Sample records for column densities log

  1. Constraining the H2 column density distribution at z ˜ 3 from composite DLA spectra

    NASA Astrophysics Data System (ADS)

    Balashev, S. A.; Noterdaeme, P.

    2018-07-01

    We present the detection of the average H2 absorption signal in the overall population of neutral gas absorption systems at z˜ 3 using composite absorption spectra built from the Sloan Digital Sky Survey-III damped Lyman α catalogue. We present a new technique to directly measure the H2 column density distribution function f_H_2(N) from the average H2 absorption signal. Assuming a power-law column density distribution, we obtain a slope β = -1.29 ± 0.06(stat) ± 0.10 (sys) and an incidence rate of strong H2 absorptions [with N(H2) ≳ 1018 cm-2] to be 4.0 ± 0.5(stat) ± 1.0 (sys) per cent in H I absorption systems with N(H I) ≥1020 cm-2. Assuming the same inflexion point where f_H_2(N) steepens as at z = 0, we estimate that the cosmological density of H2 in the column density range log N(H_2) (cm^{-2})= 18{-}22 is {˜ } 15 per cent of the total. We find one order of magnitude higher H2 incident rate in a sub-sample of extremely strong damped Lyman α absorption systems (DLAs) [log N(H I) (cm^{-2}) ≥ 21.7], which, together with the derived shape of f_H_2(N), suggests that the typical H I-H2 transition column density in DLAs is log N(H)(cm-2) ≳ 22.3 in agreement with theoretical expectations for the average (low) metallicity of DLAs at high-z.

  2. Constraining the H2 column density distribution at z˜3 from composite DLA spectra

    NASA Astrophysics Data System (ADS)

    Balashev, S. A.; Noterdaeme, P.

    2018-04-01

    We present the detection of the average H2 absorption signal in the overall population of neutral gas absorption systems at z ˜ 3 using composite absorption spectra built from the Sloan Digital Sky Survey-III damped Lyman-α catalogue. We present a new technique to directly measure the H2 column density distribution function f_H_2(N) from the average H2 absorption signal. Assuming a power-law column density distribution, we obtain a slope β = -1.29 ± 0.06(stat) ± 0.10 (sys) and an incidence rate of strong H2 absorptions (with N(H2) ≳ 1018 cm-2) to be 4.0 ± 0.5(stat) ± 1.0 (sys) % in H I absorption systems with N(H I)≥1020 cm-2. Assuming the same inflexion point where f_H_2(N) steepens as at z = 0, we estimate that the cosmological density of H2 in the column density range log N(H_2) (cm^{-2})= 18-22 is ˜15% of the total. We find one order of magnitude higher H2 incident rate in a sub-sample of extremely strong DLAs (log N(H I) (cm^{-2}) ≥ 21.7), which, together with the the derived shape of f_H_2(N), suggests that the typical H I-H2 transition column density in DLAs is log N(H)(cm-2) ≳ 22.3 in agreement with theoretical expectations for the average (low) metallicity of DLAs at high-z.

  3. Deuterium Abundance Toward G191-B2B: Results from the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission

    NASA Technical Reports Server (NTRS)

    Lemoine, M.; Vidal-Madjar, A.; Hebrard, G.; Desert, J.-M.; Ferlet, R.; LecavelierdesEtangs, A.; Howk, J. C.; Andre, M.; Blair, W. P.; Friedman, S. D.; hide

    2002-01-01

    High-resolution spectra of the hot white dwarf G191-B2B covering the wavelength region 905-1187A were obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). This data was used in conjunction with existing high-resolution Hubble Space Telescope STIS observations to evaluate the total H(sub I), D(sub I), O(sub I) and N(sub I) column densities along the line of sight. Previous determinations of N(D(sub I)) based upon GHRS (Goddard High Resolution Spectrograph) and STIS (Space Telescope Imaging Spectrograph) observations were controversial due to the saturated strength of the D(sub I) Lyman alpha line. In the present analysis the column density of D(sub I) has been measured using only the unsaturated Lyman beta and Lyman gamma lines observed by FUSE. A careful inspection of possible systematic uncertainties tied to the modeling of the stellar continuum or to the uncertainties in the FUSE instrumental character series has been performed. The column densities derived are: log N(D(sub I)) = 13.40+/-0.07, log N(O(sub I)) = 14.86+/-0.07, and log N(N(sub I)) = 13.87+/-0.07 quoted with 2sigma, uncertainties. The measurement of the H(sub I) column density by profile fitting of the Lyman alpha line has been found to be unsecure. If additional weak hot interstellar components are added to the three detected clouds along the line of sight, the H(sub I)) column density can be reduced quite significantly, even though the signal-to-noise ratio and spectral resolution at Lyman alpha are excellent. The new estimate of N(H(sub I)) toward G191-B2B reads: logN(H (sub I)) = 18.18+/-0.18 (2sigma uncertainty), so that the average (D/H) ratio on the line of sight is: (D/H)= 1.66(+0.9/-0.6) x 10(exp -5) (2sigma uncertainty).

  4. Deuterium and Oxygen Toward Feige 110: Results from the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission

    NASA Technical Reports Server (NTRS)

    Friedman, S. D.; Howk, J. C.; Chayer, P.; Tripp, T. M.; Hebrard, G.; Andre, M.; Oliveira, C.; Jenkins, E. B.; Moos, H. W.; Oegerle, William R.

    2001-01-01

    We present measurements of the column densities of interstellar D I and O I made with the Far Ultraviolet Spectroscopic Explorer (FUSE), and of H I made with the International Ultraviolet Explorer (IUE) toward the sdOB star Feige 110 [(l,b) = (74.09 deg., - 59.07 deg.); d = 179(sup +265, sub -67) pc; Z = -154(sup +57, Sub -227 pc). Our determination of the D I column density made use of curve of growth fitting and profile fitting analyses, while our O I column density determination used only curve of growth techniques. The H I column density was estimated by fitting the damping wings of the interstellar Ly(lpha) profile. We find log N(D I) = 15.47 +/- 0.06, log N(O I) = 16.73 +/- 0.10, and log N(H I) = 20.14(sup +0.13, sub -0.20) (all errors 2(sigma)). This implies D/H = (2.14 +/- 0.82) x 10(esp -5), D/O = (5.50(sup + 1.64, sub -133)) x 10(exp -2), and O/H = (3.89 +/- 1.67) x 10(exp -4). Taken with the FUSE results reported in companion papers and previous measurements of the local interstellar medium, this suggests the possibility of spatial variability in D/H for sight lines exceeding approx. 100 pc. This result may constrain models which characterize the mixing time and length scales of material in the local interstellar medium.

  5. Damped and sub-damped Lyman-α absorbers in z > 4 QSOs

    NASA Astrophysics Data System (ADS)

    Guimarães, R.; Petitjean, P.; de Carvalho, R. R.; Djorgovski, S. G.; Noterdaeme, P.; Castro, S.; Poppe, P. C. Da R.; Aghaee, A.

    2009-12-01

    We present the results of a survey of damped (DLA, log~N(H i)>20.3) and sub-damped Lyman-α systems (19.5 2.55 along the lines-of-sight to 77 quasars with emission redshifts in the range 419.5 were detected of which 40 systems are damped Lyman-α systems for an absorption length of Δ X = 378. About half of the lines of sight of this homogeneous survey have never been investigated for DLAs. We study the evolution with redshift of the cosmological density of the neutral gas and find, consistent with previous studies at similar resolution, that ΩDLA, H_I decreases at z>3.5. The overall cosmological evolution of Ω_HI shows a peak around this redshift. The H i column density distribution for log N(H i)≥20.3 is fitted, consistent with previous surveys, with a single power-law of index α ˜ -1.8 ±0.25. This power-law overpredicts data at the high-end and a second, much steeper, power-law (or a gamma function) is needed. There is a flattening of the function at lower H i column densities with an index of α ˜ -1.4 for the column density range log N(H i)=19.5-21. The fraction of H i mass in sub-DLAs is of the order of 30%. The H i column density distribution does not evolve strongly from z˜ 2.5 to z˜ 4.5. The observations reported here were obtained with the W. M. Keck Observatory, which is operated by the California Association for Research in Astronomy, a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. Tables 1, 2 and Appendices are only available in electronic form at http://www.aanda.org

  6. Multi-wavelength campaign on NGC 7469. II. Column densities and variability in the X-ray spectrum

    NASA Astrophysics Data System (ADS)

    Peretz, U.; Behar, E.; Kriss, G. A.; Kaastra, J.; Arav, N.; Bianchi, S.; Branduardi-Raymont, G.; Cappi, M.; Costantini, E.; De Marco, B.; Di Gesu, L.; Ebrero, J.; Kaspi, S.; Mehdipour, M.; Middei, R.; Paltani, S.; Petrucci, P. O.; Ponti, G.; Ursini, F.

    2018-01-01

    We have investigated the ionic column density variability of the ionized outflows associated with NGC 7469, to estimate their location and power. This could allow a better understanding of galactic feedback of AGNs to their host galaxies. Analysis of seven XMM-Newton grating observations from 2015 is reported. We used an individual-ion spectral fitting approach, and compared different epochs to accurately determine variability on timescales of years, months, and days. We find no significant column density variability in a ten-year period implying that the outflow is far from the ionizing source. The implied lower bound on the ionization equilibrium time, ten years, constrains the lower limit on the distance to be at least 12 pc, and up to 31 pc, much less but consistent with the 1 kpc wide starburst ring. The ionization distribution of column density is reconstructed from measured column densities, nicely matching results of two 2004 observations, with one large high ionization parameter (ξ) component at 2 < log ξ< 3.5, and one at 0.5 < log ξ< 1 in cgs units. The strong dependence of the expression for kinetic power, ∝ 1 /ξ, hampers tight constraints on the feedback mechanism of outflows with a large range in ionization parameter, which is often observed and indicates a non-conical outflow. The kinetic power of the outflow is estimated here to be within 0.4 and 60% of the Eddington luminosity, depending on the ion used to estimate ξ.

  7. Relationship between the column density distribution and evolutionary class of molecular clouds as viewed by ATLASGAL

    NASA Astrophysics Data System (ADS)

    Abreu-Vicente, J.; Kainulainen, J.; Stutz, A.; Henning, Th.; Beuther, H.

    2015-09-01

    We present the first study of the relationship between the column density distribution of molecular clouds within nearby Galactic spiral arms and their evolutionary status as measured from their stellar content. We analyze a sample of 195 molecular clouds located at distances below 5.5 kpc, identified from the ATLASGAL 870 μm data. We define three evolutionary classes within this sample: starless clumps, star-forming clouds with associated young stellar objects, and clouds associated with H ii regions. We find that the N(H2) probability density functions (N-PDFs) of these three classes of objects are clearly different: the N-PDFs of starless clumps are narrowest and close to log-normal in shape, while star-forming clouds and H ii regions exhibit a power-law shape over a wide range of column densities and log-normal-like components only at low column densities. We use the N-PDFs to estimate the evolutionary time-scales of the three classes of objects based on a simple analytic model from literature. Finally, we show that the integral of the N-PDFs, the dense gas mass fraction, depends on the total mass of the regions as measured by ATLASGAL: more massive clouds contain greater relative amounts of dense gas across all evolutionary classes. Appendices are available in electronic form at http://www.aanda.org

  8. The shapes of column density PDFs. The importance of the last closed contour

    NASA Astrophysics Data System (ADS)

    Alves, João; Lombardi, Marco; Lada, Charles J.

    2017-10-01

    The probability distribution function of column density (PDF) has become the tool of choice for cloud structure analysis and star formation studies. Its simplicity is attractive, and the PDF could offer access to cloud physical parameters otherwise difficult to measure, but there has been some confusion in the literature on the definition of its completeness limit and shape at the low column density end. In this letter we use the natural definition of the completeness limit of a column density PDF, the last closed column density contour inside a surveyed region, and apply it to a set of large-scale maps of nearby molecular clouds. We conclude that there is no observational evidence for log-normal PDFs in these objects. We find that all studied molecular clouds have PDFs well described by power laws, including the diffuse cloud Polaris. Our results call for a new physical interpretation of the shape of the column density PDFs. We find that the slope of a cloud PDF is invariant to distance but not to the spatial arrangement of cloud material, and as such it is still a useful tool for investigating cloud structure.

  9. 2MASS wide-field extinction maps. V. Corona Australis

    NASA Astrophysics Data System (ADS)

    Alves, João; Lombardi, Marco; Lada, Charles J.

    2014-05-01

    We present a near-infrared extinction map of a large region (~870 deg2) covering the isolated Corona Australis complex of molecular clouds. We reach a 1-σ error of 0.02 mag in the K-band extinction with a resolution of 3 arcmin over the entire map. We find that the Corona Australis cloud is about three times as large as revealed by previous CO and dust emission surveys. The cloud consists of a 45 pc long complex of filamentary structure from the well known star forming Western-end (the head, N ≥ 1023 cm-2) to the diffuse Eastern-end (the tail, N ≤ 1021 cm-2). Remarkably, about two thirds of the complex both in size and mass lie beneath AV ~ 1 mag. We find that the probability density function (PDF) of the cloud cannot be described by a single log-normal function. Similar to prior studies, we found a significant excess at high column densities, but a log-normal + power-law tail fit does not work well at low column densities. We show that at low column densities near the peak of the observed PDF, both the amplitude and shape of the PDF are dominated by noise in the extinction measurements making it impractical to derive the intrinsic cloud PDF below AK < 0.15 mag. Above AK ~ 0.15 mag, essentially the molecular component of the cloud, the PDF appears to be best described by a power-law with index -3, but could also described as the tail of a broad and relatively low amplitude, log-normal PDF that peaks at very low column densities. FITS files of the extinction maps are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/565/A18

  10. A logNHI = 22.6 Damped Lyα Absorber in a Dark Gamma-Ray Burst: The Environment of GRB 050401

    NASA Astrophysics Data System (ADS)

    Watson, D.; Fynbo, J. P. U.; Ledoux, C.; Vreeswijk, P.; Hjorth, J.; Smette, A.; Andersen, A. C.; Aoki, K.; Augusteijn, T.; Beardmore, A. P.; Bersier, D.; Castro Cerón, J. M.; D'Avanzo, P.; Diaz-Fraile, D.; Gorosabel, J.; Hirst, P.; Jakobsson, P.; Jensen, B. L.; Kawai, N.; Kosugi, G.; Laursen, P.; Levan, A.; Masegosa, J.; Näränen, J.; Page, K. L.; Pedersen, K.; Pozanenko, A.; Reeves, J. N.; Rumyantsev, V.; Shahbaz, T.; Sharapov, D.; Sollerman, J.; Starling, R. L. C.; Tanvir, N.; Torstensson, K.; Wiersema, K.

    2006-12-01

    The optical afterglow spectrum of GRB 050401 (at z=2.8992+/-0.0004) shows the presence of a damped Lyα absorber (DLA), with logNHI=22.6+/-0.3. This is the highest column density ever observed in a DLA and is about 5 times larger than the strongest DLA detected so far in any QSO spectrum. From the optical spectrum, we also find a very large Zn column density, implying an abundance of [Zn/H]=-1.0+/-0.4. These large columns are supported by the early X-ray spectrum from Swift XRT, which shows a column density (in excess of Galactic) of logNH=22.21+0.06-0.08 assuming solar abundances (at z=2.9). The comparison of this X-ray column density, which is dominated by absorption due to α-chain elements, and the H I column density derived from the Lyα absorption line allows us to derive a metallicity for the absorbing matter of [α/H]=-0.4+/-0.3. The optical spectrum is reddened and can be well reproduced with a power law with SMC extinction, where AV=0.62+/-0.06. But the total optical extinction can also be constrained independent of the shape of the extinction curve: from the optical to X-ray spectral energy distribution, we find 0.5<~AV<~4.5. However, even this upper limit, independent of the shape of the extinction curve, is still well below the dust column that is inferred from the X-ray column density, i.e., AV=9.1+1.4-1.5. This discrepancy might be explained by a small dust content with high metallicity (low dust-to-metals ratio). ``Gray'' extinction cannot explain the discrepancy, since we are comparing the metallicity to a measurement of the total extinction (without reference to the reddening). Little dust with high metallicity may be produced by sublimation of dust grains or may naturally exist in systems younger than a few hundred megayears. Based in part on observations made at the European Southern Observatory, Paranal, Chile under program 075.D-0270, with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, with the Wide Field Camera (WFCAM) on the United Kingdom Infrared Telescope, which is operated by the Joint Astronomy Centre on behalf of the UK Particle Physics and Astronomy Research Council, and on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  11. Understanding star formation in molecular clouds. II. Signatures of gravitational collapse of IRDCs

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Csengeri, T.; Klessen, R. S.; Tremblin, P.; Ossenkopf, V.; Peretto, N.; Simon, R.; Bontemps, S.; Federrath, C.

    2015-06-01

    We analyse column density and temperature maps derived from Herschel dust continuum observations of a sample of prominent, massive infrared dark clouds (IRDCs) i.e. G11.11-0.12, G18.82-0.28, G28.37+0.07, and G28.53-0.25. We disentangle the velocity structure of the clouds using 13CO 1→0 and 12CO 3→2 data, showing that these IRDCs are the densest regions in massive giant molecular clouds (GMCs) and not isolated features. The probability distribution function (PDF) of column densities for all clouds have a power-law distribution over all (high) column densities, regardless of the evolutionary stage of the cloud: G11.11-0.12, G18.82-0.28, and G28.37+0.07 contain (proto)-stars, while G28.53-0.25 shows no signs of star formation. This is in contrast to the purely log-normal PDFs reported for near and/or mid-IR extinction maps. We only find a log-normal distribution for lower column densities, if we perform PDFs of the column density maps of the whole GMC in which the IRDCs are embedded. By comparing the PDF slope and the radial column density profile of three of our clouds, we attribute the power law to the effect of large-scale gravitational collapse and to local free-fall collapse of pre- and protostellar cores for the highest column densities. A significant impact on the cloud properties from radiative feedback is unlikely because the clouds are mostly devoid of star formation. Independent from the PDF analysis, we find infall signatures in the spectral profiles of 12CO for G28.37+0.07 and G11.11-0.12, supporting the scenario of gravitational collapse. Our results are in line with earlier interpretations that see massive IRDCs as the densest regions within GMCs, which may be the progenitors of massive stars or clusters. At least some of the IRDCs are probably the same features as ridges (high column density regions with N> 1023 cm-2 over small areas), which were defined for nearby IR-bright GMCs. Because IRDCs are only confined to the densest (gravity dominated) cloud regions, the PDF constructed from this kind of a clipped image does not represent the (turbulence dominated) low column density regime of the cloud. The column density maps (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A29

  12. Feeding and Feedback in the Powerful Radio Galaxy 3C 120

    NASA Technical Reports Server (NTRS)

    Tombesi, F.; Mushotzky, R. F.; Reynolds, C. S.; Kallman, T.; Reeves, J. N.; Braito, V.; Ueda, Y.; Leutenegger, M. A.; Williams, B. J.; Stawarz, L.; hide

    2017-01-01

    We present a spectral analysis of a 200-kilosecond observation of the broad-line radio galaxy 3C 120, performed with the high-energy transmission grating spectrometer on board the Chandra X-Ray Observatory. We find (i) a neutral absorption component intrinsic to the source with a column density of log N (sub H) equals 20.67 plus or minus 0.05 square centimeters; (ii) no evidence for a warm absorber (WA) with an upper limit on the column density of just log N (sub H) less than 19.7 square centimeters, assuming the typical ionization parameter log xi approximately equal to 2.5 ergs per second per centimeter; the WA may instead be replaced by (iii) a hot emitting gas with a temperature kT approximately equal to 0.7 kiloelectronvolts observed as soft X-ray emission from ionized Fe L-shell lines, which may originate from a kiloparsec-scale shocked bubble inflated by the active galactic nucleus (AGN) wind or jet with a shock velocity of about 1000 kilometers per second determined by the emission line width; (iv) a neutral Fe K alpha line and accompanying emission lines indicative of a Compton-thick cold reflector with a low reflection fraction R approximately equal to 0.2, suggesting a large opening angle of the torus; (v) a highly ionized Fe XXV emission feature indicative of photoionized gas with an ionization parameter log xi equal to 3.75 (sup plus 0.38) (sub minus 0.27) ergs per second per centimeter and a column density of log N (sub H) greater than 22 square centimeters localized within approximately 2 pc from the X-ray source; and (vi) possible signatures of a highly ionized disk wind. Together with previous evidence for intense molecular line emission, these results indicate that 3C 120 is likely a late-state merger undergoing strong AGN feedback.

  13. CO-dark molecular gas at high redshift: very large H2 content and high pressure in a low-metallicity damped Lyman alpha system

    NASA Astrophysics Data System (ADS)

    Balashev, S. A.; Noterdaeme, P.; Rahmani, H.; Klimenko, V. V.; Ledoux, C.; Petitjean, P.; Srianand, R.; Ivanchik, A. V.; Varshalovich, D. A.

    2017-09-01

    We present a detailed analysis of an H2-rich, extremely strong intervening damped Ly α absorption system (DLA) at zabs = 2.786 towards the quasar J 0843+0221, observed with the Ultraviolet and Visual Echelle Spectrograph on the Very Large Telescope. The total column density of molecular (resp. atomic) hydrogen is log N(H2) = 21.21 ± 0.02 (resp. log N(H I) = 21.82 ± 0.11), making it to be the first case in quasar absorption line studies with H2 column density as high as what is seen in 13CO-selected clouds in the Milky Way. We find that this system has one of the lowest metallicity detected among H2-bearing DLAs, with [Zn/H] = -1.52^{+0.08}_{-0.10}. This can be the reason for the marked differences compared to systems with similar H2 column densities in the local Universe: (I) the kinetic temperature, T ˜ 120 K, derived from the J = 0, 1 H2 rotational levels is at least twice higher than expected; (II) there is little dust extinction with AV < 0.1; (III) no CO molecules are detected, putting a constraint on the XCO factor XCO > 2 × 1023 cm-2/(km s-1 K), in the very low metallicity gas. Low CO and high H2 contents indicate that this system represents 'CO-dark/faint' gas. We investigate the physical conditions in the H2-bearing gas using the fine-structure levels of C I, C II, Si II and the rotational levels of HD and H2. We find the number density to be about n ˜ 260-380 cm-3, implying a high thermal pressure of 3-5 × 104 cm-3 K. We further identify a trend of increasing pressure with increasing total hydrogen column density. This independently supports the suggestion that extremely strong DLAs (with log N(H) ˜22) probe high-z galaxies at low impact parameters.

  14. A new estimation of HD/2H2 at high redshift using the spectrum of the quasar J 2123-0050

    NASA Astrophysics Data System (ADS)

    Klimenko, V. V.; Balashev, S. A.; Ivanchik, A. V.; Varshalovich, D. A.

    2015-12-01

    We present a new analysis of the quasar spectrum J 2123-0050 obtained using VLT/UVES. The H2/HD absorption system at z = 2.059 was analysed. This system consists of two subsystems with zA = 2.05933 and zB = 2.05955. The HD lines have been detected only in subsystem A with the column density of log N = 13.87 ± 0.06. We have determined the column density of H2 in this subsystem, log N = 17.93 ± 0.01, which is about three times larger than estimation derived early from analyses of quasar spectrum obtained using KECK/HIRES [1]. The derived ratio HD/2H2 = (4.28 ± 0.60) × 10-5 is the largest in quasar spectra, nevertheless it coincides with the primordial deuterium abundance within 2σ error. Additionally, we have found some evidence in the partial covering effect for the H2 system.

  15. Ca II and Na I absorption in the QSO S4 0248 + 430 due to an intervening galaxy

    NASA Technical Reports Server (NTRS)

    Womble, Donna S.; Junkkarinen, Vesa T.; Cohen, Ross D.; Burbidge, E. Margaret

    1990-01-01

    Observations of the QSO S4 0248 + 430 and a nearby anonymous galaxy are presented. Two absorption components are found in both Ca II H and K and Na I D1 and D2 at z(a) = 0.0515, 0.0523. Column densities of log N(Ca II) = 13.29, 13.50, and log N(Na I) = 13.79, 14.18 are found for z(a) = 0.0515, 0.0523 absorption systems, respectively. The column density ratios imply considerable calcium depletion and disk-type absorbing gas. At least one and possibly both absorption components are produced by high-velocity gas. A broadband image of the field shows an asymmetrical armlike feature or possible tidal tail covering and extending past the position of the QSO. The presence of this extended feature and the apparent difference between the absorption velocities and galaxy rotation velocity suggest that the absorbing gas is not ordinary disk gas, but rather is a result of tidal disruption.

  16. First detection of hydrogen in the β Pictoris gas disk

    NASA Astrophysics Data System (ADS)

    Wilson, P. A.; Lecavelier des Etangs, A.; Vidal-Madjar, A.; Bourrier, V.; Hébrard, G.; Kiefer, F.; Beust, H.; Ferlet, R.; Lagrange, A.-M.

    2017-03-01

    The young and nearby star β Pictoris (β Pic) is surrounded by a debris disk composed of dust and gas known to host a myriad evaporating exocomets, planetesimals and at least one planet. At an edge-on inclination, as seen from Earth, this system is ideal for debris disk studies providing an excellent opportunity to use absorption spectroscopy to study the planet forming environment. Using the Cosmic Origins Spectrograph (COS) instrument on the Hubble Space Telescope (HST) we observe the most abundant element in the disk, hydrogen, through the H I Lyman α (Ly-α) line. We present a new technique to decrease the contamination of the Ly-α line by geocoronal airglow in COS spectra. This Airglow Virtual Motion (AVM) technique allows us to shift the Ly-α line of the astrophysical target away from the contaminating airglow emission revealing more of the astrophysical line profile. This new AVM technique, together with subtraction of an airglow emission map, allows us to analyse the shape of the β Pic Ly-α emission line profile and from it, calculate the column density of neutral hydrogen surrounding β Pic. The column density of hydrogen in the β Pic stable gas disk at the stellar radial velocity is measured to be log (NH/ 1 cm2) ≪ 18.5. The Ly-α emission line profile is found to be asymmetric and we propose that this is caused by H I falling in towards the star with a bulk radial velocity of 41 ± 6 km s-1 relative to β Pic and a column density of log (NH/ 1 cm2) = 18.6 ± 0.1. The high column density of hydrogen relative to the hydrogen content of CI chondrite meteorites indicates that the bulk of the hydrogen gas does not come from the dust in the disk. This column density reveals a hydrogen abundance much lower than solar, which excludes the possibility that the detected hydrogen could be a remnant of the protoplanetary disk or gas expelled by the star. We hypothesise that the hydrogen gas observed falling towards the star arises from the dissociation of water originating from evaporating exocomets.

  17. Learning Logs in the Science Classroom: The Literacy Advantage

    ERIC Educational Resources Information Center

    Steenson, Cheryl

    2006-01-01

    In this article, the author discusses one of the most functional forms of writing to learn, the two-column learning logs. Two-column learning logs are based on the premise that collecting information and processing information are two very different aspects of learning. Two-column logs allow students to connect the facts and theories of science to…

  18. Comparison of formation and fluid-column logs in a heterogeneous basalt aquifer

    USGS Publications Warehouse

    Paillet, F.L.; Williams, J.H.; Oki, D.S.; Knutson, K.D.

    2002-01-01

    Deep observation boreholes in the vicinity of active production wells in Honolulu, Hawaii, exhibit the anomalous condition that fluid-column electrical conductivity logs and apparent profiles of pore-water electrical conductivity derived from induction conductivity logs are nearly identical if a formation factor of 12.5 is assumed. This condition is documented in three boreholes where fluid-column logs clearly indicate the presence of strong borehole flow induced by withdrawal from partially penetrating water-supply wells. This result appears to contradict the basic principles of conductivity-log interpretation. Flow conditions in one of these boreholes was investigated in detail by obtaining flow profiles under two water production conditions using the electromagnetic flowmeter. The flow-log interpretation demonstrates that the fluid-column log resembles the induction log because the amount of inflow to the borehole increases systematically upward through the transition zone between deeper salt water and shallower fresh water. This condition allows the properties of the fluid column to approximate the properties of water entering the borehole as soon as the upflow stream encounters that producing zone. Because this condition occurs in all three boreholes investigated, the similarity of induction and fluid-column logs is probably not a coincidence, and may relate to aquifer response under the influence of pumping from production wells.

  19. Comparison of formation and fluid-column logs in a heterogeneous basalt aquifer.

    PubMed

    Paillet, F L; Williams, J H; Oki, D S; Knutson, K D

    2002-01-01

    Deep observation boreholes in the vicinity of active production wells in Honolulu, Hawaii, exhibit the anomalous condition that fluid-column electrical conductivity logs and apparent profiles of pore-water electrical conductivity derived from induction conductivity logs are nearly identical if a formation factor of 12.5 is assumed. This condition is documented in three boreholes where fluid-column logs clearly indicate the presence of strong borehole flow induced by withdrawal from partially penetrating water-supply wells. This result appears to contradict the basic principles of conductivity-log interpretation. Flow conditions in one of these boreholes was investigated in detail by obtaining flow profiles under two water production conditions using the electromagnetic flowmeter. The flow-log interpretation demonstrates that the fluid-column log resembles the induction log because the amount of inflow to the borehole increases systematically upward through the transition zone between deeper salt water and shallower fresh water. This condition allows the properties of the fluid column to approximate the properties of water entering the borehole as soon as the upflow stream encounters that producing zone. Because this condition occurs in all three boreholes investigated, the similarity of induction and fluid-column logs is probably not a coincidence, and may relate to aquifer response under the influence of pumping from production wells.

  20. Non-detection of HC11N towards TMC-1: constraining the chemistry of large carbon-chain molecules

    NASA Astrophysics Data System (ADS)

    Loomis, Ryan A.; Shingledecker, Christopher N.; Langston, Glen; McGuire, Brett A.; Dollhopf, Niklaus M.; Burkhardt, Andrew M.; Corby, Joanna; Booth, Shawn T.; Carroll, P. Brandon; Turner, Barry; Remijan, Anthony J.

    2016-12-01

    Bell et al. reported the first detection of the cyanopolyyne HC11N towards the cold dark cloud TMC-1; no subsequent detections have been reported towards any source. Additional observations of cyanopolyynes and other carbon-chain molecules towards TMC-1 have shown a log-linear trend between molecule size and column density, and in an effort to further explore the underlying chemical processes driving this trend, we have analysed Green Bank Telescope observations of HC9N and HC11N towards TMC-1. Although we find an HC9N column density consistent with previous values, HC11N is not detected and we derive an upper limit column density significantly below that reported in Bell et al. Using a state-of-the-art chemical model, we have investigated possible explanations of non-linearity in the column density trend. Despite updating the chemical model to better account for ion-dipole interactions, we are not able to explain the non-detection of HC11N, and we interpret this as evidence of previously unknown carbon-chain chemistry. We propose that cyclization reactions may be responsible for the depleted HC11N abundance, and that products of these cyclization reactions should be investigated as candidate interstellar molecules.

  1. Surveying the H I Content of the Galactic Halo via Lyman Series Absorption

    NASA Astrophysics Data System (ADS)

    Fox, Andrew

    The halo of the Milky Way is home to a population of gaseous high-velocity clouds (HVCs) that trace the exchange of matter between the Galaxy and its surroundings. HVCs have been studied extensively via H I 21 cm emission and UV metal-line absorption. Here we propose a third, complementary approach for studying HVCs: surveying them in UV Lyman series H I absorption using all AGN spectra in the FarUltraviolet Spectroscopic Explorer (FUSE) archive. This H I survey will constitute a metal-independent view of the baryons in the Galactic halo at a level over 1000 times more sensitive than 21 cm surveys, and it can be conducted with archival data alone. 67 AGN are available in the FUSE archives with suitable properties (S/N>4 at 977 A), and the data are reduced and ready for analysis. With these data, we will calculate HVC sky covering fractions in H I absorption and conduct HVC metallicity measurements in sightlines with UV metal absorption in HST/COS or HST/STIS spectra. We will calculate the Galactic H I column density distribution function (CDDF), the incidence of H I clouds per unit column density that encodes underlying density and ionization variations and is sensitive to the escaping ionization radiation field. The CDDF has been measured at high redshifts over eight orders of magnitude of H I column density via quasar-absorption line experiments. However, the Galactic H I CDDF has until now only been constrained at high H I column density where HVCs can be seen in 21cm emission. Our detailed work plan will involve identifying and modeling HVC absorption in ten Lyman series lines from Ly gamma 972 to Ly mu 917 in each sight line in the FUSE sample. This will constrain the H I CDDF in the column density range log N(H I) 14 to 18. By combining with the existing H I CDDF in 21 cm HVCs in the range log N(H I) 18 to 21 from the all-sky GASS survey, we will produce a global Galactic CDDF complete over seven orders of magnitude, providing key new information on the distribution of diffuse gas in the Galactic halo. This will allow us to place the Milky Way s halo in the context of those of external galaxies, and to identify the galactic contribution from bound gas in halos to the extragalactic CDDF.

  2. The effect of ISM absorption on stellar activity measurements and its relevance for exoplanet studies

    NASA Astrophysics Data System (ADS)

    Fossati, L.; Marcelja, S. E.; Staab, D.; Cubillos, P. E.; France, K.; Haswell, C. A.; Ingrassia, S.; Jenkins, J. S.; Koskinen, T.; Lanza, A. F.; Redfield, S.; Youngblood, A.; Pelzmann, G.

    2017-05-01

    Past ultraviolet and optical observations of stars hosting close-in Jupiter-mass planets have shown that some of these stars present an anomalously low chromospheric activity, significantly below the basal level. For the hot Jupiter planet host WASP-13, observations have shown that the apparent lack of activity is possibly caused by absorption from the intervening interstellar medium (ISM). Inspired by this result, we study the effect of ISM absorption on activity measurements (S and log R 'HK indices) for main-sequence late-type stars. To this end, we employ synthetic stellar photospheric spectra combined with varying amounts of chromospheric emission and ISM absorption. We present the effect of ISM absorption on activity measurements by varying several instrumental (spectral resolution), stellar (projected rotational velocity, effective temperature, and chromospheric emission flux), and ISM parameters (relative velocity between stellar and ISM Ca II lines, broadening b-parameter, and Ca II column density). We find that for relative velocities between the stellar and ISM lines smaller than 30-40 km s-1 and for ISM Ca II column densities log NCaII ⪆ 12, the ISM absorption has a significant influence on activity measurements. Direct measurements and three dimensional maps of the Galactic ISM absorption indicate that an ISM Ca II column density of log NCaII = 12 is typically reached by a distance of about 100 pc along most sight lines. In particular, for a Sun-like star lying at a distance greater than 100 pc, we expect a depression (bias) in the log R'HK value larger than 0.05-0.1 dex, about the same size as the typical measurement and calibration uncertainties on this parameter. This work shows that the bias introduced by ISM absorption must always be considered when measuring activity for stars lying beyond 100 pc. We also consider the effect of multiple ISM absorption components. We discuss the relevance of this result for exoplanet studies and revise the latest results on stellar activity versus planet surface gravity correlation. We finally describe methods with which it would be possible to account for ISM absorption in activity measurements and provide a code to roughly estimate the magnitude of the bias. Correcting for the ISM absorption bias may allow one to identify the origin of the anomaly in the activity measured for some planet-hosting stars.

  3. SWIFT BAT Survey of AGN

    NASA Technical Reports Server (NTRS)

    Tueller, J.; Mushotzky, R. F.; Barthelmy, S.; Cannizzo, J. K.; Gehrels, N.; Markwardt, C. B.; Skinner, G. K.; Winter, L. M.

    2008-01-01

    We present the results1 of the analysis of the first 9 months of data of the Swift BAT survey of AGN in the 14-195 keV band. Using archival X-ray data or follow-up Swift XRT observations, we have identified 129 (103 AGN) of 130 objects detected at [b] > 15deg and with significance > 4.8-delta. One source remains unidentified. These same X-ray data have allowed measurement of the X-ray properties of the objects. We fit a power law to the logN - log S distribution, and find the slope to be 1.42+/-0.14. Characterizing the differential luminosity function data as a broken power law, we find a break luminosity logL*(ergs/s)= 43.85+/-0.26. We obtain a mean photon index 1.98 in the 14-195 keV band, with an rms spread of 0.27. Integration of our luminosity function gives a local volume density of AGN above 10(exp 41) erg/s of 2.4x10(exp -3) Mpc(sup -3), which is about 10% of the total luminous local galaxy density above M* = -19.75. We have obtained X-ray spectra from the literature and from Swift XRT follow-up observations. These show that the distribution of log nH is essentially flat from nH = 10(exp 20)/sq cm to 10(exp 24)/sq cm, with 50% of the objects having column densities of less than 10(exp 22)/sq cm. BAT Seyfert galaxies have a median redshift of 0.03, a maximum log luminosity of 45.1, and approximately half have log nH > 22.

  4. Snow, Firn and Ice Heterogeneity within Larsen C Ice Shelf Revealed by Borehole Optical-televiewing

    NASA Astrophysics Data System (ADS)

    Hubbard, B. P.; Ashmore, D.; Luckman, A. J.; Kulessa, B.; Bevan, S. L.; Booth, A.; Kuipers Munneke, P.; O'Leary, M.; Sevestre, H.

    2016-12-01

    The north-western sector of Larsen C Ice Shelf (LCIS), Antarctica, hosts intermittent surface ponds resulting from intense melting, largely driven by warm föhn winds. The fate of such surface melt water is largely controlled by the shelf's firn structure, which also dictates shelf density (widely used to reconstruct ice shelf thickness from altimetric data) and preconditioning to hydrofracture. Here, we report a suite of five 90 m long optical-televiewer (OPTV) borehole logs from the northern and central regions of LCIS recorded in spring 2014 and 2015. For each OPTV log we reconstruct vertical variations in material density via an empirical OPTV log-ice core calibration, and apply a thresholding technique to estimate refrozen ice content within the firn column. These data are combined to define five material facies present within this sector of LCIS. The firn/ice column is anomalously dense at all five sites, having an overall mean depth-averaged density of 873 +/-32 kg m-3. In terms of spatial variability, our findings generally support previous estimates of firn air content fields and implied infiltration ice content. However, they also highlight finer-resolution complexity of ice shelf structure. For example, the most dense ice, with the lowest equivalent firn air content, is not located within the most westerly inlets, where firn-driven melting and ponding are most active, but some tens of km down-flow of these areas. We interpret this effect in terms of the inheritance nearer the grounding line of relatively low-density glacial ice (e.g., 52 m thick with a density of 852 +/-21 kg m-3 in northernmost Cabinet Inlet) advected from inland. This inherited ice forms one of five facies identified across the study region. These are, extending broadly downwards into the shelf, and with different representation at each site: local accumulation (F1); local accumulation hosting substantial infiltration ice, i.e. influenced by intense melt but insufficient to form surface ponds (F2); massive refrozen pond ice (F3); ice composed of both metamorphosed host ice and infiltration ice, the origin of which is difficult to determine due to the facies being located at depth within our logs (F4); and glacial ice inherited from up-flow (F5).

  5. Agnostic stacking of intergalactic doublet absorption: measuring the Ne VIII population

    NASA Astrophysics Data System (ADS)

    Frank, Stephan; Pieri, Matthew M.; Mathur, Smita; Danforth, Charles W.; Shull, J. Michael

    2018-05-01

    We present a blind search for doublet intergalactic metal absorption with a method dubbed `agnostic stacking'. Using a forward-modelling framework, we combine this with direct detections in the literature to measure the overall metal population. We apply this novel approach to the search for Ne VIII absorption in a set of 26 high-quality COS spectra. We probe to an unprecedented low limit of log N>12.3 at 0.47≤z ≤1.34 over a path-length Δz = 7.36. This method selects apparent absorption without requiring knowledge of its source. Stacking this mixed population dilutes doublet features in composite spectra in a deterministic manner, allowing us to measure the proportion corresponding to Ne VIII absorption. We stack potential Ne VIII absorption in two regimes: absorption too weak to be significant in direct line studies (12.3 < log N < 13.7), and strong absorbers (log N > 13.7). We do not detect Ne VIII absorption in either regime. Combining our measurements with direct detections, we find that the Ne VIII population is reproduced with a power-law column density distribution function with slope β = -1.86 ^{+0.18 }_{ -0.26} and normalization log f_{13.7} = -13.99 ^{+0.20 }_{ -0.23}, leading to an incidence rate of strong Ne VIII absorbers dn/dz =1.38 ^{+0.97 }_{ -0.82}. We infer a cosmic mass density for Ne VIII gas with 12.3 < log N < 15.0 of Ω _{{{Ne {VIII}}}} = 2.2 ^{+1.6 }_{ _-1.2} × 10^{-8}, a value significantly lower that than predicted by recent simulations. We translate this density into an estimate of the baryon density Ωb ≈ 1.8 × 10-3, constituting 4 per cent of the total baryonic mass.

  6. Discovery of a transparent sightline at ρ ≲ 20 kpc from an interacting pair of galaxies

    NASA Astrophysics Data System (ADS)

    Johnson, Sean D.; Chen, Hsiao-Wen; Mulchaey, John S.; Tripp, Todd M.; Prochaska, J. Xavier; Werk, Jessica K.

    2014-03-01

    We report the discovery of a transparent sightline at projected distances of ρ ≲ 20 kpc to an interacting pair of mature galaxies at z = 0.12. The sightline of the UV-bright quasar PG 1522+101 at zem = 1.328 passes at ρ = 11.5 kpc from the higher mass galaxy (M* = 1010.6 M⊙) and ρ = 20.4 kpc from the lower mass one (M* = 1010.0 M⊙). The two galaxies are separated by 9 kpc in projected distance and 30 km s-1 in line-of-sight velocity. Deep optical images reveal tidal features indicative of close interactions. Despite the small projected distances, the quasar sightline shows little absorption associated with the galaxy pair with a total H I column density no greater than log N({H I})/cm^{-2}=13.65. This limiting H I column density is already two orders of magnitude less than what is expected from previous halo gas studies. In addition, we detect no heavy-element absorption features associated with the galaxy pair with 3σ limits of log N({Mg II})/cm^{-2} < 12.2 and log N({O VI})/cm^{-2} < 13.7. The probability of seeing such little absorption in a sightline passing at a small projected distance from two non-interacting galaxies is 0.2 per cent. The absence of strong absorbers near the close galaxy pair suggests that the cool gas reservoirs of the galaxies have been significantly depleted by the galaxy interaction. These observations therefore underscore the potential impact of galaxy interactions on the gaseous haloes around galaxies.

  7. The Binary Central Star of the Planetary Nebula A35

    NASA Astrophysics Data System (ADS)

    Herald, J. E.; Bianchi, L.

    2002-11-01

    Using new Far Ultraviolet Spectroscopic Explorer (FUSE) observations in conjunction with Space Telescope Imaging Spectrograph (STIS) and International Ultraviolet Explorer archive data, we have modeled both components of the binary central star of the planetary nebula A35. The white dwarf (the ionizing star) was modeled using the non-LTE, plane-parallel code TLUSTY. We find its parameters to be Teff=80+/-3 kK, logg=7.70+0.13-0.18 cm s-2, and [He/H]=-4+/-1 and C, N, O, Si, and Fe to be underabundant by 2 orders of magnitude with respect to their solar values. This confirms its classification as a DAO white dwarf, and using the Hipparcos distance D=163 pc, we derive a radius of RWD~=1.65×10-2 Rsolar and a mass of M~=0.5 Msolar. The modeling of the far-ultraviolet spectra also constrains the extinction value; EB-V=0.04+/-0.01. Furthermore, the FUSE and STIS data allow us to measure the molecular hydrogen (H2) and neutral hydrogen (H I) column densities along the sight line, the majority of which we believe is associated with the circumstellar material. The FUSE spectrum is best fitted with a two-component model for H2, consisting of a cool component (T=200 K) with logN(H2,cool)=19.6+0.1-0.2 cm-2 and a hot component (T~=1250 K) with logN(H2,hot)=17.4+0.3-0.4 cm-2. The H I column density is logN(HI)=20.9+/-0.1 cm-2. Assuming a typical gas/dust ratio for the interstellar medium, our value of EB-V implies that logN(HI)=20.8 cm-2 of this is circumstellar. Our low extinction value and the measured column densities imply that there is essentially no dust in the nebula. Assuming that the neutral and molecular hydrogen is contained in a sphere of comparable dimensions to the ionized shell, we derive the combined mass of the circumstellar H I and H2 to be ~2.7 Msolar. Other geometries, such as a shell surrounding the ionized region, can be excluded. The mass of the ionized hydrogen is <~1% that of the neutral material. From comparison with evolutionary calculations, we estimate the progenitor mass to be ~3.2 Msolar. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE is operated for NASA by Johns Hopkins University under NASA contract NAS5-32985.

  8. Ultraviolet Survey of CO and H2 in Diffuse Molecular Clouds: The Reflection of Two Photochemistry Regimes in Abundance Relationships

    NASA Astrophysics Data System (ADS)

    Sheffer, Y.; Rogers, M.; Federman, S. R.; Abel, N. P.; Gredel, R.; Lambert, D. L.; Shaw, G.

    2008-11-01

    We carried out a comprehensive far-UV survey of 12CO and H2 column densities along diffuse molecular Galactic sight lines. This sample includes new measurements of CO from HST spectra along 62 sight lines and new measurements of H2 from FUSE data along 58 sight lines. In addition, high-resolution optical data were obtained at the McDonald and European Southern Observatories, yielding new abundances for CH, CH+, and CN along 42 sight lines to aid in interpreting the CO results. These new sight lines were selected according to detectable amounts of CO in their spectra and provide information on both lower density (<=100 cm-3) and higher density diffuse clouds. A plot of log N(CO) versus log N(H2) shows that two power-law relationships are needed for a good fit of the entire sample, with a break located at log N(CO , cm -2) = 14.1 and log N(H2) = 20.4, corresponding to a change in production route for CO in higher density gas. Similar logarithmic plots among all five diatomic molecules reveal additional examples of dual slopes in the cases of CO versus CH (break at log N = 14.1, 13.0), CH+ versus H2 (13.1, 20.3), and CH+ versus CO (13.2, 14.1). We employ both analytical and numerical chemical schemes in order to derive details of the molecular environments. In the denser gas, where C2 and CN molecules also reside, reactions involving C+ and OH are the dominant factor leading to CO formation via equilibrium chemistry. In the low-density gas, where equilibrium chemistry studies have failed to reproduce the abundance of CH+, our numerical analysis shows that nonequilibrium chemistry must be employed for correctly predicting the abundances of both CH+ and CO.

  9. Linear solvation energy relationships regarding sorption and retention properties of hydrophobic organic compounds in soil leaching column chromatography.

    PubMed

    Xu, Feng; Liang, Xinmiao; Lin, Bingcheng; Su, Fan; Schramm, Karl-Werner; Kettrup, Antonius

    2002-08-01

    The capacity factors of a series of hydrophobic organic compounds (HOCs) were measured in soil leaching column chromatography (SLCC) on a soil column, and in reversed-phase liquid chromatography on a C18 column with different volumetric fractions (phi) of methanol in methanol-water mixtures. A general equation of linear solvation energy relationships, log(XYZ) XYZ0 + mV(I)/100 + spi + bbetam + aalpham, was applied to analyze capacity factors (k'), soil organic partition coefficients (Koc) and octanol-water partition coefficients (P). The analyses exhibited high accuracy. The chief solute factors that control logKoc, log P, and logk' (on soil and on C18) are the solute size (V(I)/100) and hydrogen-bond basicity (betam). Less important solute factors are the dipolarity/polarizability (pi*) and hydrogen-bond acidity (alpham). Log k' on soil and log Koc have similar signs in four fitting coefficients (m, s, b and a) and similar ratios (m:s:b:a), while log k' on C18 and logP have similar signs in coefficients (m, s, b and a) and similar ratios (m:s:b:a). Consequently, logk' values on C18 have good correlations with logP (r > 0.97), while logk' values on soil have good correlations with logKoc (r > 0.98). Two Koc estimation methods were developed, one through solute solvatochromic parameters, and the other through correlations with k' on soil. For HOCs, a linear relationship between logarithmic capacity factor and methanol composition in methanol-water mixtures could also be derived in SLCC.

  10. The X-Ray and Mid-infrared Luminosities in Luminous Type 1 Quasars

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Ting J.; Hickox, Ryan C.; Goulding, Andrew D.; Stern, Daniel; Assef, Roberto; Kochanek, Christopher S.; Brown, Michael J. I.; Harrison, Chris M.; Hainline, Kevin N.; Alberts, Stacey; Alexander, David M.; Brodwin, Mark; Del Moro, Agnese; Forman, William R.; Gorjian, Varoujan; Jones, Christine; Murray, Stephen S.; Pope, Alexandra; Rovilos, Emmanouel

    2017-03-01

    Several recent studies have reported different intrinsic correlations between the active galactic nucleus (AGN) mid-IR luminosity ({L}MIR}) and the rest-frame 2–10 keV luminosity (L X) for luminous quasars. To understand the origin of the difference in the observed {L}{{X}}{--}{L}MIR} relations, we study a sample of 3247 spectroscopically confirmed type 1 AGNs collected from Boötes, XMM-COSMOS, XMM-XXL-North, and the Sloan Digital Sky Survey quasars in the Swift/XRT footprint spanning over four orders of magnitude in luminosity. We carefully examine how different observational constraints impact the observed {L}{{X}}{--}{L}MIR} relations, including the inclusion of X-ray-nondetected objects, possible X-ray absorption in type 1 AGNs, X-ray flux limits, and star formation contamination. We find that the primary factor driving the different {L}{{X}}{--}{L}MIR} relations reported in the literature is the X-ray flux limits for different studies. When taking these effects into account, we find that the X-ray luminosity and mid-IR luminosity (measured at rest-frame 6 μ {{m}}, or {L}6μ {{m}}) of our sample of type 1 AGNs follow a bilinear relation in the log–log plane: {log}{L}{{X}}=(0.84+/- 0.03)× {log}{L}6μ {{m}}/{10}45 erg s‑1 + (44.60 ± 0.01) for {L}6μ {{m}}< {10}44.79 erg s‑1, and {log}{L}{{X}}=(0.40+/- 0.03)× {log}{L}6μ {{m}}/{10}45 erg s‑1 + (44.51 ± 0.01) for {L}6μ {{m}} ≥slant {10}44.79 erg s‑1. This suggests that the luminous type 1 quasars have a shallower {L}{{X}}{--}{L}6μ {{m}} correlation than the approximately linear relations found in local Seyfert galaxies. This result is consistent with previous studies reporting a luminosity-dependent {L}{{X}}{--}{L}MIR} relation and implies that assuming a linear {L}{{X}}{--}{L}6μ {{m}} relation to infer the neutral gas column density for X-ray absorption might overestimate the column densities in luminous quasars.

  11. Warm absorbers in X-rays (WAX), a comprehensive high-resolution grating spectral study of a sample of Seyfert galaxies - I. A global view and frequency of occurrence of warm absorbers.

    NASA Astrophysics Data System (ADS)

    Laha, Sibasish; Guainazzi, Matteo; Dewangan, Gulab C.; Chakravorty, Susmita; Kembhavi, Ajit K.

    2014-07-01

    We present results from a homogeneous analysis of the broad-band 0.3-10 keV CCD resolution as well as of the soft X-ray high-resolution grating spectra of a hard X-ray flux-limited sample of 26 Seyfert galaxies observed with XMM-Newton. Our goal is to characterize warm absorbers (WAs) along the line of sight to the active nucleus. We significantly detect WAs in 65 per cent of the sample sources. Our results are consistent with WAs being present in at least half of the Seyfert galaxies in the nearby Universe, in agreement with previous estimates. We find a gap in the distribution of the ionization parameter in the range 0.5 < log ξ < 1.5 which we interpret as a thermally unstable region for WA clouds. This may indicate that the WA flow is probably constituted by a clumpy distribution of discrete clouds rather than a continuous medium. The distribution of the WA column densities for the sources with broad Fe Kα lines are similar to those sources which do not have broadened emission lines. Therefore, the detected broad Fe Kα emission lines are bona fide and not artefacts of ionized absorption in the soft X-rays. The WA parameters show no correlation among themselves, with the exception of the ionization parameter versus column density. The shallow slope of the log ξ versus log vout linear regression (0.12 ± 0.03) is inconsistent with the scaling laws predicted by radiation or magnetohydrodynamic-driven winds. Our results also suggest that WA and ultra fast outflows do not represent extreme manifestation of the same astrophysical system.

  12. A Mini-BAL Outflow at 900 pc from the Central Source: VLT/X-shooter Observations

    NASA Astrophysics Data System (ADS)

    Xu, Xinfeng; Arav, Nahum; Miller, Timothy; Benn, Chris

    2018-05-01

    We determine the physical conditions and location of the outflow material seen in the mini-BAL quasar SDSS J1111+1437 (z = 2.138). These results are based on the analysis of a high S/N, medium-resolution VLT/X-shooter spectrum. The main outflow component spans the velocity range ‑1500 to ‑3000 km s‑1 and has detected absorption troughs from both high-ionization species: C IV, N V, O VI, Si IV, P V, and S IV; and low-ionization species: H I, C II, Mg II, Al II, Al III, Si II, and Si III. Measurements of these troughs allow us to derive an accurate photoionization solution for this absorption component: a hydrogen column density, {log}({N}{{H}})={21.47}-0.27+0.21 cm‑2 and ionization parameter, {log}({U}{{H}})=-{1.23}-0.25+0.20. Troughs produced from the ground and excited states of S IV combined with the derived {U}{{H}} value allow us to determine an electron number density of {log}({n}{{e}})={3.62}-0.11+0.09 cm‑3 and to obtain the distance of the ionized gas from the central source: R={880}-260+210 pc.

  13. Do Pleistocene Glacial-Interglacial Cycles Control Methane Hydrate Formation? An Example from Green Canyon, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Oryan, B.; Malinverno, A.; Goldberg, D.; Fortin, W.

    2017-12-01

    Well GC955-H was drilled in the Green Canyon region under the Gulf of Mexico Gas Hydrates Joint Industry Project in 2009. Logging-while-drilling resistivity logs obtained at the well indicate that the saturation of gas hydrate varies between high and low values in an alternating fashion. This trend is observed from 180 to 360mbsf, depths that correspond to the Late Pleistocene. Similar gas hydrate saturation patterns have been observed in other Gulf of Mexico locations (Walker Ridge sites WR313-G and 313-H) in Late Pleistocene sediments. Our hypothesis is that these variations in saturation can be explained by sea level changes through time during glacial-interglacial cycles. A higher amount of organic matter is deposited and buried in the sediment column during glacial intervals when sea level is low. Microbes in the sediment column degrade organic matter and produce methane gas as a byproduct. Higher availability of organic matter in the sediment column can increase the concentration of methane in the sediment pore water and in turn lead to the formation of gas hydrate. We use a time-dependent numerical model of the formation of gas hydrate to test this hypothesis. The model predicts the volume and distribution of gas hydrates using mass balance equations. Model inputs include in situ porosity determined from bulk density logs; local thermal gradient estimated from the depth of the bottom of the gas hydrate stability zone in proximity to the well; and sedimentation rate determined using the biostratigraphy of an industry well in the vicinity of GC955-H. Initial results show a good match between gas hydrate saturation predicted by the model and resistivity logs obtained in the well. We anticipate that this correlation will establish whether a causal link exists between the saturation of gas hydrate in this reservoir and glacioeustatic sea level changes in the Late Pleistocene.

  14. The shell spectrum of HD 94509

    NASA Astrophysics Data System (ADS)

    Cowley, Charles R.; Przybilla, Norbert; Hubrig, Swetlana

    2015-01-01

    HD 94509 is a 9th magnitude Be star with an unusually rich metallic-lined shell. The absorption spectrum is rich, comparable to that of an A or F supergiant, but Mg II (4481A), and the Si II (4128 and 4130A), are weak, indicating a dilute radiation field, as described by Otto Struve. The H-alpha emission is double with components of equal intensity and an absorption core that dips well below the stellar continuum. H-beta is weaker, but with a similar structure. H-gamma through H-epsilon have virtually black cores, indicating that the shell covers the stellar disk. The stronger metallic absorption lines are wide near the continuum, but taper to very narrow cores. This line shape is unexplained. However, the total absorption can be modeled to reveal an overall particle densities of 10^{10}-10^{12} cm^{-3}. An electron density log(n_e) = 11.2 is obtained from the Paschen-line convergence and the Inglis-Tellar relation. Column densities are obtained with the help of curves of growth by assuming uniform conditions in the cloud. These indicate a nearly solar composition. The CLOUDY code (Ferland, et al. Rev. Mex. Astron. Astroph. 49, 137, 213) is used to produce a model that predicts matching column densities of the dominant ions, the n = 3 level of hydrogen, the H-alpha strength, and the electron density (± 0.5 dex).

  15. The ATLASGAL survey: distribution of cold dust in the Galactic plane. Combination with Planck data

    NASA Astrophysics Data System (ADS)

    Csengeri, T.; Weiss, A.; Wyrowski, F.; Menten, K. M.; Urquhart, J. S.; Leurini, S.; Schuller, F.; Beuther, H.; Bontemps, S.; Bronfman, L.; Henning, Th.; Schneider, N.

    2016-01-01

    Context. Sensitive ground-based submillimeter surveys, such as ATLASGAL, provide a global view on the distribution of cold dense gas in the Galactic plane at up to two-times better angular-resolution compared to recent space-based surveys with Herschel. However, a drawback of ground-based continuum observations is that they intrinsically filter emission, at angular scales larger than a fraction of the field-of-view of the array, when subtracting the sky noise in the data processing. The lost information on the distribution of diffuse emission can be, however, recovered from space-based, all-sky surveys with Planck. Aims: Here we aim to demonstrate how this information can be used to complement ground-based bolometer data and present reprocessed maps of the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) survey. Methods: We use the maps at 353 GHz from the Planck/HFI instrument, which performed a high sensitivity all-sky survey at a frequency close to that of the APEX/LABOCA array, which is centred on 345 GHz. Complementing the ground-based observations with information on larger angular scales, the resulting maps reveal the distribution of cold dust in the inner Galaxy with a larger spatial dynamic range. We visually describe the observed features and assess the global properties of dust distribution. Results: Adding information from large angular scales helps to better identify the global properties of the cold Galactic interstellar medium. To illustrate this, we provide mass estimates from the dust towards the W43 star-forming region and estimate a column density contrast of at least a factor of five between a low intensity halo and the star-forming ridge. We also show examples of elongated structures extending over angular scales of 0.5°, which we refer to as thin giant filaments. Corresponding to > 30 pc structures in projection at a distance of 3 kpc, these dust lanes are very extended and show large aspect ratios. We assess the fraction of dense gas by determining the contribution of the APEX/LABOCA maps to the combined maps, and estimate 2-5% for the dense gas fraction (corresponding to Av> 7 mag) on average in the Galactic plane. We also show probability distribution functions of the column density (N-PDF), which reveal the typically observed log-normal distribution for low column density and exhibit an excess at high column densities. As a reference for extragalactic studies, we show the line-of-sight integrated N-PDF of the inner Galaxy, and derive a contribution of this excess to the total column density of ~ 2.2%, corresponding to NH2 = 2.92 × 1022 cm-2. Taking the total flux density observed in the maps, we provide an independent estimate of the mass of molecular gas in the inner Galaxy of ~ 1 × 109 M⊙, which is consistent with previous estimates using CO emission. From the mass and dense gas fraction (fDG), we estimate a Galactic SFR of Ṁ = 1.3 M⊙ yr-1. Conclusions: Retrieving the extended emission helps to better identify massive giant filaments which are elongated and confined structures. We show that the log-normal distribution of low column density gas is ubiquitous in the inner Galaxy. While the distribution of diffuse gas is relatively homogenous in the inner Galaxy, the central molecular zone (CMZ) stands out with a higher dense gas fraction despite its low star formation efficiency.Altogether our findings explain well the observed low star formation efficiency of the Milky Way by the low fDG in the Galactic ISM. In contrast, the high fDG observed towards the CMZ, despite its low star formation activity, suggests that, in that particular region of our Galaxy, high density gas is not the bottleneck for star formation.

  16. CO AND H{sub 2} ABSORPTION IN THE AA TAURI CIRCUMSTELLAR DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    France, Kevin; Burgh, Eric B.; Schindhelm, Eric

    2012-01-01

    The direct study of molecular gas in inner protoplanetary disks is complicated by uncertainties in the spatial distribution of the gas, the time variability of the source, and the comparison of observations across a wide range of wavelengths. Some of these challenges can be mitigated with far-ultraviolet spectroscopy. Using new observations obtained with the Hubble Space Telescope Cosmic Origins Spectrograph, we measure column densities and rovibrational temperatures for CO and H{sub 2} observed on the line of sight through the AA Tauri circumstellar disk. CO A - X absorption bands are observed against the far-UV continuum. The CO absorption ismore » characterized by log{sub 10}(N({sup 12}CO)) = 17.5 {+-} 0.5 cm{sup -2} and T{sub rot}(CO) = 500{sup +500}{sub -200} K, although this rotational temperature may underestimate the local kinetic temperature of the CO-bearing gas. We also detect {sup 13}CO in absorption with an isotopic ratio of {approx}20. We do not observe H{sub 2} absorption against the continuum; however, hot H{sub 2} (v > 0) is detected in absorption against the Ly{alpha} emission line. We measure the column densities in eight individual rovibrational states, determining a total log{sub 10}(N(H{sub 2})) = 17.9{sup +0.6}{sub -0.3} cm{sup -2} with a thermal temperature of T(H{sub 2}) = 2500{sup +800}{sub -700} K. The high temperature of the molecules, the relatively small H{sub 2} column density, and the high inclination of the AA Tauri disk suggest that the absorbing gas resides in an inner disk atmosphere. If the H{sub 2} and CO are cospatial within a molecular layer {approx}0.6 AU thick, this region is characterized by {approx} 10{sup 5} cm{sup -3} with an observed (CO/H{sub 2}) ratio of {approx}0.4. We also find evidence for a departure from a purely thermal H{sub 2} distribution, suggesting that excitation by continuum photons and H{sub 2} formation may be altering the level populations in the molecular gas.« less

  17. Estimation of soil organic partition coefficients: from retention factors measured by soil column chromatography with water as eluent.

    PubMed

    Xu, Feng; Liang, Xinmiao; Lin, Bingcheng; Schramm, Karl-Werner; Kettrup, Antonius

    2002-08-30

    The retention factors (k) of 104 hydrophobic organic chemicals (HOCs) were measured in soil column chromatography (SCC) over columns filled with three naturally occurring reference soils and eluted with Milli-Q water. A novel method for the estimation of soil organic partition coefficient (Koc) was developed based on correlations with k in soil/water systems. Strong log Koc versus log k correlations (r>0.96) were found. The estimated Koc values were in accordance with the literature values with a maximum deviation of less than 0.4 log units. All estimated Koc values from three soils were consistent with each other. The SCC approach is promising for fast screening of a large number of chemicals in their environmental applications.

  18. OBSERVATIONAL PROPERTIES OF ROTATIONALLY EXCITED MOLECULAR HYDROGEN IN TRANSLUCENT LINES OF SIGHT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Adam G.; Sonneborn, George; Snow, Theodore P.

    2010-03-10

    The Far Ultraviolet Spectroscopic Explorer (FUSE) has allowed precise determinations of the column densities of molecular hydrogen (H{sub 2}) in Galactic lines of sight with a wide range of pathlengths and extinction properties. However, survey studies of lines of sight with greater extinction have been mostly restricted to the low-J states (lower total angular momentum) in which most molecular hydrogen is observed. This paper presents a survey of column densities for the molecular hydrogen in states of greater rotational excitation (J >= 2) in Galactic lines of sight with log N(H{sub 2}) {approx}> 20. This study is comprehensive through themore » highest excited state detectable in each line of sight. J = 5 is observed in every line of sight, and we detect J = 7 in four lines of sight, J = 8 in one line of sight, and vibrationally excited H{sub 2} in two lines of sight. We compared the apparent b-values and velocity offsets of the higher-J states relative to the dominant low-J states and we found no evidence of any trends that might provide insight into the formation of higher-J H{sub 2}, although these results are the most affected by the limits of the FUSE resolution. We also derive excitation temperatures based on the column densities of the different states. We confirm that at least two distinct temperatures are necessary to adequately describe these lines of sight, and that more temperatures are probably necessary. Total H{sub 2} column density is known to be correlated with other molecules; we explore if correlations vary as a function of J for several molecules, most importantly CH and CH{sup +}. Finally, we briefly discuss interpretations of selected lines of sight by comparing them to models computed using the Meudon PDR code.« less

  19. Comparison of adsorption coefficient (K[sub oc]) for soils and HPLC retention factors of aromatic hydrocarbons using a chemically immobilized humic acid column in RP-HPLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szabo, G.; Bulman, R.A.

    The determination of soil adsorption coefficients (K[sub oc]) via HPLC capacity factors (k[prime]) has been studied, including the effect of column type and mobile phase composition on the correlation between log K[sub oc] and log k[prime]. K[sub oc] values obtained by procedures other than HPLC correlate well with HPLC capacity factors determined on a chemically immobilized humic acid stationary phase, and it is suggested that this phase is a better model for the sorption onto soil or sediment than the octadecyl-, phenyl- and ethylsilica phases. By using log k[prime][sub w] a theoretical capacity factor has been obtained by extrapolation ofmore » the retention data in a binary solvent system to pure aqueous eluent. There is a better correlation between log K[sub oc] and log k[prime][sub w] than the correlation between log K[sub oc] and log k[prime].« less

  20. Lipophilicity assessment of basic drugs (log P(o/w) determination) by a chromatographic method.

    PubMed

    Pallicer, Juan M; Sales, Joaquim; Rosés, Martí; Ràfols, Clara; Bosch, Elisabeth

    2011-09-16

    A previously reported chromatographic method to determine the 1-octanol/water partition coefficient (log P(o/w)) of organic compounds is used to estimate the hydrophobicity of bases, mainly commercial drugs with diverse chemical nature and pK(a) values higher than 9. For that reason, mobile phases buffered at high pH to avoid the ionization of the solutes and three different columns (Phenomenex Gemini NX, Waters XTerra RP-18 and Waters XTerra MS C(18)) with appropriate alkaline-resistant stationary phases have been used. Non-ionizable substances studied in previous works were also included in the set of compounds to evaluate the consistency of the method. The results showed that all the columns provide good estimations of the log P(o/w) for most of the compounds included in this study. The Gemini NX column has been selected to calculate log P(o/w) values of the set of studied drugs, and really good correlations between the determined log P(o/w) values and those considered as reference were obtained, proving the ability of the procedure for the lipophilicity assessment of bioactive compounds with very different structures and functionalities. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Octanol/water partitioning simulation by RP-HPLC for structurally diverse acidic drugs: comparison of three columns in the presence and absence of n-octanol as the mobile phase additive.

    PubMed

    Giaginis, Costas; Theocharis, Stamatios; Tsantili-Kakoulidou, Anna

    2013-12-01

    The advantageous effect of n-octanol as a mobile phase additive for lipophilicity assessment of structurally diverse acidic drugs both in the neutral and ionized form was explored. Two RP C18 columns, ABZ+ and Aquasil, were used for the determination of logkw indices, and the results were compared with those previously reported on a base-deactivated silica column. At pH 2.5, the use of n-octanol-saturated buffer as the mobile phase aqueous component led to high-quality 1:1 correlation between logkw and logP for the ABZ+ column, while inferior statistics were obtained for Aquasil. At physiological pH, the correlations were significantly improved if strongly ionized acidic drugs were treated separately from weakly ionized ones. In the latter case, 1:1 correlations between logD7.4 and logkw(oct) indices were obtained in the presence of 0.25% n-octanol. Concerning strongly ionized compounds, adequate correlations were established under the same conditions; however, slopes were significantly lower than unity, while large negative intercepts were obtained. According to the absolute difference (diff = logD7.4 – logkw) pattern, base-deactivated silica showed a better performance than ABZ+, however, the latter seems more efficient for the lipophilicity assessment of highly lipophilic acidic compounds. Aquasil may be the column of choice if logD7.4<3 with the limitation, however, that very hydrophilic compounds cannot be measured.

  2. Modeling molecular hydrogen emission in M dwarf exoplanetary systems

    NASA Astrophysics Data System (ADS)

    Evonosky, William; France, Kevin; Kruczek, Nick E.; Youngblood, Allison; Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanet host Stars (MUSCLES)

    2017-01-01

    Exoplanets orbiting low-mass stars are prime candidates for atmospheric characterization due to their astronomical abundance and short orbital periods. These planets orbit stars that are often more active than main sequence solar-type stars. They are exposed to differing levels of ultraviolet radiation which can cause traditional “biosignature” gases to be generated abiotically, potentially causing false-positive identifications of life. We modeled the recently discovered molecular hydrogen emission in the ultraviolet spectra (1350 - 1650 Å) as arising from the stellar surface, excited by radiation generated in the upper chromosphere. The model was compared with observed hydrogen emission from the “Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanet host Stars” (MUSCLES) survey by conducting a grid search and implementing a chi-squared minimization routine. We considered only progressions from the [1, 4] and [1, 7] first excited electronic levels. Our modeling procedure varied the atomic hydrogen column density (in the chromosphere) as well as the photospheric molecular hydrogen column density and temperature. The model required as an input a reconstructed intrinsic Lyman α profile which served as the pumping radiation for the molecular hydrogen. We found that an atomic hydrogen column density of log10N(H I) = 14.13 ± 0.16 cm-2 represents a breaking point above which there is not enough Lyman α flux available to excite a significant molecular hydrogen population into the [1, 7] state. We also present H2 temperatures which may suggest that star spots on low mass stars persist longer, and encompass more area than star spots on solar-type stars.

  3. Modeling Molecular Hydrogen Emission in M-Dwarf Exoplanetary Systems

    NASA Astrophysics Data System (ADS)

    Evonosky, W. R.; France, K.; Kruczek, N.; Youngblood, A.

    2016-12-01

    Exoplanets orbiting low-mass stars are prime candidates for atmospheric characterization due to their astronomical abundance and short orbital periods. These planets orbit stars that are often more active than main sequence solar-type stars. They are exposed to differing levels of ultraviolet radiation which can cause traditional "biosignature" gases to be generated abiotically, potentially causing false-positive identifications of life. We modeled the recently discovered molecular hydrogen emission in the ultraviolet spectra (1350 - 1650 Å) as arising from the stellar surface, excited by radiation generated in the upper chromosphere. The model was compared with observed hydrogen emission from the "Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanet host Stars" (MUSCLES) survey by conducting a grid search and implementing a chi-squared minimization routine. We considered only progressions from the [1, 4] and [1, 7] first excited electronic levels. Our modeling procedure varied the atomic hydrogen column density (in the chromosphere) as well as the photospheric molecular hydrogen column density and temperature. The model required as an input a reconstructed intrinsic Lyman α profile which served as the pumping radiation for the molecular hydrogen. We found that an atomic hydrogen column density of log10N(H I) = 14.13 ± 0.16 cm-2 represents a breaking point above which there is not enough Lyman α flux available to excite a significant molecular hydrogen population into the [1, 7] state. We also present H2 temperatures which may suggest that star spots on low mass stars persist longer, and encompass more area than star spots on solar-type stars.

  4. Acoustic reflection log in transversely isotropic formations

    NASA Astrophysics Data System (ADS)

    Ronquillo Jarillo, G.; Markova, I.; Markov, M.

    2018-01-01

    We have calculated the waveforms of sonic reflection logging for a fluid-filled borehole located in a transversely isotropic rock. Calculations have been performed for an acoustic impulse source with the characteristic frequency of tens of kilohertz that is considerably less than the frequencies of acoustic borehole imaging tools. It is assumed that the borehole axis coincides with the axis of symmetry of the transversely isotropic rock. It was shown that the reflected wave was excited most efficiently at resonant frequencies. These frequencies are close to the frequencies of oscillations of a fluid column located in an absolutely rigid hollow cylinder. We have shown that the acoustic reverberation is controlled by the acoustic impedance of the rock Z = Vphρs for fixed parameters of the borehole fluid, where Vph is the velocity of horizontally propagating P-wave; ρs is the rock density. The methods of waveform processing to determine the parameters characterizing the reflected wave have been discussed.

  5. Virus elimination during the purification of monoclonal antibodies by column chromatography and additional steps.

    PubMed

    Roberts, Peter L

    2014-01-01

    The theoretical potential for virus transmission by monoclonal antibody based therapeutic products has led to the inclusion of appropriate virus reduction steps. In this study, virus elimination by the chromatographic steps used during the purification process for two (IgG-1 & -3) monoclonal antibodies (MAbs) have been investigated. Both the Protein G (>7log) and ion-exchange (5 log) chromatography steps were very effective for eliminating both enveloped and non-enveloped viruses over the life-time of the chromatographic gel. However, the contribution made by the final gel filtration step was more limited, i.e., 3 log. Because these chromatographic columns were recycled between uses, the effectiveness of the column sanitization procedures (guanidinium chloride for protein G or NaOH for ion-exchange) were tested. By evaluating standard column runs immediately after each virus spiked run, it was possible to directly confirm that there was no cross contamination with virus between column runs (guanidinium chloride or NaOH). To further ensure the virus safety of the product, two specific virus elimination steps have also been included in the process. A solvent/detergent step based on 1% triton X-100 rapidly inactivating a range of enveloped viruses by >6 log inactivation within 1 min of a 60 min treatment time. Virus removal by virus filtration step was also confirmed to be effective for those viruses of about 50 nm or greater. In conclusion, the combination of these multiple steps ensures a high margin of virus safety for this purification process. © 2014 American Institute of Chemical Engineers.

  6. An Intercomparison Study of Two Proximate Damped Lyα Systems with Residual Flux upon the Lyα Absorption Trough toward Quasars

    NASA Astrophysics Data System (ADS)

    Xie, Xiaoyi; Zhou, Hongyan; Pan, Xiang; Jiang, Peng; Shi, Xiheng; Ji, Tuo; Zhang, Shaohua; Wu, Shengmiao; Zhong, Zhihao

    2018-05-01

    In this paper, we present an intercomparison study of two quasars, SDSS J145618.32+340037.2 and SDSS J215331.50–025514.1, which have proximate damped Lyα systems (PDLAs) with residual flux upon the Lyα absorption trough. Though they both have residual flux as luminous as 1043 erg s‑1, their PDLAs are quite different in, e.g., neutral hydrogen column density, metal line absorption strength, high-ionization absorption lines as well as residual flux strength. For J1456+3400, the H I column density is log(N H I /cm–2) = 20.6 ± 0.2, with z abs = 2.3138, nearly identical to the quasar redshift (z = 2.3142) determined from the [O III] emission line. The metallicity of this system is typical of DLAs and there is high ionization therein, suggesting that the PDLA system is multiphase, putting it in the quasar environment. For J2153–0255, we measure the H I column density to be log(N H I /cm–2) = 21.5 ± 0.1 at z abs = 3.511, slightly redshifted with respect to the quasar (z = 3.490) measured from C III]. The metallicity of this system is quite low and there is a lack of significant high-ionization absorption lines therein, suggesting that the system is beyond the quasar host galaxy. The residual flux is wide (∼1000 km s‑1) in J1456, with a significance of ∼8σ, while also wide (∼1500 km s‑1) but with a smaller significance of ∼3σ in J2153. Among many explanations, we find that Lyα fuzz or resonant scattering can be used to explain the residual flux in the two sources while partial coverage cannot be excluded for J1456. By comparing these two cases, together with a similar case reported previously, we suggest that the strength of the residual flux is related to properties such as metallicity and high-ionization absorption lines of PDLAs. The residual flux recorded upon the PDLA absorption trough opens a window for us to see the physical conditions and processes of the quasar environment, and their profile and strength further remind us of their spatial scales.

  7. On the Origin of the High Column Density Turnover in the HI Column Density Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erkal, Denis; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    We study the high column density regime of the HI column density distribution function and argue that there are two distinct features: a turnover at NHI ~ 10^21 cm^-2 which is present at both z=0 and z ~ 3, and a lack of systems above NHI ~ 10^22 cm^-2 at z=0. Using observations of the column density distribution, we argue that the HI-H2 transition does not cause the turnover at NHI ~ 10^21 cm^-2, but can plausibly explain the turnover at NHI > 10^22 cm^-2. We compute the HI column density distribution of individual galaxies in the THINGS sample andmore » show that the turnover column density depends only weakly on metallicity. Furthermore, we show that the column density distribution of galaxies, corrected for inclination, is insensitive to the resolution of the HI map or to averaging in radial shells. Our results indicate that the similarity of HI column density distributions at z=3 and z=0 is due to the similarity of the maximum HI surface densities of high-z and low-z disks, set presumably by universal processes that shape properties of the gaseous disks of galaxies. Using fully cosmological simulations, we explore other candidate physical mechanisms that could produce a turnover in the column density distribution. We show that while turbulence within GMCs cannot affect the DLA column density distribution, stellar feedback can affect it significantly if the feedback is sufficiently effective in removing gas from the central 2-3 kpc of high-redshift galaxies. Finally, we argue that it is meaningful to compare column densities averaged over ~ kpc scales with those estimated from quasar spectra which probe sub-pc scales due to the steep power spectrum of HI column density fluctuations observed in nearby galaxies.« less

  8. Compton thick absorber in type 1 quasar 3C 345 revealed by Suzaku and Swift/BAT

    NASA Astrophysics Data System (ADS)

    Eguchi, Satoshi

    2017-07-01

    The archival data of 3C 345, a type 1 quasar at z = 0.5928, obtained with Suzaku and Swift/BAT are analysed. Though previous studies of this source applied only a simple broken power-law model, a heavily obscuring material is found to be required by considering Akaike information criteria. The application of the numerical torus model by Murphy & Yaqoob surprisingly reveals the existence of Compton thick type 2 nucleus with the line-of-sight hydrogen column density of the torus of NH = 1024.5 cm-2 and the inclination angle of θinc = 90°. However, this model fails to account for the Eddington ratio obtained with the optical observations by Gu et al. and Shen et al., or requires the existence of a supermassive black hole binary, which was suggested by Lobanov & Roland, thus this model is likely to be inappropriate for 3C 345. A partial covering ionized absorber model that accounts for absorption in 'hard excess' type 1 active galactic nuclei (AGNs) is also applied, and finds a Compton thick absorber with the column density of NH ≃ 1025 cm-2, the ionization parameter of log ξ ≳ 2 and the covering fraction of 75 per cent ≲ fc ≲ 85 per cent. Since this model obtains a black hole mass of log (MBH/M⊙) = 9.8, which is consistent with the optical observation by Gu et al., this model is likely to be the best-fitting model of this source. The results suggest that 3C 345 is the most distant and most obscured hard excess AGN at this time.

  9. Physical conditions in the neutral interstellar medium at z = 2.43 toward Q 2348-011

    NASA Astrophysics Data System (ADS)

    Noterdaeme, P.; Petitjean, P.; Srianand, R.; Ledoux, C.; Le Petit, F.

    2007-07-01

    Aims:We aim at deriving the physical conditions in the neutral gas associated with damped Lyman-α systems using observation and analysis of H2 and C i absorptions. Methods: We obtained a high-resolution VLT-UVES spectrum of the quasar Q 2348-011 over a wavelength range that covers most of the prominent metal and molecular absorption lines from the log N(H i) = 20.50 ± 0.10 damped Lyman-α system at z_abs=2.4263. We detected H2 in this system and measured column densities of H2, C i, C i^*, C i**, Si ii, P ii, S ii, Fe ii, and Ni ii. From the column density ratios and, in particular, the relative populations of H2 rotational and C i fine-structure levels, we derived the physical conditions in the gas (relative abundances, dust-depletion, particle density, kinetic temperature, and ionising flux) and discuss physical conditions in the neutral phase. Results: Molecular hydrogen was detected in seven components in the first four rotational levels (J = 0-3) of the vibrational ground state. Absorption lines of H2 J=4 (resp. J = 5) rotational levels are detected in six (resp. two) of these components. This leads to a total molecular fraction of log f ≃ -1.69+0.37-0.58. Fourteen components are needed to reproduce the metal-line profiles. The overall metallicity is found to be -0.80, -0.62, -1.17 ± 0.10 for, respectively, [Si/H], [S/H] and [Fe/H]. We confirm the earlier findings that there is a correlation between log N(Fe ii)/N(S ii) and log N(Si ii)/N(S ii) from different components indicative of a dust-depletion pattern. Surprisingly, however, the depletion of metals onto dust in the H2 components is not large in this system: [Fe/S] = -0.8 to -0.1. The gas in H2-bearing components is found to be cold but still hotter than similar gas in our Galaxy (T > 130 K, instead of typically 80 K) and dense (n ˜ 100-200 cm-3). There is an anti-correlation (R=-0.97) between the logarithm of the photo-absorption rate, log β_0, and log N(H2)/N(C i) derived for each H2 component. We show that this is mostly due to shielding effects and imply that the photo-absorption rate β0 is a good indicator of the physical conditions in the gas. We find that the gas is immersed in an intense UV field, about one order of magnitude higher than in the solar vicinity. These results suggest that the gas in H2-bearing DLAs is clumpy, and star-formation occurs in the associated object. Based on observations carried out at the European Southern Observatory (ESO) under prog. ID No. 072.A-0346 with the UVES spectrograph installed at the Very Large Telescope (VLT) Unit 2, Kueyen, on Cerro Paranal, Chile.

  10. The column density distribution of hard X-ray radio galaxies

    NASA Astrophysics Data System (ADS)

    Panessa, F.; Bassani, L.; Landi, R.; Bazzano, A.; Dallacasa, D.; La Franca, F.; Malizia, A.; Venturi, T.; Ubertini, P.

    2016-09-01

    In order to investigate the role of absorption in active galactic nuclei (AGN) with jets, we have studied the column density distribution of a hard X-ray selected sample of radio galaxies, derived from the INTEGRAL/Imager on Board the Integral Satellite (IBIS) and Swift/The Burst Alert Telescope (BAT) AGN catalogues (˜7-10 per cent of the total AGN population). The 64 radio galaxies have a typical FR II radio morphology and are characterized by high 20-100 keV luminosities (from 1042 to 1046 erg s-1) and high Eddington ratios (log LBol/LEdd typically larger than ˜0.01). The observed fraction of absorbed AGN (NH > 1022 cm-2) is around 40 per cent among the total sample, and ˜75 per cent among type 2 AGN. The majority of obscured AGN are narrow-line objects, while unobscured AGN are broad-line objects, obeying to the zeroth-order predictions of unified models. A significant anti-correlation between the radio core dominance parameter and the X-ray column density is found. The observed fraction of Compton thick AGN is ˜2-3 per cent, in comparison with the 5-7 per cent found in radio-quiet hard X-ray selected AGN. We have estimated the absorption and Compton thick fractions in a hard X-ray sample containing both radio galaxies and non-radio galaxies and therefore affected by the same selection biases. No statistical significant difference was found in the absorption properties of radio galaxies and non-radio galaxies sample. In particular, the Compton thick objects are likely missing in both samples and the fraction of obscured radio galaxies appears to decrease with luminosity as observed in hard X-ray non-radio galaxies.

  11. Characterization of Ascentis RP-Amide column: Lipophilicity measurement and linear solvation energy relationships.

    PubMed

    Benhaim, Deborah; Grushka, Eli

    2010-01-01

    This study investigates lipophilicity determination by chromatographic measurements using the polar embedded Ascentis RP-Amide stationary phase. As a new generation of amide-functionalized silica stationary phase, the Ascentis RP-Amide column is evaluated as a possible substitution to the n-octanol/water partitioning system for lipophilicity measurements. For this evaluation, extrapolated retention factors, log k'w, of a set of diverse compounds were determined using different methanol contents in the mobile phase. The use of n-octanol enriched mobile phase enhances the relationship between the slope (S) of the extrapolation lines and the extrapolated log k'w (the intercept of the extrapolation),as well as the correlation between log P values and the extrapolated log k'w (1:1 correlation, r2 = 0.966).In addition, the use of isocratic retention factors, at 40% methanol in the mobile phase, provides a rapid tool for lipophilicity determination. The intermolecular interactions that contribute to the retention process in the Ascentis RP-Amide phase are characterized using the solvation parameter model of Abraham.The LSER system constants for the column are very similar to the LSER constants of the n-octanol/water extraction system. Tanaka radar plots are used for quick visual comparison of the system constants of the Ascentis RP-Amide column and the n-octanol/water extraction system. The results all indicate that the Ascentis RP-Amide stationary phase can provide reliable lipophilic data. Copyright 2009 Elsevier B.V. All rights reserved.

  12. Application of Snyder-Dolan Classification Scheme to the Selection of “Orthogonal” Columns for Fast Screening for Illicit Drugs and Impurity Profiling of Pharmaceuticals - I. Isocratic Elution

    PubMed Central

    Fan, Wenzhe; Zhang, Yu; Carr, Peter W.; Rutan, Sarah C.; Dumarey, Melanie; Schellinger, Adam P.; Pritts, Wayne

    2011-01-01

    Fourteen judiciously selected reversed-phase columns were tested with 18 cationic drug solutes under the isocratic elution conditions advised in the Snyder-Dolan (S-D) hydrophobic subtraction method of column classification. The standard errors (S.E.) of the least squares regressions of log k′ vs. log k′REF were obtained for a given column against a reference column and used to compare and classify columns based on their selectivity. The results are consistent with those obtained with a study of the 16 test solutes recommended by Snyder and Dolan. To the extent that these drugs are representative these results show that the S-D classification scheme is also generally applicable to pharmaceuticals under isocratic conditions. That is, those columns judged to be similar based on the S-D 16 solutes were similar based on the 18 drugs; furthermore those columns judged to have significantly different selectivities based on the 16 S-D probes appeared to be quite different for the drugs as well. Given that the S-D method has been used to classify more than 400 different types of reversed phases the extension to cationic drugs is a significant finding. PMID:19698948

  13. HST/COS detection of a Ne VIII absorber towards PG 1407+265: an unambiguous tracer of collisionally ionized hot gas?

    NASA Astrophysics Data System (ADS)

    Hussain, T.; Muzahid, S.; Narayanan, A.; Srianand, R.; Wakker, B. P.; Charlton, J. C.; Pathak, A.

    2015-01-01

    We report the detection of Ne VIII in a zabs = 0.599 61 absorber towards the QSO PG1407+265 (zem= 0.94). Besides Ne VIII, absorption from H I Lyman series lines (H I λ1025-λ915), several other low (C II, N II, O II and S II), intermediate (C III, N III, N IV, O III, S IV and S V) and high (S VI, O VI and Ne VIII) ionization metal lines are detected. Disparity in the absorption line kinematics between different ions implies that the absorbing gas comprises of multiple ionization phases. The low and the intermediate ions (except S V) trace a compact (˜410 pc), metal-rich (Z ˜ Z⊙) and overdense (log nH ˜ -2.6) photoionized region that sustained star formation for a prolonged period. The high ions, Ne VIII and O VI, can be explained as arising in a low density (-5.3 ≤ log nH ≤ -5.0), metal-rich (Z ≳ Z⊙) and diffuse (˜180 kpc) photoionized gas. The S V, S VI and C IV [detected in the Faint Object Spectrograph (FOS) spectrum] require an intermediate photoionization phase with -4.2 < log nH < -3.5. Alternatively, a pure collisional ionization model, as used to explain the previous known Ne VIII absorbers, with 5.65 < log T < 5.72, can reproduce the S VI, O VI and Ne VIII column densities simultaneously in a single phase. However, even such models require an intermediate phase to reproduce any observable S V and/or C IV. Therefore, we conclude that when multiple phases are present, the presence of Ne VIII is not necessarily an unambiguous indication of collisionally ionized hot gas.

  14. Single fiber lignin distributions based on the density gradient column method

    Treesearch

    Brian Boyer; Alan W. Rudie

    2007-01-01

    The density gradient column method was used to determine the effects of uniform and non-uniform pulping processes on variation in individual fiber lignin concentrations of the resulting pulps. A density gradient column uses solvents of different densities and a mixing process to produce a column of liquid with a smooth transition from higher density at the bottom to...

  15. The relation between the column density structures and the magnetic field orientation in the Vela C molecular complex

    NASA Astrophysics Data System (ADS)

    Soler, J. D.; Ade, P. A. R.; Angilè, F. E.; Ashton, P.; Benton, S. J.; Devlin, M. J.; Dober, B.; Fissel, L. M.; Fukui, Y.; Galitzki, N.; Gandilo, N. N.; Hennebelle, P.; Klein, J.; Li, Z.-Y.; Korotkov, A. L.; Martin, P. G.; Matthews, T. G.; Moncelsi, L.; Netterfield, C. B.; Novak, G.; Pascale, E.; Poidevin, F.; Santos, F. P.; Savini, G.; Scott, D.; Shariff, J. A.; Thomas, N. E.; Tucker, C. E.; Tucker, G. S.; Ward-Thompson, D.

    2017-07-01

    We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.´0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondencebetween (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or "ridges", where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or "nests", where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density tails of the PDFs are steeper, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region.

  16. Zone fluidics for measurement of octanol-water partition coefficient of drugs.

    PubMed

    Wattanasin, Panwadee; Saetear, Phoonthawee; Wilairat, Prapin; Nacapricha, Duangjai; Teerasong, Saowapak

    2015-02-20

    A novel zone fluidics (ZF) system for the determination of the octanol-water partition coefficient (Pow) of drugs was developed. The ZF system consisted of a syringe pump with a selection valve, a holding column, a silica capillary flow-cell and an in-line spectrophotometer. Exact microliter volumes of solvents (octanol and phosphate buffer saline) and a solution of the drug, sandwiched between air segments, were sequentially loaded into the vertically aligned holding column. Distribution of the drug between the aqueous and octanol phases occurred by the oscillation movement of the syringe pump piston. Phase separation occurred due to the difference in densities. The liquid zones were then pushed into the detection flow cell. In this method, absorbance measurements in only one of the phase (octanol or aqueous) were employed, which together with the volumes of the solvents and pure drug sample, allowed the calculation of the Pow. The developed system was applied to the determination of the Pow of some common drugs. The log (Pow) values agreed well with a batch method (R(2)=0.999) and literature (R(2)=0.997). Standard deviations for intra- and inter-day analyses were both less than 0.1log unit. This ZF system provides a robust and automated method for screening of Pow values in the drug discovery process. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A simple graphical representation of selectivity in hydrophilic interaction liquid chromatography.

    PubMed

    Ibrahim, Mohammed E A; Liu, Yang; Lucy, Charles A

    2012-10-19

    This paper uses the HILIC selectivity data of Dinh et al. (J. Chromatogr. A 1218 (2011) 5880) to yield simple and easy to understand plots analogous to Neue plots for selectivity in HILIC. The plots categorize 21 previously studied HILIC phases (data from Dinh et al.), 8 additional HILIC columns and 4 reversed phase columns (our data) using selected probes for specific interactions. The relative retention of cytosine vs. uracil is used to probe the "hydrophilicity" of the HILIC phases; adenosine vs. adenine is used to probe the ability of the stationary phase to participate in hydrogen bonding; and benzyltrimethylammonium (BTMA) vs. cytosine is used to probe the cation exchange and anion exchange character of the column. Plots of kBTMA/kcytosine vs. kcytosine/kuracil successfully classify silica, amide, zwitterionic, diol and reverse phase columns in terms of their HILIC behavior. Polymeric columns including polymer substrate and polymer coated columns show low ion exchange character, but vary widely in their hydrophilicity. Alternatively a HILIC-Phase Selectivity Chart, in analogy to the Neue plot, is constructed by plotting log(kBTMA/kcytosine) vs. log(kcytosine). This plot enables classification of HILIC columns that will yield similar or significantly different separations. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Evaluation of the phase ratio for three C18 high performance liquid chromatographic columns.

    PubMed

    Caiali, Edvin; David, Victor; Aboul-Enein, Hassan Y; Moldoveanu, Serban C

    2016-02-26

    For a chromatographic column, phase ratio Φ is defined as the ratio between the volume of the stationary phase Vst and the void volume of the column V0, and it is an important parameter characterizing the HPLC process. Although apparently simple, the evaluation of Φ presents difficulties because there is no sharp boundary between the mobile phase and the stationary phase. In addition, the boundary depends not only on the nature of the stationary phase, but also on the composition of the mobile phase. In spite of its importance, phase ratio is seldom reported for commercially available HPLC columns and the data typically provided by the vendors about the columns do not provide key information that would allow the calculation of Φ based on Vst and V0 values. A different procedure for the evaluation of Φ is based on the following formula: log k'j=a log Kow,j+log Φ, where k'j is the retention factor for a compound j that must be a hydrocarbon, Kow,j is the octanol/water partition coefficient, and a is a proportionality constant. Present study describes the experimental evaluation of Φ based on the measurement of k'j for the compounds in the homologous series between benzene and butylbenzene for three C18 columns: Gemini C18, Luna C18 both with 5 μm particles, and a Chromolith Performance RP-18. The evaluation was performed for two mobile phase systems at different proportions of methanol/water and acetonitrile/water. The octanol/water partition coefficients were obtained from the literature. The results obtained in the study provide further support for the new procedure for the evaluation of phase ratio. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A mass-balance code for the quantitative interpretation of fluid column profiles in ground-water studies

    NASA Astrophysics Data System (ADS)

    Paillet, Frederick

    2012-08-01

    A simple mass-balance code allows effective modeling of conventional fluid column resistivity logs in dilution tests involving column replacement with either distilled water or dilute brine. Modeling a series of column profiles where the inflowing formation water introduces water quality interfaces propagating along the borehole gives effective estimates of the rate of borehole flow. Application of the dilution model yields estimates of borehole flow rates that agree with measurements made with the heat-pulse flowmeter under ambient and pumping conditions. Model dilution experiments are used to demonstrate how dilution logging can extend the range of borehole flow measurement at least an order of magnitude beyond that achieved with flowmeters. However, dilution logging has the same dynamic range limitation encountered with flowmeters because it is difficult to detect and characterize flow zones that contribute a small fraction of total flow when that contribution is superimposed on a larger flow. When the smaller contribution is located below the primary zone, ambient downflow may disguise the zone if pumping is not strong enough to reverse the outflow. This situation can be addressed by increased pumping. But this is likely to make the moveout of water quality interfaces too fast to measure in the upper part of the borehole, so that a combination of flowmeter and dilution method may be more appropriate. Numerical experiments show that the expected weak horizontal flow across the borehole at conductive zones would be almost impossible to recognize if any ambient vertical flow is present. In situations where natural water quality differences occur such as flowing boreholes or injection experiments, the simple mass-balance code can be used to quantitatively model the evolution of fluid column logs. Otherwise, dilution experiments can be combined with high-resolution flowmeter profiles to obtain results not attainable using either method alone.

  20. QSAR models for predicting octanol/water and organic carbon/water partition coefficients of polychlorinated biphenyls.

    PubMed

    Yu, S; Gao, S; Gan, Y; Zhang, Y; Ruan, X; Wang, Y; Yang, L; Shi, J

    2016-04-01

    Quantitative structure-property relationship modelling can be a valuable alternative method to replace or reduce experimental testing. In particular, some endpoints such as octanol-water (KOW) and organic carbon-water (KOC) partition coefficients of polychlorinated biphenyls (PCBs) are easier to predict and various models have been already developed. In this paper, two different methods, which are multiple linear regression based on the descriptors generated using Dragon software and hologram quantitative structure-activity relationships, were employed to predict suspended particulate matter (SPM) derived log KOC and generator column, shake flask and slow stirring method derived log KOW values of 209 PCBs. The predictive ability of the derived models was validated using a test set. The performances of all these models were compared with EPI Suite™ software. The results indicated that the proposed models were robust and satisfactory, and could provide feasible and promising tools for the rapid assessment of the SPM derived log KOC and generator column, shake flask and slow stirring method derived log KOW values of PCBs.

  1. Impact of NO2 horizontal heterogeneity on tropospheric NO2 vertical columns retrieved from satellite, multi-axis differential optical absorption spectroscopy, and in situ measurements

    NASA Astrophysics Data System (ADS)

    Mendolia, D.; D'Souza, R. J. C.; Evans, G. J.; Brook, J.

    2013-01-01

    Tropospheric NO2 vertical column densities were retrieved for the first time in Toronto, Canada using three methods of differing spatial scales. Remotely-sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities derived using a pair of chemiluminescence monitors situated 0.01 and 0.5 km above ground level. The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson R ranging from 0.68 to 0.79), but the in situ vertical column densities were 27% to 55% greater than the remotely-sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely-sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely-sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased confidence in the validity of the values provided by each of the methods.

  2. Modelling by partial least squares the relationship between the HPLC mobile phases and analytes on phenyl column.

    PubMed

    Markopoulou, Catherine K; Kouskoura, Maria G; Koundourellis, John E

    2011-06-01

    Twenty-five descriptors and 61 structurally different analytes have been used on a partial least squares (PLS) to latent structure technique in order to study chromatographically their interaction mechanism on a phenyl column. According to the model, 240 different retention times of the analytes, expressed as Y variable (log k), at different % MeOH mobile-phase concentrations have been correlated with their theoretical most important structural or molecular descriptors. The goodness-of-fit was estimated by the coefficient of multiple determinations r(2) (0.919), and the root mean square error of estimation (RMSEE=0.1283) values with a predictive ability (Q(2)) of 0.901. The model was further validated using cross-validation (CV), validated by 20 response permutations r(2) (0.0, 0.0146), Q(2) (0.0, -0.136) and validated by external prediction. The contribution of certain mechanism interactions between the analytes, the mobile phase and the column, proportional or counterbalancing is also studied. Trying to evaluate the influence on Y of every variable in a PLS model, VIP (variables importance in the projection) plot provides evidence that lipophilicity (expressed as Log D, Log P), polarizability, refractivity and the eluting power of the mobile phase are dominant in the retention mechanism on a phenyl column. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Understanding star formation in molecular clouds. I. Effects of line-of-sight contamination on the column density structure

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Ossenkopf, V.; Csengeri, T.; Klessen, R. S.; Federrath, C.; Tremblin, P.; Girichidis, P.; Bontemps, S.; André, Ph.

    2015-03-01

    Column-density maps of molecular clouds are one of the most important observables in the context of molecular cloud- and star-formation (SF) studies. With the Herschel satellite it is now possible to precisely determine the column density from dust emission, which is the best tracer of the bulk of material in molecular clouds. However, line-of-sight (LOS) contamination from fore- or background clouds can lead to overestimating the dust emission of molecular clouds, in particular for distant clouds. This implies values that are too high for column density and mass, which can potentially lead to an incorrect physical interpretation of the column density probability distribution function (PDF). In this paper, we use observations and simulations to demonstrate how LOS contamination affects the PDF. We apply a first-order approximation (removing a constant level) to the molecular clouds of Auriga and Maddalena (low-mass star-forming), and Carina and NGC 3603 (both high-mass SF regions). In perfect agreement with the simulations, we find that the PDFs become broader, the peak shifts to lower column densities, and the power-law tail of the PDF for higher column densities flattens after correction. All corrected PDFs have a lognormal part for low column densities with a peak at Av ~ 2 mag, a deviation point (DP) from the lognormal at Av(DP) ~ 4-5 mag, and a power-law tail for higher column densities. Assuming an equivalent spherical density distribution ρ ∝ r- α, the slopes of the power-law tails correspond to αPDF = 1.8, 1.75, and 2.5 for Auriga, Carina, and NGC 3603. These numbers agree within the uncertainties with the values of α ≈ 1.5,1.8, and 2.5 determined from the slope γ (with α = 1-γ) obtained from the radial column density profiles (N ∝ rγ). While α ~ 1.5-2 is consistent with a structure dominated by collapse (local free-fall collapse of individual cores and clumps and global collapse), the higher value of α > 2 for NGC 3603 requires a physical process that leads to additional compression (e.g., expanding ionization fronts). From the small sample of our study, we find that clouds forming only low-mass stars and those also forming high-mass stars have slightly different values for their average column density (1.8 × 1021 cm-2 vs. 3.0 × 1021 cm-2), and they display differences in the overall column density structure. Massive clouds assemble more gas in smaller cloud volumes than low-mass SF ones. However, for both cloud types, the transition of the PDF from lognormal shape into power-law tail is found at the same column density (at Av ~ 4-5 mag). Low-mass and high-mass SF clouds then have the same low column density distribution, most likely dominated by supersonic turbulence. At higher column densities, collapse and external pressure can form the power-law tail. The relative importance of the twoprocesses can vary between clouds and thus lead to the observed differences in PDF and column density structure. Appendices are available in electronic form at http://www.aanda.orgHerschel maps as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A79

  4. Accuracy and borehole influences in pulsed neutron gamma density logging while drilling.

    PubMed

    Yu, Huawei; Sun, Jianmeng; Wang, Jiaxin; Gardner, Robin P

    2011-09-01

    A new pulsed neutron gamma density (NGD) logging has been developed to replace radioactive chemical sources in oil logging tools. The present paper describes studies of near and far density measurement accuracy of NGD logging at two spacings and the borehole influences using Monte-Carlo simulation. The results show that the accuracy of near density is not as good as far density. It is difficult to correct this for borehole effects by using conventional methods because both near and far density measurement is significantly sensitive to standoffs and mud properties. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. 75 FR 4728 - Occupational Injury and Illness Recording and Reporting Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... and aggregate results available for both research and for public information. BLS only publishes... stores, and shipyards, the information from that column would have provided baseline and post... absence of the column, a person interested in MSD incidence must study every entry on the log to determine...

  6. Analyzing Web Server Logs to Improve a Site's Usage. The Systems Librarian

    ERIC Educational Resources Information Center

    Breeding, Marshall

    2005-01-01

    This column describes ways to streamline and optimize how a Web site works in order to improve both its usability and its visibility. The author explains how to analyze logs and other system data to measure the effectiveness of the Web site design and search engine.

  7. Correlations between chromatographic parameters and bioactivity predictors of potential herbicides.

    PubMed

    Janicka, Małgorzata

    2014-08-01

    Different liquid chromatography techniques, including reversed-phase liquid chromatography on Purosphere RP-18e, IAM.PC.DD2 and Cosmosil Cholester columns and micellar liqud chromatography with a Purosphere RP-8e column and using buffered sodium dodecyl sulfate-acetonitrile as the mobile phase, were applied to study the lipophilic properties of 15 newly synthesized phenoxyacetic and carbamic acid derivatives, which are potential herbicides. Chromatographic lipophilicity descriptors were used to extrapolate log k parameters (log kw and log km) and log k values. Partitioning lipophilicity descriptors, i.e., log P coefficients in an n-octanol-water system, were computed from the molecular structures of the tested compounds. Bioactivity descriptors, including partition coefficients in a water-plant cuticle system and water-human serum albumin and coefficients for human skin partition and permeation were calculated in silico by ACD/ADME software using the linear solvation energy relationship of Abraham. Principal component analysis was applied to describe similarities between various chromatographic and partitioning lipophilicities. Highly significant, predictive linear relationships were found between chromatographic parameters and bioactivity descriptors. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Analysis of Mexico City urban air pollution using nitrogen dioxide column density measurements from UV/Visible spectroscopy

    NASA Astrophysics Data System (ADS)

    Garcia Payne, D. G.; Grutter, M.; Melamed, M. L.

    2010-12-01

    The differential optical absorption spectroscopy method (DOAS) was used to get column densities of nitrogen dioxide (NO2) from the analysis of zenith sky UV/visible spectra. Since the optical path length provides critical information in interpreting NO2 column densities, in conjunction with NO2 column densities, the oxygen dimer (O4) column density was retrieved to give insight into the optical path length. We report observations of year round NO2 and O4 column densities (from august 2009 to september 2010) from which the mean seasonal levels and the daily evolution, as well as the occurrence of elevated pollution episodes are examined. Surface nitric oxide (NO) and NO2 from the local monitoring network, as well as wind data and the vertical aerosol density from continuous Lidar measurements are used in the analysis to investigate specific events in the context of local emissions from vehicular traffic, photochemical production and transport from industrial emissions. The NO2 column density measurements will enhance the understanding Mexico City urban air pollution. Recent research has begun to unravel the complexity of the air pollution problem in Mexico City and its effects not only locally but on a regional and global scale as well.

  9. STUDYING FAINT ULTRA-HARD X-RAY EMISSION FROM AGN IN GOALS LIRGS WITH SWIFT/BAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koss, Michael; Casey, Caitlin M.; Mushotzky, Richard

    2013-03-10

    We present the first analysis of the all-sky Swift Burst Alert Telescope (BAT) ultra-hard X-ray (14-195 keV) data for a targeted list of objects. We find that the BAT data can be studied at three-times-fainter limits than in previous blind detection catalogs based on prior knowledge of source positions and using smaller energy ranges for source detection. We determine the active galactic nucleus (AGN) fraction in 134 nearby (z < 0.05) luminous infrared galaxies (LIRGs) from the GOALS sample. We find that LIRGs have a higher detection frequency than galaxies matched in stellar mass and redshift at 14-195 keV andmore » 24-35 keV. In agreement with work at other wavelengths, the AGN detection fraction increases strongly at high IR luminosity with half of the high-luminosity LIRGs (50%, 6/12, log L{sub IR}/L{sub Sun} > 11.8) detected. The BAT AGN classification shows 97% (37/38) agreement with Chandra and XMM-Newton AGN classification using hardness ratios or detection of an iron K{alpha} line. This confirms our statistical analysis and supports the use of the Swift/BAT all-sky survey to study fainter populations of any category of sources in the ultra-hard X-ray band. BAT AGNs in LIRGs tend to show higher column densities with 40% {+-} 9% showing 14-195 keV/2-10 keV hardness flux ratios suggestive of high or Compton-thick column densities (log N{sub H} > 24 cm{sup -2}), compared to only 12% {+-} 5% of non-LIRG BAT AGNs. We also find that using specific energy ranges of the BAT detector can yield additional sources over total band detections with 24% (5/21) of detections in LIRGs at 24-35 keV not detected at 14-195 keV.« less

  10. Discovery of OH Absorption from a Galaxy at z ∼ 0.05: Implications for Large Surveys with SKA Pathfinders

    NASA Astrophysics Data System (ADS)

    Gupta, N.; Momjian, E.; Srianand, R.; Petitjean, P.; Noterdaeme, P.; Gyanchandani, D.; Sharma, R.; Kulkarni, S.

    2018-06-01

    We present the first detection of OH absorption in diffuse gas at z > 0, along with another eight stringent limits on OH column densities for cold atomic gas in galaxies at 0 < z < 0.4. The absorbing gas detected toward Q0248+430 (z q = 1.313) originates from a tidal tail emanating from a highly star-forming galaxy G0248+430 (z g = 0.0519) at an impact parameter of 15 kpc. The measured column density is N(OH) = (6.3 ± 0.8) × 1013 ≤ft(\\tfrac{{T}ex}}{3.5}\\right)≤ft(\\tfrac{1.0}{{f}cOH}}\\right) cm‑2, where {f}cOH} and T ex are the covering factor and the excitation temperature of the absorbing gas, respectively. In our Galaxy, the column densities of OH in diffuse clouds are of the order of N(OH) ∼ 1013–14 cm‑2. From the incidence (number per unit redshift; n 21) of H I 21 cm absorbers at 0.5 < z < 1 and assuming no redshift evolution, we estimate the incidence of OH absorbers (with log N(OH) > 13.6) to be n OH = {0.008}-0.008+0.018 at z ∼ 0.1. Based on this we expect to detect {10}-10+20 such OH absorbers from the MeerKAT Absorption Line Survey (MALS). Using H I 21 cm and OH 1667 MHz absorption lines detected toward Q0248+430, we estimate (ΔF/F) = (5.2 ± 4.5) × 10‑6, where F\\equiv {g}p{({α }2/μ )}1.57, α is the fine structure constant, μ is the electron–proton mass ratio, and g p is the proton gyromagnetic ratio. This corresponds to Δα/α(z = 0.0519) = (1.7 ± 1.4) × 10‑6, which is among the stringent constraints on the fractional variation of α.

  11. Far Ultraviolet Spectroscopy of the Intergalactic and Interstellar Absorption Toward 3C 273

    NASA Technical Reports Server (NTRS)

    Sembach, Kenneth R.; Howk, J. Christopher; Savage, Blair D.; Shull, J. Michael; Oegerle, William R.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present Far Ultraviolet Spectroscopic Explorer observations of the molecular, neutral atomic, weakly ionized, and highly ionized components of the interstellar and intergalactic material toward the quasar 3C273. We identify Ly-beta absorption in eight of the known intergalactic Ly-alpha absorbers along the sight line with the rest-frame equivalent widths W(sub r)(Ly-alpha) > 50 micro-angstroms. Refined estimates of the H(I) column densities and Doppler parameters (b) of the clouds are presented. We find a range of b = 16-46 km/s. We detect multiple H(I) lines (Ly-beta - Ly-theta) in the 1590 km/s Virgo absorber and estimate logN(H(I)) = 15.85 +/- 0.10, ten times more H(I) than all of the other absorbers along the sight line combined. The Doppler width of this absorber, b = 16 km/s, implies T < 15,000 K. We detect O(VI) absorption at 1015 km/s at the 2-3(sigma) level that may be associated with hot, X-ray emitting gas in the Virgo Cluster. We detect weak C(III) and O(VI) absorption in the IGM at z=0.12007; this absorber is predominantly ionized and has N(H+)/N(H(I)) > 4000/Z, where Z is the metallicity. Strong Galactic interstellar O(VI) is present between -100 and +100 km/s with an additional high-velocity wing containing about 13% of the total O(VI) between +100 and +240 km/s. The Galactic O(VI), N(V), and C(IV) lines have similar shapes, with roughly constant ratios across the -100 to +100 km/s velocity range. The high velocity O(VI) wing is not detected in other species. Much of the interstellar high ion absorption probably occurs within a highly fragmented medium within the Loop IV remnant or in the outer cavity walls of the remnant. Multiple hot gas production mechanisms are required. The broad O(VI) absorption wing likely traces the expulsion of hot gas out of the Galactic disk into the halo. A flux limit of 5.4 x 10(epx -16) erg/sq cm/s on the amount of diffuse O(VI) emission present = 3.5' off the 3C273 sight line combined with the observed O(VI) column density toward 3C273, logN O(VI) = 14.73 +/- 0.04, implies n(sub e) < 0.02/cubic cm and P/k < 11,500/cubic cm for an assumed temperature of 3 x 10(exp 5) K. The elemental abundances in the neutral and weakly-ionized interstellar clouds are similar to those found for other halo clouds. The warm neutral and warm ionized clouds along the sight line have similar dust-phase abundances, implying that the properties of the dust grains in the two types of clouds are similar. Interstellar H2 absorption is present at positive velocities at a level of logN(H2) = 15.71, but is very weak at the velocities of the main column density concentration along the sight line observed in H(I) 21 cm emission.

  12. THE COLUMN DENSITY DISTRIBUTION AND CONTINUUM OPACITY OF THE INTERGALACTIC AND CIRCUMGALACTIC MEDIUM AT REDSHIFT (z) = 2.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudie, Gwen C.; Steidel, Charles C.; Shapley, Alice E.

    2013-06-01

    We present new high-precision measurements of the opacity of the intergalactic and circumgalactic medium (IGM; CGM) at (z) = 2.4. Using Voigt profile fits to the full Ly{alpha} and Ly{beta} forests in 15 high-resolution high-S/N spectra of hyperluminous QSOs, we make the first statistically robust measurement of the frequency of absorbers with H I column densities 14{approx}< log (N{sub H{sub I}}/cm{sup -2}){approx}<17.2. We also present the first measurements of the frequency distribution of H I absorbers in the volume surrounding high-z galaxies (the CGM, 300 pkpc), finding that the incidence of absorbers in the CGM is much higher than inmore » the IGM. In agreement with Rudie et al., we find that there are fractionally more high-N{sub H{sub I}} absorbers than low-N{sub H{sub I}} absorbers in the CGM compared to the IGM, leading to a shallower power law fit to the CGM frequency distribution. We use these new measurements to calculate the total opacity of the IGM and CGM to hydrogen-ionizing photons, finding significantly higher opacity than most previous studies, especially from absorbers with log (N{sub H{sub I}}/cm{sup -2}) < 17.2. Reproducing the opacity measured in our data as well as the incidence of absorbers with log (N{sub H{sub I}}/cm{sup -2})>17.2 requires a broken power law parameterization of the frequency distribution with a break near N{sub H{sub I}} Almost-Equal-To 10{sup 15} cm{sup -2}. We compute new estimates of the mean free path ({lambda}{sub mfp}) to hydrogen-ionizing photons at z{sub em} = 2.4, finding {lambda}{sub mfp} = 147 {+-} 15 Mpc when considering only IGM opacity. If instead, we consider photons emanating from a high-z star-forming galaxy and account for the local excess opacity due to the surrounding CGM of the galaxy itself, the mean free path is reduced to {lambda}{sub mfp} = 121 {+-} 15 Mpc. These {lambda}{sub mfp} measurements are smaller than recent estimates and should inform future studies of the metagalactic UV background and of ionizing sources at z Almost-Equal-To 2-3.« less

  13. The removal of thermo-tolerant coliform bacteria by immobilized waste stabilization pond algae.

    PubMed

    Pearson, H W; Marcon, A E; Melo, H N

    2011-01-01

    This study investigated the potential of laboratory- scale columns of immobilized micro-algae to disinfect effluents using thermo-tolerant coliforms (TTC) as a model system. Cells of a Chlorella species isolated from a waste stabilization pond complex in Northeast Brazil were immobilized in calcium alginate, packed into glass columns and incubated in contact with TTC suspensions for up to 24 hours. Five to six log removals of TTC were achieved in 6 hours and 11 log removals in 12 hours contact time. The results were similar under artificial light and shaded sunlight. However little or no TTC removal occurred in the light in columns of alginate beads without immobilized algae present or when the immobilized algae were incubated in the dark suggesting that the presence of both algae and light were necessary for TTC decay. There was a positive correlation between K(b) values for TTC and increasing pH in the effluent from the immobilized algal columns within the range pH 7.2 and 8.9. The potential of immobilized algal technology for wastewater disinfection may warrant further investigation.

  14. The alpha Centauri Line of Sight: D/H Ratio, Physical Properties of Local Interstellar Gas, and Measurement of Heated Hydrogen (The 'Hydrogen Wall') Near the Heliopause

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.; Wood, Brian E.

    1996-05-01

    We analyze high-resolution spectra of the nearby (1.34 pc) stars alpha Cen A (G2 V) and alpha Cen B (K1 V), which were obtained with the Goddard High Resolution Spectrograph on the Hubble Space Telescope. The observations consist of echelle spectra of the Mg II 2800 A and Fe II 2599 A resonance lines and the Lyman-alpha lines of hydrogen and deuterium. The interstellar gas has a velocity (v = - 18.0 +/- 0.2 km/s) consistent with the local flow vector proposed for this line of sight by Lailement & Berlin (1992). The temperature and nonthermal velocity inferred from the Fe II, Mg II, and D I line profiles are T = 5400 +/- 500 K and xi = 1.20 +/- 0.25 km/s, respectively. However, single-component fits to the H I Lyman-alpha lines yield a Doppler parameter (bHI = 11.80 km/s) that implies a significantly warmer temperature of 8350 K, and the velocity of the H I absorption (v = - 15.8 +/- 0.2 km/s) is redshifted by about 2.2 km/s with respect to the Fe II, Mg II, and D I lines. The one-component model of the interstellar gas suggests natural logarithm N base HI = 18.03 +/- 0.01 and D/H = (5.7 +/- 0.2) x 10-6 . These parameters lead to a good fit to the observed spectra, but this model does not explain the higher temperature and redshift of H I relative to the other interstellar lines. The most sensible way to resolve the discrepancy between H(I) and the other lines is to add a second absorption component to the H(I) lines. This second component is hotter (T approx. equals 30,000 K), is redshifted relative to the primary component by 2-4 km/s, and has a column density too low to be detected in the Fe(II), Mg(II), and D(I) lines. We propose that the gas responsible for this component is located near the heliopause, consisting of the heated H I gas from the interstellar medium that is compressed by the solar wind. This so-called 'hydrogen wall' is predicted by recent multifluid gasdynamical models of the interstellar gas and solar wind interaction. Our data provide the first measurements of the temperature and column density of H(I) in the hydrogen wall. After considering the effects that a corresponding hydrogen wall around alpha Cen would have on our analysis, our best estimates for the parameters of the solar hydrogen wall are natural log N(2)(H(I)) = 14.74 +/- 0.24, b(2)(H(I)) = 21.9 +/- 1.7 km/s (corresponding to T = 29,000 +/- 5000 K), and v(2)(H(I)) greater than -16km/s. Unfortunately, the existence of this heated H(I) reduces our ability to compute the H(I) column density of the interstellar medium accurately because, with slight alterations to our assumed stellar Lyman-alpha profiles, we discovered that acceptable two-component fits also exist with natural log N(H(I))approx. 17.6. We, therefore, quote large error bars for the H I column density along the alpha Cen line of sight, natural log N(H(I)) = 17.80 +/- 0.30. For this range in N(H(I)), n(H(I)) = 0.15 /cu.cm (+/- a factor of 2) and D/H = (0.5-1.9) x 10-5. This is the first direct measurement of the H(I) density in a local cloud and allows us to predict the distance from the Sun to the edge of the local cloud along various lines of sight. This range in D/H is consistent with the value D/H = 1.6 x 10-5 previously derived for the Capella and Procyon lines of sight. We cannot tell whether D/H ratio varies or is constant in the local interstellar medium, but we do find that the D(I)/Mg(II) ratio for the alpha Cen line of sight is about 4 times smaller than for the Capella and Procyon lines of sight. Therefore, either D/H or the Mg depletion varies significantly over distance scales of only a few parsecs.

  15. Variability in the x-ray emission of H0538+608: An unusual AM Her-type cataclysmic variable. Thesis, Final Report

    NASA Technical Reports Server (NTRS)

    Catelli, Jennifer

    1992-01-01

    The x-ray emissions of AM Herculis-type object H0538+608 were observed using the ROSAT satellite. Evidence was found for a highly varying soft x-ray component with a much lower intensity than is typical for this class. The spectrum was well fit by a thermal bremsstrahlung model (exponential plus gaunt factor) of 35 +/- 5 KeV plus a 0.05 +/- 0.01 KeV blackbody component, with absorption by interstellar medium with a neutral hydrogen column density of log N(sub H) (atoms/sq cm) = 20.2. No obvious periodic variations were found. There was very little correlation between the hard and soft x-ray bands.

  16. Effect of n-octanol in the mobile phase on lipophilicity determination by reversed-phase high-performance liquid chromatography on a modified silica column.

    PubMed

    Benhaim, Deborah; Grushka, Eli

    2008-10-31

    In this study, we show that the addition of n-octanol to the mobile phase improves the chromatographic determination of lipophilicity parameters of xenobiotics (neutral solutes, acidic, neutral and basic drugs) on a Phenomenex Gemini C18 column. The Gemini C18 column is a new generation hybrid silica-based column with an extended pH range capability. The wide pH range (2-12) afforded the examination of basic drugs and acidic drugs in their neutral form. Extrapolated retention factor values, [Formula: see text] , obtained on the above column with the n-octanol-modified mobile phase were very well correlated (1:1 correlation) with literature values of logP (logarithm of the partition coefficient in n-octanol/water) of neutral compounds and neutral drugs (69). In addition, we found good linear correlations between measured [Formula: see text] values and calculated values of the logarithm of the distribution coefficient at pH 7.0 (logD(7.0)) for ionized acidic and basic drugs (r(2)=0.95). The Gemini C18 phase was characterized using the linear solvation energy relationship (LSER) model of Abraham. The LSER system constants for the column were compared to the LSER constants of n-octanol/water extraction system using the Tanaka radar plots. The comparison shows that the two methods are nearly equivalent.

  17. Joint fit of Warm Absorbers in COS and HETG spectra of NGC 3783

    NASA Astrophysics Data System (ADS)

    Fu, Xiao-Dan; Zhang, Shui-Nai; Sun, Wei; Niu, Shu; Ji, Li

    2017-09-01

    Warm Absorbers (WAs), as an important form of AGN outflows, show absorption in both the UV and X-ray bands. Using XSTAR generated photoionization models, for the first time we present a joint fit to the simultaneous observations of HST/COS and Chandra/HETG on NGC 3783. A total of five WAs explain well all absorption features from the AGN outflows, which are spread over a wide range of parameters: ionization parameter logξ from 0.6 to 3.8, column density log {N}{{H}} from 19.5 to 22.3 cm-2, velocity v from 380 to 1060 km s-1, and covering factor from 0.33 to 0.75. Not all the five WAs are consistent in pressure. Two of them are likely different parts of the same absorbing gas, and two of the other WAs may be smaller discrete clouds that are blown out from the inner region of the torus at different periods. The five WAs suggest a total mass outflowing rate within the range of 0.22-4.1 solar mass per year.

  18. Field test results--a new logging tool for formation density and lithology measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borai, A.M.; Muhsin, M.A.

    1983-03-01

    The formation porosity can be determined from borehole density measurements if the density of the rock is known. Generally, this is determined from the lithology. The Litho-Density Tool, LDT, provides an improved measurement of the formation density and a new measurement of lithology. Field tests of LDT proved that the tool could be run alone in a wide range of formations to provide porosity values comparable to those obtained by running a density log combined with a neutron log.

  19. EFFECTS OF ULTRAVIOLET BACKGROUND AND LOCAL STELLAR RADIATION ON THE H I COLUMN DENSITY DISTRIBUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagamine, Kentaro; Choi, Jun-Hwan; Yajima, Hidenobu, E-mail: kn@physics.unlv.ed

    We study the impact of ultraviolet background (UVB) radiation field and the local stellar radiation on the H I column density distribution f(N{sub H{sub I}}) of damped Ly{alpha} systems (DLAs) and sub-DLAs at z = 3 using cosmological smoothed particle hydrodynamics simulations. We find that, in the previous simulations with an optically thin approximation, the UVB was sinking into the H I cloud too deeply, and therefore we underestimated the f(N{sub H{sub I}}) at 19 < log N{sub H{sub I}} < 21.2 compared to the observations. If the UVB is shut off in the high-density regions with n{sub gas}>6 xmore » 10{sup -3} cm{sup -3}, then we reproduce the observed f(N{sub H{sub I}}) at z = 3 very well. We also investigate the effect of local stellar radiation by postprocessing our simulation with a radiative transfer code and find that the local stellar radiation does not change the f(N{sub H{sub I}}) very much. Our results show that the shape of f(N{sub H{sub I}}) is determined primarily by the UVB with a much weaker effect by the local stellar radiation and that the optically thin approximation often used in cosmological simulation is inadequate to properly treat the ionization structure of neutral gas in and out of DLAs. Our result also indicates that the DLA gas is closely related to the transition region from optically thick neutral gas to optically thin ionized gas within dark matter halos.« less

  20. A method of estimating log weights.

    Treesearch

    Charles N. Mann; Hilton H. Lysons

    1972-01-01

    This paper presents a practical method of estimating the weights of logs before they are yarded. Knowledge of log weights is required to achieve optimum loading of modern yarding equipment. Truckloads of logs are weighed and measured to obtain a local density index (pounds per cubic foot) for a species of logs. The density index is then used to estimate the weights of...

  1. Improving Standoff Bombing Capacity in the Face of Anti-Access Area Denial Threats

    DTIC Science & Technology

    2015-09-01

    Make a charitable contribution Limited Electronic Distribution Rights This document and trademark(s) contained herein are protected by law as...of the RAND Corporation. CHILDREN AND FAMILIES EDUCATION AND THE ARTS ENERGY AND ENVIRONMENT HEALTH AND HEALTH CARE INFRASTRUCTURE AND...Variables With (Left Column) and Without ( Right Column) Natural Log Transformation

  2. Large scale IRAM 30 m CO-observations in the giant molecular cloud complex W43

    NASA Astrophysics Data System (ADS)

    Carlhoff, P.; Nguyen Luong, Q.; Schilke, P.; Motte, F.; Schneider, N.; Beuther, H.; Bontemps, S.; Heitsch, F.; Hill, T.; Kramer, C.; Ossenkopf, V.; Schuller, F.; Simon, R.; Wyrowski, F.

    2013-12-01

    We aim to fully describe the distribution and location of dense molecular clouds in the giant molecular cloud complex W43. It was previously identified as one of the most massive star-forming regions in our Galaxy. To trace the moderately dense molecular clouds in the W43 region, we initiated W43-HERO, a large program using the IRAM 30 m telescope, which covers a wide dynamic range of scales from 0.3 to 140 pc. We obtained on-the-fly-maps in 13CO (2-1) and C18O (2-1) with a high spectral resolution of 0.1 km s-1 and a spatial resolution of 12''. These maps cover an area of ~1.5 square degrees and include the two main clouds of W43 and the lower density gas surrounding them. A comparison to Galactic models and previous distance calculations confirms the location of W43 near the tangential point of the Scutum arm at approximately 6 kpc from the Sun. The resulting intensity cubes of the observed region are separated into subcubes, which are centered on single clouds and then analyzed in detail. The optical depth, excitation temperature, and H2 column density maps are derived out of the 13CO and C18O data. These results are then compared to those derived from Herschel dust maps. The mass of a typical cloud is several 104 M⊙ while the total mass in the dense molecular gas (>102 cm-3) in W43 is found to be ~1.9 × 106 M⊙. Probability distribution functions obtained from column density maps derived from molecular line data and Herschel imaging show a log-normal distribution for low column densities and a power-law tail for high densities. A flatter slope for the molecular line data probability distribution function may imply that those selectively show the gravitationally collapsing gas. Appendices are available in electronic form at http://www.aanda.orgThe final datacubes (13CO and C18O) for the entire survey are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A24

  3. Upland log volumes and conifer establishment patterns in two northern, upland old-growth redwood forests, a brief synopsis

    Treesearch

    Daniel J. Porter; John O. Sawyer

    2007-01-01

    We characterized the volume, weight and top surface area of naturally fallen logs in an old-growth redwood forest, and quantified conifer recruit densities on these logs and on the surrounding forest floor. We report significantly greater conifer recruit densities on log substrates as compared to the forest floor. Log substrate availability was calculated on a per...

  4. A TWO-PHASE LOW-VELOCITY OUTFLOW IN THE SEYFERT 1 GALAXY Ark 564

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, A.; Mathur, S.; Krongold, Y.

    2013-05-10

    The Seyfert 1 galaxy Ark 564 was observed with Chandra high-energy transmission gratings for 250 ks. We present the high-resolution X-ray spectrum that shows several associated absorption lines. The photoionization model requires two warm absorbers (WAs) with two different ionization states (log U = 0.39 {+-} 0.03 and log U = -0.99 {+-} 0.13), both with moderate outflow velocities ({approx}100 km s{sup -1}) and relatively low line of sight column densities (log N{sub H} = 20.94 and 20.11 cm{sup -2}). The high-ionization phase produces absorption lines of O VII, O VIII, Ne IX, Ne X, Mg XI, Fe XVII, andmore » Fe XVIII, while the low-ionization phase produces lines at lower energies (O VIand O VII). The pressure-temperature equilibrium curve for the Ark 564 absorber does not have the typical ''S'' shape, even if the metallicity is super-solar; as a result, the two WA phases do not appear to be in pressure balance. This suggests that the continuum incident on the absorbing gas is perhaps different from the observed continuum. We also estimated the mass outflow rate and the associated kinetic energy and find it to be at most 0.009% of the bolometric luminosity of Ark 564. Thus, it is highly unlikely that these outflows provide significant feedback required by the galaxy formation models.« less

  5. Comparison of tropospheric NO2 vertical columns in an urban environment using satellite, multi-axis differential optical absorption spectroscopy, and in situ measurements

    NASA Astrophysics Data System (ADS)

    Mendolia, D.; D'Souza, R. J. C.; Evans, G. J.; Brook, J.

    2013-10-01

    Tropospheric NO2 vertical column densities have been retrieved and compared for the first time in Toronto, Canada, using three methods of differing spatial scales. Remotely sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities estimated using a pair of chemiluminescence monitors situated 0.01 and 0.5 km a.g.l. (above ground level). The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by an average of 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. The monthly averaged ratio of the NO2 concentration at 0.5 to 0.01 km varied seasonally, and exhibited a negative linear dependence on the monthly average temperature, with Pearson's R = 0.83. During the coldest month, February, this ratio was 0.52 ± 0.04, while during the warmest month, July, this ratio was 0.34 ± 0.04, illustrating that NO2 is not well mixed within 0.5 km above ground level. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson's R value ranging from 0.72 to 0.81), but the in situ vertical column densities were 52 to 58% greater than the remotely sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased confidence in the validity of the values provided by each measurement technique.

  6. Procedural revision to the use-dilution methods: establishment of maximum log density value for test microbes on inoculated carriers.

    PubMed

    Tomasino, Stephen F; Pines, Rebecca M; Hamilton, Gordon C

    2012-01-01

    (Staphylococcus aureus) and 964.02 (Pseudomonas aeruginosa), were revised in 2009 to include a standardized procedure to measure the log density of the test microbe and to establish a minimum mean log density value of 6.0 (geometric mean of 1.0 x 10(6) CFU/carrier) to qualify the test results. This report proposes setting a maximum mean log density value of 7.0 (geometric mean of 1.0 x 10(7) CFU/carrier) to further standardize the procedure. The minimum value was based on carrier count data collected by four laboratories over an 8-year period (1999-2006). The data have been updated to include an additional 4 years' worth of data (2006-2010) collected by the same laboratories. A total of 512 tests were conducted on products bearing claims against P. aeruginosa and S. aureus with and without an organic soil load (OSL) added to the inoculum (as specified on the product label claim). Six carriers were assayed in each test, for a total of 3072 carriers. Mean log densities for each of the 512 tests were at least 6.0. With the exception of two tests, one for P. aeruginosa without OSL and one for S. aureus with OSL, the mean log densities did not exceed 7.5 (geometric mean of 3.2 x 10(7) CFU/carrier). Across microbes and OSL treatments, the mean log density (+/- SEM) was 6.80 (+/- 0.07) per carrier (a geometric mean of 6.32 x 10(6) CFUlcarrier) and acceptable repeatability (0.28) and reproducibility (0.31) SDs were exhibited. A maximum mean log density per carrier of 7.0 is being proposed here as a validity requirement for S. aureus and P. aeruginosa. A modification to the method to allow for dilution of the final test cultures to achieve carrier counts within 6.0-7.0 logs is also being proposed. Establishing a range of 6.0-7.0 logs will help improve the reliability of the method and should allow for more consistent results within and among laboratories.

  7. Interstellar C2, CH, and CN in translucent molecular clouds

    NASA Technical Reports Server (NTRS)

    Black, John H.; Van Dishoeck, Ewine F.

    1989-01-01

    Optical absorption-line techniques have been applied to the study of a number of translucent molecular clouds in which the total column densities are large enough that substantial molecular abundances can be maintained. Results are presented for a survey of absorption lines of interstellar C2, CH, and CN. Detections of CN through the A 2Pi-X 2Sigma(+) (1,O) and (2,O) bands of the red system are reported and compared with observations of the violet system for one line of sight. The population distributions in C2 provide diagnostic information on temperature and density. The measured column densities of the three species can be used to test details of the theory of molecule formation in clouds where photoprocesses still play a significant role. The C2 and CH column densities are strongly correlated with each other and probably also with the H2 column density. In contrast, the CN column densities are found to vary greatly from cloud to cloud. The observations are discussed with reference to detailed theoretical models.

  8. Density of large snags and logs in northern Arizona mixed-conifer and ponderosa pine forests

    Treesearch

    Joseph L. Ganey; Benjamin J. Bird; L. Scott Baggett; Jeffrey S. Jenness

    2015-01-01

    Large snags and logs provide important biological legacies and resources for native wildlife, yet data on populations of large snags and logs and factors influencing those populations are sparse. We monitored populations of large snags and logs in mixed-conifer and ponderosa pine (Pinus ponderosa) forests in northern Arizona from 1997 through 2012. We modeled density...

  9. Wood density-moisture profiles in old-growth Douglas-fir and western hemlock.

    Treesearch

    W.Y. Pong; Dale R. Waddell; Lambert Michael B.

    1986-01-01

    Accurate estimation of the weight of each load of logs is necessary for safe and efficient aerial logging operations. The prediction of green density (lb/ft3) as a function of height is a critical element in the accurate estimation of tree bole and log weights. Two sampling methods, disk and increment core (Bergstrom xylodensimeter), were used to measure the density-...

  10. Simulating the effect of high column density absorbers on the one-dimensional Lyman α forest flux power spectrum

    NASA Astrophysics Data System (ADS)

    Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris

    2018-03-01

    We measure the effect of high column density absorbing systems of neutral hydrogen (H I) on the one-dimensional (1D) Lyman α forest flux power spectrum using cosmological hydrodynamical simulations from the Illustris project. High column density absorbers (which we define to be those with H I column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}) cause broadened absorption lines with characteristic damping wings. These damping wings bias the 1D Lyman α forest flux power spectrum by causing absorption in quasar spectra away from the location of the absorber itself. We investigate the effect of high column density absorbers on the Lyman α forest using hydrodynamical simulations for the first time. We provide templates as a function of column density and redshift, allowing the flexibility to accurately model residual contamination, i.e. if an analysis selectively clips out the largest damping wings. This flexibility will improve cosmological parameter estimation, for example, allowing more accurate measurement of the shape of the power spectrum, with implications for cosmological models containing massive neutrinos or a running of the spectral index. We provide fitting functions to reproduce these results so that they can be incorporated straightforwardly into a data analysis pipeline.

  11. Pressure, temperature and density drops along supercritical fluid chromatography columns. I. Experimental results for neat carbon dioxide and columns packed with 3- and 5-micron particles.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2012-08-10

    The pressure drop and temperature drop on columns packed with 3- and 5-micron particles were measured using neat CO(2) at a flow rate of 5 mL/min, at temperatures from 20°C to 100°C, and outlet pressures from 80 to 300 bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath either bare or covered with foam insulation. The results show that the pressure drop depends on the outlet pressure, the operating temperature, and the thermal environment. A temperature drop was observed for all conditions studied. The temperature drop was relatively small (less than 3°C) for combinations of low temperature and high pressure. Larger temperature drops and density drops occurred at higher temperatures and low to moderate pressures. Covering the column with thermal insulation resulted in larger temperature drops and corresponding smaller density drops. At 20°C the temperature drop was never more than a few degrees. The largest temperature drops occurred for both columns when insulated at 80°C and 80 bar, reaching a maximum value of 21°C for the 5-micron column, and 26°C for the 3-micron column. For an adiabatic column, the temperature drop depends on the pressure drop, the thermal expansion coefficient, and the density and the heat capacity of the mobile phase fluid, and can be described by a simple mathematical relationship. For a fixed operating temperature and outlet pressure, the temperature drop increases monotonically with the pressure drop. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Density Gradient Columns for Chemical Displays.

    ERIC Educational Resources Information Center

    Guenther, William B.

    1986-01-01

    Procedures for preparing density gradient columns for chemical displays are presented. They include displays illustrating acid-base reactions, metal ion equilibria, and liquid density. The lifetime of these metastable displays is surprising, some lasting for months in display cabinets. (JN)

  13. The Column Density Distribution and Continuum Opacity of the Intergalactic and Circumgalactic Medium at Redshift langzrang = 2.4

    NASA Astrophysics Data System (ADS)

    Rudie, Gwen C.; Steidel, Charles C.; Shapley, Alice E.; Pettini, Max

    2013-06-01

    We present new high-precision measurements of the opacity of the intergalactic and circumgalactic medium (IGM; CGM) at langzrang = 2.4. Using Voigt profile fits to the full Lyα and Lyβ forests in 15 high-resolution high-S/N spectra of hyperluminous QSOs, we make the first statistically robust measurement of the frequency of absorbers with H I column densities 14 \\lesssim log (N_H\\,\\scriptsize{ I}/ {cm}^{-2}) \\lesssim 17.2. We also present the first measurements of the frequency distribution of H I absorbers in the volume surrounding high-z galaxies (the CGM, 300 pkpc), finding that the incidence of absorbers in the CGM is much higher than in the IGM. In agreement with Rudie et al., we find that there are fractionally more high-N H I absorbers than low-N H I absorbers in the CGM compared to the IGM, leading to a shallower power law fit to the CGM frequency distribution. We use these new measurements to calculate the total opacity of the IGM and CGM to hydrogen-ionizing photons, finding significantly higher opacity than most previous studies, especially from absorbers with log (N_H\\,\\scriptsize{ I}/ {cm}^{-2}) < 17.2. Reproducing the opacity measured in our data as well as the incidence of absorbers with log (N_H\\,\\scriptsize{ I}/ {cm}^{-2}) \\gt 17.2 requires a broken power law parameterization of the frequency distribution with a break near N H I ≈1015 cm-2. We compute new estimates of the mean free path (λmfp) to hydrogen-ionizing photons at z em = 2.4, finding λmfp = 147 ± 15 Mpc when considering only IGM opacity. If instead, we consider photons emanating from a high-z star-forming galaxy and account for the local excess opacity due to the surrounding CGM of the galaxy itself, the mean free path is reduced to λmfp = 121 ± 15 Mpc. These λmfp measurements are smaller than recent estimates and should inform future studies of the metagalactic UV background and of ionizing sources at z ≈ 2-3. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, and was made possible by the generous financial support of the W. M. Keck Foundation.

  14. Isoelectric focusing of red blood cells in a density gradient stabilized column

    NASA Technical Reports Server (NTRS)

    Smolka, A. J. K.; Miller, T. Y.

    1980-01-01

    The effects of Ficoll and cell application pH on red blood cell electrophoretic mobility and focusing pH were investigated by focusing cells in a density gradient stabilized column. Sample loading, cell dispersion, column conductivity, resolution of separation, and the effect of Ampholines were examined.

  15. Improving the AOAC use-dilution method by establishing a minimum log density value for test microbes on inoculated carriers.

    PubMed

    Tomasino, Stephen F; Pines, Rebecca M; Hamilton, Martin A

    2009-01-01

    The AOAC Use-Dilution methods, 955.14 (Salmonella enterica), 955.15 (Staphylococcus aureus), and 964.02 (Pseudomonas aeruginosa), are used to measure the efficacy of disinfectants on hard inanimate surfaces. The methods do not provide procedures to assess log density of the test microbe on inoculated penicylinders (carrier counts). Without a method to measure and monitor carrier counts, the associated efficacy data may not be reliable and repeatable. This report provides a standardized procedure to address this method deficiency. Based on carrier count data collected by four laboratories over an 8 year period, a minimum log density value is proposed to qualify the test results. Carrier count data were collected concurrently with 242 Use-Dilution tests. The tests were conducted on products bearing claims against P. aeruginosa and S. aureus with and without an organic soil load (OSL) added to the inoculum (as specified on the product label claim). Six carriers were assayed per test for a total of 1452 carriers. All 242 mean log densities were at least 6.0 (geometric mean of 1.0 x 10(6) CFU/carrier). The mean log densities did not exceed 7.5 (geometric mean of 3.2 x 10(7) CFU/carrier). For all microbes and OSL treatments, the mean log density (+/- SEM) was 6.7 (+/- 0.07) per carrier (a geometric mean of 5.39 x 10(6) CFU/carrier). The mean log density for six carriers per test showed good repeatability (0.29) and reproducibility (0.32). A minimum mean log density of 6.0 is proposed as a validity requirement for S. aureus and P. aeruginosa. The minimum level provides for the potential inherent variability that may be experienced by a wide range of laboratories and the slight effect due to the addition of an OSL. A follow-up report is planned to present data to support the carrier count procedure and carrier counts for S. enterica.

  16. An outburst scenario for the X-ray spectral variability in 3C 111

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Reeves, J. N.; Reynolds, C. S.; García, J.; Lohfink, A.

    2013-09-01

    We present a combined Suzaku and Swift BAT broad-band E = 0.6-200 keV spectral analysis of three 3C 111 observations obtained in 2010. The data are well described with an absorbed power-law continuum and a weak (R ≃ 0.2) cold reflection component from distant material. We constrain the continuum cutoff at EC ≃ 150-200 keV, which is in accordance with X-ray Comptonization corona models and supports claims that the jet emission is only dominant at much higher energies. Fe XXVI Lyα emission and absorption lines are also present in the first and second observations, respectively. The modelling and interpretation of the emission line is complex and we explore three possibilities. If originating from ionized-disc reflection, this should be emitted at rin ≥ 50 rg or, in the lamp-post configuration, the illuminating source should be at a height of h ≥ 30 rg above the black hole. Alternatively, the line could be modelled with a hot collisionally ionized plasma with temperature kT = 22.0^{+6.1}_{-3.2} keV or a photoionized plasma with log ξ = 4.52^{+0.10}_{-0.16} erg s-1 cm and column density NH > 3 × 1023 cm-2. However, the first and second scenarios are less favoured on statistical and physical grounds, respectively. The blueshifted absorption line in the second observation can be modelled as an ultrafast outflow (UFO) with ionization parameter log ξ = 4.47^{+0.76}_{-0.04} erg s-1 cm, column density N_H = (5.3^{+1.8}_{-1.3})× 10^{22} cm-2 and outflow velocity vout = 0.104 ± 0.006c. Interestingly, the parameters of the photoionized emission model remarkably match those of the absorbing UFO, supporting the possibility that the same material could be responsible for both emission and absorption. We suggest an outburst scenario in which an accretion disc wind, initially lying out of the line of sight and observed in emission, then crosses our view to the source and it is observed in absorption as a mildly relativistic UFO.

  17. The Ultra-fast Outflow of the Quasar PG 1211+143 as Viewed by Time-averaged Chandra Grating Spectroscopy

    NASA Astrophysics Data System (ADS)

    Danehkar, Ashkbiz; Nowak, Michael A.; Lee, Julia C.; Kriss, Gerard A.; Young, Andrew J.; Hardcastle, Martin J.; Chakravorty, Susmita; Fang, Taotao; Neilsen, Joseph; Rahoui, Farid; Smith, Randall K.

    2018-02-01

    We present a detailed X-ray spectral study of the quasar PG 1211+143 based on Chandra High Energy Transmission Grating Spectrometer (HETGS) observations collected in a multi-wavelength campaign with UV data using the Hubble Space Telescope Cosmic Origins Spectrograph (HST-COS) and radio bands using the Jansky Very Large Array (VLA). We constructed a multi-wavelength ionizing spectral energy distribution using these observations and archival infrared data to create XSTAR photoionization models specific to the PG 1211+143 flux behavior during the epoch of our observations. Our analysis of the Chandra-HETGS spectra yields complex absorption lines from H-like and He-like ions of Ne, Mg, and Si, which confirm the presence of an ultra-fast outflow (UFO) with a velocity of approximately ‑17,300 km s‑1 (outflow redshift z out ∼ ‑0.0561) in the rest frame of PG 1211+143. This absorber is well described by an ionization parameter {log}ξ ∼ 2.9 {erg} {{{s}}}-1 {cm} and column density {log}{N}{{H}}∼ 21.5 {{cm}}-2. This corresponds to a stable region of the absorber’s thermal stability curve, and furthermore its implied neutral hydrogen column is broadly consistent with a broad Lyα absorption line at a mean outflow velocity of approximately ‑16,980 km s‑1 detected by our HST-COS observations. Our findings represent the first simultaneous detection of a UFO in both X-ray and UV observations. Our VLA observations provide evidence for an active jet in PG 1211+143, which may be connected to the X-ray and UV outflows; this possibility can be evaluated using very-long-baseline interferometric observations.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Varsha P.; Som, Debopam; Morrison, Sean

    We report Keck/Echellette Spectrograph and Imager and Very Large Telescope/Ultraviolet-Visual Echelle Spectrograph observations of three super-damped Lyα quasar absorbers with H i column densities log N{sub H} {sub i} ≥ 21.7 at redshifts 2 ≲ z ≲ 2.5. All three absorbers show similar metallicities (∼−1.3 to −1.5 dex), and dust depletion of Fe, Ni, and Mn. Two of the absorbers show supersolar [S/Zn] and [Si/Zn]. We combine our results with those for other damped Lyα a absorbers (DLAs) to examine trends between N{sub H} {sub i}, metallicity, and dust depletion. A larger fraction of the super-DLAs lie close to ormore » above the line [X/H] = 20.59 − log N{sub H} {sub i} in the metallicity versus N{sub H} {sub i} plot, compared to the less gas-rich DLAs, suggesting that super-DLAs are more likely to be rich in molecules. Unfortunately, our data for Q0230−0334 and Q0743+1421 do not cover H{sub 2} absorption lines. For Q1418+0718, some H{sub 2} lines are covered, but not detected. CO is not detected in any of our absorbers. For DLAs with log N{sub H} {sub i} < 21.7, we confirm strong correlation between metallicity and Fe depletion, and find a correlation between metallicity and Si depletion. For super-DLAs, these correlations are weaker or absent. The absorbers toward Q0230−0334 and Q1418+0718 show potential detections of weak Lyα emission, implying star formation rates of ∼1.6 and ∼0.7 M{sub ⊙} yr{sup −1}, respectively (ignoring dust extinction). Upper limits on the electron densities from C ii*/C ii or Si ii*/Si ii are low, but are higher than the median values in less gas-rich DLAs. Finally, systems with log N{sub H} {sub i} > 21.7 may have somewhat narrower velocity dispersions Δv{sub 90} than the less gas-rich DLAs, and may arise in cooler and/or less turbulent gas.« less

  19. The Effect of AGN Heating on the Low-redshift Lyα Forest

    NASA Astrophysics Data System (ADS)

    Gurvich, Alex; Burkhart, Blakesley; Bird, Simeon

    2017-02-01

    We investigate the effects of AGN heating and the ultraviolet background on the low-redshift Lyα forest column density distribution (CDD) using the Illustris simulation. We show that Illustris reproduces observations at z = 0.1 in the column density range {10}12.5{--}{10}13.5 cm-2, relevant for the “photon underproduction crisis.” We attribute this to the inclusion of AGN feedback, which changes the gas distribution so as to mimic the effect of extra photons, as well as the use of the Faucher-Giguère ultraviolet background, which is more ionizing at z = 0.1 than the Haardt & Madau background previously considered. We show that the difference between simulations run with smoothed particle hydrodynamics and simulations using a moving mesh is small in this column density range but can be more significant at larger column densities. We further consider the effect of supernova feedback, Voigt profile fitting, and finite resolution, all of which we show to have little influence on the CDD. Finally, we identify a discrepancy between our simulations and observations at column densities {10}14{--}{10}16 cm-2, where Illustris produces too few absorbers, which suggests the AGN feedback model should be further refined. Since the “photon underproduction crisis” primarily affects lower column density systems, we conclude that AGN feedback and standard ionizing background models can resolve the crisis.

  20. MAVEN/IUVS Apoapse Observations of the Martian FUV Dayglow

    NASA Astrophysics Data System (ADS)

    Correira, J.; Evans, J. S.; Stevens, M. H.; Schneider, N. M.; Stewart, I. F.; Deighan, J.; Jain, S.; Chaffin, M.; Crismani, M. M. J.; McClintock, B.; Holsclaw, G.; Lefèvre, F.; Lo, D.; Stiepen, A.; Clarke, J. T.; Mahaffy, P. R.; Bougher, S. W.; Bell, J. M.; Jakosky, B. M.

    2015-12-01

    We present FUV data (115 - 190 nm) from MAVEN/IUVS apoapse mode observations for the Oct 2014 through Feb 2015 time period. During apoapse mode the highly elliptical orbit of MAVEN allows for up to four apoapse disk images by IUVS per day. Maps of FUV feature intensities and intensity ratios as well as derived CO/CO2 and O/CO2 column density ratios will be shown. Column density ratios are derived from lookup tables created using the Atmospheric Ultraviolet Radiance Integrated Code [Strickland et al., 1999] in conjunction with observed intensity ratios. Column density ratios provide a measure of composition changes in the Martian atmosphere. Due to MAVEN's orbital geometry the observations from this time period focus on the southern hemisphere. The broad view provided by apoapse observations allows for the investigation of spatial and temporal variations (both long term and local time) of the atmospheric composition (via the column density ratios). IUVS FUV intensities and derived column density ratios will also be compared with model results from Mars Global Ionosphere/Thermosphere Model (MGITM) and the Mars Climate Database (MCD).

  1. Observations of circumstellar carbon monoxide and evidence for multiple ejections in red giants

    NASA Technical Reports Server (NTRS)

    Bernat, A. P.

    1981-01-01

    Observations of the fundamental 4.6 micron band of CO in nine red giants are presented. A common feature is multiple absorption lines which are identified as products of separate components or shells. Column densities are derived; the relative values should be free of the uncertainties inherent in determining the absolute scale. These column densities are well fitted by single excitation temperatures for each absorption component; these excitation temperatures are identified with the local kinetic temperatures. There is no correlation of CO column density with either gas or dust column density nor of the expansion velocity of the component with its distance from the star. The evidence is reviewed, and it is concluded that mass loss from red giants is most likely episodic in nature.

  2. QSPR models for predicting generator-column-derived octanol/water and octanol/air partition coefficients of polychlorinated biphenyls.

    PubMed

    Yuan, Jintao; Yu, Shuling; Zhang, Ting; Yuan, Xuejie; Cao, Yunyuan; Yu, Xingchen; Yang, Xuan; Yao, Wu

    2016-06-01

    Octanol/water (K(OW)) and octanol/air (K(OA)) partition coefficients are two important physicochemical properties of organic substances. In current practice, K(OW) and K(OA) values of some polychlorinated biphenyls (PCBs) are measured using generator column method. Quantitative structure-property relationship (QSPR) models can serve as a valuable alternative method of replacing or reducing experimental steps in the determination of K(OW) and K(OA). In this paper, two different methods, i.e., multiple linear regression based on dragon descriptors and hologram quantitative structure-activity relationship, were used to predict generator-column-derived log K(OW) and log K(OA) values of PCBs. The predictive ability of the developed models was validated using a test set, and the performances of all generated models were compared with those of three previously reported models. All results indicated that the proposed models were robust and satisfactory and can thus be used as alternative models for the rapid assessment of the K(OW) and K(OA) of PCBs. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Evaluating Rotavirus and Norovirus transport processes in standardised and natural soil-water columns experiments

    NASA Astrophysics Data System (ADS)

    Gamazo, Pablo; Schijven, Jack; Victoria, Matias; Alvareda, Elena; López Tort, Fernando; Ramos, Julián; Lizasoain, Andrés; Sapriza, Gonzalo; Castells, Matias; Colina, Rodney

    2017-04-01

    In Uruguay, as in many developed and developing countries, rotavirus and norovirus are major causes of diarrhea and others symptoms of acute gastroenteritis. In some areas of Uruguay, groundwater is the only source of water for human consumption. In the rural area of the Salto district, virus contamination has been detected in several groundwater wells. Because sewer coverage is low, the most probable sources of contamination are nearby septic systems. This work aims to evaluate the transport of rotavirus and norovirus from clinic samples in two sets of column experiments under saturated conditions: 6.7-cm columns with quartz sand (ionic strength 1mM, pH 7.0) and with sand from the Salto aquifer (Uruguay) (9,2% coarse sand, 47,8% medium sand, 40,5% fine sand, magnesium/calcium bicarbonate water, Ionic strength 15.1 mM, pH 7.2). Both viruses were seeded for 2 pore volumes onto the columns. Samples were collected at the column outlet and viruses were enumerated by Q-PRCR. Breakthrough curves were constructed and fitted to a two-site kinetic attachment/detachment model, including blocking using Hydrus-1D. In the quartz sand column, both rotavirus and norovirus were removed two orders in magnitude. In the Salto sand column, rotavirus was removed 2 log10 as well, but norovirus was removed 4 log10. The fitting of the breakthrough curves indicated that blocking played a role for rotavirus in the Salto sand column. These results are consistent with the field observation where only rotavirus was detected in the Salto aquifer, while similar concentrations in Salto sewer effluent were measured for both viruses. This work, besides reporting actual parameters values for human virus transport modelling, shows the significant differences in transport that human viruses can have in standardised and natural soil-water systems.

  4. X-RAY PROPERTIES OF THE NORTHERN GALACTIC CAP SOURCES IN THE 58 MONTH SWIFT/BAT CATALOG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasudevan, Ranjan V.; Mushotzky, Richard F.; Shimizu, Thomas T.

    2013-02-15

    We present a detailed X-ray spectral analysis of the non-beamed, hard X-ray selected active galactic nuclei (AGNs) in the northern Galactic cap of the 58 month Swift Burst Alert Telescope (Swift/BAT) catalog, consisting of 100 AGNs with b > 50 Degree-Sign . This sky area has excellent potential for further dedicated study due to a wide range of multi-wavelength data that are already available, and we propose it as a low-redshift analog to the 'deep field' observations of AGNs at higher redshifts (e.g., CDFN/S, COSMOS, Lockman Hole). We present distributions of luminosity, absorbing column density, and other key quantities formore » the catalog. We use a consistent approach to fit new and archival X-ray data gathered from XMM-Newton, Swift/XRT, ASCA, and Swift/BAT. We probe to deeper redshifts than the 9 month BAT catalog ((z) = 0.043 compared to (z) = 0.03 for the 9 month catalog), and uncover a broader absorbing column density distribution. The fraction of obscured (log N {sub H} {>=} 22) objects in the sample is {approx}60%, and 43%-56% of the sample exhibits 'complex' 0.4-10 keV spectra. We present the properties of iron lines, soft excesses, and ionized absorbers for the subset of objects with sufficient signal-to-noise ratio. We reinforce previous determinations of the X-ray Baldwin (Iwasawa-Taniguchi) effect for iron K{alpha} lines. We also identify two distinct populations of sources; one in which a soft excess is well-detected and another where the soft excess is undetected, suggesting that the process responsible for producing the soft excess is not at work in all AGNs. The fraction of Compton-thick sources (log N {sub H} > 24.15) in our sample is {approx}9%. We find that 'hidden/buried AGNs' (which may have a geometrically thick torus or emaciated scattering regions) constitute {approx}14% of our sample, including seven objects previously not identified as hidden. Compton reflection is found to be important in a large fraction of our sample using joint XMM-Newton+BAT fits ((R) = 2.7 {+-} 0.75), indicating light bending or extremely complex absorption. High-energy cutoffs generally lie outside the BAT band (E > 200 keV) but are seen in some sources. We present the average 1-10 keV spectrum for the sample, which reproduces the 1-10 keV X-ray background slope as found for the brighter 9 month BAT AGN sample. The 2-10 keV log(N)-log(S) plot implies completeness down to fluxes a factor of {approx}4 fainter than seen in the 9 month catalog. We emphasize the utility of this northern Galactic cap sample for a wide variety of future studies on AGNs.« less

  5. 40 CFR 146.22 - Construction requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... caliper logs before casing is installed; and (B) A cement bond, temperature, or density log after the...; and (C) A cement bond, temperature, or density log after the casing is set and cemented. (g) At a... drinking water. The casing and cement used in the construction of each newly drilled well shall be designed...

  6. Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities at surface monitoring sites

    NASA Astrophysics Data System (ADS)

    Kobayashi, N.; Inoue, G.; Kawasaki, M.; Yoshioka, H.; Minomura, M.; Murata, I.; Nagahama, T.; Matsumi, Y.; Tanaka, T.; Morino, I.; Ibuki, T.

    2010-08-01

    Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities were developed in two independent systems: one utilizing a grating-based desktop optical spectrum analyzer (OSA) with a resolution enough to resolve rotational lines of CO2 and CH4 in the regions of 1565-1585 and 1674-1682 nm, respectively; the other is an application of an optical fiber Fabry-Perot interferometer (FFPI) to obtain the CO2 column density. Direct sunlight was collimated via a small telescope installed on a portable sun tracker and then transmitted through an optical fiber into the OSA or the FFPI for optical analysis. The near infrared spectra of the OSA were retrieved by a least squares spectral fitting algorithm. The CO2 and CH4 column densities deduced were in excellent agreement with those measured by a Fourier transform spectrometer with high resolution. The rovibronic lines in the wavelength region of 1570-1575 nm were analyzed by the FFPI. The I0 and I values in the Beer-Lambert law equation to obtain CO2 column density were deduced by modulating temperature of the FFPI, which offered column CO2 with the statistical error less than 0.2% for six hours measurement.

  7. Quantitative geometric description of fracture systems in an andesite lava flow using terrestrial laser scanner data

    NASA Astrophysics Data System (ADS)

    Massiot, Cécile; Nicol, Andrew; Townend, John; McNamara, David D.; Garcia-Sellés, David; Conway, Chris E.; Archibald, Garth

    2017-07-01

    Permeability hosted in andesitic lava flows is dominantly controlled by fracture systems, with geometries that are often poorly constrained. This paper explores the fracture system geometry of an andesitic lava flow formed during its emplacement and cooling over gentle paleo-topography, on the active Ruapehu volcano, New Zealand. The fracture system comprises column-forming and platy fractures within the blocky interior of the lava flow, bounded by autobreccias partially observed at the base and top of the outcrop. We use a terrestrial laser scanner (TLS) dataset to extract column-forming fractures directly from the point-cloud shape over an outcrop area of ∼3090 m2. Fracture processing is validated using manual scanlines and high-resolution panoramic photographs. Column-forming fractures are either steeply or gently dipping with no preferred strike orientation. Geometric analysis of fractures derived from the TLS, in combination with virtual scanlines and trace maps, reveals that: (1) steeply dipping column-forming fracture lengths follow a scale-dependent exponential or log-normal distribution rather than a scale-independent power-law; (2) fracture intensities (combining density and size) vary throughout the blocky zone but have similar mean values up and along the lava flow; and (3) the areal fracture intensity is higher in the autobreccia than in the blocky zone. The inter-connected fracture network has a connected porosity of ∼0.5 % that promote fluid flow vertically and laterally within the blocky zone, and is partially connected to the autobreccias. Autobreccias may act either as lateral permeability connections or barriers in reservoirs, depending on burial and alteration history. A discrete fracture network model generated from these geometrical parameters yields a highly connected fracture network, consistent with outcrop observations.

  8. Retention equations of nonionic organic chemicals in soil column chromatography with methanol-water eluents.

    PubMed

    Xu, Feng; Liang, Xinmiao; Lin, Bingcheng

    2002-01-01

    Research efforts dealing with chemical transportation in soils are needed to prevent damage to ground water. Methanol-containing solvents can increase the translocation of nonionic organic chemicals (NOCs). In this study, a general log-linear retention equation, log k' = log k'w - Sphi (Eq. [1]), was developed to describe the mobilities of NOCs in soil column chromatography (SCC). The term phi denotes the volume fraction of methanol in eluent, k' is the capacity factor of a solute at a certain phi value, and log k'w and -S are the intercept and slope of the log k' vs. phi plot. Two reference soils (GSE 17204 and GSE 17205) were used as packing materials, and were eluted by isocratic methanol-water mixtures. A model of linear solvation energy relationships (LSER) was applied to analyze the k' from molecular interactions. The most important factor determining the transportation was found to be the solute hydrophobic partition in soils, and the second-most important factor was the solute hydrogen-bond basicity (hydrogen-bond accepting ability), while the less important factor was the solute dipolarity-polarizability. The solute hydrogen-bond acidity (hydrogen-bond donating ability) was statistically unimportant and deletable. From the LSER model, one could also obtain Eq. [1]. The experimental k' data of 121 NOCs can be accurately explained by Eq. [1]. The equation is promising to estimate the solute mobility in pure water by extrapolating from lower-capacity factors obtained in methanol-water mixed eluents.

  9. Deep Drilling Into the Chicxulub Impact Crater: Pemex Oil Exploration Boreholes Revisited

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Perez-Cruz, L.

    2007-05-01

    The Chicxulub structure was recognized in the 1940´s from gravity anomalies in oil exploration surveys by Pemex. Geophysical anomalies occur over the carbonate platform in NW Yucatan, where density and magnetic susceptibility contrasts with the carbonates suggested a buried igneous complex or basement uplift. The exploration program developed afterwards included several boreholes, starting with the Chicxulub-1 in 1952 and eventually comprising eight deep boreholes completed through the 1970s. The investigations showing Chicxulub as a large impact crater formed at the K/T boundary have relayed on the Pemex decades-long exploration program. Despite frequent reference to Pemex information, original data have not been openly available for detailed evaluation and incorporation with results from recent efforts. Logging data and core samples remain to be analyzed, reevaluated and integrated in the context of recent marine, aerial and terrestrial geophysical surveys and the drilling/coring projects of UNAM and ICDP. In this presentation we discuss the paleontological data, stratigraphic columns and geophysical logs for the Chicxulub-1 (1582m), Sacapuc-1 (1530m), Yucatan-6 (1631m) and Ticul-1 (3575m) boreholes. These boreholes remain the deepest ones drilled in Chicxulub and the only ones providing samples of the melt-rich breccias and melt sheet. Other boreholes include the Y1 (3221m), Y2 (3474m), Y4 (2398m) and Y5A (3003m), which give information on pre-impact stratigraphy and crystalline basement. We concentrate on log and microfossil data, stratigraphic columns, lateral correlation, integration with UNAM and ICDP borehole data, and analyses of sections of melt, impact breccias and basal Paleocene carbonates. Current plans for deep drilling in Chicxulub crater focus in the peak ring zone and central sector, with proposed marine and on-land boreholes to the IODP and ICDP programs. Future ICDP borehole will be located close to Chicxulub-1 and Sacapuc-1, which intersected the impact breccias at about 1 km and the melt and melt- rich breccias at some 1.3-1.4 km.

  10. A computer program for borehole compensation of dual-detector density well logs

    USGS Publications Warehouse

    Scott, James Henry

    1978-01-01

    The computer program described in this report was developed for applying a borehole-rugosity and mudcake compensation algorithm to dual-density logs using the following information: the water level in the drill hole, hole diameter (from a caliper log if available, or the nominal drill diameter if not), and the two gamma-ray count rate logs from the near and far detectors of the density probe. The equations that represent the compensation algorithm and the calibration of the two detectors (for converting countrate or density) were derived specifically for a probe manufactured by Comprobe Inc. (5.4 cm O.D. dual-density-caliper); they are not applicable to other probes. However, equivalent calibration and compensation equations can be empirically determined for any other similar two-detector density probes and substituted in the computer program listed in this report. * Use of brand names in this report does not necessarily constitute endorsement by the U.S. Geological Survey.

  11. The alpha Centauri Line of Sight: D/H Ratio, Physical Properties of Local Interstellar Gas, and Measurement of Heated Hydrogen (The 'Hydrogen Wall') Near the Heliopause

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Wood, Brian E.

    1996-01-01

    We analyze high-resolution spectra of the nearby (1.34 pc) stars alpha Cen A (G2 V) and alpha Cen B (K1 V), which were obtained with the Goddard High Resolution Spectrograph on the Hubble Space Telescope. The observations consist of echelle spectra of the Mg II 2800 A and Fe II 2599 A resonance lines and the Lyman-alpha lines of hydrogen and deuterium. The interstellar gas has a velocity (v = - 18.0 +/- 0.2 km/s) consistent with the local flow vector proposed for this line of sight by Lailement & Berlin (1992). The temperature and nonthermal velocity inferred from the Fe II, Mg II, and D I line profiles are T = 5400 +/- 500 K and xi = 1.20 +/- 0.25 km/s, respectively. However, single-component fits to the H I Lyman-alpha lines yield a Doppler parameter (b(sub HI) = 11.80 km/s) that implies a significantly warmer temperature of 8350 K, and the velocity of the H I absorption (v = - 15.8 +/- 0.2 km/s) is redshifted by about 2.2 km/s with respect to the Fe II, Mg II, and D I lines. The one-component model of the interstellar gas suggests natural logarithm N base HI = 18.03 +/- 0.01 and D/H = (5.7 +/- 0.2) x 10(exp -6) . These parameters lead to a good fit to the observed spectra, but this model does not explain the higher temperature and redshift of H I relative to the other interstellar lines. The most sensible way to resolve the discrepancy between H(I) and the other lines is to add a second absorption component to the H(I) lines. This second component is hotter (T approx. equals 30,000 K), is redshifted relative to the primary component by 2-4 km/s, and has a column density too low to be detected in the Fe(II), Mg(II), and D(I) lines. We propose that the gas responsible for this component is located near the heliopause, consisting of the heated H I gas from the interstellar medium that is compressed by the solar wind. This so-called 'hydrogen wall' is predicted by recent multifluid gasdynamical models of the interstellar gas and solar wind interaction. Our data provide the first measurements of the temperature and column density of H(I) in the hydrogen wall. After considering the effects that a corresponding hydrogen wall around alpha Cen would have on our analysis, our best estimates for the parameters of the solar hydrogen wall are natural log N(sup (2))(H(I)) = 14.74 +/- 0.24, b(sup (2))(H(I)) = 21.9 +/- 1.7 km/s (corresponding to T = 29,000 +/- 5000 K), and v(sup (2))(H(I)) greater than -16km/s. Unfortunately, the existence of this heated H(I) reduces our ability to compute the H(I) column density of the interstellar medium accurately because, with slight alterations to our assumed stellar Lyman-alpha profiles, we discovered that acceptable two-component fits also exist with natural log N(H(I))approx. 17.6. We, therefore, quote large error bars for the H I column density along the alpha Cen line of sight, natural log N(H(I)) = 17.80 +/- 0.30. For this range in N(H(I)), n(H(I)) = 0.15 /cu.cm (+/- a factor of 2) and D/H = (0.5-1.9) x 10(exp -5). This is the first direct measurement of the H(I) density in a local cloud and allows us to predict the distance from the Sun to the edge of the local cloud along various lines of sight. This range in D/H is consistent with the value D/H = 1.6 x 10(exp -5) previously derived for the Capella and Procyon lines of sight. We cannot tell whether D/H ratio varies or is constant in the local interstellar medium, but we do find that the D(I)/Mg(II) ratio for the alpha Cen line of sight is about 4 times smaller than for the Capella and Procyon lines of sight. Therefore, either D/H or the Mg depletion varies significantly over distance scales of only a few parsecs.

  12. Lick optical spectra of quasar HS 1946+7658 at 10 kilometers per second resolution Lyman-alpha forest and metal absorption systems

    NASA Technical Reports Server (NTRS)

    Fan, Xiao-Ming; Tytler, David

    1994-01-01

    We present optical spectra of the most luminous known quasi stellar object (QSO) HS 1946+7658 (z(sub em) = 3.051). Our spectra have both full wavelength coverage, 3240-10570 A, and in selected regions, either high signal-to-noise ratio, SNR approximately equals 40-100, or unusually high approximately 10 km/sec resolution, and in parts of the Ly alpha forest and to the red of Ly alpha emission they are among the best published. We find 113 Ly alpha systems and six metal-line systems, three of which are new. The metal systems at z(sub abs) = 2.844 and 3.050 have complex velocity structure with four and three prominent components, respectively. We find that the system at z(sub abs) = 2.844 is a damped Ly alpha absorption (DLA) system, with a neutral hydrogen column density of log N(H I) = 20.2 +/- 0.4, and it is the cause of the Lyman limit break at lambda approximately equals 3520 A. We believe that most of the H I column density in this system is in z(sub abs) = 2.8443 component which shows the strongest low-ionization absorption lines. The metal abundance in the gas phase of the system is (M/H) approximately equals -2.6 +/- 0.3, with a best estimate of (M/H) = -2.8, with ionizaion parameter log gamma = -2.75, from a photoionization model. The ratios of the logarithmic abundances of C, O, Al, and Si are all within a factor of 2 of solar, which is important for two reasons. First, we believe that the gas abundances which we measure are close to the total abundances, because the ratio of aluminum to other elements is near cosmic, and Al is a refractory element which depletes very readily like chromium, in the interstellar medium. Second, we do not see the enhancement of O with respect to C of (O/C) approximately equals 0.5-0.9 reported in three partial Lyman limit systems by Reimers et al. (1992) and Vogel & Reimers (1993); we measure (O/C) = -0.06 for observed ions and (O/C) approximately equals 0.2 after ionization corrections, which is consistent with solar abundances. We see C II*(lambda 1335) offset by 15 km/sec with respect to C II(lambda 1334), presumably because the gas density varies from 2 to 8 cm(exp -3) with changing velocity in the DLA system. These densities imply that the damped component is 6-25 pc thick, which is reasonable for a single cloud in a cold spiral disk. They also imply that the cloud is relatively highly ionized with more C III than C II, more O III than O I, and log N(H I) = 20.72, which is 3 times the H I column. The system at z(abs) = 1.7382 is also believed to be damped with N(H I) approximately equals 10(exp 21) cm(exp -2), because we see Cr II, but its Ly alpha line will never be seen because it is below the Lyman limit of the other DLA system. We see a 2.6 sigma lack of Ly alpha forest lines well away from the QSO redshift, which may be a chance fluctuation. We also see a correlation between column density N(H I) and Doppler parameter b for 96 unsaturated Ly Alpha forest absorption lines, and although this correlation persists in the 36 Ly alpha lines which lie in regions where the SNR approximately equals 8-16, we agree with Rauch et al. (1993) that it is probably a bogus effect of low supernova remnant (SNR). The same applies to lines with very low b values: in regions where SNR less than or equal to 8 we see many Ly alpha lines which appear to have 10 less than or equal to b less than or equal to 20, but when 8 less than or equal to SNR less than or equal to 16 we see only one line with b less than or equal to 15 km/sec, and two others which we believe have b less than or equal to 20, with values of 20 and 16 km/sec. Traditional Ly alpha line samples which include all lines which have W/sigma(W) greater than or equal to 4 are not adequate to explore the distribution of the properties of individual clouds, because we need much higher (W/sigma(W)) and SNR to avoid the strong biases.

  13. Modeling the size-density relationship in direct-seeded slash pine stands

    Treesearch

    Quang V. Cao; Thomas J. Dean; V. Clark Baldwin

    2000-01-01

    The relationship between quadratic mean diameter and tree density appeared curvilinear on a log–log scale, based on data from direct-seeded slash pine (Pinus elliotti var. elliotti Engelm.) stands. The self-thinning trajectory followed a straight line for high tree density levels and then turned away from this line as tree density...

  14. Log evaluation in wells drilled with inverted oil emulsion mud. [GLOBAL program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, D.P.; Lacour-Gayet, P.J.; Suau, J.

    1981-01-01

    As greater use is made of inverted oil emulsion, muds in the development of North Sea oil fields, the need for more precise log evaluation in this environment becomes apparent. This paper demonstrates an approach using the Dual Induction Log, taking into account invasion and boundary effects. Lithology and porosity are derived from the Formation Density or Litho-Density Log, Compensated Neutron Log, Sonic Log and the Natural Gamma Ray Spectrometry log. The effect of invasion by the oil component of the mud filtrate is treated in the evaluation, and a measurement of Moved Water is made Computations of petrophysical propertiesmore » are implemented by means of the GLOBAL interpretation program, taking advantage of its capability of adaption to any combination of logging sensors. 8 refs.« less

  15. GLOBAL RATES OF CONVERGENCE OF THE MLES OF LOG-CONCAVE AND s-CONCAVE DENSITIES

    PubMed Central

    Doss, Charles R.; Wellner, Jon A.

    2017-01-01

    We establish global rates of convergence for the Maximum Likelihood Estimators (MLEs) of log-concave and s-concave densities on ℝ. The main finding is that the rate of convergence of the MLE in the Hellinger metric is no worse than n−2/5 when −1 < s < ∞ where s = 0 corresponds to the log-concave case. We also show that the MLE does not exist for the classes of s-concave densities with s < −1. PMID:28966409

  16. Investigation of E. coli and Virus Reductions Using Replicate, Bench-Scale Biosand Filter Columns and Two Filter Media

    PubMed Central

    Elliott, Mark; Stauber, Christine E.; DiGiano, Francis A.; Fabiszewski de Aceituno, Anna; Sobsey, Mark D.

    2015-01-01

    The biosand filter (BSF) is an intermittently operated, household-scale slow sand filter for which little data are available on the effect of sand composition on treatment performance. Therefore, bench-scale columns were prepared according to the then-current (2006–2007) guidance on BSF design and run in parallel to conduct two microbial challenge experiments of eight-week duration. Triplicate columns were loaded with Accusand silica or crushed granite to compare virus and E. coli reduction performance. Bench-scale experiments provided confirmation that increased schmutzdecke growth, as indicated by decline in filtration rate, is the primary factor causing increased E. coli reductions of up to 5-log10. However, reductions of challenge viruses improved only modestly with increased schmutzdecke growth. Filter media type (Accusand silica vs. crushed granite) did not influence reduction of E. coli bacteria. The granite media without backwashing yielded superior virus reductions when compared to Accusand. However, for columns in which the granite media was first backwashed (to yield a more consistent distribution of grains and remove the finest size fraction), virus reductions were not significantly greater than in columns with Accusand media. It was postulated that a decline in surface area with backwashing decreased the sites and surface area available for virus sorption and/or biofilm growth and thus decreased the extent of virus reduction. Additionally, backwashing caused preferential flow paths and deviation from plug flow; backwashing is not part of standard BSF field preparation and is not recommended for BSF column studies. Overall, virus reductions were modest and did not meet the 5- or 3-log10 World Health Organization performance targets. PMID:26308036

  17. Woody debris volume depletion through decay: implications for biomass and carbon accounting

    USGS Publications Warehouse

    Fraver, Shawn; Milo, Amy M.; Bradford, John B.; D'Amato, Anthony W.; Kenefic, Laura; Palik, Brian J.; Woodall, Christopher W.; Brissette, John

    2013-01-01

    Woody debris decay rates have recently received much attention because of the need to quantify temporal changes in forest carbon stocks. Published decay rates, available for many species, are commonly used to characterize deadwood biomass and carbon depletion. However, decay rates are often derived from reductions in wood density through time, which when used to model biomass and carbon depletion are known to underestimate rate loss because they fail to account for volume reduction (changes in log shape) as decay progresses. We present a method for estimating changes in log volume through time and illustrate the method using a chronosequence approach. The method is based on the observation, confirmed herein, that decaying logs have a collapse ratio (cross-sectional height/width) that can serve as a surrogate for the volume remaining. Combining the resulting volume loss with concurrent changes in wood density from the same logs then allowed us to quantify biomass and carbon depletion for three study species. Results show that volume, density, and biomass follow distinct depletion curves during decomposition. Volume showed an initial lag period (log dimensions remained unchanged), even while wood density was being reduced. However, once volume depletion began, biomass loss (the product of density and volume depletion) occurred much more rapidly than density alone. At the temporal limit of our data, the proportion of the biomass remaining was roughly half that of the density remaining. Accounting for log volume depletion, as demonstrated in this study, provides a comprehensive characterization of deadwood decomposition, thereby improving biomass-loss and carbon-accounting models.

  18. Hydrodynamic flow in capillary-channel fiber columns for liquid chromatography.

    PubMed

    Stanelle, Rayman D; Sander, Lane C; Marcus, R Kenneth

    2005-12-23

    The flow characteristics of capillary-channel polymer (C-CP) fiber liquid chromatographic (LC) columns have been investigated. The C-CP fibers are manufactured with eight longitudinal grooves (capillary channels) extending the length of the fibers. Three C-CP fiber examples were studied, with fiber dimensions ranging from approximately 35 microm to 65 microm, and capillary-channel dimensions ranging from approximately 6 microm to 35 microm. The influence of fiber packing density and column inner diameter on peak asymmetry, peak width, and run-to-run reproducibility have been studied for stainless steel LC columns packed with polyester (PET) and polypropylene (PP) C-CP fibers. The van Deemter A-term was evaluated as a function of fiber packing density (approximately 0.3 g/cm(3)-0.75 g/cm(3)) for columns of 4.6 mm inner diameter (i.d.) and at constant packing densities for 1.5 mm, 3.2 mm, 4.6 mm, and 7.7 mm i.d. columns. Although column diameter had little influence on the eluting peak widths, peak asymmetry increased with increasing column diameter. The A-terms for the C-CP fiber packed columns are somewhat larger than current commercial, microparticulate-packed columns, and means for improvement are discussed. Applications in the area of protein (macromolecule) separations appear the most promising at this stage of the system development.

  19. Shining a light on galactic outflows: photoionized outflows

    NASA Astrophysics Data System (ADS)

    Chisholm, John; Tremonti, Christy A.; Leitherer, Claus; Chen, Yanmei; Wofford, Aida

    2016-04-01

    We study the ionization structure of galactic outflows in 37 nearby, star-forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O I, Si II, Si III, and Si IV ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modelled as a comoving phase. The Si equivalent width ratios (e.g. Si IV/Si II) have low dispersion, and little variation with stellar mass; while ratios with O I and Si vary by a factor of 2 for a given stellar mass. Photoionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photoionization models constrain the ionization parameter (U) between -2.25 < log (U) < -1.5, and require that the outflow metallicities are greater than 0.5 Z⊙. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15-10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow.

  20. Factors Limiting Post-logging Seedling Regeneration by Big-leaf Mahogany (Swietenia macrophylla) in Southeastern Amazonia, Brazil, and Implications for Sustainable Management

    Treesearch

    James Grogan; Jurandir Galvao

    2006-01-01

    Post-logging seedling regeneration density by big-leaf mahogany (Swietenia macrophylla), a nonpioneer light-demanding timber species, is generally reported to be low to nonexistent. To investigate factors limiting seedling density following logging within the study region, we quantified seed production rates, germinability, dispersal patterns, and seed fates on the...

  1. Analysis of geophysical logs from six boreholes at Lariat Gulch, former U.S. Air Force site PJKS, Jefferson County, Colorado

    USGS Publications Warehouse

    Paillet, Frederick L.; Hodges, Richard E.; Corland, Barbara S.

    2002-01-01

    This report presents and describes geophysical logs for six boreholes in Lariat Gulch, a topographic gulch at the former U.S. Air Force site PJKS in Jefferson County near Denver, Colorado. Geophysical logs include gamma, normal resistivity, fluid-column temperature and resistivity, caliper, televiewer, and heat-pulse flowmeter. These logs were run in two boreholes penetrating only the Fountain Formation of Pennsylvanian and Permian age (logged to depths of about 65 and 570 feet) and in four boreholes (logged to depths of about 342 to 742 feet) penetrating mostly the Fountain Formation and terminating in Precambrian crystalline rock, which underlies the Fountain Formation. Data from the logs were used to identify fractures and bedding planes and to locate the contact between the two formations. The logs indicated few fractures in the boreholes and gave no indication of higher transmissivity in the contact zone between the two formations. Transmissivities for all fractures in each borehole were estimated to be less than 2 feet squared per day.

  2. Separation of carbon nanotubes into chirally enriched fractions

    DOEpatents

    Doorn, Stephen K [Los Alamos, NM; Niyogi, Sandip [Los Alamos, NM

    2012-04-10

    A mixture of single-walled carbon nanotubes ("SWNTs") is separated into fractions of enriched chirality by preparing an aqueous suspension of a mixture of SWNTs and a surfactant, injecting a portion of the suspension on a column of separation medium having a density gradient, and centrifuging the column. In some embodiments, salt is added prior to centrifugation. In other embodiments, the centrifugation is performed at a temperature below room temperature. Fractions separate as colored bands in the column. The diameter of the separated SWNTs decreases with increasing density along the gradient of the column. The colored bands can be withdrawn separately from the column.

  3. Prediction of soil organic carbon partition coefficients by soil column liquid chromatography.

    PubMed

    Guo, Rongbo; Liang, Xinmiao; Chen, Jiping; Wu, Wenzhong; Zhang, Qing; Martens, Dieter; Kettrup, Antonius

    2004-04-30

    To avoid the limitation of the widely used prediction methods of soil organic carbon partition coefficients (KOC) from hydrophobic parameters, e.g., the n-octanol/water partition coefficients (KOW) and the reversed phase high performance liquid chromatographic (RP-HPLC) retention factors, the soil column liquid chromatographic (SCLC) method was developed for KOC prediction. The real soils were used as the packing materials of RP-HPLC columns, and the correlations between the retention factors of organic compounds on soil columns (ksoil) and KOC measured by batch equilibrium method were studied. Good correlations were achieved between ksoil and KOC for three types of soils with different properties. All the square of the correlation coefficients (R2) of the linear regression between log ksoil and log KOC were higher than 0.89 with standard deviations of less than 0.21. In addition, the prediction of KOC from KOW and the RP-HPLC retention factors on cyanopropyl (CN) stationary phase (kCN) was comparatively evaluated for the three types of soils. The results show that the prediction of KOC from kCN and KOW is only applicable to some specific types of soils. The results obtained in the present study proved that the SCLC method is appropriate for the KOC prediction for different types of soils, however the applicability of using hydrophobic parameters to predict KOC largely depends on the properties of soil concerned.

  4. Interstellar C IV and Si IV column densities toward early-type stars

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.; Kondo, Y.; Mccluskey, G. E.

    1980-01-01

    Equivalent widths and deduced column densities of Si IV and C IV are examined for 18 early-type close binaries, and physical processes responsible for the origin of these ions in the interstellar medium are investigated. The available C IV/Si IV column density ratios typically lie within a narrow range from 0.8 to 4.5, and there is evidence that the column density of C IV is higher than that of N V along most lines of sight, suggesting that C IV is not formed in the same hot region as O VI. In addition, the existence of regions with a narrowly defined new temperature range around 50,000 deg K is indicated. The detection of the semitorrid gas of Bruhweiler, Kondo, and McCluskey (1978, 1979) is substantiated, and the relation of this gas to the observations of coronal gas in the galactic halo is discussed.

  5. Selective logging: does the imprint remain on tree structure and composition after 45 years?

    PubMed

    Osazuwa-Peters, Oyomoare L; Chapman, Colin A; Zanne, Amy E

    2015-01-01

    Selective logging of tropical forests is increasing in extent and intensity. The duration over which impacts of selective logging persist, however, remains an unresolved question, particularly for African forests. Here, we investigate the extent to which a past selective logging event continues to leave its imprint on different components of an East African forest 45 years later. We inventoried 2358 stems ≥10 cm in diameter in 26 plots (200 m × 10 m) within a 5.2 ha area in Kibale National Park, Uganda, in logged and unlogged forest. In these surveys, we characterized the forest light environment, taxonomic composition, functional trait composition using three traits (wood density, maximum height and maximum diameter) and forest structure based on three measures (stem density, total basal area and total above-ground biomass). In comparison to unlogged forests, selectively logged forest plots in Kibale National Park on average had higher light levels, different structure characterized by lower stem density, lower total basal area and lower above-ground biomass, and a distinct taxonomic composition driven primarily by changes in the relative abundance of species. Conversely, selectively logged forest plots were like unlogged plots in functional composition, having similar community-weighted mean values for wood density, maximum height and maximum diameter. This similarity in functional composition irrespective of logging history may be due to functional recovery of logged forest or background changes in functional attributes of unlogged forest. Despite the passage of 45 years, the legacy of selective logging on the tree community in Kibale National Park is still evident, as indicated by distinct taxonomic and structural composition and reduced carbon storage in logged forest compared with unlogged forest. The effects of selective logging are exerted via influences on tree demography rather than functional trait composition.

  6. Selective logging: does the imprint remain on tree structure and composition after 45 years?

    PubMed Central

    Osazuwa-Peters, Oyomoare L.; Chapman, Colin A.; Zanne, Amy E.

    2015-01-01

    Selective logging of tropical forests is increasing in extent and intensity. The duration over which impacts of selective logging persist, however, remains an unresolved question, particularly for African forests. Here, we investigate the extent to which a past selective logging event continues to leave its imprint on different components of an East African forest 45 years later. We inventoried 2358 stems ≥10 cm in diameter in 26 plots (200 m × 10 m) within a 5.2 ha area in Kibale National Park, Uganda, in logged and unlogged forest. In these surveys, we characterized the forest light environment, taxonomic composition, functional trait composition using three traits (wood density, maximum height and maximum diameter) and forest structure based on three measures (stem density, total basal area and total above-ground biomass). In comparison to unlogged forests, selectively logged forest plots in Kibale National Park on average had higher light levels, different structure characterized by lower stem density, lower total basal area and lower above-ground biomass, and a distinct taxonomic composition driven primarily by changes in the relative abundance of species. Conversely, selectively logged forest plots were like unlogged plots in functional composition, having similar community-weighted mean values for wood density, maximum height and maximum diameter. This similarity in functional composition irrespective of logging history may be due to functional recovery of logged forest or background changes in functional attributes of unlogged forest. Despite the passage of 45 years, the legacy of selective logging on the tree community in Kibale National Park is still evident, as indicated by distinct taxonomic and structural composition and reduced carbon storage in logged forest compared with unlogged forest. The effects of selective logging are exerted via influences on tree demography rather than functional trait composition. PMID:27293697

  7. Effects of selective logging on bat communities in the southeastern Amazon.

    PubMed

    Peters, Sandra L; Malcolm, Jay R; Zimmerman, Barbara L

    2006-10-01

    Although extensive areas of tropical forest are selectively logged each year, the responses of bat communities to this form of disturbance have rarely been examined. Our objectives were to (1) compare bat abundance, species composition, and feeding guild structure between unlogged and low-intensity selectively logged (1-4 logged stems/ha) sampling grids in the southeastern Amazon and (2) examine correlations between logging-induced changes in bat communities and forest structure. We captured bats in understory and canopy mist nets set in five 1-ha study grids in both logged and unlogged forest. We captured 996 individuals, representing 5 families, 32 genera, and 49 species. Abundances of nectarivorous and frugivorous taxa (Glossophaginae, Lonchophyllinae, Stenodermatinae, and Carolliinae) were higher at logged sites, where canopy openness and understory foliage density were greatest. In contrast, insectivorous and omnivorous species (Emballonuridae, Mormoopidae, Phyllostominae, and Vespertilionidae) were more abundant in unlogged sites, where canopy foliage density and variability in the understory stratum were greatest. Multivariate analyses indicated that understory bat species composition differed strongly between logged and unlogged sites but provided little evidence of logging effects for the canopy fauna. Different responses among feeding guilds and taxonomic groups appeared to be related to foraging and echolocation strategies and to changes in canopy cover and understory foliage densities. Our results suggest that even low-intensity logging modifies habitat structure, leading to changes in bat species composition.

  8. VizieR Online Data Catalog: Bessel (1825) calculation for geodesic measurements (Karney+, 2010)

    NASA Astrophysics Data System (ADS)

    Karney, C. F. F.; Deakin, R. E.

    2010-06-01

    The solution of the geodesic problem for an oblate ellipsoid is developed in terms of series. Tables are provided to simplify the computation. Included here are the tables that accompanied Bessel's paper (with corrections). The tables were crafted by Bessel to be minimize the labor of hand calculations. To this end, he adjusted the intervals in the tables, the number of terms included in the series, and the number of significant digits given so that the final results are accurate to about 8 places. For that reason, the most useful form of the tables is as the PDF file which provides the tables in a layout close to the original. Also provided is the LaTeX source file for the PDF file. Finally, the data has been put into a format so that it can be read easily by computer programs. All the logarithms are in base 10 (common logarithms). The characteristic and the mantissa should be read separately (indicated as x.c and x.m in the file description). Thus the first entry in the table, -4.4, should be parsed as "-4" (the characteristic) and ".4" (the mantissa); the anti-log for this entry is 10(-4+0.4)=2.5e-4. The "Delta" columns give the first difference of the preceding column, i.e., the difference of the preceding column in the next row and the preceding column in the current row. In the printed tables these are expressed as "units in the last place" and the differences are of the rounded representations in the preceding columns (to minimize interpolation errors). In table1.dat these are given scaled to a match the format used for the preceding column, as indicated by the units given for these columns. The unit log(") (in the description within square brackets [arcsec]) means the logarithm of a quantity expressed in arcseconds. (3 data files).

  9. Logging-related increases in stream density in a northern California watershed

    Treesearch

    Matthew S. Buffleben

    2012-01-01

    Although many sediment budgets estimate the effects of logging, few have considered the potential impact of timber harvesting on stream density. Failure to consider changes in stream density could lead to large errors in the sediment budget, particularly between the allocation of natural and anthropogenic sources of sediment.This study...

  10. Highly-ionized metals as probes of the circumburst gas in the natal regions of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Heintz, K. E.; Watson, D.; Jakobsson, P.; Fynbo, J. P. U.; Bolmer, J.; Arabsalmani, M.; Cano, Z.; Covino, S.; D'Elia, V.; Gomboc, A.; Japelj, J.; Kaper, L.; Krogager, J.-K.; Pugliese, G.; Sánchez-Ramírez, R.; Selsing, J.; Sparre, M.; Tanvir, N. R.; Thöne, C. C.; de Ugarte Postigo, A.; Vergani, S. D.

    2018-06-01

    We present here a survey of high-ionization absorption lines in the afterglow spectra of long-duration gamma-ray bursts (GRBs) obtained with the VLT/X-shooter spectrograph. Our main goal is to investigate the circumburst medium in the natal regions of GRBs. Our primary focus is on the N V λλ 1238,1242 line transitions, but we also discuss other high-ionization lines such as O VI, C IV and Si IV. We find no correlation between the column density of N V and the neutral gas properties such as metallicity, H I column density and dust depletion, however the relative velocity of N V, typically a blueshift with respect to the neutral gas, is found to be correlated with the column density of H I. This may be explained if the N V gas is part of an H II region hosting the GRB, where the region's expansion is confined by dense, neutral gas in the GRB's host galaxy. We find tentative evidence (at 2σ significance) that the X-ray derived column density, NH, X, may be correlated with the column density of N V, which would indicate that both measurements are sensitive to the column density of the gas located in the vicinity of the GRB. We investigate the scenario where N V (and also O VI) is produced by recombination after the corresponding atoms have been stripped entirely of their electrons by the initial prompt emission, in contrast to previous models where highly-ionized gas is produced by photoionization from the GRB afterglow.

  11. BridgePBEE | BridgePBEE

    Science.gov Websites

    jacking Item 22: Bridge removal (column) Item 23: Bridge removal (portion) Item 24: Approach slab removal for: Search Menu Log in Register PEER Center - 325 Davis Hall, University of California, Berkeley, CA

  12. The Spontaneous Ray Log: A New Aid for Constructing Pseudo-Synthetic Seismograms

    NASA Astrophysics Data System (ADS)

    Quadir, Adnan; Lewis, Charles; Rau, Ruey-Juin

    2018-02-01

    Conventional synthetic seismograms for hydrocarbon exploration combine the sonic and density logs, whereas pseudo-synthetic seismograms are constructed with a density log plus a resistivity, neutron, gamma ray, or rarely a spontaneous potential log. Herein, we introduce a new technique for constructing a pseudo-synthetic seismogram by combining the gamma ray (GR) and self-potential (SP) logs to produce the spontaneous ray (SR) log. Three wells, each of which consisted of more than 1000 m of carbonates, sandstones, and shales, were investigated; each well was divided into 12 Groups based on formation tops, and the Pearson product-moment correlation coefficient (PCC) was calculated for each "Group" from each of the GR, SP, and SR logs. The highest PCC-valued log curves for each Group were then combined to produce a single log whose values were cross-plotted against the reference well's sonic ITT values to determine a linear transform for producing a pseudo-sonic (PS) log and, ultimately, a pseudo-synthetic seismogram. The range for the Nash-Sutcliffe efficiency (NSE) acceptable value for the pseudo-sonic logs of three wells was 78-83%. This technique was tested on three wells, one of which was used as a blind test well, with satisfactory results. The PCC value between the composite PS (SR) log with low-density correction and the conventional sonic (CS) log was 86%. Because of the common occurrence of spontaneous potential and gamma ray logs in many of the hydrocarbon basins of the world, this inexpensive and straightforward technique could hold significant promise in areas that are in need of alternate ways to create pseudo-synthetic seismograms for seismic reflection interpretation.

  13. Evaluation of AIS-2 (1986) data over hydrothermally altered granitoid rocks of the Singatse Range (Yerington) Nevada and comparison with 1985 AIS-1 data

    NASA Technical Reports Server (NTRS)

    Lyon, R. J. P.

    1987-01-01

    The Airborne Imaging Spectrometer-2 (AIS-2) flights along 2 subparallel lines (bearing 013) were designed to traverse 3 major rock assemblages - the Triassic sedimentary sequence; the granitoid rocks of the Yerington batholith and the Tertiary ignimbritic ash flow and ash fall tuffs. The first 2 sites are hydrothermally altered to a quartz-sericite-tourmaline mineralogy. The first AIS-2 data set showed numerous line dropouts and a considerable number of randomly distributed dark pixels. A second decommutation reduced the dropout essentially to near zero and the dark pixels by about 75 percent. Vertical striping was removed by histogram matching, column by column. A log residual spectrum was calculated which showed the departure of a 2 x 2 pixel area from the spatially and spectrally averaged scene. A 1:1 correlation was found with the log residual AIS-2 data and a large open pit area of gypsum. An area with known sericite agreed with the overflight data, and an area known to be free of any significant amount of O-H bearing materials showed no evidence of any in the AIS-2 log residuals.

  14. A Fast Chromatographic Method for Estimating Lipophilicity and Ionization in Nonpolar Membrane-Like Environment.

    PubMed

    Caron, Giulia; Vallaro, Maura; Ermondi, Giuseppe; Goetz, Gilles H; Abramov, Yuriy A; Philippe, Laurence; Shalaeva, Marina

    2016-03-07

    This study describes the design and implementation of a new chromatographic descriptor called log k'80 PLRP-S that provides information about the lipophilicity of drug molecules in the nonpolar environment, both in their neutral and ionized form. The log k'80 PLRP-S obtained on a polymeric column with acetonitrile/water mobile phase is shown to closely relate to log Ptoluene (toluene dielectric constant ε ∼ 2). The main intermolecular interactions governing log k'80 PLRP-S were deconvoluted using the Block Relevance (BR) analysis. The information provided by this descriptor was compared to ElogD and calclog Ptol, and the differences are highlighted. The "charge-flush" concept is introduced to describe the sensitivity of log k'80 PLRP-S to the ionization state of compounds in the pH range 2 to 12. The ability of log k'80 PLRP-S to indicate the propensity of neutral molecules and monoanions to form Intramolecular Hydrogen Bonds (IMHBs) is proven through a number of examples.

  15. Determination of the line shapes of atomic nitrogen resonance lines by magnetic scans

    NASA Technical Reports Server (NTRS)

    Lawrence, G. M.; Stone, E. J.; Kley, D.

    1976-01-01

    A technique is given for calibrating an atomic nitrogen resonance lamp for use in determining column densities of atoms in specific states. A discharge lamp emitting the NI multiplets at 1200 A and 1493 A is studied by obtaining absorption by atoms in a magnetic field (0-2.5 T). This magnetic scanning technique enables the determination of the absorbing atom column density, and an empirical curve of growth is obtained because the atomic f-value is known. Thus, the calibrated lamp can be used in the determination of atomic column densities.

  16. Large-Scale Structure of the Molecular Gas in Taurus Revealed by High Spatial Dynamic Range Spectral Line Mapping

    NASA Technical Reports Server (NTRS)

    Goldsmith, Paul F.

    2008-01-01

    Viewgraph topics include: optical image of Taurus; dust extinction in IR has provided a new tool for probing cloud morphology; observations of the gas can contribute critical information on gas temperature, gas column density and distribution, mass, and kinematics; the Taurus molecular cloud complex; average spectra in each mask region; mas 2 data; dealing with mask 1 data; behavior of mask 1 pixels; distribution of CO column densities; conversion to H2 column density; variable CO/H2 ratio with values much less than 10(exp -4) at low N indicated by UV results; histogram of N(H2) distribution; H2 column density distribution in Taurus; cumulative distribution of mass and area; lower CO fractional abundance in mask 0 and 1 regions greatly increases mass determined in the analysis; masses determined with variable X(CO) and including diffuse regions agrees well with the found from L(CO); distribution of young stars as a function of molecular column density; star formation efficiency; star formation rate and gas depletion; and enlarged images of some of the regions with numerous young stars. Additional slides examine the origin of the Taurus molecular cloud, evolution from HI gas, kinematics as a clue to its origin, and its relationship to star formation.

  17. Antibody-immobilized column for quick cell separation based on cell rolling.

    PubMed

    Mahara, Atsushi; Yamaoka, Tetsuji

    2010-01-01

    Cell separation using methodological standards that ensure high purity is a very important step in cell transplantation for regenerative medicine and for stem cell research. A separation protocol using magnetic beads has been widely used for cell separation to isolate negative and positive cells. However, not only the surface marker pattern, e.g., negative or positive, but also the density of a cell depends on its developmental stage and differentiation ability. Rapid and label-free separation procedures based on surface marker density are the focus of our interest. In this study, we have successfully developed an antiCD34 antibody-immobilized cell-rolling column, that can separate cells depending on the CD34 density of the cell surfaces. Various conditions for the cell-rolling column were optimized including graft copolymerization, and adjustment of the column tilt angle, and medium flow rate. Using CD34-positive and -negative cell lines, the cell separation potential of the column was established. We observed a difference in the rolling velocities between CD34-positive and CD34-negative cells on antibody-immobilized microfluidic device. Cell separation was achieved by tilting the surface 20 degrees and the increasing medium flow. Surface marker characteristics of the isolated cells in each fraction were analyzed using a cell-sorting system, and it was found that populations containing high density of CD34 were eluted in the delayed fractions. These results demonstrate that cells with a given surface marker density can be continuously separated using the cell rolling column.

  18. C+/H2 gas in star-forming clouds and galaxies

    NASA Astrophysics Data System (ADS)

    Nordon, Raanan; Sternberg, Amiel

    2016-11-01

    We present analytic theory for the total column density of singly ionized carbon (C+) in the optically thick photon dominated regions (PDRs) of far-UV irradiated (star-forming) molecular clouds. We derive a simple formula for the C+ column as a function of the cloud (hydrogen) density, the far-UV field intensity, and metallicity, encompassing the wide range of galaxy conditions. When assuming the typical relation between UV and density in the cold neutral medium, the C+ column becomes a function of the metallicity alone. We verify our analysis with detailed numerical PDR models. For optically thick gas, most of the C+ column is mixed with hydrogen that is primarily molecular (H2), and this `C+/H2' gas layer accounts for almost all of the `CO-dark' molecular gas in PDRs. The C+/H2 column density is limited by dust shielding and is inversely proportional to the metallicity down to ˜0.1 solar. At lower metallicities, H2 line blocking dominates and the C+/H2 column saturates. Applying our theory to CO surveys in low-redshift spirals, we estimate the fraction of C+/H2 gas out of the total molecular gas to be typically ˜0.4. At redshifts 1 < z < 3 in massive disc galaxies the C+/H2 gas represents a very small fraction of the total molecular gas (≲ 0.16). This small fraction at high redshifts is due to the high gas surface densities when compared to local galaxies.

  19. VizieR Online Data Catalog: Gamma Ray Bursts detected by Swift (2004-2015) (Buchner+, 2017)

    NASA Astrophysics Data System (ADS)

    Buchner, J.; Schulze, S.; Bauer, F.

    2016-04-01

    Gamma Ray Bursts (GRB) typically show intrinsic LOS column densities of 1021-23cm2. We performed a thorough statistical analysis of all available X-ray spectra of Swift-detected GRBs. In the associated paper we use sub-samples to analyse the population properties of LGRB and concluded that the obscuration is due to large-scale gas inside the GRB host galaxy, due to the shape of the column density distribution and its correlation with host stellar mass. This catalogue presents X-ray spectral analysis of all Swift-detected GRBs. It includes information about the GRB (ID, Swift Trigger ID, duration, RA/Dec in J2000, galactic coordinates, Milky Way column density). Those properties are taken from the http://www.swift.ac.uk/ and http://gcn.gsfc.nasa.gov/ websites. We removed prompt emission and flares, leaving only a certain time interval for spectral extraction. We use two models to analyse X-ray spectra: TBABS and SPHERE. Both include updated abundances and cross-sections as compared to previous works. The latter includes the effects of Compton-scattering and FeKa fluorescence relevant at high column densities. Columns list the posterior mean, standard deviation, 10% and 90% quantiles. Note that the column densities are converted to hydrogen assuming local ISM abundances, but are derived primarily from photo-electric absorption of e.g. Fe and O, and therefore primarily measure metal gas. (2 data files).

  20. Petrophysical analysis of geophysical logs of the National Drilling Company-U.S. Geological Survey ground-water research project for Abu Dhabi Emirate, United Arab Emirates

    USGS Publications Warehouse

    Jorgensen, Donald G.; Petricola, Mario

    1994-01-01

    A program of borehole-geophysical logging was implemented to supply geologic and geohydrologic information for a regional ground-water investigation of Abu Dhabi Emirate. Analysis of geophysical logs was essential to provide information on geohydrologic properties because drill cuttings were not always adequate to define lithologic boundaries. The standard suite of logs obtained at most project test holes consisted of caliper, spontaneous potential, gamma ray, dual induction, microresistivity, compensated neutron, compensated density, and compensated sonic. Ophiolitic detritus from the nearby Oman Mountains has unusual petrophysical properties that complicated the interpretation of geophysical logs. The density of coarse ophiolitic detritus is typically greater than 3.0 grams per cubic centimeter, porosity values are large, often exceeding 45 percent, and the clay fraction included unusual clays, such as lizardite. Neither the spontaneous-potential log nor the natural gamma-ray log were useable clay indicators. Because intrinsic permeability is a function of clay content, additional research in determining clay content was critical. A research program of geophysical logging was conducted to determine the petrophysical properties of the shallow subsurface formations. The logging included spectral-gamma and thermal-decay-time logs. These logs, along with the standard geophysical logs, were correlated to mineralogy and whole-rock chemistry as determined from sidewall cores. Thus, interpretation of lithology and fluids was accomplished. Permeability and specific yield were calculated from geophysical-log data and correlated to results from an aquifer test. On the basis of results from the research logging, a method of lithologic and water-resistivity interpretation was developed for the test holes at which the standard suite of logs were obtained. In addition, a computer program was developed to assist in the analysis of log data. Geohydrologic properties were estimated, including volume of clay matrix, volume of matrix other than clay, density of matrix other than clay, density of matrix, intrinsic permeability, specific yield, and specific storage. Geophysical logs were used to (1) determine lithology, (2) correlate lithologic and permeable zones, (3) calibrate seismic reprocessing, (4) calibrate transient-electromagnetic surveys, and (5) calibrate uphole-survey interpretations. Logs were used at the drill site to (1) determine permeability zones, (2) determine dissolved-solids content, which is a function of water resistivity, and (3) design wells accordingly. Data and properties derived from logs were used to determine transmissivity and specific yield of aquifer materials.

  1. Evolution of HI from Z=5 to the present

    NASA Technical Reports Server (NTRS)

    Storrie-Lombardi, L. J.

    2002-01-01

    Studies of damped Lya systems provide us with a good measure of the evolution of the HI column density distribution function and the contribution to the comoving mass density in neutral gas out to redshifts of z = 5 . The column density distribution function at high redshift steepens for the highest column density HI absorbers, though the contribution to the comoving mass density of neutral gas remains fiat from 2 < z < 5 . Results from studies at z < 2 are finding substantial numbers of damped absorbers identified from MgII absorption, compared to previous blind surveys. These results indicate that the contribution to the comoving mass density in neutral gas may be constant from z 0 to z 5. Details of recent work in the redshift range z < 2 work is covered elsewhere in this volume (see D. Nestor). We review here recent results for the redshift range 2 < z < 5.

  2. Eliminating the rugosity effect from compensated density logs by geometrical response matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flaum, C.; Holenka, J.M.; Case, C.R.

    1991-06-01

    A theoretical and experimental effort to understand the effects of borehole rugosity on individual detector responses yielded an improved method of processing compensated density logs. Historically, the spine/ribs technique for obtaining borehole and mudcake compensation of dual-detector, gamma-gamma density logs has been very successful as long as the borehole and other environmental effects vary slowly with depth and the interest in limited to vertical features broader than several feet. With the increased interest in higher vertical resolution, a more detailed analysis of the effect of such quickly varying environmental effects as rugosity was required. A laboratory setup simulating the effectmore » of rugosity on Schlumberger Litho-Density{sup SM} tools (LDT) was used to study vertical response in the presence of rugosity. The data served as the benchmark for the Nonte Carlo models used to generate synthetic density logs in the presence of more complex rugosity patterns. The results provided in this paper show that proper matching of the two detector responses before application of conventional compensation methods can eliminate rugosity effects without degrading the measurements vertical resolution. The accuracy of the results is a good as the obtained in a parallel mudcake or standoff with the conventional method. Application to both field and synthetic log confirmed the validity of these results.« less

  3. Sinking velocities of phytoplankton measured on a stable density gradient by laser scanning

    PubMed Central

    Walsby, Anthony E; Holland, Daryl P

    2005-01-01

    Two particular difficulties in measuring the sinking velocities of phytoplankton cells are preventing convection within the sedimenting medium and determining the changing depth of the cells. These problems are overcome by using a density-stabilized sedimentation column scanned by a laser. For freshwater species, a suspension of phytoplankton is layered over a vertical density gradient of Percoll solution; as the cells sink down the column their relative concentration is measured by the forward scattering of light from a laser beam that repeatedly scans up and down the column. The Percoll gradient stabilizes the column, preventing vertical mixing by convection, radiation or perturbation of density by the descending cells. Measurements were made on suspensions of 15 μm polystyrene microspheres with a density of 1050 kg m−3; the mean velocity was 6.28 μm s−1, within 1.5% of that calculated by the Stokes equation, 6.36 μm s−1. Measurements made on the filamentous cyanobacterium Planktothrix rubescens gave mean velocities within the theoretical range of values based on the range of size, shape, orientation and density of the particles in a modified Stokes equation. Measurements on marine phytoplankton may require density gradients prepared with other substances. PMID:16849271

  4. HIDEEP - an extragalactic blind survey for very low column-density neutral hydrogen

    NASA Astrophysics Data System (ADS)

    Minchin, R. F.; Disney, M. J.; Boyce, P. J.; de Blok, W. J. G.; Parker, Q. A.; Banks, G. D.; Freeman, K. C.; Garcia, D. A.; Gibson, B. K.; Grossi, M.; Haynes, R. F.; Knezek, P. M.; Lang, R. H.; Malin, D. F.; Price, R. M.; Stewart, I. M.; Wright, A. E.

    2003-12-01

    We have carried out an extremely long integration time (9000 s beam-1) 21-cm blind survey of 60 deg2 in Centaurus using the Parkes multibeam system. We find that the noise continues to fall as throughout, enabling us to reach an HI column-density limit of 4.2 × 1018 cm-2 for galaxies with a velocity width of 200 km s-1 in the central 32 deg2 region, making this the deepest survey to date in terms of column density sensitivity. The HI data are complemented by very deep optical observations from digital stacking of multi-exposure UK Schmidt Telescope R-band films, which reach an isophotal level of 26.5 R mag arcsec-2 (~=27.5 B mag arcsec-2). 173 HI sources have been found, 96 of which have been uniquely identified with optical counterparts in the overlap area. There is not a single source without an optical counterpart. Although we have not measured the column densities directly, we have inferred them from the optical sizes of their counterparts. All appear to have a column density of NHI= 1020.65+/-0.38. This is at least an order of magnitude above our sensitivity limit, with a scatter only marginally larger than the errors on NHI. This needs explaining. If confirmed it means that HI surveys will only find low surface brightness (LSB) galaxies with high MHI/LB. Gas-rich LSB galaxies with lower HI mass to light ratios do not exist. The paucity of low column-density galaxies also implies that no significant population will be missed by the all-sky HI surveys being carried out at Parkes and Jodrell Bank.

  5. Escherichia coli bacteria density in relation to turbidity, streamflow characteristics, and season in the Chattahoochee River near Atlanta, Georgia, October 2000 through September 2008—Description, statistical analysis, and predictive modeling

    USGS Publications Warehouse

    Lawrence, Stephen J.

    2012-01-01

    Regression analyses show that E. coli density in samples was strongly related to turbidity, streamflow characteristics, and season at both sites. The regression equation chosen for the Norcross data showed that 78 percent of the variability in E. coli density (in log base 10 units) was explained by the variability in turbidity values (in log base 10 units), streamflow event (dry-weather flow or stormflow), season (cool or warm), and an interaction term that is the cross product of streamflow event and turbidity. The regression equation chosen for the Atlanta data showed that 76 percent of the variability in E. coli density (in log base 10 units) was explained by the variability in turbidity values (in log base 10 units), water temperature, streamflow event, and an interaction term that is the cross product of streamflow event and turbidity. Residual analysis and model confirmation using new data indicated the regression equations selected at both sites predicted E. coli density within the 90 percent prediction intervals of the equations and could be used to predict E. coli density in real time at both sites.

  6. Fine structure of Galactic foreground ISM towards high-redshift AGN - utilizing Herschel PACS and SPIRE data

    NASA Astrophysics Data System (ADS)

    Perger, K.; Pinter, S.; Frey, S.; Tóth, L. V.

    2018-05-01

    One of the most certain ways to determine star formation rate in galaxies is based on far infrared (FIR) measurements. To decide the origin of the observed FIR emission, subtracting the Galactic foreground is a crucial step. We utilized Herschel photometric data to determine the hydrogen column densities in three galactic latitude regions, at b = 27°, 50° and -80°. We applied a pixel-by-pixel fit to the spectral energy distribution (SED) for the images aquired from parallel PACS-SPIRE observations in all three sky areas. We determined the column densities with resolutions 45'' and 6', and compared the results with values estimated from the IRAS dust maps. Column densities at 27° and 50° galactic latitudes determined from the Herschel data are in a good agreement with the literature values. However, at the highest galactic latitude we found that the column densities from the Herschel data exceed those derived from the IRAS dust map.

  7. Electrofacies analysis for coal lithotype profiling based on high-resolution wireline log data

    NASA Astrophysics Data System (ADS)

    Roslin, A.; Esterle, J. S.

    2016-06-01

    The traditional approach to coal lithotype analysis is based on a visual characterisation of coal in core, mine or outcrop exposures. As not all wells are fully cored, the petroleum and coal mining industries increasingly use geophysical wireline logs for lithology interpretation.This study demonstrates a method for interpreting coal lithotypes from geophysical wireline logs, and in particular discriminating between bright or banded, and dull coal at similar densities to a decimetre level. The study explores the optimum combination of geophysical log suites for training the coal electrofacies interpretation, using neural network conception, and then propagating the results to wells with fewer wireline data. This approach is objective and has a recordable reproducibility and rule set.In addition to conventional gamma ray and density logs, laterolog resistivity, microresistivity and PEF data were used in the study. Array resistivity data from a compact micro imager (CMI tool) were processed into a single microresistivity curve and integrated with the conventional resistivity data in the cluster analysis. Microresistivity data were tested in the analysis to test the hypothesis that the improved vertical resolution of microresistivity curve can enhance the accuracy of the clustering analysis. The addition of PEF log allowed discrimination between low density bright to banded coal electrofacies and low density inertinite-rich dull electrofacies.The results of clustering analysis were validated statistically and the results of the electrofacies results were compared to manually derived coal lithotype logs.

  8. Are CO Observations of Interstellar Clouds Tracing the H2?

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph; Glover, S. C. O.; Klessen, R. S.; Mac Low, M.

    2010-01-01

    Interstellar clouds are commonly observed through the emission of rotational transitions from carbon monoxide (CO). However, the abundance ratio of CO to molecular hydrogen (H2), which is the most abundant molecule in molecular clouds is only about 10-4. This raises the important question of whether the observed CO emission is actually tracing the bulk of the gas in these clouds, and whether it can be used to derive quantities like the total mass of the cloud, the gas density distribution function, the fractal dimension, and the velocity dispersion--size relation. To evaluate the usability and accuracy of CO as a tracer for H2 gas, we generate synthetic observations of hydrodynamical models that include a detailed chemical network to follow the formation and photo-dissociation of H2 and CO. These three-dimensional models of turbulent interstellar cloud formation self-consistently follow the coupled thermal, dynamical and chemical evolution of 32 species, with a particular focus on H2 and CO (Glover et al. 2009). We find that CO primarily traces the dense gas in the clouds, however, with a significant scatter due to turbulent mixing and self-shielding of H2 and CO. The H2 probability distribution function (PDF) is well-described by a log-normal distribution. In contrast, the CO column density PDF has a strongly non-Gaussian low-density wing, not at all consistent with a log-normal distribution. Centroid velocity statistics show that CO is more intermittent than H2, leading to an overestimate of the velocity scaling exponent in the velocity dispersion--size relation. With our systematic comparison of H2 and CO data from the numerical models, we hope to provide a statistical formula to correct for the bias of CO observations. CF acknowledges financial support from a Kade Fellowship of the American Museum of Natural History.

  9. An Outburst Scenario for the X-ray Spectral Variability in 3C 111

    NASA Technical Reports Server (NTRS)

    Tombesi, Francesco; Reeves, J. N.; Reynolds, Christopher S.; Garcia, J.; Lohfink, A.

    2013-01-01

    We present a combined Suzaku and Swift BAT broad-band E=0.6-200 keV spectral analysis of three 3C 111 observations obtained in 2010. The data are well described with an absorbed power-law continuum and a weak (R approximately equal to 0.2) cold reflection component from distant material. We constrain the continuum cutoff at E(sub C) approximately equal to 150- 200 keV, which is in accordance with X-ray Comptonization corona models and supports claims that the jet emission is only dominant at much higher energies. Fe XXVI Ly alpha emission and absorption lines are also present in the first and second observations, respectively. The modelling and interpretation of the emission line is complex and we explore three possibilities. If originating from ionized disc reflection, this should be emitted at r(sub in) greater than or equal to 50 r(sub g) or, in the lamp-post configuration, the illuminating source should be at a height of h greater than or equal to 30 r(sub g) over the black hole. Alternatively, the line could be modeled with a hot collisionally ionized plasma with temperature kT = 22.0(sup +6.1)(sub -3.2) keV or a photo-ionized plasma with logXi=4.52(sup +0.10)(sub -0.16) erg per second cm, and column density N(sub H) greater than 3×10(sup 23) per square centimeter. However, the first and second scenarios are less favored on statistical and physical grounds, respectively. The blue-shifted absorption line in the second observation can be modelled as an ultra-fast outflow (UFO) with ionization parameter logXi=4.47(sup +0.76) (sub -0.04) erg per second cm, column density NH=(5.3(sup +1.8)(sub -1.3))×10(sup 22) per square centimeter and outflow velocity v(sub out) = 0.104+/-0.006c. Interestingly, the parameters of the photoionized emission model remarkably match those of the absorbing UFO, supporting the possibility that the same material could be responsible for both emission and absorption. We suggest an outburst scenario in which an accretion disc wind, initially lying out of the line of sight and observed in emission, then crosses our view to the source and it is observed in absorption as a mildly-relativistic UFO.

  10. Comparing the statistics of interstellar turbulence in simulations and observations. Solenoidal versus compressive turbulence forcing

    NASA Astrophysics Data System (ADS)

    Federrath, C.; Roman-Duval, J.; Klessen, R. S.; Schmidt, W.; Mac Low, M.-M.

    2010-03-01

    Context. Density and velocity fluctuations on virtually all scales observed with modern telescopes show that molecular clouds (MCs) are turbulent. The forcing and structural characteristics of this turbulence are, however, still poorly understood. Aims: To shed light on this subject, we study two limiting cases of turbulence forcing in numerical experiments: solenoidal (divergence-free) forcing and compressive (curl-free) forcing, and compare our results to observations. Methods: We solve the equations of hydrodynamics on grids with up to 10243 cells for purely solenoidal and purely compressive forcing. Eleven lower-resolution models with different forcing mixtures are also analysed. Results: Using Fourier spectra and Δ-variance, we find velocity dispersion-size relations consistent with observations and independent numerical simulations, irrespective of the type of forcing. However, compressive forcing yields stronger compression at the same rms Mach number than solenoidal forcing, resulting in a three times larger standard deviation of volumetric and column density probability distributions (PDFs). We compare our results to different characterisations of several observed regions, and find evidence of different forcing functions. Column density PDFs in the Perseus MC suggest the presence of a mainly compressive forcing agent within a shell, driven by a massive star. Although the PDFs are close to log-normal, they have non-Gaussian skewness and kurtosis caused by intermittency. Centroid velocity increments measured in the Polaris Flare on intermediate scales agree with solenoidal forcing on that scale. However, Δ-variance analysis of the column density in the Polaris Flare suggests that turbulence is driven on large scales, with a significant compressive component on the forcing scale. This indicates that, although likely driven with mostly compressive modes on large scales, turbulence can behave like solenoidal turbulence on smaller scales. Principal component analysis of G216-2.5 and most of the Rosette MC agree with solenoidal forcing, but the interior of an ionised shell within the Rosette MC displays clear signatures of compressive forcing. Conclusions: The strong dependence of the density PDF on the type of forcing must be taken into account in any theory using the PDF to predict properties of star formation. We supply a quantitative description of this dependence. We find that different observed regions show evidence of different mixtures of compressive and solenoidal forcing, with more compressive forcing occurring primarily in swept-up shells. Finally, we emphasise the role of the sonic scale for protostellar core formation, because core formation close to the sonic scale would naturally explain the observed subsonic velocity dispersions of protostellar cores. A movie is only available in electronic form at http://www.aanda.org

  11. Correlations in the three-dimensional Lyman-alpha forest contaminated by high column density absorbers

    NASA Astrophysics Data System (ADS)

    Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris

    2018-05-01

    Correlations measured in three dimensions in the Lyman-alpha forest are contaminated by the presence of the damping wings of high column density (HCD) absorbing systems of neutral hydrogen (H I; having column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}), which extend significantly beyond the redshift-space location of the absorber. We measure this effect as a function of the column density of the HCD absorbers and redshift by measuring three-dimensional (3D) flux power spectra in cosmological hydrodynamical simulations from the Illustris project. Survey pipelines exclude regions containing the largest damping wings. We find that, even after this procedure, there is a scale-dependent correction to the 3D Lyman-alpha forest flux power spectrum from residual contamination. We model this residual using a simple physical model of the HCD absorbers as linearly biased tracers of the matter density distribution, convolved with their Voigt profiles and integrated over the column density distribution function. We recommend the use of this model over existing models used in data analysis, which approximate the damping wings as top-hats and so miss shape information in the extended wings. The simple `linear Voigt model' is statistically consistent with our simulation results for a mock residual contamination up to small scales (|k| < 1 h Mpc^{-1}). It does not account for the effect of the highest column density absorbers on the smallest scales (e.g. |k| > 0.4 h Mpc^{-1} for small damped Lyman-alpha absorbers; HCD absorbers with N(H I) ˜ 10^{21} atoms cm^{-2}). However, these systems are in any case preferentially removed from survey data. Our model is appropriate for an accurate analysis of the baryon acoustic oscillations feature. It is additionally essential for reconstructing the full shape of the 3D flux power spectrum.

  12. Estimating tree bole and log weights from green densities measured with the Bergstrom Xylodensimeter.

    Treesearch

    Dale R. Waddell; Michael B. Lambert; W.Y. Pong

    1984-01-01

    The performance of the Bergstrom xylodensimeter, designed to measure the green density of wood, was investigated and compared with a technique that derived green densities from wood disk samples. In addition, log and bole weights of old-growth Douglas-fir and western hemlock were calculated by various formulas and compared with lifted weights measured with a load cell...

  13. Coincidences between O VI and O VII Lines: Insights from High-resolution Simulations of the Warm-hot Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Cen, Renyue

    2012-07-01

    With high-resolution (0.46 h -1 kpc), large-scale, adaptive mesh-refinement Eulerian cosmological hydrodynamic simulations we compute properties of O VI and O VII absorbers from the warm-hot intergalactic medium (WHIM) at z = 0. Our new simulations are in broad agreement with previous simulations with ~40% of the intergalactic medium being in the WHIM. Our simulations are in agreement with observed properties of O VI absorbers with respect to the line incidence rate and Doppler-width-column-density relation. It is found that the amount of gas in the WHIM below and above 106 K is roughly equal. Strong O VI absorbers are found to be predominantly collisionally ionized. It is found that (61%, 57%, 39%) of O VI absorbers of log N(O VI) cm2 = (12.5-13, 13-14, > 14) have T < 105 K. Cross correlations between galaxies and strong [N(O VI) > 1014 cm-2] O VI absorbers on ~100-300 kpc scales are suggested as a potential differentiator between collisional ionization and photoionization models. Quantitative prediction is made for the presence of broad and shallow O VI lines that are largely missed by current observations but will be detectable by Cosmic Origins Spectrograph observations. The reported 3σ upper limit on the mean column density of coincidental O VII lines at the location of detected O VI lines by Yao et al. is above our predicted value by a factor of 2.5-4. The claimed observational detection of O VII lines by Nicastro et al., if true, is 2σ above what our simulations predict.

  14. Detection of GRB 060927 at zeta = 5.47: Implications for the Use of Gamma-Ray Bursts as Probes of the End of the Dark Ages

    NASA Technical Reports Server (NTRS)

    Ruiz-Velasco, A. E.; Swan, H.; Troja, E.; Malesani, D.; Fynbo, J. P. U.; Sterling, R. L. C.; Xu, D.; Aharonian, F.; Akerlof, C.; Andersen, M. I.; hide

    2007-01-01

    We report on follow-up observations of the gamma-ray burst GRB 060927 using the robotic ROTSE-IIIa telescope and a suite of larger aperture groundbased telescopes. An optical afterglow was detected 20 s after the burst, the earliest rest-frame detection of optical emission from any GRB. Spectroscopy performed with the VLT about 13 hours after the trigger shows a continuum break at lambda approx. equals 8070 A, produced by neutral hydrogen absorption at zeta = 5.6. We also detect an absorption line at 8158 A which we interpret as Si II lambda 1260 at zeta = 5.467. Hence, GRB 060927 is the second most distant GRB with a spectroscopically measured redshift. The shape of the red wing of the spectral break can be fitted by a damped Ly(alpha) profile with a column density with log(N(sub HI)/sq cm) = 22.50 +/- 0.15. We discuss the implications of this work for the use of GRBs as probes of the end of the dark ages and draw three main conclusions: i) GRB afterglows originating from zeta greater than or approx. equal to 6 should be relatively easy to detect from the ground, but rapid near-infrared monitoring is necessary to ensure that they are found; ii) The presence of large H I column densities in some GRBs host galaxies at zeta > 5 makes the use of GRBs to probe the reionization epoch via spectroscopy of the red damping wing challenging; iii) GRBs appear crucial to locate typical star-forming galaxies at zeta > 5 and therefore the type of galaxies responsible for the reionization of the universe.

  15. Heavy X-ray obscuration in the most luminous galaxies discovered by WISE

    NASA Astrophysics Data System (ADS)

    Vito, F.; Brandt, W. N.; Stern, D.; Assef, R. J.; Chen, C.-T. J.; Brightman, M.; Comastri, A.; Eisenhardt, P.; Garmire, G. P.; Hickox, R.; Lansbury, G.; Tsai, C.-W.; Walton, D. J.; Wu, J. W.

    2018-03-01

    Hot dust-obscured galaxies (DOGs) are hyperluminous (L8-1000 μm > 1013 L⊙) infrared galaxies with extremely high (up to hundreds of K) dust temperatures. The sources powering both their extremely high luminosities and dust temperatures are thought to be deeply buried and rapidly accreting supermassive black holes (SMBHs). Hot DOGs could therefore represent a key evolutionary phase in which the SMBH growth peaks. X-ray observations can be used to study their obscuration levels and luminosities. In this work, we present the X-ray properties of the 20 most luminous (Lbol ≳ 1014 L⊙) known hot DOGs at z = 2-4.6. Five of them are covered by long-exposure (10-70 ks) Chandra and XMM-Newton observations, with three being X-ray detected, and we study their individual properties. One of these sources (W0116-0505) is a Compton-thick candidate, with column density NH = (1.0-1.5) × 1024 cm-2 derived from X-ray spectral fitting. The remaining 15 hot DOGs have been targeted by a Chandra snapshot (3.1 ks) survey. None of these 15 are individually detected; therefore, we applied a stacking analysis to investigate their average emission. From hardness ratio analysis, we constrained the average obscuring column density and intrinsic luminosity to be log NH (cm-2) > 23.5 and LX ≳ 1044 erg s-1, which are consistent with results for individually detected sources. We also investigated the LX-L6 μm and LX-Lbol relations, finding hints that hot DOGs are typically X-ray weaker than expected, although larger samples of luminous obscured quasi-stellar objects are needed to derive solid conclusions.

  16. A Search for H I Lyα Counterparts to Ultrafast X-Ray Outflows

    NASA Astrophysics Data System (ADS)

    Kriss, Gerard A.; Lee, Julia C.; Danehkar, Ashkbiz

    2018-06-01

    Prompted by the H I Lyα absorption associated with the X-ray ultrafast outflow at ‑17,300 km s‑1 in the quasar PG 1211+143, we have searched archival UV spectra at the expected locations of H I Lyα absorption for a large sample of ultrafast outflows identified in XMM-Newton and Suzaku observations. Sixteen of the X-ray outflows have predicted H I Lyα wavelengths falling within the bandpass of spectra from either the Far Ultraviolet Spectroscopic Explorer or the Hubble Space Telescope, although none of the archival observations were simultaneous with the X-ray observations in which ultrafast X-ray outflows (UFOs) were detected. In our spectra broad features with FWHM of 1000 km s‑1 have 2σ upper limits on the H I column density of generally ≲2 × 1013 cm‑2. Using grids of photoionization models covering a broad range of spectral energy distributions (SEDs), we find that producing Fe XXVI Lyα X-ray absorption with equivalent widths >30 eV and associated H I Lyα absorption with {N}{{H}{{I}}}< 2× {10}13 {cm}}-2 requires total absorbing column densities {N}{{H}}> 5× {10}22 {cm}}-2 and ionization parameters log ξ ≳ 3.7. Nevertheless, a wide range of SEDs would predict observable H I Lyα absorption if ionization parameters are only slightly below peak ionization fractions for Fe XXV and Fe XXVI. The lack of Lyα features in the archival UV spectra indicates that the UFOs have very high ionization parameters, that they have very hard UV-ionizing spectra, or that they were not present at the time of the UV spectral observations owing to variability.

  17. Ultraviolet observations of the gas phase abundances in the diffuse clouds toward Zeta Ophiuchi at 3.5 kilometers per second resolution

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Cardelli, Jason A.; Sofia, Ulysses J.

    1992-01-01

    Goddard High Resolution Spectrograph echelle mode measurements at 3.5 km/s resolution are presented for interstellar absorption produced by C II, O I, Mg I, Mg II, Al III, P II, Cr II, Mn II, Fe II, Ni II, Cu II, Zn II, Ga II, Ge II, and Kr I. The absorption line measurements are converted into representations of apparent column density per unit velocity in order to study the multicomponent nature of the absorption. The high spectral resolution of the measurements allows a comparative study of gas phase abundances for many species in the absorbing clouds near -27 and -15 km/s with a typical precision of about 0.05 dex. The matter absorbing near -27 km/s is situated in the local interstellar medium and has log N(H I) of about 19.74. This absorption provides information about the modest 'base' depletion associated with the lower density interstellar medium. The depletion results suggest that accretion processes are operating interstellar clouds that exhibit similar depletion efficiencies for some elements but much higher depletion efficiencies for others.

  18. Headwater streams and forest management: does ecoregional context influence logging effects on benthic communities?

    USGS Publications Warehouse

    Medhurst, R. Bruce; Wipfli, Mark S.; Binckley, Chris; Polivka, Karl; Hessburg, Paul F.; Salter, R. Brion

    2010-01-01

    Effects of forest management on stream communities have been widely documented, but the role that climate plays in the disturbance outcomes is not understood. In order to determine whether the effect of disturbance from forest management on headwater stream communities varies by climate, we evaluated benthic macroinvertebrate communities in 24 headwater streams that differed in forest management (logged-roaded vs. unlogged-unroaded, hereafter logged and unlogged) within two ecological sub-regions (wet versus dry) within the eastern Cascade Range, Washington, USA. In both ecoregions, total macroinvertebrate density was highest at logged sites (P = 0.001) with gathering-collectors and shredders dominating. Total taxonomic richness and diversity did not differ between ecoregions or forest management types. Shredder densities were positively correlated with total deciduous and Sitka alder (Alnus sinuata) riparian cover. Further, differences in shredder density between logged and unlogged sites were greater in the wet ecoregion (logging × ecoregion interaction; P = 0.006) suggesting that differences in post-logging forest succession between ecoregions were responsible for differences in shredder abundance. Headwater stream benthic community structure was influenced by logging and regional differences in climate. Future development of ecoregional classification models at the subbasin scale, and use of functional metrics in addition to structural metrics, may allow for more accurate assessments of anthropogenic disturbances in mountainous regions where mosaics of localized differences in climate are common.

  19. Cloudy Skies over AGN: Observations with Simbol-X

    NASA Astrophysics Data System (ADS)

    Salvati, M.; Risaliti, G.

    2009-05-01

    Recent time-resolved spectroscopic X-ray studies of bright obscured AGN show that column density variability on time scales of hours/days may be common, at least for sources with NH>1023 cm-2. This opens new oppurtunities in the analysis of the structure of the circumnuclear medium and of the X-ray source: resolving the variations due to single clouds covering/uncovering the X-ray source provides tight constraints on the source size, the clouds' size and distance, and their average number, density and column density. We show how Simbol-X will provide a breakthrough in this field, thanks to its broad band coverage, allowing (a) to precisely disentangle the continuum and NH variations, and (2) to extend the NH variability analysis to column densities >1023 cm-2.

  20. Investigating uplift in the South-Western Barents Sea using sonic and density well log measurements

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Ellis, M.

    2014-12-01

    Sediments in the Barents Sea have undergone large amounts of uplift due to Plio-Pleistoncene deglaciation as well as Palaeocene-Eocene Atlantic rifting. Uplift affects the reservoir quality, seal capacity and fluid migration. Therefore, it is important to gain reliable uplift estimates in order to evaluate the petroleum prospectivity properly. To this end, a number of quantification methods have been proposed, such as Apatite Fission Track Analysis (AFTA), and integration of seismic surveys with well log data. AFTA usually provides accurate uplift estimates, but the data is limited due to its high cost. While the seismic survey can provide good uplift estimate when well data is available for calibration, the uncertainty can be large in areas where there is little to no well data. We estimated South-Western Barents Sea uplift based on well data from the Norwegian Petroleum Directorate. Primary assumptions include time-irreversible shale compaction trends and a universal normal compaction trend for a specified formation. Sonic and density logs from two Cenozoic shale formation intervals, Kolmule and Kolje, were used for the study. For each formation, we studied logs of all released wells, and established exponential normal compaction trends based on a single well. That well was then deemed the reference well, and relative uplift can be calculated at other well locations based on the offset from the normal compaction trend. We found that the amount of uplift increases along the SW to NE direction, with a maximum difference of 1,447 m from the Kolje FM estimate, and 699 m from the Kolmule FM estimate. The average standard deviation of the estimated uplift is 130 m for the Kolje FM, and 160 m for the Kolmule FM using the density log. While results from density logs and sonic logs have good agreement in general, the density log provides slightly better results in terms of higher consistency and lower standard deviation. Our results agree with published papers qualitatively with some differences in the actual amount of uplifts. The results are considered to be more accurate due to the higher resolution of the log scale data that was used.

  1. Uranium enrichment in lacustrine oil source rocks of the Chang 7 member of the Yanchang Formation, Erdos Basin, China

    NASA Astrophysics Data System (ADS)

    Yang, Hua; Zhang, Wenzheng; Wu, Kai; Li, Shanpeng; Peng, Ping'an; Qin, Yan

    2010-09-01

    The oil source rocks of the Chang 7 member of the Yanchang Formation in the Erdos Basin were deposited during maximum lake extension during the Late Triassic and show a remarkable positive uranium anomaly, with an average uranium content as high as 51.1 μg/g. Uranium is enriched together with organic matter and elements such as Fe, S, Cu, V and Mo in the rocks. The detailed biological markers determined in the Chang 7 member indicate that the lake water column was oxidizing during deposition of the Chang 7 member. However, redox indicators for sediments such as S 2- content, V/Sc and V/(V + Ni) ratios demonstrate that it was a typical anoxic diagenetic setting. The contrasted redox conditions between the water column and the sediment with a very high content of organic matter provided favorable physical and chemical conditions for syngenetic uranium enrichment in the oil source rocks of the Chang 7 member. Possible uranium sources may be the extensive U-rich volcanic ash that resulted from contemporaneous volcanic eruption and uranium material transported by hydrothermal conduits into the basin. The uranium from terrestrial clastics was unlike because uranium concentration was not higher in the margin area of basin where the terrestrial material input was high. As indicated by correlative analysis, the oil source rocks of the Chang 7 member show high gamma-ray values for radioactive well log data that reflect a positive uranium anomaly and are characterized by high resistance, low electric potential and low density. As a result, well log data can be used to identify positive uranium anomalies and spatial distribution of the oil source rocks in the Erdos Basin. The estimation of the total uranium reserves in the Chang 7 member attain 0.8 × 10 8 t.

  2. Petrophysical evaluation of subterranean formations

    DOEpatents

    Klein, James D; Schoderbek, David A; Mailloux, Jason M

    2013-05-28

    Methods and systems are provided for evaluating petrophysical properties of subterranean formations and comprehensively evaluating hydrate presence through a combination of computer-implemented log modeling and analysis. Certain embodiments include the steps of running a number of logging tools in a wellbore to obtain a variety of wellbore data and logs, and evaluating and modeling the log data to ascertain various petrophysical properties. Examples of suitable logging techniques that may be used in combination with the present invention include, but are not limited to, sonic logs, electrical resistivity logs, gamma ray logs, neutron porosity logs, density logs, NRM logs, or any combination or subset thereof.

  3. Endogenous Sex Steroid Hormones, Lipid Subfractions, and Ectopic Adiposity in Asian Indians.

    PubMed

    Kim, Catherine; Kong, Shengchun; Krauss, Ronald M; Stanczyk, Frank Z; Reddy, Srinivasa T; Needham, Belinda L; Kanaya, Alka M

    2015-12-01

    Estradiol, testosterone (T), and sex hormone binding globulin (SHBG) levels are associated with lipid subfractions in men and women. Our objective was to determine if associations are independent from adipose tissue area among Asian Indians. We used data from 42 women and 57 Asian Indian men who did not use exogenous steroids or lipid-lowering medications. Lipoprotein subfractions including low-density lipoprotein cholesterol (LDL), very low-density lipoprotein cholesterol (VLDL), and intermediate density lipoprotein (IDL) were assessed by ion mobility spectrometry. Intra-abdominal adiposity was assessed by computed tomography. Multivariable regression models estimated the association between sex hormones with lipoprotein subfractions before and after adjustment for adiposity. Among women, lower logSHBG levels were associated with smaller logLDL particle size and higher logtriglycerides, logVLDL, and logIDL, although these associations were attenuated with adjustment for visceral adiposity in particular. Among women, lower logSHBG levels was significantly associated with lower logmedium LDL and logsmall LDL concentrations even after consideration of visceral and hepatic adiposity and insulin resistance as represented by the homeostasis model assessment of insulin resistance (HOMA-IR). Among men, lower logSHBG was also associated with smaller logLDL peak diameter size and higher logtriglycerides and logVLDL, even after adjustment for HOMA-IR and adiposity. Relationships between sex steroids and lipid subfractions were not significant among women. Among men, higher total testosterone was associated with higher logHDL and logLDL particle size, and lower logtriglycerides and logVLDL, but these associations were partially attenuated with adjustment for adiposity and HOMA-IR. Among Asian Indians, SHBG is associated with more favorable lipid subfraction concentrations, independent of hepatic and visceral fat.

  4. Functional response of ungulate browsers in disturbed eastern hemlock forests

    USGS Publications Warehouse

    DeStefano, Stephen

    2015-01-01

    Ungulate browsing in predator depleted North American landscapes is believed to be causing widespread tree recruitment failures. However, canopy disturbances and variations in ungulate densities are sources of heterogeneity that can buffer ecosystems against herbivory. Relatively little is known about the functional response (the rate of consumption in relation to food availability) of ungulates in eastern temperate forests, and therefore how “top down” control of vegetation may vary with disturbance type, intensity, and timing. This knowledge gap is relevant in the Northeastern United States today with the recent arrival of hemlock woolly adelgid (HWA; Adelges tsugae) that is killing eastern hemlocks (Tsuga canadensis) and initiating salvage logging as a management response. We used an existing experiment in central New England begun in 2005, which simulated severe adelgid infestation and intensive logging of intact hemlock forest, to examine the functional response of combined moose (Alces americanus) and white-tailed deer (Odocoileus virginianus) foraging in two different time periods after disturbance (3 and 7 years). We predicted that browsing impacts would be linear or accelerating (Type I or Type III response) in year 3 when regenerating stem densities were relatively low and decelerating (Type II response) in year 7 when stem densities increased. We sampled and compared woody regeneration and browsing among logged and simulated insect attack treatments and two intact controls (hemlock and hardwood forest) in 2008 and again in 2012. We then used AIC model selection to compare the three major functional response models (Types I, II, and III) of ungulate browsing in relation to forage density. We also examined relative use of the different stand types by comparing pellet group density and remote camera images. In 2008, total and proportional browse consumption increased with stem density, and peaked in logged plots, revealing a Type I response. In 2012, stem densities were greatest in girdled plots, but proportional browse consumption was highest at intermediate stem densities in logged plots, exhibiting a Type III (rather than a Type II) functional response. Our results revealed shifting top–down control by herbivores at different stages of stand recovery after disturbance and in different understory conditions resulting from logging vs. simulated adelgid attack. If forest managers wish to promote tree regeneration in hemlock stands that is more resistant to ungulate browsers, leaving HWA-infested stands unmanaged may be a better option than preemptively logging them.

  5. Pre-disinfection columns to improve the performance of the direct electro-disinfection of highly faecal-polluted surface water.

    PubMed

    Isidro, J; Llanos, J; Sáez, C; Lobato, J; Cañizares, P; Rodrigo, M A

    2018-09-15

    This work presents the design and evaluation of a new concept of pre-disinfection treatment that is especially suited for highly polluted surface water and is based on the combination of coagulation-flocculation, lamellar sedimentation and filtration into a single-column unit, in which the interconnection between treatments is an important part of the overall process. The new system, the so-called PREDICO (PRE-DIsinfection Column) system, was built with low-cost consumables from hardware stores (in order to promote in-house construction of the system in poor countries) and was tested with a mixture of 20% raw wastewater and 80% surface water (in order to simulate an extremely bad situation). The results confirmed that the PREDICO system helps to avoid fouling in later electro-disinfection processes and attains a remarkable degree of disinfection (3-4 log units), which supplements the removal of pathogens attained by the electrolytic cell (more than 4 log units). The most important sizing parameters for the PREDICO system are the surface loading rate (SLR) and the hydraulic residence time (HRT); SLR values under 20 cm min -1 and HRT values over 13.6 min in the PREDICO system are suitable to warrant efficient performance of the system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Experimental investigation on temperature distribution of foamed concrete filled steel tube column under standard fire

    NASA Astrophysics Data System (ADS)

    Kado, B.; Mohammad, S.; Lee, Y. H.; Shek, P. N.; Kadir, M. A. A.

    2018-04-01

    Standard fire test was carried out on 3 hollow steel tube and 6 foamed concrete filled steel tube columns. Temperature distribution on the columns was investigated. 1500 kg/m3 and 1800 kg/m3 foamed concrete density at 15%, 20% and 25% load level are the parameters considered. The columns investigated were 2400 mm long, 139.7 mm outer diameter and 6 mm steel tube thickness. The result shows that foamed concrete filled steel tube columns has the highest fire resistance of 43 minutes at 15% load level and low critical temperature of 671 ºC at 25% load level using 1500 kg/m3 foamed concrete density. Fire resistance of foamed concrete filled column increases with lower foamed concrete strength. Foamed concrete can be used to provide more fire resistance to hollow steel column or to replace normal weight concrete in concrete filled columns. Since filling hollow steel with foamed concrete produce column with high fire resistance than unfilled hollow steel column. Therefore normal weight concrete can be substituted with foamed concrete in concrete filled column, it will reduces the self-weight of the structure because of its light weight at the same time providing the desired fire resistance.

  7. Efficiency gain limits of the parallel segmented inlet and outlet flow concept in analytical liquid chromatography columns suffering from radial transcolumn packing density gradients.

    PubMed

    Broeckhoven, Ken; Desmet, Gert

    2012-10-05

    The maximal gain in efficiency that can be expected from the use of the segmented column end fittings that were recently introduced to alleviate the effect of transcolumn packing density gradients has been quantified and generalized using numerical computations of the band broadening process. It was found that, for an unretained compound in a column with a parabolic packing density gradient, the use of a segmented inlet or a segmented outlet allows to eliminate about 60-100% of the plate height contribution (H(tc)) originating from a parabolic transcolumn velocity gradient in a d(c)=4.6 mm column. In a d(c)=2.1 mm column, these percentages change from 10 to 100%. Using a combined segmented in- and outlet, H(tc) can be reduced by about 90-100% (d(c)=4.6 mm column) or 20-100% (d(c)=2.1 mm column). The strong variation of these gain percentages is due to fact that they depend very strongly on the column length and the flow rate. Dimensionless graphs have been established that allow to directly quantify the effect for each specific case. It was also found that, in agreement with one's physical intuition, trans-column velocity profiles that are more flat in the central region benefit more from the concept than sharp, parabolic-like profiles. The gain margins furthermore tend to become smaller with increasing retention and increasing diffusion coefficient. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Comparison of Rotavirus and Norovirus transport in standardised and natural soil-water systems

    NASA Astrophysics Data System (ADS)

    Gamazo, P. A.; Schijven, J. F.; Victoria, M.; Alvareda, E.; Lopez, F.; Ramos, J.; Lizasoain, A.; Sapriza-Azuri, G.; Castells, M.; Colina, R.

    2016-12-01

    Rotavirus and Norovirus are waterborne viruses that are major causes of diarrhea and others symptoms of acute gastroenteritis. An important pathway of these viruses is groundwater. In Uruguay, as in many developed and developing countries, there are areas where the only source of water for human consumption is groundwater. In the rural area of the Salto district, groundwater is commonly used without any treatment, as it is traditionally considered as a safe source. However, virus contamination have been detected in several wells in the area. The most probable source of contamination are nearby septic systems, since the sewer coverage is scarce. This work aims to evaluate and compare the virus transport processes for a standardised soil-water systems and for the Salto aquifer system. For this, the transport of Rotavirus and Norovirus from clinic samples was studied in two sets of column experiments: 6.7 cm columns with quartz sand under saturated conditions (ionic strength 1mM, pH 7.0) and with sand from the Salto aquifer (Uruguay) (9,2% coarse sand, 47,8% medium sand, 40,5% fine sand, magnesium/calcium bicarbonate water, Ionic strength 15.1 mM, pH 7.2). Both viruses were seeded for 2 pore volumes on the columns. Samples were collected at the column outlet and viruses were enumerated by Q-PRCR. Breakthrough curves were constructed and fitted to a two-site kinetic attachment/detachment model, including blocking using Hydrus-1D. In the quartz sand column, both Rotavirus and Norovirus were removed two orders in magnitude. In the Salto sand column, Rotavirus was removed 2 log10 as well, but Norovirus was removed 4 log10. The fitting of the breakthrough curves indicated that blocking played a role for Rotavirus in the Salto sand column. These results are consistent with field observation where only Rotavirus was detected in the Salto aquifer, while similar concentrations in Salto sewer effluent was measured for these two viruses. This work, besides reporting actual parameters values for human virus transport modelling, shows the significant differences in transport that human viruses can have in standardised and natural soil-water systems.

  9. Pressure, temperature and density drops along supercritical fluid chromatography columns in different thermal environments. III. Mixtures of carbon dioxide and methanol as the mobile phase.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2014-01-03

    The pressure, temperature and density drops along SFC columns eluted with a CO2/methanol mobile phase were measured and compared with theoretical values. For columns packed with 3- and 5-μm particles the pressure and temperature drops were measured using a mobile phase of 95% CO2 and 5% methanol at a flow rate of 5mL/min, at temperatures from 20 to 100°C, and outlet pressures from 80 to 300bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath, either bare or covered with foam insulation. The experimental measurements were compared to theoretical results obtained by numerical simulation. For the convective air condition at outlet pressures above 100bar the average difference between the experimental and calculated temperature drops and pressure drops were 0.1°C and 0.7% for the bare 3-μm column, respectively, and were 0.6°C and 4.1% for the insulated column. The observed temperature drops for the insulated columns are consistent with those predicted by the Joule-Thomson coefficients for isenthalpic expansion. The dependence of the temperature and the pressure drops on the Joule-Thomson coefficient and kinematic viscosity are described for carbon dioxide mobile phases containing up to 20% methanol. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Galactic cold cores. IX. Column density structures and radiative-transfer modelling

    NASA Astrophysics Data System (ADS)

    Juvela, M.; Malinen, J.; Montillaud, J.; Pelkonen, V.-M.; Ristorcelli, I.; Tóth, L. V.

    2018-06-01

    Context. The Galactic Cold Cores (GCC) project has made Herschel photometric observations of interstellar clouds where Planck detected compact sources of cold dust emission. The fields are in different environments and stages of star formation. Aims: Our aim is to characterise the structure of the clumps and their parent clouds, and to study the connections between the environment and the formation of gravitationally bound objects. We also examine the accuracy to which the structure of dense clumps can be determined from sub-millimetre data. Methods: We use standard statistical methods to characterise the GCC fields. Individual clumps are extracted using column density thresholding. Based on sub-millimetre measurements, we construct a three-dimensional radiative transfer (RT) model for each field. These are used to estimate the relative radiation field intensities, to probe the clump stability, and to examine the uncertainty of column density estimates. We examine the structural parameters of the clumps, including their radial column density profiles. Results: In the GCC fields, the structure noise follows the relations previously established at larger scales and in lower-density clouds. The fractal dimension has no significant dependence on column density and the values DP = 1.25 ± 0.07 are only slightly lower than in typical molecular clouds. The column density probability density functions (PDFs) exhibit large variations, for example, in the case of externally compressed clouds. At scales r > 0.1 pc, the radial column density distributions of the clouds follow an average relation of N r-1. In spite of a great variety of clump morphologies (and a typical aspect ratio of 1.5), clumps tend to follow a similar N r-1 relation below r 0.1 pc. RT calculations indicate only factor 2.5 variation in the local radiation field intensity. The fraction of gravitationally bound clumps increases significantly in regions with AV > 5 mag but most bound objects appear to be pressure-confined. Conclusions: The host clouds of the cold clumps in the GCC sample have statistical properties similar to general molecular clouds. The gravitational stability, peak column density, and clump orientation are connected to the cloud background while most other statistical clump properties (e.g. DP and radial profiles) are insensitive to the environment. The study of clump morphology should be continued with a comparison with numerical simulations. Planck (http://www.esa.int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific consortium led and funded by Denmark.Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  11. A regional view of urban sedimentary basins in Northern California based on oil industry compressional-wave velocity and density logs

    USGS Publications Warehouse

    Brocher, T.M.

    2005-01-01

    Compressional-wave (sonic) and density logs from 119 oil test wells provide knowledge of the physical properties and impedance contrasts within urban sedimentary basins in northern California, which is needed to better understand basin amplification. These wire-line logs provide estimates of sonic velocities and densities for primarily Upper Cretaceous to Pliocene clastic rocks between 0.1 - and 5.6-km depth to an average depth of 1.8 km. Regional differences in the sonic velocities and densities in these basins largely 1reflect variations in the lithology, depth of burial, porosity, and grain size of the strata, but not necessarily formation age. For example, Miocene basin filling strata west of the Calaveras Fault exhibit higher sonic velocities and densities than older but finer-grained and/or higher-porosity rocks of the Upper Cretaceous Great Valley Sequence. As another example, hard Eocene sandstones west of the San Andreas Fault have much higher impedances than Eocene strata, mainly higher-porosity sandstones and shales, located to the east of this fault, and approach those expected for Franciscan Complex basement rocks. Basement penetrations define large impedence contrasts at the sediment/basement contact along the margins of several basins, where Quaternary, Pliocene, and even Miocene deposits directly overlie Franciscan or Salinian basement rocks at depths as much as 1.7 km. In contrast, in the deepest, geographic centers of the basins, such logs exhibit only a modest impedance contrast at the sediment/basement contact at depths exceeding 2 km. Prominent (up to 1 km/sec) and thick (up to several hundred meters) velocity and density reversals in the logs refute the common assumption that velocities and densities increase monotonically with depth.

  12. Maximizing performance in supercritical fluid chromatography using low-density mobile phases.

    PubMed

    Gritti, Fabrice; Fogwill, Michael; Gilar, Martin; Jarrell, Joseph A

    2016-10-14

    The performance of a 3.0mm×150mm column packed with 1.8μm fully porous HSS-SB-C 18 particles was investigated in supercritical fluid chromatography (SFC) with low-density, highly expansible carbon dioxide. These conditions are selected for the analysis of semi-volatile compounds. Elevated temperatures (>100°C) were then combined with low column back pressures (<100bar). In this work, the inlet temperature of pure carbon dioxide was set at 107°C, the active back pressure regulator (ABPR) pressure was fixed at 100bar, and the flow rate was set at 2.1mL/min at 12°C (liquefied carbon dioxide) and at an inlet column pressure close to 300bar. Nine n-alkylbenzenes (from benzene to octadecylbenzene) were injected under linear (no sample overload) conditions. The severe steepness of the temperature gradients across the column diameter were predicted from a simplified heat transfer model. Such conditions dramatically lower the column performance by affecting the symmetry of the peak shape. In order to cope with this problem, three different approaches were experimentally tested. They include (1) the decoupling and the proper selection of the inlet eluent temperature with respect to the oven temperature, (2) the partial thermal insulation of the column using polyethylene aerogel, and (3) the application of a high vacuum (10 -5 Torr provided by a turbo-molecular pump) in a housing chamber surrounding the whole column body. The results reveal that (1) the column efficiency can be maximized by properly selecting the difference between the eluent and the oven temperatures, (2) the mere wrapping of the column with an excellent insulating material is insufficient to fully eliminate heat exchanges by conduction and the undesirable radial density gradients across the column i.d., and (3) the complete thermal insulation of the SFC column under high vacuum allows to maximize the column efficiency by maintaining the integrity of the peak shape. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Molecular column densities in selected model atmospheres. [chemical analysis of carbon stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Beebe, R. F.; Sneden, C.

    1974-01-01

    From an examination of predicted column densities, the following conclusions were drawn: (1) The SiO ought to be visible in carbon stars which were generated from triple alpha burning, but absent from carbon stars generated from the CNO bi-cycle. (2) Variation in the observed relative strengths of TiO and ZrO is indicative of real differences in the ratio Ti/Zr. (3) The TiO/ZrO ratio shows a small variation as C/O and effective temperature is changed. (4) Column density of silicon dicarbide (SiC2) is sensitive to abundance, temperature, and gravity; hence all relationships between the strength of SiC2 and other stellar parameters will show appreciable scatter. There is however, a substantial luminosity effect present in the SiC2 column densities. (5) Unexpectedly, SiC2 is anti-correlated with C2. (6) The presence of SiC2 in a carbon star eliminates the possibility of these stars having temperatures greater than or equal to 3000 K, or being produced through the CNO bi-cycle.

  14. Tackling the Saturation of Oxygen: The Use of Phosphorus and Sulfur as Proxies within the Neutral Interstellar Medium of Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    James, B.; Aloisi, A.

    2018-02-01

    The abundance of oxygen in galaxies is widely used in furthering our understanding of galaxy formation and evolution. Unfortunately, direct measurements of O/H in the neutral gas are extremely difficult to obtain, as the only O I line available within the Hubble Space Telescope (HST) UV wavelength range (1150–3200 Å) is often saturated. As such, proxies for oxygen are needed to indirectly derive O/H via the assumption that solar ratios based on local Milky Way sight lines hold in different environments. In this paper we assess the validity of using two such proxies, P II and S II, within more typical star-forming environments. Using HST-Cosmic Origins Spectrograph (COS) far-UV (FUV) spectra of a sample of nearby star-forming galaxies (SFGs) and the oxygen abundances in their ionized gas, we demonstrate that both P and S are mildly depleted with respect to O and follow a trend, log(P II/S II) = -1.73 +/- 0.18, in excellent agreement with the solar ratio of {log}{({{P}}/{{S}})}ȯ =-1.71 +/- 0.04 over the large range of metallicities (0.03–3.2 Z ⊙) and H I column densities ({log}[N(H I)/cm‑2] =18.44–21.28) spanned by the sample. From literature data we show evidence that both elements individually trace oxygen according to their respective solar ratios across a wide range of environments. Our findings demonst-rate that the solar ratios of {log}{({{P}}/{{O}})}ȯ =-3.28+/- 0.06 and {log}{({{S}}/{{O}})}ȯ =-1.57+/- 0.06 can both be used to derive reliable O/H abundances in the neutral gas of local and high-redshift SFGs. The difference between O/H in the ionized- and neutral gas phases is studied with respect to metallicity and H I content. The observed trends are consistent with galactic outflows and/or star formation inefficiency affecting the most metal-poor galaxies, with the possibility of primordial gas accretion at all metallicities.

  15. The NuSTAR  Extragalactic Surveys: X-Ray Spectroscopic Analysis of the Bright Hard-band Selected Sample

    NASA Astrophysics Data System (ADS)

    Zappacosta, L.; Comastri, A.; Civano, F.; Puccetti, S.; Fiore, F.; Aird, J.; Del Moro, A.; Lansbury, G. B.; Lanzuisi, G.; Goulding, A.; Mullaney, J. R.; Stern, D.; Ajello, M.; Alexander, D. M.; Ballantyne, D. R.; Bauer, F. E.; Brandt, W. N.; Chen, C.-T. J.; Farrah, D.; Harrison, F. A.; Gandhi, P.; Lanz, L.; Masini, A.; Marchesi, S.; Ricci, C.; Treister, E.

    2018-02-01

    We discuss the spectral analysis of a sample of 63 active galactic nuclei (AGN) detected above a limiting flux of S(8{--}24 {keV})=7× {10}-14 {erg} {{{s}}}-1 {{cm}}-2 in the multi-tiered NuSTAR extragalactic survey program. The sources span a redshift range z=0{--}2.1 (median < z> =0.58). The spectral analysis is performed over the broad 0.5–24 keV energy range, combining NuSTAR with Chandra and/or XMM-Newton data and employing empirical and physically motivated models. This constitutes the largest sample of AGN selected at > 10 {keV} to be homogeneously spectrally analyzed at these flux levels. We study the distribution of spectral parameters such as photon index, column density ({N}{{H}}), reflection parameter ({\\boldsymbol{R}}), and 10–40 keV luminosity ({L}{{X}}). Heavily obscured ({log}[{N}{{H}}/{{cm}}-2]≥slant 23) and Compton-thick (CT; {log}[{N}{{H}}/{{cm}}-2]≥slant 24) AGN constitute ∼25% (15–17 sources) and ∼2–3% (1–2 sources) of the sample, respectively. The observed {N}{{H}} distribution agrees fairly well with predictions of cosmic X-ray background population-synthesis models (CXBPSM). We estimate the intrinsic fraction of AGN as a function of {N}{{H}}, accounting for the bias against obscured AGN in a flux-selected sample. The fraction of CT AGN relative to {log}[{N}{{H}}/{{cm}}-2]=20{--}24 AGN is poorly constrained, formally in the range 2–56% (90% upper limit of 66%). We derived a fraction (f abs) of obscured AGN ({log}[{N}{{H}}/{{cm}}-2]=22{--}24) as a function of {L}{{X}} in agreement with CXBPSM and previous z< 1 X-ray determinations. Furthermore, f abs at z=0.1{--}0.5 and {log}({L}{{x}}/{erg} {{{s}}}-1)≈ 43.6{--}44.3 agrees with observational measurements/trends obtained over larger redshift intervals. We report a significant anti-correlation of R with {L}{{X}} (confirmed by our companion paper on stacked spectra) with considerable scatter around the median R values.

  16. Spatially associated clump populations in Rosette from CO and dust maps

    NASA Astrophysics Data System (ADS)

    Veltchev, Todor V.; Ossenkopf-Okada, Volker; Stanchev, Orlin; Schneider, Nicola; Donkov, Sava; Klessen, Ralf S.

    2018-04-01

    Spatial association of clumps from different tracers turns out to be a valuable tool to determine the physical properties of molecular clouds. It provides a reliable estimate for the X-factors, serves to trace the density of clumps seen in column densities only, and allows one to measure the velocity dispersion of clumps identified in dust emission. We study the spatial association between clump populations, extracted by use of the GAUSSCLUMPS technique from 12CO (1-0), 13CO (1-0) line maps and Herschel dust-emission maps of the star-forming region Rosette, and analyse their physical properties. All CO clumps that overlap with another CO or dust counterpart are found to be gravitationally bound and located in the massive star-forming filaments of the molecular cloud. They obey a single mass-size relation M_cl∝ R_cl^γ with γ ≃ 3 (implying constant mean density) and display virtually no velocity-size relation. We interpret their population as low-density structures formed through compression by converging flows and still not evolved under the influence of self-gravity. The high-mass parts of their clump mass functions are fitted by a power law dN_cl/d log M_cl∝ M_cl^{Γ } and display a nearly Salpeter slope Γ ˜ -1.3. On the other hand, clumps extracted from the dust-emission map exhibit a shallower mass-size relation with γ = 2.5 and mass functions with very steep slopes Γ ˜ -2.3 even if associated with CO clumps. They trace density peaks of the associated CO clumps at scales of a few tenths of pc where no single density scaling law should be expected.

  17. 40 CFR 146.87 - Logging, sampling, and testing prior to injection well operation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... owner or operator must submit to the Director a descriptive report prepared by a knowledgeable log... installed; and (ii) A cement bond and variable density log to evaluate cement quality radially, and a...

  18. 40 CFR 146.87 - Logging, sampling, and testing prior to injection well operation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... owner or operator must submit to the Director a descriptive report prepared by a knowledgeable log... installed; and (ii) A cement bond and variable density log to evaluate cement quality radially, and a...

  19. 40 CFR 146.87 - Logging, sampling, and testing prior to injection well operation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... owner or operator must submit to the Director a descriptive report prepared by a knowledgeable log... installed; and (ii) A cement bond and variable density log to evaluate cement quality radially, and a...

  20. 40 CFR 146.87 - Logging, sampling, and testing prior to injection well operation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... owner or operator must submit to the Director a descriptive report prepared by a knowledgeable log... installed; and (ii) A cement bond and variable density log to evaluate cement quality radially, and a...

  1. Physical properties of Southern infrared dark clouds

    NASA Astrophysics Data System (ADS)

    Vasyunina, T.; Linz, H.; Henning, Th.; Stecklum, B.; Klose, S.; Nyman, L.-Å.

    2009-05-01

    Context: What are the mechanisms by which massive stars form? What are the initial conditions for these processes? It is commonly assumed that cold and dense Infrared Dark Clouds (IRDCs) represent the birth-sites of massive stars. Therefore, these clouds have been receiving an increasing amount of attention, and their analysis offers the opportunity to tackle the afore mentioned questions. Aims: To enlarge the sample of well-characterised IRDCs in the southern hemisphere, where ALMA will play a major role in the near future, we have developed a program to study the gas and dust of southern infrared dark clouds. The present paper attempts to characterize the continuum properties of this sample of IRDCs. Methods: We cross-correlated 1.2 mm continuum data from SIMBA bolometer array mounted on SEST telescope with Spitzer/GLIMPSE images to establish the connection between emission sources at millimeter wavelengths and the IRDCs that we observe at 8 μm in absorption against the bright PAH background. Analysing the dust emission and extinction enables us to determine the masses and column densities, which are important quantities in characterizing the initial conditions of massive star formation. We also evaluated the limitations of the emission and extinction methods. Results: The morphology of the 1.2 mm continuum emission is in all cases in close agreement with the mid-infrared extinction. The total masses of the IRDCs were found to range from 150 to 1150 M_⊙ (emission data) and from 300 to 1750 M_⊙ (extinction data). We derived peak column densities of between 0.9 and 4.6 × 1022 cm-2 (emission data) and 2.1 and 5.4 × 1022 cm-2 (extinction data). We demonstrate that the extinction method is unreliable at very high extinction values (and column densities) beyond AV values of roughly 75 mag according to the Weingartner & Draine (2001) extinction relation RV = 5.5 model B (around 200 mag when following the common Mathis (1990, ApJ, 548, 296) extinction calibration). By taking the spatial resolution effects into account and restoring the column densities derived from the dust emission to a linear resolution of 0.01 pc, peak column densities of 3-19 × 1023 cm-2 are obtained, which are much higher than typical values for low-mass cores. Conclusions: Taking into account the spatial resolution effects, the derived column densities are beyond the column density threshold of 3.0 × 1023 cm-2 required by theoretical considerations for massive star formation. We conclude that the values of column densities derived for the selected IRDC sample imply that these objects are excellent candidates for objects in the earliest stages of massive star formation.

  2. [Characteristics of soil seed banks in logging gaps of forests at different succession stages in Changbai Mountains].

    PubMed

    Zhang, Zhi-Ting; Song, Xin-Zhang; Xiao, Wen-Fa; Gao, Bao-Jia; Guo, Zhong-Ling

    2009-06-01

    An investigation was made on the soil seed banks in the logging gaps of Populus davidiana--Betula platyphylla secondary forest, secondary broad-leaved forest, and broad-leaved Korean pine mixed forest at their different succession stages in Changbai Mountains. Among the test forests, secondary broad-leaved forest had the highest individual density (652 ind x m(-2)) in its soil seed bank. With the succession of forest community, the diversity and uniformity of soil seed bank increased, but the dominance decreased. The seed density of climax species such as Pinus koraiensis, Abies nephrolepis, and Acer mono increased, whereas that of Maackia amurensis and Fraxinus mandshurica decreased. Moreover, the similarity in species composition between soil seed bank and the seedlings within logging gaps became higher. The individual density and similarity between soil seed bank and the seedlings in non-logging gaps were similar to those in logging gaps. All of these indicated that soil seed bank provided rich seed resources for forest recovery and succession, and the influence of soil seed bank on seedlings regeneration increased with the succession.

  3. 40 CFR 146.12 - Construction requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; and (B) A cement bond, temperature, or density log after the casing is set and cemented. (ii) For... cement bond, temperature, or density log after the casing is set and cemented. (e) At a minimum, the... water. The casing and cement used in the construction of each newly drilled well shall be designed for...

  4. Density and velocity relationships for digital sonic and density logs from coastal Washington and laboratory measurements of Olympic Peninsula mafic rocks and greywackes

    USGS Publications Warehouse

    Brocher, Thomas M.; Christensen, Nikolas I.

    2001-01-01

    Three-dimensional velocity models for the basins along the coast of Washington and in Puget Lowland provide a means for better understanding the lateral variations in strong ground motions recorded there. We have compiled 16 sonic and 18 density logs from 22 oil test wells to help us determine the geometry and physical properties of the Cenozoic basins along coastal Washington. The depth ranges sampled by the test-well logs fall between 0.3 and 2.1 km. These well logs sample Quaternary to middle Eocene sedimentary rocks of the Quinault Formation, Montesano Formation, and Hoh rock assemblage. Most (18 or 82%) of the wells are from Grays Harbor County, and many of these are from the Ocean City area. These Grays Harbor County wells sample the Quinault Formation, Montesano Formation, and frequently bottom in the Hoh rock assemblage. These wells show that the sonic velocity and density normally increase significantly across the contacts between the Quinault or the Montesano Formations and the Hoh rock assemblage. Reflection coefficients calculated for vertically traveling compressional waves from the average velocities and densities for these units suggest that the top of the Hoh rock assemblage is a strong reflector of downward-propagating seismic waves: these reflection coefficients lie between 11 and 20%. Thus, this boundary may reflect seismic energy upward and trap a substantial portion of the seismic energy generated by future earthquakes within the Miocene and younger sedimentary basins found along the Washington coast. Three wells from Jefferson County provide data for the Hoh rock assemblage for the entire length of the logs. One well (Eastern Petroleum Sniffer Forks #1), from the Forks area in Clallam County, also exclusively samples the Hoh rock assemblage. This report presents the locations, elevations, depths, stratigraphic, and other information for all the oil test wells, and provides plots showing the density and sonic velocities as a function of depth for each well log. We also present two-way traveltimes for 15 of the wells calculated from the sonic velocities. Average velocities and densities for the wells having both logs can be reasonably well related using a modified Gardner’s rule, with p=1825v1/4, where p is the density (in kg/m3) and v is the sonic velocity (in km/s). In contrast, a similar analysis of published well logs from Puget Lowland is best matched by a Gardner’s rule of p=1730v1/4, close to the p=1740v1/4 proposed by Gardner et al. (1974). Finally, we present laboratory measurements of compressional-wave velocity, shear-wave velocity, and density for 11 greywackes and 29 mafic rocks from the Olympic Peninsula and Puget Lowland. These units have significance for earthquake-hazard investigations in Puget Lowland as they dip eastward beneath the Lowland, forming the “bedrock” beneath much of the lowland. Average Vp/Vs ratios for the mafic rocks, mainly Crescent Formation volcanics, lie between 1.81 and 1.86. Average Vp/Vs ratios for the greywackes from the accretionary core complex in the Olympic Peninsula show greater scatter but lie between 1.77 and 1.88. Both the Olympic Peninsula mafic rocks and greywackes have lower shear-wave velocities than would be expected for a Poisson solid (Vp/Vs=1.732). Although the P-wave velocities and densities in the greywackes can be related by a Gardner’s rule of p=1720v1/4, close to the p=1740v1/4 proposed by Gardner et al. (1974), the velocities and densities of the mafic rocks are best related by a Gardner’s rule of p=1840v1/4. Thus, the density/velocity relations are similar for the Puget Lowland well logs and greywackes from the Olympic Peninsula. Density/velocity relations are similar for the Washington coastal well logs and mafic rocks from the Olympic Peninsula, but differ from those of the Puget Lowland well logs and greywackes from the Olympic Peninsula.

  5. A Massive X-ray Outflow From The Quasar PDS 456

    NASA Technical Reports Server (NTRS)

    Reeves, J. N.; O'Brien, P. T.; Ward, M. J.

    2003-01-01

    We report on XMM-Newton spectroscopic observations of the luminous, radio-quiet quasar PDS 456. The hard X-ray spectrum of PDS 456 shows a deep absorption trough (constituting 50% of the continuum) at energies above 7 keV in the quasar rest frame, which can be attributed to a series of blue-shifted K-shell absorption edges due to highly ionized iron. The higher resolution soft X-ray grating RGS spectrum exhibits a broad absorption line feature near 1 keV, which can be modeled by a blend of L-shell transitions from highly ionized iron (Fe XVII - XXIV). An extreme outflow velocity of approx. 50000 km/s is required to model the K and L shell iron absorption present in the XMM-Newton data. Overall, a large column density (N(sub H) = 5 x 10(exp 23)/sq cm) of highly ionized gas (log xi = 2.5) is required in PDS 456. A large mass outflow rate of approx. 10 solar mass/year (assuming a conservative outflow covering factor of 0.1 steradian) is derived, which is of the same order as the overall mass accretion rate in PDS 456. This represents a substantial fraction (approx. 10%) of the quasar energy budget, whilst the large column and outflow velocity place PDS 456 towards the extreme end of the broad absorption line quasar population.

  6. STELLARATOR INJECTOR

    DOEpatents

    Post, R.F.

    1962-09-01

    A method and means are described for injecting energetic neutral atoms or molecular ions into dense magnetically collimated plasma columns of stellarators and the like in such a manner that the atoms or ions are able to significantly penetrate the column before being ionized by collision with the plasma constituent particles. Penetration of the plasma column by the neutral atoms or molecular ions is facilitated by superposition of two closely spaced magnetic mirrors on the plasma confinement field. The mirrors are moved apart to magnetically sweep plasma from a region between the mirrors and establish a relatively low plasma density therein. By virture of the low density, neutral atoms or molecular ions injected into the region significantly penetrate the plasma column before being ionized. Thereafter, the mirrors are diminished to permit the injected material to admix with the plasma in the remainder of the column. (AEC)

  7. Quantitative structure-retention relationships of flavonoids unraveled by immobilized artificial membrane chromatography.

    PubMed

    Santoro, Adriana Leandra; Carrilho, Emanuel; Lanças, Fernando Mauro; Montanari, Carlos Alberto

    2016-06-10

    The pharmacokinetic properties of flavonoids with differing degrees of lipophilicity were investigated using immobilized artificial membranes (IAMs) as the stationary phase in high performance liquid chromatography (HPLC). For each flavonoid compound, we investigated whether the type of column used affected the correlation between the retention factors and the calculated octanol/water partition (log Poct). Three-dimensional (3D) molecular descriptors were calculated from the molecular structure of each compound using i) VolSurf software, ii) the GRID method (computational procedure for determining energetically favorable binding sites in molecules of known structure using a probe for calculating the 3D molecular interaction fields, between the probe and the molecule), and iii) the relationship between partition and molecular structure, analyzed in terms of physicochemical descriptors. The VolSurf built-in Caco-2 model was used to estimate compound permeability. The extent to which the datasets obtained from different columns differ both from each other and from both the calculated log Poct and the predicted permeability in Caco-2 cells was examined by principal component analysis (PCA). The immobilized membrane partition coefficients (kIAM) were analyzed using molecular descriptors in partial least square regression (PLS) and a quantitative structure-retention relationship was generated for the chromatographic retention in the cholesterol column. The cholesterol column provided the best correlation with the permeability predicted by the Caco-2 cell model and a good fit model with great prediction power was obtained for its retention data (R(2)=0.96 and Q(2)=0.85 with four latent variables). Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Our Town

    ERIC Educational Resources Information Center

    McClure, Connie

    2010-01-01

    This article describes how the author teaches a fourth- and fifth-grade unit on architecture called the Art and Science of Planning Buildings. Rockville, Indiana has fine examples of architecture ranging from log cabins, classic Greek columns, Victorian houses, a mission-style theater, and Frank Lloyd Wright prairie-style homes. After reading…

  9. Probing the Physical Properties and Origins of Ultra-fast Outflows in AGN

    NASA Astrophysics Data System (ADS)

    Kraemer, Steven B.; Tombesi, Francesco; Bottorff, Mark

    2017-01-01

    Approximately half of Type 1 AGN possess intrinsic absorption and high resolution UV and X-ray spectroscopy have revealed that the absorbing gas is radially outflowing, with velocities of 100s to 1000s km/sec. X-ray ("warm") absorbers, originally revealed by the presence of bound-free edges of O~VII and O~VIII, are more highly ionized than their UV counterparts, and photo-ionization modeling studies have determined that they have ionization parameters of logU ~ -1 to 1. Recently, muchmore highly ionized gas, with logU > 2, has been detected in XMM-Newton spectra, as evidenced by absorption lines from H- and He-like Fe. Some of these absorbers, ``Ultra Fast Outlows (UFOs)'', have radial velocities up to 0.2c. We have undertaken a detailed photo-ionization study of high-ionization Fe absorbers, both UFOs and non-UFOs, in a sample of AGN observed by XMM-Newton. We find that the UFOs are completely Compton-cooled, unlike the non-UFOS. Both types are too highly ionized to be radiatively accelerated, hence they are more likely driven via Magneto-Hydrodynamic processes. Their large column densities and velocity gradients are consistent with flows along magnetic streamlines emanating from accretion disks. Open questions include: the temporal stability of the UFOs, the apparent lack of non-UFOs in UFO sources, and their relationship to warm absorbers.

  10. Warm Absorbers in X-rays (WAX), a comprehensive high resolution grating spectral study of a sample of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Laha, S.; Guainazzi, M.; Dewangan, G.; Chakravorty, S.; Kembhavi, A.

    2014-07-01

    We present results from a homogeneous analysis of the broadband 0.3-10 keV CCD resolution as well as of soft X-ray high-resolution grating spectra of a hard X-ray flux-limited sample of 26 Seyfert galaxies observed with XMM-Newton. We could put a strict lower limit on the detection fraction of 50%. We find a gap in the distribution of the ionisation parameter in the range 0.5

  11. An Iwasawa-Taniguchi effect for Compton-thick active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Boorman, Peter G.; Gandhi, Poshak; Baloković, Mislav; Brightman, Murray; Harrison, Fiona; Ricci, Claudio; Stern, Daniel

    2018-07-01

    We present the first study of an Iwasawa-Taniguchi/`X-ray Baldwin' effect for Compton-thick active galactic nuclei (AGN). We report a statistically significant anticorrelation between the rest-frame equivalent width (EW) of the narrow core of the neutral Fe Kα fluorescence emission line, ubiquitously observed in the reflection spectra of obscured AGN, and the mid-infrared 12 μ m continuum luminosity (taken as a proxy for the bolometric AGN luminosity). Our sample consists of 72 Compton-thick AGN selected from pointed and deep-field observations covering a redshift range of z ˜ 0.0014-3.7. We employ a Monte Carlo-based fitting method, which returns a Spearman's Rank correlation coefficient of ρ = - 0.28 ± 0.12, significant to 98.7 per cent confidence. The best-fitting found is log(EW_{Fe Kα }) ∝ -0.08± 0.04 log(L_{12 {μ } m}), which is consistent with multiple studies of the X-ray Baldwin effect for unobscured and mildly obscured AGN. This is an unexpected result, as the Fe Kα line is conventionally thought to originate from the same region as the underlying reflection continuum, which together constitute the reflection spectrum. We discuss the implications this could have if confirmed on larger samples, including a systematic underestimation of the line-of-sight X-ray obscuring column density and hence the intrinsic luminosities and growth rates for the most luminous AGN.

  12. Study of scattering cross section of a plasma column using Green's function volume integral equation method

    NASA Astrophysics Data System (ADS)

    Soltanmoradi, Elmira; Shokri, Babak

    2017-05-01

    In this article, the electromagnetic wave scattering from plasma columns with inhomogeneous electron density distribution is studied by the Green's function volume integral equation method. Due to the ready production of such plasmas in the laboratories and their practical application in various technological fields, this study tries to find the effects of plasma parameters such as the electron density, radius, and pressure on the scattering cross-section of a plasma column. Moreover, the incident wave frequency influence of the scattering pattern is demonstrated. Furthermore, the scattering cross-section of a plasma column with an inhomogeneous collision frequency profile is calculated and the effect of this inhomogeneity is discussed first in this article. These results are especially used to determine the appropriate conditions for radar cross-section reduction purposes. It is shown that the radar cross-section of a plasma column reduces more for a larger collision frequency, for a relatively lower plasma frequency, and also for a smaller radius. Furthermore, it is found that the effect of the electron density on the scattering cross-section is more obvious in comparison with the effect of other plasma parameters. Also, the plasma column with homogenous collision frequency can be used as a better shielding in contrast to its inhomogeneous counterpart.

  13. Temporal and spatial distribution of metallic species in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Correira, John Thomas

    2009-06-01

    Every day the Earth is bombarded by approximately 100 tons of meteoric material. Much of this material is completely ablated on atmospheric entry, resulting in a layer of atomic metals in the upper atmosphere between 70 km - 150 km. These neutral atoms are ionized by solar radiation and charge exchange. Metal ions have a long lifetime against recombination loss, allowing them to be redistributed globally by electromagnetic forces, especially when lifted to altitudes >150 km. UV radiances from the Global Ozone Monitoring Experiment (GOME) spectrometer are used to determine long-term dayside variations of the total vertical column density below 795 km of the meteoric metal species Mg and Mg + in the upper atmosphere. A retrieval algorithm developed to determine magnesium column densities was applied to all available data from the years 1996-2001. Long term results show middle latitude dayside Mg + peaks in vertical content during the summer, while neutral Mg demonstrates a much more subtle maximum in summer. Atmospheric metal concentrations do not correlate strongly solar activity. An analysis of spatial variations shows geospatial distributions are patchy, with local regions of increased column density. To study short term variations and the role of meteor showers a time dependent mass flux rate is calculated using published estimates of meteor stream mass densities and activity profiles. An average daily mass flux rate is also calculated and used as a baseline against which shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal column densities. There appears to be little correlation between modeled meteor shower mass flux rates and changes in the observed neutral magnesium and Mg + metal column densities.

  14. Temperature as a third dimension in column-density mapping of dusty astrophysical structures associated with star formation

    NASA Astrophysics Data System (ADS)

    Marsh, K. A.; Whitworth, A. P.; Lomax, O.

    2015-12-01

    We present point process mapping (PPMAP), a Bayesian procedure that uses images of dust continuum emission at multiple wavelengths to produce resolution-enhanced image cubes of differential column density as a function of dust temperature and position. PPMAP is based on the generic `point process formalism, whereby the system of interest (in this case, a dusty astrophysical structure such as a filament or pre-stellar core) is represented by a collection of points in a suitably defined state space. It can be applied to a variety of observational data, such as Herschel images, provided only that the image intensity is delivered by optically thin dust in thermal equilibrium. PPMAP takes full account of the instrumental point-spread functions and does not require all images to be degraded to the same resolution. We present the results of testing using simulated data for a pre-stellar core and a fractal turbulent cloud, and demonstrate its performance with real data from the Herschel infrared Galactic Plane Survey (Hi-GAL). Specifically, we analyse observations of a large filamentary structure in the CMa OB1 giant molecular cloud. Histograms of differential column density indicate that the warm material (T ≳ 13 K) is distributed lognormally, consistent with turbulence, but the column densities of the cooler material are distributed as a high-density tail, consistent with the effects of self-gravity. The results illustrate the potential of PPMAP to aid in distinguishing between different physical components along the line of sight in star-forming clouds, and aid the interpretation of the associated Probability distribution functions (PDFs) of column density.

  15. Coupled Leidenfrost states as a monodisperse granular clock

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Yang, Mingcheng; Chen, Ke; Hou, Meiying; To, Kiwing

    2016-08-01

    Using an event-driven molecular dynamics simulation, we show that simple monodisperse granular beads confined in coupled columns may oscillate as a different type of granular clock. To trigger this oscillation, the system needs to be driven against gravity into a density-inverted state, with a high-density clustering phase supported from below by a gaslike low-density phase (Leidenfrost effect) in each column. Our analysis reveals that the density-inverted structure and the relaxation dynamics between the phases can amplify any small asymmetry between the columns, and lead to a giant oscillation. The oscillation occurs only for an intermediate range of the coupling strength, and the corresponding phase diagram can be universally described with a characteristic height of the density-inverted structure. A minimal two-phase model is proposed and a linear stability analysis shows that the triggering mechanism of the oscillation can be explained as a switchable two-parameter Andronov-Hopf bifurcation. Numerical solutions of the model also reproduce similar oscillatory dynamics to the simulation results.

  16. A method to describe inelastic gamma field distribution in neutron gamma density logging.

    PubMed

    Zhang, Feng; Zhang, Quanying; Liu, Juntao; Wang, Xinguang; Wu, He; Jia, Wenbao; Ti, Yongzhou; Qiu, Fei; Zhang, Xiaoyang

    2017-11-01

    Pulsed neutron gamma density logging (NGD) is of great significance for radioprotection and density measurement in LWD, however, the current methods have difficulty in quantitative calculation and single factor analysis for the inelastic gamma field distribution. In order to clarify the NGD mechanism, a new method is developed to describe the inelastic gamma field distribution. Based on the fast-neutron scattering and gamma attenuation, the inelastic gamma field distribution is characterized by the inelastic scattering cross section, fast-neutron scattering free path, formation density and other parameters. And the contribution of formation parameters on the field distribution is quantitatively analyzed. The results shows the contribution of density attenuation is opposite to that of inelastic scattering cross section and fast-neutron scattering free path. And as the detector-spacing increases, the density attenuation gradually plays a dominant role in the gamma field distribution, which means large detector-spacing is more favorable for the density measurement. Besides, the relationship of density sensitivity and detector spacing was studied according to this gamma field distribution, therefore, the spacing of near and far gamma ray detector is determined. The research provides theoretical guidance for the tool parameter design and density determination of pulsed neutron gamma density logging technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Satellite Investigation of Atmospheric Metal Deposition During Meteor Showers

    NASA Astrophysics Data System (ADS)

    Correira, J.; Aikin, A. C.; Grebowsky, J. M.

    2008-12-01

    Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the magnesium column densities and any connection to possible enhanced mass deposition during a meteor shower. We derive a time dependent mass flux rate due to meteor showers using published estimates of mass density and activity profiles of meteor showers. An average daily mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal column densities from the years 1996 - 2001.There appears to be little correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.

  18. Effects of Coulomb collisions on cyclotron maser and plasma wave growth in magnetic loops

    NASA Technical Reports Server (NTRS)

    Hamilton, Russell J.; Petrosian, Vahe

    1990-01-01

    The evolution of nonthermal electrons accelerated in magnetic loops is determined by solving the kinetic equation, including magnetic field convergence and Coulomb collisions in order to determine the effects of these interactions on the induced cyclotron maser and plasma wave growth. It is found that the growth rates are larger and the possibility of cyclotron maser action is stronger for smaller loop column density, for larger magnetic field convergence, for a more isotropic injected electron pitch angle distribution, and for more impulsive acceleration. For modest values of the column density in the coronal portion of a flaring loop, the growth rates of instabilities are significantly reduced, and the reduction is much larger for the cyclotron modes than for the plasma wave modes. The rapid decrease in the growth rates with increasing loop column density suggests that, in flare loops when such phenomena occur, the densities are lower than commonly accepted.

  19. Long-term study of longitudinal dependence in primary particle precipitation in the north Jovian aurora

    NASA Technical Reports Server (NTRS)

    Livengood, T. A.; Strobel, D. F.; Moos, H. W.

    1990-01-01

    The wavelength-dependent absorption apparent in IUE spectra of the north Jovian aurora is analyzed to determine the column density of hydrocarbons above the altitude of the FUV auroral emission. Both the magnetotail and torus auroral zone models are considered in estimating zenith angles, with very similar results obtained for both models. It is found that the hydrocarbon column density above the FUV emission displays a consistent dependence on magnetic longitude, with the peak density occurring approximately coincident with the peak in the observed auroral intensity. Two distinct scenarios for the longitude dependence of the column density are discussed. In one, the Jovian upper atmosphere is longitudinally homogeneous, and the variation in optical depth is due to a variation in penetration, and thus energy, of the primary particles. In the other, the energy of the primaries is longitudinally homogeneous, and it is aeronomic properties which change, probably due to auroral heating.

  20. Seismic velocity deviation log: An effective method for evaluating spatial distribution of reservoir pore types

    NASA Astrophysics Data System (ADS)

    Shirmohamadi, Mohamad; Kadkhodaie, Ali; Rahimpour-Bonab, Hossain; Faraji, Mohammad Ali

    2017-04-01

    Velocity deviation log (VDL) is a synthetic log used to determine pore types in reservoir rocks based on a combination of the sonic log with neutron-density logs. The current study proposes a two step approach to create a map of porosity and pore types by integrating the results of petrographic studies, well logs and seismic data. In the first step, velocity deviation log was created from the combination of the sonic log with the neutron-density log. The results allowed identifying negative, zero and positive deviations based on the created synthetic velocity log. Negative velocity deviations (below - 500 m/s) indicate connected or interconnected pores and fractures, while positive deviations (above + 500 m/s) are related to isolated pores. Zero deviations in the range of [- 500 m/s, + 500 m/s] are in good agreement with intercrystalline and microporosities. The results of petrographic studies were used to validate the main pore type derived from velocity deviation log. In the next step, velocity deviation log was estimated from seismic data by using a probabilistic neural network model. For this purpose, the inverted acoustic impedance along with the amplitude based seismic attributes were formulated to VDL. The methodology is illustrated by performing a case study from the Hendijan oilfield, northwestern Persian Gulf. The results of this study show that integration of petrographic, well logs and seismic attributes is an instrumental way for understanding the spatial distribution of main reservoir pore types.

  1. The Zone of Avoidance as an X-ray absorber - the role of the galactic foreground modelling Swift XRT spectra

    NASA Astrophysics Data System (ADS)

    Racz, I. I.; Bagoly, Z.; Tóth, L. V.; Balázs, L. G.; Horvath, I.; Zahorecz, S.

    2018-05-01

    Gamma-ray bursts (GRBs) are the most powerful explosive events in the Universe. The prompt gamma emission is followed by an X-ray afterglow that is also detected for over nine hundred GRBs by the Swift BAT and XRT detectors. The X-ray afterglow spectrum bears essential information about the burst, and the surrounding interstellar medium (ISM). Since the radiation travels through the line of sight intergalactic medium and the ISM in the Milky Way, the observed emission is influenced by extragalactic and galactic components. The column density of the Galactic foreground ranges several orders of magnitudes, due to both the large scale distribution of ISM and its small scale structures. We examined the effect of local HI column density on the penetrating X-ray emission, as the first step towards a precise modeling of the measured X-ray spectra. We fitted the X-ray spectra using the Xspec software, and checked how the shape of the initially power low spectrum changes with varying input Galactic HI column density. The total absorbing HI column is a sum of the intrinsic and Galactic component. We also investigated the model results for the intrinsic component varying the Galactic foreground. We found that such variations may alter the intrinsic hydrogen column density up to twenty-five percent. We will briefly discuss its consequences.

  2. Teaching through Trade Books: Recording Scientific Explorations

    ERIC Educational Resources Information Center

    Royce, Christine Anne

    2016-01-01

    Keeping a log of scientific investigations, discoveries, and notes is a process that scientists have used throughout history. Elementary-age children engage in similar types of documentation when they perform investigations and sketch, label, or provide details about their work and findings. This column includes activities inspired by children's…

  3. Effects of host plant and larval density on intraspecific competition in larvae of the emerald ash borer (Coleoptera: Buprestidae).

    PubMed

    Duan, Jian J; Larson, Kristi; Watt, Tim; Gould, Juli; Lelito, Jonathan P

    2013-12-01

    Competition for food, mates, and space among different individuals of the same insect species can affect density-dependent regulation of insect abundance or population dynamics. The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is a serious invasive pest of North American ash (Fraxinus spp.) trees, with its larvae feeding in serpentine galleries between the interface of sapwood and phloem tissues of ash trees. Using artificial infestation of freshly cut logs of green ash (Fraxinus pennsylvanica Marshall) and tropical ash (Fraxinus uhdei [Wenzig] Lingelsh) with a series of egg densities, we evaluated the mechanism and outcome of intraspecific competition in larvae of A. planipennis in relation to larval density and host plant species. Results from our study showed that as the egg densities on each log (1.5-6.5 cm in diameter and 22-25 cm in length) increased from 200 to 1,600 eggs per square meter of surface area, larval survivorship declined from ≍68 to 10% for the green ash logs, and 86 to 55% for tropical ash logs. Accordingly, larval mortality resulting from cannibalism, starvation, or both, significantly increased as egg density increased, and the biomass of surviving larvae significantly decreased on both ash species. When larval density was adjusted to the same level, however, larval mortality from intraspecific competition was significantly higher and mean biomasses of surviving larvae was significantly lower in green ash than in tropical ash. The role of intraspecific competition of A. planipennis larvae in density-dependent regulation of its natural population dynamics is discussed.

  4. Physical conditions in CaFe interstellar clouds

    NASA Astrophysics Data System (ADS)

    Gnaciński, P.; Krogulec, M.

    2008-01-01

    Interstellar clouds that exhibit strong Ca I and Fe I lines are called CaFe clouds. Ionisation equilibrium equations were used to model the column densities of Ca II, Ca I, K I, Na I, Fe I and Ti II in CaFe clouds. We find that the chemical composition of CaFe clouds is solar and that there is no depletion into dust grains. CaFe clouds have high electron densities, n_e≈1 cm-3, that lead to high column densities of neutral Ca and Fe.

  5. Impacts of logging on density-dependent predation of dipterocarp seeds in a South East Asian rainforest.

    PubMed

    Bagchi, Robert; Philipson, Christopher D; Slade, Eleanor M; Hector, Andy; Phillips, Sam; Villanueva, Jerome F; Lewis, Owen T; Lyal, Christopher H C; Nilus, Reuben; Madran, Adzley; Scholes, Julie D; Press, Malcolm C

    2011-11-27

    Much of the forest remaining in South East Asia has been selectively logged. The processes promoting species coexistence may be the key to the recovery and maintenance of diversity in these forests. One such process is the Janzen-Connell mechanism, where specialized natural enemies such as seed predators maintain diversity by inhibiting regeneration near conspecifics. In Neotropical forests, anthropogenic disturbance can disrupt the Janzen-Connell mechanism, but similar data are unavailable for South East Asia. We investigated the effects of conspecific density (two spatial scales) and distance from fruiting trees on seed and seedling survival of the canopy tree Parashorea malaanonan in unlogged and logged forests in Sabah, Malaysia. The production of mature seeds was higher in unlogged forest, perhaps because high adult densities facilitate pollination or satiate pre-dispersal predators. In both forest types, post-dispersal survival was reduced by small-scale (1 m(2)) conspecific density, but not by proximity to the nearest fruiting tree. Large-scale conspecific density (seeds per fruiting tree) reduced predation, probably by satiating predators. Higher seed production in unlogged forest, in combination with slightly higher survival, meant that recruitment was almost entirely limited to unlogged forest. Thus, while logging might not affect the Janzen-Connell mechanism at this site, it may influence the recruitment of particular species.

  6. The dependence of gamma-ray burst X-ray column densities on the model for Galactic hydrogen

    NASA Astrophysics Data System (ADS)

    Arcodia, R.; Campana, S.; Salvaterra, R.

    2016-05-01

    We study the X-ray absorption of a complete sample of 99 bright Swift gamma-ray bursts (GRBs). In recent years, a strong correlation has been found between the intrinsic X-ray absorbing column density (NH(z)) and the redshift. This absorption excess in high-z GRBs is now thought to be due to the overlooked contribution of the absorption along the intergalactic medium (IGM), by means of both intervening objects and the diffuse warm-hot intergalactic medium along the line of sight. In this work we neglect the absorption along the IGM, because our purpose is to study the eventual effect of a radical change in the Galactic absorption model on the NH(z) distribution. Therefore, we derive the intrinsic absorbing column densities using two different Galactic absorption models: the Leiden Argentine Bonn HI survey and the more recent model that includes molecular hydrogen. We find that if, on the one hand, the new Galactic model considerably affects the single column density values, on the other hand, there is no drastic change in the distribution as a whole. It becomes clear that the contribution of Galactic column densities alone, no matter how improved, is not sufficient to change the observed general trend and it has to be considered as a second order correction. The cosmological increase of NH(z) as a function of redshift persists and, to explain the observed distribution, it is necessary to include the contribution of both the diffuse intergalactic medium and the intervening systems along the line of sight of the GRBs.

  7. Global distribution of the He+ column density observed by Extreme Ultra Violet Imager on the International Space Station

    NASA Astrophysics Data System (ADS)

    Hozumi, Yuta; Saito, Akinori; Yoshikawa, Ichiro; Yamazaki, Atsushi; Murakami, Go; Yoshioka, Kazuo; Chen, Chia-Hung

    2017-07-01

    The global distribution of He+ in the topside ionosphere was investigated using data of the He+ resonant scattering emission at 30.4 nm obtained by the Extreme Ultra Violet Imager (EUVI) onboard the International Space Station. The optical observation by EUVI from the low-Earth orbit provides He+ column density data above the altitude of 400 km, presenting a unique opportunity to study the He+ distribution with a different perspective from that of past studies using data from in situ measurements. We analyzed data taken in 2013 and elucidated, for the first time, the seasonal, longitudinal, and latitudinal variations of the He+ column density in the dusk sector. It was found that the He+ column density in the winter hemisphere was about twice that in the summer hemisphere. In the December solstice season, the magnitude of this hemispheric asymmetry was large (small) in the longitudinal sector where the geomagnetic declination is eastward (westward). In the June solstice season, this relationship between the He+ distribution and the geomagnetic declination is reversed. In the equinox seasons, the He+ column densities in the two hemispheres are comparable at most longitudes. The seasonal and longitudinal dependence of the hemispheric asymmetry of the He+ distribution was attributed to the geomagnetic meridional neutral wind in the F region ionosphere. The neutral wind effect on the He+ distribution was examined with an empirical neutral wind model, and it was confirmed that the transport of ions in the topside ionosphere is predominantly affected by the F region neutral wind and the geomagnetic configuration.

  8. VizieR Online Data Catalog: delta Cep VEGA/CHARA observing log (Nardetto+, 2016)

    NASA Astrophysics Data System (ADS)

    Nardetto, N.; Merand, A.; Mourard, D.; Storm, J.; Gieren, W.; Fouque, P.; Gallenne, A.; Graczyk, D.; Kervella, P.; Neilson, H.; Pietrzynski, G.; Pilecki, B.; Breitfelder, J.; Berio, P.; Challouf, M.; Clausse, J.-M.; Ligi, R.; Mathias, P.; Meilland, A.; Perraut, K.; Poretti, E.; Rainer, M.; Spang, A.; Stee, P.; Tallon-Bosc, I.; Ten Brummelaar, T.

    2016-07-01

    The columns give, respectively, the date, the RJD, the hour angle (HA), the minimum and maximum wavelengths over which the squared visibility is calculated, the projected baseline length Bp and its orientation PA, the signal-to-noise ratio on the fringe peak; the last column provides the calibrated squared visibility V2 together with the statistic error on V2, and the systematic error on V2 (see text for details). The data are available on the Jean-Marie Mariotti Center OiDB service (Available at http://oidb.jmmc.fr). (1 data file).

  9. Stochastic Accumulation by Cortical Columns May Explain the Scalar Property of Multistable Perception

    NASA Astrophysics Data System (ADS)

    Cao, Robin; Braun, Jochen; Mattia, Maurizio

    2014-08-01

    The timing of certain mental events is thought to reflect random walks performed by underlying neural dynamics. One class of such events—stochastic reversals of multistable perceptions—exhibits a unique scalar property: even though timing densities vary widely, higher moments stay in particular proportions to the mean. We show that stochastic accumulation of activity in a finite number of idealized cortical columns—realizing a generalized Ehrenfest urn model—may explain these observations. Modeling stochastic reversals as the first-passage time of a threshold number of active columns, we obtain higher moments of the first-passage time density. We derive analytical expressions for noninteracting columns and generalize the results to interacting columns in simulations. The scalar property of multistable perception is reproduced by a dynamic regime with a fixed, low threshold, in which the activation of a few additional columns suffices for a reversal.

  10. Ultraviolet interstellar lines in the spectrum of Pi Scorpii recorded at 2 kilometers per second resolution

    NASA Technical Reports Server (NTRS)

    Joseph, Charles L.; Jenkins, Edward B.

    1991-01-01

    A spectrum of Pi Scorpii has been recorded from 1003 to 1172 A with a maximum SNR of about 20 and a velocity resolution of 2.4 km/s. Three types of H I as well as two discrete H II regions are distinguished in velocity space, allowing independent analyses of physical conditions and abundances for the individual gas components. A direct evaluation of optical depths and column densities across the absorption features is applied for the first time to the dominant ionization stage of Fe, Si, and P. Based on an analysis of the spectrum, it is concluded that all of the Ti II absorption seen toward Pi Sco arises in the warm, neutral intercloud medium while the other elements have their maximum absorption associated with cold clouds. A conservative value of log delta less than -3.4 is inferred for the Ti depletion in the cold clouds, a value more extreme than any integrated, line-of-sight measurement made to date.

  11. Numerical modeling of the elution peak profiles of retained solutes in supercritical fluid chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaczmarski, Krzysztof; Guiochon, Georges A

    2011-01-01

    In supercritical fluid chromatography (SFC), the significant expansion of the mobile phase along the column causes the formation of axial and radial gradients of temperature. Due to these gradients, the mobile phase density, its viscosity, its velocity, its diffusion coefficients, etc. are not constant throughout the column. This results in a nonuniform flow velocity distribution, itself causing a loss of column efficiency in certain cases, even at low flow rates, as they do in HPLC. At high flow rates, an important deformation of the elution profiles of the sample components may occur. The model previously used to account satisfactorily formore » the retention of an unsorbed solute in SFC is applied to the modeling of the elution peak profiles of retained compounds. The numerical solution of the combined heat and mass balance equations provides the temperature and the pressure profiles inside the column and values of the retention time and the band profiles of retained compounds that are in excellent agreement with independent experimental data for large value of mobile phase reduced density. At low reduced densities, the band profiles can strongly depend on the column axial distribution of porosity.« less

  12. CO Column Density and Extinction in the Chamaeleon II--III Dark-Cloud Complex

    NASA Astrophysics Data System (ADS)

    Hayakawa, Takahiro; Cambrésy, Laurent; Onishi, Toshikazu; Mizuno, Akira; Fukui, Yasuo

    2001-12-01

    We carried out 13CO (J = 1 -- 0) and C18O (J = 1 -- 0) observations of the Chamaeleon II--III dark-cloud complex with the NANTEN radio telescope. The column densities of both molecular isotopes were derived assuming LTE. The AV values were obtained by scaling the AV values that were derived using an adaptive-grid star-count method applied to the DENIS J-band data. We established the AV--CO isotope column-density relations in Cha II and III, and compared them with those in Cha I. The slopes of the AV--13CO relations for Cha II and III are steeper than that for Cha I. Those of the AV -- C18O relations are similar among the three clouds. The total column density ratio, N(13O) / N(C18O, in Cha I tends to be small compared with those in Cha II or Cha III; the ratios range from ~ 5 to ~ 25 at low extinction in Cha II and III, but at most ~ 10 in Cha I. We suggest that the increase of N(13CO) due to the 13CO formation process causes cloud-to-cloud variations in the AV -- N(13CO) correlation.

  13. Estimating load weights with Huber's Cubic Volume formula: a field trial.

    Treesearch

    Dale R. Waddell

    1989-01-01

    Log weights were estimated from the product of Huber's cubic volume formula and green density. Tags showing estimated log weights were attached to logs in the field, and the weights were tallied into a single load weight as logs were assembled for aerial yarding. Accuracy of the estimated load weights was evaluated by comparing the predicted with the actual load...

  14. Measurement of diffusion coefficients of parabens and steroids in water and 1-octanol.

    PubMed

    Seki, Toshinobu; Mochida, Junko; Okamoto, Maiko; Hosoya, Osamu; Juni, Kazuhiko; Morimoto, Kazuhiro

    2003-06-01

    Diffusion coefficients (D) of parabens and steroids in water and 1-octanol were determined by using the chromatographic broadening method at 37 degrees C, and the relationships between the D values and the physicochemical properties of the drugs were discussed. The D values in 1-octanol were lower than those in water because of the higher viscosity of 1-octanol. The D values depend on not only the molecular weight (MW), but also the lipophilicity of the drugs in water and on the ability for hydrogen-bonding in 1-octanol. When the lipophilic index (LI), calculated from the retention time using in a reverse-phase column, was used as a parameter of drug lipophilicity, the following equation was obtained for D in water (D(w)); log D(w)=-0.215.log MW-0.077.log LI-4.367. When the hydrogen bond index (HI), the logarithm of the ratio of the partition coefficient of the drugs in 1-octanol and cyclohexane, was used as an index of hydrogen-bonding, the following equation was obtained for D in 1-octanol (D(o)); log D(o)=-0.690.log MW-0.074.log HI-4.085.

  15. The bias of the log power spectrum for discrete surveys

    NASA Astrophysics Data System (ADS)

    Repp, Andrew; Szapudi, István

    2018-03-01

    A primary goal of galaxy surveys is to tighten constraints on cosmological parameters, and the power spectrum P(k) is the standard means of doing so. However, at translinear scales P(k) is blind to much of these surveys' information - information which the log density power spectrum recovers. For discrete fields (such as the galaxy density), A* denotes the statistic analogous to the log density: A* is a `sufficient statistic' in that its power spectrum (and mean) capture virtually all of a discrete survey's information. However, the power spectrum of A* is biased with respect to the corresponding log spectrum for continuous fields, and to use P_{A^*}(k) to constrain the values of cosmological parameters, we require some means of predicting this bias. Here, we present a prescription for doing so; for Euclid-like surveys (with cubical cells 16h-1 Mpc across) our bias prescription's error is less than 3 per cent. This prediction will facilitate optimal utilization of the information in future galaxy surveys.

  16. Ultra high pressure liquid chromatography. Column permeability and changes of the eluent properties.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2008-04-11

    The behavior of four similar liquid chromatography columns (2.1mm i.d. x 30, 50, 100, and 150 mm, all packed with fine particles, average d(p) approximately 1.7 microm, of bridged ethylsiloxane/silica hybrid-C(18), named BEH-C(18)) was studied in wide ranges of temperature and pressure. The pressure and the temperature dependencies of the viscosity and the density of the eluent (pure acetonitrile) along the columns were also derived, using the column permeabilities and applying the Kozeny-Carman and the heat balance equations. The heat lost through the external surface area of the chromatographic column was directly derived from the wall temperature of the stainless steel tube measured with a precision of +/-0.2 degrees C in still air and +/-0.1 degrees C in the oven compartment. The variations of the density and viscosity of pure acetonitrile as a function of the temperature and pressure was derived from empirical correlations based on precise experimental data acquired between 298 and 373 K and at pressures up to 1.5 kbar. The measurements were made with the Acquity UPLC chromatograph that can deliver a maximum flow rate of 2 mL/min and apply a maximum column inlet pressure of 1038 bar. The average Kozeny-Carman permeability constant of the columns was 144+/-3.5%. The temperature hence the viscosity and the density profiles of the eluent along the column deviate significantly from linear behavior under high-pressure gradients. For a 1000 bar pressure drop, we measured DeltaT=25-30 K, (Deltaeta/eta) approximately 100%, and (Deltarho/rho) approximately 10%. These results show that the radial temperature profiles are never fully developed within 1% for any of the columns, even under still-air conditions. This represents a practical advantage regarding the apparent column efficiency at high flow rates, since the impact of the differential analyte velocity between the column center and the column wall is not maximum. The interpretation of the peak profiles recorded in UPLC is discussed.

  17. Maintaining ecosystem resilience: functional responses of tree cavity nesters to logging in temperate forests of the Americas.

    PubMed

    Ibarra, José Tomás; Martin, Michaela; Cockle, Kristina L; Martin, Kathy

    2017-06-30

    Logging often reduces taxonomic diversity in forest communities, but little is known about how this biodiversity loss affects the resilience of ecosystem functions. We examined how partial logging and clearcutting of temperate forests influenced functional diversity of birds that nest in tree cavities. We used point-counts in a before-after-control-impact design to examine the effects of logging on the value, range, and density of functional traits in bird communities in Canada (21 species) and Chile (16 species). Clearcutting, but not partial logging, reduced diversity in both systems. The effect was much more pronounced in Chile, where logging operations removed critical nesting resources (large decaying trees), than in Canada, where decaying aspen Populus tremuloides were retained on site. In Chile, logging was accompanied by declines in species richness, functional richness (amount of functional niche occupied by species), community-weighted body mass (average mass, weighted by species densities), and functional divergence (degree of maximization of divergence in occupied functional niche). In Canada, clearcutting did not affect species richness but nevertheless reduced functional richness and community-weighted body mass. Although some cavity-nesting birds can persist under intensive logging operations, their ecosystem functions may be severely compromised unless future nest trees can be retained on logged sites.

  18. Must Star-forming Galaxies Rapidly Get Denser before They Quench?

    NASA Astrophysics Data System (ADS)

    Abramson, L. E.; Morishita, T.

    2018-05-01

    Using the deepest data yet obtained, we find no evidence preferring compaction-triggered quenching—where rapid increases in galaxy density truncate star formation—over a null hypothesis in which galaxies age at constant surface density ({{{Σ }}}e\\equiv {M}* /2π {r}e2). Results from two fully empirical analyses and one quenching-free model calculation support this claim at all z ≤ 3: (1) qualitatively, galaxies’ mean U–V colors at 6.5 ≲ {log}{{{Σ }}}e/{\\text{}}{M}ȯ {kpc}}-2≲ 10 have reddened at rates/times correlated with {{{Σ }}}e, implying that there is no density threshold at which galaxies turn red but that {{{Σ }}}e sets the pace of maturation; (2) quantitatively, the abundance of {log}{M}* /{\\text{}}{M}ȯ ≥slant 9.4 red galaxies never exceeds that of the total population a quenching time earlier at any {{{Σ }}}e, implying that galaxies need not transit from low to high densities before quenching; (3) applying d{log}{r}e/{dt}=1/2 d{log}{M}* /{dt} to a suite of lognormal star formation histories reproduces the evolution of the size–mass relation at {log}{M}* /{\\text{}}{M}ȯ ≥slant 10. All results are consistent with evolutionary rates being set ab initio by global densities, with denser objects evolving faster than less-dense ones toward a terminal quiescence induced by gas depletion or other ∼Hubble-timescale phenomena. Unless stellar ages demand otherwise, observed {{{Σ }}}e thresholds need not bear any physical relation to quenching beyond this intrinsic density–formation epoch correlation, adding to Lilly & Carollo’s arguments to that effect.

  19. Using nonlinear quantile regression to estimate the self-thinning boundary curve

    Treesearch

    Quang V. Cao; Thomas J. Dean

    2015-01-01

    The relationship between tree size (quadratic mean diameter) and tree density (number of trees per unit area) has been a topic of research and discussion for many decades. Starting with Reineke in 1933, the maximum size-density relationship, on a log-log scale, has been assumed to be linear. Several techniques, including linear quantile regression, have been employed...

  20. Keck and VLT Observations of Super-Damped Lyman-Alpha Absorbers at z 2- 2.5: Constraints on Chemical Compositions and Physical Conditions

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varsha P.; Som, Debopam; Morrison, Sean; Péroux, Celine; Quiret, Samuel; York, Donald G.

    2015-12-01

    We report Keck/Echellette Spectrograph and Imager and Very Large Telescope/Ultraviolet-Visual Echelle Spectrograph observations of three super-damped Lyα quasar absorbers with H i column densities log NH i ≥ 21.7 at redshifts 2 ≲ z ≲ 2.5. All three absorbers show similar metallicities (˜-1.3 to -1.5 dex), and dust depletion of Fe, Ni, and Mn. Two of the absorbers show supersolar [S/Zn] and [Si/Zn]. We combine our results with those for other damped Lyα a absorbers (DLAs) to examine trends between NH i, metallicity, and dust depletion. A larger fraction of the super-DLAs lie close to or above the line [X/H] = 20.59 - log NH i in the metallicity versus NH i plot, compared to the less gas-rich DLAs, suggesting that super-DLAs are more likely to be rich in molecules. Unfortunately, our data for Q0230-0334 and Q0743+1421 do not cover H2 absorption lines. For Q1418+0718, some H2 lines are covered, but not detected. CO is not detected in any of our absorbers. For DLAs with log NH i < 21.7, we confirm strong correlation between metallicity and Fe depletion, and find a correlation between metallicity and Si depletion. For super-DLAs, these correlations are weaker or absent. The absorbers toward Q0230-0334 and Q1418+0718 show potential detections of weak Lyα emission, implying star formation rates of ˜1.6 and ˜0.7 M⊙ yr-1, respectively (ignoring dust extinction). Upper limits on the electron densities from C ii*/C ii or Si ii*/Si ii are low, but are higher than the median values in less gas-rich DLAs. Finally, systems with log NH i > 21.7 may have somewhat narrower velocity dispersions Δv90 than the less gas-rich DLAs, and may arise in cooler and/or less turbulent gas. Includes observations collected during program ESO 93.A-0422 at the European Southern Observatory (ESO) Very Large Telescope (VLT) with the Ultraviolet-Visual Echelle Spectrograph (UVES) on the 8.2 m telescopes operated at the Paranal Observatory, Chile. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  1. Use of alternative carrier materials in AOAC Official Method 2008.05, efficacy of liquid sporicides against spores of Bacillus subtilis on a hard, nonporous surface, quantitative three-step method.

    PubMed

    Tomasino, Stephen F; Rastogi, Vipin K; Wallace, Lalena; Smith, Lisa S; Hamilton, Martin A; Pines, Rebecca M

    2010-01-01

    The quantitative Three-Step Method (TSM) for testing the efficacy of liquid sporicides against spores of Bacillus subtilis on a hard, nonporous surface (glass) was adopted as AOAC Official Method 2008.05 in May 2008. The TSM uses 5 x 5 x 1 mm coupons (carriers) upon which spores have been inoculated and which are introduced into liquid sporicidal agent contained in a microcentrifuge tube. Following exposure of inoculated carriers and neutralization, spores are removed from carriers in three fractions (gentle washing, fraction A; sonication, fraction B; and gentle agitation, fraction C). Liquid from each fraction is serially diluted and plated on a recovery medium for spore enumeration. The counts are summed over the three fractions to provide the density (viable spores per carrier), which is log10-transformed to arrive at the log density. The log reduction is calculated by subtracting the mean log density for treated carriers from the mean log density for control carriers. This paper presents a single-laboratory investigation conducted to evaluate the applicability of using two porous carrier materials (ceramic tile and untreated pine wood) and one alternative nonporous material (stainless steel). Glass carriers were included in the study as the reference material. Inoculated carriers were evaluated against three commercially available liquid sporicides (sodium hypochlorite, a combination of peracetic acid and hydrogen peroxide, and glutaraldehyde), each at two levels of presumed efficacy (medium and high) to provide data for assessing the responsiveness of the TSM. Three coupons of each material were evaluated across three replications at each level; three replications of a control were required. Even though all carriers were inoculated with approximately the same number of spores, the observed counts of recovered spores were consistently higher for the nonporous carriers. For control carriers, the mean log densities for the four materials ranged from 6.63 for wood to 7.14 for steel. The pairwise differences between mean log densities, except for glass minus steel, were statistically significant (P < 0.001). The repeatability standard deviations (Sr) for the mean control log density per test were similar for the four materials, ranging from 0.08 for wood to 0.13 for tile. Spore recovery from the carrier materials ranged from approximately 20 to 70%: 20% (pine wood), 40% (ceramic tile), 55% (glass), and 70% (steel). Although the percent spore recovery from pine wood was significantly lower than that from other materials, the performance data indicate that the TSM provides a repeatable and responsive test for determining the efficacy of liquid sporicides on both porous and nonporous materials.

  2. Carbonate mineral dissolution kinetics in high pressure experiments

    NASA Astrophysics Data System (ADS)

    Dethlefsen, F.; Dörr, C.; Schäfer, D.; Ebert, M.

    2012-04-01

    The potential CO2 reservoirs in the North German Basin are overlain by a series of Mesozoic barrier rocks and aquifers and finally mostly by Tertiary and Quaternary close-to-surface aquifers. The unexpected rise of stored CO2 from its reservoir into close-to-surface aquifer systems, perhaps through a broken well casing, may pose a threat to groundwater quality because of the acidifying effect of CO2 dissolution in water. The consequences may be further worsening of the groundwater quality due to the mobilization of heavy metals. Buffer mechanisms counteracting the acidification are for instance the dissolution of carbonates. Carbonate dissolution kinetics is comparably fast and carbonates can be abundant in close-to-surface aquifers. The disadvantages of batch experiments compared to column experiments in order to determine rate constants are well known and have for instance been described by v. GRINSVEN and RIEMSDIJK (1992). Therefore, we have designed, developed, tested, and used a high-pressure laboratory column system to simulate aquifer conditions in a flow through setup within the CO2-MoPa project. The calcite dissolution kinetics was determined for CO2-pressures of 6, 10, and 50 bars. The results were evaluated by using the PHREEQC code with a 1-D reactive transport model, applying a LASAGA (1984) -type kinetic dissolution equation (PALANDRI and KHARAKA, 2004; eq. 7). While PALANDRI and KHARAKA (2004) gave calcite dissolution rate constants originating from batch experiments of log kacid = -0.3 and log kneutral = -5.81, the data of the column experiment were best fitted using log kacid = -2.3 and log kneutral = -7.81, so that the rate constants fitted using the lab experiment applying 50 bars pCO2 were approximately 100 times lower than according to the literature data. Rate constants of experiments performed at less CO2 pressure (pCO2 = 6 bars: log kacid = -1.78; log kneutral = -7.29) were only 30 times lower than literature data. These discrepancies in the reaction kinetics should be acknowledged when using reactive transport models, especially when modeling kinetically controlled pH-buffering processes between a CO2 leakage an a receptor like a ground water well. Currently, further experiments for the determination of the dolomite dissolution kinetics are being performed. Here, the knowledge of the dissolution rate constants can be even more important compared to the (still) fast calcite dissolution. This study is being funded by the German Federal Ministry of Education and Research (BMBF), EnBW Energie Baden-Württemberg AG, E.ON Energie AG, E.ON Gas Storage AG, RWE Dea AG, Vattenfall Europe Technology Research GmbH, Wintershall Holding AG and Stadtwerke Kiel AG as part of the CO2-MoPa joint project in the framework of the Special Program GEOTECHNOLOGIEN. Literature Lasaga, A. C., 1984. Chemical Kinetics of Water-Rock Interactions. Journal of Geophysical Research 89, 4009-4025. Palandri, J. L. and Kharaka, Y. K., 2004. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS, Menlo Park, CA, USA. v. Grinsven, J. J. M. and Riemsdijk, W. H., 1992. Evaluation of batch and column techniques to measure weathering rates in soils. Geoderma 52, 41-57.

  3. Coarse woody debris in undisturbed and logged forests in the eastern Brazilian Amazon.

    Treesearch

    Michael Keller; Michael Palace; Gregory P. Asner; Rodrigo Jr. Pereira; Jose Natalino M. Silva

    2004-01-01

    Coarse woody debris (CWD) is an important component of the carbon cycle in tropical forests. We measured the volume and density of fallen CWD at two sites, Cauaxi and Tapajós in the Eastern Amazon. At both sites we studied undisturbed forests (UFs) and logged forests 1 year after harvest. Conventional logging (CL) and reduced impact logging (RIL) were...

  4. A search for interstellar pyrrole - Evidence that rings are less abundant than chains

    NASA Technical Reports Server (NTRS)

    Myers, P. C.; Thaddeus, P.; Linke, R. A.

    1980-01-01

    Searches for three transitions of pyrrole (C4H5N) give maximum column density = 3-10 x 10 to the 13th per sq cm in Sgr B2. This limit is more than 10 times lower than previous ring molecule limits, and is slightly lower than column densities of known interstellar molecules with from four to six heavy atoms.

  5. Effects of Mechanical Soil Disturbance on Rill Connectivity and Soil Erosion Following Logging on Burned Hillslopes in Central California

    NASA Astrophysics Data System (ADS)

    Olsen, W.; Wagenbrenner, J. W.; Demirtas, I.; Robichaud, P. R.

    2016-12-01

    Soil erosion rates in forests increase after severe fires and may pose a threat to aquatic resources. While research has shown that the harvest of burned trees ("salvage logging") may elevate post-fire erosion, it is less clear how disturbance from logging affects rill erosion and sediment yields. We studied 14 catchments (900-7400 m2 "swales") in the area burned by the 2013 Rim Fire in the California Sierra Nevada, nine of which were burned and logged, and five that were burned and unlogged. We installed silt fences, surveyed mechanical disturbance and rill networks, and measured ground cover following logging that occurred between fall 2014 and fall 2015. The logged swales had 20-162 trees ha-1 removed, and high traffic skid trails covered 8-28% of the swale area while low traffic skid trails covered 0-13% of the area. Feller-buncher tracks were minimal at 0-6% of the swale area. Following logging, wood cover increased, while vegetation cover remained about the same. Rills densities ranged from 0.3-22 m m-2 in logged swales and 2.2-16 m m-2 in unlogged swales. Higher bare soil percentages led to increased rill density in all swales. Rills that initiated in high traffic skid trails averaged 42 m in the swales, while rills from untrafficked burned soil averaged 26 m. The number of rills from high traffic skid trails increased with the amount of skid trail area, and often were diverted by waterbars toward the swale outlets. Sediment yields increased with rill density, and did not appear to respond to the modest increase in wood cover post-logging. Results indicate that rill erosion is a dominant sediment transport mechanism for both burned forests and salvage logged forests at the hillslope to small catchment scale. Mitigating skidding disturbance, appropriate placement of waterbars, and reducing the connectivity of bare soil after logging will be important to reduce rilling and sediment yields related to salvage logging.

  6. Helical patterns of magnetization and magnetic charge density in iron whiskers

    NASA Astrophysics Data System (ADS)

    Templeton, Terry L.; Hanham, Scott D.; Arrott, Anthony S.

    2018-05-01

    Studies with the (1 1 1) axis along the long axis of an iron whisker, 40 years ago, showed two phenomena that have remained unexplained: 1) In low fields, there are six peaks in the ac susceptibility, separated by 0.2 mT; 2) Bitter patterns showed striped domain patterns. Multipole columns of magnetic charge density distort to form helical patterns of the magnetization, accounting for the peaks in the susceptibility from the propagation of edge solitons along the intersections of the six sides of a (1 1 1) whisker. The stripes follow the helices. We report micromagnetic simulations in cylinders with various geometries for the cross-sections from rectangular, to hexagonal, to circular, with wide ranges of sizes and lengths, and different anisotropies, including (0 0 1) whiskers and the hypothetical case of no anisotropy. The helical patterns have been there in previous studies, but overlooked. The surface swirls and body helices are connected, but have their own individual behaviors. The magnetization patterns are more easily understood when viewed observing the scalar divergences of the magnetization as isosurfaces of magnetic charge density. The plus and minus charge densities form columns that interact with unlike charges attracting, but not annihilating as they are paid for by a decrease in exchange energy. Just as they start to form the helix, the columns are multipoles. If one could stretch the columns, the self-energy of the charges in a column would be diminished while making the attractive interactions of the unlike charges larger. The columns elongate by becoming helical. The visualization of 3-D magnetic charge distributions aids in the understanding of magnetization in soft magnetic materials.

  7. Quantification of Organic richness through wireline logs: a case study of Roseneath shale formation, Cooper basin, Australia

    NASA Astrophysics Data System (ADS)

    Ahmad, Maqsood; Iqbal, Omer; Kadir, Askury Abd

    2017-10-01

    The late Carboniferous-Middle Triassic, intracratonic Cooper basin in northeastern South Australia and southwestern Queensland is Australia's foremost onshore hydrocarbon producing region. The basin compromises Permian carbonaceous shale like lacustrine Roseneath and Murteree shale formation which is acting as source and reservoir rock. The source rock can be distinguished from non-source intervals by lower density, higher transit time, higher gamma ray values, higher porosity and resistivity with increasing organic content. In current dissertation we have attempted to compare the different empirical approaches based on density relation and Δ LogR method through three overlays of sonic/resistivity, neutron/resistivity and density/resistivity to quantify Total organic content (TOC) of Permian lacustrine Roseneath shale formation using open hole wireline log data (DEN, GR, CNL, LLD) of Encounter 1 well. The TOC calculated from fourteen density relations at depth interval between 3174.5-3369 meters is averaged 0.56% while TOC from sonic/resistivity, neutron/resistivity and density/resistivity yielded an average value of 3.84%, 3.68%, 4.40%. The TOC from average of three overlay method is yielded to 3.98%. According to geochemical report in PIRSA the Roseneath shale formation has TOC from 1 - 5 wt %.There is unpromising correlations observed for calculated TOC from fourteen density relations and measured TOC on samples. The TOC from average value of three overlays using Δ LogR method showed good correlation with measured TOC on samples.

  8. Bayesian Model Comparison for the Order Restricted RC Association Model

    ERIC Educational Resources Information Center

    Iliopoulos, G.; Kateri, M.; Ntzoufras, I.

    2009-01-01

    Association models constitute an attractive alternative to the usual log-linear models for modeling the dependence between classification variables. They impose special structure on the underlying association by assigning scores on the levels of each classification variable, which can be fixed or parametric. Under the general row-column (RC)…

  9. Log-odds sequence logos

    PubMed Central

    Yu, Yi-Kuo; Capra, John A.; Stojmirović, Aleksandar; Landsman, David; Altschul, Stephen F.

    2015-01-01

    Motivation: DNA and protein patterns are usefully represented by sequence logos. However, the methods for logo generation in common use lack a proper statistical basis, and are non-optimal for recognizing functionally relevant alignment columns. Results: We redefine the information at a logo position as a per-observation multiple alignment log-odds score. Such scores are positive or negative, depending on whether a column’s observations are better explained as arising from relatedness or chance. Within this framework, we propose distinct normalized maximum likelihood and Bayesian measures of column information. We illustrate these measures on High Mobility Group B (HMGB) box proteins and a dataset of enzyme alignments. Particularly in the context of protein alignments, our measures improve the discrimination of biologically relevant positions. Availability and implementation: Our new measures are implemented in an open-source Web-based logo generation program, which is available at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/logoddslogo/index.html. A stand-alone version of the program is also available from this site. Contact: altschul@ncbi.nlm.nih.gov Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25294922

  10. Two new hot white dwarfs in a region of exceptionally low hi density

    NASA Technical Reports Server (NTRS)

    Barstow, M. A.; Wesemael, F.; Holberg, J. B.; Werner, K.; Buckley, D. A. H.; Stobie, R. S.; Fontaine, G.; Rosen, S. R.; Demers, S.; Lamontagne, R.

    1993-01-01

    We report the discovery of two hot white dwarfs which have the lowest line-of-sight neutral hydrogen column densities yet measured. The stars were found independently by the ROSAT EUV, Montreal-Cambridge-Tololo, and Edinburgh-Cape surveys. Follow-up observations made using the Voyager 2 ultraviolet spectrometer reveal strong continua shortward of the 912A Lyman limit from which we deduce that the neutral hydrogen column densities are 1.3 x 10(exp 17) and 2.0 x 10(exp 17) atoms/sq cm.

  11. Observational discrimination between modes of shock propagation in interstellar clouds: Predictions of CH+ and SH+ column densities in diffuse clouds

    NASA Technical Reports Server (NTRS)

    Flower, D. R.; Desforets, G. P.; Roueff, E.; Hartquist, T. W.

    1986-01-01

    Considerable effort in recent years has been devoted to the study of shocks in the diffuse interstellar medium. This work has been motivated partly by the observations of rotationally excited states of H2, and partly by the realization that species such as CH(+), OH and H2O might be formed preferentially in hot, post-shock gas. The problem of CH(+) and the difficulties encountered when trying to explain the high column densities, observed along lines of sight to certain hot stars, have been reviewed earlier. The importance of a transverse magnetic field on the structure of an interstellar shock was also demonstrated earlier. Transverse magnetic fields above a critical strength give rise to an acceleration zone or precursor, in which the parameters on the flow vary continuously. Chemical reactions, which change the degree of ionization of the gas, also modify the structure of the shock considerably. Recent work has shown that large column densities of CH(+) can be produced in magnetohydrodynamic shock models. Shock speeds U sub s approx. = 10 km/s and initial magnetic field strengths of a few micro G are sufficient to produce ion-neutral drift velocities which can drive the endothermic C(+)(H2,H)CH(+) reaction. It was also shown that single-fluid hydrodynamic models do not generate sufficiently large column densities of CH(+) unless unacceptably high shock velocities (u sub s approx. 20 km/s) are assumed in the models. Thus, the observed column densities of CH(+) provide a constraint on the mode of shock propagation in diffuse clouds. More precisely, they determine a lower limit to the ion-neutral drift velocity.

  12. 40 CFR 98.398 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GREENHOUSE GAS REPORTING Suppliers of Petroleum Products § 98.398 Definitions. All terms used in this subpart... MM-1 Table MM-1 to Subpart MM of Part 98—Default Factors for Petroleum Products and Natural Gas Liquids 1 2 Products Column A: density(metric tons/bbl) Column B:carbon share (% of mass) Column C...

  13. Impacts of logging on density-dependent predation of dipterocarp seeds in a South East Asian rainforest

    PubMed Central

    Bagchi, Robert; Philipson, Christopher D.; Slade, Eleanor M.; Hector, Andy; Phillips, Sam; Villanueva, Jerome F.; Lewis, Owen T.; Lyal, Christopher H. C.; Nilus, Reuben; Madran, Adzley; Scholes, Julie D.; Press, Malcolm C.

    2011-01-01

    Much of the forest remaining in South East Asia has been selectively logged. The processes promoting species coexistence may be the key to the recovery and maintenance of diversity in these forests. One such process is the Janzen–Connell mechanism, where specialized natural enemies such as seed predators maintain diversity by inhibiting regeneration near conspecifics. In Neotropical forests, anthropogenic disturbance can disrupt the Janzen–Connell mechanism, but similar data are unavailable for South East Asia. We investigated the effects of conspecific density (two spatial scales) and distance from fruiting trees on seed and seedling survival of the canopy tree Parashorea malaanonan in unlogged and logged forests in Sabah, Malaysia. The production of mature seeds was higher in unlogged forest, perhaps because high adult densities facilitate pollination or satiate pre-dispersal predators. In both forest types, post-dispersal survival was reduced by small-scale (1 m2) conspecific density, but not by proximity to the nearest fruiting tree. Large-scale conspecific density (seeds per fruiting tree) reduced predation, probably by satiating predators. Higher seed production in unlogged forest, in combination with slightly higher survival, meant that recruitment was almost entirely limited to unlogged forest. Thus, while logging might not affect the Janzen–Connell mechanism at this site, it may influence the recruitment of particular species. PMID:22006965

  14. The Far-Infrared Spectrum of Arp 220

    NASA Technical Reports Server (NTRS)

    Gonzalez-Alfonso, Eduardo; Smith, Howard A.; Fischer, Jacqueline; Cernicharo, Jose

    2004-01-01

    ISO/LWS grating observations of the ultraluminous infrared galaxy Arp 220 shows absorption in molecular lines of OH, H 2 0 , CH, NH, and "3, well as in the [0 I] 63 pm line and emission in the [C 111 158 pm line. We have modeled the continuum and the emission/absorption of all observed features by means of a non-local radiative transfer code. The continuum from 25 to 1300 pm is modeled AS A WARM (106 K) NUCLEAR REGION THAT IS OPTICALLY THICK IN THE FAR-INFRARED, attenuated by an extended region (size 2") that is heated mainly through absorption of nuclear infrared radiation. The molecular absorption in the nuclear region is characterized by high excitation due to the high infrared radiation density. The OH column densities are high toward the nucleus and the extended region (about 2 x 10 sup 17 cm sup-2). The H2O column density is also high toward the nucleus (2 - 10 x 1017 cm-2) and lower in the extended region. The column densities in a halo that accounts for the absorption by the lowest lying levels are similar to what are found in the diffuse clouds toward the star forming regions in the Sgr B2 molecular cloud complex near the Galactic Center. Most notable are the high column densities found for NH and NH3 toward the nucleus, with values of about 1.5 x 10supl6 cmsup-2 and about 3 x 10supl6 cmsup-2, respectively, whereas the NH2 column density is lower than about 2 x 10sup15 cmsup-2. A combination of PDRs in the extended region and hot cores with enhanced H20 photodissociation and a possible shock contribution in the nuclei may explain the relative column densities of OH and H20, whereas the nitrogen chemistry may be strongly affected by cosmic ray ionization. The [C II] 158 pm line is well reproduced by our models and its "deficit" relative to the CII/FIR ratio in normal and starburst galaxies is suggested to be mainly a consequence of the dominant non-PDR component of far- infrared radiation, ALTHOUGH OUR MODELS ALONE CANNOT RULE OUT EXTINCTION EFFECTS IN THE NUCLEI.

  15. The Far-Infrared Spectrum of Arp 220

    NASA Technical Reports Server (NTRS)

    Gonzalez-Alfonso, Eduardo; Smith, Howard A.; Fischer, Jacqueline; Cernicharo, Jose

    2005-01-01

    ISO/LWS grating observations of the ultraluminous infrared galaxy Arp 220 shows absorption in molecular lines of OH, H(sub 2)O, CH, NH, and NH(sub 3), as well as in the [O I] 63 micron line and emission in the [C II] 158 micron line. We have modeled the continuum and the emission/absorption of all observed features by means of a non-local radiative transfer code. The continuum from 25 to 1300 microns is modeled as a warm (106 K) nuclear region that is optically thick in the far-infrared, attenuated by an extended region (size 2") that is heated mainly through absorption of nuclear infrared radiation. The molecular absorption in the nuclear region is characterized by high excitation due to the high infrared radiation density. The OH column densities are high toward the nucleus (2 - 6 x 10(exp 17) cm(exp -2)) and the extended region (approximately 2 x 10(exp 17) cm(exp -2)). The H(sub 2)O column density is also high toward the nucleus (2 - 10 x 10(exp 17) cm(exp -2)) and lower in the extended region. The column densities in a halo that accounts for the absorption by the lowest lying levels are similar to what are found in the diffuse clouds toward the star forming regions in the Sgr B2 molecular cloud complex near the Galactic Center. Most notable are the high column densities found for NH and NH(sub 3) toward the nucleus, with values of approximately 1.5 x 10(exp 16) cm(exp -2) and approximately 3 x 10(exp 16) cm(exp -2), respectively, whereas the NH(sub 2) column density is lower than approximately 2 x 10(exp 15) cm(exp -2). A combination of PDRs in the extended region and hot cores with enhanced H(sub 2)O photodissociation and a possible shock contribution in the nuclei may explain the relative column densities of OH and H(sub 2)O, whereas the nitrogen chemistry may be strongly affected by cosmic ray ionization. The [C II] 158 micron line is well reproduced by our models and its deficit relative to the CII/FIR ratio in normal and starburst galaxies is suggested to be mainly a consequence of the dominant non-PDR component of far-infrared radiation, although our models alone cannot rule out extinction effects in the nuclei.

  16. Coma dust scattering concepts applied to the Rosetta mission

    NASA Astrophysics Data System (ADS)

    Fink, Uwe; Rinaldi, Giovanna

    2015-09-01

    This paper describes basic concepts, as well as providing a framework, for the interpretation of the light scattered by the dust in a cometary coma as observed by instruments on a spacecraft such as Rosetta. It is shown that the expected optical depths are small enough that single scattering can be applied. Each of the quantities that contribute to the scattered intensity is discussed in detail. Using optical constants of the likely coma dust constituents, olivine, pyroxene and carbon, the scattering properties of the dust are calculated. For the resulting observable scattering intensities several particle size distributions are considered, a simple power law, power laws with a small particle cut off and a log-normal distributions with various parameters. Within the context of a simple outflow model, the standard definition of Afρ for a circular observing aperture is expanded to an equivalent Afρ for an annulus and specific line-of-sight observation. The resulting equivalence between the observed intensity and Afρ is used to predict observable intensities for 67P/Churyumov-Gerasimenko at the spacecraft encounter near 3.3 AU and near perihelion at 1.3 AU. This is done by normalizing particle production rates of various size distributions to agree with observed ground based Afρ values. Various geometries for the column densities in a cometary coma are considered. The calculations for a simple outflow model are compared with more elaborate Direct Simulation Monte Carlo Calculation (DSMC) models to define the limits of applicability of the simpler analytical approach. Thus our analytical approach can be applied to the majority of the Rosetta coma observations, particularly beyond several nuclear radii where the dust is no longer in a collisional environment, without recourse to computer intensive DSMC calculations for specific cases. In addition to a spherically symmetric 1-dimensional approach we investigate column densities for the 2-dimensional DSMC model on the day and night side of the comet. Our calculations are also applied to estimates of the dust particle densities and flux which are useful for the in-situ experiments on Rosetta.

  17. The Stagger-grid: A grid of 3D stellar atmosphere models. II. Horizontal and temporal averaging and spectral line formation

    NASA Astrophysics Data System (ADS)

    Magic, Z.; Collet, R.; Hayek, W.; Asplund, M.

    2013-12-01

    Aims: We study the implications of averaging methods with different reference depth scales for 3D hydrodynamical model atmospheres computed with the Stagger-code. The temporally and spatially averaged (hereafter denoted as ⟨3D⟩) models are explored in the light of local thermodynamic equilibrium (LTE) spectral line formation by comparing spectrum calculations using full 3D atmosphere structures with those from ⟨3D⟩ averages. Methods: We explored methods for computing mean ⟨3D⟩ stratifications from the Stagger-grid time-dependent 3D radiative hydrodynamical atmosphere models by considering four different reference depth scales (geometrical depth, column-mass density, and two optical depth scales). Furthermore, we investigated the influence of alternative averages (logarithmic, enforced hydrostatic equilibrium, flux-weighted temperatures). For the line formation we computed curves of growth for Fe i and Fe ii lines in LTE. Results: The resulting ⟨3D⟩ stratifications for the four reference depth scales can be very different. We typically find that in the upper atmosphere and in the superadiabatic region just below the optical surface, where the temperature and density fluctuations are highest, the differences become considerable and increase for higher Teff, lower log g, and lower [Fe / H]. The differential comparison of spectral line formation shows distinctive differences depending on which ⟨3D⟩ model is applied. The averages over layers of constant column-mass density yield the best mean ⟨3D⟩ representation of the full 3D models for LTE line formation, while the averages on layers at constant geometrical height are the least appropriate. Unexpectedly, the usually preferred averages over layers of constant optical depth are prone to increasing interference by reversed granulation towards higher effective temperature, in particular at low metallicity. Appendix A is available in electronic form at http://www.aanda.orgMean ⟨3D⟩ models are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A8 as well as at http://www.stagger-stars.net

  18. Metal concentrations in the upper atmosphere during meteor showers

    NASA Astrophysics Data System (ADS)

    Correira, J.; Aikin, A. C.; Grebowsky, J. M.; Burrows, J. P.

    2010-02-01

    Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the vertical magnesium column densities in the atmosphere and any connection to possible enhanced mass deposition during a meteor shower. Time-dependent mass influx rates are derived for all the major meteor showers using published estimates of mass density and temporal profiles of meteor showers. An average daily sporadic background mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal vertical column densities of Mg and Mg+ from the years 1996-2001. There is no correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.

  19. Metal concentrations in the upper atmosphere during meteor showers

    NASA Astrophysics Data System (ADS)

    Correira, J.; Aikin, A. C.; Grebowsky, J. M.; Burrows, J. P.

    2009-09-01

    Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the vertical magnesium column densities in the atmosphere and any connection to possible enhanced mass deposition during a meteor shower. Time-dependent mass influx rates are derived for all the major meteor showers using published estimates of mass density and temporal profiles of meteor showers. An average daily sporadic background mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal vertical column densities of Mg and Mg+ from the years 1996-2001. There is no correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.

  20. Micellar versus hydro-organic mobile phases for retention-hydrophobicity relationship studies with ionizable diuretics and an anionic surfactant.

    PubMed

    Ruiz-Angel, M J; Carda-Broch, S; García-Alvarez-Coque, M C; Berthod, A

    2004-03-19

    Logarithm of retention factors (log k) of a group of 14 ionizable diuretics were correlated with the molecular (log P o/w) and apparent (log P(app)) octanol-water partition coefficients. The compounds were chromatographed using aqueous-organic (reversed-phase liquid chromatography, RPLC) and micellar-organic mobile phases (micellar liquid chromatography, MLC) with the anionic surfactant sodium dodecyl sulfate (SDS), in the pH range 3-7, and a conventional octadecylsilane column. Acetonitrile was used as the organic modifier in both modes. The quality of the correlations obtained for log P(app) at varying ionization degree confirms that this correction is required in the aqueous-organic mixtures. The correlation is less improved with SDS micellar media because the acid-base equilibriums are shifted towards higher pH values for acidic compounds. In micellar chromatography, an electrostatic interaction with charged solutes is added to hydrophobic forces; consequently, different correlations should be established for neutral and acidic compounds, and for basic compounds. Correlations between log k and the isocratic descriptors log k(w), log k(wm) (extrapolated retention to pure water in the aqueous-organic and micellar-organic systems, respectively), and psi0 (extrapolated mobile phase composition giving a k = 1 retention factor or twice the dead time), and between these descriptors and log P(app) were also satisfactory, although poorer than those between log k and log P(app) due to the extrapolation. The study shows that, in the particular case of the ionizable diuretics studied, classical RPLC gives better results than MLC with SDS in the retention hydrophobicity correlations.

  1. APPROXIMATION AND ESTIMATION OF s-CONCAVE DENSITIES VIA RÉNYI DIVERGENCES.

    PubMed

    Han, Qiyang; Wellner, Jon A

    2016-01-01

    In this paper, we study the approximation and estimation of s -concave densities via Rényi divergence. We first show that the approximation of a probability measure Q by an s -concave density exists and is unique via the procedure of minimizing a divergence functional proposed by [ Ann. Statist. 38 (2010) 2998-3027] if and only if Q admits full-dimensional support and a first moment. We also show continuity of the divergence functional in Q : if Q n → Q in the Wasserstein metric, then the projected densities converge in weighted L 1 metrics and uniformly on closed subsets of the continuity set of the limit. Moreover, directional derivatives of the projected densities also enjoy local uniform convergence. This contains both on-the-model and off-the-model situations, and entails strong consistency of the divergence estimator of an s -concave density under mild conditions. One interesting and important feature for the Rényi divergence estimator of an s -concave density is that the estimator is intrinsically related with the estimation of log-concave densities via maximum likelihood methods. In fact, we show that for d = 1 at least, the Rényi divergence estimators for s -concave densities converge to the maximum likelihood estimator of a log-concave density as s ↗ 0. The Rényi divergence estimator shares similar characterizations as the MLE for log-concave distributions, which allows us to develop pointwise asymptotic distribution theory assuming that the underlying density is s -concave.

  2. APPROXIMATION AND ESTIMATION OF s-CONCAVE DENSITIES VIA RÉNYI DIVERGENCES

    PubMed Central

    Han, Qiyang; Wellner, Jon A.

    2017-01-01

    In this paper, we study the approximation and estimation of s-concave densities via Rényi divergence. We first show that the approximation of a probability measure Q by an s-concave density exists and is unique via the procedure of minimizing a divergence functional proposed by [Ann. Statist. 38 (2010) 2998–3027] if and only if Q admits full-dimensional support and a first moment. We also show continuity of the divergence functional in Q: if Qn → Q in the Wasserstein metric, then the projected densities converge in weighted L1 metrics and uniformly on closed subsets of the continuity set of the limit. Moreover, directional derivatives of the projected densities also enjoy local uniform convergence. This contains both on-the-model and off-the-model situations, and entails strong consistency of the divergence estimator of an s-concave density under mild conditions. One interesting and important feature for the Rényi divergence estimator of an s-concave density is that the estimator is intrinsically related with the estimation of log-concave densities via maximum likelihood methods. In fact, we show that for d = 1 at least, the Rényi divergence estimators for s-concave densities converge to the maximum likelihood estimator of a log-concave density as s ↗ 0. The Rényi divergence estimator shares similar characterizations as the MLE for log-concave distributions, which allows us to develop pointwise asymptotic distribution theory assuming that the underlying density is s-concave. PMID:28966410

  3. Determining the depositional pattern by resistivity-seismic inversion for the aquifer system of Maira area, Pakistan.

    PubMed

    Akhter, Gulraiz; Farid, Asim; Ahmad, Zulfiqar

    2012-01-01

    Velocity and density measured in a well are crucial for synthetic seismic generation which is, in turn, a key to interpreting real seismic amplitude in terms of lithology, porosity and fluid content. Investigations made in the water wells usually consist of spontaneous potential, resistivity long and short normal, point resistivity and gamma ray logs. The sonic logs are not available because these are usually run in the wells drilled for hydrocarbons. To generate the synthetic seismograms, sonic and density logs are required, which are useful to precisely mark the lithology contacts and formation tops. An attempt has been made to interpret the subsurface soil of the aquifer system by means of resistivity to seismic inversion. For this purpose, resistivity logs and surface resistivity sounding were used and the resistivity logs were converted to sonic logs whereas surface resistivity sounding data transformed into seismic curves. The converted sonic logs and the surface seismic curves were then used to generate synthetic seismograms. With the utilization of these synthetic seismograms, pseudo-seismic sections have been developed. Subsurface lithologies encountered in wells exhibit different velocities and densities. The reflection patterns were marked by using amplitude standout, character and coherence. These pseudo-seismic sections were later tied to well synthetics and lithologs. In this way, a lithology section was created for the alluvial fill. The cross-section suggested that the eastern portion of the studied area mainly consisted of sandy fill and the western portion constituted clayey part. This can be attributed to the depositional environment by the Indus and the Kabul Rivers.

  4. Ratios of molecular hydrogen line intensities in shocked gas - Evidence for cooling zones

    NASA Technical Reports Server (NTRS)

    Brand, P. W. J. L.; Moorhouse, A.; Bird, M.; Burton, M. G.; Geballe, T. R.

    1988-01-01

    Column densities of molecular hydrogen have been calculated from 19 infrared vibration-rotation and pure rotational line intensities measured at peak 1 of the Orion molecular outflow. The run of column density with energy level is similar to a simple coolng zone model of the line-emitting region, but is not well fitted by predictions of C-shock models current in the literature.

  5. Cathode-constriction and column-constriction in high current vacuum arcs subjected to an axial magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Zaiqin; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua

    2018-04-01

    The influence of the applied axial magnetic field on the current density distribution in the arc column and electrodes is intensively studied. However, the previous results only provide a qualitative explanation, which cannot quantitatively explain a recent experimental data on anode current density. The objective of this paper is to quantitatively determine the current constriction subjected to an axial magnetic field in high-current vacuum arcs according to the recent experimental data. A magnetohydrodynamic model is adopted to describe the high current vacuum arcs. The vacuum arc is in a diffuse arc mode with an arc current ranged from 6 kArms to 14 kArms and an axial magnetic field ranged from 20 mT to 110 mT. By a comparison of the recent experimental work of current density distribution on the anode, the modelling results show that there are two types of current constriction. On one hand, the current on the cathode shows a constriction, and this constriction is termed as the cathode-constriction. On the other hand, the current constricts in the arc column region, and this constriction is termed as the column-constriction. The cathode boundary is of vital importance in a quantitative model. An improved cathode constriction boundary is proposed. Under the improved boundary, the simulation results are in good agreement with the recent experimental data on the anode current density distribution. It is demonstrated that the current density distribution at the anode is sensitive to that at the cathode, so that measurements of the anode current density can be used, in combination with the vacuum arc model, to infer the cathode current density distribution.

  6. STUDYING THE WHIM CONTENT OF LARGE-SCALE STRUCTURES ALONG THE LINE OF SIGHT TO H 2356-309

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zappacosta, L.; Nicastro, F.; Maiolino, R.

    2010-07-01

    We make use of a 500 ks Chandra HRC-S/LETG spectrum of the blazar H 2356-309, combined with a lower signal-to-noise ratio (S/N; 100 ks) pilot LETG spectrum of the same target, to search for the presence of warm-hot absorbing gas associated with two large-scale structures (LSSs) crossed by this sight line and to constrain its physical state and geometry. Strong (log N{sub O{sub VII}} {>=} 10{sup 16} cm{sup -2}) O VII K{alpha} absorption associated with a third LSS crossed by this line of sight (the Sculptor Wall (SW)), at z = 0.03, has already been detected in a previous work.more » Here, we focus on two additional prominent filamentary LSSs along the same line of sight, one at z = 0.062 (the Pisces-Cetus Supercluster (PCS)) and another at z = 0.128 (the 'Farther Sculptor Wall' (FSW)). The combined LETG spectrum has an S/N of {approx}11.6-12.6 per resolution element in the 20-25 A and an average 3{sigma} sensitivity to intervening O VII K{alpha} absorption line equivalent widths (EWs) of EW{sub O{sub VII}} {approx_gt} 14 mA in the available redshift range (z < 0.165). No statistically significant (i.e., {>=}3{sigma}) individual absorption is detected from any of the strong He- or H-like transitions of C, O, and Ne (the most abundant metals in gas with solar-like composition) at the redshifts of the PCS and FSW structures and down to the EW thresholds mentioned above. However, we are still able to constrain the physical and geometrical parameters of the putative absorbing gas associated with these structures, by performing a joint spectral fit of various marginal detections and upper limits of the strongest expected lines with our self-consistent hybrid-ionization WHIM spectral model. At the redshift of the PCS, we identify a warm phase with log T = 5.35{sup +0.07}{sub -0.13} K and log N{sub H} = (19.1 {+-} 0.2) cm{sup -2} possibly co-existing with a much hotter and statistically less significant phase with log T = 6.9{sup +0.1}{sub -0.8} K and log N{sub H} = 20.1{sup +0.3}{sub -1.7} cm{sup -2} (1{sigma} errors). These two separate physical phases are identified through, and mainly constrained by, C V K{alpha} (warm phase) and O VIII K{alpha} (hot phase) absorption, with single line significances of 1.5{sigma} each. For the second LSS, at z {approx_equal} 0.128, only one hot component is hinted in the data, through O VIII K{alpha} (1.6{sigma}) and Ne IX K{alpha} (1.2{sigma}). For this system, we estimate log T = 6.6{sup +0.1}{sub -0.2} K and log N{sub H} = 19.8{sup +0.4}{sub -0.8} cm{sup -2}. Our column density and temperature constraints on the warm-hot gaseous content of these two LSSs, combined with the measurements obtained for the hot gas permeating the SW, allow us to estimate the cumulative number density per unit redshifts of O VII WHIM absorbers at three different EW thresholds of 0.4 mA, 7 mA, and 25.8 mA. This is consistent with expectations only at the very low end of EW thresholds, but exceeds predictions at 7 mA and 25.8 mA (by more than 2{sigma}). We also estimate the cosmological mass density of the WHIM based on the four absorbers we tentatively detect along this line of sight, obtaining {Omega}{sup WHIM}{sub b} = (0.021{sup +0.031}{sub -0.018})(Z/Z{sub sun}){sup -1}, consistent with the cosmological mass density of the intergalactic 'missing baryons' only if we assume high metallicities (Z {approx} Z{sub sun}).« less

  7. Petrophysical rock properties of the Bazhenov Formation of the South-Eastern part of Kaymysovsky Vault (Tomsk Region)

    NASA Astrophysics Data System (ADS)

    Gorshkov, A. M.; Kudryashova, L. K.; Lee-Van-Khe, O. S.

    2016-09-01

    The article presents the results of studying petrophysical rock properties of the Bazhenov Formation of the South-Eastern part of Kaymysovsky Vault with the Gas Research Institute (GRI) method. The authors have constructed dependence charts for bulk and grain density, open porosity and matrix permeability vs. depth. The results of studying petrophysical properties with the GRI method and core description have allowed dividing the entire section into three intervals each of which characterized by different conditions of Bazhenov Formation rock formation. The authors have determined a correlation between the compensated neutron log and the rock density vs. depth chart on the basis of complex well logging and petrophysical section analysis. They have determined a promising interval for producing hydrocarbons from the Bazhenov Formation in the well under study. Besides, they have determined the typical behavior of compensated neutron logs and SP logs on well logs for this interval. These studies will allow re-interpreting available well logs in order to determine the most promising interval to be involved in Bazhenov Formation development in Tomsk Region.

  8. A Benes-like theorem for the shuffle-exchange graph

    NASA Technical Reports Server (NTRS)

    Schwabe, Eric J.

    1992-01-01

    One of the first theorems on permutation routing, proved by V. E. Beness (1965), shows that given a set of source-destination pairs in an N-node butterfly network with at most a constant number of sources or destinations in each column of the butterfly, there exists a set of paths of lengths O(log N) connecting each pair such that the total congestion is constant. An analogous theorem yielding constant-congestion paths for off-line routing in the shuffle-exchange graph is proved here. The necklaces of the shuffle-exchange graph play the same structural role as the columns of the butterfly in Beness' theorem.

  9. Low density of neutral hydrogen and helium in the local interstellar medium: Extreme Ultraviolet Explorer photometry of the Lyman continuum of the hot white dwarfs MCT 0501-2858, MCT 0455-2812, HZ 43, and GD 153

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane; Dupuis, Jean; Bowyer, Stuart; Fontaine, Gilles; Wiercigroch, Alexandria; Jelinsky, Patrick; Wesemael, Francois; Malina, Roger

    1994-01-01

    The first comprehensive sky survey of the extreme ultraviolet (EUV) spectral range performed by the Extreme Ultraviolet Explorer (EUVE) has uncovered a handful of very bright sources at wavelengths longer than the He I 504 A photoionization edge. Among these objects are four white dwarfs with exceptionally low interstellar medium (ISM) column densities along the line of sight. Analysis of EUV photometry of the He-rich DO white dwarf MCT 0501-2858 and the H-rich DA white dwarf MCT 0455-2812 along one line of sight and of the DA white dwarfs HZ 43 and GD 153 near the north Galactic pole indicates that the overall minimum column density of the neutral material centered on the Sun is N(H I) = 0.5-1.0 x 10(exp 18)/sq cm. In the case of MCT 0501-2858, EUV photometric measurements provide a clear constraint to the effective temperature (60,000-70,000 K). Given these neutral hydrogen columns, the actual contribution to the density of neutral species from the immediate solar environment (the 'local fluff') would only cover a distance of approximately equals 2-3 pc (assuming an average density n(H I) = 0.1/cu cm) leaving these lines of sight almost entirely within the hot phase of the ISM. A preliminary examination of the complete EUVE long-wavelength survey indicates that these lines of sight are exceptional and set a minimum column density in the solar environment.

  10. The puzzling spectrum of HD 94509. Sounding out the extremes of Be shell star spectral morphology

    NASA Astrophysics Data System (ADS)

    Cowley, C. R.; Przybilla, N.; Hubrig, S.

    2015-06-01

    Context. The spectral features of HD 94509 are highly unusual, adding an extreme to the zoo of Be and shell stars. The shell dominates the spectrum, showing lines typical for spectral types mid-A to early-F, while the presence of a late/mid B-type central star is indicated by photospheric hydrogen line wings and helium lines. Numerous metallic absorption lines have broad wings but taper to narrow cores. They cannot be fit by Voigt profiles. Aims: We describe and illustrate unusual spectral features of this star, and make rough calculations to estimate physical conditions and abundances in the shell. Furthermore, the central star is characterized. Methods: We assume mean conditions for the shell. An electron density estimate is made from the Inglis-Teller formula. Excitation temperatures and column densities for Fe i and Fe ii are derived from curves of growth. The neutral H column density is estimated from high Paschen members. The column densities are compared with calculations made with the photoionization code Cloudy. Atmospheric parameters of the central star are constrained employing non-LTE spectrum synthesis. Results: Overall chemical abundances are close to solar. Column densities of the dominant ions of several elements, as well as excitation temperatures and the mean electron density are well accounted for by a simple model. Several features, including the degree of ionization, are less well described. Conclusions: HD 94509 is a Be star with a stable shell, close to the terminal-age main sequence. The dynamical state of the shell and the unusually shaped, but symmetric line profiles, require a separate study.

  11. Finding Faults: Tohoku and other Active Megathrusts/Megasplays

    NASA Astrophysics Data System (ADS)

    Moore, J. C.; Conin, M.; Cook, B. J.; Kirkpatrick, J. D.; Remitti, F.; Chester, F.; Nakamura, Y.; Lin, W.; Saito, S.; Scientific Team, E.

    2012-12-01

    Current subduction-fault drilling procedure is to drill a logging hole, identify target faults, then core and instrument them. Seismic data may constrain faults but the additional resolution of borehole logs is necessary for efficient coring and instrumentation under difficult conditions and tight schedules. Thus, refining the methodology of identifying faults in logging data has become important, and thus comparison of log signatures of faults in different locations is worthwhile. At the C0019 (JFAST) drill site, the Tohoku megathrust was principally identified as a decollement where steep cylindrically-folded bedding abruptly flattens below the basal detachment. A similar structural contrast occurs across a megasplay fault in the NanTroSEIZE transect (Site C0004). At the Tohoku decollement, a high gamma-ray value from a pelagic clay layer, predicted as a likely decollement sediment type, strengthens the megathrust interpretation. The original identification of the pelagic clay as a decollement candidate was based on results of previous coring of an oceanic reference site. Negative density anomalies, often seen as low resistivity zones, identified a subsidiary fault in the deformed prism overlying the Tohoku megathrust. Elsewhere, at Barbados, Nankai (Moroto), and Costa Rica, negative density anomalies are associated with the decollement and other faults in hanging walls. Log-based density anomalies in fault zones provide a basis for recognizing in-situ fault zone dilation. At the Tohoku Site C0019, breakouts are present above but not below the megathrust. Changes in breakout orientation and width (stress magnitude) occur across megasplay faults at Sites C0004 and C0010 in the NantroSEIZE transect. Annular pressure anomalies are not apparent at the Tohoku megathrust, but are variably associated with faults and fracture zones drilled along the NanTroSEIZE transect. Overall, images of changes in structural features, negative density anomalies, and changes in breakout occurrence and orientation provide the most common log criteria for recognizing major thrust zones in ocean drilling holes at convergent margins. In the case of JFAST, identification of faults by logging was confirmed during subsequent coring activities, and logging data was critical for successful placement of the observatory down hole.

  12. Mini-columns for Conducting Breakthrough Experiments. Design and Construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dittrich, Timothy M.; Reimus, Paul William; Ware, Stuart Douglas

    Experiments with moderately and strongly sorbing radionuclides (i.e., U, Cs, Am) have shown that sorption between experimental solutions and traditional column materials must be accounted for to accurately determine stationary phase or porous media sorption properties (i.e., sorption site density, sorption site reaction rate coefficients, and partition coefficients or K d values). This report details the materials and construction of mini-columns for use in breakthrough columns to allow for accurate measurement and modeling of sorption parameters. Material selection, construction techniques, wet packing of columns, tubing connections, and lessons learned are addressed.

  13. Reduced density gradient as a novel approach for estimating QSAR descriptors, and its application to 1, 4-dihydropyridine derivatives with potential antihypertensive effects.

    PubMed

    Jardínez, Christiaan; Vela, Alberto; Cruz-Borbolla, Julián; Alvarez-Mendez, Rodrigo J; Alvarado-Rodríguez, José G

    2016-12-01

    The relationship between the chemical structure and biological activity (log IC 50 ) of 40 derivatives of 1,4-dihydropyridines (DHPs) was studied using density functional theory (DFT) and multiple linear regression analysis methods. With the aim of improving the quantitative structure-activity relationship (QSAR) model, the reduced density gradient s( r) of the optimized equilibrium geometries was used as a descriptor to include weak non-covalent interactions. The QSAR model highlights the correlation between the log IC 50 with highest molecular orbital energy (E HOMO ), molecular volume (V), partition coefficient (log P), non-covalent interactions NCI(H4-G) and the dual descriptor [Δf(r)]. The model yielded values of R 2 =79.57 and Q 2 =69.67 that were validated with the next four internal analytical validations DK=0.076, DQ=-0.006, R P =0.056, and R N =0.000, and the external validation Q 2 boot =64.26. The QSAR model found can be used to estimate biological activity with high reliability in new compounds based on a DHP series. Graphical abstract The good correlation between the log IC 50 with the NCI (H4-G) estimated by the reduced density gradient approach of the DHP derivatives.

  14. [Determination and prediction for vapor pressures of organophosphate flame retardants by gas chromatography].

    PubMed

    Wang, Qingzhi; Zhao, Hongxia; Wang, Yan; Xie, Qing; Chen, Jingwen; Quan, Xie

    2017-09-08

    Organophosphate flame retardants (OPFRs) are ubiquitous in the environment. To better understand and predict their environmental transport and fate, well-defined physicochemical properties are required. Vapor pressures ( P ) of 14 OPFRs were estimated as a function of temperature ( T ) by gas chromatography (GC), while 1,1,1-trichioro-2,2-bis (4-chlorophenyl) ethane ( p,p '-DDT) was acted as a reference substance. Their log P GC values and internal energies of phase transfer (△ vap H ) ranged from -6.17 to -1.25 and 74.1 kJ/mol to 122 kJ/mol, respectively. Substitution pattern and molar volume ( V M ) were found to be capable of influencing log P GC values of the OPFRs. The halogenated alkyl-OPFRs had lower log P GC values than aryl-or alkyl-OPFRs. The bigger the molar volume was, the smaller the log P GC value was. In addition, a quantitative structure-property relationship (QSPR) model of log P GC versus different relative retention times (RRTs) was developed with a high cross-validated value ( Q 2 cum ) of 0.946, indicating a good predictive ability and stability. Therefore, the log P GC values of the OPFRs without standard substance can be predicted by using their RRTs on different GC columns.

  15. Determination and prediction of octanol-air partition coefficients for organophosphate flame retardants.

    PubMed

    Wang, Qingzhi; Zhao, Hongxia; Wang, Yan; Xie, Qing; Chen, Jingwen; Quan, Xie

    2017-11-01

    Organophosphate flame retardants (OPFRs) have attracted wide concerns due to their toxicities and ubiquitous occurrence in the environment. In this work, Octanol-air partition coefficient (K OA ) for 14 OPFRs including 4 halogenated alkyl-, 5 aryl- and 5 alkyl-OPFRs, were estimated as a function of temperature using a gas chromatographic retention time (GC-RT) method. Their log K OA-GC values and internal energies of phase transfer (Δ OA U/kJmol -1 ) ranged from 8.03 to 13.0 and from 69.7 to 149, respectively. Substitution pattern and molar volume (V M ) were found to be capable of influencing log K OA-GC values of OPFRs. The halogenated alkyl-OPFRs had higher log K OA-GC values than aryl- or alkyl-OPFRs. The bigger the molar volume was, the greater the log K OA-GC values increased. In addition, a predicted model of log K OA-GC versus different relative retention times (RRTs) was developed with a high cross-validated value (Q 2 (cum) ) of 0.951, indicating a good predictive ability and stability. Therefore, the log K OA-GC values of the remaining OPFRs can be predicted by using their RRTs on different GC columns. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Column densities resulting from shuttle sublimator/evaporator operation. [optical density of nozzle flow containing water vapor

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1973-01-01

    The proposed disposal of H2O from the shuttle fuel cell operation by ejecting it in vapor form through a supersonic nozzle at the rate of 100 lb/day has been investigated from the point of view of the possible interference to astronomical experiments. If the nozzle is located at the tail and directed along the shuttle longitudinal axis, the resulting column density will be less than 10 to th 12th power molecules/sq cm at viewing angles larger than 48 deg above the longitudinal axis. The molecules in the trail will diffuse rapidly. The column density contribution from molecules expelled on the previous orbit is 1.3 x 10 to the 8th power molecules/sq cm. This contribution diminishes by the inverse square root of the number of orbits since the molecules were expelled. The molecular backscatter from atmospheric molecules is also calculated. If the plume is directed into the flight path, the column density along a perpendicular is found to be 1.5 x 10 to the 11th power molecules/sq cm. The return flux is estimated to be of the order of 10 to the 12th power molecules/sq cm/sec at the stagnation point. With reasonable care in design of experiments to protect them from the backscatter flux of water molecules, the expulsion of 100 lb/day does not appear to create an insurmountable difficulty for the shuttle experiments.

  17. Determination of the Partition Coefficients of Organophosphorus Compounds Using High-Performance Liquid Chromatography.

    DTIC Science & Technology

    1987-12-01

    have claimed an advantage to deter- mining values of k’ in 100% aqueous mobile phases by extrapolation of linear plots of log k’ vs. percent organic...im parti- cle size chemically bonded octadecylsilane (ODS) packing ( Alltech Econo- sphere). As required, this column was saturated with I-octanol by in

  18. Research on the physical properties of supercritical CO2 and the log evaluation of CO2-bearing volcanic reservoirs

    NASA Astrophysics Data System (ADS)

    Pan, Baozhi; Lei, Jian; Zhang, Lihua; Guo, Yuhang

    2017-10-01

    CO2-bearing reservoirs are difficult to distinguish from other natural gas reservoirs during gas explorations. Due to the lack of physical parameters for supercritical CO2, particularly neutron porosity, at present a hydrocarbon gas log evaluation method is used to evaluate CO2-bearing reservoirs. The differences in the physical properties of hydrocarbon and CO2 gases have led to serious errors. In this study, the deep volcanic rock of the Songliao Basin was the research area. In accordance with the relationship between the density and acoustic velocity of supercritical CO2 and temperature and pressure, the regularity between the CO2 density and acoustic velocity, and the depth of the area was established. A neutron logging simulation was completed based on a Monte Carlo method. Through the simulation of the wet limestone neutron logging, the relationship between the count rate ratio of short and long space detectors and the neutron porosity was acquired. Then, the nature of the supercritical CO2 neutron moderation was obtained. With consideration given to the complexity of the volcanic rock mineral composition, a volcanic rock volume model was established, and the matrix neutron and density parameters were acquired using the ECS log. The properties of CO2 were applied in the log evaluation of the CO2-bearing volcanic reservoirs in the southern Songliao Basin. The porosity and saturation of CO2 were obtained, and a reasonable application was achieved in the CO2-bearing reservoir.

  19. Comparison of MWD and wireline applications and decision criteria, Malay Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zainun, K.; Redzuan, M.; Said, M.

    1994-07-01

    Since 1987, usage of measurement while drilling (MWD) technology within Esso Production Malaysia Inc. (EPMI) has evolved from an auxiliary directional drilling service to providing a reliable alternative to wireline logs for formation evaluation and well-completion purposes. The shift in EPMI's attitude toward the use of MWD in formation evaluation is attributed to the availability of a complete suite of logging services for the log analysis procedure, accuracy of the data, sufficient control in reservoir quality, and continuity in fields where there are already a high density of wireline-logged wells, increasing number of high angle and horizontal wells being drilled,more » a favorable track record, and realized economic benefits. The in-house analysis procedure, (EPMILOG[sup 6]), requires the availability of a deep and/or shallow investigating resistivity, formation density, neutron porosity, and gamma ray tools for a complete analysis. The availability of these services in MWD and also comparative evaluations of MWD responses with their correlative wireline counterparts show that MWD technology can be used, to a large extent, to complement or replace routine wireline logging services. MWD resistivity measurements are frequently observed to be less effected by mud filtrate invasion than the correlative wireline measurements and are, therefore, closer to the true resistivity of the formation. MWD formation evaluation services are most widely used in fields where there are already a high density of wells that were logged using wireline. The MWD data is used to decide perforation depths and intervals.« less

  20. Protein aggregation under high concentration/density state during chromatographic and ultrafiltration processes.

    PubMed

    Arakawa, Tsutomu; Ejima, Daisuke; Akuta, Teruo

    2017-02-01

    Local transient high protein concentration or high density condition can occur during processing of protein solutions. Typical examples are saturated binding of proteins during column chromatography and high protein concentration on the semi-permeable membrane during ultrafiltration. Both column chromatography and ultrafiltration are fundamental technologies, specially for production of pharmaceutical proteins. We summarize here our experiences related to such high concentration conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. VOLATILE-RICH CIRCUMSTELLAR GAS IN THE UNUSUAL 49 CETI DEBRIS DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberge, Aki; Grady, Carol A.; Welsh, Barry Y.

    2014-11-20

    We present Hubble Space Telescope Space Telescope Imaging Spectrograph far-UV spectra of the edge-on disk around 49 Ceti, one of the very few debris disks showing submillimeter CO emission. Many atomic absorption lines are present in the spectra, most of which arise from circumstellar gas lying along the line-of-sight to the central star. We determined the line-of-sight C I column density, estimated the total carbon column density, and set limits on the O I column density. Surprisingly, no line-of-sight CO absorption was seen. We discuss possible explanations for this non-detection, and present preliminary estimates of the carbon abundances in themore » line-of-sight gas. The C/Fe ratio is much greater than the solar value, suggesting that 49 Cet harbors a volatile-rich gas disk similar to that of β Pictoris.« less

  2. Carbon X-ray absorption in the local ISM: fingerprints in X-ray Novae spectra

    NASA Astrophysics Data System (ADS)

    Gatuzz, Efraín; Ness, J.-U.; Gorczyca, T. W.; Hasoglu, M. F.; Kallman, Timothy R.; García, Javier A.

    2018-06-01

    We present a study of the C K-edge using high-resolution LETGS Chandra spectra of four novae during their super-soft-source (SSS) phase. We identified absorption lines due to C II Kα, C III Kα and C III Kβ resonances. We used these astronomical observations to perform a benchmarking of the atomic data, which involves wavelength shifts of the resonances and photoionization cross-sections. We used improved atomic data to estimate the C II and C III column densities. The absence of physical shifts for the absorption lines, the consistence of the column densities between multiple observations and the high temperature required for the SSS nova atmosphere modeling support our conclusion about an ISM origin of the respective absorption lines. Assuming a collisional ionization equilibrium plasma the maximum temperature derived from the ratio of C II/C III column densities of the absorbers correspond to Tmax < 3.05 × 104 K.

  3. Analysis of interstellar fragmentation structure based on IRAS images

    NASA Technical Reports Server (NTRS)

    Scalo, John M.

    1989-01-01

    The goal of this project was to develop new tools for the analysis of the structure of densely sampled maps of interstellar star-forming regions. A particular emphasis was on the recognition and characterization of nested hierarchical structure and fractal irregularity, and their relation to the level of star formation activity. The panoramic IRAS images provided data with the required range in spatial scale, greater than a factor of 100, and in column density, greater than a factor of 50. In order to construct a densely sampled column density map of a cloud complex which is both self-gravitating and not (yet?) stirred up much by star formation, a column density image of the Taurus region has been constructed from IRAS data. The primary drawback to using the IRAS data for this purpose is that it contains no velocity information, and the possible importance of projection effects must be kept in mind.

  4. A Low-metallicity Molecular Cloud in the Lower Galactic Halo

    NASA Astrophysics Data System (ADS)

    Hernandez, Audra K.; Wakker, Bart P.; Benjamin, Robert A.; French, David; Kerp, Juergen; Lockman, Felix J.; O'Toole, Simon; Winkel, Benjamin

    2013-11-01

    We find evidence for the impact of infalling, low-metallicity gas on the Galactic disk. This is based on FUV absorption line spectra, 21 cm emission line spectra, and far-infrared (FIR) mapping to estimate the abundance and physical properties of IV21 (IVC135+54-45), a galactic intermediate-velocity molecular cloud that lies ~300 pc above the disk. The metallicity of IV21 was estimated using observations toward the subdwarf B star PG1144+615, located at a projected distance of 16 pc from the cloud's densest core, by measuring ion and H I column densities for comparison with known solar abundances. Despite the cloud's bright FIR emission and large column densities of molecular gas as traced by CO, we find that it has a sub-solar metallicity of log (Z/Z ⊙) = -0.43 ± 0.12 dex. IV21 is thus the first known sub-solar metallicity cloud in the solar neighborhood. In contrast, most intermediate-velocity clouds (IVC) have near-solar metallicities and are believed to originate in the Galactic Fountain. The cloud's low metallicity is also atypical for Galactic molecular clouds, especially in light of the bright FIR emission which suggest a substantial dust content. The measured I 100 μm/N(H I) ratio is a factor of three below the average found in high latitude H I clouds within the solar neighborhood. We argue that IV21 represents the impact of an infalling, low-metallicity high-velocity cloud that is mixing with disk gas in the lower Galactic halo. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from MAST at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program No. 12275. The Green Bank Telescope is part of the National Radio Astronomy Observatory which is a Facility of the National Science Foundation, operated by Associated Universities, Inc.

  5. NuSTAR Reveals Extreme Absorption in z < 0.5 Type 2 Quasars

    NASA Astrophysics Data System (ADS)

    Lansbury, G. B.; Gandhi, P.; Alexander, D. M.; Assef, R. J.; Aird, J.; Annuar, A.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Civano, F.; Comastri, A.; Craig, W. W.; Del Moro, A.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Koss, M.; LaMassa, S. M.; Luo, B.; Puccetti, S.; Stern, D.; Treister, E.; Vignali, C.; Zappacosta, L.; Zhang, W. W.

    2015-08-01

    The intrinsic column density (NH) distribution of quasars is poorly known. At the high obscuration end of the quasar population and for redshifts z < 1, the X-ray spectra can only be reliably characterized using broad-band measurements that extend to energies above 10 keV. Using the hard X-ray observatory NuSTAR, along with archival Chandra and XMM-Newton data, we study the broad-band X-ray spectra of nine optically selected (from the SDSS), candidate Compton-thick (NH > 1.5 × 1024 cm-2) type 2 quasars (CTQSO2s); five new NuSTAR observations are reported herein, and four have been previously published. The candidate CTQSO2s lie at z < 0.5, have observed [O iii] luminosities in the range 8.4\\lt {log}({L}[{{O} {{III}}]}/{L}⊙ )\\lt 9.6, and show evidence for extreme, Compton-thick absorption when indirect absorption diagnostics are considered. Among the nine candidate CTQSO2s, five are detected by NuSTAR in the high-energy (8-24 keV) band: two are weakly detected at the ≈3σ confidence level and three are strongly detected with sufficient counts for spectral modeling (≳90 net source counts at 8-24 keV). For these NuSTAR-detected sources direct (i.e., X-ray spectral) constraints on the intrinsic active galactic nucleus properties are feasible, and we measure column densities ≈2.5-1600 times higher and intrinsic (unabsorbed) X-ray luminosities ≈10-70 times higher than pre-NuSTAR constraints from Chandra and XMM-Newton. Assuming the NuSTAR-detected type 2 quasars are representative of other Compton-thick candidates, we make a correction to the NH distribution for optically selected type 2 quasars as measured by Chandra and XMM-Newton for 39 objects. With this approach, we predict a Compton-thick fraction of {f}{CT}={36}-12+14 %, although higher fractions (up to 76%) are possible if indirect absorption diagnostics are assumed to be reliable.

  6. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium: The Chandra Grating Spectra of XTE J1817-330

    NASA Technical Reports Server (NTRS)

    Gatuzz, E.; Garcia, J.; Menodza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra towards the X-ray low-mass binary XTE J1817-330. The 11-25 A broadband is described with a simple absorption model that takes into account the pileup effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 A) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain: a column density of N(sub H) = 1.38 +/- 0.01 x 10(exp 21) cm(exp -2); ionization parameter of log xi = .2.70 +/- 0.023; oxygen abundance of A(sub O) = 0.689(exp +0.015./-0.010); and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval (1998), a rescaling with the revision by Asplund et al. (2009) yields A(sub O) = 0.952(exp +0.020/-0.013, a value close to solar that reinforces the new standard. We identify several atomic absorption lines.K-alpha , K-beta, and K-gamma in O I and O II; and K-alpha in O III, O VI, and O VII--last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated to ISM cold absorption.

  7. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium:. [The Chandra Grating Spectra of XTE J1817-330

    NASA Technical Reports Server (NTRS)

    Gatuzz, E.; Garcia, J.; Mendoza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 Angstrom broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 Angstroms) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the xstar code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N(sub H) = 1.38 +/- 0.01 × 10(exp 21) cm(exp -2); an ionization parameter of log xi = -2.70 +/- 0.023; an oxygen abundance of A(sub O) = 0.689 (+0.015/-0.010); and ionization fractions of O(sub I)/O = 0.911, O(sub II)/O = 0.077, and O(sub III)/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse & Sauval, a rescaling with the revision by Asplund et al. yields A(sub O) = 0.952(+0.020/-0.013), a value close to solar that reinforces the new standard.We identify several atomic absorption lines-K(alpha), K(beta), and K(gamma) in O(sub I) and O(sub II) and K(alpha) in O(sub III), O(sub VI), and O(sub VII)-the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated with ISM cold absorption.

  8. An Archival Chandra and XMM-Newton Survey of Type 2 Quasars

    NASA Technical Reports Server (NTRS)

    Jia, Jianjun; Ptak, Andrew Francis; Heckman, Timothy; Zakamska, Nadia L.

    2013-01-01

    In order to investigate obscuration in high-luminosity type 2 active galactic nuclei (AGNs), we analyzed Chandra and XMM-Newton archival observations for 71 type 2 quasars detected at 0.05 < z < 0.73, which were selected based on their [O III] lambda5007 emission lines. For 54 objects with good spectral fits, the observed hard X-ray luminosity ranges from 2 × 10(exp 41) to 5.3 × 10(exp 44) erg s(exp -1), with a median of 1.1 × 10(exp 43) erg s(exp -1). We find that the means of the column density and photon index of our sample are log N(sub H) = 22.9 cm(exp -2) and gamma = 1.87, respectively. From simulations using a more physically realistic model, we find that the absorbing column density estimates based on simple power-law models significantly underestimate the actual absorption in approximately half of the sources. Eleven sources show a prominent Fe K alpha emission line (EW>100 eV in the rest frame) and we detect this line in the other sources through a joint fit (spectral stacking). The correlation between the Fe K alpha and [O III] fluxes and the inverse correlation of the equivalent width of the Fe Ka line with the ratio of hard X-ray and [O III] fluxes is consistent with previous results for lower luminosity Seyfert 2 galaxies. We conclude that obscuration is the cause of the weak hard X-ray emission rather than intrinsically low X-ray luminosities. We find that about half of the population of optically selected type 2 quasars are likely to be Compton thick. We also find no evidence that the amount of X-ray obscuration depends on the AGN luminosity (over a range of more than three orders of magnitude in luminosity).

  9. Density Gradients in Chemistry Teaching

    ERIC Educational Resources Information Center

    Miller, P. J.

    1972-01-01

    Outlines experiments in which a density gradient might be used to advantage. A density gradient consists of a column of liquid, the composition and density of which varies along its length. The procedure can be used in analysis of solutions and mixtures and in density measures of solids. (Author/TS)

  10. Visualization and simulation of density driven convection in porous media using magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Montague, James A.; Pinder, George F.; Gonyea, Jay V.; Hipko, Scott; Watts, Richard

    2018-05-01

    Magnetic resonance imaging is used to observe solute transport in a 40 cm long, 26 cm diameter sand column that contained a central core of low permeability silica surrounded by higher permeability well-sorted sand. Low concentrations (2.9 g/L) of Magnevist, a gadolinium based contrast agent, produce density driven convection within the column when it starts in an unstable state. The unstable state, for this experiment, exists when higher density contrast agent is present above the lower density water. We implement a numerical model in OpenFOAM to reproduce the observed fluid flow and transport from a density difference of 0.3%. The experimental results demonstrate the usefulness of magnetic resonance imaging in observing three-dimensional gravity-driven convective-dispersive transport behaviors in medium scale experiments.

  11. Properties of Two-Variety Natural Luffa Sponge Columns as Potential Mattress Filling Materials

    PubMed Central

    Chen, Yuxia; Zhang, Kaiting; Yuan, Fangcheng; Zhang, Tingting; Weng, Beibei; Wu, Shanshan; Huang, Aiyue; Su, Na; Guo, Yong

    2018-01-01

    Luffa sponge (LS) is a resourceful material with fibro-vascular reticulated structure and extremely high porosity, which make it a potential candidate for manufacturing light mattress. In this study, two types of LS columns, namely high-density (HD) and low-density (LD) columns, were investigated as materials for filling the mattress. The results showed that the compressive strength of HD LS columns was significantly greater than that of LD LS columns. However, the densification strains of the two types of LS column were both in the range of 0.6 to 0.7. Besides, HD LS columns separately pressed to the smooth plateau region and the initial densification region exhibited a partial recovery of instant height when they were unloaded, and then both of them showed no more than 4.2% of height recovery after being allowed to rest at a constant temperature and humidity for 24 h. In contrast, when LD LS columns were compressed to the smooth plateau region, the height recovery was less than 1.62% compared to when they were pressed to the initial densification region, and that was more than 15.62%. Similar to other plant fibers used as mattress fillers, the two types of LS columns also showed good water absorption capacity—both of them could absorb water from as much as 2.07 to 3.45 times their own weight. At the same time, the two types of LS columns also showed good water desorption. The water desorption ratio of HD and LD LS columns separately reached 76.86 and 91.44%, respectively, after being let rest at a constant temperature and humidity for 13 h. PMID:29614744

  12. Mitigation of Liquefaction in Sandy Soils Using Stone Columns

    NASA Astrophysics Data System (ADS)

    Selcuk, Levent; Kayabalı, Kamil

    2010-05-01

    Soil liquefaction is one of the leading causes of earthquake-induced damage to structures. Soil improvement methods provide effective solutions to reduce the risk of soil liquefaction. Thus, soil ground treatments are applied using various techniques. However, except for a few ground treatment methods, they generally require a high cost and a lot of time. Especially in order to prevent the risk of soil liquefaction, stone columns conctructed by vibro-systems (vibro-compaction, vibro-replacement) are one of the traditional geotechnical methods. The construction of stone columns not only enhances the ability of clean sand to drain excess pore water during an earthquake, but also increases the relative density of the soil. Thus, this application prevents the development of the excess pore water pressure in sand during earthquakes and keeps the pore pressure ratio below a certain value. This paper presents the stone column methods used against soil liquefaction in detail. At this stage, (a) the performances of the stone columns were investigated in different spacing and diameters of columns during past earthquakes, (b) recent studies about design and field applications of stone columns were presented, and (c) a new design method considering the relative density of soil and the capacity of drenage of columns were explained in sandy soil. Furthermore, with this new method, earthquake performances of the stone columns constructed at different areas were investigated before the 1989 Loma Prieta and the 1994 Northbridge earthquakes, as case histories of field applications, and design charts were compiled for suitable spacing and diameters of stone columns with consideration to the different sandy soil parameters and earhquake conditions. Key Words: Soil improvement, stone column, excess pore water pressure

  13. Shadows and Dust: Mid-Infrared Extinction Mapping of the Initial Conditions of Massive Star and Star Cluster Formation

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan

    We describe a research plan to develop and extend the mid-infrared (MIR) extinction mapping technique presented by Butler & Tan (2009), who studied Infrared Dark Clouds (IRDCs) using Spitzer Space Telescope Infrared Array Camera (IRAC) 8 micron images. This method has the ability to probe the detailed spatial structure of very high column density regions, i.e. the gas clouds thought to represent the initial conditions for massive star and star cluster formation. We will analyze the data Spitzer obtained at other wavelengths, i.e. the IRAC bands at 3.6, 4.5 and 5.8 microns, and the Multiband Imaging Photometer (MIPS) bands, especially at 24 microns. This will allow us to measure the dust extinction law across the MIR and search for evidence of dust grain evolution, e.g. grain growth and ice mantle formation, as a function of gas density and column density. We will also study the detailed structure of the extinction features, including individual cores that may form single stars or close binaries, especially focusing on those cores that may form massive stars. By studying independent dark cores in a given IRDC, we will be able to test if they have a common minimum observed intensity, which we will then attribute to the foreground. This is a new method that should allow us to more accurately map distant, high column density IRDCs, probing more extreme regimes of star formation. We will combine MIR extinction mapping, which works best at high column densities, with near- IR mapping based on 2MASS images of star fields, which is most useful at lower columns that probe the extended giant molecular cloud structure. This information is crucial to help understand the formation process of IRDCs, which may be the rate limiting step for global galactic star formation rates. We will use our new extinction mapping methods to analyze large samples of IRDCs and thus search the Galaxy for the most extreme examples of high column density cores and assess the global star formation efficiency in dense gas. We will estimate the ability of future NASA missions, such as JWST, to carry out MIR extinction mapping science. We will develop the results of this research into an E/PO presentation to be included in the various public outreach events organized and courses taught by the PI.

  14. Cosmic distribution of highly ionized metals and their physical conditions in the EAGLE simulations

    NASA Astrophysics Data System (ADS)

    Rahmati, Alireza; Schaye, Joop; Crain, Robert A.; Oppenheimer, Benjamin D.; Schaller, Matthieu; Theuns, Tom

    2016-06-01

    We study the distribution and evolution of highly ionized intergalactic metals in the Evolution and Assembly of Galaxies and their Environment (EAGLE) cosmological, hydrodynamical simulations. EAGLE has been shown to reproduce a wide range of galaxy properties while its subgrid feedback was calibrated without considering gas properties. We compare the predictions for the column density distribution functions (CDDFs) and cosmic densities of Si IV, C IV, N V, O VI and Ne VIII absorbers with observations at redshift z = 0 to ˜6 and find reasonable agreement, although there are some differences. We show that the typical physical densities of the absorbing gas increase with column density and redshift, but decrease with the ionization energy of the absorbing ion. The typical metallicity increases with both column density and time. The fraction of collisionally ionized metal absorbers increases with time and ionization energy. While our results show little sensitivity to the presence or absence of AGN feedback, increasing/decreasing the efficiency of stellar feedback by a factor of 2 substantially decreases/increases the CDDFs and the cosmic densities of the metal ions. We show that the impact of the efficiency of stellar feedback on the CDDFs and cosmic densities is largely due to its effect on the metal production rate. However, the temperatures of the metal absorbers, particularly those of strong O VI, are directly sensitive to the strength of the feedback.

  15. An analysis of OH excited state absorption lines in DR 21 and K3-50

    NASA Astrophysics Data System (ADS)

    Jones, K. N.; Doel, R. C.; Field, D.; Gray, M. D.; Walker, R. N. F.

    1992-10-01

    We present an analysis of the OH absorption line zones observed toward the compact H II regions DR 21 and K3-50. Using as parameters the kinetic and dust temperatures, the H2 number density and the ratio of OH-H2 number densities to the velocity gradient, the model quantitatively reproduces the absorption line data for the six main line transitions in 2 Pi3/2 J = 5/2, 7/2, and 9/2. Observed upper limits for the absorption or emission in the satellite lines of 2 Pi3/2 J = 5/2 are crucial in constraining the range of derived parameters. Physical conditions derived for DR 21 show that the kinetic temperature centers around 140 K, the H2 number density around 10 exp 7/cu cm, and that the OH column density in the excited state absorption zone lies between 1 x 10 exp 15/sq cm and 2 x 10 exp 15/sq cm. Including contributions from a J = 3/2 absorption zone, the total OH column density is more than a factor of 2 lower than estimates based upon LTE (Walmsley et al., 1986). The OH absorption zone in K3-50 tends toward higher density and displays a larger column density, while the kinetic temperature is similar. For both sources, the dust temperature is found to be significantly lower than the kinetic temperature.

  16. Interactions among forest age, valley and channel morphology, and log jams regulate animal production in mountain streams

    NASA Astrophysics Data System (ADS)

    Walters, D. M.; Venarsky, M. P.; Hall, R. O., Jr.; Herdrich, A.; Livers, B.; Winkelman, D.; Wohl, E.

    2014-12-01

    Forest age and local valley morphometry strongly influence the form and function of mountain streams in Colorado. Streams in valleys with old growth forest (>350 years) have extensive log jam complexes that create multi-thread channel reaches with extensive pool habitat and large depositional areas. Streams in younger unmanaged forests (e.g., 120 years old) and intensively managed forests have much fewer log jams and lower wood loads. These are single-thread streams dominated by riffles and with little depositional habitat. We hypothesized that log jam streams would retain more organic matter and have higher metabolism, leading to greater production of stream macroinvertebrates and trout. Log jam reaches should also have greater emergence of adult aquatic insects, and consequently have higher densities of riparian spiders taking advantage of these prey. Surficial organic matter was 3-fold higher in old-growth streams, and these streams had much higher ecosystem respiration. Insect production (g m2 y-1) was similar among forest types, but fish density was four times higher in old-growth streams with copious log jams. However, at the valley scale, insect production (g m-1 valley-1) and trout density (number m-1 valley-1) was 2-fold and 10-fold higher, respectively, in old growth streams. This finding is because multi-thread reaches created by log jams have much greater stream area and stream length per meter of valley than single-thread channels. The more limited response of macroinvertebrates may be related to fish predation. Trout in old growth streams had similar growth rates and higher fat content than fish in other streams in spite of occurring at higher densities and higher elevation/colder temperatures. This suggests that the positive fish effect observed in old growth streams is related to greater availability of invertebrate prey, which is consistent with our original hypothesis. Preliminary analyses suggest that spider densities do not respond strongly to differences in stream morphology, but rather to changes in elevation and associated air temperatures. These results demonstrate strong indirect effects of forest age and valley morphometry on organic matter storage and animal secondary production in streams that is mediated by direct effects associated with the presence or absence of logjams.

  17. Characterizing the plasma of the Rotating Wall Machine

    NASA Astrophysics Data System (ADS)

    Hannum, David A.

    The Rotating Wall Machine (RoWM) is a line-tied linear screw pinch built to study current-driven external kink modes. The plasma column is formed by an array of seven electrostatic washer guns which can also be biased to drive plasma current. The array allows independent control over the electron density ne and current density Jz profiles of the column. Internal measurements of the plasma have been made with singletip Langmuir and magnetic induction ("B-dot") probes for a range of bias currents (Ib = 0, 300, 500 A/gun). Streams from the individual guns are seen to merge at a distance of z ≈ 36 cm from the guns; the exact distance depends on the value of Ib. The density of the column is directly proportional to the Ohmic dissipation power, but the temperature stays at a low, uniform value (Te ≈ 3.5 eV) for each bias level. Electron densities are on the order of ne ˜10 20 m-3. The electron density expands radially (across the Bz guide field) as the plasma moves along the column, though the current density Jz mainly stays parallel to the field lines. The singletip Langmuir probe diagnostic is difficult to analyze for Ib = 500 A/gun plasmas and fails as Ib is raised beyond this level. Spectrographic analysis of the Halpha line indicates that the hydrogen plasmas are nearly fully ionized at each bias level. Azimuthal E x B rotation is axially and radially sheared; rotation slows as the plasma reaches the anode. Perpendicular diffusivity is consistent with the classical value, D⊥ ≈ 5 m2/sec, while parallel resistivity is seen to be twice the classical Spitzer value, 2 x 10-4 O m.

  18. Massive Warm/Hot Galaxy Coronae as Probed by UV/X-Ray Oxygen Absorption and Emission. I. Basic Model

    NASA Astrophysics Data System (ADS)

    Faerman, Yakov; Sternberg, Amiel; McKee, Christopher F.

    2017-01-01

    We construct an analytic phenomenological model for extended warm/hot gaseous coronae of L* galaxies. We consider UV O VI Cosmic Origins Spectrograph (COS)-Halos absorption line data in combination with Milky Way (MW) X-ray O vii and O viii absorption and emission. We fit these data with a single model representing the COS-Halos galaxies and a Galactic corona. Our model is multi-phased, with hot and warm gas components, each with a (turbulent) log-normal distribution of temperatures and densities. The hot gas, traced by the X-ray absorption and emission, is in hydrostatic equilibrium in an MW gravitational potential. The median temperature of the hot gas is 1.5× {10}6 K and the mean hydrogen density is ˜ 5× {10}-5 {{cm}}-3. The warm component as traced by the O VI, is gas that has cooled out of the high density tail of the hot component. The total warm/hot gas mass is high and is 1.2× {10}11 {M}⊙ . The gas metallicity we require to reproduce the oxygen ion column densities is 0.5 solar. The warm O VI component has a short cooling time (˜ 2× {10}8 years), as hinted by observations. The hot component, however, is ˜ 80 % of the total gas mass and is relatively long-lived, with {t}{cool}˜ 7× {10}9 years. Our model supports suggestions that hot galactic coronae can contain significant amounts of gas. These reservoirs may enable galaxies to continue forming stars steadily for long periods of time and account for “missing baryons” in galaxies in the local universe.

  19. Interstellar Deuterium, Nitrogen and Oxygen Towards HZ43A: Results from the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission

    NASA Technical Reports Server (NTRS)

    Kruk, J. W.; Howk, J. C.; Andre, M.; Moos, H. W.; Oegerle, William R.; Oliveira, C.; Sembach, K. R.; Chayer, P.; Linsky, J. L.; Wood, B. E.

    2002-01-01

    We present an analysis of interstellar absorption along the line of sight to the nearby white dwarf star HZ43A. The distance to this star is 68+/-13 pc, and the line of sight extends toward the north Galactic pole. Column densities of O(I), N(I), and N(II) were derived from spectra obtained by the Far Ultraviolet Spectroscopic Explorer (FUSE), the column density of D(I) was derived from a combination of our FUSE spectra and an archival HST GARDENS spectrum, and the column density of H(I) was derived from a combination of the GARDENS spectrum and values derived from EUVE data obtained from the literature. We find the following abundance ratios (with 2 sigma uncertainties): D(I)/H(I)=(1.66+/-0.28)x10(exp -5), O(I)/H(I)=(3.63+/-0.84)x10(exp -4), and N(I)/H(I)=(3.80+/-0.74)x10(exp -5). The N(II) column density was slightly greater than that of N(I), indicating that ionization corrections are important when deriving nitrogen abundances. Other interstellar species detected along the line of sight were C(II), C(III), O(VI), Si(II), Ar(I), Mg(II) and Fe(II); an upper limit was determined for N(III). No elements other than H(I) were detected in the stellar photosphere.

  20. Probing the local environment of the supernova remnant HESS J1731-347 with CO and CS observations

    NASA Astrophysics Data System (ADS)

    Maxted, N.; Burton, M.; Braiding, C.; Rowell, G.; Sano, H.; Voisin, F.; Capasso, M.; Pühlhofer, G.; Fukui, Y.

    2018-02-01

    The shell-type supernova remnant HESS J1731 - 347 emits TeV gamma-rays, and is a key object for the study of the cosmic ray acceleration potential of supernova remnants. We use 0.5-1 arcmin Mopra CO/CS(1-0) data in conjunction with H I data to calculate column densities towards the HESS J1731 - 347 region. We trace gas within at least four Galactic arms, typically tracing total (atomic+molecular) line-of-sight H column densities of 2-3× 1022 cm-2. Assuming standard X-factor values and that most of the H I/CO emission seen towards HESS J1731 - 347 is on the near-side of the Galaxy, X-ray absorption column densities are consistent with H I+CO-derived column densities foreground to, but not beyond, the Scutum-Crux Galactic arm, suggesting a kinematic distance of ˜3.2 kpc for HESS J1731 - 347. At this kinematic distance, we also find dense, infrared-dark gas traced by CS(1-0) emission coincident with the north of HESS J1731 - 347, the nearby H II region G353.43-0.37 and the nearby unidentified gamma-ray source HESS J1729 - 345. This dense gas lends weight to the idea that HESS J1729 - 345 and HESS J1731 - 347 are connected, perhaps via escaping cosmic-rays.

  1. Intra-pixel variability in satellite tropospheric NO2 column densities derived from simultaneous space-borne and airborne observations over the South African Highveld

    NASA Astrophysics Data System (ADS)

    Broccardo, Stephen; Heue, Klaus-Peter; Walter, David; Meyer, Christian; Kokhanovsky, Alexander; van der A, Ronald; Piketh, Stuart; Langerman, Kristy; Platt, Ulrich

    2018-05-01

    Aircraft measurements of NO2 using an imaging differential optical absorption spectrometer (iDOAS) instrument over the South African Highveld region in August 2007 are presented and compared to satellite measurements from OMI and SCIAMACHY. In situ aerosol and trace-gas vertical profile measurements, along with aerosol optical thickness and single-scattering albedo measurements from the Aerosol Robotic Network (AERONET), are used to devise scenarios for a radiative transfer modelling sensitivity study. Uncertainty in the air-mass factor due to variations in the aerosol and NO2 profile shape is constrained and used to calculate vertical column densities (VCDs), which are compared to co-located satellite measurements. The lower spatial resolution of the satellites cannot resolve the detailed plume structures revealed in the aircraft measurements. The airborne DOAS in general measured steeper horizontal gradients and higher peak NO2 vertical column density. Aircraft measurements close to major sources, spatially averaged to the satellite resolution, indicate NO2 column densities more than twice those measured by the satellite. The agreement between the high-resolution aircraft instrument and the satellite instrument improves with distance from the source, this is attributed to horizontal and vertical dispersion of NO2 in the boundary layer. Despite the low spatial resolution, satellite images reveal point sources and plumes that retain their structure for several hundred kilometres downwind.

  2. Retrieval of tropospheric HCHO in El Salvador using ground based DOAS

    NASA Astrophysics Data System (ADS)

    Abarca, W.; Gamez, K.; Rudamas, C.

    2017-12-01

    Formaldehyde (HCHO) is the most abundant carbonyl in the atmosphere, being an intermediate product in the oxidation of most volatile organic compounds (VOCs). HCHO is carcinogenic, and highly water soluble [1]. HCHO can originate from biomass burning and fossil fuel combustion and has been observed from satellite and ground-based sensors by using the Differential Optical Absorption Spectroscopy (DOAS) technique [2].DOAS products can be used for air quality monitoring, validation of chemical transport models, validation of satellite tropospheric column density retrievals, among others [3]. In this study, we report on column density levels of HCHO measured by ground based Multi-Axis -DOAS in different locations of El Salvador in March, 2015. We have not observed large differences of the HCHO column density values at different viewing directions. This result points out a reasonably polluted and hazy atmosphere in the measuring sites, as reported by other authors [4]. Average values ranging from 1016 to 1017 molecules / cm2 has been obtained. The contribution of vehicular traffic and biomass burning to the column density levels in these sites of El Salvador will be discussed. [1] A. R. Garcia et al., Atmos. Chem. Phys. 6, 4545 (2006) [2] E. Peters et al., Atmos. Chem. Phys. 12, 11179 (2012) [3] T. Vlemmix, et al. Atmos. Meas. Tech., 8, 941-963, 2015 [4] A. Heckel et al., Atmos. Chem. Phys. 5, (2005)

  3. Hot and cold gas toward young stellar objects

    NASA Technical Reports Server (NTRS)

    Mitchell, George F.; Maillard, Jean-Pierre; Allen, Mark; Beer, Reinhard; Belcourt, Kenneth

    1990-01-01

    High-resolution M band spectra are presented for the seven embedded IR sources W3 IRS 5, S140 IRS1, NGC 7538 IRS 1, NGC 7538 IRS 9, GL 2136, LkH-alpha 101, and MWC 349A, and the data are combined with previously published work for W33A and GL 2591. Cold CO is seen toward all nine sources, with temperatures from 11 K to 66 K. Column densities of cold CO are presented. Hot gas is seen toward eight of the nine objects with temperatures from 120 K to 1010 K. New lower limits to the hot gas density are obtained. The hot gas toward GL 2591, GL 2136, W3 IRS 5, and S140 IRS 1 is probably very near the central source and heated via gas-grain collisions. The optical depth in the silicate feature is strongly correlated with the (C-13)O column density, confirming that silicate optical depth is a useful measure of gas column density. The ratio of solid-to-gaseous CO is obtained for seven sources.

  4. Characteristic Structure of Star-forming Clouds

    NASA Astrophysics Data System (ADS)

    Myers, Philip C.

    2015-06-01

    This paper presents a new method to diagnose the star-forming potential of a molecular cloud region from the probability density function of its column density (N-pdf). This method provides expressions for the column density and mass profiles of a symmetric filament having the same N-pdf as a filamentary region. The central concentration of this characteristic filament can distinguish regions and can quantify their fertility for star formation. Profiles are calculated for N-pdfs which are pure lognormal, pure power law, or a combination. In relation to models of singular polytropic cylinders, characteristic filaments can be unbound, bound, or collapsing depending on their central concentration. Such filamentary models of the dynamical state of N-pdf gas are more relevant to star-forming regions than are spherical collapse models. The star formation fertility of a bound or collapsing filament is quantified by its mean mass accretion rate when in radial free fall. For a given mass per length, the fertility increases with the filament mean column density and with its initial concentration. In selected regions the fertility of their characteristic filaments increases with the level of star formation.

  5. Ionization compression impact on dense gas distribution and star formation. Probability density functions around H II regions as seen by Herschel

    NASA Astrophysics Data System (ADS)

    Tremblin, P.; Schneider, N.; Minier, V.; Didelon, P.; Hill, T.; Anderson, L. D.; Motte, F.; Zavagno, A.; André, Ph.; Arzoumanian, D.; Audit, E.; Benedettini, M.; Bontemps, S.; Csengeri, T.; Di Francesco, J.; Giannini, T.; Hennemann, M.; Nguyen Luong, Q.; Marston, A. P.; Peretto, N.; Rivera-Ingraham, A.; Russeil, D.; Rygl, K. L. J.; Spinoglio, L.; White, G. J.

    2014-04-01

    Aims: Ionization feedback should impact the probability distribution function (PDF) of the column density of cold dust around the ionized gas. We aim to quantify this effect and discuss its potential link to the core and initial mass function (CMF/IMF). Methods: We used Herschel column density maps of several regions observed within the HOBYS key program in a systematic way: M 16, the Rosette and Vela C molecular clouds, and the RCW 120 H ii region. We computed the PDFs in concentric disks around the main ionizing sources, determined their properties, and discuss the effect of ionization pressure on the distribution of the column density. Results: We fitted the column density PDFs of all clouds with two lognormal distributions, since they present a "double-peak" or an enlarged shape in the PDF. Our interpretation is that the lowest part of the column density distribution describes the turbulent molecular gas, while the second peak corresponds to a compression zone induced by the expansion of the ionized gas into the turbulent molecular cloud. Such a double peak is not visible for all clouds associated with ionization fronts, but it depends on the relative importance of ionization pressure and turbulent ram pressure. A power-law tail is present for higher column densities, which are generally ascribed to the effect of gravity. The condensations at the edge of the ionized gas have a steep compressed radial profile, sometimes recognizable in the flattening of the power-law tail. This could lead to an unambiguous criterion that is able to disentangle triggered star formation from pre-existing star formation. Conclusions: In the context of the gravo-turbulent scenario for the origin of the CMF/IMF, the double-peaked or enlarged shape of the PDF may affect the formation of objects at both the low-mass and the high-mass ends of the CMF/IMF. In particular, a broader PDF is required by the gravo-turbulent scenario to fit the IMF properly with a reasonable initial Mach number for the molecular cloud. Since other physical processes (e.g., the equation of state and the variations among the core properties) have already been said to broaden the PDF, the relative importance of the different effects remains an open question. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  6. Logging methods and peeling of Aspen

    Treesearch

    T. Schantz-Hansen

    1948-01-01

    The logging of forest products is influenced by many factors, including the size of the trees, density of the stand, the soundness of the trees, size of the area logged, topography and soil, weather conditions, the degree of utilization, the skill of the logger and the equipment used, the distance from market, etc. Each of these factors influences not only the method...

  7. Cosmological tests of the Hoyle-Narlikar conformal gravity

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Narlikar, J. V.

    1980-01-01

    For the first time the Hoyle-Narlikar theory with creation of matter and a variable gravitational constant G, is subjected to the following cosmological tests: (1) the magnitude versus z relation, (2) the N(m) versus m relation for quasars, (3) the metric angular diameters versus z relation, (4) the isophotal angles versus z relation, (5) the log N-log S radio source count, and finally (6) the 3 K radiation. It is shown that the theory passes all these tests just as well as the standard cosmology, with the additional advantage that the geometry of the universe is uniquely determined, with a curvature parameter equal to zero. It is also interesting to note that the variability of G affects the log N-log S curve in a way similar to the density evolution introduced in standard cosmologies. The agreement with the data is therefore achieved without recourse to an ad hoc density evolution.

  8. In-situ petrophysical properties of hotspot volcanoes. Results from ODP Leg 197, Detroit Seamount and HSDP II borehole, Hawaii

    NASA Astrophysics Data System (ADS)

    Kock, I.; Pechnig, R.; Buysch, A.; Clauser, C.

    2003-04-01

    During ODP Leg 197 an extensive logging program was run on Site 1203, Detroit Seamount. This seamount is part of the Emperor seamount chain, a continuation of the Hawaiian volcanic chain. Standard ODP/LDEO logging tool strings were used to measure porosity, density, resistivity, p- and s-wave velocities and gamma ray activity. The FMS-tool yielded detailed high resolution resistivity images of the borehole wall. By interpretation and statistical analysis of the logging parameters a petrophysical classification of the drilled rock content could be derived. The pillow lava recovered in the cores exhibits low porosity, low resistivity and high density. This indicates no or very little vesicles in the non-fractured rock unit. Compared to the pillow basalts, subaerial basalts show increasing porosity, gamma ray and potassium content and decreasing density, resistivity and velocity. A basalt with no or little vesicles and a basalt with average or many vesicles can clearly be distinguished. The volcaniclastics show lower resistivity, lower sonic velocities, higher porosities and lower densities than the basalts. Three different rock types can be distinguished within the volcaniclastics: Tuffs, resedimented tephra and breccia. The tuff shows medium porosity and density, low gamma ray and potassium content. The log responses from the resedimented tephra suggest that the tephra is more easily altered than the tuff. The log responses from the breccia lie between the tuff and tephra log responses, but the breccia can clearly be identified in the FMS borehole images. A similar rock content was found in the Hawaiian Scientific Drilling Project borehole. Gamma ray activity, electrical resistivity and sonic velocity were measured down to 2700 mbsl.. Compared to the 72-76 Ma old Detroit seamount basalts, the HSDP subaerial and submarine lava flows show a significant lower gamma ray activity, while sonic velocity and electrical resistivity are comparable. Deviations between the gamma ray activity might be due to the different primary compositions of the melt or to long lasting low temperature alteration. Investigations on this topic are in progress.

  9. Computer Cache. Online Recess--Web Games for Play and Fun

    ERIC Educational Resources Information Center

    Byerly, Greg; Brodie, Carolyn S.

    2005-01-01

    There are many age-appropriate, free, and easy-to-use online games available on the Web. In this column the authors describe some of their favorites for use with and by elementary students. They have not included games that require children to log on and/or register with their names or play against someone else interactively over the Web. None of…

  10. Post-wildfire logging hinders regeneration and increases fire risk.

    PubMed

    Donato, D C; Fontaine, J B; Campbell, J L; Robinson, W D; Kauffman, J B; Law, B E

    2006-01-20

    We present data from a study of early conifer regeneration and fuel loads after the 2002 Biscuit Fire, Oregon, USA, with and without postfire logging. Natural conifer regeneration was abundant after the high-severity fire. Postfire logging reduced median regeneration density by 71%, significantly increased downed woody fuels, and thus increased short-term fire risk. Additional reduction of fuels is necessary for effective mitigation of fire risk. Postfire logging can be counterproductive to the goals of forest regeneration and fuel reduction.

  11. Water quality improvement of treated wastewater by intermittent soil percolation.

    PubMed

    Castillo, G; Mena, M P; Dibarrart, F; Honeyman, G

    2001-01-01

    Our research aimed to evaluate intermittent soil infiltration of treated sewage for reuse in the north of Chile. Aerated lagoon effluent was infiltrated in columns packed with native soils (sandy-lime, lime-gravel and limey-sand). Columns were operated for more than a year under different cycles of filling and drying, depths and load pressures depending on soil characteristics. The efficiency of the system was determined through influent-effluent microbiological indicators level (faecal coliforms, E. coli, Salmonella spp, MS2 phage, and protozoan cysts), physicochemical characterisation (TOC, COD, BOD, nitrogen), and hydraulic flow measurement. Results showed: (a) high reduction of enteric bacteria (5-7 log10), some inactivation of phage (2-4 log10) and complete removal of intestinal cyst; (b) stable removal of organic matter (80-90% reduction of TOC, COD, BOD); and (c) partial ammonia reduction through adsorption and nitrification with denitrification mainly occurring in sandy soil. Preliminary data from pilot plant working in the field showed better results that those obtained in the laboratory especially removal of microbiological indicators. Microbiological quality of effluent met Class A regulations for agricultural reuse (WHO, 1989) and the system looks like an attractive alternative to cope with water shortage in the region.

  12. 40 CFR Table Mm-2 to Subpart Mm of... - Default Factors for Biomass-Based Fuels and Biomass

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fuels and Biomass MM Table MM-2 to Subpart MM of Part 98 Protection of Environment ENVIRONMENTAL... Biomass-Based Fuels and Biomass Biomass-based fuel and biomass Column A:Density (metric tons/bbl) Column B: Carbon share(% of mass) Column C:Emission factor (metric tons CO2/bbl) Ethanol (100%) 0.1267 52.14 0.2422...

  13. 40 CFR Table Mm-2 to Subpart Mm of... - Default Factors for Biomass-Based Fuels and Biomass

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fuels and Biomass MM Table MM-2 to Subpart MM of Part 98 Protection of Environment ENVIRONMENTAL... Biomass-Based Fuels and Biomass Biomass-based fuel and biomass Column A:Density (metric tons/bbl) Column B: Carbon share(% of mass) Column C:Emission factor (metric tons CO2/bbl) Ethanol (100%) 0.1267 52.14 0.2422...

  14. 40 CFR Table Mm-2 to Subpart Mm of... - Default Factors for Biomass-Based Fuels and Biomass

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fuels and Biomass MM Table MM-2 to Subpart MM of Part 98 Protection of Environment ENVIRONMENTAL... Biomass-Based Fuels and Biomass Biomass-based fuel and biomass Column A:Density (metric tons/bbl) Column B: Carbon share(% of mass) Column C:Emission factor (metric tons CO2/bbl) Ethanol (100%) 0.1267 52.14 0.2422...

  15. 40 CFR Table Mm-2 to Subpart Mm of... - Default Factors for Biomass-Based Fuels and Biomass

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fuels and Biomass MM Table MM-2 to Subpart MM of Part 98 Protection of Environment ENVIRONMENTAL... Biomass-Based Fuels and Biomass Biomass-based fuel and biomass Column A:Density (metric tons/bbl) Column B: Carbon share(% of mass) Column C:Emission factor (metric tons CO2/bbl) Ethanol (100%) 0.1267 52.14 0.2422...

  16. Abundances of Deuterium, Oxygen and Nitrogen in the Local Interstellar Medium: Overview of First Results from the Far Ultraviolet Spectroscopic Explorer Mission

    NASA Technical Reports Server (NTRS)

    Moos, H. W.; Sembach, K. R.; Vidal-Madjar, A.; York, D. G.; Friedman, S. D.; Hebrard, G.; Kruk, J. W.; Lehner, N.; Lemoine, M.; Sonneborn, G.; hide

    2002-01-01

    Observations obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) have been used to determine the column densities of D I, O I, and N I along seven sight lines that probe the local interstellar medium (LISM) at distances from 37 pc to 179 pc. Five of the sight lines are within the Local Bubble and two penetrate the surrounding H I wall. Reliable values of N(H I) were determined for five of the sight lines from HST data, IUE data, and published EUVE measurements. The weighted mean of DI/H I for these five sight lines is (1.52 +/- 0.08) x l0(exp -5)(1 sigma uncertainty in the mean). It is likely that the D I/H I ratio in the Local Bubble has a single value. The D I/O I ratio for the five sight lines within the Local Bubble is (3.76 +/- 0.20) x 10(esp -2). It is likely that O I column densities can serve as a proxy for H I in the Local Bubble. The weighted mean for O I/ H I for the seven FUSE sight lines is (3.03 +/- 0.21) x 10(esp -4), comparable to the weighted mean (3.43 +/- 0.15) x 10(exp -4) reported for 13 sight lines probing larger distances and higher column densities. The FUSE weighted mean of N I/ H I for five sight lines is half that reported by Meyer et al. for seven sight lines with larger distances and higher column densities. This result combined with the variability of O I/ N I (six sight lines) indicates that at the low column densities found in the LISM, nitrogen ionization balance is important. Thus, unlike O I, N I cannot be used as a proxy for H I or as a metallicity indicator in the LISM.

  17. Index map of cross sections through parts of the Appalachian basin (Kentucky, New York, Ohio, Pennsylvania, Tennessee, Virginia, West Virginia): Chapter E.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ryder, Robert T.; Trippi, Michael H.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The appendixes in chapters E.4.1 and E.4.2 include (1) Log ASCII Standard (LAS) files, which encode gamma-ray, neutron, density, and other logs in text files that can be used by most well-logging software programs; and (2) graphic well-log traces. In the appendix to chapter E.4.1, the well-log traces are accompanied by lithologic descriptions with formation tops.

  18. The abundance, distribution, and physical nature of highly ionized oxygen O VI, O VII, and O VIII in IllustrisTNG

    NASA Astrophysics Data System (ADS)

    Nelson, Dylan; Kauffmann, Guinevere; Pillepich, Annalisa; Genel, Shy; Springel, Volker; Pakmor, Rüdiger; Hernquist, Lars; Weinberger, Rainer; Torrey, Paul; Vogelsberger, Mark; Marinacci, Federico

    2018-06-01

    We explore the abundance, spatial distribution, and physical properties of the O VI, O VII, and O VIII ions of oxygen in circumgalactic and intergalactic media (the CGM, IGM, and WHIM). We use the TNG100 and TNG300 large volume cosmological magnetohydrodynamical simulations. Modelling the ionization states of simulated oxygen, we find good agreement with observations of the low-redshift O VI column density distribution function (CDDF), and present its evolution for all three ions from z = 0 to z = 4. Producing mock quasar absorption line spectral surveys, we show that the IllustrisTNG simulations are fully consistent with constraints on the O VI content of the CGM from COS-haloes and other low-redshift observations, producing columns as high as observed. We measure the total amount of mass and average column densities of each ion using hundreds of thousands of simulated galaxies spanning 10^{11} < {M}_halo/ M⊙<1015 corresponding to 109 < M⋆/ M⊙<1012 in stellar mass. Stacked radial profiles of O VI are computed in 3D number density and 2D projected column density, decomposing into 1-halo and 2-halo terms. Relating halo O VI to properties of the central galaxy, we find a correlation between the (g - r) colour of a galaxy and the total amount of O VI in its CGM. In comparison to the COS-Haloes finding, this leads to a dichotomy of columns around star-forming versus passive galaxies at fixed stellar (or halo) mass. We demonstrate that this correlation is a direct result of black hole feedback associated with quenching and represents a causal consequence of galactic-scale baryonic feedback impacting the physical state of the circumgalactic medium.

  19. Probing the chemical composition of the Z < 1 intergalactic medium with observations and simulations

    NASA Astrophysics Data System (ADS)

    Cooksey, Kathy L.

    2009-09-01

    Metals are produced in the stars in the galaxies, and a variety of feedback processes move metals from the sites of production into the intergalactic medium (IGM), enriching the material for future generations of stars. The signature of this process is etched in the recycled gas: its metallicity, elemental abundances, density, distribution, etc. The study of the low- redshift, z <, IGM is the study of the last eight-billion years of cosmic chemical evolution and all prior enrichment. In this thesis, I characterize the cosmic enrichment cycle with the use of observations and simulations. The gas is observed through quasar absorption- line spectroscopy. As the light of a distant quasar travels to us, intervening clouds of gas absorb the light at wavelengths characteristic, albeit redshifted, of the elements in the clouds. By identifying and modeling the elements associated with the absorption systems, I learn the ionic composition and density of the cosmic web (voids, filaments, and/or groups) along the line of sight. >From a detailed study of a single sightline, I observe a multi-phase IGM, with kinematically-distinct, hot and warm components ( T [approximate] 10 5.5 K and 10 4 K, respectively). By correlating the absorption systems with a complementary galaxy survey of the field around the background quasar, I find that the IGM systems arise in a variety of galactic environments. The metal- lines systems all have L > 0.1 L [low *] galaxies within a few hundred kiloparsecs, which suggests this is the distance to which galactic feedback processes typically disperse metals. I conduct a large, blind survey for triply-ionized carbon (C IV) absorption at z < 1 in the spectra of 49 low-redshift quasars and compare their propertie with those detected at z > 1. The mass density in C IV doublets with 13 < = log N (C +3 ) <= 15 at z < 1 has increased by a factor of 2.8 ± 0.7 over the error- weighted mean of the 1.5 < z < 5 measurements, where the mass density has not evolved significantly. The line density d[Special characters omitted.] /d X has not evolved as much, indicating that the average column density per doublet increases with decreasing redshift. In addition, I compare the observed properties of C IV absorbers with those predicted by cosmological hydrodynamic simulations with a variety of physical models (e.g., feedback, cosmology). I also use the results from the simulations that reproduce well the observations to understand better the physical conditions giving rise to the C IV absorbing gas. The observations and simulations indicate that the log N (C +3 ) > 13 C IV absorption systems predominately come from circum-galactic (or halo) gas.

  20. Visualization and simulation of density driven convection in porous media using magnetic resonance imaging.

    PubMed

    Montague, James A; Pinder, George F; Gonyea, Jay V; Hipko, Scott; Watts, Richard

    2018-05-01

    Magnetic resonance imaging is used to observe solute transport in a 40cm long, 26cm diameter sand column that contained a central core of low permeability silica surrounded by higher permeability well-sorted sand. Low concentrations (2.9g/L) of Magnevist, a gadolinium based contrast agent, produce density driven convection within the column when it starts in an unstable state. The unstable state, for this experiment, exists when higher density contrast agent is present above the lower density water. We implement a numerical model in OpenFOAM to reproduce the observed fluid flow and transport from a density difference of 0.3%. The experimental results demonstrate the usefulness of magnetic resonance imaging in observing three-dimensional gravity-driven convective-dispersive transport behaviors in medium scale experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Analysis of Mount St. Helens ash from optical photoelectric photometry

    NASA Technical Reports Server (NTRS)

    Cardelli, J. A.; Ackerman, T. P.

    1983-01-01

    The optical properties of suspended dust particles from the eruption of Mt. St. Helens on July 23, 1980 are investigated using photoelectric observations of standard stars obtained on the 0.76-m telescope at the University of Washington 48 hours after the eruption. Measurements were made with five broad-band filters centered at 3910, 5085, 5480, 6330, and 8050 A on stars of varying color and over a wide range of air masses. Anomalous extinction effects due to the volcanic ash were detected, and a significant change in the wavelength-dependent extinction parameter during the course of the observations was established by statistical analysis. Mean particle size (a) and column density (N) are estimated using the Mie theory, assuming a log-normal particle-size distribution: a = 0.18 micron throughout; N = 1.02 x 10 to the 9th/sq cm before 7:00 UT and 2.33 x 10 to the 9th/sq cm after 8:30 UT on July 25, 1980. The extinction is attributed to low-level, slowly migrating ash, possibly combined with products of gas-to-particle conversion and coagulation.

  2. Suspension of Drops of a Liquid in a Column of Water.

    ERIC Educational Resources Information Center

    Ahmad, Jamil

    1995-01-01

    Describes a demonstration which creates the illusion of violating Archimedes Principle. The procedure involves two liquids with identical densities and produces drops of one liquid suspended in the middle of a column of the second liquid. (DDR)

  3. Subsurface Rock Physical Properties by Downhole Loggings - Case Studies of Continental Deep Drilling in Kanto Distinct, Japan

    NASA Astrophysics Data System (ADS)

    Omura, K.

    2014-12-01

    In recent years, many examples of physical logging have been carried out in deep boreholes. The loggings are direct in-situ measurements of rock physical properties under the ground. They provide significant basic data for the geological, geophysical and geotechnical investigations, e.g., tectonic history, seismic wave propagation, and ground motion prediction. Since about 1980's, Natl. Res. Inst. for Earth Sci. and Disast. Prev. (NIED) dug deep boreholes (from 200m to 3000m depth) in sedimentary basin of Kanto distinct, Japan, for purposes of installing seismographs and hydrological instruments, and in-situ stress and pore pressure measurements. At that time, downhole physical loggings were conducted in the boreholes: spontaneous potential, electrical resistance, elastic wave velocity, formation density, neutron porosity, total gamma ray, caliper, temperature loggings. In many cases, digital data values were provided every 2m or 1m or 0.1m. In other cases, we read printed graphs of logging plots and got digital data values. Data from about 30 boreholes are compiled. Especially, particular change of logging data at the depth of an interface between a shallow part (soft sedimentary rock) and a base rock (equivalent to hard pre-Neogene rock) is examined. In this presentation, the correlations among physical properties of rock (especially, formation density, elastic wave velocity and electrical resistance) are introduced and the relation to the lithology is discussed. Formation density, elastic wave velocity and electric resistance data indicate the data are divide in two groups that are higher or lower than 2.5g/cm3: the one correspond to a shallow part and the other correspond to a base rock part. In each group, the elastic wave velocity and electric resistance increase with increase of formation density. However the rates of increases in the shallow part are smaller than in the base rock part. The shallow part has lower degree of solidification and higher porosity than that in the base rock part. It appears differences in the degree of solidification and/or porosity are related to differences in the increasing rates. The present data show that the physical logging data are effective information to explore where the base rock is and what properties of the base rock are different from those in the shallow part.

  4. Virus elimination during the recycling of chromatographic columns used during the manufacture of coagulation factors.

    PubMed

    Roberts, Peter L

    2014-07-01

    Various chromatographic procedures are used during the purification and manufacture of plasma products such as coagulation factors. These steps contribute to the overall safety of such products by removing potential virus contamination. Virus removal by two affinity chromatography procedures, i.e. monoclonal antibody chromatography and metal chelate chromatography (immobilised metal ion affinity chromatography), used during the manufacture of the high purity factor VIII (Replenate®) and factor IX (Replenine®-VF), respectively, has been investigated. In addition, as these columns are recycled after use, the effectiveness of the sanitisation procedures for preventing possible cross-contamination, has also been investigated. Both chromatographic steps proved effective for eliminating a range of model enveloped and non-enveloped viruses by 4 to >6 and 5 to >8 log for the monoclonal and metal chelate columns, respectively. The effectiveness of the relatively mild column sanitisation conditions used, i.e. ethanol for factor IX and acetic acid for factor VIII, was confirmed using non-spiked column runs. The chemicals used contributed to virus elimination by inactivation and/or by physical removal of the virus. In summary, these studies demonstrate that potential virus contamination between chromatographic runs can be prevented when an effective column recycling and sanitisation procedure is included. Copyright © 2014 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  5. VizieR Online Data Catalog: R absolute magnitudes of Kuiper Belt objects (Peixinho+, 2012)

    NASA Astrophysics Data System (ADS)

    Peixinho, N.; Delsanti, A.; Guilbert-Lepoutre, A.; Gafeira, R.; Lacerda, P.

    2012-06-01

    Compilation of absolute magnitude HRα, B-R color spectral features used in this work. For each object, we computed the average color index from the different papers presenting data obtained simultaneously in B and R bands (e.g. contiguous observations within a same night). When individual R apparent magnitude and date were available, we computed the HRα=R-5log(r Delta), where R is the R-band magnitude, r and Delta are the helio- and geocentric distances at the time of observation in AU, respectively. When V and V-R colors were available, we derived an R and then HRα value. We did not correct for the phase-angle α effect. This table includes also spectral information on the presence of water ice, methanol, methane, or confirmed featureless spectra, as available in the literature. We highlight only the cases with clear bands in the spectrum, which were reported/confirmed by some other work. The 1st column indicates the object identification number and name or provisional designation; the 2nd column indicates the dynamical class; the 3rd column indicates the average HRα value and 1-σ error bars; the 4th column indicates the average $B-R$ color and 1-σ error bars; the 5th column indicates the most important spectral features detected; and the 6th column points to the bibliographic references used for each object. (3 data files).

  6. Mercury cycling in stream ecosystems. 2. Benthic methylmercury production and bed sediment-pore water partitioning.

    PubMed

    Marvin-Dipasquale, Mark; Lutz, Michelle A; Brigham, Mark E; Krabbenhoft, David P; Aiken, George R; Orem, William H; Hall, Britt D

    2009-04-15

    Mercury speciation, controls on methylmercury (MeHg) production, and bed sediment-pore water partitioning of total Hg (THg) and MeHg were examined in bed sediment from eight geochemically diverse streams where atmospheric deposition was the predominant Hg input. Across all streams, sediment THg concentrations were best described as a combined function of sediment percent fines (%fines; particles < 63 microm) and organic content. MeHg concentrations were best described as a combined function of organic content and the activity of the Hg(II)-methylating microbial community and were comparable to MeHg concentrations in streams with Hg inputs from industrial and mining sources. Whole sediment tin-reducible inorganic reactive Hg (Hg(II)R) was used as a proxy measure for the Hg(II) pool available for microbial methylation. In conjunction with radiotracer-derived rate constants of 203Hg(II) methylation, Hg(II)R was used to calculate MeHg production potential rates and to explain the spatial variability in MeHg concentration. The %Hg(II)R (of THg) was low (2.1 +/- 5.7%) and was inversely related to both microbial sulfate reduction rates and sediment total reduced sulfur concentration. While sediment THg concentrations were higher in urban streams, %MeHg and %Hg(II)R were higher in nonurban streams. Sediment pore water distribution coefficients (log Kd's) for both THg and MeHg were inversely related to the log-transformed ratio of pore water dissolved organic carbon (DOC) to bed sediment %fines. The stream with the highest drainage basin wetland density also had the highest pore water DOC concentration and the lowest log Kd's for both THg and MeHg. No significant relationship existed between overlying water MeHg concentrations and those in bed sediment or pore water, suggesting upstream sources of MeHg production may be more important than local streambed production as a driver of water column MeHg concentration in drainage basins that receive Hg inputs primarily from atmospheric sources.

  7. Contaminant behavior in fractured sedimentary rocks: Seeing the fractures that matter

    NASA Astrophysics Data System (ADS)

    Parker, B. L.

    2017-12-01

    High resolution spatial sampling of continuous cores from sites contaminated with chlorinated solvents over many decades was used as a strategy to quantify mass stored in low permeability blocks of rock between hydraulically active fractures. Given that core and geophysical logging methods cannot distinguish between hydraulically active fractures and those that do not transmit water, these samples were informed by careful logging of visible fracture features in the core with sample spacing determined by modelled diffusion transport distances given rock matrix properties and expected ages of contamination. These high resolution contaminant concentration profiles from long term contaminated sites in sedimentary rock showed evidence of many more hydraulically active fractures than indicated by the most sophisticated open-hole logging methods. Fracture density is an important attribute affecting fracture connectivity and influencing contaminant plume evolution in fractured porous sedimentary rock. These contaminant profile findings were motivation to find new borehole methods to directly measure hydraulically active fracture occurrence and flux to corroborate the long term "DNAPL tracer experiment" results. Improved sensitivity is obtained when boreholes are sealed using flexible fabric liners (FLUTeTM technology) and various sensor options are deployed in the static water columns used to inflate these liners or in contact with the borehole wall behind the liners. Several methods rely on high resolution temperature measurements of ambient or induced temperature variability such as temperature vector probes (TVP), fiber optic cables for distributed temperature sensing (DTS), both using active heat; packer testing, point dilution testing and groundwater flux measurements between multiple straddle packers to account for leakage. In all cases, numerous hydraulically active fractures are identified over 100 to 300 meters depth, with a large range in transmissivities and hydraulic apertures to inform discrete fracture flow and transport models. 3-D field mapping of decades-old contaminant plumes in sedimentary aquifers shows that numerous hydraulically active fractures are needed to reproduce observed plume concentration distributions and allow targeted monitoring and remediation.

  8. Changes of Dust Opacity with Density in the Orion A Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Roy, Arabindo; Martin, Peter G.; Polychroni, Danae; Bontemps, Sylvain; Abergel, Alain; André, Philippe; Arzoumanian, Doris; Di Francesco, James; Hill, Tracey; Konyves, Vera; Nguyen-Luong, Quang; Pezzuto, Stefano; Schneider, Nicola; Testi, Leonardo; White, Glenn

    2013-01-01

    We have studied the opacity of dust grains at submillimeter wavelengths by estimating the optical depth from imaging at 160, 250, 350, and 500 μm from the Herschel Gould Belt Survey and comparing this to a column density obtained from the Two Micron All Sky Survey derived color excess E(J - K s). Our main goal was to investigate the spatial variations of the opacity due to "big" grains over a variety of environmental conditions and thereby quantify how emission properties of the dust change with column (and volume) density. The central and southern areas of the Orion A molecular cloud examined here, with N H ranging from 1.5 × 1021 cm-2 to 50 × 1021 cm-2, are well suited to this approach. We fit the multi-frequency Herschel spectral energy distributions (SEDs) of each pixel with a modified blackbody to obtain the temperature, T, and optical depth, τ1200, at a fiducial frequency of 1200 GHz (250 μm). Using a calibration of N H/E(J - Ks ) for the interstellar medium (ISM) we obtained the opacity (dust emission cross-section per H nucleon), σe(1200), for every pixel. From a value ~1 × 10-25 cm2 H-1 at the lowest column densities that is typical of the high-latitude diffuse ISM, σe(1200) increases as N 0.28 H over the range studied. This is suggestive of grain evolution. Integrating the SEDs over frequency, we also calculated the specific power P (emission power per H) for the big grains. In low column density regions where dust clouds are optically thin to the interstellar radiation field (ISRF), P is typically 3.7 × 10-31 W H-1, again close to that in the high-latitude diffuse ISM. However, we find evidence for a decrease of P in high column density regions, which would be a natural outcome of attenuation of the ISRF that heats the grains, and for localized increases for dust illuminated by nearby stars or embedded protostars.

  9. On N. Park's Analytical solution for steady state density- and mixing regime—dependent solute transport in a vertical soil column

    NASA Astrophysics Data System (ADS)

    Thiele, Michael

    1998-04-01

    Recently, Park [1996] presented an analytical solution for stationary one-dimensional solute transport in a variable-density fluid flow through a vertical soil column. He used the widespread Bear-Scheidegger dispersion model describing solute mixing as a sum of molecular diffusion and velocity-proportional mechanical dispersion effects. His closed-form implicit concentration and pressure distributions thus allow for a discussion of the combined impact of molecular diffusion and mechanical dispersion in a variable-density environment. Whereas Park only considered the example of vanishing molecular diffusion in detail, both phenomena are taken into account simultaneously in the present study in order to elucidate their different influences on concentration distribution characteristics. The boundary value problem dealt with herein is based on an upward inflow of high-density fluid of constant solute concentration and corresponding outflow of a lower constant concentration fluid at the upper end of the column when dispersivity does not change along the flow path. The thickness of the transition zone between the two fluids appeared to strongly depend on the prevailing share of the molecular diffusion and mechanical dispersion mechanisms. The latter can be characterized by a molecular Peclet number Pe, which here is defined as the ratio of the column outflow velocity multiplied by a characteristic pore size and the molecular diffusion coefficient. For very small values of Pe, when molecular diffusion represents the exclusive mixing process, density differences have no impact on transition zone thicknesses. A relative density-;dependent thickness increases with flow velocities (increasing Pe values) very rapidly compared to the density-independent case, and after having passed a maximum decreases asymptotically to a constant value for the large Peclet number limit when mechanical dispersion is the only mixing mechanism. Hence the special transport problem analyzed gives further evidence for the importance of simultaneously considering molecular diffusion and mechanical dispersion in gravity-affected solute transport in porous media.

  10. Chandra High Resolution Spectroscopy of the Circumnuclear Matter in the Broad Line Radio Galaxy, 3C 445

    NASA Technical Reports Server (NTRS)

    Reeves, J. N.; Gofford, J.; Braito, V.; Sambruna, R.

    2010-01-01

    We present evidence for X-ray line emitting and absorbing gas in the nucleus of the Broad-Line Radio Galaxy (BLRG), 3C445. A 200 ks Chandra LETG observation of 3C 445 reveals the presence of several highly ionized emission lines in the soft X-ray spectrum, primarily from the He and H-like ions of O, Ne, Mg and Si. Radiative recombination emission is detected from O VII and O VIII, indicating that the emitting gas is photoionized. The He-like emission appears to be resolved into forbidden and intercombination line components, which implies a high density of greater than 10(sup 10) cm(sup -3), while the lines are velocity broadened with a mean width of 2600 km s(sup -1). The density and widths of the ionized lines indicate an origin of the gas on sub-parsec scales in the Broad Line Region (BLR). The X-ray continuum of 3C 445 is heavily obscured by a photoionized absorber of column density N(sub H) = 2 x 10(sup 23) cm(sup -2) and ionization parameter log xi = 1.4 erg cm s(sup -1). However the view of the X-ray line emission is unobscured, which requires the absorber to be located at radii well within any parsec scale molecular torus. Instead we suggest that the X-ray absorber in 3C 445 may be associated with an outflowing, but clumpy accretion disk wind, with an observed outflow velocity of approximately 10000 km s(sup -1).

  11. Relationships between population density, fine-scale genetic structure, mating system and pollen dispersal in a timber tree from African rainforests.

    PubMed

    Duminil, J; Daïnou, K; Kaviriri, D K; Gillet, P; Loo, J; Doucet, J-L; Hardy, O J

    2016-03-01

    Owing to the reduction of population density and/or the environmental changes it induces, selective logging could affect the demography, reproductive biology and evolutionary potential of forest trees. This is particularly relevant in tropical forests where natural population densities can be low and isolated trees may be subject to outcross pollen limitation and/or produce low-quality selfed seeds that exhibit inbreeding depression. Comparing reproductive biology processes and genetic diversity of populations at different densities can provide indirect evidence of the potential impacts of logging. Here, we analysed patterns of genetic diversity, mating system and gene flow in three Central African populations of the self-compatible legume timber species Erythrophleum suaveolens with contrasting densities (0.11, 0.68 and 1.72 adults per ha). The comparison of inbreeding levels among cohorts suggests that selfing is detrimental as inbred individuals are eliminated between seedling and adult stages. Levels of genetic diversity, selfing rates (∼16%) and patterns of spatial genetic structure (Sp ∼0.006) were similar in all three populations. However, the extent of gene dispersal differed markedly among populations: the average distance of pollen dispersal increased with decreasing density (from 200 m in the high-density population to 1000 m in the low-density one). Overall, our results suggest that the reproductive biology and genetic diversity of the species are not affected by current logging practices. However, further investigations need to be conducted in low-density populations to evaluate (1) whether pollen limitation may reduce seed production and (2) the regeneration potential of the species.

  12. THE PHASE COHERENCE OF INTERSTELLAR DENSITY FLUCTUATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkhart, Blakesley; Lazarian, A.

    2016-08-10

    Studies of MHD turbulence often investigate the Fourier power spectrum to provide information on the nature of the turbulence cascade. However, the Fourier power spectrum only contains the Fourier amplitudes and rejects all information regarding the Fourier phases. Here, we investigate the utility of two statistical diagnostics for recovering information on Fourier phases in ISM column density maps: the averaged amplitudes of the bispectrum and the phase coherence index (PCI), a new phase technique for the ISM. We create three-dimensional density and two-dimensional column density maps using a set of simulations of isothermal ideal MHD turbulence with a wide rangemore » of sonic and Alfvénic Mach numbers. We find that the bispectrum averaged along different angles with respect to either the k {sub 1} or k {sub 2} axis is primarily sensitive to the sonic Mach number while averaging the bispectral amplitudes over different annuli is sensitive to both the sonic and Alfvénic Mach numbers. The PCI of density suggests that the most correlated phases occur in supersonic sub-Alfvénic turbulence and near the shock scale. This suggests that nonlinear interactions with correlated phases are strongest in shock-dominated regions, in agreement with findings from the solar wind. Our results suggest that the phase information contained in the bispectrum and PCI can be used to find the turbulence parameters in column density maps.« less

  13. Long-term impacts of selective logging on two Amazonian tree species with contrasting ecological and reproductive characteristics: inferences from Eco-gene model simulations.

    PubMed

    Vinson, C C; Kanashiro, M; Sebbenn, A M; Williams, T C R; Harris, S A; Boshier, D H

    2015-08-01

    The impact of logging and subsequent recovery after logging is predicted to vary depending on specific life history traits of the logged species. The Eco-gene simulation model was used to evaluate the long-term impacts of selective logging over 300 years on two contrasting Brazilian Amazon tree species, Dipteryx odorata and Jacaranda copaia. D. odorata (Leguminosae), a slow growing climax tree, occurs at very low densities, whereas J. copaia (Bignoniaceae) is a fast growing pioneer tree that occurs at high densities. Microsatellite multilocus genotypes of the pre-logging populations were used as data inputs for the Eco-gene model and post-logging genetic data was used to verify the output from the simulations. Overall, under current Brazilian forest management regulations, there were neither short nor long-term impacts on J. copaia. By contrast, D. odorata cannot be sustainably logged under current regulations, a sustainable scenario was achieved by increasing the minimum cutting diameter at breast height from 50 to 100 cm over 30-year logging cycles. Genetic parameters were only slightly affected by selective logging, with reductions in the numbers of alleles and single genotypes. In the short term, the loss of alleles seen in J. copaia simulations was the same as in real data, whereas fewer alleles were lost in D. odorata simulations than in the field. The different impacts and periods of recovery for each species support the idea that ecological and genetic information are essential at species, ecological guild or reproductive group levels to help derive sustainable management scenarios for tropical forests.

  14. Long-term impacts of selective logging on two Amazonian tree species with contrasting ecological and reproductive characteristics: inferences from Eco-gene model simulations

    PubMed Central

    Vinson, C C; Kanashiro, M; Sebbenn, A M; Williams, T CR; Harris, S A; Boshier, D H

    2015-01-01

    The impact of logging and subsequent recovery after logging is predicted to vary depending on specific life history traits of the logged species. The Eco-gene simulation model was used to evaluate the long-term impacts of selective logging over 300 years on two contrasting Brazilian Amazon tree species, Dipteryx odorata and Jacaranda copaia. D. odorata (Leguminosae), a slow growing climax tree, occurs at very low densities, whereas J. copaia (Bignoniaceae) is a fast growing pioneer tree that occurs at high densities. Microsatellite multilocus genotypes of the pre-logging populations were used as data inputs for the Eco-gene model and post-logging genetic data was used to verify the output from the simulations. Overall, under current Brazilian forest management regulations, there were neither short nor long-term impacts on J. copaia. By contrast, D. odorata cannot be sustainably logged under current regulations, a sustainable scenario was achieved by increasing the minimum cutting diameter at breast height from 50 to 100 cm over 30-year logging cycles. Genetic parameters were only slightly affected by selective logging, with reductions in the numbers of alleles and single genotypes. In the short term, the loss of alleles seen in J. copaia simulations was the same as in real data, whereas fewer alleles were lost in D. odorata simulations than in the field. The different impacts and periods of recovery for each species support the idea that ecological and genetic information are essential at species, ecological guild or reproductive group levels to help derive sustainable management scenarios for tropical forests. PMID:24424164

  15. Automated high performance liquid chromatography with on-line reduction of disulfides and chemiluminescence detection for determination of thiols and disulfides in biological fluids.

    PubMed

    Bai, Shouli; Chen, Qingshuo; Lu, Chao; Lin, Jin-Ming

    2013-03-20

    In general, the reduction of disulfide bonds with tris(2-carboxyethyl)phosphine (TCEP) is performed using off-line operation, which is not only time-consuming but also vulnerable to the spontaneous re-oxidation of thiols during sample preparation and subsequent analysis procedures. To the best of our knowledge, there has been not any case on the on-line reduction for biological disulfides coupled with high performance liquid chromatography (HPLC). In this study, these obstacles are overcome by packing Zn(II)-TCEP complexes into a home-made column. The as-synthesized Zn(II)-TCEP complexes enable efficient reduction of disulfide bonds at pH 3.0. This acidic pH value was compatible with that of the mobile phase for HPLC separation of thiols and disulfides. Therefore, using fluorosurfactant-prepared triangular gold nanoparticles as HPLC postcolumn specific chemiluminescence (CL) reagents for thiols, the feasibility of the established on-line reduction column has been confirmed for the direct identification of both thiols and disulfides by incorporating this reduction column into a single chromatographic separation. Detection limits for these analytes range from 8.3 to 25.4 nM and the linear range in a log-log plot can comprise three orders of magnitude. Finally, the utility of this automated on-line reduction of disulfides-HPLC-CL system has been demonstrated for the reliable determination of thiols and disulfides in human urine and plasma samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Automated lithology prediction from PGNAA and other geophysical logs.

    PubMed

    Borsaru, M; Zhou, B; Aizawa, T; Karashima, H; Hashimoto, T

    2006-02-01

    Different methods of lithology predictions from geophysical data have been developed in the last 15 years. The geophysical logs used for predicting lithology are the conventional logs: sonic, neutron-neutron, gamma (total natural-gamma) and density (backscattered gamma-gamma). The prompt gamma neutron activation analysis (PGNAA) is another established geophysical logging technique for in situ element analysis of rocks in boreholes. The work described in this paper was carried out to investigate the application of PGNAA to the lithology interpretation. The data interpretation was conducted using the automatic interpretation program LogTrans based on statistical analysis. Limited test suggests that PGNAA logging data can be used to predict the lithology. A success rate of 73% for lithology prediction was achieved from PGNAA logging data only. It can also be used in conjunction with the conventional geophysical logs to enhance the lithology prediction.

  17. Comparison of the far-infrared and carbon monoxide emission in Heiles' Cloud 2 and B18

    NASA Technical Reports Server (NTRS)

    Snell, Ronald L.; Schloerb, F. Peter; Heyer, Mark H.

    1989-01-01

    A comparison is made of the far-IR emission detected by IRAS at 60 and 100 microns and the emission from C(-13)O in B18 and Heiles' Cloud 2. The results show that both these clouds have extended emission at the studied wavelengths and that this emission is correlated with the integrated intensity of (C-13)O emission. The dust temperature and optical depth, the gas column density, the mass of gas and dust, and the far-IR luminosity are derived and presented. The analysis shows that the dust optical depth is much better correlated with the gas column density than with the far-IR intensity. The dust temperature is found to be anticorrelated with the gas column density, suggesting that these clouds are externally heated by the interstellar radiation field. The far-IR luminosity-to-mass ratios for the clouds are substantially less than the average for the inner Galaxy.

  18. Medium-resolution far-ultraviolet spectroscopy of PKS 2155-304

    NASA Technical Reports Server (NTRS)

    Appenzeller, I.; Mandel, H.; Krautter, J.; Bowyer, S.; Hurwitz, M.; Grewing, M.; Kramer, G.; Kappelmann, N.

    1995-01-01

    Using the Berkeley spectrometer of the Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) we observed the 87-117 nm UV spectrum of the BL Lac object PKS 2155-304 with about 0.5 A resolution. In addition to the expected interstellar lines we detected higher quantum number counterparts of the intergalactic Lyman alpha lines discovered earlier with IUE and the Hubble Space Telescope (HST) in the direction of PKS 2155-304. The Lyman discontinuities indicate for three of the redshifted clouds a combined H I column density of 2-5 x 10(exp 16)/sq cm, while the column density for another cloud appears to be well below 5 x 10(exp 15)/sq cm. No siginificant O VI absorption in the galactic halo toward PKS 2155-304 could be detected from our data. Assuming that saturation effects are negligible for these weak features, we obtain for the O VI column density toward PKS 2155-304 a 3 sigma upper limit of 2.7 x 10(exp 14)/sq cm.

  19. The wavefield of acoustic logging in a cased hole with a single casing—Part II: a dipole tool

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Fehler, Michael

    2018-02-01

    The acoustic method, being the most effective method for cement bond evaluation, has been used by industry for more than a half century. However, the methods currently used are almost always focused on the first arrival (especially for sonic logging), which has limitations. We use a 3-D finite-difference method to numerically simulate the wavefields from a dipole source in a single-cased hole with different cement conditions. By using wavefield snapshots and dispersion curves, we interpret the characteristics of the modes in the models. We investigate the effect of source frequency, the thickness and location of fluid columns on different modes. The dipole wavefield in a single-cased hole consists of a leaky P (for frequency >10 kHz) from formation, formation flexural, and also some casing modes. Depending on the mode, their behaviour is sometimes sensitive to the existence of fluid between the cement and formation and sometimes sensitive to the existence of fluid between the casing and cement. The formation S velocity can be obtained from the formation flexural mode at low frequency. However, interference from high-order casing modes makes the leaky P invisible and P velocity determination difficult when the casing is not well cemented. The dispersion curve of the formation flexural mode is sensitive to the fluid thickness when fluid exists only at the interface between casing and cement. The fundamental casing dipole mode is only sensitive to the total fluid thickness in the annulus between casing and formation. Either the arrival time or amplitude of the high-order casing dipole mode is sensitive to the fluid column when the fluid column is next to the casing. We provide a table that summarizes the ability of different modes to detect fluid columns between various layers of casing, cement and formation. Based on the results, we suggest a data processing flow for field application, which will highly improve cement evaluation.

  20. Reduced density due to logging and its consequences on mating system and pollen flow in the African mahogany Entandrophragma cylindricum.

    PubMed

    Lourmas, M; Kjellberg, F; Dessard, H; Joly, H I; Chevallier, M-H

    2007-08-01

    In tropical forests, selective logging removes large trees that are often the main contributors to pollination. We studied pollination patterns of the African mahogany, Entandrophragma cylindricum (Sapelli). We investigated two plots in Cameroon corresponding to three tree densities: unlogged forest (Ndama 2002), a mildly logged forest 1 year after logging (Ndama 2003) and a severely logged forest 30 years after logging (Dimako). We used four microsatellite markers to perform paternity analysis. Selfing remained below 2% in all treatments. Pollen flow was mainly long distance but with some proximity effects. Average observed within-plot pollination distances were 338, 266 and 385 m, and pollination by trees outside the plots was 70% (Ndama 2002), 74% (Ndama 2003) and 66% (Dimako). Despite sampling a limited number of seeds from a limited number of mother trees, we obtained seeds sired by 35.6-38.3% of the potential within-plot pollen donors. While trees 20 cm in diameter contributed to pollination, results in Dimako suggest that individual larger trees contribute more to pollination than small ones. This effect was not detected in the other treatments. The results suggest extensive pollen flow in Sapelli. Hence, in Sapelli, the main limiting factor for regeneration after logging may be a reduction in the number of trees capable of producing seeds rather genetic effects due to limits to pollen dispersal.

  1. Density of Upper Respiratory Colonization With Streptococcus pneumoniae and Its Role in the Diagnosis of Pneumococcal Pneumonia Among Children Aged <5 Years in the PERCH Study

    PubMed Central

    Baggett, Henry C; Watson, Nora L; Deloria Knoll, Maria; Brooks, W Abdullah; Feikin, Daniel R; Hammitt, Laura L; Howie, Stephen R C; Kotloff, Karen L; Levine, Orin S; Madhi, Shabir A; Murdoch, David R; Scott, J Anthony G; Thea, Donald M; Antonio, Martin; Awori, Juliet O; Baillie, Vicky L; DeLuca, Andrea N; Driscoll, Amanda J; Duncan, Julie; Ebruke, Bernard E; Goswami, Doli; Higdon, Melissa M; Karron, Ruth A; Moore, David P; Morpeth, Susan C; Mulindwa, Justin M; Park, Daniel E; Paveenkittiporn, Wantana; Piralam, Barameht; Prosperi, Christine; Sow, Samba O; Tapia, Milagritos D; Zaman, Khalequ; Zeger, Scott L; O’Brien, Katherine L; O, K L; L, O S; K, M D; F, D R; D, A N; D, A J; Fancourt, Nicholas; Fu, Wei; H, L L; H, M M; Wangeci Kagucia, E; K, R A; Li, Mengying; P, D E; P, C; Wu, Zhenke; Z, S L; W, N L; Crawley, Jane; M, D R; B, W A; Endtz, Hubert P; Z, K; G, D; Hossain, Lokman; Jahan, Yasmin; Ashraf, Hasan; C H, S R; E, B E; A, M; McLellan, Jessica; Machuka, Eunice; Shamsul, Arifin; Zaman, Syed M A; Mackenzie, Grant; G S, J A; A, J O; M, S C; Kamau, Alice; Kazungu, Sidi; Ominde, Micah Silaba; K, K L; T, M D; S, S O; Sylla, Mamadou; Tamboura, Boubou; Onwuchekwa, Uma; Kourouma, Nana; Toure, Aliou; M, S A; M, D P; Adrian, Peter V; B, V L; Kuwanda, Locadiah; Mudau, Azwifarwi; Groome, Michelle J; Mahomed, Nasreen; B, H C; Thamthitiwat, Somsak; Maloney, Susan A; Bunthi, Charatdao; Rhodes, Julia; Sawatwong, Pongpun; Akarasewi, Pasakorn; T, D M; Mwananyanda, Lawrence; Chipeta, James; Seidenberg, Phil; Mwansa, James; wa Somwe, Somwe; Kwenda, Geoffrey; Anderson, Trevor P; Mitchell, Joanne

    2017-01-01

    Abstract Background Previous studies suggested an association between upper airway pneumococcal colonization density and pneumococcal pneumonia, but data in children are limited. Using data from the Pneumonia Etiology Research for Child Health (PERCH) study, we assessed this potential association. Methods PERCH is a case-control study in 7 countries: Bangladesh, The Gambia, Kenya, Mali, South Africa, Thailand, and Zambia. Cases were children aged 1–59 months hospitalized with World Health Organization–defined severe or very severe pneumonia. Controls were randomly selected from the community. Microbiologically confirmed pneumococcal pneumonia (MCPP) was confirmed by detection of pneumococcus in a relevant normally sterile body fluid. Colonization density was calculated with quantitative polymerase chain reaction analysis of nasopharyngeal/oropharyngeal specimens. Results Median colonization density among 56 cases with MCPP (MCPP cases; 17.28 × 106 copies/mL) exceeded that of cases without MCPP (non-MCPP cases; 0.75 × 106) and controls (0.60 × 106) (each P < .001). The optimal density for discriminating MCPP cases from controls using the Youden index was >6.9 log10 copies/mL; overall, the sensitivity was 64% and the specificity 92%, with variable performance by site. The threshold was lower (≥4.4 log10 copies/mL) when MCPP cases were distinguished from controls who received antibiotics before specimen collection. Among the 4035 non-MCPP cases, 500 (12%) had pneumococcal colonization density >6.9 log10 copies/mL; above this cutoff was associated with alveolar consolidation at chest radiography, very severe pneumonia, oxygen saturation <92%, C-reactive protein ≥40 mg/L, and lack of antibiotic pretreatment (all P< .001). Conclusions Pneumococcal colonization density >6.9 log10 copies/mL was strongly associated with MCPP and could be used to improve estimates of pneumococcal pneumonia prevalence in childhood pneumonia studies. Our findings do not support its use for individual diagnosis in a clinical setting. PMID:28575365

  2. The O VI Mystery: Mismatch between X-Ray and UV Column Densities

    NASA Astrophysics Data System (ADS)

    Mathur, S.; Nicastro, F.; Gupta, A.; Krongold, Y.; McLaughlin, B. M.; Brickhouse, N.; Pradhan, A.

    2017-12-01

    The UV spectra of Galactic and extragalactic sightlines often show O VI absorption lines at a range of redshifts, and from a variety of sources from the Galactic circumgalactic medium to active galactic nuclei (AGN) outflows. Inner shell O VI absorption is also observed in X-ray spectra (at λ =22.03 Å), but the column density inferred from the X-ray line was consistently larger than that from the UV line. Here we present a solution to this discrepancy for the z = 0 systems. The O II Kβ line {}4{S}0\\to {(}3D)3{p}4P at 562.40 eV (≡22.04 Å) is blended with the O VI Kα line in X-ray spectra. We estimate the strength of this O II line in two different ways, and show that in most cases the O II line accounts for the entire blended line. The small amount of O VI equivalent width present in some cases has column density entirely consistent with the UV value. This solution to the O VI discrepancy, however, does not apply to high column-density systems like AGN outflows. We discuss other possible causes to explain their UV/X-ray mismatch. The O VI and O II lines will be resolved by gratings on board the proposed mission Arcus and the concept mission Lynx, and would allow the detection of weak O VI lines not just at z = 0, but also at higher redshift.

  3. Measurement of polyurethane foam - air partition coefficients for semivolatile organic compounds as a function of temperature: Application to passive air sampler monitoring.

    PubMed

    Francisco, Ana Paula; Harner, Tom; Eng, Anita

    2017-05-01

    Polyurethane foam - air partition coefficients (K PUF-air ) for 9 polycyclic aromatic hydrocarbons (PAHs), 10 alkyl-substituted PAHs, 4 organochlorine pesticides (OCPs) and dibenzothiophene were measured as a function of temperature over the range 5 °C-35 °C, using a generator column approach. Enthalpies of PUF-to-air transfer (ΔH PUF-air , kJ/mol) were determined from the slopes of log K PUF-air versus 1000/T (K), and have an average value of 81.2 ± 7.03 kJ/mol. The log K PUF-air values at 22 °C ranged from 4.99 to 7.25. A relationship for log K PUF-air versus log K OA was shown to agree with a previous relationship based on only polychlorinated biphenyls (PCBs) and derived from long-term indoor uptake study experiments. The results also confirm that the existing K OA -based model for predicting log K PUF-air values is accurate. This new information is important in the derivation of uptake profiles and effective air sampling volumes for PUF disk samplers so that results can be reported in units of concentration in air. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. IC 3639—a New Bona Fide Compton-Thick AGN Unveiled by NuSTAR

    NASA Astrophysics Data System (ADS)

    Boorman, Peter G.; Gandhi, P.; Alexander, D. M.; Annuar, A.; Ballantyne, D. R.; Bauer, F.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Farrah, D.; Hailey, C. J.; Harrison, F. A.; Hönig, S. F.; Koss, M.; LaMassa, S. M.; Masini, A.; Ricci, C.; Risaliti, G.; Stern, D.; Zhang, W. W.

    2016-12-01

    We analyze high-quality NuSTAR observations of the local (z = 0.011) Seyfert 2 active galactic nucleus (AGN) IC 3639, in conjunction with archival Suzaku and Chandra data. This provides the first broadband X-ray spectral analysis of the source, spanning nearly two decades in energy (0.5-30 keV). Previous X-ray observations of the source below 10 keV indicated strong reflection/obscuration on the basis of a pronounced iron fluorescence line at 6.4 keV. The hard X-ray energy coverage of NuSTAR, together with self-consistent toroidal reprocessing models, enables direct broadband constraints on the obscuring column density of the source. We find the source to be heavily Compton-thick (CTK) with an obscuring column in excess of 3.6× {10}24 cm-2, unconstrained at the upper end. We further find an intrinsic 2-10 keV luminosity of {{log}}10({L}2{--10{keV}} [{erg} {{{s}}}-1])={43.4}-1.1+0.6 to 90% confidence, almost 400 times the observed flux, and consistent with various multiwavelength diagnostics. Such a high ratio of intrinsic to observed flux, in addition to an Fe-Kα fluorescence line equivalent width exceeding 2 keV, is extreme among known bona fide CTK AGNs, which we suggest are both due to the high level of obscuration present around IC 3639. Our study demonstrates that broadband spectroscopic modeling with NuSTAR enables large corrections for obscuration to be carried out robustly and emphasizes the need for improved modeling of AGN tori showing intense iron fluorescence.

  5. Characterising the Circum-Galactic Medium of Damped Lyman-α Absorbing Galaxies

    NASA Astrophysics Data System (ADS)

    Augustin, Ramona; Péroux, Céline; Møller, Palle; Kulkarni, Varsha; Rahmani, Hadi; Milliard, Bruno; Pieri, Matthew; York, Donald G.; Vladilo, Giovanni; Aller, Monique; Zwaan, Martin

    2018-05-01

    Gas flows in and out of galaxies through their circumgalactic medium (CGM) are poorly constrained and direct observations of this faint, diffuse medium remain challenging. We use a sample of five z ˜ 1-2 galaxy counterparts to Damped Lyman-α Absorbers (DLAs) to combine data on cold gas, metals and stellar content of the same galaxies. We present new HST/WFC3 imaging of these fields in 3-5 broadband filters and characterise the stellar properties of the host galaxies. By fitting the spectral energy distribution, we measure their stellar masses to be in the range of log(M*/M⊙) ˜ 9.1-10.7. Combining these with IFU observations, we find a large spread of baryon fractions inside the host galaxies, between 7 and 100 percent. Similarly, we find gas fractions between 3 and 56 percent. Given their star formation rates, these objects lie on the expected main sequence of galaxies. Emission line metallicities indicate they are consistent with the mass-metallicity relation for DLAs. We also report an apparent anti-correlation between the stellar masses and N(H I), which could be due to a dust bias effect or lower column density systems tracing more massive galaxies. We present new ALMA observations of one of the targets leading to a molecular gas mass of log(Mmol/M⊙) < 9.89. We also investigate the morphology of the DLA counterparts and find that most of the galaxies show a clumpy structure and suggest ongoing tidal interaction. Thanks to our high spatial resolution HST data, we gain new insights in the structural complexity of the CGM.

  6. THE COMPLEX CIRCUMNUCLEAR ENVIRONMENT OF THE BROAD-LINE RADIO GALAXY 3C 390.3 REVEALED BY CHANDRA HETG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tombesi, F.; Kallman, T.; Leutenegger, M. A.

    2016-10-20

    We present the first high spectral resolution X-ray observation of the broad-line radio galaxy 3C 390.3 obtained with the high-energy transmission grating spectrometer on board the Chandra X-ray Observatory . The spectrum shows complex emission and absorption features in both the soft X-rays and Fe K band. We detect emission and absorption lines in the energy range E = 700–1000 eV associated with ionized Fe L transitions (Fe XVII–XX). An emission line at the energy of E ≃ 6.4 keV consistent with the Fe K α is also observed. Our best-fit model requires at least three different components: (i) amore » hot emission component likely associated with the hot interstellar medium in this elliptical galaxy with temperature kT = 0.5 ± 0.1 keV; (ii) a warm absorber with ionization parameter log ξ = 2.3 ± 0.5 erg s{sup −1} cm, column density log N {sub H} = 20.7 ± 0.1 cm{sup −2}, and outflow velocity v {sub out} < 150 km s{sup −1}; and (iii) a lowly ionized reflection component in the Fe K band likely associated with the optical broad-line region or the outer accretion disk. These evidences suggest the possibility that we are looking directly down the ionization cone of this active galaxy and that the central X-ray source only photoionizes along the unobscured cone. This is overall consistent with the angle-dependent unified picture of active galactic nuclei.« less

  7. The Complex Circumnuclear Environment of the Broad-Line Radio Galaxy 3C 390.3 Revealed by Chandra HETG

    NASA Technical Reports Server (NTRS)

    Tombesi, F.; Reeves, J. N.; Kallman, Timothy R.; Reynolds, C. S.; Mushotzky, R. F.; Braito, V.; Behar, E.; Leutenegger, Maurice A.; Cappi, M.

    2016-01-01

    We present the first high spectral resolution X-ray observation of the broad-line radio galaxy 3C 390.3 obtained with the high-energy transmission grating spectrometer on board the Chandra X-ray Observatory. The spectrum shows complex emission and absorption features in both the soft X-rays and Fe K band. We detect emission and absorption lines in the energy range E = 700-1000 eV associated with ionized Fe L transitions (Fe XVIIXX). An emission line at the energy of E approximately equal to 6.4 keV consistent with the Fe K alpha is also observed. Our best-fit model requires at least three different components: (i) a hot emission component likely associated with the hot interstellar medium in this elliptical galaxy with temperature kT = 0.5 +/- 0.1 keV; (ii) a warm absorber with ionization parameter log Epislon = 2.3 +/- 0.5 erg s(exp 1) cm, column density logN(sub H) = 20.7 +/- 0.1 cm(exp -2), and outflow velocity v(sub out) less than 150 km s(exp -1); and (iii) a lowly ionized reflection component in the Fe K band likely associated with the optical broad-line region or the outer accretion disk. These evidences suggest the possibility that we are looking directly down the ionization cone of this active galaxy and that the central X-ray source only photoionizes along the unobscured cone. This is overall consistent with the angle-dependent unified picture of active galactic nuclei.

  8. Inversion and Application of Muon Tomography Data for Cave Exploration in Budapest, Hungary

    NASA Astrophysics Data System (ADS)

    Molnár, Gábor; Surányi, Gergely; Gábor Barnaföldi, Gergely; Oláh, László; Hamar, Gergö; Varga, Dezsö

    2016-04-01

    In this contribution we present a prospecting muon-tomograph and its application for cave exploration in Budapest, Hungary. The more than 50 years old basic idea behind muon tomography is the ability of muon particles, generated in the upper atmosphere to penetrate tens of meters into rocks with continuous attenuation before decay. This enables us placing a detector in a tunnel and measure muon fluxes from different directions and convert these fluxes to rock density data. The lightweight, 51x46x32 cm3 size, muon tomograph containing 5 detector layers was developed by Wigner Research Centre for Physics, Budapest, Hungary. A muon passing at least 4 of the 5 detector layers along one line are classified as unique muon detection. Its angular resolution is approximately 1 degree and it is effective up to 50 degrees off zenith. During the measurement campaign we installed the muon detector at seventeen locations along an abandoned, likely Cold War air raid shelter tunnel for 10-15 days at each location, collecting large set of events. The measured fluxes are converted to apparent density lengths (multiplication of rock densities by along path lengths) using an empirically tested relationship. For inverting measurements, a 3D block model of the subsurface was developed. It consisted of cuboids, with equal horizontal size, equal number in every line and in every row of the model. Additionally it consisted of blocks with different heights, equal number of blocks in every column. (Block height was constant in a column, but varied from column to column.) The heights of the blocks in a column were chosen, that top face of the uppermost blocks has an elevation defined by a Digital Elevation Model. Initially the density of every model blocks was set to a realistic value. We calculated the theoretical density length for every detector location and for a subset of flux measurement directions. We also calculated the partial derivatives of these theoretical density length values with respect to the densities of every model block. This is the Jacobian of the problem and these values were proportional to the path length in the respective block. A regularized least squares solution returns the corrections of the densities of the blocks. If the corrected density of a block is significantly smaller than the typical rock density of the subsurface, the block is dedicated as a cave. According to our results a supposed cave exists some 7 meters above the tunnel. This work has been supported by the Lendület Program of the Hungarian Academy of Sciences (LP2013-60) and the OTKA NK-106119 grant. Gergely Gábor Barnaföld and Dezsö Varga thank for the support of the Bolyai Fellowship of the Hungarian Academy of Sciences.

  9. Logging damage to residual trees following partial cutting in a green ash-sugarberry stand in the Mississippi Delta

    Treesearch

    James S. Meadows

    1993-01-01

    Partial cutting in bottomland hardwoods to control stand density and species composition sometimes results in logging damage to the lower bole and/or roots of residual trees. If severe, logging damage may lead to a decline in tree vigor, which may subsequently stimulate the production of epicormic branches, causing a decrease in bole quality and an eventual loss in...

  10. Logging Damage to Residual Trees Following Partial Cutting in a Green Ash-Sugarberry Stand in the Mississippi Delta

    Treesearch

    James S. Meadows

    1993-01-01

    Partial cutting in bottomland hardwoods to control stand density and species composition sometimes results in logging damage to the lower bole and/or roots of residual trees. If severe, logging damage may lead to a decline in tree vigor, which may subsequently stimulate the production of epicormic branches, causing a decrease in bole quality and an eventual loss in...

  11. powerbox: Arbitrarily structured, arbitrary-dimension boxes and log-normal mocks

    NASA Astrophysics Data System (ADS)

    Murray, Steven G.

    2018-05-01

    powerbox creates density grids (or boxes) with an arbitrary two-point distribution (i.e. power spectrum). The software works in any number of dimensions, creates Gaussian or Log-Normal fields, and measures power spectra of output fields to ensure consistency. The primary motivation for creating the code was the simple creation of log-normal mock galaxy distributions, but the methodology can be used for other applications.

  12. A DEFINITION FOR GIANT PLANETS BASED ON THE MASS–DENSITY RELATIONSHIP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatzes, Artie P.; Rauer, Heike, E-mail: artie@tls-tautenburg.de, E-mail: Heike.Rauer@dlr.de

    We present the mass–density relationship (log M − log ρ) for objects with masses ranging from planets (M ≈ 0.01 M{sub Jup}) to stars (M > 0.08 M{sub ⊙}). This relationship shows three distinct regions separated by a change in slope in the log M − log ρ plane. In particular, objects with masses in the range 0.3 M{sub Jup}–60 M{sub Jup} follow a tight linear relationship with no distinguishing feature to separate the low-mass end (giant planets) from the high-mass end (brown dwarfs). We propose a new definition of giant planets simply based on changes in the slope ofmore » the log M versus log ρ relationship. By this criterion, objects with masses less than ≈0.3 M{sub Jup} are low-mass planets, either icy or rocky. Giant planets cover the mass range 0.3 M{sub Jup}–60 M{sub Jup}. Analogous to the stellar main sequence, objects on the upper end of the giant planet sequence (brown dwarfs) can simply be referred to as “high-mass giant planets,” while planets with masses near that of Jupiter can be called “low-mass giant planets.”.« less

  13. The Arizona Radio Observatory CO Mapping Survey of Galactic Molecular Clouds. V. The Sh2-235 Cloud in CO J=2-1, 13CO J=2-1, and CO J=3-2

    NASA Astrophysics Data System (ADS)

    Bieging, John H.; Patel, Saahil; Peters, William L.; Toth, L. Viktor; Marton, Gábor; Zahorecz, Sarolta

    2016-09-01

    We present the results of a program to map the Sh2-235 molecular cloud complex in the CO and 13CO J = 2 - 1 transitions using the Heinrich Hertz Submillimeter Telescope. The map resolution is 38″ (FWHM), with an rms noise of 0.12 K brightness temperature, for a velocity resolution of 0.34 km s-1. With the same telescope, we also mapped the CO J = 3 - 2 line at a frequency of 345 GHz, using a 64 beam focal plane array of heterodyne mixers, achieving a typical rms noise of 0.5 K brightness temperature with a velocity resolution of 0.23 km s-1. The three spectral line data cubes are available for download. Much of the cloud appears to be slightly sub-thermally excited in the J = 3 level, except for in the vicinity of the warmest and highest column density areas, which are currently forming stars. Using the CO and 13CO J = 2 - 1 lines, we employ an LTE model to derive the gas column density over the entire mapped region. Examining a 125 pc2 region centered on the most active star formation in the vicinity of Sh2-235, we find that the young stellar object surface density scales as approximately the 1.6-power of the gas column density. The area distribution function of the gas is a steeply declining exponential function of gas column density. Comparison of the morphology of ionized and molecular gas suggests that the cloud is being substantially disrupted by expansion of the H II regions, which may be triggering current star formation.

  14. Interactive effects of historical logging and fire exclusion on ponderosa pine forest structure in the northern Rockies.

    PubMed

    Naficy, Cameron; Sala, Anna; Keeling, Eric G; Graham, Jon; DeLuca, Thomas H

    2010-10-01

    Increased forest density resulting from decades of fire exclusion is often perceived as the leading cause of historically aberrant, severe, contemporary wildfires and insect outbreaks documented in some fire-prone forests of the western United States. Based on this notion, current U.S. forest policy directs managers to reduce stand density and restore historical conditions in fire-excluded forests to help minimize high-severity disturbances. Historical logging, however, has also caused widespread change in forest vegetation conditions, but its long-term effects on vegetation structure and composition have never been adequately quantified. We document that fire-excluded ponderosa pine forests of the northern Rocky Mountains logged prior to 1960 have much higher average stand density, greater homogeneity of stand structure, more standing dead trees and increased abundance of fire-intolerant trees than paired fire-excluded, unlogged counterparts. Notably, the magnitude of the interactive effect of fire exclusion and historical logging substantially exceeds the effects of fire exclusion alone. These differences suggest that historically logged sites are more prone to severe wildfires and insect outbreaks than unlogged, fire-excluded forests and should be considered a high priority for fuels reduction treatments. Furthermore, we propose that ponderosa pine forests with these distinct management histories likely require distinct restoration approaches. We also highlight potential long-term risks of mechanical stand manipulation in unlogged forests and emphasize the need for a long-term view of fuels management.

  15. Energetics and Birth Rates of Supernova Remnants in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Leahy, D. A.

    2017-03-01

    Published X-ray emission properties for a sample of 50 supernova remnants (SNRs) in the Large Magellanic Cloud (LMC) are used as input for SNR evolution modeling calculations. The forward shock emission is modeled to obtain the initial explosion energy, age, and circumstellar medium density for each SNR in the sample. The resulting age distribution yields a SNR birthrate of 1/(500 yr) for the LMC. The explosion energy distribution is well fit by a log-normal distribution, with a most-probable explosion energy of 0.5× {10}51 erg, with a 1σ dispersion by a factor of 3 in energy. The circumstellar medium density distribution is broader than the explosion energy distribution, with a most-probable density of ˜0.1 cm-3. The shape of the density distribution can be fit with a log-normal distribution, with incompleteness at high density caused by the shorter evolution times of SNRs.

  16. SEPARATION OF OCTYLPHENOL POLYETHER ALCOHOLS SURFACTANTS BY CAPILLARY COLUMN AND HPLC

    EPA Science Inventory

    Separation of nonionic octylphenol polyether alcohols (OPA) by supercritical fluid chromatography (SFC) and HPLC is described. sing a density programming and a 50-pm i.d. capillary column, a total of 18 group oligomers was separated. he effects of the operating parameters, such a...

  17. X-Ray Wind Tomography of IGR J17252-3616

    NASA Astrophysics Data System (ADS)

    Manousakis, Antonios; Walter, Roland

    2010-07-01

    IGR J17252-3616, a highly absorbed High Mass X-ray Binary (HMXB) with Hydrogen column density NH~(2-4)×1023 cm-2, has been observed with XMM-Newton for about one month. Observations were scheduled in order to cover the orbital-phase space as much as possible. IGR J17252-3616 shows a varying column density NH and Fe Kα line when fit with simple phenomenological models. A refined orbital solution can be derived. Spectral timing analysis allows derivation of the wind properties of the massive star.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Anthony M.; Williams, Liliya L.R.; Hjorth, Jens, E-mail: amyoung@astro.umn.edu, E-mail: llrw@astro.umn.edu, E-mail: jens@dark-cosmology.dk

    One usually thinks of a radial density profile as having a monotonically changing logarithmic slope, such as in NFW or Einasto profiles. However, in two different classes of commonly used systems, this is often not the case. These classes exhibit non-monotonic changes in their density profile slopes which we call oscillations for short. We analyze these two unrelated classes separately. Class 1 consists of systems that have density oscillations and that are defined through their distribution function f ( E ), or differential energy distribution N ( E ), such as isothermal spheres, King profiles, or DARKexp, a theoretically derivedmore » model for relaxed collisionless systems. Systems defined through f ( E ) or N ( E ) generally have density slope oscillations. Class 1 system oscillations can be found at small, intermediate, or large radii but we focus on a limited set of Class 1 systems that have oscillations in the central regions, usually at log( r / r {sub −2}) ∼< −2, where r {sub −2} is the largest radius where d log(ρ)/ d log( r ) = −2. We show that the shape of their N ( E ) can roughly predict the amplitude of oscillations. Class 2 systems which are a product of dynamical evolution, consist of observed and simulated galaxies and clusters, and pure dark matter halos. Oscillations in the density profile slope seem pervasive in the central regions of Class 2 systems. We argue that in these systems, slope oscillations are an indication that a system is not fully relaxed. We show that these oscillations can be reproduced by small modifications to N ( E ) of DARKexp. These affect a small fraction of systems' mass and are confined to log( r / r {sub −2}) ∼< 0. The size of these modifications serves as a potential diagnostic for quantifying how far a system is from being relaxed.« less

  19. Relationships between population density, fine-scale genetic structure, mating system and pollen dispersal in a timber tree from African rainforests

    PubMed Central

    Duminil, J; Daïnou, K; Kaviriri, D K; Gillet, P; Loo, J; Doucet, J-L; Hardy, O J

    2016-01-01

    Owing to the reduction of population density and/or the environmental changes it induces, selective logging could affect the demography, reproductive biology and evolutionary potential of forest trees. This is particularly relevant in tropical forests where natural population densities can be low and isolated trees may be subject to outcross pollen limitation and/or produce low-quality selfed seeds that exhibit inbreeding depression. Comparing reproductive biology processes and genetic diversity of populations at different densities can provide indirect evidence of the potential impacts of logging. Here, we analysed patterns of genetic diversity, mating system and gene flow in three Central African populations of the self-compatible legume timber species Erythrophleum suaveolens with contrasting densities (0.11, 0.68 and 1.72 adults per ha). The comparison of inbreeding levels among cohorts suggests that selfing is detrimental as inbred individuals are eliminated between seedling and adult stages. Levels of genetic diversity, selfing rates (∼16%) and patterns of spatial genetic structure (Sp ∼0.006) were similar in all three populations. However, the extent of gene dispersal differed markedly among populations: the average distance of pollen dispersal increased with decreasing density (from 200 m in the high-density population to 1000 m in the low-density one). Overall, our results suggest that the reproductive biology and genetic diversity of the species are not affected by current logging practices. However, further investigations need to be conducted in low-density populations to evaluate (1) whether pollen limitation may reduce seed production and (2) the regeneration potential of the species. PMID:26696137

  20. Calculation and evaluation of log-based physical properties in the inner accretionary prism, NanTroSEIZE Site C0002, Nankai Trough, Japan

    NASA Astrophysics Data System (ADS)

    Webb, S. I.; Tudge, J.; Tobin, H. J.

    2013-12-01

    Integrated Ocean Drilling Program (IODP) Expedition 338, the most recently completed drilling stage of the NanTroSEIZE project, targeted the Miocene inner accretionary prism off the coast of southwest Japan. NanTroSEIZE is a multi-stage project in which the main objective is to characterize, sample, and instrument the potentially seismogenic region of the Nankai Trough, an active subduction zone. Understanding the physical properties of the inner accretionary prism will aid in the characterization of the deformation that has taken place and the evolution of stress, fluid pressure, and strain over the deformational history of these sediments and rocks. This study focuses on the estimation of porosity and density from available logs to inform solid and fluid volume estimates at Site C0002 from the sea floor through the Kumano Basin into the accretionary prism. Gamma ray, resistivity, and sonic logs were acquired at Hole C0002F, to a total depth of 2005 mbsf into the inner accretionary prism. Because a density and neutron porosity tool could not be deployed, porosity and density must be estimated using a variety of largely empirical methods. In this study, we calculate estimated porosity and density from both the electrical resistivity and sonic (P-wave velocity) logs collected in Hole C0002F. However, the relationship of these physical properties to the available logs is not straightforward and can be affected by changes in fluid type, salinity, temperature, presence of fractures, and clay mineralogy. To evaluate and calibrate the relationships among these properties, we take advantage of the more extensive suite of LWD data recorded in Hole C0002A at the same drill site, including density and neutron porosity measurements. Data collected in both boreholes overlaps in the interval from 875 - 1400 mbsf in the lower Kumano Basin and across the basin-accretionary wedge boundary. Core-based physical properties are also available across this interval. Through comparison of density and porosity values in intervals where core and LWD data overlap, we calculate porosity and density values and evaluate their uncertainties, developing a best estimate given the specific lithology and pore fluid at this tectonic setting. We then propagate this calibrated estimate to the deeper portions of C0002F where core and LWD density and porosity measurements are unavailable, using the sonic and resistivity data alone.

  1. An EXCEL macro for importing log ASCII standard (LAS) files into EXCEL worksheets

    NASA Astrophysics Data System (ADS)

    Özkaya, Sait Ismail

    1996-02-01

    An EXCEL 5.0 macro is presented for converting a LAS text file into an EXCEL worksheet. Although EXCEL has commands for importing text files and parsing text lines, LAS files must be decoded line-by-line because three different delimiters are used to separate fields of differing length. The macro is intended to eliminate manual decoding of LAS version 2.0. LAS is a floppy disk format for storage and transfer of log data as text files. LAS was proposed by the Canadian Well Logging Society. The present EXCEL macro decodes different sections of a LAS file, separates, and places the fields into different columns of an EXCEL worksheet. To import a LAS file into EXCEL without errors, the file must not contain any unrecognized symbols, and the data section must be the last section. The program does not check for the presence of mandatory sections or fields as required by LAS rules. Once a file is incorporated into EXCEL, mandatory sections and fields may be inspected visually.

  2. Expert systems for automated correlation and interpretation of wireline logs

    USGS Publications Warehouse

    Olea, R.A.

    1994-01-01

    CORRELATOR is an interactive computer program for lithostratigraphic correlation of wireline logs able to store correlations in a data base with a consistency, accuracy, speed, and resolution that are difficult to obtain manually. The automatic determination of correlations is based on the maximization of a weighted correlation coefficient using two wireline logs per well. CORRELATOR has an expert system to scan and flag incongruous correlations in the data base. The user has the option to accept or disregard the advice offered by the system. The expert system represents knowledge through production rules. The inference system is goal-driven and uses backward chaining to scan through the rules. Work in progress is used to illustrate the potential that a second expert system with a similar architecture for interpreting dip diagrams could have to identify episodes-as those of interest in sequence stratigraphy and fault detection- and annotate them in the stratigraphic column. Several examples illustrate the presentation. ?? 1994 International Association for Mathematical Geology.

  3. A new fully automated FTIR system for total column measurements of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Geibel, M. C.; Gerbig, C.; Feist, D. G.

    2010-10-01

    This article introduces a new fully automated FTIR system that is part of the Total Carbon Column Observing Network (TCCON). It will provide continuous ground-based measurements of column-averaged volume mixing ratio for CO2, CH4 and several other greenhouse gases in the tropics. Housed in a 20-foot shipping container it was developed as a transportable system that could be deployed almost anywhere in the world. We describe the automation concept which relies on three autonomous subsystems and their interaction. Crucial components like a sturdy and reliable solar tracker dome are described in detail. The automation software employs a new approach relying on multiple processes, database logging and web-based remote control. First results of total column measurements at Jena, Germany show that the instrument works well and can provide parts of the diurnal as well as seasonal cycle for CO2. Instrument line shape measurements with an HCl cell suggest that the instrument stays well-aligned over several months. After a short test campaign for side by side intercomaprison with an existing TCCON instrument in Australia, the system will be transported to its final destination Ascension Island.

  4. An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines

    NASA Astrophysics Data System (ADS)

    Korista, Kirk; Baldwin, Jack; Ferland, Gary; Verner, Dima

    We present graphically the results of several thousand photoionization calculations of broad emission-line clouds in quasars, spanning 7 orders of magnitude in hydrogen ionizing flux and particle density. The equivalent widths of 42 quasar emission lines are presented as contours in the particle density-ionizing flux plane for a typical incident continuum shape, solar chemical abundances, and cloud column density of N(H) = 1023 cm-2. Results are similarly given for a small subset of emission lines for two other column densities (1022 and 1024 cm-2), five other incident continuum shapes, and a gas metallicity of 5 Z⊙. These graphs should prove useful in the analysis of quasar emission-line data and in the detailed modeling of quasar broad emission-line regions. The digital results of these emission-line grids and many more are available over the Internet.

  5. Effects of solvent density on retention in gas-liquid chromatography. I. Alkanes solutes in polyethylene glycol stationary phases.

    PubMed

    González, F R; Pérez-Parajón, J; García-Domínguez, J A

    2002-04-12

    Gas-liquid chromatographic columns were prepared coating silica capillaries with poly(oxyethylene) polymers of different molecular mass distributions, in the range of low number-average molar masses, where the density still varies significantly. A novel, high-temperature, rapid evaporation method was developed and applied to the static coating of the low-molecular-mass stationary phases. The analysis of alkanes retention data from these columns reveals that the dependence of the partition coefficient with the solvent macroscopic density is mainly due to a variation of entropy. Enthalpies of solute transfer contribute poorly to the observed variations of retention. Since the alkanes solubility diminishes with the increasing solvent density, and this variation is weakly dependent with temperature, it is concluded that the decrease of free-volume in the liquid is responsible for this behavior.

  6. Desorption and Bioavailability of PAHs in Contaminated Soil Subjected to Long-Term In Situ Biostimulation

    PubMed Central

    Richardson, Stephen D.; Aitken, Michael D.

    2011-01-01

    The distribution and potential bioavailability of polycyclic aromatic hydrocarbons (PAHs) in soil from a former manufactured-gas plant (MGP) site were examined before and after long-term biostimulation under simulated in situ conditions. Treated soil was collected from the oxygenated zones of two continuous-flow columns, one subjected to biostimulation and the other serving as a control, and separated into low- and high-density fractions. In the original soil, over 50% of the total PAH mass was associated with lower-density particles, which comprised < 2% of the total soil mass. However, desorbable fractions of PAHs were much lower in the low-density material than in the high-density material. After over 500 d of biostimulation, significant removal of total PAHs occurred in both the high- and low-density materials (77% and 53%, respectively), with three- and four-ring PAHs accounting for the majority of the observed mass loss. Total PAHs that desorbed over a 28-d period were substantially lower in treated soil from the biostimulated column than in the original soil for both the high-density material (23 versus 63%) and low-density material (5 versus 20%). The fast-desorbing fractions quantified by a two-site desorption model ranged from 0.1 to 0.5 for most PAHs in the original soil but were essentially zero in the biostimulated soil. The fast-desorbing fractions in the original soil underestimated the extent of PAH biodegradation observed in the biostimulated column, and thus was not a good predictor of PAH bioavailability after long-term, simulated in situ biostimulation. PMID:21932296

  7. STAR FORMATION IN TURBULENT MOLECULAR CLOUDS WITH COLLIDING FLOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Tomoaki; Dobashi, Kazuhito; Shimoikura, Tomomi, E-mail: matsu@hosei.ac.jp

    2015-03-10

    Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence ismore » weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of –1.35 when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds.« less

  8. Evaluating the precision of passive sampling methods using PRCs in the water column.

    EPA Science Inventory

    To assess these models, four different thicknesses of low-density polyethylene (LDPE) passive samplers were co-deployed for 28 days in the water column at three sites in New Bedford Harbor, MA, USA. Each sampler was pre-loaded with six PCB performance reference compounds (PRCs) t...

  9. SEPARATION OF T-MAZ ETHOXYLATED SORBITAN FATTY ACID ESTERS BY SUPERCRITICAL FLUID CHROMATOGRAPHY

    EPA Science Inventory

    The application of supercritical fluid chromatography (SFC) to the analysis of T-MAZ ethoxylated sorbitan fatty acid esters is described. FC separation methods utilize a density programming technique and a 50 um I.D. capillary column. his work demonstrates that capillary column S...

  10. SEPARATION OF OCTYLPHENOL POLYETHER ALCOHOLS SURFACTANTS BY CAPILLARY COLUMN SFC AND HPLC

    EPA Science Inventory

    Separation of nonionic octylphenol polyether alcohols (OPA) by supercritical fluid chromatography (SFC) and HPLC is described. Using a density programming and a 50-μm i.d. capillary column, a total of 18 group oligomers was separated. The effects of the operating parameters, such...

  11. Body fat assessed from body density and estimated from skinfold thickness in normal children and children with cystic fibrosis.

    PubMed

    Johnston, J L; Leong, M S; Checkland, E G; Zuberbuhler, P C; Conger, P R; Quinney, H A

    1988-12-01

    Body density and skinfold thickness at four sites were measured in 140 normal boys, 168 normal girls, and 6 boys and 7 girls with cystic fibrosis, all aged 8-14 y. Prediction equations for the normal boys and girls for the estimation of body-fat content from skinfold measurements were derived from linear regression of body density vs the log of the sum of the skinfold thickness. The relationship between body density and the log of the sum of the skinfold measurements differed from normal for the boys and girls with cystic fibrosis because of their high body density even though their large residual volume was corrected for. However the sum of skinfold measurements in the children with cystic fibrosis did not differ from normal. Thus body fat percent of these children with cystic fibrosis was underestimated when calculated from body density and invalid when calculated from skinfold thickness.

  12. Structure and stability in TMC-1: Analysis of NH3 molecular line and Herschel continuum data

    NASA Astrophysics Data System (ADS)

    Fehér, O.; Tóth, L. V.; Ward-Thompson, D.; Kirk, J.; Kraus, A.; Pelkonen, V.-M.; Pintér, S.; Zahorecz, S.

    2016-05-01

    Aims: We examined the velocity, density, and temperature structure of Taurus molecular cloud-1 (TMC-1), a filamentary cloud in a nearby quiescent star forming area, to understand its morphology and evolution. Methods: We observed high signal-to-noise (S/N), high velocity resolution NH3(1,1), and (2, 2) emission on an extended map. By fitting multiple hyperfine-split line profiles to the NH3(1, 1) spectra, we derived the velocity distribution of the line components and calculated gas parameters on several positions. Herschel SPIRE far-infrared continuum observations were reduced and used to calculate the physical parameters of the Planck Galactic Cold Clumps (PGCCs) in the region, including the two in TMC-1. The morphology of TMC-1 was investigated with several types of clustering methods in the parameter space consisting of position, velocity, and column density. Results: Our Herschel-based column density map shows a main ridge with two local maxima and a separated peak to the south-west. The H2 column densities and dust colour temperatures are in the range of 0.5-3.3 × 1022 cm-2 and 10.5-12 K, respectively. The NH3 column densities and H2 volume densities are in the range of 2.8-14.2 × 1014 cm-2 and 0.4-2.8 × 104 cm-3. Kinetic temperatures are typically very low with a minimum of 9 K at the maximum NH3 and H2 column density region. The kinetic temperature maximum was found at the protostar IRAS 04381+2540 with a value of 13.7 K. The kinetic temperatures vary similarly to the colour temperatures in spite of the fact that densities are lower than the critical density for coupling between the gas and dust phase. The k-means clustering method separated four sub-filaments in TMC-1 with masses of 32.5, 19.6, 28.9, and 45.9 M⊙ and low turbulent velocity dispersion in the range of 0.13-0.2 km s-1. Conclusions: The main ridge of TMC-1 is composed of four sub-filaments that are close to gravitational equilibrium. We label these TMC-1F1 through F4. The sub-filaments TMC-1F1, TMC-1F2, and TMC-1F4 are very elongated, dense, and cold. TMC-1F3 is a little less elongated and somewhat warmer, and probably heated by the Class I protostar, IRAS 04381+2540, which is embedded in it. TMC-1F3 is approximately 0.1 pc behind TMC1-F1. Because of its structure, TMC-1 is a good target to test filament evolution scenarios.

  13. Coal test drilling for the DE-NA-Zin Bisti Area, San Juan County, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, R.W.; Jentgen, R.W.

    1980-01-01

    From October 1978 to June 1979, the US Geological Survey (USGS) drilled 51 test holes, and cored 9 holes, in the vicinity of the Bisti Trading Post in the southwestern part of the San Juan Basin, San Juan County, New Mexico. The drilling was done in response to expressions of interest received by the Bureau of Land Management concerning coal leasing and, in some places, badlands preservation. The object of the drilling was to determine the depth, thickness, extent, and quality of the coal in the Upper Cretaceous Fruitland Formation in northwest New Mexico. The holes were geophysically logged immediatelymore » after drilling. Resistivity spontaneous-potential, and natural gamma logs were run in all of the holes. A high-resolution density log was also run in all holes drilled before January 13, when a logging unit from the USGS in Albuquerque was available. After January 13, the holes were logged by a USGS unit from Casper, Wyoming that lacked density logging capabilities. At nine locations a second hole was drilled, about 20 ft from the first hole, down to selected coal-bearing intervals and the coal beds were cored. A detailed description of each of the cores is given on the page(s) following the logs for each hole. From these coal cores, 32 intervals were selected and submitted to the Department of Energy in Pittsburgh, Pennsylvania, for analysis.« less

  14. The Mass and Absorption Columns of Galactic Gaseous Halos

    NASA Astrophysics Data System (ADS)

    Qu, Zhijie; Bregman, Joel N.

    2018-01-01

    The gaseous halo surrounding the galaxy is a reservoir for the gas on the galaxy disk, supplying materials for the star formation. We developed a gaseous halo model connecting the galactic disk and the gaseous halo by assuming the star formation rate is equal to the radiative cooling rate. Besides the single-phase collisional gaseous halo, we also consider the photoionization effect and a time-independent cooling model that assumes the mass cooling rate is constant over all temperatures. The photoionization dominates the low mass galaxy and the outskirts of the massive galaxy due to the low-temperature or low-density nature. The multi-phase cooling model dominates the denser region within the cooling radius, where the efficient radiative cooling must be included. Applying these two improvements, our model can reproduce the most of observed high ionization state ions (i.e., O VI, O VII, Ne VIII and Mg X). Our models show that the O VI column density is almost a constant of around 10^14 cm^-2 over a wide stellar mass from M_\\star ~10^8 M_Sun to 10^11 M_Sun, which is constant with current observations. This model also implies the O VI is photoionized for the galaxy with a halo mass <~ 3 * 10^11 M_Sun, while for more massive galaxies, the O VI is from the cooling-down medium from higher temperature materials (collisional ionized). As higher ionization states, Mg X and Ne VIII are also consistent with observations with the column density of 10^13.5 - 10^14.0 cm^-2, however, the absorber-galaxy pair sample is few to constrain the connection with the galaxy. Based on our calculation, such a gaseous halo cannot close the census of baryonic materials in the galaxy, which shows the same tendency as the baryonic fraction function of the EAGLE simulation. Finally, our model predicts plateaus of the Ne VIII and the Mg X column densities above the sub-L^* galaxy, and the possibly detectable O VII and O VIII column densities for low-mass galaxies, which help to determine the required detection limit for the future observations and missions.

  15. Detections of Long Carbon Chains CH_{3}CCCCH, C_{6}H, LINEAR-C_{6}H_{2} and C_{7}H in the Low-Mass Star Forming Region L1527

    NASA Astrophysics Data System (ADS)

    Araki, Mitsunori; Takano, Shuro; Sakai, Nami; Yamamoto, Satoshi; Oyama, Takahiro; Kuze, Nobuhiko; Tsukiyama, Koichi

    2017-06-01

    Carbon chains in the warm carbon chain chemistry (WCCC) region has been searched in the 42-44 GHz region by using Green Bank 100 m telescope. Long carbon chains C_{7}H, C_{6}H, CH_{3}CCCCH, and linear-C_{6}H_{2} and cyclic species C_{3}H and C_{3}H_{2}O have been detected in the low-mass star forming region L1527, performing the WCCC. C_{7}H was detected for the first time in molecular clouds. The column density of C_{7}H is derived to be 6.2 × 10^{10} cm^{-2} by using the detected J = 24.5-23.5 and 25.5-24.5 rotational lines. The ^{2}Π_{1/2} electronic state of C_{6}H, locating 21.6 K above the ^{2}Π_{3/2} electronic ground state, and the K_a = 0 line of the para species of linear-C_{6}H_{2} were also detected firstly in molecular clouds. The column densities of the ^{2}Π_{1/2} and ^{2}Π_{3/2} states of C_{6}H in L1527 were derived to be 1.6 × 10^{11} and 1.1 × 10^{12} cm^{-2}, respectively. The total column density of linear-C_{6}H_{2} is obtained to be 1.86 × 10^{11} cm^{-2}. While the abundance ratios of carbon chains in between L1527 and the starless dark cloud Taurus Molecular Cloud-1 Cyanopolyyne Peak (TMC-1 CP) have a trend of decrease by extension of carbon-chain length, column densities of CH_{3}CCCCH and C_{6}H are on the trend. However, the column densities of linear-C_{6}H_{2}, and C_{7}H are as abundant as those of TMC-1 CP in spite of long carbon chain, i.e., they are not on the trend. The abundances of linear-C_{6}H_{2} and C_{7}H show that L1527 is rich for long carbon chains as well as TMC-1 CP.

  16. The absorption spectrum of the QSO PKS 2126-158 (z_em =3.27) at high resolution

    NASA Astrophysics Data System (ADS)

    D'Odorico, V.; Cristiani, S.; D'Odorico, S.; Fontana, A.; Giallongo, E.

    1998-01-01

    Spectra of the z_em = 3.268 quasar PKS 2126-158 have been obtained in the range lambda lambda 4300-6620 Angstroms with a resolution Rsmallimeq27000 and an average signal-to-noise ratio s/nsmallimeq 25 per resolution element. The list of the identified absorption lines is given together with their fitted column densities and Doppler widths. The modal value of the Doppler parameter distribution for the Lyalpha lines is smallimeq 25 km s(-1) . The column density distribution can be described by a power-law dn / dN ~ N(-beta ) with beta smallimeq 1.5. 12 metal systems have been identified, two of which were previously unknown. In order to make the column densities of the intervening systems compatible with realistic assumptions about the cloud sizes and the silicon to carbon overabundance, it is necessary to assume a jump beyond the He II edge in the spectrum of the UV ionizing background at z smallim 3 a factor 10 larger than the standard predictions for the integrated quasar contribution. An enlarged sample of C IV absorptions (71 doublets) has been used to analyze the statistical properties of this class of absorbers strictly related to galaxies. The column density distribution is well described by a single power-law, with beta =1.64 and the Doppler parameter distribution shows a modal value b_CIV smallimeq 14 km s(-1) . The two point correlation function has been computed in the velocity space for the individual components of C IV features. A significant signal is obtained for scales smaller than 200- 300 km s(-1) , xi (30< Delta v < 90 km\\ s(-1) ) = 33 +/- 3. A trend of decreasing clustering amplitude with decreasing column density is apparent, analogously to what has been observed for Lyalpha lines. Based on observations collected at the European Southern Observatory, La Silla, Chile (ESO No. 2-013-49K). Table 2 is only available in electronic from via anonymous ftp 130.79.128.5 or http://cdsweb.u-strasbg.fr/Abstract.html

  17. Expansion of industrial logging in Central Africa.

    PubMed

    Laporte, Nadine T; Stabach, Jared A; Grosch, Robert; Lin, Tiffany S; Goetz, Scott J

    2007-06-08

    Industrial logging has become the most extensive land use in Central Africa, with more than 600,000 square kilometers (30%) of forest currently under concession. With use of a time series of satellite imagery for the period from 1976 to 2003, we measured 51,916 kilometers of new logging roads. The density of roads across the forested region was 0.03 kilometer per square kilometer, but areas of Gabon and Equatorial Guinea had values over 0.09 kilometer per square kilometer. A new frontier of logging expansion was identified within the Democratic Republic of Congo, which contains 63% of the remaining forest of the region. Tree felling and skid trails increased disturbance in selectively logged areas.

  18. Internal waves interacting with particles in suspension

    NASA Astrophysics Data System (ADS)

    Micard, Diane

    2016-04-01

    Internal waves are produced as a consequence of the dynamic balance between buoy- ancy and gravity forces when a particle of fluid is vertically displaced in a stable stratified environment. Geophysical systems such as ocean and atmosphere are naturally stratified and therefore suitable for internal waves to propagate. Furthermore, these two environ- ments stock a vast amount of particles in suspension, which present a large spectrum of physical properties (size, density, shape), and can be organic, mineral or pollutant agents. Therefore, it is reasonable to expect that internal waves will have an active effect over the dynamics of these particles. In order to study the interaction of internal waves and suspended particles, an ide- alized experimental setup has been implemented. A linear stratification is produced in a 80×40×17 cm3 tank, in which two dimensional plane waves are created thanks to the inno- vative wave generator GOAL. In addition, a particle injector has been developed to produce a vertical column of particles within the fluid, displaying the same two-dimensional sym- metry as the waves. The particle injector allows to control the volumic fraction of particles and the size of the column. The presence of internal waves passing through the column of particles allowed to observe two main effects: The column oscillates around an equilibrium position (which is observed in both, the contours an the interior of the column), and the column is displaced as a whole. The column is displaced depending on the characteristics of the column, the gradient of the density, and the intensity and frequency of the wave. When displaced, the particles within the column are sucked towards the source of waves. The direction of the displacement of the column is explained by computing the effect of the Lagrangian drift generated by the wave over the time the particles stay in the wave beam before settling.

  19. Galactic interstellar abundance surveys with IUE and IRAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Steenberg, M.E.

    1987-01-01

    This thesis is a survey of interstellar densities, abundances, and cloud structure in the Galaxy, using two NASA satellites: the International Ultraviolet Explorer (IUE) and Infrared Astronomical Satellite (IRAS). From IUE high-resolution spectra, the author measured equivalent widths of 18 ultraviolet resonance transitions and derived column densities for Si/sup +/, Mn/sup +/, Fe/sup +/, S/sup +/, and Zn/sup +/ toward 261 early-type stars. From the IRAS all-sky survey he also measured the infrared cirrus flux. He examined the variations of the measured parameters with spectral type, E(B-V), galactic longitude and latitude, distance from the Sun, and mean density. The hydrogen-columnmore » densities, metal-column densities, and gas-to-dust ratio are in good agreement with Copernicus surveys. The derived interstellar abundances yield mean logarithmic depletions. These depletions correlate with mean density but not with the physical density derived from Copernicus H/sub 2/ rotational states. Abundance ratios indicate a larger Fe halo abundance compared to Si, Mn, S, or Zn, which may result from selective grain processing in shocks or from Type I supernovae.« less

  20. Smooth H I Low Column Density Outskirts in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Ianjamasimanana, R.; Walter, Fabian; de Blok, W. J. G.; Heald, George H.; Brinks, Elias

    2018-06-01

    The low column density gas at the outskirts of galaxies as traced by the 21 cm hydrogen line emission (H I) represents the interface between galaxies and the intergalactic medium, i.e., where galaxies are believed to get their supply of gas to fuel future episodes of star formation. Photoionization models predict a break in the radial profiles of H I at a column density of ∼5 × 1019 cm‑2 due to the lack of self-shielding against extragalactic ionizing photons. To investigate the prevalence of such breaks in galactic disks and to characterize what determines the potential edge of the H I disks, we study the azimuthally averaged H I column density profiles of 17 nearby galaxies from the H I Nearby Galaxy Survey and supplemented in two cases with published Hydrogen Accretion in LOcal GAlaxieS data. To detect potential faint H I emission that would otherwise be undetected using conventional moment map analysis, we line up individual profiles to the same reference velocity and average them azimuthally to derive stacked radial profiles. To do so, we use model velocity fields created from a simple extrapolation of the rotation curves to align the profiles in velocity at radii beyond the extent probed with the sensitivity of traditional integrated H I maps. With this method, we improve our sensitivity to outer-disk H I emission by up to an order of magnitude. Except for a few disturbed galaxies, none show evidence of a sudden change in the slope of the H I radial profiles: the alleged signature of ionization by the extragalactic background.

  1. Survey Observations to Study Chemical Evolution from High-mass Starless Cores to High-mass Protostellar Objects. I. HC3N and HC5N

    NASA Astrophysics Data System (ADS)

    Taniguchi, Kotomi; Saito, Masao; Sridharan, T. K.; Minamidani, Tetsuhiro

    2018-02-01

    We carried out survey observations of HC3N and HC5N in the 42‑45 GHz band toward 17 high-mass starless cores (HMSCs) and 35 high-mass protostellar objects (HMPOs) with the Nobeyama 45 m radio telescope. We have detected HC3N from 15 HMSCs and 28 HMPOs, and HC5N from 5 HMSCs and 14 HMPOs, respectively. The average values of the column density of HC3N are found to be (5.7+/- 0.7) × {10}12 and (1.03+/- 0.12)×{10}13 cm‑2 in HMSCs and HMPOs, respectively. The average values of the fractional abundance of HC3N are derived to be (6.6+/- 0.8)× {10}-11 and (3.6+/- 0.5)× {10}-11 in HMSCs and HMPOs, respectively. We find that the fractional abundance of HC3N decreases from HMSCs to HMPOs using the Kolmogorov–Smirnov test. On the other hand, its average value of the column density slightly increases from HMSCs to HMPOs. This may imply that HC3N is newly formed in dense gas in HMPO regions. We also investigate the relationship between the column density of HC3N in HMPOs and the luminosity-to-mass ratio (L/M), a physical evolutional indicator. The column density of HC3N tends to decrease with the increase of the L/M ratio, which suggests that HC3N is destroyed by the stellar activities.

  2. An X-Ray Spectral Model for Clumpy Tori in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Li, Xiaobo

    2014-05-01

    We construct an X-ray spectral model for the clumpy torus in an active galactic nucleus (AGN) using Geant4, which includes the physical processes of the photoelectric effect, Compton scattering, Rayleigh scattering, γ conversion, fluorescence line, and Auger process. Since the electrons in the torus are expected to be bounded instead of free, the deviation of the scattering cross section from the Klein-Nishina cross section has also been included, which changes the X-ray spectra by up to 25% below 10 keV. We have investigated the effect of the clumpiness parameters on the reflection spectra and the strength of the fluorescent line Fe Kα. The volume filling factor of the clouds in the clumpy torus only slightly influences the reflection spectra, however, the total column density and the number of clouds along the line of sight significantly change the shapes and amplitudes of the reflection spectra. The effect of column density is similar to the case of a smooth torus, while a small number of clouds along the line of sight will smooth out the anisotropy of the reflection spectra and the fluorescent line Fe Kα. The smoothing effect is mild in the low column density case (N H = 1023 cm-2), whereas it is much more evident in the high column density case (N H = 1025 cm-2). Our model provides a quantitative tool for the spectral analysis of the clumpy torus. We suggest that the joint fits of the broad band spectral energy distributions of AGNs (from X-ray to infrared) should better constrain the structure of the torus.

  3. Gravity or turbulence? IV. Collapsing cores in out-of-virial disguise

    NASA Astrophysics Data System (ADS)

    Ballesteros-Paredes, Javier; Vázquez-Semadeni, Enrique; Palau, Aina; Klessen, Ralf S.

    2018-06-01

    We study the dynamical state of massive cores by using a simple analytical model, an observational sample, and numerical simulations of collapsing massive cores. From the analytical model, we find that cores increase their column density and velocity dispersion as they collapse, resulting in a time evolution path in the Larson velocity dispersion-size diagram from large sizes and small velocity dispersions to small sizes and large velocity dispersions, while they tend to equipartition between gravity and kinetic energy. From the observational sample, we find that: (a) cores with substantially different column densities in the sample do not follow a Larson-like linewidth-size relation. Instead, cores with higher column densities tend to be located in the upper-left corner of the Larson velocity dispersion σv, 3D-size R diagram, a result explained in the hierarchical and chaotic collapse scenario. (b) Cores appear to have overvirial values. Finally, our numerical simulations reproduce the behavior predicted by the analytical model and depicted in the observational sample: collapsing cores evolve towards larger velocity dispersions and smaller sizes as they collapse and increase their column density. More importantly, however, they exhibit overvirial states. This apparent excess is due to the assumption that the gravitational energy is given by the energy of an isolated homogeneous sphere. However, such excess disappears when the gravitational energy is correctly calculated from the actual spatial mass distribution. We conclude that the observed energy budget of cores is consistent with their non-thermal motions being driven by their self-gravity and in the process of dynamical collapse.

  4. Probing the structure of the gas in the Milky Way through X-ray high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Gatuzz, Efraín; Churazov, Eugene

    2018-02-01

    We have developed a new X-ray absorption model, called IONeq, which computes the optical depth τ(E) simultaneously for ions of all abundant elements, assuming ionization equilibrium and taking into account turbulent broadening. We use this model to analyse the interstellar medium (ISM) absorption features in the Milky Way for a sample of 18 Galactic (LMXBs) and 42 extragalactic sources (mainly Blazars). The absorbing ISM was modelled as a combination of three components/phases - neutral (T ≲ 1 × 104 K), warm (T ˜ 5 × 104 K) and hot (T ˜ 2 × 106 K). We found that the spatial distribution of both, neutral and warm components, are difficult to describe using smooth profiles due to non-uniform distribution of the column densities over the sky. For the hot phase we used a combination of a flattened disc and a halo, finding comparable column densities for both spatial components, of the order of ˜6-7 × 1018 cm-2, although this conclusion depends on the adopted parametrization. If the halo component has sub-solar abundance Z, then the column density has to be scaled up by a factor of Z_{⊙}/Z. The vertically integrated column densities of the disc components suggest the following mass fractions for these three ISM phases in the Galactic disc: neutral ˜ 89 per cent, warm ˜ 8 per cent and hot ˜ 3 per cent components, respectively. The constraints on the radial distribution of the halo component of the hot component are weak.

  5. A RELATION BETWEEN THE WARM NEUTRAL AND IONIZED MEDIA OBSERVED IN THE CANADIAN GALACTIC PLANE SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, T.; Kothes, R.; Brown, J. C., E-mail: Tyler.Foster@nrc-cnrc.gc.ca

    2013-08-10

    We report on a comparison between 21 cm rotation measure (RM) and the optically thin atomic hydrogen column density (N{sub H{sub I}}({tau} {yields} 0)) measured toward unresolved extragalactic sources in the Galactic plane of the northern sky. H I column densities integrated to the Galactic edge are measured immediately surrounding each of nearly 2000 sources in 1 arcmin 21 cm line data, and are compared to RMs observed from polarized emission of each source. RM data are binned in column density bins 4 Multiplication-Sign 10{sup 20} cm{sup -2} wide, and one observes a strong relationship between the number of hydrogenmore » atoms in a 1 cm{sup 2} column through the plane and the mean RM along the same line of sight and path length. The relationship is linear over one order of magnitude (from 0.8 to 14 Multiplication-Sign 10{sup 21} atoms cm{sup -2}) of column densities, with a constant RM/N{sub H{sub I}}{approx} -23.2 {+-} 2.3 rad m{sup -2}/10{sup 21} atoms cm{sup -2}, and a positive RM of 45.0 {+-} 13.8 rad m{sup -2} in the presence of no atomic hydrogen. This slope is used to calculate a mean volume-averaged magnetic field in the second quadrant of (B{sub Parallel-To }) {approx}1.0 {+-} 0.1 {mu}G directed away from the Sun, assuming an ionization fraction of 8% (consistent with the warm-neutral medium; WNM). The remarkable consistency between this field and (B) = 1.2 {mu}G found with the same RM sources and a Galactic model of dispersion measures (DMs) suggests that electrons in the partially ionized WNM are mainly responsible for pulsar DMs, and thus the partially ionized WNM is the dominant form of the magneto-ionic interstellar medium.« less

  6. Fate of the fecal indicator Escherichia coli in irrigation with partially treated wastewater.

    PubMed

    Vergine, P; Saliba, R; Salerno, C; Laera, G; Berardi, G; Pollice, A

    2015-11-15

    Treated wastewater reuse is increasing in semi-arid regions as a response to the effects of climate change and increased competition for natural water resources. Investigating the fate of bacterial indicators is relevant to assess their persistence in the environment and possible transfer to groundwater or to the food chain. A long-term field-scale experimental campaign and a soil column test were carried out to evaluate the fate of the fecal indicator Escherichia coli (E. coli) in a cultivated soil when contaminated water resources are used for irrigation. For field experiments, fecal contamination was simulated by dosing the indicator to the effluent of a membrane bioreactor, thus simulating a filtration system's failure, and irrigating a test field where grass was grown. The presence of E. coli on grass and topsoil samples was monitored under different scenarios. For evaluating the fate of the same indicator in the subsoil, a set of soil columns was installed next to the field, operated, and monitored for E. coli concentration over time and along depth. Real municipal wastewater was used in this case as source of fecal contamination. Results showed that short- and medium-term effects on topsoil were strongly dependent on the concentration of E. coli in the irrigation water. Limited persistence and no relevant accumulation of the indicator on the grass and in the topsoil were observed. Watering events performed after fecal contamination did not influence significantly the decay in the topsoil, which followed a log-linear model. The trend of the E. coli concentrations in the leaching of the soil columns followed a log-linear model as well, suggesting bacterial decay as the dominant mechanism affecting the underground indicator's concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Investigation of quaternary ammonium silane-coated sand filter for the removal of bacteria and viruses from drinking water.

    PubMed

    Torkelson, A A; da Silva, A K; Love, D C; Kim, J Y; Alper, J P; Coox, B; Dahm, J; Kozodoy, P; Maboudian, R; Nelson, K L

    2012-11-01

    To develop an anti-microbial filter media using an attached quaternary ammonium compound (QAC) and evaluate its performance under conditions relevant to household drinking water treatment in developing countries. Silica sand was coated with dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride via covalent silane chemistry. Filter columns packed with coated media were challenged with micro-organisms under different water quality conditions. The anti-bacterial properties were investigated by visualizing Escherichia coli (E. coli) attachment to coated media under fluorescence microscopy combined with a live/dead stain. A 9-cm columns with a filtration velocity of 18 m h(-1) achieved log(10) removals of 1·7 for E. coli, 1·8 for MS2 coliphage, 1·9 for Poliovirus type 3 and 0·36 for Adenovirus type 2, compared to 0·1-0·3 log(10) removals of E. coli and MS2 by uncoated sand. Removal scaled linearly with column length and decreased with increasing ionic strength, flow velocity, filtration time and humic acid presence. Escherichia coli attached to QAC-coated sand were observed to be membrane-permeable, providing evidence of inactivation. Filtration with QAC-coated sand provided higher removal of bacteria and viruses than filtration with uncoated sand. However, major limitations included rapid fouling by micro-organisms and natural organic matter and low removal of viruses PRD1 and Adenovirus 2. QAC-coated media may be promising for household water treatment. However, more research is needed on long-term performance, options to reduce fouling and inactivation mechanisms. © 2012 The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  8. Quantitative measurements of vaporization, burst ionization, and emission characteristics of shaped charge barium releases

    NASA Technical Reports Server (NTRS)

    Hoch, Edward L.; Hallinan, Thomas J.; Stenbaek-Nielsen, Hans C.

    1994-01-01

    Intensity-calibrated color video recordings of three barium-shaped charge injections in the ionopshere were used to determine the initial ionization, the column density corresponding to unity optical depth, and the yield of vaporized barium in the fast jet. It was found that the initial ionization at the burst was less than 1% and that 0% burst ionization was consistent with the observations. Owing to the Doppler shift, the column density for optical thickness in the neutral barium varies somewhat according to the velocity distribution. For the cases examined here, the column density was 2-5 x 10(exp 10) atoms/sq cm. This value, which occurred 12 to 15 s after release, should be approximately valid for most shaped charge experiments. The yield was near 30% (15% in the fast jet) for two of the releases and was somewhat lower in the third, which also had a lower peak velocity. This study also demonstrated the applicability of the computer simulation code developed for chemical releases by Stenbaek-Nielsen and provided experimental verification of the Doppler-corrected emission rates calculated b Stenbaek-Nielsen (1989).

  9. Analysis of interstellar cloud structure based on IRAS images

    NASA Technical Reports Server (NTRS)

    Scalo, John M.

    1992-01-01

    The goal of this project was to develop new tools for the analysis of the structure of densely sampled maps of interstellar star-forming regions. A particular emphasis was on the recognition and characterization of nested hierarchical structure and fractal irregularity, and their relation to the level of star formation activity. The panoramic IRAS images provided data with the required range in spatial scale, greater than a factor of 100, and in column density, greater than a factor of 50. In order to construct densely sampled column density maps of star-forming clouds, column density images of four nearby cloud complexes were constructed from IRAS data. The regions have various degrees of star formation activity, and most of them have probably not been affected much by the disruptive effects of young massive stars. The largest region, the Scorpius-Ophiuchus cloud complex, covers about 1000 square degrees (it was subdivided into a few smaller regions for analysis). Much of the work during the early part of the project focused on an 80 square degree region in the core of the Taurus complex, a well-studied region of low-mass star formation.

  10. Roosevelt Hot Springs, Utah FORGE Stress Logging Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLennan, John

    This spreadsheet consist of data and graphs from deep well 58-32 stress testing from 6900 - 7500 ft depth. Measured stress data were used to correct logging predictions of in situ stress. Stress plots shows pore pressure (measured during the injection testing), the total vertical in situ stress (determined from the density logging) and the total maximum and minimum horizontal stresses. The horizontal stresses were determined from the DSI (Dipole Sonic Imager) and corrected to match the direct measurements.

  11. Selective removal and inactivation of bacteria by nanoparticle composites prepared by surface modification of montmorillonite with quaternary ammonium compounds.

    PubMed

    Khalil, Rowaida K S

    2013-10-01

    The purpose of the present study was to prepare new nanocomposites with antibacterial activities by surface modification of montmorillonite using quaternary ammonium compounds that are widely applied as disinfectants and antiseptics in food-processing environments. The intercalation of four quaternary ammonium compounds namely benzalkonium chloride, cetylpyridinium chloride monohydrate, hexadecyltrimethylammonium bromide, tetraethylammonium chloride hydrate into montmorillonite layers was confirmed by X-ray diffraction. The antibacterial influences of the modified clay variants against important foodborne pathogens differed based on modifiers quantities, microbial cell densities, and length of contact. Elution experiments through 0.1 g of the studied montmorillonite variants indicated that Staphylococcus aureus, Pseudomonas aeroginosa, and Listeria monocytogenes were the most sensitive strains. 1 g of hexadecyltrimethylammonium bromide intercalated montmorillonites demonstrated maximum inactivation of L. monocytogenes populations, with 4.5 log c.f.u./ml units of reduction. In adsorption experiments, 0.1 g of tetraethylammonium chloride hydrate montmorillonite variants significantly reduced the growth of Escherichia coli O157:H7, L. monocytogenes, and S. aureus populations by 5.77, 6.33, and 7.38 log units respectively. Growth of wide variety of microorganisms was strongly inhibited to undetectable levels (

  12. Four Decades of Forest Persistence, Clearance and Logging on Borneo

    PubMed Central

    Gaveau, David L. A.; Sloan, Sean; Molidena, Elis; Yaen, Husna; Sheil, Doug; Abram, Nicola K.; Ancrenaz, Marc; Nasi, Robert; Quinones, Marcela; Wielaard, Niels; Meijaard, Erik

    2014-01-01

    The native forests of Borneo have been impacted by selective logging, fire, and conversion to plantations at unprecedented scales since industrial-scale extractive industries began in the early 1970s. There is no island-wide documentation of forest clearance or logging since the 1970s. This creates an information gap for conservation planning, especially with regard to selectively logged forests that maintain high conservation potential. Analysing LANDSAT images, we estimate that 75.7% (558,060 km2) of Borneo's area (737,188 km2) was forested around 1973. Based upon a forest cover map for 2010 derived using ALOS-PALSAR and visually reviewing LANDSAT images, we estimate that the 1973 forest area had declined by 168,493 km2 (30.2%) in 2010. The highest losses were recorded in Sabah and Kalimantan with 39.5% and 30.7% of their total forest area in 1973 becoming non-forest in 2010, and the lowest in Brunei and Sarawak (8.4%, and 23.1%). We estimate that the combined area planted in industrial oil palm and timber plantations in 2010 was 75,480 km2, representing 10% of Borneo. We mapped 271,819 km of primary logging roads that were created between 1973 and 2010. The greatest density of logging roads was found in Sarawak, at 0.89 km km−2, and the lowest density in Brunei, at 0.18 km km−2. Analyzing MODIS-based tree cover maps, we estimate that logging operated within 700 m of primary logging roads. Using this distance, we estimate that 266,257 km2 of 1973 forest cover has been logged. With 389,566 km2 (52.8%) of the island remaining forested, of which 209,649 km2 remains intact. There is still hope for biodiversity conservation in Borneo. Protecting logged forests from fire and conversion to plantations is an urgent priority for reducing rates of deforestation in Borneo. PMID:25029192

  13. Four decades of forest persistence, clearance and logging on Borneo.

    PubMed

    Gaveau, David L A; Sloan, Sean; Molidena, Elis; Yaen, Husna; Sheil, Doug; Abram, Nicola K; Ancrenaz, Marc; Nasi, Robert; Quinones, Marcela; Wielaard, Niels; Meijaard, Erik

    2014-01-01

    The native forests of Borneo have been impacted by selective logging, fire, and conversion to plantations at unprecedented scales since industrial-scale extractive industries began in the early 1970s. There is no island-wide documentation of forest clearance or logging since the 1970s. This creates an information gap for conservation planning, especially with regard to selectively logged forests that maintain high conservation potential. Analysing LANDSAT images, we estimate that 75.7% (558,060 km2) of Borneo's area (737,188 km2) was forested around 1973. Based upon a forest cover map for 2010 derived using ALOS-PALSAR and visually reviewing LANDSAT images, we estimate that the 1973 forest area had declined by 168,493 km2 (30.2%) in 2010. The highest losses were recorded in Sabah and Kalimantan with 39.5% and 30.7% of their total forest area in 1973 becoming non-forest in 2010, and the lowest in Brunei and Sarawak (8.4%, and 23.1%). We estimate that the combined area planted in industrial oil palm and timber plantations in 2010 was 75,480 km2, representing 10% of Borneo. We mapped 271,819 km of primary logging roads that were created between 1973 and 2010. The greatest density of logging roads was found in Sarawak, at 0.89 km km-2, and the lowest density in Brunei, at 0.18 km km-2. Analyzing MODIS-based tree cover maps, we estimate that logging operated within 700 m of primary logging roads. Using this distance, we estimate that 266,257 km2 of 1973 forest cover has been logged. With 389,566 km2 (52.8%) of the island remaining forested, of which 209,649 km2 remains intact. There is still hope for biodiversity conservation in Borneo. Protecting logged forests from fire and conversion to plantations is an urgent priority for reducing rates of deforestation in Borneo.

  14. Density-driven transport of gas phase chemicals in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Fen, Chiu-Shia; Sun, Yong-tai; Cheng, Yuen; Chen, Yuanchin; Yang, Whaiwan; Pan, Changtai

    2018-01-01

    Variations of gas phase density are responsible for advective and diffusive transports of organic vapors in unsaturated soils. Laboratory experiments were conducted to explore dense gas transport (sulfur hexafluoride, SF6) from different source densities through a nitrogen gas-dry soil column. Gas pressures and SF6 densities at transient state were measured along the soil column for three transport configurations (horizontal, vertically upward and vertically downward transport). These measurements and others reported in the literature were compared with simulation results obtained from two models based on different diffusion approaches: the dusty gas model (DGM) equations and a Fickian-type molar fraction-based diffusion expression. The results show that the DGM and Fickian-based models predicted similar dense gas density profiles which matched the measured data well for horizontal transport of dense gas at low to high source densities, despite the pressure variations predicted in the soil column were opposite to the measurements. The pressure evolutions predicted by both models were in trend similar to the measured ones for vertical transport of dense gas. However, differences between the dense gas densities predicted by the DGM and Fickian-based models were discernible for vertically upward transport of dense gas even at low source densities, as the DGM-based predictions matched the measured data better than the Fickian results did. For vertically downward transport, the dense gas densities predicted by both models were not greatly different from our experimental measurements, but substantially greater than the observations obtained from the literature, especially at high source densities. Further research will be necessary for exploring factors affecting downward transport of dense gas in soil columns. Use of the measured data to compute flux components of SF6 showed that the magnitudes of diffusive flux component based on the Fickian-type diffusion expressions in terms of molar concentration, molar fraction and mass density fraction gradient were almost the same. However, they were greater than the result computed with the mass fraction gradient for > 24% and the DGM-based result for more than one time. As a consequence, the DGM-based total flux of SF6 was in magnitude greatly less than the Fickian result not only for horizontal transport (diffusion-dominating) but also for vertical transport (advection and diffusion) of dense gas. Particularly, the Fickian-based total flux was more than two times in magnitude as much as the DGM result for vertically upward transport of dense gas.

  15. The Nature of Turbulence in the LITTLE THINGS Dwarf Irregular Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, Erin; Chien, Li-Hsin; Hollyday, Gigja

    We present probability density functions and higher order (skewness and kurtosis) analyses of the galaxy-wide and spatially resolved distributions of H i column density in the LITTLE THINGS sample of dwarf irregular galaxies. This analysis follows that of Burkhart et al. for the Small Magellanic Cloud (SMC). About 60% of our sample have galaxy-wide values of kurtosis that are similar to that found for the SMC, with a range up to much higher values, and kurtosis increases with integrated star formation rate. Kurtosis and skewness were calculated for radial annuli and for a grid of 32 pixel × 32 pixel kernels acrossmore » each galaxy. For most galaxies, kurtosis correlates with skewness. For about half of the galaxies, there is a trend of increasing kurtosis with radius. The range of kurtosis and skewness values is modeled by small variations in the Mach number close to the sonic limit and by conversion of H i to molecules at high column density. The maximum H i column densities decrease with increasing radius in a way that suggests molecules are forming in the weak-field limit, where H{sub 2} formation balances photodissociation in optically thin gas at the edges of clouds.« less

  16. Gaussian model for emission rate measurement of heated plumes using hyperspectral data

    NASA Astrophysics Data System (ADS)

    Grauer, Samuel J.; Conrad, Bradley M.; Miguel, Rodrigo B.; Daun, Kyle J.

    2018-02-01

    This paper presents a novel model for measuring the emission rate of a heated gas plume using hyperspectral data from an FTIR imaging spectrometer. The radiative transfer equation (RTE) is used to relate the spectral intensity of a pixel to presumed Gaussian distributions of volume fraction and temperature within the plume, along a line-of-sight that corresponds to the pixel, whereas previous techniques exclusively presume uniform distributions for these parameters. Estimates of volume fraction and temperature are converted to a column density by integrating the local molecular density along each path. Image correlation velocimetry is then employed on raw spectral intensity images to estimate the volume-weighted normal velocity at each pixel. Finally, integrating the product of velocity and column density along a control surface yields an estimate of the instantaneous emission rate. For validation, emission rate estimates were derived from synthetic hyperspectral images of a heated methane plume, generated using data from a large-eddy simulation. Calculating the RTE with Gaussian distributions of volume fraction and temperature, instead of uniform distributions, improved the accuracy of column density measurement by 14%. Moreover, the mean methane emission rate measured using our approach was within 4% of the ground truth. These results support the use of Gaussian distributions of thermodynamic properties in calculation of the RTE for optical gas diagnostics.

  17. Application of multiwalled carbon nanotubes and its magnetite derivative for emulsified oil removal from produced water.

    PubMed

    Ibrahim, Taleb H; Sabri, Muhammad A; Khamis, Mustafa I

    2018-05-10

    Multiwalled carbon nanotubes and their magnetite derivatives were employed as adsorbents for emulsified oil removal from produced water. The experimental parameters for maximum emulsified oil removal efficiency and effective regeneration of these adsorbents were determined. The optimum parameters in terms of adsorbent dosage, contact time, salinity, pH and temperature were 3.0 g/L, 20.0 min, 0 ppm, 7.0 and 25°C for both adsorbents. Due to their low density, multiwalledcarbon nanotubes could not be successfully employed in packed bed columns. The magnetite derivative has a larger density and hence, for the removal of emulsified oil from produced water packed bed column studies were performed utilizing multiwalled carbon magnetite nanotubes. The packed bed column efficiency and behaviour were evaluated using Thomas, Clark, Yan et al. and Bohart and Adams models. The Yan model was found to best describe the column experimental data. The adsorbents were regenerated using n-hexane and reused several times for oil removal from produced water without any significant decrease in their initial adsorption capacities.

  18. The structure of the ISM in the Zone of Avoidance by high-resolution multi-wavelength observations

    NASA Astrophysics Data System (ADS)

    Tóth, L. V.; Doi, Y.; Pinter, S.; Kovács, T.; Zahorecz, S.; Bagoly, Z.; Balázs, L. G.; Horvath, I.; Racz, I. I.; Onishi, T.

    2018-05-01

    We estimate the column density of the Galactic foreground interstellar medium (GFISM) in the direction of extragalactic sources. All-sky AKARI FIS infrared sky survey data might be used to trace the GFISM with a resolution of 2 arcminutes. The AKARI based GFISM hydrogen column density estimates are compared with similar quantities based on HI 21cm measurements of various resolution and of Planck results. High spatial resolution observations of the GFISM may be important recalculating the physical parameters of gamma-ray burst (GRB) host galaxies using the updated foreground parameters.

  19. Detection of a new carbon-chain molecule, CCO

    NASA Technical Reports Server (NTRS)

    Ohishi, Masatoshi; Ishikawa, Shin-Ichi; Yamada, Chikashi; Kanamori, Hideto; Irvine, William M.; Brown, Ronald D.; Godfrey, Peter D.; Kaifu, Norio; Suzuki, Hiroko

    1991-01-01

    A new carbon-chain molecule, CCO 3Sigma(-), has been detected in the cold dark molecular cloud TMC-1. The excitation temperature and the column density of CCO are, respectively, about 6 K and about 6 x 10 to the 11th/sq cm. This column density corresponds to a fractional abundance relative to H2 of about 6 x 10 to the -11th. This value is two orders of magnitude less than the abundance of the related carbon-chain molecule CCS, and about half that of C3O. The formation mechanism for CCO is discussed.

  20. CS band intensity and column densities and production rates of 15 comets

    NASA Astrophysics Data System (ADS)

    Sanzovo, G. C.; Singh, P. D.; Huebner, W. F.

    1993-09-01

    An accurate fluorescence efficiency of the CS(0,0) band and the lifetime of CS have been calculated at 1 AU heliocentric distance. Model-independent CS column densities and production rates are determined from derived fluorescent emission rates (g-factors) and lifetimes for 15 comets: Austin (1982g), Borrelly (1980i), Bradfield (1979X), Crommelin (1983n), Encke (1980), Encke (1984), Giacobini-Zinner (1984e), Halley (1982i), IRAS-Araki-Alcock (1983d), Meier (1980q), Panther (1980u), Stephan-Oterma (1980g), Tuttle (1980h), West (1975n), and Wilson (1986l).

  1. CS band intensity and column densities and production rates of 15 comets

    NASA Technical Reports Server (NTRS)

    Sanzovo, G. C.; Singh, P. D.; Huebner, W. F.

    1993-01-01

    An accurate fluorescence efficiency of the CS(0,0) band and the lifetime of CS have been calculated at 1 AU heliocentric distance. Model-independent CS column densities and production rates are determined from derived fluorescent emission rates (g-factors) and lifetimes for 15 comets: Austin (1982g), Borrelly (1980i), Bradfield (1979X), Crommelin (1983n), Encke (1980), Encke (1984), Giacobini-Zinner (1984e), Halley (1982i), IRAS-Araki-Alcock (1983d), Meier (1980q), Panther (1980u), Stephan-Oterma (1980g), Tuttle (1980h), West (1975n), and Wilson (1986l).

  2. Diurnal variation of stratospheric chlorine monoxide - A critical test of chlorine chemistry in the ozone layer

    NASA Technical Reports Server (NTRS)

    Solomon, P. M.; De Zafra, R.; Parrish, A.; Barrett, J. W.

    1984-01-01

    Ground-based observations of a mm-wave spectral line at 278 GHz have yielded stratospheric chlorine monoxide column density diurnal variation records which indicate that the mixing ratio and column density of this compound above 30 km are about 20 percent lower than model predictions based on 2.1 parts/billion of total stratospheric chlorine. The observed day-to-night variation is, however, in good agreement with recent model predictions, both confirming the existence of a nighttime reservoir for chlorine and verifying the predicted general rate of its storage and retrieval.

  3. Directed self-assembly into low-density colloidal liquid crystal phases

    NASA Astrophysics Data System (ADS)

    Gao, Yongxiang; Romano, Flavio; Dullens, Roel P. A.; Doye, Jonathan K.; Aarts, Dirk G. A. L.

    2018-01-01

    Alignment of anisometric particles into liquid crystals (LCs) often results from an entropic competition between their rotational and translational degrees of freedom at dense packings. Here we show that by selectively functionalizing the heads of colloidal rods with magnetic nanoparticles this tendency can be broken to direct the particles into novel, low-density LC phases. Under an external magnetic field, the magnetic heads line up in columns whereas the nonmagnetic tails point out randomly in a plane perpendicular to the columns, forming bottle-brush-like objects; laterally, the bottle brushes are entropically stabilized against coalescence. Experiments and simulations show that upon increasing the particle density the system goes from a dilute gas to a dense two-dimensional liquid of bottle brushes with a density well below the zero-field nematic phase. Our findings offer a strategy for self-assembly into three-dimensional open phases that may find applications in switchable photonics, filtration, and light-weight materials.

  4. Density of Upper Respiratory Colonization With Streptococcus pneumoniae and Its Role in the Diagnosis of Pneumococcal Pneumonia Among Children Aged <5 Years in the PERCH Study.

    PubMed

    Baggett, Henry C; Watson, Nora L; Deloria Knoll, Maria; Brooks, W Abdullah; Feikin, Daniel R; Hammitt, Laura L; Howie, Stephen R C; Kotloff, Karen L; Levine, Orin S; Madhi, Shabir A; Murdoch, David R; Scott, J Anthony G; Thea, Donald M; Antonio, Martin; Awori, Juliet O; Baillie, Vicky L; DeLuca, Andrea N; Driscoll, Amanda J; Duncan, Julie; Ebruke, Bernard E; Goswami, Doli; Higdon, Melissa M; Karron, Ruth A; Moore, David P; Morpeth, Susan C; Mulindwa, Justin M; Park, Daniel E; Paveenkittiporn, Wantana; Piralam, Barameht; Prosperi, Christine; Sow, Samba O; Tapia, Milagritos D; Zaman, Khalequ; Zeger, Scott L; O'Brien, Katherine L

    2017-06-15

    Previous studies suggested an association between upper airway pneumococcal colonization density and pneumococcal pneumonia, but data in children are limited. Using data from the Pneumonia Etiology Research for Child Health (PERCH) study, we assessed this potential association. PERCH is a case-control study in 7 countries: Bangladesh, The Gambia, Kenya, Mali, South Africa, Thailand, and Zambia. Cases were children aged 1-59 months hospitalized with World Health Organization-defined severe or very severe pneumonia. Controls were randomly selected from the community. Microbiologically confirmed pneumococcal pneumonia (MCPP) was confirmed by detection of pneumococcus in a relevant normally sterile body fluid. Colonization density was calculated with quantitative polymerase chain reaction analysis of nasopharyngeal/oropharyngeal specimens. Median colonization density among 56 cases with MCPP (MCPP cases; 17.28 × 106 copies/mL) exceeded that of cases without MCPP (non-MCPP cases; 0.75 × 106) and controls (0.60 × 106) (each P < .001). The optimal density for discriminating MCPP cases from controls using the Youden index was >6.9 log10 copies/mL; overall, the sensitivity was 64% and the specificity 92%, with variable performance by site. The threshold was lower (≥4.4 log10 copies/mL) when MCPP cases were distinguished from controls who received antibiotics before specimen collection. Among the 4035 non-MCPP cases, 500 (12%) had pneumococcal colonization density >6.9 log10 copies/mL; above this cutoff was associated with alveolar consolidation at chest radiography, very severe pneumonia, oxygen saturation <92%, C-reactive protein ≥40 mg/L, and lack of antibiotic pretreatment (all P< .001). Pneumococcal colonization density >6.9 log10 copies/mL was strongly associated with MCPP and could be used to improve estimates of pneumococcal pneumonia prevalence in childhood pneumonia studies. Our findings do not support its use for individual diagnosis in a clinical setting. Published by Oxford University Press for the Infectious Diseases Society of America 2017.This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. On the link between column density distribution and density scaling relation in star formation regions

    NASA Astrophysics Data System (ADS)

    Veltchev, Todor; Donkov, Sava; Stanchev, Orlin

    2017-07-01

    We present a method to derive the density scaling relation ∝ L^{-α} in regions of star formation or in their turbulent vicinities from straightforward binning of the column-density distribution (N-pdf). The outcome of the method is studied for three types of N-pdf: power law (7/5≤α≤5/3), lognormal (0.7≲α≲1.4) and combination of lognormals. In the last case, the method of Stanchev et al. (2015) was also applied for comparison and a very weak (or close to zero) correlation was found. We conclude that the considered `binning approach' reflects rather the local morphology of the N-pdf with no reference to the physical conditions in a considered region. The rough consistency of the derived slopes with the widely adopted Larson's (1981) value α˜1.1 is suggested to support claims that the density-size relation in molecular clouds is indeed an artifact of the observed N-pdf.

  6. The relationship between the galactic matter distribution, cosmic ray dynamics, and gamma ray production

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Fichtel, C. E.; Thompson, D. J.

    1976-01-01

    Theoretical considerations and analysis of the results of gamma ray astronomy suggest that the galactic cosmic rays are dynamically coupled to the interstellar matter through the magnetic fields, and hence the cosmic ray density should be enhanced where the matter density is greatest on the scale of galactic arms. This concept has been explored in a galactic model using recent 21 cm radio observations of the neutral hydrogen and 2.6 mm observations of carbon monoxide, which is considered to be a tracer of molecular hydrogen. The model assumes: (1) cosmic rays are galactic and not universal; (2) on the scale of galactic arms, the cosmic ray column (surface) density is proportional to the total interstellar gas column density; (3) the cosmic ray scale height is significantly larger than the scale height of the matter; and (4) ours is a spiral galaxy characterized by an arm to interarm density ratio of about 3:1.

  7. A quantitative analysis of microplastic pollution along the south-eastern coastline of South Africa.

    PubMed

    Nel, H A; Froneman, P W

    2015-12-15

    The extent of microplastic pollution (<5mm) in the southern hemisphere, particularly southern Africa, is largely unknown. This study aimed to evaluate microplastic pollution along the south-eastern coastline of South Africa, looking at whether bays are characterised by higher microplastic densities than open stretches of coastline in both beach sediment and surf-zone water. Microplastic (mean ± standard error) densities in the beach sediment ranged between 688.9 ± 348.2 and 3308 ± 1449 particles · m(-2), while those in the water column varied between 257.9 ± 53.36 and 1215 ± 276.7 particles · m(-3). With few exceptions there were no significant spatial patterns in either the sediment or water column microplastic densities; with little differences in density between bays and the open coast (P>0.05). These data indicate that the presence of microplastics were not associated with proximity to land-based sources or population density, but rather is governed by water circulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The H I-to-H2 Transition in a Turbulent Medium

    NASA Astrophysics Data System (ADS)

    Bialy, Shmuel; Burkhart, Blakesley; Sternberg, Amiel

    2017-07-01

    We study the effect of density fluctuations induced by turbulence on the H I/H2 structure in photodissociation regions (PDRs) both analytically and numerically. We perform magnetohydrodynamic numerical simulations for both subsonic and supersonic turbulent gas and chemical H I/H2 balance calculations. We derive atomic-to-molecular density profiles and the H I column density probability density function (PDF) assuming chemical equilibrium. We find that, while the H I/H2 density profiles are strongly perturbed in turbulent gas, the mean H I column density is well approximated by the uniform-density analytic formula of Sternberg et al. The PDF width depends on (a) the radiation intensity-to-mean density ratio, (b) the sonic Mach number, and (c) the turbulence decorrelation scale, or driving scale. We derive an analytic model for the H I PDF and demonstrate how our model, combined with 21 cm observations, can be used to constrain the Mach number and driving scale of turbulent gas. As an example, we apply our model to observations of H I in the Perseus molecular cloud. We show that a narrow observed H I PDF may imply small-scale decorrelation, pointing to the potential importance of subcloud-scale turbulence driving.

  9. THE STAR FORMATION RATE OF TURBULENT MAGNETIZED CLOUDS: COMPARING THEORY, SIMULATIONS, AND OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Federrath, Christoph; Klessen, Ralf S., E-mail: christoph.federrath@monash.edu

    2012-12-20

    The role of turbulence and magnetic fields is studied for star formation in molecular clouds. We derive and compare six theoretical models for the star formation rate (SFR)-the Krumholz and McKee (KM), Padoan and Nordlund (PN), and Hennebelle and Chabrier (HC) models, and three multi-freefall versions of these, suggested by HC-all based on integrals over the log-normal distribution of turbulent gas. We extend all theories to include magnetic fields and show that the SFR depends on four basic parameters: (1) virial parameter {alpha}{sub vir}; (2) sonic Mach number M; (3) turbulent forcing parameter b, which is a measure for themore » fraction of energy driven in compressive modes; and (4) plasma {beta}=2M{sub A}{sup 2}/M{sup 2} with the Alfven Mach number M{sub A}. We compare all six theories with MHD simulations, covering cloud masses of 300 to 4 Multiplication-Sign 10{sup 6} M{sub Sun} and Mach numbers M=3-50 and M{sub A}=1-{infinity}, with solenoidal (b = 1/3), mixed (b = 0.4), and compressive turbulent (b = 1) forcings. We find that the SFR increases by a factor of four between M=5 and 50 for compressive turbulent forcing and {alpha}{sub vir} {approx} 1. Comparing forcing parameters, we see that the SFR is more than 10 times higher with compressive than solenoidal forcing for M=10 simulations. The SFR and fragmentation are both reduced by a factor of two in strongly magnetized, trans-Alfvenic turbulence compared to hydrodynamic turbulence. All simulations are fit simultaneously by the multi-freefall KM and multi-freefall PN theories within a factor of two over two orders of magnitude in SFR. The simulated SFRs cover the range and correlation of SFR column density with gas column density observed in Galactic clouds, and agree well for star formation efficiencies SFE = 1%-10% and local efficiencies {epsilon} = 0.3-0.7 due to feedback. We conclude that the SFR is primarily controlled by interstellar turbulence, with a secondary effect coming from magnetic fields.« less

  10. Observation of helicon wave with m = 0 antenna in a weakly magnetized inductively coupled plasma source

    NASA Astrophysics Data System (ADS)

    Ellingboe, Bert; Sirse, Nishant; Moloney, Rachel; McCarthy, John

    2015-09-01

    Bounded whistler wave, called ``helicon wave,'' is known to produce high-density plasmas and has been exploited as a high density plasma source for many applications, including electric propulsion for spacecraft. In a helicon plasma source, an antenna wrapped around the magnetized plasma column launches a low frequency wave, ωce/2 >ωhelicon >ωce/100, in the plasma which is responsible for maintaining high density plasma. Several antenna designs have been proposed in order to match efficiently the wave modes. In our experiment, helicon wave mode is observed using an m = 0 antenna. A floating B dot probe, compensated to the capacitively coupled E field, is employed to measure axial-wave-field-profiles (z, r, and θ components) in the plasma at multiple radial positions as a function of rf power and pressure. The Bθ component of the rf-field is observed to be unaffected as the wave propagates in the axial direction. Power coupling between the antenna and the plasma column is identified and agrees with the E, H, and wave coupling regimes previously seen in M =1 antenna systems. That is, the Bz component of the rf-field is observed at low plasma density as the Bz component from the antenna penetrates the plasma. The Bz component becomes very small at medium density due to shielding at the centre of the plasma column; however, with increasing density, a sudden ``jump'' occurs in the Bz component above which a standing wave under the antenna with a propagating wave away from the antenna are observed.

  11. Disturbance during logging stimulates regeneration of koa

    Treesearch

    Paul G. Scowcroft; Robert E. Nelson

    1976-01-01

    The abundance and distribution of Acacia koa regeneration after logging were studied on a 500-acre (202-ha) tract of koa forest heavily infested with Passiflora mollissima vines on the island of Hawaii. Koa seedling density was about three times greater in disturbed areas than in undisturbed ones. Most of the koa seedlings in...

  12. Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data: A case study of the South Pars Gas Field, Persian Gulf, Iran

    NASA Astrophysics Data System (ADS)

    Alizadeh, Bahram; Najjari, Saeid; Kadkhodaie-Ilkhchi, Ali

    2012-08-01

    Intelligent and statistical techniques were used to extract the hidden organic facies from well log responses in the Giant South Pars Gas Field, Persian Gulf, Iran. Kazhdomi Formation of Mid-Cretaceous and Kangan-Dalan Formations of Permo-Triassic Data were used for this purpose. Initially GR, SGR, CGR, THOR, POTA, NPHI and DT logs were applied to model the relationship between wireline logs and Total Organic Carbon (TOC) content using Artificial Neural Networks (ANN). The correlation coefficient (R2) between the measured and ANN predicted TOC equals to 89%. The performance of the model is measured by the Mean Squared Error function, which does not exceed 0.0073. Using Cluster Analysis technique and creating a binary hierarchical cluster tree the constructed TOC column of each formation was clustered into 5 organic facies according to their geochemical similarity. Later a second model with the accuracy of 84% was created by ANN to determine the specified clusters (facies) directly from well logs for quick cluster recognition in other wells of the studied field. Each created facies was correlated to its appropriate burial history curve. Hence each and every facies of a formation could be scrutinized separately and directly from its well logs, demonstrating the time and depth of oil or gas generation. Therefore potential production zone of Kazhdomi probable source rock and Kangan- Dalan reservoir formation could be identified while well logging operations (especially in LWD cases) were in progress. This could reduce uncertainty and save plenty of time and cost for oil industries and aid in the successful implementation of exploration and exploitation plans.

  13. A log-linear model approach to estimation of population size using the line-transect sampling method

    USGS Publications Warehouse

    Anderson, D.R.; Burnham, K.P.; Crain, B.R.

    1978-01-01

    The technique of estimating wildlife population size and density using the belt or line-transect sampling method has been used in many past projects, such as the estimation of density of waterfowl nestling sites in marshes, and is being used currently in such areas as the assessment of Pacific porpoise stocks in regions of tuna fishing activity. A mathematical framework for line-transect methodology has only emerged in the last 5 yr. In the present article, we extend this mathematical framework to a line-transect estimator based upon a log-linear model approach.

  14. GEOMETRY-INDEPENDENT DETERMINATION OF RADIAL DENSITY DISTRIBUTIONS IN MOLECULAR CLOUD CORES AND OTHER ASTRONOMICAL OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krčo, Marko; Goldsmith, Paul F., E-mail: marko@astro.cornell.edu

    2016-05-01

    We present a geometry-independent method for determining the shapes of radial volume density profiles of astronomical objects whose geometries are unknown, based on a single column density map. Such profiles are often critical to understand the physics and chemistry of molecular cloud cores, in which star formation takes place. The method presented here does not assume any geometry for the object being studied, thus removing a significant source of bias. Instead, it exploits contour self-similarity in column density maps, which appears to be common in data for astronomical objects. Our method may be applied to many types of astronomical objectsmore » and observable quantities so long as they satisfy a limited set of conditions, which we describe in detail. We derive the method analytically, test it numerically, and illustrate its utility using 2MASS-derived dust extinction in molecular cloud cores. While not having made an extensive comparison of different density profiles, we find that the overall radial density distribution within molecular cloud cores is adequately described by an attenuated power law.« less

  15. Interstellar abundances and depletions inferred from observations of neutral atoms

    NASA Technical Reports Server (NTRS)

    Snow, T. P.

    1984-01-01

    Data on neutral atomic species are analyzed for the purpose of inferring relative elemental abundances and depletions in diffuse cloud cores, where it is assumed that densities are enhanced in comparison with mean densities over integrated lines of sight. Column densities of neutral atoms are compared to yield relative column densities of singly ionized species, which are assumed dominant in cloud cores. This paper incorporates a survey of literature data on neutral atomic abundances with the result that no systematic enhancement in the depletions of calcium or iron in cloud cores is found, except for zeta Ophiuchi. This may imply that depletions are not influenced by density, but other data argue against this interpretation. It is concluded either that in general all elements are depleted together in dense regions so that their relative abundances remain constant, or that typical diffuse clouds do not have significant cores, but instead are reasonably homogeneous. The data show a probable correlation between cloud-core depletion and hydrogen-molecular fraction, supporting the assumption that overall depletions are a function of density.

  16. Radial Profiles of the Plasma Electron Characteristics in a 30 kW Arc Jet

    NASA Technical Reports Server (NTRS)

    Codron, Douglas A.; Nawaz, Anuscheh

    2013-01-01

    The present effort aims to strengthen modeling work conducted at the NASA Ames Research Center by measuring the critical plasma electron characteristics within and slightly outside of an arc jet plasma column. These characteristics are intended to give physical insights while assisting in the formulation of boundary conditions to validate full scale simulations. Single and triple Langmuir probes have been used to achieve estimates of the electron temperature (T(sub e)), electron number density (n(sub e)) and plasma potential (outside of the plasma column) as probing location is varied radially from the flow centerline. Both the electron temperature and electron number density measurements show a large dependence on radial distance from the plasma column centerline with T(sub e) approx. = (3 - 12 eV and n(sub e) approx. = 10(exp 12) - 10(exp 14)/cu cm.

  17. Empirical relationships among atmospheric variables from rawinsonde and field data as surrogates for AVIRIS measurements: Estimation of regional land surface evapotranspiration

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Hoover, Gordon; Nolin, Anne; Alley, Ron; Margolis, Jack

    1992-01-01

    Empirical relationships between variables are ways of securing estimates of quantities difficult to measure by remote sensing methods. The use of empirical functions was explored between: (1) atmospheric column moisture abundance W (gm H2O/cm(sup 2) and surface absolute water vapor density rho(q-bar) (gm H2O/cm(sup 3), with rho density of moist air (gm/cm(sup 3), q-bar specific humidity (gm H2O/gm moist air), and (2) column abundance and surface moisture flux E (gm H2O/(cm(sup 2)sec)) to infer regional evapotranspiration from Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) water vapor mapping data. AVIRIS provides, via analysis of atmospheric water absorption features, estimates of column moisture abundance at very high mapping rate (at approximately 100 km(sup 2)/40 sec) over large areas at 20 m ground resolution.

  18. Effects of initial saturation on properties modification and displacement of tetrachloroethene with aqueous isobutanol.

    PubMed

    Boyd, Glen R; Ocampo-Gómez, Ana M; Li, Minghua; Husserl, Johana

    2006-11-20

    Packed column experiments were conducted to study effects of initial saturation of tetrachloroethene (PCE) in the range of 1.0-14% pore volume (PV) on mobilization and downward migration of the non-aqueous phase liquid (NAPL) product upon contact with aqueous isobutanol ( approximately 10 vol.%). This study focused on the consequences of swelling beyond residual saturation. Columns were packed with mixtures of neat PCE, water and glass beads and waterflooded to establish a desired homogeneous residual saturation, and then flooded with aqueous isobutanol under controlled hydraulic conditions. Results showed a critical saturation of approximately 8% PV for these packed column experimental conditions. At low initial PCE saturations (<8% PV), experimental results showed reduced risk of NAPL-product migration upon contact with aqueous isobutanol. At higher initial PCE saturations (>8% PV), results showed NAPL-product mobilization and downward migration which was attributed to interfacial tension (IFT) reduction, swelling of the NAPL-product, and reduced density modification. Packed column results were compared with good agreement to theoretical predictions of NAPL-product mobilization using the total trapping number, N(T). In addition to the packed column study, preliminary batch experiments were conducted to study the effects of PCE volumetric fraction in the range of 0.5-20% on density, viscosity, and IFT modification as a function of time following contact with aqueous isobutanol ( approximately 10 vol.%). Modified NAPL-product fluid properties approached equilibrium within approximately 2 h of contact for density and viscosity. IFT reduction occurred immediately as expected. Measured fluid properties were compared with good agreement to theoretical equilibrium predictions based on UNIQUAC. Overall, this study demonstrates the importance of initial DNAPL saturation, and the associated risk of downward NAPL-product migration, in applying alcohol flooding for remediation of DNAPL contaminated ground water sites.

  19. X-ray View of Four High-Luminosity Swift-BAT AGN: Unveiling Obscuration and Reflection with Suzaku

    NASA Technical Reports Server (NTRS)

    Fiorettil, V.; Angelini, L.; Mushotzky, R. F.; Koss, M.; Malaguti, G.

    2013-01-01

    Aims. A complete census of obscured Active Galactic Nuclei (AGN) is necessary to reveal the history of the super massive black hole (SMBH) growth and galaxy evolution in the Universe given the complex feedback processes and the fact that much of this growth occurs in an obscured phase. In this context, hard X-ray surveys and dedicated follow-up observations represent a unique tool for selecting highly absorbed AGN and for characterizing the obscuring matter surrounding the SMBH. Here we focus on the absorption and reflection occurring in highly luminous, quasar-like AGN, to study the relation between the geometry of the absorbing matter and the AGN nature (e.g. X-ray, optical, and radio properties), and to help to determine the column density dependency on the AGN luminosity. Methods. The Swift/BAT nine-month survey observed 153 AGN, all with ultra-hard X-ray BAT fluxes in excess of 10(exp -11) erg per square centimeter and an average redshift of 0.03. Among them, four of the most luminous BAT AGN (44.73 less than LogLBAT less than 45.31) were selected as targets of Suzaku follow-up observations: J2246.0+3941 (3C 452), J0407.4+0339 (3C 105), J0318.7+6828, and J0918.5+0425. The column density, scattered/reflected emission, the properties of the Fe K line, and a possible variability are fully analyzed. For the latter, the spectral properties from Chandra, XMM-Newton and Swift/XRT public observations were compared with the present Suzaku analysis, adding an original spectral analysis when non was available from the literature. Results. Of our sample, 3C 452 is the only certain Compton-thick AGN candidate because of i) the high absorption (N(sub H) approximately 4 × 10(exp 23) per square centimeter) and strong Compton reflection; ii) the lack of variability; iii) the "buried" nature, i.e. the low scattering fraction (less than 0.5%) and the extremely low relative [OIII] luminosity. In contrast 3C 105 is not reflection-dominated, despite the comparable column density, X-ray luminosity and radio morphology, but shows a strong long-term variability in flux and scattering fraction, consistent with the soft emission being scattered from a distant region (e.g., the narrow emission line region). The sample presents high (greater than 100) X-to- [OIII] luminosity ratios, with an extreme value of R(sup X)(sub [OIII]) approximately 800 for 3C 452, confirming the [OIII] luminosity to be affected by residual extinction in presence of mild absorption, especially for "buried" AGN such as 3C 452. Three of our targets are powerful FRII radio galaxies, which is shown by their high luminosity and absorption; this makes them the most luminous and absorbed AGN of the BAT Seyfert survey despite the inversely proportional N(sub H) - L(sub X) relation.

  20. Uncertainty and variability in laboratory derived sorption parameters of sediments from a uranium in situ recovery site

    NASA Astrophysics Data System (ADS)

    Dangelmayr, Martin A.; Reimus, Paul W.; Johnson, Raymond H.; Clay, James T.; Stone, James J.

    2018-06-01

    This research assesses the ability of a GC SCM to simulate uranium transport under variable geochemical conditions typically encountered at uranium in-situ recovery (ISR) sites. Sediment was taken from a monitoring well at the SRH site at depths 192 and 193 m below ground and characterized by XRD, XRF, TOC, and BET. Duplicate column studies on the different sediment depths, were flushed with synthesized restoration waters at two different alkalinities (160 mg/l CaCO3 and 360 mg/l CaCO3) to study the effect of alkalinity on uranium mobility. Uranium breakthrough occurred 25% - 30% earlier in columns with 360 mg/l CaCO3 over columns fed with 160 mg/l CaCO3 influent water. A parameter estimation program (PEST) was coupled to PHREEQC to derive site densities from experimental data. Significant parameter fittings were produced for all models, demonstrating that the GC SCM approach can model the impact of carbonate on uranium in flow systems. Derived site densities for the two sediment depths were between 141 and 178 μmol-sites/kg-soil, demonstrating similar sorption capacities despite heterogeneity in sediment mineralogy. Model sensitivity to alkalinity and pH was shown to be moderate compared to fitted site densities, when calcite saturation was allowed to equilibrate. Calcite kinetics emerged as a potential source of error when fitting parameters in flow conditions. Fitted results were compared to data from previous batch and column studies completed on sediments from the Smith-Ranch Highland (SRH) site, to assess variability in derived parameters. Parameters from batch experiments were lower by a factor of 1.1 to 3.4 compared to column studies completed on the same sediments. The difference was attributed to errors in solid-solution ratios and the impact of calcite dissolution in batch experiments. Column studies conducted at two different laboratories showed almost an order of magnitude difference in fitted site densities suggesting that experimental methodology may play a bigger role in column sorption behavior than actual sediment heterogeneity. Our results demonstrate the necessity for ISR sites to remove residual pCO2 and equilibrate restoration water with background geochemistry to reduce uranium mobility. In addition, the observed variability between fitted parameters on the same sediments highlights the need to provide standardized guidelines and methodology for regulators and industry when the GC SCM approach is used for ISR risk assessments.

  1. Uncertainty and variability in laboratory derived sorption parameters of sediments from a uranium in situ recovery site.

    PubMed

    Dangelmayr, Martin A; Reimus, Paul W; Johnson, Raymond H; Clay, James T; Stone, James J

    2018-06-01

    This research assesses the ability of a GC SCM to simulate uranium transport under variable geochemical conditions typically encountered at uranium in-situ recovery (ISR) sites. Sediment was taken from a monitoring well at the SRH site at depths 192 and 193 m below ground and characterized by XRD, XRF, TOC, and BET. Duplicate column studies on the different sediment depths, were flushed with synthesized restoration waters at two different alkalinities (160 mg/l CaCO 3 and 360 mg/l CaCO 3 ) to study the effect of alkalinity on uranium mobility. Uranium breakthrough occurred 25% - 30% earlier in columns with 360 mg/l CaCO 3 over columns fed with 160 mg/l CaCO 3 influent water. A parameter estimation program (PEST) was coupled to PHREEQC to derive site densities from experimental data. Significant parameter fittings were produced for all models, demonstrating that the GC SCM approach can model the impact of carbonate on uranium in flow systems. Derived site densities for the two sediment depths were between 141 and 178 μmol-sites/kg-soil, demonstrating similar sorption capacities despite heterogeneity in sediment mineralogy. Model sensitivity to alkalinity and pH was shown to be moderate compared to fitted site densities, when calcite saturation was allowed to equilibrate. Calcite kinetics emerged as a potential source of error when fitting parameters in flow conditions. Fitted results were compared to data from previous batch and column studies completed on sediments from the Smith-Ranch Highland (SRH) site, to assess variability in derived parameters. Parameters from batch experiments were lower by a factor of 1.1 to 3.4 compared to column studies completed on the same sediments. The difference was attributed to errors in solid-solution ratios and the impact of calcite dissolution in batch experiments. Column studies conducted at two different laboratories showed almost an order of magnitude difference in fitted site densities suggesting that experimental methodology may play a bigger role in column sorption behavior than actual sediment heterogeneity. Our results demonstrate the necessity for ISR sites to remove residual pCO2 and equilibrate restoration water with background geochemistry to reduce uranium mobility. In addition, the observed variability between fitted parameters on the same sediments highlights the need to provide standardized guidelines and methodology for regulators and industry when the GC SCM approach is used for ISR risk assessments. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. VIII. A WIDE-AREA, HIGH-RESOLUTION MAP OF DUST EXTINCTION IN M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalcanton, Julianne J.; Fouesneau, Morgan; Weisz, Daniel R.

    We map the distribution of dust in M31 at 25 pc resolution using stellar photometry from the Panchromatic Hubble Andromeda Treasury survey. The map is derived with a new technique that models the near-infrared color–magnitude diagram (CMD) of red giant branch (RGB) stars. The model CMDs combine an unreddened foreground of RGB stars with a reddened background population viewed through a log-normal column density distribution of dust. Fits to the model constrain the median extinction, the width of the extinction distribution, and the fraction of reddened stars in each 25 pc cell. The resulting extinction map has a factor ofmore » ≳4 times better resolution than maps of dust emission, while providing a more direct measurement of the dust column. There is superb morphological agreement between the new map and maps of the extinction inferred from dust emission by Draine et al. However, the widely used Draine and Li dust models overpredict the observed extinction by a factor of ∼2.5, suggesting that M31's true dust mass is lower and that dust grains are significantly more emissive than assumed in Draine et al. The observed factor of ∼2.5 discrepancy is consistent with similar findings in the Milky Way by the Plank Collaboration et al., but we find a more complex dependence on parameters from the Draine and Li dust models. We also show that the the discrepancy with the Draine et al. map is lowest where the current interstellar radiation field has a harder spectrum than average. We discuss possible improvements to the CMD dust mapping technique, and explore further applications in both M31 and other galaxies.« less

  3. IC 3639 - A New Bona Fide Compton-Thick AGN Unveiled By NuSTAR

    NASA Technical Reports Server (NTRS)

    Boorman, Peter G.; Gandhi, P.; Alexander, D. M.; Annuar, A.; Ballantyne, D. R.; Bauer, F.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; hide

    2016-01-01

    We analyze high-quality NuSTAR observations of the local (z = 0.011) Seyfert 2 active galactic nucleus (AGN) IC 3639, in conjunction with archival Suzaku and Chandra data. This provides the first broadband X-ray spectral analysis of the source, spanning nearly two decades in energy (0.5-30 keV). Previous X-ray observations of the source below 10 keV indicated strong reflection/obscuration on the basis of a pronounced iron fluorescence line at 6.4 keV. The hard X-ray energy coverage of NuSTAR, together with self-consistent toroidal reprocessing models, enables direct broadband constraints on the obscuring column density of the source. We find the source to be heavily Compton-thick (CTK) with an obscuring column in excess of 3.6 x 10(exp 24) cm(exp -2), unconstrained at the upper end. We further find an intrinsic 2-10 keV luminosity of log(sub 10) (L(sub 2-10 keV) [erg s(exp -1)])= 43.4(+0.6/-1.1) to 90% confidence, almost 400 times the observed flux, and consistent with various multiwavelength diagnostics. Such a high ratio of intrinsic to observed flux, in addition to an Fe-K(alpha) fluorescence line equivalent width exceeding 2 keV, is extreme among known bona fide CTK AGNs, which we suggest are both due to the high level of obscuration present around IC 3639. Our study demonstrates that broadband spectroscopic modeling with NuSTAR enables large corrections for obscuration to be carried out robustly and emphasizes the need for improved modeling of AGN tori showing intense iron fluorescence.

  4. Evaluating the Relationship between Equilibrium Passive ...

    EPA Pesticide Factsheets

    This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) as it relates to organism bioaccumulation in the water column and interstitial water. Fifty-five studies were found where both passive samplers and organism bioaccumulation were used to measured water quality. Of these investigations, 19 provided direct comparisons relating passive sampler concentrations and organism bioaccumulation. Passive sampling polymers included in the review were: low density polyethylene (LDPE); polyoxymethylene (POM); and polydimethylsiloxane (PDMS), and organisms ranged from polychaetes and oligochaetes to bivalves, aquatic insects, and gastropods. Log-linear regressions correlating bioaccumulation (CL) and passive sampler concentration (CPS) were used to assess the strength of observed relationships. In general, the passive sampler concentrations resulted in statistically-significant, logarithmic, predictive relationships, most of which were within one to two orders of magnitude of measured bioaccumulation. Overall, bioaccumulation values were greater than passive sampler concentrations. A mean ratio of CL to CPS was 10.8 ± 18.4 (n = 609) for available data. Given that all studies presented resulted in a strong CL versus CPS relationship suggests that using passive sampling as a surrogate for organism bioaccumulation is viable when biomonitoring organisms are not available. Passive sampling based measurements can provide useful information for ma

  5. Evaluating the Relationship between Equilibrium Passive ...

    EPA Pesticide Factsheets

    This Critcal Review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Fifty-seven studies were found where both passive sampler uptake and organism bioaccumulation were measured and 19 of these investigations provided direct comparisons relating passive sampler uptake and organism bioaccumulation. Polymers compared included low-density polyethylene (LDPE), polyoxymethylene (POM), and polydimethylsiloxane (PDMS), and organisms ranged from polychaetes and oligochaetes to bivalves, aquatic insects, and gastropods. Regression equations correlating bioaccumulation (CL) and passive sampler uptake (CPS) were used to assess the strength of observed relationships. Passive sampling based concentrations resulted in log–log predictive relationships, most of which were within one to 2 orders of magnitude of measured bioaccumulation. Mean coefficients of determination (r2) for LDPE, PDMS, and POM were 0.68, 0.76, and 0.58, respectively. For the available raw, untransformed data, the mean ratio of CL and CPS was 10.8 ± 18.4 (n = 609). Using passive sampling as a surrogate for organism bioaccumulation is viable when biomonitoring organisms are not available. Passive sampling based estimates of bioaccumulation provide useful information for making informed decisions about the bioavailability of HOCs. This review evaluates passive sampler uptake of hydrophobi

  6. Multiphase gas in quasar absorption-line systems

    NASA Technical Reports Server (NTRS)

    Giroux, Mark L.; Sutherland, Ralph S.; Shull, J. Michael

    1994-01-01

    In the standard model for H I Lyman-limit (LL) quasar absorption-line systems, the absorbing matter is galactic disk and halo gas, heated and photoionized by the metagalactic radiation field produced by active galaxies. In recent Hubble Space Telescope (HST) observations (Reimers et al. 1992; Vogel & Reimers 1993; Reimers & Vogel 1993) of LL systems along the line of sight to the quasar HS 1700+6416, surprisingly high He I/H I ratios and a wide distribution of column densities of C, N, and O ions are deduced from extreme ultraviolet absorption lines. We show that these observations are incompatible with photoionization equilibrium by a single metagalactic ionizing background. We argue that these quasar absorption systems possess a multiphase interstellar medium similar to that of our Galaxy, in which extended hot, collisionally ionized gas is responsible for some or all of the high ionization stages of heavy elements. From the He/H ratios we obtain -4.0 less than or = log U less than or = -3.0, while the CNO ions are consistent with hot gas in collisional ionization equilibrium at log T = 5.3 and (O/H) = -1.6. The supernova rate necessary to produce these heavy elements and maintain the hot-gas energy budget of approximately 10(exp 41.5) ergs/s is approximately 10(exp -2)/yr, similar to that which maintains the 'three-phase' interstellar medium in our own Galaxy. As a consequence of the change in interpretation from photoionized gas to a multiphase medium, the derived heavy-element abundances (e.g., O/C) of these systems are open to question owing to substantial ionization corrections for unseen C V in the hot phase. The metal-line ratios may also lead to erroneous diagnostics of the shape of the metagalactic ionizaing spectrum and the ionizing parameter of the absorbers.

  7. Mid-tropospheric Spectral Length-scale Analysis of Many Constituents from Aircraft, Satellite and Model Results During the 2013 SENEX Field Study.

    NASA Astrophysics Data System (ADS)

    McKeen, S. A.; Angevine, W. M.; Ahmadov, R.; Frost, G. J.; Kim, S. W.; Cui, Y.; McDonald, B.; Trainer, M.; Holloway, J. S.; Ryerson, T. B.; Peischl, J.; Gambacorta, A.; Barnet, C. D.; Smith, N.; Pierce, R. B.

    2016-12-01

    This study presents preliminary comparisons of satellite, aircraft, and model variance spectra for meteorological, thermodynamic and gas-phase species collected during the 2013 Southeastern Nexus Air Quality Experiment (SENEX). Fourier analysis of 8 constituents collected at 1 Hz by the NOAA W-P3 aircraft in the 25 to 200 km length-scale range exhibit properties consistent with previous scale dependence studies: when spectra are averaged over several 500 mb flight legs, very linear dependence is found on log-log plots of spectral density versus inverse length-scale. Derived slopes for wind speed, temperature, H2O, CO, CO2, CH4, NOy and O3 all fall within ±30% and close to the slope of -5/3 predicted from dimensional scaling theory of isotropic turbulence. Qualitative differences are seen when a similar analysis, without quality control, is applied to a preliminary set of NUCAPS satellite retrievals over the continental U.S. during SENEX. While 500mb water vapor and column integrated water show slopes close to the -5/3 value in the 200 to 1000 km length-scale range, other quantities show significantly shallower slopes, suggesting the need for rigorous quality control. Results from WRF-Chem regional air quality model simulations at 500mb show the model is unable to account for variance on length-scales less than 6ΔX, where ΔX is the model horizontal resolution (12km). Comparisons with satellite data in the 200 to 1000km range show slopes consistent with the -5/3 power law for species such as CO, CH4 and CO2 that do not undergo reinitialization, suggesting potential for future application.

  8. HST/COS OBSERVATIONS OF GALACTIC HIGH-VELOCITY CLOUDS: FOUR ACTIVE GALACTIC NUCLEUS SIGHT LINES THROUGH COMPLEX C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shull, J. Michael; Stevans, Matthew; Danforth, Charles

    2011-10-01

    We report ultraviolet spectra of Galactic high-velocity clouds (HVCs) in Complex C, taken by the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST), together with new 21 cm spectra from the Green Bank Telescope. The wide spectral coverage and higher signal-to-noise ratio, compared to previous HST spectra, provide better velocity definition of the HVC absorption, additional ionization species (including high ions), and improved abundances in this halo gas. Complex C has a metallicity of 10%-30% solar and a wide range of ions, suggesting dynamical and thermal interactions with hot gas in the Galactic halo. Spectra in the COSmore » medium-resolution G130M (1133-1468 A) and G160M (1383-1796 A) gratings detect ultraviolet absorption lines from eight elements in low-ionization states (O I, N I, C II, S II, Si II, Al II, Fe II, P II) and three elements in intermediate- and high-ionization states (Si III, Si IV, C IV, N V). Our four active galactic nucleus sight lines toward Mrk 817, Mrk 290, Mrk 876, and PG 1259+593 have high-velocity H I and O VI column densities, log N{sub Hi}= 19.39-20.05 and log N{sub Ovi}= 13.58-14.10, with substantial amounts of kinematically associated photoionized gas. The high-ion abundance ratios are consistent with cooling interfaces between photoionized and collisionally ionized gas: N(C IV)/N(O VI) {approx} 0.3-0.5, N(Si IV)/N(O VI) {approx} 0.05-0.11, N(N V)/N(O VI) {approx} 0.07-0.13, and N(Si IV)/N(Si III) {approx}0.2.« less

  9. The Suzaku View of Highly Ionized Outflows in AGN. 1; Statistical Detection and Global Absorber Properties

    NASA Technical Reports Server (NTRS)

    Gofford, Jason; Reeves, James N.; Tombesi, Francesco; Braito, Valentina; Turner, T. Jane; Miller, Lance; Cappi, Massimo

    2013-01-01

    We present the results of a new spectroscopic study of Fe K-band absorption in active galactic nuclei (AGN). Using data obtained from the Suzaku public archive we have performed a statistically driven blind search for Fe XXV Healpha and/or Fe XXVI Lyalpha absorption lines in a large sample of 51 Type 1.0-1.9 AGN. Through extensive Monte Carlo simulations we find that statistically significant absorption is detected at E greater than or approximately equal to 6.7 keV in 20/51 sources at the P(sub MC) greater than or equal tov 95 per cent level, which corresponds to approximately 40 per cent of the total sample. In all cases, individual absorption lines are detected independently and simultaneously amongst the two (or three) available X-ray imaging spectrometer detectors, which confirms the robustness of the line detections. The most frequently observed outflow phenomenology consists of two discrete absorption troughs corresponding to Fe XXV Healpha and Fe XXVI Lyalpha at a common velocity shift. From xstar fitting the mean column density and ionization parameter for the Fe K absorption components are log (N(sub H) per square centimeter)) is approximately equal to 23 and log (Xi/erg centimeter per second) is approximately equal to 4.5, respectively. Measured outflow velocities span a continuous range from less than1500 kilometers per second up to approximately100 000 kilometers per second, with mean and median values of approximately 0.1 c and approximately 0.056 c, respectively. The results of this work are consistent with those recently obtained using XMM-Newton and independently provides strong evidence for the existence of very highly ionized circumnuclear material in a significant fraction of both radio-quiet and radio-loud AGN in the local universe.

  10. M = +1, ± 1 and ± 2 mode helicon wave excitation.

    NASA Astrophysics Data System (ADS)

    Kim, J.-H.; Yun, S.-M.; Chang, H.-Y.

    1996-11-01

    The characteristics of M=+1, ± 1 and ± 2 modes helicon wave excited using a solenoid antenna, Nagoya type III and quadrupole antenna respectively are first investigated. The solenoid antenna is constructed by winding a copper cable on a quartz discharge tube. Two dimensional cross-field measurements of ArII optical emission induced by hot electrons are made to investigate RF power deposition: Components of the wave magnetic field measured with a single-turn, coaxial magnetic probe were compared with the field patterns computed for M=+1, ± 1 and ± 2 modes. The M=+1 mode plasma produced by the solenoid antenna has a cylindrical high intensity plasma column, which center is empty. This cylindrical high intensity column results from the rotation of the cross-sectional electric field pattern (right hand circularly polarization). The radial plasma density profile has a peak at r=2.5cm with axisymmetry. It has been found that the radial profile of the plasma density is in good agreement with the computed power deposition profile. The radial profiles of the wave magnetic field are in good agreement with computations. The plasma excited by Nagoya type III antenna has two high intensity columns which results from the linear combination of M=+1 and -1 modes (i.e. plane polarization). The radial plasma density profile is in good agreement with emission intensity profile of ArII line (488nm). The plasma excited by quadrupole antenna has four high intensity columns which results from the linear combination of M=+2 and -2 modes (i.e. plane polarization). In the M=± 2 modes, the radial plasma density profile is also in good agreement with emission intensity profile of ArII line.

  11. The Orion Fingers: H2 Temperatures and Excitation in an Explosive Outflow

    NASA Astrophysics Data System (ADS)

    Youngblood, Allison; France, Kevin; Ginsburg, Adam; Hoadley, Keri; Bally, John

    2018-04-01

    We measure H2 temperatures and column densities across the Orion Becklin-Neugebauer/Kleinmann-Low (BN/KL) explosive outflow from a set of 13 near-infrared (IR) H2 rovibrational emission lines observed with the TripleSpec spectrograph on Apache Point Observatory’s 3.5 m telescope. We find that most of the region is well characterized by a single temperature (∼2000–2500 K), which may be influenced by the limited range of upper-energy levels (6000–20,000 K) probed by our data set. The H2 column density maps indicate that warm H2 comprises 10‑5–10‑3 of the total H2 column density near the center of the outflow. Combining column density measurements for co-spatial H2 and CO at T = 2500 K, we measure a CO/H2 fractional abundance of 2 × 10‑3 and discuss possible reasons why this value is in excess of the canonical 10‑4 value, including dust attenuation, incorrect assumptions on co-spatiality of the H2 and CO emission, and chemical processing in an extreme environment. We model the radiative transfer of H2 in this region with ultraviolet (UV) pumping models to look for signatures of H2 fluorescence from H I Lyα pumping. Dissociative (J-type) shocks and nebular emission from the foreground Orion H II region are considered as possible Lyα sources. From our radiative transfer models, we predict that signatures of Lyα pumping should be detectable in near-IR line ratios given a sufficiently strong source, but such a source is not present in the BN/KL outflow. The data are consistent with shocks as the H2 heating source.

  12. Analysis of record-breaking low ozone values during the 1997 winter over NDSC Station Lauder, New Zealand

    NASA Technical Reports Server (NTRS)

    Brinksma, E. J.; Meijer, Y. J.; Connor, B. J.; Manney, G. L.; Bergwerff, J. B.; Bodeker, G. E.; Boyd, I. S.; Liley, J. B.; Hogervorst, W.; Hovenier, J. W.; hide

    1998-01-01

    During early August 1997, the ozone column density measured over Lauder was unusually low, with a minimum value of 222 Dobson Units (DU) at August 10. These observations are striking since in August, during the Austral winter, the ozone column density should be heading towards its yearly maximum; The August mean ozone column density measured over Lauder between 1987 and 1996 was 348(+/-28) DU, the lowest monthly average in these ten years was 255 DU. Regular altitude profile measurements of ozone, performed at Network for the Detection of Stratospheric Change (NDSC) station Lauder, make it possible to do a detailed, altitude-resolved, study of the low ozone observations. The measurements show ozone poor air in two altitude regions of the stratosphere: A 'high region', extending from the 600 K to the 1050 K isentrope (25 to 34 km), and a 'low region', below about 550 K (22 km). High resolution reverse trajectory maps of potential vorticity (PV) and ozone mixing ratio, based on the assumption of passive advection by the large-scale three-dimensional winds, show that in the 'high region' the ozone poor air was part of the polar vortex, which was centered off the pole and extended over Lauder for several days, while in the 'low region' the ozone poor air was mixed in from low latitudes. A rapid recovery of the ozone column density, by more than 110 DU within 24 hours, was observed when in the low region an ozone rich filament of the polar vortex moved over Lauder, while in the high region the (ozone poor) high part of the vortex moved away.

  13. Ozone column density determination from direct irradiance measurements in the ultraviolet performed by a four-channel precision filter radiometer.

    PubMed

    Ingold, T; Mätzler, C; Wehrli, C; Heimo, A; Kämpfer, N; Philipona, R

    2001-04-20

    Ultraviolet light was measured at four channels (305, 311, 318, and 332 nm) with a precision filter radiometer (UV-PFR) at Arosa, Switzerland (46.78 degrees , 9.68 degrees , 1850 m above sea level), within the instrument trial phase of a cooperative venture of the Swiss Meteorological Institute (MeteoSwiss) and the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center. We retrieved ozone-column density data from these direct relative irradiance measurements by adapting the Dobson standard method for all possible single-difference wavelength pairs and one double-difference pair (305/311 and 305/318) under conditions of cloud-free sky and of thin clouds (cloud optical depth <2.5 at 500 nm). All UV-PFR retrievals exhibited excellent agreement with those of collocated Dobson and Brewer spectrophotometers for data obtained during two months in 1999. Combining the results of the error analysis and the findings of the validation, we propose to retrieve ozone-column density by using the 305/311 single difference pair and the double-difference pair. Furthermore, combining both retrievals by building the ratio of ozone-column density yields information that is relevant to data quality control. Estimates of the 305/311 pair agree with measurements by the Dobson and Brewer instruments within 1% for both the mean and the standard deviation of the differences. For the double pair these values are in a range up to 1.6%. However, this pair is less sensitive to model errors. The retrieval performance is also consistent with satellite-based data from the Earth Probe Total Ozone Mapping Spectrometer (EP-TOMS) and the Global Ozone Monitoring Experiment instrument (GOME).

  14. Ozone Column Density Determination From Direct Irradiance Measurements in the Ultraviolet Performed by a Four-Channel Precision Filter Radiometer

    NASA Astrophysics Data System (ADS)

    Ingold, Thomas; Mätzler, Christian; Wehrli, Christoph; Heimo, Alain; Kämpfer, Niklaus; Philipona, Rolf

    2001-04-01

    Ultraviolet light was measured at four channels (305, 311, 318, and 332 nm) with a precision filter radiometer (UV-PFR) at Arosa, Switzerland (46.78 , 9.68 , 1850 m above sea level), within the instrument trial phase of a cooperative venture of the Swiss Meteorological Institute (MeteoSwiss) and the Physikalisch-Meteorologisches Observatorium Davos /World Radiation Center. We retrieved ozone-column density data from these direct relative irradiance measurements by adapting the Dobson standard method for all possible single-difference wavelength pairs and one double-difference pair (305 /311 and 305 /318) under conditions of cloud-free sky and of thin clouds (cloud optical depth <2.5 at 500 nm). All UV-PFR retrievals exhibited excellent agreement with those of collocated Dobson and Brewer spectrophotometers for data obtained during two months in 1999. Combining the results of the error analysis and the findings of the validation, we propose to retrieve ozone-column density by using the 305 /311 single difference pair and the double-difference pair. Furthermore, combining both retrievals by building the ratio of ozone-column density yields information that is relevant to data quality control. Estimates of the 305 /311 pair agree with measurements by the Dobson and Brewer instruments within 1% for both the mean and the standard deviation of the differences. For the double pair these values are in a range up to 1.6%. However, this pair is less sensitive to model errors. The retrieval performance is also consistent with satellite-based data from the Earth Probe Total Ozone Mapping Spectrometer (EP-TOMS) and the Global Ozone Monitoring Experiment instrument (GOME).

  15. The Mean Metal-line Absorption Spectrum of Damped Ly α Systems in BOSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mas-Ribas, Lluís; Miralda-Escudé, Jordi; Pérez-Ràfols, Ignasi

    We study the mean absorption spectrum of the Damped Ly α (DLA) population at z ∼ 2.6 by stacking normalized, rest-frame-shifted spectra of ∼27,000 DLA systems from the DR12 of the Baryon Oscillation Spectroscopic Survey (BOSS)/SDSS-III. We measure the equivalent widths of 50 individual metal absorption lines in five intervals of DLA hydrogen column density, five intervals of DLA redshift, and overall mean equivalent widths for an additional 13 absorption features from groups of strongly blended lines. The mean equivalent width of low-ionization lines increases with N {sub H} {sub i}, whereas for high-ionization lines the increase is much weaker.more » The mean metal line equivalent widths decrease by a factor ∼1.1–1.5 from z ∼ 2.1 to z ∼ 3.5, with small or no differences between low- and high-ionization species. We develop a theoretical model, inspired by the presence of multiple absorption components observed in high-resolution spectra, to infer mean metal column densities from the equivalent widths of partially saturated metal lines. We apply this model to 14 low-ionization species and to Al iii, S iii, Si iii, C iv, Si iv, N v, and O vi. We use an approximate derivation for separating the equivalent width contributions of several lines to blended absorption features, and infer mean equivalent widths and column densities from lines of the additional species N i, Zn ii, C ii*, Fe iii, and S iv. Several of these mean column densities of metal lines in DLAs are obtained for the first time; their values generally agree with measurements of individual DLAs from high-resolution, high signal-to-noise ratio spectra when they are available.« less

  16. Estimated global nitrogen deposition using NO2 column density

    USGS Publications Warehouse

    Lu, Xuehe; Jiang, Hong; Zhang, Xiuying; Liu, Jinxun; Zhang, Zhen; Jin, Jiaxin; Wang, Ying; Xu, Jianhui; Cheng, Miaomiao

    2013-01-01

    Global nitrogen deposition has increased over the past 100 years. Monitoring and simulation studies of nitrogen deposition have evaluated nitrogen deposition at both the global and regional scale. With the development of remote-sensing instruments, tropospheric NO2 column density retrieved from Global Ozone Monitoring Experiment (GOME) and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) sensors now provides us with a new opportunity to understand changes in reactive nitrogen in the atmosphere. The concentration of NO2 in the atmosphere has a significant effect on atmospheric nitrogen deposition. According to the general nitrogen deposition calculation method, we use the principal component regression method to evaluate global nitrogen deposition based on global NO2 column density and meteorological data. From the accuracy of the simulation, about 70% of the land area of the Earth passed a significance test of regression. In addition, NO2 column density has a significant influence on regression results over 44% of global land. The simulated results show that global average nitrogen deposition was 0.34 g m−2 yr−1 from 1996 to 2009 and is increasing at about 1% per year. Our simulated results show that China, Europe, and the USA are the three hotspots of nitrogen deposition according to previous research findings. In this study, Southern Asia was found to be another hotspot of nitrogen deposition (about 1.58 g m−2 yr−1 and maintaining a high growth rate). As nitrogen deposition increases, the number of regions threatened by high nitrogen deposits is also increasing. With N emissions continuing to increase in the future, areas whose ecosystem is affected by high level nitrogen deposition will increase.

  17. A new all-sky map of Galactic high-velocity clouds from the 21-cm HI4PI survey

    NASA Astrophysics Data System (ADS)

    Westmeier, Tobias

    2018-02-01

    High-velocity clouds (HVCs) are neutral or ionized gas clouds in the vicinity of the Milky Way that are characterized by high radial velocities inconsistent with participation in the regular rotation of the Galactic disc. Previous attempts to create a homogeneous all-sky H I map of HVCs have been hampered by a combination of poor angular resolution, limited surface brightness sensitivity and suboptimal sampling. Here, a new and improved H I map of Galactic HVCs based on the all-sky HI4PI survey is presented. The new map is fully sampled and provides significantly better angular resolution (16.2 versus 36 arcmin) and column density sensitivity (2.3 versus 3.7 × 1018 cm-2 at the native resolution) than the previously available LAB survey. The new HVC map resolves many of the major HVC complexes in the sky into an intricate network of narrow H I filaments and clumps that were not previously resolved by the LAB survey. The resulting sky coverage fraction of high-velocity H I emission above a column density level of 2 × 1018 cm-2 is approximately 15 per cent, which reduces to about 13 per cent when the Magellanic Clouds and other non-HVC emission are removed. The differential sky coverage fraction as a function of column density obeys a truncated power law with an exponent of -0.93 and a turnover point at about 5 × 1019 cm-2. H I column density and velocity maps of the HVC sky are made publicly available as FITS images for scientific use by the community.

  18. How well does CO emission measure the H2 mass of MCs?

    NASA Astrophysics Data System (ADS)

    Szűcs, László; Glover, Simon C. O.; Klessen, Ralf S.

    2016-07-01

    We present numerical simulations of molecular clouds (MCs) with self-consistent CO gas-phase and isotope chemistry in various environments. The simulations are post-processed with a line radiative transfer code to obtain 12CO and 13CO emission maps for the J = 1 → 0 rotational transition. The emission maps are analysed with commonly used observational methods, I.e. the 13CO column density measurement, the virial mass estimate and the so-called XCO (also CO-to-H2) conversion factor, and then the inferred quantities (I.e. mass and column density) are compared to the physical values. We generally find that most methods examined here recover the CO-emitting H2 gas mass of MCs within a factor of 2 uncertainty if the metallicity is not too low. The exception is the 13CO column density method. It is affected by chemical and optical depth issues, and it measures both the true H2 column density distribution and the molecular mass poorly. The virial mass estimate seems to work the best in the considered metallicity and radiation field strength range, even when the overall virial parameter of the cloud is above the equilibrium value. This is explained by a systematically lower virial parameter (I.e. closer to equilibrium) in the CO-emitting regions; in CO emission, clouds might seem (sub-)virial, even when, in fact, they are expanding or being dispersed. A single CO-to-H2 conversion factor appears to be a robust choice over relatively wide ranges of cloud conditions, unless the metallicity is low. The methods which try to take the metallicity dependence of the conversion factor into account tend to systematically overestimate the true cloud masses.

  19. Using Cassini UVIS Data to Constrain Enceladus' Libration State

    NASA Technical Reports Server (NTRS)

    Hurford, Terry A.; Helfenstein, P.; Hansen, C.

    2010-01-01

    Given the non-spherical shape of Enceladus, the satellite may experience gravitational torques that will cause it to physically librate as it orbits Saturn. Physical libration would produce a diurnal oscillation in the longitude of Enceladus' tidal bulge, which could have a profound effect on the diurnal stresses experienced by the surface of the satellite. Although Cassini ISS has placed an observational upper limit on Enceladus' libration amplitude, stall amplitude librations may have geologically significant consequences. For example, a physical libration will affect heat production along the tiger stripes as produced by tidal shear heating and a previous study has explored possible libration states that provided better matches to Cassini CIRS observations of heat along the tiger stripes. Cassini UVIS stellar occultations provided measurements of the column density of the Enceladus plume at two different points in Enceladus' orbit and find comparable column density values. This column density may be a reflection of the amount of the tiger stripe rifts in tension and able to vent volatiles and a physical libration will also affect the fraction of tiger stripe in tension at different points in the orbit. We have modeled the expected fraction of tiger stripes in tension under different libration conditions. Without libration the amount of tiger stripe rifts in tension at both paints in the orbit would not be comparable and therefore may not allow comparable amounts of volatiles to escape. However, we identify libration conditions that do allow comparable amounts of the tiger stripes to be in tension at each point in the orbit, which might lead to comparable column densities. The librations identified coincide with possible librations states identified in the earlier study, which used Cassini CIRS observations.

  20. D/H Toward BD+28 4211: First FUSE Results

    NASA Technical Reports Server (NTRS)

    Sonneborne, George; Andre, M.; Oliveira, C.; Friedman, S. D.; Howk, J. C.; Kruk, J. W.; Moos, H. W.; Oegerle, W. R.; Sembach, K. R.; Chayer, P.; hide

    2001-01-01

    The atomic deuterium-to-hydrogen abundance ratio has been evaluated for the sight line toward the hot O subdwarf BD+28(sup circ) 4211. High signal-to-noise ratio (S/N is approx. 100) observations covering the wavelength range 905 to 1187 angstroms at a wavelength resolving power of lambda/Delta/lambda at approx. 20,000 were obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. BD+28(sup circ) 4211 is approx. 00 pc away with a total H I column density of approx. 10(exp 19)/sq cm, much higher than is typically found in the local interstellar medium (ISM). The deuterium column density was measured by analyzing several D I Lyman series transitions (Lyman delta, C, epsilon, eta, theta, iota with curve of growth and profile fitting techniques, after determining which lines were free of interference from other interstellar species and narrow stellar features. The neutral hydrogen column density was measured by an analysis of the Lyman-alpha profile using HST/Space Telescope Imaging Spectrograph (STIS) and Goddard High Resolution Spectrograph (GHRS) spectra. The stellar spectrum of BD+28(sup circ) 4211 was modelled to assist in determining the sensitivity of H I (Ly-alpha) and D I to the continuum placement and to identify stellar transitions. The D I and H I column densities, their uncertainties, and potential sources of systematic error will be presented. This work is based on data obtained for the FUSE Guaranteed Time Team by the NASA-CNES-CSA FUSE mission operated by the Johns Hopkins University. Financial support to U. S. participants has been provided in part by NASA contract NAS5-32985.

  1. Investigating the physics and environment of Lyman limit systems in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Erkal, Denis

    2015-07-01

    In this work, I investigate the properties of Lyman limit systems (LLSs) using state-of-the-art zoom-in cosmological galaxy formation simulations with on the fly radiative transfer, which includes both the cosmic UV background (UVB) and local stellar sources. I compare the simulation results to observations of the incidence frequency of LLSs and the H I column density distribution function over the redshift range z = 2-5 and find good agreement. I explore the connection between LLSs and their host haloes and find that LLSs reside in haloes with a wide range of halo masses with a nearly constant covering fraction within a virial radius. Over the range z = 2-5, I find that more than half of the LLSs reside in haloes with M < 1010 h-1 M⊙, indicating that absorption line studies of LLSs can probe these low-mass galaxies which H2-based star formation models predict to have very little star formation. I study the physical state of individual LLSs and test a simple model which encapsulates many of their properties. I confirm that LLSs have a characteristic absorption length given by the Jeans length and that they are in photoionization equilibrium at low column densities. Finally, I investigate the self-shielding of LLSs to the UVB and explore how the non-sphericity of LLSs affects the photoionization rate at a given N_{H I}. I find that at z ≈ 3, LLSs have an optical depth of unity at a column density of ˜1018 cm-2 and that this is the column density which characterizes the onset of self-shielding.

  2. The Nature of the Torus in the Heavily Obscured AGN Markarian 3: an X-Ray Study

    NASA Technical Reports Server (NTRS)

    Guainazzi, M.; Risaliti, G.; Awaki, H.; Arevalo, P.; Bauer, F. E.; Bianchi, S.; Boggs, S.E; Brandt, W. N.; Brightman, M.; Christensen, F. E.; hide

    2016-01-01

    In this paper, we report the results of an X-ray monitoring campaign on the heavily obscured Seyfert galaxy, Markarian 3, carried out between the fall of 2014 and the spring of 2015 with NuSTAR, Suzaku and XMMNewton. The hard X-ray spectrum of Markarian 3 is variable on all the time-scales probed by our campaign, down to a few days. The observed continuum variability is due to an intrinsically variable primary continuum seen in transmission through a large, but still Compton-thin column density (N(sub H) approx. 0.8-1.1 x 10(exp 24)/sq cm). If arranged in a spherical-toroidal geometry, the Compton scattering matter has an opening angle approx. 66deg, and is seen at a grazing angle through its upper rim (inclination angle approx. 70deg). We report a possible occultation event during the 2014 campaign. If the torus is constituted by a system of clouds sharing the same column density, this event allows us to constrain their number (17 +/- 5) and individual column density, [approx. (4.9 +/- 1.5) x 10(exp 22)/ sq cm]. The comparison of IR and X-ray spectroscopic results with state-of-the art torus models suggests that at least two-thirds of the X-ray obscuring gas volume might be located within the dust sublimation radius. We report also the discovery of an ionized absorber, characterized by variable resonant absorption lines due to He- and H-like iron. This discovery lends support to the idea that moderate column density absorbers could be due to clouds evaporated at the outer surface of the torus, possibly accelerated by the radiation pressure due to the central AGN emission leaking through the patchy absorber.

  3. Radial distribution of the flow velocity, efficiency and concentration in a wide HPLC column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farkas, T.; Sepaniak, M.J.; Guiochon, G.

    1997-08-01

    The use of optical fibers in a fluorescence-detection scheme permits the accurate determination of the radial distribution of the transit time, the column efficiency, and the analyte concentration at the exit of a chromatographic axial-compression column (50 mmID). The results obtained demonstrate that the column is not homogeneous, but suggest a nearly cylindrical distribution of the packing density. The average velocity close to the column wall is 7% lower than along its axis and the HETP 25% higher. The lack of homogeneity of the column packing is another source of band broadening not taken into account in chromatography so far.more » It causes the apparent HETP derived from the conventional elution chromatogram recorded on the bulk eluent to be larger than the local HETP and the band profile to be unsymmetrical with a slight tail reminiscent of kinetic tailing.« less

  4. Interpretation of well logs in a carbonate aquifer

    USGS Publications Warehouse

    MacCary, L.M.

    1978-01-01

    This report describes the log analysis of the Randolph and Sabial core holes in the Edwards aquifer in Texas, with particular attention to the principles that can be applied generally to any carbonate system. The geologic and hydrologic data were obtained during the drilling of the two holes, from extensive laboratory analysis of the cores, and from numerous geophysical logs run in the two holes. Some logging methods are inherently superiors to others for the analysis of limestone and dolomite aquifers. Three such systems are the dentistry, neutron, and acoustic-velocity (sonic) logs. Most of the log analysis described here is based on the interpretation of suites of logs from these three systems. In certain instances, deeply focused resistivity logs can be used to good advantage in carbonate rock studies; this technique is used to computer the water resistivity in the Randolph core hole. The rocks penetrated by the Randolph core hole are typical of those carbonates that have undergone very little solution by recent ground-water circulation. There are few large solutional openings; the water is saline; and the rocks are dark, dolomitic, have pore space that is interparticle or intercrystalline, and contain unoxidized organic material. The total porosity of rocks in the saline zone is higher than that of rocks in the fresh-water aquifer; however, the intrinsic permeability is much less in the saline zone because there are fewer large solutional openings. The Sabinal core hole penetrates a carbonate environment that has experienced much solution by ground water during recent geologic time. The rocks have high secondary porosities controlled by sedimentary structures within the rock; the water is fresh; and the dominant rock composition is limestone. The relative percentages of limestone and dolomite, the average matrix (grain) densities of the rock mixtures , and the porosity of the rock mass can be calculated from density, neutron, and acoustic logs. With supporting data from resistivity logs, the formation water quality can be estimated, as well as the relative cementation or tortuosity of the rock. Many of these properties calculated from logs can be verified by analysis of the core available from test holes drilled in the saline and fresh water zones.

  5. A {sup 13}CO SURVEY OF INTERMEDIATE-MASS STAR-FORMING REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundquist, Michael J.; Kobulnicky, Henry A.; Kerton, Charles R.

    2015-06-10

    We have conducted a {sup 13}CO survey of a sample of 128 infrared color-selected intermediate-mass star-forming region (IM SFR) candidates. We utilized the Onsala 20 m telescope to observe {sup 13}CO (1–0) toward 67 northern IM SFRs, used the 12 m Atacama Pathfinder Experiment telescope to observe {sup 13}CO (2–1) toward 22 southern IM SFRs, and incorporated an additional 39 sources from the Boston University Five College Radio Astronomy Observatory Galactic Ring Survey which observed {sup 13}CO (1–0). We detect {sup 13}CO (1–0) in 58 of the 67 northern sources and {sup 13}CO (2–1) in 20 of the 22 southernmore » sources. The mean molecular column densities and {sup 13}CO linewidths in the inner Galaxy are higher by factors of 3.4 and 1.5, respectively, than the outer Galaxy. We attribute this difference to molecular clouds in the inner Galaxy being more massive and hosting star forming regions with higher luminosities on average than the outer Galaxy. IM SFRs have mean a molecular column density of 7.89 × 10{sup 21} cm{sup −2}, a factor of 3.1 lower than that for a sample of high-mass regions, and have a mean {sup 13}CO linewidth of 1.84 km s{sup −1}, a factor of 1.5 lower than that for high-mass regions. We demonstrate a correlation between {sup 13}CO linewidth and infrared luminosity as well as between molecular column density and infrared luminosity for the entire sample of intermediate-mass and high-mass regions. IM SFRs appear to form in distinctly lower-density environments with mean linewidths and beam-averaged column densities a factor of several lower than high-mass star-forming regions.« less

  6. The early stages of massive star formation: tracing the physical and chemical conditions in hot cores

    NASA Astrophysics Data System (ADS)

    Calcutt, Hannah

    2015-04-01

    Molecules are essential to the formation of stars, by allowing radiation to escape the cloud and cooling to occur. Over 180 molecules have been detected in interstellar environments, ranging from comets to interstellar clouds. Their spectra are useful probes of the conditions in which these molecules form. Comparison of rest frequencies to observed frequencies can provide information about the velocity of gas and indicate physical structures. The density, temperature, and excitation conditions of gas can be determined directly from the spectra of molecules. Furthermore, by taking a chemical inventory of a particular object, one can gain an understanding of the chemical processes occurring within a cloud. The class of molecules known as complex molecules (>6 atoms), are of particular interest when probing the conditions in massive starforming environments, as they are observed to trace a more compact region than smaller molecules. This thesis details the work of my PhD, to explore how complex molecules can be used to trace the physical and chemical conditions in hot cores (HCs), one of the earliest stages of massive star formation. This work combines both the observations and chemical modelling of several different massive star-forming regions. We identify molecular transitions observed in the spectra of these regions, and calculate column densities and rotation temperatures of these molecules (Chapters 2 and 3). In Chapter 4, we chemically model the HCs, and perform a comparison between observational column densities and chemical modelling column densities. In Chapter 5, we look at the abundance ratio of three isomers, acetic acid, glycolaldehyde, and methyl formate, to ascertain whether this ratio can be used as an indicator of HC evolution. Finally, we explore the chemistry of the HC IRAS 17233-3606, to identify emission features in the spectra, and determine column densities and rotation temperatures of the detected molecules.

  7. Bulk densities of materials from selected pine-site hardwoods

    Treesearch

    Clyde Vidrine; George E. Woodson

    1982-01-01

    Bulk densities of hardwood materials from low and high density species were determined for green and air-dry conditions. Materials consisted of whole-tree chips, bark-free chips, bark as collected from three types of debarkers (ring, rosser head, and drum debarkers) sawdust, planer shavings, flakes, logging residues, baled branchwood, steel-strapped firewood, and...

  8. Guidance for Subaqueous Dredged Material Capping.

    DTIC Science & Technology

    1998-06-01

    from Ambrose Channel , over the contaminated sediments. At least two intermediate sur- veys and additional capping were required before capping was...organisms to a given bioturbation depth; reducing contami- nant flux rates to achieve specific sediment, pore water, or water column target...bathymetry, bottom slopes, cur- rents, water depths, water column density stratification, erosion/accretion trends, proximity to navigation channels

  9. Simultaneous liquid chromatography/mass spectrometry determination of both polar and "multiresidue" pesticides in food using parallel hydrophilic interaction/reversed-phase liquid chromatography and a hybrid sample preparation approach.

    PubMed

    Robles-Molina, José; Gilbert-López, Bienvenida; García-Reyes, Juan F; Molina-Díaz, Antonio

    2017-09-29

    Pesticide testing of foodstuffs is usually accomplished with generic wide-scope multi-residue methods based on liquid chromatography tandem mass spectrometry (LC-MS/MS). However, this approach does not cover some special pesticides, the so called "single-residue method" compounds, that are hardly compatible with standard reversed-phase (RP) separations due to their specific properties. In this article, we propose a comprehensive strategy for the integration of single residue method compounds and standard multiresidue pesticides within a single run. It is based on the use of a parallel LC column assembly with two different LC gradients performing orthogonal hydrophilic interaction chromatography (HILIC) and reversed-phase (RPLC) chromatography within one analytical run. Two sample aliquots were simultaneously injected on each column, using different gradients, being the eluents merged post-column prior to mass spectrometry detection. The approach was tested with 41 multiclass pesticides covering a wide range of physicochemical properties across several orders of log K ow (from -4 to +5.5). With this assembly, distinct separation from the void was attained for all the pesticides studied, keeping similar performance in terms of sensitivity, peak area reproducibility (<6 RSD% in most cases) and retention time stability of standard single column approaches (better than±0.1min). The application of the proposed approach using parallel HILIC/RPLC and RPLC/aqueous normal phase (Obelisc) were assessed in leek using LC-MS/MS. For this purpose, a hybrid QuEChERS (Quick, easy, cheap, effective, rugged and safe)/QuPPe (quick method for polar pesticides) method was evaluated based on solvent extraction with MeOH and acetonitrile followed by dispersive solid-phase extraction, delivering appropriate recoveries for most of the pesticides included in the study within the log K ow in the range from -4 to +5.5. The proposed strategy may be extended to other fields such as sport drug testing or environmental analysis, where the same type of variety of analytes featuring poor retention within a single chromatographic separation occurs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Neutron and gamma (density) logging in welded tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, W

    This Technical Implementation Procedure (TIP) describes the field operation, and the management of data records pertaining to neutron logging and density logging in welded tuff. This procedure applies to all borehole surveys performed in support of Engineered Barrier System Field Tests (EBSFT), including the Earge Block Tests (LBT) and Initial Engineered Barrier System Field Tests (IEBSFT) - WBS 1.2.3.12.4. The purpose of this TIP is to provide guidelines so that other equally trained and qualified personnel can understand how the work is performed or how to repeat the work if needed. The work will be documented by the use ofmore » Scientific Notebooks (SNs) as discussed in 033-YMP-QP 3.4. The TIP will provide a set of guidelines which the scientists will take into account in conducting the mea- surements. The use of this TIP does not imply that this is repetitive work that does not require profes- sional judgment.« less

  11. Urinary excretion of unmetabolized benzene as an indicator of benzene exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghittori, S.; Fiorentino, M.L.; Maestri, L.

    1993-03-01

    Benzene concentrations in urine samples (Cu, ng/L) from 110 workers exposed to benzene in chemical plants and gasoline pumps were determined by injecting urine supernate into a gas chromatograph. The urine was saturated with anhydrous N2SO4 to facilitate the passage of benzene in the air over the urine. The solvent was stripped from the urine surface and concentrated on an adsorbent substrate (Carbotrap tube) by means of a suction pump (flow rate 150 ml/m). Wash-up of the head space was achieved by simultaneous intake of filtered air through charcoal. Benzene was thermically desorbed and injected in a column (thermal tubemore » disorder, Supelco; 370 degrees C thermal flash; borosilicate capillary glass column SPB-1, 60 m length, 0.75 mm ID, 1 microns film thickness; GC Dani 8580-FID). Benzene concentrations in the urine from 40 non-exposed subjects (20 smokers > 20 cigarette/d and 20 nonsmokers) were also determined [median value of 790 ng/L (10.17 nmol/L) and 131 ng/L (1.70 nmol/L), respectively]. The 8-h time-weighted exposure intensity (Cl, micrograms/m3) of individual workers was monitored by means of charcoal tubes. The median value for exposure to benzene was 736 micrograms/m3 (9.42 mumol/m3) [geometric standard deviation (GSD) = 2.99; range 64 micrograms/m3 (0.82 mumol/m3) to 13,387 micrograms/m3 (171.30 mumol/m3)]. The following linear correlation was found between benzene concentrations in urine (Cu, ng/L) and benzene concentrations in the breathing zone (Cl, micrograms/m3): log(Cu) = 0.645 x log(Cl) + 1.399 r = .559, n = 110, p < .0001 With exclusion of workers who smoked from the study, the correlation between air benzene concentration and benzene measured in urine was: log(Cu) = 0.872 x log(Cl) + 0.6 r = .763, n = 63, p < .0001 The study results indicate that the urinary level of benzene is an indicator of occupational exposure to benzene.« less

  12. Increased Waterborne blaNDM-1 Resistance Gene Abundances Associated with Seasonal Human Pilgrimages to the Upper Ganges River

    PubMed Central

    2014-01-01

    Antibiotic resistance (AR) is often rooted in inappropriate antibiotic use, but poor water quality and inadequate sanitation exacerbate the problem, especially in emerging countries. An example is increasing multi-AR due to mobile carbapenemases, such as NDM-1 protein (coded by blaNDM-1 genes), which can produce extreme drug-resistant phenotypes. In 2010, NDM-1 positive isolates and blaNDM-1 genes were detected in surface waters across Delhi and have since been detected across the urban world. However, little is known about blaNDM-1 levels in more pristine locations, such as the headwaters of the Upper Ganges River. This area is of particular interest because it receives massive numbers of visitors during seasonal pilgrimages in May/June, including visitors from urban India. Here we quantified blaNDM-1 abundances, other AR genes (ARG), and coliform bacteria in sediments and water column samples from seven sites in the Rishikesh-Haridwar region of the Upper Ganges and five sites on the Yamuna River in Delhi to contrast blaNDM-1 levels and water quality conditions between season and region. Water quality in the Yamuna was very poor (e.g., anoxia at all sites), and blaNDM-1 abundances were high across sites in water (5.4 ± 0.4 log(blaNDM-1·mL–1); 95% confidence interval) and sediment (6.3 ± 0.7 log(blaNDM-1·mg–1)) samples from both seasons. In contrast, water column blaNDM-1 abundances were very low across all sites in the Upper Ganges in February (2.1 ± 0.6 log(blaNDM-1·mL–1)), and water quality was good (e.g., near saturation oxygen). However, per capita blaNDM-1 levels were 20 times greater in June in the Ganges water column relative to February, and blaNDM-1 levels significantly correlated with fecal coliform levels (r = 0.61; p = 0.007). Given that waste management infrastructure is limited in Rishikesh-Haridwar, data imply blaNDM-1 levels are higher in visitor’s wastes than local residents, which results in seasonally higher blaNDM-1 levels in the river. Pilgrimage areas without adequate waste treatment are possible “hot spots” for AR transmission, and waste treatment must be improved to reduce broader AR dissemination via exposed returning visitors. PMID:24521347

  13. The design and implementation of web mining in web sites security

    NASA Astrophysics Data System (ADS)

    Li, Jian; Zhang, Guo-Yin; Gu, Guo-Chang; Li, Jian-Li

    2003-06-01

    The backdoor or information leak of Web servers can be detected by using Web Mining techniques on some abnormal Web log and Web application log data. The security of Web servers can be enhanced and the damage of illegal access can be avoided. Firstly, the system for discovering the patterns of information leakages in CGI scripts from Web log data was proposed. Secondly, those patterns for system administrators to modify their codes and enhance their Web site security were provided. The following aspects were described: one is to combine web application log with web log to extract more information, so web data mining could be used to mine web log for discovering the information that firewall and Information Detection System cannot find. Another approach is to propose an operation module of web site to enhance Web site security. In cluster server session, Density-Based Clustering technique is used to reduce resource cost and obtain better efficiency.

  14. The (C III lambda 1909/Si III lambda 1892) ratio as a diagnostic for planetary nebulae and symbiotic stars

    NASA Technical Reports Server (NTRS)

    Feibelman, Walter A.; Aller, Lawrence H.

    1987-01-01

    Suitable IUE archival material on planetary nebulae has been examined to determine the log R /F(lambda 1909 C III)/F(lambda 1892 Si III)/ as a discriminant for distinguishing planetary nebulae from symbiotic stars and related objects. The mean value of log R for 73 galactic planetaries is 1.4, while that of extragalactic planetaries appears to be slightly lower, and that for symbiotics is 0.3. The lower value of log R for symbiotics is easily understood as a consequence of their higher densities. A plot of log R versus N-epsilon indicates that 80 percent of the planetaries fall into the range of log R between 1.2 and 1.8, but some of the 'peculiar' and bipolar nebulae fall below log R = 1.2. The corresponding N(C++)/N(Si++) ionic ratio varies over a large range.

  15. Effect of plantation density on kraft pulp production from red pine (Pinus resinosa Ait.)

    Treesearch

    J.Y. Zhu; G.C. Myers

    2006-01-01

    Red pine (Pinus resinosa Ait.) butt logs from 38 year old research plots were used to study the effect of plantation stand density on kraft pulp production. Results indicate that plantation stand density can affect pulp yield, unrefined pulp mean fibre length, and the response of pulp fibre length to pulp refining. However, the effect of plantation stand density on...

  16. Estimation of Reineke and Volume-Based Maximum Size-Density Lines For Shortleaf Pine

    Treesearch

    Thomas B. Lynch; Robert F. Wittwer; Douglas J. Stevenson

    2004-01-01

    Maximum size-density relationships for Reineke's stand density index as well as for a relationship based on average tree volume were fitted to data from more than a decade of annual remeasurements of plots in unthinned naturally occurring shor tleaf pine in southeaster n Oklahoma. Reineke's stand density index is based on a maximum line of the form log(N) = a...

  17. Preparative liquid column electrophoresis of T and B lymphocytes at gravity = 1

    NASA Technical Reports Server (NTRS)

    Van Oss, C. J.; Bigazzi, P. E.; Gillman, C. F.; Allen, R. E.

    1974-01-01

    Vertical liquid columns containing low-molecular-weight dextran density gradients can be used for preparative lymphocyte electrophoresis on earth, in simulation of zero gravity conditions. Another method that has been tested at 1 g, is the electrophoresis of lymphocytes in an upward direction in vertical columns. By both methods up to 100 million lymphocytes can be separated at one time in a 30-cm glass column of 8-mm inside diameter, at 12 V/cm, in two hours. Due to convection and sedimentation problems, the separation at 1 g is less than ideal, but it is expected that at zero gravity electrophoresis will probe to be a uniquely powerful cell separation tool.

  18. Log sampling methods and software for stand and landscape analyses.

    Treesearch

    Lisa J. Bate; Torolf R. Torgersen; Michael J. Wisdom; Edward O. Garton; Shawn C. Clabough

    2008-01-01

    We describe methods for efficient, accurate sampling of logs at landscape and stand scales to estimate density, total length, cover, volume, and weight. Our methods focus on optimizing the sampling effort by choosing an appropriate sampling method and transect length for specific forest conditions and objectives. Sampling methods include the line-intersect method and...

  19. Snag longevity in relation to wildfire and postfire salvage logging

    Treesearch

    Robin E. Russell; Victoria A. Saab; Jonathan G. Dudley; Jay J. Rotella

    2006-01-01

    Snags create nesting, foraging, and roosting habitat for a variety of wildlife species. Removal of snags through postfire salvage logging reduces the densities and size classes of snags remaining after wildfire. We determined important variables associated with annual persistence rates (the probability a snag remains standing from 1 year to the next) of large conifer...

  20. Interpreting wireline measurements in coal beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, D.J.

    1991-06-01

    When logging coal seams with wireline tools, the interpretation method needed to evaluate the coals is different from that used for conventional oil and gas reservoirs. Wireline logs identify coals easily. For an evaluation, the contribution of each coal component on the raw measurements must be considered. This paper will discuss how each log measurement is affected by each component. The components of a coal will be identified as the mineral matter, macerals, moisture content, rank, gas content, and cleat porosity. The measurements illustrated are from the resistivity, litho-density, neutron, sonic, dielectric, and geochemical tools. Once the coal component effectsmore » have been determined, an interpretation of the logs can be made. This paper will illustrate how to use these corrected logs in a coal evaluation.« less

  1. Electric discharge synthesis of HCN in simulated Jovian atmospheres

    NASA Technical Reports Server (NTRS)

    Stribling, Roscoe; Miller, Stanley L.

    1987-01-01

    Corona discharge is presently considered as a possible source of the HCN detected in the Jovian atmosphere at 2.2 x 10 to the -7th moles/sq cm column density, for the cases of gas mixtures containing H2, CH4, and NH3, with H2/CH4 ratios from 4.4 to 1585. A 3:1 ratio of corona discharge to lightning energy similar to that of the earth is applied to Jupiter. Depending on the lightning energy available on Jupiter and the eddy diffusion coefficients in the synthesis region, HCN column densities generated by corona discharge could account for about 10 percent of the HCN observed.

  2. I(CO)/N(H2) conversions and molecular gas abundances in spiral and irregular galaxies

    NASA Technical Reports Server (NTRS)

    Maloney, Philip; Black, John H.

    1988-01-01

    Observations of emission in the J = 1-0 rotational transition of interstellar CO are used to obtain column densities and masses of hydrogen. By taking into account the effects of variations in molecular cloud parameters on conversion factors between integrated CO intensity and molecular hydrogen column density, it is shown that conversion factors are very sensitive to the kinetic temperature of the emitting gas. Results indicate that the gas temperatures in systems with high star formation rates can be quite high, and it is suggested that use of a standard conversion factor will lead to systematic overestimation of the amount of molecular gas.

  3. A Herschel-SPIRE Survey of the MonR2 Giant Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Pokhrel, Riwaj; Gutermuth, Robert A.; Ali, Babar; Megeath, S. Thomas; Pipher, Judith; Myers, Philip C.; Fischer, William J.; Henning, Thomas; Wolk, Scott J.; Allen, Lori; Tobin, John J.

    2014-06-01

    We present a new survey of the MonR2 giant molecular cloud with SPIRE on the Herschel Space Observatory. We cross-calibrated SPIRE data with Planck-HFI and accounted for its absolute offset and zero point correction. We fixed emissivity with the help of flux-error and flux ratio plots. As the best representation of cold dusty molecular clouds, we did greybody fits of the SEDs. We studied the nature of distribution of column densities above and below certain critical limit, followed by the mass and temperature distributions for different regions. We isolated the filaments and studied radial column density profile in this cloud.

  4. A Multi-Wavelength Study of the Hot Component of the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Nichols, Joy; Oliversen, Ronald K. (Technical Monitor)

    2002-01-01

    The goals of this research are as follows: (1) Using the large number of lines of sight available in the ME database, identify the lines of sight with high-velocity components in interstellar lines, from neutral species through Si VI, C IV, and N V; (2) Compare the column density of the main components (i.e. low velocity components) of the interstellar lines with distance, galactic longitude and latitude, and galactic radial position. Derive statistics on the distribution of components in space (e.g. mean free path, mean column density of a component). Compare with model predictions for the column densities in the walls of old SNR bubbles and superbubbles, in evaporating cloud boundaries and in turbulent mixing layers; (3) For the lines of sight associated with multiple high velocity, high ionization components, model the shock parameters for the associated superbubble and SNR to provide more accurate energy input information for hot phase models and galactic halo models. Thus far 49 lines of sight with at least one high velocity component to the C IV lines have been identified; and (4) Obtain higher resolution data for the lines of sight with high velocity components (and a few without) to further refine these models.

  5. Rapid ionization of the environment of SN 1987A

    NASA Technical Reports Server (NTRS)

    Raga, A. C.

    1987-01-01

    It has been suggested by some authors that IUE observations of the supernova SN 1987A show the presence of a strong component of the interstellar C IV 1550 and Si IV 1393 absorption lines at a velocity that approximately corresponds to the velocity of the LMC. It is possible that this component might come from originally neutral (or at least not very highly ionized) gas which has been photoionized by the initially very strong ionizing radiation field of the supernova. Theoretical considerations of this scenario lead to the study of fast (with velocities of about c) ionization fronts. It is shown that for reasonable model parameters it is possible to obtain considerably large C IV column densities, in agreement with the IUE observations. On the other hand, the models do not so easily predict the large Si IV column densities that are also obtained from the IUE observations. It is found that only models in which the interstellar medium surrounding SN 1987A is initially composed of already ionized hydrogen and helium predict substantial Si IV column densities. This result provides an interesting prediction of the ionization state of the environment of the presupernova star.

  6. Wide-field SCUBA-2 observations of NGC 2264: submillimetre clumps and filaments

    NASA Astrophysics Data System (ADS)

    Buckle, J. V.; Richer, J. S.

    2015-10-01

    We present wide-field observations of the NGC 2264 molecular cloud in the dust continuum at 850 and 450 μm using SCUBA-2 on the James Clerk Maxwell Telescope. Using 12CO 3 → 2 molecular line data, we determine that emission from CO contaminates the 850 μm emission at levels ˜30 per cent in localized regions associated with high-velocity molecular outflows. Much higher contamination levels of 60 per cent are seen in shocked regions near the massive star S Mon. If not removed, the levels of CO contamination would contribute an extra 13 per cent to the dust mass in NGC 2264. We use the FELLWALKER routine to decompose the dust into clumpy structures, and a Hessian-based routine to decompose the dust into filamentary structures. The filaments can be described as a hub-filament structure, with lower column density filaments radiating from the NGC 2264 C protocluster hub. Above mean filament column densities of 2.4 × 1022 cm-2, star formation proceeds with the formation of two or more protostars. Below these column densities, filaments are starless, or contain only a single protostar.

  7. Optical observations of nearby interstellar gas

    NASA Astrophysics Data System (ADS)

    Frisch, P. C.; York, D. G.

    1984-11-01

    Observations indicated that a cloud with a heliocentric velocity of approximately -28 km/s and a hydrogen column density that possibly could be on the order of, or greater than, 5 x 10 to the 19 power/square cm is located within the nearest 50 to 80 parsecs in the direction of Ophiuchus. This is a surprisingly large column density of material for this distance range. The patchy nature of the absorption from the cloud indicates that it may not be a feature with uniform properties, but rather one with small scale structure which includes local enhancements in the column density. This cloud is probably associated with the interstellar cloud at about the same velocity in front of the 20 parsec distant star alpha Oph (Frisch 1981, Crutcher 1982), and the weak interstellar polarization found in stars as near as 35 parsecs in this general region (Tinbergen 1982). These data also indicate that some portion of the -14 km/s cloud also must lie within the 100 parsec region. Similar observations of both Na1 and Ca2 interstellar absorption features were performed in other lines of sight. Similar interstellar absorption features were found in a dozen stars between 20 and 100 parsecs of the Sun.

  8. Optical Observations of Nearby Interstellar Gas

    NASA Technical Reports Server (NTRS)

    Frisch, P. C.; York, D. G.

    1984-01-01

    Observations indicated that a cloud with a heliocentric velocity of approximately -28 km/s and a hydrogen column density that possibly could be on the order of, or greater than, 5 x 10 to the 19 power/square cm is located within the nearest 50 to 80 parsecs in the direction of Ophiuchus. This is a surprisingly large column density of material for this distance range. The patchy nature of the absorption from the cloud indicates that it may not be a feature with uniform properties, but rather one with small scale structure which includes local enhancements in the column density. This cloud is probably associated with the interstellar cloud at about the same velocity in front of the 20 parsec distant star alpha Oph (Frisch 1981, Crutcher 1982), and the weak interstellar polarization found in stars as near as 35 parsecs in this general region (Tinbergen 1982). These data also indicate that some portion of the -14 km/s cloud also must lie within the 100 parsec region. Similar observations of both Na1 and Ca2 interstellar absorption features were performed in other lines of sight. Similar interstellar absorption features were found in a dozen stars between 20 and 100 parsecs of the Sun.

  9. Column Number Density Expressions Through M = 0 and M = 1 Point Source Plumes Along Any Straight Path

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2016-01-01

    Analytical expressions for column number density (CND) are developed for optical line of sight paths through a variety of steady free molecule point source models including directionally-constrained effusion (Mach number M = 0) and flow from a sonic orifice (M = 1). Sonic orifice solutions are approximate, developed using a fair simulacrum fitted to the free molecule solution. Expressions are also developed for a spherically-symmetric thermal expansion (M = 0). CND solutions are found for the most general paths relative to these sources and briefly explored. It is determined that the maximum CND from a distant location through directed effusion and sonic orifice cases occurs along the path parallel to the source plane that intersects the plume axis. For the effusive case this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plume's axis. For sonic plumes this ratio is reduced to about 4/3. For high Mach number cases the maximum CND will be found along the axial centerline path. Keywords: column number density, plume flows, outgassing, free molecule flow.

  10. Seasonal variability of the hydrogen exosphere of Mars

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.

    2017-05-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission measures both the upstream solar wind and collisional products from energetic neutral hydrogen atoms that precipitate into the upper atmosphere after their initial formation by charge exchange with exospheric hydrogen. By computing the ratio between the densities of these populations, we derive a robust measurement of the column density of exospheric hydrogen upstream of the Martian bow shock. By comparing with Chamberlain-type model exospheres, we place new constraints on the structure and escape rates of exospheric hydrogen, derived from observations sensitive to a different and potentially complementary column from most scattered sunlight observations. Our observations provide quantitative estimates of the hydrogen exosphere with nearly complete temporal coverage, revealing order of magnitude seasonal changes in column density and a peak slightly after perihelion, approximately at southern summer solstice. The timing of this peak suggests either a lag in the response of the Martian atmosphere to solar inputs or a seasonal effect driven by lower atmosphere dynamics. The high degree of seasonal variability implied by our observations suggests that the Martian atmosphere and the thermal escape of light elements depend sensitively on solar inputs.

  11. Evolution of column density distributions within Orion A⋆

    NASA Astrophysics Data System (ADS)

    Stutz, A. M.; Kainulainen, J.

    2015-05-01

    We compare the structure of star-forming molecular clouds in different regions of Orion A to determine how the column density probability distribution function (N-PDF) varies with environmental conditions such as the fraction of young protostars. A correlation between the N-PDF slope and Class 0 protostar fraction has been previously observed in a low-mass star-formation region (Perseus); here we test whether a similar correlation is observed in a high-mass star-forming region. We used Herschel PACS and SPIRE cold dust emission observations to derive a column density map of Orion A. We used the Herschel Orion Protostar Survey catalog to accurately identify and classify the Orion A young stellar object content, including the cold and relatively short-lived Class 0 protostars (with a lifetime of ~0.14 Myr). We divided Orion A into eight independent regions of 0.25 square degrees (13.5 pc2); in each region we fit the N-PDF distribution with a power law, and we measured the fraction of Class 0 protostars. We used a maximum-likelihood method to measure the N-PDF power-law index without binning the column density data. We find that the Class 0 fraction is higher in regions with flatter column density distributions. We tested the effects of incompleteness, extinction-driven misclassification of Class 0 sources, resolution, and adopted pixel-scales. We show that these effects cannot account for the observed trend. Our observations demonstrate an association between the slope of the power-law N-PDF and the Class 0 fractions within Orion A. Various interpretations are discussed, including timescales based on the Class 0 protostar fraction assuming a constant star-formation rate. The observed relation suggests that the N-PDF can be related to an evolutionary state of the gas. If universal, such a relation permits evaluating the evolutionary state from the N-PDF power-law index at much greater distances than those accessible with protostar counts. Appendices are available in electronic form at http://www.aanda.orgThe N(H) map as a FITS file is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/L6

  12. Mercury cycling in stream ecosystems. 2. Benthic methylmercury production and bed sediment - Pore water partitioning

    USGS Publications Warehouse

    Marvin-DiPasquale, Mark; Lutz, Michelle A; Brigham, Mark E.; Krabbenhoft, David P.; Aiken, George R.; Orem, William H.; Hall, Britt D.

    2009-01-01

    Mercury speciation, controls on methylmercury (MeHg) production, and bed sediment−pore water partitioning of total Hg (THg) and MeHg were examined in bed sediment from eight geochemically diverse streams where atmospheric deposition was the predominant Hg input. Across all streams, sediment THg concentrations were best described as a combined function of sediment percent fines (%fines; particles < 63 μm) and organic content. MeHg concentrations were best described as a combined function of organic content and the activity of the Hg(II)-methylating microbial community and were comparable to MeHg concentrations in streams with Hg inputs from industrial and mining sources. Whole sediment tin-reducible inorganic reactive Hg (Hg(II)R) was used as a proxy measure for the Hg(II) pool available for microbial methylation. In conjunction with radiotracer-derived rate constants of 203Hg(II) methylation, Hg(II)R was used to calculate MeHg production potential rates and to explain the spatial variability in MeHg concentration. The %Hg(II)R (of THg) was low (2.1 ± 5.7%) and was inversely related to both microbial sulfate reduction rates and sediment total reduced sulfur concentration. While sediment THg concentrations were higher in urban streams, %MeHg and %Hg(II)R were higher in nonurban streams. Sediment pore water distribution coefficients (log Kd’s) for both THg and MeHg were inversely related to the log-transformed ratio of pore water dissolved organic carbon (DOC) to bed sediment %fines. The stream with the highest drainage basin wetland density also had the highest pore water DOC concentration and the lowest log Kd’s for both THg and MeHg. No significant relationship existed between overlying water MeHg concentrations and those in bed sediment or pore water, suggesting upstream sources of MeHg production may be more important than local streambed production as a driver of water column MeHg concentration in drainage basins that receive Hg inputs primarily from atmospheric sources.

  13. Commercial Jet Transport Crashworthiness

    DTIC Science & Technology

    1982-04-01

    airports is another area for improved safety. The avoidance of collisions between aircraft and with ground vehicles should be attainable. Reduction of...hazards such as drainage ditches, poles, trees, columns, outbuildings, and birds from airports is a matter of concern. In addition the short/overrun areas...071191 DCC DENVER X 122 17 0 LOG FIRE YES 011961 DC8 JFK X 106 4 ? TO FIRE PAR 061561 707 LISBON 103 0 2 LDG FIRE YES 122161 CMT ANKARA X 34 27 6 CLI

  14. Unsplittable Flow in Paths and Trees and Column-Restricted Packing Integer Programs

    NASA Astrophysics Data System (ADS)

    Chekuri, Chandra; Ene, Alina; Korula, Nitish

    We consider the unsplittable flow problem (UFP) and the closely related column-restricted packing integer programs (CPIPs). In UFP we are given an edge-capacitated graph G = (V,E) and k request pairs R 1, ..., R k , where each R i consists of a source-destination pair (s i ,t i ), a demand d i and a weight w i . The goal is to find a maximum weight subset of requests that can be routed unsplittably in G. Most previous work on UFP has focused on the no-bottleneck case in which the maximum demand of the requests is at most the smallest edge capacity. Inspired by the recent work of Bansal et al. [3] on UFP on a path without the above assumption, we consider UFP on paths as well as trees. We give a simple O(logn) approximation for UFP on trees when all weights are identical; this yields an O(log2 n) approximation for the weighted case. These are the first non-trivial approximations for UFP on trees. We develop an LP relaxation for UFP on paths that has an integrality gap of O(log2 n); previously there was no relaxation with o(n) gap. We also consider UFP in general graphs and CPIPs without the no-bottleneck assumption and obtain new and useful results.

  15. Stability and Structure of Star-Shape Granules

    NASA Astrophysics Data System (ADS)

    Zhao, Yuchen; Bares, Jonathan; Zheng, Matthew; Dierichs, Karola; Menges, Achim; Behringer, Robert

    2015-11-01

    Columns are made of convex non-cohesive grains like sand collapse after being released from initial positions. On the other hand, various architectures built by concave grains can maintain stability. We explore why these structures are stable, and how stable they can be. We performed experiments by randomly pouring identical star-shape particles into hollow cylinders left on glass and a rough base, and observed stable granular columns after lifting the cylinders. Particles have six 9 mm arms, which extend symmetrically in the xyz directions. Both the probability of creating a stable column and mechanical stability aspects have been investigated. We define r as the weight fraction of particles that fall out of the column after removing confinement. r gradually increases as the column height increases, or the column diameter decreases. We also explored different experiment conditions such as vibration of columns with confinement, or large basal friction. We also consider different stability measures such as the maximum inclination angle or maximum weight a column can support. In order to understand structure leading to stability, 3D CT scan reconstructions of columns have been done and coordination number and packing density will be discussed. We acknowledge supports from W.M.Keck Foundation and Research Triangle MRSEC.

  16. Automated Detection of Selective Logging in Amazon Forests Using Airborne Lidar Data and Pattern Recognition Algorithms

    NASA Astrophysics Data System (ADS)

    Keller, M. M.; d'Oliveira, M. N.; Takemura, C. M.; Vitoria, D.; Araujo, L. S.; Morton, D. C.

    2012-12-01

    Selective logging, the removal of several valuable timber trees per hectare, is an important land use in the Brazilian Amazon and may degrade forests through long term changes in structure, loss of forest carbon and species diversity. Similar to deforestation, the annual area affected by selected logging has declined significantly in the past decade. Nonetheless, this land use affects several thousand km2 per year in Brazil. We studied a 1000 ha area of the Antimary State Forest (FEA) in the State of Acre, Brazil (9.304 ○S, 68.281 ○W) that has a basal area of 22.5 m2 ha-1 and an above-ground biomass of 231 Mg ha-1. Logging intensity was low, approximately 10 to 15 m3 ha-1. We collected small-footprint airborne lidar data using an Optech ALTM 3100EA over the study area once each in 2010 and 2011. The study area contained both recent and older logging that used both conventional and technologically advanced logging techniques. Lidar return density averaged over 20 m-2 for both collection periods with estimated horizontal and vertical precision of 0.30 and 0.15 m. A relative density model comparing returns from 0 to 1 m elevation to returns in 1-5 m elevation range revealed the pattern of roads and skid trails. These patterns were confirmed by ground-based GPS survey. A GIS model of the road and skid network was built using lidar and ground data. We tested and compared two pattern recognition approaches used to automate logging detection. Both segmentation using commercial eCognition segmentation and a Frangi filter algorithm identified the road and skid trail network compared to the GIS model. We report on the effectiveness of these two techniques.

  17. The H i-to-H{sub 2} Transition in a Turbulent Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bialy, Shmuel; Sternberg, Amiel; Burkhart, Blakesley, E-mail: shmuelbi@mail.tau.ac.il

    2017-07-10

    We study the effect of density fluctuations induced by turbulence on the H i/H{sub 2} structure in photodissociation regions (PDRs) both analytically and numerically. We perform magnetohydrodynamic numerical simulations for both subsonic and supersonic turbulent gas and chemical H i/H{sub 2} balance calculations. We derive atomic-to-molecular density profiles and the H i column density probability density function (PDF) assuming chemical equilibrium. We find that, while the H i/H{sub 2} density profiles are strongly perturbed in turbulent gas, the mean H i column density is well approximated by the uniform-density analytic formula of Sternberg et al. The PDF width depends onmore » (a) the radiation intensity–to–mean density ratio, (b) the sonic Mach number, and (c) the turbulence decorrelation scale, or driving scale. We derive an analytic model for the H i PDF and demonstrate how our model, combined with 21 cm observations, can be used to constrain the Mach number and driving scale of turbulent gas. As an example, we apply our model to observations of H i in the Perseus molecular cloud. We show that a narrow observed H i PDF may imply small-scale decorrelation, pointing to the potential importance of subcloud-scale turbulence driving.« less

  18. VALIDATION TESTING OF NEW MECHANISMS WITH OUTDOOR CHAMBER DATA, VOLUME 3: CALCULATION OF PHOTOCHEMICAL REACTION PHOTOLYSIS RATES IN THE UNC OUTDOOR CHAMBER

    EPA Science Inventory

    A new model is described for computing in-chamber actinic flux using site specific conditions that include time of day, air pressure, total column ozone, total column water vapor, relative humidity, aerosol type, aerosol optical density at 500 nm, and the spectral albedo of the g...

  19. Identification, characterization, and analysis of hydraulically conductive fractures in granitic basement rocks, Millville, Massachusetts

    USGS Publications Warehouse

    Paillet, Frederick L.; Ollila, P.W.

    1994-01-01

    A suite of geophysical logs designed to identify and characterize fractures and water production in fractures was run in six bedrock boreholes at a ground-water contamination site near the towns of Millville and Uxbridge in south-central Massachusetts. The geophysical logs used in this study included conventional gamma, single-point resistance, borehole fluid resistivity, caliper, spontaneous potential, and temperature; and the borehole televiewer and heat-pulse flowmeter, which are not usually used to log bedrock water-supply wells. Downward flow under ambient hydraulic-head conditions was measured in three of the boreholes at the site, and the profile of fluid column resistivity inferred from the logs indicated downward flow in all six boreholes. Steady injection tests at about 1.0 gallon per minute were used to identify fractures capable of conducting flow under test conditions. Sixteen of 157 fracturesidentified on the televiewer logs and interpreted as permeable fractures in the data analysis were determined to conduct flow under ambient hydraulic-head conditions or during injection. Hydraulic-head monitoring in the bedrock boreholes indicated a consistent head difference between the upper and lower parts of the boreholes. This naturally occurring hydraulic-head condition may account, in part, for the transport of contaminants from the overlying soil into the bedrock aquifer. The downward flow may also account for the decrease in contaminant concentrations found in some boreholes after routine use of the boreholes as water-supply wells was discontinued.

  20. Hydrogeologic data from test drilling near Verna, Florida, 1978

    USGS Publications Warehouse

    Barker, Michael; Bowman, Geronia; Sutcliffe, Horace

    1981-01-01

    Four test wells were drilled in the vicinity of the city of Sarasota well field near Verna, Fla., to provide hydrologic and geologic information. An expedient and economical method of air lifting water samples from isolated water-producing zones while drilling was utilized. Lithologic logs of drill cuttings and geophysical logs, including point resistance and spontaneous potential electric logs, gamma-ray logs, and caliper logs, were made. Chemical quality of water was determined for principal producing zones at each well. Dissolved solids from composite water samples ranged from 313 milligrams per liter in test well 0-1 north of the well field to 728 milligrams per liter in test well 0-3 within the well field. Each test well was pumped to determine maximum discharge, water-level drawdown, and recovery time. A leaking pump column on test well 0-1 prevented accurate measurement of drawdown on the well. Test well 0-2, located east of the well field, had a pumping rate of 376 gallons per minute and 13.11 feet of drawdown after 3 hours and 50 minutes; test well 0-3 had a maximum yield of 320 gallons per minute, a drawdown of 31.91 feet after 2 hours and 35 minutes of pumping, had a recovery time of 20 minutes; and test well 0-4, south of the well field, had a pumping rate of 200 gallons per minute with 63.34 feet of drawdown after 2 hours and 35 minutes. (USGS)

  1. Accretion Makes a Splash on TW Hydrae

    NASA Astrophysics Data System (ADS)

    Brickhouse, N. S.

    2011-12-01

    The Chandra Large Program on the Classical T Tauri star TW Hydrae (489 ksec, obtained over the course of one month) brings a wealth of spectral diagnostics to the study of X-ray emission from a young star. The emission measure distribution shows two components separated by a gap (i.e. no emission measure in between). Light curves for the two components can then be constructed from the summed light curves of the appropriate individual lines. The two light curves show uncorrelated variability, with one large flare occurring only in the hot component. We associate the hotter component with the corona, since its peak temperature is ˜10 MK. Ne IX line ratio diagnostics for temperature and density indicate that the source of the cooler component is indeed the accretion shock, as originally reported by Kastner et al. (2002). The temperature and density of the accretion shock are in excellent agreement with models using mass accretion rates derived from the optical. We require a third component, which we call the "post-shock region," from line ratio diagnostics of O VII. The density derived from O VII is lower than the density derived from Ne IX, contrary to standard one-dimensional model expectations and from hydrodynamics simulations to date. The column densities derived from the two ions are also significantly different, with the column density from O VII lower than that from Ne IX. This post-shock region cannot be the settling flow expected from the cooling of the shock column, since its mass is 30 times the mass of material that passes through the shock. Instead this region is the splash of stellar atmosphere that has been hit by the accretion stream and heated by the accretion process (Brickhouse et al. 2010).

  2. Maltodextrin enhances biofilm elimination by electrochemical scaffold

    PubMed Central

    Sultana, Sujala T.; Call, Douglas R.; Beyenal, Haluk

    2016-01-01

    Electrochemical scaffolds (e-scaffolds) continuously generate low concentrations of H2O2 suitable for damaging wound biofilms without damaging host tissue. Nevertheless, retarded diffusion combined with H2O2 degradation can limit the efficacy of this potentially important clinical tool. H2O2 diffusion into biofilms and bacterial cells can be increased by damaging the biofilm structure or by activating membrane transportation channels by exposure to hyperosmotic agents. We hypothesized that e-scaffolds would be more effective against Acinetobacter baumannii and Staphylococcus aureus biofilms in the presence of a hyperosmotic agent. E-scaffolds polarized at −600 mVAg/AgCl were overlaid onto preformed biofilms in media containing various maltodextrin concentrations. E-scaffold alone decreased A. baumannii and S. aureus biofilm cell densities by (3.92 ± 0.15) log and (2.31 ± 0.12) log, respectively. Compared to untreated biofilms, the efficacy of the e-scaffold increased to a maximum (8.27 ± 0.05) log reduction in A. baumannii and (4.71 ± 0.12) log reduction in S. aureus biofilm cell densities upon 10 mM and 30 mM maltodextrin addition, respectively. Overall ~55% decrease in relative biofilm surface coverage was achieved for both species. We conclude that combined treatment with electrochemically generated H2O2 from an e-scaffold and maltodextrin is more effective in decreasing viable biofilm cell density. PMID:27782161

  3. Generating log-normal mock catalog of galaxies in redshift space

    NASA Astrophysics Data System (ADS)

    Agrawal, Aniket; Makiya, Ryu; Chiang, Chi-Ting; Jeong, Donghui; Saito, Shun; Komatsu, Eiichiro

    2017-10-01

    We present a public code to generate a mock galaxy catalog in redshift space assuming a log-normal probability density function (PDF) of galaxy and matter density fields. We draw galaxies by Poisson-sampling the log-normal field, and calculate the velocity field from the linearised continuity equation of matter fields, assuming zero vorticity. This procedure yields a PDF of the pairwise velocity fields that is qualitatively similar to that of N-body simulations. We check fidelity of the catalog, showing that the measured two-point correlation function and power spectrum in real space agree with the input precisely. We find that a linear bias relation in the power spectrum does not guarantee a linear bias relation in the density contrasts, leading to a cross-correlation coefficient of matter and galaxies deviating from unity on small scales. We also find that linearising the Jacobian of the real-to-redshift space mapping provides a poor model for the two-point statistics in redshift space. That is, non-linear redshift-space distortion is dominated by non-linearity in the Jacobian. The power spectrum in redshift space shows a damping on small scales that is qualitatively similar to that of the well-known Fingers-of-God (FoG) effect due to random velocities, except that the log-normal mock does not include random velocities. This damping is a consequence of non-linearity in the Jacobian, and thus attributing the damping of the power spectrum solely to FoG, as commonly done in the literature, is misleading.

  4. Age affects sleep microstructure more than sleep macrostructure.

    PubMed

    Schwarz, Johanna F A; Åkerstedt, Torbjörn; Lindberg, Eva; Gruber, Georg; Fischer, Håkan; Theorell-Haglöw, Jenny

    2017-06-01

    It is well known that the quantity and quality of physiological sleep changes across age. However, so far the effect of age on sleep microstructure has been mostly addressed in small samples. The current study examines the effect of age on several measures of sleep macro- and microstructure in 211 women (22-71 years old) of the 'Sleep and Health in Women' study for whom ambulatory polysomnography was registered. Older age was associated with significantly lower fast spindle (effect size f 2  = 0.32) and K-complex density (f 2  = 0.19) during N2 sleep, as well as slow-wave activity (log) in N3 sleep (f 2  = 0.21). Moreover, total sleep time (f 2  = 0.10), N3 sleep (min) (f 2  = 0.10), rapid eye movement sleep (min) (f 2  = 0.11) and sigma (log) (f 2  = 0.05) and slow-wave activity (log) during non-rapid eye movement sleep (f 2  = 0.09) were reduced, and N1 sleep (f 2  = 0.03) was increased in older age. No significant effects of age were observed on slow spindle density, rapid eye movement density and beta power (log) during non-rapid eye movement sleep. In conclusion, effect sizes indicate that traditional sleep stage scoring may underestimate age-related changes in sleep. © 2017 European Sleep Research Society.

  5. Inferring physical properties of galaxies from their emission-line spectra

    NASA Astrophysics Data System (ADS)

    Ucci, G.; Ferrara, A.; Gallerani, S.; Pallottini, A.

    2017-02-01

    We present a new approach based on Supervised Machine Learning algorithms to infer key physical properties of galaxies (density, metallicity, column density and ionization parameter) from their emission-line spectra. We introduce a numerical code (called GAME, GAlaxy Machine learning for Emission lines) implementing this method and test it extensively. GAME delivers excellent predictive performances, especially for estimates of metallicity and column densities. We compare GAME with the most widely used diagnostics (e.g. R23, [N II] λ6584/Hα indicators) showing that it provides much better accuracy and wider applicability range. GAME is particularly suitable for use in combination with Integral Field Unit spectroscopy, both for rest-frame optical/UV nebular lines and far-infrared/sub-millimeter lines arising from photodissociation regions. Finally, GAME can also be applied to the analysis of synthetic galaxy maps built from numerical simulations.

  6. Consolidation patterns during initiation and evolution of a plate-boundary decollement zone: Northern Barbados accretionary prism

    USGS Publications Warehouse

    Moore, J.C.; Klaus, A.; Bangs, N.L.; Bekins, B.; Bucker, C.J.; Bruckmann, W.; Erickson, S.N.; Hansen, O.; Horton, T.; Ireland, P.; Major, C.O.; Moore, Gregory F.; Peacock, S.; Saito, S.; Screaton, E.J.; Shimeld, J.W.; Stauffer, P.H.; Taymaz, T.; Teas, P.A.; Tokunaga, T.

    1998-01-01

    Borehole logs from the northern Barbados accretionary prism show that the plate-boundary decollement initiates in a low-density radiolarian claystone. With continued thrusting, the decollement zone consolidates, but in a patchy manner. The logs calibrate a three-dimensional seismic reflection image of the decollement zone and indicate which portions are of low density and enriched in fluid, and which portions have consolidated. The seismic image demonstrates that an underconsolidated patch of the decollement zone connects to a fluid-rich conduit extending down the decollement surface. Fluid migration up this conduit probably supports the open pore structure in the underconsolidated patch.

  7. Gas seepage in the Northern Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Matilde Ferrante, Giulia; Donda, Federica; Volpi, Valentina; Tinivella, Umberta

    2017-04-01

    In the Northern Adriatic Sea, the occurrence of gas seepage has been widely documented. However, the origin of seeping gas was not clearly constrained. Geophysical data with different scale of resolution, i.e. multichannel seismic profiles, CHIRP and morpho-bathymetry data collected in 2009 and 2014 by OGS reveal that several the gas-enriched fluid vents are deeply rooted. In fact, the entire Plio-Quaternary succession is characterized by widespread seismic anomalies represented by wipe-out zones and interpreted as gas chimneys. They commonly root at the base of the Pliocene sequence but also within the Paleogene succession, where they appear to be associated to deep-seated, Mesozoic-to-Paleogene faults. These chimneys originate and terminate at different stratigraphic levels; they also commonly reach the seafloor, where rock outcrops interpreted as authigenic carbonate deposits have been recognized. In places, gas is then capable to escape in the water column as shown by numerous gas flares. On going studies are addressed to: 1. re-examining the structural setting of the study area, in order to verify a possible structural control on chimney distribution and gas migration; 2. performing geochemical analysis on gas which have been sampled in some key emission points; 3. a quantitative analysis of some selected boreholes well logs (made available through the public VidePi database (www.videpi.com)) aimed to estimate the amount of gas present in sediments. This work presents the preliminary results regarding the latter aspect of our research. In a first instance, for each selected borehole the geophysical logs have been digitized. This procedure consists in a manual picking of curves, in a set system of reference. Static corrections for vertical offset are made at this stage. Logs are then divided by type and converted in common scales, amplifications and units. Every log is resampled in order to cut high frequencies not useful in the comparison with seismic data. Estimation of gas requires a petrophysical characterization of sediments, but unfortunately the available wells are not sufficient for our investigations. For this reason, we are presently trying to establish empirical relationships between the available logs. All information available from wells and results from literature are used to fit cross-plots, and related chi-square tests are performed. Some correlations among our petrophysical logs and common trends in the investigated area have been already found, but our work is still in progress. This analysis will hopefully provide a petrophysical characterization of the study area and will be used to estimate density, velocity and porosity profiles. Next step will consist in an ad hoc processing of seismic data, applying a True Amplitude Recovery and keeping the amplitude information unaffected, which is the first request in our analysis. References: Deep-sourced gas seepage and methane-derived carbonates in the Northern Adriatic Sea, Donda et al., 2015; Sound velocity and related properties of marine sediments, Hamilton et al., 1982; Archie's law - a reappraisal, Glover, 2016.

  8. Cosmic-rays, gas, and dust in nearby anticentre clouds. II. Interstellar phase transitions and the dark neutral medium

    NASA Astrophysics Data System (ADS)

    Remy, Q.; Grenier, I. A.; Marshall, D. J.; Casandjian, J. M.

    2018-03-01

    Aim. H I 21-cm and 12CO 2.6-mm line emissions trace the atomic and molecular gas phases, respectively, but they miss most of the opaque H I and diffuse H2 present in the dark neutral medium (DNM) at the transition between the H I-bright and CO-bright regions. Jointly probing H I, CO, and DNM gas, we aim to constrain the threshold of the H I-H2 transition in visual extinction, AV, and in total hydrogen column densities, NHtot. We also aim to measure gas mass fractions in the different phases and to test their relation to cloud properties. Methods: We have used dust optical depth measurements at 353 GHz, γ-ray maps at GeV energies, and H I and CO line data to trace the gas column densities and map the DNM in nearby clouds toward the Galactic anticentre and Chamaeleon regions. We have selected a subset of 15 individual clouds, from diffuse to star-forming structures, in order to study the different phases across each cloud and to probe changes from cloud to cloud. Results: The atomic fraction of the total hydrogen column density is observed to decrease in the (0.6-1) × 1021 cm-2 range in NHtot (AV ≈ 0.4 mag) because of the formation of H2 molecules. The onset of detectable CO intensities varies by only a factor of 4 from cloud to cloud, between 0.6 × 1021 cm-2 and 2.5 × 1021 cm-2 in total gas column density. We observe larger H2 column densities than linearly inferred from the CO intensities at AV > 3 mag because of the large CO optical thickness; the additional H2 mass in this regime represents on average 20% of the CO-inferred molecular mass. In the DNM envelopes, we find that the fraction of diffuse CO-dark H2 in the molecular column densities decreases with increasing AV in a cloud. For a half molecular DNM, the fraction decreases from more than 80% at 0.4 mag to less than 20% beyond 2 mag. In mass, the DNM fraction varies with the cloud properties. Clouds with low peak CO intensities exhibit large CO-dark H2 fractions in molecular mass, in particular the diffuse clouds lying at high altitude above the Galactic plane. The mass present in the DNM envelopes appears to scale with the molecular mass seen in CO as MHDNM = 62 ± 7 MH2CO0.51 ± 0.02 across two decades in mass. Conclusions: The phase transitions in these clouds show both common trends and environmental differences. These findings will help support the theoretical modelling of H2 formation and the precise tracing of H2 in the interstellar medium.

  9. Rocket-borne observation of singly ionized carbon 158 micron emission from the diffuse interstellar medium

    NASA Astrophysics Data System (ADS)

    Bock, James Joseph

    1994-01-01

    We report an observation of 158 micron line emission from singly ionized carbon from the diffuse interstellar medium at high galactic latitude. The integrated line intensity is measured in a 36 arcmin field-of-view along a triangular scan path in a 5 deg x 20 deg region in Ursa Major using a rocket-borne, liquid helium cooled spectrophotometer. The scan includes high latitude infrared cirrus, molecular clouds, a bright external galaxy, M82, and the HI Hole, which is a region of uniquely low neutral hydrogen column density. Emission from (CII) is observed in all regions and, in the absence of appreciable CO emission, is well correlated with neutral hydrogen column density. We observe a (CII) gas cooling rate which varies from (3.25 +/- 0.8 to 1.18 +/- 0.4) x 10-26 ergs-1 H-atom-1, in good agreement with recent observations of UV absorption lines at high galactic latitude. Regions with CO emission have enhanced (CII) line emission over that expected from the correlation with neutral hydrogen column density. The line-to-continuum ratio varies from I(CII)/lambda Ilambda = 0.002 to 0.008 in comparison with the all sky average of 0.0082 reported by FIRAS, which is heavily weighted towards the Galactic plane. The far-infrared continuum intensity, measured at 134 microns, 154 microns, and 186 microns, correlates with the 100 micron brightness measured by IRAS, and in regions excluding molecular clouds, with HI column density. The far-infrared brightness correlated with HI column density is fit by a thermal spectrum with a temperature T = 16.4 (+2.3/-1.8) K assuming an index of emissivity n = 2. The residual brightness after subtracting the emission correlated with neutral hydrogen column density yields an upper limit to the far-infrared extra-galactic background radiation of lambda Ilambda (154 microns) less than 2.6 x 10-12 W cm-2 sr-1. The observation of M82 confirms the laboratory calibration of the instrument. Unique instrumentation was developed to realize the instrument. A high sensitivity detection system consisting of stressed Ge:Ga photoconductors coupled to charge integrating amplifiers is described. We developed a compact, miniature He-4 refrigerator suitable for spaceborne operation. A silicon-gap Fabry-Perot filter, designed for use in high-throughput, compact optical systems, was developed. The performance of a far-infrared low-pass filter stack with high out-of-band rejection is reported. We tested the performance of a telescope baffle system with high-off axis rejection in a combination of ground-based and rocket-borne experiments. A submillimeter-black coating suitable for use in spaceborne telescopes is described. We report the laboratory testing of the instrument and the performance during the flight, and discuss the scientific implications of the observations.

  10. Retrieval of Ozone Column Content from Airborne Sun Photometer Measurements During SOLVE II: Comparison with SAGE III, POAM III,THOMAS and GOME Measurements. Comparison with SAGE 111, POAM 111, TOMS and GOME Measurements

    NASA Technical Reports Server (NTRS)

    Livingston, J.; Schmid, B.; Russell, P.; Eilers, J.; Kolyer, R.; Redemann, J.; Yee, J.-H.; Trepte, C.; Thomason, L.; Pitts, M.

    2003-01-01

    During the Second SAGE 111 Ozone Loss and Validation Experiment (SOLVE II), the 14- channel NASA Ames Airborne Trackmg Sunphotometer (AATS-14) was mounted on the NASA DC-8 and successfully measured spectra of total and aerosol optical depth (TOD and AOD) during the sunlit portions of eight science flights. Values of ozone column content above the aircraft have been derived from the AATS-14 data by using a linear least squares method. For each AATS-14 measured TOD spectrum, this method iteratively finds the ozone column content that yields the best match between measured and calculated TOD. The calculations assume the known Chappuis ozone band shape and a three-parameter AOD shape (quadratic in log-log space). Seven of the AATS-14 channels (each employing an interference filter with a nominal full-width at half maximum bandpass of -5 nm) are within the Chappuis band, with center wavelengths between 452.9 nm and 864.5 nm. One channel (604.4 nm) is near the peak, and three channels (499.4, 519.4 and 675.1 nm) have ozone absorption within 30-40% of that at the peak. For the typical DC-8 SOLVE II cruising altitudes of approx. 8-12 km and the background stratospheric aerosol conditions that prevailed during SOLVE 11, absorption of incoming solar radiation by ozone comprised a significant fraction of the aerosol-plus-ozone optical depth measured in the four AATS-14 channels centered between 499.4 and 675.1 nm. Typical AODs above the DC-8 ranged from 0.003-0.008 in these channels. For comparison, an ozone overburden of 0.3 atm-cm (300 DU) translates to ozone optical depths of 0.009,0.014, 0.041, and 0.012, respectively, at these same wavelengths. In this paper, we compare AATS-14 values of ozone column content with temporally and spatially near-coincident values derived from measurements acquired by the Stratospheric Aerosol and Gas Experiment III (SAGE III) and the Polar Ozone and Aerosol Measurement 111 (POAM III) satellite sensors. We also compare AATS-14 ozone retrievals during selected DC-8 latitudinal and longitudinal transects with total column ozone data acquired by the Total Ozone Mapping Spectrometer (TOMS) and the Global Ozone Monitoring Experiment (GOME) satellite sensors. To enable this comparison, the amount of ozone in the column below the aircraft is estimated by combining SAGE and/or POAM data with high resolution, fast response in-situ ozone measurements acquired during the DC-8 ascent at the start of each science flight.

  11. Evaluating analytical approaches for estimating pelagic fish biomass using simulated fish communities

    USGS Publications Warehouse

    Yule, Daniel L.; Adams, Jean V.; Warner, David M.; Hrabik, Thomas R.; Kocovsky, Patrick M.; Weidel, Brian C.; Rudstam, Lars G.; Sullivan, Patrick J.

    2013-01-01

    Pelagic fish assessments often combine large amounts of acoustic-based fish density data and limited midwater trawl information to estimate species-specific biomass density. We compared the accuracy of five apportionment methods for estimating pelagic fish biomass density using simulated communities with known fish numbers that mimic Lakes Superior, Michigan, and Ontario, representing a range of fish community complexities. Across all apportionment methods, the error in the estimated biomass generally declined with increasing effort, but methods that accounted for community composition changes with water column depth performed best. Correlations between trawl catch and the true species composition were highest when more fish were caught, highlighting the benefits of targeted trawling in locations of high fish density. Pelagic fish surveys should incorporate geographic and water column depth stratification in the survey design, use apportionment methods that account for species-specific depth differences, target midwater trawling effort in areas of high fish density, and include at least 15 midwater trawls. With relatively basic biological information, simulations of fish communities and sampling programs can optimize effort allocation and reduce error in biomass estimates.

  12. VizieR Online Data Catalog: CoRoT red giants abundances (Morel+, 2014)

    NASA Astrophysics Data System (ADS)

    Morel, T.; Miglio, A.; Lagarde, N.; Montalban, J.; Rainer, M.; Poretti, E.; Eggenberger, P.; Hekker, S.; Kallinger, T.; Mosser, B.; Valentini, M.; Carrier, F.; Hareter, M.; Mantegazza, L.

    2014-02-01

    The equivalent widths were measured manually assuming Gaussian profiles or Voigt profiles for the few lines with extended damping wings. Lines with an unsatisfactory fit or significantly affected by telluric features were discarded. Only values eventually retained for the analysis are provided. For the chemical abundances, the usual notation is used: [X/Y]=[log({epsilon}(X))-log({epsilon}(Y))]star - [log({epsilon}(X))-log({epsilon}(Y))]⊙ with log{epsilon}(X)=12+log[N(X)/N(H)] (N is the number density of the species). For lithium, the following notation is used: [Li/H]=log(N(Li))star-log(N(Li))⊙. The adopted solar abundances are taken from Grevesse & Sauval (1998SSRv...85..161G), except for Li for which we adopt our derived values: log({epsilon}(Li))⊙=1.09 and 1.13 in LTE and NLTE, respectively (see text). All the abundances are computed under the assumption of LTE, except Li for which values corrected for departures from LTE using the data of Lind et al. (2009A&A...503..541L) are also provided. All the quoted error bars are 1-sigma uncertainties. (6 data files).

  13. Application of borehole geophysics to water-resources investigations

    USGS Publications Warehouse

    Keys, W.S.; MacCary, L.M.

    1971-01-01

    This manual is intended to be a guide for hydrologists using borehole geophysics in ground-water studies. The emphasis is on the application and interpretation of geophysical well logs, and not on the operation of a logger. It describes in detail those logging techniques that have been utilized within the Water Resources Division of the U.S. Geological Survey, and those used in petroleum investigations that have potential application to hydrologic problems. Most of the logs described can be made by commercial logging service companies, and many can be made with small water-well loggers. The general principles of each technique and the rules of log interpretation are the same, regardless of differences in instrumentation. Geophysical well logs can be interpreted to determine the lithology, geometry, resistivity, formation factor, bulk density, porosity, permeability, moisture content, and specific yield of water-bearing rocks, and to define the source, movement, and chemical and physical characteristics of ground water. Numerous examples of logs are used to illustrate applications and interpretation in various ground-water environments. The interrelations between various types of logs are emphasized, and the following aspects are described for each of the important logging techniques: Principles and applications, instrumentation, calibration and standardization, radius of investigation, and extraneous effects.

  14. Increasing phytoplankton-available phosphorus and inhibition of macrophyte on phytoplankton bloom.

    PubMed

    Dai, Yanran; Wu, Juan; Ma, Xiaohang; Zhong, Fei; Cui, Naxin; Cheng, Shuiping

    2017-02-01

    We assembled mesocosms to address the coherent mechanisms that an increasing phosphorus (P) concentration in water columns coupled with the phytoplankton bloom and identify the performance gap of regulating phytoplankton growth between two macrophyte species, Ceratophyllum demersum L. and Vallisneria spiralis L. Intense alkaline phosphatase activities (APA) were observed in the unplanted control, with their predominant part, phytoplankton APA (accounting for up to 44.7% of the total APA), and another large share, bacterial APA. These correspond with the large average concentration of total phosphorus (TP), total dissolved phosphorus (TDP) and soluble reactive (SRP) as well as high phytoplankton density in the water column. The consistency among P concentrations, phytoplankton density and APA, together with the positive impact of phytoplankton density on total APA revealed by the structural equation modelling (SEM), indicates that facilitated APA levels in water is an essential strategy for phytoplankton to enhance the available P. Furthermore, a positive interaction between phytoplankton APA and bacteria APA was detected, suggesting a potential collaboration between phytoplankton and bacteria to boost available P content in the water column. Both macrophyte species had a prominent performance on regulating phytoplankton proliferation. The phytoplankton density and quantum yield in C. demersum systems were all significantly lower (33.8% and 24.0%) than those in V. spiralis systems. Additionally, a greater decoupling effect of C. demersum on the relationship between P, APA, phytoplankton density, bacteria dynamic and quantum yield was revealed by SEM. These results imply that the preferred tactic of different species could lead to the performance gap. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Test of direct and indirect effects of agrochemicals on the survival of fecal indicator bacteria.

    PubMed

    Staley, Zachery R; Rohr, Jason R; Harwood, Valerie J

    2011-12-01

    Water bodies often receive agrochemicals and animal waste carrying fecal indicator bacteria (FIB) and zoonotic pathogens, but we know little about the effects of agrochemicals on these microbes. We assessed the direct effects of the pesticides atrazine, malathion, and chlorothalonil and inorganic fertilizer on Escherichia coli and enterococcal survival in simplified microcosms held in the dark. E. coli strain composition in sediments and water column were positively correlated, but none of the agrochemicals had significant direct effects on E. coli strain composition or on densities of culturable FIBs. In a companion study, microcosms with nondisinfected pond water and sediments were exposed to or shielded from sunlight to examine the potential indirect effects of atrazine and inorganic fertilizer on E. coli. The herbicide atrazine had no effect on E. coli in dark-exposed microcosms containing natural microbial and algal communities. However, in light-exposed microcosms, atrazine significantly lowered E. coli densities in the water column and significantly increased densities in the sediment compared to controls. This effect appears to be mediated by the effects of atrazine on algae, given that atrazine significantly reduced phytoplankton, which was a positive and negative predictor of E. coli densities in the water column and sediment, respectively. These data suggest that atrazine does not directly affect the survival of FIB, rather that it indirectly alters the distribution and abundance of E. coli by altering phytoplankton and periphyton communities. These results improve our understanding of the influence of agricultural practices on FIB densities in water bodies impacted by agricultural runoff.

  16. Test of Direct and Indirect Effects of Agrochemicals on the Survival of Fecal Indicator Bacteria▿

    PubMed Central

    Staley, Zachery R.; Rohr, Jason R.; Harwood, Valerie J.

    2011-01-01

    Water bodies often receive agrochemicals and animal waste carrying fecal indicator bacteria (FIB) and zoonotic pathogens, but we know little about the effects of agrochemicals on these microbes. We assessed the direct effects of the pesticides atrazine, malathion, and chlorothalonil and inorganic fertilizer on Escherichia coli and enterococcal survival in simplified microcosms held in the dark. E. coli strain composition in sediments and water column were positively correlated, but none of the agrochemicals had significant direct effects on E. coli strain composition or on densities of culturable FIBs. In a companion study, microcosms with nondisinfected pond water and sediments were exposed to or shielded from sunlight to examine the potential indirect effects of atrazine and inorganic fertilizer on E. coli. The herbicide atrazine had no effect on E. coli in dark-exposed microcosms containing natural microbial and algal communities. However, in light-exposed microcosms, atrazine significantly lowered E. coli densities in the water column and significantly increased densities in the sediment compared to controls. This effect appears to be mediated by the effects of atrazine on algae, given that atrazine significantly reduced phytoplankton, which was a positive and negative predictor of E. coli densities in the water column and sediment, respectively. These data suggest that atrazine does not directly affect the survival of FIB, rather that it indirectly alters the distribution and abundance of E. coli by altering phytoplankton and periphyton communities. These results improve our understanding of the influence of agricultural practices on FIB densities in water bodies impacted by agricultural runoff. PMID:22003017

  17. The structure and statistics of interstellar turbulence

    NASA Astrophysics Data System (ADS)

    Kritsuk, A. G.; Ustyugov, S. D.; Norman, M. L.

    2017-06-01

    We explore the structure and statistics of multiphase, magnetized ISM turbulence in the local Milky Way by means of driven periodic box numerical MHD simulations. Using the higher order-accurate piecewise-parabolic method on a local stencil (PPML), we carry out a small parameter survey varying the mean magnetic field strength and density while fixing the rms velocity to observed values. We quantify numerous characteristics of the transient and steady-state turbulence, including its thermodynamics and phase structure, kinetic and magnetic energy power spectra, structure functions, and distribution functions of density, column density, pressure, and magnetic field strength. The simulations reproduce many observables of the local ISM, including molecular clouds, such as the ratio of turbulent to mean magnetic field at 100 pc scale, the mass and volume fractions of thermally stable Hi, the lognormal distribution of column densities, the mass-weighted distribution of thermal pressure, and the linewidth-size relationship for molecular clouds. Our models predict the shape of magnetic field probability density functions (PDFs), which are strongly non-Gaussian, and the relative alignment of magnetic field and density structures. Finally, our models show how the observed low rates of star formation per free-fall time are controlled by the multiphase thermodynamics and large-scale turbulence.

  18. Excitation of the molecular gas in the nuclear region of M 82

    NASA Astrophysics Data System (ADS)

    Loenen, A. F.; van der Werf, P. P.; Güsten, R.; Meijerink, R.; Israel, F. P.; Requena-Torres, M. A.; García-Burillo, S.; Harris, A. I.; Klein, T.; Kramer, C.; Lord, S.; Martín-Pintado, J.; Röllig, M.; Stutzki, J.; Szczerba, R.; Weiß, A.; Philipp-May, S.; Yorke, H.; Caux, E.; Delforge, B.; Helmich, F.; Lorenzani, A.; Morris, P.; Philips, T. G.; Risacher, C.; Tielens, A. G. G. M.

    2010-10-01

    We present high-resolution HIFI spectroscopy of the nucleus of the archetypical starburst galaxy M 82. Six 12CO lines, 2 13CO lines and 4 fine-structure lines have been detected. Besides showing the effects of the overall velocity structure of the nuclear region, the line profiles also indicate the presence of multiple components with different optical depths, temperatures, and densities in the observing beam. The data have been interpreted using a grid of PDR models. It is found that the majority of the molecular gas is in low density (n = 103.5 cm-3) clouds, with column densities of NH = 1021.5 cm-2 and a relatively low UV radiation field (G0 = 102). The remaining gas is predominantly found in clouds with higher densities (n = 105 cm-3) and radiation fields (G0 = 102.75), but somewhat lower column densities (NH = 1021.2 cm-2). The highest J CO lines are dominated by a small (1% relative surface filling) component, with an even higher density (n = 106 cm-3) and UV field (G0 = 103.25). These results show the strength of multi-component modelling for interpretating the integrated properties of galaxies.

  19. Spectroscopic Study of a Dark Lane and a Cool Loop in a Solar Limb Active Region by Hinode/EIS

    NASA Astrophysics Data System (ADS)

    Lee, K.; Imada, S.; Moon, Y.; Lee, J.

    2012-12-01

    We investigate a cool loop and a dark lane over a limb active region on 2007 March 14 by the Hinode/EUV Imaging Spectrometer (EIS). The cool loop is clearly seen in the EIS spectral lines formed at the transition region temperature (log T = 5.8). The dark lane is characterized by an elongated faint structure in coronal spectral lines (log T = 5.8 - 6.1) and rooted on a bright point. We examine their electron densities, Doppler velocities, and non-thermal velocities as a function of distance from the limb using the spectral lines formed at different temperatures (log T = 5.4 - 6.4). The electron densities of the cool loop and the dark lane are derived from the density sensitive line pairs of Mg VII, Fe XII, and Fe XIV spectra. Under the hydrostatic equilibrium and isothermal assumption, we determine their temperatures from the density scale height. Comparing the scale height temperatures to the peak formation temperatures of the spectral lines, we note that the scale height temperature of the cool loop is consistent with a peak formation temperature of the Mg VII (log T = 5.8) and the scale height temperature of the dark lane is close to a peak formation temperature of the Fe XII and Fe XIII (log T = 6.1 - 6.2). It is interesting to note that the structures of the cool loop and the dark lane are most visible in these temperature lines. While the non-thermal velocity in the cool loop slightly decreases (less than 7 km {s-1}) along the loop, that in the dark lane sharply falls off with height. The variation of non-thermal velocity with height in the cool loop and the dark lane is contrast to that in off-limb polar coronal holes which are considered as source of the fast solar wind. Such a decrease in the non-thermal velocity may be explained by wave damping near the solar surface or turbulence due to magnetic reconnection near the bright point.

  20. Measuring firm size distribution with semi-nonparametric densities

    NASA Astrophysics Data System (ADS)

    Cortés, Lina M.; Mora-Valencia, Andrés; Perote, Javier

    2017-11-01

    In this article, we propose a new methodology based on a (log) semi-nonparametric (log-SNP) distribution that nests the lognormal and enables better fits in the upper tail of the distribution through the introduction of new parameters. We test the performance of the lognormal and log-SNP distributions capturing firm size, measured through a sample of US firms in 2004-2015. Taking different levels of aggregation by type of economic activity, our study shows that the log-SNP provides a better fit of the firm size distribution. We also formally introduce the multivariate log-SNP distribution, which encompasses the multivariate lognormal, to analyze the estimation of the joint distribution of the value of the firm's assets and sales. The results suggest that sales are a better firm size measure, as indicated by other studies in the literature.

  1. Data for four geologic test holes in the Sacramento Valley, California

    USGS Publications Warehouse

    Berkstresser, C.F.; French, J.J.; Schaal, M.E.

    1985-01-01

    The report provides geological and geophysical data for four of seven test holes drilled as a part of the Central Valley Aquifer Project, which is part of the Regional Aquifer Systems Analysis. The holes were drilled with a rotary well drilling machine to depths of 900 feet in the southwestern part of the Sacramento Valley in Solano and Yolo Counties. Geologic data for each well include lithology, texture, color, character of the contact, sorting, rounding, and cementation, determined from cuttings, cores, and sidewall covers. Fifty cores, 3 feet long, were obtained from each hole, and from eight to fourteen sidewall cores were collected. Geophysical data include a dual-induction log, spherically focused log (SFL), compensated neutron-formation density log, gamma-ray log, and a caliper log. These data are presented in four tables and on four plates. (USGS)

  2. Rapid estimation of aquifer salinity structure from oil and gas geophysical logs

    NASA Astrophysics Data System (ADS)

    Shimabukuro, D.; Stephens, M.; Ducart, A.; Skinner, S. M.

    2016-12-01

    We describe a workflow for creating aquifer salinity maps using Archie's equation for areas that have geophysical data from oil and gas wells. We apply this method in California, where geophysical logs are available in raster format from the Division of Oil, Gas, and Geothermal Resource (DOGGR) online archive. This method should be applicable to any region where geophysical logs are readily available. Much of the work is controlled by computer code, allowing salinity estimates for new areas to be rapidly generated. For a region of interest, the DOGGR online database is scraped for wells that were logged with multi-tool suites, such as the Platform Express or Triple Combination Logging Tools. Then, well construction metadata, such as measured depth, spud date, and well orientation, is attached. The resultant local database allows a weighted criteria selection of wells that are most likely to have the shallow resistivity, deep resistivity, and density porosity measurements necessary to calculate salinity over the longest depth interval. The algorithm can be adjusted for geophysical log availability for older well fields and density of sampling. Once priority wells are identified, a student researcher team uses Neuralog software to digitize the raster geophysical logs. Total dissolved solid (TDS) concentration is then calculated in clean, wet sand intervals using the resistivity-porosity method, a modified form of Archie's equation. These sand intervals are automatically selected using a combination of spontaneous potential and the difference in shallow resistivity and deep resistivity measurements. Gamma ray logs are not used because arkosic sands common in California make it difficult to distinguish sand and shale. Computer calculation allows easy adjustment of Archie's parameters. The result is a semi-continuous TDS profile for the wells of interest. These profiles are combined and contoured using standard 3-d visualization software to yield preliminary salinity maps for the region of interest. We present results for select well fields in the Southern San Joaquin Valley, California.

  3. Column-to-column packing variation of disposable pre-packed columns for protein chromatography.

    PubMed

    Schweiger, Susanne; Hinterberger, Stephan; Jungbauer, Alois

    2017-12-08

    In the biopharmaceutical industry, pre-packed columns are the standard for process development, but they must be qualified before use in experimental studies to confirm the required performance of the packed bed. Column qualification is commonly done by pulse response experiments and depends highly on the experimental testing conditions. Additionally, the peak analysis method, the variation in the 3D packing structure of the bed, and the measurement precision of the workstation influence the outcome of qualification runs. While a full body of literature on these factors is available for HPLC columns, no comparable studies exist for preparative columns for protein chromatography. We quantified the influence of these parameters for commercially available pre-packed and self-packed columns of disposable and non-disposable design. Pulse response experiments were performed on 105 preparative chromatography columns with volumes of 0.2-20ml. The analyte acetone was studied at six different superficial velocities (30, 60, 100, 150, 250 and 500cm/h). The column-to-column packing variation between disposable pre-packed columns of different diameter-length combinations varied by 10-15%, which was acceptable for the intended use. The column-to-column variation cannot be explained by the packing density, but is interpreted as a difference in particle arrangement in the column. Since it was possible to determine differences in the column-to-column performance, we concluded that the columns were well-packed. The measurement precision of the chromatography workstation was independent of the column volume and was in a range of±0.01ml for the first peak moment and±0.007 ml 2 for the second moment. The measurement precision must be considered for small columns in the range of 2ml or less. The efficiency of disposable pre-packed columns was equal or better than that of self-packed columns. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  4. Physiological and morphological responses of pine and willow saplings to post-fire salvage logging

    NASA Astrophysics Data System (ADS)

    Millions, E. L.; Letts, M. G.; Harvey, T.; Rood, S. B.

    2015-12-01

    With global warming, forest fires may be increasing in frequency, and post-fire salvage logging may become more common. The ecophysiological impacts of this practice on tree saplings remain poorly understood. In this study, we examined the physiological and morphological impacts of increased light intensity, due to post-fire salvage logging, on the conifer Pinus contorta (pine) and deciduous broadleaf Salix lucida (willow) tree and shrub species in the Crowsnest Pass region of southern Alberta. Photosynthetic gas-exchange and plant morphological measurements were taken throughout the summer of 2013 on approximately ten year-old saplings of both species. Neither species exhibited photoinhibition, but different strategies were observed to acclimate to increased light availability. Willow saplings were able to slightly elevate their light-saturated rate of net photosynthesis (Amax) when exposed to higher photosynthetic photon flux density (PPFD), thus increasing their growth rate. Willow also exhibited increased leaf inclination angles and leaf mass per unit area (LMA), to decrease light interception in the salvage-logged plot. By contrast, pine, which exhibited lower Amax and transpiration (E), but higher water-use efficiency (WUE = Amax/E) than willow, increased the rate at which electrons were moved through and away from the photosynthetic apparatus in order to avoid photoinhibition. Acclimation indices were higher in willow saplings, consistent with the hypothesis that species with short-lived foliage exhibit greater acclimation. LMA was higher in pine saplings growing in the logged plot, but whole-plant and branch-level morphological acclimation was limited and more consistent with a response to decreased competition in the logged plot, which had much lower stand density.

  5. Calculation of thermal conductivity, thermal diffusivity and specific heat capacity of sedimentary rocks using petrophysical well logs

    NASA Astrophysics Data System (ADS)

    Fuchs, Sven; Balling, Niels; Förster, Andrea

    2015-12-01

    In this study, equations are developed that predict for synthetic sedimentary rocks (clastics, carbonates and evapourates) thermal properties comprising thermal conductivity, specific heat capacity and thermal diffusivity. The rock groups are composed of mineral assemblages with variable contents of 15 major rock-forming minerals and porosities of 0-30 per cent. Petrophysical properties and their well-logging-tool-characteristic readings were assigned to these rock-forming minerals and to pore-filling fluids. Relationships are explored between each thermal property and other petrophysical properties (density, sonic interval transit time, hydrogen index, volume fraction of shale and photoelectric absorption index) using multivariate statistics. The application of these relations allows computing continuous borehole profiles for each rock thermal property. The uncertainties in the prediction of each property vary depending on the selected well-log combination. Best prediction is in the range of 2-8 per cent for the specific heat capacity, of 5-10 per cent for the thermal conductivity, and of 8-15 for the thermal diffusivity, respectively. Well-log derived thermal conductivity is validated by laboratory data measured on cores from deep boreholes of the Danish Basin, the North German Basin, and the Molasse Basin. Additional validation of thermal conductivity was performed by comparing predicted and measured temperature logs. The maximum deviation between these logs is <3 °C. The thermal-conductivity calculation allowed an evaluation of the depth range in which the palaeoclimatic effect on the subsurface temperature field can be observed in the North German Basin. This effect reduces the surface heat-flow density by 25 mW m-2.

  6. Approximate transient and long time limit solutions for the band broadening induced by the thin sidewall-layer in liquid chromatography columns.

    PubMed

    Broeckhoven, Ken; Desmet, Gert

    2007-11-16

    Using a combination of both analytical and numerical techniques, approximate analytical expressions have been established for the transient and long time limit band broadening, originating from the presence of a thin disturbed sidewall layer in liquid chromatography columns, including packed, monolithic as well as microfabricated columns. The established expressions can be used to compare the importance of a thin disturbed sidewall layer with that of other radial heterogeneity effects (such as transcolumn packing density variations due to the relief of packing stresses). The expressions are independent of the actual velocity profile inside the layer as long as the disturbed sidewall layer occupies less than 2.5% of the column width.

  7. Gas-solid fluidized bed reactors: Scale-up, flow regimes identification and hydrodynamics

    NASA Astrophysics Data System (ADS)

    Zaid, Faraj Muftah

    This research studied the scale-up, flow regimes identification and hydrodynamics of fluidized beds using 6-inch and 18- inch diameter columns and different particles. One of the objectives was to advance the scale-up of gas-solid fluidized bed reactors by developing a new mechanistic methodology for hydrodynamic similarity based on matching the radial or diameter profile of gas phase holdup, since gas dynamics dictate the hydrodynamics of these reactors. This has been successfully achieved. However, the literature reported scale-up methodology based on matching selected dimensionless groups was examined and it was found that it was not easy to match the dimensionless groups and hence, there was some deviation in the hydrodynamics of the studied two different fluidized beds. A new technique based on gamma ray densitometry (GRD) was successfully developed and utilized to on-line monitor the implementation of scale-up, to identify the flow regime, and to measure the radial or diameter profiles of gas and solids holdups. CFD has been demonstrated as a valuable tool to enable the implementation of the newly developed scale-up methodology based on finding the conditions that provide similar or closer radial profile or cross sectional distribution of the gas holdup. As gas velocity increases, solids holdup in the center region of the column decreases in the fully developed region of both 6 inch and 18 inch diameter columns. Solids holdup increased with the increase in the particles size and density. Upflowing particles velocity increased with the gas velocity and became steeper at high superficial gas velocity at all axial heights where the center line velocity became higher than that in the wall region. Smaller particles size and lower density gave larger upflowing particles velocity. Minimum fluidization velocity and transition velocity from bubbly to churn turbulent flow regimes were found to be lower in 18 inch diameter column compared to those obtained in 6 inch diameter column. Also the absolute fluctuation of upflowing particles velocity multiplied by solids holdups vś 3ś as one of the terms for solids mass flux estimation was found to be larger in 18-inch diameter column than that in 6-inch diameter column using same particles size and density.

  8. Comparison of polymer induced and solvent induced trypsin denaturation: the role of hydrophobicity.

    PubMed

    Jasti, Lakshmi S; Fadnavis, Nitin W; Addepally, Uma; Daniels, Siona; Deokar, Sarika; Ponrathnam, Surendra

    2014-04-01

    Trypsin adsorption from aqueous buffer by various copolymers of allyl glycidyl ether-ethylene glycol dimethacrylate (AGE-EGDM) copolymer with varying crosslink density increases with increasing crosslink density and the effect slowly wears off after reaching a plateau at 50% crosslink density. The copolymer with 25% crosslink density was reacted with different amines with alkyl/aryl side chains to obtain a series of copolymers with 1,2-amino alcohol functional groups and varying hydrophobicity. Trypsin binding capacity again increases with hydrophobicity of the reacting amine and a good correlation between logPoctanol of the amine and protein binding is observed. The bound trypsin is denatured to the extent of 90% in spite of the presence of hydrophilic hydroxyl and amino groups. The behavior was comparable to that in mixtures of aqueous buffer and water-miscible organic co-solvents where the solvent concentration required to deactivate 50% of the enzyme (C50) is dependent on logPoctanol of the co-solvent. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Automatic Quantification of X-ray Computed Tomography Images of Cores: Method and Application to Shimokita Cores (Northeast Coast of Honshu, Japan)

    NASA Astrophysics Data System (ADS)

    Gaillot, P.

    2007-12-01

    X-ray computed tomography (CT) of rock core provides nondestructive cross-sectional or three-dimensional core representations from the attenuation of electromagnetic radiation. Attenuation depends on the density and the atomic constituents of the rock material that is scanned. Since it has the potential to non-invasively measure phase distribution and species concentration, X-ray CT offers significant advantages to characterize both heterogeneous and apparently homogeneous lithologies. In particular, once empirically calibrated into 3D density images, this scanning technique is useful in the observation of density variation. In this paper, I present a procedure from which information contained in the 3D images can be quantitatively extracted and turned into very-high resolution core logs and core image logs including (1) the radial and angular distributions of density values, (2) the histogram of distribution of the density and its related statistical parameters (average, 10- 25- 50, 75 and 90 percentiles, and width at half maximum), and (3) the volume, the average density and the mass contribution of three core fractions defined by two user-defined density thresholds (voids and vugs < 1.01 g/cc ≤ damaged core material < 1.25 g/cc < non-damaged core material). In turn, these quantitative outputs (1) allow the recognition of bedding and sedimentary features, as well as natural and coring-induced fractures, (2) provide a high-resolution bulk density core log, and (3) provide quantitative estimates of core voids and core damaged zones that can further be used to characterize core quality and core disturbance, and apply, where appropriate, volume correction on core physical properties (gamma-ray attenuation density, magnetic susceptibility, natural gamma radiation, non-contact electrical resistivity, P-wave velocity) acquired via Multi- Sensors Core loggers (MSCL). The procedure is illustrated on core data (XR-CT images, continuous MSCL physical properties and discrete Moisture and Density measurements) from the Hole C9001C drilled off-shore Shimokita (northeast coast of Honshu, Japan) during the shake-down cruise (08-11/2006) of the scientific drilling vessel, Chikyu.

  10. Occurrence of turbulent flow conditions in supercritical fluid chromatography.

    PubMed

    De Pauw, Ruben; Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2014-09-26

    Having similar densities as liquids but with viscosities up to 20 times lower (higher diffusion coefficients), supercritical CO2 is the ideal (co-)solvent for fast and/or highly efficient separations without mass-transfer limitations or excessive column pressure drops. Whereas in liquid chromatography the flow remains laminar in both the packed bed and tubing, except in extreme cases (e.g. in a 75 μm tubing, pure acetonitrile at 5 ml/min), a supercritical fluid can experience a transition from laminar to turbulent flow in more typical operation modes. Due to the significant lower viscosity, this transition for example already occurs at 1.3 ml/min for neat CO2 when using connection tubing with an ID of 127 μm. By calculating the Darcy friction factor, which can be plotted versus the Reynolds number in a so-called Moody chart, typically used in fluid dynamics, higher values are found for stainless steel than PEEK tubing, in agreement with their expected higher surface roughness. As a result turbulent effects are more pronounced when using stainless steel tubing. The higher than expected extra-column pressure drop limits the kinetic performance of supercritical fluid chromatography and complicates the optimization of tubing ID, which is based on a trade-off between extra-column band broadening and pressure drop. One of the most important practical consequences is the non-linear increase in extra-column pressure drop over the tubing downstream of the column which leads to an unexpected increase in average column pressure and mobile phase density, and thus decrease in retention. For close eluting components with a significantly different dependence of retention on density, the selectivity can significantly be affected by this increase in average pressure. In addition, the occurrence of turbulent flow is also observed in the detector cell and connection tubing. This results in a noise-increase by a factor of four when going from laminar to turbulent flow (e.g. going from 0.5 to 2.5 ml/min for neat CO2). Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The Einstein objective grating spectrometer survey of galactic binary X-ray sources

    NASA Technical Reports Server (NTRS)

    Vrtilek, S. D.; Mcclintock, J. E.; Seward, F. D.; Kahn, S. M.; Wargelin, B. J.

    1991-01-01

    The results of observations of 22 bright Galactic X-ray point sources are presented, and the most reliable measurements to date of X-ray column densities to these sources are derived. The results are consistent with the idea that some of the objects have a component of column density intrinsic to the source in addition to an interstellar component. The K-edge absorption due to oxygen is clearly detected in 10 of the sources and the Fe L and Ne K edges are detected in a few. The spectra probably reflect emission originating in a collisionally excited region combined with emission from a photoionized region excited directly by the central source.

  12. Size and DNA distributions of electrophoretically separated cultured human kidney cells

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Plank, L. D.; Todd, P. W.

    1985-01-01

    Electrophoretic purification of purifying cultured cells according to function presumes that the size of cycle phase of a cell is not an overriding determinant of its electrophoretic velocity in an electrophoretic separator. The size distributions and DNA distributions of fractions of cells purified by density gradient electrophoresis were determined. No systematic dependence of electrophoretic migration upward in a density gradient column upon either size or DNA content were found. It was found that human leukemia cell populations, which are more uniform function and found in all phases of the cell cycle during exponential growth, separated on a vertical sensity gradient electrophoresis column according to their size, which is shown to be strictly cell cycle dependent.

  13. X-ray wind tomography of IGR J17252-3616

    NASA Astrophysics Data System (ADS)

    Manousakis, Antonios; Walter, Roland

    IGR J17252-3616 is an heavily absorbed and eclipsing High Mass X-ray Binary with an ab-sorbing hydrogen column density >1023 cm-2 . We have observed it with XMM-Newton to understand the geometry of the absorbing material. Observations were scheduled in order to cover as many orbital phases as possible. Timing analysis is constraining the orbital solution and the physical parameters of the system. Spectral analysis reveals remarkable variations of the absorbing column density and of the Iron Kα fluorescence line around the eclipse. These variations allow to map the geometry of the absorbing and reflection material. Very large accretion structures could be imaged for the first time.

  14. THE GAS/DUST RATIO OF CIRCUMSTELLAR DISKS: TESTING MODELS OF PLANETESIMAL FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horne, David; Gibb, Erika; Rettig, Terrence W.

    2012-07-20

    We present high-resolution, near-infrared NIRSPEC observations of CO absorption toward six class II T Tauri stars: AA Tau, DG Tau, IQ Tau, RY Tau, CW Tau, and Haro 6-5b. {sup 12}CO overtone absorption lines originating from the circumstellar disk of each object were used to calculate line-of-sight gas column densities toward each source. We measured the gas/dust ratio as a function of disk inclination, utilizing measured visual extinctions and inclinations for each star. The majority of our sources show further evidence for a correlation between the gas/dust column density ratio and disk inclination similar to that found by Rettig etmore » al.« less

  15. Electromigration induced high fraction of compound formation in SnAgCu flip chip solder joints with copper column

    NASA Astrophysics Data System (ADS)

    Xu, Luhua; Han, Jung-Kyu; Liang, Jarrett Jun; Tu, K. N.; Lai, Yi-Shao

    2008-06-01

    To overcome the effect of current crowding on electromigration-induced pancake-type void formation in flip chip solder joints, two types of Cu column in 90μm flip chip SnAgCu solder joints have been studied. They were (1) the solder contacts the Cu column at bottom and side walls and (2) the solder wets only the bottom surface of the copper column. With a current density of 1.6×104A/cm2 at 135°C, no failure was detected after 1290h. However, the resistance increased by about 10% due to the formation of a large fraction of intermetallic compounds. We found that electromigration has accelerated the consumption rate of copper column and converted almost the entire solder joint into intermetallic compound. Mechanically, drop impact test indicates a brittle fracture failure in the intermetallic. The electromigration critical product for the intermetallic is discussed.

  16. An upper limit on interstellar C IV in the spectrum of gamma-2 Velorum

    NASA Technical Reports Server (NTRS)

    Lengyel-Frey, D.; Stecher, T. P.; West, D. K.

    1975-01-01

    An upper limit on the column density of C IV along the line of sight to gamma-2 Vel is derived from upper limits placed on the equivalent widths of the interstellar C IV doublet with rest wavelengths at 1548.20 A and 1550.77 A. A lower limit of 250,000 K is calculated for the electron temperature of O VI emitting regions by combining the C IV results with a measurement of the column density of interstellar O VI for the same star and using calculations for the relative ionization of some abundant elements as a function of electron temperature in a low-density plasma. Since gamma-2 Vel is in the central part of the Gum Nebula, the high temperature suggested by these results is shown to support the idea that a high-temperature phase of the interstellar medium, possibly maintained by supernova explosions, may exist.-

  17. Geologic cross section E-E' through the Appalachian basin from the Findlay arch, Wood County, Ohio, to the Valley and Ridge province, Pendleton County, West Virginia: Chapter E.4.2 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ryder, Robert T.; Swezey, Christopher S.; Crangle, Robert D.; Trippi, Michael H.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    This chapter is a re-release of U.S. Geological Survey Scientific Investigations Map 2985, of the same title, by Ryder and others (2008). For this chapter, two appendixes have been added that do not appear with the original version. Appendix A provides Log ASCII Standard (LAS) files for each drill hole along cross-section E–E'; they are text files which encode gamma-ray, neutron, density, and other logs that can be used by most well-logging software. Appendix B provides graphic well-log traces from each drill hole.

  18. Nest densities of cavity-nesting birds in relation to postfire salvage logging and time since wildfire

    Treesearch

    Victoria A. Saab; Robin E. Russell; Jonathan G. Dudley

    2007-01-01

    We monitored the nest densities and nest survival of seven cavity-nesting bird species, including four open-space foragers (American Kestrel [Falco sparverius], Lewis's Woodpecker [Melanerpes lewis], Western Bluebird [Sialia mexicana], and Mountain Bluebird [S. currucoides]) and three wood...

  19. Characterisation of RPLC columns packed with porous sub-2 microm particles.

    PubMed

    Petersson, Patrik; Euerby, Melvin R

    2007-08-01

    Eight commercially available sub-2 microm octadecyl silane columns (C18 columns) have been characterised by the Tanaka protocol. The columns can be grouped into two groups that display large differences in selectivity and peak shape due to differences in hydrophobicity, degree of surface coverage and silanol activity. Measurements of particle size distributions were made using automated microscopy and electrical sensing zone measurements. Only a weak correlation could be found between efficiency and particle size. Large differences in column backpressure were observed. These differences are not related to particle size distribution. A more likely explanation is differences in packing density. In order to take full advantage of 100-150 mm columns packed with sub-2 microm particles, it is often necessary to employ not only an elevated pressure but also an elevated temperature. A comparison between columns packed with sub-2, 3 and 5 microm versions of the same packing indicates potential method transferability problems for several of the columns due to selectivity differences. Currently, the best alternative for fast high-resolution LC is the use of sub-2 microm particles in combination with elevated pressure and temperature. However, as shown in this study additional efforts are needed to improve transferability as well as column performance.

  20. The emergence of different tail exponents in the distributions of firm size variables

    NASA Astrophysics Data System (ADS)

    Ishikawa, Atushi; Fujimoto, Shouji; Watanabe, Tsutomu; Mizuno, Takayuki

    2013-05-01

    We discuss a mechanism through which inversion symmetry (i.e., invariance of a joint probability density function under the exchange of variables) and Gibrat’s law generate power-law distributions with different tail exponents. Using a dataset of firm size variables, that is, tangible fixed assets K, the number of workers L, and sales Y, we confirm that these variables have power-law tails with different exponents, and that inversion symmetry and Gibrat’s law hold. Based on these findings, we argue that there exists a plane in the three dimensional space (logK,logL,logY), with respect to which the joint probability density function for the three variables is invariant under the exchange of variables. We provide empirical evidence suggesting that this plane fits the data well, and argue that the plane can be interpreted as the Cobb-Douglas production function, which has been extensively used in various areas of economics since it was first introduced almost a century ago.

Top