCS in this patient provided relief of abdominal and thoracic spine pain, regulated bowel habits, and improved the patient's quality of life. We believe that the use of SCS should be considered as a treatment option in patients with IBS when all conservative treatments failed. © 2012 International Neuromodulation Society.
Peterson, Sheri L.; Nguyen, Hal X.; Mendez, Oscar A.
2015-01-01
Traumatic injury to CNS fiber tracts is accompanied by failure of severed axons to regenerate and results in lifelong functional deficits. The inflammatory response to CNS trauma is mediated by a diverse set of cells and proteins with varied, overlapping, and opposing effects on histological and behavioral recovery. Importantly, the contribution of individual inflammatory complement proteins to spinal cord injury (SCI) pathology is not well understood. Although the presence of complement components increases after SCI in association with axons and myelin, it is unknown whether complement proteins affect axon growth or regeneration. We report a novel role for complement C1q in neurite outgrowth in vitro and axon regrowth after SCI. In culture, C1q increased neurite length on myelin. Protein and molecular assays revealed that C1q interacts directly with myelin associated glycoprotein (MAG) in myelin, resulting in reduced activation of growth inhibitory signaling in neurons. In agreement with a C1q-outgrowth-enhancing mechanism in which C1q binding to MAG reduces MAG signaling to neurons, complement C1q blocked both the growth inhibitory and repulsive turning effects of MAG in vitro. Furthermore, C1q KO mice demonstrated increased sensory axon turning within the spinal cord lesion after SCI with peripheral conditioning injury, consistent with C1q-mediated neutralization of MAG. Finally, we present data that extend the role for C1q in axon growth and guidance to include the sprouting patterns of descending corticospinal tract axons into spinal gray matter after dorsal column transection SCI. PMID:25762679
Coulibaly, Aminata P.; Gannon, Sean M.; Hawk, Kiel; Walsh, Brian F.; Isaacson, Lori G.
2013-01-01
The goals of the present study were to investigate the changes in sympathetic preganglionic neurons following transection of distal axons in the cervical sympathetic trunk (CST) that innervate the superior cervical ganglion (SCG) and to assess changes in the protein expression of brain derived neurotrophic factor (BDNF) and its receptor TrkB in the thoracic spinal cord. . At 1 week, a significant decrease in soma volume and reduced soma expression of choline acetyltransferase (ChAT) in the intermediolateral cell column (IML) of T1 spinal cord were observed, with both ChAT-ir and non-immunoreactive neurons expressing the injury marker activating transcription factor 3. . These changes were transient, and at later time points, ChAT expression and soma volume returned to control values and the number of ATF3 neurons declined. No evidence for cell loss or neuronal apoptosis was detected at any time point. Protein levels of BDNF and/or full length TrkB in the spinal cord were increased throughout the survival period. In the SCG, both ChAT-ir axons and ChAT protein remained decreased at 16 weeks, but were increased compared to the 10 week time point. These results suggest that though IML neurons show reduced ChAT expression and cell volume at 1 week following CST transection, at later time points, the neurons recovered and exhibited no significant signs of neurodegeneration. The alterations in BDNF and/or TrkB may have contributed to the survival of the IML neurons and the recovery of ChAT expression, as well as to the reinnervation of the SCG. PMID:23891533
Retrograde influences of SCG axotomy on uninjured preganglionic neurons.
Gannon, Sean M; Hawk, Kiel; Walsh, Brian F; Coulibaly, Aminata; Isaacson, Lori G
2018-07-15
There is evidence that neuronal injury can affect uninjured neurons in the same neural circuit. The overall goal of this study was to understand the effects of peripheral nerve injury on uninjured neurons located in the central nervous system (CNS). As a model, we examined whether axotomy (transection of postganglionic axons) of the superior cervical ganglion (SCG) affected the uninjured, preganglionic neurons that innervate the SCG. At 7 days post-injury a reduction in choline acetyltransferase (ChAT) and synaptophysin immunoreactivity in the SCG, both markers for preganglionic axons, was observed, and this reduction persisted at 8 and 12 weeks post-injury. No changes were observed in the number or size of the parent cell bodies in the intermediolateral cell column (IML) of the spinal cord, yet synaptic input to the IML neurons was decreased at both 8 and 12 weeks post-injury. In order to understand the mechanisms underlying these changes, protein levels of brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB) were examined and reductions were observed at 7 days post-injury in both the SCG and spinal cord. Taken together these results suggest that axotomy of the SCG led to reduced BDNF in the SCG and spinal cord, which in turn influenced ChAT and synaptophysin expression in the SCG and also contributed to the altered synaptic input to the IML neurons. More generally these findings provide evidence that the effects of peripheral injury can cascade into the CNS and affect uninjured neurons. Copyright © 2018 Elsevier B.V. All rights reserved.
Functional Diversification of Motor Neuron-specific Isl1 Enhancers during Evolution
Kim, Namhee; Park, Chungoo; Jeong, Yongsu; Song, Mi-Ryoung
2015-01-01
Functional diversification of motor neurons has occurred in order to selectively control the movements of different body parts including head, trunk and limbs. Here we report that transcription of Isl1, a major gene necessary for motor neuron identity, is controlled by two enhancers, CREST1 (E1) and CREST2 (E2) that allow selective gene expression of Isl1 in motor neurons. Introduction of GFP reporters into the chick neural tube revealed that E1 is active in hindbrain motor neurons and spinal cord motor neurons, whereas E2 is active in the lateral motor column (LMC) of the spinal cord, which controls the limb muscles. Genome-wide ChIP-Seq analysis combined with reporter assays showed that Phox2 and the Isl1-Lhx3 complex bind to E1 and drive hindbrain and spinal cord-specific expression of Isl1, respectively. Interestingly, Lhx3 alone was sufficient to activate E1, and this may contribute to the initiation of Isl1 expression when progenitors have just developed into motor neurons. E2 was induced by onecut 1 (OC-1) factor that permits Isl1 expression in LMCm neurons. Interestingly, the core region of E1 has been conserved in evolution, even in the lamprey, a jawless vertebrate with primitive motor neurons. All E1 sequences from lamprey to mouse responded equally well to Phox2a and the Isl1-Lhx3 complex. Conversely, E2, the enhancer for limb-innervating motor neurons, was only found in tetrapod animals. This suggests that evolutionarily-conserved enhancers permit the diversification of motor neurons. PMID:26447474
Functional Diversification of Motor Neuron-specific Isl1 Enhancers during Evolution.
Kim, Namhee; Park, Chungoo; Jeong, Yongsu; Song, Mi-Ryoung
2015-10-01
Functional diversification of motor neurons has occurred in order to selectively control the movements of different body parts including head, trunk and limbs. Here we report that transcription of Isl1, a major gene necessary for motor neuron identity, is controlled by two enhancers, CREST1 (E1) and CREST2 (E2) that allow selective gene expression of Isl1 in motor neurons. Introduction of GFP reporters into the chick neural tube revealed that E1 is active in hindbrain motor neurons and spinal cord motor neurons, whereas E2 is active in the lateral motor column (LMC) of the spinal cord, which controls the limb muscles. Genome-wide ChIP-Seq analysis combined with reporter assays showed that Phox2 and the Isl1-Lhx3 complex bind to E1 and drive hindbrain and spinal cord-specific expression of Isl1, respectively. Interestingly, Lhx3 alone was sufficient to activate E1, and this may contribute to the initiation of Isl1 expression when progenitors have just developed into motor neurons. E2 was induced by onecut 1 (OC-1) factor that permits Isl1 expression in LMCm neurons. Interestingly, the core region of E1 has been conserved in evolution, even in the lamprey, a jawless vertebrate with primitive motor neurons. All E1 sequences from lamprey to mouse responded equally well to Phox2a and the Isl1-Lhx3 complex. Conversely, E2, the enhancer for limb-innervating motor neurons, was only found in tetrapod animals. This suggests that evolutionarily-conserved enhancers permit the diversification of motor neurons.
Fertility and sexuality in the spinal cord injury patient.
Stoffel, J T; Van der Aa, F; Wittmann, D; Yande, S; Elliott, S
2018-06-14
After a spinal cord injury, patients have different perceptions of sexuality, sexual function, and potential for fertility. These changes can greatly impact quality of life over a lifetime. The purpose of this workgroup was to identify common evidence based or expert opinion themes and recommendations regarding treatment of sexuality, sexual function and fertility in the spinal cord injury population. As part of the SIU-ICUD joint consultation of Urologic Management of the Spinal Cord Injury (SCI), a workgroup and comprehensive literature search of English language manuscripts regarding fertility and sexuality in the spinal cord injury patient were formed. Articles were compiled, and recommendations in the chapter are based on group discussion and follow the Oxford Centre for Evidence-based Medicine system for levels of evidence (LOEs) and grades of recommendation (GORs). Genital arousal, ejaculation, and orgasm are significantly impacted after spinal cord injury in both male and female SCI patients. This may have a more significant impact on potential for fertility in male spinal cord injury patients, particularly regarding ability of generate erection, semen quantity and quality. Female patients should be consulted that pregnancy is still possible after injury and a woman should expect resumption of normal reproductive function. As a result, sexual health teaching should be continued in women despite injury. Pregnancy in a SCI may cause complications such as autonomic dysreflexia, so this group should be carefully followed during pregnancy. By understanding physiologic changes after injury, patients and care teams can work together to achieve goals and maximize sexual quality of life after the injury.
Depallens, Sarah; Lutz, Nicolas; Carlomagno, Raffaella; Meyrat, Blaise; Barazzoni, Mirjam Schuler; Tchameni, Yves Yamgoue; Pascual, Andres; Scerba, François; Superti-Furga, Andrea
2016-01-13
Every pediatrician will be confronted with newborns oryoung infants with skin lesions in proximity of the vertebral column. It is important not to miss a spinal dysraphism because of the risk of meningeal infection or of the possible presence of a tethered cord. A practical algorithm is presented. Non-accidental injury in young infants and toddlers is not rare but difficult to detect. Bruises and fractures are highly suspicious for non-accidental injury and should trigger specific investigations. Emergency departments and hospitals are switching from hypotonic to isotonic solutions as maintenance infusions of children. They reduce the risk of hyponatremia without increasing that of hypernatremia, and they should be used preferentially in the majority of pediatric clinical settings.
Isl1 Is required for multiple aspects of motor neuron development
Liang, Xingqun; Song, Mi-Ryoung; Xu, ZengGuang; Lanuza, Guillermo M.; Liu, Yali; Zhuang, Tao; Chen, Yihan; Pfaff, Samuel L.; Evans, Sylvia M.; Sun, Yunfu
2011-01-01
The LIM homeodomain transcription factor Islet1 (Isl1) is expressed in multiple organs and plays essential roles during embryogenesis. Isl1 is required for the survival and specification of spinal cord motor neurons. Due to early embryonic lethality and loss of motor neurons, the role of Isl1 in other aspects of motor neuron development remains unclear. In this study, we generated Isl1 mutant mouse lines expressing graded doses of Isl1. Our study has revealed essential roles of Isl1 in multiple aspects of motor neuron development, including motor neuron cell body localization, motor column formation and axon growth. In addition, Isl1 is required for survival of cranial ganglia neurons. PMID:21569850
Hodgkin Lymphoma revealed by epidural spinal cord compression.
Ghedira, Khalil; Matar, Nidhal; Bouali, Sofiene; Zehani, Alia; Boubaker, Adnen; Jemel, Hafedh
2018-01-30
Hodgkin Lymphoma is rarely diagnosed as spinal cord compression syndrome. Caused by an epidural mass, this complication is often encountered in a late stage of the disease. We report the case of a 40-year-old man presenting with symptoms of low thoracic spinal cord compression due to an epidural tumor on the MRI. Emergent surgery was undertaken on this patient, consisting in laminectomy and tumor resection. After surgery, pain relief and mild neurological improvement were noticed. The histological study revealed a Hodgkin Lymphoma and the patient was referred to chemotherapy and radiotherapy. Though chemotherapy is the gold standard treatment for Hodgkin Lymphoma, surgical spinal decompression may be required in epidural involvement of the disease. Diagnosis may be suspected in the presence of lymphadenopathy and general health decay.
Hirai, Takayuki; Uchida, Kenzo; Nakajima, Hideaki; Guerrero, Alexander Rodriguez; Takeura, Naoto; Watanabe, Shuji; Sugita, Daisuke; Yoshida, Ai; Johnson, William E. B.; Baba, Hisatoshi
2013-01-01
Background Cervical compressive myelopathy, e.g. due to spondylosis or ossification of the posterior longitudinal ligament is a common cause of spinal cord dysfunction. Although human pathological studies have reported neuronal loss and demyelination in the chronically compressed spinal cord, little is known about the mechanisms involved. In particular, the neuroinflammatory processes that are thought to underlie the condition are poorly understood. The present study assessed the localized prevalence of activated M1 and M2 microglia/macrophages in twy/twy mice that develop spontaneous cervical spinal cord compression, as a model of human disease. Methods Inflammatory cells and cytokines were assessed in compressed lesions of the spinal cords in 12-, 18- and 24-weeks old twy/twy mice by immunohistochemical, immunoblot and flow cytometric analysis. Computed tomography and standard histology confirmed a progressive spinal cord compression through the spontaneously development of an impinging calcified mass. Results The prevalence of CD11b-positive cells, in the compressed spinal cord increased over time with a concurrent decrease in neurons. The CD11b-positive cell population was initially formed of arginase-1- and CD206-positive M2 microglia/macrophages, which later shifted towards iNOS- and CD16/32-positive M1 microglia/macrophages. There was a transient increase in levels of T helper 2 (Th2) cytokines at 18 weeks, whereas levels of Th1 cytokines as well as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and macrophage antigen (Mac) −2 progressively increased. Conclusions Spinal cord compression was associated with a temporal M2 microglia/macrophage response, which may act as a possible repair or neuroprotective mechanism. However, the persistence of the neural insult also associated with persistent expression of Th1 cytokines and increased prevalence of activated M1 microglia/macrophages, which may lead to neuronal loss and demyelination despite the presence of neurotrophic factors. This understanding of the aetiopathology of chronic spinal cord compression is of importance in the development of new treatment targets in human disease. PMID:23717624
Liaw, Wen-Jinn; Tsao, Cheng-Ming; Huang, Go-Shine; Wu, Chin-Chen; Ho, Shung-Tai; Wang, Jhi-Joung; Tao, Yuan-Xiang; Shui, Hao-Ai
2014-01-01
Introduction Morphine is the most effective pain-relieving drug, but it can cause unwanted side effects. Direct neuraxial administration of morphine to spinal cord not only can provide effective, reliable pain relief but also can prevent the development of supraspinal side effects. However, repeated neuraxial administration of morphine may still lead to morphine tolerance. Methods To better understand the mechanism that causes morphine tolerance, we induced tolerance in rats at the spinal cord level by giving them twice-daily injections of morphine (20 µg/10 µL) for 4 days. We confirmed tolerance by measuring paw withdrawal latencies and maximal possible analgesic effect of morphine on day 5. We then carried out phosphoproteomic analysis to investigate the global phosphorylation of spinal proteins associated with morphine tolerance. Finally, pull-down assays were used to identify phosphorylated types and sites of 14-3-3 proteins, and bioinformatics was applied to predict biological networks impacted by the morphine-regulated proteins. Results Our proteomics data showed that repeated morphine treatment altered phosphorylation of 10 proteins in the spinal cord. Pull-down assays identified 2 serine/threonine phosphorylated sites in 14-3-3 proteins. Bioinformatics further revealed that morphine impacted on cytoskeletal reorganization, neuroplasticity, protein folding and modulation, signal transduction and biomolecular metabolism. Conclusions Repeated morphine administration may affect multiple biological networks by altering protein phosphorylation. These data may provide insight into the mechanism that underlies the development of morphine tolerance. PMID:24392096
Cruciate Paralysis in a 20- year -old Male with an Undisplaced Type III Odontoid Fracture.
A, Mansukhani Sameer; V, Tuteja Sanesh; B, Dhar Sanjay
2016-01-01
Cruciate Paralysis is a rare incomplete spinal cord syndrome presenting as brachial diplegia with minimal or no involvement of the lower extremities. It occurs as a result of trauma to the cervical spine and is associated with fractures of the axis and/or atlas. Diagnosis is confirmed on MRI and is managed by treatment of the underlying pathology. Prognosis depends on the extent of spinal cord injury and the exact cause. A 20-year-old male presented to the casualty with a history of an injury to the back of the head as a result of a fall. He had severe pain in the neck and shoulder region and experienced difficulty in raising both arms and gripping objects. On examination, he had weakness of both arms, more on the right, involving the C5 to T1 distribution and brisk reflexes. There was no sensory deficit. Radiograph and a computed tomography (CT) scan of the cervical spine showed a type III undisplaced odontoid fracture. MRI showed a signal abnormality in the spinal cord at the level of the cervicomedullary junction extending up to the body of C2 vertebra. The patient was treated with traction in Gardner Wells tongs for six weeks and a sterno-occipital-mandibular immobilizer immobilizer (SOMI) brace thereafter. At three-month follow-up, he had attained complete neurological recovery. Cruciate Paralysis is an important cause of brachial diplegia and must be differentiated from Acute Central Cord syndrome which can have similar clinical features.
Lewis, Noah D H; Keshen, Sam G N; Lenke, Lawrence G; Zywiel, Michael G; Skaggs, David L; Dear, Taylor E; Strantzas, Samuel; Lewis, Stephen J
2015-08-01
A retrospective analysis. The purpose of this study was to determine whether the deformity angular ratio (DAR) can reliably assess the neurological risks of patients undergoing deformity correction. Identifying high-risk patients and procedures can help ensure that appropriate measures are taken to minimize neurological complications during spinal deformity corrections. Subjectively, surgeons look at radiographs and evaluate the riskiness of the procedure. However, 2 curves of similar magnitude and location can have significantly different risks of neurological deficit during surgery. Whether the curve spans many levels or just a few can significantly influence surgical strategies. Lenke et al have proposed the DAR, which is a measure of curve magnitude per level of deformity. The data from 35 pediatric spinal deformity correction procedures with thoracic 3-column osteotomies were reviewed. Measurements from preoperative radiographs were used to calculate the DAR. Binary logistic regression was used to model the relationship between DARs (independent variables) and presence or absence of an intraoperative alert (dependent variable). In patients undergoing 3-column osteotomies, sagittal curve magnitude and total curve magnitude were associated with increased incidence of transcranial motor evoked potential changes. Total DAR greater than 45° per level and sagittal DAR greater than 22° per level were associated with a 75% incidence of a motor evoked potential alert, with the incidence increasing to 90% with sagittal DAR of 28° per level. In patients undergoing 3-column osteotomies for severe spinal deformities, the DAR was predictive of patients developing intraoperative motor evoked potential alerts. Identifying accurate radiographical, patient, and procedural risk factors in the correction of severe deformities can help prepare the surgical team to improve safety and outcomes when carrying out complex spinal corrections. 3.
Prenatal development of the normal human vertebral corpora in different segments of the spine.
Nolting, D; Hansen, B F; Keeling, J; Kjaer, I
1998-11-01
Vertebral columns from 13 normal human fetuses (10-24 weeks of gestation) that had aborted spontaneously were investigated as part of the legal autopsy procedure. The investigation included spinal cord analysis. To analyze the formation of the normal human vertebral corpora along the spine, including the early location and disappearance of the notochord. Reference material on the development of the normal human vertebral corpora is needed for interpretation of published observations on prenatal malformations in the spine, which include observations of various types of malformation (anencephaly, spina bifida) and various genotypes (trisomy 18, 21 and 13, as well as triploidy). The vertebral columns were studied by using radiography (Faxitron X-ray apparatus, Faxitron Model 43,855, Hewlett Packard) in lateral, frontal, and axial views and histology (decalcification, followed by toluidine blue and alcian blue staining) in and axial view. Immunohistochemical marking with Keratin Wide Spectrum also was done. Notochordal tissue (positive on marking with Keratin Wide Spectrum [DAKO, Denmark]) was located anterior to the cartilaginous body center in the youngest fetuses. The process of disintegration of the notochord and the morphology of the osseous vertebral corpora in the lumbosacral, thoracic, and cervical segments are described. Marked differences appeared in axial views, which were verified on horizontal histologic sections. Also, the increase in size was different in the different segments, being most pronounced in the thoracic and upper lumbar bodies. The lower thoracic bodies were the first to ossify. The morphologic changes observed by radiography were verified histologically. In this study, normal prenatal standards were established for the early development of the vertebral column. These standards can be used in the future--for evaluation of pathologic deviations in the human vertebral column in the second trimester.
What are the trends and demographics in sports-related pediatric spinal cord injuries?
Nadarajah, Vidushan; Jauregui, Julio J; Perfetti, Dean; Shasti, Mark; Koh, Eugene Y; Henn, Ralph Frank
2018-02-01
Pediatric spinal cord injury (PSCI) is a devastating injury that can cause significant long-term consequences. The purpose of this study is to calculate and report the prevalence of PSCI, identify risk factors for sports-related PSCI, and evaluate associated factors. The data sets of the Healthcare Cost and Utilization Project (HCUP) Kids' Inpatient Database (KID) from 2000-2012 were analyzed using ICD-9-CM external cause of injury codes to identify the mechanism of injury contributing to PSCI hospitalization. We then extracted demographic data on each admission including age, gender, race, and year of admission. We further stratified the data by sports-related cases of injury. Multivariate logistic regression analyses were used to identify independent risk factors. Of our study population, 0.8% had a documented diagnosis of spinal cord injury (SCI). The most common documented external cause of injury code was motor vehicle accidents, representing roughly half of all cases in patients 0-9 years-old (p = 0.001). PSCI due to sports as an external cause of injury was more prevalent in patients 10-17 years old, and was especially prevalent in the 10-13 year-old age category in which sports-related PSCI reached a high of 25.6%. Risk factors for traumatic PSCI after a sports-related external cause included being of older age, male, and white. The prevalence of SCI increased with age. Given the popularity of youth sports in the United States, parents and sports officials should be aware of the increased risk of sports-related PSCI among patients 10-17 years old. Level III, retrospective cohort study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seco, J; Giantsoudi, D; Eaton, BR
Purpose: To investigate the trade-off between vertebral column sparing and thecal-sac target coverage in craniospinal irradiation (CSI) of pediatric patients treated with passive-scattering (PS) and intensity modulated (IMPT) proton therapy. Methods: We selected 2 pediatric patients treated with PS CSI for medulloblastoma. Spinal irradiation was re-planned with IMPT. For all cases, we assumed prescription dose of 23.4 Gy(RBE), with the spinal canal receiving at least 95% of 23.4 Gy(RBE). PS planning was performed using the commercial system XiO. IMPT planning was done using the Astroid planning system. Beam arrangements consisted of (a) PS posterior-anterior (PA) field, PS-PA, (b) IMPT PAmore » field, IMPT-PA, and (c) two posterior oblique IMPT fields, IMPT2 (-35°, 35°). Dose distributions were re-calculated using TOPAS Monte Carlo, along with LET distributions, to investigate LET variations within the target and vertebra anatomy. Variable RBE-weighed dose distributions were also calculated based on a dose and LET-dependent biophysical model. Dosimetric data were compared among the plans for the target volume, spinal cord and adjacent critical organs (thecal-sac and cauda equina). Results: IMPT2 resulted in better sparing of the posterior vertebral column (entrance region posterior to thecal-sac), where planned dose was approximately 6–8Gy(RBE). For IMPT-PA and PS-PA the MC-calculated dose to the posterior vertebral column was, on average, 20Gy and 18Gy respectively. For IMPT2 higher mean-LET (5keV/µm/(g/cm3)) values were observed in anterior vertebral column (beyond the thecal-sac) relative to IMPT-PA and PS-PA, where mean-LET was 3.5keV/µm/(g/cm3) and 2.5keV/µm/(g/cm3) respectively. The higher LET region observed for both IMPT plans was in the distal end of treatment fields, where dose delivered was less 5Gy(RBE). Conclusion: The two-oblique proton beams IMPT2 best spared the spinal column, while reducing the dose to the posterior spinal column from 18–20 to 6–8 Gy(RBE). The best LET distribution was obtained with the PS-PA fields.« less
Determining Atmospheric Pressure with a Eudiometer and Glycerol
ERIC Educational Resources Information Center
Brody, Jed; Rohald, Kate; Sutton, Atasha
2010-01-01
We consider a volume of air trapped over a glycerol column in a eudiometer. We demonstrate that there is an approximately linear relationship between the volume of trapped air and the height of the glycerol column. Simply by moving the eudiometer up and down, we cause the glycerol-column height and trapped-air volume to vary. The plot of volume…
... a hiccup is a quick closing of your vocal cords. This is what causes the "hic" sound ... or excited A bloated stomach Certain medicines Abdominal surgery Metabolic disorders Central nervous system disorders Hiccups usually ...
... and spinal cord and can also cause lower intelligence in babies exposed to valproic acid before birth. ... acid. Talk to your doctor about birth control methods that will work for you. If you become ...
Vazquez, Enrique; Hernandez, Norma; Escobar, William; Vanegas, Horacio
2005-06-28
Microinjection of dipyrone (metamizol) into the periaqueductal gray matter (PAG) in rats causes antinociception. This is mediated by endogenous opioidergic circuits located in the PAG itself, in the nucleus raphe magnus and adjacent structures, and in the spinal cord. The clinical relevance of these findings, however, is unclear. Therefore, in the present study, dipyrone was administered intravenously, and the involvement of endogenous opioidergic circuits in the so-induced antinociception was investigated. In rats, responses of dorsal spinal wide-dynamic range neurons to mechanical noxious stimulation of a hindpaw were strongly inhibited by intravenous dipyrone (200 mg/kg). This effect was abolished by microinjection of naloxone (0.5 microg/0.5 microl) into the ventrolateral and lateral PAG or into the nucleus raphe magnus or by direct application of naloxone (50 microg/50 microl) onto the spinal cord surface above the recorded neuron. These results show that dipyrone, a non-opioid analgesic with widespread use in Europe and Latin America, when administered in a clinically relevant fashion causes antinociception by activating endogenous opioidergic circuits along the descending pain control system.
Seismic Performance of Self-Consolidating Concrete Bridge Columns
DOT National Transportation Integrated Search
2017-09-01
The high amount of confining lateral steel required by seismic design provisions for rectangular bridge columns can cause steel congestion. The high amount of confining steel may hinder the placement of conventional concrete (CC). Self-consolidating ...
Baron, Frédéric; Ruggeri, Annalisa; Nagler, Arnon
2016-03-01
More than 40,000 unrelated cord blood transplantations (UCBT) have been performed worldwide as treatment for patients with malignant or non-malignant life threatening hematologic disorders. However, low absolute numbers of hematopoietic stem and progenitor cells (HSPCs) within a single cord blood unit has remained a limiting factor for this transplantation modality, particularly in adult recipients. Further, because UCB contains low numbers of mostly naïve T cells, immune recovery after UCBT is slow, predisposing patients to severe infections. Other causes of UCBT failure has included graft-versus-host disease (GVHD) and relapse of the underlying disease. In this article, we first review the current landscape of cord blood engineering aimed at improving engraftment. This includes approaches of UCB-HSPCs expansion and methods aimed at improving UCB-HSCPs homing. We then discuss recent approaches of cord blood engineering developed to prevent infection [generation of multivirus-specific cytotoxic T cells (VSTs) from UCB], relapse [transduction of UCB-T cells with tumor-specific chimeric receptor antigens (CARs)] and GVHD (expansion of regulatory T cells from UCB). Although many of these techniques of UCB engineering remain currently technically challenging and expensive, they are likely to revolutionize the field of UCBT in the next decades.
Mori, Yuki; Murakami, Masaaki; Arima, Yasunobu; Zhu, Dasong; Terayama, Yasuo; Komai, Yutaka; Nakatsuji, Yuji; Kamimura, Daisuke; Yoshioka, Yoshichika
2014-02-01
Magnetic resonance imaging (MRI) is widely employed for the diagnosis of multiple sclerosis (MS). However, sometimes, the lesions found by MRI do not correlate with the neurological impairments observed in MS patients. We recently showed autoreactive T cells accumulate in the fifth lumbar cord (L5) to pass the blood-brain barrier and cause inflammation in the central nervous system of experimental autoimmune encephalomyelitis (EAE) mice, an MS model. We here investigated this early event using ultrahigh-field MRI. T2-weighted image signals, which conform to the water content, increased in L4 and L5 during the development of EAE. At the same time, the sizes of L4 and L5 changed. Moreover, angiographic images of MRI showed branch positions of the blood vessels in the lower lumbar cords were significantly altered. Interestingly, EAE mice showed occluded and thickened vessels, particularly during the peak phase, followed by reperfusion in the remission phase. Additionally, demyelination regions of some MS patients had increased lactic acid content, suggesting the presence of ischemic events. These results suggest that inflammation-mediated alterations in the lower lumbar cord change the homeostasis of the spinal cord and demonstrate that ultrahigh-field MRI enables the detection of previously invisible pathological alterations in EAE.
[Cervical cord infarction associated with unilateral vertebral artery dissection due to golf swing].
Tokumoto, Kazuki; Ueda, Nobuhiko
2014-01-01
A-68-year-old man experienced nuchal pain and bilateral shoulder weakness that occurred suddenly after he performed a golf swing. He was conscious. His cranial nerves were normal, but bilateral deltoid and biceps muscle strengths weakened. Magnetic resonance image (MRI) showed no brain stem infarctions or cervical epidural hematoma. We tentatively diagnosed him with concussion of the spinal cord because of mild recovery of his bilateral upper limb weakness after several hours; he was later discharged. The next day, he suddenly developed serious tetraplegia and was admitted to the emergency department. His breathing was controlled by a respirator as he had expectoration difficulty and respiratory muscle paralysis. A lesion in the cervical cord became apparent on MRI; the right vertebral artery was not detected on magnetic resonance angiography. Cervical MRI showed the intimal flap and a lack of flow void in the right vertebral artery. These findings revealed a right vertebral artery dissection. Cervical cord infarction due to unilateral vertebral artery dissection is rarer than posterior cerebral infarction due to the same pathogenesis; however, some such cases have been reported. We consider the present case to be caused by cervical cord infarction associated with unilateral vertebral artery dissection resulting from golf swing.
Vocal cord dysfunction in a child.
Juliá, J C; Martorell, A; Armengot, M A; Lluch, R; Boluda, C F; Cerdá, J C; Alvarez, V
1999-07-01
Vocal cord dysfunction (VCD) involves paradoxical adduction of the vocal cord during the respiratory cycle. This usually occurs during inspiration, but can also be seen in expiration. Vocal cord appositioning produces airflow obstruction sufficient to cause wheezing, shortness of breath, chest tightness, and coughing. These symptoms often imitate the respiratory alterations of asthma, thus leading to inappropriate treatment; intubation or tracheotomy may prove necessary. An 11-year-old girl was admitted with intractable dyspnea. She had been diagnosed with atopic asthma, although she failed to respond to an increase in antiasthma medication, including high-dose oral steroids. Flow-volume loops were abnormal, with evidence of variable extrathoracic airway obstruction, manifested as a flat inspiratory loop. No structural abnormalities were seen with either computed tomography (CT) or magnetic resonance imaging (MRI). Fibroscopy revealed paradoxical adduction of the vocal cords during the respiratory cycle, no obstructive disorder being observed. After the diagnosis of VCD, the clinical manifestations resolved with psychiatric treatment. Adduction was not demonstrable at repeat fibroscopy after treatment. VCD may simulate bronchial asthma; it may also be associated with that disorder, thus masking the diagnosis. It should be suspected in patients with recurrent wheezing who fail to respond to usual asthma treatment. An early diagnosis avoids unnecessary aggressive management. Treatment should consist of respiratory and phonatory exercises; psychotherapy may be useful.
Piatek, Jacek; Gibas-Dorna, Magdalena; Budzynski, Wlodzimierz; Krauss, Hanna; Marzec, Ewa; Olszewski, Jan; Zukiewicz-Sobczak, Wioletta
2014-03-01
We examined ghrelin, leptin and insulin in maternal blood during normal pregnancy and pregnancy complicated by urinary tract infection (UTI), as well as in cord blood at labor. A total of 36 delivering women with history of UTI during the third trimester of pregnancy were enrolled in the study; 12 healthy pregnant women served as a control. Infection markers (CRP and procalcitonin) were determined in maternal blood during the course of UTI and at labor. Ghrelin, leptin and insulin were determined during labor in venous maternal and in umbilical cord blood. We found negative correlation between infection markers in maternal blood during UTI, and level of tested hormones in cord blood, indicating potential risk of placental impairment due to energetic imbalance. We noted lower level of leptin in mothers with UTI and no change in leptin from umbilical blood comparing subjects with and without UTI. Low level of ghrelin was observed in maternal and cord blood when pregnancy was complicated by UTI. Insulin concentrations were high in mothers with UTI and low in their newborn's cord blood. Increased maternal insulin level could indicate peripheral insulin resistance caused by the infection. UTI during pregnancy affects the concentration of hormones responsible for regulating energetic homeostasis within the placenta.
In vivo imaging of spinal cord in contusion injury model mice by multi-photon microscopy
NASA Astrophysics Data System (ADS)
Oshima, Y.; Horiuchi, H.; Ogata, T.; Hikita, A.; Miura, H.; Imamura, T.
2014-03-01
Fluorescent imaging technique is a promising method and has been developed for in vivo applications in cellular biology. In particular, nonlinear optical imaging technique, multi-photon microscopy has make it possible to analyze deep portion of tissues in living animals such as axons of spinal code. Traumatic spinal cord injuries (SCIs) are usually caused by contusion damages. Therefore, observation of spinal cord tissue after the contusion injury is necessary for understanding cellular dynamics in response to traumatic SCI and development of the treatment for traumatic SCI. Our goal is elucidation of mechanism for degeneration of axons after contusion injuries by establishing SCI model and chronic observation of injured axons in the living animals. Firstly we generated and observed acute SCI model by contusion injury. By using a multi-photon microscope, axons in dorsal cord were visualized approximately 140 micron in depth from the surface. Immediately after injury, minimal morphological change of spinal cord was observed. At 3 days after injury, spinal cord was swelling and the axons seem to be fragmented. At 7 days after injury, increased degradation of axons could be observed, although the image was blurred due to accumulation of the connective tissue. In the present study, we successfully observed axon degeneration after the contusion SCI in a living animal in vivo. Our final goal is to understand molecular mechanisms and cellular dynamics in response to traumatic SCIs in acute and chronic stage.
... include: Abnormal development of bones, including the spine Bell-shaped chest with ribs flared out at the ... may slip and damage the spinal cord, causing paralysis. Surgery to correct such problems should be done ...
... a nerve outside the brain and spinal cord ( peripheral neuropathy ). Mononeuropathy is most often caused by injury. Bodywide ( ... Philadelphia, PA: Elsevier; 2016:chap 107. Shy ME. Peripheral neuropathies. In: Goldman L, Schafer AI, eds. Goldman's Cecil ...
Brain tumors are abnormal growths inside the skull. They are among the most common types of childhood ... still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches and ...
... which brain tissue protrudes into your spinal canal (Chiari malformation). Other causes of syringomyelia include spinal cord tumors, ... protrusion of brain tissue into your spinal canal (Chiari malformation), symptoms generally may begin between ages 25 and ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirlik, G; D’Souza, W; Zhang, H
2016-06-15
Purpose: To present a novel multi-criteria optimization (MCO) solution approach that generates treatment plans with deliverable apertures using column generation. Methods: We demonstrate our method with 10 locally advanced head-and-neck cancer cases retrospectively. In our MCO formulation, we defined an objective function for each structure in the treatment volume. This resulted in 9 objective functions, including 3 distinct objectives for primary target volume, high-risk and low-risk target volumes, 5 objectives for each of the organs-at-risk (OARs) (two parotid glands, spinal cord, brain stem and oral cavity), and one for the non-target non-OAR normal tissue. Conditional value-at-risk (CVaR) constraints were utilizedmore » to ensure at least certain fraction of the target volumes receiving the prescription doses. To directly generate deliverable plans, column generation algorithm was embedded within our MCO approach for aperture shape generation. Final dose distributions for all plans were generated using a Monte Carlo kernel-superposition dose calculation. We compared the MCO plans with the clinical plans, which were created by clinicians. Results: At least 95% target coverage was achieved by both MCO plans and clinical plans. However, the average conformity indices of clinical plans and the MCO plans were 1.95 and 1.35, respectively (31% reduction, p<0.01). Compared to the conventional clinical plan, the proposed MCO method achieved average reductions in left parotid mean dose of 5% (p=0.06), right parotid mean dose of 18% (p<0.01), oral cavity mean dose of 21% (p=0.03), spinal cord maximum dose of 20% (p<0.01), brain stem maximum dose of 61% (p<0.01), and normal tissue maximum dose of 5% (p<0.01), respectively. Conclusion: We demonstrated that the proposed MCO method was able to obtain deliverable IMRT treatment plans while achieving significant improvements in dosimetric plan quality.« less
Howell, Bryan; Lad, Shivanand P.; Grill, Warren M.
2014-01-01
Spinal cord stimulation (SCS) is an alternative or adjunct therapy to treat chronic pain, a prevalent and clinically challenging condition. Although SCS has substantial clinical success, the therapy is still prone to failures, including lead breakage, lead migration, and poor pain relief. The goal of this study was to develop a computational model of SCS and use the model to compare activation of neural elements during intradural and extradural electrode placement. We constructed five patient-specific models of SCS. Stimulation thresholds predicted by the model were compared to stimulation thresholds measured intraoperatively, and we used these models to quantify the efficiency and selectivity of intradural and extradural SCS. Intradural placement dramatically increased stimulation efficiency and reduced the power required to stimulate the dorsal columns by more than 90%. Intradural placement also increased selectivity, allowing activation of a greater proportion of dorsal column fibers before spread of activation to dorsal root fibers, as well as more selective activation of individual dermatomes at different lateral deviations from the midline. Further, the results suggest that current electrode designs used for extradural SCS are not optimal for intradural SCS, and a novel azimuthal tripolar design increased stimulation selectivity, even beyond that achieved with an intradural paddle array. Increased stimulation efficiency is expected to increase the battery life of implantable pulse generators, increase the recharge interval of rechargeable implantable pulse generators, and potentially reduce stimulator volume. The greater selectivity of intradural stimulation may improve the success rate of SCS by mitigating the sensitivity of pain relief to malpositioning of the electrode. The outcome of this effort is a better quantitative understanding of how intradural electrode placement can potentially increase the selectivity and efficiency of SCS, which, in turn, provides predictions that can be tested in future clinical studies assessing the potential therapeutic benefits of intradural SCS. PMID:25536035
Spinal Cord Injury-Induced Osteoporosis: Pathogenesis and Emerging Therapies
Battaglino, Ricardo A.; Lazzari, Antonio A.; Garshick, Eric; Morse, Leslie R.
2012-01-01
Spinal cord injury causes rapid, severe osteoporosis with increased fracture risk. Mechanical unloading after paralysis results in increased osteocyte expression of sclerostin, suppressed bone formation, and indirect stimulation of bone resorption. At this time there are no clinical guidelines to prevent bone loss after SCI and fractures are common. More research is required to define the pathophysiology and epidemiology of SCI-induced osteoporosis. This review summarizes emerging therapeutics including anti-sclerostin antibodies, mechanical loading of the lower extremity with electrical stimulation, and mechanical stimulation via vibration therapy. PMID:22983921
Heat-triggered reticular telangiectatic erythema induced by a spinal cord stimulator.
Inzinger, Martin; Tilz, Hemma; Komericki, Peter; Schuster, Christian; Wolf, Peter; Kränke, Birger
2013-01-01
In recent years, cutaneous complications have been reported after implantation of medical devices as a result of their widespread use. We report a case of reticular telangiectatic erythema (RTE) after replacement of a spinal cord stimulator. To date, the pathogenesis of RTE has been poorly understood. Some reports have suggested that heat is involved, whereas others seem to contradict this observation. In our thermographic study, we found that heat can cause RTE. Copyright © 2013 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Acute spinal cord injuries in the Lebanon War, 1982.
Ohry, A; Rozin, R
1984-04-01
Our experience with 17 patients with spinal cord injuries (SCI) acquired in the Lebanon War, 1982, is described. The SCI were due to gunshot wounds in 12 patients and to other causes in 5. Two laparotomies and one thoracotomy were performed. Corticosteroids were not seen to influence recovery, nor was laminectomy, which was performed in three cases. Complications such as pressure sores, hydronephrosis, ileus and deep vein thrombosis were rare or did not occur. Three high quadriplegics died. Based on our experience, we recommend conservative treatment and rehabilitation in acute SCI.
NASA Astrophysics Data System (ADS)
Regberg, A. B.; Singha, K.; Picardal, F.; Brantley, S. L.
2011-12-01
Previous research has linked measured changes in the bulk electrical conductivity (σb) of water-saturated sediments to the respiration and growth of anaerobic bacteria. If the mechanism causing this signal is understood and characterized it could be used to identify and monitor zones of bacterial activity in the subsurface. The 1-D reactive transport model PHREEQC was used to understand σb signals by modeling chemical gradients within two column reactors and corresponding changes in effluent chemistry. The flow-through column reactors were packed with Fe(III)-bearing sediment from Oyster, VA and inoculated with an environmental consortia of microorganisms. Influent in the first reactor was amended with 1mM Na-acetate to encourage the growth of iron-reducing bacteria. Influent in the second reactor was amended with 0.1mM Na-Acetate and 2mM NaNO3 to encourage the growth of nitrate-reducing bacteria. While effluent concentrations of acetate, Fe(II), NO3-, NO2-, and NH4+ remained at steady state, we measured a 3-fold increase (0.055 S/m - 0.2 S/m) in σb in the iron-reducing column and a 10-fold increase in σb (0.07 S/m - 0.8 S/m) in the nitrate-reducing column over 198 days. The ionic strength in both reactors remained constant through time indicating that the measured increases in σb were not caused by changing effluent concentrations. PHREEQC successfully matched the measured changes in effluent concentrations for both columns when the reaction database was modified in the following manner. For the iron-reducing column, kinetic expressions governing the rate of iron reduction, the rate of bacterial growth, and the production of methane were added to the reaction database. Additionally, surface adsorption and cation exchange reactions were added so that the model was consistent with measured effluent chemistry. For the nitrate-reducing column, kinetic expressions governing nitrate reduction and bacterial growth were added to the reaction database. Additionally, immobile porosity was added along with adsorption and cation exchange reactions. Although the model revealed the existence of chemical and biological gradients within the columns that were not discernable as changes in effluent concentrations, none of the chemical reactions or gradients could explain the measured σb increases in either column. This result is not consistent with chemical gradients within the column reactor causing the measured changes in σb. To test the alternate hypothesis that microbial biofilms are electrically conductive, we used the output from PHREEQC to calculate the amount of biomass produced within the column reactors. If biofilm causes the σb changes, our model is consistent with an electrical conductivity for biomass in the iron-reducing column between 2.75 and 220 S/m. The model is also consistent with an electrical conductivity for biomass in the nitrate-reducing column between 350 and 35,000 S/m. These estimates of biomass electrical conductivity are poorly constrained but represent a first step towards understanding the electrical properties associated with respiring biofilms.
Spinal cord compression in two related Ursus arctos horribilis.
Thomovsky, Stephanie A; Chen, Annie V; Roberts, Greg R; Schmidt, Carrie E; Layton, Arthur W
2012-09-01
Two 15-yr-old grizzly bear littermates were evaluated within 9 mo of each other with the symptom of acute onset of progressive paraparesis and proprioceptive ataxia. The most significant clinical examination finding was pelvic limb paresis in both bears. Magnetic resonance examinations of both bears showed cranial thoracic spinal cord compression. The first bear had left-sided extradural, dorsolateral spinal cord compression at T3-T4. Vertebral canal stenosis was also observed at T2-T3. Images of the second bear showed lateral spinal cord compression from T2-T3 to T4-T5. Intervertebral disk disease and associated spinal cord compression was also observed at T2-T3 and T3-T4. One grizzly bear continued to deteriorate despite reduced exercise, steroid, and antibiotic therapy. The bear was euthanized, and a necropsy was performed. The postmortem showed a spinal ganglion cyst that caused spinal cord compression at the level of T3-T4. Wallerian-like degeneration was observed from C3-T6. The second bear was prescribed treatment that consisted of a combination of reduced exercise and steroid therapy. He continued to deteriorate with these medical therapies and was euthanized 4 mo after diagnosis. A necropsy showed hypertrophy and protrusion of the dorsal longitudinal ligament at T2-T3 and T3-T4, with resulting spinal cord compression in this region. Wallerian-like degeneration was observed from C2-L1. This is one of few case reports that describes paresis in bears. It is the only case report, to the authors' knowledge, that describes spinal magnetic resonance imaging findings in a grizzly bear and also the only report that describes a cranial thoracic myelopathy in two related grizzly bears with neurologic signs.
Standardization of a spinal cord lesion model and neurologic evaluation using mice
Borges, Paulo Alvim; Cristante, Alexandre Fogaça; de Barros-Filho, Tarcísio Eloy Pessoa; Natalino, Renato Jose Mendonça; dos Santos, Gustavo Bispo; Marcon, Raphael Marcus
2018-01-01
OBJECTIVE: To standardize a spinal cord lesion mouse model. METHODS: Thirty BALB/c mice were divided into five groups: four experimental groups and one control group (sham). The experimental groups were subjected to spinal cord lesion by a weight drop from different heights after laminectomy whereas the sham group only underwent laminectomy. Mice were observed for six weeks, and functional behavior scales were applied. The mice were then euthanized, and histological investigations were performed to confirm and score spinal cord lesion. The findings were evaluated to prove whether the method of administering spinal cord lesion was effective and different among the groups. Additionally, we correlated the results of the functional scales with the results from the histology evaluations to identify which scale is more reliable. RESULTS: One mouse presented autophagia, and six mice died during the experiment. Because four of the mice that died were in Group 5, Group 5 was excluded from the study. All the functional scales assessed proved to be significantly different from each other, and mice presented functional evolution during the experiment. Spinal cord lesion was confirmed by histology, and the results showed a high correlation between the Basso, Beattie, Bresnahan Locomotor Rating Scale and the Basso Mouse Scale. The mouse function scale showed a moderate to high correlation with the histological findings, and the horizontal ladder test had a high correlation with neurologic degeneration but no correlation with the other histological parameters evaluated. CONCLUSION: This spinal cord lesion mouse model proved to be effective and reliable with exception of lesions caused by a 10-g drop from 50 mm, which resulted in unacceptable mortality. The Basso, Beattie, Bresnahan Locomotor Rating Scale and Basso Mouse Scale are the most reliable functional assessments, and but the horizontal ladder test is not recommended. PMID:29561931
Acetylcholinesterase Inhibitors on the Spinal Cord.
1991-11-22
was similar to that caused by the cholinergic agonists carbamylcholine and oxotremorine . "I One question which arose from these studies regards the...necessary for inhibition 59 of AChE activity. Earlier work carried out in our laboratory has revealed that the muscarinic agonists oxotremorine and...not cause potentiation. T 9- In addition, both oxotremorine and carbamylcholine were previously shown to cause a facilitation and depression similar
Gad, Parag; Choe, Jaehoon; Nandra, Mandheerej Singh; Zhong, Hui; Roy, Roland R; Tai, Yu-Chong; Edgerton, V Reggie
2013-01-21
Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological conditions. Using a wide range of animal models, many studies have shown that stimulation applied to the neural networks intrinsic to the spinal cord can result in a dramatic improvement of motor ability, even allowing an animal to step and stand after a complete spinal cord transection. Clinical use of this technology, however, has been slow to develop due to the invasive nature of the implantation procedures, the lack of versatility in conventional stimulation technology, and the difficulty of ascertaining specific sites of stimulation that would provide optimal amelioration of the motor deficits. Moreover, the development of tools available to control precise stimulation chronically via biocompatible electrodes has been limited. In this paper, we outline the development of this technology and its use in the spinal rat model, demonstrating the ability to identify and stimulate specific sites of the spinal cord to produce discrete motor behaviors in spinal rats using this array. We have designed a chronically implantable, rapidly switchable, high-density platinum based multi-electrode array that can be used to stimulate at 1-100 Hz and 1-10 V in both monopolar and bipolar configurations to examine the electrophysiological and behavioral effects of spinal cord epidural stimulation in complete spinal cord transected rats. In this paper, we have demonstrated the effectiveness of using high-resolution stimulation parameters in the context of improving motor recovery after a spinal cord injury. We observed that rats whose hindlimbs were paralyzed can stand and step when specific sets of electrodes of the array are stimulated tonically (40 Hz). Distinct patterns of stepping and standing were produced by stimulation of different combinations of electrodes on the array located at specific spinal cord levels and by specific stimulation parameters, i.e., stimulation frequency and intensity, and cathode/anode orientation. The array also was used to assess functional connectivity between the cord dorsum to interneuronal circuits and specific motor pools via evoked potentials induced at 1 Hz stimulation in the absence of any anesthesia. Therefore the high density electrode array allows high spatial resolution and the ability to selectively activate different neural pathways within the lumbosacral region of the spinal cord to facilitate standing and stepping in adult spinal rats and provides the capability to evoke motor potentials and thus a means for assessing connectivity between sensory circuits and specific motor pools and muscles.
[Examples for using capillary gas chromatography with wide bore columns in occupational health].
Frank, H; Senf, L; Welsch, T
1990-12-01
Wide bore capillary columns (0.4-0.75 mm ID) can be easily and inexpensively installed in packed column GCs. The analytical advantages cause an expanding market for such capillaries and interconverting hardware kits. It is illustrated with some examples that often individual exposition levels can be determined exactly only by using capillary columns: ethylbenzene may be separated from the C8-isomers also in complex mixtures, the marker PBN for rubber smoke expositions can be determined with 30 min sampling time, the detection sensitivity of the FID is sufficient also for chlorinated pesticides and the analyses of high-boiling compounds profit by the high phase ratio of wide bore capillary columns. A single capillary column substitutes a variety of different packed columns, so saving time and money and protecting the analyst from failures and frustrating compromises.
Design and performance test of NIRS-based spinal cord lesion detector
NASA Astrophysics Data System (ADS)
Li, Nanxi; Li, Ting
2018-02-01
Spinal cord lesions can cause a series of severe complications, which can even lead to paralysis with high mortality. However, the traditional diagnosis of spinal cord lesion relies on complicated imaging modalities and other invasive and dangerous methods. Here, we have designed a small monitor based on NIRS technology for noninvasive monitoring for spinal cord lesions. The development of the instrument system includes the design of hardware circuits and the program of software. In terms of hardware, OPT1011 is selected as the light detector, and the appropriate probe distribution structure is selected according to the simulation result of Monte Carlo Simulation. At the same time, the powerful controller is selected as our system's central processing chip for the circuit design, and the data is transmitted by serial port to the host computer for post processing. Finally, we verify the stability and feasibility of the instrument system. It is found that the spinal signal could be obviously detected in the system, which indicates that our monitor based on NIRS technology has the potential to monitor the spinal lesion.
Non-functioning parathyroid adenoma: a rare differential diagnosis for vocal-cord paralysis
Kamali, D; Sharpe, A; Nagarajan, S; Elsaify, W
2016-01-01
Introduction Adenomas of the parathyroid gland typically present with symptoms of hyperparathyroidism, manifested by fatigue, bone pain, abdominal pain, weakness, dyspepsia, nephrolithiasis and skeletal bone disease. Here, we describe, for the first time, a case of a non-functioning benign tumour of the parathyroid gland presenting as vocal-cord paralysis. Case History A 49-year-old male presented with a 10-week history of dysphonia and the feeling of having ‘something stuck in my throat’. History-taking elicited no other associated symptoms. Flexible nasal endoscopy demonstrated paralysis of the left vocal cord. Computed tomography of the neck revealed a cystic lesion, 18mm in diameter adjacent to the oesophagus. After more rigorous tests, a neck exploration, left hemithyroidectomy, excision of the left paratracheal mass and level-VI neck dissection was undertaken, without incident to the patient or surgical team. Histology was consistent with a parathyroid adenoma. Conclusions This case emphasises the importance of including adenomatous disease of the parathyroid gland in the differential diagnosis despite normal parathyroid status as a cause of vocal cord palsy. PMID:27055408
Risk factors for antepartum fetal death.
Oron, T; Sheiner, E; Shoham-Vardi, I; Mazor, M; Katz, M; Hallak, M
2001-09-01
To determine the demographic, maternal, pregnancy-related and fetal risk factors for antepartum fetal death (APFD). From our perinatal database between the years 1990 and 1997, 68,870 singleton birth files were analyzed. Fetuses weighing < 1,000 g at birth and those with structural malformations and/or known chromosomal anomalies were excluded from the study. In order to determine independent factors contributing to APFD, a multiple logistic regression model was constructed. During the study period there were 246 cases of APFD (3.6 per 1,000 births). The following obstetric factors significantly correlated with APFD in a multiple logistic regression model: preterm deliveries: small size for gestational age (SGA), multiparity (> 5 deliveries), oligohydramnios, placental abruption, umbilical cord complications (cord around the neck and true knot of cord), pathologic presentations (nonvertex) and meconium-stained amniotic fluid. APFD was not significantly associated with advanced maternal age. APFD was significantly associated with several risk factors. Placental and umbilical cord pathologies might be the direct cause of death. Grand multiparity, oligohydramnios, meconium-stained amniotic fluid, pathologic presentations and suspected SGA should be carefully evaluated during pregnancy in order to decrease the incidence of APFD.
Fabio, Costa; Romualdo, Del Buono; Eugenio, Agrò Felice; Vittoradolfo, Tambone; Massimiliano, Vitali Andrea; Giovanna, Ricci
2017-01-01
Spinal anaesthesia is the most preffered anesthesia technique for total hip replacement, and its complications range from low entity (insignificant) to life threatening. The incidence of neurologic complications after neuraxial anaesthesia is not perfectly clear, although there are several described cases of spinal cord ischaemia. We present a case of unilateral T8–T11 spinal cord ischaemia following L2–L3 spinal anaesthesia for total hip replacement. Magnetic resonance imaging showed a hyperintense T8–T11 signal alteration on the leftside of paramedian spinal cord. A temporal epidemiologic linkage between the damage and the surgery seems to be present. The injury occurred without anatomical proximity between the injury site and the spinal needle entry site. This may be due to multiple contributing factors, each of them is probably not enough to determine the damage by itself; however, acting simultaneously, they could have been responsible for the complication. The result was unpredictable and unavoidable and was caused by unforeseeable circumstances and not by inadequate medical practice. PMID:28439446
García-García, Concepción; Castillo-Álvarez, Federico; Azcona-Gutiérrez, José M; Herraiz, María J; Ibarra, Valvanera; Oteo, José A
2015-05-01
Neurological complications in patients with human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS) are still common, even in the era of highly active antiretroviral therapy. Opportunistic infections, immune reconstitution, the virus itself, antiretroviral drugs and neurocognitive disorders have to be considered when establishing the differential diagnosis. Toxoplasmic encephalitis remains the major cause of space-occupying lesions in the brain of patients with HIV/AIDS; however, spinal cord involvement has been reported infrequently. Here, we review spinal cord toxoplasmosis in HIV infection and illustrate the condition with a recent case from our hospital. We suggest that most patients with HIV/AIDS and myelitis with enhanced spine lesions, multiple brain lesions and positive serology for Toxoplasma gondii should receive immediate empirical treatment for toxoplasmosis, and a biopsy should be performed in those cases without clinical improvement or with deterioration.
... cord ( meningitis ) Irritation and swelling of the brain ( encephalitis ) Repeated bleeding episodes for no apparent cause Call ... Beckham JD, Tyler KL. Encephalitis. In: Bennett JE, Dolin R, ... Principles and Practice of Infectious Disease, Updated Edition . ...
... brain and spinal cord, it is called a peripheral neuropathy. Mononeuropathy means one nerve is involved. Polyneuropathy means ... In some cases, you can fully recover from peripheral neuropathy if your provider can find the cause and ...
Abdullah, B; Muadz, B; Norizal, M N; Ismail, N; Kornain, N K; Kutty, M
2017-07-01
To compare the pregnancy outcome and cord blood cotinine levels between secondhand smokers and non-secondhand smokers. This was a cross-sectional comparative study in a Malaysian tertiary obstetric hospital involving 200 non-smoking pregnant women at term, of whom 100 were secondhand smokers and 100 were non-secondhand smokers. Those with multiple pregnancies, with a body mass index (BMI) of more than 30kg/m 2 or who delivered by Caesarean section were excluded. The participants' basic demographic details, delivery details, neonatal outcome and placental weight were recorded. Umbilical cord blood samples were obtained, and cord blood cotinine levels were measured with a Cotinine ELISA kit. The primary outcomes were baby's birth weight, length, and head circumference, Apgar score at 5min and placental weight. The secondary outcome was difference in cord blood cotinine levels between the two groups and the correlation of these differences with the neonatal outcome. The secondhand smoker group had significantly lower baby weight (2.94±0.31kg vs 3.05±0.40kg), head circumference (30.87±2.35cm vs 37.13±2.36cm), length (46.58±1.95cm vs 51.53±2.05cm) and placental weight (520±73.5g vs 596±61.3g) and significantly higher cord blood cotinine levels (16.35±12.84ng/mL vs 0.56±0.22ng/mL). Cord blood cotinine levels had significant negative correlations with placental weight (r=-0.461), baby's weight (r=-0.297), baby's head circumference (r=-0.501) and baby's length (r=-0.374). Secondhand smoke increases the incidence of adverse pregnancy outcomes (newborns'anthropometric measurements and placental weight) and causes higher cord blood cotinine levels. Copyright © 2017 Elsevier B.V. All rights reserved.
Lewis, Paul A.; Cunningham, Joan E.
2016-01-01
Background In the context of breast cancer, axillary web syndrome (AWS), also called lymphatic cording, typically presents in the weeks after axillary surgery. This painful condition, likely lymphofibrotic in origin, restricts upper extremity range of motion (ROM). There is no established treatment, although physical therapy and other approaches have been used to variable effect. This report describes treatment of a female client with AWS, who had recently undergone a unilateral simple mastectomy with sentinel node biopsy plus axillary dissection. Methods The client presented with pain upon movement (self-reported as 5 on the 0–10 Oxford Pain Scale), visible cording and restricted use of the ipsilateral upper extremity. Clinical assessment included determining the extent of AWS cording (taut, from axilla to wrist) and measuring glenohumeral joint ROM (140° flexion by goniometer). A therapeutic massage with movement protocol, termed dynamic angular petrissage, was administered over two sessions: Swedish massage combined with dynamically taking the limb through all possible angles of movement (passive ROM), controlling stretch and tension while simultaneously and segmentally applying petrissage and non-petrissage techniques to the underlying soft tissue. Careful attention was taken to not break the cord. Home care consisted of prescribed exercises performed by the patient. Results After Session One, pain was reduced (to 0/10), ROM improved (to 170° flexion), and cording was visibly reduced. After Session Two the cord was residually apparent only on hyperextension, with no ROM restrictions in glenohumeral joint flexion. Follow-up at three months revealed absence of visual or palpable evidence of cording, unrestricted glenohumeral joint ROM, and absence of movement-associated pain. Conclusion The signs and symptoms of AWS were quickly and effectively eliminated, without causing any pain or discomfort to the client. We propose that dynamic angular petrissage may be an efficient and safe treatment approach for reducing the pain, mobility restrictions, and cording of AWS. PMID:27257446
Methods for controlling pore morphology in aerogels using electric fields and products thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.
In one embodiment, an aerogel or xerogel includes column structures of a material having minor pores therein and major pores devoid of the material positioned between the column structures, where longitudinal axes of the major pores are substantially parallel to one another. In another embodiment, a method includes heating a sol including aerogel or xerogel precursor materials to cause gelation thereof to form an aerogel or xerogel and exposing the heated sol to an electric field, wherein the electric field causes orientation of a microstructure of the sol during gelation, which is retained by the aerogel or xerogel. In onemore » approach, an aerogel has elongated pores extending between a material arranged in column structures having structural characteristics of being formed from a sol exposed to an electric field that causes orientation of a microstructure of the sol during gelation which is retained by the elongated pores of the aerogel.« less
Logan, C; Wingate, R J; McKay, I J; Lumsden, A
1998-07-15
Recent evidence suggests that in vertebrates the formation of distinct neuronal cell types is controlled by specific families of homeodomain transcription factors. Furthermore, the expression domains of a number of these genes correlates with functionally integrated neuronal populations. We have isolated two members of the divergent T-cell leukemia translocation (HOX11/Tlx) homeobox gene family from chick, Tlx-1 and Tlx-3, and show that they are expressed in differentiating neurons of both the peripheral and central nervous systems. In the peripheral nervous system, Tlx-1 and Tlx-3 are expressed in overlapping domains within the placodally derived components of a number of cranial sensory ganglia. Tlx-3, unlike Tlx-1, is also expressed in neural crest-derived dorsal root and sympathetic ganglia. In the CNS, both genes are expressed in longitudinal columns of neurons at specific dorsoventral levels of the hindbrain. Each column has distinct anterior and/or posterior limits that respect inter-rhombomeric boundaries. Tlx-3 is also expressed in D2 and D3 neurons of the spinal cord. Tlx-1 and Tlx-3 expression patterns within the peripheral and central nervous systems suggest that Tlx proteins may be involved not only in the differentiation and/or survival of specific neuronal populations but also in the establishment of neuronal circuitry. Furthermore, by analogy with the LIM genes, Tlx family members potentially define sensory columns early within the developing hindbrain in a combinatorial manner.
Catenin-dependent cadherin function drives divisional segregation of spinal motor neurons.
Bello, Sanusi M; Millo, Hadas; Rajebhosale, Manisha; Price, Stephen R
2012-01-11
Motor neurons that control limb movements are organized as a neuronal nucleus in the developing ventral horn of the spinal cord called the lateral motor column. Neuronal migration segregates motor neurons into distinct lateral and medial divisions within the lateral motor column that project axons to dorsal or ventral limb targets, respectively. This migratory phase is followed by an aggregation phase whereby motor neurons within a division that project to the same muscle cluster together. These later phases of motor neuron organization depend on limb-regulated differential cadherin expression within motor neurons. Initially, all motor neurons display the same cadherin expression profile, which coincides with the migratory phase of motor neuron segregation. Here, we show that this early, pan-motor neuron cadherin function drives the divisional segregation of spinal motor neurons in the chicken embryo by controlling motor neuron migration. We manipulated pan-motor neuron cadherin function through dissociation of cadherin binding to their intracellular partners. We found that of the major intracellular transducers of cadherin signaling, γ-catenin and α-catenin predominate in the lateral motor column. In vivo manipulations that uncouple cadherin-catenin binding disrupt divisional segregation via deficits in motor neuron migration. Additionally, reduction of the expression of cadherin-7, a cadherin predominantly expressed in motor neurons only during their migration, also perturbs divisional segregation. Our results show that γ-catenin-dependent cadherin function is required for spinal motor neuron migration and divisional segregation and suggest a prolonged role for cadherin expression in all phases of motor neuron organization.
Causes of death after traumatic spinal cord injury-a 70-year British study.
Savic, G; DeVivo, M J; Frankel, H L; Jamous, M A; Soni, B M; Charlifue, S
2017-10-01
Retrospective and prospective observational. Analyse causes of death after traumatic spinal cord injury (tSCI) in persons surviving the first year post injury, and establish any trend over time. Two spinal centres in Great Britain. The sample consisted of 5483 patients with tSCI admitted to Stoke Mandeville and Southport spinal centres who were injured between 1943 and 2010, survived first year post injury, had residual neurological deficit on discharge and were British residents. Mortality information, including causes of death, was collected up to 31 December 2014. Age-standardised cause-specific mortality rates were calculated for selected causes of death, and included trends over time and comparison with the general population. In total, 2322 persons (42.3% of the sample) died, with 2170 (93.5%) having a reliable cause of death established. The most frequent causes of death were respiratory (29.3% of all certified causes), circulatory, including cardiovascular and cerebrovascular diseases (26.7%), neoplasms (13.9%), urogenital (11.5%), digestive (5.3%) and external causes, including suicides (4.5%). Compared to the general population, age-standardised cause-specific mortality rates were higher for all causes, especially skin, urogenital and respiratory; rates showed improvement over time for suicides, circulatory and urogenital causes, no significant change for neoplasms, and increase for skin and respiratory causes. Leading causes of death after tSCI in persons surviving the first year post injury were respiratory, circulatory, neoplasms and urogenital. Cause-specific mortality rates showed improvement over time for most causes, but were still higher than the general population rates, especially for skin, urinary and respiratory causes.
Evaluation of a new automated instrument for pretransfusion testing.
Morelati, F; Revelli, N; Maffei, L M; Poretti, M; Santoro, C; Parravicini, A; Rebulla, P; Cole, R; Sirchia, G
1998-10-01
A number of automated devices for pretransfusion testing have recently become available. This study evaluated a fully automated device based on column agglutination technology (AutoVue System, Ortho, Raritan, NJ). Some 6747 tests including forward and reverse ABO group, Rh type and phenotype, antibody screen, autocontrol, and crossmatch were performed on random samples from 1069 blood donors, 2063 patients, and 98 newborns and cord blood. Also tested were samples from 168 immunized patients and 53 donors expressing weak or variant A and D antigens. Test results and technician times required for their performance were compared with those obtained by standard methods (manual column agglutination technology, slide, semiautomatic handler). No erroneous conclusions were found in regard to the 5028 ABO group and Rh type or phenotype determinations carried out with the device. The device rejected 1.53 percent of tests for sample inadequacy. Of the remaining 18 tests with discrepant results found with the device and not confirmed with the standard methods, 6 gave such results because of mixed-field reactions, 10 gave negative results with A2 RBCs in reverse ABO grouping, and 2 gave very weak positive reactions in antibody screening and crossmatching. In the samples from immunized patients, the device missed one weak anti-K, whereas standard methods missed five weak antibodies. In addition, 48, 34, and 31 of the 53 weak or variant antigens were detected by the device, the slide method, and the semiautomated handler, respectively. Technician time with the standard methods was 1.6 to 7 times higher than that with the device. The technical performance of the device compared favorably with that of standard methods, with a number of advantages, including in particular the saving of technician time. Sample inadequacy was the most common cause of discrepancy, which suggests that standardization of sample collection can further improve the performance of the device.
[Advance on human umbilical cord mesenchymal stem cells for treatment of ALI in severe burns].
Wang, Yu; Hu, Xiaohong
2017-01-01
Severe burn is often accompanied by multiple organ damage. Acute lung injury (ALI) is one of the most common complications, and often occurs in the early stage of severe burns. If it is not treated in time, it will progress to acute respiratory distress syndrome (ARDS), which will be a serious threat to the lives of patients. At present, the treatment of ALI in patients with severe burn is still remained in some common ways, such as the liquid resuscitation, the primary wound treatment, ventilation support, and anti-infection. In recently, human umbilical cord mesenchymal stem cells (hUCMSCs) have been found having some good effects on ALI caused by various causes, but few reports on the efficacy of ALI caused by severe burns were reported. By reviewing the mechanism of stem cell therapy for ALI, therapeutic potential of hUCMSCs in the treatment of severe burns with ALI and a new approach for clinical treatment was provided.
The mechanism of enhanced defecation caused by the ghrelin receptor agonist, ulimorelin.
Pustovit, R V; Callaghan, B; Kosari, S; Rivera, L R; Thomas, H; Brock, J A; Furness, J B
2014-02-01
Discovery of adequate pharmacological treatments for constipation has proven elusive. Increased numbers of bowel movements were reported as a side-effect of ulimorelin treatment of gastroparesis, but there has been no investigation of the site of action. Anesthetized rats were used to investigate sites and mechanisms of action of ulimorelin. Intravenous ulimorelin (1-5 mg/kg) caused a substantial and prolonged (~1 h) increase in colorectal propulsive activity and expulsion of colonic contents. This was prevented by cutting the nerves emerging from the lumbosacral cord, by the nicotinic receptor antagonist hexamethonium and by antagonists of the ghrelin receptor. The effect of intravenous ulimorelin was mimicked by direct application of ulimorelin (5 μg) to the lumbosacral spinal cord. Ulimorelin is a potent prokinetic that causes propulsive contractions of the colorectum by activating ghrelin receptors of the lumbosacral defecation centers. Its effects are long-lasting, in contrast with other colokinetics that target ghrelin receptors. © 2013 John Wiley & Sons Ltd.
The cerebellum processes input from other areas of the brain, spinal cord and sensory receptors to provide precise timing ... the skeletal muscular system. A stroke affecting the cerebellum may cause dizziness, nausea, balance and coordination problems.
... and spinal cord). It can cause lasting disabilities. Rabies. You get rabies from a bite from an infected animal. If you’re bitten by an animal with rabies, call your health care provider right away. Rabies ...
Haemodynamic effects of umbilical cord milking in premature sheep during the neonatal transition.
Blank, Douglas A; Polglase, Graeme R; Kluckow, Martin; Gill, Andrew William; Crossley, Kelly J; Moxham, Alison; Rodgers, Karyn; Zahra, Valerie; Inocencio, Ishmael; Stenning, Fiona; LaRosa, Domeic A; Davis, Peter G; Hooper, Stuart B
2017-12-05
Umbilical cord milking (UCM) at birth may benefit preterm infants, but the physiological effects of UCM are unknown. We compared the physiological effects of two UCM strategies with immediate umbilical cord clamping (UCC) and physiological-based cord clamping (PBCC) in preterm lambs. At 126 days' gestational age, fetal lambs were exteriorised, intubated and instrumented to measure umbilical, pulmonary and cerebral blood flows and arterial pressures. Lambs received either (1) UCM without placental refill (UCMwoPR); (2) UCM with placental refill (UCMwPR); (3) PBCC, whereby ventilation commenced prior to UCC; or (4) immediate UCC. UCM involved eight milks along a 10 cm length of cord, followed by UCC. A net volume of blood was transferred into the lamb during UCMwPR (8.8 mL/kg, IQR 8-10, P=0.01) but not during UCMwoPR (0 mL/kg, IQR -2.8 to 1.7) or PBCC (1.1 mL/kg, IQR -1.3 to 4.3). UCM had no effect on pulmonary blood flow, but caused large fluctuations in mean carotid artery pressures (MBP) and blood flows (CABF). In UCMwoPR and UCMwPR lambs, MBP increased by 12%±1% and 8%±1% and CABF increased by 32%±2% and 15%±2%, respectively, with each milk. Cerebral oxygenation decreased the least in PBCC lambs (17%, IQR 13-26) compared with UCMwoPR (26%, IQR 23-25, P=0.03), UCMwPR (35%, IQR 27-44, P=0.02) and immediate UCC (34%, IQR 28-41, P=0.02) lambs. UCMwoPR failed to provide placental transfusion, and UCM strategies caused considerable haemodynamic disturbance. UCM does not provide the same physiological benefits of PBCC. Further review of UCM is warranted before adoption into routine clinical practice. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Oliveira, Valéria da Costa; Boechat, Viviane Cardoso; Mendes Junior, Artur Augusto Velho; Madeira, Maria de Fátima; Ferreira, Luiz Claudio; Figueiredo, Fabiano Borges; Campos, Monique Paiva; de Carvalho Rodrigues, Francisco das Chagas; Carvalhaes de Oliveira, Raquel de Vasconcellos; Amendoeira, Maria Regina Reis; Menezes, Rodrigo Caldas
2017-01-01
Zoonotic visceral leishmaniasis is caused by the protozoan Leishmania infantum and little is known about the occurrence and pathogenesis of this parasite in the CNS. The aims of this study were to evaluate the occurrence, viability and load of L. infantum in the CNS, and to identify the neurological histological alterations associated with this protozoan and its co-infections in naturally infected dogs. Forty-eight Leishmania-seropositive dogs from which L. infantum was isolated after necropsy were examined. Cerebrospinal fluid (CSF) samples were analyzed by parasitological culture, quantitative real-time PCR (qPCR) and the rapid immunochromatographic Dual Path Platform test. Brain, spinal cord and spleen samples were submitted to parasitological culture, qPCR, and histological techniques. Additionally, anti-Toxoplasma gondii and anti-Ehrlichia canis antibodies in serum and distemper virus antigens in CSF were investigated. None of the dogs showed neurological signs. All dogs tested positive for L. infantum in the CNS. Viable forms of L. infantum were isolated from CSF, brain and spinal cord in 25% of the dogs. Anti-L. infantum antibodies were detected in CSF in 61% of 36 dogs. Inflammatory histological alterations were observed in the CNS of 31% of the animals; of these, 66% were seropositive for E. canis and/or T. gondii. Amastigote forms were associated with granulomatous non-suppurative encephalomyelitis in a dog without evidence of co-infections. The highest frequency of L. infantum DNA was observed in the brain (98%), followed by the spinal cord (96%), spleen (95%), and CSF (50%). The highest L. infantum load in CNS was found in the spinal cord. These results demonstrate that L. infantum can cross the blood-brain barrier, spread through CSF, and cause active infection in the entire CNS of dogs. Additionally, L. infantum can cause inflammation in the CNS that can lead to neurological signs with progression of the disease.
Oliveira, Valéria da Costa; Boechat, Viviane Cardoso; Mendes Junior, Artur Augusto Velho; Madeira, Maria de Fátima; Ferreira, Luiz Claudio; Figueiredo, Fabiano Borges; Campos, Monique Paiva; de Carvalho Rodrigues, Francisco das Chagas; Carvalhaes de Oliveira, Raquel de Vasconcellos; Amendoeira, Maria Regina Reis
2017-01-01
Zoonotic visceral leishmaniasis is caused by the protozoan Leishmania infantum and little is known about the occurrence and pathogenesis of this parasite in the CNS. The aims of this study were to evaluate the occurrence, viability and load of L. infantum in the CNS, and to identify the neurological histological alterations associated with this protozoan and its co-infections in naturally infected dogs. Forty-eight Leishmania-seropositive dogs from which L. infantum was isolated after necropsy were examined. Cerebrospinal fluid (CSF) samples were analyzed by parasitological culture, quantitative real-time PCR (qPCR) and the rapid immunochromatographic Dual Path Platform test. Brain, spinal cord and spleen samples were submitted to parasitological culture, qPCR, and histological techniques. Additionally, anti-Toxoplasma gondii and anti-Ehrlichia canis antibodies in serum and distemper virus antigens in CSF were investigated. None of the dogs showed neurological signs. All dogs tested positive for L. infantum in the CNS. Viable forms of L. infantum were isolated from CSF, brain and spinal cord in 25% of the dogs. Anti-L. infantum antibodies were detected in CSF in 61% of 36 dogs. Inflammatory histological alterations were observed in the CNS of 31% of the animals; of these, 66% were seropositive for E. canis and/or T. gondii. Amastigote forms were associated with granulomatous non-suppurative encephalomyelitis in a dog without evidence of co-infections. The highest frequency of L. infantum DNA was observed in the brain (98%), followed by the spinal cord (96%), spleen (95%), and CSF (50%). The highest L. infantum load in CNS was found in the spinal cord. These results demonstrate that L. infantum can cross the blood-brain barrier, spread through CSF, and cause active infection in the entire CNS of dogs. Additionally, L. infantum can cause inflammation in the CNS that can lead to neurological signs with progression of the disease. PMID:28419136
Christensen, Mathilde Egelund; Beck-Nielsen, Signe Sparre; Dalgård, Christine; Larsen, Søs Dragsbæk; Lykkedegn, Sine; Kyhl, Henriette Boye; Husby, Steffen; Christesen, Henrik Thybo
2018-01-01
Long standing vitamin D deficiency in children causes rickets with growth impairment. We investigated whether sub-ischial leg length (SLL) is shorter, and cephalo-caudal length:length (CCL:L) ratio and sitting height:height (SH:H) ratio larger, with lower cord s-25-hydroxyvitamin D (25OHD) in the population-based prospective Odense Child Cohort, Denmark. We included healthy singletons born to term with available measures of cord 25OHD and anthropometrics up to three years' age. Linear regression was stratified by sex a priori and adjusted for maternal ethnicity, pre-pregnancy body mass index and smoking during pregnancy, season of blood sampling and child age. Median (IQR) cord 25OHD was 48.0 (34.0-62.4) nmol/L. At mean age 19.1 months, n = 504, mean (SD) SLL was 31.7 (1.7) cm; CCL:L-ratio 0.62 (0.01). At 36.3 months, n = 956, mean SLL was 42.9 (2.0) cm; SH:H-ratio 0.56 (0.01). No participants had rickets. In adjusted analyses, 19-months-old boys had 0.1 cm shorter SLL (p = 0.009) and 0.1% higher CCL:L-ratio (p = 0.04) with every 10 nmol/L increase in cord 25OHD. Similar findings were seen for late pregnancy 25OHD. In the highest cord 25OHD quartile (>60.7 nmol/L), SLL was 0.8 cm shorter (95% C.I.: 1.36;-0.29, linear trend, p = 0.004), and CCL:L-ratio 0.8% higher (95% C.I. 8.0x10-05;0.01, linear trend, p = 0.01), compared to lowest quartile (<30.7 nmol/L). Similar associations with cord 25OHD were observed in 3-year-old boys. No consistent associations between 25OHD and anthropometrics were seen in girls at either age. No leg shortening was found with decreasing cord s-25OHD in a healthy population of infants. A small, yet significant inverse association between cord 25OHD and SLL in boys 1½-3 years warrants further investigations.
Lhermitte Sign After Chemo-IMRT of Head-and-Neck Cancer: Incidence, Doses, and Potential Mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pak, Daniel; Vineberg, Karen; Feng, Felix
2012-08-01
Purpose: We have observed a higher rate of Lhermitte sign (LS) after chemo-intensity-modulated radiotherapy (IMRT) of head-and-neck cancer than the published rates after conventional radiotherapy. We hypothesized that the inhomogeneous spinal cord dose distributions produced by IMRT caused a 'bath-and-shower' effect, characterized by low doses in the vicinity of high doses, reducing spinal cord tolerance. Methods and Materials: Seventy-three patients with squamous cell carcinoma of the oropharynx participated in a prospective study of IMRT concurrent with weekly carboplatin and paclitaxel. Of these, 15 (21%) reported LS during at least 2 consecutive follow-up visits. Mean dose, maximum dose, and partial volumemore » and absolute volume (in milliliters) of spinal cord receiving specified doses ({>=}10 Gy, {>=}20 Gy, {>=}30 Gy, and {>=}40 Gy), as well as the pattern of dose distributions at the 'anatomic' spinal cord (from the base of the skull to the aortic arch) and 'plan-related' spinal cord (from the top through the bottom of the planning target volumes), were compared between LS patients and 34 non-LS patients. Results: LS patients had significantly higher spinal cord mean doses, V{sub 30}, V{sub 40}, and absolute volumes receiving 30 Gy or more and 40 Gy or more compared with the non-LS patients (p < 0.05). The strongest predictors of LS were higher V{sub 40} and higher cord volumes receiving 40 Gy or more (p {<=} 0.007). There was no evidence of larger spinal cord volumes receiving low doses in the vicinity of higher doses (bath-and-shower effect) in LS compared with non-LS patients. Conclusions: Greater mean dose, V{sub 30}, V{sub 40}, and cord volumes receiving 30 Gy or more and 40 Gy or more characterized LS compared with non-LS patients. Bath-and-shower effects could not be validated in this study as a potential contributor to LS. The higher-than-expected rates of LS may be because of the specific concurrent chemotherapy agents or more accurate identification of LS in the setting of a prospective study.« less
NASA Astrophysics Data System (ADS)
Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris
2018-03-01
We measure the effect of high column density absorbing systems of neutral hydrogen (H I) on the one-dimensional (1D) Lyman α forest flux power spectrum using cosmological hydrodynamical simulations from the Illustris project. High column density absorbers (which we define to be those with H I column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}) cause broadened absorption lines with characteristic damping wings. These damping wings bias the 1D Lyman α forest flux power spectrum by causing absorption in quasar spectra away from the location of the absorber itself. We investigate the effect of high column density absorbers on the Lyman α forest using hydrodynamical simulations for the first time. We provide templates as a function of column density and redshift, allowing the flexibility to accurately model residual contamination, i.e. if an analysis selectively clips out the largest damping wings. This flexibility will improve cosmological parameter estimation, for example, allowing more accurate measurement of the shape of the power spectrum, with implications for cosmological models containing massive neutrinos or a running of the spectral index. We provide fitting functions to reproduce these results so that they can be incorporated straightforwardly into a data analysis pipeline.
St. John, James A.; Walkden, Heidi; Nazareth, Lynn; Beagley, Kenneth W.; Batzloff, Michael R.
2016-01-01
Infection with Burkholderia pseudomallei causes melioidosis, a disease with a high mortality rate (20% in Australia and 40% in Southeast Asia). Neurological melioidosis is particularly prevalent in northern Australian patients and involves brain stem infection, which can progress to the spinal cord; however, the route by which the bacteria invade the central nervous system (CNS) is unknown. We have previously demonstrated that B. pseudomallei can infect the olfactory and trigeminal nerves within the nasal cavity following intranasal inoculation. As the trigeminal nerve projects into the brain stem, we investigated whether the bacteria could continue along this nerve to penetrate the CNS. After intranasal inoculation of mice, B. pseudomallei caused low-level localized infection within the nasal cavity epithelium, prior to invasion of the trigeminal nerve in small numbers. B. pseudomallei rapidly invaded the trigeminal nerve and crossed the astrocytic barrier to enter the brain stem within 24 h and then rapidly progressed over 2,000 μm into the spinal cord. To rule out that the bacteria used a hematogenous route, we used a capsule-deficient mutant of B. pseudomallei that does not survive in the blood and found that it also entered the CNS via the trigeminal nerve. This suggests that the primary route of entry is via the nerves that innervate the nasal cavity. We found that actin-mediated motility could facilitate initial infection of the olfactory epithelium. Thus, we have demonstrated that B. pseudomallei can rapidly infect the brain and spinal cord via the trigeminal nerve branches that innervate the nasal cavity. PMID:27382023
Cruciate Paralysis in a 20- year -old Male with an Undisplaced Type III Odontoid Fracture
A, Mansukhani Sameer; V, Tuteja Sanesh; B, Dhar Sanjay
2016-01-01
Introduction: Cruciate Paralysis is a rare incomplete spinal cord syndrome presenting as brachial diplegia with minimal or no involvement of the lower extremities. It occurs as a result of trauma to the cervical spine and is associated with fractures of the axis and/or atlas. Diagnosis is confirmed on MRI and is managed by treatment of the underlying pathology. Prognosis depends on the extent of spinal cord injury and the exact cause. Case Presentation: A 20-year-old male presented to the casualty with a history of an injury to the back of the head as a result of a fall. He had severe pain in the neck and shoulder region and experienced difficulty in raising both arms and gripping objects. On examination, he had weakness of both arms, more on the right, involving the C5 to T1 distribution and brisk reflexes. There was no sensory deficit. Radiograph and a computed tomography (CT) scan of the cervical spine showed a type III undisplaced odontoid fracture. MRI showed a signal abnormality in the spinal cord at the level of the cervicomedullary junction extending up to the body of C2 vertebra. The patient was treated with traction in Gardner Wells tongs for six weeks and a sterno-occipital-mandibular immobilizer immobilizer (SOMI) brace thereafter. At three-month follow-up, he had attained complete neurological recovery. Conclusion: Cruciate Paralysis is an important cause of brachial diplegia and must be differentiated from Acute Central Cord syndrome which can have similar clinical features. PMID:28111622
Sankarasubramanian, Vishwanath; Buitenweg, Jan R; Holsheimer, Jan; Veltink, Peter H
2013-03-01
In spinal cord stimulation for low-back pain, the use of electrode arrays with both low-power requirements and selective activation of target dorsal column (DC) fibers is desired. The aligned transverse tripolar lead configuration offers the best DC selectivity. Electrode alignment of the same configuration using 3 parallel percutaneous leads is possible, but compromised by longitudinal migration, resulting in loss of DC selectivity. This loss might be repaired by using the adjacent anodal contacts on the lateral leads. To investigate if stimulation using adjacent anodal contacts on the lateral percutaneous leads of a staggered transverse tripole can restore DC selectivity. Staggered transverse tripoles with quadripolar lateral anodes were modeled on the low-thoracic vertebral region (T10-T12) of the spinal cord using (a) percutaneous lead with staggered quadripolar lateral anodal configuration (PERC QD) and (b) laminotomy lead with staggered quadripolar lateral anodal configuration (LAM QD), of the same contact dimensions. The commercially available LAM 565 surgical lead with 16 widely spaced contacts was also modeled. For comparison with PERC QD, staggered transverse tripoles with dual lateral anodes were modeled by using percutaneous lead with staggered dual lateral anodal configuration (PERC ST). The PERC QD improved the depth of DC penetration and enabled selective recruitment of DCs in comparison with PERC ST. Mediolateral selectivity of DCs could not be achieved with the LAM 565. Stimulation using PERC QD improves anodal shielding of dorsal roots and restores DC selectivity. Based on our modeling study, we hypothesize that, in clinical practice, LAM QD can provide an improved performance compared with the PERC QD. Our model also predicts that the same configuration realized on the commercial LAM 565 surgical lead with widely spaced contacts cannot selectively stimulate DCs essential in treating low-back pain.
Lien, Guang-Wen; Wen, Ting-Wen; Hsieh, Wu-Shiun; Wu, Kuen-Yuh; Chen, Chia-Yang; Chen, Pau-Chung
2011-03-15
Perfluorinated compounds (PFCs) can cross the placental barrier and enter fetal circulation. This study aimed at developing a fast and sensitive ultra-high performance liquid chromatography/tandem mass spectrometry method for the determination of twelve perfluorinated compounds in cord blood. Samples were processed with protein precipitation using formic acid and methanol, mixed with stable isotope labeled standard, followed by sonication and centrifugation, and were analyzed using a Waters ACQUITY UPLC coupled with a Waters Quattro Premier XE triple-quadrupole mass spectrometer. The instrument was operated in selected reaction monitoring (SRM) with negative electrospray ionization. Using BEH C(18) column (2.1 mm×50 mm, 1.7 μm) with 10-mM N-methylmorpholine/methanol gradient elution provided a fast chromatographic separation (5.5 min) and sharp peaks. Intra- and inter-day calibration bias was less than 7% and intra- and inter-day calibration of relative standard deviations were within 0.02-8.22% for all the analytes and concentrations. The recoveries of PFCs spiked into bovine serum ranged from 85 to 104% with relative standard deviations from 0.02 to 6.37%. The limits of quantitation (LOQs), defined as a signal-to-noise ratio of ten, ranged from 0.15 to 3.1 ng/mL for the twelve PFCs. Perfluorooctanoic acid (PFOA), perfluorooctyl sulfonate (PFOS), perfluoroundecanoic acid (PFUA) and perfluorononanoic acid (PFNA) were detected in up to 68% of umbilical cord plasma (n=444) in Taiwan Birth Panel Study and the health effect of these chemicals on children developmental deserves further investigation. Copyright © 2011 Elsevier B.V. All rights reserved.
Spinal trauma: new guidelines for assessment and management in the out-of-hospital environment.
Mattera, C J
1998-12-01
The keys to appropriate management of patients with spinal trauma lie in attending to life-threatening injuries, avoiding unnecessary movement of the spinal column, and carefully documenting patient reliability, MOI, history, physical examination findings, interventions, and responses to interventions. Who should be immobilized? Any victim of trauma complaining of neck or back pain, any patient with neurologic symptoms compatible with a spinal cord injury, and any patient who has an altered mental status or distracting injury should be immobilized. Given that not a single survivor of an SCI from World War I was alive by the start of World War II, one can appreciate the advances that have been made in the care of patients with spinal cord injuries. Exciting research is being conducted to explore the possibility of spinal cord regeneration by implanting tissue over which axons would regrow and make the appropriate connections, and pharmaceutical companies are spending millions to find an agent that will successfully salvage cells in human trials; however, a cure still seems elusive. Despite the marvels of modern research, prevention is still the key, including public education relative to wearing seat belts, instructing parents in the use of child restraint devices, encouraging people to jump rather than to dive when testing the depth of water (first time, feet first), enforcing driving under the influence laws, and outlawing such practices as spear tackling in football. In the meantime, EMS and ED personnel have a phenomenal opportunity to truly act as patient advocates by becoming familiar with new immobilization guidelines, honing their assessment skills, and providing anticipatory, compassionate care to those with neurologic deficits.
Logé, David; De Coster, Olivier; Washburn, Stephanie
2012-07-01
The use of multiple cylindrical leads and multicolumn and single column paddle leads in spinal cord stimulation offers many advantages over the use of a single cylindrical lead. Despite these advantages, placement of multiple cylindrical leads or a paddle lead requires a more invasive surgical procedure. Thus, the ideal situation for lead delivery would be percutaneous insertion of a paddle lead or multiple cylindrical leads. This study evaluated the feasibility and safety of percutaneous delivery of S-Series paddle leads using a new delivery device called the Epiducer lead delivery system (all St. Jude Medical Neuromodulation Division, Plano, TX, USA). This uncontrolled, open-label, prospective, two-center study approved by the AZ St. Lucas (Ghent) Ethics Committee evaluated procedural aspects of implantation of an S-Series paddle lead using the Epiducer lead delivery system and any adverse events relating to the device. Efficacy data during the patent's 30-day trial also were collected. Data from 34 patients were collected from two investigational sites. There were no adverse events related to the Epiducer lead delivery system. The device was inserted at an angle of either 20°-30° or 30°-40° and was entered into the epidural space at T12/L1 in most patients. The S-Series paddle lead was advanced four vertebral segments in more than 50% of patients. The average (±standard deviation [SD]) time it took to place the Epiducer lead delivery system was 8.7 (±5.0) min. The average (+SD) patient-reported pain relief was 78.8% (+24.1%). This study suggests the safe use of the Epiducer lead delivery system for percutaneous implantation and advancement of the S-Series paddle lead in 34 patients. © 2012 International Neuromodulation Society.
What Are Intellectual and Developmental Disabilities (IDDs)?
... characterized by problems with both: Intellectual functioning or intelligence, which include the ability to learn, reason, problem ... cord, and nervous system function, which can affect intelligence and learning. These conditions can also cause other ...
21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high cervical spinal cord injury, or chronic lung disease. The stimulator consists of an implanted receiver with...
21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high cervical spinal cord injury, or chronic lung disease. The stimulator consists of an implanted receiver with...
21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high cervical spinal cord injury, or chronic lung disease. The stimulator consists of an implanted receiver with...
Isl1 is required for multiple aspects of motor neuron development.
Liang, Xingqun; Song, Mi-Ryoung; Xu, ZengGuang; Lanuza, Guillermo M; Liu, Yali; Zhuang, Tao; Chen, Yihan; Pfaff, Samuel L; Evans, Sylvia M; Sun, Yunfu
2011-07-01
The LIM homeodomain transcription factor Islet1 (Isl1) is expressed in multiple organs and plays essential roles during embryogenesis. Isl1 is required for the survival and specification of spinal cord motor neurons. Due to early embryonic lethality and loss of motor neurons, the role of Isl1 in other aspects of motor neuron development remains unclear. In this study, we generated Isl1 mutant mouse lines expressing graded doses of Isl1. Our study has revealed essential roles of Isl1 in multiple aspects of motor neuron development, including motor neuron cell body localization, motor column formation and axon growth. In addition, Isl1 is required for survival of cranial ganglia neurons. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Muamar Rifa'i, Alfian; Setiawan, Bambang; Djarwanti, Noegroho
2017-12-01
The expansive soil is soil that has a potential for swelling-shrinking due to changes in water content. Such behavior can exert enough force on building above to cause damage. The use of columns filled with additives such as Calcium Carbide is done to reduce the negative impact of expansive soil behavior. This study aims to determine the effect of carbide columns on expansive soil. Observations were made on swelling and spreading of carbides in the soil. 7 Carbide columns with 5 cm diameter and 20 cm height were installed into the soil with an inter-column spacing of 8.75 cm. Wetting is done through a pipe at the center of the carbide column for 20 days. Observations were conducted on expansive soil without carbide columns and expansive soil with carbide columns. The results showed that the addition of carbide column could reduce the percentage of swelling by 4.42%. Wetting through the center of the carbide column can help spread the carbide into the soil. The use of carbide columns can also decrease the rate of soil expansivity. After the addition of carbide column, the plasticity index value decreased from 71.76% to 4.3% and the shrinkage index decreased from 95.72% to 9.2%.
Yi, Deqing; Yuan, Yue; Jin, Lei; Zhou, Guodong; Zhu, Huiping; Finnell, Richard H; Ren, Aiguo
2015-01-01
Maternal exposure to polycyclic aromatic hydrocarbons (PAHs) has been shown to be associated with an elevated risk for neural tube defects (NTDs). In the human body, PAHs are bioactivated and the resultant reactive epoxides can covalently bind to DNA to form PAH-DNA adducts, which may, in turn, cause transcription errors, changes in gene expression or altered patterns of apoptosis. During critical developmental phases, these changes can result in abnormal morphogenesis. We aimed to examine the relationship between the levels of PAH-DNA adducts in cord blood and cord tissue and the risk of NTDs. From 2010 to 2012, 60 NTD cases and 60 healthy controls were recruited from a population-based birth defects surveillance system in five counties of Shanxi Province in Northern China, where the emission of PAHs remains one of the highest in the country and PAHs exposure is highly prevalent. PAH-DNA adducts in cord blood of 15 NTD cases and 15 control infants, and in cord tissue of 60 NTD cases and 60 control infants were measured using the (32)P-postlabeling method. PAH-DNA adduct levels in cord blood tend to be higher in the NTD group (28.5 per 10(8) nucleotides) compared with controls (19.7 per 10(8) nucleotides), although the difference was not statistically significant (P=0.377). PAH-DNA adducts in cord tissue were significantly higher in the NTD group (24.6 per 10(6) nucleotides) than in the control group (15.3 per 10(6) nucleotides), P=0.010. A positive dose-response relationship was found between levels of PAH-DNA adducts in cord tissue and the risk of NTDs (P=0.009). When the lowest tertile was used as the referent and potential confounding factors were adjusted for, a 1.03-fold (95% CI, 0.37-2.89) and 2.96-fold (95% CI, 1.16-7.58) increase in the risk of NTDs was observed for fetuses whose cord tissue PAH-DNA adduct levels were in the second and highest tertile, respectively. High levels of PAH-DNA adducts in fetal tissues were associated with increased risks of NTDs. Copyright © 2014 Elsevier Inc. All rights reserved.
Development of vestibular afferent projections into the hindbrain and their central targets
NASA Technical Reports Server (NTRS)
Maklad, Adel; Fritzsch, Bernd
2003-01-01
In contrast to most other sensory systems, hardly anything is known about the neuroanatomical development of central projections of primary vestibular neurons and how their second order target neurons develop. Recent data suggest that afferent projections may develop not unlike other sensory systems, forming first the overall projection by molecular means followed by an as yet unspecified phase of activity mediated refinement. The latter aspect has not been tested critically and most molecules that guide the initial projection are unknown.The molecular and topological origin of the vestibular and cochlear nucleus neurons is also only partially understood. Auditory and vestibular nuclei form from several rhombomeres and a given rhombomere can contribute to two or more auditory or vestibular nuclei. Rhombomere compartments develop as functional subdivisions from a single column that extends from the hindbrain to the spinal cord. Suggestions are provided for the molecular origin of these columns but data on specific mutants testing these proposals are not yet available. Overall, the functional significance of both overlapping and segregated projections are not yet fully experimentally explored in mammals. Such lack of details of the adult organization compromises future developmental analysis.
Hsu, Li‐Ju; Zelenin, Pavel V.; Orlovsky, Grigori N.
2016-01-01
Key points Spinal reflexes are substantial components of the motor control system in all vertebrates and centrally driven reflex modifications are essential to many behaviours, but little is known about the neuronal mechanisms underlying these modifications.To study this issue, we took advantage of an in vitro brainstem–spinal cord preparation of the lamprey (a lower vertebrate), in which spinal reflex responses to spinal cord bending (caused by signals from spinal stretch receptor neurons) can be evoked during different types of fictive behaviour.Our results demonstrate that reflexes observed during fast forward swimming are reversed during escape behaviours, with the reflex reversal presumably caused by supraspinal commands transmitted by a population of reticulospinal neurons.NMDA receptors are involved in the formation of these commands, which are addressed primarily to the ipsilateral spinal networks.In the present study the neuronal mechanisms underlying reflex reversal have been characterized for the first time. Abstract Spinal reflexes can be modified during different motor behaviours. However, our knowledge about the neuronal mechanisms underlying these modifications in vertebrates is scarce. In the lamprey, a lower vertebrate, body bending causes activation of intraspinal stretch receptor neurons (SRNs) resulting in spinal reflexes: activation of motoneurons (MNs) with bending towards either the contralateral or ipsilateral side (a convex or concave response, respectively). The present study had two main aims: (i) to investigate how these spinal reflexes are modified during different motor behaviours, and (ii) to reveal reticulospinal neurons (RSNs) transmitting commands for the reflex modification. For this purpose in in vitro brainstem–spinal cord preparation, RSNs and reflex responses to bending were recorded during different fictive behaviours evoked by supraspinal commands. We found that during fast forward swimming MNs exhibited convex responses. By contrast, during escape behaviours, MNs exhibited concave responses. We found RSNs that were activated during both stimulation causing reflex reversal without initiation of any specific behaviour, and stimulation causing reflex reversal during escape behaviour. We suggest that these RSNs transmit commands for the reflex modification. Application of the NMDA antagonist (AP‐5) to the brainstem significantly decreased the reversed reflex, suggesting involvement of NMDA receptors in the formation of these commands. Longitudinal split of the spinal cord did not abolish the reflex reversal caused by supraspinal commands, suggesting an important role for ipsilateral networks in determining this type of motor response. This is the first study to reveal the neuronal mechanisms underlying supraspinal control of reflex reversal. PMID:27589479
George T. Ferrell; Ralph C. Hall
1975-01-01
White fir (Abides concolor [Cord. & Glend.] Lindl.) stands in Western North America periodically suffer extensive tree mortality caused by outbreaks of the fir engraver bark beetle (Scolytus ventralis Lec.). The cambial zone of the boles infested by S. ventralis is also colonized by the roundheaded fir borer...
Rogawski, Elizabeth T; Chaluluka, Ebbie; Molyneux, Malcolm E; Feng, Gaoqian; Rogerson, Stephen J; Meshnick, Steven R
2012-10-01
Fetal anemia is common in malarious areas and is a risk factor for infant morbidity and mortality. Malaria during pregnancy may cause decreased cord hemoglobin (Hb) and fetal anemia among newborns. Intermittent preventive treatment during pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) is protective against malaria but may also affect hematopoiesis and contribute to fetal anemia. Peripheral, placental, and cord blood were examined for malaria parasitemia and Hb concentration in a cross-section of 3848 mothers and infants delivered at Queen Elizabeth Central Hospital in Blantyre, Malawi between 1997 and 2006. Unconditional linear and logistic regressions were performed with multiple imputation for missing covariates to assess the associations between malaria, IPTp with SP, and fetal anemia. The overall prevalence of fetal anemia was 7.9% (n = 304). Malaria parasitemia at delivery was associated with an adjusted decrease in cord Hb of -0.24 g/dL (95% confidence interval [CI], -.42 to -.05). The adjusted prevalence odds ratio for the effect of malaria on fetal anemia was 1.41 (95% CI, 1.05-1.90). Primigravidae who did not take IPTp had infants at highest risk for fetal anemia, and density of parasitemia was correlated with the decrease in cord Hb. There was no significant association between SP use and cord Hb or fetal anemia. Malaria during pregnancy, but not IPTp, decreases cord Hb and is a risk factor for fetal anemia in Malawi. Intermittent preventive treatment during pregnancy with SP may continue to be safe and effective in preventing malaria during pregnancy and fetal anemia despite development of SP resistance.
Shell and small particles; evaluation of new column technology.
Fekete, Szabolcs; Fekete, Jeno; Ganzler, Katalin
2009-01-15
The performance of 5 cm long columns packed with shell particles was compared to totally porous sub-2 microm particles in gradient and isocratic elution separations of hormones (dienogest, finasteride, gestodene, levonorgestrel, estradiol, ethinylestradiol, noretistherone acetate, bicalutamide and tibolone). Peak capacities around 140-150 could be achieved in 25 min with the 5 cm long columns. The Ascentis Express column (packed with 2.7 microm shell particles) showed similar efficiency to sub-2 microm particles under gradient conditions. Applying isocratic separation, the column of 2.7 microm shell particles had a reduced plate height minimum of approximately h=1.6. It was much smaller than obtained with totally porous particles (h approximately = 2.8). The impedance time also proved more favorable with 2.7 microm shell particles than with totally porous particles. The influence of extra-column volume on column efficiency was investigated. The extra-column dispersion of the chromatographic system may cause a shift of the HETP curves.
Restoring walking after spinal cord injury: operant conditioning of spinal reflexes can help.
Thompson, Aiko K; Wolpaw, Jonathan R
2015-04-01
People with incomplete spinal cord injury (SCI) frequently suffer motor disabilities due to spasticity and poor muscle control, even after conventional therapy. Abnormal spinal reflex activity often contributes to these problems. Operant conditioning of spinal reflexes, which can target plasticity to specific reflex pathways, can enhance recovery. In rats in which a right lateral column lesion had weakened right stance and produced an asymmetrical gait, up-conditioning of the right soleus H-reflex, which increased muscle spindle afferent excitation of soleus, strengthened right stance and eliminated the asymmetry. In people with hyperreflexia due to incomplete SCI, down-conditioning of the soleus H-reflex improved walking speed and symmetry. Furthermore, modulation of electromyographic activity during walking improved bilaterally, indicating that a protocol that targets plasticity to a specific pathway can trigger widespread plasticity that improves recovery far beyond that attributable to the change in the targeted pathway. These improvements were apparent to people in their daily lives. They reported walking faster and farther, and noted less spasticity and better balance. Operant conditioning protocols could be developed to modify other spinal reflexes or corticospinal connections; and could be combined with other therapies to enhance recovery in people with SCI or other neuromuscular disorders. © The Author(s) 2014.
Corticospinal signals recorded with MEAs can predict the volitional forearm forces in rats.
Guo, Yi; Mesut, Sahin; Foulds, Richard A; Adamovich, Sergei V
2013-01-01
We set out to investigate if volitional components in the descending tracts of the spinal cord white matter can be accessed with multi-electrode array (MEA) recording technique. Rats were trained to press a lever connected to a haptic device with force feedback to receive sugar pellets. A flexible-substrate multi-electrode array was chronically implanted into the dorsal column of the cervical spinal cord. Field potentials and multi-unit activities were recorded from the descending axons of the corticospinal tract while the rat performed a lever pressing task. Forelimb forces, recorded with the sensor attached to the lever, were reconstructed using the hand position data and the neural signals through multiple trials over three weeks. The regression coefficients found from the trial set were cross-validated on the other trials recorded on same day. Approximately 30 trials of at least 2 seconds were required for accurate model estimation. The maximum correlation coefficient between the actual and predicted force was 0.7 in the test set. Positional information and its interaction with neural signals improved the correlation coefficient by 0.1 to 0.15. These results suggest that the volitional information contained in the corticospinal tract can be extracted with multi-channel neural recordings made with parenchymal electrodes.
Tarafder, Abhijit; Iraneta, Pamela; Guiochon, Georges; Kaczmarski, Krzysztof; Poe, Donald P
2014-10-31
We propose to use constant enthalpy or isenthalpic diagrams as a tool to estimate the extent of the temperature variations caused by the mobile phase pressure drop along a chromatographic column, e.g. of its cooling in supercritical fluid and its heating in ultra-performance liquid chromatography. Temperature strongly affects chromatographic phenomena. Any of its variations inside the column, whether intended or not, can lead to significant changes in separation performance. Although instruments use column ovens in order to keep constant the column temperature, operating conditions leading to a high pressure drop may cause significant variations of the column temperature, both in the axial and the radial directions, from the set value. Different ways of measuring these temperature variations are available but they are too inconvenient to be employed in many practical situations. In contrast, the thermodynamic plot-based method that we describe here can easily be used with only a ruler and a pencil. They should be helpful in developing methods or in analyzing results in analytical laboratories. Although the most effective application area for this approach should be SFC (supercritical fluid chromatography), it can be applied to any chromatographic conditions in which temperature variations take place along the column due to the pressure drop, e.g. in ultra-high pressure liquid chromatography (UHPLC). The method proposed here is applicable to isocractic conditions only. Copyright © 2014 Elsevier B.V. All rights reserved.
Presumptive Nocardia spp. infection in a dog treated with cyclosporin and ketoconazole.
Paul, A E H; Mansfield, C S; Thompson, M
2010-10-01
A dog that had received 8 months of cyclosporin and ketoconazole therapy for treatment of atopic dermatitis subsequently developed severe neurological disease, that failed to respond to treatment with trimethoprim-sulphadiazine and clindamycin. HISTOPATHOLOGICAL FINDINGS: Histopathological examination of the pulmonary parenchyma and spinal cord revealed loose aggregates of Gram-positive, partially acid-fast, fine, beaded, filamentous bacteria, most consistent with Nocardia spp. A presumptive diagnosis was made of disseminated nocardiosis of the spinal cord and lungs. Nocardia spp. is an opportunistic actinomycete that may cause disseminated disease, particularly in immunocompromised animals. Cyclosporin is used in veterinary medicine to control immune-mediated and allergic disorders, with few reported adverse side effects. This case gives further evidence that involvement of the spinal cord in nocardiosis of the central nervous system (CNS) carries a poor prognosis, and opportunistic infection by Nocardia spp. may be a potential complication of immunosuppressive cyclosporin therapy in the dog.
Subarachnoid Hemorrhage due to Spinal Cord Schwannoma Presenting Findings Mimicking Meningitis.
Zhang, Hong-Mei; Zhang, Yin-Xi; Zhang, Qing; Song, Shui-Jiang; Liu, Zhi-Rong
2016-08-01
Subarachnoid hemorrhage (SAH) of spinal origin is uncommon in clinical practice, and spinal schwannomas associated with SAH are even more rarely reported. We report an unusual case of spinal SAH mimicking meningitis with normal brain computed tomography (CT)/magnetic resonance imaging (MRI) and negative CT angiography. Cerebrospinal fluid examination results were consistent with the manifestation of SAH. Spinal MRI performed subsequently showed an intradural extramedullary mass. The patient received surgery and was finally diagnosed with spinal cord schwannoma. A retrospective chart review of the patient was performed. We describe a case of SAH due to spinal cord schwannoma. Our case highlights the importance of careful history taking and complete evaluation. We emphasize that spinal causes should always be ruled out in patients with angionegative SAH and that schwannoma should be considered in the differential diagnosis of SAH etiologies even though rare. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Manish K, Kothari; Chandrakant, Shah Kunal; Abhay M, Nene
2015-01-01
Spinal Subdural hematoma is a rare cause of radiculopathy and spinal cord compression syndromes. It's early diagnosis is essential. Chronological appearance of these bleeds vary on MRI. A 56 year old man presented with progressive left lower limb radiculopathy and paraesthesias with claudication of three days duration. MRI revealed a subdural space occupying lesion compressing the cauda equina at L5-S1 level producing a 'Y' shaped dural sac (Y sign), which was hyperintense on T1W imaging and hypointense to cord on T2W image. The STIR sequence showed hyperintensity to cord. There was no history of bleeding diathesis. The patient underwent decompressive durotomy and biopsy which confirmed the diagnosis. Spinal subdural hematoma may present with rapidly progressive neurological symptoms. MRI is the investigation of choice. The knowledge of MRI appearance with respect to the chronological stage of the bleed is essential to avoid diagnostic and hence surgical dilemma.
QUAD fever: beware of non-infectious fever in high spinal cord injuries.
Goyal, Jyoti; Jha, Rakesh; Bhatia, Paramjeet; Mani, Raj Kumar
2017-06-18
A case of cervical spinal cord injury and quadriparesis with prolonged fever is being described. Initially, the patient received treatment for well-documented catheter-related bloodstream infection. High spiking fever returned and persisted with no obvious evidence of infection. The usual non-infectious causes too were carefully excluded. QUAD fever or fever due to spinal cord injury itself was considered. The pathogenetic basis of QUAD fever is unclear but could be attributed to autonomic dysfunction and temperature dysregulation. Awareness of this little known condition could help in avoiding unnecessary antimicrobial therapy and in more accurate prognostication. Unlike several previous reported cases that ended fatally, the present case ran a relatively benign course. The spectrum of presentations may therefore be broader than hitherto appreciated. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Worklife After Traumatic Spinal Cord Injury
Pflaum, Christopher; McCollister, George; Strauss, David J; Shavelle, Robert M; DeVivo, Michael J
2006-01-01
Objective: To develop predictive models to estimate worklife expectancy after spinal cord injury (SCI). Design: Inception cohort study. Setting: Model SCI Care Systems throughout the United States. Participants: 20,143 persons enrolled in the National Spinal Cord Injury Statistical Center database since 1973. Intervention: Not applicable. Main Outcome Measure: Postinjury employment rates and worklife expectancy. Results: Using logistic regression, we found a greater likelihood of being employed in any given year to be significantly associated with younger age, white race, higher education level, being married, having a nonviolent cause of injury, paraplegia, ASIA D injury, longer time postinjury, being employed at injury and during the previous postinjury year, higher general population employment rate, lower level of Social Security Disability Insurance benefits, and calendar years after the passage of the Americans with Disabilities Act. Conclusions: The likelihood of postinjury employment varies substantially among persons with SCI. Given favorable patient characteristics, worklife should be considerably higher than previous estimates. PMID:17044388
Myosin phosphatase Fine-tunes Zebrafish Motoneuron Position during Axonogenesis
Granato, Michael
2016-01-01
During embryogenesis the spinal cord shifts position along the anterior-posterior axis relative to adjacent tissues. How motor neurons whose cell bodies are located in the spinal cord while their axons reside in adjacent tissues compensate for such tissue shift is not well understood. Using live cell imaging in zebrafish, we show that as motor axons exit from the spinal cord and extend through extracellular matrix produced by adjacent notochord cells, these cells shift several cell diameters caudally. Despite this pronounced shift, individual motoneuron cell bodies stay aligned with their extending axons. We find that this alignment requires myosin phosphatase activity within motoneurons, and that mutations in the myosin phosphatase subunit mypt1 increase myosin phosphorylation causing a displacement between motoneuron cell bodies and their axons. Thus, we demonstrate that spinal motoneurons fine-tune their position during axonogenesis and we identify the myosin II regulatory network as a key regulator. PMID:27855159
Process for the production of ultrahigh purity silane with recycle from separation columns
NASA Technical Reports Server (NTRS)
Coleman, Larry M. (Inventor)
1982-01-01
Tri- and dichlorosilanes formed by hydrogenation in the course of the reaction of metallurgical silicon, hydrogen and recycle silicon tetrachloride are employed as feed into a separation column arrangement of sequential separation columns and redistribution reactors which processes the feed into ultrahigh purity silane and recycle silicon tetrachloride. A slip stream is removed from the bottom of two sequential columns and added to the recycle silicon tetrachloride process stream causing impurities in the slip streams to be subjected to reactions in the hydrogenation step whereby waste materials can be formed and readily separated.
Process for the production of ultrahigh purity silane with recycle from separation columns
Coleman, Larry M.
1982-07-20
Tri- and dichlorosilanes formed by hydrogenation in the course of the reaction of metallurgical silicon, hydrogen and recycle silicon tetrachloride are employed as feed into a separation column arrangement of sequential separation columns and redistribution reactors which processes the feed into ultrahigh purity silane and recycle silicon tetrachloride. A slip stream is removed from the bottom of two sequential columns and added to the recycle silicon tetrachloride process stream causing impurities in the slip streams to be subjected to reactions in the hydrogenation step whereby waste materials can be formed and readily separated.
Surfer’s Myelopathy: A Radiologic Study of 23 Cases
Nakamoto, B.K.; Siu, A.M.; Hashiba, K.A.; Sinclair, B.T.; Baker, B.J.; Gerber, M.S.; McMurtray, A.M.; Pearce, A.M.; Pearce, J.W.
2015-01-01
BACKGROUND AND PURPOSE Surfing is an uncommon cause of an acute nontraumatic myelopathy. This study describes the MR imaging characteristics and clinical correlates in 23 subjects with surfer’s myelopathy. MATERIALS AND METHODS This was a retrospective review of 23 cases of surfer’s myelopathy from 2003–2012. Spinal cord MR imaging characteristics and neurologic examinations with the use of the American Spinal Injury Association scale were reviewed. Logistic regression was used to determine associations between MR imaging characteristics, American Spinal Injury Association scale, and clinical improvement. RESULTS All subjects (19 male, 4 female; mean age, 26.3 ± 7.4 years) demonstrated “pencil-like,” central T2-hyperintense signal abnormalities in the spinal cord extending from the midthoracic region to the conus with associated cord expansion and varying degrees of conus enlargement on spinal cord MR imaging within 24 hours of symptom onset. T1 signal was normal. Faint gadolinium enhancement was present in a minority. Although there was a strong correlation between initial American Spinal Injury Association score and clinical improvement (P = .0032), MR imaging characteristics were not associated with American Spinal Injury Association score or clinical improvement. CONCLUSIONS Surfer’s myelopathy should be considered in the radiographic differential diagnosis of a longitudinally extensive T2-hyperintense spinal cord lesion. MR imaging characteristics do not appear to be associated with severity on examination or clinical improvement. PMID:23828111
Awad, Hamdy; Suntres, Zacharias; Heijmans, John; Smeak, Daniel; Bergdall-Costell, Valerie; Christofi, Fievos L; Magro, Cynthia; Oglesbee, Michael
2008-08-01
Inflammatory responses exacerbate ischemia-reperfusion (IR) injury of spinal cord, although understanding of mediators is incomplete. The major inducible 70kDa heat shock protein (hsp70) is induced by ischemia and extracellular hsp70 (e-hsp70) can modulate inflammatory responses, but there is no published information regarding e-hsp70 levels in the cerebrospinal fluid (CSF) or serum as part of any neurological disease state save trauma. The present work addresses this deficiency by examining e-hsp70 in serum and CSF of dogs in an experimental model of spinal cord IR injury. IR injury of spinal cord caused hind limb paraplegia within 2-3 h that was correlated to lumbosacral poliomalacia with T cell infiltrates at 3 d post-ischemia. In this context, we showed a 5.2-fold elevation of e-hsp70 in CSF that was induced by ischemia and was sustained for the following 3 d observation interval. Plasma e-hsp70 levels were unaffected by IR injury, indicating e-hsp70 release from within the central nervous system. A putative source of this e-hsp70 was ependymal cells in the ischemic penumbra, based upon elevated i-hsp70 levels detected within these cells. Results warrant further investigation of e-hsp70's potential to modulate spinal cord IR injury.
Methylmercury level in umbilical cords from patients with congenital Minamata disease.
Harada, M; Akagi, H; Tsuda, T; Kizaki, T; Ohno, H
1999-08-30
A total of 151 umbilical cords during the period from 1950 to 1969 were collected from the residents of the Minamata area (including 25 patients with congenital Minamata disease) for methylmercury (MeHg) analysis. When the MeHg discharge from the Chisso Company's Minamata factory into the Minamata Bay is compared with the incidence of congenital Minamata disease, the abrupt increase of the former in 1952 [Nishimura H. Chem. Today 1998;323:60-66] was found to precede that of the latter by approximately 2 years, thereby indicating that MeHg is the cause of the disaster. This was confirmed by the elevated levels of MeHg in the umbilical cords from residents of the Minamata area [from 0.35 +/- 0.30 (S.D.) ppm in 1952 to 0.96 +/- 0.75 ppm in 1955], the MeHg levels (1.60 +/- 1.00 ppm) in the cords from patients with congenital Minamata disease showing the highest values [P < 0.01 vs. acquired Minamata disease (0.72 +/- 0.65 ppm), mental retardation (0.74 +/- 0.64 ppm), other diseases (0.22 +/- 0.15 ppm), and no symptoms (0.28 +/- 0.20 ppm), respectively]. Thus, in order to fill a gap, which extends over a long period of time, in studies on environmental Hg pollution, umbilical cord samples were considered to be a useful tool.
NASA Astrophysics Data System (ADS)
Shultz, Robert B.; Wang, Zhicheng; Nong, Jia; Zhang, Zhiling; Zhong, Yinghui
2017-06-01
Objective. Traumatic spinal cord injury (SCI) causes apoptosis of myelin-forming oligodendrocytes (OLs) and demyelination of surviving axons, resulting in conduction failure. Remyelination of surviving denuded axons provides a promising therapeutic target for spinal cord repair. While cell transplantation has demonstrated efficacy in promoting remyelination and functional recovery, the lack of ideal cell sources presents a major obstacle to clinical application. The adult spinal cord contains oligodendrocyte precursor cells and multipotent neural stem/progenitor cells that have the capacity to differentiate into mature, myelinating OLs. However, endogenous oligodendrogenesis and remyelination processes are limited by the upregulation of remyelination-inhibitory molecules in the post-injury microenvironment. Multiple growth factors/molecules have been shown to promote OL differentiation and myelination. Approach. In this study we screened these therapeutics and found that 3, 3‧, 5-triiodothyronine (T3) is the most effective in promoting oligodendrogenesis and OL maturation in vitro. However, systemic administration of T3 to achieve therapeutic doses in the injured spinal cord is likely to induce hyperthyroidism, resulting in serious side effects. Main results. In this study we developed a novel hydrogel-based drug delivery system for local delivery of T3 to the injury site without eliciting systemic toxicity. Significance. Using a clinically relevant cervical contusion injury model, we demonstrate that local delivery of T3 at doses comparable to safe human doses promoted new mature OL formation and myelination after SCI.
Removal of Cr(VI) from groundwater by Fe(0)
NASA Astrophysics Data System (ADS)
Gao, Yanjiao; Liu, Rui
2017-11-01
This research was conducted to investigate the treatment of hexavalent chromium (Cr(VI)) by iron powder (Fe(0)) columns of simulated permeable reactive barriers with and without calcium carbonate (CaCO3). Two columns filled with Fe(0) were used as Cr(VI) removal equipment running at a flow velocity of 10 ml/min at room temperature. After 200 days running of the two columns, the results showed that Fe(0) was an effective material for Cr(VI) reduction with an average removal rate of above 84.6%. The performance of Column 2 with CaCO3 was better than Column 1 without CaCO3 in terms of average Cr(VI) removal rate. The presence of CaCO3 buffered the increasing pH caused by Fe(0) corrosion in Column 2 and enhanced the removal rate of Column 2. Scanning Electron Microscopy (SEM) images of Fe(0) in the three stages of running of the two columns illustrated that the coat layer of Column 1 was a little thicker than that of Column 2. Energy-dispersive spectrometry (EDS) results showed that the surface of Fe(0) of Column 2 contained more chromium elements. Raman spectroscopy found that all iron oxide was generated on the Fe(0) surface of Column 1 and Column 2 and chromium class objects were only detected on Fe(0) surface in Column 2.
... spinal stenosis and herniated disks Spinal diseases often cause pain when bone changes put pressure on the spinal cord or nerves. They can also limit movement. Treatments differ by disease, but sometimes they include back braces and surgery.
Hospital to Home: Plan for a Smooth Transition
... can cause falls, such as area rugs and electric cords (a good idea in any event) ■ Create ... on many aspects of transitions, including medication management, discharge checklists, hospice and palliative care, and many others. ...
The neuropathological foundations for the restorative neurology of spinal cord injury.
Kakulas, Byron A; Kaelan, Cahyono
2015-02-01
An appreciation of the neuropathology of human spinal cord injury (SCI) is a basic requirement for all concerned with the medical treatment of patients with SCI as well as for the many neuroscientists devoted to finding a "cure". An understanding of the neuropathology of SCI is a necessary guide to those concerned at all levels of treatment, whether they are doctors or other health professionals. The underlying changes in the spinal cord are especially relevant to the restorative neurology (RN) of SCI. The new discipline of RN seeks to enhance the function of residual spinal cord elements which have survived the injury and so improve the patient's rehabilitative status. This is in contrast to the conventional approach in rehabilitation which works around the clinical neurological deficiencies. Following the injury a series of changes take place in the spinal cord and surrounding tissues which continue to evolve throughout the life of the patient. In flexion and extension injuries resulting from motor vehicle trauma, diving and sporting accidents the spinal cord is compressed and disrupted but usually with some continuity remaining in the white matter columns. The brunt of the injury is usually centrally placed where there is bleeding into the disrupted grey matter involving one two segments, usually cervical. The loss of central grey matter is nowhere near as important as is the tearing apart of the white matter tracts in determining the patient's clinical state. The central grey matter supplies one two overlapping segmental myotomes and sensory fields. In contrast loss of continuity in the long white matter tracts is catastrophic because all functions below the level of injury are affected, autonomic or voluntary either by paralysis or anaesthesia, usually both. It is important to determine the exact nature of the injury in every patient as a preliminary to treatment by RN. This assessment is both clinical and neurophysiological with special attention given to any part of the long white matter tracts which may have escaped the initial injury. It is these residual nerve fibres which provide the opportunity to improve the patient's neurological state by being re-activated, modulated and enhanced by stimulation or by other RN methods. The conversion of a clinically complete SCI patient to being incomplete and ambulant is a tremendous improvement in the patient's status. It is the purpose of this article to provide the reader with the essential neuropathology of SCI as a beginning point in planning treatment whether it is medical or ancillary, as well as to inform the neuroscientist about the condition being addressed in his or her research. © 2015 Elsevier B.V. All rights reserved.
Microbial-Induced Heterogeneity in the Acoustic Properties of Porous Media
Acoustic wave data were acquired over a two-dimensional region of a microbial-stimulated sand column and an unstimulated sand column to assess the spatiotemporal changes in a porous medium caused by microbial growth and biofilm formation. The acoustic signals from the unstimulate...
Comparative muscle development of scyphozoan jellyfish with simple and complex life cycles.
Helm, Rebecca R; Tiozzo, Stefano; Lilley, Martin K S; Lombard, Fabien; Dunn, Casey W
2015-01-01
Simple life cycles arise from complex life cycles when one or more developmental stages are lost. This raises a fundamental question - how can an intermediate stage, such as a larva, be removed, and development still produce a normal adult? To address this question, we examined the development in several species of pelagiid jellyfish. Most members of Pelagiidae have a complex life cycle with a sessile polyp that gives rise to ephyrae (juvenile medusae); but one species within Pelagiidae, Pelagia noctiluca, spends its whole life in the water column, developing from a larva directly into an ephyra. In many complex life cycles, adult features develop from cell populations that remain quiescent in larvae, and this is known as life cycle compartmentalization and may facilitate the evolution of direct life cycles. A second type of metamorphic processes, known as remodeling, occurs when adult features are formed through modification of already differentiated larval structures. We examined muscle morphology to determine which of these alternatives may be present in Pelagiidae. We first examined the structure and development of polyp and ephyra musculature in Chrysaora quinquecirrha, a close relative of P. noctiluca with a complex life cycle. Using phallotoxin staining and confocal microscopy, we verified that polyps have four to six cord muscles that persist in strobilae and discovered that cord muscles is physically separated from ephyra muscle. When cord muscle is removed from ephyra segments, normal ephyra muscle still develops. This suggests that polyp cord muscle is not necessary for ephyra muscle formation. We also found no evidence of polyp-like muscle in P. noctiluca. In both species, we discovered that ephyra muscle arises de novo in a similar manner, regardless of the life cycle. The separate origins of polyp and ephyra muscle in C. quinquecirrha and the absence of polyp-like muscle in P. noctiluca suggest that polyp muscle is not remodeled to form ephyra muscle in Pelagiidae. Life cycle stages in Scyphozoa may instead be compartmentalized. Because polyp muscle is not directly remodeled, this may have facilitated the loss of the polyp stage in the evolution of P. noctiluca.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaczmarski, Krzysztof; Guiochon, Georges A
2011-01-01
In supercritical fluid chromatography (SFC), the significant expansion of the mobile phase along the column causes the formation of axial and radial gradients of temperature. Due to these gradients, the mobile phase density, its viscosity, its velocity, its diffusion coefficients, etc. are not constant throughout the column. This results in a nonuniform flow velocity distribution, itself causing a loss of column efficiency in certain cases, even at low flow rates, as they do in HPLC. At high flow rates, an important deformation of the elution profiles of the sample components may occur. The model previously used to account satisfactorily formore » the retention of an unsorbed solute in SFC is applied to the modeling of the elution peak profiles of retained compounds. The numerical solution of the combined heat and mass balance equations provides the temperature and the pressure profiles inside the column and values of the retention time and the band profiles of retained compounds that are in excellent agreement with independent experimental data for large value of mobile phase reduced density. At low reduced densities, the band profiles can strongly depend on the column axial distribution of porosity.« less
Preliminary clinical results of pulsed-dye laser therapy for recurrent respiratory papillomatosis
NASA Astrophysics Data System (ADS)
McMillan, Kathleen; Shapshay, Stanley M.; McGilligan, J. A.; Wang, Zhi; Rebeiz, Elie E.
1998-07-01
Recurrent respiratory papillomatosis (RRP) is a viral disease characterized by the growth of benign tumors on the vocal cords. Standard management of RRP currently consists of CO2 laser microsurgical ablation of the papillomas. Because of the recurrent nature of this disease, patients are often faced with significant cumulative risk of soft tissue complications such as vocal cord scarring. As a minimally traumatic alternative to management of RRP, we have investigated the use of the 585 nm pulsed dye laser (PDL) to cause regression of the papillomas by selective eradication of the tumor microvasculature. Three patients have been treated with the PDL at fluences of 6 J/cm2 (double pulses per irradiated site), 8 J/cm2 (single pulses), and 10 J/cm2 (single pulses), at noncritical areas within the larynx, using a specially designed micromanipulator. Lesions on the true cords were treated with the CO2 laser. Clinical examination showed that PDL treatment appeared to produce complete regression of papillomas. Unlike the sites of lesions treated by the CO2 laser, the epithelial surface at the PDL treatment sites was preserved intact. The presumed mechanism for papilloma regression following PDL treatment involves acute or chronic localized hypoxia caused by loss of tumor microvasculature.
An unusual cause of autonomic dysreflexia: pheochromocytoma in an individual with tetraplegia.
Armenti-Kapros, Brenda; Nambiar, Prabhakaran K; Lippman, H Robert; Levy, James R
2003-01-01
Autonomic dysreflexia (AD) is a frequent, serious acute syndrome that occurs in patients with spinal cord lesions at level T6 and above. The syndrome is caused by massive sympathetic discharge that is triggered by a noxious stimulus below the level of the spinal cord lesion. Pheochromocytomas are rare tumors that present with symptoms similar to AD. Case Report. A 50-year-old man with C7 American Spinal Injury Association scale A tetraplegia presented with episodes of severe headaches and paroxysmal hypertension. He was diagnosed with AD. Despite resolving bladder and bowel problems, he continued to have hypertensive episodes. A CT scan of the abdomen revealed a heterogeneous left adrenal mass. Further workup revealed significantly elevated serum and 24-hour urinary catecholamines. Clonidine failed to fully suppress the markedly elevated concentrations of serum catecholamines. These biochemical findings were consistent with the diagnosis of pheochromocytoma. Prior to surgery, the patient was treated with alpha-receptor blockers and volume expansion with intravenous fluids. A left adrenalectomy was performed. The surgical specimen revealed that the adrenal gland was expanded by a spherical mass. The pathologic report was benign pheochromocytoma of the left adrenal gland. Clinical symptoms and hypertensive episodes resolved following adrenalectomy. To our knowledge, this is the first reported case of a pheochromocytoma in an individual with spinal cord injury.
Cyclic performance of concrete-filled steel batten built-up columns
NASA Astrophysics Data System (ADS)
Razzaghi, M. S.; Khalkhaliha, M.; Aziminejad, A.
2016-03-01
Steel built-up batten columns are common types of columns in Iran and some other parts of the world. They are economic and have acceptable performance due to gravity loads. Although several researches have been conducted on the behavior of the batten columns under axial loads, there are few available articles about their seismic performance. Experience of the past earthquakes, particularly the 2003 Bam earthquake in Iran, revealed that these structural members are seismically vulnerable. Thus, investigation on seismic performance of steel batten columns due to seismic loads and providing a method for retrofitting them are important task in seismic-prone areas. This study aims to investigate the behavior of concrete-filled batten columns due to combined axial and lateral loads. To this end, nonlinear static analyses were performed using ANSYS software. Herein, the behaviors of the steel batten columns with and without concrete core were compared. The results of this study showed that concrete-filled steel batten columns, particularly those filled with high-strength concrete, may cause significant increases in energy absorption and capacity of the columns. Furthermore, concrete core may improve post-buckling behavior of steel batten columns.
Yao, Humphrey Hung-Chang; Capel, Blanche
2014-01-01
Most studies to date indicate that the formation of testis cords is critical for proper Sertoli cell differentiation, inhibition of germ cell meiosis, and regulation of Leydig cell differentiation. However, the connections between these events are poorly understood. The objective of this study was to dissect the molecular and cellular relationships between these events in testis formation. We took advantage of the different effects of two hedgehog signaling inhibitors, cyclopamine and forskolin, on gonad explant cultures. Both hedgehog inhibitors phenocopied the disruptive effect of Dhh−/− on formation of testis cords without influencing Sertoli cell differentiation. However, they exhibited different effects on other cellular events during testis development. Treatment with cyclopamine did not affect inhibition of germ cell meiosis and mesonephric cell migration but caused defects in Leydig cell differentiation. In contrast, forskolin treatment induced germ cell meiosis, inhibited mesonephric cell migration, and had no effect on Leydig cell differentiation. By carefully contrasting the different effects of these two hedgehog inhibitors, we demonstrate that although formation of testis cords and development of other cell types normally take place in a tightly regulated sequence, each of these events can occur independent of the others. PMID:12051821
Ikpeze, Tochukwu C; Mesfin, Addisu
2017-06-01
Spinal cord injuries (SCIs) are sustained by more than 12 500 patients per year in the United States and more globally. The SCIs disproportionately affect the elderly, especially men. Approximately 60% of these injuries are sustained traumatically through falls, but nontraumatic causes including infections, tumors, and medication-related epidural bleeding have also been documented. Preexisting conditions such as ankylosing spondylitis and diffuse idiopathic skeletal hyperostosis can render the spine stiff and are risk factors as well as cervical spondylosis and ensuing cervical stenosis. Treatment options vary depending on the severity, location, and complexity of the injury. Surgical management has been growing in popularity over the years and remains an option as it helps reduce spinal cord compression and alleviate pain. Elevating mean arterial pressures to prevent spinal cord ischemia and avoiding the second hit of SCI have become more common as opposed to high dose steroids. Ongoing clinical trials with pharmacological agents such as minocycline and riluzole have shown early, promising results in their ability to reduce cellular damage and facilitate recovery. Though SCI can be life changing, the available treatment options have aimed to reduce pain and minimize complications and maintain quality of life alongside rehabilitative services.
Degenerative Cervical Myelopathy: A Spectrum of Related Disorders Affecting the Aging Spine.
Tetreault, Lindsay; Goldstein, Christina L; Arnold, Paul; Harrop, James; Hilibrand, Alan; Nouri, Aria; Fehlings, Michael G
2015-10-01
Cervical spinal cord dysfunction can result from either traumatic or nontraumatic causes, including tumors, infections, and degenerative changes. In this article, we review the range of degenerative spinal disorders resulting in progressive cervical spinal cord compression and propose the adoption of a new term, degenerative cervical myelopathy (DCM). DCM comprises both osteoarthritic changes to the spine, including spondylosis, disk herniation, and facet arthropathy (collectively referred to as cervical spondylotic myelopathy), and ligamentous aberrations such as ossification of the posterior longitudinal ligament and hypertrophy of the ligamentum flavum. This review summarizes current knowledge of the pathophysiology of DCM and describes the cascade of events that occur after compression of the spinal cord, including ischemia, destruction of the blood-spinal cord barrier, demyelination, and neuronal apoptosis. Important features of the diagnosis of DCM are discussed in detail, and relevant clinical and imaging findings are highlighted. Furthermore, this review outlines valuable assessment tools for evaluating functional status and quality of life in these patients and summarizes the advantages and disadvantages of each. Other topics of this review include epidemiology, the prevalence of degenerative changes in the asymptomatic population, the natural history and rates of progression, risk factors of diagnosis (clinical, imaging and genetic), and management strategies.
Semrau, Katherine E A; Herlihy, Julie; Grogan, Caroline; Musokotwane, Kebby; Yeboah-Antwi, Kojo; Mbewe, Reuben; Banda, Bowen; Mpamba, Chipo; Hamomba, Fern; Pilingana, Portipher; Zulu, Andisen; Chanda-Kapata, Pascalina; Biemba, Godfrey; Thea, Donald M; MacLeod, William B; Simon, Jonathon L; Hamer, Davidson H
2016-11-01
Chlorhexidine umbilical cord washes reduce neonatal mortality in south Asian populations with high neonatal mortality rates and predominantly home-based deliveries. No data exist for sub-Saharan African populations with lower neonatal mortality rates or mostly facility-based deliveries. We compared the effect of chlorhexidine with dry cord care on neonatal mortality rates in Zambia. We undertook a cluster-randomised controlled trial in Southern Province, Zambia, with 90 health facility-based clusters. We enrolled women who were in their second or third trimester of pregnancy, aged at least 15 years, and who would remain in the catchment area for follow-up of 28 days post-partum. Newborn babies received clean dry cord care (control) or topical application of 10 mL of a 4% chlorhexidine solution once per day until 3 days after cord drop (intervention), according to cluster assignment. We used stratified, restricted randomisation to divide clusters into urban or two rural groups (located <40 km or ≥40 km to referral facility), and randomly assigned clusters (1:1) to use intervention (n=45) or control treatment (n=45). Sites, participants, and field monitors were aware of their study assignment. The primary outcomes were all-cause neonatal mortality within 28 days post-partum and all-cause neonatal mortality within 28 days post-partum among babies who survived the first 24 h of life. Analysis was by intention to treat. Neonatal mortality rate was compared with generalised estimating equations. This study is registered at ClinicalTrials.gov (NCT01241318). From Feb 15, 2011, to Jan 30, 2013, we screened 42 356 pregnant women and enrolled 39 679 women (mean 436·2 per cluster [SD 65·3]), who had 37 856 livebirths and 723 stillbirths; 63·8% of deliveries were facility-based. Of livebirths, 18 450 (99·7%) newborn babies in the chlorhexidine group and 19 308 (99·8%) newborn babies in the dry cord care group were followed up to day 28 or death. 16 660 (90·0%) infants in the chlorhexidine group had chlorhexidine applied within 24 h of birth. We found no significant difference in neonatal mortality rate between the chlorhexidine group (15·2 deaths per 1000 livebirths) and the dry cord care group (13·6 deaths per 1000 livebirths; risk ratio [RR] 1·12, 95% CI 0·88-1·44). Eliminating day 0 deaths yielded similar findings (RR 1·12, 95% CI 0·86-1·47). Despite substantial reductions previously reported in south Asia, chlorhexidine cord applications did not significantly reduce neonatal mortality rates in Zambia. Chlorhexidine cord applications do not seem to provide clear benefits for newborn babies in settings with predominantly facility-based deliveries and lower (<30 deaths per 1000 livebirths) neonatal mortality rates. Bill & Melinda Gates Foundation. Copyright © 2016 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY license. Published by Elsevier Ltd.. All rights reserved.
20 CFR Appendix 1 to Subpart P of... - Listing of Impairments
Code of Federal Regulations, 2010 CFR
2010-04-01
...), diastematomyelia, and tethered cord syndrome may also cause such abnormalities. In these cases, there may be gait..., particularly during the acute attack. It is important to differentiate the report of rotary vertigo from that...
Genetics Home Reference: Meckel syndrome
... when a structure called the neural tube, a layer of cells that ultimately develops into the brain and spinal cord, fails to close completely during the first few weeks of embryonic development. Meckel syndrome can also cause problems with ...
Yoshida, Aki; Sato, Toshiki; Akasaka, Toshihide
2002-01-01
A 65-year-old man had tetraplegia caused by a cervical spinal cord injury, and could only lie in bed with a respirator. On the 14 th day of hospitalization, a rash developed on his back. The eruption grew rapidly, and became a giant erythematous plaque with ulcer, pustules, and red papules. Direct KOH examination showed branching Aspergillus hyphae. A slide culture showed subglobose shaped vesicles with phialides. Based on these findings, the case was diagnosed as primary pyoderma-like aspergillosis caused by Aspergillus fumigatus. He was treated with bifonazole and sulfadiazine silver, and one month later no Aspergillus hyphae were observed either by direct KOH examination or by culture. The patient died about 2 months later, however, because of aggravation of his general condition. Careful observation is necessary for compromised or unmoving patients with pyoderma-like aspergillosis.
Sudden death in spondylo-meta-epiphyseal dysplasia, short limb-abnormal calcification type.
Dias, Cristina; Cairns, Robyn; Patel, Millan S
2009-01-01
The spondylo-meta-epiphyseal dysplasias are an expanding group of skeletal dysplasias with specific features differentiating each subtype. We review the precocious carpal mineralization, unique metacarpal shape, triangular distal phalanges and mushroom cloud-shaped proximal phalanges present at an early age in spondylo-meta-epiphyseal dysplasia, short limb-abnormal calcification type (SMED SL-AC) and report two patients with clinical and radiographic features consistent with SMED SL-AC, who died suddenly because of spinal cord compression. The patients presented are female siblings, providing further evidence for autosomal recessive inheritance. Cervical cord compression is found in half of reported patients and is the major cause of mortality. SMED SL-AC should be added to the list of genetic causes of sudden death. Radiological features in the hand may be used in the first few years of life to support an early diagnosis and thus allow for prevention of premature demise.
NASA Astrophysics Data System (ADS)
Flueck, Werner T.
2016-11-01
Aside of immediate impacts, the 2011 Puyehue-Cordón Caulle volcano (PCC) eruption also caused persisting chemical impacts. By 2012, toxicity resulted in overt dental fluorosis in deer, with bone fluoride increasing > 38-fold to 5175 ppm. Sheep, horses and cattle also succumbed to fluorosis. Due to eolian redeposition of tephra, exposure of ruminants continued, bone fluoride reached 10 396 ppm, and by 2014 skeletal fluorosis was found. Nonskeletal fluorosis resulted in reduced wool growth and major losses among periparturient cattle. Peculiarities of digestive processes make ruminants susceptible to fluoride-containing tephra, which averaged 548 ppm from PCC. Moreover, recent volcanic eruptions causing fluorosis could be aggravated by local iodine deficiency, which increases the incidence and harshness of fluorosis, and deficiency of selenium, which, among other things, also results in secondary deficiency of iodine. Notwithstanding, several measures are available to livestock producers to minimize chemical impacts of fluoride.
Cervical spondylosis anatomy: pathophysiology and biomechanics.
Shedid, Daniel; Benzel, Edward C
2007-01-01
Cervical spondylosis is the most common progressive disorder in the aging cervical spine. It results from the process of degeneration of the intervertebral discs and facet joints of the cervical spine. Biomechanically, the disc and the facets are the connecting structures between the vertebrae for the transmission of external forces. They also facilitate cervical spine mobility. Symptoms related to myelopathy and radiculopathy are caused by the formation of osteophytes, which compromise the diameter of the spinal canal. This compromise may also be partially developmental. The developmental process, together with the degenerative process, may cause mechanical pressure on the spinal cord at one or multiple levels. This pressure may produce direct neurological damage or ischemic changes and, thus, lead to spinal cord disturbances. A thorough understanding of the biomechanics, the pathology, the clinical presentation, the radiological evaluation, as well as the surgical indications of cervical spondylosis, is essential for the management of patients with cervical spondylosis.
Berger, Terry A
2016-12-02
It has been widely suggested that the outlet pressure be changed to maintain constant density ("isopycnic" conditions) when comparing the kinetic performance of different columns in supercritical fluid chromatography (SFC). However, at high flow rates, flow in the tubing is turbulent, causing large extra-column pressure drops that limit options for changing outlet pressure. Some of these pressure drops occur before and some after the column, obscuring the actual column inlet and outlet pressures. In this work, a 4.6×100mm, 1.8μm R,R-Whelk-O1 column was used with low dispersion LD (120μm) plumbing to generate sub-1min chiral separations. However, the optimum, or near optimum, flow rate was 5mL-min -1 , producing a system pressure of 580bar (with 40% methanol, outlet pressure 120bar). Both the flow rate and pump pressure required were near the limits of the instrument, and significantly exceeded the capability of many other SFC's. Extra-column pressure drops (ΔP ec ) were as high as 200bar, caused mostly by turbulent flow in the tubing. The ΔP ec increased by more than the square of the flow rate. Reynolds Numbers (Re) were calculated for tubing as a function of flow rate between 100 and 400bar and 5-20% methanol in CO 2 , and 40°-60°C. This represents the most extensive analysis of turbulence in tubing in the SFC literature. Flow in 120μm ID tubing was calculated to be laminar below 1.0mL-min -1 , mostly transitional up to 2.5mL-min -1 and virtually always turbulent at 3mL-min -1 and higher. Flow in 170μm tubing is turbulent at lower flows but generates half the ΔP ec due to the lower mobile phase linear velocity. The results suggest that, while sub-minute chromatograms are easily generated, 4.6mm columns are not very user friendly for use with sub-2μm packings. The high flow rates required just to reach optimum result in high ΔP ec generated by the tubing, causing uncertainty in the true column inlet, outlet, and average column pressure/density. When comparing kinetic performance of columns with different dimensions, the pressure drops in the tubing must be considered. Copyright © 2016 Elsevier B.V. All rights reserved.
St John, James A; Walkden, Heidi; Nazareth, Lynn; Beagley, Kenneth W; Ulett, Glen C; Batzloff, Michael R; Beacham, Ifor R; Ekberg, Jenny A K
2016-09-01
Infection with Burkholderia pseudomallei causes melioidosis, a disease with a high mortality rate (20% in Australia and 40% in Southeast Asia). Neurological melioidosis is particularly prevalent in northern Australian patients and involves brain stem infection, which can progress to the spinal cord; however, the route by which the bacteria invade the central nervous system (CNS) is unknown. We have previously demonstrated that B. pseudomallei can infect the olfactory and trigeminal nerves within the nasal cavity following intranasal inoculation. As the trigeminal nerve projects into the brain stem, we investigated whether the bacteria could continue along this nerve to penetrate the CNS. After intranasal inoculation of mice, B. pseudomallei caused low-level localized infection within the nasal cavity epithelium, prior to invasion of the trigeminal nerve in small numbers. B. pseudomallei rapidly invaded the trigeminal nerve and crossed the astrocytic barrier to enter the brain stem within 24 h and then rapidly progressed over 2,000 μm into the spinal cord. To rule out that the bacteria used a hematogenous route, we used a capsule-deficient mutant of B. pseudomallei that does not survive in the blood and found that it also entered the CNS via the trigeminal nerve. This suggests that the primary route of entry is via the nerves that innervate the nasal cavity. We found that actin-mediated motility could facilitate initial infection of the olfactory epithelium. Thus, we have demonstrated that B. pseudomallei can rapidly infect the brain and spinal cord via the trigeminal nerve branches that innervate the nasal cavity. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Rosenbluth, J.; Schiff, R.
2008-01-01
Antiglycolipid IgM antibodies are known to induce formation of ‘wide-spaced’ or ‘expanded’ myelin, a distinctive form of dysmylination characterized by a repeat period ~2X or 3X normal, seen also in diseases including multiple sclerosis. To determine whether an antibody directed against a myelin protein would cause equivalent pathology, we implanted O10 hybridoma cells into the spinal cord of adult or juvenile rats. O10 produces an IgM directed against PLP, the major protein of CNS myelin. Subsequent examination of the cords showed focal demyelination and remyelination. In addition, however, some juvenile cords, but none of the adults, displayed wide-spaced myelin with lamellae separated by an extracellular material comprised of elements consistent with IgM molecules in appearance. Wide spacing tended to involve the outer layers of the sheath and in some cases alternated with normally spaced lamellae. A feature not seen previously consists of multiple expanded myelin lamellae in one sector of a sheath continuous with normally spaced lamellae in another, resulting in variation in sheath thickness around the axonal circumference. This uneven distribution of wide-spaced lamellae is most simply explained based on incorporation of IgM molecules into immature sheaths during myelin formation and implies a model of CNS myelinogenesis more complex than simple spiraling. The periaxonal space never displays widening of this kind, but the interface with adjacent myelin sheaths or oligodendrocytes may. Thus, wide spacing appears to require that IgM molecules bridge between two PLP-containing membranes and does not reflect the mere presence of immunoglobulin within the extracellular space. PMID:18951490
Quality of life and the related factors in spouses of veterans with chronic spinal cord injury
2013-01-01
Background The quality of life (QOL) of caregivers of individuals with chronic spinal cord injuries may be affected by several factors. Moreover, this issue is yet to be documented fully in the literature. The purpose of this study was to evaluate the health related quality of life of spouses who act as primary caregivers of veterans with chronic spinal cord injuries in Iran. Methods The study consisted of 72 wives of 72 veterans who were categorized as spinal cord injured patients based on the American Spinal Injury Association (ASIA) classification. Health related quality of life was assessed by the Short Form (SF-36) Health Survey. Pearson's correlation was carried out to find any correlation between demographic variables with SF-36 dimensions. To find the effect of the factors like age, employment status, duration of care giving, education, presence or absence of knee osteoarthritis, and mechanical back pain on different domains of the SF-36 health survey, Multivariate analysis of variance (MANOVA) was used. Results The mean age of the participants was 44.7 years. According to the ASIA classification 88.9% and 11.1% of the veterans were paraplegic and tetraplegic respectively. Fifty percent of them had a complete injury (ASIA A) and 85% of the spouses were exclusive care givers. All of the SF-36 scores of the spouses were significantly lower than the normal population. Pearson's correlation demonstrated a negative significant correlation between both age and duration of caring with the PF domain. The number of children had a negative correlation with RE and VT. Conclusion The burden of caregiving can impact the QOL of caregivers and cause health problems. These problems can cause limitations for caregiver spouses and it can lead to a decrease in the quality of given care. PMID:23506336
Belderbos, Mirjam E.; Levy, Ofer; Stalpers, Femke; Kimpen, Jan L.; Meyaard, Linde; Bont, Louis
2012-01-01
Human neonates are highly susceptible to infection, which may be due in part to impaired innate immune function. Neonatal Toll-like receptor (TLR) responses are biased against the generation of pro-inflammatory/Th1-polarizing cytokines, yet the underlying mechanisms are incompletely defined. Here, we demonstrate that neonatal plasma polarizes TLR4-mediated cytokine production. When exposed to cord blood plasma, mononuclear cells (MCs) produced significantly lower TLR4-mediated IL-12p70 and higher IL-10 compared to MC exposed to adult plasma. Suppression by neonatal plasma of TLR4-mediated IL-12p70 production, but not induction of TLR4-mediated IL-10 production, was maintained up to the age of 1 month. Cord blood plasma conferred a similar pattern of MC cytokine responses to TLR3 and TLR8 agonists, demonstrating activity towards both MyD88-dependent and MyD88-independent agonists. The factor causing increased TLR4-mediated IL-10 production by cord blood plasma was heat-labile, lost after protein depletion and independent of lipoprotein binding protein (LBP) or soluble CD14 (sCD14). The factor causing inhibition of TLR4-mediated IL-12p70 production by cord blood plasma was resistant to heat inactivation or protein depletion and was independent of IL-10, vitamin D and prostaglandin E2. In conclusion, human neonatal plasma contains at least two distinct factors that suppress TLR4-mediated IL-12p70 production or induce IL-10 or production. Further identification of these factors will provide insight into the ontogeny of innate immune development and might identify novel targets for the prevention and treatment of neonatal infection. PMID:22442690
Walsh, Kevin M; Machado, Andre G; Krishnaney, Ajit A
2015-08-01
There is currently no consensus on appropriate perioperative management of patients with spinal cord stimulator implants. Magnetic resonance imaging (MRI) is considered safe under strict labeling conditions. Electrocautery is generally not recommended in these patients but sometimes used despite known risks. The aim was to discuss the perioperative evaluation and management of patients with spinal cord stimulator implants. A literature review, summary of device labeling, and editorial were performed, regarding the safety of spinal cord stimulator devices in the perioperative setting. A literature review was performed, and the labeling of each Food and Drug Administration (FDA)-approved spinal cord stimulation system was reviewed. The literature review was performed using PubMed and the FDA website (www.fda.gov). Magnetic resonance imaging safety recommendations vary between the models. Certain systems allow for MRI of the brain to be performed, and only one system allows for MRI of the body to be performed, both under strict labeling conditions. Before an MRI is performed, it is imperative to ascertain that the system is intact, without any lead breaks or low impedances, as these can result in heating of the spinal cord stimulation (SCS) and injury to the patient. Monopolar electrocautery is generally not recommended for patients with SCS; however, in some circumstances, it is used when deemed required by the surgeon. When cautery is necessary, bipolar electrocautery is recommended. Modern electrocautery units are to be used with caution as there remains a risk of thermal injury to the tissue in contact with the SCS. As with MRI, electrocautery usage in patients with SCS systems with suspected breaks or abnormal impedances is unsafe and may cause injury to the patient. Spinal cord stimulation is increasingly used in patients with pain of spinal origin, particularly to manage postlaminectomy syndrome. Knowledge of the safety concerns of SCS and appropriate perioperative evaluation and management of the SCS system can reduce risks and improve surgical planning. Copyright © 2015 Elsevier Inc. All rights reserved.
Zou, Min; Li, Shengguo; Klein, William H.; Xiang, Mengqing
2012-01-01
The sensory neurons of the dorsal root ganglia (DRG) must project accurately to their central targets to convey proprioceptive, nociceptive and mechanoreceptive information to the spinal cord. How these different sensory modalities and central connectivities are specified and coordinated still remains unclear. Given the expression of the POU homeodomain transcription factors Brn3a/Pou4f1 and Brn3b/Pou4f2 in DRG and spinal cord sensory neurons, we determined the subtype specification of DRG and spinal cord sensory neurons as well as DRG central projections in Brn3a and Brn3b single and double mutant mice. Inactivation of either or both genes causes no gross abnormalities in early spinal cord neurogenesis; however, in Brn3a single and Brn3a;Brn3b double mutant mice, sensory afferent axons from the DRG fail to form normal trajectories in the spinal cord. The TrkA+ afferents remain outside the dorsal horn and fail to extend into the spinal cord, while the projections of TrkC+ proprioceptive afferents into the ventral horn are also impaired. Moreover, Brn3a mutant DRGs are defective in sensory neuron specification, as marked by the excessive generation of TrkB+ and TrkC+ neurons as well as TrkA+/TrkB+ and TrkA+/TrkC+ double positive cells at early embryonic stages. At later stages in the mutant, TrkB+, TrkC+ and parvalbumin+ neurons diminish while there is a significant increase of CGRP+ and c-ret+ neurons. In addition, Brn3a mutant DRGs display a dramatic down-regulation of Runx1 expression, suggesting that the regulation of DRG sensory neuron specification by Brn3a is mediated in part by Runx1. Our results together demonstrate a critical role for Brn3a in generating DRG sensory neuron diversity and regulating sensory afferent projections to the central targets. PMID:22326227
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayaalti, Zeliha, E-mail: kayaalti@ankara.edu.tr; Kaya-Akyüzlü, Dilek; Söylemez, Esma
Human hemochromatosis protein (HFE), a major histocompatibility complex class I-like integral membrane protein, participates in the down regulation of intestinal iron absorption by binding to transferrin receptor (TR). HFE competes with transferrin-bound iron for the TR and thus reduces uptake of iron into cells. On the other hand, a lack of HFE increases the intestinal absorption of iron similarly to iron deficiency associated with increasing in absorption and deposition of lead. During pregnancy, placenta cannot prevent transfer lead to the fetus; even low-level lead poisoning causes neurodevelopmental toxicity in children. The aim of this study was to determine the associationmore » between the maternal HFE H63D single-nucleotide polymorphism and lead levels in placental tissue, maternal blood and umbilical cord bloods. The study population comprised 93 mother–placenta pairs. Venous blood from mother was collected to investigate lead levels and HFE polymorphism that was detected by standard PCR–RFLP technique. Cord bloods and placentas were collected for lead levels which were analyzed by dual atomic absorption spectrometer system. The HFE H63D genotype frequencies of mothers were found as 75.3% homozygote typical (HH), 23.6% heterozygote (HD) and 1.1% homozygote atypical (DD). Our study results showed that the placental tissue, umbilical cord and maternal blood lead levels of mothers with HD+DD genotypes were significantly higher than those with HH genotype (p<0.05). The present study indicated for the first time that mothers with H63D gene variants have higher lead levels of their newborn's placentas and umbilical cord bloods. - Highlights: • Mothers with H63D gene variants have higher lead levels of their newborn's umbilical cord blood. • Unborn child of women with HD+DD genotypes may be at increased risk of internal exposure to lead. • Maternal HFE status may have an effect on increased placenta, maternal and cord blood lead levels. • Maternal HFE status may have an effect on lead transfer from maternal to fetal circulation. • Placental, maternal and cord blood lead levels were not correlated with mothers' age.« less
The presence of contaminated sediments in aquatic environments results in several potential sources of ecological risk. These risks include the release of contaminants into the water column causing exposure to pelagic organisms. Possible adverse biological effects of this exposu...
Lein, E S; Shatz, C J
2000-02-15
The neurotrophin brain-derived neurotrophic factor (BDNF) has emerged as a candidate retrograde signaling molecule for geniculocortical axons during the formation of ocular dominance columns. Here we examined whether neuronal activity can regulate BDNF mRNA in eye-specific circuits in the developing cat visual system. Dark-rearing throughout the critical period for ocular dominance column formation decreases levels of BDNF mRNA within primary visual cortex, whereas short-term (2 d) binocular blockade of retinal activity with tetrodotoxin (TTX) downregulates BDNF mRNA within the lateral geniculate nucleus (LGN) and visual cortical areas. Brief (6 hr to 2 d) monocular TTX blockade during the critical period and also in adulthood causes downregulation in appropriate eye-specific laminae in the LGN and ocular dominance columns within primary visual cortex. Monocular TTX blockade at postnatal day 23 also downregulates BDNF mRNA in a periodic fashion, consistent with recent observations that ocular dominance columns can be detected at these early ages by physiological methods. In contrast, 10 d monocular TTX during the critical period does not cause a lasting decrease in BDNF mRNA expression in columns pertaining to the treated eye, consistent with the nearly complete shift in physiological response properties of cortical neurons in favor of the unmanipulated eye known to result from long-term monocular deprivation. These observations demonstrate that BDNF mRNA levels can provide an accurate "molecular readout" of the activity levels of cortical neurons and are consistent with a highly local action of BDNF in strengthening and maintaining active synapses during ocular dominance column formation.
[A robotic system for gait re-education in patients with an incomplete spinal cord injury].
Esclarín-De Ruz, A; Alcobendas-Maestro, M; Casado-López, R; Muñoz-Gonzalez, A; Florido-Sánchez, M A; González-Valdizán, E
A spinal cord injury involves the loss or alteration of motor patterns in walking, the recovery of which depends partly on the rearrangement of the preserved neural circuits. AIM. To evaluate the changes that take place in the gait of patients with incomplete spinal cord injuries who were treated with a robotic walking system in association with conventional therapy. The study conducted was an open-label, prospective, descriptive trial with statistical inference in patients with C2-L3 spinal cord injuries that were classified as degrees C and D according to the American Spinal Injury Association (ASIA) scale. The variables that were analysed on the first and the last day of the study were: number of walkers, 10-m gait test, the Walking Index for Spinal Cord Injury scale revision, technical aids, muscle balance in the lower limbs, locomotor subscale of the measure of functional independence, modified Ashworth scale for spasticity and the visual analogue scale for pain. At the end, data were recorded from the impression of change scale. The analysis was conducted by means of Student's t, chi squared and Pearson's correlation; p < or = 0.05. Forty-five patients, with a mean age of 44 +/- 14.3 years, finished the study; 76% were males, injury was caused by trauma in 58% of cases, and the time of progression was 139 +/- 70 days. Statistically significant increases were observed in the number of subjects capable of walking, walking speed, less need for technical aids, strength in the lower limbs and independence in activities of daily living. Treatment using the robotic system in association with conventional therapy improves walking capacity in patients with incomplete spinal cord injuries.
Amr, Sherif M.; Gouda, Ashraf; Koptan, Wael T.; Galal, Ahmad A.; Abdel-Fattah, Dina Sabry; Rashed, Laila A.; Atta, Hazem M.; Abdel-Aziz, Mohammad T.
2014-01-01
Objective To investigate the effect of bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells. Methods In 14 patients with chronic paraplegia caused by spinal cord injury, cord defects were grafted and stem cells injected into the whole construct and contained using a chitosan-laminin paste. Patients were evaluated using the International Standards for Classification of Spinal Cord Injuries. Results Chitosan disintegration leading to post-operative seroma formation was a complication. Motor level improved four levels in 2 cases and two levels in 12 cases. Sensory-level improved six levels in two cases, five levels in five cases, four levels in three cases, and three levels in four cases. A four-level neurological improvement was recorded in 2 cases and a two-level neurological improvement occurred in 12 cases. The American Spinal Impairment Association (ASIA) impairment scale improved from A to C in 12 cases and from A to B in 2 cases. Although motor power improvement was recorded in the abdominal muscles (2 grades), hip flexors (3 grades), hip adductors (3 grades), knee extensors (2–3 grades), ankle dorsiflexors (1–2 grades), long toe extensors (1–2 grades), and plantar flexors (0–2 grades), this improvement was too low to enable them to stand erect and hold their knees extended while walking unaided. Conclusion Mesenchymal stem cell-derived neural stem cell-like cell transplantation enhances recovery in chronic spinal cord injuries with defects bridged by sural nerve grafts combined with a chitosan-laminin scaffold. PMID:24090088
Titova, Olga E; Ayvazova, Elena A; Bichkaeva, Fatima A; Brooks, Samantha J; Chumakova, Galina N; Schiöth, Helgi B; Benedict, Christian
2012-10-28
Smoking during pregnancy has been shown to be detrimental for the developing fetus. The effects of active and passive maternal smoking on umbilical cord serum levels of vitamin A and vitamin E were examined. Secondary measures included anthropometric parameters in the newborn. Maternal and umbilical cord serum levels of vitamins A and E were measured at delivery. The mothers were assigned to three groups: non-smoking (n 12); passive smoking (n 13); active smoking (n 18). Based on multivariate linear regressions, active smoking during pregnancy was associated with increased umbilical cord serum levels of vitamin A and vitamin E. While enhanced circulating levels of vitamin A in cord blood were also found in non-smoking mothers exposed to tobacco smoke during pregnancy, those of vitamin E were not influenced. Further, an inverse association between smoking behaviour during pregnancy and birth length was observed, with shortest length in active smokers followed by passive smoking mothers. Active and passive maternal smoking behaviour during pregnancy increases the fetal demand for antioxidant compounds in order to counteract the oxidative burden by cigarette smoke. Against this background, the observed increase in umbilical cord serum levels of vitamins A and E may subserve antioxidative processes in response to tobacco smoke-induced oxidative stress. This would reduce the availability of vitamins A and E for fetal maturation, which is critical inasmuch as both compounds are indispensable for the developing fetus. However, due to the cross-sectional nature of our observation, this line of reasoning definitely requires validation in cause-effect experiments in the future.
Small GTPase R-Ras participates in neural tube formation in zebrafish embryonic spinal cord.
Ohata, Shinya; Uga, Hideko; Okamoto, Hitoshi; Katada, Toshiaki
2018-06-27
Ras related (R-Ras), a small GTPase, is involved in the maintenance of apico-basal polarity in neuroepithelial cells of the zebrafish hindbrain, axonal collapse in cultured murine hippocampal neurons, and maturation of blood vessels in adult mice. However, the role of R-Ras in neural tube formation remains unknown. Using antisense morpholino oligonucleotides (AMOs), we found that in the spinal cord of zebrafish embryos, the lumen was formed bilaterally in rras morphants, whereas it was formed at the midline in control embryos. As AMO can cause off-target effects, we generated rras mutant zebrafish lines using CRISPR/Cas9 technology. Although these rras mutant embryos did not have a bilateral lumen in the spinal cord, the following findings suggest that the phenotype is unlikely due to an off-target effect of rras AMO: 1) The rras morphant phenotype was rescued by an injection of AMO-resistant rras mRNA, and 2) a bilaterally segregated spinal cord was not observed in rras mutant embryos injected with rras AMO. The results suggest that the function of other ras family genes may be redundant in rras mutants. Previous research reported a bilaterally formed lumen in the spinal cord of zebrafish embryos with a mutation in a planar cell polarity (PCP) gene, van gogh-like 2 (vangl2). In the present study, in cultured cells, R-Ras was co-immunoprecipitated with Vangl2 but not with another PCP regulator, Pricke1. Interestingly, the interaction between R-Ras and Vangl2 was stronger in guanine-nucleotide free point mutants of R-Ras than in wild-type or constitutively active (GTP-bound) forms of R-Ras. R-Ras may regulate neural tube formation in cooperation with Vangl2 in the developing zebrafish spinal cord. Copyright © 2018 Elsevier Inc. All rights reserved.
Pecks, Ulrich; Wölter, Manja; Borchers, Christoph; Smith, Derek; Maass, Nicolai; Glocker, Michael; Rath, Werner
2013-04-01
Fetal umbilical cord HDL concentration is lower in IUGR neonates as compared to gestational age matched controls (CTRL). The causes by now are unknown. A full apolipoprotein analysis of cord blood might help in understanding the changes in lipid metabolism seen in IUGR. To characterize cord blood apolipoprotein profile of IUGR neonates. Serum of venous umbilical cord blood (15 IUGR vs. 15 CTRL) was analyzed by Multiple Reaction Monitoring (MRM). 15 different known apolipoproteins were profiled. HDL and LDL were measured by colorimetric methods in fetal cord blood and their corresponding mothers. Fetal HDL (p<0.0001), ApoC1 (p<0.0001), and ApoE (p=0.0001) levels were lower in IUGR as compared to CTRL. Fetal HDL levels were positive correlated to ApoE, ApoC1, and ApoA2 (r=0.79, r=0.74, r=0.56). Fetal LDL levels were positive correlated to ApoB, ApoE, ApoA2, and ApoC3 (r=0.74, r=0.67, r=0.57, r=0.55). Maternal LDL concentrations correlated positive to fetal ApoC1, ApoC2, and LCAT-concentration (r=0.54, r=0.52, r=0.52). The results underlines the relevance of ApoE in fetal development. Moreover, we speculate that maternal lipid profile has an impact on fetal lipid metabolisms as evidenced by the association of maternal LDL levels and fetal ApoC1, ApoC2, and LCAT concentrations. This observation requires further confirmation and is worth to be analyzed since it provides a mechanistic link for therapeutic options. Copyright © 2013. Published by Elsevier B.V.
Preventive Effect of Intrathecal Paracetamol on Spinal Cord Injury in Rats
Sahin, Murat; Sayar, Ilyas; Peker, Kemal; Gullu, Huriye; Yildiz, Huseyin
2014-01-01
Background: Ischemic injury of the spinal cord during the surgical repair of thoracoabdominal aortic aneurysms might lead to paraplegia. Although a number of different mechanisms have been proposed, the exact cause of paraplegia has remained unknown, hampering the development of effective pharmacologic or other strategies for prevention of this condition. A number of studies suggested that cyclooxygenases (COX) contribute to neural breakdown; thus, COX inhibitors might reduce injury. Objectives: We aimed to assess the preventive effect of intrathecal (IT) pretreatment with paracetamol on spinal cord injury in a rat model. Materials and Methods: This experimental study was performed in Ataturk University Animal Research Laboratory Center, Erzurum, Turkey. Adult male Wistar rats were randomly allocated to three experimental groups (n = 6) to receive IT physiologic saline (controls), 50 µg of paracetamol, or 100 µg paracetamol one hour before induction of spinal cord ischemia. Six other rats were considered as the sham group. For the assessment of ischemic injury, motor functions of the hind limbs and histopathologic changes of the lumbar spinal cord were evaluated. Additional 20 rats were divided into two equal groups for the second part of the study where the survival rates were recorded in controls and in animals receiving 100 µg of paracetamol during the 28-day observation period. Results: Pretreatment with 100 µg of paracetamol resulted in a significant improvement in motor functions and histopathologic findings (P < 0.05). Despite a higher rate of survival in 100 µg of paracetamol group (70%) at day 28, the difference was not statistically significant in comparison with controls. Conclusions: Our results suggest a protective effect of pretreatment with IT paracetamol on ischemic spinal cord injury during thoracolumbar aortic aneurysm surgery. PMID:25763224
Khaing, Zin Z; Geissler, Sydney A; Jiang, Shan; Milman, Brian D; Aguilar, Sandra V; Schmidt, Christine E; Schallert, Timothy
2012-02-10
Cervical spinal cord injury (cSCI) can cause devastating neurological deficits, including impairment or loss of upper limb and hand function. Recently there has been increasing interest in cervical spinal cord injury models because the majority of spinal cord injuries are at cervical levels. Here we examined spontaneous functional recovery of adult rats with either laminectomy or lateral hemisection of the cervical spinal cord at C3-C4. Behavioral tests were carried out, including the forelimb locomotor scale (FLS), a postural instability test (PIT), a pasta-handling test that has been used to assess forepaw digit function and latency to eat, forelimb use during vertical-lateral wall exploration in a cylindrical enclosure, and vibrissae-elicited forelimb placing tests. In addition, a forelimb step-alternation test was developed to assess functional recovery at 12 weeks post-injury. All tests detected cSCI-induced deficits relative to laminectomy. Interestingly, the severity of deficits in the forelimb step-alternation test was associated with more extensive spinal damage, greater impairment, and less recovery in the FLS and other tests. For the pasta-handling test we found that rats with a milder cervical injury (alternators) were more likely to use both forepaws together compared to rats with a more severe injury (non-alternators). In addition, using the PIT, we detected enhanced function of the good limb, suggesting that neural plasticity on the unaffected side of the spinal cord may have occurred to compensate for deficits in the impaired forelimb. These outcome measures should be useful for investigating neural events associated with cSCI, and for developing novel treatment strategies.
Role of Caspase-8 and Fas in Cell Death After Spinal Cord Injury
Sobrido-Cameán, Daniel; Barreiro-Iglesias, Antón
2018-01-01
Spinal cord injury (SCI) causes the death of neurons and glial cells due to the initial mechanical forces (i.e., primary injury) and through a cascade of secondary molecular events (e.g., inflammation or excitotoxicity) that exacerbate cell death. The loss of neurons and glial cells that are not replaced after the injury is one of the main causes of disability after SCI. Evidence accumulated in last decades has shown that the activation of apoptotic mechanisms is one of the factors causing the death of intrinsic spinal cord (SC) cells following SCI. Although this is not as clear for brain descending neurons, some studies have also shown that apoptosis can be activated in the brain following SCI. There are two main apoptotic pathways, the extrinsic and the intrinsic pathways. Activation of caspase-8 is an important step in the initiation of the extrinsic pathway. Studies in rodents have shown that caspase-8 is activated in SC glial cells and neurons and that the Fas receptor plays a key role in its activation following a traumatic SCI. Recent work in the lamprey model of SCI has also shown the retrograde activation of caspase-8 in brain descending neurons following SCI. Here, we review our current knowledge on the role of caspase-8 and the Fas pathway in cell death following SCI. We also provide a perspective for future work on this process, like the importance of studying the possible contribution of Fas/caspase-8 signaling in the degeneration of brain neurons after SCI in mammals. PMID:29666570
Radial distribution of the flow velocity, efficiency and concentration in a wide HPLC column
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farkas, T.; Sepaniak, M.J.; Guiochon, G.
1997-08-01
The use of optical fibers in a fluorescence-detection scheme permits the accurate determination of the radial distribution of the transit time, the column efficiency, and the analyte concentration at the exit of a chromatographic axial-compression column (50 mmID). The results obtained demonstrate that the column is not homogeneous, but suggest a nearly cylindrical distribution of the packing density. The average velocity close to the column wall is 7% lower than along its axis and the HETP 25% higher. The lack of homogeneity of the column packing is another source of band broadening not taken into account in chromatography so far.more » It causes the apparent HETP derived from the conventional elution chromatogram recorded on the bulk eluent to be larger than the local HETP and the band profile to be unsymmetrical with a slight tail reminiscent of kinetic tailing.« less
Kobiela Ketz, Ann; Byrnes, Kimberly R; Grunberg, Neil E; Kasper, Christine E; Osborne, Lisa; Pryor, Brian; Tosini, Nicholas L; Wu, Xingjia; Anders, Juanita J
2017-05-01
Neuropathic pain is common and debilitating with limited effective treatments. Macrophage/microglial activation along ascending somatosensory pathways following peripheral nerve injury facilitates neuropathic pain. However, polarization of macrophages/microglia in neuropathic pain is not well understood. Photobiomodulation treatment has been used to decrease neuropathic pain, has anti-inflammatory effects in spinal injury and wound healing models, and modulates microglial polarization in vitro. Our aim was to characterize macrophage/microglia response after peripheral nerve injury and modulate the response with photobiomodulation. Adult male Sprague-Dawley rats were randomly assigned to sham (N = 13), spared nerve injury (N = 13), or injury + photobiomodulation treatment groups (N = 7). Mechanical hypersensitivity was assessed with electronic von Frey. Photobiomodulation (980 nm) was applied to affected hind paw (output power 1 W, 20 s, 41cm above skin, power density 43.25 mW/cm 2 , dose 20 J), dorsal root ganglia (output power 4.5W, 19s, in skin contact, power density 43.25 mW/cm 2 , dose 85.5 J), and spinal cord regions (output power 1.5 W, 19s, in skin contact, power density 43.25 mW/cm 2 , dose 28.5 J) every other day from day 7-30 post-operatively. Immunohistochemistry characterized macrophage/microglial activation. Injured groups demonstrated mechanical hypersensitivity 1-30 days post-operatively. Photobiomodulation-treated animals began to recover after two treatments; at day 26, mechanical sensitivity reached baseline. Peripheral nerve injury caused region-specific macrophages/microglia activation along spinothalamic and dorsal-column medial lemniscus pathways. A pro-inflammatory microglial marker was expressed in the spinal cord of injured rats compared to photobiomodulation-treated and sham group. Photobiomodulation-treated dorsal root ganglion macrophages expressed anti-inflammatory markers. Photobiomodulation effectively reduced mechanical hypersensitivity, potentially through modulating macrophage/microglial activation to an anti-inflammatory phenotype. Published by Oxford University Press on behalf of the American Academy of Pain Medicine. 2016. This work is written by US Government employees and is in the public domain in the US.
Hetzel, Terence; Loeker, Denise; Teutenberg, Thorsten; Schmidt, Torsten C
2016-10-01
The efficiency of miniaturized liquid chromatography columns with inner diameters between 200 and 300 μm has been investigated using a dedicated micro-liquid chromatography system. Fully porous, core-shell and monolithic commercially available stationary phases were compared applying van Deemter and kinetic plot analysis. The sub-2 μm fully porous as well as the 2.7 μm core-shell particle packed columns showed superior efficiency and similar values for the minimum reduced plate heights (2.56-2.69) before correction for extra-column contribution compared to normal-bore columns. Moreover, the influence of extra-column contribution was investigated to demonstrate the difference between apparent and intrinsic efficiency by replacing the column by a zero dead volume union to determine the band spreading caused by the system. It was demonstrated that 72% of the intrinsic efficiency could be reached. The results of the kinetic plot analysis indicate the superior performance of the sub-2 μm fully porous particle packed column for ultra-fast liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fiaschi, Pietro; Severino, Mariasavina; Ravegnani, Giuseppe Marcello; Piatelli, Gianluca; Consales, Alessandro; Accogli, Andrea; Capra, Valeria; Cama, Armando; Pavanello, Marco
2016-06-01
Spontaneous or idiopathic intramedullary bleeding is a very rare event in pediatric patients. This diagnosis requires an extended clinical, laboratory, and radiologic work-up to rule out all potential causes of hematomyelia. However, children may present with hematomyelia or spinal cord injury without radiographic abnormality even after a minor trauma. A 15-month-old girl presented with a 24-hour history of progressive neurologic deficits. A trivial trauma had occurred a few days before the clinical onset. Head computed tomography scan and craniospinal magnetic resonance imaging revealed an isolated hemorrhagic central medullary lesion extending from the obex to C3 level. No underlying causes of intramedullary bleeding were identified. In the absence of obvious vascular abnormalities, the patient underwent an urgent occipitocervical decompression with hematoma evacuation. Postoperatively, the patient's motor symptoms rapidly resolved, and she was discharged with cervical collar immobilization. We discuss the differential diagnosis of intramedullary bleeding in children, focusing on the diagnostic protocol and therapeutic options in this age group. Copyright © 2016 Elsevier Inc. All rights reserved.
Abegunde, Dele; Orobaton, Nosa; Beal, Katherine; Bassi, Amos; Bamidele, Moyosola; Akomolafe, Toyin; Ohanyido, Francis; Umar-Farouk, Olayinka; Danladi, Saba'atu
2017-11-09
Neonatal infections caused by unsafe umbilical cord practices account for the majority of neonatal deaths in Nigeria. We examined the trends in umbilical cord care practices between 2012 and 2015 that coincided with the introduction of chlorhexidine digluconate 7.1% gel in Bauchi and Sokoto States. We obtained data from three rounds of lot quality assurance samples (LQAS) surveys conducted in 2012, 2013 and 2015. Households were randomly sampled in each round that totaled 1140 and 1311 households in Bauchi and Sokoto States respectively. Mothers responded to questions on cord care practices in the last delivery. Coverage estimates of practice indicators were obtained for each survey period. Local Government Area (LGA) estimates for each indicator were obtained with α ≤ 5%, and β ≤20% statistical errors and aggregated to State-level estimates with finite sample correction relative to the LGA population. Over 75 and 80% of deliveries in Bauchi and Sokoto States respectively took place at home. The proportion of deliveries in public facilities reported by mothers ranged from 19% in 2012 to 22.4% in 2015 in Bauchi State and from 12.9 to 13.2% in 2015 in Sokoto State. Approximately 50% of deliveries in Bauchi and more than 80% in Sokoto States were assisted by traditional birth attendants (TBAs) or relatives and friends, with little change in the survey periods. In Bauchi and in Sokoto States, over 75% and over 80% of newborn cords were cut with razor blades underscoring the pervasive role of the TBAs in the immediate postpartum period. Use of chlorhexidine digluconate 7.1% gel for cord dressing significantly increased to the highest level in 2015 in both States. Health workers who attended deliveries in health facilities switched from methylated spirit to chlorhexidine. There were no observable changes in cord care practices among the TBAs. Unsafe umbilical cord care practices remained prevalent in Bauchi and Sokoto States of Nigeria, although a recent introduction of chlorhexidine digluconate 7.1% gel positively changed the cord care practices toward safer practices among public health providers. TBAs, friends and relatives played the strongest immediate postpartum roles and mostly retained the unsafe cord care practices such as use of ash, cow dung and hot compress. We recommend that existing TBAs are retrained and refocused to forge stronger links between communities and the primary health centers to increase mothers' access to skilled birth attendants.
Neurophysiological detection of impending spinal cord injury during scoliosis surgery.
Schwartz, Daniel M; Auerbach, Joshua D; Dormans, John P; Flynn, John; Drummond, Denis S; Bowe, J Andrew; Laufer, Samuel; Shah, Suken A; Bowen, J Richard; Pizzutillo, Peter D; Jones, Kristofer J; Drummond, Denis S
2007-11-01
Despite the many reports attesting to the efficacy of intraoperative somatosensory evoked potential monitoring in reducing the prevalence of iatrogenic spinal cord injury during corrective scoliosis surgery, these afferent neurophysiological signals can provide only indirect evidence of injury to the motor tracts since they monitor posterior column function. Early reports on the use of transcranial electric motor evoked potentials to monitor the corticospinal motor tracts directly suggested that the method holds great promise for improving detection of emerging spinal cord injury. We sought to compare the efficacy of these two methods of monitoring to detect impending iatrogenic neural injury during scoliosis surgery. We reviewed the intraoperative neurophysiological monitoring records of 1121 consecutive patients (834 female and 287 male) with adolescent idiopathic scoliosis (mean age, 13.9 years) treated between 2000 and 2004 at four pediatric spine centers. The same group of experienced surgical neurophysiologists monitored spinal cord function in all patients with use of a standardized multimodality technique with the patient under total intravenous anesthesia. A relevant neurophysiological change (an alert) was defined as a reduction in amplitude (unilateral or bilateral) of at least 50% for somatosensory evoked potentials and at least 65% for transcranial electric motor evoked potentials compared with baseline. Thirty-eight (3.4%) of the 1121 patients had recordings that met the criteria for a relevant signal change (i.e., an alert). Of those thirty-eight patients, seventeen showed suppression of the amplitude of transcranial electric motor evoked potentials in excess of 65% without any evidence of changes in somatosensory evoked potentials. In nine of the thirty-eight patients, the signal change was related to hypotension and was corrected with augmentation of the blood pressure. The remaining twenty-nine patients had an alert that was related directly to a surgical maneuver. Three alerts occurred following segmental vessel clamping, and the remaining twenty-six were related to posterior instrumentation and correction. Nine (35%) of these twenty-six patients with an instrumentation-related alert, or 0.8% of the cohort, awoke with a transient motor and/or sensory deficit. Seven of these nine patients presented solely with a motor deficit, which was detected by intraoperative monitoring of transcranial electric motor evoked potentials in all cases, and two patients had only sensory symptoms. Somatosensory evoked potential monitoring failed to identify a motor deficit in four of the seven patients with a confirmed motor deficit. Furthermore, when changes in somatosensory evoked potentials occurred, they lagged behind the changes in transcranial electric motor evoked potentials by an average of approximately five minutes. With an appropriate response to the alert, the motor or sensory deficit resolved in all nine patients within one to ninety days. This study underscores the advantage of monitoring the spinal cord motor tracts directly by recording transcranial electric motor evoked potentials in addition to somatosensory evoked potentials. Transcranial electric motor evoked potentials are exquisitely sensitive to altered spinal cord blood flow due to either hypotension or a vascular insult. Moreover, changes in transcranial electric motor evoked potentials are detected earlier than are changes in somatosensory evoked potentials, thereby facilitating more rapid identification of impending spinal cord injury.
Graboyes, Evan M; Bradley, Joseph P; Meyers, Bryan F; Nussenbaum, Brian
2011-11-01
The primary objective of this study was to evaluate the effectiveness and safety of injection laryngoplasty using a temporary injectable agent in the acute setting for patients with unilateral vocal cord paralysis following thoracic surgical procedures. Retrospective consecutive case series in an academic institution. Inclusion criteria included patients acutely treated with injection laryngoplasty from January 1, 2006, to March 31, 2010, for a unilateral vocal cord paralysis that occurred after a thoracic surgical procedure (N = 20). All patients were injected with Radiesse Voice Gel using microlaryngoscopy technique. The mean time to vocal cord injection from the time of thoracic surgery was 4.5 days. There was one operative-related complication of intraoperative bile reflux that caused a pneumonitis. Ninety percent of patients were recommended for strict nothing by mouth prior to injection. Of these, 94% were allowed an oral diet following injection, and 67% tolerated a regular diet. None of the patients required subsequent procedures for aspiration or dysphagia, and 25% required further intervention after discharge for persistent dysphonia. Patients with a known nerve transection had a higher rate of dysphonia requiring further surgical procedures than those who did not have a known nerve transection. Acute treatment of thoracic surgery-related unilateral vocal cord paralysis with injection laryngoplasty appears safe and effective at preventing postoperative aspiration pneumonia and improves swallowing function to allow resumption of an oral diet. A single injection is often the only required treatment. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.
Antinone, Sarah E; Ghadge, Ghanashyam D; Ostrow, Lyle W; Roos, Raymond P; Green, William N
2017-01-25
Previously, we found that human Cu, Zn-superoxide dismutase (SOD1) is S-acylated (palmitoylated) in vitro and in amyotrophic lateral sclerosis (ALS) mouse models, and that S-acylation increased for ALS-causing SOD1 mutants relative to wild type. Here, we use the acyl resin-assisted capture (acyl-RAC) assay to demonstrate S-acylation of SOD1 in human post-mortem spinal cord homogenates from ALS and non-ALS subjects. Acyl-RAC further revealed that endogenous copper chaperone for SOD1 (CCS) is S-acylated in both human and mouse spinal cords, and in vitro in HEK293 cells. SOD1 and CCS formed a highly stable heterodimer in human spinal cord homogenates that was resistant to dissociation by boiling, denaturants, or reducing agents and was not observed in vitro unless both SOD1 and CCS were overexpressed. Cysteine mutations that attenuate SOD1 maturation prevented the SOD1-CCS heterodimer formation. The degree of S-acylation was highest for SOD1-CCS heterodimers, intermediate for CCS monomers, and lowest for SOD1 monomers. Given that S-acylation facilitates anchoring of soluble proteins to cell membranes, our findings suggest that S-acylation and membrane localization may play an important role in CCS-mediated SOD1 maturation. Furthermore, the highly stable S-acylated SOD1-CCS heterodimer may serve as a long-lived maturation intermediate in human spinal cord.
Antinone, Sarah E.; Ghadge, Ghanashyam D.; Ostrow, Lyle W.; Roos, Raymond P.; Green, William N.
2017-01-01
Previously, we found that human Cu, Zn-superoxide dismutase (SOD1) is S-acylated (palmitoylated) in vitro and in amyotrophic lateral sclerosis (ALS) mouse models, and that S-acylation increased for ALS-causing SOD1 mutants relative to wild type. Here, we use the acyl resin-assisted capture (acyl-RAC) assay to demonstrate S-acylation of SOD1 in human post-mortem spinal cord homogenates from ALS and non-ALS subjects. Acyl-RAC further revealed that endogenous copper chaperone for SOD1 (CCS) is S-acylated in both human and mouse spinal cords, and in vitro in HEK293 cells. SOD1 and CCS formed a highly stable heterodimer in human spinal cord homogenates that was resistant to dissociation by boiling, denaturants, or reducing agents and was not observed in vitro unless both SOD1 and CCS were overexpressed. Cysteine mutations that attenuate SOD1 maturation prevented the SOD1-CCS heterodimer formation. The degree of S-acylation was highest for SOD1-CCS heterodimers, intermediate for CCS monomers, and lowest for SOD1 monomers. Given that S-acylation facilitates anchoring of soluble proteins to cell membranes, our findings suggest that S-acylation and membrane localization may play an important role in CCS-mediated SOD1 maturation. Furthermore, the highly stable S-acylated SOD1-CCS heterodimer may serve as a long-lived maturation intermediate in human spinal cord. PMID:28120938
Advances in the management of infertility in men with spinal cord injury
Ibrahim, Emad; Brackett, Nancy L; Lynne, Charles M
2016-01-01
Couples with a spinal cord injured male partner require assisted ejaculation techniques to collect semen that can then be further used in various assisted reproductive technology methods to achieve a pregnancy. The majority of men sustaining a spinal cord injury regardless of the cause or the level of injury cannot ejaculate during sexual intercourse. Only a small minority can ejaculate by masturbation. Penile vibratory stimulation and electroejaculation are the two most common methods used to retrieve sperm. Other techniques such as prostatic massage and the adjunct application of other medications can be used, but the results are inconsistent. Surgical sperm retrieval should be considered as a last resort if all other methods fail. Special attention must be paid to patients with T6 and rostral levels of injury due to the risk of autonomic dysreflexia resulting from stimulation below the level of injury. Bladder preparation should be performed before stimulation if retrograde ejaculation is anticipated. Erectile dysfunction is ubiquitous in the spinal cord injured population but is usually easily managed and does not pose a barrier to semen retrieval in these men. Semen analysis parameters of men with spinal cord injury are unique for this population regardless of the method of retrieval, generally presenting as normal sperm concentration but abnormally low sperm motility and viability. When sperm retrieval is desired in this population, emphasis should be placed on initially trying the simple methods of penile vibratory stimulation or electroejaculation before resorting to more advanced and invasive surgical procedures. PMID:27048781
Sudden post-traumatic sciatica caused by a thoracic spinal meningioma.
Mariniello, Giuseppe; Malacario, Francesca; Dones, Flavia; Severino, Rocco; Ugga, Lorenzo; Russo, Camilla; Elefante, Andrea; Maiuri, Francesco
2016-10-01
Spinal meningiomas usually present with slowly progressive symptoms of cord and root compression, while a sudden clinical onset is very rare. A 35-year-old previously symptom-free woman presented sudden right sciatica and weakness of her right leg following a fall with impact to her left foot. A neurological examination showed paresis of the right quadriceps, tibial and sural muscles, increased bilateral knee and ankle reflexes and positive Babinski sign. Magnetic resonance imaging (MRI) revealed the presence of a spinal T11 meningioma in the left postero-lateral compartment of the spinal canal; at this level, the spinal cord was displaced to the contralateral side with the conus in the normal position. At surgery, a meningioma with dural attachment of the left postero-lateral dural surface was removed. The intervention resulted in rapid remission of both pain and neurological deficits. Spinal meningiomas may exceptionally present with sudden pain and neurological deficits as result of tumour bleeding or post-traumatic injury of the already compressed nervous structures, both in normal patients and in those with conus displacement or tethered cord. In this case, the traumatic impact of the left foot was transmitted to the spine, resulting in stretching of the already compressed cord and of the contralateral lombosacral roots. This case suggests that low thoracic cord compression should be suspected in patients with post-traumatic radicular leg pain with normal lumbar spine MRI. © The Author(s) 2016.
Tajiri, Naoki; Lee, Jea Young; Acosta, Sandra; Sanberg, Paul R; Borlongan, Cesar V
2016-01-01
Blood-brain barrier (BBB) permeabilizers, such as mannitol, can facilitate peripherally delivered stem cells to exert therapeutic benefits on the stroke brain. Although this BBB permeation-aided stem cell therapy has been demonstrated in the acute stage of stroke, such BBB permeation in the chronic stage of the disease remains to be examined. Adult Sprague-Dawley rats initially received sham surgery or experimental stroke via the 1-h middle cerebral artery occlusion (MCAo) model. At 1 month after the MCAo surgery, stroke animals were randomly assigned to receive human umbilical cord stem cells only (2 million viable cells), mannitol only (1.1 mol/L mannitol at 4°C), combined human umbilical cord stem cells (200,000 viable cells) and mannitol (1.1 mol/L mannitol at 4°C), and vehicle (phosphate-buffered saline) only. Stroke animals that received human umbilical cord blood cells alone or combined human umbilical cord stem cells and mannitol exhibited significantly improved motor performance and significantly better brain cell survival in the peri-infarct area compared to stroke animals that received vehicle or mannitol alone, with mannitol treatment reducing the stem cell dose necessary to afford functional outcomes. Enhanced neurogenesis in the subventricular zone accompanied the combined treatment of human umbilical cord stem cells and mannitol. We showed that BBB permeation facilitates the therapeutic effects of a low dose of peripherally transplanted stem cells to effectively cause functional improvement and increase neurogenesis in chronic stroke.
Zhu, Guiqin; Dong, Yanbin; He, Xueming; Zhao, Ping; Yang, Aixing; Zhou, Rubing; Ma, Jianhua; Xie, Zhong; Song, Xue-Jun
2016-01-01
Radiotherapy is one of the major clinical approaches for treatment of bone cancer pain. Activation of cAMP-PKA signaling pathway plays important roles in bone cancer pain. Here, we examined the effects of radiotherapy on bone cancer pain and accompanying abnormal activation of cAMP-PKA signaling. Female Sprague-Dawley rats were used and received tumor cell implantation (TCI) in rat tibia (TCI cancer pain model). Some of the rats that previously received TCI treatment were treated with X-ray radiation (radiotherapy). Thermal hyperalgesia and mechanical allodynia were measured and used for evaluating level of pain caused by TCI treatment. PKA mRNA expression in dorsal root ganglion (DRG) was detected by RT-PCR. Concentrations of cAMP, IL-1β, and TNF-α as well as PKA activity in DRG and the spinal cord were measured by ELISA. The results showed that radiotherapy significantly suppressed TCI-induced thermal hyperalgesia and mechanical allodynia. The level of PKA mRNA in DRG, cAMP concentration and PKA activity in DRG and in the spinal cord, and concentrations of IL-1β and TNF-α in the spinal cord were significantly reduced by radiotherapy. In addition, radiotherapy also reduced TCI-induced bone loss. These findings suggest that radiotherapy may suppress bone cancer pain through inhibition of activation of cAMP-PKA signaling pathway in DRG and the spinal cord.