Understanding star formation in molecular clouds. II. Signatures of gravitational collapse of IRDCs
NASA Astrophysics Data System (ADS)
Schneider, N.; Csengeri, T.; Klessen, R. S.; Tremblin, P.; Ossenkopf, V.; Peretto, N.; Simon, R.; Bontemps, S.; Federrath, C.
2015-06-01
We analyse column density and temperature maps derived from Herschel dust continuum observations of a sample of prominent, massive infrared dark clouds (IRDCs) i.e. G11.11-0.12, G18.82-0.28, G28.37+0.07, and G28.53-0.25. We disentangle the velocity structure of the clouds using 13CO 1→0 and 12CO 3→2 data, showing that these IRDCs are the densest regions in massive giant molecular clouds (GMCs) and not isolated features. The probability distribution function (PDF) of column densities for all clouds have a power-law distribution over all (high) column densities, regardless of the evolutionary stage of the cloud: G11.11-0.12, G18.82-0.28, and G28.37+0.07 contain (proto)-stars, while G28.53-0.25 shows no signs of star formation. This is in contrast to the purely log-normal PDFs reported for near and/or mid-IR extinction maps. We only find a log-normal distribution for lower column densities, if we perform PDFs of the column density maps of the whole GMC in which the IRDCs are embedded. By comparing the PDF slope and the radial column density profile of three of our clouds, we attribute the power law to the effect of large-scale gravitational collapse and to local free-fall collapse of pre- and protostellar cores for the highest column densities. A significant impact on the cloud properties from radiative feedback is unlikely because the clouds are mostly devoid of star formation. Independent from the PDF analysis, we find infall signatures in the spectral profiles of 12CO for G28.37+0.07 and G11.11-0.12, supporting the scenario of gravitational collapse. Our results are in line with earlier interpretations that see massive IRDCs as the densest regions within GMCs, which may be the progenitors of massive stars or clusters. At least some of the IRDCs are probably the same features as ridges (high column density regions with N> 1023 cm-2 over small areas), which were defined for nearby IR-bright GMCs. Because IRDCs are only confined to the densest (gravity dominated) cloud regions, the PDF constructed from this kind of a clipped image does not represent the (turbulence dominated) low column density regime of the cloud. The column density maps (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A29
NASA Astrophysics Data System (ADS)
Tan, Jonathan
We describe a research plan to develop and extend the mid-infrared (MIR) extinction mapping technique presented by Butler & Tan (2009), who studied Infrared Dark Clouds (IRDCs) using Spitzer Space Telescope Infrared Array Camera (IRAC) 8 micron images. This method has the ability to probe the detailed spatial structure of very high column density regions, i.e. the gas clouds thought to represent the initial conditions for massive star and star cluster formation. We will analyze the data Spitzer obtained at other wavelengths, i.e. the IRAC bands at 3.6, 4.5 and 5.8 microns, and the Multiband Imaging Photometer (MIPS) bands, especially at 24 microns. This will allow us to measure the dust extinction law across the MIR and search for evidence of dust grain evolution, e.g. grain growth and ice mantle formation, as a function of gas density and column density. We will also study the detailed structure of the extinction features, including individual cores that may form single stars or close binaries, especially focusing on those cores that may form massive stars. By studying independent dark cores in a given IRDC, we will be able to test if they have a common minimum observed intensity, which we will then attribute to the foreground. This is a new method that should allow us to more accurately map distant, high column density IRDCs, probing more extreme regimes of star formation. We will combine MIR extinction mapping, which works best at high column densities, with near- IR mapping based on 2MASS images of star fields, which is most useful at lower columns that probe the extended giant molecular cloud structure. This information is crucial to help understand the formation process of IRDCs, which may be the rate limiting step for global galactic star formation rates. We will use our new extinction mapping methods to analyze large samples of IRDCs and thus search the Galaxy for the most extreme examples of high column density cores and assess the global star formation efficiency in dense gas. We will estimate the ability of future NASA missions, such as JWST, to carry out MIR extinction mapping science. We will develop the results of this research into an E/PO presentation to be included in the various public outreach events organized and courses taught by the PI.
A New, Large-scale Map of Interstellar Reddening Derived from H I Emission
NASA Astrophysics Data System (ADS)
Lenz, Daniel; Hensley, Brandon S.; Doré, Olivier
2017-09-01
We present a new map of interstellar reddening, covering the 39% of the sky with low H I column densities ({N}{{H}{{I}}}< 4× {10}20 cm-2 or E(B-V)≈ 45 mmag) at 16\\buildrel{ \\prime}\\over{.} 1 resolution, based on all-sky observations of Galactic H I emission by the HI4PI Survey. In this low-column-density regime, we derive a characteristic value of {N}{{H}{{I}}}/E(B-V)=8.8 × {10}21 {{cm}}2 {{mag}}-1 for gas with | {v}{LSR}| < 90 km s-1 and find no significant reddening associated with gas at higher velocities. We compare our H I-based reddening map with the Schlegel et al. (SFD) reddening map and find them consistent to within a scatter of ≃ 5 mmag. Further, the differences between our map and the SFD map are in excellent agreement with the low-resolution (4\\buildrel{\\circ}\\over{.} 5) corrections to the SFD map derived by Peek and Graves based on observed reddening toward passive galaxies. We therefore argue that our H I-based map provides the most accurate interstellar reddening estimates in the low-column-density regime to date. Our reddening map is made publicly available at doi.org/10.7910/DVN/AFJNWJ.
NASA Astrophysics Data System (ADS)
Perger, K.; Pinter, S.; Frey, S.; Tóth, L. V.
2018-05-01
One of the most certain ways to determine star formation rate in galaxies is based on far infrared (FIR) measurements. To decide the origin of the observed FIR emission, subtracting the Galactic foreground is a crucial step. We utilized Herschel photometric data to determine the hydrogen column densities in three galactic latitude regions, at b = 27°, 50° and -80°. We applied a pixel-by-pixel fit to the spectral energy distribution (SED) for the images aquired from parallel PACS-SPIRE observations in all three sky areas. We determined the column densities with resolutions 45'' and 6', and compared the results with values estimated from the IRAS dust maps. Column densities at 27° and 50° galactic latitudes determined from the Herschel data are in a good agreement with the literature values. However, at the highest galactic latitude we found that the column densities from the Herschel data exceed those derived from the IRAS dust map.
NASA Astrophysics Data System (ADS)
Bieging, John H.; Patel, Saahil; Peters, William L.; Toth, L. Viktor; Marton, Gábor; Zahorecz, Sarolta
2016-09-01
We present the results of a program to map the Sh2-235 molecular cloud complex in the CO and 13CO J = 2 - 1 transitions using the Heinrich Hertz Submillimeter Telescope. The map resolution is 38″ (FWHM), with an rms noise of 0.12 K brightness temperature, for a velocity resolution of 0.34 km s-1. With the same telescope, we also mapped the CO J = 3 - 2 line at a frequency of 345 GHz, using a 64 beam focal plane array of heterodyne mixers, achieving a typical rms noise of 0.5 K brightness temperature with a velocity resolution of 0.23 km s-1. The three spectral line data cubes are available for download. Much of the cloud appears to be slightly sub-thermally excited in the J = 3 level, except for in the vicinity of the warmest and highest column density areas, which are currently forming stars. Using the CO and 13CO J = 2 - 1 lines, we employ an LTE model to derive the gas column density over the entire mapped region. Examining a 125 pc2 region centered on the most active star formation in the vicinity of Sh2-235, we find that the young stellar object surface density scales as approximately the 1.6-power of the gas column density. The area distribution function of the gas is a steeply declining exponential function of gas column density. Comparison of the morphology of ionized and molecular gas suggests that the cloud is being substantially disrupted by expansion of the H II regions, which may be triggering current star formation.
A new all-sky map of Galactic high-velocity clouds from the 21-cm HI4PI survey
NASA Astrophysics Data System (ADS)
Westmeier, Tobias
2018-02-01
High-velocity clouds (HVCs) are neutral or ionized gas clouds in the vicinity of the Milky Way that are characterized by high radial velocities inconsistent with participation in the regular rotation of the Galactic disc. Previous attempts to create a homogeneous all-sky H I map of HVCs have been hampered by a combination of poor angular resolution, limited surface brightness sensitivity and suboptimal sampling. Here, a new and improved H I map of Galactic HVCs based on the all-sky HI4PI survey is presented. The new map is fully sampled and provides significantly better angular resolution (16.2 versus 36 arcmin) and column density sensitivity (2.3 versus 3.7 × 1018 cm-2 at the native resolution) than the previously available LAB survey. The new HVC map resolves many of the major HVC complexes in the sky into an intricate network of narrow H I filaments and clumps that were not previously resolved by the LAB survey. The resulting sky coverage fraction of high-velocity H I emission above a column density level of 2 × 1018 cm-2 is approximately 15 per cent, which reduces to about 13 per cent when the Magellanic Clouds and other non-HVC emission are removed. The differential sky coverage fraction as a function of column density obeys a truncated power law with an exponent of -0.93 and a turnover point at about 5 × 1019 cm-2. H I column density and velocity maps of the HVC sky are made publicly available as FITS images for scientific use by the community.
On the Origin of the High Column Density Turnover in the HI Column Density Distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erkal, Denis; Gnedin, Nickolay Y.; Kravtsov, Andrey V.
We study the high column density regime of the HI column density distribution function and argue that there are two distinct features: a turnover at NHI ~ 10^21 cm^-2 which is present at both z=0 and z ~ 3, and a lack of systems above NHI ~ 10^22 cm^-2 at z=0. Using observations of the column density distribution, we argue that the HI-H2 transition does not cause the turnover at NHI ~ 10^21 cm^-2, but can plausibly explain the turnover at NHI > 10^22 cm^-2. We compute the HI column density distribution of individual galaxies in the THINGS sample andmore » show that the turnover column density depends only weakly on metallicity. Furthermore, we show that the column density distribution of galaxies, corrected for inclination, is insensitive to the resolution of the HI map or to averaging in radial shells. Our results indicate that the similarity of HI column density distributions at z=3 and z=0 is due to the similarity of the maximum HI surface densities of high-z and low-z disks, set presumably by universal processes that shape properties of the gaseous disks of galaxies. Using fully cosmological simulations, we explore other candidate physical mechanisms that could produce a turnover in the column density distribution. We show that while turbulence within GMCs cannot affect the DLA column density distribution, stellar feedback can affect it significantly if the feedback is sufficiently effective in removing gas from the central 2-3 kpc of high-redshift galaxies. Finally, we argue that it is meaningful to compare column densities averaged over ~ kpc scales with those estimated from quasar spectra which probe sub-pc scales due to the steep power spectrum of HI column density fluctuations observed in nearby galaxies.« less
Analysis of interstellar fragmentation structure based on IRAS images
NASA Technical Reports Server (NTRS)
Scalo, John M.
1989-01-01
The goal of this project was to develop new tools for the analysis of the structure of densely sampled maps of interstellar star-forming regions. A particular emphasis was on the recognition and characterization of nested hierarchical structure and fractal irregularity, and their relation to the level of star formation activity. The panoramic IRAS images provided data with the required range in spatial scale, greater than a factor of 100, and in column density, greater than a factor of 50. In order to construct a densely sampled column density map of a cloud complex which is both self-gravitating and not (yet?) stirred up much by star formation, a column density image of the Taurus region has been constructed from IRAS data. The primary drawback to using the IRAS data for this purpose is that it contains no velocity information, and the possible importance of projection effects must be kept in mind.
THE PHASE COHERENCE OF INTERSTELLAR DENSITY FLUCTUATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkhart, Blakesley; Lazarian, A.
2016-08-10
Studies of MHD turbulence often investigate the Fourier power spectrum to provide information on the nature of the turbulence cascade. However, the Fourier power spectrum only contains the Fourier amplitudes and rejects all information regarding the Fourier phases. Here, we investigate the utility of two statistical diagnostics for recovering information on Fourier phases in ISM column density maps: the averaged amplitudes of the bispectrum and the phase coherence index (PCI), a new phase technique for the ISM. We create three-dimensional density and two-dimensional column density maps using a set of simulations of isothermal ideal MHD turbulence with a wide rangemore » of sonic and Alfvénic Mach numbers. We find that the bispectrum averaged along different angles with respect to either the k {sub 1} or k {sub 2} axis is primarily sensitive to the sonic Mach number while averaging the bispectral amplitudes over different annuli is sensitive to both the sonic and Alfvénic Mach numbers. The PCI of density suggests that the most correlated phases occur in supersonic sub-Alfvénic turbulence and near the shock scale. This suggests that nonlinear interactions with correlated phases are strongest in shock-dominated regions, in agreement with findings from the solar wind. Our results suggest that the phase information contained in the bispectrum and PCI can be used to find the turbulence parameters in column density maps.« less
NASA Astrophysics Data System (ADS)
Schneider, N.; Ossenkopf, V.; Csengeri, T.; Klessen, R. S.; Federrath, C.; Tremblin, P.; Girichidis, P.; Bontemps, S.; André, Ph.
2015-03-01
Column-density maps of molecular clouds are one of the most important observables in the context of molecular cloud- and star-formation (SF) studies. With the Herschel satellite it is now possible to precisely determine the column density from dust emission, which is the best tracer of the bulk of material in molecular clouds. However, line-of-sight (LOS) contamination from fore- or background clouds can lead to overestimating the dust emission of molecular clouds, in particular for distant clouds. This implies values that are too high for column density and mass, which can potentially lead to an incorrect physical interpretation of the column density probability distribution function (PDF). In this paper, we use observations and simulations to demonstrate how LOS contamination affects the PDF. We apply a first-order approximation (removing a constant level) to the molecular clouds of Auriga and Maddalena (low-mass star-forming), and Carina and NGC 3603 (both high-mass SF regions). In perfect agreement with the simulations, we find that the PDFs become broader, the peak shifts to lower column densities, and the power-law tail of the PDF for higher column densities flattens after correction. All corrected PDFs have a lognormal part for low column densities with a peak at Av ~ 2 mag, a deviation point (DP) from the lognormal at Av(DP) ~ 4-5 mag, and a power-law tail for higher column densities. Assuming an equivalent spherical density distribution ρ ∝ r- α, the slopes of the power-law tails correspond to αPDF = 1.8, 1.75, and 2.5 for Auriga, Carina, and NGC 3603. These numbers agree within the uncertainties with the values of α ≈ 1.5,1.8, and 2.5 determined from the slope γ (with α = 1-γ) obtained from the radial column density profiles (N ∝ rγ). While α ~ 1.5-2 is consistent with a structure dominated by collapse (local free-fall collapse of individual cores and clumps and global collapse), the higher value of α > 2 for NGC 3603 requires a physical process that leads to additional compression (e.g., expanding ionization fronts). From the small sample of our study, we find that clouds forming only low-mass stars and those also forming high-mass stars have slightly different values for their average column density (1.8 × 1021 cm-2 vs. 3.0 × 1021 cm-2), and they display differences in the overall column density structure. Massive clouds assemble more gas in smaller cloud volumes than low-mass SF ones. However, for both cloud types, the transition of the PDF from lognormal shape into power-law tail is found at the same column density (at Av ~ 4-5 mag). Low-mass and high-mass SF clouds then have the same low column density distribution, most likely dominated by supersonic turbulence. At higher column densities, collapse and external pressure can form the power-law tail. The relative importance of the twoprocesses can vary between clouds and thus lead to the observed differences in PDF and column density structure. Appendices are available in electronic form at http://www.aanda.orgHerschel maps as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A79
The shapes of column density PDFs. The importance of the last closed contour
NASA Astrophysics Data System (ADS)
Alves, João; Lombardi, Marco; Lada, Charles J.
2017-10-01
The probability distribution function of column density (PDF) has become the tool of choice for cloud structure analysis and star formation studies. Its simplicity is attractive, and the PDF could offer access to cloud physical parameters otherwise difficult to measure, but there has been some confusion in the literature on the definition of its completeness limit and shape at the low column density end. In this letter we use the natural definition of the completeness limit of a column density PDF, the last closed column density contour inside a surveyed region, and apply it to a set of large-scale maps of nearby molecular clouds. We conclude that there is no observational evidence for log-normal PDFs in these objects. We find that all studied molecular clouds have PDFs well described by power laws, including the diffuse cloud Polaris. Our results call for a new physical interpretation of the shape of the column density PDFs. We find that the slope of a cloud PDF is invariant to distance but not to the spatial arrangement of cloud material, and as such it is still a useful tool for investigating cloud structure.
2MASS wide-field extinction maps. V. Corona Australis
NASA Astrophysics Data System (ADS)
Alves, João; Lombardi, Marco; Lada, Charles J.
2014-05-01
We present a near-infrared extinction map of a large region (~870 deg2) covering the isolated Corona Australis complex of molecular clouds. We reach a 1-σ error of 0.02 mag in the K-band extinction with a resolution of 3 arcmin over the entire map. We find that the Corona Australis cloud is about three times as large as revealed by previous CO and dust emission surveys. The cloud consists of a 45 pc long complex of filamentary structure from the well known star forming Western-end (the head, N ≥ 1023 cm-2) to the diffuse Eastern-end (the tail, N ≤ 1021 cm-2). Remarkably, about two thirds of the complex both in size and mass lie beneath AV ~ 1 mag. We find that the probability density function (PDF) of the cloud cannot be described by a single log-normal function. Similar to prior studies, we found a significant excess at high column densities, but a log-normal + power-law tail fit does not work well at low column densities. We show that at low column densities near the peak of the observed PDF, both the amplitude and shape of the PDF are dominated by noise in the extinction measurements making it impractical to derive the intrinsic cloud PDF below AK < 0.15 mag. Above AK ~ 0.15 mag, essentially the molecular component of the cloud, the PDF appears to be best described by a power-law with index -3, but could also described as the tail of a broad and relatively low amplitude, log-normal PDF that peaks at very low column densities. FITS files of the extinction maps are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/565/A18
MAVEN/IUVS Apoapse Observations of the Martian FUV Dayglow
NASA Astrophysics Data System (ADS)
Correira, J.; Evans, J. S.; Stevens, M. H.; Schneider, N. M.; Stewart, I. F.; Deighan, J.; Jain, S.; Chaffin, M.; Crismani, M. M. J.; McClintock, B.; Holsclaw, G.; Lefèvre, F.; Lo, D.; Stiepen, A.; Clarke, J. T.; Mahaffy, P. R.; Bougher, S. W.; Bell, J. M.; Jakosky, B. M.
2015-12-01
We present FUV data (115 - 190 nm) from MAVEN/IUVS apoapse mode observations for the Oct 2014 through Feb 2015 time period. During apoapse mode the highly elliptical orbit of MAVEN allows for up to four apoapse disk images by IUVS per day. Maps of FUV feature intensities and intensity ratios as well as derived CO/CO2 and O/CO2 column density ratios will be shown. Column density ratios are derived from lookup tables created using the Atmospheric Ultraviolet Radiance Integrated Code [Strickland et al., 1999] in conjunction with observed intensity ratios. Column density ratios provide a measure of composition changes in the Martian atmosphere. Due to MAVEN's orbital geometry the observations from this time period focus on the southern hemisphere. The broad view provided by apoapse observations allows for the investigation of spatial and temporal variations (both long term and local time) of the atmospheric composition (via the column density ratios). IUVS FUV intensities and derived column density ratios will also be compared with model results from Mars Global Ionosphere/Thermosphere Model (MGITM) and the Mars Climate Database (MCD).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bieging, John H.; Peters, William L.; Patel, Saahil
We present the results of a program to map the Sh2-235 molecular cloud complex in the CO and {sup 13}CO J = 2 − 1 transitions using the Heinrich Hertz Submillimeter Telescope. The map resolution is 38″ (FWHM), with an rms noise of 0.12 K brightness temperature, for a velocity resolution of 0.34 km s{sup −1}. With the same telescope, we also mapped the CO J = 3 − 2 line at a frequency of 345 GHz, using a 64 beam focal plane array of heterodyne mixers, achieving a typical rms noise of 0.5 K brightness temperature with a velocity resolution of 0.23 km s{sup −1}.more » The three spectral line data cubes are available for download. Much of the cloud appears to be slightly sub-thermally excited in the J = 3 level, except for in the vicinity of the warmest and highest column density areas, which are currently forming stars. Using the CO and {sup 13}CO J = 2 − 1 lines, we employ an LTE model to derive the gas column density over the entire mapped region. Examining a 125 pc{sup 2} region centered on the most active star formation in the vicinity of Sh2-235, we find that the young stellar object surface density scales as approximately the 1.6-power of the gas column density. The area distribution function of the gas is a steeply declining exponential function of gas column density. Comparison of the morphology of ionized and molecular gas suggests that the cloud is being substantially disrupted by expansion of the H ii regions, which may be triggering current star formation.« less
NASA Astrophysics Data System (ADS)
Marsh, K. A.; Whitworth, A. P.; Lomax, O.
2015-12-01
We present point process mapping (
NASA Technical Reports Server (NTRS)
Conel, James E.; Hoover, Gordon; Nolin, Anne; Alley, Ron; Margolis, Jack
1992-01-01
Empirical relationships between variables are ways of securing estimates of quantities difficult to measure by remote sensing methods. The use of empirical functions was explored between: (1) atmospheric column moisture abundance W (gm H2O/cm(sup 2) and surface absolute water vapor density rho(q-bar) (gm H2O/cm(sup 3), with rho density of moist air (gm/cm(sup 3), q-bar specific humidity (gm H2O/gm moist air), and (2) column abundance and surface moisture flux E (gm H2O/(cm(sup 2)sec)) to infer regional evapotranspiration from Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) water vapor mapping data. AVIRIS provides, via analysis of atmospheric water absorption features, estimates of column moisture abundance at very high mapping rate (at approximately 100 km(sup 2)/40 sec) over large areas at 20 m ground resolution.
Far infrared maps of the ridge between OMC-1 and OMC-2
NASA Technical Reports Server (NTRS)
Keene, J.; Smith, J.; Harper, D. A.; Hildebrand, R. H.; Whitcomb, S. E.
1979-01-01
Dust continuum emission from a 6 ft x 20 ft region surrounding OMC-1 and OMC-2 were mapped at 55 and 125 microns with 4 ft resolution. The dominant features of the maps are a strong peak at OMC-1 and a ridge of lower surface brightness between OMC-1 and OMC-2. Along the ridge the infrared flux densities and the color temperature decreases smoothly from OMC-1 to OMC-2. OMC-1 is heated primarily by several optical and infrared stars situated within or just at the boundary of the cloud. At the region of minimum column density between OMC-1 and OMC-2 the nearby B0.5 V star NU Ori may contribute significantly to the dust heating. Near OMC-2 dust column densities are large enough so that, in addition to the OMC-2 infrared cluster, the nonlocal infrared sources associated with OMC-1 and NU Ori can contribute to the heating.
Topology in Synthetic Column Density Maps for Interstellar Turbulence
NASA Astrophysics Data System (ADS)
Putko, Joseph; Burkhart, B. K.; Lazarian, A.
2013-01-01
We show how the topology tool known as the genus statistic can be utilized to characterize magnetohydrodyanmic (MHD) turbulence in the ISM. The genus is measured with respect to a given density threshold and varying the threshold produces a genus curve, which can suggest an overall ‘‘meatball,’’ neutral, or ‘‘Swiss cheese’’ topology through its integral. We use synthetic column density maps made from three-dimensional 5123 compressible MHD isothermal simulations performed for different sonic and Alfvénic Mach numbers (Ms and MA respectively). We study eight different Ms values each with one sub- and one super-Alfvénic counterpart. We consider sight-lines both parallel (x) and perpendicular (y and z) to the mean magnetic field. We find that the genus integral shows a dependence on both Mach numbers, and this is still the case even after adding beam smoothing and Gaussian noise to the maps to mimic observational data. The genus integral increases with higher Ms values (but saturates after about Ms = 4) for all lines of sight. This is consistent with greater values of Ms resulting in stronger shocks, which results in a clumpier topology. We observe a larger genus integral for the sub-Alfvénic cases along the perpendicular lines of sight due to increased compression from the field lines and enhanced anisotropy. Application of the genus integral to column density maps should allow astronomers to infer the Mach numbers and thus learn about the environments of interstellar turbulence. This work was supported by the National Science Foundation’s REU program through NSF Award AST-1004881.
Analysis of interstellar cloud structure based on IRAS images
NASA Technical Reports Server (NTRS)
Scalo, John M.
1992-01-01
The goal of this project was to develop new tools for the analysis of the structure of densely sampled maps of interstellar star-forming regions. A particular emphasis was on the recognition and characterization of nested hierarchical structure and fractal irregularity, and their relation to the level of star formation activity. The panoramic IRAS images provided data with the required range in spatial scale, greater than a factor of 100, and in column density, greater than a factor of 50. In order to construct densely sampled column density maps of star-forming clouds, column density images of four nearby cloud complexes were constructed from IRAS data. The regions have various degrees of star formation activity, and most of them have probably not been affected much by the disruptive effects of young massive stars. The largest region, the Scorpius-Ophiuchus cloud complex, covers about 1000 square degrees (it was subdivided into a few smaller regions for analysis). Much of the work during the early part of the project focused on an 80 square degree region in the core of the Taurus complex, a well-studied region of low-mass star formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krčo, Marko; Goldsmith, Paul F., E-mail: marko@astro.cornell.edu
2016-05-01
We present a geometry-independent method for determining the shapes of radial volume density profiles of astronomical objects whose geometries are unknown, based on a single column density map. Such profiles are often critical to understand the physics and chemistry of molecular cloud cores, in which star formation takes place. The method presented here does not assume any geometry for the object being studied, thus removing a significant source of bias. Instead, it exploits contour self-similarity in column density maps, which appears to be common in data for astronomical objects. Our method may be applied to many types of astronomical objectsmore » and observable quantities so long as they satisfy a limited set of conditions, which we describe in detail. We derive the method analytically, test it numerically, and illustrate its utility using 2MASS-derived dust extinction in molecular cloud cores. While not having made an extensive comparison of different density profiles, we find that the overall radial density distribution within molecular cloud cores is adequately described by an attenuated power law.« less
NASA Technical Reports Server (NTRS)
Goldsmith, Paul F.
2008-01-01
Viewgraph topics include: optical image of Taurus; dust extinction in IR has provided a new tool for probing cloud morphology; observations of the gas can contribute critical information on gas temperature, gas column density and distribution, mass, and kinematics; the Taurus molecular cloud complex; average spectra in each mask region; mas 2 data; dealing with mask 1 data; behavior of mask 1 pixels; distribution of CO column densities; conversion to H2 column density; variable CO/H2 ratio with values much less than 10(exp -4) at low N indicated by UV results; histogram of N(H2) distribution; H2 column density distribution in Taurus; cumulative distribution of mass and area; lower CO fractional abundance in mask 0 and 1 regions greatly increases mass determined in the analysis; masses determined with variable X(CO) and including diffuse regions agrees well with the found from L(CO); distribution of young stars as a function of molecular column density; star formation efficiency; star formation rate and gas depletion; and enlarged images of some of the regions with numerous young stars. Additional slides examine the origin of the Taurus molecular cloud, evolution from HI gas, kinematics as a clue to its origin, and its relationship to star formation.
HP2 survey. III. The California Molecular Cloud: A sleeping giant revisited
NASA Astrophysics Data System (ADS)
Lada, Charles J.; Lewis, John A.; Lombardi, Marco; Alves, João
2017-10-01
We present new high resolution and dynamic range dust column density and temperature maps of the California Molecular Cloud derived from a combination of Planck and Herschel dust-emission maps, and 2MASS NIR dust-extinction maps. We used these data to determine the ratio of the 2.2 μm extinction coefficient to the 850 μm opacity and found the value to be close to that found in similar studies of the Orion B and Perseus clouds but higher than that characterizing the Orion A cloud, indicating that variations in the fundamental optical properties of dust may exist between local clouds. We show that over a wide range of extinction, the column density probability distribution function (pdf) of the cloud can be well described by a simple power law (I.e., PDFN ∝ AK -n) with an index (n = 4.0 ± 0.1) that represents a steeper decline with AK than found (n ≈ 3) in similar studies of the Orion and Perseus clouds. Using only the protostellar population of the cloud and our extinction maps we investigate the Schmidt relation, that is, the relation between the protostellar surface density, Σ∗, and extinction, AK, within the cloud. We show that Σ∗ is directly proportional to the ratio of the protostellar and cloud pdfs, I.e., PDF∗(AK)/PDFN(AK). We use the cumulative distribution of protostars to infer the functional forms for both Σ∗ and PDF∗. We find that Σ∗ is best described by two power-law functions. At extinctions AK ≲ 2.5 mag, Σ∗ ∝ AK β with β = 3.3 while at higher extinctions β = 2.5, both values steeper than those (≈2) found in other local giant molecular clouds (GMCs). We find that PDF∗ is a declining function of extinction also best described by two power-laws whose behavior mirrors that of Σ∗. Our observations suggest that variations both in the slope of the Schmidt relation and in the sizes of the protostellar populations between GMCs are largely driven by variations in the slope, n, of PDFN(AK). This confirms earlier studies suggesting that cloud structure plays a major role in setting the global star formation rates in GMCs HP2 (Herschel-Planck-2MASS) survey is a continuation of the series originally entitled "Herschel-Planck dust opacity and column density maps" (Lombardi et al. 2014, Zari et al. 2016).The reduced Herschel and Planck map and the column density and temperature maps are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A100
The ATLASGAL survey: distribution of cold dust in the Galactic plane. Combination with Planck data
NASA Astrophysics Data System (ADS)
Csengeri, T.; Weiss, A.; Wyrowski, F.; Menten, K. M.; Urquhart, J. S.; Leurini, S.; Schuller, F.; Beuther, H.; Bontemps, S.; Bronfman, L.; Henning, Th.; Schneider, N.
2016-01-01
Context. Sensitive ground-based submillimeter surveys, such as ATLASGAL, provide a global view on the distribution of cold dense gas in the Galactic plane at up to two-times better angular-resolution compared to recent space-based surveys with Herschel. However, a drawback of ground-based continuum observations is that they intrinsically filter emission, at angular scales larger than a fraction of the field-of-view of the array, when subtracting the sky noise in the data processing. The lost information on the distribution of diffuse emission can be, however, recovered from space-based, all-sky surveys with Planck. Aims: Here we aim to demonstrate how this information can be used to complement ground-based bolometer data and present reprocessed maps of the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) survey. Methods: We use the maps at 353 GHz from the Planck/HFI instrument, which performed a high sensitivity all-sky survey at a frequency close to that of the APEX/LABOCA array, which is centred on 345 GHz. Complementing the ground-based observations with information on larger angular scales, the resulting maps reveal the distribution of cold dust in the inner Galaxy with a larger spatial dynamic range. We visually describe the observed features and assess the global properties of dust distribution. Results: Adding information from large angular scales helps to better identify the global properties of the cold Galactic interstellar medium. To illustrate this, we provide mass estimates from the dust towards the W43 star-forming region and estimate a column density contrast of at least a factor of five between a low intensity halo and the star-forming ridge. We also show examples of elongated structures extending over angular scales of 0.5°, which we refer to as thin giant filaments. Corresponding to > 30 pc structures in projection at a distance of 3 kpc, these dust lanes are very extended and show large aspect ratios. We assess the fraction of dense gas by determining the contribution of the APEX/LABOCA maps to the combined maps, and estimate 2-5% for the dense gas fraction (corresponding to Av> 7 mag) on average in the Galactic plane. We also show probability distribution functions of the column density (N-PDF), which reveal the typically observed log-normal distribution for low column density and exhibit an excess at high column densities. As a reference for extragalactic studies, we show the line-of-sight integrated N-PDF of the inner Galaxy, and derive a contribution of this excess to the total column density of ~ 2.2%, corresponding to NH2 = 2.92 × 1022 cm-2. Taking the total flux density observed in the maps, we provide an independent estimate of the mass of molecular gas in the inner Galaxy of ~ 1 × 109 M⊙, which is consistent with previous estimates using CO emission. From the mass and dense gas fraction (fDG), we estimate a Galactic SFR of Ṁ = 1.3 M⊙ yr-1. Conclusions: Retrieving the extended emission helps to better identify massive giant filaments which are elongated and confined structures. We show that the log-normal distribution of low column density gas is ubiquitous in the inner Galaxy. While the distribution of diffuse gas is relatively homogenous in the inner Galaxy, the central molecular zone (CMZ) stands out with a higher dense gas fraction despite its low star formation efficiency.Altogether our findings explain well the observed low star formation efficiency of the Milky Way by the low fDG in the Galactic ISM. In contrast, the high fDG observed towards the CMZ, despite its low star formation activity, suggests that, in that particular region of our Galaxy, high density gas is not the bottleneck for star formation.
Mapping Diffuse HI Content in MHONGOOSE Galaxies NGC 1744 and NGC 7424
NASA Astrophysics Data System (ADS)
Sardone, Amy; Pisano, Daniel J.; Pingel, Nickolas
2017-01-01
The universe contains an abundance of neutral atomic hydrogen, or HI. This HI holds the key to knowing how stars are born, how galaxies form and develop, and how dark matter halos accrete gas from the cosmic web. One of the most crucial questions regarding galaxy formation today is how galaxies accrete their gas and how accretion processes affect subsequent star formation. We are trying to answer these questions by mapping the HI content in a four square degree region around galaxies NGC 1744 and NGC 7424, galaxies to be observed as part of the MHONGOOSE survey. NGC 1744 has already been observed extensively with the VLA, so we will be able to quantify the differences in emission. To do this our GBT maps must be sensitive to column densities on the order of ~1018 cm-2. With such low column densities, we will be able to search for features of the cosmic web in the form of tidal interactions and cosmic web filaments with its relation to star-forming galaxies.
Smooth H I Low Column Density Outskirts in Nearby Galaxies
NASA Astrophysics Data System (ADS)
Ianjamasimanana, R.; Walter, Fabian; de Blok, W. J. G.; Heald, George H.; Brinks, Elias
2018-06-01
The low column density gas at the outskirts of galaxies as traced by the 21 cm hydrogen line emission (H I) represents the interface between galaxies and the intergalactic medium, i.e., where galaxies are believed to get their supply of gas to fuel future episodes of star formation. Photoionization models predict a break in the radial profiles of H I at a column density of ∼5 × 1019 cm‑2 due to the lack of self-shielding against extragalactic ionizing photons. To investigate the prevalence of such breaks in galactic disks and to characterize what determines the potential edge of the H I disks, we study the azimuthally averaged H I column density profiles of 17 nearby galaxies from the H I Nearby Galaxy Survey and supplemented in two cases with published Hydrogen Accretion in LOcal GAlaxieS data. To detect potential faint H I emission that would otherwise be undetected using conventional moment map analysis, we line up individual profiles to the same reference velocity and average them azimuthally to derive stacked radial profiles. To do so, we use model velocity fields created from a simple extrapolation of the rotation curves to align the profiles in velocity at radii beyond the extent probed with the sensitivity of traditional integrated H I maps. With this method, we improve our sensitivity to outer-disk H I emission by up to an order of magnitude. Except for a few disturbed galaxies, none show evidence of a sudden change in the slope of the H I radial profiles: the alleged signature of ionization by the extragalactic background.
Topology of Neutral Hydrogen within the Small Magellanic Cloud
NASA Astrophysics Data System (ADS)
Chepurnov, A.; Gordon, J.; Lazarian, A.; Stanimirovic, S.
2008-12-01
In this paper, genus statistics have been applied to an H I column density map of the Small Magellanic Cloud in order to study its topology. To learn how topology changes with the scale of the system, we provide topology studies for column density maps at varying resolutions. To evaluate the statistical error of the genus, we randomly reassign the phases of the Fourier modes while keeping the amplitudes. We find that at the smallest scales studied (40 pc <= λ <= 80 pc), the genus shift is negative in all regions, implying a clump topology. At the larger scales (110 pc <= λ <= 250 pc), the topology shift is detected to be negative (a "meatball" topology) in four cases and positive (a "swiss cheese" topology) in two cases. In four regions, there is no statistically significant topology shift at large scales.
NASA Astrophysics Data System (ADS)
Meier, Andreas Carlos; Schönhardt, Anja; Richter, Andreas; Bösch, Tim; Seyler, André; Constantin, Daniel Eduard; Shaiganfar, Reza; Merlaud, Alexis; Ruhtz, Thomas; Wagner, Thomas; van Roozendael, Michel; Burrows, John. P.
2016-04-01
Nitrogen oxides, NOx (NOx = NO + NO2) play a key role in tropospheric chemistry. In addition to their directly harmful effects on the respiratory system of living organisms, they influence the levels of tropospheric ozone and contribute to acid rain and eutrophication of ecosystems. As they are produced in combustion processes, they can serve as an indicator for anthropogenic air pollution. In the late summers of 2014 and 2015, two extensive measurement campaigns were conducted in Romania by several European research institutes, with financial support from ESA. The AROMAT / AROMAT-2 campaigns (Airborne ROmanian Measurements of Aerosols and Trace gases) were dedicated to measurements of air quality parameters utilizing newly developed instrumentation at state-of-the-art. The experiences gained will help to calibrate and validate the measurements taken by the upcoming Sentinel-S5p mission scheduled for launch in 2016. The IUP Bremen contributed to these campaigns with its airborne imaging DOAS (Differential Optical Absorption Spectroscopy) instrument AirMAP (Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution). AirMAP allows retrieving spatial distributions of trace gas columns densities in a stripe below the aircraft. The measurements have a high spatial resolution of approximately 30 x 80 m2 (along x across track) at a typical flight altitude of 3000 m. Supported by the instrumental setup and the large swath, gapless maps of trace gas distributions above a large city, like Bucharest or Berlin, can be acquired within a time window of approximately two hours. These properties make AirMAP a valuable tool for the validation of trace gas measurements from space. DOAS retrievals yield the density of absorbers integrated along the light path of the measurement. The light path is altered with a changing surface reflectance, leading to enhanced / reduced slant column densities of NO2 depending on surface properties. This effect must be considered in the derivation of air mass factors used to convert the measurements into vertical columns. Due to the high-resolution measurements, no data product of surface reflectance with sufficient spatial resolution is available. Thus the surface reflectance is estimated from AirMAP's own spectra. In this work the results of the research flights will be presented. The study focuses on the validation of AirMAP's measurements by comparison to other ground-based platforms like (mobile) MAX-DOAS measurements. Conclusions will be drawn on the quality of the measurements, their applicability for satellite data validation and possible improvements for future measurements.
On Schrödinger's bridge problem
NASA Astrophysics Data System (ADS)
Friedland, S.
2017-11-01
In the first part of this paper we generalize Georgiou-Pavon's result that a positive square matrix can be scaled uniquely to a column stochastic matrix which maps a given positive probability vector to another given positive probability vector. In the second part we prove that a positive quantum channel can be scaled to another positive quantum channel which maps a given positive definite density matrix to another given positive definite density matrix using Brouwer's fixed point theorem. This result proves the Georgiou-Pavon conjecture for two positive definite density matrices, made in their recent paper. We show that the fixed points are unique for certain pairs of positive definite density matrices. Bibliography: 15 titles.
How well does CO emission measure the H2 mass of MCs?
NASA Astrophysics Data System (ADS)
Szűcs, László; Glover, Simon C. O.; Klessen, Ralf S.
2016-07-01
We present numerical simulations of molecular clouds (MCs) with self-consistent CO gas-phase and isotope chemistry in various environments. The simulations are post-processed with a line radiative transfer code to obtain 12CO and 13CO emission maps for the J = 1 → 0 rotational transition. The emission maps are analysed with commonly used observational methods, I.e. the 13CO column density measurement, the virial mass estimate and the so-called XCO (also CO-to-H2) conversion factor, and then the inferred quantities (I.e. mass and column density) are compared to the physical values. We generally find that most methods examined here recover the CO-emitting H2 gas mass of MCs within a factor of 2 uncertainty if the metallicity is not too low. The exception is the 13CO column density method. It is affected by chemical and optical depth issues, and it measures both the true H2 column density distribution and the molecular mass poorly. The virial mass estimate seems to work the best in the considered metallicity and radiation field strength range, even when the overall virial parameter of the cloud is above the equilibrium value. This is explained by a systematically lower virial parameter (I.e. closer to equilibrium) in the CO-emitting regions; in CO emission, clouds might seem (sub-)virial, even when, in fact, they are expanding or being dispersed. A single CO-to-H2 conversion factor appears to be a robust choice over relatively wide ranges of cloud conditions, unless the metallicity is low. The methods which try to take the metallicity dependence of the conversion factor into account tend to systematically overestimate the true cloud masses.
Theory for the alignment of cortical feature maps during development.
Bressloff, Paul C; Oster, Andrew M
2010-08-01
We present a developmental model of ocular dominance column formation that takes into account the existence of an array of intrinsically specified cytochrome oxidase blobs. We assume that there is some molecular substrate for the blobs early in development, which generates a spatially periodic modulation of experience-dependent plasticity. We determine the effects of such a modulation on a competitive Hebbian mechanism for the modification of the feedforward afferents from the left and right eyes. We show how alternating left and right eye dominated columns can develop, in which the blobs are aligned with the centers of the ocular dominance columns and receive a greater density of feedforward connections, thus becoming defined extrinsically. More generally, our results suggest that the presence of periodically distributed anatomical markers early in development could provide a mechanism for the alignment of cortical feature maps.
Large scale IRAM 30 m CO-observations in the giant molecular cloud complex W43
NASA Astrophysics Data System (ADS)
Carlhoff, P.; Nguyen Luong, Q.; Schilke, P.; Motte, F.; Schneider, N.; Beuther, H.; Bontemps, S.; Heitsch, F.; Hill, T.; Kramer, C.; Ossenkopf, V.; Schuller, F.; Simon, R.; Wyrowski, F.
2013-12-01
We aim to fully describe the distribution and location of dense molecular clouds in the giant molecular cloud complex W43. It was previously identified as one of the most massive star-forming regions in our Galaxy. To trace the moderately dense molecular clouds in the W43 region, we initiated W43-HERO, a large program using the IRAM 30 m telescope, which covers a wide dynamic range of scales from 0.3 to 140 pc. We obtained on-the-fly-maps in 13CO (2-1) and C18O (2-1) with a high spectral resolution of 0.1 km s-1 and a spatial resolution of 12''. These maps cover an area of ~1.5 square degrees and include the two main clouds of W43 and the lower density gas surrounding them. A comparison to Galactic models and previous distance calculations confirms the location of W43 near the tangential point of the Scutum arm at approximately 6 kpc from the Sun. The resulting intensity cubes of the observed region are separated into subcubes, which are centered on single clouds and then analyzed in detail. The optical depth, excitation temperature, and H2 column density maps are derived out of the 13CO and C18O data. These results are then compared to those derived from Herschel dust maps. The mass of a typical cloud is several 104 M⊙ while the total mass in the dense molecular gas (>102 cm-3) in W43 is found to be ~1.9 × 106 M⊙. Probability distribution functions obtained from column density maps derived from molecular line data and Herschel imaging show a log-normal distribution for low column densities and a power-law tail for high densities. A flatter slope for the molecular line data probability distribution function may imply that those selectively show the gravitationally collapsing gas. Appendices are available in electronic form at http://www.aanda.orgThe final datacubes (13CO and C18O) for the entire survey are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A24
The energetics and mass structure of regions of star formation: S201
NASA Technical Reports Server (NTRS)
Thronson, H. A., Jr.; Smith, H. A.; Lada, C. J.; Glaccum, W.; Harper, D. A.; Loewenstein, R. F.; Smith, J.
1984-01-01
Theoretical predictions about dust and gas in star forming regions are tested by observing a 4 arcmin region surrounding the radio continuum source in 5201. The object was mapped in two far infrared wavelengths and found to show significant extended emission. Under the assumption that the molecular gas is heated solely via thermal coupling with the dust, the volume density was mapped in 5201. The ratios of infrared optical depth to CO column density were calculated for a number of positions in the source. Near the center of the cloud the values are found to be in good agreement with other determinations for regions with lower column density. In addition, the observations suggest significant molecular destruction in the outer parts of the object. Current models of gas heating were used to calculate a strong limit for the radius of the far infrared emitting grains, equal to or less than 0.15 micron. Grains of about this size are required by the observation of high temperature (T equal to or greater than 20 K) gas in many sources.
Estimation of Chinese surface NO2 concentrations combining satellite data and Land Use Regression
NASA Astrophysics Data System (ADS)
Anand, J.; Monks, P.
2016-12-01
Monitoring surface-level air quality is often limited by in-situ instrument placement and issues arising from harmonisation over long timescales. Satellite instruments can offer a synoptic view of regional pollution sources, but in many cases only a total or tropospheric column can be measured. In this work a new technique of estimating surface NO2 combining both satellite and in-situ data is presented, in which a Land Use Regression (LUR) model is used to create high resolution pollution maps based on known predictor variables such as population density, road networks, and land cover. By employing a mixed effects approach, it is possible to take advantage of the spatiotemporal variability in the satellite-derived column densities to account for daily and regional variations in surface NO2 caused by factors such as temperature, elevation, and wind advection. In this work, surface NO2 maps are modelled over the North China Plain and Pearl River Delta during high-pollution episodes by combining in-situ measurements and tropospheric columns from the Ozone Monitoring Instrument (OMI). The modelled concentrations show good agreement with in-situ data and surface NO2 concentrations derived from the MACC-II global reanalysis.
ComVisMD - compact visualization of multidimensional data: experimenting with cricket players data
NASA Astrophysics Data System (ADS)
Dandin, Shridhar B.; Ducassé, Mireille
2018-03-01
Database information is multidimensional and often displayed in tabular format (row/column display). Presented in aggregated form, multidimensional data can be used to analyze the records or objects. Online Analytical database Processing (OLAP) proposes mechanisms to display multidimensional data in aggregated forms. A choropleth map is a thematic map in which areas are colored in proportion to the measurement of a statistical variable being displayed, such as population density. They are used mostly for compact graphical representation of geographical information. We propose a system, ComVisMD inspired by choropleth map and the OLAP cube to visualize multidimensional data in a compact way. ComVisMD displays multidimensional data like OLAP Cube, where we are mapping an attribute a (first dimension, e.g. year started playing cricket) in vertical direction, object coloring based on b (second dimension, e.g. batting average), mapping varying-size circles based on attribute c (third dimension, e.g. highest score), mapping numbers based on attribute d (fourth dimension, e.g. matches played). We illustrate our approach on cricket players data, namely on two tables Country and Player. They have a large number of rows and columns: 246 rows and 17 columns for players of one country. ComVisMD’s visualization reduces the size of the tabular display by a factor of about 4, allowing users to grasp more information at a time than the bare table display.
X-ray wind tomography of IGR J17252-3616
NASA Astrophysics Data System (ADS)
Manousakis, Antonios; Walter, Roland
IGR J17252-3616 is an heavily absorbed and eclipsing High Mass X-ray Binary with an ab-sorbing hydrogen column density >1023 cm-2 . We have observed it with XMM-Newton to understand the geometry of the absorbing material. Observations were scheduled in order to cover as many orbital phases as possible. Timing analysis is constraining the orbital solution and the physical parameters of the system. Spectral analysis reveals remarkable variations of the absorbing column density and of the Iron Kα fluorescence line around the eclipse. These variations allow to map the geometry of the absorbing and reflection material. Very large accretion structures could be imaged for the first time.
Adam, R.; Ade, P. A. R.; Aghanim, N.; ...
2016-02-09
The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in themore » Stokes Q and/or U maps. In this paper, we focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 10 20 to 10 22 cm -2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. Finally, we discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.« less
NASA Astrophysics Data System (ADS)
Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wiesemeyer, H.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-02-01
The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in the Stokes Q and/or U maps. We focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 1020 to 1022 cm-2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. We discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, R.; Ade, P. A. R.; Aghanim, N.
The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in themore » Stokes Q and/or U maps. In this paper, we focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 10 20 to 10 22 cm -2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. Finally, we discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.« less
Inferring physical properties of galaxies from their emission-line spectra
NASA Astrophysics Data System (ADS)
Ucci, G.; Ferrara, A.; Gallerani, S.; Pallottini, A.
2017-02-01
We present a new approach based on Supervised Machine Learning algorithms to infer key physical properties of galaxies (density, metallicity, column density and ionization parameter) from their emission-line spectra. We introduce a numerical code (called GAME, GAlaxy Machine learning for Emission lines) implementing this method and test it extensively. GAME delivers excellent predictive performances, especially for estimates of metallicity and column densities. We compare GAME with the most widely used diagnostics (e.g. R23, [N II] λ6584/Hα indicators) showing that it provides much better accuracy and wider applicability range. GAME is particularly suitable for use in combination with Integral Field Unit spectroscopy, both for rest-frame optical/UV nebular lines and far-infrared/sub-millimeter lines arising from photodissociation regions. Finally, GAME can also be applied to the analysis of synthetic galaxy maps built from numerical simulations.
Structure and stability in TMC-1: Analysis of NH3 molecular line and Herschel continuum data
NASA Astrophysics Data System (ADS)
Fehér, O.; Tóth, L. V.; Ward-Thompson, D.; Kirk, J.; Kraus, A.; Pelkonen, V.-M.; Pintér, S.; Zahorecz, S.
2016-05-01
Aims: We examined the velocity, density, and temperature structure of Taurus molecular cloud-1 (TMC-1), a filamentary cloud in a nearby quiescent star forming area, to understand its morphology and evolution. Methods: We observed high signal-to-noise (S/N), high velocity resolution NH3(1,1), and (2, 2) emission on an extended map. By fitting multiple hyperfine-split line profiles to the NH3(1, 1) spectra, we derived the velocity distribution of the line components and calculated gas parameters on several positions. Herschel SPIRE far-infrared continuum observations were reduced and used to calculate the physical parameters of the Planck Galactic Cold Clumps (PGCCs) in the region, including the two in TMC-1. The morphology of TMC-1 was investigated with several types of clustering methods in the parameter space consisting of position, velocity, and column density. Results: Our Herschel-based column density map shows a main ridge with two local maxima and a separated peak to the south-west. The H2 column densities and dust colour temperatures are in the range of 0.5-3.3 × 1022 cm-2 and 10.5-12 K, respectively. The NH3 column densities and H2 volume densities are in the range of 2.8-14.2 × 1014 cm-2 and 0.4-2.8 × 104 cm-3. Kinetic temperatures are typically very low with a minimum of 9 K at the maximum NH3 and H2 column density region. The kinetic temperature maximum was found at the protostar IRAS 04381+2540 with a value of 13.7 K. The kinetic temperatures vary similarly to the colour temperatures in spite of the fact that densities are lower than the critical density for coupling between the gas and dust phase. The k-means clustering method separated four sub-filaments in TMC-1 with masses of 32.5, 19.6, 28.9, and 45.9 M⊙ and low turbulent velocity dispersion in the range of 0.13-0.2 km s-1. Conclusions: The main ridge of TMC-1 is composed of four sub-filaments that are close to gravitational equilibrium. We label these TMC-1F1 through F4. The sub-filaments TMC-1F1, TMC-1F2, and TMC-1F4 are very elongated, dense, and cold. TMC-1F3 is a little less elongated and somewhat warmer, and probably heated by the Class I protostar, IRAS 04381+2540, which is embedded in it. TMC-1F3 is approximately 0.1 pc behind TMC1-F1. Because of its structure, TMC-1 is a good target to test filament evolution scenarios.
Evolution of column density distributions within Orion A⋆
NASA Astrophysics Data System (ADS)
Stutz, A. M.; Kainulainen, J.
2015-05-01
We compare the structure of star-forming molecular clouds in different regions of Orion A to determine how the column density probability distribution function (N-PDF) varies with environmental conditions such as the fraction of young protostars. A correlation between the N-PDF slope and Class 0 protostar fraction has been previously observed in a low-mass star-formation region (Perseus); here we test whether a similar correlation is observed in a high-mass star-forming region. We used Herschel PACS and SPIRE cold dust emission observations to derive a column density map of Orion A. We used the Herschel Orion Protostar Survey catalog to accurately identify and classify the Orion A young stellar object content, including the cold and relatively short-lived Class 0 protostars (with a lifetime of ~0.14 Myr). We divided Orion A into eight independent regions of 0.25 square degrees (13.5 pc2); in each region we fit the N-PDF distribution with a power law, and we measured the fraction of Class 0 protostars. We used a maximum-likelihood method to measure the N-PDF power-law index without binning the column density data. We find that the Class 0 fraction is higher in regions with flatter column density distributions. We tested the effects of incompleteness, extinction-driven misclassification of Class 0 sources, resolution, and adopted pixel-scales. We show that these effects cannot account for the observed trend. Our observations demonstrate an association between the slope of the power-law N-PDF and the Class 0 fractions within Orion A. Various interpretations are discussed, including timescales based on the Class 0 protostar fraction assuming a constant star-formation rate. The observed relation suggests that the N-PDF can be related to an evolutionary state of the gas. If universal, such a relation permits evaluating the evolutionary state from the N-PDF power-law index at much greater distances than those accessible with protostar counts. Appendices are available in electronic form at http://www.aanda.orgThe N(H) map as a FITS file is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/L6
Investigating Star-Gas Correlation and Evolution in the 100pc Cygnus X Complex
NASA Astrophysics Data System (ADS)
Gutermuth, Robert
We request support to pursue a substantial refinement of the ongoing characterizations of star and gas surface density in nearby star forming regions by engaging in a focused study of the Cygnus X star forming complex. The substantial physical size of the region and high spatial dynamic range of its surveys enables us to achieve the following science goals: - Characterize the distributions of gas and stellar column densities in a large, nearby starforming complex and integrate those values over successively larger physical scales in order to gauge the effect of varying physical resolution on the measured star-gas correlation. - Validate integrated 24 ¼m luminosity as a method of estimating star formation rate surface density using a region in which the substantial number of known forming members should ensure that the IMF is statistically well-sampled. - Validate 12CO luminosity as a method of estimating molecular gas column density against 13CO column density. tegrated 24 micron and radio continuum luminosity. To achieve these goals, we will perform substantial improvement and expansion of the Cygnus X Spitzer (and 2MASS) Legacy Survey point source catalog using UKIRT Infrared Deep Sky Survey (UKIDSS) near-IR data and WISE mid-IR data. From this catalog, we will produce a comprehensive census of young stellar objects (YSOs) with IR-excess emission over the numerical bulk of the stellar mass function (0.2 2 M ). This YSO catalog is expected to be considerably larger than the entire YSO census of the nearest kiloparsec. Both the point source and YSO catalogs will be contributed to the Infrared Science Archive (IRSA) to facilitate community access to these improved data products. In addition, we will provide a star formation surface density map derived from the MIPS 24 micron map of Cygnus X from the Spitzer Legacy Survey and gas column density maps derived from 12CO and 13CO data from the Exeter-Five College Radio Astronomy Observatory Cygnus Survey. The proposed program will bring to maturity a major new scientific result from the combination of data from several NASA program investments (Spitzer Legacy, WISE, & 2MASS) and some external archives (UKIDSS GPS, Exeter-FCRAO XGRS) that we have shown above add considerable value to the scientific interpretation of the data from the NASA archive. The improvement in effective sensitivity to low mass YSOs from the Cygnus X Legacy Survey source catalog and our targeted science investigation to examine the star-gas correlation (and any deviation that may correlate with local YSO evolutionary age) are relevant to the NASA Astrophysics Theme, Cosmic Origins, which aspires to unveil how the universe developed to the current day configuration of galaxies, stars and planets and the conditions necessary for life.
Groundbased Observations of sodium at Mercury during the First MESSENGER Flyby
NASA Astrophysics Data System (ADS)
Potter, A. E.; Killen, R. M.; Mouawad, N.
2008-09-01
Abstract Groundbased observations of the sodium exospheric emission at Mercury taken at the McMathPierce Solar Telescope at Kitt Peak, Arizona, were conducted during the period of January 1018, 2008. During these observations, we mapped the distribution of sodium D2 emission over the planet. The procedure for mapping sodium using an image slicer and tiptilt image stabilization has been described by Potter et al. [1]. The emission maps were used to construct maps of sodium column density. Herein we discuss the temporal and spatial variability of the sodium emission on the observed side of planet. Maps of surface reflectance in the continuum near the sodium D2 line (left ) and column abundance of sodium in the exosphere (right) are shown for January 12, 13 and 14, in Figures 1, 2, and 3, respectively. The maximum column density was in the range 1.15 to 1.40 x 1011 atoms/cm2 during this period. The sodium distribution is uneven, with higher values of column density at high southern and northern E P S C EPSC Abstracts, Vol. 3, EPSC2008-A-00311, 2008 European Planetary Science Congress, Author(s) 2008 latitudes. This may be the effect of solar radiation acceleration [2] which was near its maximum value, ranging from 164 to 171 cm/sec2, or 0.44 to 0.46 of surface gravity. As a consequence of high radiation pressure, sodium atoms are driven to high latitudes. However, the distribution for January 12 shows a considerable excess in high southern latitudes, suggesting a source of sodium at those latitudes. This dataset brackets observations taken with the Ultraviolet and Visible Spectrometer (UVVS) on the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) instrument [3] onboard the MESSENGER spacecraft [4] during the first flyby of the planet, January 14, 2008. An analogy between both data sets will be discussed. References [1] Potter, A.E., Plymate C., Keller C., Killen R.M., and Morgan T.H. (2006) Adv. Space Res. 38, 599603. [2] Potter, A.E., R. M. Killen, M. Sarantos. (2006) Icarus, 181, 112. [3] McClintock, W. E., and Lankton, M.R. (2007) Space Sci. Rev. 131, 481522. [4] Solomon, S. C., et al. (2001) Planet. Space Sci. 49, 14451465. Acknowledgements: The National Solar Observatory is funded by the National Science Foundation. Groundbased observations were funded by the NASA Planetary Astronomy Program. MESSENGER is a NASA Discovery mission.
The Magnetic Field Structure of W3(OH)
NASA Astrophysics Data System (ADS)
El-Batal, Adham M.; Clemens, Dan P.; Montgomery, Jordan
2018-06-01
Situated in the Perseus arm of the Galaxy, the W3 molecular cloud is a high-mass star-forming region with low foreground optical extinction. Near-infrared H- and K-band polarimetric observations of a 10' × 10' field of view of W3 were obtained using the Mimir instrument on the 1.8 m Perkins Telescope. This field of view encompasses W3(OH), a region of OH and H2O masers as well as an HII region. The H-band data were used in conjunction with Spitzer M-band data to map extinction via H-M color excess. In total, 2654 stellar objects were found in the Mimir field of view, of which 1013 had H and M magnitudes with low errors. Using the extinction map and the individual stellar H-M color excess values, 429 stars with polarized signals were found to be background to the molecular cloud. These were useful for mapping the magnetic field structure and estimating the magnetic field strength of the cloud. Mid- to far-infrared (70 - 870 μm) archival Herschel and Planck data were used to map dust extinction at 850 µm and create an H2 column density map. Combined, maps of magnetic field strength and hydrogen column density can be used to infer the ratio of gravitational potential to magnetic potential ( M/Φ ). Findings are discussed in the context of M/Φ ratio in models and the stability of high-mass star-forming regions.This work has been supported by NSF AST14-12269 and NASA NNX15AE51G grants.
Picturing Data With Uncertainty
NASA Technical Reports Server (NTRS)
Kao, David; Love, Alison; Dungan, Jennifer L.; Pang, Alex
2004-01-01
NASA is in the business of creating maps for scientific purposes to represent important biophysical or geophysical quantities over space and time. For example, maps of surface temperature over the globe tell scientists where and when the Earth is heating up; regional maps of the greenness of vegetation tell scientists where and when plants are photosynthesizing. There is always uncertainty associated with each value in any such map due to various factors. When uncertainty is fully modeled, instead of a single value at each map location, there is a distribution expressing a set of possible outcomes at each location. We consider such distribution data as multi-valued data since it consists of a collection of values about a single variable. Thus, a multi-valued data represents both the map and its uncertainty. We have been working on ways to visualize spatial multi-valued data sets effectively for fields with regularly spaced units or grid cells such as those in NASA's Earth science applications. A new way to display distributions at multiple grid locations is to project the distributions from an individual row, column or other user-selectable straight transect from the 2D domain. First at each grid cell in a given slice (row, column or transect), we compute a smooth density estimate from the underlying data. Such a density estimate for the probability density function (PDF) is generally more useful than a histogram, which is a classic density estimate. Then, the collection of PDFs along a given slice are presented vertically above the slice and form a wall. To minimize occlusion of intersecting slices, the corresponding walls are positioned at the far edges of the boundary. The PDF wall depicts the shapes of the distributions very dearly since peaks represent the modes (or bumps) in the PDFs. We've defined roughness as the number of peaks in the distribution. Roughness is another useful summary information for multimodal distributions. The uncertainty of the multi-valued data can also be interpreted by the number of peaks and the widths of the peaks as shown by the PDF walls.
Linking Proportionality across the Science and Mathematics Curricula through Science Literacy Maps
ERIC Educational Resources Information Center
Richardson, Kerri; Matthews, Catherine; Thompson, Catherine
2008-01-01
Proportionality should be a central focus of the middle-grades science and mathematics curricula and concepts such as density can be introduced and taught in both disciplines, highlighting for students the connections between science and mathematics. This month's column describes how teachers can utilize the "The Atlas of Science Literacy" and…
A Far-ultraviolet Fluorescent Molecular Hydrogen Emission Map of the Milky Way Galaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jo, Young-Soo; Min, Kyoung-Wook; Seon, Kwang-Il
We present the far-ultraviolet (FUV) fluorescent molecular hydrogen (H{sub 2}) emission map of the Milky Way Galaxy obtained with FIMS/SPEAR covering ∼76% of the sky. The extinction-corrected intensity of the fluorescent H{sub 2} emission has a strong linear correlation with the well-known tracers of the cold interstellar medium (ISM), including color excess E(B–V) , neutral hydrogen column density N (H i), and H α emission. The all-sky H{sub 2} column density map was also obtained using a simple photodissociation region model and interstellar radiation fields derived from UV star catalogs. We estimated the fraction of H{sub 2} ( f {submore » H2}) and the gas-to-dust ratio (GDR) of the diffuse ISM. The f {sub H2} gradually increases from <1% at optically thin regions where E(B–V) < 0.1 to ∼50% for E(B–V) = 3. The estimated GDR is ∼5.1 × 10{sup 21} atoms cm{sup −2} mag{sup −1}, in agreement with the standard value of 5.8 × 10{sup 21} atoms cm{sup −2} mag{sup −1}.« less
Infrared dust bubble CS51 and its interaction with the surrounding interstellar medium
NASA Astrophysics Data System (ADS)
Das, Swagat R.; Tej, Anandmayee; Vig, Sarita; Liu, Hong-Li; Liu, Tie; Ishwara Chandra, C. H.; Ghosh, Swarna K.
2017-12-01
A multiwavelength investigation of the southern infrared dust bubble CS51 is presented in this paper. We probe the associated ionized, cold dust, molecular and stellar components. Radio continuum emission mapped at 610 and 1300 MHz, using the Giant Metrewave Radio Telescope, India, reveals the presence of three compact emission components (A, B, and C) apart from large-scale diffuse emission within the bubble interior. Radio spectral index map shows the co-existence of thermal and non-thermal emission components. Modified blackbody fits to the thermal dust emission using Herschel Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging Receiver data is performed to generate dust temperature and column density maps. We identify five dust clumps associated with CS51 with masses and radius in the range 810-4600 M⊙ and 1.0-1.9 pc, respectively. We further construct the column density probability distribution functions of the surrounding cold dust which display the impact of ionization feedback from high-mass stars. The estimated dynamical and fragmentation time-scales indicate the possibility of collect and collapse mechanism in play at the bubble border. Molecular line emission from the Millimeter Astronomy Legacy Team 90 GHz survey is used to understand the nature of two clumps which show signatures of expansion of CS51.
Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alina, D.; Alves, M. I. R.; Armitage-Caplan, C.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gouveia Dal Pino, E. M.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Magalhães, A. M.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pietrobon, D.; Plaszczynski, S.; Poidevin, F.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Zacchei, A.; Zonca, A.
2015-04-01
This paper presents an overview of the polarized sky as seen by Planck HFI at 353 GHz, which is the most sensitive Planck channel for dust polarization. We construct and analyse maps of dust polarization fraction and polarization angle at 1° resolution, taking into account noise bias and possible systematic effects. The sensitivity of the Planck HFI polarization measurements allows for the first time a mapping of Galactic dust polarized emission on large scales, including low column density regions. We find that the maximum observed dust polarization fraction is high (pmax = 19.8%), in particular in some regions of moderate hydrogen column density (NH < 2 × 1021 cm-2). The polarization fraction displays a large scatter at NH below a few 1021 cm-2. There is a general decrease in the dust polarization fraction with increasing column density above NH ≃ 1 × 1021 cm-2 and in particular a sharp drop above NH ≃ 1.5 × 1022 cm-2. We characterize the spatial structure of the polarization angle using the angle dispersion function. We find that the polarization angle is ordered over extended areas of several square degrees, separated by filamentary structures of high angle dispersion function. These appear as interfaces where the sky projection of the magnetic field changes abruptly without variations in the column density. The polarization fraction is found to be anti-correlated with the dispersion of polarization angles. These results suggest that, at the resolution of 1°, depolarization is due mainly to fluctuations in the magnetic field orientation along the line of sight, rather than to the loss of grain alignment in shielded regions. We also compare the polarization of thermal dust emission with that of synchrotron measured with Planck, low-frequency radio data, and Faraday rotation measurements toward extragalactic sources. These components bear resemblance along the Galactic plane and in some regions such as the Fan and North Polar Spur regions. The poor match observed in other regions shows, however, that dust, cosmic-ray electrons, and thermal electrons generally sample different parts of the line of sight. Appendices are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Salas, P.; Oonk, J. B. R.; van Weeren, R. J.; Wolfire, M. G.; Emig, K. L.; Toribio, M. C.; Röttgering, H. J. A.; Tielens, A. G. G. M.
2018-04-01
Quantitative understanding of the interstellar medium requires knowledge of its physical conditions. Low-frequency carbon radio recombination lines (CRRLs) trace cold interstellar gas and can be used to determine its physical conditions (e.g. electron temperature and density). In this work, we present spatially resolved observations of the low-frequency (≤390 MHz) CRRLs centred around C268α, C357α, C494α, and C539α towards Cassiopeia A on scales of ≤1.2 pc. We compare the spatial distribution of CRRLs with other interstellar medium tracers. This comparison reveals a spatial offset between the peak of the CRRLs and other tracers, which is very characteristic for photodissociation regions and that we take as evidence for CRRLs being preferentially detected from the surfaces of molecular clouds. Using the CRRLs, we constrain the gas electron temperature and density. These constraints on the gas conditions suggest variations of less than a factor of 2 in pressure over ˜1 pc scales, and an average hydrogen density of 200-470 cm-3. From the electron temperature and density maps, we also constrain the ionized carbon emission measure, column density, and path length. Based on these, the hydrogen column density is larger than 1022 cm-2, with a peak of ˜4 × 1022 cm-2 towards the south of Cassiopeia A. Towards the southern peak, the line-of-sight length is ˜40 pc over a ˜2 pc wide structure, which implies that the gas is a thin surface layer on a large (molecular) cloud that is only partially intersected by Cassiopeia A. These observations highlight the utility of CRRLs as tracers of low-density extended H I and CO-dark gas halo's around molecular clouds.
NASA Astrophysics Data System (ADS)
Remy, Q.; Grenier, I. A.; Marshall, D. J.; Casandjian, J. M.
2018-03-01
Aim. H I 21-cm and 12CO 2.6-mm line emissions trace the atomic and molecular gas phases, respectively, but they miss most of the opaque H I and diffuse H2 present in the dark neutral medium (DNM) at the transition between the H I-bright and CO-bright regions. Jointly probing H I, CO, and DNM gas, we aim to constrain the threshold of the H I-H2 transition in visual extinction, AV, and in total hydrogen column densities, NHtot. We also aim to measure gas mass fractions in the different phases and to test their relation to cloud properties. Methods: We have used dust optical depth measurements at 353 GHz, γ-ray maps at GeV energies, and H I and CO line data to trace the gas column densities and map the DNM in nearby clouds toward the Galactic anticentre and Chamaeleon regions. We have selected a subset of 15 individual clouds, from diffuse to star-forming structures, in order to study the different phases across each cloud and to probe changes from cloud to cloud. Results: The atomic fraction of the total hydrogen column density is observed to decrease in the (0.6-1) × 1021 cm-2 range in NHtot (AV ≈ 0.4 mag) because of the formation of H2 molecules. The onset of detectable CO intensities varies by only a factor of 4 from cloud to cloud, between 0.6 × 1021 cm-2 and 2.5 × 1021 cm-2 in total gas column density. We observe larger H2 column densities than linearly inferred from the CO intensities at AV > 3 mag because of the large CO optical thickness; the additional H2 mass in this regime represents on average 20% of the CO-inferred molecular mass. In the DNM envelopes, we find that the fraction of diffuse CO-dark H2 in the molecular column densities decreases with increasing AV in a cloud. For a half molecular DNM, the fraction decreases from more than 80% at 0.4 mag to less than 20% beyond 2 mag. In mass, the DNM fraction varies with the cloud properties. Clouds with low peak CO intensities exhibit large CO-dark H2 fractions in molecular mass, in particular the diffuse clouds lying at high altitude above the Galactic plane. The mass present in the DNM envelopes appears to scale with the molecular mass seen in CO as MHDNM = 62 ± 7 MH2CO0.51 ± 0.02 across two decades in mass. Conclusions: The phase transitions in these clouds show both common trends and environmental differences. These findings will help support the theoretical modelling of H2 formation and the precise tracing of H2 in the interstellar medium.
STAR FORMATION IN TURBULENT MOLECULAR CLOUDS WITH COLLIDING FLOW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, Tomoaki; Dobashi, Kazuhito; Shimoikura, Tomomi, E-mail: matsu@hosei.ac.jp
2015-03-10
Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence ismore » weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of –1.35 when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds.« less
Scaling of Turbulence and Transport with ρ* in LAPD
NASA Astrophysics Data System (ADS)
Guice, Daniel; Carter, Troy; Rossi, Giovanni
2014-10-01
The plasma column size of the Large Plasma Device (LAPD) is varied in order to investigate the variation of turbulence and transport with ρ* =ρs / a . The data set includes plasmas produced by the standard BaO plasma source (straight field plasma radius a 30 cm) as well as the new higher density, higher temperature LaB6 plasma source (straight field plasma radius a 10 cm). The size of the plasma column is scaled in order to observe a Bohm to Gyro-Bohm diffusion transition. The main plasma column magnetic field is held fixed while the field in the cathode region is changed in order to map the cathode to different plasma column scales in the main chamber. Past experiments in the LAPD have shown a change in the observed diffusion but no transition to Gyro-Bohm diffusion. Results will be presented from an ongoing campaign to push the LAPD into the Gyro-Bohm diffusion regime.
NASA Astrophysics Data System (ADS)
Tremblin, P.; Minier, V.; Schneider, N.; Audit, E.; Hill, T.; Didelon, P.; Peretto, N.; Arzoumanian, D.; Motte, F.; Zavagno, A.; Bontemps, S.; Anderson, L. D.; André, Ph.; Bernard, J. P.; Csengeri, T.; Di Francesco, J.; Elia, D.; Hennemann, M.; Könyves, V.; Marston, A. P.; Nguyen Luong, Q.; Rivera-Ingraham, A.; Roussel, H.; Sousbie, T.; Spinoglio, L.; White, G. J.; Williams, J.
2013-12-01
Context. Herschel far-infrared imaging observations have revealed the density structure of the interface between H ii regions and molecular clouds in great detail. In particular, pillars and globules are present in many high-mass star-forming regions, such as the Eagle nebula (M 16) and the Rosette molecular cloud, and understanding their origin will help characterize triggered star formation. Aims: The formation mechanisms of these structures are still being debated. The initial morphology of the molecular cloud and its turbulent state are key parameters since they generate deformations and curvatures of the shell during the expansion of the H ii region. Recent numerical simulations have shown how pillars can arise from the collapse of the shell in on itself and how globules can be formed from the interplay of the turbulent molecular cloud and the ionization from massive stars. The goal here is to test this scenario through recent observations of two massive star-forming regions, M 16 and the Rosette molecular cloud. Methods: First, the column density structure of the interface between molecular clouds and associated H ii regions was characterized using column density maps obtained from far-infrared imaging of the Herschel HOBYS key programme. Then, the DisPerSe algorithm was used on these maps to detect the compressed layers around the ionized gas and pillars in different evolutionary states. Column density profiles were constructed. Finally, their velocity structure was investigated using CO data, and all observational signatures were tested against some distinct diagnostics established from simulations. Results: The column density profiles have revealed the importance of compression at the edge of the ionized gas. The velocity properties of the structures, i.e. pillars and globules, are very close to what we predict from the numerical simulations. We have identified a good candidate of a nascent pillar in the Rosette molecular cloud that presents the velocity pattern of the shell collapsing on itself, induced by a high local curvature. Globules have a bulk velocity dispersion that indicates the importance of the initial turbulence in their formation, as proposed from numerical simulations. Altogether, this study re-enforces the picture of pillar formation by shell collapse and globule formation by the ionization of highly turbulent clouds. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Outskirts of Distant Galaxies in Absorption
NASA Astrophysics Data System (ADS)
Chen, Hsiao-Wen
QSO absorption spectroscopy provides a sensitive probe of both the neutral medium and diffuse ionized gas in the distant Universe. It extends 21 cm maps of gaseous structures around low-redshift galaxies both to lower gas column densities and to higher redshifts. Combining galaxy surveys with absorption-line observations of gas around galaxies enables comprehensive studies of baryon cycles in galaxy outskirts over cosmic time. This chapter presents a review of the empirical understanding of the cosmic neutral gas reservoir from studies of damped Lyα absorbers (DLAs). It describes the constraints on the star formation relation and chemical enrichment history in the outskirts of distant galaxies from DLA studies. A brief discussion of available constraints on the ionized circumgalactic gas from studies of lower column density Lyα absorbers and associated ionic absorption transitions is presented at the end.
DHIGLS: DRAO H I Intermediate Galactic Latitude Survey
NASA Astrophysics Data System (ADS)
Blagrave, K.; Martin, P. G.; Joncas, G.; Kothes, R.; Stil, J. M.; Miville-Deschênes, M. A.; Lockman, Felix J.; Taylor, A. R.
2017-01-01
Observations of Galactic H I gas for seven targeted regions at intermediate Galactic latitude are presented at 1\\prime angular resolution using data from the DRAO Synthesis Telescope (ST) and the Green Bank Telescope (GBT). The DHIGLS data are the most extensive arcminute-resolution measurements of the diffuse atomic interstellar medium beyond those in the Galactic plane. The acquisition, reduction, calibration, and mosaicking of the DRAO ST data and the cross calibration and incorporation of the short-spacing information from the GBT are described. The high quality of the resulting DHIGLS products enables a variety of new studies in directions of low Galactic column density. We analyze the angular power spectra of maps of the integrated H I emission (column density) from the data cubes for several distinct velocity ranges. In fitting power-spectrum models based on a power law, but including the effects of the synthesized beam and noise at high spatial frequencies, we find exponents ranging from -2.5 to -3.0. Power spectra of maps of the centroid velocity for these components give similar results. These exponents are interpreted as being representative of the three-dimensional density and velocity fields of the atomic gas, respectively. We find evidence for dramatic changes in the H I structures in channel maps over even small changes in velocity. This narrow line emission has counterparts in absorption spectra against bright background radio sources, quantifying that the gas is cold and dense and can be identified as the cold neutral medium phase. Fully reduced DHIGLS H I data cubes and other data products are available at www.cita.utoronto.ca/DHIGLS.
NASA Astrophysics Data System (ADS)
Judd, L. M.; Al-Saadi, J. A.; Janz, S. J.; Kowalewski, M. G.; Szykman, J.; Swap, R.; Abuhassan, N.; Cede, A.; Valin, L.; Williams, D.; Stanier, C. O.
2017-12-01
The airborne Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) UV/VIS mapping spectrometer was used to make measurements for the Lake Michigan Ozone Study (LMOS) along the western shore of Lake Michigan and for the Student Airborne Research Program (SARP) in the Los Angeles Basin during May and June 2017. This instrument has the capability of retrieving NO2 column densities at sub-urban spatial scales (nominally 250 m x 250 m) and is being used as a testbed for future geostationary air quality retrievals. LMOS was a multi-agency collaborative observational effort to better understand ozone pollution along Lake Michigan's western shore, where coastal monitors exceed current ozone standards. With 21 science flights during the 5-week campaign period, GeoTASO acquired data for constraining emissions along the western coast of Lake Michigan and observed how these emissions dispersed and influenced the local air quality. During SARP flights, GeoTASO was used to map the Los Angeles Basin five times over two days, observing NO2 Differential Slant Column densities (DSCs) ranging from over 50x1015 molecules cm-2 down to GeoTASO's detection limit ( 1.5x1015 molecules cm-2 at 250 m x 250 m). This work presents the spatial distribution of preliminary NO2 DSCs observations over both research areas, and shows how this it changed at hourly to multi-day timescales under varying meteorological conditions. Both LMOS and SARP included coincident column NO2 measurements from networks of ground-based Pandora spectrometers specifically set up for these campaigns, and a comparison of coincident observations will be shown. Consistent features were observed throughout these flights, including continual emission `hot-spots' and the redistribution of NO2 plumes by land-water circulations. One goal of this work is to investigate how the fine spatial features observed (e.g. power plant plumes) will be depicted in satellite observations at coarser spatial resolutions. These results will help the community understand how to interpret space-based observations in areas subject to large NO2 spatial heterogeneity, as well as what we can expect to detect with future geostationary air quality sensors over a range of pollution environments.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-24
... increase in the CPI-U for the prior FY (0.0 percent). Column F FY 2010 TC MAP Exp. Incl. DSH. This column... including DSH expenditures. Column G FY 2010 TC MAP Exp. Net of DSH. This column contains the amount of the States' actual FY 2010 total computable DSH expenditures. Column H FY 2010 TC MAP Exp. Net of DSH. This...
Structure of massive star forming clumps from the Red MSX Source Survey
NASA Astrophysics Data System (ADS)
Figura, Charles C.; Urquhart, J. S.; Morgan, L.
2014-01-01
We present ammonia (1,1) and (2,2) emission maps of 61 high-mass star forming regions drawn from the Red MSX Source (RMS) Survey and observed with the Green Bank Telescope's K-Band Focal Plane Array. We use these observations to investigate the spatial distribution of the environmental conditions associated with this sample of embedded massive young stellar objects (MYSOs). Ammonia is an excellent high-density tracer of star-forming regions as its hyperfine structure allows relatively simple characterisation of the molecular environment. These maps are used to measure the column density, kinetic gas temperature distributions and velocity structure across these regions. We compare the distribution of these properties to that of the associated dust and mid-infrared emission traced by the ATLASGAL 870 micron emission maps and the Spitzer GLIMPSE IRAC images. We present a summary of these results and highlight some of more interesting finds.
The temperature of large dust grains in molecular clouds
NASA Technical Reports Server (NTRS)
Clark, F. O.; Laureijs, R. J.; Prusti, T.
1991-01-01
The temperature of the large dust grains is calculated from three molecular clouds ranging in visual extinction from 2.5 to 8 mag, by comparing maps of either extinction derived from star counts or gas column density derived from molecular observations to I(100). Both techniques show the dust temperature declining into clouds. The two techniques do not agree in absolute scale.
Bistatic LIDAR experiment proposed for the shuttle/tethered satellite system missions
NASA Technical Reports Server (NTRS)
Mccomas, D. J.; Spense, H. E.; Karl, R. R.; Horak, H. G.; Wilkerson, T. D.
1986-01-01
A new experiment concept has been proposed for the shuttle/tethered satellite system missions, which can provide high resolution, global density mappings of certain ionospheric species. The technique utilizes bistatic LIDAR to take advantage of the unique dual platform configuration offered by these missions. A tuned, shuttle-based laser is used to excite a column of the atmosphere adjacent to the tethered satellite, while triangulating photometic detectors on the satellite are employed to measure the fluorescence from sections of the column. The fluorescent intensity at the detectors is increased about six decades over both ground-based and monostatic shuttle-based LIDAR sounding of the same region. In addition, the orbital motion of the Shuttle provides for quasi-global mapping unattainable with ground-based observations. Since this technique provides such vastly improved resolution on a synoptic scale, many important middle atmospheric studies, heretofore untenable, may soon be addressed.
Characterising the Structure of Molecular Clouds
NASA Astrophysics Data System (ADS)
Wong, Graeme Francis
The Interstellar Medium contains the building blocks of matter in our Galaxy and plays a vital role in the evolution of low mass star formation. The poorly studied molecular clouds of Lupus and Chamaeleon contain ongoing low mass star formation, and are in close proximity to our Solar System. While on the other hand the Carina molecular cloud, poorly observed in radio wavelength, is an active region of star formation and host some of the brightest stars known within our Galaxy. Using tracers like carbon monoxide, atomic neutral carbon, and ammonia, we are able to measure the temperature and density of the gas cloud. This information allows us to understand the initial conditions of the formation of low mass stars. Observations conducted with the 22-m Mopra radio telescope (located at the edge of the Warrumbungle Mountains near Coonabarabran), in the Carbon monoxide (CO) isotopologues 12 CO, 13 CO, C17O, and C18O (1-0) transitions, have mapped the Chamaeleon II cloud, an intermediate mass cloud within the Chamaeleon. Through the sub-arcminute maps, comparisons have been made to previous low resolution (2.5') maps which have been to resolve some of the dense clumps previously identified. Optical depth, column density, and excitation temperature derived from the CO maps, are consistent with previous results. A detailed comparison between identified C18O clumps have shown the different conditions occurring within the clumps, some of which contain or are located near a population of young stellar objects. The Northern region of the Carina Nebular Complex, was observed with NANTEN2, a 4-m radio telescope (located in the Chilean Atacama desert), in the 12CO (4-3) and [C I] 3P1-3P0 emission lines. Previous observations towards this region has either been at poor resolution or had limited coverage. The presented observations, strike a balance between the two; observing in sub-arcmin resolution (0.6') and with an area of 0.9° X 0.5° mapped. Excitation temperature of the 12CO (4-3) and column density of [C I] 3P1-3P0 have been derived. Discussions have been made of the complex morphology of the Northern Carina Nebular Complex region, compared to optical features, and supported the assertion of the HII region (Car I) expanding into the molecular cloud. The selected areas within the Lupus molecular clouds (regions I, III and IV) were observed with the DSS43 (also known as Tid-70m), the largest steerable single dish radio telescope (70-m) in the Southern Hemisphere located at Canberra Deep Space Communication Complex (CDSCC) near Canberra, in the ammonia transitions (1,1) and (2,2). Due to the observation modes and limited amount of time available for the Astronomical community, the targeted areas were mapped in a series of position-switching strips. Column density, kinetic and rotation temperatures were derived, which were compared and analysed to low-resolution maps towards the dense clumps. As Tid-70m had limited observing capabilities, this project has been able to improve the observation capabilities by implementing on-the-fly (OTF) mapping. With its size and unique capabilities, implementing OTF mapping will increase the efficiency of observations. Test observations were carried out towards the well known sources of Orion A, and Sagittarius A through the newly implemented OTF observing mode. Analysis and comparison of Orion A and Sagittarius A, shows consistency with the new maps produced.
Surface Snow Density of East Antarctica Derived from In-Situ Observations
NASA Astrophysics Data System (ADS)
Tian, Y.; Zhang, S.; Du, W.; Chen, J.; Xie, H.; Tong, X.; Li, R.
2018-04-01
Models based on physical principles or semi-empirical parameterizations have used to compute the firn density, which is essential for the study of surface processes in the Antarctic ice sheet. However, parameterization of surface snow density is often challenged by the description of detailed local characterization. In this study we propose to generate a surface density map for East Antarctica from all the filed observations that are available. Considering that the observations are non-uniformly distributed around East Antarctica, obtained by different methods, and temporally inhomogeneous, the field observations are used to establish an initial density map with a grid size of 30 × 30 km2 in which the observations are averaged at a temporal scale of five years. We then construct an observation matrix with its columns as the map grids and rows as the temporal scale. If a site has an unknown density value for a period, we will set it to 0 in the matrix. In order to construct the main spatial and temple information of surface snow density matrix we adopt Empirical Orthogonal Function (EOF) method to decompose the observation matrix and only take first several lower-order modes, because these modes already contain most information of the observation matrix. However, there are a lot of zeros in the matrix and we solve it by using matrix completion algorithm, and then we derive the time series of surface snow density at each observation site. Finally, we can obtain the surface snow density by multiplying the modes interpolated by kriging with the corresponding amplitude of the modes. Comparative analysis have done between our surface snow density map and model results. The above details will be introduced in the paper.
Radio and infrared study of southern H II regions G346.056-0.021 and G346.077-0.056
NASA Astrophysics Data System (ADS)
Das, S. R.; Tej, A.; Vig, S.; Liu, T.; Ghosh, S. K.; Chandra, C. H. I.
2018-04-01
Aim. We present a multiwavelength study of two southern Galactic H II regions G346.056-0.021 and G346.077-0.056 which are located at a distance of 10.9 kpc. The distribution of ionized gas, cold and warm dust, and the stellar population associated with the two H II regions are studied in detail using measurements at near-infrared, mid-infrared, far-infrared, submillimeter and radio wavelengths. Methods: The radio continuum maps at 1280 and 610 MHz were obtained using the Giant Metrewave Radio Telescope to probe the ionized gas. The dust temperature, column density, and dust emissivity maps were generated using modified blackbody fits in the far-infrared wavelength range 160-500 μm. Various near- and mid-infrared color and magnitude criteria were adopted to identify candidate ionizing star(s) and the population of young stellar objects in the associated field. Results: The radio maps reveal the presence of diffuse ionized emission displaying distinct cometary morphologies. The 1280 MHz flux densities translate to zero age main sequence spectral types in the range O7.5V-O7V and O8.5V-O8V for the ionizing stars of G346.056-0.021 and G346.077-0.056, respectively. A few promising candidate ionizing star(s) are identified using near-infrared photometric data. The column density map shows the presence of a large, dense dust clump enveloping G346.077-0.056. The dust temperature map shows peaks towards the two H II regions. The submillimeter image shows the presence of two additional clumps, one being associated with G346.056-0.021. The masses of the clumps are estimated to range between 1400 and 15250 M⊙. Based on simple analytic calculations and the correlation seen between the ionized gas distribution and the local density structure, the observed cometary morphology in the radio maps is better explained invoking the champagne-flow model. GMRT data (FITS format) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A36
Subcooled Liquid Oxygen Cryostat for Magneto-Archimedes Particle Separation by Density
NASA Astrophysics Data System (ADS)
Hilton, D. K.; Celik, D.; Van Sciver, S. W.
2008-03-01
An instrument for the separation of particles by density (sorting) is being developed that uses the magneto-archimedes effect in liquid oxygen. With liquid oxygen strongly paramagnetic, the magneto-archimedes effect is an extension of diamagnetic levitation in the sense of increasing the effective buoyancy of a particle. The instrument will be able to separate ensembles of particles from 100 μm to 100 nm in size, and vertically map or mechanically deliver the separated particles. The instrument requires a column of liquid oxygen that is nearly isothermal, free of thermal convection, subcooled to prevent nucleate boiling, and supported against the strong magnetic field used. Thus, the unique cryostat design that meets these requirements is described in the present article. It consists in part of a column of liquid nitrogen below for cooling the liquid oxygen, with the liquid oxygen pressurized by helium gas to prevent nucleate boiling.
The Orion Fingers: H2 Temperatures and Excitation in an Explosive Outflow
NASA Astrophysics Data System (ADS)
Youngblood, Allison; France, Kevin; Ginsburg, Adam; Hoadley, Keri; Bally, John
2018-04-01
We measure H2 temperatures and column densities across the Orion Becklin-Neugebauer/Kleinmann-Low (BN/KL) explosive outflow from a set of 13 near-infrared (IR) H2 rovibrational emission lines observed with the TripleSpec spectrograph on Apache Point Observatory’s 3.5 m telescope. We find that most of the region is well characterized by a single temperature (∼2000–2500 K), which may be influenced by the limited range of upper-energy levels (6000–20,000 K) probed by our data set. The H2 column density maps indicate that warm H2 comprises 10‑5–10‑3 of the total H2 column density near the center of the outflow. Combining column density measurements for co-spatial H2 and CO at T = 2500 K, we measure a CO/H2 fractional abundance of 2 × 10‑3 and discuss possible reasons why this value is in excess of the canonical 10‑4 value, including dust attenuation, incorrect assumptions on co-spatiality of the H2 and CO emission, and chemical processing in an extreme environment. We model the radiative transfer of H2 in this region with ultraviolet (UV) pumping models to look for signatures of H2 fluorescence from H I Lyα pumping. Dissociative (J-type) shocks and nebular emission from the foreground Orion H II region are considered as possible Lyα sources. From our radiative transfer models, we predict that signatures of Lyα pumping should be detectable in near-IR line ratios given a sufficiently strong source, but such a source is not present in the BN/KL outflow. The data are consistent with shocks as the H2 heating source.
NASA Technical Reports Server (NTRS)
Brinksma, E. J.; Meijer, Y. J.; Connor, B. J.; Manney, G. L.; Bergwerff, J. B.; Bodeker, G. E.; Boyd, I. S.; Liley, J. B.; Hogervorst, W.; Hovenier, J. W.;
1998-01-01
During early August 1997, the ozone column density measured over Lauder was unusually low, with a minimum value of 222 Dobson Units (DU) at August 10. These observations are striking since in August, during the Austral winter, the ozone column density should be heading towards its yearly maximum; The August mean ozone column density measured over Lauder between 1987 and 1996 was 348(+/-28) DU, the lowest monthly average in these ten years was 255 DU. Regular altitude profile measurements of ozone, performed at Network for the Detection of Stratospheric Change (NDSC) station Lauder, make it possible to do a detailed, altitude-resolved, study of the low ozone observations. The measurements show ozone poor air in two altitude regions of the stratosphere: A 'high region', extending from the 600 K to the 1050 K isentrope (25 to 34 km), and a 'low region', below about 550 K (22 km). High resolution reverse trajectory maps of potential vorticity (PV) and ozone mixing ratio, based on the assumption of passive advection by the large-scale three-dimensional winds, show that in the 'high region' the ozone poor air was part of the polar vortex, which was centered off the pole and extended over Lauder for several days, while in the 'low region' the ozone poor air was mixed in from low latitudes. A rapid recovery of the ozone column density, by more than 110 DU within 24 hours, was observed when in the low region an ozone rich filament of the polar vortex moved over Lauder, while in the high region the (ozone poor) high part of the vortex moved away.
Ingold, T; Mätzler, C; Wehrli, C; Heimo, A; Kämpfer, N; Philipona, R
2001-04-20
Ultraviolet light was measured at four channels (305, 311, 318, and 332 nm) with a precision filter radiometer (UV-PFR) at Arosa, Switzerland (46.78 degrees , 9.68 degrees , 1850 m above sea level), within the instrument trial phase of a cooperative venture of the Swiss Meteorological Institute (MeteoSwiss) and the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center. We retrieved ozone-column density data from these direct relative irradiance measurements by adapting the Dobson standard method for all possible single-difference wavelength pairs and one double-difference pair (305/311 and 305/318) under conditions of cloud-free sky and of thin clouds (cloud optical depth <2.5 at 500 nm). All UV-PFR retrievals exhibited excellent agreement with those of collocated Dobson and Brewer spectrophotometers for data obtained during two months in 1999. Combining the results of the error analysis and the findings of the validation, we propose to retrieve ozone-column density by using the 305/311 single difference pair and the double-difference pair. Furthermore, combining both retrievals by building the ratio of ozone-column density yields information that is relevant to data quality control. Estimates of the 305/311 pair agree with measurements by the Dobson and Brewer instruments within 1% for both the mean and the standard deviation of the differences. For the double pair these values are in a range up to 1.6%. However, this pair is less sensitive to model errors. The retrieval performance is also consistent with satellite-based data from the Earth Probe Total Ozone Mapping Spectrometer (EP-TOMS) and the Global Ozone Monitoring Experiment instrument (GOME).
NASA Astrophysics Data System (ADS)
Ingold, Thomas; Mätzler, Christian; Wehrli, Christoph; Heimo, Alain; Kämpfer, Niklaus; Philipona, Rolf
2001-04-01
Ultraviolet light was measured at four channels (305, 311, 318, and 332 nm) with a precision filter radiometer (UV-PFR) at Arosa, Switzerland (46.78 , 9.68 , 1850 m above sea level), within the instrument trial phase of a cooperative venture of the Swiss Meteorological Institute (MeteoSwiss) and the Physikalisch-Meteorologisches Observatorium Davos /World Radiation Center. We retrieved ozone-column density data from these direct relative irradiance measurements by adapting the Dobson standard method for all possible single-difference wavelength pairs and one double-difference pair (305 /311 and 305 /318) under conditions of cloud-free sky and of thin clouds (cloud optical depth <2.5 at 500 nm). All UV-PFR retrievals exhibited excellent agreement with those of collocated Dobson and Brewer spectrophotometers for data obtained during two months in 1999. Combining the results of the error analysis and the findings of the validation, we propose to retrieve ozone-column density by using the 305 /311 single difference pair and the double-difference pair. Furthermore, combining both retrievals by building the ratio of ozone-column density yields information that is relevant to data quality control. Estimates of the 305 /311 pair agree with measurements by the Dobson and Brewer instruments within 1% for both the mean and the standard deviation of the differences. For the double pair these values are in a range up to 1.6%. However, this pair is less sensitive to model errors. The retrieval performance is also consistent with satellite-based data from the Earth Probe Total Ozone Mapping Spectrometer (EP-TOMS) and the Global Ozone Monitoring Experiment instrument (GOME).
Multiwavelength studies of the gas and dust disc of IRAS 04158+2805
NASA Astrophysics Data System (ADS)
Glauser, A. M.; Ménard, F.; Pinte, C.; Duchêne, G.; Güdel, M.; Monin, J.-L.; Padgett, D. L.
2008-07-01
We present a study of the circumstellar environment of IRAS 04158+2805 based on multi-wavelength observations and models. Images in the optical and near-infrared, a polarisation map in the optical, and mid-infrared spectra were obtained with VLT-FORS1, CFHT-IR, and Spitzer-IRS. Additionally we used an X-ray spectrum observed with Chandra. We interpret the observations in terms of a central star surrounded by an axisymmetric circumstellar disc, but without an envelope, to test the validity of this simple geometry. We estimate the structural properties of the disc and its gas and dust content. We modelled the dust disc with a 3D continuum radiative transfer code, MCFOST, based on a Monte-Carlo method that provides synthetic scattered light images and polarisation maps, as well as spectral energy distributions. We find that the disc images and spectral energy distribution narrowly constrain many of the disc model parameters, such as a total dust mass of 1.0-1.75×10-4 M_⊙ and an inclination of 62°-63°. The maximum grain size required to fit all available data is of the order of 1.6-2.8 μm although the upper end of this range is loosely constrained. The observed optical polarisation map is reproduced well by the same disc model, suggesting that the geometry we find is adequate and the optical properties are representative of the visible dust content. We compare the inferred dust column density to the gas column density derived from the X-ray spectrum and find a gas-to-dust ratio along the line of sight that is consistent with the ISM value. To our knowledge, this measurement is the first to directly compare dust and gas column densities in a protoplanetary disc. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Based also on data collected at ESO/VLT during observation program 68-C.0171.
Fourier-space combination of Planck and Herschel images
NASA Astrophysics Data System (ADS)
Abreu-Vicente, J.; Stutz, A.; Henning, Th.; Keto, E.; Ballesteros-Paredes, J.; Robitaille, T.
2017-08-01
Context. Herschel has revolutionized our ability to measure column densities (NH) and temperatures (T) of molecular clouds thanks to its far infrared multiwavelength coverage. However, the lack of a well defined background intensity level in the Herschel data limits the accuracy of the NH and T maps. Aims: We aim to provide a method that corrects the missing Herschel background intensity levels using the Planck model for foreground Galactic thermal dust emission. For the Herschel/PACS data, both the constant-offset as well as the spatial dependence of the missing background must be addressed. For the Herschel/SPIRE data, the constant-offset correction has already been applied to the archival data so we are primarily concerned with the spatial dependence, which is most important at 250 μm. Methods: We present a Fourier method that combines the publicly available Planck model on large angular scales with the Herschel images on smaller angular scales. Results: We have applied our method to two regions spanning a range of Galactic environments: Perseus and the Galactic plane region around l = 11deg (HiGal-11). We post-processed the combined dust continuum emission images to generate column density and temperature maps. We compared these to previously adopted constant-offset corrections. We find significant differences (≳20%) over significant ( 15%) areas of the maps, at low column densities (NH ≲ 1022 cm-2) and relatively high temperatures (T ≳ 20 K). We have also applied our method to synthetic observations of a simulated molecular cloud to validate our method. Conclusions: Our method successfully corrects the Herschel images, including both the constant-offset intensity level and the scale-dependent background variations measured by Planck. Our method improves the previous constant-offset corrections, which did not account for variations in the background emission levels. The image FITS files used in this paper are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A65
High-resolution airborne imaging DOAS measurements of NO2 above Bucharest during AROMAT
NASA Astrophysics Data System (ADS)
Meier, Andreas Carlos; Schönhardt, Anja; Bösch, Tim; Richter, Andreas; Seyler, André; Ruhtz, Thomas; Constantin, Daniel-Eduard; Shaiganfar, Reza; Wagner, Thomas; Merlaud, Alexis; Van Roozendael, Michel; Belegante, Livio; Nicolae, Doina; Georgescu, Lucian; Burrows, John Philip
2017-05-01
In this study we report on airborne imaging DOAS measurements of NO2 from two flights performed in Bucharest during the AROMAT campaign (Airborne ROmanian Measurements of Aerosols and Trace gases) in September 2014. These measurements were performed with the Airborne imaging Differential Optical Absorption Spectroscopy (DOAS) instrument for Measurements of Atmospheric Pollution (AirMAP) and provide nearly gapless maps of column densities of NO2 below the aircraft with a high spatial resolution of better than 100 m. The air mass factors, which are needed to convert the measured differential slant column densities (dSCDs) to vertical column densities (VCDs), have a strong dependence on the surface reflectance, which has to be accounted for in the retrieval. This is especially important for measurements above urban areas, where the surface properties vary strongly. As the instrument is not radiometrically calibrated, we have developed a method to derive the surface reflectance from intensities measured by AirMAP. This method is based on radiative transfer calculation with SCIATRAN and a reference area for which the surface reflectance is known. While surface properties are clearly apparent in the NO2 dSCD results, this effect is successfully corrected for in the VCD results. Furthermore, we investigate the influence of aerosols on the retrieval for a variety of aerosol profiles that were measured in the context of the AROMAT campaigns. The results of two research flights are presented, which reveal distinct horizontal distribution patterns and strong spatial gradients of NO2 across the city. Pollution levels range from background values in the outskirts located upwind of the city to about 4 × 1016 molec cm-2 in the polluted city center. Validation against two co-located mobile car-DOAS measurements yields good agreement between the datasets, with correlation coefficients of R = 0.94 and R = 0.85, respectively. Estimations on the NOx emission rate of Bucharest for the two flights yield emission rates of 15.1 ± 9.4 and 13.6 ± 8.4 mol s-1, respectively.
NASA Astrophysics Data System (ADS)
Tremblin, P.; Schneider, N.; Minier, V.; Didelon, P.; Hill, T.; Anderson, L. D.; Motte, F.; Zavagno, A.; André, Ph.; Arzoumanian, D.; Audit, E.; Benedettini, M.; Bontemps, S.; Csengeri, T.; Di Francesco, J.; Giannini, T.; Hennemann, M.; Nguyen Luong, Q.; Marston, A. P.; Peretto, N.; Rivera-Ingraham, A.; Russeil, D.; Rygl, K. L. J.; Spinoglio, L.; White, G. J.
2014-04-01
Aims: Ionization feedback should impact the probability distribution function (PDF) of the column density of cold dust around the ionized gas. We aim to quantify this effect and discuss its potential link to the core and initial mass function (CMF/IMF). Methods: We used Herschel column density maps of several regions observed within the HOBYS key program in a systematic way: M 16, the Rosette and Vela C molecular clouds, and the RCW 120 H ii region. We computed the PDFs in concentric disks around the main ionizing sources, determined their properties, and discuss the effect of ionization pressure on the distribution of the column density. Results: We fitted the column density PDFs of all clouds with two lognormal distributions, since they present a "double-peak" or an enlarged shape in the PDF. Our interpretation is that the lowest part of the column density distribution describes the turbulent molecular gas, while the second peak corresponds to a compression zone induced by the expansion of the ionized gas into the turbulent molecular cloud. Such a double peak is not visible for all clouds associated with ionization fronts, but it depends on the relative importance of ionization pressure and turbulent ram pressure. A power-law tail is present for higher column densities, which are generally ascribed to the effect of gravity. The condensations at the edge of the ionized gas have a steep compressed radial profile, sometimes recognizable in the flattening of the power-law tail. This could lead to an unambiguous criterion that is able to disentangle triggered star formation from pre-existing star formation. Conclusions: In the context of the gravo-turbulent scenario for the origin of the CMF/IMF, the double-peaked or enlarged shape of the PDF may affect the formation of objects at both the low-mass and the high-mass ends of the CMF/IMF. In particular, a broader PDF is required by the gravo-turbulent scenario to fit the IMF properly with a reasonable initial Mach number for the molecular cloud. Since other physical processes (e.g., the equation of state and the variations among the core properties) have already been said to broaden the PDF, the relative importance of the different effects remains an open question. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Saturn’s Ring Rain: Initial Estimates of Ring Mass Loss Rates
NASA Astrophysics Data System (ADS)
Moore, Luke; O'Donoghue, J.; Mueller-Wodarg, I.; Mendillo, M.
2013-10-01
We estimate rates of mass loss from Saturn’s rings based on ionospheric model reproductions of derived H3+ column densities. On 17 April 2011 over two hours of near-infrared spectral data were obtained of Saturn using the Near InfraRed Spectrograph (NIRSPEC) instrument on the 10-m Keck II telescope. The intensity of two bright H3+ rotational-vibrational emission lines was visible from nearly pole to pole, allowing low-latitude ionospheric emissions to be studied for the first time, and revealing significant latitudinal structure, with local extrema in one hemisphere being mirrored at magnetically conjugate latitudes in the opposite hemisphere. Even more striking, those minima and maxima mapped to latitudes of increased or increased density in Saturn’s rings, implying a direct ring-atmosphere connection in which charged water group particles from the rings are guided by magnetic field lines as they “rain” down upon the atmosphere. Water products act to quench the local ionosphere, and therefore modify the observed H3+ densities. Using the Saturn Thermosphere Ionosphere Model (STIM), a 3-D model of Saturn’s upper atmosphere, we derive the rates of water influx required from the rings in order to reproduce the observed H3+ column densities. As a unique pair of conjugate latitudes map to a specific radial distance in the ring plane, the derived water influxes can equivalently be described as rates of ring mass erosion as a function of radial distance in the ring plane, and therefore also allow for an improved estimate of the lifetime of Saturn’s rings.
OxfordGrid: a web interface for pairwise comparative map views.
Yang, Hongyu; Gingle, Alan R
2005-12-01
OxfordGrid is a web application and database schema for storing and interactively displaying genetic map data in a comparative, dot-plot, fashion. Its display is composed of a matrix of cells, each representing a pairwise comparison of mapped probe data for two linkage groups or chromosomes. These are arranged along the axes with one forming grid columns and the other grid rows with the degree and pattern of synteny/colinearity between the two linkage groups manifested in the cell's dot density and structure. A mouse click over the selected grid cell launches an image map-based display for the selected cell. Both individual and linear groups of mapped probes can be selected and displayed. Also, configurable links can be used to access other web resources for mapped probe information. OxfordGrid is implemented in C#/ASP.NET and the package, including MySQL schema creation scripts, is available at ftp://cggc.agtec.uga.edu/OxfordGrid/.
First measurement of H I 21 cm emission from a GRB host galaxy indicates a post-merger system
NASA Astrophysics Data System (ADS)
Arabsalmani, Maryam; Roychowdhury, Sambit; Zwaan, Martin A.; Kanekar, Nissim; Michałowski, Michał J.
2015-11-01
We report the detection and mapping of atomic hydrogen in H I 21 cm emission from ESO 184-G82, the host galaxy of the gamma-ray burst 980425. This is the first instance where H I in emission has been detected from a galaxy hosting a gamma-ray burst (GRB). ESO 184-G82 is an isolated galaxy and contains a Wolf-Rayet region close to the location of the GRB and the associated supernova, SN 1998bw. This is one of the most luminous H II regions identified in the local Universe, with a very high inferred density of star formation. The H I 21 cm observations reveal a high H I mass for the galaxy, twice as large as the stellar mass. The spatial and velocity distribution of the H I 21 cm emission reveals a disturbed rotating gas disc, which suggests that the galaxy has undergone a recent minor merger that disrupted its rotation. We find that the Wolf-Rayet region and the GRB are both located in the highest H I column density region of the galaxy. We speculate that the merger event has resulted in shock compression of the gas, triggering extreme star formation activity, and resulting in the formation of both the Wolf-Rayet region and the GRB. The high H I column density environment of the GRB is consistent with the high H I column densities seen in absorption in the host galaxies of high-redshift GRBs.
Single fiber lignin distributions based on the density gradient column method
Brian Boyer; Alan W. Rudie
2007-01-01
The density gradient column method was used to determine the effects of uniform and non-uniform pulping processes on variation in individual fiber lignin concentrations of the resulting pulps. A density gradient column uses solvents of different densities and a mixing process to produce a column of liquid with a smooth transition from higher density at the bottom to...
First detection of hydrogen in the β Pictoris gas disk
NASA Astrophysics Data System (ADS)
Wilson, P. A.; Lecavelier des Etangs, A.; Vidal-Madjar, A.; Bourrier, V.; Hébrard, G.; Kiefer, F.; Beust, H.; Ferlet, R.; Lagrange, A.-M.
2017-03-01
The young and nearby star β Pictoris (β Pic) is surrounded by a debris disk composed of dust and gas known to host a myriad evaporating exocomets, planetesimals and at least one planet. At an edge-on inclination, as seen from Earth, this system is ideal for debris disk studies providing an excellent opportunity to use absorption spectroscopy to study the planet forming environment. Using the Cosmic Origins Spectrograph (COS) instrument on the Hubble Space Telescope (HST) we observe the most abundant element in the disk, hydrogen, through the H I Lyman α (Ly-α) line. We present a new technique to decrease the contamination of the Ly-α line by geocoronal airglow in COS spectra. This Airglow Virtual Motion (AVM) technique allows us to shift the Ly-α line of the astrophysical target away from the contaminating airglow emission revealing more of the astrophysical line profile. This new AVM technique, together with subtraction of an airglow emission map, allows us to analyse the shape of the β Pic Ly-α emission line profile and from it, calculate the column density of neutral hydrogen surrounding β Pic. The column density of hydrogen in the β Pic stable gas disk at the stellar radial velocity is measured to be log (NH/ 1 cm2) ≪ 18.5. The Ly-α emission line profile is found to be asymmetric and we propose that this is caused by H I falling in towards the star with a bulk radial velocity of 41 ± 6 km s-1 relative to β Pic and a column density of log (NH/ 1 cm2) = 18.6 ± 0.1. The high column density of hydrogen relative to the hydrogen content of CI chondrite meteorites indicates that the bulk of the hydrogen gas does not come from the dust in the disk. This column density reveals a hydrogen abundance much lower than solar, which excludes the possibility that the detected hydrogen could be a remnant of the protoplanetary disk or gas expelled by the star. We hypothesise that the hydrogen gas observed falling towards the star arises from the dissociation of water originating from evaporating exocomets.
NASA Astrophysics Data System (ADS)
Soler, J. D.; Ade, P. A. R.; Angilè, F. E.; Ashton, P.; Benton, S. J.; Devlin, M. J.; Dober, B.; Fissel, L. M.; Fukui, Y.; Galitzki, N.; Gandilo, N. N.; Hennebelle, P.; Klein, J.; Li, Z.-Y.; Korotkov, A. L.; Martin, P. G.; Matthews, T. G.; Moncelsi, L.; Netterfield, C. B.; Novak, G.; Pascale, E.; Poidevin, F.; Santos, F. P.; Savini, G.; Scott, D.; Shariff, J. A.; Thomas, N. E.; Tucker, C. E.; Tucker, G. S.; Ward-Thompson, D.
2017-07-01
We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.´0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondencebetween (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or "ridges", where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or "nests", where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density tails of the PDFs are steeper, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region.
NASA Astrophysics Data System (ADS)
Gaczkowski, B.; Preibisch, T.; Stanke, T.; Krause, M. G. H.; Burkert, A.; Diehl, R.; Fierlinger, K.; Kroell, D.; Ngoumou, J.; Roccatagliata, V.
2015-12-01
Context. The Lupus I cloud is found between the Upper Scorpius (USco) and the Upper Centaurus-Lupus (UCL) subgroups of the Scorpius-Centaurus OB association, where the expanding USco H I shell appears to interact with a bubble currently driven by the winds of the remaining B-stars of UCL. Aims: We want to study how collisions of large-scale interstellar gas flows form and influence new dense clouds in the ISM. Methods: We performed LABOCA continuum sub-mm observations of Lupus I that provide for the first time a direct view of the densest, coldest cloud clumps and cores at high angular resolution. We complemented these data with Herschel and Planck data from which we constructed column density and temperature maps. From the Herschel and LABOCA column density maps we calculated probability density functions (PDFs) to characterize the density structure of the cloud. Results: The northern part of Lupus I is found to have, on average, lower densities, higher temperatures, and no active star formation. The center-south part harbors dozens of pre-stellar cores where density and temperature reach their maximum and minimum, respectively. Our analysis of the column density PDFs from the Herschel data show double-peak profiles for all parts of the cloud, which we attribute to an external compression. In those parts with active star formation, the PDF shows a power-law tail at high densities. The PDFs we calculated from our LABOCA data trace the denser parts of the cloud showing one peak and a power-law tail. With LABOCA we find 15 cores with masses between 0.07 and 1.71 M⊙ and a total mass of ≈8 M⊙. The total gas and dust mass of the cloud is ≈164 M⊙ and hence ~5% of the mass is in cores. From the Herschel and Planck data we find a total mass of ≈174 M⊙ and ≈171 M⊙, respectively. Conclusions: The position, orientation, and elongated shape of Lupus I, the double-peak PDFs and the population of pre-stellar and protostellar cores could be explained by the large-scale compression from the advancing USco H I shell and the UCL wind bubble. The Atacama Pathfinder Experiment (APEX) is a collaboration between the Max-Planck-Institut für Radioastronomie (MPIfR), the European Southern Observatory (ESO), and the Onsala Space Observatory (OSO).Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Final APEX cube and Herschel N and T maps as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A36
NASA Astrophysics Data System (ADS)
Fu, Roger R.; Moullet, Arielle; Patel, Nimesh A.; Biersteker, John; Derose, Kimberly L.; Young, Kenneth H.
2012-02-01
We report Submillimeter Array observations of SO2 emission in the circumstellar envelope (CSE) of the red supergiant VY Canis Majoris, with an angular resolution of ≈1''. SO2 emission appears in three distinct outflow regions surrounding the central continuum peak emission that is spatially unresolved. No bipolar structure is noted in the sources. A fourth source of SO2 is identified as a spherical wind centered at the systemic velocity. We estimate the SO2 column density and rotational temperature assuming local thermal equilibrium (LTE) as well as perform non-LTE radiative transfer analysis using RADEX. Column densities of SO2 are found to be ~1016 cm-2 in the outflows and in the spherical wind. Comparison with existing maps of the two parent species OH and SO shows the SO2 distribution to be consistent with that of OH. The abundance ratio f_{SO_{2}}/f_{SO} is greater than unity for all radii larger than 3 × 1016 cm. SO2 is distributed in fragmented clumps compared to SO, PN, and SiS molecules. These observations lend support to specific models of circumstellar chemistry that predict f_{SO_{2}}/f_{SO}>1 and may suggest the role of localized effects such as shocks in the production of SO2 in the CSE.
Variations between Dust and Gas in the Diffuse Interstellar Medium. III. Changes in Dust Properties
NASA Astrophysics Data System (ADS)
Reach, William T.; Bernard, Jean-Philippe; Jarrett, Thomas H.; Heiles, Carl
2017-12-01
We study infrared emission of 17 isolated, diffuse clouds with masses of order {10}2 {M}ȯ to test the hypothesis that grain property variations cause the apparently low gas-to-dust ratios that have been measured in those clouds. Maps of the clouds were constructed from Wide-field Infrared Survey Explorer (WISE) data and directly compared with the maps of dust optical depth from Planck. The mid-infrared emission per unit dust optical depth has a significant trend toward lower values at higher optical depths. The trend can be quantitatively explained by the extinction of starlight within the clouds. The relative amounts of polycyclic aromatic hydrocarbon and very small grains traced by WISE, compared with large grains tracked by Planck, are consistent with being constant. The temperature of the large grains significantly decreases for clouds with larger dust optical depth; this trend is partially due to dust property variations, but is primarily due to extinction of starlight. We updated the prediction for molecular hydrogen column density, taking into account variations in dust properties, and find it can explain the observed dust optical depth per unit gas column density. Thus, the low gas-to-dust ratios in the clouds are most likely due to “dark gas” that is molecular hydrogen.
The Mid-Infrared Extinction Law in the Ophiuchus, Perseus, and Serpens Molecular Clouds
NASA Astrophysics Data System (ADS)
Chapman, Nicholas L.; Mundy, Lee G.; Lai, Shih-Ping; Evans, Neal J., II
2009-01-01
We compute the mid-IR extinction law from 3.6 to 24 μm in three molecular clouds—Ophiuchus, Perseus, and Serpens—by combining data from the "Cores to Disks" Spitzer Legacy Science program with deep JHKs imaging. Using a new technique, we are able to calculate the line-of-sight (LOS) extinction law toward each background star in our fields. With these LOS measurements, we create, for the first time, maps of the χ2 deviation of the data from two extinction law models. Because our χ2 maps have the same spatial resolution as our extinction maps, we can directly observe the changing extinction law as a function of the total column density. In the Spitzer Infrared Array Camera (IRAC) bands, 3.6-8 μm, we see evidence for grain growth. Below A_{K_s} = 0.5, our extinction law is well fitted by the Weingartner and Draine RV = 3.1 diffuse interstellar-medium dust model. As the extinction increases, our law gradually flattens, and for A_{K_s} \\ge 1, the data are more consistent with the Weingartner and Draine RV = 5.5 model that uses larger maximum dust grain sizes. At 24 μm, our extinction law is 2-4 times higher than the values predicted by theoretical dust models, but is more consistent with the observational results of Flaherty et al. Finally, from our χ2 maps we identify a region in Perseus where the IRAC extinction law is anomalously high considering its column density. A steeper near-IR extinction law than the one we have assumed may partially explain the IRAC extinction law in this region.
AVIRIS Spectrometer Maps Total Water Vapor Column
NASA Technical Reports Server (NTRS)
Conel, James E.; Green, Robert O.; Carrere, Veronique; Margolis, Jack S.; Alley, Ronald E.; Vane, Gregg A.; Bruegge, Carol J.; Gary, Bruce L.
1992-01-01
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) processes maps of vertical-column abundances of water vapor in atmosphere with good precision and spatial resolution. Maps provide information for meteorology, climatology, and agriculture.
NASA Astrophysics Data System (ADS)
Baker, Edward T.; Walker, Sharon L.; Resing, Joseph A.; Chadwick, William W.; Merle, Susan G.; Anderson, Melissa O.; Butterfield, David A.; Buck, Nathan J.; Michael, Susanna
2017-11-01
Back-arc spreading centers (BASCs) form a distinct class of ocean spreading ridges distinguished by steep along-axis gradients in spreading rate and by additional magma supplied through subduction. These characteristics can affect the population and distribution of hydrothermal activity on BASCs compared to mid-ocean ridges (MORs). To investigate this hypothesis, we comprehensively explored 600 km of the southern half of the Mariana BASC. We used water column mapping and seafloor imaging to identify 19 active vent sites, an increase of 13 over the current listing in the InterRidge Database (IRDB), on the bathymetric highs of 7 of the 11 segments. We identified both high and low (i.e., characterized by a weak or negligible particle plume) temperature discharge occurring on segment types spanning dominantly magmatic to dominantly tectonic. Active sites are concentrated on the two southernmost segments, where distance to the adjacent arc is shortest (<40 km), spreading rate is highest (>48 mm/yr), and tectonic extension is pervasive. Re-examination of hydrothermal data from other BASCs supports the generalization that hydrothermal site density increases on segments <90 km from an adjacent arc. Although exploration quality varies greatly among BASCs, present data suggest that, for a given spreading rate, the mean spatial density of hydrothermal activity varies little between MORs and BASCs. The present global database, however, may be misleading. On both BASCs and MORs, the spatial density of hydrothermal sites mapped by high-quality water-column surveys is 2-7 times greater than predicted by the existing IRDB trend of site density versus spreading rate.
Unnikrishnan, Ginu U.; Morgan, Elise F.
2011-01-01
Inaccuracies in the estimation of material properties and errors in the assignment of these properties into finite element models limit the reliability, accuracy, and precision of quantitative computed tomography (QCT)-based finite element analyses of the vertebra. In this work, a new mesh-independent, material mapping procedure was developed to improve the quality of predictions of vertebral mechanical behavior from QCT-based finite element models. In this procedure, an intermediate step, called the material block model, was introduced to determine the distribution of material properties based on bone mineral density, and these properties were then mapped onto the finite element mesh. A sensitivity study was first conducted on a calibration phantom to understand the influence of the size of the material blocks on the computed bone mineral density. It was observed that varying the material block size produced only marginal changes in the predictions of mineral density. Finite element (FE) analyses were then conducted on a square column-shaped region of the vertebra and also on the entire vertebra in order to study the effect of material block size on the FE-derived outcomes. The predicted values of stiffness for the column and the vertebra decreased with decreasing block size. When these results were compared to those of a mesh convergence analysis, it was found that the influence of element size on vertebral stiffness was less than that of the material block size. This mapping procedure allows the material properties in a finite element study to be determined based on the block size required for an accurate representation of the material field, while the size of the finite elements can be selected independently and based on the required numerical accuracy of the finite element solution. The mesh-independent, material mapping procedure developed in this study could be particularly helpful in improving the accuracy of finite element analyses of vertebroplasty and spine metastases, as these analyses typically require mesh refinement at the interfaces between distinct materials. Moreover, the mapping procedure is not specific to the vertebra and could thus be applied to many other anatomic sites. PMID:21823740
CHIMPS: the 13CO/C18O (J = 3 → 2) Heterodyne Inner Milky Way Plane Survey
NASA Astrophysics Data System (ADS)
Rigby, A. J.; Moore, T. J. T.; Plume, R.; Eden, D. J.; Urquhart, J. S.; Thompson, M. A.; Mottram, J. C.; Brunt, C. M.; Butner, H. M.; Dempsey, J. T.; Gibson, S. J.; Hatchell, J.; Jenness, T.; Kuno, N.; Longmore, S. N.; Morgan, L. K.; Polychroni, D.; Thomas, H.; White, G. J.; Zhu, M.
2016-03-01
We present the 13CO/C18O (J = 3 → 2) Heterodyne Inner Milky Way Plane Survey (CHIMPS) which has been carried out using the Heterodyne Array Receiver Program on the 15 m James Clerk Maxwell Telescope (JCMT) in Hawaii. The high-resolution spectral survey currently covers |b| ≤ 0.5° and 28° ≲ l ≲ 46°, with an angular resolution of 15 arcsec in 0.5 km s-1 velocity channels. The spectra have a median rms of ˜0.6 K at this resolution, and for optically thin gas at an excitation temperature of 10 K, this sensitivity corresponds to column densities of NH2 ˜ 3 × 1020 cm-2 and NH2 ˜ 4 × 1021 cm-2 for 13CO and C18O, respectively. The molecular gas that CHIMPS traces is at higher column densities and is also more optically thin than in other publicly available CO surveys due to its rarer isotopologues, and thus more representative of the three-dimensional structure of the clouds. The critical density of the J = 3 → 2 transition of CO is ≳104 cm-3 at temperatures of ≤20 K, and so the higher density gas associated with star formation is well traced. These data complement other existing Galactic plane surveys, especially the JCMT Galactic Plane Survey which has similar spatial resolution and column density sensitivity, and the Herschel infrared Galactic Plane Survey. In this paper, we discuss the observations, data reduction and characteristics of the survey, presenting integrated-emission maps for the region covered. Position-velocity diagrams allow comparison with Galactic structure models of the Milky Way, and while we find good agreement with a particular four-arm model, there are some significant deviations.
Commeau, R.F.; Reynolds, Leslie A.; Poag, C.W.
1985-01-01
The composition of agglutinated foraminiferal tests vary remarkably in response to local substrate characteristics, physiochemical properties of the water column and species- dependant selectivity of test components. We have employed a technique that combines a scanning electron microscope with an energy dispersive X-ray spectrometer system to identify major and minor elemental constituents of agglutinated foraminiferal walls. As a sample is bombarded with a beam of high energy electrons, X-rays are generated that are characteristic of the elements present. As a result, X- ray density maps can be produced for each of several elements present in the tests of agglutinated foraminifers.
X-Ray Dust Tomography: Mapping the Galaxy one X-ray Transient at a Time
NASA Astrophysics Data System (ADS)
Heinz, Sebastian; Corrales, Lia
2018-01-01
Tomography using X-ray light echoes from dust scattering by interstellar clouds is an accurate tool to study the line-of-sight distribution of dust. It can be used to measure distances to molecular clouds and X-ray sources, it can map Galactic structure in dust, and it can be used for precision measurements of dust composition and grain size distribution. Necessary conditions for observing echoes include a suitable X-ray lightcurve and sufficient dust column density to the source. I will discuss a tool set for studying dust echoes and show results obtained for some of the brightest echoes detected to date.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalcanton, Julianne J.; Fouesneau, Morgan; Weisz, Daniel R.
We map the distribution of dust in M31 at 25 pc resolution using stellar photometry from the Panchromatic Hubble Andromeda Treasury survey. The map is derived with a new technique that models the near-infrared color–magnitude diagram (CMD) of red giant branch (RGB) stars. The model CMDs combine an unreddened foreground of RGB stars with a reddened background population viewed through a log-normal column density distribution of dust. Fits to the model constrain the median extinction, the width of the extinction distribution, and the fraction of reddened stars in each 25 pc cell. The resulting extinction map has a factor ofmore » ≳4 times better resolution than maps of dust emission, while providing a more direct measurement of the dust column. There is superb morphological agreement between the new map and maps of the extinction inferred from dust emission by Draine et al. However, the widely used Draine and Li dust models overpredict the observed extinction by a factor of ∼2.5, suggesting that M31's true dust mass is lower and that dust grains are significantly more emissive than assumed in Draine et al. The observed factor of ∼2.5 discrepancy is consistent with similar findings in the Milky Way by the Plank Collaboration et al., but we find a more complex dependence on parameters from the Draine and Li dust models. We also show that the the discrepancy with the Draine et al. map is lowest where the current interstellar radiation field has a harder spectrum than average. We discuss possible improvements to the CMD dust mapping technique, and explore further applications in both M31 and other galaxies.« less
Spatially associated clump populations in Rosette from CO and dust maps
NASA Astrophysics Data System (ADS)
Veltchev, Todor V.; Ossenkopf-Okada, Volker; Stanchev, Orlin; Schneider, Nicola; Donkov, Sava; Klessen, Ralf S.
2018-04-01
Spatial association of clumps from different tracers turns out to be a valuable tool to determine the physical properties of molecular clouds. It provides a reliable estimate for the X-factors, serves to trace the density of clumps seen in column densities only, and allows one to measure the velocity dispersion of clumps identified in dust emission. We study the spatial association between clump populations, extracted by use of the GAUSSCLUMPS technique from 12CO (1-0), 13CO (1-0) line maps and Herschel dust-emission maps of the star-forming region Rosette, and analyse their physical properties. All CO clumps that overlap with another CO or dust counterpart are found to be gravitationally bound and located in the massive star-forming filaments of the molecular cloud. They obey a single mass-size relation M_cl∝ R_cl^γ with γ ≃ 3 (implying constant mean density) and display virtually no velocity-size relation. We interpret their population as low-density structures formed through compression by converging flows and still not evolved under the influence of self-gravity. The high-mass parts of their clump mass functions are fitted by a power law dN_cl/d log M_cl∝ M_cl^{Γ } and display a nearly Salpeter slope Γ ˜ -1.3. On the other hand, clumps extracted from the dust-emission map exhibit a shallower mass-size relation with γ = 2.5 and mass functions with very steep slopes Γ ˜ -2.3 even if associated with CO clumps. They trace density peaks of the associated CO clumps at scales of a few tenths of pc where no single density scaling law should be expected.
NASA Astrophysics Data System (ADS)
Cotera, Angela; Simpson, J. P.; Sellgren, K.; Stolovy, S. R.
2013-01-01
Photoevaporated columns of dust and gas - also called elephant trunks, pillars or fingers - are found in the periphery of many H II regions. They have been observed within the Galaxy, the SMC and the LMC. These features are thought to be sites of current star formation, but the question remains whether the columns persist because stars formed in the denser regions prior to interactions with the UV radiation and stellar winds of nearby massive stars, or because of core collapse resulting from these interactions. We have obtained Spitzer IRS spectral maps of three columns within M 16 and three columns within the Carina nebula, to test our understanding of the impact on these transitory features of differing stellar populations and initial conditions. We use the wealth of molecular, atomic and PAH emission lines located within the spectral range of the high resolution IRS modes (9.9-37.2 micron) to determine the excitation state, dust and gas temperatures, and probe the shock characteristics within the columns as a function of location. Using the IRS spectral mapping mode, in conjunction with the CUBISM tool and the CLOUDY H II region model code, we have constructed detailed maps of the accessible emission lines and derived parameters for each column. Mapping the distribution of the physical states of the dust and gas in these columns is enhancing our understanding of the competing processes within these dynamic objects. The data presented here represent the only IRS spectral maps of photoionized pillars.
A quantitative analysis of IRAS maps of molecular clouds
NASA Technical Reports Server (NTRS)
Wiseman, Jennifer J.; Adams, Fred C.
1994-01-01
We present an analysis of IRAS maps of five molecular clouds: Orion, Ophiuchus, Perseus, Taurus, and Lupus. For the classification and description of these astrophysical maps, we use a newly developed technique which considers all maps of a given type to be elements of a pseudometric space. For each physical characteristic of interest, this formal system assigns a distance function (a pseudometric) to the space of all maps: this procedure allows us to measure quantitatively the difference between any two maps and to order the space of all maps. We thus obtain a quantitative classification scheme for molecular clouds. In this present study we use the IRAS continuum maps at 100 and 60 micrometer(s) to produce column density (or optical depth) maps for the five molecular cloud regions given above. For this sample of clouds, we compute the 'output' functions which measure the distribution of density, the distribution of topological components, the self-gravity, and the filamentary nature of the clouds. The results of this work provide a quantitative description of the structure in these molecular cloud regions. We then order the clouds according to the overall environmental 'complexity' of these star-forming regions. Finally, we compare our results with the observed populations of young stellar objects in these clouds and discuss the possible environmental effects on the star-formation process. Our results are consistent with the recently stated conjecture that more massive stars tend to form in more 'complex' environments.
NASA Astrophysics Data System (ADS)
Mendolia, D.; D'Souza, R. J. C.; Evans, G. J.; Brook, J.
2013-01-01
Tropospheric NO2 vertical column densities were retrieved for the first time in Toronto, Canada using three methods of differing spatial scales. Remotely-sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities derived using a pair of chemiluminescence monitors situated 0.01 and 0.5 km above ground level. The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson R ranging from 0.68 to 0.79), but the in situ vertical column densities were 27% to 55% greater than the remotely-sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely-sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely-sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased confidence in the validity of the values provided by each of the methods.
FAST Mapping of Diffuse HI Gas in the Local Universe
NASA Astrophysics Data System (ADS)
Zhu, M.; Pisano, D. J.; Ai, M.; Jiao, Q.
2016-02-01
We propose to use the Five hundred meter Aperture Spherical radio Telescope (FAST) to map the diffuse intergalactic HI gas in the local universe at column densities of NHI=1018 cm-2 and below. The major science goal is to study gas accretion during galaxy evolution, and trace cosmic web features in the local universe. We disuss the technical feasibilty of such a deep survey, and have conducted test observations with the Arecibo 305 m telescope. Our preliminary results shows that, with about a few thousand hours of observing time, FAST will be able to map several hundred square degree regions at 1 σ of NHI=2×1017 cm-2 level out to a distance of 5-10 Mpc, and with a volume 1000 larger than that of the Local Group.
Mapping Your Way to Geographic Awareness: Part II
ERIC Educational Resources Information Center
Daniel Ness, Daniel; Diercks, Mark J.
2005-01-01
In last month's column, the authors examined the different kinds of maps that exist in everyday life. In this month's column, they experience, through simulation, the skills that are required of a cartographer. A cartographer is a person who practices the art of making maps. Cartographers' maps were often unique, visual representations of data.…
HAWC+/SOFIA observations of Rho Oph A: far-infrared polarization spectrum
NASA Astrophysics Data System (ADS)
Santos, Fabio; Dowell, Charles D.; Houde, Martin; Looney, Leslie; Lopez-Rodriguez, Enrique; Novak, Giles; Ward-Thompson, Derek; HAWC+ Science Team
2018-01-01
In this work, we present preliminary results from the HAWC+ far-infrared polarimeter that operates on the SOFIA airborne observatory. The densest portions of the Rho Ophiuchi molecular complex, known as Rho Oph A, have been mapped using HAWC+ bands C (89 microns) and D (155 microns). Rho Oph A is a well known nearby star forming region. At the target's distance of approximately 130 pc, our observations provide excellent spatial resolution (~5 mpc in band C).The magnetic field map suggests a compressed and distorted field morphology around Oph S1, a massive B3 star that is the main heat source of Rho Oph A. We compute the ratio p(D)/p(C), where p(C) and p(D) are the polarization degree maps at bands C and D, respectively. This ratio estimates the slope of the polarization spectrum in the far-infrared. Although the slope is predicted to be positive by dust grain models, previous observations of other molecular clouds have revealed that negative slopes are common. In Rho Oph A, we find that there is a smooth gradient of p(D)/p(C) across the mapped field. The change in p(D)/p(C) is well correlated with the integrated NH3 (1,1) emission. A positive slope dominates the lower density and well illuminated portions of the cloud, whereas a transition to a negative slope is observed at the denser and less evenly illuminated cloud core.We interpret the positive to negative slope transition as being consistent with the radiative torques (RATs) grain alignment theory. For the sight lines of higher column density, polarized emission from the warmer outer cloud layers is added to emission from the colder inner well-shielded layers lying along the same line-of-sight. Given that the outer layers receive more radiation from Oph S1, their grain alignment efficiency is expected to be higher according to RATs. The combination of warmer, well aligned grains with cooler, poorly aligned grains is what causes the negative slope. This effect is not present in the sight lines of lower column density, due to the much lower extinction.
The ratio of N(C18O) and AV in Chamaeleon I and III-B. Using 2MASS and SEST
NASA Astrophysics Data System (ADS)
Kainulainen, J.; Lehtinen, K.; Harju, J.
2006-02-01
We investigate the relationship between the C18O column density and the visual extinction in Chamaeleon I and in a part of the Chamaeleon III molecular cloud. The C18O column densities, N(C18O), are calculated from J=1{-}0 rotational line data observed with the SEST telescope. The visual extinctions, A_V, are derived using {JHK} photometry from the 2MASS survey and the NICER color excess technique. In contrast with the previous results of Hayakawa et al. (2001, PASJ, 53, 1109), we find that the average N(C18O)/AV ratios are similar in Cha I and Cha III, and lie close to values derived for other clouds, i.e. N(C18O) ≈ 2 × 1014 cm-2 ( AV - 2 ). We find, however, clear deviations from this average relationship towards individual clumps. Larger than average N(C18O)/AV ratios can be found in clumps associated with the active star forming region in the northern part of Cha I. On the other hand, some regions in the relatively quiescent southern part of Cha I show smaller than average N(C18O)/AV ratios and also very shallow proportionality between N(C18O) and A_V. The shallow proportionality suggests that C18O is heavily depleted in these regions. As the degree of depletion is proportional to the gas density, these regions probably contain very dense, cold cores, which do not stand out in CO mappings. A comparison with the dust temperature map derived from the ISO data shows that the most prominent of the potentially depleted cores indeed coincides with a dust temperature minimum. It seems therefore feasible to use N(C18O) and AV data together for identifying cold, dense cores in large scale mappings.
NASA Astrophysics Data System (ADS)
Garcia Payne, D. G.; Grutter, M.; Melamed, M. L.
2010-12-01
The differential optical absorption spectroscopy method (DOAS) was used to get column densities of nitrogen dioxide (NO2) from the analysis of zenith sky UV/visible spectra. Since the optical path length provides critical information in interpreting NO2 column densities, in conjunction with NO2 column densities, the oxygen dimer (O4) column density was retrieved to give insight into the optical path length. We report observations of year round NO2 and O4 column densities (from august 2009 to september 2010) from which the mean seasonal levels and the daily evolution, as well as the occurrence of elevated pollution episodes are examined. Surface nitric oxide (NO) and NO2 from the local monitoring network, as well as wind data and the vertical aerosol density from continuous Lidar measurements are used in the analysis to investigate specific events in the context of local emissions from vehicular traffic, photochemical production and transport from industrial emissions. The NO2 column density measurements will enhance the understanding Mexico City urban air pollution. Recent research has begun to unravel the complexity of the air pollution problem in Mexico City and its effects not only locally but on a regional and global scale as well.
Organic Chemistry of Low-Mass Star-Forming Cores. I. 7 mm Spectroscopy of Chamaeleon MMSl
NASA Technical Reports Server (NTRS)
Cordiner, Martn A.; Charnley, Steven B.; Wirtstroem, Eva S.; Smith, Robert G.
2012-01-01
Observations are presented of emission lines from organic molecules at frequencies 32-50 GHz in the vicinity of Chamaeleon MMS1. This chemically rich dense cloud core harbors an extremely young, very low luminosity protostellar object and is a candidate first hydrostatic core. Column densities are derived and emission maps are presented for species including polyynes, cyanopolyynes, sulphuretted carbon chains, and methanol. The polyyne emission peak lies about 5000 AU from the protostar, whereas methanol peaks about 15,000 AU away. Averaged over the telescope beam, the molecular hydrogen number density is calculated to be 10(exp 6) / cubic cm and the gas kinetic temperature is in the range 5-7 K. The abundances of long carbon chains are very large and are indicative of a nonequilibrium carbon chemistry; C6H and HC7N column densities are 5.9(sup +2.9) (sub -1.3) x 10(exp 11) /cubic cm and 3.3 (sup +8.0)(sub -1.5) x 10(exp 12)/sq cm, respectively, which are similar to the values found in the most carbon-chain-rich protostars and prestellar cores known, and are unusually large for star-forming gas. Column density upper limits were obtained for the carbon chain anions C4H(-) and C6H(-), with anion-to-neutral ratios [C4H(-)]/[C4H] < 0.02% and [C6H(-l)]/[C6H] < 10%, consistent with previous observations in interstellar clouds and low-mass protostars. Deuterated HC,3 and c-C3H2 were detected. The [DC3N]/[HC,N] ratio of approximately 4% is consistent with the value typically found in cold interstellar gas.
Robb, Paul D; Craven, Alan J
2008-12-01
An image processing technique is presented for atomic resolution high-angle annular dark-field (HAADF) images that have been acquired using scanning transmission electron microscopy (STEM). This technique is termed column ratio mapping and involves the automated process of measuring atomic column intensity ratios in high-resolution HAADF images. This technique was developed to provide a fuller analysis of HAADF images than the usual method of drawing single intensity line profiles across a few areas of interest. For instance, column ratio mapping reveals the compositional distribution across the whole HAADF image and allows a statistical analysis and an estimation of errors. This has proven to be a very valuable technique as it can provide a more detailed assessment of the sharpness of interfacial structures from HAADF images. The technique of column ratio mapping is described in terms of a [110]-oriented zinc-blende structured AlAs/GaAs superlattice using the 1 angstroms-scale resolution capability of the aberration-corrected SuperSTEM 1 instrument.
IRS Spectral Maps of Photoevaporative Columns in M16, Carina, and the Galactic Center
NASA Astrophysics Data System (ADS)
Cotera, Angela; Healy, Kevin; Hester, Jeff; Sellgren, Kris; Simpson, Janet; Stolovy, Susan
2008-03-01
Photoevaporated columns of dust and gas - also called elephant trunks, pillars or fingers - are found in the periphery of H II regions, and have been observed within the Galaxy, the SMC and the LMC. These features are sites of current star formation, but the question remains whether the columns persist because stars formed in the denser regions prior to interactions with the UV radiation and stellar winds of nearby massive stars, or because of core collapse resulting from these interactions. Mapping the distribution of the physical states of the dust and gas in these columns is a necessary step towards understanding the possible star formation mechanisms within these dynamic objects. We propose to obtain IRS spectral maps of columns within M 16, the Carina nebula, and the Galactic center (GC) to understand the effects on these pillars from different stellar populations and initial conditions, and to better understand star formation in the GC. Within the spectral range of the high resolution IRS modes (9.9-37.2 micron) there are a wealth of molecular, atomic and PAH emission lines that will enable us to determine the excitation state, dust and gas temperatures, and probe the shock characteristics within the columns. Using the IRS spectral mapping mode, in conjunction with the CUBISM tool and the CLOUDY H II region model code, we will be able to construct detailed maps of the accessible emission lines and derived parameters for each column. IRS mapping of elephant trunks has not been done to date, yet provides a wealth of information unobtainable for the foreseeable future once Cycle 5 is completed.
Sh2-138: physical environment around a small cluster of massive stars
NASA Astrophysics Data System (ADS)
Baug, T.; Ojha, D. K.; Dewangan, L. K.; Ninan, J. P.; Bhatt, B. C.; Ghosh, S. K.; Mallick, K. K.
2015-12-01
We present a multiwavelength study of the Sh2-138, a Galactic compact H II region. The data comprise of optical and near-infrared (NIR) photometric and spectroscopic observations from the 2-m Himalayan Chandra Telescope, radio observations from the Giant Metrewave Radio Telescope (GMRT), and archival data covering radio through NIR wavelengths. A total of 10 Class I and 54 Class II young stellar objects (YSOs) are identified in a 4.6 arcmin×4.6 arcmin area of the Sh2-138 region. Five compact ionized clumps, with four lacking of any optical or NIR counterparts, are identified using the 1280 MHz radio map, and correspond to sources with spectral type earlier than B0.5. Free-free emission spectral energy distribution fitting of the central compact H II region yields an electron density of ˜2250 ± 400 cm-3. With the aid of a wide range of spectra, from 0.5-15 μm, the central brightest source - previously hypothesized to be the main ionizing source - is characterized as a Herbig Be type star. At large scale (15 arcmin ×15 arcmin), the Herschel images (70-500 μm) and the nearest neighbour analysis of YSOs suggest the formation of an isolated cluster at the junction of filaments. Furthermore, using a greybody fit to the dust spectrum, the cluster is found to be associated with the highest column density (˜3 × 1022 cm-2) and high temperature (˜35 K) regime, as well as with the radio continuum emission. The mass of the central clump seen in the column density map is estimated to be ˜3770 M⊙.
Kondo, Yukihito; Okunishi, Eiji
2014-10-01
Moiré method in scanning transmission electron microscopy allows observing a magnified two-dimensional atomic column elemental map of a higher pixel resolution with a lower electron dose unlike conventional atomic column mapping. The magnification of the map is determined by the ratio between the pixel size and the lattice spacing. With proper ratios for the x and y directions, we could observe magnified elemental maps, homothetic to the atomic arrangement in the sample of SrTiO3 [0 0 1]. The map showed peaks at all expected oxygen sites in SrTiO3 [0 0 1]. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Herschel observations of the Galactic H II region RCW 79
NASA Astrophysics Data System (ADS)
Liu, Hong-Li; Figueira, Miguel; Zavagno, Annie; Hill, Tracey; Schneider, Nicola; Men'shchikov, Alexander; Russeil, Delphine; Motte, Frédérique; Tigé, Jérémy; Deharveng, Lise; Anderson, Loren D.; Li, Jin-Zeng; Wu, Yuefang; Yuan, Jing-Hua; Huang, Maohai
2017-06-01
Context. Triggered star formation around H II regions could be an important process. The Galactic H II region RCW 79 is a prototypical object for triggered high-mass star formation. Aims: We aim to obtain a census of the young stellar population observed at the edges of the H II region and to determine the properties of the young sources in order to characterize the star formation processes that take place at the edges of this ionized region. Methods: We take advantage of Herschel data from the surveys HOBYS, "Evolution of Interstellar Dust", and Hi-Gal to extract compact sources. We use the algorithm getsources. We complement the Herschel data with archival 2MASS, Spitzer, and WISE data to determine the physical parameters of the sources (e.g., envelope mass, dust temperature, and luminosity) by fitting the spectral energy distribution. Results: We created the dust temperature and column density maps along with the column density probability distribution function (PDF) for the entire RCW 79 region. We obtained a sample of 50 compact sources in this region, 96% of which are situated in the ionization-compressed layer of cold and dense gas that is characterized by the column density PDF with a double-peaked lognormal distribution. The 50 sources have sizes of 0.1-0.4 pc with a typical value of 0.2 pc, temperatures of 11-26 K, envelope masses of 6-760 M⊙, densities of 0.1-44 × 105 cm-3, and luminosities of 19-12 712 L⊙. The sources are classified into 16 class 0, 19 intermediate, and 15 class I objects. Their distribution follows the evolutionary tracks in the diagram of bolometric luminosity versus envelope mass (Lbol-Menv) well. A mass threshold of 140 M⊙, determined from the Lbol-Menv diagram, yields 12 candidate massive dense cores that may form high-mass stars. The core formation efficiency (CFE) for the 8 massive condensations shows an increasing trend of the CFE with density. This suggests that the denser the condensation, the higher the fraction of its mass transformation into dense cores, as previously observed in other high-mass star-forming regions. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Final reduced data and maps used in the paper (FITS format) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A95
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, Philip C., E-mail: pmyers@cfa.harvard.edu
2017-03-20
New models of star-forming filamentary clouds are presented in order to quantify their properties and to predict their evolution. These 2D axisymmetric models describe filaments that have no core, one low-mass core, and one cluster-forming core. They are based on Plummer-like cylinders and spheroids that are bounded by a constant-density surface of finite extent. In contrast to 1D Plummer-like models, they have specific values of length and mass, they approximate observed column density maps, and their distributions of column density ( N -pdfs) are pole-free. Each model can estimate the star-forming potential of a core-filament system by identifying the zonemore » of gas dense enough to form low-mass stars and by counting the number of enclosed thermal Jeans masses. This analysis suggests that the Musca central filament may be near the start of its star-forming life, with enough dense gas to make its first ∼3 protostars, while the Coronet filament is near the midpoint of its star formation, with enough dense gas to add ∼8 protostars to its ∼20 known stars. In contrast, L43 appears to be near the end of its star-forming life, since it lacks enough dense gas to add any new protostars to the two young stellar objectsalready known.« less
NASA Astrophysics Data System (ADS)
Clancy, R. T.; Wolff, M. J.; Malin, M. C.; Cantor, B. A.
2010-12-01
MARCI UV band imaging photometry within (260nm) and outside (320nm) the Hartley ozone band absorption supports daily global mapping of Mars ozone column abundances. Key retrieval issues include accurate UV radiometric calibrations, detailed specifications of surface and atmospheric background reflectance (surface albedo, atmospheric Raleigh and dust scattering/absorption), and simultaneous cloud retrievals. The implementation of accurate radiative transfer (RT) treatments of these processes has been accomplished (Wolff et al., 2010) such that daily global mapping retrievals for Mars ozone columns have been completed for the 2006-2010 period of MARCI global imaging. Ozone retrievals are most accurate for high column abundances associated with mid-to-high latitude regions during fall, winter, and spring seasons. We present a survey of these MARCI ozone column retrievals versus season, latitude, longitude, and year.
Star formation towards the Galactic H II region RCW 120. Herschel observations of compact sources
NASA Astrophysics Data System (ADS)
Figueira, M.; Zavagno, A.; Deharveng, L.; Russeil, D.; Anderson, L. D.; Men'shchikov, A.; Schneider, N.; Hill, T.; Motte, F.; Mège, P.; LeLeu, G.; Roussel, H.; Bernard, J.-P.; Traficante, A.; Paradis, D.; Tigé, J.; André, P.; Bontemps, S.; Abergel, A.
2017-04-01
Context. The expansion of H II regions can trigger the formation of stars. An overdensity of young stellar objects is observed at the edges of H II regions but the mechanisms that give rise to this phenomenon are not clearly identified. Moreover, it is difficult to establish a causal link between H II -region expansion and the star formation observed at the edges of these regions. A clear age gradient observed in the spatial distribution of young sources in the surrounding might be a strong argument in favor of triggering. Aims: We aim to characterize the star formation observed at the edges of H II regions by studying the properties of young stars that form there. We aim to detect young sources, derive their properties and their evolution stage in order to discuss the possible causal link between the first-generation massive stars that form the H II region and the young sources observed at their edges. Methods: We have observed the Galactic H II region RCW 120 with Herschel PACS and SPIRE photometers at 70, 100, 160, 250, 350 and 500 μm. We produced temperature and H2 column density maps and use the getsources algorithm to detect compact sources and measure their fluxes at Herschel wavelengths. We have complemented these fluxes with existing infrared data. Fitting their spectral energy distributions with a modified blackbody model, we derived their envelope dust temperature and envelope mass. We computed their bolometric luminosities and discuss their evolutionary stages. Results: The overall temperatures of the region (without background subtraction) range from 15 K to 24 K. The warmest regions are observed towards the ionized gas. The coldest regions are observed outside the ionized gas and follow the emission of the cold material previously detected at 870 μm and 1.3 mm. The H2 column density map reveals the distribution of the cold medium to be organized in filaments and highly structured. Column densities range from 7 × 1021 cm-2 up to 9 × 1023 cm-2 without background subtraction. The cold regions observed outside the ionized gas are the densest and host star formation when the column density exceeds 2 × 1022 cm-2. The most reliable 35 compact sources are discussed. Using existing CO data and morphological arguments we show that these sources are likely to be associated with the RCW 120 region. These sources' volume densities range from 2 × 105 cm-3 to 108 cm-3. Five sources have envelope masses larger than 50 M⊙ and are all observed in high column density regions (>7 × 1022 cm-2). We find that the evolutionary stage of the sources primarily depends on the density of their hosting condensation and is not correlated with the distance to the ionizing star. Conclusions: The Herschel data, with their unique sampling of the far infrared domain, have allowed us to characterize the properties of compact sources observed towards RCW 120 for the first time. We have also been able to determine the envelope temperature, envelope mass and evolutionary stage of these sources. Using these properties we have shown that the density of the condensations that host star formation is a key parameter of the star-formation history, irrespective of their projected distance to the ionizing stars. Table A.1 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A93Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
VELOCITY-RESOLVED [C ii] EMISSION AND [C ii]/FIR MAPPING ALONG ORION WITH HERSCHEL *,**
Goicoechea, Javier R.; Teyssier, D.; Etxaluze, M.; Goldsmith, P.F.; Ossenkopf, V.; Gerin, M.; Bergin, E.A.; Black, J.H.; Cernicharo, J.; Cuadrado, S.; Encrenaz, P.; Falgarone, E.; Fuente, A.; Hacar, A.; Lis, D.C.; Marcelino, N.; Melnick, G.J.; Müller, H.S.P.; Persson, C.; Pety, J.; Röllig, M.; Schilke, P.; Simon, R.; Snell, R.L.; Stutzki, J.
2015-01-01
We present the first ~7.5′×11.5′ velocity-resolved (~0.2 km s−1) map of the [C ii] 158 μm line toward the Orion molecular cloud 1 (OMC 1) taken with the Herschel/HIFI instrument. In combination with far-infrared (FIR) photometric images and velocity-resolved maps of the H41α hydrogen recombination and CO J=2-1 lines, this data set provides an unprecedented view of the intricate small-scale kinematics of the ionized/PDR/molecular gas interfaces and of the radiative feedback from massive stars. The main contribution to the [C ii] luminosity (~85 %) is from the extended, FUV-illuminated face of the cloud (G0>500, nH>5×103 cm−3) and from dense PDRs (G≳104, nH≳105 cm−3) at the interface between OMC 1 and the H ii region surrounding the Trapezium cluster. Around ~15 % of the [C ii] emission arises from a different gas component without CO counterpart. The [C ii] excitation, PDR gas turbulence, line opacity (from [13C ii]) and role of the geometry of the illuminating stars with respect to the cloud are investigated. We construct maps of the L[C ii]/LFIR and LFIR/MGas ratios and show that L[C ii]/LFIR decreases from the extended cloud component (~10−2–10−3) to the more opaque star-forming cores (~10−3–10−4). The lowest values are reminiscent of the “[C ii] deficit” seen in local ultra-luminous IR galaxies hosting vigorous star formation. Spatial correlation analysis shows that the decreasing L[C ii]/LFIR ratio correlates better with the column density of dust through the molecular cloud than with LFIR/MGas. We conclude that the [C ii] emitting column relative to the total dust column along each line of sight is responsible for the observed L[C ii]/LFIR variations through the cloud. PMID:26568638
Jeong, Jong Seok; Mkhoyan, K Andre
2016-06-01
Acquiring an atomic-resolution compositional map of crystalline specimens has become routine practice, thus opening possibilities for extracting subatomic information from such maps. A key challenge for achieving subatomic precision is the improvement of signal-to-noise ratio (SNR) of compositional maps. Here, we report a simple and reliable solution for achieving high-SNR energy-dispersive X-ray (EDX) spectroscopy spectrum images for individual atomic columns. The method is based on standard cross-correlation aided by averaging of single-column EDX maps with modifications in the reference image. It produces EDX maps with minimal specimen drift, beam drift, and scan distortions. Step-by-step procedures to determine a self-consistent reference map with a discussion on the reliability, stability, and limitations of the method are presented here.
NASA Astrophysics Data System (ADS)
Mendolia, D.; D'Souza, R. J. C.; Evans, G. J.; Brook, J.
2013-10-01
Tropospheric NO2 vertical column densities have been retrieved and compared for the first time in Toronto, Canada, using three methods of differing spatial scales. Remotely sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities estimated using a pair of chemiluminescence monitors situated 0.01 and 0.5 km a.g.l. (above ground level). The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by an average of 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. The monthly averaged ratio of the NO2 concentration at 0.5 to 0.01 km varied seasonally, and exhibited a negative linear dependence on the monthly average temperature, with Pearson's R = 0.83. During the coldest month, February, this ratio was 0.52 ± 0.04, while during the warmest month, July, this ratio was 0.34 ± 0.04, illustrating that NO2 is not well mixed within 0.5 km above ground level. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson's R value ranging from 0.72 to 0.81), but the in situ vertical column densities were 52 to 58% greater than the remotely sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased confidence in the validity of the values provided by each measurement technique.
A Case For Free-free Absorption In The GPS Sources 1321+410 And 0026+346
NASA Astrophysics Data System (ADS)
Marr, Jonathan M.; Perry, T. M.; Read, J. W.; Taylor, G. B.
2010-05-01
We report on the results of VLBI observations of two gigahertz-peaked spectrum sources, 1321+410 and 0026+346, at five frequencies bracketing the spectral peaks. By comparing the three lower-frequency flux-density maps with extrapolations of the high frequency spectra we obtained maps of the optical depths as a function of frequency. The morphologies of the optical depth maps of 1321+410, at all frequencies, are strikingly uniform, consistent with there being a foreground screen of absorbing gas. We also find that the flux densities across the map fit free-free absorption spectra within the uncertainties. The required free-free optical depths are satisfied with reasonable gas parameters (ne 4000 cm-3, T 104 K, and L 1 pc). We conclude that the case for free-free absorption in 1321+410 is strong. In 0026+346, there is a compact feature with an inverted spectrum at the highest frequencies which we take to be the core. The optical depth maps, even excluding the possible core component, exhibit a noticeable amount of structure, but the morphology does not correlate with that in the flux-density maps, as would be expected if the absorption was due to synchrotron self-absorption. Additionally, the spectra (except at the core component) are consistent with free-free absorption, to within the uncertainties, and require column depths about one half of that in 1321+410. We conclude that free-free absorption by a relatively thin amount of gas with structure apparent on the scale of our maps in 0026+346 is likely, although the case is weaker than in 1321+410. This research was supported by an award from the Research Corporation, a NASA NY Space Grant, and by a Booth-Ferris Research Fellowship. The VLBA is operated by the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
Clustering the Orion B giant molecular cloud based on its molecular emission.
Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal
2018-02-01
Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional Probability Density Function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. A clustering analysis based only on the J = 1 - 0 lines of three isotopologues of CO proves suffcient to reveal distinct density/column density regimes ( n H ~ 100 cm -3 , ~ 500 cm -3 , and > 1000 cm -3 ), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1 - 0 line of HCO + and the N = 1 - 0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO + and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO + intensity ratio in UV-illuminated regions. Finer distinctions in density classes ( n H ~ 7 × 10 3 cm -3 ~ 4 × 10 4 cm -3 ) for the densest regions are also identified, likely related to the higher critical density of the CN and HCO + (1 - 0) lines. These distinctions are only possible because the high-density regions are spatially resolved. Molecules are versatile tracers of GMCs because their line intensities bear the signature of the physics and chemistry at play in the gas. The association of simultaneous multi-line, wide-field mapping and powerful machine learning methods such as the Meanshift clustering algorithm reveals how to decode the complex information available in these molecular tracers.
NASA Astrophysics Data System (ADS)
Macedonio, Giovanni; Costa, Antonio; Scollo, Simona; Neri, Augusto
2015-04-01
Uncertainty in the tephra fallout hazard assessment may depend on different meteorological datasets and eruptive source parameters used in the modelling. We present a statistical study to analyze this uncertainty in the case of a sub-Plinian eruption of Vesuvius of VEI = 4, column height of 18 km and total erupted mass of 5 × 1011 kg. The hazard assessment for tephra fallout is performed using the advection-diffusion model Hazmap. Firstly, we analyze statistically different meteorological datasets: i) from the daily atmospheric soundings of the stations located in Brindisi (Italy) between 1962 and 1976 and between 1996 and 2012, and in Pratica di Mare (Rome, Italy) between 1996 and 2012; ii) from numerical weather prediction models of the National Oceanic and Atmospheric Administration and of the European Centre for Medium-Range Weather Forecasts. Furthermore, we modify the total mass, the total grain-size distribution, the eruption column height, and the diffusion coefficient. Then, we quantify the impact that different datasets and model input parameters have on the probability maps. Results shows that the parameter that mostly affects the tephra fallout probability maps, keeping constant the total mass, is the particle terminal settling velocity, which is a function of the total grain-size distribution, particle density and shape. Differently, the evaluation of the hazard assessment weakly depends on the use of different meteorological datasets, column height and diffusion coefficient.
Interstellar C2, CH, and CN in translucent molecular clouds
NASA Technical Reports Server (NTRS)
Black, John H.; Van Dishoeck, Ewine F.
1989-01-01
Optical absorption-line techniques have been applied to the study of a number of translucent molecular clouds in which the total column densities are large enough that substantial molecular abundances can be maintained. Results are presented for a survey of absorption lines of interstellar C2, CH, and CN. Detections of CN through the A 2Pi-X 2Sigma(+) (1,O) and (2,O) bands of the red system are reported and compared with observations of the violet system for one line of sight. The population distributions in C2 provide diagnostic information on temperature and density. The measured column densities of the three species can be used to test details of the theory of molecule formation in clouds where photoprocesses still play a significant role. The C2 and CH column densities are strongly correlated with each other and probably also with the H2 column density. In contrast, the CN column densities are found to vary greatly from cloud to cloud. The observations are discussed with reference to detailed theoretical models.
NASA Astrophysics Data System (ADS)
Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris
2018-03-01
We measure the effect of high column density absorbing systems of neutral hydrogen (H I) on the one-dimensional (1D) Lyman α forest flux power spectrum using cosmological hydrodynamical simulations from the Illustris project. High column density absorbers (which we define to be those with H I column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}) cause broadened absorption lines with characteristic damping wings. These damping wings bias the 1D Lyman α forest flux power spectrum by causing absorption in quasar spectra away from the location of the absorber itself. We investigate the effect of high column density absorbers on the Lyman α forest using hydrodynamical simulations for the first time. We provide templates as a function of column density and redshift, allowing the flexibility to accurately model residual contamination, i.e. if an analysis selectively clips out the largest damping wings. This flexibility will improve cosmological parameter estimation, for example, allowing more accurate measurement of the shape of the power spectrum, with implications for cosmological models containing massive neutrinos or a running of the spectral index. We provide fitting functions to reproduce these results so that they can be incorporated straightforwardly into a data analysis pipeline.
Absorber Model: the Halo-like model for the Lyman-α forest
NASA Astrophysics Data System (ADS)
Iršič, Vid; McQuinn, Matthew
2018-04-01
We present a semi-analytic model for the Lyman-α forest that is inspired by the Halo Model. This model is built on the absorption line decomposition of the forest. Flux correlations are decomposed into those within each absorption line (the 1-absorber term) and those between separate lines (the 2-absorber term), treating the lines as biased tracers of the underlying matter fluctuations. While the nonlinear exponential mapping between optical depth and flux requires an infinite series of moments to calculate any statistic, we show that this series can be re-summed (truncating at the desired order in the linear matter overdensity). We focus on the z=2–3 line-of-sight power spectrum. Our model finds that 1-absorber term dominates the power on all scales, with most of its contribution coming from H I columns of 1014–1015 cm‑2, while the smaller 2-absorber contribution comes from lower columns that trace overdensities of a few. The prominence of the 1-absorber correlations indicates that the line-of-sight power spectrum is shaped principally by the lines' number densities and their absorption profiles, with correlations between lines contributing to a lesser extent. We present intuitive formulae for the effective optical depth as well as the large-scale limits of 1-absorber and 2-absorber terms, which simplify to integrals over the H I column density distribution with different equivalent-width weightings. With minimalist models for the bias of absorption systems and their peculiar velocity broadening, our model predicts values for the density bias and velocity gradient bias that are consistent with those found in simulations.
NASA Astrophysics Data System (ADS)
Esposti Ongaro, Tomaso; Neri, Augusto; Komorowski, Jean-Christophe
2013-04-01
We present three-dimensional numerical simulations of a sub-Plinian eruptive scenario at La Soufrière de Guadeloupe, aimed at assessing the capability of pyroclastic density currents to reach the inhabited regions on the volcano slopes, in case of the future resumption of the explosive activity. The selected eruptive scenario is similar to that hypothesized for the 1530 a.D. eruption, but several eruptive conditions have been analyzed to account for different behaviours of the eruptive column and percentages of collapse. Numerical results describe, in 3D and in time, the formation, instability and partial collapse of the eruptive column, and the simultaneous formation of a convective plume and several branched pyroclastic density currents. The proximal volcano morphology, characterized by the presence of ancient caldera rims and the remnants of the old edifice, controls the areal distribution of the collapsed material and the paths of channelized flows along the incised topography. The analysis of the 3D runs suggests that partial collapse scenarios produce steeply stratified pyroclastic density currents, which are strongly controlled by the topography and whose propagation is likely driven by the dynamics of the dense, basal layer. Although vertical grid size still does not allow the resolution of the dynamics of such concentrated flows, preliminary georeferenced maps of pyroclastic density currents' hazardous actions (temperature and dynamic pressure) provide interesting and useful information which can serve as a basis for elaborating a quantitative framework for the assessment of their impact on vulnerable infrastructures, networks, and population.
Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges
2012-08-10
The pressure drop and temperature drop on columns packed with 3- and 5-micron particles were measured using neat CO(2) at a flow rate of 5 mL/min, at temperatures from 20°C to 100°C, and outlet pressures from 80 to 300 bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath either bare or covered with foam insulation. The results show that the pressure drop depends on the outlet pressure, the operating temperature, and the thermal environment. A temperature drop was observed for all conditions studied. The temperature drop was relatively small (less than 3°C) for combinations of low temperature and high pressure. Larger temperature drops and density drops occurred at higher temperatures and low to moderate pressures. Covering the column with thermal insulation resulted in larger temperature drops and corresponding smaller density drops. At 20°C the temperature drop was never more than a few degrees. The largest temperature drops occurred for both columns when insulated at 80°C and 80 bar, reaching a maximum value of 21°C for the 5-micron column, and 26°C for the 3-micron column. For an adiabatic column, the temperature drop depends on the pressure drop, the thermal expansion coefficient, and the density and the heat capacity of the mobile phase fluid, and can be described by a simple mathematical relationship. For a fixed operating temperature and outlet pressure, the temperature drop increases monotonically with the pressure drop. Copyright © 2012 Elsevier B.V. All rights reserved.
Density Gradient Columns for Chemical Displays.
ERIC Educational Resources Information Center
Guenther, William B.
1986-01-01
Procedures for preparing density gradient columns for chemical displays are presented. They include displays illustrating acid-base reactions, metal ion equilibria, and liquid density. The lifetime of these metastable displays is surprising, some lasting for months in display cabinets. (JN)
NASA Astrophysics Data System (ADS)
Kluesner, Jared W.; Silver, Eli A.; Bangs, Nathan L.; McIntosh, Kirk D.; Gibson, James; Orange, Daniel; Ranero, Cesar R.; von Huene, Roland
2013-03-01
We used high-resolution mapping to document 161 sites of potential fluid seepage on the shelf and slope regions where no geophysical seep indicators had been reported. Identified potential seabed seepage sites show both high-backscatter anomalies and bathymetric expressions, such as pockmarks, mounds, and ridges. Almost all identified seabed features are associated with bright spots and flat spots beneath, as mapped within the 3-D seismic grid. We obtained EM122 multi-beam data using closely spaced receiver beams and 4-5 times overlapping multi-beam swaths, which greatly improved the sounding density and geologic resolvability of the data. At least one location shows an acoustic plume in the water column on a 3.5 kHz profile, and this plume is located along a fault trace and above surface and subsurface seepage indicators. Fluid indicators are largely associated with folds and faults within the sediment section, and many of the faults continue into and offset the reflective basement. A dense pattern of normal faults is seen on the outer shelf in the multi-beam bathymetry, backscatter, and 3-D seismic data, and the majority of fluid seepage indicators lie along mapped fault traces. Furthermore, linear mounds, ridges, and pockmark chains are found on the upper, middle, and lower slope regions. The arcuate shape of the shelf edge, projection of the Quepos Ridge, and high density of potential seep sites suggest that this area may be a zone of former seamount/ridge subduction. These results demonstrate a much greater potential seep density and distribution than previously reported across the Costa Rican margin.
Isoelectric focusing of red blood cells in a density gradient stabilized column
NASA Technical Reports Server (NTRS)
Smolka, A. J. K.; Miller, T. Y.
1980-01-01
The effects of Ficoll and cell application pH on red blood cell electrophoretic mobility and focusing pH were investigated by focusing cells in a density gradient stabilized column. Sample loading, cell dispersion, column conductivity, resolution of separation, and the effect of Ampholines were examined.
Visualization of NO2 emission sources using temporal and spatial pattern analysis in Asia
NASA Astrophysics Data System (ADS)
Schütt, A. M. N.; Kuhlmann, G.; Zhu, Y.; Lipkowitsch, I.; Wenig, M.
2016-12-01
Nitrogen dioxide (NO2) is an indicator for population density and level of development, but the contributions of the different emission sources to the overall concentrations remains mostly unknown. In order to allocate fractions of OMI NO2 to emission types, we investigate several temporal cycles and regional patterns.Our analysis is based on daily maps of tropospheric NO2 vertical column densities (VCDs) from the Ozone Monitoring Instrument (OMI). The data set is mapped to a high resolution grid by a histopolation algorithm. This algorithm is based on a continuous parabolic spline, producing more realistic smooth distributions while reproducing the measured OMI values when integrating over ground pixel areas.In the resulting sequence of zoom in maps, we analyze weekly and annual cycles for cities, countryside and highways in China, Japan and Korea Republic and look for patterns and trends and compare the derived results to emission sources in Middle Europe and North America. Due to increased heating in winter compared to summer and more traffic during the week than on Sundays, we dissociate traffic, heating and power plants and visualized maps with different sources. We will also look into the influence of emission control measures during big events like the Olympic Games 2008 and the World Expo 2010 as a possibility to confirm our classification of NO2 emission sources.
Near-UV OH Prompt Emission in the Innermost Coma of 103P/Hartley 2
NASA Astrophysics Data System (ADS)
La Forgia, Fiorangela; Bodewits, Dennis; A'Hearn, Michael F.; Protopapa, Silvia; Kelley, Michael S. P.; Sunshine, Jessica; Feaga, Lori; Farnham, Tony
2017-11-01
The Deep Impact spacecraft flyby of comet 103P/Hartley 2 occurred on 2010 November 4, 1 week after perihelion with a closest approach (CA) distance of about 700 km. We used narrowband images obtained by the Medium Resolution Imager on board the spacecraft to study the gas and dust in the innermost coma. We derived an overall dust reddening of 15%/100 nm between 345 and 749 nm and identified a blue enhancement in the dust coma in the sunward direction within 5 km from the nucleus, which we interpret as a localized enrichment in water ice. OH column density maps show an anti-sunward enhancement throughout the encounter, except for the highest-resolution images, acquired at CA, where a radial jet becomes visible in the innermost coma, extending up to 12 km from the nucleus. The OH distribution in the inner coma is very different from that expected for a fragment species. Instead, it correlates well with the water vapor map derived by the HRI-IR instrument on board Deep Impact. Radial profiles of the OH column density and derived water production rates show an excess of OH emission during CA that cannot be explained with pure fluorescence. We attribute this excess to a prompt emission process where photodissociation of H2O directly produces excited OH*(A 2Σ+) radicals. Our observations provide the first direct imaging of near-UV prompt emission of OH. We therefore suggest the use of a dedicated filter centered at 318.8 nm to directly trace the water in the coma of comets.
VizieR Online Data Catalog: Star-forming potential in the Perseus complex (Mercimek+, 2017)
NASA Astrophysics Data System (ADS)
Mercimek, S.; Myers, P. C.; Lee, K. I.; Sadavoy, S. I.
2018-05-01
We used published catalogs of cores and YSOs at different wavelengths ranging from sub-millimeter (850 μm) to infrared (1.25 μm). We focus on seven clumps in Perseus, which Sadavoy et al. (2014ApJ...787L..18S) showed in their Figure 1. They defined these clumps and their boundaries using a fitted Herschel-derived column density map. The column density threshold of AV~7 mag is proposed as a star formation threshold by Andre et al. (2010A&A...518L.102A), Lada et al. (2010ApJ...724..687L), and Evans et al. (2014ApJ...782..114E) and is equal to N(H2)~5x1021/cm2 (see also, Kirk et al. 2006, J/ApJ/646/1009; Andre et al. 2010A&A...518L.102A). We considered a core or YSO to be associated with a clump if it is located within the AV=7 mag contour of that clump from Sadavoy et al. (2014ApJ...787L..18S). We define a "source" to be a starless core or a YSO. (7 data files).
NASA Astrophysics Data System (ADS)
Tang, Yuping; Wang, Daniel; Wilson, Grant; Gutermuth, Robert; Heyer, Mark
2018-01-01
We present the AzTEC/LMT survey of dust continuum at 1.1mm on the central ˜ 200pc (CMZ) of our Galaxy. A joint SED analysis of all existing dust continuum surveys on the CMZ is performed, from 160µm to 1.1mm. Our analysis follows a MCMC sampling strategy incorporating the knowledge of PSFs in different maps, which provides unprecedented spacial resolution on distributions of dust temperature, column density and emissivity index. The dense clumps in the CMZ typically show low dust temperature ( 20K), with no significant sign of buried star formation, and a weak evolution of higher emissivity index toward dense peak. A new model is proposed, allowing for varying dust temperature inside a cloud and self-shielding of dust emission, which leads to similar conclusions on dust temperature and grain properties. We further apply a hierarchical Bayesian analysis to infer the column density probability distribution function (N-PDF), while simultaneously removing the Galactic foreground and background emission. The N-PDF shows a steep power-law profile with α > 3, indicating that formation of dense structures are suppressed.
The Effect of AGN Heating on the Low-redshift Lyα Forest
NASA Astrophysics Data System (ADS)
Gurvich, Alex; Burkhart, Blakesley; Bird, Simeon
2017-02-01
We investigate the effects of AGN heating and the ultraviolet background on the low-redshift Lyα forest column density distribution (CDD) using the Illustris simulation. We show that Illustris reproduces observations at z = 0.1 in the column density range {10}12.5{--}{10}13.5 cm-2, relevant for the “photon underproduction crisis.” We attribute this to the inclusion of AGN feedback, which changes the gas distribution so as to mimic the effect of extra photons, as well as the use of the Faucher-Giguère ultraviolet background, which is more ionizing at z = 0.1 than the Haardt & Madau background previously considered. We show that the difference between simulations run with smoothed particle hydrodynamics and simulations using a moving mesh is small in this column density range but can be more significant at larger column densities. We further consider the effect of supernova feedback, Voigt profile fitting, and finite resolution, all of which we show to have little influence on the CDD. Finally, we identify a discrepancy between our simulations and observations at column densities {10}14{--}{10}16 cm-2, where Illustris produces too few absorbers, which suggests the AGN feedback model should be further refined. Since the “photon underproduction crisis” primarily affects lower column density systems, we conclude that AGN feedback and standard ionizing background models can resolve the crisis.
VizieR Online Data Catalog: HI4PI spectra and column density maps (HI4PI team+, 2016)
NASA Astrophysics Data System (ADS)
Hi4PI Collaboration; Ben Bekhti, N.; Floeer, L.; Keller, R.; Kerp, J.; Lenz, D.; Winkel, B.; Bailin, J.; Calabretta, M. R.; Dedes, L.; Ford, H. A.; Gibson, B. K.; Haud, U.; Janowiecki, S.; Kalberla, P. M. W.; Lockman, F. J.; McClure-Griffiths, N. M.; Murphy, T.; Nakanishi, H.; Pisano, D. J.; Staveley-Smith, L.
2016-09-01
The HI4PI data release comprises 21-cm neutral atomic hydrogen data of the Milky Way (-600km/s
From innervation density to tactile acuity: 1. Spatial representation.
Brown, Paul B; Koerber, H Richard; Millecchia, Ronald
2004-06-11
We tested the hypothesis that the population receptive field representation (a superposition of the excitatory receptive field areas of cells responding to a tactile stimulus) provides spatial information sufficient to mediate one measure of static tactile acuity. In psychophysical tests, two-point discrimination thresholds on the hindlimbs of adult cats varied as a function of stimulus location and orientation, as they do in humans. A statistical model of the excitatory low threshold mechanoreceptive fields of spinocervical, postsynaptic dorsal column and spinothalamic tract neurons was used to simulate the population receptive field representations in this neural population of the one- and two-point stimuli used in the psychophysical experiments. The simulated and observed thresholds were highly correlated. Simulated and observed thresholds' relations to physiological and anatomical variables such as stimulus location and orientation, receptive field size and shape, map scale, and innervation density were strikingly similar. Simulated and observed threshold variations with receptive field size and map scale obeyed simple relationships predicted by the signal detection model, and were statistically indistinguishable from each other. The population receptive field representation therefore contains information sufficient for this discrimination.
Observations of circumstellar carbon monoxide and evidence for multiple ejections in red giants
NASA Technical Reports Server (NTRS)
Bernat, A. P.
1981-01-01
Observations of the fundamental 4.6 micron band of CO in nine red giants are presented. A common feature is multiple absorption lines which are identified as products of separate components or shells. Column densities are derived; the relative values should be free of the uncertainties inherent in determining the absolute scale. These column densities are well fitted by single excitation temperatures for each absorption component; these excitation temperatures are identified with the local kinetic temperatures. There is no correlation of CO column density with either gas or dust column density nor of the expansion velocity of the component with its distance from the star. The evidence is reviewed, and it is concluded that mass loss from red giants is most likely episodic in nature.
NASA Astrophysics Data System (ADS)
Kobayashi, N.; Inoue, G.; Kawasaki, M.; Yoshioka, H.; Minomura, M.; Murata, I.; Nagahama, T.; Matsumi, Y.; Tanaka, T.; Morino, I.; Ibuki, T.
2010-08-01
Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities were developed in two independent systems: one utilizing a grating-based desktop optical spectrum analyzer (OSA) with a resolution enough to resolve rotational lines of CO2 and CH4 in the regions of 1565-1585 and 1674-1682 nm, respectively; the other is an application of an optical fiber Fabry-Perot interferometer (FFPI) to obtain the CO2 column density. Direct sunlight was collimated via a small telescope installed on a portable sun tracker and then transmitted through an optical fiber into the OSA or the FFPI for optical analysis. The near infrared spectra of the OSA were retrieved by a least squares spectral fitting algorithm. The CO2 and CH4 column densities deduced were in excellent agreement with those measured by a Fourier transform spectrometer with high resolution. The rovibronic lines in the wavelength region of 1570-1575 nm were analyzed by the FFPI. The I0 and I values in the Beer-Lambert law equation to obtain CO2 column density were deduced by modulating temperature of the FFPI, which offered column CO2 with the statistical error less than 0.2% for six hours measurement.
Physical mapping of complex genomes
Evans, G.A.
1993-06-15
A method for the simultaneous identification of overlapping cosmid clones among multiple cosmid clones and the use of the method for mapping complex genomes are provided. A library of cosmid clones that contains the DNA to be mapped is constructed and arranged in a manner such that individual clones can be identified and replicas of the arranged clones prepared. In preferred embodiments, the clones are arranged in a two dimensional matrix. In such embodiments, the cosmid clones in a row are pooled, mixed probes complementary to the ends of the DNA inserts in the pooled clones are synthesized, hybridized to a first replica of the library. Hybridizing clones, which include the pooled row, are identified. A second portion of clones is prepared by pooling cosmid clones that correspond to a column in the matrix. The second pool thereby includes one clone from the first portion pooled clones. This common clone is located on the replica at the intersection of the column and row. Mixed probes complementary to the ends of the DNA inserts in the second pooled portion of clones are prepared and hybridized to a second replica of the library. The hybridization pattern on the first and second replicas of the library are compared and cross-hybridizing clones, other than the clones in the pooled column and row, that hybridize to identical clones in the first and second replicas are identified. These clones necessarily include DNA inserts that overlap with the DNA insert in the common clone located at the intersection of the pooled row and pooled column. The DNA in the entire library may be mapped by pooling the clones in each of the rows and columns of the matrix, preparing mixed end-specific probes and hybridizing the probes from each row or column to a replica of the library. Since all clones in the library are located at the intersection of a column and a row, the overlapping clones for all clones in the library may be identified and a physical map constructed.
High-excitation lines of molecular hydrogen: A discriminant between shock models
NASA Technical Reports Server (NTRS)
Burton, M.; Brand, P.; Moorhouse, A.; Geballe, T.
1989-01-01
The results of column densities of molecular hydrogen, calculated from nineteen infrared line intensities, are discussed. They were measured at peak 1 of the outflow of the Orion molecular cloud OMC-1. The 1-0 O(7) and 0-0 S(13) lines of H2, at 3.8 microns, are mapped over the source. Their intensity ratio is found to be independent of position in the outflow. These observations are well fitted by a simple cooling-flow model of the line emitting region, but seem to be at variance with predictions of C-shocks current in the literature.
Acoustic mapping of shallow water gas releases using shipborne multibeam systems
NASA Astrophysics Data System (ADS)
Urban, Peter; Köser, Kevin; Weiß, Tim; Greinert, Jens
2015-04-01
Water column imaging (WCI) shipborne multibeam systems are effective tools for investigating marine free gas (bubble) release. Like single- and splitbeam systems they are very sensitive towards gas bubbles in the water column, and have the advantage of the wide swath opening angle, 120° or more allowing a better mapping and possible 3D investigations of targets in the water column. On the downside, WCI data are degraded by specific noise from side-lobe effects and are usually not calibrated for target backscattering strength analysis. Most approaches so far concentrated on manual investigations of bubbles in the water column data. Such investigations allow the detection of bubble streams (flares) and make it possible to get an impression about the strength of detected flares/the gas release. Because of the subjective character of these investigations it is difficult to understand how well an area has been investigated by a flare mapping survey and subjective impressions about flare strength can easily be fooled by the many acoustic effects multibeam systems create. Here we present a semi-automated approach that uses the behavior of bubble streams in varying water currents to detect and map their exact source positions. The focus of the method is application of objective rules for flare detection, which makes it possible to extract information about the quality of the seepage mapping survey, perform automated noise reduction and create acoustic maps with quality discriminators indicating how well an area has been mapped.
Nokleberg, Warren J.; Badarch, Gombosuren; Berzin, Nikolai A.; Diggles, Michael F.; Hwang, Duk-Hwan; Khanchuk, Alexander I.; Miller, Robert J.; Naumova, Vera V.; Obolensky, Alexander A.; Ogasawara, Masatsugu; Parfenov, Leonid M.; Prokopiev, Andrei V.; Rodionov, Sergey M.; Yan, Hongquan
2004-01-01
This is the online version of a CD-ROM publication. It contains all of the data that are on the disc but extra files have been removed: index files, software installers, and Windows autolaunch files. This publication contains a a series of files for Northeast Asia geodynamics, mineral deposit location, and metallogenic belt maps descriptions of map units and metallogenic belts, and stratigraphic columns. This region includes Eastern Siberia, Russian Far East, Mongolia, Northeast China, South Korea, and Japan. The files include: (1) a geodynamics map at a scale of 1:5,000,000; (2) page-size stratigraphic columns for major terranes; (3) a generalized geodynamics map at a scale of 1:15,000,000; (4) a mineral deposit location map at a scale of 1:7,500,000; (5) metallogenic belt maps at a scale of 1:15,000,000; (6) detailed descriptions of geologic units with references; (7) detailed descriptions of metallogenic belts with references; and (8) summary mineral deposit and metallogenic belt tables. The purpose of this publication is to provide high-quality, digital graphic files for maps and figures, and Word files for explanations, descriptions, and references to customers and users.
Saturn Ring Rain: New Observations and Estimates of Water Influx
NASA Astrophysics Data System (ADS)
Moore, L.; O'Donoghue, J.; Mueller-Wodarg, I.; Galand, M.; Mendillo, M.
2014-04-01
We estimate the maximum rates of water influx from Saturn's rings based on ionospheric model reproductions of derived H3+ column densities. On 17 April 2011 over two hours of near-infrared spectral data were obtained of Saturn using the Near InfraRed Spectrograph (NIRSPEC) instrument on the 10-m Keck II telescope. Two bright H3+ rotationalvibrational emission lines were visible nearly from pole to pole, allowing low-latitude ionospheric emissions to be studied for the first time, and revealing significant latitudinal structure, with local extrema in one hemisphere being mirrored at magnetically conjugate latitudes in the opposite hemisphere. In addition, those minima and maxima mapped to latitudes of increased or decreased density, respectively, in Saturn's rings, implying a direct ringatmosphere connection in which charged water group particles from the rings are guided by magnetic field lines as they "rain" down upon the atmosphere. Water products act to quench the local ionosphere, and therefore modify the H3+ densities and their observed emissions. Using the Saturn Thermosphere Ionosphere Model (STIM), a 3-D model of Saturn's upper atmosphere, we derive the maximum rates of water influx required from the rings in order to reproduce the H3+ column densities observed on 17 April 2011. We estimate the globally averaged maximum ringderived water influx to be (1.6-12)x105 cm-2 sec-1, which represents a maximum total global influx of water from Saturn's rings to its atmosphere of (1.0-6.8)x1026 sec-1. We will also present the initial findings of Keck ring rain observing campaigns from April 2013 and May 2014.
Hydrodynamic flow in capillary-channel fiber columns for liquid chromatography.
Stanelle, Rayman D; Sander, Lane C; Marcus, R Kenneth
2005-12-23
The flow characteristics of capillary-channel polymer (C-CP) fiber liquid chromatographic (LC) columns have been investigated. The C-CP fibers are manufactured with eight longitudinal grooves (capillary channels) extending the length of the fibers. Three C-CP fiber examples were studied, with fiber dimensions ranging from approximately 35 microm to 65 microm, and capillary-channel dimensions ranging from approximately 6 microm to 35 microm. The influence of fiber packing density and column inner diameter on peak asymmetry, peak width, and run-to-run reproducibility have been studied for stainless steel LC columns packed with polyester (PET) and polypropylene (PP) C-CP fibers. The van Deemter A-term was evaluated as a function of fiber packing density (approximately 0.3 g/cm(3)-0.75 g/cm(3)) for columns of 4.6 mm inner diameter (i.d.) and at constant packing densities for 1.5 mm, 3.2 mm, 4.6 mm, and 7.7 mm i.d. columns. Although column diameter had little influence on the eluting peak widths, peak asymmetry increased with increasing column diameter. The A-terms for the C-CP fiber packed columns are somewhat larger than current commercial, microparticulate-packed columns, and means for improvement are discussed. Applications in the area of protein (macromolecule) separations appear the most promising at this stage of the system development.
Near-UV OH Prompt Emission in the Innermost Coma of 103P/Hartley 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Forgia, Fiorangela; Bodewits, Dennis; A’Hearn, Michael F.
The Deep Impact spacecraft flyby of comet 103P/Hartley 2 occurred on 2010 November 4, 1 week after perihelion with a closest approach (CA) distance of about 700 km. We used narrowband images obtained by the Medium Resolution Imager on board the spacecraft to study the gas and dust in the innermost coma. We derived an overall dust reddening of 15%/100 nm between 345 and 749 nm and identified a blue enhancement in the dust coma in the sunward direction within 5 km from the nucleus, which we interpret as a localized enrichment in water ice. OH column density maps show an anti-sunwardmore » enhancement throughout the encounter, except for the highest-resolution images, acquired at CA, where a radial jet becomes visible in the innermost coma, extending up to 12 km from the nucleus. The OH distribution in the inner coma is very different from that expected for a fragment species. Instead, it correlates well with the water vapor map derived by the HRI-IR instrument on board Deep Impact . Radial profiles of the OH column density and derived water production rates show an excess of OH emission during CA that cannot be explained with pure fluorescence. We attribute this excess to a prompt emission process where photodissociation of H{sub 2}O directly produces excited OH*( A {sup 2}Σ{sup +}) radicals. Our observations provide the first direct imaging of near-UV prompt emission of OH. We therefore suggest the use of a dedicated filter centered at 318.8 nm to directly trace the water in the coma of comets.« less
THE EFFECT OF PROJECTION ON DERIVED MASS-SIZE AND LINEWIDTH-SIZE RELATIONSHIPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shetty, Rahul; Kauffmann, Jens; Goodman, Alyssa A.
2010-04-01
Power-law mass-size and linewidth-size correlations, two of 'Larson's laws', are often studied to assess the dynamical state of clumps within molecular clouds. Using the result of a hydrodynamic simulation of a molecular cloud, we investigate how geometric projection may affect the derived Larson relationships. We find that large-scale structures in the column density map have similar masses and sizes to those in the three-dimensional simulation (position-position-position, PPP). Smaller scale clumps in the column density map are measured to be more massive than the PPP clumps, due to the projection of all emitting gas along lines of sight. Further, due tomore » projection effects, structures in a synthetic spectral observation (position-position-velocity, PPV) may not necessarily correlate with physical structures in the simulation. In considering the turbulent velocities only, the linewidth-size relationship in the PPV cube is appreciably different from that measured from the simulation. Including thermal pressure in the simulated line widths imposes a minimum line width, which results in a better agreement in the slopes of the linewidth-size relationships, though there are still discrepancies in the offsets, as well as considerable scatter. Employing commonly used assumptions in a virial analysis, we find similarities in the computed virial parameters of the structures in the PPV and PPP cubes. However, due to the discrepancies in the linewidth-size and mass-size relationships in the PPP and PPV cubes, we caution that applying a virial analysis to observed clouds may be misleading due to geometric projection effects. We speculate that consideration of physical processes beyond kinetic and gravitational pressure would be required for accurately assessing whether complex clouds, such as those with highly filamentary structure, are bound.« less
Embedded Filaments in IRAS 05463+2652: Early Stage of Fragmentation and Star Formation Activities
NASA Astrophysics Data System (ADS)
Dewangan, L. K.; Devaraj, R.; Baug, T.; Ojha, D. K.
2017-10-01
We present a multiwavelength data analysis of IRAS 05463+2652 (hereafter I05463+2652) to study star formation mechanisms. A shell-like structure around I05463+2652 is evident in the Herschel column density map, which is not associated with any ionized emission. Based on the Herschel submillimeter images, several parsec-scale filaments (including two elongated filaments, “s-fl” and “nw-fl” having lengths of ˜6.4 and ˜8.8 pc, respectively) are investigated in the I05463+2652 site. The Herschel temperature map depicts all these features in a temperature range of ˜11-13 K. 39 clumps are identified and have masses between ˜ 70{--}945 {M}⊙ . The majority of clumps (having {M}{clump}≳ 300 {M}⊙ ) are distributed toward the shell-like structure. 175 young stellar objects (YSOs) are selected using the photometric 1-5 μm data and a majority of these YSOs are distributed toward the four areas of high column density (≳ 5× {10}21 cm-2 A V ˜ 5.3 mag) in the shell-like structure, where massive clumps and a spatial association with filament(s) are also observed. The knowledge of observed masses per unit length of elongated filaments and critical mass length reveals that they are supercritical. The filament “nw-fl” is fragmented into five clumps (having {M}{clump}˜ 100{--}545 {M}⊙ ) and contains noticeable YSOs, while the other filament “s-fl” is fragmented into two clumps (having {M}{clump}˜ 170{--}215 {M}⊙ ) without YSOs. Together, these observational results favor the role of filaments in the star formation process in I05480+2545. This study also reveals the filament “s-fl,” containing two starless clumps, at an early stage of fragmentation.
VizieR Online Data Catalog: EBHIS spectra and HI column density maps (Winkel+, 2016)
NASA Astrophysics Data System (ADS)
Winkel, B.; Kerp, J.; Floeer, L.; Kalberla, P. M. W.; Ben Bekhti, N.; Keller, R.; Lenz, D.
2015-11-01
The EBHIS 1st data release comprises 21-cm neutral atomic hydrogen data of the Milky Way (-600km/s
Clustering the Orion B giant molecular cloud based on its molecular emission
Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H.; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R.; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal
2017-01-01
Context Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). Aims We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. Methods We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional Probability Density Function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. Results A clustering analysis based only on the J = 1 – 0 lines of three isotopologues of CO proves suffcient to reveal distinct density/column density regimes (nH ~ 100 cm−3, ~ 500 cm−3, and > 1000 cm−3), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1 − 0 line of HCO+ and the N = 1 − 0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO+ and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO+ intensity ratio in UV-illuminated regions. Finer distinctions in density classes (nH ~ 7 × 103 cm−3 ~ 4 × 104 cm−3) for the densest regions are also identified, likely related to the higher critical density of the CN and HCO+ (1 – 0) lines. These distinctions are only possible because the high-density regions are spatially resolved. Conclusions Molecules are versatile tracers of GMCs because their line intensities bear the signature of the physics and chemistry at play in the gas. The association of simultaneous multi-line, wide-field mapping and powerful machine learning methods such as the Meanshift clustering algorithm reveals how to decode the complex information available in these molecular tracers. PMID:29456256
Separation of carbon nanotubes into chirally enriched fractions
Doorn, Stephen K [Los Alamos, NM; Niyogi, Sandip [Los Alamos, NM
2012-04-10
A mixture of single-walled carbon nanotubes ("SWNTs") is separated into fractions of enriched chirality by preparing an aqueous suspension of a mixture of SWNTs and a surfactant, injecting a portion of the suspension on a column of separation medium having a density gradient, and centrifuging the column. In some embodiments, salt is added prior to centrifugation. In other embodiments, the centrifugation is performed at a temperature below room temperature. Fractions separate as colored bands in the column. The diameter of the separated SWNTs decreases with increasing density along the gradient of the column. The colored bands can be withdrawn separately from the column.
Interstellar C IV and Si IV column densities toward early-type stars
NASA Technical Reports Server (NTRS)
Bruhweiler, F. C.; Kondo, Y.; Mccluskey, G. E.
1980-01-01
Equivalent widths and deduced column densities of Si IV and C IV are examined for 18 early-type close binaries, and physical processes responsible for the origin of these ions in the interstellar medium are investigated. The available C IV/Si IV column density ratios typically lie within a narrow range from 0.8 to 4.5, and there is evidence that the column density of C IV is higher than that of N V along most lines of sight, suggesting that C IV is not formed in the same hot region as O VI. In addition, the existence of regions with a narrowly defined new temperature range around 50,000 deg K is indicated. The detection of the semitorrid gas of Bruhweiler, Kondo, and McCluskey (1978, 1979) is substantiated, and the relation of this gas to the observations of coronal gas in the galactic halo is discussed.
Grossberg, Stephen; Seitz, Aaron
2003-08-01
How is development of cortical maps in V1 coordinated across cortical layers to form cortical columns? Previous neural models propose how maps of orientation (OR), ocular dominance (OD), and related properties develop in V1. These models show how spontaneous activity, before eye opening, combined with correlation learning and competition, can generate maps similar to those found in vivo. These models have not discussed laminar architecture or how cells develop and coordinate their connections across cortical layers. This is an important problem since anatomical evidence shows that clusters of horizontal connections form, between iso-oriented regions, in layer 2/3 before being innervated by layer 4 afferents. How are orientations in different layers aligned before these connections form? Anatomical evidence demonstrates that thalamic afferents wait in the subplate for weeks before innervating layer 4. Other evidence shows that ablation of the cortical subplate interferes with the development of OR and OD columns. The model proposes how the subplate develops OR and OD maps, which then entrain and coordinate the development of maps in other lamina. The model demonstrates how these maps may develop in layer 4 by using a known transient subplate-to-layer 4 circuit as a teacher. The model subplate also guides the early clustering of horizontal connections in layer 2/3, and the formation of the interlaminar circuitry that forms cortical columns. It is shown how layer 6 develops and helps to stabilize the network when the subplate atrophies. Finally the model clarifies how brain-derived neurotrophic factor (BDNF) manipulations may influence cortical development.
Neutral surfaces and potential vorticity in the world's oceans
NASA Astrophysics Data System (ADS)
You, Yuzhu; McDougall, Trevor J.
1990-08-01
Several neutral surfaces are mapped in this paper and their properties are contrasted with those of potential density surfaces. It is shown that the Pacific is relatively forgiving to the use of potential density, while more care must be taken in the Atlantic and Indian oceans because of the larger compensating lateral gradients of potential temperature and salinity along neutral surfaces in these oceans. The dynamically important tracer, neutral-surface potential vorticity (NSPV), defined to be proportional to f/h (where f is the Coriolis frequency and h is the height between two neutral surfaces), is mapped on several neutral surfaces in each of the world's oceans. At a depth of 1000m in the Atlantic and Indian oceans, the epineutral gradient of NSPV is different to the isopycnal variations of fN2 by as much as a factor of two (here N is the buoyancy frequency). Maps of isopycnal potential vorticity (IPV) resemble those of fN2, but the values of IPV are less by the simple factor μ, defined by μ = c[Rρ-1]/[Rρ-c], where Rρ is the stability ratio of the water column and c is the ratio of the values of α/β at the in situ pressure to that at the reference pressure (α and β being the thermal expansion and saline contraction coefficients, respectively). Layered models of the ocean circulation often take the vertical shear between layers (the thermal wind) to be given by the product of the interface slope and the contrast of potential density across the interface. The true thermal wind equation involves the interfaeial difference of in situ density, which is larger than the corresponding difference of potential density by the factor μ that is mapped in this paper, taking values up to 1.25 at a depth of 1000 m. This implies that the thermal wind is currently underestimated by up to 25% in layered ocean models. The differences between the slopes of neutral surfaces and potential density surfaces can be quantified Using the factory μ. The magnitudes of these slopes are illustrated here with contour maps and with vertical profiles, One would think that by choosing the reference pressure of potential density to be at the central pressure of a data set, the conservation equation of potential vorticity could be expressed with respect to these potential density surfaces with sufficient accuracy. Here it is shown that even the best potential density variable is significantly in error at thermoclinic frontal regions. This is linked to the fact that diapycnal velocities are not simply due to vertical mixing processes, but are also partly caused by epineutral mixing.
Highly-ionized metals as probes of the circumburst gas in the natal regions of gamma-ray bursts
NASA Astrophysics Data System (ADS)
Heintz, K. E.; Watson, D.; Jakobsson, P.; Fynbo, J. P. U.; Bolmer, J.; Arabsalmani, M.; Cano, Z.; Covino, S.; D'Elia, V.; Gomboc, A.; Japelj, J.; Kaper, L.; Krogager, J.-K.; Pugliese, G.; Sánchez-Ramírez, R.; Selsing, J.; Sparre, M.; Tanvir, N. R.; Thöne, C. C.; de Ugarte Postigo, A.; Vergani, S. D.
2018-06-01
We present here a survey of high-ionization absorption lines in the afterglow spectra of long-duration gamma-ray bursts (GRBs) obtained with the VLT/X-shooter spectrograph. Our main goal is to investigate the circumburst medium in the natal regions of GRBs. Our primary focus is on the N V λλ 1238,1242 line transitions, but we also discuss other high-ionization lines such as O VI, C IV and Si IV. We find no correlation between the column density of N V and the neutral gas properties such as metallicity, H I column density and dust depletion, however the relative velocity of N V, typically a blueshift with respect to the neutral gas, is found to be correlated with the column density of H I. This may be explained if the N V gas is part of an H II region hosting the GRB, where the region's expansion is confined by dense, neutral gas in the GRB's host galaxy. We find tentative evidence (at 2σ significance) that the X-ray derived column density, NH, X, may be correlated with the column density of N V, which would indicate that both measurements are sensitive to the column density of the gas located in the vicinity of the GRB. We investigate the scenario where N V (and also O VI) is produced by recombination after the corresponding atoms have been stripped entirely of their electrons by the initial prompt emission, in contrast to previous models where highly-ionized gas is produced by photoionization from the GRB afterglow.
NuSTAR Observations of Water Megamaser AGN
NASA Technical Reports Server (NTRS)
Masini, A.; Comastri, A.; Balokvic, M.; Zaw, I.; Puccetti, S.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Zhang, William W.
2016-01-01
Aims. We study the connection between the masing disk and obscuring torus in Seyfert 2 galaxies. Methods. We present a uniform X-ray spectral analysis of the high energy properties of 14 nearby megamaser active galactic nuclei observed by NuSTAR. We use a simple analytical model to localize the maser disk and understand its connection with the torus by combining NuSTAR spectral parameters with the available physical quantities from VLBI mapping.Results. Most of the sources that we analyzed are heavily obscured, showing a column density in excess of approx.10(exp 23) cm(exp -2); in particular, 79% are Compton-thick [NH is greater than 1.5 x 10(exp 24) cm(exp -2)]. When using column densities measured by NuSTAR with the assumption that the torus is the extension of the maser disk, and further assuming a reasonable density profile, we can predict the torus dimensions. They are found to be consistent with mid-IR interferometry parsec-scale observations of Circinus and NGC 1068. In this picture, the maser disk is intimately connected to the inner part of the torus. It is probably made of a large number of molecular clouds that connect the torus and the outer part of the accretion disk, giving rise to a thin disk rotating in most cases in Keplerian or sub-Keplerian motion. This toy model explains the established close connection between water megamaser emission and nuclear obscuration as a geometric effect.
GIS integration of the 1:75,000 Romanian topographic map series from the World War I
NASA Astrophysics Data System (ADS)
Timár, G.; Mugnier, C. J.
2009-04-01
During the WWI, the Kingdom of Romania developed a 1:75,000 topographic map series, covering not only the actual territory of the country (the former Danube Principalities and Dobrogea) but also Bessarabia (now the Republic of Moldova), which was under Russian rule. The map sheets were issued between 1914 and 1917. The whole map consists of two zones; Columns A-F are the western zone, while Columns G-Q are belonging to the eastern one. To integrate the scanned map sheets to a geographic information system (GIS), the parameters of the map projection and the geodetic datum should be defined as well as the sheet labelling system. The sheets have no grid lines indicated; most of them have latitude and longitude lines but some of them have no coordinate descriptions. The sheets, however, can be rectified using their four corners as virtual control points, and using the following grid and datum parameters: Eastern zone: • Projection type: Bonne. • Projection center: latitude=46d 30m; longitude=27d 20m 13.35s (from Greenwich). • Base ellipsoid: Bessel 1841 • Datum parameters (from local to WGS84): dX=+875 m; dY=-119 m; dZ=+313 m. • Sheet size: 40*40 kilometers, projection center is the NW corner of the 779 (Column L; Row VII) sheet. Western zone: • Projection type: Bonne. • Projection center: latitude=45d; longitude=26d 6m 41.18s (from Greenwich); • Base ellipsoid: Bessel 1841 • Datum parameters (from local to WGS84): dX=+793 m; dY=+364 m; dZ=+173 m. • Sheet size: 0.6*0.4 grad (new degrees), except Column F, which is wider to east to fill the territory to the zone boundary. In Columns E and F geographic coordinates are indicated in new degrees, with the prime meridian of Bucharest. Apart from the system of columns and rows, each sheet has its own label of three or four digit. The last two digit correspond to the column number (69 for Column A going up to 84 for Column Q) while the first digit(s) refer directly to row number (1-15). During the rectification process, the coordinates of the corners (the control points) should be defined in the respective Bonne zone projected coordinates. It can be done by simple additions in the eastern zone but it needs conversion from geographic to projected coordinates in the western one. The general accuracy of this geo-referencing method is up to 200 meters - this error is the same in the 1:75,000 series of the Habsburg Empire made from the 1880s.
Determination of the line shapes of atomic nitrogen resonance lines by magnetic scans
NASA Technical Reports Server (NTRS)
Lawrence, G. M.; Stone, E. J.; Kley, D.
1976-01-01
A technique is given for calibrating an atomic nitrogen resonance lamp for use in determining column densities of atoms in specific states. A discharge lamp emitting the NI multiplets at 1200 A and 1493 A is studied by obtaining absorption by atoms in a magnetic field (0-2.5 T). This magnetic scanning technique enables the determination of the absorbing atom column density, and an empirical curve of growth is obtained because the atomic f-value is known. Thus, the calibrated lamp can be used in the determination of atomic column densities.
Antibody-immobilized column for quick cell separation based on cell rolling.
Mahara, Atsushi; Yamaoka, Tetsuji
2010-01-01
Cell separation using methodological standards that ensure high purity is a very important step in cell transplantation for regenerative medicine and for stem cell research. A separation protocol using magnetic beads has been widely used for cell separation to isolate negative and positive cells. However, not only the surface marker pattern, e.g., negative or positive, but also the density of a cell depends on its developmental stage and differentiation ability. Rapid and label-free separation procedures based on surface marker density are the focus of our interest. In this study, we have successfully developed an antiCD34 antibody-immobilized cell-rolling column, that can separate cells depending on the CD34 density of the cell surfaces. Various conditions for the cell-rolling column were optimized including graft copolymerization, and adjustment of the column tilt angle, and medium flow rate. Using CD34-positive and -negative cell lines, the cell separation potential of the column was established. We observed a difference in the rolling velocities between CD34-positive and CD34-negative cells on antibody-immobilized microfluidic device. Cell separation was achieved by tilting the surface 20 degrees and the increasing medium flow. Surface marker characteristics of the isolated cells in each fraction were analyzed using a cell-sorting system, and it was found that populations containing high density of CD34 were eluted in the delayed fractions. These results demonstrate that cells with a given surface marker density can be continuously separated using the cell rolling column.
C+/H2 gas in star-forming clouds and galaxies
NASA Astrophysics Data System (ADS)
Nordon, Raanan; Sternberg, Amiel
2016-11-01
We present analytic theory for the total column density of singly ionized carbon (C+) in the optically thick photon dominated regions (PDRs) of far-UV irradiated (star-forming) molecular clouds. We derive a simple formula for the C+ column as a function of the cloud (hydrogen) density, the far-UV field intensity, and metallicity, encompassing the wide range of galaxy conditions. When assuming the typical relation between UV and density in the cold neutral medium, the C+ column becomes a function of the metallicity alone. We verify our analysis with detailed numerical PDR models. For optically thick gas, most of the C+ column is mixed with hydrogen that is primarily molecular (H2), and this `C+/H2' gas layer accounts for almost all of the `CO-dark' molecular gas in PDRs. The C+/H2 column density is limited by dust shielding and is inversely proportional to the metallicity down to ˜0.1 solar. At lower metallicities, H2 line blocking dominates and the C+/H2 column saturates. Applying our theory to CO surveys in low-redshift spirals, we estimate the fraction of C+/H2 gas out of the total molecular gas to be typically ˜0.4. At redshifts 1 < z < 3 in massive disc galaxies the C+/H2 gas represents a very small fraction of the total molecular gas (≲ 0.16). This small fraction at high redshifts is due to the high gas surface densities when compared to local galaxies.
VizieR Online Data Catalog: Gamma Ray Bursts detected by Swift (2004-2015) (Buchner+, 2017)
NASA Astrophysics Data System (ADS)
Buchner, J.; Schulze, S.; Bauer, F.
2016-04-01
Gamma Ray Bursts (GRB) typically show intrinsic LOS column densities of 1021-23cm2. We performed a thorough statistical analysis of all available X-ray spectra of Swift-detected GRBs. In the associated paper we use sub-samples to analyse the population properties of LGRB and concluded that the obscuration is due to large-scale gas inside the GRB host galaxy, due to the shape of the column density distribution and its correlation with host stellar mass. This catalogue presents X-ray spectral analysis of all Swift-detected GRBs. It includes information about the GRB (ID, Swift Trigger ID, duration, RA/Dec in J2000, galactic coordinates, Milky Way column density). Those properties are taken from the http://www.swift.ac.uk/ and http://gcn.gsfc.nasa.gov/ websites. We removed prompt emission and flares, leaving only a certain time interval for spectral extraction. We use two models to analyse X-ray spectra: TBABS and SPHERE. Both include updated abundances and cross-sections as compared to previous works. The latter includes the effects of Compton-scattering and FeKa fluorescence relevant at high column densities. Columns list the posterior mean, standard deviation, 10% and 90% quantiles. Note that the column densities are converted to hydrogen assuming local ISM abundances, but are derived primarily from photo-electric absorption of e.g. Fe and O, and therefore primarily measure metal gas. (2 data files).
Acoustic emission data assisted process monitoring.
Yen, Gary G; Lu, Haiming
2002-07-01
Gas-liquid two-phase flows are widely used in the chemical industry. Accurate measurements of flow parameters, such as flow regimes, are the key of operating efficiency. Due to the interface complexity of a two-phase flow, it is very difficult to monitor and distinguish flow regimes on-line and real time. In this paper we propose a cost-effective and computation-efficient acoustic emission (AE) detection system combined with artificial neural network technology to recognize four major patterns in an air-water vertical two-phase flow column. Several crucial AE parameters are explored and validated, and we found that the density of acoustic emission events and ring-down counts are two excellent indicators for the flow pattern recognition problems. Instead of the traditional Fair map, a hit-count map is developed and a multilayer Perceptron neural network is designed as a decision maker to describe an approximate transmission stage of a given two-phase flow system.
NASA Technical Reports Server (NTRS)
Novak, Robert E.; Mumma, Michael J.
2011-01-01
Since 1997, we have used high-resolution (R greater than 40000) spectrometers on ground based-telescopes to study molecules that have astrobiological significance in Mars' atmosphere. We have used the NASA-IRTF, Keck II, and VLT telescopes in the 1.0-5.0 micron range. The spectrometer is set at a wavelength to detect specific molecules. Spectral/spatial images are produced. Extracts from these images provide column densities centered at latitude/longitude locations (resolution 400km at sub-Earth point). We have mapped the O2 singlet-Delta emission (a proxy for ozone), HDO, and H2O for seasonal dates throughout the Martian year. Previously undiscovered isotopic bands of CO2 have been identified along with isotopic forms of CO. We are searching for other molecules that have astrobiological importance and have successfully measured methane in Mars' atmosphere.
NASA Astrophysics Data System (ADS)
Watson, C.; Devine, Kathryn; Quintanar, N.; Candelaria, T.
2016-02-01
We survey 44 young stellar objects located near the edges of mid-IR-identified bubbles in CS (1-0) using the Green Bank Telescope. We detect emission in 18 sources, indicating young protostars that are good candidates for being triggered by the expansion of the bubble. We calculate CS column densities and abundances. Three sources show evidence of infall through non-Gaussian line-shapes. Two of these sources are associated with dark clouds and are promising candidates for further exploration of potential triggered star formation. We obtained on-the-fly maps in CS (1-0) of three sources, showing evidence of significant interactions between the sources and the surrounding environment.
The relation between carbon monoxide emission and visual extinction in cloud L134
NASA Technical Reports Server (NTRS)
Tucker, K. D.; Dickman, R. L.; Encrenaz, P. J.; Kutner, M. L.
1976-01-01
Emission from the J = 1-0 transition of carbon monoxide has been mapped over an area of 40 by 55 arcmin in cloud L134, and visual extinctions over the entire cloud have been obtained by means of star counts. Line intensities of at least 2 K are observable down to an extinction level of about one magnitude. From observations of the J = 1-0 transition of the (C-13)O isotopic species at 18 locations in the cloud, a linear correlation is found between the local thermodynamic equilibrium (LTE) column densities of (C-13)O and magnitudes of visual extinction.
VizieR Online Data Catalog: Coefficients for passband extinctions (Sale+, 2015)
NASA Astrophysics Data System (ADS)
Sale, S. E.; Magorrian, J.
2017-11-01
We have considered how one should measure the distance and extinction to individual stars for use in constructing extinction maps of the whole Galaxy. We advocate the use of monochromatic extinctions, since, unlike bandpass measures such as AV and E(B-V), monochromatic extinctions are linear functions of the dust column density and are independent of the source SED. In particular we suggest the use of A4000, the monochromatic extinction at 4000Å because of its insensitivity to the dust grain size distribution. Files for converting from A_4000 to passband extinctions at 35 RV extinction law value and for 11 photometric systems. (2 data files).
Spatially resolved spectrophotometry of Comet P/Stephan-Oterma
NASA Technical Reports Server (NTRS)
Cochran, A. L.; Barker, E. S.
1985-01-01
Observations of Comet P/Stephan-Oterma were made with an Intensified Dissector Scanner spectrograph on the McDonald Observatory 2.7-m telescope during the period from July 1980 to February 1981. These spectra cover a range of heliocentric distances from 2.3 AU preperihelion to 1.8 AU postperihelion. A small aperture was used to map the spatial distributions of the gases in the coma. Column densities of the observed cometary emissions (CN, C3, CH, and C2) were calculated, and it is shown that Stephan-Oterma appeared nearly spherically symmetric. These date are used by Cochran (1985) to constrain chemical models of Stephan-Oterma.
Evolution of HI from Z=5 to the present
NASA Technical Reports Server (NTRS)
Storrie-Lombardi, L. J.
2002-01-01
Studies of damped Lya systems provide us with a good measure of the evolution of the HI column density distribution function and the contribution to the comoving mass density in neutral gas out to redshifts of z = 5 . The column density distribution function at high redshift steepens for the highest column density HI absorbers, though the contribution to the comoving mass density of neutral gas remains fiat from 2 < z < 5 . Results from studies at z < 2 are finding substantial numbers of damped absorbers identified from MgII absorption, compared to previous blind surveys. These results indicate that the contribution to the comoving mass density in neutral gas may be constant from z 0 to z 5. Details of recent work in the redshift range z < 2 work is covered elsewhere in this volume (see D. Nestor). We review here recent results for the redshift range 2 < z < 5.
NASA Astrophysics Data System (ADS)
Hall, Carlton R.; Bostater, Charles R., Jr.; Virnstein, Robert
2004-11-01
Development of robust protocols for use in mapping shallow water habitats using hyperspectral imagery requires knowledge of absorbing and scattering features present in the environment. These include, but are not limited to, water quality parameters, phytoplankton concentrations and species, submerged aquatic vegetation (SAV) species and densities, epiphytic growth on SAV, benthic microalgae and substrate reflectance characteristics. In the Indian River Lagoon, Fl. USA we conceptualize the system as having three possible basic layers, water column and SAV bed above the bottom. Each layer is occupied by plants with their associated light absorbing pigments that occur in varying proportions and concentrations. Phytoplankton communities are composed primarily of diatoms, dinoflagellates, and picoplanktonic cyanobacteria. SAV beds, including flowering plants and green, red, and brown macro-algae exist along density gradients ranging in coverage from 0-100%. SAV beds may be monotypic, or more typically, mixtures of the several species that may or may not be covered in epiphytes. Shallow water benthic substrates are colonized by periphyton communities that include diatoms, dinoflagellates, chlorophytes and cyanobacteria. Inflection spectra created form ASIA hyperspectral data display a combination of features related to water and select plant pigment absorption peaks.
Sinking velocities of phytoplankton measured on a stable density gradient by laser scanning
Walsby, Anthony E; Holland, Daryl P
2005-01-01
Two particular difficulties in measuring the sinking velocities of phytoplankton cells are preventing convection within the sedimenting medium and determining the changing depth of the cells. These problems are overcome by using a density-stabilized sedimentation column scanned by a laser. For freshwater species, a suspension of phytoplankton is layered over a vertical density gradient of Percoll solution; as the cells sink down the column their relative concentration is measured by the forward scattering of light from a laser beam that repeatedly scans up and down the column. The Percoll gradient stabilizes the column, preventing vertical mixing by convection, radiation or perturbation of density by the descending cells. Measurements were made on suspensions of 15 μm polystyrene microspheres with a density of 1050 kg m−3; the mean velocity was 6.28 μm s−1, within 1.5% of that calculated by the Stokes equation, 6.36 μm s−1. Measurements made on the filamentous cyanobacterium Planktothrix rubescens gave mean velocities within the theoretical range of values based on the range of size, shape, orientation and density of the particles in a modified Stokes equation. Measurements on marine phytoplankton may require density gradients prepared with other substances. PMID:16849271
HIDEEP - an extragalactic blind survey for very low column-density neutral hydrogen
NASA Astrophysics Data System (ADS)
Minchin, R. F.; Disney, M. J.; Boyce, P. J.; de Blok, W. J. G.; Parker, Q. A.; Banks, G. D.; Freeman, K. C.; Garcia, D. A.; Gibson, B. K.; Grossi, M.; Haynes, R. F.; Knezek, P. M.; Lang, R. H.; Malin, D. F.; Price, R. M.; Stewart, I. M.; Wright, A. E.
2003-12-01
We have carried out an extremely long integration time (9000 s beam-1) 21-cm blind survey of 60 deg2 in Centaurus using the Parkes multibeam system. We find that the noise continues to fall as throughout, enabling us to reach an HI column-density limit of 4.2 × 1018 cm-2 for galaxies with a velocity width of 200 km s-1 in the central 32 deg2 region, making this the deepest survey to date in terms of column density sensitivity. The HI data are complemented by very deep optical observations from digital stacking of multi-exposure UK Schmidt Telescope R-band films, which reach an isophotal level of 26.5 R mag arcsec-2 (~=27.5 B mag arcsec-2). 173 HI sources have been found, 96 of which have been uniquely identified with optical counterparts in the overlap area. There is not a single source without an optical counterpart. Although we have not measured the column densities directly, we have inferred them from the optical sizes of their counterparts. All appear to have a column density of NHI= 1020.65+/-0.38. This is at least an order of magnitude above our sensitivity limit, with a scatter only marginally larger than the errors on NHI. This needs explaining. If confirmed it means that HI surveys will only find low surface brightness (LSB) galaxies with high MHI/LB. Gas-rich LSB galaxies with lower HI mass to light ratios do not exist. The paucity of low column-density galaxies also implies that no significant population will be missed by the all-sky HI surveys being carried out at Parkes and Jodrell Bank.
Wood, Richard J.; Schwartz, Eric L.
1999-03-01
Shear has been known to exist for many years in the topographic structure of the primary visual cortex, but has received little attention in the modeling literature. Although the topographic map of V1 is largely conformal (i.e. zero shear), several groups have observed topographic shear in the region of the V1/V2 border. Furthermore, shear has also been revealed by anisotropy of cortical magnification factor within a single ocular dominance column. In the present paper, we make a functional hypothesis: the major axis of the topographic shear tensor provides cortical neurons with a preferred direction of orientation tuning. We demonstrate that isotropic neuronal summation of a sheared topographic map, in the presence of additional random shear, can provide the major features of cortical functional architecture with the ocular dominance column system acting as the principal source of the shear tensor. The major principal axis of the shear tensor determines the direction and its eigenvalues the relative strength of cortical orientation preference. This hypothesis is then shown to be qualitatively consistent with a variety of experimental results on cat and monkey orientation column properties obtained from optical recording and from other anatomical and physiological techniques. In addition, we show that a recent result of Das and Gilbert (Das, A., & Gilbert, C. D., 1997. Distortions of visuotopic map match orientation singularities in primary visual cortex. Nature, 387, 594-598) is consistent with an infinite set of parameterized solutions for the cortical map. We exploit this freedom to choose a particular instance of the Das-Gilbert solution set which is consistent with the full range of local spatial structure in V1. These results suggest that further relationships between ocular dominance columns, orientation columns, and local topography may be revealed by experimental testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Che-Yu; King, Patrick K.; Li, Zhi-Yun
Diffuse striations in molecular clouds are preferentially aligned with local magnetic fields, whereas dense filaments tend to be perpendicular to them. When and why this transition occurs remain uncertain. To explore the physics behind this transition, we compute the histogram of relative orientation (HRO) between the density gradient and the magnetic field in three-dimensional magnetohydrodynamic (MHD) simulations of prestellar core formation in shock-compressed regions within giant molecular clouds. We find that, in the magnetically dominated (sub-Alfvénic) post-shock region, the gas structure is preferentially aligned with the local magnetic field. For overdense sub-regions with super-Alfvénic gas, their elongation becomes preferentially perpendicularmore » to the local magnetic field. The transition occurs when self-gravitating gas gains enough kinetic energy from the gravitational acceleration to overcome the magnetic support against the cross-field contraction, which results in a power-law increase of the field strength with density. Similar results can be drawn from HROs in projected two-dimensional maps with integrated column densities and synthetic polarized dust emission. We quantitatively analyze our simulated polarization properties, and interpret the reduced polarization fraction at high column densities as the result of increased distortion of magnetic field directions in trans- or super-Alfvénic gas. Furthermore, we introduce measures of the inclination and tangledness of the magnetic field along the line of sight as the controlling factors of the polarization fraction. Observations of the polarization fraction and angle dispersion can therefore be utilized in studying local magnetic field morphology in star-forming regions.« less
Observing gas in Cosmic Web filaments to constrain simulations of cosmic structure formation
NASA Astrophysics Data System (ADS)
Wakker, Bart
2016-10-01
Cosmological simulations predict that dark matter and baryons condense into multi-Mpc filamentary structures, making up the Cosmic Web. This is outlined by dark matter halos, inside which 10% of baryons are concentrated to make stars in galaxies. The other 90% of the baryons remain gaseous, with about half located outside galaxy halos. They can be traced by Lyman alpha absorbers, whose HI column density is determined by a combination of gas density and the intensity of the extragalactic ionizing background (EGB). About 1000 HST orbits have been expended to map the 50% of baryons in galaxy halos. This contrasts with 37 orbits explicitly allocated to map the other 50% (our Cycle 18 program to observe 17 AGN projected onto a single filament at cz 3500 km/s). We propose a 68-orbit program to observe 40 AGN, creating a sample of 56 sightlines covering a second filament at cz 2500 km/s. Using this dataset we will do the following: (1) measure the intensity of the EGB to within about 50%; (2) confirm that the linewidth of Lya absorbers increases near the filament axis, suggesting increasing temperature or turbulence; (3) check our earlier finding that simulations predict a transverse density HI profile (which scales with the dark-matter profile) that is much broader than is indicated by the observations.
Two-dimensional ice mapping of molecular cores
NASA Astrophysics Data System (ADS)
Noble, J. A.; Fraser, H. J.; Pontoppidan, K. M.; Craigon, A. M.
2017-06-01
We present maps of the column densities of H2O, CO2 and CO ices towards the molecular cores B 35A, DC 274.2-00.4, BHR 59 and DC 300.7-01.0. These ice maps, probing spatial distances in molecular cores as low as 2200 au, challenge the traditional hypothesis that the denser the region observed, the more ice is present, providing evidence that the relationships between solid molecular species are more varied than the generic picture we often adopt to model gas-grain chemical processes and explain feedback between solid phase processes and gas phase abundances. We present the first combined solid-gas maps of a single molecular species, based upon observations of both CO ice and gas phase C18O towards B 35A, a star-forming dense core in Orion. We conclude that molecular species in the solid phase are powerful tracers of 'small-scale' chemical diversity, prior to the onset of star formation. With a component analysis approach, we can probe the solid phase chemistry of a region at a level of detail greater than that provided by statistical analyses or generic conclusions drawn from single pointing line-of-sight observations alone.
Lo, Shun Qiang; Koh, Dawn X. P.; Sng, Judy C. G.; Augustine, George J.
2015-01-01
Abstract. We describe an experimental approach that uses light to both control and detect neuronal activity in mouse barrel cortex slices: blue light patterned by a digital micromirror array system allowed us to photostimulate specific layers and columns, while a red-shifted voltage-sensitive dye was used to map out large-scale circuit activity. We demonstrate that such all-optical mapping can interrogate various circuits in somatosensory cortex by sequentially activating different layers and columns. Further, mapping in slices from whisker-deprived mice demonstrated that chronic sensory deprivation did not significantly alter feedforward inhibition driven by layer 5 pyramidal neurons. Further development of voltage-sensitive optical probes should allow this all-optical mapping approach to become an important and high-throughput tool for mapping circuit interactions in the brain. PMID:26158003
A large-scale extinction map of the Galactic Anticentre from 2MASS
NASA Astrophysics Data System (ADS)
Froebrich, D.; Murphy, G. C.; Smith, M. D.; Walsh, J.; Del Burgo, C.
2007-07-01
We present a 127 × 63-deg2 extinction map of the Anticentre of the Galaxy, based on < J - H > and < H - K > colour excess maps from the Two-Micron All-Sky Survey. This 8001-deg2 map with a resolution of 4 arcmin is provided as online material. The colour excess ratio < J - H >/< H - K > is used to determine the power-law index of the reddening law (β) for individual regions contained in the area (e.g. Orion, Perseus, Taurus, Auriga, Monoceros, Camelopardalis, Cassiopeia). On average we find a dominant value of β = 1.8 +/- 0.2 for the individual clouds, in agreement with the canonical value for the interstellar medium. We also show that there is an internal scatter of β values in these regions, and that in some areas more than one dominant β values are present. This indicates large-scale variations in the dust properties. The analysis of the AV values within individual regions shows a change in the slope of the column density distribution with distance. This can be attributed either to a change in the governing physical processes in molecular clouds on spatial scales of about 1pc or to an AV dilution with distance in our map.
NASA Astrophysics Data System (ADS)
Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris
2018-05-01
Correlations measured in three dimensions in the Lyman-alpha forest are contaminated by the presence of the damping wings of high column density (HCD) absorbing systems of neutral hydrogen (H I; having column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}), which extend significantly beyond the redshift-space location of the absorber. We measure this effect as a function of the column density of the HCD absorbers and redshift by measuring three-dimensional (3D) flux power spectra in cosmological hydrodynamical simulations from the Illustris project. Survey pipelines exclude regions containing the largest damping wings. We find that, even after this procedure, there is a scale-dependent correction to the 3D Lyman-alpha forest flux power spectrum from residual contamination. We model this residual using a simple physical model of the HCD absorbers as linearly biased tracers of the matter density distribution, convolved with their Voigt profiles and integrated over the column density distribution function. We recommend the use of this model over existing models used in data analysis, which approximate the damping wings as top-hats and so miss shape information in the extended wings. The simple `linear Voigt model' is statistically consistent with our simulation results for a mock residual contamination up to small scales (|k| < 1 h Mpc^{-1}). It does not account for the effect of the highest column density absorbers on the smallest scales (e.g. |k| > 0.4 h Mpc^{-1} for small damped Lyman-alpha absorbers; HCD absorbers with N(H I) ˜ 10^{21} atoms cm^{-2}). However, these systems are in any case preferentially removed from survey data. Our model is appropriate for an accurate analysis of the baryon acoustic oscillations feature. It is additionally essential for reconstructing the full shape of the 3D flux power spectrum.
Ice Mapping Observations in Galactic Star-Forming Regions: the AKARI Legacy
NASA Astrophysics Data System (ADS)
Fraser, Helen Jane; Suutarinnen, Aleksi; Noble, Jennifer
2015-08-01
It is becoming increasingly clear that explaining the small-scale distribution of many gas-phase molecules relies on our interpretation of the complex inter-connectivity between gas- and solid-phase interstellar chemistries. Inputs to proto-stellar astrochemical models are required that exploit ice compositions reflecting the historical physical conditions in pre-stellar environments when the ices first formed. Such data are required to translate the near-universe picture of ice-composition to our understanding of the role of extra-galactic ices in star-formation at higher redshifts.Here we present the first attempts at multi-object ice detections, and the subsequent ice column density mapping. The AKARI space telescope was uniquely capable of observing all the ice features between 2 and 5 microns, thereby detecting H2O, CO and CO2 ices concurrently, through their stretching vibrational features. Our group has successfully extracted an unprecedented volume of ice spectra from AKARI, including sources with not more than 2 mJy flux at 3 microns, showing:(a) H2O CO and CO2 ices on 30 lines of sight towards pre-stellar and star-forming cores, which when combined with laboratory experiments indicate how the chemistries of these three ices are interlinked (Noble et al (2013)),(b) ice maps showing the spatial distribution of water ice across 12 pre-stellar cores, in different molecular clouds (Suutarinnen et al (2015)), and the distribution of ice components within these cores on 1000 AU scales (Noble et al (2015)),(c) over 200 new detections of water ice, mostly on lines of sight towards background sources (> 145), indicating that water ice column density has a minimum value as a function of Av, but on a cloud-by-cloud basis typically correlates with Av, and dust emissivity at 250 microns (Suutarinnen et al (2015)),(d) the first detections of HDO ice towards background stars (Fraser et al (2015)).We discuss whether these results support the picture of a generic chemical evolutionary scenario for interstellar ice chemistry, ranging from pre-stellar to extra-galactic scales.
Dust and Gas in Different Galactic Environments
NASA Astrophysics Data System (ADS)
Goncalves, Daniela Catarina Pinheiro
2014-01-01
This thesis encompasses the study of the mid-infrared (IR) dust properties in diffuse high latitude cirrus and in the dense environments of supernova remnants (SNRs) in the plane of our Galaxy. Unlike the well known emission properties of dust grains in the diffuse ISM in the far-IR and submillimeter, the mid-IR spectrum is still relatively unconstrained. We extend the correlation of dust emission with H I column densities to mid-IR wavelengths and look for evidence of variations in the emissivity of dust associated with local and halo gas. This is accomplished by spatially correlating the IR maps from the IRIS/IRAS survey at 12, 25, 60 and 100 μm with H I column density maps inferred from 21-cm line emission observations obtained with the GBT (at a 9' resolution). We find that IVCs (halo clouds thought to be part of the Galactic fountain) show color ratios consistent with a dust evolution scenario in which large dust grains are shattered into smaller ones (VSGs). The low 12 μm emission found suggests a reduced abundance of PAHs in IVCs. We also address the IR extragalactic emission seen in our residual maps and quantify its power spectrum behaviour. Continuing with the mid-IR theme, we conducted a comprehensive study of the morphology and energetics of SNRs in the plane of our Galaxy. We make use of the Spitzer MIPSGAL (at 24 and 70 μm) and GLIMPSE (at 8 μm) surveys to detected infrared counterparts to SNR candidates in Green's catalog. We find that a third of the sample shows IR emission and calculate the corresponding fluxes. We explore the relation between IR colors to place constraints on the different IR SNRs emission mechanisms. Aided by archival radio data, we find that most candidates detected show IR-to-radio ratios consistent with SNRs with a few exceptions displaying ratios seen in H II regions. Finally, we explore the connection between the IR and the high-energy X-ray emission of SNRs and find a good morphological association between the 24 μm emission and the X-ray features in younger remnants. The IR power is often greater.
NASA Astrophysics Data System (ADS)
Lin, Yuxin; Liu, Hauyu Baobab; Li, Di; Zhang, Zhi-Yu; Ginsburg, Adam; Pineda, Jaime E.; Qian, Lei; Galván-Madrid, Roberto; McLeod, Anna Faye; Rosolowsky, Erik; Dale, James E.; Immer, Katharina; Koch, Eric; Longmore, Steve; Walker, Daniel; Testi, Leonardo
2016-09-01
We have developed an iterative procedure to systematically combine the millimeter and submillimeter images of OB cluster-forming molecular clouds, which were taken by ground-based (CSO, JCMT, APEX, and IRAM-30 m) and space telescopes (Herschel and Planck). For the seven luminous (L\\gt {10}6 L ⊙) Galactic OB cluster-forming molecular clouds selected for our analyses, namely W49A, W43-Main, W43-South, W33, G10.6-0.4, G10.2-0.3, and G10.3-0.1, we have performed single-component, modified blackbody fits to each pixel of the combined (sub)millimeter images, and the Herschel PACS and SPIRE images at shorter wavelengths. The ˜10″ resolution dust column density and temperature maps of these sources revealed dramatically different morphologies, indicating very different modes of OB cluster-formation, or parent molecular cloud structures in different evolutionary stages. The molecular clouds W49A, W33, and G10.6-0.4 show centrally concentrated massive molecular clumps that are connected with approximately radially orientated molecular gas filaments. The W43-Main and W43-South molecular cloud complexes, which are located at the intersection of the Galactic near 3 kpc (or Scutum) arm and the Galactic bar, show a widely scattered distribution of dense molecular clumps/cores over the observed ˜10 pc spatial scale. The relatively evolved sources G10.2-0.3 and G10.3-0.1 appear to be affected by stellar feedback, and show a complicated cloud morphology embedded with abundant dense molecular clumps/cores. We find that with the high angular resolution we achieved, our visual classification of cloud morphology can be linked to the systematically derived statistical quantities (I.e., the enclosed mass profile, the column density probability distribution function (N-PDF), the two-point correlation function of column density, and the probability distribution function of clump/core separations). In particular, the massive molecular gas clumps located at the center of G10.6-0.4 and W49A, which contribute to a considerable fraction of their overall cloud masses, may be special OB cluster-forming environments as a direct consequence of global cloud collapse. These centralized massive molecular gas clumps also uniquely occupy much higher column densities than what is determined by the overall fit of power-law N-PDF. We have made efforts to archive the derived statistical quantities of individual target sources, to permit comparisons with theoretical frameworks, numerical simulations, and other observations in the future.
NASA Astrophysics Data System (ADS)
Raynaud, E.; Lellouch, E.; Maillard, J.-P.; Gladstone, G. R.; Waite, J. H.; Bézard, B.; Drossart, P.; Fouchet, T.
2004-09-01
We report on spectro-imaging infrared observations of Jupiter's auroral zones, acquired in October 1999 and October 2000 with the FTS/BEAR instrument at the Canada-France-Hawaii Telescope. The use of narrow-band filters at 2.09 and 2.12 μm, combined with high spectral resolution (0.2 cm -1), allowed us to map emission from the H 2S1(1) quadrupole line and from several H 3+ lines. The H 2 and H 3+ emission appears to be morphologically different, especially in the north, where the latter notably exhibits a "hot spot" near 150°-170° System III longitude. This hot spot coincides in position with the region of increased and variable hydrocarbon, FUV and X-ray emission, but is not seen in the more uniform H 2S1(1) emission. We also present the first images of the H 2 emission in the southern polar region. The spectra include a total of 14 H 3+ lines, including two hot lines from the 3 ν2- ν2 band, detected on Jupiter for the first time. They can be used to determine H 3+ column densities, rotational ( Trot) and vibrational ( Tvib) temperatures. We find the mean Tvib of the v2=3 state to be lower (960±50 K) than the mean Trot in v2=2 (1170±75 K), indicating an underpopulation of the v2=3 level with respect to local thermodynamical equilibrium. Rotational temperatures and associated column densities are generally higher and lower, respectively, than inferred previously from ν2 observations. This is a likely consequence of a large positive temperature gradient in the sub-microbar auroral atmosphere. While the signal-to-noise is not sufficient to take full advantage of the 2-D capabilities of the observations, the search for correlations between line intensities, Tvib and column densities, indicates that variations in line intensities are mostly due to correlated variations in the H 3+ column densities. The thermostatic role played by H 3+ at ionospheric levels may provide an explanation. The exception is the northern "hot spot," which exhibits a Tvib about 250 K higher than other regions. A partial explanation might invoke a homopause elevation in this region, but a fully consistent scenario is not yet available. The different distributions of the H 2 and H 3+ emission are equally difficult to explain.
Cloudy Skies over AGN: Observations with Simbol-X
NASA Astrophysics Data System (ADS)
Salvati, M.; Risaliti, G.
2009-05-01
Recent time-resolved spectroscopic X-ray studies of bright obscured AGN show that column density variability on time scales of hours/days may be common, at least for sources with NH>1023 cm-2. This opens new oppurtunities in the analysis of the structure of the circumnuclear medium and of the X-ray source: resolving the variations due to single clouds covering/uncovering the X-ray source provides tight constraints on the source size, the clouds' size and distance, and their average number, density and column density. We show how Simbol-X will provide a breakthrough in this field, thanks to its broad band coverage, allowing (a) to precisely disentangle the continuum and NH variations, and (2) to extend the NH variability analysis to column densities >1023 cm-2.
NASA Astrophysics Data System (ADS)
Gee, L. J.; Raineault, N.; Kane, R.; Saunders, M.; Heffron, E.; Embley, R. W.; Merle, S. G.
2017-12-01
Exploration Vessel (E/V) Nautilus has been mapping the seafloor off the west coast of the United States, from Washington to California, for the past three years with a Kongsberg EM302 multibeam sonar. This system simultaneously collects bathymetry, seafloor and water column backscatter data, allowing an integrated approach to mapping to more completely characterize a region, and has identified over 1,000 seafloor seeps. Hydrographic multibeam sonars like the EM302 were designed for mapping the bathymetry. It is only in the last decade that major mapping projects included an integrated approach that utilizes the seabed and water column backscatter information in addition to the bathymetry. Nautilus mapping in the Eastern Pacific over the past three years has included a number of seep-specific expeditions, and utilized and adapted the preliminary mapping guidelines that have emerged from research. The likelihood of seep detection is affected by many factors: the environment: seabed geomorphology, surficial sediment, seep location/depth, regional oceanography and biology, the nature of the seeps themselves: size variation, varying flux, depth, and transience, the detection system: design of hydrographic multibeam sonars limits use for water column detection, the platform: variations in the vessel and operations such as noise, speed, and swath overlap. Nautilus integrated seafloor mapping provided multiple indicators of seep locations, but it remains difficult to assess the probability of seep detection. Even when seeps were detected, they have not always been located during ROV dives. However, the presence of associated features (methane hydrate and bacterial mats) serve as evidence of potential seep activity and reinforce the transient nature of the seeps. Not detecting a seep in the water column data does not necessarily indicate that there is not a seep at a given location, but with multiple passes over an area and by the use of other contextual data, an area may be classified as likely or unlikely to host seeps.
Physical mapping of complex genomes
Evans, Glen A.
1993-01-01
Method for simultaneous identification of overlapping cosmid clones among multiple cosmid clones and the use of the method for mapping complex genomes are provided. A library of cosmid clones that contains the DNA to be mapped is constructed and arranged in a manner such that individual clones can be identified and replicas of the arranged clones prepared. In preferred embodiments, the clones are arranged in a two dimensional matrix. In such embodiments, the cosmid clones in a row are pooled, mixed probes complementary to the ends of the DNA inserts int he pooled clones are synthesized, hybridized to a first replica of the library. Hybridizing clones, which include the pooled row, are identified. A second portion of clones is prepared by pooling cosmid clones that correspond to a column in the matrix. The second pool thereby includes one clone from the first portion pooled clones. This common clone is located on the replica at the intersection of the column and row. Mixed probes complementary to the ends of the DNA inserts in the second pooled portion of clones are prepared and hybridized to a second replica of the library. The hybridization pattern on the first and second replicas of the library are compared and cross-hybridizing clones, other than the clones in the pooled column and row, that hybridize to identical clones in the first and second replicas are identified. These clones necessarily include DNA inserts that overlap with the DNA insert int he common clone located at the intersection of the pooled row and pooled column. The DNA in the entire library may be mapped by pooling the clones in each of the rows and columns of the matrix, preparing mixed end-specific probes and hybridizing the probes from each row or column to a replica of the library. Since all clones in the library are located at the intersection of a column and a row, the overlapping clones for all clones in the library may be identified and a physical map constructed. In other preferred embodiments, the cosmid clones are arranged in a three dimensional matrix, pooled and compared in threes according to intersecting planes of the three dimensional matrix. Arrangements corresponding to geometries of higher dimensions may also be prepared and used to simultaneously identify overlapping clones in highly complex libraries with relatively few hybridization reactions.
NASA Astrophysics Data System (ADS)
Kado, B.; Mohammad, S.; Lee, Y. H.; Shek, P. N.; Kadir, M. A. A.
2018-04-01
Standard fire test was carried out on 3 hollow steel tube and 6 foamed concrete filled steel tube columns. Temperature distribution on the columns was investigated. 1500 kg/m3 and 1800 kg/m3 foamed concrete density at 15%, 20% and 25% load level are the parameters considered. The columns investigated were 2400 mm long, 139.7 mm outer diameter and 6 mm steel tube thickness. The result shows that foamed concrete filled steel tube columns has the highest fire resistance of 43 minutes at 15% load level and low critical temperature of 671 ºC at 25% load level using 1500 kg/m3 foamed concrete density. Fire resistance of foamed concrete filled column increases with lower foamed concrete strength. Foamed concrete can be used to provide more fire resistance to hollow steel column or to replace normal weight concrete in concrete filled columns. Since filling hollow steel with foamed concrete produce column with high fire resistance than unfilled hollow steel column. Therefore normal weight concrete can be substituted with foamed concrete in concrete filled column, it will reduces the self-weight of the structure because of its light weight at the same time providing the desired fire resistance.
Text Mapping Plus: Improving Comprehension through Supported Retellings
ERIC Educational Resources Information Center
Lapp, Diane; Fisher, Douglas; Johnson, Kelly
2010-01-01
Modeled in this column is the teaching of a text mapping routine that supports students reading and remembering the salient features of the text. The authors renamed the story mapping technique "text mapping plus" because they found that as students added relational words and graphics to their maps their retells of both fiction and nonnarrative…
NASA Astrophysics Data System (ADS)
Minakov, A.; Medvedev, S.
2017-12-01
Analysis of lithospheric stresses is necessary to gain understanding of the forces that drive plate tectonics and intraplate deformations and the structure and strength of the lithosphere. A major source of lithospheric stresses is believed to be in variations of surface topography and lithospheric density. The traditional approach to stress estimation is based on direct calculations of the Gravitational Potential Energy (GPE), the depth integrated density moment of the lithosphere column. GPE is highly sensitive to density structure which, however, is often poorly constrained. Density structure of the lithosphere may be refined using methods of gravity modeling. However, the resulted density models suffer from non-uniqueness of the inverse problem. An alternative approach is to directly estimate lithospheric stresses (depth integrated) from satellite gravimetry data. Satellite gravity gradient measurements by the ESA GOCE mission ensures a wealth of data for mapping lithospheric stresses if a link between data and stresses or GPE can be established theoretically. The non-uniqueness of interpretation of sources of the gravity signal holds in this case as well. Therefore, the data analysis was tested for the North Atlantic region where reliable additional constraints are supplied by both controlled-source and earthquake seismology. The study involves comparison of three methods of stress modeling: (1) the traditional modeling approach using a thin sheet approximation; (2) the filtered geoid approach; and (3) the direct utilization of the gravity gradient tensor. Whereas the first two approaches (1)-(2) calculate GPE and utilize a computationally expensive finite element mechanical modeling to calculate stresses, the approach (3) uses a much simpler numerical treatment but requires simplifying assumptions that yet to be tested. The modeled orientation of principal stresses and stress magnitudes by each of the three methods are compared with the World Stress Map.
Constraining the H2 column density distribution at z ˜ 3 from composite DLA spectra
NASA Astrophysics Data System (ADS)
Balashev, S. A.; Noterdaeme, P.
2018-07-01
We present the detection of the average H2 absorption signal in the overall population of neutral gas absorption systems at z˜ 3 using composite absorption spectra built from the Sloan Digital Sky Survey-III damped Lyman α catalogue. We present a new technique to directly measure the H2 column density distribution function f_H_2(N) from the average H2 absorption signal. Assuming a power-law column density distribution, we obtain a slope β = -1.29 ± 0.06(stat) ± 0.10 (sys) and an incidence rate of strong H2 absorptions [with N(H2) ≳ 1018 cm-2] to be 4.0 ± 0.5(stat) ± 1.0 (sys) per cent in H I absorption systems with N(H I) ≥1020 cm-2. Assuming the same inflexion point where f_H_2(N) steepens as at z = 0, we estimate that the cosmological density of H2 in the column density range log N(H_2) (cm^{-2})= 18{-}22 is {˜ } 15 per cent of the total. We find one order of magnitude higher H2 incident rate in a sub-sample of extremely strong damped Lyman α absorption systems (DLAs) [log N(H I) (cm^{-2}) ≥ 21.7], which, together with the derived shape of f_H_2(N), suggests that the typical H I-H2 transition column density in DLAs is log N(H)(cm-2) ≳ 22.3 in agreement with theoretical expectations for the average (low) metallicity of DLAs at high-z.
Constraining the H2 column density distribution at z˜3 from composite DLA spectra
NASA Astrophysics Data System (ADS)
Balashev, S. A.; Noterdaeme, P.
2018-04-01
We present the detection of the average H2 absorption signal in the overall population of neutral gas absorption systems at z ˜ 3 using composite absorption spectra built from the Sloan Digital Sky Survey-III damped Lyman-α catalogue. We present a new technique to directly measure the H2 column density distribution function f_H_2(N) from the average H2 absorption signal. Assuming a power-law column density distribution, we obtain a slope β = -1.29 ± 0.06(stat) ± 0.10 (sys) and an incidence rate of strong H2 absorptions (with N(H2) ≳ 1018 cm-2) to be 4.0 ± 0.5(stat) ± 1.0 (sys) % in H I absorption systems with N(H I)≥1020 cm-2. Assuming the same inflexion point where f_H_2(N) steepens as at z = 0, we estimate that the cosmological density of H2 in the column density range log N(H_2) (cm^{-2})= 18-22 is ˜15% of the total. We find one order of magnitude higher H2 incident rate in a sub-sample of extremely strong DLAs (log N(H I) (cm^{-2}) ≥ 21.7), which, together with the the derived shape of f_H_2(N), suggests that the typical H I-H2 transition column density in DLAs is log N(H)(cm-2) ≳ 22.3 in agreement with theoretical expectations for the average (low) metallicity of DLAs at high-z.
Clustering the Orion B giant molecular cloud based on its molecular emission
NASA Astrophysics Data System (ADS)
Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H.; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R.; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal
2018-02-01
Context. Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). Aims: We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. Methods: We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional probability density function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. Results: A clustering analysis based only on the J = 1-0 lines of three isotopologues of CO proves sufficient to reveal distinct density/column density regimes (nH 100 cm-3, 500 cm-3, and >1000 cm-3), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1-0 line of HCO+ and the N = 1-0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO+ and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO+ intensity ratio in UV-illuminated regions. Finer distinctions in density classes (nH 7 × 103 cm-3, 4 × 104 cm-3) for the densest regions are also identified, likely related to the higher critical density of the CN and HCO+ (1-0) lines. These distinctions are only possible because the high-density regions are spatially resolved. Conclusions: Molecules are versatile tracers of GMCs because their line intensities bear the signature of the physics and chemistry at play in the gas. The association of simultaneous multi-line, wide-field mapping and powerful machine learning methods such as the Meanshift clustering algorithm reveals how to decode the complex information available in these molecular tracers. Data products associated with this paper are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A12 and at http://www.iram.fr/ pety/ORION-B
Ionized gas at the edge of the central molecular zone
NASA Astrophysics Data System (ADS)
Langer, W. D.; Goldsmith, P. F.; Pineda, J. L.; Velusamy, T.; Requena-Torres, M. A.; Wiesemeyer, H.
2015-04-01
Context. The edge of the central molecular zone (CMZ) is the location where massive dense molecular clouds with large internal velocity dispersions transition to the surrounding more quiescent and lower CO emissivity region of the Galaxy. Little is known about the ionized gas surrounding the molecular clouds and in the transition region. Aims: We determine the properties of the ionized gas at the edge of the CMZ near Sgr E using observations of N+ and C+. Methods: We observed a small portion of the edge of the CMZ near Sgr E with spectrally resolved [C ii] 158 μm and [N ii] 205 μm fine structure lines at six positions with the GREAT instrument on SOFIA and in [C ii] using Herschel HIFI on-the-fly strip maps. We use the [N ii] spectra along with a radiative transfer model to calculate the electron density of the gas and the [C ii] maps to illuminate the morphology of the ionized gas and model the column density of CO-dark H2. Results: We detect two [C ii] and [N ii] velocity components, one along the line of sight to a CO molecular cloud at - 207 km s-1 associated with Sgr E and the other at -174 km s-1 outside the edge of another CO cloud. From the [N ii] emission we find that the average electron density is in the range of ~5 to 21 cm-3 for these features. This electron density is much higher than that of the disk's warm ionized medium, but is consistent with densities determined for bright diffuse H ii nebula. The column density of the CO-dark H2 layer in the -207 km s-1 cloud is ~1-2 × 1021 cm-2 in agreement with theoretical models. The CMZ extends further out in Galactic radius by ~7 to 14 pc in ionized gas than it does in molecular gas traced by CO. Conclusions: The edge of the CMZ likely contains dense hot ionized gas surrounding the neutral molecular material. The high fractional abundance of N+ and high electron density require an intense EUV field with a photon flux of order 106 to 107 photons cm-2 s-1, and/or efficient proton charge exchange with nitrogen, at temperatures of order 104 K, and/or a large flux of X-rays. Sgr E is a region of massive star formation as indicated by the presence of numerous compact H ii regions. The massive stars are potential sources of the EUV radiation that ionizes and heat the gas. In addition, X-ray sources and the diffuse X-ray emission in the CMZ are candidates for ionizing nitrogen.
Broeckhoven, Ken; Desmet, Gert
2012-10-05
The maximal gain in efficiency that can be expected from the use of the segmented column end fittings that were recently introduced to alleviate the effect of transcolumn packing density gradients has been quantified and generalized using numerical computations of the band broadening process. It was found that, for an unretained compound in a column with a parabolic packing density gradient, the use of a segmented inlet or a segmented outlet allows to eliminate about 60-100% of the plate height contribution (H(tc)) originating from a parabolic transcolumn velocity gradient in a d(c)=4.6 mm column. In a d(c)=2.1 mm column, these percentages change from 10 to 100%. Using a combined segmented in- and outlet, H(tc) can be reduced by about 90-100% (d(c)=4.6 mm column) or 20-100% (d(c)=2.1 mm column). The strong variation of these gain percentages is due to fact that they depend very strongly on the column length and the flow rate. Dimensionless graphs have been established that allow to directly quantify the effect for each specific case. It was also found that, in agreement with one's physical intuition, trans-column velocity profiles that are more flat in the central region benefit more from the concept than sharp, parabolic-like profiles. The gain margins furthermore tend to become smaller with increasing retention and increasing diffusion coefficient. Copyright © 2012 Elsevier B.V. All rights reserved.
Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges
2014-01-03
The pressure, temperature and density drops along SFC columns eluted with a CO2/methanol mobile phase were measured and compared with theoretical values. For columns packed with 3- and 5-μm particles the pressure and temperature drops were measured using a mobile phase of 95% CO2 and 5% methanol at a flow rate of 5mL/min, at temperatures from 20 to 100°C, and outlet pressures from 80 to 300bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath, either bare or covered with foam insulation. The experimental measurements were compared to theoretical results obtained by numerical simulation. For the convective air condition at outlet pressures above 100bar the average difference between the experimental and calculated temperature drops and pressure drops were 0.1°C and 0.7% for the bare 3-μm column, respectively, and were 0.6°C and 4.1% for the insulated column. The observed temperature drops for the insulated columns are consistent with those predicted by the Joule-Thomson coefficients for isenthalpic expansion. The dependence of the temperature and the pressure drops on the Joule-Thomson coefficient and kinematic viscosity are described for carbon dioxide mobile phases containing up to 20% methanol. Copyright © 2013 Elsevier B.V. All rights reserved.
Galactic cold cores. IX. Column density structures and radiative-transfer modelling
NASA Astrophysics Data System (ADS)
Juvela, M.; Malinen, J.; Montillaud, J.; Pelkonen, V.-M.; Ristorcelli, I.; Tóth, L. V.
2018-06-01
Context. The Galactic Cold Cores (GCC) project has made Herschel photometric observations of interstellar clouds where Planck detected compact sources of cold dust emission. The fields are in different environments and stages of star formation. Aims: Our aim is to characterise the structure of the clumps and their parent clouds, and to study the connections between the environment and the formation of gravitationally bound objects. We also examine the accuracy to which the structure of dense clumps can be determined from sub-millimetre data. Methods: We use standard statistical methods to characterise the GCC fields. Individual clumps are extracted using column density thresholding. Based on sub-millimetre measurements, we construct a three-dimensional radiative transfer (RT) model for each field. These are used to estimate the relative radiation field intensities, to probe the clump stability, and to examine the uncertainty of column density estimates. We examine the structural parameters of the clumps, including their radial column density profiles. Results: In the GCC fields, the structure noise follows the relations previously established at larger scales and in lower-density clouds. The fractal dimension has no significant dependence on column density and the values DP = 1.25 ± 0.07 are only slightly lower than in typical molecular clouds. The column density probability density functions (PDFs) exhibit large variations, for example, in the case of externally compressed clouds. At scales r > 0.1 pc, the radial column density distributions of the clouds follow an average relation of N r-1. In spite of a great variety of clump morphologies (and a typical aspect ratio of 1.5), clumps tend to follow a similar N r-1 relation below r 0.1 pc. RT calculations indicate only factor 2.5 variation in the local radiation field intensity. The fraction of gravitationally bound clumps increases significantly in regions with AV > 5 mag but most bound objects appear to be pressure-confined. Conclusions: The host clouds of the cold clumps in the GCC sample have statistical properties similar to general molecular clouds. The gravitational stability, peak column density, and clump orientation are connected to the cloud background while most other statistical clump properties (e.g. DP and radial profiles) are insensitive to the environment. The study of clump morphology should be continued with a comparison with numerical simulations. Planck (http://www.esa.int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific consortium led and funded by Denmark.Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Maximizing performance in supercritical fluid chromatography using low-density mobile phases.
Gritti, Fabrice; Fogwill, Michael; Gilar, Martin; Jarrell, Joseph A
2016-10-14
The performance of a 3.0mm×150mm column packed with 1.8μm fully porous HSS-SB-C 18 particles was investigated in supercritical fluid chromatography (SFC) with low-density, highly expansible carbon dioxide. These conditions are selected for the analysis of semi-volatile compounds. Elevated temperatures (>100°C) were then combined with low column back pressures (<100bar). In this work, the inlet temperature of pure carbon dioxide was set at 107°C, the active back pressure regulator (ABPR) pressure was fixed at 100bar, and the flow rate was set at 2.1mL/min at 12°C (liquefied carbon dioxide) and at an inlet column pressure close to 300bar. Nine n-alkylbenzenes (from benzene to octadecylbenzene) were injected under linear (no sample overload) conditions. The severe steepness of the temperature gradients across the column diameter were predicted from a simplified heat transfer model. Such conditions dramatically lower the column performance by affecting the symmetry of the peak shape. In order to cope with this problem, three different approaches were experimentally tested. They include (1) the decoupling and the proper selection of the inlet eluent temperature with respect to the oven temperature, (2) the partial thermal insulation of the column using polyethylene aerogel, and (3) the application of a high vacuum (10 -5 Torr provided by a turbo-molecular pump) in a housing chamber surrounding the whole column body. The results reveal that (1) the column efficiency can be maximized by properly selecting the difference between the eluent and the oven temperatures, (2) the mere wrapping of the column with an excellent insulating material is insufficient to fully eliminate heat exchanges by conduction and the undesirable radial density gradients across the column i.d., and (3) the complete thermal insulation of the SFC column under high vacuum allows to maximize the column efficiency by maintaining the integrity of the peak shape. Copyright © 2016 Elsevier B.V. All rights reserved.
Infrared observations of circumstellar ammonia in OH/IR supergiants
NASA Technical Reports Server (NTRS)
Mclaren, R. A.; Betz, A. L.
1980-01-01
Ammonia has been detected in the circumstellar envelopes of VY Canis Majoris, VX Sagittarii, and IRC +10420 by means of several absorption lines in the nu-2 vibration-rotation band near 950 kaysers. The line profiles are well resolved (0.2 km/sec resolution) and show the gas being accelerated to terminal expansion velocities near 30 km/sec. The observations reveal a method for determining the position of the central star on VLBI maps of OH maser emission to an accuracy of approximately 0.2 arcsec. A firm lower limit of 2 x 10 to the 15th/sq cm is obtained for the NH3 column density in VY Canis Majoris.
Direct measurements of tropospheric ozone from TOMS data
NASA Technical Reports Server (NTRS)
Hudson, Robert D.
1993-01-01
In the past year, we have made measurements of the tropospheric total column of ozone during the biomass burning season in Africa (August to October). Fishman et. al. had reported previously that by taking a time average of the low spatial resolution data from TOMS (Total Ozone Mapping Spectrometer) on Nimbus-7 (referred to as the Grid-T data set), during the biomass burning season in Africa, a plume of ozone extends from the East coast of Africa into the Atlantic. In this report, we present an analysis that we have made using the measured TOMS radiances taken from the High Density TOMS data set (referred as the HDT data set), which examines this plume in more detail.
NASA Astrophysics Data System (ADS)
Nguyen-Lu'o'ng, Q.; Motte, F.; Carlhoff, P.; Louvet, F.; Lesaffre, P.; Schilke, P.; Hill, T.; Hennemann, M.; Gusdorf, A.; Didelon, P.; Schneider, N.; Bontemps, S.; Duarte-Cabral, A.; Menten, K. M.; Martin, P. G.; Wyrowski, F.; Bendo, G.; Roussel, H.; Bernard, J.-P.; Bronfman, L.; Henning, T.; Kramer, C.; Heitsch, F.
2013-10-01
The formation of high-mass stars is tightly linked to that of their parental clouds. Here, we focus on the high-density parts of W43, a molecular cloud undergoing an efficient event of star formation. Using a column density image derived from Herschel continuum maps, we identify two high-density filamentary clouds, called the W43-MM1 and W43-MM2 ridges. Both have gas masses of 2.1 × 104 M ⊙ and 3.5 × 104 M ⊙ above >10^{23}\\, {{cm}^{-2}} and within areas of ~6 and ~14 pc2, respectively. The W43-MM1 and W43-MM2 ridges are structures that are coherent in velocity and gravitationally bound, despite their large velocity dispersion measured by the N2H+ (1-0) lines of the W43-HERO IRAM large program. Another intriguing result is that these ridges harbor widespread (~10 pc2) bright SiO (2-1) emission, which we interpret to be the result of low-velocity shocks (<=10 km s-1). We measure a significant relationship between the SiO (2-1) luminosity and velocity extent and show that it distinguishes our observations from the high-velocity shocks associated with outflows. We use state-of-the-art shock models to demonstrate that a small percentage (10%) of Si atoms in low-velocity shocks, observed initially in gas phase or in grain mantles, can explain the observed SiO column density in the W43 ridges. The spatial and velocity overlaps between the ridges of high-density gas and the shocked SiO gas suggest that ridges could be forming via colliding flows driven by gravity and accompanied by low-velocity shocks. This mechanism may be the initial conditions for the formation of young massive clusters.
Molecular column densities in selected model atmospheres. [chemical analysis of carbon stars
NASA Technical Reports Server (NTRS)
Johnson, H. R.; Beebe, R. F.; Sneden, C.
1974-01-01
From an examination of predicted column densities, the following conclusions were drawn: (1) The SiO ought to be visible in carbon stars which were generated from triple alpha burning, but absent from carbon stars generated from the CNO bi-cycle. (2) Variation in the observed relative strengths of TiO and ZrO is indicative of real differences in the ratio Ti/Zr. (3) The TiO/ZrO ratio shows a small variation as C/O and effective temperature is changed. (4) Column density of silicon dicarbide (SiC2) is sensitive to abundance, temperature, and gravity; hence all relationships between the strength of SiC2 and other stellar parameters will show appreciable scatter. There is however, a substantial luminosity effect present in the SiC2 column densities. (5) Unexpectedly, SiC2 is anti-correlated with C2. (6) The presence of SiC2 in a carbon star eliminates the possibility of these stars having temperatures greater than or equal to 3000 K, or being produced through the CNO bi-cycle.
MacArthur, Katherine E; Brown, Hamish G; Findlay, Scott D; Allen, Leslie J
2017-11-01
Advances in microscope stability, aberration correction and detector design now make it readily possible to achieve atomic resolution energy dispersive X-ray mapping for dose resilient samples. These maps show impressive atomic-scale qualitative detail as to where the elements reside within a given sample. Unfortunately, while electron channelling is exploited to provide atomic resolution data, this very process makes the images rather more complex to interpret quantitatively than if no electron channelling occurred. Here we propose small sample tilt as a means for suppressing channelling and improving quantification of composition, whilst maintaining atomic-scale resolution. Only by knowing composition and thickness of the sample is it possible to determine the atomic configuration within each column. The effects of neighbouring atomic columns with differing composition and of residual channelling on our ability to extract exact column-by-column composition are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Modality-based organization of ascending somatosensory axons in the direct dorsal column pathway.
Niu, Jingwen; Ding, Long; Li, Jian J; Kim, Hyukmin; Liu, Jiakun; Li, Haipeng; Moberly, Andrew; Badea, Tudor C; Duncan, Ian D; Son, Young-Jin; Scherer, Steven S; Luo, Wenqin
2013-11-06
The long-standing doctrine regarding the functional organization of the direct dorsal column (DDC) pathway is the "somatotopic map" model, which suggests that somatosensory afferents are primarily organized by receptive field instead of modality. Using modality-specific genetic tracing, here we show that ascending mechanosensory and proprioceptive axons, two main types of the DDC afferents, are largely segregated into a medial-lateral pattern in the mouse dorsal column and medulla. In addition, we found that this modality-based organization is likely to be conserved in other mammalian species, including human. Furthermore, we identified key morphological differences between these two types of afferents, which explains how modality segregation is formed and why a rough "somatotopic map" was previously detected. Collectively, our results establish a new functional organization model for the mammalian direct dorsal column pathway and provide insight into how somatotopic and modality-based organization coexist in the central somatosensory pathway.
Multi-wavelength campaign on NGC 7469. II. Column densities and variability in the X-ray spectrum
NASA Astrophysics Data System (ADS)
Peretz, U.; Behar, E.; Kriss, G. A.; Kaastra, J.; Arav, N.; Bianchi, S.; Branduardi-Raymont, G.; Cappi, M.; Costantini, E.; De Marco, B.; Di Gesu, L.; Ebrero, J.; Kaspi, S.; Mehdipour, M.; Middei, R.; Paltani, S.; Petrucci, P. O.; Ponti, G.; Ursini, F.
2018-01-01
We have investigated the ionic column density variability of the ionized outflows associated with NGC 7469, to estimate their location and power. This could allow a better understanding of galactic feedback of AGNs to their host galaxies. Analysis of seven XMM-Newton grating observations from 2015 is reported. We used an individual-ion spectral fitting approach, and compared different epochs to accurately determine variability on timescales of years, months, and days. We find no significant column density variability in a ten-year period implying that the outflow is far from the ionizing source. The implied lower bound on the ionization equilibrium time, ten years, constrains the lower limit on the distance to be at least 12 pc, and up to 31 pc, much less but consistent with the 1 kpc wide starburst ring. The ionization distribution of column density is reconstructed from measured column densities, nicely matching results of two 2004 observations, with one large high ionization parameter (ξ) component at 2 < log ξ< 3.5, and one at 0.5 < log ξ< 1 in cgs units. The strong dependence of the expression for kinetic power, ∝ 1 /ξ, hampers tight constraints on the feedback mechanism of outflows with a large range in ionization parameter, which is often observed and indicates a non-conical outflow. The kinetic power of the outflow is estimated here to be within 0.4 and 60% of the Eddington luminosity, depending on the ion used to estimate ξ.
THE DARKEST SHADOWS: DEEP MID-INFRARED EXTINCTION MAPPING OF A MASSIVE PROTOCLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Michael J.; Tan, Jonathan C.; Kainulainen, Jouni
We use deep 8 μm Spitzer-IRAC imaging of massive Infrared Dark Cloud (IRDC) G028.37+00.07 to construct a mid-infrared (MIR) extinction map that probes mass surface densities up to Σ ∼ 1 g cm{sup –2} (A{sub V} ∼ 200 mag), amongst the highest values yet probed by extinction mapping. Merging with an NIR extinction map of the region creates a high dynamic range map that reveals structures down to A{sub V} ∼ 1 mag. We utilize the map to: (1) measure a cloud mass ∼7 × 10{sup 4} M {sub ☉} within a radius of ∼8 pc. {sup 13}CO kinematics indicate thatmore » the cloud is gravitationally bound. It thus has the potential to form one of the most massive young star clusters known in the Galaxy. (2) Characterize the structures of 16 massive cores within the IRDC, finding they can be fit by singular polytropic spheres with ρ∝r{sup −k{sub ρ}} and k {sub ρ} = 1.3 ± 0.3. They have Σ-bar ≃0.1--0.4 g cm{sup −2}—relatively low values that, along with their measured cold temperatures, suggest that magnetic fields, rather than accretion-powered radiative heating, are important for controlling fragmentation of these cores. (3) Determine the Σ (equivalently column density or A{sub V} ) probability distribution function (PDF) for a region that is nearly complete for A{sub V} > 3 mag. The PDF is well fit by a single log-normal with mean A-bar {sub V}≃9 mag, high compared to other known clouds. It does not exhibit a separate high-end power law tail, which has been claimed to indicate the importance of self-gravity. However, we suggest that the PDF does result from a self-similar, self-gravitating hierarchy of structures present over a wide range of scales in the cloud.« less
NASA Astrophysics Data System (ADS)
Kainulainen, J.; Juvela, M.; Alves, J.
2007-06-01
The giant molecular clouds (GMCs) of external galaxies can be mapped with sub-arcsecond resolution using multiband observations in the near-infrared. However, the interpretation of the observed reddening and attenuation of light, and their transformation into physical quantities, is greatly hampered by the effects arising from the unknown geometry and the scattering of light by dust particles. We examine the relation between the observed near-infrared reddening and the column density of the dust clouds. In this paper we particularly assess the feasibility of deriving the mass function of GMCs from near-infrared color excess data. We perform Monte Carlo radiative transfer simulations with 3D models of stellar radiation and clumpy dust distributions. We include the scattered light in the models and calculate near-infrared color maps from the simulated data. The color maps are compared with the true line-of-sight density distributions of the models. We extract clumps from the color maps and compare the observed mass function to the true mass function. For the physical configuration chosen in this study, essentially a face-on geometry, the observed mass function is a non-trivial function of the true mass function with a large number of parameters affecting its exact form. The dynamical range of the observed mass function is confined to 103.5dots 105.5 M_⊙ regardless of the dynamical range of the true mass function. The color maps are more sensitive in detecting the high-mass end of the mass function, and on average the masses of clouds are underestimated by a factor of ˜ 10 depending on the parameters describing the dust distribution. A significant fraction of clouds is expected to remain undetected at all masses. The simulations show that the cloud mass function derived from JHK color excess data using simple foreground screening geometry cannot be regarded as a one-to-one tracer of the underlying mass function.
Physical properties of Southern infrared dark clouds
NASA Astrophysics Data System (ADS)
Vasyunina, T.; Linz, H.; Henning, Th.; Stecklum, B.; Klose, S.; Nyman, L.-Å.
2009-05-01
Context: What are the mechanisms by which massive stars form? What are the initial conditions for these processes? It is commonly assumed that cold and dense Infrared Dark Clouds (IRDCs) represent the birth-sites of massive stars. Therefore, these clouds have been receiving an increasing amount of attention, and their analysis offers the opportunity to tackle the afore mentioned questions. Aims: To enlarge the sample of well-characterised IRDCs in the southern hemisphere, where ALMA will play a major role in the near future, we have developed a program to study the gas and dust of southern infrared dark clouds. The present paper attempts to characterize the continuum properties of this sample of IRDCs. Methods: We cross-correlated 1.2 mm continuum data from SIMBA bolometer array mounted on SEST telescope with Spitzer/GLIMPSE images to establish the connection between emission sources at millimeter wavelengths and the IRDCs that we observe at 8 μm in absorption against the bright PAH background. Analysing the dust emission and extinction enables us to determine the masses and column densities, which are important quantities in characterizing the initial conditions of massive star formation. We also evaluated the limitations of the emission and extinction methods. Results: The morphology of the 1.2 mm continuum emission is in all cases in close agreement with the mid-infrared extinction. The total masses of the IRDCs were found to range from 150 to 1150 M_⊙ (emission data) and from 300 to 1750 M_⊙ (extinction data). We derived peak column densities of between 0.9 and 4.6 × 1022 cm-2 (emission data) and 2.1 and 5.4 × 1022 cm-2 (extinction data). We demonstrate that the extinction method is unreliable at very high extinction values (and column densities) beyond AV values of roughly 75 mag according to the Weingartner & Draine (2001) extinction relation RV = 5.5 model B (around 200 mag when following the common Mathis (1990, ApJ, 548, 296) extinction calibration). By taking the spatial resolution effects into account and restoring the column densities derived from the dust emission to a linear resolution of 0.01 pc, peak column densities of 3-19 × 1023 cm-2 are obtained, which are much higher than typical values for low-mass cores. Conclusions: Taking into account the spatial resolution effects, the derived column densities are beyond the column density threshold of 3.0 × 1023 cm-2 required by theoretical considerations for massive star formation. We conclude that the values of column densities derived for the selected IRDC sample imply that these objects are excellent candidates for objects in the earliest stages of massive star formation.
Post, R.F.
1962-09-01
A method and means are described for injecting energetic neutral atoms or molecular ions into dense magnetically collimated plasma columns of stellarators and the like in such a manner that the atoms or ions are able to significantly penetrate the column before being ionized by collision with the plasma constituent particles. Penetration of the plasma column by the neutral atoms or molecular ions is facilitated by superposition of two closely spaced magnetic mirrors on the plasma confinement field. The mirrors are moved apart to magnetically sweep plasma from a region between the mirrors and establish a relatively low plasma density therein. By virture of the low density, neutral atoms or molecular ions injected into the region significantly penetrate the plasma column before being ionized. Thereafter, the mirrors are diminished to permit the injected material to admix with the plasma in the remainder of the column. (AEC)
NASA Astrophysics Data System (ADS)
Soltanmoradi, Elmira; Shokri, Babak
2017-05-01
In this article, the electromagnetic wave scattering from plasma columns with inhomogeneous electron density distribution is studied by the Green's function volume integral equation method. Due to the ready production of such plasmas in the laboratories and their practical application in various technological fields, this study tries to find the effects of plasma parameters such as the electron density, radius, and pressure on the scattering cross-section of a plasma column. Moreover, the incident wave frequency influence of the scattering pattern is demonstrated. Furthermore, the scattering cross-section of a plasma column with an inhomogeneous collision frequency profile is calculated and the effect of this inhomogeneity is discussed first in this article. These results are especially used to determine the appropriate conditions for radar cross-section reduction purposes. It is shown that the radar cross-section of a plasma column reduces more for a larger collision frequency, for a relatively lower plasma frequency, and also for a smaller radius. Furthermore, it is found that the effect of the electron density on the scattering cross-section is more obvious in comparison with the effect of other plasma parameters. Also, the plasma column with homogenous collision frequency can be used as a better shielding in contrast to its inhomogeneous counterpart.
Temporal and spatial distribution of metallic species in the upper atmosphere
NASA Astrophysics Data System (ADS)
Correira, John Thomas
2009-06-01
Every day the Earth is bombarded by approximately 100 tons of meteoric material. Much of this material is completely ablated on atmospheric entry, resulting in a layer of atomic metals in the upper atmosphere between 70 km - 150 km. These neutral atoms are ionized by solar radiation and charge exchange. Metal ions have a long lifetime against recombination loss, allowing them to be redistributed globally by electromagnetic forces, especially when lifted to altitudes >150 km. UV radiances from the Global Ozone Monitoring Experiment (GOME) spectrometer are used to determine long-term dayside variations of the total vertical column density below 795 km of the meteoric metal species Mg and Mg + in the upper atmosphere. A retrieval algorithm developed to determine magnesium column densities was applied to all available data from the years 1996-2001. Long term results show middle latitude dayside Mg + peaks in vertical content during the summer, while neutral Mg demonstrates a much more subtle maximum in summer. Atmospheric metal concentrations do not correlate strongly solar activity. An analysis of spatial variations shows geospatial distributions are patchy, with local regions of increased column density. To study short term variations and the role of meteor showers a time dependent mass flux rate is calculated using published estimates of meteor stream mass densities and activity profiles. An average daily mass flux rate is also calculated and used as a baseline against which shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal column densities. There appears to be little correlation between modeled meteor shower mass flux rates and changes in the observed neutral magnesium and Mg + metal column densities.
Coupled Leidenfrost states as a monodisperse granular clock
NASA Astrophysics Data System (ADS)
Liu, Rui; Yang, Mingcheng; Chen, Ke; Hou, Meiying; To, Kiwing
2016-08-01
Using an event-driven molecular dynamics simulation, we show that simple monodisperse granular beads confined in coupled columns may oscillate as a different type of granular clock. To trigger this oscillation, the system needs to be driven against gravity into a density-inverted state, with a high-density clustering phase supported from below by a gaslike low-density phase (Leidenfrost effect) in each column. Our analysis reveals that the density-inverted structure and the relaxation dynamics between the phases can amplify any small asymmetry between the columns, and lead to a giant oscillation. The oscillation occurs only for an intermediate range of the coupling strength, and the corresponding phase diagram can be universally described with a characteristic height of the density-inverted structure. A minimal two-phase model is proposed and a linear stability analysis shows that the triggering mechanism of the oscillation can be explained as a switchable two-parameter Andronov-Hopf bifurcation. Numerical solutions of the model also reproduce similar oscillatory dynamics to the simulation results.
Deuterated methanol map towards L1544
NASA Astrophysics Data System (ADS)
Chacón-Tanarro, A.; Caselli, P.; Bizzocchi, L.; Pineda, J. E.; Spezzano, S.; Giuliano, B. M.; Lattanzi, V.; Punanova, A.
Pre-stellar cores are self-gravitating starless dense cores with clear signs of contraction and chemical evolution (Crapsi et al. 2005), considered to represent the initial conditions in the process of star formation (Caselli & Ceccarelli 2012). Theoretical studies predict that CO is one of the precursors of complex organic molecules (COMs) during this cold and dense phase (Tielens et al. 1982; Watanabe et al. 2002). Moreover, when CO starts to deplete onto dust grains (at densities of a few 104 cm-3), the formation of deuterated species is enhanced, as CO accelerates the destruction of important precursors of deuterated molecules (Dalgarno & Lepp 1984). Here, we present the CH_2DOH/CH_3OH column density map toward the pre-stellar core L1544 (Chacón-Tanarro et al., in prep.), taken with the IRAM 30 m antenna. The results are compared with the C17O (1-0) distribution across L1544. As methanol is formed on dust grains via hydrogenation of frozen-out CO, this work allows us to measure the deuteration on surfaces and compared it with gas phase deuteration, as well as CO freeze-out and dust properties. This is important to shed light on the basic chemical processes just before the formation of a stellar system.
Satellite Investigation of Atmospheric Metal Deposition During Meteor Showers
NASA Astrophysics Data System (ADS)
Correira, J.; Aikin, A. C.; Grebowsky, J. M.
2008-12-01
Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the magnesium column densities and any connection to possible enhanced mass deposition during a meteor shower. We derive a time dependent mass flux rate due to meteor showers using published estimates of mass density and activity profiles of meteor showers. An average daily mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal column densities from the years 1996 - 2001.There appears to be little correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.
Effects of Coulomb collisions on cyclotron maser and plasma wave growth in magnetic loops
NASA Technical Reports Server (NTRS)
Hamilton, Russell J.; Petrosian, Vahe
1990-01-01
The evolution of nonthermal electrons accelerated in magnetic loops is determined by solving the kinetic equation, including magnetic field convergence and Coulomb collisions in order to determine the effects of these interactions on the induced cyclotron maser and plasma wave growth. It is found that the growth rates are larger and the possibility of cyclotron maser action is stronger for smaller loop column density, for larger magnetic field convergence, for a more isotropic injected electron pitch angle distribution, and for more impulsive acceleration. For modest values of the column density in the coronal portion of a flaring loop, the growth rates of instabilities are significantly reduced, and the reduction is much larger for the cyclotron modes than for the plasma wave modes. The rapid decrease in the growth rates with increasing loop column density suggests that, in flare loops when such phenomena occur, the densities are lower than commonly accepted.
NASA Technical Reports Server (NTRS)
Livengood, T. A.; Strobel, D. F.; Moos, H. W.
1990-01-01
The wavelength-dependent absorption apparent in IUE spectra of the north Jovian aurora is analyzed to determine the column density of hydrocarbons above the altitude of the FUV auroral emission. Both the magnetotail and torus auroral zone models are considered in estimating zenith angles, with very similar results obtained for both models. It is found that the hydrocarbon column density above the FUV emission displays a consistent dependence on magnetic longitude, with the peak density occurring approximately coincident with the peak in the observed auroral intensity. Two distinct scenarios for the longitude dependence of the column density are discussed. In one, the Jovian upper atmosphere is longitudinally homogeneous, and the variation in optical depth is due to a variation in penetration, and thus energy, of the primary particles. In the other, the energy of the primaries is longitudinally homogeneous, and it is aeronomic properties which change, probably due to auroral heating.
Condensation and Vaporization Studies of CH3OH and NH3 Ices: Major Implications for Astrochemistry
NASA Technical Reports Server (NTRS)
Sandford, Scott A.; Allamandola, Louis J.
1993-01-01
In an extension of previously reported work on ices containing H20, CO, CO2, SO2, H2S, and H2, We present measurements of the physical and infrared spectral properties of ices containing CH30H and NH3.The condensation and sublimation behavior of these ice systems is discussed and surface binding energies are presented for all of these molecules. The surface binding energies can be used to calculate the residence times of the molecules on grain surfaces as a function of temperature. It is demonstrated that many of the molecules used to generate radio maps of and probe conditions in dense clouds, for example CO and NH3, will be significantly depleted from the gas phase by condensation onto dust grains. Attempts to derive total column densities solely from radio maps that do not take condensation effects into account may vastly underestimate the true column densities of any given species. Simple CO condensation onto and vaporization off of grains appears to be capable of explaining the observed 87 of gas phase CO in cold, dense molecular cores. This is not the case for NH3, however, where thermal considerations alone predict that all of the NH3 should be condensed onto grains. The fact that some gas phase NH3 is observed indicates that additional desorption processes must be involved. The surface binding energies of CH3OH, in conjunction with this molecule's observed behavior during warm up in H2O-rich ices, is shown to provide an explanation of the large excess of CH3OH seen in many warm, dense molecular cores. The near-infrared spectrum and associated integrated band strengths of CH3OH-containing ice are given, as are middle infrared absorption band strengths for both CH3OH and NH3.
Condensation and vaporization studies of CH3OH and NH3 ices: Major implications for astrochemistry
NASA Technical Reports Server (NTRS)
Sandford, Scott A.; Allamandola, Louis J.
1993-01-01
In an extension of previously reported work on ices containing H2O, CO, CO2, SO2, H2S, and H2, we present measurements of the physical and infrared spectral properties of ices containing CH3OH and NH3. The condensation and sublimation behavior of these ice systems is discussed and surface binding energies are presented for all of these molecules. The surface binding energies can be used to calculate the residence times of the molecules on grain surfaces as a function of temperature. It is demonstrated that many of the molecules used to generate radio maps of and probe conditions in dense clouds, for example CO and NH3, will be significantly depleted from the gas phase by condensation onto dust grains. Attempts to derive total column densities solely from radio maps that do not take condensation effects into account may vastly underestimate the true column densities of any given species. Simple CO condensation onto and vaporization off of grains appears to be capable of explaining the observed depletion of gas phase CO in cold, dense molecular cores. This is not the case for NH3, however, where thermal considerations alone predict that all of the NH3 should be condensed onto grains. The fact that some gas phase NH3 is observed indicates that additional desorption processes must be involved. The surface binding energies of CH3OH, in conjunction with this molecule's observed behavior during warm up in H2O-rich ices, is shown to provide an explanation of the large excess of CH3OH seen in many warm, dense molecular cores. The near-infrared spectrum and associated integrated band strengths of CH3OH-containing ice are given, as are middle infrared absorption band strengths for both CH3OH and NH3.
NASA Astrophysics Data System (ADS)
Racz, I. I.; Bagoly, Z.; Tóth, L. V.; Balázs, L. G.; Horvath, I.; Zahorecz, S.
2018-05-01
Gamma-ray bursts (GRBs) are the most powerful explosive events in the Universe. The prompt gamma emission is followed by an X-ray afterglow that is also detected for over nine hundred GRBs by the Swift BAT and XRT detectors. The X-ray afterglow spectrum bears essential information about the burst, and the surrounding interstellar medium (ISM). Since the radiation travels through the line of sight intergalactic medium and the ISM in the Milky Way, the observed emission is influenced by extragalactic and galactic components. The column density of the Galactic foreground ranges several orders of magnitudes, due to both the large scale distribution of ISM and its small scale structures. We examined the effect of local HI column density on the penetrating X-ray emission, as the first step towards a precise modeling of the measured X-ray spectra. We fitted the X-ray spectra using the Xspec software, and checked how the shape of the initially power low spectrum changes with varying input Galactic HI column density. The total absorbing HI column is a sum of the intrinsic and Galactic component. We also investigated the model results for the intrinsic component varying the Galactic foreground. We found that such variations may alter the intrinsic hydrogen column density up to twenty-five percent. We will briefly discuss its consequences.
A 2MASS Analysis of the Stability and Star Formation in Southern Bok Globules
NASA Astrophysics Data System (ADS)
Racca, G. A.; de La Reza, R.
2006-06-01
Bok globules are the simplest molecular clouds in which the study of low-mass star formation is not affected by disruptive phenomena that occur in other clouds that are actively forming low- and high-mass stars. The Two Micron All Sky Survey (2MASS) offer a great possibility to survey these clouds in the near-infrared distributed along the Galaxy. In this work we present extinction maps of Southern Bok globules from the catalog of Bourke, Hyland & Robinson (1995) constructed from extincted background stars in the 2MASS JHK_s bands. The radial distribution of column density obtained from these maps are then modeled with different solutions that arise from several models of the gravitational collapse of molecular clouds cores. We adjust these profiles with Bonnor-Ebert spheres, negative-index polytropes and a simple power-law. This work will help constrain the early stages of the process of isolated star formation of low-mass stars.
Astronomy in Denver: Spatial distributions of dust properties via far-IR broadband map with HerPlaNS
NASA Astrophysics Data System (ADS)
Asano, Kentaro; Ueta, Toshiya; Ladjal, Djazia; Exter, Katrina; Otsuka, Masaaki; HerPlaNS Consortium
2018-06-01
We present the results of our analyses on dust properties in all of Galactic planetary nebulae based on 5-band broadband images in the far-IR taken with the Herschel Space Observatory.By fitting surface brightness distributions of dust thermal emission at 70, 160, 250, 350 and 500 microns with a single-temperature modified black body function, we derive spatially resolved maps of the dust emissivity power-law index (beta) and dust temperature (Td), as well as the column density.We find that circumstellar dust grains in PNe occupy a specific region in the beta-Td space, which is distinct from that occupied by dust grains in the Interstellar Matter (ISM) and star forming regions (SFRs). Unlike those in the ISM and SFRs, dust grains in PNe exhibit little variation in beta while a large spread in Td, suggesting rather homogeneous dust properties.This work is part of the Herschel Planetary Nebula Survey Plus (HerPlaNS+) supported by the NASA Astrophysics Data Analysis Program.
Physical conditions in CaFe interstellar clouds
NASA Astrophysics Data System (ADS)
Gnaciński, P.; Krogulec, M.
2008-01-01
Interstellar clouds that exhibit strong Ca I and Fe I lines are called CaFe clouds. Ionisation equilibrium equations were used to model the column densities of Ca II, Ca I, K I, Na I, Fe I and Ti II in CaFe clouds. We find that the chemical composition of CaFe clouds is solar and that there is no depletion into dust grains. CaFe clouds have high electron densities, n_e≈1 cm-3, that lead to high column densities of neutral Ca and Fe.
The dependence of gamma-ray burst X-ray column densities on the model for Galactic hydrogen
NASA Astrophysics Data System (ADS)
Arcodia, R.; Campana, S.; Salvaterra, R.
2016-05-01
We study the X-ray absorption of a complete sample of 99 bright Swift gamma-ray bursts (GRBs). In recent years, a strong correlation has been found between the intrinsic X-ray absorbing column density (NH(z)) and the redshift. This absorption excess in high-z GRBs is now thought to be due to the overlooked contribution of the absorption along the intergalactic medium (IGM), by means of both intervening objects and the diffuse warm-hot intergalactic medium along the line of sight. In this work we neglect the absorption along the IGM, because our purpose is to study the eventual effect of a radical change in the Galactic absorption model on the NH(z) distribution. Therefore, we derive the intrinsic absorbing column densities using two different Galactic absorption models: the Leiden Argentine Bonn HI survey and the more recent model that includes molecular hydrogen. We find that if, on the one hand, the new Galactic model considerably affects the single column density values, on the other hand, there is no drastic change in the distribution as a whole. It becomes clear that the contribution of Galactic column densities alone, no matter how improved, is not sufficient to change the observed general trend and it has to be considered as a second order correction. The cosmological increase of NH(z) as a function of redshift persists and, to explain the observed distribution, it is necessary to include the contribution of both the diffuse intergalactic medium and the intervening systems along the line of sight of the GRBs.
NASA Astrophysics Data System (ADS)
Hozumi, Yuta; Saito, Akinori; Yoshikawa, Ichiro; Yamazaki, Atsushi; Murakami, Go; Yoshioka, Kazuo; Chen, Chia-Hung
2017-07-01
The global distribution of He+ in the topside ionosphere was investigated using data of the He+ resonant scattering emission at 30.4 nm obtained by the Extreme Ultra Violet Imager (EUVI) onboard the International Space Station. The optical observation by EUVI from the low-Earth orbit provides He+ column density data above the altitude of 400 km, presenting a unique opportunity to study the He+ distribution with a different perspective from that of past studies using data from in situ measurements. We analyzed data taken in 2013 and elucidated, for the first time, the seasonal, longitudinal, and latitudinal variations of the He+ column density in the dusk sector. It was found that the He+ column density in the winter hemisphere was about twice that in the summer hemisphere. In the December solstice season, the magnitude of this hemispheric asymmetry was large (small) in the longitudinal sector where the geomagnetic declination is eastward (westward). In the June solstice season, this relationship between the He+ distribution and the geomagnetic declination is reversed. In the equinox seasons, the He+ column densities in the two hemispheres are comparable at most longitudes. The seasonal and longitudinal dependence of the hemispheric asymmetry of the He+ distribution was attributed to the geomagnetic meridional neutral wind in the F region ionosphere. The neutral wind effect on the He+ distribution was examined with an empirical neutral wind model, and it was confirmed that the transport of ions in the topside ionosphere is predominantly affected by the F region neutral wind and the geomagnetic configuration.
NASA Astrophysics Data System (ADS)
Cao, Robin; Braun, Jochen; Mattia, Maurizio
2014-08-01
The timing of certain mental events is thought to reflect random walks performed by underlying neural dynamics. One class of such events—stochastic reversals of multistable perceptions—exhibits a unique scalar property: even though timing densities vary widely, higher moments stay in particular proportions to the mean. We show that stochastic accumulation of activity in a finite number of idealized cortical columns—realizing a generalized Ehrenfest urn model—may explain these observations. Modeling stochastic reversals as the first-passage time of a threshold number of active columns, we obtain higher moments of the first-passage time density. We derive analytical expressions for noninteracting columns and generalize the results to interacting columns in simulations. The scalar property of multistable perception is reproduced by a dynamic regime with a fixed, low threshold, in which the activation of a few additional columns suffices for a reversal.
The structure of the Cepheus E protostellar outflow: The jet, the bowshock, and the cavity
NASA Astrophysics Data System (ADS)
Lefloch, B.; Gusdorf, A.; Codella, C.; Eislöffel, J.; Neri, R.; Gómez-Ruiz, A. I.; Güsten, R.; Leurini, S.; Risacher, C.; Benedettini, M.
2015-09-01
Context. Protostellar outflows are a crucial ingredient of the star-formation process. However, the physical conditions in the warm outflowing gas are still poorly known. Aims: We present a multi-transition, high spectral resolution CO study of the outflow of the intermediate-mass Class 0 protostar Cep E-mm. The goal is to determine the structure of the outflow and to constrain the physical conditions of the various components in order to understand the origin of the mass-loss phenomenon. Methods: We have observed the J = 12-11, J = 13-12, and J = 16-15 CO lines at high spectral resolution with SOFIA/GREAT and the J = 5-4, J = 9-8, and J = 14-13 CO lines with HIFI/Herschel towards the position of the terminal bowshock HH377 in the southern outflow lobe. These observations were complemented with maps of CO transitions obtained with the IRAM 30 m telescope (J = 1-0, 2-1), the Plateau de Bure interferometer (J = 2-1), and the James Clerk Maxwell Telescope (J = 3-2, 4-3). Results: We identify three main components in the protostellar outflow: the jet, the cavity, and the bowshock, with a typical size of 1.7″ × 21″, 4.5″, and 22″ × 10″, respectively. In the jet, the emission from the low-J CO lines is dominated by a gas layer at Tkin = 80-100 K, column density N(CO) = 9 × 1016 cm-2, and density n(H2) = (0.5-1) × 105 cm-3; the emission of the high-J CO lines arises from a warmer (Tkin = 400-750 K), denser (n(H2) = (0.5-1) × 106 cm-3), lower column density (N(CO) = 1.5 × 1016 cm-2) gas component. Similarly, in the outflow cavity, two components are detected: the emission of the low-J lines is dominated by a gas layer of column density N(CO) = 7 × 1017 cm-2 at Tkin = 55-85 K and density in the range (1-8) × 105 cm-3; the emission of the high-J lines is dominated by a hot, denser gas layer with Tkin = 500-1500K, n(H2) = (1-5) × 106 cm-3, and N(CO) = 6 × 1016 cm-2. A temperature gradient as a function of the velocity is found in the high-excitation gas component. In the terminal bowshock HH377, we detect gas of moderate excitation, with a temperature in the range Tkin ≈ 400-500 K, density n(H2) ≃ (1 -2) × 106 cm-3 and column density N(CO) = 1017 cm-2. The amounts of momentum carried away in the jet and in the entrained ambient medium are similar. Comparison with time-dependent shock models shows that the hot gas emission in the jet is well accounted for by a magnetized shock with an age of 220-740 yr propagating at 20-30 km s-1 in a medium of density n(H2) = (0.5-1) × 105 cm-3, consistent with that of the bulk material. Conclusions: The Cep E protostellar outflow appears to be a convincing case of jet bowshock driven outflow. Our observations trace the recent impact of the protostellar jet into the ambient cloud, produing a non-stationary magnetized shock, which drives the formation of an outflow cavity. Appendices are available in electronic form at http://www.aanda.org
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaczmarski, Krzysztof; Guiochon, Georges A
2011-01-01
In supercritical fluid chromatography (SFC), the significant expansion of the mobile phase along the column causes the formation of axial and radial gradients of temperature. Due to these gradients, the mobile phase density, its viscosity, its velocity, its diffusion coefficients, etc. are not constant throughout the column. This results in a nonuniform flow velocity distribution, itself causing a loss of column efficiency in certain cases, even at low flow rates, as they do in HPLC. At high flow rates, an important deformation of the elution profiles of the sample components may occur. The model previously used to account satisfactorily formore » the retention of an unsorbed solute in SFC is applied to the modeling of the elution peak profiles of retained compounds. The numerical solution of the combined heat and mass balance equations provides the temperature and the pressure profiles inside the column and values of the retention time and the band profiles of retained compounds that are in excellent agreement with independent experimental data for large value of mobile phase reduced density. At low reduced densities, the band profiles can strongly depend on the column axial distribution of porosity.« less
High-field fMRI unveils orientation columns in humans.
Yacoub, Essa; Harel, Noam; Ugurbil, Kâmil
2008-07-29
Functional (f)MRI has revolutionized the field of human brain research. fMRI can noninvasively map the spatial architecture of brain function via localized increases in blood flow after sensory or cognitive stimulation. Recent advances in fMRI have led to enhanced sensitivity and spatial accuracy of the measured signals, indicating the possibility of detecting small neuronal ensembles that constitute fundamental computational units in the brain, such as cortical columns. Orientation columns in visual cortex are perhaps the best known example of such a functional organization in the brain. They cannot be discerned via anatomical characteristics, as with ocular dominance columns. Instead, the elucidation of their organization requires functional imaging methods. However, because of insufficient sensitivity, spatial accuracy, and image resolution of the available mapping techniques, thus far, they have not been detected in humans. Here, we demonstrate, by using high-field (7-T) fMRI, the existence and spatial features of orientation- selective columns in humans. Striking similarities were found with the known spatial features of these columns in monkeys. In addition, we found that a larger number of orientation columns are devoted to processing orientations around 90 degrees (vertical stimuli with horizontal motion), whereas relatively similar fMRI signal changes were observed across any given active column. With the current proliferation of high-field MRI systems and constant evolution of fMRI techniques, this study heralds the exciting prospect of exploring unmapped and/or unknown columnar level functional organizations in the human brain.
CO Column Density and Extinction in the Chamaeleon II--III Dark-Cloud Complex
NASA Astrophysics Data System (ADS)
Hayakawa, Takahiro; Cambrésy, Laurent; Onishi, Toshikazu; Mizuno, Akira; Fukui, Yasuo
2001-12-01
We carried out 13CO (J = 1 -- 0) and C18O (J = 1 -- 0) observations of the Chamaeleon II--III dark-cloud complex with the NANTEN radio telescope. The column densities of both molecular isotopes were derived assuming LTE. The AV values were obtained by scaling the AV values that were derived using an adaptive-grid star-count method applied to the DENIS J-band data. We established the AV--CO isotope column-density relations in Cha II and III, and compared them with those in Cha I. The slopes of the AV--13CO relations for Cha II and III are steeper than that for Cha I. Those of the AV -- C18O relations are similar among the three clouds. The total column density ratio, N(13O) / N(C18O, in Cha I tends to be small compared with those in Cha II or Cha III; the ratios range from ~ 5 to ~ 25 at low extinction in Cha II and III, but at most ~ 10 in Cha I. We suggest that the increase of N(13CO) due to the 13CO formation process causes cloud-to-cloud variations in the AV -- N(13CO) correlation.
Lin, Zian; Yang, Fan; He, Xiwen; Zhao, Xiaomiao; Zhang, Yukui
2009-12-04
A novel type of macroporous molecularly imprinted hybrid silica monolithic column was first developed for recognition of proteins. The macroporous silica-based monolithic skeleton was synthesized in a 4.6mm i.d. stainless steel column by a mild sol-gel process with methyltrimethoxysilane (MTMS) as a sole precursor, and then vinyl groups were introduced onto the surface of the silica skeleton by chemical modification of gamma-methacryloxypropyltrimethoxysilane (gamma-MAPS). Subsequently, the molecularly imprinted polymer (MIP) coating was copolymerized and anchored onto the surface of the silica monolith. Bovine serum albumin (BSA) and lysozyme (Lyz), which differ greatly in molecular size, isoelectric point, and charge, were representatively selected for imprinted templates to evaluate recognition property of the hybrid silica-based MIP monolith. Some important factors, such as template-monomer molar ratio, total monomer concentration and crosslinking density, were systematically investigated. Under the optimum conditions, the obtained hybrid silica-based MIP monolith showed higher binding affinity for template than its corresponding non-imprinted (NIP) monolith. The imprinted factor (IF) for BSA and Lyz reached 9.07 and 6.52, respectively. Moreover, the hybrid silica-based MIP monolith displayed favorable binding characteristics for template over competitive protein. Compared with the imprinted silica beads for stationary phase and in situ organic polymer-based hydrogel MIP monolith, the hybrid silica MIP monolith exhibited higher recognition, stability and lifetime.
NASA Astrophysics Data System (ADS)
Wolfram, E. A.; Salvador, J.; Orte, F.; D'Elia, R.; Godin-Beekmann, S.; Kuttippurath, J.; Pazmiño, A.; Goutail, F.; Casiccia, C.; Zamorano, F.; Paes Leme, N.; Quel, E. J.
2012-10-01
Record-low ozone column densities (with a minimum of 212 DU) persisted over three weeks at the Río Gallegos NDACC (Network for the Detection of Atmospheric Composition Change) station (51.5° S, 69.3° W) in November 2009. Total ozone remained two standard deviations below the climatological mean for five consecutive days during this period. The statistical analysis of 30 years of satellite data from the Multi Sensor Reanalysis (MSR) database for Río Gallegos revealed that such a long-lasting low-ozone episode is a rare occurrence. The event is examined using height-resolved ozone lidar measurements at Río Gallegos, and observations from satellite and ground-based instruments. The computed relative difference between the measured total ozone and the climatological monthly mean shows reductions varying between 10 and 30% with an average decrease of 25%. The mean absolute difference of total ozone column with respect to climatological monthly mean ozone column is around 75 DU. Extreme values of the UV index (UVI) were measured at the ground for this period, with the daily maximum UVI of around 13 on 15 and 28 November. The high-resolution MIMOSA-CHIM (Modélisation Isentrope du transport Méso-échelle de l'Ozone Stratosphérique par Advection) model was used to interpret the ozone depletion event. An ozone decrease of about 2 ppmv was observed in mid-November at the 550 K isentropic level (~22 km). The position of Río Gallegos relative to the polar vortex was classified using equivalent latitude maps. During the second week of November, the vortex was over the station at all isentropic levels, but after 20 November and until the end of the month, only the 10 lower levels in the stratosphere were affected by vortex overpasses with ozone poor air masses. A rapid recovery of the ozone column density was observed later, due to an ozone rich filament moving over Río Gallegos between 18 and 24 km in the first two weeks of December 2009.
Ultra high pressure liquid chromatography. Column permeability and changes of the eluent properties.
Gritti, Fabrice; Guiochon, Georges
2008-04-11
The behavior of four similar liquid chromatography columns (2.1mm i.d. x 30, 50, 100, and 150 mm, all packed with fine particles, average d(p) approximately 1.7 microm, of bridged ethylsiloxane/silica hybrid-C(18), named BEH-C(18)) was studied in wide ranges of temperature and pressure. The pressure and the temperature dependencies of the viscosity and the density of the eluent (pure acetonitrile) along the columns were also derived, using the column permeabilities and applying the Kozeny-Carman and the heat balance equations. The heat lost through the external surface area of the chromatographic column was directly derived from the wall temperature of the stainless steel tube measured with a precision of +/-0.2 degrees C in still air and +/-0.1 degrees C in the oven compartment. The variations of the density and viscosity of pure acetonitrile as a function of the temperature and pressure was derived from empirical correlations based on precise experimental data acquired between 298 and 373 K and at pressures up to 1.5 kbar. The measurements were made with the Acquity UPLC chromatograph that can deliver a maximum flow rate of 2 mL/min and apply a maximum column inlet pressure of 1038 bar. The average Kozeny-Carman permeability constant of the columns was 144+/-3.5%. The temperature hence the viscosity and the density profiles of the eluent along the column deviate significantly from linear behavior under high-pressure gradients. For a 1000 bar pressure drop, we measured DeltaT=25-30 K, (Deltaeta/eta) approximately 100%, and (Deltarho/rho) approximately 10%. These results show that the radial temperature profiles are never fully developed within 1% for any of the columns, even under still-air conditions. This represents a practical advantage regarding the apparent column efficiency at high flow rates, since the impact of the differential analyte velocity between the column center and the column wall is not maximum. The interpretation of the peak profiles recorded in UPLC is discussed.
NASA Technical Reports Server (NTRS)
Witte, Jacquelyn C.; Thompson, Anne M.; Ziemke, Jerald R.; Wargan, Krzysztof
2014-01-01
The Ozone Mapping Profile Suite (OMPS) was launched October 28, 2011 on-board the Suomi NPP satellite (http://npp.gsfc.nasa.gov). OMPS is the next generation total column ozone mapping instrument for monitoring the global distribution of stratospheric ozone. OMPS includes a limb profiler to measure the vertical structure of stratosphere ozone down to the mid-troposphere. This study uses tropical ozonesonde profile measurements from the Southern Hemisphere Additional Ozonesondes (SHADOZ, http://croc.gsfc.nasa.gov/shadoz) archive to evaluate total column ozone retrievals from OMPS and concurrent measurements from the Aura Ozone Monitoring Instrument (OMI), the predecessor of OMPS with a data record going back to 2004. We include ten SHADOZ stations that contain data overlapping the OMPS time period (2012-2013). This study capitalizes on the ozone profile measurements from SHADOZ to evaluate OMPS limb profile retrievals. Finally, we use SHADOZ sondes and OMPS retrievals to examine the agreement with the GEOS-5 Ozone Assimilation System (GOAS). The GOAS uses data from the OMI and the Microwave Limb Sounder (MLS) to constrain the total column and stratospheric profiles of ozone. The most recent version of the assimilation system is well constrained to the total column compared with SHADOZ ozonesonde data.
Messerli, Mark A.; Collis, Leon P.; Smith, Peter J.S.
2009-01-01
Previously, functional mapping of channels has been achieved by measuring the passage of net charge and of specific ions with electrophysiological and intracellular fluorescence imaging techniques. However, functional mapping of ion channels using extracellular ion-selective microelectrodes has distinct advantages over the former methods. We have developed this method through measurement of extracellular K+ gradients caused by efflux through Ca2+-activated K+ channels expressed in Chinese hamster ovary cells. We report that electrodes constructed with short columns of a mechanically stable K+-selective liquid membrane respond quickly and measure changes in local [K+] consistent with a diffusion model. When used in close proximity to the plasma membrane (<4 μm), the ISMs pose a barrier to simple diffusion, creating an ion trap. The ion trap amplifies the local change in [K+] without dramatically changing the rise or fall time of the [K+] profile. Measurement of extracellular K+ gradients from activated rSlo channels shows that rapid events, 10–55 ms, can be characterized. This method provides a noninvasive means for functional mapping of channel location and density as well as for characterizing the properties of ion channels in the plasma membrane. PMID:19217875
Planck early results. XXIV. Dust in the diffuse interstellar medium and the Galactic halo
NASA Astrophysics Data System (ADS)
Planck Collaboration; Abergel, A.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Blagrave, K.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cantalupo, C. M.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Joncas, G.; Jones, A.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Leroy, C.; Linden-Vørnle, M.; Lockman, F. J.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Marshall, D. J.; Martin, P.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Pajot, F.; Paladini, R.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pinheiro Gonçalves, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2011-12-01
This paper presents the first results from a comparison of Planck dust maps at 353, 545 and 857GHz, along with IRAS data at 3000 (100 μm) and 5000GHz (60 μm), with Green Bank Telescope 21-cm observations of Hi in 14 fields covering more than 800 deg2 at high Galactic latitude. The main goal of this study is to estimate the far-infrared to sub-millimeter (submm) emissivity of dust in the diffuse local interstellar medium (ISM) and in the intermediate-velocity (IVC) and high-velocity clouds (HVC) of the Galactic halo. Galactic dust emission for fields with average Hi column density lower than 2 × 1020 cm-2 is well correlated with 21-cm emission because in such diffuse areas the hydrogen is predominantly in the neutral atomic phase. The residual emission in these fields, once the Hi-correlated emission is removed, is consistent with the expected statistical properties of the cosmic infrared background fluctuations. The brighter fields in our sample, with an average Hi column density greater than 2 × 1020 cm-2, show significant excess dust emission compared to the Hi column density. Regions of excess lie in organized structures that suggest the presence of hydrogen in molecular form, though they are not always correlated with CO emission. In the higher Hi column density fields the excess emission at 857 GHz is about 40% of that coming from the Hi, but over all the high latitude fields surveyed the molecular mass faction is about 10%. Dust emission from IVCs is detected with high significance by this correlation analysis. Its spectral properties are consistent with, compared to the local ISM values, significantly hotter dust (T ~ 20K), lower submm dust opacity normalized per H-atom, and a relative abundance of very small grains to large grains about four times higher. These results are compatible with expectations for clouds that are part of the Galactic fountain in which there is dust shattering and fragmentation. Correlated dust emission in HVCs is not detected; the average of the 99.9% confidence upper limits to the emissivity is 0.15 times the local ISM value at 857 and 3000GHz, in accordance with gas phase evidence for lower metallicity and depletion in these clouds. Unexpected anti-correlated variations of the dust temperature and emission cross-section per H atom are identified in the local ISM and IVCs, a trend that continues into molecular environments. This suggests that dust growth through aggregation, seen in molecular clouds, is active much earlier in the cloud condensation and star formation processes. Corresponding author: M.-A. Miville-Deschênes, e-mail: mamd@ias.u-psud.fr
Chen, Xin; Sun, Chao; Huang, Luoxiu; Shou, Tiande
2003-01-01
To compare the orientation column maps elicited by different spatial frequency gratings in cortical area 17 of cats before and during brief elevation of intraocular pressure (IOP). IOP was elevated by injecting saline into the anterior chamber of a cat's eye through a syringe needle. The IOP was elevated enough to cause a retinal perfusion pressure (arterial pressure minus IOP) of approximately 30 mm Hg during a brief elevation of IOP. The visual stimulus gratings were varied in spatial frequency, whereas other parameters were kept constant. The orientation column maps of the cortical area 17 were monocularly elicited by drifting gratings of different spatial frequencies and revealed by a brain intrinsic signal optical imaging system. These maps were compared before and during short-term elevation of IOP. The response amplitude of the orientation maps in area 17 decreased during a brief elevation of IOP. This decrease was dependent on the retinal perfusion pressure but not on the absolute IOP. The location of the most visible maps was spatial-frequency dependent. The blurring or loss of the pattern of the orientation maps was most severe when high-spatial-frequency gratings were used and appeared most significantly on the posterior part of the exposed cortex while IOP was elevated. However, the basic patterns of the maps remained unchanged. Changes in cortical signal were not due to changes in the optics of the eye with elevation of IOP. A stable normal IOP is essential for maintaining normal visual cortical functions. During a brief and high elevation of IOP, the cortical processing of high-spatial-frequency visual information was diminished because of a selectively functional decline of the retinogeniculocortical X pathway by a mechanism of retinal circulation origin.
NASA Astrophysics Data System (ADS)
Bracco, Andrea; André, Philippe; Boulanger, Francois
2015-08-01
The recent Planck results in polarization at sub-mm wavelengths allow us to gain insight into the Galactic magnetic field topology, revealing its statistical correlation with matter, from the diffuse interstellar medium (ISM), to molecular clouds (MCs) (Planck intermediate results. XXXII, XXXIII, XXXV). This correlation has a lot to tell us about the dynamics of the turbulent ISM, stressing the importance of considering magnetic fields in the formation of structures, some of which eventually undergo gravitational collapse producing new star-forming cores.Investigating the early phases of star formation has been a fundamental scope of the Herschel Gould Belt survey collaboration (http://gouldbelt-herschel.cea.fr), which, in the last years, has thoroughly characterized, at a resolution of few tens of arcseconds, the statistics of MCs, such as their filamentary structure, kinematics and column density.Although at lower angular resolution, the Planck maps of dust emission at 353GHz, in intensity and polarization, show that all MCs are complex environments, where we observe a non-trivial correlation between the magnetic field and their density structure. This result opens new perspectives on their formation and evolution, which we have started to explore.In this talk, I will present first results of a comparative analysis of the Herschel-Planck data, where we combine the high resolution Herschel maps of some MCs of the Gould Belt with the Planck polarization data, which sample the structure of the field weighted by the density.In particular, I will discuss the large-scale envelopes of the selected MCs, and, given the correlation between magnetic field and matter, I will show how to make use of the high resolution information of the density structure provided by Herschel to investigate the statistics of interstellar magnetic fields in the Planck data.
Quantitative imaging of volcanic plumes — Results, needs, and future trends
Platt, Ulrich; Lübcke, Peter; Kuhn, Jonas; Bobrowski, Nicole; Prata, Fred; Burton, Mike; Kern, Christoph
2015-01-01
Recent technology allows two-dimensional “imaging” of trace gas distributions in plumes. In contrast to older, one-dimensional remote sensing techniques, that are only capable of measuring total column densities, the new imaging methods give insight into details of transport and mixing processes as well as chemical transformation within plumes. We give an overview of gas imaging techniques already being applied at volcanoes (SO2cameras, imaging DOAS, FT-IR imaging), present techniques where first field experiments were conducted (LED-LIDAR, tomographic mapping), and describe some techniques where only theoretical studies with application to volcanology exist (e.g. Fabry–Pérot Imaging, Gas Correlation Spectroscopy, bi-static LIDAR). Finally, we discuss current needs and future trends in imaging technology.
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Swift, R. N.
1983-01-01
Airborne laser-induced, depth-resolved water Raman backscatter is useful in the detection and mapping of water optical transmission variations. This test, together with other field experiments, has identified the need for additional field experiments to resolve the degree of the contribution to the depth-resolved, Raman-backscattered signal waveform that is due to (1) sea surface height or elevation probability density; (2) off-nadir laser beam angle relative to the mean sea surface; and (3) the Gelbstoff fluorescence background, and the analytical techniques required to remove it. When converted to along-track profiles, the waveforms obtained reveal cells of a decreased Raman backscatter superimposed on an overall trend of monotonically decreasing water column optical transmission.
Ammonia Observations of NGC 6334 I(N)
NASA Technical Reports Server (NTRS)
Kuiper, T. B. H.; Peters, W. L., III; Foster, J. R.; Gardner, F. F.; Whiteoak, J. B.
1995-01-01
Coincident with the far-infrared source NGC 6334 I(N) and water maser source E is a massive dense cloud which has the most intense ammonia (1, 1) emission of any known interstellar cloud. We have mapped the (3, 3) emission and find the cloud is extended 0.8 pc in the direction parallel to the Galactic plane, and 0.5 pc perpendicular to it. It has a velocity gradient of 1 km/s.pc perpendicular to the Galactic plane. The gas kinetic temperature is about 30 K and the density is greater than 10(exp 6)/cc. The mass of the cloud is about 3000 solar mass, 3 times greater than previously estimated. The para-ammonia column density is 6 - 8 x 10(exp 15)/sq cm. An ammonia abundance of 0.5 - 1.5 x 10(exp -8) is inferred, where the larger number assumes an early time ortho/para ratio. This suggests either a cloud age of less than approximately 10(exp 6) yr, or substantial depletion of ammonia.
Imaging sensor constellation for tomographic chemical cloud mapping.
Cosofret, Bogdan R; Konno, Daisei; Faghfouri, Aram; Kindle, Harry S; Gittins, Christopher M; Finson, Michael L; Janov, Tracy E; Levreault, Mark J; Miyashiro, Rex K; Marinelli, William J
2009-04-01
A sensor constellation capable of determining the location and detailed concentration distribution of chemical warfare agent simulant clouds has been developed and demonstrated on government test ranges. The constellation is based on the use of standoff passive multispectral infrared imaging sensors to make column density measurements through the chemical cloud from two or more locations around its periphery. A computed tomography inversion method is employed to produce a 3D concentration profile of the cloud from the 2D line density measurements. We discuss the theoretical basis of the approach and present results of recent field experiments where controlled releases of chemical warfare agent simulants were simultaneously viewed by three chemical imaging sensors. Systematic investigations of the algorithm using synthetic data indicate that for complex functions, 3D reconstruction errors are less than 20% even in the case of a limited three-sensor measurement network. Field data results demonstrate the capability of the constellation to determine 3D concentration profiles that account for ~?86%? of the total known mass of material released.
NASA Astrophysics Data System (ADS)
Abreu-Vicente, J.; Kainulainen, J.; Stutz, A.; Henning, Th.; Beuther, H.
2015-09-01
We present the first study of the relationship between the column density distribution of molecular clouds within nearby Galactic spiral arms and their evolutionary status as measured from their stellar content. We analyze a sample of 195 molecular clouds located at distances below 5.5 kpc, identified from the ATLASGAL 870 μm data. We define three evolutionary classes within this sample: starless clumps, star-forming clouds with associated young stellar objects, and clouds associated with H ii regions. We find that the N(H2) probability density functions (N-PDFs) of these three classes of objects are clearly different: the N-PDFs of starless clumps are narrowest and close to log-normal in shape, while star-forming clouds and H ii regions exhibit a power-law shape over a wide range of column densities and log-normal-like components only at low column densities. We use the N-PDFs to estimate the evolutionary time-scales of the three classes of objects based on a simple analytic model from literature. Finally, we show that the integral of the N-PDFs, the dense gas mass fraction, depends on the total mass of the regions as measured by ATLASGAL: more massive clouds contain greater relative amounts of dense gas across all evolutionary classes. Appendices are available in electronic form at http://www.aanda.org
A search for interstellar pyrrole - Evidence that rings are less abundant than chains
NASA Technical Reports Server (NTRS)
Myers, P. C.; Thaddeus, P.; Linke, R. A.
1980-01-01
Searches for three transitions of pyrrole (C4H5N) give maximum column density = 3-10 x 10 to the 13th per sq cm in Sgr B2. This limit is more than 10 times lower than previous ring molecule limits, and is slightly lower than column densities of known interstellar molecules with from four to six heavy atoms.
Statistical density modification using local pattern matching
Terwilliger, Thomas C.
2007-01-23
A computer implemented method modifies an experimental electron density map. A set of selected known experimental and model electron density maps is provided and standard templates of electron density are created from the selected experimental and model electron density maps by clustering and averaging values of electron density in a spherical region about each point in a grid that defines each selected known experimental and model electron density maps. Histograms are also created from the selected experimental and model electron density maps that relate the value of electron density at the center of each of the spherical regions to a correlation coefficient of a density surrounding each corresponding grid point in each one of the standard templates. The standard templates and the histograms are applied to grid points on the experimental electron density map to form new estimates of electron density at each grid point in the experimental electron density map.
Next Generation Clustered Heat Maps | Informatics Technology for Cancer Research (ITCR)
Next-Generation (Clustered) Heat Maps are interactive heat maps that enable the user to zoom and pan across the heatmap, alter its color scheme, generate production quality PDFs, and link out from rows, columns, and individual heatmap entries to related statistics, databases and other information.
Helical patterns of magnetization and magnetic charge density in iron whiskers
NASA Astrophysics Data System (ADS)
Templeton, Terry L.; Hanham, Scott D.; Arrott, Anthony S.
2018-05-01
Studies with the (1 1 1) axis along the long axis of an iron whisker, 40 years ago, showed two phenomena that have remained unexplained: 1) In low fields, there are six peaks in the ac susceptibility, separated by 0.2 mT; 2) Bitter patterns showed striped domain patterns. Multipole columns of magnetic charge density distort to form helical patterns of the magnetization, accounting for the peaks in the susceptibility from the propagation of edge solitons along the intersections of the six sides of a (1 1 1) whisker. The stripes follow the helices. We report micromagnetic simulations in cylinders with various geometries for the cross-sections from rectangular, to hexagonal, to circular, with wide ranges of sizes and lengths, and different anisotropies, including (0 0 1) whiskers and the hypothetical case of no anisotropy. The helical patterns have been there in previous studies, but overlooked. The surface swirls and body helices are connected, but have their own individual behaviors. The magnetization patterns are more easily understood when viewed observing the scalar divergences of the magnetization as isosurfaces of magnetic charge density. The plus and minus charge densities form columns that interact with unlike charges attracting, but not annihilating as they are paid for by a decrease in exchange energy. Just as they start to form the helix, the columns are multipoles. If one could stretch the columns, the self-energy of the charges in a column would be diminished while making the attractive interactions of the unlike charges larger. The columns elongate by becoming helical. The visualization of 3-D magnetic charge distributions aids in the understanding of magnetization in soft magnetic materials.
Two new hot white dwarfs in a region of exceptionally low hi density
NASA Technical Reports Server (NTRS)
Barstow, M. A.; Wesemael, F.; Holberg, J. B.; Werner, K.; Buckley, D. A. H.; Stobie, R. S.; Fontaine, G.; Rosen, S. R.; Demers, S.; Lamontagne, R.
1993-01-01
We report the discovery of two hot white dwarfs which have the lowest line-of-sight neutral hydrogen column densities yet measured. The stars were found independently by the ROSAT EUV, Montreal-Cambridge-Tololo, and Edinburgh-Cape surveys. Follow-up observations made using the Voyager 2 ultraviolet spectrometer reveal strong continua shortward of the 912A Lyman limit from which we deduce that the neutral hydrogen column densities are 1.3 x 10(exp 17) and 2.0 x 10(exp 17) atoms/sq cm.
NASA Technical Reports Server (NTRS)
Flower, D. R.; Desforets, G. P.; Roueff, E.; Hartquist, T. W.
1986-01-01
Considerable effort in recent years has been devoted to the study of shocks in the diffuse interstellar medium. This work has been motivated partly by the observations of rotationally excited states of H2, and partly by the realization that species such as CH(+), OH and H2O might be formed preferentially in hot, post-shock gas. The problem of CH(+) and the difficulties encountered when trying to explain the high column densities, observed along lines of sight to certain hot stars, have been reviewed earlier. The importance of a transverse magnetic field on the structure of an interstellar shock was also demonstrated earlier. Transverse magnetic fields above a critical strength give rise to an acceleration zone or precursor, in which the parameters on the flow vary continuously. Chemical reactions, which change the degree of ionization of the gas, also modify the structure of the shock considerably. Recent work has shown that large column densities of CH(+) can be produced in magnetohydrodynamic shock models. Shock speeds U sub s approx. = 10 km/s and initial magnetic field strengths of a few micro G are sufficient to produce ion-neutral drift velocities which can drive the endothermic C(+)(H2,H)CH(+) reaction. It was also shown that single-fluid hydrodynamic models do not generate sufficiently large column densities of CH(+) unless unacceptably high shock velocities (u sub s approx. 20 km/s) are assumed in the models. Thus, the observed column densities of CH(+) provide a constraint on the mode of shock propagation in diffuse clouds. More precisely, they determine a lower limit to the ion-neutral drift velocity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... GREENHOUSE GAS REPORTING Suppliers of Petroleum Products § 98.398 Definitions. All terms used in this subpart... MM-1 Table MM-1 to Subpart MM of Part 98—Default Factors for Petroleum Products and Natural Gas Liquids 1 2 Products Column A: density(metric tons/bbl) Column B:carbon share (% of mass) Column C...
Towards the Complete Characterization of Marine-Terminating Glacier Outlet Systems
NASA Astrophysics Data System (ADS)
Mayer, L. A.; Jakobsson, M.; Mix, A. C.; Jerram, K.; Hogan, K.; Heffron, E.; Muenchow, A.
2016-12-01
The Petermann Glacier Experiment was aimed at understanding past variations in Petermann Glacier and their relationship to changes in climatic and oceanographic conditions. A critical component of the experiment was a comprehensive program conducted on the icebreaker Oden to map submarine glacial landforms, offering insight into past ice dynamics and establishing the overall geomorphological context of the region. Concurrent water-column mapping provided remarkable insight into modern glacial, oceanographic, and biological processes suggesting that a carefully designed experiment could provide a near-complete characterization of marine-terminating glacier outlet systems. Water-column mapping revealed seeps emanating from several seafloor regions. These features appeared along common depth zones and may represent fresh water emanating from a submerged aquifer; initial pore water analyses of cores also imply a fresh water flux into the fjord system. Water-column data also show a spatially consistent but variable distribution of a strong mid-water scattering layer, a biological response possibly tracing the inflow of Atlantic water into the fjord and enhanced by input from local outlet glaciers. The continuous nature of these acoustic records over 30 days offers a complete 4-D picture of the distribution of the scattering layer (and perhaps internal circulation patterns and water-mass interactions) with a spatial and temporal distribution far beyond that achievable by traditional oceanographic stations. Additional, higher-resolution water-column imaging around local outlet glaciers presents a clear picture of subglacial sediment-laden meltwater plumes. Thus in addition to the paleoceanographic information they provided, the acoustic systems deployed captured a 4D-view of many of the modern geological, oceanographic and ecological processes within and adjacent to the Petermann Glacier marine system. With the addition of seafloor and water-column sampling, long-term oceanographic moorings, a much more robust biological program (to understand what we are mapping in the water-column) and, the ability to extend our measurements under the ice sheet, we stand poised to truly characterize and hopefully understand the processes at work in front of marine-terminating outlet glaciers.
NASA Astrophysics Data System (ADS)
Itakura, Masaru; Watanabe, Natsuki; Nishida, Minoru; Daio, Takeshi; Matsumura, Syo
2013-05-01
We have investigated local element distributions in a Dy-doped Nd2Fe14B hot-deformed magnet by atomic-column resolution chemical mapping using an X-ray energy-dispersive spectrometer (XEDS) attached to an aberration-corrected scanning transmission electron microscope (Cs-corrected STEM). The positions of the Nd and Dy atomic columns were visualized in the XEDS maps. The substitution of Dy was limited to a surface layer 2-3 unit cells thick in the Nd2Fe14B grains, and the Dy atoms preferentially occupied the 4f-Nd sites of Nd2Fe14B. These results provide further insights into the principal mechanism governing the coercivity enhancement due to Dy doping.
The Far-Infrared Spectrum of Arp 220
NASA Technical Reports Server (NTRS)
Gonzalez-Alfonso, Eduardo; Smith, Howard A.; Fischer, Jacqueline; Cernicharo, Jose
2004-01-01
ISO/LWS grating observations of the ultraluminous infrared galaxy Arp 220 shows absorption in molecular lines of OH, H 2 0 , CH, NH, and "3, well as in the [0 I] 63 pm line and emission in the [C 111 158 pm line. We have modeled the continuum and the emission/absorption of all observed features by means of a non-local radiative transfer code. The continuum from 25 to 1300 pm is modeled AS A WARM (106 K) NUCLEAR REGION THAT IS OPTICALLY THICK IN THE FAR-INFRARED, attenuated by an extended region (size 2") that is heated mainly through absorption of nuclear infrared radiation. The molecular absorption in the nuclear region is characterized by high excitation due to the high infrared radiation density. The OH column densities are high toward the nucleus and the extended region (about 2 x 10 sup 17 cm sup-2). The H2O column density is also high toward the nucleus (2 - 10 x 1017 cm-2) and lower in the extended region. The column densities in a halo that accounts for the absorption by the lowest lying levels are similar to what are found in the diffuse clouds toward the star forming regions in the Sgr B2 molecular cloud complex near the Galactic Center. Most notable are the high column densities found for NH and NH3 toward the nucleus, with values of about 1.5 x 10supl6 cmsup-2 and about 3 x 10supl6 cmsup-2, respectively, whereas the NH2 column density is lower than about 2 x 10sup15 cmsup-2. A combination of PDRs in the extended region and hot cores with enhanced H20 photodissociation and a possible shock contribution in the nuclei may explain the relative column densities of OH and H20, whereas the nitrogen chemistry may be strongly affected by cosmic ray ionization. The [C II] 158 pm line is well reproduced by our models and its "deficit" relative to the CII/FIR ratio in normal and starburst galaxies is suggested to be mainly a consequence of the dominant non-PDR component of far- infrared radiation, ALTHOUGH OUR MODELS ALONE CANNOT RULE OUT EXTINCTION EFFECTS IN THE NUCLEI.
The Far-Infrared Spectrum of Arp 220
NASA Technical Reports Server (NTRS)
Gonzalez-Alfonso, Eduardo; Smith, Howard A.; Fischer, Jacqueline; Cernicharo, Jose
2005-01-01
ISO/LWS grating observations of the ultraluminous infrared galaxy Arp 220 shows absorption in molecular lines of OH, H(sub 2)O, CH, NH, and NH(sub 3), as well as in the [O I] 63 micron line and emission in the [C II] 158 micron line. We have modeled the continuum and the emission/absorption of all observed features by means of a non-local radiative transfer code. The continuum from 25 to 1300 microns is modeled as a warm (106 K) nuclear region that is optically thick in the far-infrared, attenuated by an extended region (size 2") that is heated mainly through absorption of nuclear infrared radiation. The molecular absorption in the nuclear region is characterized by high excitation due to the high infrared radiation density. The OH column densities are high toward the nucleus (2 - 6 x 10(exp 17) cm(exp -2)) and the extended region (approximately 2 x 10(exp 17) cm(exp -2)). The H(sub 2)O column density is also high toward the nucleus (2 - 10 x 10(exp 17) cm(exp -2)) and lower in the extended region. The column densities in a halo that accounts for the absorption by the lowest lying levels are similar to what are found in the diffuse clouds toward the star forming regions in the Sgr B2 molecular cloud complex near the Galactic Center. Most notable are the high column densities found for NH and NH(sub 3) toward the nucleus, with values of approximately 1.5 x 10(exp 16) cm(exp -2) and approximately 3 x 10(exp 16) cm(exp -2), respectively, whereas the NH(sub 2) column density is lower than approximately 2 x 10(exp 15) cm(exp -2). A combination of PDRs in the extended region and hot cores with enhanced H(sub 2)O photodissociation and a possible shock contribution in the nuclei may explain the relative column densities of OH and H(sub 2)O, whereas the nitrogen chemistry may be strongly affected by cosmic ray ionization. The [C II] 158 micron line is well reproduced by our models and its deficit relative to the CII/FIR ratio in normal and starburst galaxies is suggested to be mainly a consequence of the dominant non-PDR component of far-infrared radiation, although our models alone cannot rule out extinction effects in the nuclei.
Metal concentrations in the upper atmosphere during meteor showers
NASA Astrophysics Data System (ADS)
Correira, J.; Aikin, A. C.; Grebowsky, J. M.; Burrows, J. P.
2010-02-01
Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the vertical magnesium column densities in the atmosphere and any connection to possible enhanced mass deposition during a meteor shower. Time-dependent mass influx rates are derived for all the major meteor showers using published estimates of mass density and temporal profiles of meteor showers. An average daily sporadic background mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal vertical column densities of Mg and Mg+ from the years 1996-2001. There is no correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.
Metal concentrations in the upper atmosphere during meteor showers
NASA Astrophysics Data System (ADS)
Correira, J.; Aikin, A. C.; Grebowsky, J. M.; Burrows, J. P.
2009-09-01
Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the vertical magnesium column densities in the atmosphere and any connection to possible enhanced mass deposition during a meteor shower. Time-dependent mass influx rates are derived for all the major meteor showers using published estimates of mass density and temporal profiles of meteor showers. An average daily sporadic background mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal vertical column densities of Mg and Mg+ from the years 1996-2001. There is no correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.
Probing the initial conditions of star formation: the structure of the prestellar core L 1689B.
NASA Astrophysics Data System (ADS)
Andre, P.; Ward-Thompson, D.; Motte, F.
1996-10-01
In a recent JCMT submillimeter study, Ward-Thompson et al. (1994MNRAS.268..276W) obtained the first dust continuum maps of five low-mass dense cores among the sample of starless ammonia cores from Myers and colleagues. Here, we present the results of new 1.3mm continuum mapping observations for one of these cores, L 1689B, taken with the IRAM 30-m telescope equipped with the 7-channel and 19-channel MPIfR bolometer arrays. The new 1.3mm data, which were obtained in the `on-the-fly' scanning mode, have better angular resolution and sensitivity than the earlier 800 μm data, reaching an rms noise level of ~3mJy/13"beam. Our IRAM map resolves L 1689B as an east-west elongated core of deconvolved size 0.045pcx0.067pc (FWHM), central column density N_H_2__~1.5x10^22^cm^-2^, and mass M_FWHM_~0.6Msun_, in good agreement with our previous JCMT estimates. We confirm that the radial column density profile N(θ) of L 1689B is not consistent with a single power law with angular radius θ but flattens out near its centre. Comparison with synthetic model profiles simulating our `on-the-fly' observations indicates that N(θ_maj_) {prop.to}θ_maj_^-0.2^ for θ_maj_<=25" and N(θ_maj_) {prop.to}θ_maj_^-1^ for 25"<θ_maj_<=90", where θ_maj_ is measured along the major axis of the core. The observed mean profile is not consistent with a simple Gaussian source, being flatter than a Gaussian in its outer region. However, the profile measured along the minor axis of L 1689B is significantly steeper and apparently consistent with a Gaussian `edge' in the north-south direction. The mass, radius, and density of the relatively flat central region are estimated to be ~0.3Msun_, ~4000AU, and ~2x10^5^cm^-3^, respectively. The mass of L 1689B and its large (>30) density contrast with the surrounding molecular cloud indicate that it is not a transient structure but a self-gravitating pre-stellar core. The flat inner profile and other measured characteristics of L 1689B are roughly consistent with theoretical predictions for a magnetically-supported, flattened core either on the verge of collapse or in an early phase of dynamical contraction. In this case, the mean magnetic field in the central region should be <~80μG, which is high but not inconsistent with existing observational constraints. Alternatively, the observed core structure may also be explained by equilibrium models of primarily thermally supported, self-gravitating spheroids interacting with an external UV radiation field. The present study supports the conclusions of our previous JCMT survey and suggests that, in contrast with protostellar envelopes, most pre-stellar cores have flat inner density gradients which approach ρ(r) {prop.to}r^-2^ only beyond a few thousand AU. This implies that, in some cases at least, the initial conditions for protostellar collapse depart significantly from a singular isothermal sphere.
Ratios of molecular hydrogen line intensities in shocked gas - Evidence for cooling zones
NASA Technical Reports Server (NTRS)
Brand, P. W. J. L.; Moorhouse, A.; Bird, M.; Burton, M. G.; Geballe, T. R.
1988-01-01
Column densities of molecular hydrogen have been calculated from 19 infrared vibration-rotation and pure rotational line intensities measured at peak 1 of the Orion molecular outflow. The run of column density with energy level is similar to a simple coolng zone model of the line-emitting region, but is not well fitted by predictions of C-shock models current in the literature.
Earliest phases of star formation (EPoS). Dust temperature distributions in isolated starless cores
NASA Astrophysics Data System (ADS)
Lippok, N.; Launhardt, R.; Henning, Th.; Balog, Z.; Beuther, H.; Kainulainen, J.; Krause, O.; Linz, H.; Nielbock, M.; Ragan, S. E.; Robitaille, T. P.; Sadavoy, S. I.; Schmiedeke, A.
2016-07-01
Context. Stars form by the gravitational collapse of cold and dense molecular cloud cores. Constraining the temperature and density structure of such cores is fundamental for understanding the initial conditions of star formation. We use Herschel observations of the thermal far-infrared (FIR) dust emission from nearby and isolated molecular cloud cores and combine them with ground-based submillimeter continuum data to derive observational constraints on their temperature and density structure. Aims: The aim of this study is to verify the validity of a ray-tracing inversion technique developed to derive the dust temperature and density structure of nearby and isolated starless cores directly from the dust emission maps and to test if the resulting temperature and density profiles are consistent with physical models. Methods: We have developed a ray-tracing inversion technique that can be used to derive the temperature and density structure of starless cores directly from the observed dust emission maps without the need to make assumptions about the physical conditions. Using this ray-tracing inversion technique, we derive the dust temperature and density structure of six isolated starless molecular cloud cores from dust emission maps in the wavelengths range 100 μm-1.2 mm. We then employ self-consistent radiative transfer modeling to the density profiles derived with the ray-tracing inversion method. In this model, the interstellar radiation field (ISRF) is the only heating source. The local strength of the ISRF as well as the total extinction provided by the outer envelope are treated as semi-free parameters which we scale within defined limits. The best-fit values of both parameters are derived by comparing the self-consistently calculated temperature profiles with those derived by the ray-tracing method. Results: We confirm earlier results and show that all starless cores are significantly colder inside than outside, with central core temperatures in the range 7.5-11.9 K and envelope temperatures that are 2.4 - 9.6 K higher. The core temperatures show a strong negative correlation with peak column density which suggests that the thermal structure of the cores is dominated by external heating from the ISRF and shielding by dusty envelopes. We find that temperature profiles derived with the ray-tracing inversion method can be well-reproduced with self-consistent radiative transfer models if the cores have geometry that is not too complex and good data coverage with spatially resolved maps at five or more wavelengths in range between 100 μm and 1.2 mm. We also confirm results from earlier studies that found that the usually adopted canonical value of the total strength of the ISRF in the solar neighbourhood is incompatible with the most widely used dust opacity models for dense cores. However, with the data available for this study, we cannot uniquely resolve the degeneracy between dust opacity law and strength of the ISRF. Final T maps (FITS format) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/cgi-bin/qcat?J/A+A/592/A61
Non-detection of HC11N towards TMC-1: constraining the chemistry of large carbon-chain molecules
NASA Astrophysics Data System (ADS)
Loomis, Ryan A.; Shingledecker, Christopher N.; Langston, Glen; McGuire, Brett A.; Dollhopf, Niklaus M.; Burkhardt, Andrew M.; Corby, Joanna; Booth, Shawn T.; Carroll, P. Brandon; Turner, Barry; Remijan, Anthony J.
2016-12-01
Bell et al. reported the first detection of the cyanopolyyne HC11N towards the cold dark cloud TMC-1; no subsequent detections have been reported towards any source. Additional observations of cyanopolyynes and other carbon-chain molecules towards TMC-1 have shown a log-linear trend between molecule size and column density, and in an effort to further explore the underlying chemical processes driving this trend, we have analysed Green Bank Telescope observations of HC9N and HC11N towards TMC-1. Although we find an HC9N column density consistent with previous values, HC11N is not detected and we derive an upper limit column density significantly below that reported in Bell et al. Using a state-of-the-art chemical model, we have investigated possible explanations of non-linearity in the column density trend. Despite updating the chemical model to better account for ion-dipole interactions, we are not able to explain the non-detection of HC11N, and we interpret this as evidence of previously unknown carbon-chain chemistry. We propose that cyclization reactions may be responsible for the depleted HC11N abundance, and that products of these cyclization reactions should be investigated as candidate interstellar molecules.
NASA Astrophysics Data System (ADS)
Zhang, Zaiqin; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua
2018-04-01
The influence of the applied axial magnetic field on the current density distribution in the arc column and electrodes is intensively studied. However, the previous results only provide a qualitative explanation, which cannot quantitatively explain a recent experimental data on anode current density. The objective of this paper is to quantitatively determine the current constriction subjected to an axial magnetic field in high-current vacuum arcs according to the recent experimental data. A magnetohydrodynamic model is adopted to describe the high current vacuum arcs. The vacuum arc is in a diffuse arc mode with an arc current ranged from 6 kArms to 14 kArms and an axial magnetic field ranged from 20 mT to 110 mT. By a comparison of the recent experimental work of current density distribution on the anode, the modelling results show that there are two types of current constriction. On one hand, the current on the cathode shows a constriction, and this constriction is termed as the cathode-constriction. On the other hand, the current constricts in the arc column region, and this constriction is termed as the column-constriction. The cathode boundary is of vital importance in a quantitative model. An improved cathode constriction boundary is proposed. Under the improved boundary, the simulation results are in good agreement with the recent experimental data on the anode current density distribution. It is demonstrated that the current density distribution at the anode is sensitive to that at the cathode, so that measurements of the anode current density can be used, in combination with the vacuum arc model, to infer the cathode current density distribution.
NASA Technical Reports Server (NTRS)
Vennes, Stephane; Dupuis, Jean; Bowyer, Stuart; Fontaine, Gilles; Wiercigroch, Alexandria; Jelinsky, Patrick; Wesemael, Francois; Malina, Roger
1994-01-01
The first comprehensive sky survey of the extreme ultraviolet (EUV) spectral range performed by the Extreme Ultraviolet Explorer (EUVE) has uncovered a handful of very bright sources at wavelengths longer than the He I 504 A photoionization edge. Among these objects are four white dwarfs with exceptionally low interstellar medium (ISM) column densities along the line of sight. Analysis of EUV photometry of the He-rich DO white dwarf MCT 0501-2858 and the H-rich DA white dwarf MCT 0455-2812 along one line of sight and of the DA white dwarfs HZ 43 and GD 153 near the north Galactic pole indicates that the overall minimum column density of the neutral material centered on the Sun is N(H I) = 0.5-1.0 x 10(exp 18)/sq cm. In the case of MCT 0501-2858, EUV photometric measurements provide a clear constraint to the effective temperature (60,000-70,000 K). Given these neutral hydrogen columns, the actual contribution to the density of neutral species from the immediate solar environment (the 'local fluff') would only cover a distance of approximately equals 2-3 pc (assuming an average density n(H I) = 0.1/cu cm) leaving these lines of sight almost entirely within the hot phase of the ISM. A preliminary examination of the complete EUVE long-wavelength survey indicates that these lines of sight are exceptional and set a minimum column density in the solar environment.
The puzzling spectrum of HD 94509. Sounding out the extremes of Be shell star spectral morphology
NASA Astrophysics Data System (ADS)
Cowley, C. R.; Przybilla, N.; Hubrig, S.
2015-06-01
Context. The spectral features of HD 94509 are highly unusual, adding an extreme to the zoo of Be and shell stars. The shell dominates the spectrum, showing lines typical for spectral types mid-A to early-F, while the presence of a late/mid B-type central star is indicated by photospheric hydrogen line wings and helium lines. Numerous metallic absorption lines have broad wings but taper to narrow cores. They cannot be fit by Voigt profiles. Aims: We describe and illustrate unusual spectral features of this star, and make rough calculations to estimate physical conditions and abundances in the shell. Furthermore, the central star is characterized. Methods: We assume mean conditions for the shell. An electron density estimate is made from the Inglis-Teller formula. Excitation temperatures and column densities for Fe i and Fe ii are derived from curves of growth. The neutral H column density is estimated from high Paschen members. The column densities are compared with calculations made with the photoionization code Cloudy. Atmospheric parameters of the central star are constrained employing non-LTE spectrum synthesis. Results: Overall chemical abundances are close to solar. Column densities of the dominant ions of several elements, as well as excitation temperatures and the mean electron density are well accounted for by a simple model. Several features, including the degree of ionization, are less well described. Conclusions: HD 94509 is a Be star with a stable shell, close to the terminal-age main sequence. The dynamical state of the shell and the unusually shaped, but symmetric line profiles, require a separate study.
NASA Technical Reports Server (NTRS)
Adams, Cristen; Normand, Elise N.; Mclinden, Chris A.; Bourassa, Adam E.; Lloyd, Nicholas D.; Degenstein, Douglas A.; Krotkov, Nickolay A.; Rivas, Maria Belmonte; Boersma, K. Folkert; Eskes, Henk
2016-01-01
A variant of the limb-nadir matching technique for deriving tropospheric NO2 columns is presented in which the stratospheric component of the NO2 slant column density (SCD) measured by the Ozone Monitoring Instrument (OMI) is removed using non-coincident profiles from the Optical Spectrograph and InfraRed Imaging System (OSIRIS). In order to correct their mismatch in local time and the diurnal variation of stratospheric NO2, OSIRIS profiles, which were measured just after sunrise, were mapped to the local time of OMI observations using a photochemical boxmodel. Following the profile time adjustment, OSIRIS NO2 stratospheric vertical column densities (VCDs) were calculated. For profiles that did not reach down to the tropopause, VCDs were adjusted using the photochemical model. Using air mass factors from the OMI Standard Product (SP), a new tropospheric NO2 VCD product - referred to as OMI-minus-OSIRIS (OmO) - was generated through limb-nadir matching. To accomplish this, the OMI total SCDs were scaled using correction factors derived from the next-generation SCDs that improve upon the spectral fitting used for the current operational products. One year, 2008, of OmO was generated for 60 deg S to 60 deg N and a cursory evaluation was performed. The OmO product was found to capture the main features of tropospheric NO2, including a background value of about 0.3 x 10(exp 15) molecules per sq cm over the tropical Pacific and values comparable to the OMI operational products over anthropogenic source areas. While additional study is required, these results suggest that a limb-nadir matching approach is feasible for the removal of stratospheric NO2 measured by a polar orbiter from a nadir-viewing instrument in a geostationary orbit such as Tropospheric Emissions: Monitoring of Pollution (TEMPO) or Sentinel-4.
Automatically Generated Vegetation Density Maps with LiDAR Survey for Orienteering Purpose
NASA Astrophysics Data System (ADS)
Petrovič, Dušan
2018-05-01
The focus of our research was to automatically generate the most adequate vegetation density maps for orienteering purpose. Application Karttapullatuin was used for automated generation of vegetation density maps, which requires LiDAR data to process an automatically generated map. A part of the orienteering map in the area of Kazlje-Tomaj was used to compare the graphical display of vegetation density. With different settings of parameters in the Karttapullautin application we changed the way how vegetation density of automatically generated map was presented, and tried to match it as much as possible with the orienteering map of Kazlje-Tomaj. Comparing more created maps of vegetation density the most suitable parameter settings to automatically generate maps on other areas were proposed, too.
NASA Astrophysics Data System (ADS)
Rivera, C. I.; Stremme, W.; Grutter, M.
2015-12-01
Population density and economic activities in urban agglomerations have drastically increased in many cities in Mexico during the last decade. Several factors are responsible for increased urbanization such as a shift of people from rural to urban areas while looking for better education, services and job opportunities as well as the natural growth of the urban areas themselves. Urbanization can create great social, economic and environmental pressures and changes which can easily be observed in most urban agglomerations in the world. In this study, we have focused on analyzing tropospheric NO2 (nitrogen dioxide) column trends over Mexican urban areas that have a population of at least one million inhabitants according to the latest 2010 population census. Differential Optical Absorption Spectroscopy (DOAS) measurements of NO2 conducted by the space-borne Ozone Monitoring Instrument (OMI) on board the Aura satellite between 2005 and 2014 have been used for this analysis. This dataset has allowed us to obtain a satellite-based 10-year tropospheric NO2 column trend over the most populated Mexican cities which include the dominating metropolitan area of Mexico City with more than twenty million inhabitants as well as ten other Mexican cities with a population ranging between one to five million inhabitants with a wide range of activities (commercial, agricultural or heavily industrialized) as well as two important border crossings. Distribution maps of tropospheric NO2 columns above the studied urban agglomerations were reconstructed from the analyzed OMI dataset, allowing to identify areas of interest due to clear NO2 enhancements inside these urban regions.
NASA Astrophysics Data System (ADS)
Massiot, Cécile; Nicol, Andrew; Townend, John; McNamara, David D.; Garcia-Sellés, David; Conway, Chris E.; Archibald, Garth
2017-07-01
Permeability hosted in andesitic lava flows is dominantly controlled by fracture systems, with geometries that are often poorly constrained. This paper explores the fracture system geometry of an andesitic lava flow formed during its emplacement and cooling over gentle paleo-topography, on the active Ruapehu volcano, New Zealand. The fracture system comprises column-forming and platy fractures within the blocky interior of the lava flow, bounded by autobreccias partially observed at the base and top of the outcrop. We use a terrestrial laser scanner (TLS) dataset to extract column-forming fractures directly from the point-cloud shape over an outcrop area of ∼3090 m2. Fracture processing is validated using manual scanlines and high-resolution panoramic photographs. Column-forming fractures are either steeply or gently dipping with no preferred strike orientation. Geometric analysis of fractures derived from the TLS, in combination with virtual scanlines and trace maps, reveals that: (1) steeply dipping column-forming fracture lengths follow a scale-dependent exponential or log-normal distribution rather than a scale-independent power-law; (2) fracture intensities (combining density and size) vary throughout the blocky zone but have similar mean values up and along the lava flow; and (3) the areal fracture intensity is higher in the autobreccia than in the blocky zone. The inter-connected fracture network has a connected porosity of ∼0.5 % that promote fluid flow vertically and laterally within the blocky zone, and is partially connected to the autobreccias. Autobreccias may act either as lateral permeability connections or barriers in reservoirs, depending on burial and alteration history. A discrete fracture network model generated from these geometrical parameters yields a highly connected fracture network, consistent with outcrop observations.
Mini-columns for Conducting Breakthrough Experiments. Design and Construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittrich, Timothy M.; Reimus, Paul William; Ware, Stuart Douglas
Experiments with moderately and strongly sorbing radionuclides (i.e., U, Cs, Am) have shown that sorption between experimental solutions and traditional column materials must be accounted for to accurately determine stationary phase or porous media sorption properties (i.e., sorption site density, sorption site reaction rate coefficients, and partition coefficients or K d values). This report details the materials and construction of mini-columns for use in breakthrough columns to allow for accurate measurement and modeling of sorption parameters. Material selection, construction techniques, wet packing of columns, tubing connections, and lessons learned are addressed.
The Herschel Virgo Cluster Survey. XX. Dust and gas in the foreground Galactic cirrus
NASA Astrophysics Data System (ADS)
Bianchi, S.; Giovanardi, C.; Smith, M. W. L.; Fritz, J.; Davies, J. I.; Haynes, M. P.; Giovanelli, R.; Baes, M.; Bocchio, M.; Boissier, S.; Boquien, M.; Boselli, A.; Casasola, V.; Clark, C. J. R.; De Looze, I.; di Serego Alighieri, S.; Grossi, M.; Jones, A. P.; Hughes, T. M.; Hunt, L. K.; Madden, S.; Magrini, L.; Pappalardo, C.; Ysard, N.; Zibetti, S.
2017-01-01
We study the correlation between far-infrared/submm dust emission and atomic gas column density in order to derive the properties of the high Galactic latitude, low density, Milky Way cirrus in the foreground of the Virgo cluster of galaxies. Dust emission maps from 60 to 850 μm are obtained from observations with the Spectral and Photometric Imaging Receiver (SPIRE) and carried out within the Herschel Virgo Cluster Survey (HeViCS); these are complemented by IRAS and Planck maps. Data from the Arecibo legacy Fast ALFA Survey is used to derive atomic gas column densities for two broad velocity components: low and intermediate velocity clouds. Dust emissivities are derived for each gas component and each far-infrared/submm band. For the low velocity clouds, we measure an average emissivity ɛLVCν = (0.79 ± 0.08) × 10-20 MJy sr-1 cm2 at 250 μm. After fitting a modified blackbody to the available bands, we estimated a dust absorption cross section of τLVCν/NH I = (0.49 ± 0.13) × 10-25 cm2 H-1 at 250 μm (with dust temperature T = 20.4 ± 1.5 K and spectral index β = 1.53 ± 0.17). The results are in excellent agreement with those obtained by Planck over a much larger coverage of the high Galactic latitude cirrus (50% of the sky versus 0.2% in our work). For dust associated with intermediate velocity gas, we confirm earlier Planck results and find a higher temperature and lower emissivity and cross section. After subtracting the modeled components, we find regions at scales smaller than 20' in which the residuals deviate significantly from the average scatter, which is dominated by cosmic infrared background. These large residuals are most likely due to local variations in the cirrus dust properties or to high-latitude molecular clouds with average NH2 ≲ 1020 cm-2. We find no conclusive evidence for intracluster dust emission in Virgo. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Final reduced data (FITS) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A130
On the fragmentation of filaments in a molecular cloud simulation
NASA Astrophysics Data System (ADS)
Chira, R.-A.; Kainulainen, J.; Ibáñez-Mejía, J. C.; Henning, Th.; Mac Low, M.-M.
2018-03-01
Context. The fragmentation of filaments in molecular clouds has attracted a lot of attention recently as there seems to be a close relation between the evolution of filaments and star formation. The study of the fragmentation process has been motivated by simple analytical models. However, only a few comprehensive studies have analysed the evolution of filaments using numerical simulations where the filaments form self-consistently as part of large-scale molecular cloud evolution. Aim. We address the early evolution of parsec-scale filaments that form within individual clouds. In particular, we focus on three questions: How do the line masses of filaments evolve? How and when do the filaments fragment? How does the fragmentation relate to the line masses of the filaments? Methods: We examine three simulated molecular clouds formed in kiloparsec-scale numerical simulations performed with the FLASH adaptive mesh refinement magnetohydrodynamic code. The simulations model a self-gravitating, magnetised, stratified, supernova-driven interstellar medium, including photoelectric heating and radiative cooling. We follow the evolution of the clouds for 6 Myr from the time self-gravity starts to act. We identify filaments using the DisPerSe algorithm, and compare the results to other filament-finding algorithms. We determine the properties of the identified filaments and compare them with the predictions of analytic filament stability models. Results: The average line masses of the identified filaments, as well as the fraction of mass in filamentary structures, increases fairly continuously after the onset of self-gravity. The filaments show fragmentation starting relatively early: the first fragments appear when the line masses lie well below the critical line mass of Ostriker's isolated hydrostatic equilibrium solution ( 16 M⊙ pc-1), commonly used as a fragmentation criterion. The average line masses of filaments identified in three-dimensional volume density cubes increases far more quickly than those identified in two-dimensional column density maps. Conclusions: Our results suggest that hydrostatic or dynamic compression from the surrounding cloud has a significant impact on the early dynamical evolution of filaments. A simple model of an isolated, isothermal cylinder may not provide a good approach for fragmentation analysis. Caution must be exercised in interpreting distributions of properties of filaments identified in column density maps, especially in the case of low-mass filaments. Comparing or combining results from studies that use different filament finding techniques is strongly discouraged.
A logNHI = 22.6 Damped Lyα Absorber in a Dark Gamma-Ray Burst: The Environment of GRB 050401
NASA Astrophysics Data System (ADS)
Watson, D.; Fynbo, J. P. U.; Ledoux, C.; Vreeswijk, P.; Hjorth, J.; Smette, A.; Andersen, A. C.; Aoki, K.; Augusteijn, T.; Beardmore, A. P.; Bersier, D.; Castro Cerón, J. M.; D'Avanzo, P.; Diaz-Fraile, D.; Gorosabel, J.; Hirst, P.; Jakobsson, P.; Jensen, B. L.; Kawai, N.; Kosugi, G.; Laursen, P.; Levan, A.; Masegosa, J.; Näränen, J.; Page, K. L.; Pedersen, K.; Pozanenko, A.; Reeves, J. N.; Rumyantsev, V.; Shahbaz, T.; Sharapov, D.; Sollerman, J.; Starling, R. L. C.; Tanvir, N.; Torstensson, K.; Wiersema, K.
2006-12-01
The optical afterglow spectrum of GRB 050401 (at z=2.8992+/-0.0004) shows the presence of a damped Lyα absorber (DLA), with logNHI=22.6+/-0.3. This is the highest column density ever observed in a DLA and is about 5 times larger than the strongest DLA detected so far in any QSO spectrum. From the optical spectrum, we also find a very large Zn column density, implying an abundance of [Zn/H]=-1.0+/-0.4. These large columns are supported by the early X-ray spectrum from Swift XRT, which shows a column density (in excess of Galactic) of logNH=22.21+0.06-0.08 assuming solar abundances (at z=2.9). The comparison of this X-ray column density, which is dominated by absorption due to α-chain elements, and the H I column density derived from the Lyα absorption line allows us to derive a metallicity for the absorbing matter of [α/H]=-0.4+/-0.3. The optical spectrum is reddened and can be well reproduced with a power law with SMC extinction, where AV=0.62+/-0.06. But the total optical extinction can also be constrained independent of the shape of the extinction curve: from the optical to X-ray spectral energy distribution, we find 0.5<~AV<~4.5. However, even this upper limit, independent of the shape of the extinction curve, is still well below the dust column that is inferred from the X-ray column density, i.e., AV=9.1+1.4-1.5. This discrepancy might be explained by a small dust content with high metallicity (low dust-to-metals ratio). ``Gray'' extinction cannot explain the discrepancy, since we are comparing the metallicity to a measurement of the total extinction (without reference to the reddening). Little dust with high metallicity may be produced by sublimation of dust grains or may naturally exist in systems younger than a few hundred megayears. Based in part on observations made at the European Southern Observatory, Paranal, Chile under program 075.D-0270, with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, with the Wide Field Camera (WFCAM) on the United Kingdom Infrared Telescope, which is operated by the Joint Astronomy Centre on behalf of the UK Particle Physics and Astronomy Research Council, and on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
The Damping Rates of Embedded Oscillating Starless Cores
NASA Astrophysics Data System (ADS)
Broderick, Avery E.; Narayan, Ramesh; Keto, Eric; Lada, Charles J.
2008-08-01
In a previous paper we demonstrated that nonradial hydrodynamic oscillations of a thermally supported (Bonnor-Ebert) sphere embedded in a low-density, high-temperature medium persist for many periods. The predicted column density variations and molecular spectral line profiles are similar to those observed in the Bok globule B68, suggesting that the motions in some starless cores may be oscillating perturbations on a thermally supported equilibrium structure. Such oscillations can produce molecular line maps which mimic rotation, collapse, or expansion and, thus, could make determining the dynamical state from such observations alone difficult. However, while B68 is embedded in a very hot, low-density medium, many starless cores are not, having interior/exterior density contrasts closer to unity. In this paper we investigate the oscillation damping rate as a function of the exterior density. For concreteness we use the same interior model employed by Broderick et al., with varying models for the exterior gas. We also develop a simple analytical formalism, based on the linear perturbation analysis of the oscillations, which predicts the contribution to the damping rates due to the excitation of sound waves in the external medium. We find that the damping rate of oscillations on globules in dense molecular environments is always many periods, corresponding to hundreds of thousands of years and persisting over the inferred lifetimes of the globules.
NASA Astrophysics Data System (ADS)
Hafizt, M.; Manessa, M. D. M.; Adi, N. S.; Prayudha, B.
2017-12-01
Benthic habitat mapping using satellite data is one challenging task for practitioners and academician as benthic objects are covered by light-attenuating water column obscuring object discrimination. One common method to reduce this water-column effect is by using depth-invariant index (DII) image. However, the application of the correction in shallow coastal areas is challenging as a dark object such as seagrass could have a very low pixel value, preventing its reliable identification and classification. This limitation can be solved by specifically applying a classification process to areas with different water depth levels. The water depth level can be extracted from satellite imagery using Relative Water Depth Index (RWDI). This study proposed a new approach to improve the mapping accuracy, particularly for benthic dark objects by combining the DII of Lyzenga’s water column correction method and the RWDI of Stumpt’s method. This research was conducted in Lintea Island which has a high variation of benthic cover using Sentinel-2A imagery. To assess the effectiveness of the proposed new approach for benthic habitat mapping two different classification procedures are implemented. The first procedure is the commonly applied method in benthic habitat mapping where DII image is used as input data to all coastal area for image classification process regardless of depth variation. The second procedure is the proposed new approach where its initial step begins with the separation of the study area into shallow and deep waters using the RWDI image. Shallow area was then classified using the sunglint-corrected image as input data and the deep area was classified using DII image as input data. The final classification maps of those two areas were merged as a single benthic habitat map. A confusion matrix was then applied to evaluate the mapping accuracy of the final map. The result shows that the new proposed mapping approach can be used to map all benthic objects in all depth ranges and shows a better accuracy compared to that of classification map produced using only with DII.
ERIC Educational Resources Information Center
Stein, Harry
1988-01-01
Provides suggestions for note-taking from books, lectures, visual presentations, and laboratory experiments to enhance student knowledge, memory, and length of attention span during instruction. Describes topical and structural outlines, visual mapping, charting, three-column note-taking, and concept mapping. Benefits and application of…
NASA Technical Reports Server (NTRS)
Naumann, R. J.
1973-01-01
The proposed disposal of H2O from the shuttle fuel cell operation by ejecting it in vapor form through a supersonic nozzle at the rate of 100 lb/day has been investigated from the point of view of the possible interference to astronomical experiments. If the nozzle is located at the tail and directed along the shuttle longitudinal axis, the resulting column density will be less than 10 to th 12th power molecules/sq cm at viewing angles larger than 48 deg above the longitudinal axis. The molecules in the trail will diffuse rapidly. The column density contribution from molecules expelled on the previous orbit is 1.3 x 10 to the 8th power molecules/sq cm. This contribution diminishes by the inverse square root of the number of orbits since the molecules were expelled. The molecular backscatter from atmospheric molecules is also calculated. If the plume is directed into the flight path, the column density along a perpendicular is found to be 1.5 x 10 to the 11th power molecules/sq cm. The return flux is estimated to be of the order of 10 to the 12th power molecules/sq cm/sec at the stagnation point. With reasonable care in design of experiments to protect them from the backscatter flux of water molecules, the expulsion of 100 lb/day does not appear to create an insurmountable difficulty for the shuttle experiments.
NASA Technical Reports Server (NTRS)
Safaeinili, Ali; Kofman, Wlodek; Mouginot, Jeremie; Gim, Yonggyu; Herique, Alain; Ivanov, Anton B.; Plaut, Jeffrey J.; Picardi, Giovanni
2007-01-01
The Martian ionosphere's local total electron content (TEC) and the neutral atmosphere scale height can be derived from radar echoes reflected from the surface of the planet. We report the global distribution of the TEC by analyzing more than 750,000 echoes of the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS). This is the first direct measurement of the TEC of the Martian ionosphere. The technique used in this paper is a novel 'transmission-mode' sounding of the ionosphere of Mars in contrast to the Active Ionospheric Sounding experiment (AIS) on MARSIS, which generally operates in the reflection mode. This technique yields a global map of the TEC for the Martian ionosphere. The radar transmits a wideband chirp signal that travels through the ionosphere before and after being reflected from the surface. The received waves are attenuated, delayed and dispersed, depending on the electron density in the column directly below the spacecraft. In the process of correcting the radar signal, we are able to estimate the TEC and its global distribution with an unprecedented resolution of about 0.1 deg in latitude (5 km footprint). The mapping of the relative geographical variations in the estimated nightside TEC data reveals an intricate web of high electron density regions that correspond to regions where crustal magnetic field lines are connected to the solar wind. Our data demonstrates that these regions are generally but not exclusively associated with areas that have magnetic field lines perpendicular to the surface of Mars. As a result, the global TEC map provides a high-resolution view of where the Martian crustal magnetic field is connected to the solar wind. We also provide an estimate of the neutral atmospheric scale height near the ionospheric peak and observe temporal fluctuations in peak electron density related to solar activity.
Arakawa, Tsutomu; Ejima, Daisuke; Akuta, Teruo
2017-02-01
Local transient high protein concentration or high density condition can occur during processing of protein solutions. Typical examples are saturated binding of proteins during column chromatography and high protein concentration on the semi-permeable membrane during ultrafiltration. Both column chromatography and ultrafiltration are fundamental technologies, specially for production of pharmaceutical proteins. We summarize here our experiences related to such high concentration conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
VOLATILE-RICH CIRCUMSTELLAR GAS IN THE UNUSUAL 49 CETI DEBRIS DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberge, Aki; Grady, Carol A.; Welsh, Barry Y.
2014-11-20
We present Hubble Space Telescope Space Telescope Imaging Spectrograph far-UV spectra of the edge-on disk around 49 Ceti, one of the very few debris disks showing submillimeter CO emission. Many atomic absorption lines are present in the spectra, most of which arise from circumstellar gas lying along the line-of-sight to the central star. We determined the line-of-sight C I column density, estimated the total carbon column density, and set limits on the O I column density. Surprisingly, no line-of-sight CO absorption was seen. We discuss possible explanations for this non-detection, and present preliminary estimates of the carbon abundances in themore » line-of-sight gas. The C/Fe ratio is much greater than the solar value, suggesting that 49 Cet harbors a volatile-rich gas disk similar to that of β Pictoris.« less
Carbon X-ray absorption in the local ISM: fingerprints in X-ray Novae spectra
NASA Astrophysics Data System (ADS)
Gatuzz, Efraín; Ness, J.-U.; Gorczyca, T. W.; Hasoglu, M. F.; Kallman, Timothy R.; García, Javier A.
2018-06-01
We present a study of the C K-edge using high-resolution LETGS Chandra spectra of four novae during their super-soft-source (SSS) phase. We identified absorption lines due to C II Kα, C III Kα and C III Kβ resonances. We used these astronomical observations to perform a benchmarking of the atomic data, which involves wavelength shifts of the resonances and photoionization cross-sections. We used improved atomic data to estimate the C II and C III column densities. The absence of physical shifts for the absorption lines, the consistence of the column densities between multiple observations and the high temperature required for the SSS nova atmosphere modeling support our conclusion about an ISM origin of the respective absorption lines. Assuming a collisional ionization equilibrium plasma the maximum temperature derived from the ratio of C II/C III column densities of the absorbers correspond to Tmax < 3.05 × 104 K.
Quantized Self-Assembly of Discotic Rings in a Liquid Crystal Confined in Nanopores
NASA Astrophysics Data System (ADS)
Sentker, Kathrin; Zantop, Arne W.; Lippmann, Milena; Hofmann, Tommy; Seeck, Oliver H.; Kityk, Andriy V.; Yildirim, Arda; Schönhals, Andreas; Mazza, Marco G.; Huber, Patrick
2018-02-01
Disklike molecules with aromatic cores spontaneously stack up in linear columns with high, one-dimensional charge carrier mobilities along the columnar axes, making them prominent model systems for functional, self-organized matter. We show by high-resolution optical birefringence and synchrotron-based x-ray diffraction that confining a thermotropic discotic liquid crystal in cylindrical nanopores induces a quantized formation of annular layers consisting of concentric circular bent columns, unknown in the bulk state. Starting from the walls this ring self-assembly propagates layer by layer towards the pore center in the supercooled domain of the bulk isotropic-columnar transition and thus allows one to switch on and off reversibly single, nanosized rings through small temperature variations. By establishing a Gibbs free energy phase diagram we trace the phase transition quantization to the discreteness of the layers' excess bend deformation energies in comparison to the thermal energy, even for this near room-temperature system. Monte Carlo simulations yielding spatially resolved nematic order parameters, density maps, and bond-orientational order parameters corroborate the universality and robustness of the confinement-induced columnar ring formation as well as its quantized nature.
Data-driven probability concentration and sampling on manifold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soize, C., E-mail: christian.soize@univ-paris-est.fr; Ghanem, R., E-mail: ghanem@usc.edu
2016-09-15
A new methodology is proposed for generating realizations of a random vector with values in a finite-dimensional Euclidean space that are statistically consistent with a dataset of observations of this vector. The probability distribution of this random vector, while a priori not known, is presumed to be concentrated on an unknown subset of the Euclidean space. A random matrix is introduced whose columns are independent copies of the random vector and for which the number of columns is the number of data points in the dataset. The approach is based on the use of (i) the multidimensional kernel-density estimation methodmore » for estimating the probability distribution of the random matrix, (ii) a MCMC method for generating realizations for the random matrix, (iii) the diffusion-maps approach for discovering and characterizing the geometry and the structure of the dataset, and (iv) a reduced-order representation of the random matrix, which is constructed using the diffusion-maps vectors associated with the first eigenvalues of the transition matrix relative to the given dataset. The convergence aspects of the proposed methodology are analyzed and a numerical validation is explored through three applications of increasing complexity. The proposed method is found to be robust to noise levels and data complexity as well as to the intrinsic dimension of data and the size of experimental datasets. Both the methodology and the underlying mathematical framework presented in this paper contribute new capabilities and perspectives at the interface of uncertainty quantification, statistical data analysis, stochastic modeling and associated statistical inverse problems.« less
Thermal Pressure in Diffuse H2 Gas Measured by Herschel [C II] Emission and FUSE UV H2 Absorption
NASA Astrophysics Data System (ADS)
Velusamy, T.; Langer, W. D.; Goldsmith, P. F.; Pineda, J. L.
2017-04-01
UV absorption studies with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite have made important observations of H2 molecular gas in Galactic interstellar translucent and diffuse clouds. Observations of the 158 μm [C II] fine-structure line with Herschel trace the same H2 molecular gas in emission. We present [C II] observations along 27 lines of sight (LOSs) toward target stars of which 25 have FUSE H2 UV absorption. Two stars have only HST STIS C II λ2325 absorption data. We detect [C II] 158 μm emission features in all but one target LOS. For three target LOSs that are close to the Galactic plane, | {\\text{}}b| < 1°, we also present position-velocity maps of [C II] emission observed by Herschel Heterodyne Instrument in the Far Infrared (HIFI) in on-the-fly spectral-line mapping. We use the velocity-resolved [C II] spectra observed by the HIFI instrument toward the target LOSs observed by FUSE to identify [C II] velocity components associated with the H2 clouds. We analyze the observed velocity integrated [C II] spectral-line intensities in terms of the densities and thermal pressures in the H2 gas using the H2 column densities and temperatures measured by the UV absorption data. We present the H2 gas densities and thermal pressures for 26 target LOSs and from the [C II] intensities derive a mean thermal pressure in the range of ˜6100-7700 K cm-3 in diffuse H2 clouds. We discuss the thermal pressures and densities toward 14 targets, comparing them to results obtained using the UV absorption data for two other tracers C I and CO. Our results demonstrate the richness of the far-IR [C II] spectral data which is a valuable complement to the UV H2 absorption data for studying diffuse H2 molecular clouds. While the UV absorption is restricted to the directions of the target star, far-IR [C II] line emission offers an opportunity to employ velocity-resolved spectral-line mapping capability to study in detail the clouds’ spatial and velocity structures.
Star formation in massive Milky Way molecular clouds: Building a bridge to distant galaxies
NASA Astrophysics Data System (ADS)
Willis, Sarah Elizabeth
The Kennicutt-Schmidt relation is an empirical power-law linking the surface density of the star formation rate (SigmaSFR) to the surface density of gas (Sigmagas ) averaged over the observed face of a starforming galaxy Kennicutt (1998). The original presentation used observations of CO to measure gas density and H alpha emission to measure the population of hot, massive young stars (and infer the star formation rate). Observations of Sigma SFR from a census of young stellar objects in nearby molecular clouds in our Galaxy are up to 17 times higher than the extragalactic relation would predict given their Sigmagas. These clouds primarily form low-mass stars that are essentially invisible to star formation rate tracers. A sample of six giant molecular cloud (GMC) complexes with signposts of massive star formation was identified in our galaxy. The regions selected have a range of total luminosity and morphology. Deep ground-based observations in the near-infrared with NEWFIRM and IRAC observations with the Spitzer Space Telescope were used to conduct a census of the young stellar content associated with each of these clouds. The star formation rates from the stellar census in each of these regions was compared with the star formation rates measured by extragalactic star formation rate tracers based on monochromatic mid-infrared luminosities. Far-infrared Herschel observations from 160 through 500 mum were used to determine the column density and temperature in each region. The region NGC 6334 served as a test case to compare the Herschel column density measurements with the measurements for near-infrared extinction. The combination of the column density maps and the stellar census lets us examine SigmaSFR vs. Sigma gas for the massive GMCs. These regions are consistent with the results for the low-mass molecular clouds, indicating Sigma SFR levels that are higher than predicted based on Sigma gas. The overall Sigmagas levels are higher for the massive star forming regions, indicating that they have a higher fraction of dense gas than the clouds that are forming primarily low mass stars. There is still significant spread at a given average gas density, indicating that the star formation history and dense gas fraction play important roles in determining an individual molecular cloud's place in a Sigma SFR vs. Sigmagas diagram. Zooming in, SigmaSFR vs. Sigma gas was examined within the individual clouds, revealing a decrease relative to the spread that is observed for the average over whole clouds. The dependence of SigmaSFR on Sigma gas increases significantly above AV ˜ 5 - 10 which is consistent with previous measurements of a threshold for star formation around AV = 8 or Sigma gas = 0.04 g cm-2. NGC 6334 was found to be consistent with a threshold for massive star formation at Sigmagas = 1 g cm-2.
Density Gradients in Chemistry Teaching
ERIC Educational Resources Information Center
Miller, P. J.
1972-01-01
Outlines experiments in which a density gradient might be used to advantage. A density gradient consists of a column of liquid, the composition and density of which varies along its length. The procedure can be used in analysis of solutions and mixtures and in density measures of solids. (Author/TS)
NASA Astrophysics Data System (ADS)
Smith, Victoria C.; Isaia, Roberto; Engwell, Sam L.; Albert, Paul. G.
2016-06-01
The Campanian Ignimbrite eruption dispersed ash over much of the central eastern Mediterranean Sea and eastern Europe. The eruption started with a Plinian phase that was followed by a series of pyroclastic density currents (PDCs) associated with the collapse of the Plinian column and the caldera. The glass compositions of the deposits span a wide geochemical range, but the Plinian fallout and PDCs associated with column collapse, the Lower Pumice Flow, only erupted the most evolved compositions. The later PDCs, the Breccia Museo and Upper Pumice Flow, erupted during and after caldera collapse, tap a less evolved component, and intermediate compositions that represent mixing between the end-members. The range of glass compositions in the Campanian Ignimbrite deposits from sites across the central and eastern Mediterranean Sea allow us to trace the dispersal of the different phases of this caldera-forming eruption. We map the fallout from the Plinian column and the plumes of fine material associated with the PDCs (co-PDCs) across the entire dispersal area. This cannot be done using the usual grain-size methods as deposits in these distal regions do not retain characteristics that allow attribution to either the Plinian or co-PDC phases. The glass compositions of the tephra at ultra-distal sites (>1500 km from the vent) match those of the uppermost PDC units, suggesting that most of the ultra-distal dispersal was associated with the late co-PDC plume that was generated during caldera collapse.
NASA Astrophysics Data System (ADS)
Montague, James A.; Pinder, George F.; Gonyea, Jay V.; Hipko, Scott; Watts, Richard
2018-05-01
Magnetic resonance imaging is used to observe solute transport in a 40 cm long, 26 cm diameter sand column that contained a central core of low permeability silica surrounded by higher permeability well-sorted sand. Low concentrations (2.9 g/L) of Magnevist, a gadolinium based contrast agent, produce density driven convection within the column when it starts in an unstable state. The unstable state, for this experiment, exists when higher density contrast agent is present above the lower density water. We implement a numerical model in OpenFOAM to reproduce the observed fluid flow and transport from a density difference of 0.3%. The experimental results demonstrate the usefulness of magnetic resonance imaging in observing three-dimensional gravity-driven convective-dispersive transport behaviors in medium scale experiments.
The soft X-ray diffuse background
NASA Technical Reports Server (NTRS)
Mccammon, D.; Burrows, D. N.; Sanders, W. T.; Kraushaar, W. L.
1982-01-01
Maps of the diffuse X-ray background intensity covering essentially the entire sky with approx. 7 deg spatial resolution are presented for seven energy bands. The data were obtained on a series of ten sounding rocket flights conducted over a seven-year period. The different nature of the spatial distributions in different bands implies at least three distinct origins for the diffuse X-rays, none of which is well-understood. At energies or approx. 2000 eV, an isotropic and presumably extraglalactic 500 and 1000 eV, an origin which is at least partially galactic seems called for. At energies 284 eV, the observed intensity is anticorrelated with neutral hydrogen column density, but we find it unlikely that this anticorrelation is simply due to absorption of an extragalactic or halo source.
Properties of Two-Variety Natural Luffa Sponge Columns as Potential Mattress Filling Materials
Chen, Yuxia; Zhang, Kaiting; Yuan, Fangcheng; Zhang, Tingting; Weng, Beibei; Wu, Shanshan; Huang, Aiyue; Su, Na; Guo, Yong
2018-01-01
Luffa sponge (LS) is a resourceful material with fibro-vascular reticulated structure and extremely high porosity, which make it a potential candidate for manufacturing light mattress. In this study, two types of LS columns, namely high-density (HD) and low-density (LD) columns, were investigated as materials for filling the mattress. The results showed that the compressive strength of HD LS columns was significantly greater than that of LD LS columns. However, the densification strains of the two types of LS column were both in the range of 0.6 to 0.7. Besides, HD LS columns separately pressed to the smooth plateau region and the initial densification region exhibited a partial recovery of instant height when they were unloaded, and then both of them showed no more than 4.2% of height recovery after being allowed to rest at a constant temperature and humidity for 24 h. In contrast, when LD LS columns were compressed to the smooth plateau region, the height recovery was less than 1.62% compared to when they were pressed to the initial densification region, and that was more than 15.62%. Similar to other plant fibers used as mattress fillers, the two types of LS columns also showed good water absorption capacity—both of them could absorb water from as much as 2.07 to 3.45 times their own weight. At the same time, the two types of LS columns also showed good water desorption. The water desorption ratio of HD and LD LS columns separately reached 76.86 and 91.44%, respectively, after being let rest at a constant temperature and humidity for 13 h. PMID:29614744
Mitigation of Liquefaction in Sandy Soils Using Stone Columns
NASA Astrophysics Data System (ADS)
Selcuk, Levent; Kayabalı, Kamil
2010-05-01
Soil liquefaction is one of the leading causes of earthquake-induced damage to structures. Soil improvement methods provide effective solutions to reduce the risk of soil liquefaction. Thus, soil ground treatments are applied using various techniques. However, except for a few ground treatment methods, they generally require a high cost and a lot of time. Especially in order to prevent the risk of soil liquefaction, stone columns conctructed by vibro-systems (vibro-compaction, vibro-replacement) are one of the traditional geotechnical methods. The construction of stone columns not only enhances the ability of clean sand to drain excess pore water during an earthquake, but also increases the relative density of the soil. Thus, this application prevents the development of the excess pore water pressure in sand during earthquakes and keeps the pore pressure ratio below a certain value. This paper presents the stone column methods used against soil liquefaction in detail. At this stage, (a) the performances of the stone columns were investigated in different spacing and diameters of columns during past earthquakes, (b) recent studies about design and field applications of stone columns were presented, and (c) a new design method considering the relative density of soil and the capacity of drenage of columns were explained in sandy soil. Furthermore, with this new method, earthquake performances of the stone columns constructed at different areas were investigated before the 1989 Loma Prieta and the 1994 Northbridge earthquakes, as case histories of field applications, and design charts were compiled for suitable spacing and diameters of stone columns with consideration to the different sandy soil parameters and earhquake conditions. Key Words: Soil improvement, stone column, excess pore water pressure
Cosmic distribution of highly ionized metals and their physical conditions in the EAGLE simulations
NASA Astrophysics Data System (ADS)
Rahmati, Alireza; Schaye, Joop; Crain, Robert A.; Oppenheimer, Benjamin D.; Schaller, Matthieu; Theuns, Tom
2016-06-01
We study the distribution and evolution of highly ionized intergalactic metals in the Evolution and Assembly of Galaxies and their Environment (EAGLE) cosmological, hydrodynamical simulations. EAGLE has been shown to reproduce a wide range of galaxy properties while its subgrid feedback was calibrated without considering gas properties. We compare the predictions for the column density distribution functions (CDDFs) and cosmic densities of Si IV, C IV, N V, O VI and Ne VIII absorbers with observations at redshift z = 0 to ˜6 and find reasonable agreement, although there are some differences. We show that the typical physical densities of the absorbing gas increase with column density and redshift, but decrease with the ionization energy of the absorbing ion. The typical metallicity increases with both column density and time. The fraction of collisionally ionized metal absorbers increases with time and ionization energy. While our results show little sensitivity to the presence or absence of AGN feedback, increasing/decreasing the efficiency of stellar feedback by a factor of 2 substantially decreases/increases the CDDFs and the cosmic densities of the metal ions. We show that the impact of the efficiency of stellar feedback on the CDDFs and cosmic densities is largely due to its effect on the metal production rate. However, the temperatures of the metal absorbers, particularly those of strong O VI, are directly sensitive to the strength of the feedback.
An analysis of OH excited state absorption lines in DR 21 and K3-50
NASA Astrophysics Data System (ADS)
Jones, K. N.; Doel, R. C.; Field, D.; Gray, M. D.; Walker, R. N. F.
1992-10-01
We present an analysis of the OH absorption line zones observed toward the compact H II regions DR 21 and K3-50. Using as parameters the kinetic and dust temperatures, the H2 number density and the ratio of OH-H2 number densities to the velocity gradient, the model quantitatively reproduces the absorption line data for the six main line transitions in 2 Pi3/2 J = 5/2, 7/2, and 9/2. Observed upper limits for the absorption or emission in the satellite lines of 2 Pi3/2 J = 5/2 are crucial in constraining the range of derived parameters. Physical conditions derived for DR 21 show that the kinetic temperature centers around 140 K, the H2 number density around 10 exp 7/cu cm, and that the OH column density in the excited state absorption zone lies between 1 x 10 exp 15/sq cm and 2 x 10 exp 15/sq cm. Including contributions from a J = 3/2 absorption zone, the total OH column density is more than a factor of 2 lower than estimates based upon LTE (Walmsley et al., 1986). The OH absorption zone in K3-50 tends toward higher density and displays a larger column density, while the kinetic temperature is similar. For both sources, the dust temperature is found to be significantly lower than the kinetic temperature.
Rapid micro-scale proteolysis of proteins for MALDI-MS peptide mapping using immobilized trypsin
NASA Astrophysics Data System (ADS)
Gobom, Johan; Nordhoff, Eckhard; Ekman, Rolf; Roepstorff, Peter
1997-12-01
In this study we present a rapid method for tryptic digestion of proteins using micro-columns with enzyme immobilized on perfusion chromatography media. The performance of the method is exemplified with acyl-CoA-binding protein and reduced carbamidomethylated bovine serum albumin. The method proved to be significantly faster and yielded a better sequence coverage and an improved signal-to-noise ratio for the MALDI-MS peptide maps, compared to in-solution- and on-target digestion. Only a single sample transfer step is required, and therefore sample loss due to adsorption to surfaces is reduced, which is a critical issue when handling low picomole to femtomole amounts of proteins. An example is shown with on-column proteolytic digestion and subsequent elution of the digest into a reversed-phase micro-column. This is useful if the sample contains large amounts of salt or is too diluted for MALDI-MS analysis. Furthermore, by step-wise elution from the reversedphase column, a complex digest can be fractionated, which reduces signal suppression and facilitates data interpretation in the subsequent MS-analysis. The method also proved useful for consecutive digestions with enzymes of different cleavage specificity. This is exemplified with on-column tryptic digestion, followed by reversed-phase step-wise elution, and subsequent on-target V8 protease digestion.
NASA Astrophysics Data System (ADS)
Kim, Jaeheon; Kim, Hyun-Goo; Kim, Sang Joon; Zhang, Bo
2017-12-01
We present the results of mapping observations and stability analyses toward the filamentary dark cloud GF 6. We investigate the internal structures of a typical filamentary dark cloud GF 6 to know whether the filamentary dark cloud will form stars. We perform radio observations with both 12CO (J=1-0) and 13CO (J=1-0) emission lines to examine the mass distribution and its evolutionary status. The 13CO gas column density map shows eight subclumps in the GF 6 region with sizes on a sub-pc scale. The resulting local thermodynamic equilibrium masses of all the subclumps are too low to form stars against the turbulent dissipation. We also investigate the properties of embedded infrared point sources to know whether they are newly formed stars. The infrared properties also indicate that these point sources are not related to star forming activities associated with GF 6. Both radio and infrared properties indicate that the filamentary dark cloud GF 6 is too light to contract gravitationally and will eventually be dissipated away.
Mapping the Extinction Curve in 3D: Structure on Kiloparsec Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlafly, E. F.; Peek, J. E. G.; Finkbeiner, D. P.
Near-infrared spectroscopy from APOGEE and wide-field optical photometry from Pan-STARRS1 have recently made precise measurements of the shape of the extinction curve possible for tens of thousands of stars, parameterized by R ( V ). These measurements revealed structures in R ( V ) with large angular scales, which are challenging to explain in existing dust paradigms. In this work, we combine three-dimensional maps of dust column density with R ( V ) measurements to constrain the three-dimensional distribution of R ( V ) in the Milky Way. We find that the variations in R ( V ) are correlatedmore » on kiloparsec scales. In particular, most of the dust within one kiloparsec in the outer Galaxy, including many local molecular clouds (Orion, Taurus, Perseus, California, and Cepheus), has a significantly lower R ( V ) than more distant dust in the Milky Way. These results provide new input to models of dust evolution and processing, and complicate the application of locally derived extinction curves to more distant regions of the Milky Way and to other galaxies.« less
Soft X-ray maps of the Large Magellanic Cloud (LMC)
NASA Technical Reports Server (NTRS)
Singh, K. P.; Nousek, J. A.; Burrows, D. N.; Garmire, G. P.
1985-01-01
Soft X-ray maps of the Large Magellanic Cloud (LMC) were obtained from scanning-observations with the HEAO-1 low energy detectors. Comparison of the 1/4 keV X-ray observations with the neutral hydrogen column densities in the LMC obtained from a 21 cm line survey, shows no evidence for absorption effects in the 1/4 keV X-ray flux from the LMC due to the neutral matter in the LMC. Instead, faint X-ray emission is detected from the LMC. The extent of this emission is smaller than the size of the halo or the disk of the LMC. Assuming this 1/4 keV emission to be diffuse, it is identified with a supergiant shell of optical nebulosity known as Shapley III, and the bar of the LMC. The X-ray luminosities of the regions are estimated to be 9 times 10 to the 38th power ergs/sec and 1.8 times 10 to the 39th power ergs/sec for the Shapley III region and the bar of the LMC respectively. Shapley III could be an X-ray superbubble.
Gravity and magnetic anomaly modeling and correlation using the SPHERE program and Magsat data
NASA Technical Reports Server (NTRS)
Braile, L. W.; Hinze, W. J. (Principal Investigator); Vonfrese, R. R. B.
1980-01-01
The spherical Earth inversion, modeling, and contouring software were tested and modified for processing data in the Southern Hemisphere. Preliminary geologic/tectonic maps and selected cross sections for South and Central America and the Caribbean region are being compiled and as well as gravity and magnetic models for the major geological features of the area. A preliminary gravity model of the Andeas Beniff Zone was constructed so that the density columns east and west of the subducted plates are in approximate isostatic equilibrium. The magnetic anomaly for the corresponding magnetic model of the zone is being computed with the SPHERE program. A test tape containing global magnetic measurements was converted to a tape compatible with Purdue's CDC system. NOO data were screened for periods of high diurnal activity and reduced to anomaly form using the IGS-75 model. Magnetic intensity anomaly profiles were plotted on the conterminous U.S. map using the track lines as the anomaly base level. The transcontinental magnetic high seen in POGO and MAGSAT data is also represented in the NOO data.
Characterizing the plasma of the Rotating Wall Machine
NASA Astrophysics Data System (ADS)
Hannum, David A.
The Rotating Wall Machine (RoWM) is a line-tied linear screw pinch built to study current-driven external kink modes. The plasma column is formed by an array of seven electrostatic washer guns which can also be biased to drive plasma current. The array allows independent control over the electron density ne and current density Jz profiles of the column. Internal measurements of the plasma have been made with singletip Langmuir and magnetic induction ("B-dot") probes for a range of bias currents (Ib = 0, 300, 500 A/gun). Streams from the individual guns are seen to merge at a distance of z ≈ 36 cm from the guns; the exact distance depends on the value of Ib. The density of the column is directly proportional to the Ohmic dissipation power, but the temperature stays at a low, uniform value (Te ≈ 3.5 eV) for each bias level. Electron densities are on the order of ne ˜10 20 m-3. The electron density expands radially (across the Bz guide field) as the plasma moves along the column, though the current density Jz mainly stays parallel to the field lines. The singletip Langmuir probe diagnostic is difficult to analyze for Ib = 500 A/gun plasmas and fails as Ib is raised beyond this level. Spectrographic analysis of the Halpha line indicates that the hydrogen plasmas are nearly fully ionized at each bias level. Azimuthal E x B rotation is axially and radially sheared; rotation slows as the plasma reaches the anode. Perpendicular diffusivity is consistent with the classical value, D⊥ ≈ 5 m2/sec, while parallel resistivity is seen to be twice the classical Spitzer value, 2 x 10-4 O m.
NASA Technical Reports Server (NTRS)
Kruk, J. W.; Howk, J. C.; Andre, M.; Moos, H. W.; Oegerle, William R.; Oliveira, C.; Sembach, K. R.; Chayer, P.; Linsky, J. L.; Wood, B. E.
2002-01-01
We present an analysis of interstellar absorption along the line of sight to the nearby white dwarf star HZ43A. The distance to this star is 68+/-13 pc, and the line of sight extends toward the north Galactic pole. Column densities of O(I), N(I), and N(II) were derived from spectra obtained by the Far Ultraviolet Spectroscopic Explorer (FUSE), the column density of D(I) was derived from a combination of our FUSE spectra and an archival HST GARDENS spectrum, and the column density of H(I) was derived from a combination of the GARDENS spectrum and values derived from EUVE data obtained from the literature. We find the following abundance ratios (with 2 sigma uncertainties): D(I)/H(I)=(1.66+/-0.28)x10(exp -5), O(I)/H(I)=(3.63+/-0.84)x10(exp -4), and N(I)/H(I)=(3.80+/-0.74)x10(exp -5). The N(II) column density was slightly greater than that of N(I), indicating that ionization corrections are important when deriving nitrogen abundances. Other interstellar species detected along the line of sight were C(II), C(III), O(VI), Si(II), Ar(I), Mg(II) and Fe(II); an upper limit was determined for N(III). No elements other than H(I) were detected in the stellar photosphere.
Probing the local environment of the supernova remnant HESS J1731-347 with CO and CS observations
NASA Astrophysics Data System (ADS)
Maxted, N.; Burton, M.; Braiding, C.; Rowell, G.; Sano, H.; Voisin, F.; Capasso, M.; Pühlhofer, G.; Fukui, Y.
2018-02-01
The shell-type supernova remnant HESS J1731 - 347 emits TeV gamma-rays, and is a key object for the study of the cosmic ray acceleration potential of supernova remnants. We use 0.5-1 arcmin Mopra CO/CS(1-0) data in conjunction with H I data to calculate column densities towards the HESS J1731 - 347 region. We trace gas within at least four Galactic arms, typically tracing total (atomic+molecular) line-of-sight H column densities of 2-3× 1022 cm-2. Assuming standard X-factor values and that most of the H I/CO emission seen towards HESS J1731 - 347 is on the near-side of the Galaxy, X-ray absorption column densities are consistent with H I+CO-derived column densities foreground to, but not beyond, the Scutum-Crux Galactic arm, suggesting a kinematic distance of ˜3.2 kpc for HESS J1731 - 347. At this kinematic distance, we also find dense, infrared-dark gas traced by CS(1-0) emission coincident with the north of HESS J1731 - 347, the nearby H II region G353.43-0.37 and the nearby unidentified gamma-ray source HESS J1729 - 345. This dense gas lends weight to the idea that HESS J1729 - 345 and HESS J1731 - 347 are connected, perhaps via escaping cosmic-rays.
NASA Astrophysics Data System (ADS)
Broccardo, Stephen; Heue, Klaus-Peter; Walter, David; Meyer, Christian; Kokhanovsky, Alexander; van der A, Ronald; Piketh, Stuart; Langerman, Kristy; Platt, Ulrich
2018-05-01
Aircraft measurements of NO2 using an imaging differential optical absorption spectrometer (iDOAS) instrument over the South African Highveld region in August 2007 are presented and compared to satellite measurements from OMI and SCIAMACHY. In situ aerosol and trace-gas vertical profile measurements, along with aerosol optical thickness and single-scattering albedo measurements from the Aerosol Robotic Network (AERONET), are used to devise scenarios for a radiative transfer modelling sensitivity study. Uncertainty in the air-mass factor due to variations in the aerosol and NO2 profile shape is constrained and used to calculate vertical column densities (VCDs), which are compared to co-located satellite measurements. The lower spatial resolution of the satellites cannot resolve the detailed plume structures revealed in the aircraft measurements. The airborne DOAS in general measured steeper horizontal gradients and higher peak NO2 vertical column density. Aircraft measurements close to major sources, spatially averaged to the satellite resolution, indicate NO2 column densities more than twice those measured by the satellite. The agreement between the high-resolution aircraft instrument and the satellite instrument improves with distance from the source, this is attributed to horizontal and vertical dispersion of NO2 in the boundary layer. Despite the low spatial resolution, satellite images reveal point sources and plumes that retain their structure for several hundred kilometres downwind.
Retrieval of tropospheric HCHO in El Salvador using ground based DOAS
NASA Astrophysics Data System (ADS)
Abarca, W.; Gamez, K.; Rudamas, C.
2017-12-01
Formaldehyde (HCHO) is the most abundant carbonyl in the atmosphere, being an intermediate product in the oxidation of most volatile organic compounds (VOCs). HCHO is carcinogenic, and highly water soluble [1]. HCHO can originate from biomass burning and fossil fuel combustion and has been observed from satellite and ground-based sensors by using the Differential Optical Absorption Spectroscopy (DOAS) technique [2].DOAS products can be used for air quality monitoring, validation of chemical transport models, validation of satellite tropospheric column density retrievals, among others [3]. In this study, we report on column density levels of HCHO measured by ground based Multi-Axis -DOAS in different locations of El Salvador in March, 2015. We have not observed large differences of the HCHO column density values at different viewing directions. This result points out a reasonably polluted and hazy atmosphere in the measuring sites, as reported by other authors [4]. Average values ranging from 1016 to 1017 molecules / cm2 has been obtained. The contribution of vehicular traffic and biomass burning to the column density levels in these sites of El Salvador will be discussed. [1] A. R. Garcia et al., Atmos. Chem. Phys. 6, 4545 (2006) [2] E. Peters et al., Atmos. Chem. Phys. 12, 11179 (2012) [3] T. Vlemmix, et al. Atmos. Meas. Tech., 8, 941-963, 2015 [4] A. Heckel et al., Atmos. Chem. Phys. 5, (2005)
Hot and cold gas toward young stellar objects
NASA Technical Reports Server (NTRS)
Mitchell, George F.; Maillard, Jean-Pierre; Allen, Mark; Beer, Reinhard; Belcourt, Kenneth
1990-01-01
High-resolution M band spectra are presented for the seven embedded IR sources W3 IRS 5, S140 IRS1, NGC 7538 IRS 1, NGC 7538 IRS 9, GL 2136, LkH-alpha 101, and MWC 349A, and the data are combined with previously published work for W33A and GL 2591. Cold CO is seen toward all nine sources, with temperatures from 11 K to 66 K. Column densities of cold CO are presented. Hot gas is seen toward eight of the nine objects with temperatures from 120 K to 1010 K. New lower limits to the hot gas density are obtained. The hot gas toward GL 2591, GL 2136, W3 IRS 5, and S140 IRS 1 is probably very near the central source and heated via gas-grain collisions. The optical depth in the silicate feature is strongly correlated with the (C-13)O column density, confirming that silicate optical depth is a useful measure of gas column density. The ratio of solid-to-gaseous CO is obtained for seven sources.
Characteristic Structure of Star-forming Clouds
NASA Astrophysics Data System (ADS)
Myers, Philip C.
2015-06-01
This paper presents a new method to diagnose the star-forming potential of a molecular cloud region from the probability density function of its column density (N-pdf). This method provides expressions for the column density and mass profiles of a symmetric filament having the same N-pdf as a filamentary region. The central concentration of this characteristic filament can distinguish regions and can quantify their fertility for star formation. Profiles are calculated for N-pdfs which are pure lognormal, pure power law, or a combination. In relation to models of singular polytropic cylinders, characteristic filaments can be unbound, bound, or collapsing depending on their central concentration. Such filamentary models of the dynamical state of N-pdf gas are more relevant to star-forming regions than are spherical collapse models. The star formation fertility of a bound or collapsing filament is quantified by its mean mass accretion rate when in radial free fall. For a given mass per length, the fertility increases with the filament mean column density and with its initial concentration. In selected regions the fertility of their characteristic filaments increases with the level of star formation.
NASA Astrophysics Data System (ADS)
Kong, Shuo; Arce, Héctor G.; Feddersen, Jesse R.; Carpenter, John M.; Nakamura, Fumitaka; Shimajiri, Yoshito; Isella, Andrea; Ossenkopf-Okada, Volker; Sargent, Anneila I.; Sánchez-Monge, Álvaro; Suri, Sümeyye T.; Kauffmann, Jens; Pillai, Thushara; Pineda, Jaime E.; Koda, Jin; Bally, John; Lis, Dariusz C.; Padoan, Paolo; Klessen, Ralf; Mairs, Steve; Goodman, Alyssa; Goldsmith, Paul; McGehee, Peregrine; Schilke, Peter; Teuben, Peter J.; José Maureira, María; Hara, Chihomi; Ginsburg, Adam; Burkhart, Blakesley; Smith, Rowan J.; Schmiedeke, Anika; Pineda, Jorge L.; Ishii, Shun; Sasaki, Kazushige; Kawabe, Ryohei; Urasawa, Yumiko; Oyamada, Shuri; Tanabe, Yoshihiro
2018-06-01
We present the first results from a new, high-resolution 12CO(1–0), 13CO(1–0), and C18O(1–0) molecular-line survey of the Orion A cloud, hereafter referred to as the CARMA-NRO Orion Survey. CARMA observations have been combined with single-dish data from the Nobeyama 45 m telescope to provide extended images at about 0.01 pc resolution, with a dynamic range of approximately 1200 in spatial scale. Here we describe the practical details of the data combination in uv space, including flux scale matching, the conversion of single-dish data to visibilities, and joint deconvolution of single-dish and interferometric data. A Δ-variance analysis indicates that no artifacts are caused by combining data from the two instruments. Initial analysis of the data cubes, including moment maps, average spectra, channel maps, position–velocity diagrams, excitation temperature, column density, and line ratio maps, provides evidence of complex and interesting structures such as filaments, bipolar outflows, shells, bubbles, and photo-eroded pillars. The implications for star formation processes are profound, and follow-up scientific studies by the CARMA-NRO Orion team are now underway. We plan to make all the data products described here generally accessible; some are already available at https://dataverse.harvard.edu/dataverse/CARMA-NRO-Orion.
Large-Scale CO Maps of the Lupus Molecular Cloud Complex
NASA Astrophysics Data System (ADS)
Tothill, N. F. H.; Löhr, A.; Parshley, S. C.; Stark, A. A.; Lane, A. P.; Harnett, J. I.; Wright, G. A.; Walker, C. K.; Bourke, T. L.; Myers, P. C.
2009-11-01
Fully sampled degree-scale maps of the 13CO 2-1 and CO 4-3 transitions toward three members of the Lupus Molecular Cloud Complex—Lupus I, III, and IV—trace the column density and temperature of the molecular gas. Comparison with IR extinction maps from the c2d project requires most of the gas to have a temperature of 8-10 K. Estimates of the cloud mass from 13CO emission are roughly consistent with most previous estimates, while the line widths are higher, around 2 km s-1. CO 4-3 emission is found throughout Lupus I, indicating widespread dense gas, and toward Lupus III and IV. Enhanced line widths at the NW end and along the edge of the B 228 ridge in Lupus I, and a coherent velocity gradient across the ridge, are consistent with interaction between the molecular cloud and an expanding H I shell from the Upper-Scorpius subgroup of the Sco-Cen OB Association. Lupus III is dominated by the effects of two HAe/Be stars, and shows no sign of external influence. Slightly warmer gas around the core of Lupus IV and a low line width suggest heating by the Upper-Centaurus-Lupus subgroup of Sco-Cen, without the effects of an H I shell.
NASA Astrophysics Data System (ADS)
Lee, Cheoljong; Leroy, Adam K.; Schnee, Scott; Wong, Tony; Bolatto, Alberto D.; Indebetouw, Remy; Rubio, Monica
2015-07-01
To test the theoretical understanding that finding bright CO emission depends primarily on dust shielding, we investigate the relationship between CO emission (ICO) and the amount of dust (estimated from infrared emission and expressed as `AV') across the Large Magellanic Cloud (LMC), the Small Magellanic Cloud, and the Milky Way. We show that at our common resolution of 10 pc scales, ICO given a fixed line of sight AV is similar across all three systems despite the difference in metallicity. We find some evidence for a secondary dependence of ICO on radiation field; in the LMC, ICO at a given AV is smaller in regions of high Tdust, perhaps because of an increased photodissociating radiation field. We suggest a simple but useful picture in which the CO-to-H2 conversion factor (XCO) depends on two separable factors: (1) the distribution of gas column densities, which maps to an extinction distribution via a dust-to-gas ratio; and (2) the dependence of ICO on AV. Assuming that the probability distribution function (PDF) of local Milky Way clouds is universal, this approach predicts a dependence of {X_CO} on Z between Z-1 and Z-2 above about a third solar metallicity. Below this metallicity, CO emerges from only the high column density parts of the cloud and so depends very sensitively on the adopted PDF and the H2/H I prescription. The PDF of low-metallicity clouds is thus of considerable interest and the uncertainty associated with even an ideal prescription for XCO at very low metallicity will be large.
Zhang, Xiaobin; Oshima, Yoshifumi
2016-10-01
An atomic resolution phase map, which enables us to observe charge distribution or magnetic properties at an atomic scale, has been pointed out to be retrieved by transport of intensity equation (TIE) when taking two atomic-resolved transmission electron microscope (TEM) images of small defocus difference. In this work, we firstly obtained the atomic-resolved phase maps of an exfoliated molybdenum disulfide sheet using spherical aberration-corrected transmission electron microscope. We successfully observed 60° grain boundary of mechanically exfoliated monolayer molybdenum disulfide sheet. The relative phase shift of a single molybdenum atomic column to the column consisting of two sulfur atoms was obtained to be about 0.01 rad on average, which was about half lower than the simulated TIE phase map, indicating that the individual atomic sites can be distinguished qualitatively. The appropriate condition for retrieving atomic-resolved TIE phase maps was briefly discussed. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
PHYSICAL CONDITIONS OF CORONAL PLASMA AT THE TRANSIT OF A SHOCK DRIVEN BY A CORONAL MASS EJECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susino, R.; Bemporad, A.; Mancuso, S., E-mail: susino@oato.inaf.it
2015-10-20
We report here on the determination of plasma physical parameters across a shock driven by a coronal mass ejection using white light (WL) coronagraphic images and radio dynamic spectra (RDS). The event analyzed here is the spectacular eruption that occurred on 2011 June 7, a fast CME followed by the ejection of columns of chromospheric plasma, part of them falling back to the solar surface, associated with a M2.5 flare and a type-II radio burst. Images acquired by the Solar and Heliospheric Observatory/LASCO coronagraphs (C2 and C3) were employed to track the CME-driven shock in the corona between 2–12 R{submore » ⊙} in an angular interval of about 110°. In this interval we derived two-dimensional (2D) maps of electron density, shock velocity, and shock compression ratio, and we measured the shock inclination angle with respect to the radial direction. Under plausible assumptions, these quantities were used to infer 2D maps of shock Mach number M{sub A} and strength of coronal magnetic fields at the shock's heights. We found that in the early phases (2–4 R{sub ⊙}) the whole shock surface is super-Alfvénic, while later on (i.e., higher up) it becomes super-Alfvénic only at the nose. This is in agreement with the location for the source of the observed type-II burst, as inferred from RDS combined with the shock kinematic and coronal densities derived from WL. For the first time, a coronal shock is used to derive a 2D map of the coronal magnetic field strength over intervals of 10 R{sub ⊙} altitude and ∼110° latitude.« less
40 CFR Table Mm-2 to Subpart Mm of... - Default Factors for Biomass-Based Fuels and Biomass
Code of Federal Regulations, 2011 CFR
2011-07-01
... Fuels and Biomass MM Table MM-2 to Subpart MM of Part 98 Protection of Environment ENVIRONMENTAL... Biomass-Based Fuels and Biomass Biomass-based fuel and biomass Column A:Density (metric tons/bbl) Column B: Carbon share(% of mass) Column C:Emission factor (metric tons CO2/bbl) Ethanol (100%) 0.1267 52.14 0.2422...
40 CFR Table Mm-2 to Subpart Mm of... - Default Factors for Biomass-Based Fuels and Biomass
Code of Federal Regulations, 2013 CFR
2013-07-01
... Fuels and Biomass MM Table MM-2 to Subpart MM of Part 98 Protection of Environment ENVIRONMENTAL... Biomass-Based Fuels and Biomass Biomass-based fuel and biomass Column A:Density (metric tons/bbl) Column B: Carbon share(% of mass) Column C:Emission factor (metric tons CO2/bbl) Ethanol (100%) 0.1267 52.14 0.2422...
40 CFR Table Mm-2 to Subpart Mm of... - Default Factors for Biomass-Based Fuels and Biomass
Code of Federal Regulations, 2014 CFR
2014-07-01
... Fuels and Biomass MM Table MM-2 to Subpart MM of Part 98 Protection of Environment ENVIRONMENTAL... Biomass-Based Fuels and Biomass Biomass-based fuel and biomass Column A:Density (metric tons/bbl) Column B: Carbon share(% of mass) Column C:Emission factor (metric tons CO2/bbl) Ethanol (100%) 0.1267 52.14 0.2422...
40 CFR Table Mm-2 to Subpart Mm of... - Default Factors for Biomass-Based Fuels and Biomass
Code of Federal Regulations, 2012 CFR
2012-07-01
... Fuels and Biomass MM Table MM-2 to Subpart MM of Part 98 Protection of Environment ENVIRONMENTAL... Biomass-Based Fuels and Biomass Biomass-based fuel and biomass Column A:Density (metric tons/bbl) Column B: Carbon share(% of mass) Column C:Emission factor (metric tons CO2/bbl) Ethanol (100%) 0.1267 52.14 0.2422...
NASA Technical Reports Server (NTRS)
Moos, H. W.; Sembach, K. R.; Vidal-Madjar, A.; York, D. G.; Friedman, S. D.; Hebrard, G.; Kruk, J. W.; Lehner, N.; Lemoine, M.; Sonneborn, G.;
2002-01-01
Observations obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) have been used to determine the column densities of D I, O I, and N I along seven sight lines that probe the local interstellar medium (LISM) at distances from 37 pc to 179 pc. Five of the sight lines are within the Local Bubble and two penetrate the surrounding H I wall. Reliable values of N(H I) were determined for five of the sight lines from HST data, IUE data, and published EUVE measurements. The weighted mean of DI/H I for these five sight lines is (1.52 +/- 0.08) x l0(exp -5)(1 sigma uncertainty in the mean). It is likely that the D I/H I ratio in the Local Bubble has a single value. The D I/O I ratio for the five sight lines within the Local Bubble is (3.76 +/- 0.20) x 10(esp -2). It is likely that O I column densities can serve as a proxy for H I in the Local Bubble. The weighted mean for O I/ H I for the seven FUSE sight lines is (3.03 +/- 0.21) x 10(esp -4), comparable to the weighted mean (3.43 +/- 0.15) x 10(exp -4) reported for 13 sight lines probing larger distances and higher column densities. The FUSE weighted mean of N I/ H I for five sight lines is half that reported by Meyer et al. for seven sight lines with larger distances and higher column densities. This result combined with the variability of O I/ N I (six sight lines) indicates that at the low column densities found in the LISM, nitrogen ionization balance is important. Thus, unlike O I, N I cannot be used as a proxy for H I or as a metallicity indicator in the LISM.
NASA Technical Reports Server (NTRS)
Lemoine, M.; Vidal-Madjar, A.; Hebrard, G.; Desert, J.-M.; Ferlet, R.; LecavelierdesEtangs, A.; Howk, J. C.; Andre, M.; Blair, W. P.; Friedman, S. D.;
2002-01-01
High-resolution spectra of the hot white dwarf G191-B2B covering the wavelength region 905-1187A were obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). This data was used in conjunction with existing high-resolution Hubble Space Telescope STIS observations to evaluate the total H(sub I), D(sub I), O(sub I) and N(sub I) column densities along the line of sight. Previous determinations of N(D(sub I)) based upon GHRS (Goddard High Resolution Spectrograph) and STIS (Space Telescope Imaging Spectrograph) observations were controversial due to the saturated strength of the D(sub I) Lyman alpha line. In the present analysis the column density of D(sub I) has been measured using only the unsaturated Lyman beta and Lyman gamma lines observed by FUSE. A careful inspection of possible systematic uncertainties tied to the modeling of the stellar continuum or to the uncertainties in the FUSE instrumental character series has been performed. The column densities derived are: log N(D(sub I)) = 13.40+/-0.07, log N(O(sub I)) = 14.86+/-0.07, and log N(N(sub I)) = 13.87+/-0.07 quoted with 2sigma, uncertainties. The measurement of the H(sub I) column density by profile fitting of the Lyman alpha line has been found to be unsecure. If additional weak hot interstellar components are added to the three detected clouds along the line of sight, the H(sub I)) column density can be reduced quite significantly, even though the signal-to-noise ratio and spectral resolution at Lyman alpha are excellent. The new estimate of N(H(sub I)) toward G191-B2B reads: logN(H (sub I)) = 18.18+/-0.18 (2sigma uncertainty), so that the average (D/H) ratio on the line of sight is: (D/H)= 1.66(+0.9/-0.6) x 10(exp -5) (2sigma uncertainty).
NASA Astrophysics Data System (ADS)
Nelson, Dylan; Kauffmann, Guinevere; Pillepich, Annalisa; Genel, Shy; Springel, Volker; Pakmor, Rüdiger; Hernquist, Lars; Weinberger, Rainer; Torrey, Paul; Vogelsberger, Mark; Marinacci, Federico
2018-06-01
We explore the abundance, spatial distribution, and physical properties of the O VI, O VII, and O VIII ions of oxygen in circumgalactic and intergalactic media (the CGM, IGM, and WHIM). We use the TNG100 and TNG300 large volume cosmological magnetohydrodynamical simulations. Modelling the ionization states of simulated oxygen, we find good agreement with observations of the low-redshift O VI column density distribution function (CDDF), and present its evolution for all three ions from z = 0 to z = 4. Producing mock quasar absorption line spectral surveys, we show that the IllustrisTNG simulations are fully consistent with constraints on the O VI content of the CGM from COS-haloes and other low-redshift observations, producing columns as high as observed. We measure the total amount of mass and average column densities of each ion using hundreds of thousands of simulated galaxies spanning 10^{11} < {M}_halo/ M⊙<1015 corresponding to 109 < M⋆/ M⊙<1012 in stellar mass. Stacked radial profiles of O VI are computed in 3D number density and 2D projected column density, decomposing into 1-halo and 2-halo terms. Relating halo O VI to properties of the central galaxy, we find a correlation between the (g - r) colour of a galaxy and the total amount of O VI in its CGM. In comparison to the COS-Haloes finding, this leads to a dichotomy of columns around star-forming versus passive galaxies at fixed stellar (or halo) mass. We demonstrate that this correlation is a direct result of black hole feedback associated with quenching and represents a causal consequence of galactic-scale baryonic feedback impacting the physical state of the circumgalactic medium.
Optimization of Feasibility Stage for Hydrogen/Deuterium Exchange Mass Spectrometry
NASA Astrophysics Data System (ADS)
Hamuro, Yoshitomo; Coales, Stephen J.
2018-03-01
The practice of HDX-MS remains somewhat difficult, not only for newcomers but also for veterans, despite its increasing popularity. While a typical HDX-MS project starts with a feasibility stage where the experimental conditions are optimized and the peptide map is generated prior to the HDX study stage, the literature usually reports only the HDX study stage. In this protocol, we describe a few considerations for the initial feasibility stage, more specifically, how to optimize quench conditions, how to tackle the carryover issue, and how to apply the pepsin specificity rule. Two sets of quench conditions are described depending on the presence of disulfide bonds to facilitate the quench condition optimization process. Four protocols are outlined to minimize carryover during the feasibility stage: (1) addition of a detergent to the quench buffer, (2) injection of a detergent or chaotrope to the protease column after each sample injection, (3) back-flushing of the trap column and the analytical column with a new plumbing configuration, and (4) use of PEEK (or PEEK coated) frits instead of stainless steel frits for the columns. The application of the pepsin specificity rule after peptide map generation and not before peptide map generation is suggested. The rule can be used not only to remove falsely identified peptides, but also to check the sample purity. A well-optimized HDX-MS feasibility stage makes subsequent HDX study stage smoother and the resulting HDX data more reliable. [Figure not available: see fulltext.
Montague, James A; Pinder, George F; Gonyea, Jay V; Hipko, Scott; Watts, Richard
2018-05-01
Magnetic resonance imaging is used to observe solute transport in a 40cm long, 26cm diameter sand column that contained a central core of low permeability silica surrounded by higher permeability well-sorted sand. Low concentrations (2.9g/L) of Magnevist, a gadolinium based contrast agent, produce density driven convection within the column when it starts in an unstable state. The unstable state, for this experiment, exists when higher density contrast agent is present above the lower density water. We implement a numerical model in OpenFOAM to reproduce the observed fluid flow and transport from a density difference of 0.3%. The experimental results demonstrate the usefulness of magnetic resonance imaging in observing three-dimensional gravity-driven convective-dispersive transport behaviors in medium scale experiments. Copyright © 2017 Elsevier B.V. All rights reserved.
Suspension of Drops of a Liquid in a Column of Water.
ERIC Educational Resources Information Center
Ahmad, Jamil
1995-01-01
Describes a demonstration which creates the illusion of violating Archimedes Principle. The procedure involves two liquids with identical densities and produces drops of one liquid suspended in the middle of a column of the second liquid. (DDR)
Zhou, Q.; Salve, R.; Liu, H.-H.; Wang, J.S.Y.; Hudson, D.
2006-01-01
A mesoscale (21??m in flow distance) infiltration and seepage test was recently conducted in a deep, unsaturated fractured rock system at the crossover point of two underground tunnels. Water was released from a 3??m ?? 4??m infiltration plot on the floor of an alcove in the upper tunnel, and seepage was collected from the ceiling of a niche in the lower tunnel. Significant temporal and (particularly) spatial variabilities were observed in both measured infiltration and seepage rates. To analyze the test results, a three-dimensional unsaturated flow model was used. A column-based scheme was developed to capture heterogeneous hydraulic properties reflected by these spatial variabilities observed. Fracture permeability and van Genuchten ?? parameter [van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892-898] were calibrated for each rock column in the upper and lower hydrogeologic units in the test bed. The calibrated fracture properties for the infiltration and seepage zone enabled a good match between simulated and measured (spatially varying) seepage rates. The numerical model was also able to capture the general trend of the highly transient seepage processes through a discrete fracture network. The calibrated properties and measured infiltration/seepage rates were further compared with mapped discrete fracture patterns at the top and bottom boundaries. The measured infiltration rates and calibrated fracture permeability of the upper unit were found to be partially controlled by the fracture patterns on the infiltration plot (as indicated by their positive correlations with fracture density). However, no correlation could be established between measured seepage rates and density of fractures mapped on the niche ceiling. This lack of correlation indicates the complexity of (preferential) unsaturated flow within the discrete fracture network. This also indicates that continuum-based modeling of unsaturated flow in fractured rock at mesoscale or a larger scale is not necessarily conditional explicitly on discrete fracture patterns. ?? 2006 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Merlaud, Alexis; Tack, Frederik; Constantin, Daniel; Georgescu, Lucian; Maes, Jeroen; Fayt, Caroline; Mingireanu, Florin; Schuettemeyer, Dirk; Meier, Andreas Carlos; Schönardt, Anja; Ruhtz, Thomas; Bellegante, Livio; Nicolae, Doina; Den Hoed, Mirjam; Allaart, Marc; Van Roozendael, Michel
2018-01-01
The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is a compact remote sensing instrument dedicated to mapping trace gases from an unmanned aerial vehicle (UAV). SWING is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27 cm × 12 cm × 8 cm, and 6 W. SWING was developed in parallel with a 2.5 m flying-wing UAV. This unmanned aircraft is electrically powered, has a typical airspeed of 100 km h-1, and can operate at a maximum altitude of 3 km. We present SWING-UAV experiments performed in Romania on 11 September 2014 during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign, which was dedicated to test newly developed instruments in the context of air quality satellite validation. The UAV was operated up to 700 m above ground, in the vicinity of the large power plant of Turceni (44.67° N, 23.41° E; 116 m a. s. l. ). These SWING-UAV flights were coincident with another airborne experiment using the Airborne imaging differential optical absorption spectroscopy (DOAS) instrument for Measurements of Atmospheric Pollution (AirMAP), and with ground-based DOAS, lidar, and balloon-borne in situ observations. The spectra recorded during the SWING-UAV flights are analysed with the DOAS technique. This analysis reveals NO2 differential slant column densities (DSCDs) up to 13±0.6×1016 molec cm-2. These NO2 DSCDs are converted to vertical column densities (VCDs) by estimating air mass factors. The resulting NO2 VCDs are up to 4.7±0.4×1016 molec cm-2. The water vapour DSCD measurements, up to 8±0.15×1022 molec cm-2, are used to estimate a volume mixing ratio of water vapour in the boundary layer of 0.013±0.002 mol mol-1. These geophysical quantities are validated with the coincident measurements.
The anatomy of the Orion B giant molecular cloud: A local template for studies of nearby galaxies
NASA Astrophysics Data System (ADS)
Pety, Jérôme; Guzmán, Viviana V.; Orkisz, Jan H.; Liszt, Harvey S.; Gerin, Maryvonne; Bron, Emeric; Bardeau, Sébastien; Goicoechea, Javier R.; Gratier, Pierre; Le Petit, Franck; Levrier, François; Öberg, Karin I.; Roueff, Evelyne; Sievers, Albrecht
2017-01-01
Context. Molecular lines and line ratios are commonly used to infer properties of extra-galactic star forming regions. The new generation of millimeter receivers almost turns every observation into a line survey. Full exploitation of this technical advancement in extra-galactic study requires detailed bench-marking of available line diagnostics. Aims: We aim to develop the Orion B giant molecular cloud (GMC) as a local template for interpreting extra-galactic molecular line observations. Methods: We use the wide-band receiver at the IRAM-30 m to spatially and spectrally resolve the Orion B GMC. The observations cover almost 1 square degree at 26'' resolution with a bandwidth of 32 GHz from 84 to 116 GHz in only two tunings. Among the mapped spectral lines are the , , C18O, C17O, HCN, HNC, , C2H, HCO+, N2H+(1-0), and , , SiO, c - C3H2, CH3OH (2-1) transitions. Results: We introduce the molecular anatomy of the Orion B GMC, including relationships between line intensities and gas column density or far-UV radiation fields, and correlations between selected line and line ratios. We also obtain a dust-traced gas mass that is less than approximately one third the CO-traced mass, using the standard XCO conversion factor. The presence of over-luminous CO can be traced back to the dependence of the CO intensity on UV illumination. As a matter of fact, while most lines show some dependence on the UV radiation field, CN and C2H are the most sensitive. Moreover, dense cloud cores are almost exclusively traced by N2H+. Other traditional high-density tracers, such as HCN(1-0), are also easily detected in extended translucent regions at a typical density of 500 H2 cm-3. In general, we find no straightforward relationship between line critical density and the fraction of the line luminosity coming from dense gas regions. Conclusions: Our initial findings demonstrate that the relationships between line (ratio) intensities and environment in GMCs are more complicated than often assumed. Sensitivity (I.e., the molecular column density), excitation, and, above all, chemistry contribute to the observed line intensity distributions, and they must be considered together when developing the next generation of extra-galactic molecular line diagnostics of mass, density, temperature, and radiation field.
Changes of Dust Opacity with Density in the Orion A Molecular Cloud
NASA Astrophysics Data System (ADS)
Roy, Arabindo; Martin, Peter G.; Polychroni, Danae; Bontemps, Sylvain; Abergel, Alain; André, Philippe; Arzoumanian, Doris; Di Francesco, James; Hill, Tracey; Konyves, Vera; Nguyen-Luong, Quang; Pezzuto, Stefano; Schneider, Nicola; Testi, Leonardo; White, Glenn
2013-01-01
We have studied the opacity of dust grains at submillimeter wavelengths by estimating the optical depth from imaging at 160, 250, 350, and 500 μm from the Herschel Gould Belt Survey and comparing this to a column density obtained from the Two Micron All Sky Survey derived color excess E(J - K s). Our main goal was to investigate the spatial variations of the opacity due to "big" grains over a variety of environmental conditions and thereby quantify how emission properties of the dust change with column (and volume) density. The central and southern areas of the Orion A molecular cloud examined here, with N H ranging from 1.5 × 1021 cm-2 to 50 × 1021 cm-2, are well suited to this approach. We fit the multi-frequency Herschel spectral energy distributions (SEDs) of each pixel with a modified blackbody to obtain the temperature, T, and optical depth, τ1200, at a fiducial frequency of 1200 GHz (250 μm). Using a calibration of N H/E(J - Ks ) for the interstellar medium (ISM) we obtained the opacity (dust emission cross-section per H nucleon), σe(1200), for every pixel. From a value ~1 × 10-25 cm2 H-1 at the lowest column densities that is typical of the high-latitude diffuse ISM, σe(1200) increases as N 0.28 H over the range studied. This is suggestive of grain evolution. Integrating the SEDs over frequency, we also calculated the specific power P (emission power per H) for the big grains. In low column density regions where dust clouds are optically thin to the interstellar radiation field (ISRF), P is typically 3.7 × 10-31 W H-1, again close to that in the high-latitude diffuse ISM. However, we find evidence for a decrease of P in high column density regions, which would be a natural outcome of attenuation of the ISRF that heats the grains, and for localized increases for dust illuminated by nearby stars or embedded protostars.
NASA Astrophysics Data System (ADS)
Fossati, L.; Marcelja, S. E.; Staab, D.; Cubillos, P. E.; France, K.; Haswell, C. A.; Ingrassia, S.; Jenkins, J. S.; Koskinen, T.; Lanza, A. F.; Redfield, S.; Youngblood, A.; Pelzmann, G.
2017-05-01
Past ultraviolet and optical observations of stars hosting close-in Jupiter-mass planets have shown that some of these stars present an anomalously low chromospheric activity, significantly below the basal level. For the hot Jupiter planet host WASP-13, observations have shown that the apparent lack of activity is possibly caused by absorption from the intervening interstellar medium (ISM). Inspired by this result, we study the effect of ISM absorption on activity measurements (S and log R 'HK indices) for main-sequence late-type stars. To this end, we employ synthetic stellar photospheric spectra combined with varying amounts of chromospheric emission and ISM absorption. We present the effect of ISM absorption on activity measurements by varying several instrumental (spectral resolution), stellar (projected rotational velocity, effective temperature, and chromospheric emission flux), and ISM parameters (relative velocity between stellar and ISM Ca II lines, broadening b-parameter, and Ca II column density). We find that for relative velocities between the stellar and ISM lines smaller than 30-40 km s-1 and for ISM Ca II column densities log NCaII ⪆ 12, the ISM absorption has a significant influence on activity measurements. Direct measurements and three dimensional maps of the Galactic ISM absorption indicate that an ISM Ca II column density of log NCaII = 12 is typically reached by a distance of about 100 pc along most sight lines. In particular, for a Sun-like star lying at a distance greater than 100 pc, we expect a depression (bias) in the log R'HK value larger than 0.05-0.1 dex, about the same size as the typical measurement and calibration uncertainties on this parameter. This work shows that the bias introduced by ISM absorption must always be considered when measuring activity for stars lying beyond 100 pc. We also consider the effect of multiple ISM absorption components. We discuss the relevance of this result for exoplanet studies and revise the latest results on stellar activity versus planet surface gravity correlation. We finally describe methods with which it would be possible to account for ISM absorption in activity measurements and provide a code to roughly estimate the magnitude of the bias. Correcting for the ISM absorption bias may allow one to identify the origin of the anomaly in the activity measured for some planet-hosting stars.
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alina, D.; Alves, M. I. R.; Aniano, G.; Armitage-Caplan, C.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fanciullo, L.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Pelkonen, V.-M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme, B.; Sandri, M.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Zonca, A.
2015-04-01
Polarized emission observed by Planck HFI at 353 GHz towards a sample of nearby fields is presented, focusing on the statistics of polarization fractions p and angles ψ. The polarization fractions and column densities in these nearby fields are representative of the range of values obtained over the whole sky. We find that: (i) the largest polarization fractions are reached in the most diffuse fields; (ii) the maximum polarization fraction pmax decreases with column density NH in the more opaque fields with NH> 1021 cm-2; and (iii) the polarization fraction along a given line of sight is correlated with the local spatial coherence of the polarization angle. These observations are compared to polarized emission maps computed in simulations of anisotropic magnetohydrodynamical turbulence in which we assume a uniform intrinsic polarization fraction of the dust grains. We find that an estimate of this parameter may be recovered from the maximum polarization fraction pmax in diffuse regions where the magnetic field is ordered on large scales and perpendicular to the line of sight. This emphasizes the impact of anisotropies of the magnetic field on the emerging polarization signal. The decrease of the maximum polarization fraction with column density in nearby molecular clouds is well reproduced in the simulations, indicating that it is essentially due to the turbulent structure of the magnetic field: an accumulation of variously polarized structures along the line of sight leads to such an anti-correlation. In the simulations, polarization fractions are also found to anti-correlate with the angle dispersion function 𝒮. However, the dispersion of the polarization angle for a given polarization fraction is found to be larger in the simulations than in the observations, suggesting a shortcoming in the physical content of these numerical models. In summary, we find that the turbulent structure of the magnetic field is able to reproduce the main statistical properties of the dust polarization as observed in a variety of nearby clouds, dense cores excluded, and that the large-scale field orientation with respect to the line of sight plays a major role in the quantitative analysis of these statistical properties. Appendices are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Bonfand, M.; Belloche, A.; Menten, K. M.; Garrod, R. T.; Müller, H. S. P.
2017-08-01
Context. The Sagittarius B2 molecular cloud contains several sites forming high-mass stars. Sgr B2(N) is one of its main centers of activity. It hosts several compact and ultra-compact HII regions, as well as two known hot molecular cores (Sgr B2(N1) and Sgr B2(N2)) in the early stage of the high-mass star formation process, where complex organic molecules (COMs) are detected in the gas phase. Aims: Our goal is to use the high sensitivity of the Atacama Large Millimeter/submillimeter Array (ALMA) to characterize the hot core population in Sgr B2(N) and thereby shed new light on the star formation process in this star-forming region. Methods: We use a complete 3 mm spectral line survey conducted with ALMA to search for faint hot cores in the Sgr B2(N) region. The chemical composition of the detected sources and the column densities are derived by modeling the whole spectra under the assumption of local thermodynamic equilibrium. Population diagrams are constructed to fit rotational temperatures. Integrated intensity maps are produced to derive the peak position and fit the size of each molecule's emission distribution. The kinematic structure of the hot cores is investigated by analyzing the line wing emission of typical outflow tracers. The H2 column densities are computed from ALMA and SMA continuum emission maps. Results: We report the discovery of three new hot cores in Sgr B2(N) that we call Sgr B2(N3), Sgr B2(N4), and Sgr B2(N5). The three sources are associated with class II methanol masers, well known tracers of high-mass star formation, and Sgr B2(N5), also with a UCHII region. Their H2 column densities are found to be between approximately 16 and 36 times lower than the one of the main hot core Sgr B2(N1). The spectra of these new hot cores have spectral line densities of 11 up to 31 emission lines per GHz above the 7σ level, assigned to 22-25 molecules plus 13-20 less abundant isotopologs. We derive rotational temperatures of approximately 140-180 K for the three new hot cores and mean source sizes of 0.4″ for Sgr B2(N3) and 1.0″ for Sgr B2(N4) and Sgr B2(N5). The chemical composition of Sgr B2(N3), Sgr B2(N4), and Sgr B2(N5) is very similar, but it differs from that of Sgr B2(N2). Finally, Sgr B2(N3) and Sgr B2(N5) show high-velocity wing emission in typical outflow tracers, with a bipolar morphology in their integrated intensity maps suggesting the presence of an outflow, like in Sgr B2(N1). No sign of an outflow is found around Sgr B2(N2) and Sgr B2(N4). We derive statistical lifetimes of 4 × 104 yr for the class II methanol maser phase and 6 × 104 yr for the hot core phase in Sgr B2(N). Conclusions: The associations of the hot cores with class II methanol masers, outflows, and/or UCHII regions tentatively suggest the following age sequence: Sgr B2(N4), Sgr B2(N3), SgrB2(N5), Sgr B2(N1). The status of Sgr B2(N2) is unclear. It may contain two distinct sources, a UCHII region and a very young hot core.
NASA Astrophysics Data System (ADS)
Tack, Frederik; Merlaud, Alexis; Meier, Andreas; Ge, Xinrui; Meuleman, Koen; Ruhtz, Thomas; van der Wal, Len; Van Roozendael, Michel; Iordache, Daniel; Schönhardt, Anja; Richter, Andreas; Vlemmix, Tim; de Goeij, Bryan; Ardelean, Magdalena; Boscornea, Andreea; Constantin, Daniel; Shaifangar, Reza; Wagner, Thomas; Lampel, Johannes; Schuettemeyer, Dirk
2017-04-01
The AROMAPEX campaign took place in Berlin in April, 2016, co-funded by the EU (EUFAR) and ESA, with the primary objective to intercompare experimental airborne atmospheric imagers dedicated to the mapping of the spatial distribution of tropospheric nitrogen dioxide (NO2). AROMAPEX is also a preparatory step for forthcoming intercomparison/validation campaigns of satellite air quality sensors, such as TROPOMI (TROPOspheric Monitoring Instrument). The instruments were operated from two planes, performing synchronized flights: APEX (VITO/BIRA-IASB) was operated from DLR's DO-228 D-CFFU plane at 6.1 km altitude while AirMAP (IUP Bremen), and the small, lightweight SWING (BIRA-IASB) and Spectrolite (TNO/TU Delft) instruments were operated from the FUB Cessna 207T D-EAFU at 3 km. Two synchronized flights took place on 21 April, 2016, the only cloud-free day during the campaign, in the morning from 09:34 to 12:01 LT and in the afternoon from 14:24 to 16:39 LT. APEX, AirMAP and SWING have a comparable swath width of 3 km, while Spectrolite has a swath of 450 m due to the fact that the field-of-view had to be reduced from 40° to 8.3° for practical reasons. The spatial resolution is approximately 100 m after spatial aggregation for APEX, AirMAP and Spectrolite (pushbroom scanning), and 300 m for SWING (whiskbroom scanning). The airborne Sunphotometer FUBISS-ASA2 was installed and operated during the ascent and descent of the FUB aircraft to derive aerosol optical depth (AOD). During the overpass of the imagers, simultaneous car mobile-DOAS observations were performed with three systems covering transects from north to south and west to east. The ground-based instrumental set-up was completed by a DOAS instrument, an Aeronet station and a ceilometer installed at the rooftop of FUB, located in the southwest of Berlin. The AROMAPEX experiment builds on the experience gained during the AROMAT campaigns held in September, 2014 and August, 2015 in Romania, and the BUMBA campaigns held in April, 2015 and July, 2016 in Belgium. We present first results of an intercomparison study of both the NO2 slant column densities (SCDs) and vertical column densities (VCDs) retrieved from the APEX, AirMAP, SWING and Spectrolite instruments. Two large NO2 plumes, crossing the city from west to east, were detected by all imaging systems with high consistency. Retrieved NO2 VCDs range between 1.5 x 1015 and 2.4 x 1016 molec cm-2. For the sake of harmonizing the different data sets, efforts are currently ongoing to agree on a common set of parameter settings, gridding algorithm and AMF LUT in the NO2 retrieval approach. Despite these efforts, discrepancies will remain due to a combination of (1) instrumental differences, e.g. SNR, spatial and spectral resolution; (2) algorithmic differences, e.g. DOAS fitting, RTM, a priori input; and (3) observation differences, e.g. flight altitude, overpass time and viewing geometry.
NASA Astrophysics Data System (ADS)
Thiele, Michael
1998-04-01
Recently, Park [1996] presented an analytical solution for stationary one-dimensional solute transport in a variable-density fluid flow through a vertical soil column. He used the widespread Bear-Scheidegger dispersion model describing solute mixing as a sum of molecular diffusion and velocity-proportional mechanical dispersion effects. His closed-form implicit concentration and pressure distributions thus allow for a discussion of the combined impact of molecular diffusion and mechanical dispersion in a variable-density environment. Whereas Park only considered the example of vanishing molecular diffusion in detail, both phenomena are taken into account simultaneously in the present study in order to elucidate their different influences on concentration distribution characteristics. The boundary value problem dealt with herein is based on an upward inflow of high-density fluid of constant solute concentration and corresponding outflow of a lower constant concentration fluid at the upper end of the column when dispersivity does not change along the flow path. The thickness of the transition zone between the two fluids appeared to strongly depend on the prevailing share of the molecular diffusion and mechanical dispersion mechanisms. The latter can be characterized by a molecular Peclet number Pe, which here is defined as the ratio of the column outflow velocity multiplied by a characteristic pore size and the molecular diffusion coefficient. For very small values of Pe, when molecular diffusion represents the exclusive mixing process, density differences have no impact on transition zone thicknesses. A relative density-;dependent thickness increases with flow velocities (increasing Pe values) very rapidly compared to the density-independent case, and after having passed a maximum decreases asymptotically to a constant value for the large Peclet number limit when mechanical dispersion is the only mixing mechanism. Hence the special transport problem analyzed gives further evidence for the importance of simultaneously considering molecular diffusion and mechanical dispersion in gravity-affected solute transport in porous media.
Globally optimal superconducting magnets part I: minimum stored energy (MSE) current density map.
Tieng, Quang M; Vegh, Viktor; Brereton, Ian M
2009-01-01
An optimal current density map is crucial in magnet design to provide the initial values within search spaces in an optimization process for determining the final coil arrangement of the magnet. A strategy for obtaining globally optimal current density maps for the purpose of designing magnets with coaxial cylindrical coils in which the stored energy is minimized within a constrained domain is outlined. The current density maps obtained utilising the proposed method suggests that peak current densities occur around the perimeter of the magnet domain, where the adjacent peaks have alternating current directions for the most compact designs. As the dimensions of the domain are increased, the current density maps yield traditional magnet designs of positive current alone. These unique current density maps are obtained by minimizing the stored magnetic energy cost function and therefore suggest magnet coil designs of minimal system energy. Current density maps are provided for a number of different domain arrangements to illustrate the flexibility of the method and the quality of the achievable designs.
VLA+WSRT HI Imaging of Two "Almost Dark" Galaxies
NASA Astrophysics Data System (ADS)
Ball, Catie; Singer, Quinton; Cannon, John M.; Leisman, Luke; Haynes, Martha P.; Adams, Elizabeth A.; Bernal Neira, David; Giovanelli, Riccardo; Hallenbeck, Gregory L.; Janesh, William; Janowiecki, Steven; Jozsa, Gyula; Rhode, Katherine L.; Salzer, John Joseph
2017-01-01
We present sensitive HI imaging of the "Almost Dark" galaxies AGC229385 and AGC229101. Selected from the ALFALFA survey, "Almost Dark" galaxies have significant HI reservoirs but lack an obvious stellar counterpart in survey-depth ground-based optical imaging. Deeper ground- and space-based imaging reveals very low surface brightness optical counterparts in both systems. The resulting M_HI/L_B ratios are among the highest ever measured for individual galaxies. Here we combine VLA and WSRT imaging of these two systems, allowing us to preserve surface brightness sensitivity while working at high angular resolution. The resulting maps of HI mass surface density, velocity field, and velocity dispersion are compared to deep optical and ultraviolet imaging. In both systems the highest column density HI gas is clumpy and resolved into multiple components. In the case of AGC229385, the kinematics are inconsistent with a simple rotating disk and may be the result of either an infall episode or an interaction between two HI-rich disks.Support for this work was provided by NSF grant 1211683 to JMC at Macalester College.
Mapping Calcium Rich Ejecta in Two Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Fesen, Robert
2016-10-01
Type Ia supernovae (SNe Ia) are thermonuclear explosions of white dwarfs (WDs) in close binary systems with either a non-degenerate or WD companion. SN Ia explosion computations are quite challenging, involving a complex interplay of turbulent hydrodynamics, nuclear burning, conduction, radiative transfer in iron-group rich material and possibly magnetic fields leading to significant uncertainties. Several key questions about expansion asymmetries and the overall characteristics of SNe Ia could be resolved if one could obtain direct observations of the internal kinematics and elemental distributions of young SN Ia remnants.We propose to use WFC3/UVIS to obtain images of the normal Type Ia supernova remnant 0519-69.0 and the overluminous Type Ia supernova remnant 0509-67.5 in the LMC. The Ca II on-band F390M filter and off-band F336W and FQ422M filters will be used to determine the spatial extent and density distributions of the Ca-rich ejecta via resonance line absorption. Differences in the observed on and off band Ca II fluxes for LMC stars located behind these young 400 - 600 yr old remnants will yield calcium column density estimates for multiple lines-of-sight within these remnants. These results will be compared to the calcium distribution seen in SN 1885, a subluminous SN Ia in M31, already imaged by HST.The resulting calcium density distribution maps for both a normal and overluminous SN Ia events will provide powerful insights regarding the structure and kinematics of calcium-rich ejecta in three different type Ia subclass events, and unique empirical data with which to test current SN Ia explosion models.
Predicting the intensity mapping signal for multi-J CO lines
NASA Astrophysics Data System (ADS)
Mashian, Natalie; Sternberg, Amiel; Loeb, Abraham
2015-11-01
We present a novel approach to estimating the intensity mapping signal of any CO rotational line emitted during the Epoch of Reionization (EoR). Our approach is based on large velocity gradient (LVG) modeling, a radiative transfer modeling technique that generates the full CO spectral line energy distribution (SLED) for a specified gas kinetic temperature, volume density, velocity gradient, molecular abundance, and column density. These parameters, which drive the physics of CO transitions and ultimately dictate the shape and amplitude of the CO SLED, can be linked to the global properties of the host galaxy, mainly the star formation rate (SFR) and the SFR surface density. By further employing an empirically derived SFR-M relation for high redshift galaxies, we can express the LVG parameters, and thus the specific intensity of any CO rotational transition, as functions of the host halo mass M and redshift z. Integrating over the range of halo masses expected to host CO-luminous galaxies, we predict a mean CO(1-0) brightness temperature ranging from ~ 0.6 μK at z = 6 to ~ 0.03 μK at z = 10 with brightness temperature fluctuations of ΔCO2 ~ 0.1 and 0.005 μK respectively, at k = 0.1 Mpc-1. In this model, the CO emission signal remains strong for higher rotational levels at z = 6, with langle TCO rangle ~ 0.3 and 0.05 μK for the CO J = 6arrow5 and CO J = 10arrow9 transitions respectively. Including the effects of CO photodissociation in these molecular clouds, especially at low metallicities, results in the overall reduction in the amplitude of the CO signal, with the low- and high-J lines weakening by 2-20% and 10-45%, respectively, over the redshift range 4 < z < 10.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Connor, D; Nguyen, D; Voronenko, Y
Purpose: Integrated beam orientation and fluence map optimization is expected to be the foundation of robust automated planning but existing heuristic methods do not promise global optimality. We aim to develop a new method for beam angle selection in 4π non-coplanar IMRT systems based on solving (globally) a single convex optimization problem, and to demonstrate the effectiveness of the method by comparison with a state of the art column generation method for 4π beam angle selection. Methods: The beam angle selection problem is formulated as a large scale convex fluence map optimization problem with an additional group sparsity term thatmore » encourages most candidate beams to be inactive. The optimization problem is solved using an accelerated first-order method, the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). The beam angle selection and fluence map optimization algorithm is used to create non-coplanar 4π treatment plans for several cases (including head and neck, lung, and prostate cases) and the resulting treatment plans are compared with 4π treatment plans created using the column generation algorithm. Results: In our experiments the treatment plans created using the group sparsity method meet or exceed the dosimetric quality of plans created using the column generation algorithm, which was shown superior to clinical plans. Moreover, the group sparsity approach converges in about 3 minutes in these cases, as compared with runtimes of a few hours for the column generation method. Conclusion: This work demonstrates the first non-greedy approach to non-coplanar beam angle selection, based on convex optimization, for 4π IMRT systems. The method given here improves both treatment plan quality and runtime as compared with a state of the art column generation algorithm. When the group sparsity term is set to zero, we obtain an excellent method for fluence map optimization, useful when beam angles have already been selected. NIH R43CA183390, NIH R01CA188300, Varian Medical Systems; Part of this research took place while D. O’Connor was a summer intern at RefleXion Medical.« less
Analyzing thematic maps and mapping for accuracy
Rosenfield, G.H.
1982-01-01
Two problems which exist while attempting to test the accuracy of thematic maps and mapping are: (1) evaluating the accuracy of thematic content, and (2) evaluating the effects of the variables on thematic mapping. Statistical analysis techniques are applicable to both these problems and include techniques for sampling the data and determining their accuracy. In addition, techniques for hypothesis testing, or inferential statistics, are used when comparing the effects of variables. A comprehensive and valid accuracy test of a classification project, such as thematic mapping from remotely sensed data, includes the following components of statistical analysis: (1) sample design, including the sample distribution, sample size, size of the sample unit, and sampling procedure; and (2) accuracy estimation, including estimation of the variance and confidence limits. Careful consideration must be given to the minimum sample size necessary to validate the accuracy of a given. classification category. The results of an accuracy test are presented in a contingency table sometimes called a classification error matrix. Usually the rows represent the interpretation, and the columns represent the verification. The diagonal elements represent the correct classifications. The remaining elements of the rows represent errors by commission, and the remaining elements of the columns represent the errors of omission. For tests of hypothesis that compare variables, the general practice has been to use only the diagonal elements from several related classification error matrices. These data are arranged in the form of another contingency table. The columns of the table represent the different variables being compared, such as different scales of mapping. The rows represent the blocking characteristics, such as the various categories of classification. The values in the cells of the tables might be the counts of correct classification or the binomial proportions of these counts divided by either the row totals or the column totals from the original classification error matrices. In hypothesis testing, when the results of tests of multiple sample cases prove to be significant, some form of statistical test must be used to separate any results that differ significantly from the others. In the past, many analyses of the data in this error matrix were made by comparing the relative magnitudes of the percentage of correct classifications, for either individual categories, the entire map or both. More rigorous analyses have used data transformations and (or) two-way classification analysis of variance. A more sophisticated step of data analysis techniques would be to use the entire classification error matrices using the methods of discrete multivariate analysis or of multiviariate analysis of variance.
Comparison of the far-infrared and carbon monoxide emission in Heiles' Cloud 2 and B18
NASA Technical Reports Server (NTRS)
Snell, Ronald L.; Schloerb, F. Peter; Heyer, Mark H.
1989-01-01
A comparison is made of the far-IR emission detected by IRAS at 60 and 100 microns and the emission from C(-13)O in B18 and Heiles' Cloud 2. The results show that both these clouds have extended emission at the studied wavelengths and that this emission is correlated with the integrated intensity of (C-13)O emission. The dust temperature and optical depth, the gas column density, the mass of gas and dust, and the far-IR luminosity are derived and presented. The analysis shows that the dust optical depth is much better correlated with the gas column density than with the far-IR intensity. The dust temperature is found to be anticorrelated with the gas column density, suggesting that these clouds are externally heated by the interstellar radiation field. The far-IR luminosity-to-mass ratios for the clouds are substantially less than the average for the inner Galaxy.
Medium-resolution far-ultraviolet spectroscopy of PKS 2155-304
NASA Technical Reports Server (NTRS)
Appenzeller, I.; Mandel, H.; Krautter, J.; Bowyer, S.; Hurwitz, M.; Grewing, M.; Kramer, G.; Kappelmann, N.
1995-01-01
Using the Berkeley spectrometer of the Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) we observed the 87-117 nm UV spectrum of the BL Lac object PKS 2155-304 with about 0.5 A resolution. In addition to the expected interstellar lines we detected higher quantum number counterparts of the intergalactic Lyman alpha lines discovered earlier with IUE and the Hubble Space Telescope (HST) in the direction of PKS 2155-304. The Lyman discontinuities indicate for three of the redshifted clouds a combined H I column density of 2-5 x 10(exp 16)/sq cm, while the column density for another cloud appears to be well below 5 x 10(exp 15)/sq cm. No siginificant O VI absorption in the galactic halo toward PKS 2155-304 could be detected from our data. Assuming that saturation effects are negligible for these weak features, we obtain for the O VI column density toward PKS 2155-304 a 3 sigma upper limit of 2.7 x 10(exp 14)/sq cm.
NASA Astrophysics Data System (ADS)
Thompson, Anne M.; Witte, Jacquelyn C.; Sterling, Chance; Jordan, Allen; Johnson, Bryan J.; Oltmans, Samuel J.; Fujiwara, Masatomo; Vömel, Holger; Allaart, Marc; Piters, Ankie; Coetzee, Gert J. R.; Posny, Françoise; Corrales, Ernesto; Diaz, Jorge Andres; Félix, Christian; Komala, Ninong; Lai, Nga; Ahn Nguyen, H. T.; Maata, Matakite; Mani, Francis; Zainal, Zamuna; Ogino, Shin-ya; Paredes, Francisco; Penha, Tercio Luiz Bezerra; da Silva, Francisco Raimundo; Sallons-Mitro, Sukarni; Selkirk, Henry B.; Schmidlin, F. J.; Stübi, Rene; Thiongo, Kennedy
2017-12-01
The Southern Hemisphere ADditional OZonesonde (SHADOZ) network was assembled to validate a new generation of ozone-monitoring satellites and to better characterize the vertical structure of tropical ozone in the troposphere and stratosphere. Beginning with nine stations in 1998, more than 7,000 ozone and P-T-U profiles are available from 14 SHADOZ sites that have operated continuously for at least a decade. We analyze ozone profiles from the recently reprocessed SHADOZ data set that is based on adjustments for inconsistencies caused by varying ozonesonde instruments and operating techniques. First, sonde-derived total ozone column amounts are compared to the overpasses from the Earth Probe/Total Ozone Mapping Spectrometer, Ozone Monitoring Instrument, and Ozone Mapping and Profiler Suite satellites that cover 1998-2016. Second, characteristics of the stratospheric and tropospheric columns are examined along with ozone structure in the tropical tropopause layer (TTL). We find that (1) relative to our earlier evaluations of SHADOZ data, in 2003, 2007, and 2012, sonde-satellite total ozone column offsets at 12 stations are 2% or less, a significant improvement; (2) as in prior studies, the 10 tropical SHADOZ stations, defined as within ±19° latitude, display statistically uniform stratospheric column ozone, 229 ± 3.9 DU (Dobson units), and a tropospheric zonal wave-one pattern with a 14 DU mean amplitude; (3) the TTL ozone column, which is also zonally uniform, masks complex vertical structure, and this argues against using satellites for lower stratospheric ozone trends; and (4) reprocessing has led to more uniform stratospheric column amounts across sites and reduced bias in stratospheric profiles. As a consequence, the uncertainty in total column ozone now averages 5%.
Extinction Mapping and Dust-to-Gas Ratios of Nearby Galaxies using LEGUS
NASA Astrophysics Data System (ADS)
Kahre, Lauren; Walterbos, Rene; Kim, Hwihyun; Thilker, David; Lee, Janice; LEGUS Team
2018-01-01
Dust is commonly used as a tracer for cold dense gas, either through IR and NIR emission maps or through extinction mapping, and dust abundance and gas metallicity are critical constraints for chemical and galaxy evolution models. Extinction mapping has been used to trace dust column densities in the Milky Way, the Magellanic Clouds, and M31. The maps for M31 use IR and NIR photometry of red giant branch stars, which is more difficult to obtain for more distant galaxies. Work by Kahre et al. (in prep) uses the extinctions derived for individual massive stars using the isochrone-matching method described by Kim et al. (2012) to generate extinction maps for these more distant galaxies.Isochrones of massive stars lie in the same location on a color-color diagram with little dependence on metallicity and luminosity class, so the extinction can be directly derived from the observed photometry. We generate extinction maps using photometry of massive stars from the Hubble Space Telescope for several of the nearly 50 galaxies observed by the Legacy Extragalactic Ultraviolet Survey (LEGUS). The derived extinction maps will allow us to correct ground-based and HST Halpha maps for extinction, and will be used to constrain changes in the dust-to-gas ratio across the galaxy sample and in different star formation, metallicity and morphological environments. Previous studies have found links between galaxy metallicity and the dust-to-gas mass ratio. We present a study of LEGUS galaxies spanning a range of distances, metallicities, and galaxy morphologies, expanding on our previous study of metal-poor dwarfs Holmberg I and II and giant spirals NGC 6503 and NGC 628. We see clear evidence for changes in the dust-to-gas mass ratio with changing metallicity. We also examine changes in the dust-to-gas mass ratio with galactocentric radius. Ultimately, we will provide constraints on the dust-to-gas mass ratio across a wide range of galaxy environments.
Anumula, K R; Dhume, S T
1998-07-01
Facile labeling of oligosaccharides (acidic and neutral) in a nonselective manner was achieved with highly fluorescent anthranilic acid (AA, 2-aminobenzoic acid) (more than twice the intensity of 2-aminobenzamide, AB) for specific detection at very high sensitivity. Quantitative labeling in acetate-borate buffered methanol (approximately pH 5.0) at 80 degreesC for 60 min resulted in negligible or no desialylation of the oligosaccharides. A high resolution high performance liquid chromatographic method was developed for quantitative oligosaccharide mapping on a polymeric-NH2bonded (Astec) column operating under normal phase and anion exchange (NP-HPAEC) conditions. For isolation of oligosaccharides from the map by simple evaporation, the chromatographic conditions developed use volatile acetic acid-triethylamine buffer (approximately pH 4.0) systems. The mapping and characterization technology was developed using well characterized standard glycoproteins. The fluorescent oligosaccharide maps were similar to the maps obtained by the high pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), except that the fluorescent maps contained more defined peaks. In the map, the oligosaccharides separated into groups based on charge, size, linkage, and overall structure in a manner similar to HPAEC-PAD with contribution of -COOH function from the label, anthranilic acid. However, selectivity of the column for sialic acid linkages was different. A second dimension normal phase HPLC (NP-HPLC) method was developed on an amide column (TSK Gel amide-80) for separation of the AA labeled neutral complex type and isomeric structures of high mannose type oligosaccharides. The oligosaccharides labeled with AA are compatible with biochemical and biophysical techniques, and use of matrix assisted laser desorption mass spectrometry for rapid determination of oligosaccharide mass map of glycoproteins is demonstrated. High resolution of NP-HPAEC and NP-HPLC methods combined with mass spectrometry (MALDI-TOF) can provide an effective technology for analyzing a wide repertoire of oligosaccharide structures and for determining the action of both transferases and glycosidases.
The O VI Mystery: Mismatch between X-Ray and UV Column Densities
NASA Astrophysics Data System (ADS)
Mathur, S.; Nicastro, F.; Gupta, A.; Krongold, Y.; McLaughlin, B. M.; Brickhouse, N.; Pradhan, A.
2017-12-01
The UV spectra of Galactic and extragalactic sightlines often show O VI absorption lines at a range of redshifts, and from a variety of sources from the Galactic circumgalactic medium to active galactic nuclei (AGN) outflows. Inner shell O VI absorption is also observed in X-ray spectra (at λ =22.03 Å), but the column density inferred from the X-ray line was consistently larger than that from the UV line. Here we present a solution to this discrepancy for the z = 0 systems. The O II Kβ line {}4{S}0\\to {(}3D)3{p}4P at 562.40 eV (≡22.04 Å) is blended with the O VI Kα line in X-ray spectra. We estimate the strength of this O II line in two different ways, and show that in most cases the O II line accounts for the entire blended line. The small amount of O VI equivalent width present in some cases has column density entirely consistent with the UV value. This solution to the O VI discrepancy, however, does not apply to high column-density systems like AGN outflows. We discuss other possible causes to explain their UV/X-ray mismatch. The O VI and O II lines will be resolved by gratings on board the proposed mission Arcus and the concept mission Lynx, and would allow the detection of weak O VI lines not just at z = 0, but also at higher redshift.
NASA Technical Reports Server (NTRS)
Friedman, S. D.; Howk, J. C.; Chayer, P.; Tripp, T. M.; Hebrard, G.; Andre, M.; Oliveira, C.; Jenkins, E. B.; Moos, H. W.; Oegerle, William R.
2001-01-01
We present measurements of the column densities of interstellar D I and O I made with the Far Ultraviolet Spectroscopic Explorer (FUSE), and of H I made with the International Ultraviolet Explorer (IUE) toward the sdOB star Feige 110 [(l,b) = (74.09 deg., - 59.07 deg.); d = 179(sup +265, sub -67) pc; Z = -154(sup +57, Sub -227 pc). Our determination of the D I column density made use of curve of growth fitting and profile fitting analyses, while our O I column density determination used only curve of growth techniques. The H I column density was estimated by fitting the damping wings of the interstellar Ly(lpha) profile. We find log N(D I) = 15.47 +/- 0.06, log N(O I) = 16.73 +/- 0.10, and log N(H I) = 20.14(sup +0.13, sub -0.20) (all errors 2(sigma)). This implies D/H = (2.14 +/- 0.82) x 10(esp -5), D/O = (5.50(sup + 1.64, sub -133)) x 10(exp -2), and O/H = (3.89 +/- 1.67) x 10(exp -4). Taken with the FUSE results reported in companion papers and previous measurements of the local interstellar medium, this suggests the possibility of spatial variability in D/H for sight lines exceeding approx. 100 pc. This result may constrain models which characterize the mixing time and length scales of material in the local interstellar medium.
Inversion and Application of Muon Tomography Data for Cave Exploration in Budapest, Hungary
NASA Astrophysics Data System (ADS)
Molnár, Gábor; Surányi, Gergely; Gábor Barnaföldi, Gergely; Oláh, László; Hamar, Gergö; Varga, Dezsö
2016-04-01
In this contribution we present a prospecting muon-tomograph and its application for cave exploration in Budapest, Hungary. The more than 50 years old basic idea behind muon tomography is the ability of muon particles, generated in the upper atmosphere to penetrate tens of meters into rocks with continuous attenuation before decay. This enables us placing a detector in a tunnel and measure muon fluxes from different directions and convert these fluxes to rock density data. The lightweight, 51x46x32 cm3 size, muon tomograph containing 5 detector layers was developed by Wigner Research Centre for Physics, Budapest, Hungary. A muon passing at least 4 of the 5 detector layers along one line are classified as unique muon detection. Its angular resolution is approximately 1 degree and it is effective up to 50 degrees off zenith. During the measurement campaign we installed the muon detector at seventeen locations along an abandoned, likely Cold War air raid shelter tunnel for 10-15 days at each location, collecting large set of events. The measured fluxes are converted to apparent density lengths (multiplication of rock densities by along path lengths) using an empirically tested relationship. For inverting measurements, a 3D block model of the subsurface was developed. It consisted of cuboids, with equal horizontal size, equal number in every line and in every row of the model. Additionally it consisted of blocks with different heights, equal number of blocks in every column. (Block height was constant in a column, but varied from column to column.) The heights of the blocks in a column were chosen, that top face of the uppermost blocks has an elevation defined by a Digital Elevation Model. Initially the density of every model blocks was set to a realistic value. We calculated the theoretical density length for every detector location and for a subset of flux measurement directions. We also calculated the partial derivatives of these theoretical density length values with respect to the densities of every model block. This is the Jacobian of the problem and these values were proportional to the path length in the respective block. A regularized least squares solution returns the corrections of the densities of the blocks. If the corrected density of a block is significantly smaller than the typical rock density of the subsurface, the block is dedicated as a cave. According to our results a supposed cave exists some 7 meters above the tunnel. This work has been supported by the Lendület Program of the Hungarian Academy of Sciences (LP2013-60) and the OTKA NK-106119 grant. Gergely Gábor Barnaföld and Dezsö Varga thank for the support of the Bolyai Fellowship of the Hungarian Academy of Sciences.
High-resolution NO2 remote sensing from the Airborne Prism EXperiment (APEX) imaging spectrometer
NASA Astrophysics Data System (ADS)
Popp, C.; Brunner, D.; Damm, A.; Van Roozendael, M.; Fayt, C.; Buchmann, B.
2012-09-01
We present and evaluate the retrieval of high spatial resolution maps of NO2 vertical column densities (VCD) from the Airborne Prism EXperiment (APEX) imaging spectrometer. APEX is a novel instrument providing airborne measurements of unique spectral and spatial resolution and coverage as well as high signal stability. In this study, we use spectrometer data acquired over Zurich, Switzerland, in the morning and late afternoon during a flight campaign on a cloud-free summer day in June 2010. NO2 VCD are derived with a two-step approach usually applied to satellite NO2 retrievals, i.e. a DOAS analysis followed by air mass factor calculations based on radiative transfer computations. Our analysis demonstrates that APEX is clearly sensitive to NO2 VCD above typical European tropospheric background abundances (>1 × 1015 molec cm-2). The two-dimensional maps of NO2 VCD reveal a very convincing spatial distribution with strong gradients around major NOx sources (e.g. Zurich airport, waste incinerator, motorways) and low NO2 in remote areas. The morning overflights resulted in generally higher NO2 VCD and a more distinct pattern than the afternoon overflights which can be attributed to the meteorological conditions prevailing during that day with stronger winds and hence larger dilution in the afternoon. The remotely sensed NO2 VCD are also in reasonably good agreement with ground-based in-situ measurements from air quality networks considering the limitations of comparing column integrals with point measurements. Airborne NO2 remote sensing using APEX will be valuable to detect NO2 emission sources, to provide input for NO2 emission modelling, and to establish links between in-situ measurements, air quality models, and satellite NO2 products.
Linear theory of plasma Čerenkov masers
NASA Astrophysics Data System (ADS)
Birau, M.
1996-11-01
A different theoretical model of Čerenkov instability in the linear amplification regime of plasma Čerenkov masers is developed. The model assumes a cold relativistic annular electron beam propagating through a column of cold dense plasma, the two bodies being immersed in an infinite magnetic guiding field inside a perfect cylindrical waveguide. In order to simplify the calculations, a radial rectangular distribution of plasma and beam density is assumed and only azimuthal symmetric modes are under investigation. The model's difference consists of taking into account the whole plasma and beam electromagnetic structures in the interpretation of the Čerenkov instability. This model leads to alternative results such as the possibility of emission at several frequencies. In addition, the electric field is calculated taking into account its radial phase dependence, so that a map of the field in the interaction region can be presented.
Simulated GOLD Observations of Atmospheric Waves
NASA Astrophysics Data System (ADS)
Correira, J.; Evans, J. S.; Lumpe, J. D.; Rusch, D. W.; Chandran, A.; Eastes, R.; Codrescu, M.
2016-12-01
The Global-scale Observations of the Limb and Disk (GOLD) mission will measure structures in the Earth's airglow layer due to dynamical forcing by vertically and horizontally propagating waves. These measurements focus on global-scale structures, including compositional and temperature responses resulting from dynamical forcing. Daytime observations of far-UV emissions by GOLD will be used to generate two-dimensional maps of the ratio of atomic oxygen and molecular nitrogen column densities (ΣO/N2 ) as well as neutral temperature that provide signatures of large-scale spatial structure. In this presentation, we use simulations to demonstrate GOLD's capability to deduce periodicities and spatial dimensions of large-scale waves from the spatial and temporal evolution observed in composition and temperature maps. Our simulations include sophisticated forward modeling of the upper atmospheric airglow that properly accounts for anisotropy in neutral and ion composition, temperature, and solar illumination. Neutral densities and temperatures used in the simulations are obtained from global circulation and climatology models that have been perturbed by propagating waves with a range of amplitudes, periods, and sources of excitation. Modeling of airglow emission and predictions of ΣO/N2 and neutral temperatures are performed with the Atmospheric Ultraviolet Radiance Integrated Code (AURIC) and associated derived product algorithms. Predicted structure in ΣO/N2 and neutral temperature due to dynamical forcing by propagating waves is compared to existing observations. Realistic GOLD Level 2 data products are generated from simulated airglow emission using algorithm code that will be implemented operationally at the GOLD Science Data Center.
NASA Astrophysics Data System (ADS)
van Loon, J. Th.; Bailey, M.; Tatton, B. L.; Maíz Apellániz, J.; Crowther, P. A.; de Koter, A.; Evans, C. J.; Hénault-Brunet, V.; Howarth, I. D.; Richter, P.; Sana, H.; Simón-Díaz, S.; Taylor, W.; Walborn, N. R.
2013-02-01
Context. The Tarantula Nebula (a.k.a. 30 Dor) is a spectacular star-forming region in the Large Magellanic Cloud (LMC), seen through gas in the Galactic disc and halo. Diffuse interstellar bands (DIBs) offer a unique probe of the diffuse, cool-warm gas in these regions. Aims: The aim is to use DIBs as diagnostics of the local interstellar conditions, whilst at the same time deriving properties of the yet-unknown carriers of these enigmatic spectral features. Methods: Spectra of over 800 early-type stars from the Very Large Telescope Flames Tarantula Survey (VFTS) were analysed. Maps were created, separately, for the Galactic and LMC absorption in the DIBs at 4428 and 6614 Å and - in a smaller region near the central cluster R 136 - neutral sodium (the Na i D doublet); we also measured the DIBs at 5780 and 5797 Å. Results: The maps show strong 4428 and 6614 Å DIBs in the quiescent cloud complex to the south of 30 Dor but weak absorption in the harsher environments to the north (bubbles) and near the OB associations. The Na maps show at least five kinematic components in the LMC and a shell-like structure surrounding R 136, and small-scale structure in the Milky Way. The strengths of the 4428, 5780, 5797 and 6614 Å DIBs are correlated, also with Na absorption and visual extinction. The strong 4428 Å DIB is present already at low Na column density but the 6614, 5780 and 5797 Å DIBs start to be detectable at subsequently larger Na column densities. Conclusions: The carriers of the 4428, 6614, 5780 and 5797 Å DIBs are increasingly prone to removal from irradiated gas. The relative strength of the 5780 and 5797 Å DIBs clearly confirm the Tarantula Nebula as well as Galactic high-latitude gas to represent a harsh radiation environment. The resilience of the 4428 Å DIB suggests its carrier is large, compact and neutral. Structure is detected in the distribution of cool-warm gas on scales between one and >100 pc in the LMC and as little as 0.01 pc in the Sun's vicinity. Stellar winds from the central cluster R 136 have created an expanding shell; some infalling gas is also detected, reminiscent of a galactic "fountain". Full Tables A.2-A.4 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/550/A108
TOPCAT -- Tool for OPerations on Catalogues And Tables
NASA Astrophysics Data System (ADS)
Taylor, Mark
TOPCAT is an interactive graphical viewer and editor for tabular data. It has been designed for use with astronomical tables such as object catalogues, but is not restricted to astronomical applications. It understands a number of different astronomically important formats, and more formats can be added. It is designed to cope well with large tables; a million rows by a hundred columns should not present a problem even with modest memory and CPU resources. It offers a variety of ways to view and analyse the data, including a browser for the cell data themselves, viewers for information about table and column metadata, tools for joining tables using flexible matching algorithms, and visualisation facilities including histograms, 2- and 3-dimensional scatter plots, and density maps. Using a powerful and extensible Java-based expression language new columns can be defined and row subsets selected for separate analysis. Selecting a row can be configured to trigger an action, for instance displaying an image of the catalogue object in an external viewer. Table data and metadata can be edited and the resulting modified table can be written out in a wide range of output formats. A number of options are provided for loading data from external sources, including Virtual Observatory (VO) services, thus providing a gateway to many remote archives of astronomical data. It can also interoperate with other desktop tools using the SAMP protocol. TOPCAT is written in pure Java and is available under the GNU General Public Licence. Its underlying table processing facilities are provided by STIL, the Starlink Tables Infrastructure Library.
NASA Technical Reports Server (NTRS)
Marrs, R. W.; Evans, M. A.
1974-01-01
The author has identified the following significant results. The crop types of a Great Plains study area were mapped from color infrared aerial photography. Each field was positively identified from field checks in the area. Enlarged (50x) density contour maps were constructed from three ERTS-1 images taken in the summer of 1973. The map interpreted from the aerial photography was compared to the density contour maps and the accuracy of the ERTS-1 density contour map interpretations were determined. Changes in the vegetation during the growing season and harvest periods were detectable on the ERTS-1 imagery. Density contouring aids in the detection of such charges.
Method for removing atomic-model bias in macromolecular crystallography
Terwilliger, Thomas C [Santa Fe, NM
2006-08-01
Structure factor bias in an electron density map for an unknown crystallographic structure is minimized by using information in a first electron density map to elicit expected structure factor information. Observed structure factor amplitudes are combined with a starting set of crystallographic phases to form a first set of structure factors. A first electron density map is then derived and features of the first electron density map are identified to obtain expected distributions of electron density. Crystallographic phase probability distributions are established for possible crystallographic phases of reflection k, and the process is repeated as k is indexed through all of the plurality of reflections. An updated electron density map is derived from the crystallographic phase probability distributions for each one of the reflections. The entire process is then iterated to obtain a final set of crystallographic phases with minimum bias from known electron density maps.
SEPARATION OF OCTYLPHENOL POLYETHER ALCOHOLS SURFACTANTS BY CAPILLARY COLUMN AND HPLC
Separation of nonionic octylphenol polyether alcohols (OPA) by supercritical fluid chromatography (SFC) and HPLC is described. sing a density programming and a 50-pm i.d. capillary column, a total of 18 group oligomers was separated. he effects of the operating parameters, such a...
X-Ray Wind Tomography of IGR J17252-3616
NASA Astrophysics Data System (ADS)
Manousakis, Antonios; Walter, Roland
2010-07-01
IGR J17252-3616, a highly absorbed High Mass X-ray Binary (HMXB) with Hydrogen column density NH~(2-4)×1023 cm-2, has been observed with XMM-Newton for about one month. Observations were scheduled in order to cover the orbital-phase space as much as possible. IGR J17252-3616 shows a varying column density NH and Fe Kα line when fit with simple phenomenological models. A refined orbital solution can be derived. Spectral timing analysis allows derivation of the wind properties of the massive star.
Valdivia, Maria Pia; Stutman, Dan; Stoeckl, Christian; Mileham, Chad; Begishev, Ildar A; Bromage, Jake; Regan, Sean P
2018-01-10
Talbot-Lau x-ray interferometry uses incoherent x-ray sources to measure refraction index changes in matter. These measurements can provide accurate electron density mapping through phase retrieval. An adaptation of the interferometer has been developed in order to meet the specific requirements of high-energy density experiments. This adaptation is known as a moiré deflectometer, which allows for single-shot capabilities in the form of interferometric fringe patterns. The moiré x-ray deflectometry technique requires a set of object and reference images in order to provide electron density maps, which can be costly in the high-energy density environment. In particular, synthetic reference phase images obtained ex situ through a phase-scan procedure, can provide a feasible solution. To test this procedure, an object phase map was retrieved from a single-shot moiré image obtained from a plasma-produced x-ray source. A reference phase map was then obtained from phase-stepping measurements using a continuous x-ray tube source in a small laboratory setting. The two phase maps were used to retrieve an electron density map. A comparison of the moiré and phase-stepping phase-retrieval methods was performed to evaluate single-exposure plasma electron density mapping for high-energy density and other transient plasma experiments. It was found that a combination of phase-retrieval methods can deliver accurate refraction angle mapping. Once x-ray backlighter quality is optimized, the ex situ method is expected to deliver electron density mapping with improved resolution. The steps necessary for improved diagnostic performance are discussed.
An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines
NASA Astrophysics Data System (ADS)
Korista, Kirk; Baldwin, Jack; Ferland, Gary; Verner, Dima
We present graphically the results of several thousand photoionization calculations of broad emission-line clouds in quasars, spanning 7 orders of magnitude in hydrogen ionizing flux and particle density. The equivalent widths of 42 quasar emission lines are presented as contours in the particle density-ionizing flux plane for a typical incident continuum shape, solar chemical abundances, and cloud column density of N(H) = 1023 cm-2. Results are similarly given for a small subset of emission lines for two other column densities (1022 and 1024 cm-2), five other incident continuum shapes, and a gas metallicity of 5 Z⊙. These graphs should prove useful in the analysis of quasar emission-line data and in the detailed modeling of quasar broad emission-line regions. The digital results of these emission-line grids and many more are available over the Internet.
González, F R; Pérez-Parajón, J; García-Domínguez, J A
2002-04-12
Gas-liquid chromatographic columns were prepared coating silica capillaries with poly(oxyethylene) polymers of different molecular mass distributions, in the range of low number-average molar masses, where the density still varies significantly. A novel, high-temperature, rapid evaporation method was developed and applied to the static coating of the low-molecular-mass stationary phases. The analysis of alkanes retention data from these columns reveals that the dependence of the partition coefficient with the solvent macroscopic density is mainly due to a variation of entropy. Enthalpies of solute transfer contribute poorly to the observed variations of retention. Since the alkanes solubility diminishes with the increasing solvent density, and this variation is weakly dependent with temperature, it is concluded that the decrease of free-volume in the liquid is responsible for this behavior.
Richardson, Stephen D.; Aitken, Michael D.
2011-01-01
The distribution and potential bioavailability of polycyclic aromatic hydrocarbons (PAHs) in soil from a former manufactured-gas plant (MGP) site were examined before and after long-term biostimulation under simulated in situ conditions. Treated soil was collected from the oxygenated zones of two continuous-flow columns, one subjected to biostimulation and the other serving as a control, and separated into low- and high-density fractions. In the original soil, over 50% of the total PAH mass was associated with lower-density particles, which comprised < 2% of the total soil mass. However, desorbable fractions of PAHs were much lower in the low-density material than in the high-density material. After over 500 d of biostimulation, significant removal of total PAHs occurred in both the high- and low-density materials (77% and 53%, respectively), with three- and four-ring PAHs accounting for the majority of the observed mass loss. Total PAHs that desorbed over a 28-d period were substantially lower in treated soil from the biostimulated column than in the original soil for both the high-density material (23 versus 63%) and low-density material (5 versus 20%). The fast-desorbing fractions quantified by a two-site desorption model ranged from 0.1 to 0.5 for most PAHs in the original soil but were essentially zero in the biostimulated soil. The fast-desorbing fractions in the original soil underestimated the extent of PAH biodegradation observed in the biostimulated column, and thus was not a good predictor of PAH bioavailability after long-term, simulated in situ biostimulation. PMID:21932296
Evaluating the precision of passive sampling methods using PRCs in the water column.
To assess these models, four different thicknesses of low-density polyethylene (LDPE) passive samplers were co-deployed for 28 days in the water column at three sites in New Bedford Harbor, MA, USA. Each sampler was pre-loaded with six PCB performance reference compounds (PRCs) t...
SEPARATION OF T-MAZ ETHOXYLATED SORBITAN FATTY ACID ESTERS BY SUPERCRITICAL FLUID CHROMATOGRAPHY
The application of supercritical fluid chromatography (SFC) to the analysis of T-MAZ ethoxylated sorbitan fatty acid esters is described. FC separation methods utilize a density programming technique and a 50 um I.D. capillary column. his work demonstrates that capillary column S...
SEPARATION OF OCTYLPHENOL POLYETHER ALCOHOLS SURFACTANTS BY CAPILLARY COLUMN SFC AND HPLC
Separation of nonionic octylphenol polyether alcohols (OPA) by supercritical fluid chromatography (SFC) and HPLC is described. Using a density programming and a 50-μm i.d. capillary column, a total of 18 group oligomers was separated. The effects of the operating parameters, such...
Don't Forget Kīlauea: Explosive Hazards at an Ocean Island Basaltic Volcano
NASA Astrophysics Data System (ADS)
Swanson, D. A.; Houghton, B. F.
2015-12-01
Kīlauea alternates between periods of high and low magma supply rate, each period lasting centuries. The low rate is only a few percent of the high rate. High supply rate, typified by the past 200 years, leads to frequent lava flows, elevated SO2 emission, and relatively low-hazard Hawaiian-style explosive activity (lava fountains, spattering). Periods of low magma supply are very different. They accompany formation and maintenance of a deep caldera, the floor of which is at or below the water table, and are characterized by phreatomagmatic and phreatic explosive eruptions largely powered by external water. The low magma supply rate results in few lava flows and reduced SO2 output. Studies of explosive deposits from the past two periods of low magma supply (~200 BCE-1000 CE and ~1500-1800 CE) indicate that VEIs calculated from isopach maps can range up to a low 3. Clast-size studies suggest that subplinian column heights can reach >10 km (most recently in 1790), though more frequent column heights are ~5-8 km. Pyroclastic density currents (PDCs) present severe proximal hazards; a PDC in 1790 killed a few hundred people in an area of Hawaíi Volcanoes National Park today visited by 5000 people daily. Ash in columns less than about 5 km a.s.l. is confined to the trade-wind regime and advects southwest. Ash in higher columns enters the jet stream and is transported east and southeast of the summit caldera. Recurrence of such column heights today would present aviation hazards, which, for an isolated state dependent on air transport, could have especially deleterious economic impact. There is currently no way to estimate when a period of low magma supply, a deep caldera, and powerful explosive activity will return. Hazard assessments must take into account the cyclic nature of Kīlauea's eruptive activity, not just its present status; consequently, assessments for periods of high and low magma supply rates should be made in parallel to cover all eventualities.
The Mass and Absorption Columns of Galactic Gaseous Halos
NASA Astrophysics Data System (ADS)
Qu, Zhijie; Bregman, Joel N.
2018-01-01
The gaseous halo surrounding the galaxy is a reservoir for the gas on the galaxy disk, supplying materials for the star formation. We developed a gaseous halo model connecting the galactic disk and the gaseous halo by assuming the star formation rate is equal to the radiative cooling rate. Besides the single-phase collisional gaseous halo, we also consider the photoionization effect and a time-independent cooling model that assumes the mass cooling rate is constant over all temperatures. The photoionization dominates the low mass galaxy and the outskirts of the massive galaxy due to the low-temperature or low-density nature. The multi-phase cooling model dominates the denser region within the cooling radius, where the efficient radiative cooling must be included. Applying these two improvements, our model can reproduce the most of observed high ionization state ions (i.e., O VI, O VII, Ne VIII and Mg X). Our models show that the O VI column density is almost a constant of around 10^14 cm^-2 over a wide stellar mass from M_\\star ~10^8 M_Sun to 10^11 M_Sun, which is constant with current observations. This model also implies the O VI is photoionized for the galaxy with a halo mass <~ 3 * 10^11 M_Sun, while for more massive galaxies, the O VI is from the cooling-down medium from higher temperature materials (collisional ionized). As higher ionization states, Mg X and Ne VIII are also consistent with observations with the column density of 10^13.5 - 10^14.0 cm^-2, however, the absorber-galaxy pair sample is few to constrain the connection with the galaxy. Based on our calculation, such a gaseous halo cannot close the census of baryonic materials in the galaxy, which shows the same tendency as the baryonic fraction function of the EAGLE simulation. Finally, our model predicts plateaus of the Ne VIII and the Mg X column densities above the sub-L^* galaxy, and the possibly detectable O VII and O VIII column densities for low-mass galaxies, which help to determine the required detection limit for the future observations and missions.
NASA Astrophysics Data System (ADS)
Araki, Mitsunori; Takano, Shuro; Sakai, Nami; Yamamoto, Satoshi; Oyama, Takahiro; Kuze, Nobuhiko; Tsukiyama, Koichi
2017-06-01
Carbon chains in the warm carbon chain chemistry (WCCC) region has been searched in the 42-44 GHz region by using Green Bank 100 m telescope. Long carbon chains C_{7}H, C_{6}H, CH_{3}CCCCH, and linear-C_{6}H_{2} and cyclic species C_{3}H and C_{3}H_{2}O have been detected in the low-mass star forming region L1527, performing the WCCC. C_{7}H was detected for the first time in molecular clouds. The column density of C_{7}H is derived to be 6.2 × 10^{10} cm^{-2} by using the detected J = 24.5-23.5 and 25.5-24.5 rotational lines. The ^{2}Π_{1/2} electronic state of C_{6}H, locating 21.6 K above the ^{2}Π_{3/2} electronic ground state, and the K_a = 0 line of the para species of linear-C_{6}H_{2} were also detected firstly in molecular clouds. The column densities of the ^{2}Π_{1/2} and ^{2}Π_{3/2} states of C_{6}H in L1527 were derived to be 1.6 × 10^{11} and 1.1 × 10^{12} cm^{-2}, respectively. The total column density of linear-C_{6}H_{2} is obtained to be 1.86 × 10^{11} cm^{-2}. While the abundance ratios of carbon chains in between L1527 and the starless dark cloud Taurus Molecular Cloud-1 Cyanopolyyne Peak (TMC-1 CP) have a trend of decrease by extension of carbon-chain length, column densities of CH_{3}CCCCH and C_{6}H are on the trend. However, the column densities of linear-C_{6}H_{2}, and C_{7}H are as abundant as those of TMC-1 CP in spite of long carbon chain, i.e., they are not on the trend. The abundances of linear-C_{6}H_{2} and C_{7}H show that L1527 is rich for long carbon chains as well as TMC-1 CP.
The absorption spectrum of the QSO PKS 2126-158 (z_em =3.27) at high resolution
NASA Astrophysics Data System (ADS)
D'Odorico, V.; Cristiani, S.; D'Odorico, S.; Fontana, A.; Giallongo, E.
1998-01-01
Spectra of the z_em = 3.268 quasar PKS 2126-158 have been obtained in the range lambda lambda 4300-6620 Angstroms with a resolution Rsmallimeq27000 and an average signal-to-noise ratio s/nsmallimeq 25 per resolution element. The list of the identified absorption lines is given together with their fitted column densities and Doppler widths. The modal value of the Doppler parameter distribution for the Lyalpha lines is smallimeq 25 km s(-1) . The column density distribution can be described by a power-law dn / dN ~ N(-beta ) with beta smallimeq 1.5. 12 metal systems have been identified, two of which were previously unknown. In order to make the column densities of the intervening systems compatible with realistic assumptions about the cloud sizes and the silicon to carbon overabundance, it is necessary to assume a jump beyond the He II edge in the spectrum of the UV ionizing background at z smallim 3 a factor 10 larger than the standard predictions for the integrated quasar contribution. An enlarged sample of C IV absorptions (71 doublets) has been used to analyze the statistical properties of this class of absorbers strictly related to galaxies. The column density distribution is well described by a single power-law, with beta =1.64 and the Doppler parameter distribution shows a modal value b_CIV smallimeq 14 km s(-1) . The two point correlation function has been computed in the velocity space for the individual components of C IV features. A significant signal is obtained for scales smaller than 200- 300 km s(-1) , xi (30< Delta v < 90 km\\ s(-1) ) = 33 +/- 3. A trend of decreasing clustering amplitude with decreasing column density is apparent, analogously to what has been observed for Lyalpha lines. Based on observations collected at the European Southern Observatory, La Silla, Chile (ESO No. 2-013-49K). Table 2 is only available in electronic from via anonymous ftp 130.79.128.5 or http://cdsweb.u-strasbg.fr/Abstract.html
The Past 20,000 Years of Plinian Explosive Activity at Mt Pelée Volcano (Lesser Antilles)
NASA Astrophysics Data System (ADS)
Carazzo, G.; Michaud-Dubuy, A.; Kaminski, E. C.; Tait, S.
2017-12-01
Major volcanic hazards in the Lesser Antilles arc include powerful Plinian explosive eruptions that inject ash into the atmosphere and produce dangerous pyroclastic density currents (PDC) on the ground. Reconstructions of past eruptive activities based on stratigraphic records are crucial to assessing specific hazards in this region where large eruptions do not occur frequently. The present study focuses on the dynamics of the last Plinian eruptions of Mount Pelée volcano in Martinique. Previous field-based studies identified 6 major Plinian eruptions over the past 5,000 years but limited information on their dynamics exist, except for the most recent one dated at AD 1300. Based on a new comprehensive field study and physical models of volcanic plumes, we largely improve our knowledge of the number of Plinian eruptions that occurred in Martinique over the past 20,000 years. We also provide a detailed reconstruction of important eruptive parameters such as mass eruption rates, maximum column heights, volumes, and impacted areas. Among the 6 Plinian eruptions newly identified during our field campaign, one is found to have produced voluminous pyroclastic density currents that reached the sea and partially rose as a co-PDC plume above a region that is beyond the existing hazard map. The estimated mass eruption rates for the 12 Plinian eruptions identified over the last 20,000 years range from 107 to 108 kg/s, producing 15-30 km-high Plinian columns, initially stable but ultimately collapsing and forming PDC. Empirical models of deposit thinning suggest that the minimum volume of pyroclastic deposits systematically ranges between 0.1 and 1 km3, corresponding to VEI 4 to 5 events. Archaeological evidences suggest that the impact of several eruptions forced the first Caribbean inhabitants to flee to other islands for decades.
THE JCMT GOULD BELT SURVEY: A FIRST LOOK AT DENSE CORES IN ORION B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirk, H.; Francesco, J. Di; Johnstone, D.
2016-02-01
We present a first look at the SCUBA-2 observations of three sub-regions of the Orion B molecular cloud: LDN 1622, NGC 2023/2024, and NGC 2068/2071, from the JCMT Gould Belt Legacy Survey. We identify 29, 564, and 322 dense cores in L1622, NGC 2023/2024, and NGC 2068/2071 respectively, using the SCUBA-2 850 μm map, and present their basic properties, including their peak fluxes, total fluxes, and sizes, and an estimate of the corresponding 450 μm peak fluxes and total fluxes, using the FellWalker source extraction algorithm. Assuming a constant temperature of 20 K, the starless dense cores have a mass function similar to that found inmore » previous dense core analyses, with a Salpeter-like slope at the high-mass end. The majority of cores appear stable to gravitational collapse when considering only thermal pressure; indeed, most of the cores which have masses above the thermal Jeans mass are already associated with at least one protostar. At higher cloud column densities, above 1–2 × 10{sup 23} cm{sup −2}, most of the mass is found within dense cores, while at lower cloud column densities, below 1 × 10{sup 23} cm{sup −2}, this fraction drops to 10% or lower. Overall, the fraction of dense cores associated with a protostar is quite small (<8%), but becomes larger for the densest and most centrally concentrated cores. NGC 2023/2024 and NGC 2068/2071 appear to be on the path to forming a significant number of stars in the future, while L1622 has little additional mass in dense cores to form many new stars.« less
The JCMT Gould Belt Survey: A First Look at Dense Cores in Orion B
NASA Astrophysics Data System (ADS)
Kirk, H.; Di Francesco, J.; Johnstone, D.; Duarte-Cabral, A.; Sadavoy, S.; Hatchell, J.; Mottram, J. C.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Jenness, T.; Nutter, D.; Pattle, K.; Pineda, J. E.; Quinn, C.; Salji, C.; Tisi, S.; Hogerheijde, M. R.; Ward-Thompson, D.; Bastien, P.; Bresnahan, D.; Butner, H.; Chen, M.; Chrysostomou, A.; Coude, S.; Davis, C. J.; Drabek-Maunder, E.; Fiege, J.; Friberg, P.; Friesen, R.; Fuller, G. A.; Graves, S.; Greaves, J.; Gregson, J.; Holland, W.; Joncas, G.; Kirk, J. M.; Knee, L. B. G.; Mairs, S.; Marsh, K.; Matthews, B. C.; Moriarty-Schieven, G.; Mowat, C.; Rawlings, J.; Richer, J.; Robertson, D.; Rosolowsky, E.; Rumble, D.; Thomas, H.; Tothill, N.; Viti, S.; White, G. J.; Wouterloot, J.; Yates, J.; Zhu, M.
2016-02-01
We present a first look at the SCUBA-2 observations of three sub-regions of the Orion B molecular cloud: LDN 1622, NGC 2023/2024, and NGC 2068/2071, from the JCMT Gould Belt Legacy Survey. We identify 29, 564, and 322 dense cores in L1622, NGC 2023/2024, and NGC 2068/2071 respectively, using the SCUBA-2 850 μm map, and present their basic properties, including their peak fluxes, total fluxes, and sizes, and an estimate of the corresponding 450 μm peak fluxes and total fluxes, using the FellWalker source extraction algorithm. Assuming a constant temperature of 20 K, the starless dense cores have a mass function similar to that found in previous dense core analyses, with a Salpeter-like slope at the high-mass end. The majority of cores appear stable to gravitational collapse when considering only thermal pressure; indeed, most of the cores which have masses above the thermal Jeans mass are already associated with at least one protostar. At higher cloud column densities, above 1-2 × 1023 cm-2, most of the mass is found within dense cores, while at lower cloud column densities, below 1 × 1023 cm-2, this fraction drops to 10% or lower. Overall, the fraction of dense cores associated with a protostar is quite small (<8%), but becomes larger for the densest and most centrally concentrated cores. NGC 2023/2024 and NGC 2068/2071 appear to be on the path to forming a significant number of stars in the future, while L1622 has little additional mass in dense cores to form many new stars.
Chong, Jihyo; Kim, Young J; Gu, Myojeong; Wagner, Thomas; Song, Chul H
2016-01-01
Ground-based MAX-DOAS measurements have been used to retrieve column densities of atmospheric absorbers such as NO2, SO2, HCHO, and O3. In this study, mobile MAX-DOAS measurements were conducted to map the 2-D distributions of atmospheric NO2 in the western coastal areas of the Korean peninsula. A Mini-MAX-DOAS instrument was mounted on the rooftop of a mobile lab vehicle with a telescope mounted parallel to the driving direction, pointing forward. The measurements were conducted from 21 to 24 December 2010 along the western coastal areas from Gomso harbor (35.59N, 126.61E) to Gunsan harbor (35.98N, 126.67E). During mobile MAX-DOAS observations, high elevation angles were used to avoid shades from nearby obstacles. For the determination of the tropospheric vertical column density (VCD), the air mass factor (AMF) was retrieved by the so-called geometric approximation. The NO2 VCDs from 20 and 45 degree elevation angles were retrieved from mobile MAX-DOAS measurements. The tropospheric NO2 VCDs derived from mobile MAX-DOAS measurements were compared directly to those retrieved by the OMI satellite observations. Mobile MAX-DOAS VCD was in good agreement with OMI tropospheric VCD on most days. However, OMI tropospheric VCD was much higher than that of mobile MAX-DOAS on 23 December 2010. One probable reason for this difference is that OMI retrieval might overestimate NO2 VCD under haze conditions, when a pollution plume was transported over the measurement site. The mobile MAX-DOAS observations reveal much finer spatial patterns of NO2 distributions, which can provide useful information for the validation of satellite observation of atmospheric trace gases. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Verkhoglyadova, O. P.; Tsurutani, B. T.; Mannucci, A. J.; Mlynczak, M. G.; Hunt, L. A.; Paxton, L. J.
2014-08-01
A series of four geomagnetic storms (the minimum SYM-H~-148 nT) occurred during the March 6-17, 2012 in the ascending phase of the solar cycle 24. This interval was selected by CAWSES II for its campaign. The GPS total electron content (TEC) database and JPL's Global Ionospheric Maps (GIM) were used to study vertical TEC (VTEC) for different local times and latitude ranges. The largest response to geomagnetic activity is shown in increases of the low-latitude dayside VTEC. Several GPS sites feature post-afternoon VTEC “bite-outs”. During Sudden Impulse (SI+) event on March 8th a peak daytime VTEC restores to about quiet-time values. It is shown that the TIMED/SABER zonal flux of nitric oxide (NO) infrared cooling radiation correlates well with auroral heating. A factor of ~5 cooling increase is noted in some storms. The cooling radiation intensifies in the auroral zone and spreads towards the equator. Effects of the storm appear at lower latitudes ~18.6 h later. The column density ratio Σ[O/N2] is analyzed based on TIMED/GUVI measurements. Both increases (at low latitudes) and decreases (from auroral to middle latitudes) in the ratio occurs during the geomagnetic storms. We suggest that the column density ratio could be enhanced at low to middle latitudes on the dayside partially due to the superfountain effect (atomic oxygen uplift due to ion-neutral drag). It is suggested that decreases in the Σ[O/N2] ratio at high to middle-latitudes may be caused by high thermospheric temperatures. During SI+s, there is an increase in Σ[O/N2] ratio at auroral latitudes.
NGVLA Observations of Dense Gas Filaments in Star-Forming Regions
NASA Astrophysics Data System (ADS)
Di Francesco, James; Chen, Mike; Keown, Jared; GAS Team, KEYSTONE Team
2018-01-01
Recent observations of continuum emission from nearby star-forming regions with Herschel and JCMT have revealed that filaments are ubiquitous structures within molecular clouds. Such filaments appear to be intimately connected to star formation, with those having column densities of AV > 8 hosting the majority of prestellar cores and young protostars in clouds. Indeed, this “threshold” can be explained simply as the result of supercritical cylinder fragmentation. How specifically star-forming filaments form in molecular clouds, however, remains unclear, though gravity and turbulence are likely involved. Observations of their kinematics are needed to understand how mass flows both onto and through these filaments. We show here results from two recent surveys, the Green Bank Ammonia Survey (GAS) and the K-band Examinations of Young Stellar Object Natal Environments (KEYSTONE) that have used the Green Bank Telescope’s K-band Focal Plane Array instrument to map NH3 (1,1) emission from dense gas in nearby star-forming regions. Data from both surveys show that NH3 emission traces extremely well the high column density gas across these star-forming regions. In particular, the GAS results for NGC 1333 show NH3-based velocity gradients either predominantly parallel or perpendicular to the filament spines. Though the GAS and KEYSTONE data are vital for probing filaments, higher resolutions than possible with the GBT alone are needed to examine the kinematic patterns on the 0.1-pc scales of star-forming cores within filaments. We describe how the Next Generation Very Large Array (NGVLA) will uniquely provide the key wide-field data of high sensitivity needed to explore how ambient gas in molecular clouds forms filaments that evolve toward star formation.
Zhou, Gaofeng; Jian, Jianbo; Wang, Penghao; Li, Chengdao; Tao, Ye; Li, Xuan; Renshaw, Daniel; Clements, Jonathan; Sweetingham, Mark; Yang, Huaan
2018-01-01
An ultra-high density genetic map containing 34,574 sequence-defined markers was developed in Lupinus angustifolius. Markers closely linked to nine genes of agronomic traits were identified. A physical map was improved to cover 560.5 Mb genome sequence. Lupin (Lupinus angustifolius L.) is a recently domesticated legume grain crop. In this study, we applied the restriction-site associated DNA sequencing (RADseq) method to genotype an F 9 recombinant inbred line population derived from a wild type × domesticated cultivar (W × D) cross. A high density linkage map was developed based on the W × D population. By integrating sequence-defined DNA markers reported in previous mapping studies, we established an ultra-high density consensus genetic map, which contains 34,574 markers consisting of 3508 loci covering 2399 cM on 20 linkage groups. The largest gap in the entire consensus map was 4.73 cM. The high density W × D map and the consensus map were used to develop an improved physical map, which covered 560.5 Mb of genome sequence data. The ultra-high density consensus linkage map, the improved physical map and the markers linked to genes of breeding interest reported in this study provide a common tool for genome sequence assembly, structural genomics, comparative genomics, functional genomics, QTL mapping, and molecular plant breeding in lupin.
Internal waves interacting with particles in suspension
NASA Astrophysics Data System (ADS)
Micard, Diane
2016-04-01
Internal waves are produced as a consequence of the dynamic balance between buoy- ancy and gravity forces when a particle of fluid is vertically displaced in a stable stratified environment. Geophysical systems such as ocean and atmosphere are naturally stratified and therefore suitable for internal waves to propagate. Furthermore, these two environ- ments stock a vast amount of particles in suspension, which present a large spectrum of physical properties (size, density, shape), and can be organic, mineral or pollutant agents. Therefore, it is reasonable to expect that internal waves will have an active effect over the dynamics of these particles. In order to study the interaction of internal waves and suspended particles, an ide- alized experimental setup has been implemented. A linear stratification is produced in a 80×40×17 cm3 tank, in which two dimensional plane waves are created thanks to the inno- vative wave generator GOAL. In addition, a particle injector has been developed to produce a vertical column of particles within the fluid, displaying the same two-dimensional sym- metry as the waves. The particle injector allows to control the volumic fraction of particles and the size of the column. The presence of internal waves passing through the column of particles allowed to observe two main effects: The column oscillates around an equilibrium position (which is observed in both, the contours an the interior of the column), and the column is displaced as a whole. The column is displaced depending on the characteristics of the column, the gradient of the density, and the intensity and frequency of the wave. When displaced, the particles within the column are sucked towards the source of waves. The direction of the displacement of the column is explained by computing the effect of the Lagrangian drift generated by the wave over the time the particles stay in the wave beam before settling.
Galactic interstellar abundance surveys with IUE and IRAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Steenberg, M.E.
1987-01-01
This thesis is a survey of interstellar densities, abundances, and cloud structure in the Galaxy, using two NASA satellites: the International Ultraviolet Explorer (IUE) and Infrared Astronomical Satellite (IRAS). From IUE high-resolution spectra, the author measured equivalent widths of 18 ultraviolet resonance transitions and derived column densities for Si/sup +/, Mn/sup +/, Fe/sup +/, S/sup +/, and Zn/sup +/ toward 261 early-type stars. From the IRAS all-sky survey he also measured the infrared cirrus flux. He examined the variations of the measured parameters with spectral type, E(B-V), galactic longitude and latitude, distance from the Sun, and mean density. The hydrogen-columnmore » densities, metal-column densities, and gas-to-dust ratio are in good agreement with Copernicus surveys. The derived interstellar abundances yield mean logarithmic depletions. These depletions correlate with mean density but not with the physical density derived from Copernicus H/sub 2/ rotational states. Abundance ratios indicate a larger Fe halo abundance compared to Si, Mn, S, or Zn, which may result from selective grain processing in shocks or from Type I supernovae.« less
NASA Astrophysics Data System (ADS)
Taniguchi, Kotomi; Saito, Masao; Sridharan, T. K.; Minamidani, Tetsuhiro
2018-02-01
We carried out survey observations of HC3N and HC5N in the 42‑45 GHz band toward 17 high-mass starless cores (HMSCs) and 35 high-mass protostellar objects (HMPOs) with the Nobeyama 45 m radio telescope. We have detected HC3N from 15 HMSCs and 28 HMPOs, and HC5N from 5 HMSCs and 14 HMPOs, respectively. The average values of the column density of HC3N are found to be (5.7+/- 0.7) × {10}12 and (1.03+/- 0.12)×{10}13 cm‑2 in HMSCs and HMPOs, respectively. The average values of the fractional abundance of HC3N are derived to be (6.6+/- 0.8)× {10}-11 and (3.6+/- 0.5)× {10}-11 in HMSCs and HMPOs, respectively. We find that the fractional abundance of HC3N decreases from HMSCs to HMPOs using the Kolmogorov–Smirnov test. On the other hand, its average value of the column density slightly increases from HMSCs to HMPOs. This may imply that HC3N is newly formed in dense gas in HMPO regions. We also investigate the relationship between the column density of HC3N in HMPOs and the luminosity-to-mass ratio (L/M), a physical evolutional indicator. The column density of HC3N tends to decrease with the increase of the L/M ratio, which suggests that HC3N is destroyed by the stellar activities.
An X-Ray Spectral Model for Clumpy Tori in Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Liu, Yuan; Li, Xiaobo
2014-05-01
We construct an X-ray spectral model for the clumpy torus in an active galactic nucleus (AGN) using Geant4, which includes the physical processes of the photoelectric effect, Compton scattering, Rayleigh scattering, γ conversion, fluorescence line, and Auger process. Since the electrons in the torus are expected to be bounded instead of free, the deviation of the scattering cross section from the Klein-Nishina cross section has also been included, which changes the X-ray spectra by up to 25% below 10 keV. We have investigated the effect of the clumpiness parameters on the reflection spectra and the strength of the fluorescent line Fe Kα. The volume filling factor of the clouds in the clumpy torus only slightly influences the reflection spectra, however, the total column density and the number of clouds along the line of sight significantly change the shapes and amplitudes of the reflection spectra. The effect of column density is similar to the case of a smooth torus, while a small number of clouds along the line of sight will smooth out the anisotropy of the reflection spectra and the fluorescent line Fe Kα. The smoothing effect is mild in the low column density case (N H = 1023 cm-2), whereas it is much more evident in the high column density case (N H = 1025 cm-2). Our model provides a quantitative tool for the spectral analysis of the clumpy torus. We suggest that the joint fits of the broad band spectral energy distributions of AGNs (from X-ray to infrared) should better constrain the structure of the torus.
Gravity or turbulence? IV. Collapsing cores in out-of-virial disguise
NASA Astrophysics Data System (ADS)
Ballesteros-Paredes, Javier; Vázquez-Semadeni, Enrique; Palau, Aina; Klessen, Ralf S.
2018-06-01
We study the dynamical state of massive cores by using a simple analytical model, an observational sample, and numerical simulations of collapsing massive cores. From the analytical model, we find that cores increase their column density and velocity dispersion as they collapse, resulting in a time evolution path in the Larson velocity dispersion-size diagram from large sizes and small velocity dispersions to small sizes and large velocity dispersions, while they tend to equipartition between gravity and kinetic energy. From the observational sample, we find that: (a) cores with substantially different column densities in the sample do not follow a Larson-like linewidth-size relation. Instead, cores with higher column densities tend to be located in the upper-left corner of the Larson velocity dispersion σv, 3D-size R diagram, a result explained in the hierarchical and chaotic collapse scenario. (b) Cores appear to have overvirial values. Finally, our numerical simulations reproduce the behavior predicted by the analytical model and depicted in the observational sample: collapsing cores evolve towards larger velocity dispersions and smaller sizes as they collapse and increase their column density. More importantly, however, they exhibit overvirial states. This apparent excess is due to the assumption that the gravitational energy is given by the energy of an isolated homogeneous sphere. However, such excess disappears when the gravitational energy is correctly calculated from the actual spatial mass distribution. We conclude that the observed energy budget of cores is consistent with their non-thermal motions being driven by their self-gravity and in the process of dynamical collapse.
Probing the structure of the gas in the Milky Way through X-ray high-resolution spectroscopy
NASA Astrophysics Data System (ADS)
Gatuzz, Efraín; Churazov, Eugene
2018-02-01
We have developed a new X-ray absorption model, called IONeq, which computes the optical depth τ(E) simultaneously for ions of all abundant elements, assuming ionization equilibrium and taking into account turbulent broadening. We use this model to analyse the interstellar medium (ISM) absorption features in the Milky Way for a sample of 18 Galactic (LMXBs) and 42 extragalactic sources (mainly Blazars). The absorbing ISM was modelled as a combination of three components/phases - neutral (T ≲ 1 × 104 K), warm (T ˜ 5 × 104 K) and hot (T ˜ 2 × 106 K). We found that the spatial distribution of both, neutral and warm components, are difficult to describe using smooth profiles due to non-uniform distribution of the column densities over the sky. For the hot phase we used a combination of a flattened disc and a halo, finding comparable column densities for both spatial components, of the order of ˜6-7 × 1018 cm-2, although this conclusion depends on the adopted parametrization. If the halo component has sub-solar abundance Z, then the column density has to be scaled up by a factor of Z_{⊙}/Z. The vertically integrated column densities of the disc components suggest the following mass fractions for these three ISM phases in the Galactic disc: neutral ˜ 89 per cent, warm ˜ 8 per cent and hot ˜ 3 per cent components, respectively. The constraints on the radial distribution of the halo component of the hot component are weak.
NASA Astrophysics Data System (ADS)
Verstraeten, W. W.; Boersma, K. F.; Douros, J.; Williams, J. E.; Eskes, H.; Delcloo, A. W.
2017-12-01
High nitrogen oxides (NOX = NO + NO2) concentrations near the surface impact humans and ecosystems badly and play a key role in tropospheric chemistry. NO2 is an important precursor of tropospheric ozone (O3) which in turn affects the production of the hydroxyl radical controlling the chemical lifetime of key atmospheric pollutants and reactive greenhouse gases. Combustion from industrial, traffic and household activities in large and densely populated urban areas result in high NOX emissions. Accurate mapping of these emissions is essential but hard to do since reported emissions factors may differ from real-time emissions in order of magnitude. Modelled NO2 levels and lifetimes also have large associated uncertainties and overestimation in the chemical lifetime which may mask missing NOX chemistry in current chemistry transport models (CTM's). The simultaneously estimation of both the NO2 lifetime and as well as the concentrations by applying the Exponentially Modified Gaussian (EMG) method on tropospheric NO2 columns lines densities should improve the surface NOX emission estimates. Here we evaluate if the EMG methodology applied on the tropospheric NO2 columns simulated by the LOTOS-EUROS (Long Term Ozone Simulation-European Ozone Simulation) CTM can reproduce the NOX emissions used as model input. First we process both the modelled tropospheric NO2 columns for the period April-September 2013 for 21 selected European urban areas under windy conditions (averaged vertical wind speeds between surface and 500 m from ECMWF > 2 m s-1) as well as the accompanying OMI (Ozone Monitoring Instrument) data providing us with real-time observation-based estimates of midday NO2 columns. Then we compare the top-down derived surface NOX emissions with the 2011 MACC-III emission inventory, used in the CTM as input to simulate the NO2 columns. For cities where NOX emissions can be assumed as originating from one large source good agreement is found between the top-down derived NOX emissions from CTM and OMI with the MACC-III inventory. For cities where multiple sources of NOX are observed (e.g. Brussels, London), an adapted methodology is required. For some cities such as St-Petersburg and Moscow the top-down NOX estimates from 2013 OMI data are biased low compared to the MACC-III inventory which uses a 2011 NOX emissions update.
Canopy Density Mapping on Ultracam-D Aerial Imagery in Zagros Woodlands, Iran
NASA Astrophysics Data System (ADS)
Erfanifard, Y.; Khodaee, Z.
2013-09-01
Canopy density maps express different characteristics of forest stands, especially in woodlands. Obtaining such maps by field measurements is so expensive and time-consuming. It seems necessary to find suitable techniques to produce these maps to be used in sustainable management of woodland ecosystems. In this research, a robust procedure was suggested to obtain these maps by very high spatial resolution aerial imagery. It was aimed to produce canopy density maps by UltraCam-D aerial imagery, newly taken in Zagros woodlands by Iran National Geographic Organization (NGO), in this study. A 30 ha plot of Persian oak (Quercus persica) coppice trees was selected in Zagros woodlands, Iran. The very high spatial resolution aerial imagery of the plot purchased from NGO, was classified by kNN technique and the tree crowns were extracted precisely. The canopy density was determined in each cell of different meshes with different sizes overlaid on the study area map. The accuracy of the final maps was investigated by the ground truth obtained by complete field measurements. The results showed that the proposed method of obtaining canopy density maps was efficient enough in the study area. The final canopy density map obtained by a mesh with 30 Ar (3000 m2) cell size had 80% overall accuracy and 0.61 KHAT coefficient of agreement which shows a great agreement with the observed samples. This method can also be tested in other case studies to reveal its capability in canopy density map production in woodlands.
LARGE-SCALE CO MAPS OF THE LUPUS MOLECULAR CLOUD COMPLEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tothill, N. F. H.; Loehr, A.; Stark, A. A.
2009-11-01
Fully sampled degree-scale maps of the {sup 13}CO 2-1 and CO 4-3 transitions toward three members of the Lupus Molecular Cloud Complex-Lupus I, III, and IV-trace the column density and temperature of the molecular gas. Comparison with IR extinction maps from the c2d project requires most of the gas to have a temperature of 8-10 K. Estimates of the cloud mass from {sup 13}CO emission are roughly consistent with most previous estimates, while the line widths are higher, around 2 km s{sup -1}. CO 4-3 emission is found throughout Lupus I, indicating widespread dense gas, and toward Lupus III andmore » IV. Enhanced line widths at the NW end and along the edge of the B 228 ridge in Lupus I, and a coherent velocity gradient across the ridge, are consistent with interaction between the molecular cloud and an expanding H I shell from the Upper-Scorpius subgroup of the Sco-Cen OB Association. Lupus III is dominated by the effects of two HAe/Be stars, and shows no sign of external influence. Slightly warmer gas around the core of Lupus IV and a low line width suggest heating by the Upper-Centaurus-Lupus subgroup of Sco-Cen, without the effects of an H I shell.« less
A RELATION BETWEEN THE WARM NEUTRAL AND IONIZED MEDIA OBSERVED IN THE CANADIAN GALACTIC PLANE SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, T.; Kothes, R.; Brown, J. C., E-mail: Tyler.Foster@nrc-cnrc.gc.ca
2013-08-10
We report on a comparison between 21 cm rotation measure (RM) and the optically thin atomic hydrogen column density (N{sub H{sub I}}({tau} {yields} 0)) measured toward unresolved extragalactic sources in the Galactic plane of the northern sky. H I column densities integrated to the Galactic edge are measured immediately surrounding each of nearly 2000 sources in 1 arcmin 21 cm line data, and are compared to RMs observed from polarized emission of each source. RM data are binned in column density bins 4 Multiplication-Sign 10{sup 20} cm{sup -2} wide, and one observes a strong relationship between the number of hydrogenmore » atoms in a 1 cm{sup 2} column through the plane and the mean RM along the same line of sight and path length. The relationship is linear over one order of magnitude (from 0.8 to 14 Multiplication-Sign 10{sup 21} atoms cm{sup -2}) of column densities, with a constant RM/N{sub H{sub I}}{approx} -23.2 {+-} 2.3 rad m{sup -2}/10{sup 21} atoms cm{sup -2}, and a positive RM of 45.0 {+-} 13.8 rad m{sup -2} in the presence of no atomic hydrogen. This slope is used to calculate a mean volume-averaged magnetic field in the second quadrant of (B{sub Parallel-To }) {approx}1.0 {+-} 0.1 {mu}G directed away from the Sun, assuming an ionization fraction of 8% (consistent with the warm-neutral medium; WNM). The remarkable consistency between this field and (B) = 1.2 {mu}G found with the same RM sources and a Galactic model of dispersion measures (DMs) suggests that electrons in the partially ionized WNM are mainly responsible for pulsar DMs, and thus the partially ionized WNM is the dominant form of the magneto-ionic interstellar medium.« less
A climatology of total ozone mapping spectrometer data using rotated principal component analysis
NASA Astrophysics Data System (ADS)
Eder, Brian K.; Leduc, Sharon K.; Sickles, Joseph E.
1999-02-01
The spatial and temporal variability of total column ozone (Ω) obtained from the total ozone mapping spectrometer (TOMS version 7.0) during the period 1980-1992 was examined through the use of a multivariate statistical technique called rotated principal component analysis. Utilization of Kaiser's varimax orthogonal rotation led to the identification of 14, mostly contiguous subregions that together accounted for more than 70% of the total Ω variance. Each subregion displayed statistically unique Ω characteristics that were further examined through time series and spectral density analyses, revealing significant periodicities on semiannual, annual, quasi-biennial, and longer term time frames. This analysis facilitated identification of the probable mechanisms responsible for the variability of Ω within the 14 homogeneous subregions. The mechanisms were either dynamical in nature (i.e., advection associated with baroclinic waves, the quasi-biennial oscillation, or El Niño-Southern Oscillation) or photochemical in nature (i.e., production of odd oxygen (O or O3) associated with the annual progression of the Sun). The analysis has also revealed that the influence of a data retrieval artifact, found in equatorial latitudes of version 6.0 of the TOMS data, has been reduced in version 7.0.
"Almost Darks": HI Mapping and Optical Analysis
NASA Astrophysics Data System (ADS)
Singer, Quinton; Ball, Catie; Cannon, John M.; Leisman, Luke; Haynes, Martha P.; Adams, Elizabeth A.; Bernal Neira, David; Giovanelli, Riccardo; Hallenbeck, Gregory L.; Janesh, William; Janowiecki, Steven; Jozsa, Gyula; Rhode, Katherine L.; Salzer, John Joseph
2017-01-01
We present VLA HI imaging of the "Almost Dark" galaxies AGC 227982, AGC 268363, and AGC 219533. Selected from the ALFALFA survey, "Almost Dark" galaxies have significant HI reservoirs but lack an obvious stellar counterpart in survey-depth ground-based optical imaging. These three HI-rich objects harbor some of the most extreme levels of suppressed star formation amongst the isolated sources in the ALFALFA catalog. Our new multi-configuration, high angular (~20") and spectral (1.7 km/s) resolution HI observations produce spatially resolved column density and velocity distribution moment maps. We compare these images to Sloan Digitized Sky Survey (SDSS) optical images. By localizing the HI gas, we identify previously unknown optical components (offset from the ALFALFA pointing center) for AGC 227982 and AGC 268363, and confirm the association with a very low surface brightness stellar counterpart for AGC 219533. Baryonic masses are derived from VLA flux integral values and ALFALFA distance estimates, giving answers consistent with those derived from ALFALFA fluxes. All three sources appear to have fairly regular HI morphologies and show evidence of ordered rotation.Support for this work was provided by NSF grant 1211683 to JMC at Macalester College.
Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) data products user's guide
NASA Technical Reports Server (NTRS)
Mcpeters, Richard D.; Krueger, Arlin J.; Bhartia, P. K.; Herman, Jay R.; Oaks, Arnold; Ahmad, Ziuddin; Cebula, Richard P.; Schlesinger, Barry M.; Swissler, Tom; Taylor, Steven L.
1993-01-01
Two tape products from the Total Ozone Mapping Spectrometer (TOMS) aboard the Nimbus-7 have been archived at the National Space Science Data Center. The instrument measures backscattered Earth radiance and incoming solar irradiance; their ratio -- the albedo -- is used in ozone retrievals. In-flight measurements are used to monitor changes in the instrument sensitivity. The algorithm to retrieve total column ozone compares the observed ratios of albedos at pairs of wavelengths with pair ratios calculated for different ozone values, solar zenith angles, and optical paths. The initial error in the absolute scale for TOMS total ozone is 3 percent, the one standard-deviation random error is 2 percent, and the drift is +/- 1.5 percent over 14.5 years. The High Density TOMS (HDTOMS) tape contains the measured albedos, the derived total ozone amount, reflectivity, and cloud-height information for each scan position. It also contains an index of SO2 contamination for each position. The Gridded TOMS (GRIDTOMS) tape contains daily total ozone and reflectivity in roughly equal area grids (110 km in latitude by about 100-150 km in longitude). Detailed descriptions of the tape structure and record formats are provided.
NASA Technical Reports Server (NTRS)
Hoch, Edward L.; Hallinan, Thomas J.; Stenbaek-Nielsen, Hans C.
1994-01-01
Intensity-calibrated color video recordings of three barium-shaped charge injections in the ionopshere were used to determine the initial ionization, the column density corresponding to unity optical depth, and the yield of vaporized barium in the fast jet. It was found that the initial ionization at the burst was less than 1% and that 0% burst ionization was consistent with the observations. Owing to the Doppler shift, the column density for optical thickness in the neutral barium varies somewhat according to the velocity distribution. For the cases examined here, the column density was 2-5 x 10(exp 10) atoms/sq cm. This value, which occurred 12 to 15 s after release, should be approximately valid for most shaped charge experiments. The yield was near 30% (15% in the fast jet) for two of the releases and was somewhat lower in the third, which also had a lower peak velocity. This study also demonstrated the applicability of the computer simulation code developed for chemical releases by Stenbaek-Nielsen and provided experimental verification of the Doppler-corrected emission rates calculated b Stenbaek-Nielsen (1989).
Coordinated Optimization of Visual Cortical Maps (I) Symmetry-based Analysis
Reichl, Lars; Heide, Dominik; Löwel, Siegrid; Crowley, Justin C.; Kaschube, Matthias; Wolf, Fred
2012-01-01
In the primary visual cortex of primates and carnivores, functional architecture can be characterized by maps of various stimulus features such as orientation preference (OP), ocular dominance (OD), and spatial frequency. It is a long-standing question in theoretical neuroscience whether the observed maps should be interpreted as optima of a specific energy functional that summarizes the design principles of cortical functional architecture. A rigorous evaluation of this optimization hypothesis is particularly demanded by recent evidence that the functional architecture of orientation columns precisely follows species invariant quantitative laws. Because it would be desirable to infer the form of such an optimization principle from the biological data, the optimization approach to explain cortical functional architecture raises the following questions: i) What are the genuine ground states of candidate energy functionals and how can they be calculated with precision and rigor? ii) How do differences in candidate optimization principles impact on the predicted map structure and conversely what can be learned about a hypothetical underlying optimization principle from observations on map structure? iii) Is there a way to analyze the coordinated organization of cortical maps predicted by optimization principles in general? To answer these questions we developed a general dynamical systems approach to the combined optimization of visual cortical maps of OP and another scalar feature such as OD or spatial frequency preference. From basic symmetry assumptions we obtain a comprehensive phenomenological classification of possible inter-map coupling energies and examine representative examples. We show that each individual coupling energy leads to a different class of OP solutions with different correlations among the maps such that inferences about the optimization principle from map layout appear viable. We systematically assess whether quantitative laws resembling experimental observations can result from the coordinated optimization of orientation columns with other feature maps. PMID:23144599
Comparison of an Atomic Model and Its Cryo-EM Image at the Central Axis of a Helix
He, Jing; Zeil, Stephanie; Hallak, Hussam; McKaig, Kele; Kovacs, Julio; Wriggers, Willy
2016-01-01
Cryo-electron microscopy (cryo-EM) is an important biophysical technique that produces three-dimensional (3D) density maps at different resolutions. Because more and more models are being produced from cryo-EM density maps, validation of the models is becoming important. We propose a method for measuring local agreement between a model and the density map using the central axis of the helix. This method was tested using 19 helices from cryo-EM density maps between 5.5 Å and 7.2 Å resolution and 94 helices from simulated density maps. This method distinguished most of the well-fitting helices, although challenges exist for shorter helices. PMID:27280059
Density-driven transport of gas phase chemicals in unsaturated soils
NASA Astrophysics Data System (ADS)
Fen, Chiu-Shia; Sun, Yong-tai; Cheng, Yuen; Chen, Yuanchin; Yang, Whaiwan; Pan, Changtai
2018-01-01
Variations of gas phase density are responsible for advective and diffusive transports of organic vapors in unsaturated soils. Laboratory experiments were conducted to explore dense gas transport (sulfur hexafluoride, SF6) from different source densities through a nitrogen gas-dry soil column. Gas pressures and SF6 densities at transient state were measured along the soil column for three transport configurations (horizontal, vertically upward and vertically downward transport). These measurements and others reported in the literature were compared with simulation results obtained from two models based on different diffusion approaches: the dusty gas model (DGM) equations and a Fickian-type molar fraction-based diffusion expression. The results show that the DGM and Fickian-based models predicted similar dense gas density profiles which matched the measured data well for horizontal transport of dense gas at low to high source densities, despite the pressure variations predicted in the soil column were opposite to the measurements. The pressure evolutions predicted by both models were in trend similar to the measured ones for vertical transport of dense gas. However, differences between the dense gas densities predicted by the DGM and Fickian-based models were discernible for vertically upward transport of dense gas even at low source densities, as the DGM-based predictions matched the measured data better than the Fickian results did. For vertically downward transport, the dense gas densities predicted by both models were not greatly different from our experimental measurements, but substantially greater than the observations obtained from the literature, especially at high source densities. Further research will be necessary for exploring factors affecting downward transport of dense gas in soil columns. Use of the measured data to compute flux components of SF6 showed that the magnitudes of diffusive flux component based on the Fickian-type diffusion expressions in terms of molar concentration, molar fraction and mass density fraction gradient were almost the same. However, they were greater than the result computed with the mass fraction gradient for > 24% and the DGM-based result for more than one time. As a consequence, the DGM-based total flux of SF6 was in magnitude greatly less than the Fickian result not only for horizontal transport (diffusion-dominating) but also for vertical transport (advection and diffusion) of dense gas. Particularly, the Fickian-based total flux was more than two times in magnitude as much as the DGM result for vertically upward transport of dense gas.
Bieri, Stefan; Marriott, Philip J
2006-12-01
A method producing simultaneously three retention indexes for compounds has been developed for comprehensive two-dimensional gas chromatography by using a dual secondary column approach (GC x 2GC). For this purpose, the primary flow of the first dimension column was equally diverted into two secondary microbore columns of identical geometry by means of a three-way flow splitter positioned after the longitudinally modulated cryogenic system. This configuration produced a pair of comprehensive two-dimensional chromatograms and generated retention data on three different stationary phases in a single run. First dimension retention indexes were determined on a polar SolGel-Wax column under linear programmed-temperature conditions according to the van den Dool approach using primary alcohol homologues as the reference scale. Calculation of pseudoisothermal retention indexes in both second dimensions was performed on low-polarity 5% phenyl equivalent polysilphenylene/siloxane (BPX5) and 14% cyanopropylphenyl/86% dimethylpolysiloxane (BP10) columns. To construct a retention correlation map in the second dimension separation space upon which KovAts indexes can be derived, two methods exploiting "isovolatility" relationships of alkanes were developed. The first involved 15 sequential headspace samplings of selected n-alkanes by solid-phase microextraction (SPME), with each sampling followed by their injection into the GC at predetermined times during the chromatographic run. The second method extended the second dimension retention map and consisted of repetitive introduction of SPME-sampled alkane mixtures at various isothermal conditions incremented over the temperature program range. Calculated second dimension retention indexes were compared with experimental values obtained in conventional one-dimensional GC. A case study mixture including 24 suspected allergens (i.e., fragrance ingredients) was used to demonstrate the feasibility and potential of retention index information in comprehensive 2D-GC.
A search for thermospheric composition perturbations due to vertical winds
NASA Astrophysics Data System (ADS)
Krynicki, Matthew P.
The thermosphere is generally in hydrostatic equilibrium, with winds blowing horizontally along stratified constant-pressure surfaces, driven by the dayside-to-nightside pressure gradient. A marked change in this paradigm resulted after Spencer et al. [1976] reported vertical wind measurements of 80 m·s-1 from analyses of AE-C satellite data. It is now established that the thermosphere routinely supports large-magnitude (˜30-150 m·s-1) vertical winds at auroral latitudes. These vertical winds represent significant departure from hydrostatic and diffusive equilibrium, altering locally---and potentially globally---the thermosphere's and ionosphere's composition, chemistry, thermodynamics and energy budget. Because of their localized nature, large-magnitude vertical wind effects are not entirely known. This thesis presents ground-based Fabry-Perot Spectrometer OI(630.0)-nm observations of upper-thermospheric vertical winds obtained at Inuvik, NT, Canada and Poker Flat, AK. The wind measurements are compared with vertical displacement estimates at ˜104 km2 horizontal spatial scales determined from a new modification to the electron transport code of Lummerzheim and Lilensten [1994] as applied to FUV-wavelength observations by POLAR spacecraft's Ultraviolet Imager [Torr et al. , 1995]. The modification, referred to as the column shift, simulates vertical wind effects such as neutral transport and disruption of diffusive equilibrium by vertically displacing the Hedin [1991] MSIS-90 [O2]/[N2] and [O]/([N2]+[O2]) mixing ratios and subsequently redistributing the O, O2, and N 2 densities used in the transport code. Column shift estimates are inferred from comparisons of UVI OI(135.6)-nm auroral observations to their corresponding modeled emission. The modeled OI(135.6)-nm brightness is determined from the modeled thermospheric response to electron precipitation and estimations of the energy flux and characteristic energy of the precipitation, which are inferred from UVI-observed Lyman-Birge-Hopfield N2 emissions in two wavelength ranges. Two-dimensional column shift maps identify the spatial morphology of thermospheric composition perturbations associated with auroral forms relative to the model thermosphere. Case-study examples and statistical analyses of the column shift data sets indicate that column shifts can be attributed to vertical winds. Unanticipated limitations associated with modeling of the OI(135.6)-nm auroral emission make absolute column shift estimates indeterminate. Insufficient knowledge of thermospheric air-parcel time histories hinders interpretations of point-to-point time series comparisons between column shifts and vertical winds.
The Nature of Turbulence in the LITTLE THINGS Dwarf Irregular Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maier, Erin; Chien, Li-Hsin; Hollyday, Gigja
We present probability density functions and higher order (skewness and kurtosis) analyses of the galaxy-wide and spatially resolved distributions of H i column density in the LITTLE THINGS sample of dwarf irregular galaxies. This analysis follows that of Burkhart et al. for the Small Magellanic Cloud (SMC). About 60% of our sample have galaxy-wide values of kurtosis that are similar to that found for the SMC, with a range up to much higher values, and kurtosis increases with integrated star formation rate. Kurtosis and skewness were calculated for radial annuli and for a grid of 32 pixel × 32 pixel kernels acrossmore » each galaxy. For most galaxies, kurtosis correlates with skewness. For about half of the galaxies, there is a trend of increasing kurtosis with radius. The range of kurtosis and skewness values is modeled by small variations in the Mach number close to the sonic limit and by conversion of H i to molecules at high column density. The maximum H i column densities decrease with increasing radius in a way that suggests molecules are forming in the weak-field limit, where H{sub 2} formation balances photodissociation in optically thin gas at the edges of clouds.« less
Gaussian model for emission rate measurement of heated plumes using hyperspectral data
NASA Astrophysics Data System (ADS)
Grauer, Samuel J.; Conrad, Bradley M.; Miguel, Rodrigo B.; Daun, Kyle J.
2018-02-01
This paper presents a novel model for measuring the emission rate of a heated gas plume using hyperspectral data from an FTIR imaging spectrometer. The radiative transfer equation (RTE) is used to relate the spectral intensity of a pixel to presumed Gaussian distributions of volume fraction and temperature within the plume, along a line-of-sight that corresponds to the pixel, whereas previous techniques exclusively presume uniform distributions for these parameters. Estimates of volume fraction and temperature are converted to a column density by integrating the local molecular density along each path. Image correlation velocimetry is then employed on raw spectral intensity images to estimate the volume-weighted normal velocity at each pixel. Finally, integrating the product of velocity and column density along a control surface yields an estimate of the instantaneous emission rate. For validation, emission rate estimates were derived from synthetic hyperspectral images of a heated methane plume, generated using data from a large-eddy simulation. Calculating the RTE with Gaussian distributions of volume fraction and temperature, instead of uniform distributions, improved the accuracy of column density measurement by 14%. Moreover, the mean methane emission rate measured using our approach was within 4% of the ground truth. These results support the use of Gaussian distributions of thermodynamic properties in calculation of the RTE for optical gas diagnostics.
Ibrahim, Taleb H; Sabri, Muhammad A; Khamis, Mustafa I
2018-05-10
Multiwalled carbon nanotubes and their magnetite derivatives were employed as adsorbents for emulsified oil removal from produced water. The experimental parameters for maximum emulsified oil removal efficiency and effective regeneration of these adsorbents were determined. The optimum parameters in terms of adsorbent dosage, contact time, salinity, pH and temperature were 3.0 g/L, 20.0 min, 0 ppm, 7.0 and 25°C for both adsorbents. Due to their low density, multiwalledcarbon nanotubes could not be successfully employed in packed bed columns. The magnetite derivative has a larger density and hence, for the removal of emulsified oil from produced water packed bed column studies were performed utilizing multiwalled carbon magnetite nanotubes. The packed bed column efficiency and behaviour were evaluated using Thomas, Clark, Yan et al. and Bohart and Adams models. The Yan model was found to best describe the column experimental data. The adsorbents were regenerated using n-hexane and reused several times for oil removal from produced water without any significant decrease in their initial adsorption capacities.
Vasireddi, Anil K; Vazquez, Alberto L; Whitney, David E; Fukuda, Mitsuhiro; Kim, Seong-Gi
2016-09-07
Resting-state functional magnetic resonance imaging has been increasingly used for examining connectivity across brain regions. The spatial scale by which hemodynamic imaging can resolve functional connections at rest remains unknown. To examine this issue, deoxyhemoglobin-weighted intrinsic optical imaging data were acquired from the visual cortex of lightly anesthetized ferrets. The neural activity of orientation domains, which span a distance of 0.7-0.8 mm, has been shown to be correlated during evoked activity and at rest. We performed separate analyses to assess the degree to which the spatial and temporal characteristics of spontaneous hemodynamic signals depend on the known functional organization of orientation columns. As a control, artificial orientation column maps were generated. Spatially, resting hemodynamic patterns showed a higher spatial resemblance to iso-orientation maps than artificially generated maps. Temporally, a correlation analysis was used to establish whether iso-orientation domains are more correlated than orthogonal orientation domains. After accounting for a significant decrease in correlation as a function of distance, a small but significant temporal correlation between iso-orientation domains was found, which decreased with increasing difference in orientation preference. This dependence was abolished when using artificially synthetized orientation maps. Finally, the temporal correlation coefficient as a function of orientation difference at rest showed a correspondence with that calculated during visual stimulation suggesting that the strength of resting connectivity is related to the strength of the visual stimulation response. Our results suggest that temporal coherence of hemodynamic signals measured by optical imaging of intrinsic signals exists at a submillimeter columnar scale in resting state.
The structure of the ISM in the Zone of Avoidance by high-resolution multi-wavelength observations
NASA Astrophysics Data System (ADS)
Tóth, L. V.; Doi, Y.; Pinter, S.; Kovács, T.; Zahorecz, S.; Bagoly, Z.; Balázs, L. G.; Horvath, I.; Racz, I. I.; Onishi, T.
2018-05-01
We estimate the column density of the Galactic foreground interstellar medium (GFISM) in the direction of extragalactic sources. All-sky AKARI FIS infrared sky survey data might be used to trace the GFISM with a resolution of 2 arcminutes. The AKARI based GFISM hydrogen column density estimates are compared with similar quantities based on HI 21cm measurements of various resolution and of Planck results. High spatial resolution observations of the GFISM may be important recalculating the physical parameters of gamma-ray burst (GRB) host galaxies using the updated foreground parameters.
Detection of a new carbon-chain molecule, CCO
NASA Technical Reports Server (NTRS)
Ohishi, Masatoshi; Ishikawa, Shin-Ichi; Yamada, Chikashi; Kanamori, Hideto; Irvine, William M.; Brown, Ronald D.; Godfrey, Peter D.; Kaifu, Norio; Suzuki, Hiroko
1991-01-01
A new carbon-chain molecule, CCO 3Sigma(-), has been detected in the cold dark molecular cloud TMC-1. The excitation temperature and the column density of CCO are, respectively, about 6 K and about 6 x 10 to the 11th/sq cm. This column density corresponds to a fractional abundance relative to H2 of about 6 x 10 to the -11th. This value is two orders of magnitude less than the abundance of the related carbon-chain molecule CCS, and about half that of C3O. The formation mechanism for CCO is discussed.
CS band intensity and column densities and production rates of 15 comets
NASA Astrophysics Data System (ADS)
Sanzovo, G. C.; Singh, P. D.; Huebner, W. F.
1993-09-01
An accurate fluorescence efficiency of the CS(0,0) band and the lifetime of CS have been calculated at 1 AU heliocentric distance. Model-independent CS column densities and production rates are determined from derived fluorescent emission rates (g-factors) and lifetimes for 15 comets: Austin (1982g), Borrelly (1980i), Bradfield (1979X), Crommelin (1983n), Encke (1980), Encke (1984), Giacobini-Zinner (1984e), Halley (1982i), IRAS-Araki-Alcock (1983d), Meier (1980q), Panther (1980u), Stephan-Oterma (1980g), Tuttle (1980h), West (1975n), and Wilson (1986l).
CS band intensity and column densities and production rates of 15 comets
NASA Technical Reports Server (NTRS)
Sanzovo, G. C.; Singh, P. D.; Huebner, W. F.
1993-01-01
An accurate fluorescence efficiency of the CS(0,0) band and the lifetime of CS have been calculated at 1 AU heliocentric distance. Model-independent CS column densities and production rates are determined from derived fluorescent emission rates (g-factors) and lifetimes for 15 comets: Austin (1982g), Borrelly (1980i), Bradfield (1979X), Crommelin (1983n), Encke (1980), Encke (1984), Giacobini-Zinner (1984e), Halley (1982i), IRAS-Araki-Alcock (1983d), Meier (1980q), Panther (1980u), Stephan-Oterma (1980g), Tuttle (1980h), West (1975n), and Wilson (1986l).
NASA Technical Reports Server (NTRS)
Solomon, P. M.; De Zafra, R.; Parrish, A.; Barrett, J. W.
1984-01-01
Ground-based observations of a mm-wave spectral line at 278 GHz have yielded stratospheric chlorine monoxide column density diurnal variation records which indicate that the mixing ratio and column density of this compound above 30 km are about 20 percent lower than model predictions based on 2.1 parts/billion of total stratospheric chlorine. The observed day-to-night variation is, however, in good agreement with recent model predictions, both confirming the existence of a nighttime reservoir for chlorine and verifying the predicted general rate of its storage and retrieval.
Directed self-assembly into low-density colloidal liquid crystal phases
NASA Astrophysics Data System (ADS)
Gao, Yongxiang; Romano, Flavio; Dullens, Roel P. A.; Doye, Jonathan K.; Aarts, Dirk G. A. L.
2018-01-01
Alignment of anisometric particles into liquid crystals (LCs) often results from an entropic competition between their rotational and translational degrees of freedom at dense packings. Here we show that by selectively functionalizing the heads of colloidal rods with magnetic nanoparticles this tendency can be broken to direct the particles into novel, low-density LC phases. Under an external magnetic field, the magnetic heads line up in columns whereas the nonmagnetic tails point out randomly in a plane perpendicular to the columns, forming bottle-brush-like objects; laterally, the bottle brushes are entropically stabilized against coalescence. Experiments and simulations show that upon increasing the particle density the system goes from a dilute gas to a dense two-dimensional liquid of bottle brushes with a density well below the zero-field nematic phase. Our findings offer a strategy for self-assembly into three-dimensional open phases that may find applications in switchable photonics, filtration, and light-weight materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, Kaye S.; Zhu, Wenyi; Barnett, Mark O.
2013-05-13
Experimental approach Column experiments were devised to investigate the role of changing fluid composition on mobility of uranium through a sequence of geologic media. Fluids and media were chosen to be relevant to the ground water plume emanating from the former S-3 ponds at the Oak Ridge Integrated Field Research Challenge (ORIFC) site. Synthetic ground waters were pumped upwards at 0.05 mL/minute for 21 days through layers of quartz sand alternating with layers of uncontaminated soil, quartz sand mixed with illite, quartz sand coated with iron oxides, and another soil layer. Increases in pH or concentration of phosphate, bicarbonate, ormore » acetate were imposed on the influent solutions after each 7 pore volumes while uranium (as uranyl) remained constant at 0.1mM. A control column maintained the original synthetic groundwater composition with 0.1mM U. Pore water solutions were extracted to assess U retention and release in relation to the advective ligand or pH gradients. Following the column experiments, subsamples from each layer were characterized using microbeam X-ray absorption spectroscopy (XANES) in conjunction with X-ray fluorescence mapping and compared to sediment core samples from the ORIFC, at SSRL Beam Line 2-3. Results U retention of 55-67mg occurred in phosphate >pH >control >acetate >carbonate columns. The mass of U retained in the first-encountered quartz layer in all columns was highest and increased throughout the experiment. The rate of increase in acetate- and bicarbonate-bearing columns declined after ligand concentrations were raised. U also accumulated in the first soil layer; the pH-varied column retained most, followed by the increasing-bicarbonate column. The mass of U retained in the upper layers was far lower. Speciation of U, interpreted from microbeam XANES spectra and XRF maps, varied within and among the columns. Evidence of minor reduction to U(IV) was observed in the first-encountered quartz layer in the phosphate, bicarbonate, and pH columns while only U(VI) was observed in the control and acetate columns. In the soil layer, the acetate and bicarbonate columns both indicate minor reduction to U(IV), but U(VI) predominated in all columns. In the ORIFC soils, U was consistently present as U(VI); sorption appears to be the main mechanism of association for U present with Fe and/or Mn, while U occurring with P appears in discrete particles consistent with a U mineral phase. U in soil locations with no other elemental associations shown by XRF are likely uranium oxide phases.« less
A Brief Update on the CMZoom Survey
NASA Astrophysics Data System (ADS)
Battersby, C.; Keto, E.; Zhang, Q.; Longmore, S. N.; Kruijssen, J. M. D.; Pillai, T.; Kauffmann, J.; Walker, D.; Lu, X.; Ginsburg, A.; Bally, J.; Mills, E. A. C.; Henshaw, J.; Immer, K.; Patel, N.; Tolls, V.; Walsh, A.; Johnston, K.; Ho, L. C.
2017-01-01
The inner few hundred parsecs of the Milky Way, the Central Molecular Zone (CMZ), is our closest laboratory for understanding star formation in the extreme environments (hot, dense, turbulent gas) that once dominated the universe. We present an update on the first large-area survey to expose the sites of star formation across the CMZ at high-resolution in submillimeter wavelengths: the CMZoom survey with the Submillimeter Array (SMA). We identify the locations of dense cores and search for signatures of embedded star formation. CMZoom is a three-year survey in its final year and is mapping out the highest column density regions of the CMZ in dust continuum and a variety of spectral lines around 1.3 mm. CMZoom combines SMA compact and subcompact configurations with single-dish data from BGPS and the APEX telescope, achieving an angular resolution of about 4'' (0.2 pc) and good image fidelity up to large spatial scales.
CMZoom: The Submillimeter Array Survey of our Galaxy’s Central Molecular Zone
NASA Astrophysics Data System (ADS)
Battersby, Cara; CMZoom Team
2018-01-01
The inner few hundred parsecs of the Milky Way, the Central Molecular Zone (CMZ), is our closest laboratory for understanding star formation in the extreme environments (hot, dense, turbulent gas) that once dominated the universe. We present an update on the first large-area survey to expose the sites of star formation across the CMZ at high-resolution in submillimeter wavelengths: the CMZoom survey with the Submillimeter Array (SMA). We identify the locations of dense cores and search for signatures of embedded star formation. CMZoom is a three-year survey, completed this year, and has mapped out the highest column density regions of the CMZ in dust continuum and a variety of spectral lines around 1.3 mm. CMZoom combines SMA compact and subcompact configurations with single-dish data from BGPS and the APEX telescope, achieving an angular resolution of about 4” (0.2 pc) and good image fidelity up to large spatial scales.
NASA Astrophysics Data System (ADS)
Veltchev, Todor; Donkov, Sava; Stanchev, Orlin
2017-07-01
We present a method to derive the density scaling relation
NASA Technical Reports Server (NTRS)
Kniffen, D. A.; Fichtel, C. E.; Thompson, D. J.
1976-01-01
Theoretical considerations and analysis of the results of gamma ray astronomy suggest that the galactic cosmic rays are dynamically coupled to the interstellar matter through the magnetic fields, and hence the cosmic ray density should be enhanced where the matter density is greatest on the scale of galactic arms. This concept has been explored in a galactic model using recent 21 cm radio observations of the neutral hydrogen and 2.6 mm observations of carbon monoxide, which is considered to be a tracer of molecular hydrogen. The model assumes: (1) cosmic rays are galactic and not universal; (2) on the scale of galactic arms, the cosmic ray column (surface) density is proportional to the total interstellar gas column density; (3) the cosmic ray scale height is significantly larger than the scale height of the matter; and (4) ours is a spiral galaxy characterized by an arm to interarm density ratio of about 3:1.
A quantitative analysis of microplastic pollution along the south-eastern coastline of South Africa.
Nel, H A; Froneman, P W
2015-12-15
The extent of microplastic pollution (<5mm) in the southern hemisphere, particularly southern Africa, is largely unknown. This study aimed to evaluate microplastic pollution along the south-eastern coastline of South Africa, looking at whether bays are characterised by higher microplastic densities than open stretches of coastline in both beach sediment and surf-zone water. Microplastic (mean ± standard error) densities in the beach sediment ranged between 688.9 ± 348.2 and 3308 ± 1449 particles · m(-2), while those in the water column varied between 257.9 ± 53.36 and 1215 ± 276.7 particles · m(-3). With few exceptions there were no significant spatial patterns in either the sediment or water column microplastic densities; with little differences in density between bays and the open coast (P>0.05). These data indicate that the presence of microplastics were not associated with proximity to land-based sources or population density, but rather is governed by water circulation. Copyright © 2015 Elsevier Ltd. All rights reserved.
The H I-to-H2 Transition in a Turbulent Medium
NASA Astrophysics Data System (ADS)
Bialy, Shmuel; Burkhart, Blakesley; Sternberg, Amiel
2017-07-01
We study the effect of density fluctuations induced by turbulence on the H I/H2 structure in photodissociation regions (PDRs) both analytically and numerically. We perform magnetohydrodynamic numerical simulations for both subsonic and supersonic turbulent gas and chemical H I/H2 balance calculations. We derive atomic-to-molecular density profiles and the H I column density probability density function (PDF) assuming chemical equilibrium. We find that, while the H I/H2 density profiles are strongly perturbed in turbulent gas, the mean H I column density is well approximated by the uniform-density analytic formula of Sternberg et al. The PDF width depends on (a) the radiation intensity-to-mean density ratio, (b) the sonic Mach number, and (c) the turbulence decorrelation scale, or driving scale. We derive an analytic model for the H I PDF and demonstrate how our model, combined with 21 cm observations, can be used to constrain the Mach number and driving scale of turbulent gas. As an example, we apply our model to observations of H I in the Perseus molecular cloud. We show that a narrow observed H I PDF may imply small-scale decorrelation, pointing to the potential importance of subcloud-scale turbulence driving.
Ren, Jiangtao; Beckner, Matthew A; Lynch, Kyle B; Chen, Huang; Zhu, Zaifang; Yang, Yu; Chen, Apeng; Qiao, Zhenzhen; Liu, Shaorong; Lu, Joann J
2018-05-15
A comprehensive two-dimensional liquid chromatography (LCxLC) system consisting of twelve columns in the second dimension was developed for comprehensive analysis of intact proteins in complex biological samples. The system consisted of an ion-exchange column in the first dimension and the twelve reverse-phase columns in the second dimension; all thirteen columns were monolithic and prepared inside 250 µm i.d. capillaries. These columns were assembled together through the use of three valves and an innovative configuration. The effluent from the first dimension was continuously fractionated and sequentially transferred into the twelve second-dimension columns, while the second-dimension separations were carried out in a series of batches (six columns per batch). This LCxLC system was tested first using standard proteins followed by real-world samples from E. coli. Baseline separation was observed for eleven standard proteins and hundreds of peaks were observed for the real-world sample analysis. Two-dimensional liquid chromatography, often considered as an effective tool for mapping proteins, is seen as laborious and time-consuming when configured offline. Our online LCxLC system with increased second-dimension columns promises to provide a solution to overcome these hindrances. Copyright © 2018 Elsevier B.V. All rights reserved.
Correlation of gas dynamics and dust in the evolved filament G82.65-02.00
NASA Astrophysics Data System (ADS)
Saajasto, M.; Juvela, M.; Dobashi, K.; Shimoikura, T.; Ristorcelli, I.; Montillaud, J.; Marshall, D. J.; Malinen, J.; Pelkonen, V.-M.; Fehér, O.; Rivera-Ingraham, A.; Toth, L. V.; Montier, L.; Bernard, J.-Ph.; Onishi, T.
2017-12-01
Context. The combination of line and continuum observations can provide vital insight into the formation and fragmentation of filaments and the initial conditions for star formation. We have carried out line observations to map the kinematics of an evolved, actively star forming filament G82.65-2.00. The filament was first identified from the Planck data as a region of particularly cold dust emission and was mapped at 100-500 μm as a part of the Herschel key program Galactic Cold Cores. The Herschel observations cover the central part of the filament, corresponding to a filament length of 12 pc at the assumed distance of 620 pc. Aims: CO observations show that the filament has an intriguing velocity field with several velocity components around the filament. In this paper, we study the velocity structure in detail, to quantify possible mass accretion rate onto the filament, and study the masses of the cold cores located in the filament. Methods: We have carried out line observations of several molecules, including CO isotopologues, HCO+, HCN, and CS with the Osaka 1.85 m telescope and the Nobeyama 45 m telescope. The spectral line data are used to derive velocity and column density information. Results: The observations reveal several velocity components in the field, with strongest line emission concentrated to velocity range [3,5] km s-1. The column density of molecular hydrogen along the filament varies from 1.0 to 2.3 × 1022cm2. We have examined six cold clumps from the central part of the filament. The clumps have masses in the range 10-20M⊙ ( 70 M⊙ in total) and are close to or above the virial mass. Furthermore, the main filament is heavily fragmented and most of the substructures have a mass lower than or close to the virial mass, suggesting that the filament is dispersing as a whole. Position-velocity maps of 12CO and 13CO lines indicate that at least one of the striations is kinematically connected to two of the clumps, potentially indicating mass accretion from the striation onto the main filament. We tentatively estimate the accretion rate to be Ṁ = 2.23 × 10-6M⊙/ yr. Conclusions: Our line observations have revealed two or possibly three velocity components connected to the filament G82.65-2.00 and putative signs of mass accretion onto the filament. The line observations combined with Herschel and WISE maps suggest a possible collision between two cloud components. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.The reduced data cubes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A21
NASA Astrophysics Data System (ADS)
Stoddart, Daniel
2014-05-01
Recent drilling and appraisal on the Southern Utsira High, Norwegian North Sea, has proved several large oil/gas discoveries, including the giant Johan Sverdrup, Edvard Grieg, Draupne, Ragnarrock and Apollo oil fields, making this a prolific petroleum area. The Southern Utsira High contains a variety of hydrocarbon density fluids found at several stratigraphic levels illustrating the compartmentalized nature of accumulations and charge history. The Southern Utsira High has been in a position to receive an oil/gas charge for a considerable period of time, with the basin towards the west most likely generating petroleum from early Eocene (50M Mabp) to its maximum present day burial depth. However, reservoir temperatures on the Southern Utsira High are just above the threshold for biodegradation (80°C). The Southern Utsira High oils are non-biodegraded suggesting that the majority of the oil charged relatively late - ca.3 million years ago to present day. The effects of the glaciation on the filling history of the Southern Utsira High are currently being assessed. It is clear that several erosional surfaces in the Pliocene can be identified, as well as glacial channels and moraine deposits, indicating that significant deposition and erosion occurred in the last five million years. Importantly, the effects of glacial rebound mean that the Southern Utsira High more than likely underwent tilting and possible leakage, not just once, but several times in the last 1 million years. The effects of tilting/leakage of geological areas on oil migration have been recognized by several authors. However, the detailed integration of geological mapping and geochemical evidence has not previously been published. The implications of a detailed assessment of tilting of a ''high' through time are; 1) opening up areas where oil migration is thought to be high risk or impossible; 2) identify possible paleo-oil columns aiding the de-risking of discovery appraisal strategies. The evidence of tilting/leakage of oil accumulations through time can be recognized in several oil fields on the Utsira High. The giant Johan Sverdrup discovery oil columns contain paleo-OWC, residual oil zones/paleo-oil columns, and oil shows considerably deeper than the current OWC or residual oil columns. Lundin has performed detailed mapping of the seabed and water column in the Alvheim/Utsira High areas in order to identify areas of gas leakage and its geological manifestations on the seabed and ultimately resulting in the collection of high quality samples. Results shows that gas leakage is prominent over the Alvheim and Utsira High areas and the implications of this to oil exploration will be discussed. In summary, Lundin's approach to oil migration is to better understand the fluid/gas movement throughout the whole basin through time. The talk will focus on the role of glaciations on the timing of charge from the South Viking Graben, fill-spill directions on the Southern Utsira High, the effects of late tilting/leakage on the charge/re-distribution of oil, and seabed / water column characterization and sampling. All placed in the context of oil exploration.
NASA Astrophysics Data System (ADS)
Obermayer, K.; Blasdel, G. G.; Schulten, K.
1992-05-01
We report a detailed analytical and numerical model study of pattern formation during the development of visual maps, namely, the formation of topographic maps and orientation and ocular dominance columns in the striate cortex. Pattern formation is described by a stimulus-driven Markovian process, the self-organizing feature map. This algorithm generates topologically correct maps between a space of (visual) input signals and an array of formal ``neurons,'' which in our model represents the cortex. We define order parameters that are a function of the set of visual stimuli an animal perceives, and we demonstrate that the formation of orientation and ocular dominance columns is the result of a global instability of the retinoptic projection above a critical value of these order parameters. We characterize the spatial structure of the emerging patterns by power spectra, correlation functions, and Gabor transforms, and we compare model predictions with experimental data obtained from the striate cortex of the macaque monkey with optical imaging. Above the critical value of the order parameters the model predicts a lateral segregation of the striate cortex into (i) binocular regions with linear changes in orientation preference, where iso-orientation slabs run perpendicular to the ocular dominance bands, and (ii) monocular regions with low orientation specificity, which contain the singularities of the orientation map. Some of these predictions have already been verified by experiments.
NASA Astrophysics Data System (ADS)
Ellingboe, Bert; Sirse, Nishant; Moloney, Rachel; McCarthy, John
2015-09-01
Bounded whistler wave, called ``helicon wave,'' is known to produce high-density plasmas and has been exploited as a high density plasma source for many applications, including electric propulsion for spacecraft. In a helicon plasma source, an antenna wrapped around the magnetized plasma column launches a low frequency wave, ωce/2 >ωhelicon >ωce/100, in the plasma which is responsible for maintaining high density plasma. Several antenna designs have been proposed in order to match efficiently the wave modes. In our experiment, helicon wave mode is observed using an m = 0 antenna. A floating B dot probe, compensated to the capacitively coupled E field, is employed to measure axial-wave-field-profiles (z, r, and θ components) in the plasma at multiple radial positions as a function of rf power and pressure. The Bθ component of the rf-field is observed to be unaffected as the wave propagates in the axial direction. Power coupling between the antenna and the plasma column is identified and agrees with the E, H, and wave coupling regimes previously seen in M =1 antenna systems. That is, the Bz component of the rf-field is observed at low plasma density as the Bz component from the antenna penetrates the plasma. The Bz component becomes very small at medium density due to shielding at the centre of the plasma column; however, with increasing density, a sudden ``jump'' occurs in the Bz component above which a standing wave under the antenna with a propagating wave away from the antenna are observed.
Interstellar abundances and depletions inferred from observations of neutral atoms
NASA Technical Reports Server (NTRS)
Snow, T. P.
1984-01-01
Data on neutral atomic species are analyzed for the purpose of inferring relative elemental abundances and depletions in diffuse cloud cores, where it is assumed that densities are enhanced in comparison with mean densities over integrated lines of sight. Column densities of neutral atoms are compared to yield relative column densities of singly ionized species, which are assumed dominant in cloud cores. This paper incorporates a survey of literature data on neutral atomic abundances with the result that no systematic enhancement in the depletions of calcium or iron in cloud cores is found, except for zeta Ophiuchi. This may imply that depletions are not influenced by density, but other data argue against this interpretation. It is concluded either that in general all elements are depleted together in dense regions so that their relative abundances remain constant, or that typical diffuse clouds do not have significant cores, but instead are reasonably homogeneous. The data show a probable correlation between cloud-core depletion and hydrogen-molecular fraction, supporting the assumption that overall depletions are a function of density.
Pinhas, Alexander; Linderman, Rachel; Mo, Shelley; Krawitz, Brian D; Geyman, Lawrence S; Carroll, Joseph; Rosen, Richard B; Chui, Toco Y
2018-01-01
To present a method for age-matched deviation mapping in the assessment of disease-related changes to the radial peripapillary capillaries (RPCs). We reviewed 4.5x4.5mm en face peripapillary OCT-A scans of 133 healthy control eyes (133 subjects, mean 41.5 yrs, range 11-82 yrs) and 4 eyes with distinct retinal pathologies, obtained using spectral-domain optical coherence tomography angiography. Statistical analysis was performed to evaluate the impact of age on RPC perfusion densities. RPC density group mean and standard deviation maps were generated for each decade of life. Deviation maps were created for the diseased eyes based on these maps. Large peripapillary vessel (LPV; noncapillary vessel) perfusion density was also studied for impact of age. Average healthy RPC density was 42.5±1.47%. ANOVA and pairwise Tukey-Kramer tests showed that RPC density in the ≥60yr group was significantly lower compared to RPC density in all younger decades of life (p<0.01). Average healthy LPV density was 21.5±3.07%. Linear regression models indicated that LPV density decreased with age, however ANOVA and pairwise Tukey-Kramer tests did not reach statistical significance. Deviation mapping enabled us to quantitatively and visually elucidate the significance of RPC density changes in disease. It is important to consider changes that occur with aging when analyzing RPC and LPV density changes in disease. RPC density, coupled with age-matched deviation mapping techniques, represents a potentially clinically useful method in detecting changes to peripapillary perfusion in disease.
Radial Profiles of the Plasma Electron Characteristics in a 30 kW Arc Jet
NASA Technical Reports Server (NTRS)
Codron, Douglas A.; Nawaz, Anuscheh
2013-01-01
The present effort aims to strengthen modeling work conducted at the NASA Ames Research Center by measuring the critical plasma electron characteristics within and slightly outside of an arc jet plasma column. These characteristics are intended to give physical insights while assisting in the formulation of boundary conditions to validate full scale simulations. Single and triple Langmuir probes have been used to achieve estimates of the electron temperature (T(sub e)), electron number density (n(sub e)) and plasma potential (outside of the plasma column) as probing location is varied radially from the flow centerline. Both the electron temperature and electron number density measurements show a large dependence on radial distance from the plasma column centerline with T(sub e) approx. = (3 - 12 eV and n(sub e) approx. = 10(exp 12) - 10(exp 14)/cu cm.
Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex
NASA Astrophysics Data System (ADS)
Ohki, Kenichi; Chung, Sooyoung; Ch'ng, Yeang H.; Kara, Prakash; Reid, R. Clay
2005-02-01
Neurons in the cerebral cortex are organized into anatomical columns, with ensembles of cells arranged from the surface to the white matter. Within a column, neurons often share functional properties, such as selectivity for stimulus orientation; columns with distinct properties, such as different preferred orientations, tile the cortical surface in orderly patterns. This functional architecture was discovered with the relatively sparse sampling of microelectrode recordings. Optical imaging of membrane voltage or metabolic activity elucidated the overall geometry of functional maps, but is averaged over many cells (resolution >100µm). Consequently, the purity of functional domains and the precision of the borders between them could not be resolved. Here, we labelled thousands of neurons of the visual cortex with a calcium-sensitive indicator in vivo. We then imaged the activity of neuronal populations at single-cell resolution with two-photon microscopy up to a depth of 400µm. In rat primary visual cortex, neurons had robust orientation selectivity but there was no discernible local structure; neighbouring neurons often responded to different orientations. In area 18 of cat visual cortex, functional maps were organized at a fine scale. Neurons with opposite preferences for stimulus direction were segregated with extraordinary spatial precision in three dimensions, with columnar borders one to two cells wide. These results indicate that cortical maps can be built with single-cell precision.
Boyd, Glen R; Ocampo-Gómez, Ana M; Li, Minghua; Husserl, Johana
2006-11-20
Packed column experiments were conducted to study effects of initial saturation of tetrachloroethene (PCE) in the range of 1.0-14% pore volume (PV) on mobilization and downward migration of the non-aqueous phase liquid (NAPL) product upon contact with aqueous isobutanol ( approximately 10 vol.%). This study focused on the consequences of swelling beyond residual saturation. Columns were packed with mixtures of neat PCE, water and glass beads and waterflooded to establish a desired homogeneous residual saturation, and then flooded with aqueous isobutanol under controlled hydraulic conditions. Results showed a critical saturation of approximately 8% PV for these packed column experimental conditions. At low initial PCE saturations (<8% PV), experimental results showed reduced risk of NAPL-product migration upon contact with aqueous isobutanol. At higher initial PCE saturations (>8% PV), results showed NAPL-product mobilization and downward migration which was attributed to interfacial tension (IFT) reduction, swelling of the NAPL-product, and reduced density modification. Packed column results were compared with good agreement to theoretical predictions of NAPL-product mobilization using the total trapping number, N(T). In addition to the packed column study, preliminary batch experiments were conducted to study the effects of PCE volumetric fraction in the range of 0.5-20% on density, viscosity, and IFT modification as a function of time following contact with aqueous isobutanol ( approximately 10 vol.%). Modified NAPL-product fluid properties approached equilibrium within approximately 2 h of contact for density and viscosity. IFT reduction occurred immediately as expected. Measured fluid properties were compared with good agreement to theoretical equilibrium predictions based on UNIQUAC. Overall, this study demonstrates the importance of initial DNAPL saturation, and the associated risk of downward NAPL-product migration, in applying alcohol flooding for remediation of DNAPL contaminated ground water sites.
NASA Astrophysics Data System (ADS)
Dangelmayr, Martin A.; Reimus, Paul W.; Johnson, Raymond H.; Clay, James T.; Stone, James J.
2018-06-01
This research assesses the ability of a GC SCM to simulate uranium transport under variable geochemical conditions typically encountered at uranium in-situ recovery (ISR) sites. Sediment was taken from a monitoring well at the SRH site at depths 192 and 193 m below ground and characterized by XRD, XRF, TOC, and BET. Duplicate column studies on the different sediment depths, were flushed with synthesized restoration waters at two different alkalinities (160 mg/l CaCO3 and 360 mg/l CaCO3) to study the effect of alkalinity on uranium mobility. Uranium breakthrough occurred 25% - 30% earlier in columns with 360 mg/l CaCO3 over columns fed with 160 mg/l CaCO3 influent water. A parameter estimation program (PEST) was coupled to PHREEQC to derive site densities from experimental data. Significant parameter fittings were produced for all models, demonstrating that the GC SCM approach can model the impact of carbonate on uranium in flow systems. Derived site densities for the two sediment depths were between 141 and 178 μmol-sites/kg-soil, demonstrating similar sorption capacities despite heterogeneity in sediment mineralogy. Model sensitivity to alkalinity and pH was shown to be moderate compared to fitted site densities, when calcite saturation was allowed to equilibrate. Calcite kinetics emerged as a potential source of error when fitting parameters in flow conditions. Fitted results were compared to data from previous batch and column studies completed on sediments from the Smith-Ranch Highland (SRH) site, to assess variability in derived parameters. Parameters from batch experiments were lower by a factor of 1.1 to 3.4 compared to column studies completed on the same sediments. The difference was attributed to errors in solid-solution ratios and the impact of calcite dissolution in batch experiments. Column studies conducted at two different laboratories showed almost an order of magnitude difference in fitted site densities suggesting that experimental methodology may play a bigger role in column sorption behavior than actual sediment heterogeneity. Our results demonstrate the necessity for ISR sites to remove residual pCO2 and equilibrate restoration water with background geochemistry to reduce uranium mobility. In addition, the observed variability between fitted parameters on the same sediments highlights the need to provide standardized guidelines and methodology for regulators and industry when the GC SCM approach is used for ISR risk assessments.
Dangelmayr, Martin A; Reimus, Paul W; Johnson, Raymond H; Clay, James T; Stone, James J
2018-06-01
This research assesses the ability of a GC SCM to simulate uranium transport under variable geochemical conditions typically encountered at uranium in-situ recovery (ISR) sites. Sediment was taken from a monitoring well at the SRH site at depths 192 and 193 m below ground and characterized by XRD, XRF, TOC, and BET. Duplicate column studies on the different sediment depths, were flushed with synthesized restoration waters at two different alkalinities (160 mg/l CaCO 3 and 360 mg/l CaCO 3 ) to study the effect of alkalinity on uranium mobility. Uranium breakthrough occurred 25% - 30% earlier in columns with 360 mg/l CaCO 3 over columns fed with 160 mg/l CaCO 3 influent water. A parameter estimation program (PEST) was coupled to PHREEQC to derive site densities from experimental data. Significant parameter fittings were produced for all models, demonstrating that the GC SCM approach can model the impact of carbonate on uranium in flow systems. Derived site densities for the two sediment depths were between 141 and 178 μmol-sites/kg-soil, demonstrating similar sorption capacities despite heterogeneity in sediment mineralogy. Model sensitivity to alkalinity and pH was shown to be moderate compared to fitted site densities, when calcite saturation was allowed to equilibrate. Calcite kinetics emerged as a potential source of error when fitting parameters in flow conditions. Fitted results were compared to data from previous batch and column studies completed on sediments from the Smith-Ranch Highland (SRH) site, to assess variability in derived parameters. Parameters from batch experiments were lower by a factor of 1.1 to 3.4 compared to column studies completed on the same sediments. The difference was attributed to errors in solid-solution ratios and the impact of calcite dissolution in batch experiments. Column studies conducted at two different laboratories showed almost an order of magnitude difference in fitted site densities suggesting that experimental methodology may play a bigger role in column sorption behavior than actual sediment heterogeneity. Our results demonstrate the necessity for ISR sites to remove residual pCO2 and equilibrate restoration water with background geochemistry to reduce uranium mobility. In addition, the observed variability between fitted parameters on the same sediments highlights the need to provide standardized guidelines and methodology for regulators and industry when the GC SCM approach is used for ISR risk assessments. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acero, F.
Most of the celestial γ rays detected by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point and extended source studies rely on the modeling of this diffuse emission for accurate characterization. We describe here the development of the Galactic Interstellar Emission Model (GIEM) that is the standard adopted by the LAT Collaboration and is publicly available. The model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse Compton emissionmore » produced in the Galaxy. We also include in the GIEM large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra con rm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20° and we observe an enhanced emission toward their base extending in the North and South Galactic direction and located within ~4° of the Galactic Center.« less
Drift Wave Chaos and Turbulence in a LAPTAG Plasma Physics experiment
NASA Astrophysics Data System (ADS)
Katz, Cami; Gekelman, Walter; Pribyl, Patrick; Wise, Joe; Birge-Lee, Henry; Baker, Bob; Marmie, Ken; Thomas, Sam; Buckley-Bonnano, Samuel
2015-11-01
Whenever there is a pressure gradient in a magnetized plasma drift waves occur spontaneously. Drift waves have density and electrical potential fluctuations but no self magnetic field. In our experiment the drift waves form spontaneously in a narrow plasma column. (ne = 5 ×1011 cm3 , Te = 5 eV , B = 200 Gauss, dia = 25 cm , L = 1 . 5 m). As the drift waves grow from noise simple averaging techniques cannot be used to map them out in space and time. The ion saturation current Isat n√{Te} is recorded for an ensemble of 50 shots on a fixed probe located on the density gradient and for a movable probe. The probe signals are not sinusoidal and are filtered to calculate the cross-spectral function CSF = ∫ ∑ nshot Ifix, ωr->1 , tImov , ω (r->1 + δr-> , t + τ) dt , which can be used to extract the temporal and spatially varying wave patterns. The dominant wave at 18 kHz is a rotating spiral with m =2. LAPTAG is a university-high school alliance outreach program, which has been in existence for over 20 years. Work done at the BaPSF and supported by NSF/DOE.
NASA Technical Reports Server (NTRS)
Reed, E. I.; Chandra, S.
1974-01-01
The green line of atomic oxygen and the Herzberg bands of molecular oxygen as observed from the OGO-4 airglow photometer are discussed in terms of their spatial and temporal distributions and their relation to the atomic oxygen content in the lower thermosphere. Daily maps of the distribution of emissions show considerable structure (cells, patches, and bands) with appreciable daily changes. When data are averaged over periods of several days in length, the resulting patterns have occasional tendencies to follow geomagnetic parallels. The Seasonal variations are characterized by maxima in both the Northern and Southern Hemispheres in October, with the Northern Hemisphere having substantially higher emission rates. Formulae are derived relating the vertical column emission rates of the green line and the Herzberg bands to the atomic oxygen peak density. Global averages for the time period for these data (August 1967 to January 1968), when converted to maximum atomic oxygen densities near 95 km, have a range of 2.0 x 10 to the 11th power/cu cm 2.7 x 10 to the 11th power/cu cm.
NASA Astrophysics Data System (ADS)
Wehr, H.; Chevrot, S.; Courrioux, G.; Guillen, A.
2018-06-01
We construct a three-dimensional geological model of the Pyrenees and their foreland basins with the Geomodeller. This model, which accounts for different sources of geological and geophysical informations, covers the whole Pyrenees, from the Atlantic Ocean to the Mediterranean Sea, and from the Iberian range to the Massif Central, down to 70 km depth. We model the geological structure with a stratigraphic column composed of a superposition of layers representing the mantle, lower, middle, and upper crusts. The sedimentary basins are described by two layers which allow us to make the distinction between Mesozoic and Cenozoic sediments, which are characterized by markedly different densities and seismic velocities. Since the Pyrenees result from the convergence between the Iberian and European plates, we ascribe to each plate its own stratigraphic column in order to be able to model the imbrication of Iberian and European crusts along this fossile plate boundary. We also introduce two additional units which describe the orogenic prism and the water column in the Bay of Biscay and in the Mediterranean Sea. The last ingredient is a unit that represents bodies of shallow exhumed and partly serpentinized lithospheric mantle, which are assumed to produce the positive Bouguer gravity anomalies in the North Pyrenean Zone. A first 3D model is built using only the geological information coming from geological maps, drill-holes, and seismic sections. We use the potential field method implemented in Geomodeller to interpolate these geological data. This model is then refined in order to better explain the observed Bouguer anomalies by adding new constraints on the main crustal interfaces. The final model explains the observed Bouguer anomalies with a standard deviation less than 3.4 mGal, and reveals anomalous deep structures beneath the eastern Pyrenees.
NASA Astrophysics Data System (ADS)
Launhardt, R.; Stutz, A. M.; Schmiedeke, A.; Henning, Th.; Krause, O.; Balog, Z.; Beuther, H.; Birkmann, S.; Hennemann, M.; Kainulainen, J.; Khanzadyan, T.; Linz, H.; Lippok, N.; Nielbock, M.; Pitann, J.; Ragan, S.; Risacher, C.; Schmalzl, M.; Shirley, Y. L.; Stecklum, B.; Steinacker, J.; Tackenberg, J.
2013-03-01
Context. The temperature and density structure of molecular cloud cores are the most important physical quantities that determine the course of the protostellar collapse and the properties of the stars they form. Nevertheless, density profiles often rely either on the simplifying assumption of isothermality or on observationally poorly constrained model temperature profiles. The instruments of the Herschel satellite provide us for the first time with both the spectral coverage and the spatial resolution that is needed to directly measure the dust temperature structure of nearby molecular cloud cores. Aims: With the aim of better constraining the initial physical conditions in molecular cloud cores at the onset of protostellar collapse, in particular of measuring their temperature structure, we initiated the guaranteed time key project (GTKP) "The Earliest Phases of Star Formation" (EPoS) with the Herschel satellite. This paper gives an overview of the low-mass sources in the EPoS project, the Herschel and complementary ground-based observations, our analysis method, and the initial results of the survey. Methods: We study the thermal dust emission of 12 previously well-characterized, isolated, nearby globules using FIR and submm continuum maps at up to eight wavelengths between 100 μm and 1.2 mm. Our sample contains both globules with starless cores and embedded protostars at different early evolutionary stages. The dust emission maps are used to extract spatially resolved SEDs, which are then fit independently with modified blackbody curves to obtain line-of-sight-averaged dust temperature and column density maps. Results: We find that the thermal structure of all globules (mean mass 7 M⊙) is dominated by external heating from the interstellar radiation field and moderate shielding by thin extended halos. All globules have warm outer envelopes (14-20 K) and colder dense interiors (8-12 K) with column densities of a few 1022 cm-2. The protostars embedded in some of the globules raise the local temperature of the dense cores only within radii out to about 5000 AU, but do not significantly affect the overall thermal balance of the globules. Five out of the six starless cores in the sample are gravitationally bound and approximately thermally stabilized. The starless core in CB 244 is found to be supercritical and is speculated to be on the verge of collapse. For the first time, we can now also include externally heated starless cores in the Lsmm/Lbol vs. Tbol diagram and find that Tbol < 25 K seems to be a robust criterion to distinguish starless from protostellar cores, including those that only have an embedded very low-luminosity object. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Partially based on observations carried out with the IRAM 30 m Telescope, with the Atacama Pathfinder Experiment (APEX), and with the James Clerk Maxwell Telescope (JCMT). IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). APEX is a collaboration between Max Planck Institut für Radioastronomie (MPIfR), Onsala Space Observatory (OSO), and the European Southern Observatory (ESO). The JCMT is operated by the Joint Astronomy Centre on behalf of the Particle Physics and Astronomy Research Council of the United Kingdom, the Netherlands Association for Scientific Research, and the National Research Council of Canada.Appendices A, B and C are available in electronic form at http://www.aanda.org
The frequency-domain approach for apparent density mapping
NASA Astrophysics Data System (ADS)
Tong, T.; Guo, L.
2017-12-01
Apparent density mapping is a technique to estimate density distribution in the subsurface layer from the observed gravity data. It has been widely applied for geologic mapping, tectonic study and mineral exploration for decades. Apparent density mapping usually models the density layer as a collection of vertical, juxtaposed prisms in both horizontal directions, whose top and bottom surfaces are assumed to be horizontal or variable-depth, and then inverts or deconvolves the gravity anomalies to determine the density of each prism. Conventionally, the frequency-domain approach, which assumes that both top and bottom surfaces of the layer are horizontal, is usually utilized for fast density mapping. However, such assumption is not always valid in the real world, since either the top surface or the bottom surface may be variable-depth. Here, we presented a frequency-domain approach for apparent density mapping, which permits both the top and bottom surfaces of the layer to be variable-depth. We first derived the formula for forward calculation of gravity anomalies caused by the density layer, whose top and bottom surfaces are variable-depth, and the formula for inversion of gravity anomalies for the density distribution. Then we proposed the procedure for density mapping based on both the formulas of inversion and forward calculation. We tested the approach on the synthetic data, which verified its effectiveness. We also tested the approach on the real Bouguer gravity anomalies data from the central South China. The top surface was assumed to be flat and was on the sea level, and the bottom surface was considered as the Moho surface. The result presented the crustal density distribution, which was coinciding well with the basic tectonic features in the study area.
M = +1, ± 1 and ± 2 mode helicon wave excitation.
NASA Astrophysics Data System (ADS)
Kim, J.-H.; Yun, S.-M.; Chang, H.-Y.
1996-11-01
The characteristics of M=+1, ± 1 and ± 2 modes helicon wave excited using a solenoid antenna, Nagoya type III and quadrupole antenna respectively are first investigated. The solenoid antenna is constructed by winding a copper cable on a quartz discharge tube. Two dimensional cross-field measurements of ArII optical emission induced by hot electrons are made to investigate RF power deposition: Components of the wave magnetic field measured with a single-turn, coaxial magnetic probe were compared with the field patterns computed for M=+1, ± 1 and ± 2 modes. The M=+1 mode plasma produced by the solenoid antenna has a cylindrical high intensity plasma column, which center is empty. This cylindrical high intensity column results from the rotation of the cross-sectional electric field pattern (right hand circularly polarization). The radial plasma density profile has a peak at r=2.5cm with axisymmetry. It has been found that the radial profile of the plasma density is in good agreement with the computed power deposition profile. The radial profiles of the wave magnetic field are in good agreement with computations. The plasma excited by Nagoya type III antenna has two high intensity columns which results from the linear combination of M=+1 and -1 modes (i.e. plane polarization). The radial plasma density profile is in good agreement with emission intensity profile of ArII line (488nm). The plasma excited by quadrupole antenna has four high intensity columns which results from the linear combination of M=+2 and -2 modes (i.e. plane polarization). In the M=± 2 modes, the radial plasma density profile is also in good agreement with emission intensity profile of ArII line.
The Mean Metal-line Absorption Spectrum of Damped Ly α Systems in BOSS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mas-Ribas, Lluís; Miralda-Escudé, Jordi; Pérez-Ràfols, Ignasi
We study the mean absorption spectrum of the Damped Ly α (DLA) population at z ∼ 2.6 by stacking normalized, rest-frame-shifted spectra of ∼27,000 DLA systems from the DR12 of the Baryon Oscillation Spectroscopic Survey (BOSS)/SDSS-III. We measure the equivalent widths of 50 individual metal absorption lines in five intervals of DLA hydrogen column density, five intervals of DLA redshift, and overall mean equivalent widths for an additional 13 absorption features from groups of strongly blended lines. The mean equivalent width of low-ionization lines increases with N {sub H} {sub i}, whereas for high-ionization lines the increase is much weaker.more » The mean metal line equivalent widths decrease by a factor ∼1.1–1.5 from z ∼ 2.1 to z ∼ 3.5, with small or no differences between low- and high-ionization species. We develop a theoretical model, inspired by the presence of multiple absorption components observed in high-resolution spectra, to infer mean metal column densities from the equivalent widths of partially saturated metal lines. We apply this model to 14 low-ionization species and to Al iii, S iii, Si iii, C iv, Si iv, N v, and O vi. We use an approximate derivation for separating the equivalent width contributions of several lines to blended absorption features, and infer mean equivalent widths and column densities from lines of the additional species N i, Zn ii, C ii*, Fe iii, and S iv. Several of these mean column densities of metal lines in DLAs are obtained for the first time; their values generally agree with measurements of individual DLAs from high-resolution, high signal-to-noise ratio spectra when they are available.« less
Estimated global nitrogen deposition using NO2 column density
Lu, Xuehe; Jiang, Hong; Zhang, Xiuying; Liu, Jinxun; Zhang, Zhen; Jin, Jiaxin; Wang, Ying; Xu, Jianhui; Cheng, Miaomiao
2013-01-01
Global nitrogen deposition has increased over the past 100 years. Monitoring and simulation studies of nitrogen deposition have evaluated nitrogen deposition at both the global and regional scale. With the development of remote-sensing instruments, tropospheric NO2 column density retrieved from Global Ozone Monitoring Experiment (GOME) and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) sensors now provides us with a new opportunity to understand changes in reactive nitrogen in the atmosphere. The concentration of NO2 in the atmosphere has a significant effect on atmospheric nitrogen deposition. According to the general nitrogen deposition calculation method, we use the principal component regression method to evaluate global nitrogen deposition based on global NO2 column density and meteorological data. From the accuracy of the simulation, about 70% of the land area of the Earth passed a significance test of regression. In addition, NO2 column density has a significant influence on regression results over 44% of global land. The simulated results show that global average nitrogen deposition was 0.34 g m−2 yr−1 from 1996 to 2009 and is increasing at about 1% per year. Our simulated results show that China, Europe, and the USA are the three hotspots of nitrogen deposition according to previous research findings. In this study, Southern Asia was found to be another hotspot of nitrogen deposition (about 1.58 g m−2 yr−1 and maintaining a high growth rate). As nitrogen deposition increases, the number of regions threatened by high nitrogen deposits is also increasing. With N emissions continuing to increase in the future, areas whose ecosystem is affected by high level nitrogen deposition will increase.
Using Cassini UVIS Data to Constrain Enceladus' Libration State
NASA Technical Reports Server (NTRS)
Hurford, Terry A.; Helfenstein, P.; Hansen, C.
2010-01-01
Given the non-spherical shape of Enceladus, the satellite may experience gravitational torques that will cause it to physically librate as it orbits Saturn. Physical libration would produce a diurnal oscillation in the longitude of Enceladus' tidal bulge, which could have a profound effect on the diurnal stresses experienced by the surface of the satellite. Although Cassini ISS has placed an observational upper limit on Enceladus' libration amplitude, stall amplitude librations may have geologically significant consequences. For example, a physical libration will affect heat production along the tiger stripes as produced by tidal shear heating and a previous study has explored possible libration states that provided better matches to Cassini CIRS observations of heat along the tiger stripes. Cassini UVIS stellar occultations provided measurements of the column density of the Enceladus plume at two different points in Enceladus' orbit and find comparable column density values. This column density may be a reflection of the amount of the tiger stripe rifts in tension and able to vent volatiles and a physical libration will also affect the fraction of tiger stripe in tension at different points in the orbit. We have modeled the expected fraction of tiger stripes in tension under different libration conditions. Without libration the amount of tiger stripe rifts in tension at both paints in the orbit would not be comparable and therefore may not allow comparable amounts of volatiles to escape. However, we identify libration conditions that do allow comparable amounts of the tiger stripes to be in tension at each point in the orbit, which might lead to comparable column densities. The librations identified coincide with possible librations states identified in the earlier study, which used Cassini CIRS observations.
D/H Toward BD+28 4211: First FUSE Results
NASA Technical Reports Server (NTRS)
Sonneborne, George; Andre, M.; Oliveira, C.; Friedman, S. D.; Howk, J. C.; Kruk, J. W.; Moos, H. W.; Oegerle, W. R.; Sembach, K. R.; Chayer, P.;
2001-01-01
The atomic deuterium-to-hydrogen abundance ratio has been evaluated for the sight line toward the hot O subdwarf BD+28(sup circ) 4211. High signal-to-noise ratio (S/N is approx. 100) observations covering the wavelength range 905 to 1187 angstroms at a wavelength resolving power of lambda/Delta/lambda at approx. 20,000 were obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. BD+28(sup circ) 4211 is approx. 00 pc away with a total H I column density of approx. 10(exp 19)/sq cm, much higher than is typically found in the local interstellar medium (ISM). The deuterium column density was measured by analyzing several D I Lyman series transitions (Lyman delta, C, epsilon, eta, theta, iota with curve of growth and profile fitting techniques, after determining which lines were free of interference from other interstellar species and narrow stellar features. The neutral hydrogen column density was measured by an analysis of the Lyman-alpha profile using HST/Space Telescope Imaging Spectrograph (STIS) and Goddard High Resolution Spectrograph (GHRS) spectra. The stellar spectrum of BD+28(sup circ) 4211 was modelled to assist in determining the sensitivity of H I (Ly-alpha) and D I to the continuum placement and to identify stellar transitions. The D I and H I column densities, their uncertainties, and potential sources of systematic error will be presented. This work is based on data obtained for the FUSE Guaranteed Time Team by the NASA-CNES-CSA FUSE mission operated by the Johns Hopkins University. Financial support to U. S. participants has been provided in part by NASA contract NAS5-32985.
Investigating the physics and environment of Lyman limit systems in cosmological simulations
NASA Astrophysics Data System (ADS)
Erkal, Denis
2015-07-01
In this work, I investigate the properties of Lyman limit systems (LLSs) using state-of-the-art zoom-in cosmological galaxy formation simulations with on the fly radiative transfer, which includes both the cosmic UV background (UVB) and local stellar sources. I compare the simulation results to observations of the incidence frequency of LLSs and the H I column density distribution function over the redshift range z = 2-5 and find good agreement. I explore the connection between LLSs and their host haloes and find that LLSs reside in haloes with a wide range of halo masses with a nearly constant covering fraction within a virial radius. Over the range z = 2-5, I find that more than half of the LLSs reside in haloes with M < 1010 h-1 M⊙, indicating that absorption line studies of LLSs can probe these low-mass galaxies which H2-based star formation models predict to have very little star formation. I study the physical state of individual LLSs and test a simple model which encapsulates many of their properties. I confirm that LLSs have a characteristic absorption length given by the Jeans length and that they are in photoionization equilibrium at low column densities. Finally, I investigate the self-shielding of LLSs to the UVB and explore how the non-sphericity of LLSs affects the photoionization rate at a given N_{H I}. I find that at z ≈ 3, LLSs have an optical depth of unity at a column density of ˜1018 cm-2 and that this is the column density which characterizes the onset of self-shielding.
The Nature of the Torus in the Heavily Obscured AGN Markarian 3: an X-Ray Study
NASA Technical Reports Server (NTRS)
Guainazzi, M.; Risaliti, G.; Awaki, H.; Arevalo, P.; Bauer, F. E.; Bianchi, S.; Boggs, S.E; Brandt, W. N.; Brightman, M.; Christensen, F. E.;
2016-01-01
In this paper, we report the results of an X-ray monitoring campaign on the heavily obscured Seyfert galaxy, Markarian 3, carried out between the fall of 2014 and the spring of 2015 with NuSTAR, Suzaku and XMMNewton. The hard X-ray spectrum of Markarian 3 is variable on all the time-scales probed by our campaign, down to a few days. The observed continuum variability is due to an intrinsically variable primary continuum seen in transmission through a large, but still Compton-thin column density (N(sub H) approx. 0.8-1.1 x 10(exp 24)/sq cm). If arranged in a spherical-toroidal geometry, the Compton scattering matter has an opening angle approx. 66deg, and is seen at a grazing angle through its upper rim (inclination angle approx. 70deg). We report a possible occultation event during the 2014 campaign. If the torus is constituted by a system of clouds sharing the same column density, this event allows us to constrain their number (17 +/- 5) and individual column density, [approx. (4.9 +/- 1.5) x 10(exp 22)/ sq cm]. The comparison of IR and X-ray spectroscopic results with state-of-the art torus models suggests that at least two-thirds of the X-ray obscuring gas volume might be located within the dust sublimation radius. We report also the discovery of an ionized absorber, characterized by variable resonant absorption lines due to He- and H-like iron. This discovery lends support to the idea that moderate column density absorbers could be due to clouds evaporated at the outer surface of the torus, possibly accelerated by the radiation pressure due to the central AGN emission leaking through the patchy absorber.
Radial distribution of the flow velocity, efficiency and concentration in a wide HPLC column
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farkas, T.; Sepaniak, M.J.; Guiochon, G.
1997-08-01
The use of optical fibers in a fluorescence-detection scheme permits the accurate determination of the radial distribution of the transit time, the column efficiency, and the analyte concentration at the exit of a chromatographic axial-compression column (50 mmID). The results obtained demonstrate that the column is not homogeneous, but suggest a nearly cylindrical distribution of the packing density. The average velocity close to the column wall is 7% lower than along its axis and the HETP 25% higher. The lack of homogeneity of the column packing is another source of band broadening not taken into account in chromatography so far.more » It causes the apparent HETP derived from the conventional elution chromatogram recorded on the bulk eluent to be larger than the local HETP and the band profile to be unsymmetrical with a slight tail reminiscent of kinetic tailing.« less
A {sup 13}CO SURVEY OF INTERMEDIATE-MASS STAR-FORMING REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundquist, Michael J.; Kobulnicky, Henry A.; Kerton, Charles R.
2015-06-10
We have conducted a {sup 13}CO survey of a sample of 128 infrared color-selected intermediate-mass star-forming region (IM SFR) candidates. We utilized the Onsala 20 m telescope to observe {sup 13}CO (1–0) toward 67 northern IM SFRs, used the 12 m Atacama Pathfinder Experiment telescope to observe {sup 13}CO (2–1) toward 22 southern IM SFRs, and incorporated an additional 39 sources from the Boston University Five College Radio Astronomy Observatory Galactic Ring Survey which observed {sup 13}CO (1–0). We detect {sup 13}CO (1–0) in 58 of the 67 northern sources and {sup 13}CO (2–1) in 20 of the 22 southernmore » sources. The mean molecular column densities and {sup 13}CO linewidths in the inner Galaxy are higher by factors of 3.4 and 1.5, respectively, than the outer Galaxy. We attribute this difference to molecular clouds in the inner Galaxy being more massive and hosting star forming regions with higher luminosities on average than the outer Galaxy. IM SFRs have mean a molecular column density of 7.89 × 10{sup 21} cm{sup −2}, a factor of 3.1 lower than that for a sample of high-mass regions, and have a mean {sup 13}CO linewidth of 1.84 km s{sup −1}, a factor of 1.5 lower than that for high-mass regions. We demonstrate a correlation between {sup 13}CO linewidth and infrared luminosity as well as between molecular column density and infrared luminosity for the entire sample of intermediate-mass and high-mass regions. IM SFRs appear to form in distinctly lower-density environments with mean linewidths and beam-averaged column densities a factor of several lower than high-mass star-forming regions.« less
NASA Astrophysics Data System (ADS)
Calcutt, Hannah
2015-04-01
Molecules are essential to the formation of stars, by allowing radiation to escape the cloud and cooling to occur. Over 180 molecules have been detected in interstellar environments, ranging from comets to interstellar clouds. Their spectra are useful probes of the conditions in which these molecules form. Comparison of rest frequencies to observed frequencies can provide information about the velocity of gas and indicate physical structures. The density, temperature, and excitation conditions of gas can be determined directly from the spectra of molecules. Furthermore, by taking a chemical inventory of a particular object, one can gain an understanding of the chemical processes occurring within a cloud. The class of molecules known as complex molecules (>6 atoms), are of particular interest when probing the conditions in massive starforming environments, as they are observed to trace a more compact region than smaller molecules. This thesis details the work of my PhD, to explore how complex molecules can be used to trace the physical and chemical conditions in hot cores (HCs), one of the earliest stages of massive star formation. This work combines both the observations and chemical modelling of several different massive star-forming regions. We identify molecular transitions observed in the spectra of these regions, and calculate column densities and rotation temperatures of these molecules (Chapters 2 and 3). In Chapter 4, we chemically model the HCs, and perform a comparison between observational column densities and chemical modelling column densities. In Chapter 5, we look at the abundance ratio of three isomers, acetic acid, glycolaldehyde, and methyl formate, to ascertain whether this ratio can be used as an indicator of HC evolution. Finally, we explore the chemistry of the HC IRAS 17233-3606, to identify emission features in the spectra, and determine column densities and rotation temperatures of the detected molecules.
Guidance for Subaqueous Dredged Material Capping.
1998-06-01
from Ambrose Channel , over the contaminated sediments. At least two intermediate sur- veys and additional capping were required before capping was...organisms to a given bioturbation depth; reducing contami- nant flux rates to achieve specific sediment, pore water, or water column target...bathymetry, bottom slopes, cur- rents, water depths, water column density stratification, erosion/accretion trends, proximity to navigation channels
NASA Astrophysics Data System (ADS)
Poppel, W. G. L.; Marronetti, P.; Benaglia, P.
1994-07-01
We made a systematic separation of both the neutral phases using the atlases of 21-cm profiles of Heiles & Habing (1974) and Colomb et al. (1980), complemented with other data. First, we fitted the emission of the warm neutral medium (WNM) by means of a broad Gaussian curve (velocity dispersion sigma approximately 10-14 km/s). We derived maps of the column densities NWH and the radial velocities VW of the WNM. Its overall distribution appears to be very inhomogeneous with a large hole in the range b greater than or equal to +50 deg. However, if the hole is excluded, the mean latitude-profiles admit a rough cosec absolute value of b-fit common to both hemispheres. A kinematical analysis of VW for the range 10 deg less than or equal to absolute value of b less than or equal to 40 deg indicates a mean differential rotation with a small nodal deviation. At absolute value of b greater than 50 deg VW is negative, with larger values and discontinuities in the north. On the mean, sigma increases for absolute value of b decreasing, as is expected from differential rotation. From a statistical study of the peaks of the residual profiles we derived some characteristics of the cold neutral medium (CNM). The latter is generally characterized by a single component of sigma approximately 2-6 km/s. Additionally we derived the sky-distribution of the column densities NCH and the radial velocities VC of the CNM within bins of 1.2 deg sec b x 1 deg in l, b. Furthermore, we focused on the characteristics of Linblad's feature A of cool gas by considering the narrow ridge of local H I, which appears in the b-V contour maps at fixed l (e.g. Schoeber 1976). The ridge appears to be the main component of the CNM. We suggest a scenario for the formulation and evolution of the Gould belt system of stars and gas on the basis of an explosive event within a shingle of cold dense gas tilted to the galactic plane. The scenario appears to be consistent with the results found for both the neutral phases, as well as with Danly's (1989) optical and UV observations of interstellar cool gas in the lower halo.
A Catalog of Soft X-Ray Shadows, and More Contemplation of the 1/4 KeV Background
NASA Technical Reports Server (NTRS)
Snowden, S. L.; Freyberg, M. J.; Kuntz, K. D.; Sanders, W. T.
1999-01-01
This paper presents a catalog of shadows in the 1/4 keV soft X-ray diffuse background 4 (SXRB) that were identified by a comparison between ROSAT All-Sky Survey maps and DIRB&corrected IRAS 100 micron maps. These "shadows" are the negative correlations between the surface brightness of the SXRB and the column density of the Galactic interstellar medium (ISIM) over limited angular regions (a few degrees in extent). We have compiled an extensive but not exhaustive set of 378 shadows in the polar regions of the Galaxy (Absolute value (beta) > and approximately equal 20 deg.), and determined their foreground and background X-ray intensities (relative to the absorbing features), and the respective hardness ratios of that emission. The portion of the sky that was examined to find these shadows was restricted in general to regions where the minimum column density is less than and approximately equal to 4 x 10(exp 20) H/square cm, i.e., relatively high Galactic latitudes, and to regions away from distinct extended features in the SXRB such as supernova remnants and superbubbles. The results for the foreground intensities agree well with the recent results of a general analysis of the local 1/4 KeV emission while the background intensities show additional. but not unexpected scatter. The results also confirm the existence of a gradient in the hardness of the local 1/4 keV emission along a Galactic center/ anticenter axis with a temperature that varies from 10(exp 6.13) K to 10(exp 6.02) K, respectively. The average temperature of the foreground component from this analysis is 10(exp 6.08) K, compared to 10(exp 6.06) K in the previous analysis. Likewise, the average temperature for the distant component for the current and previous analyses are 10(exp 6.06) K and 10(exp 6.02) K, respectively. Finally, the results for the 1/4 keV halo emission are compared to the observed fluxes at 3/4 keV, where the lack of correlation suggests that the Galactic halo's 1/4 keV and 3/4 keV fluxes are likely produced by separate emission regions.
Determination of the Cosmic Infrared Background from COBE/FIRAS and Planck HFI Data
NASA Astrophysics Data System (ADS)
Kogut, Alan
Current determinations of the cosmic infrared background (CIB) at far-infrared to millimeter wavelengths have large uncertainties, on the order of 30%. We propose to make new, more accurate determinations of the CIB at these wavelengths using COBE /FIRAS and Planck High Frequency Instrument (HFI) Data. This work will enable a factor of two improvement in our understanding of the CIB. Planck was not designed to measure the monopole component of sky brightness, so the FIRAS data will be used to recalibrate the zero level of the HFI maps. Correlation of the recalibrated HFI maps with Galactic H I 21-cm line emission will be used to separate the Galactic foreground emission and determine the CIB in the HFI bands from 217 to 857 GHz, or 1380 to 350 microns. The high angular resolution and sensitivity of the HFI data will allow the correlations with H I to be established more accurately and to lower H I column density than is possible with the 7± resolution FIRAS data, resulting in significant improvement in the accuracy of the derived CIB. Correlations of the CIB-subtracted 857 GHz map with FIRAS maps averaged over broad frequency bins will then be used to determine CIB values at frequencies not observed by Planck. Uncertainties in the CIB results are expected to be as low as 14% for the HFI 857 GHz band. Our results will allow more accurate determination of the fraction of the CIB that is resolved by deep source surveys, and a tighter limit to be placed on the contribution to the CIB of any diffuse emission such as emission from intergalactic dust. Possible gray extinction by intergalactic dust may produce significant systematic error in determinations of dark energy parameters from type Ia supernova measurements, and our results will be important for placing a tighter upper limit on such extinction. Our CIB results will also provide tighter constraints on models of the evolution of star-forming galaxies, and will be important in constraining the evolution in density and luminosity of ultraluminous starburst galaxies at high redshift.
Preparative liquid column electrophoresis of T and B lymphocytes at gravity = 1
NASA Technical Reports Server (NTRS)
Van Oss, C. J.; Bigazzi, P. E.; Gillman, C. F.; Allen, R. E.
1974-01-01
Vertical liquid columns containing low-molecular-weight dextran density gradients can be used for preparative lymphocyte electrophoresis on earth, in simulation of zero gravity conditions. Another method that has been tested at 1 g, is the electrophoresis of lymphocytes in an upward direction in vertical columns. By both methods up to 100 million lymphocytes can be separated at one time in a 30-cm glass column of 8-mm inside diameter, at 12 V/cm, in two hours. Due to convection and sedimentation problems, the separation at 1 g is less than ideal, but it is expected that at zero gravity electrophoresis will probe to be a uniquely powerful cell separation tool.
Surveying the H I Content of the Galactic Halo via Lyman Series Absorption
NASA Astrophysics Data System (ADS)
Fox, Andrew
The halo of the Milky Way is home to a population of gaseous high-velocity clouds (HVCs) that trace the exchange of matter between the Galaxy and its surroundings. HVCs have been studied extensively via H I 21 cm emission and UV metal-line absorption. Here we propose a third, complementary approach for studying HVCs: surveying them in UV Lyman series H I absorption using all AGN spectra in the FarUltraviolet Spectroscopic Explorer (FUSE) archive. This H I survey will constitute a metal-independent view of the baryons in the Galactic halo at a level over 1000 times more sensitive than 21 cm surveys, and it can be conducted with archival data alone. 67 AGN are available in the FUSE archives with suitable properties (S/N>4 at 977 A), and the data are reduced and ready for analysis. With these data, we will calculate HVC sky covering fractions in H I absorption and conduct HVC metallicity measurements in sightlines with UV metal absorption in HST/COS or HST/STIS spectra. We will calculate the Galactic H I column density distribution function (CDDF), the incidence of H I clouds per unit column density that encodes underlying density and ionization variations and is sensitive to the escaping ionization radiation field. The CDDF has been measured at high redshifts over eight orders of magnitude of H I column density via quasar-absorption line experiments. However, the Galactic H I CDDF has until now only been constrained at high H I column density where HVCs can be seen in 21cm emission. Our detailed work plan will involve identifying and modeling HVC absorption in ten Lyman series lines from Ly gamma 972 to Ly mu 917 in each sight line in the FUSE sample. This will constrain the H I CDDF in the column density range log N(H I) 14 to 18. By combining with the existing H I CDDF in 21 cm HVCs in the range log N(H I) 18 to 21 from the all-sky GASS survey, we will produce a global Galactic CDDF complete over seven orders of magnitude, providing key new information on the distribution of diffuse gas in the Galactic halo. This will allow us to place the Milky Way s halo in the context of those of external galaxies, and to identify the galactic contribution from bound gas in halos to the extragalactic CDDF.
Electric discharge synthesis of HCN in simulated Jovian atmospheres
NASA Technical Reports Server (NTRS)
Stribling, Roscoe; Miller, Stanley L.
1987-01-01
Corona discharge is presently considered as a possible source of the HCN detected in the Jovian atmosphere at 2.2 x 10 to the -7th moles/sq cm column density, for the cases of gas mixtures containing H2, CH4, and NH3, with H2/CH4 ratios from 4.4 to 1585. A 3:1 ratio of corona discharge to lightning energy similar to that of the earth is applied to Jupiter. Depending on the lightning energy available on Jupiter and the eddy diffusion coefficients in the synthesis region, HCN column densities generated by corona discharge could account for about 10 percent of the HCN observed.
I(CO)/N(H2) conversions and molecular gas abundances in spiral and irregular galaxies
NASA Technical Reports Server (NTRS)
Maloney, Philip; Black, John H.
1988-01-01
Observations of emission in the J = 1-0 rotational transition of interstellar CO are used to obtain column densities and masses of hydrogen. By taking into account the effects of variations in molecular cloud parameters on conversion factors between integrated CO intensity and molecular hydrogen column density, it is shown that conversion factors are very sensitive to the kinetic temperature of the emitting gas. Results indicate that the gas temperatures in systems with high star formation rates can be quite high, and it is suggested that use of a standard conversion factor will lead to systematic overestimation of the amount of molecular gas.
A Herschel-SPIRE Survey of the MonR2 Giant Molecular Cloud
NASA Astrophysics Data System (ADS)
Pokhrel, Riwaj; Gutermuth, Robert A.; Ali, Babar; Megeath, S. Thomas; Pipher, Judith; Myers, Philip C.; Fischer, William J.; Henning, Thomas; Wolk, Scott J.; Allen, Lori; Tobin, John J.
2014-06-01
We present a new survey of the MonR2 giant molecular cloud with SPIRE on the Herschel Space Observatory. We cross-calibrated SPIRE data with Planck-HFI and accounted for its absolute offset and zero point correction. We fixed emissivity with the help of flux-error and flux ratio plots. As the best representation of cold dusty molecular clouds, we did greybody fits of the SEDs. We studied the nature of distribution of column densities above and below certain critical limit, followed by the mass and temperature distributions for different regions. We isolated the filaments and studied radial column density profile in this cloud.
Bender, Kevin J.; Rangel, Juliana; Feldman, Daniel E.
2011-01-01
The excitatory feedforward projection from layer (L) 4 to L2/3 in rat primary somatosensory (S1) cortex exhibits precise, columnar topography that is critical for columnar processing of whisker inputs. Here, we characterize the development of axonal topography in this projection using single-cell reconstructions in S1 slices. In the mature projection [postnatal day (P) 14 –26], axons of L4 cells extending into L2/3 were confined almost entirely to the home barrel column, consistent with previous results. At younger ages (P8 –11), however, axonal topography was significantly less columnar, with a large proportion of branches innervating neighboring barrel columns representing adjacent whisker rows. Mature topography developed from this initial state by targeted axonal growth within the home column and by growth of barrel columns themselves. Raising rats with all or a subset of whiskers plucked from P8 –9, manipulations that induce reorganization of functional whisker maps and synaptic depression at L4 to L2/3 synapses, did not alter normal anatomical development of L4 to L2/3 axons. Thus, development of this projection does not require normal sensory experience after P8, and deprivation-induced reorganization of whisker maps at this age is unlikely to involve physical remodeling of L4 to L2/3 axons. PMID:14507976
A Multi-Wavelength Study of the Hot Component of the Interstellar Medium
NASA Technical Reports Server (NTRS)
Nichols, Joy; Oliversen, Ronald K. (Technical Monitor)
2002-01-01
The goals of this research are as follows: (1) Using the large number of lines of sight available in the ME database, identify the lines of sight with high-velocity components in interstellar lines, from neutral species through Si VI, C IV, and N V; (2) Compare the column density of the main components (i.e. low velocity components) of the interstellar lines with distance, galactic longitude and latitude, and galactic radial position. Derive statistics on the distribution of components in space (e.g. mean free path, mean column density of a component). Compare with model predictions for the column densities in the walls of old SNR bubbles and superbubbles, in evaporating cloud boundaries and in turbulent mixing layers; (3) For the lines of sight associated with multiple high velocity, high ionization components, model the shock parameters for the associated superbubble and SNR to provide more accurate energy input information for hot phase models and galactic halo models. Thus far 49 lines of sight with at least one high velocity component to the C IV lines have been identified; and (4) Obtain higher resolution data for the lines of sight with high velocity components (and a few without) to further refine these models.
Rapid ionization of the environment of SN 1987A
NASA Technical Reports Server (NTRS)
Raga, A. C.
1987-01-01
It has been suggested by some authors that IUE observations of the supernova SN 1987A show the presence of a strong component of the interstellar C IV 1550 and Si IV 1393 absorption lines at a velocity that approximately corresponds to the velocity of the LMC. It is possible that this component might come from originally neutral (or at least not very highly ionized) gas which has been photoionized by the initially very strong ionizing radiation field of the supernova. Theoretical considerations of this scenario lead to the study of fast (with velocities of about c) ionization fronts. It is shown that for reasonable model parameters it is possible to obtain considerably large C IV column densities, in agreement with the IUE observations. On the other hand, the models do not so easily predict the large Si IV column densities that are also obtained from the IUE observations. It is found that only models in which the interstellar medium surrounding SN 1987A is initially composed of already ionized hydrogen and helium predict substantial Si IV column densities. This result provides an interesting prediction of the ionization state of the environment of the presupernova star.
Wide-field SCUBA-2 observations of NGC 2264: submillimetre clumps and filaments
NASA Astrophysics Data System (ADS)
Buckle, J. V.; Richer, J. S.
2015-10-01
We present wide-field observations of the NGC 2264 molecular cloud in the dust continuum at 850 and 450 μm using SCUBA-2 on the James Clerk Maxwell Telescope. Using 12CO 3 → 2 molecular line data, we determine that emission from CO contaminates the 850 μm emission at levels ˜30 per cent in localized regions associated with high-velocity molecular outflows. Much higher contamination levels of 60 per cent are seen in shocked regions near the massive star S Mon. If not removed, the levels of CO contamination would contribute an extra 13 per cent to the dust mass in NGC 2264. We use the FELLWALKER routine to decompose the dust into clumpy structures, and a Hessian-based routine to decompose the dust into filamentary structures. The filaments can be described as a hub-filament structure, with lower column density filaments radiating from the NGC 2264 C protocluster hub. Above mean filament column densities of 2.4 × 1022 cm-2, star formation proceeds with the formation of two or more protostars. Below these column densities, filaments are starless, or contain only a single protostar.
Optical observations of nearby interstellar gas
NASA Astrophysics Data System (ADS)
Frisch, P. C.; York, D. G.
1984-11-01
Observations indicated that a cloud with a heliocentric velocity of approximately -28 km/s and a hydrogen column density that possibly could be on the order of, or greater than, 5 x 10 to the 19 power/square cm is located within the nearest 50 to 80 parsecs in the direction of Ophiuchus. This is a surprisingly large column density of material for this distance range. The patchy nature of the absorption from the cloud indicates that it may not be a feature with uniform properties, but rather one with small scale structure which includes local enhancements in the column density. This cloud is probably associated with the interstellar cloud at about the same velocity in front of the 20 parsec distant star alpha Oph (Frisch 1981, Crutcher 1982), and the weak interstellar polarization found in stars as near as 35 parsecs in this general region (Tinbergen 1982). These data also indicate that some portion of the -14 km/s cloud also must lie within the 100 parsec region. Similar observations of both Na1 and Ca2 interstellar absorption features were performed in other lines of sight. Similar interstellar absorption features were found in a dozen stars between 20 and 100 parsecs of the Sun.
Optical Observations of Nearby Interstellar Gas
NASA Technical Reports Server (NTRS)
Frisch, P. C.; York, D. G.
1984-01-01
Observations indicated that a cloud with a heliocentric velocity of approximately -28 km/s and a hydrogen column density that possibly could be on the order of, or greater than, 5 x 10 to the 19 power/square cm is located within the nearest 50 to 80 parsecs in the direction of Ophiuchus. This is a surprisingly large column density of material for this distance range. The patchy nature of the absorption from the cloud indicates that it may not be a feature with uniform properties, but rather one with small scale structure which includes local enhancements in the column density. This cloud is probably associated with the interstellar cloud at about the same velocity in front of the 20 parsec distant star alpha Oph (Frisch 1981, Crutcher 1982), and the weak interstellar polarization found in stars as near as 35 parsecs in this general region (Tinbergen 1982). These data also indicate that some portion of the -14 km/s cloud also must lie within the 100 parsec region. Similar observations of both Na1 and Ca2 interstellar absorption features were performed in other lines of sight. Similar interstellar absorption features were found in a dozen stars between 20 and 100 parsecs of the Sun.
NASA Technical Reports Server (NTRS)
Woronowicz, Michael
2016-01-01
Analytical expressions for column number density (CND) are developed for optical line of sight paths through a variety of steady free molecule point source models including directionally-constrained effusion (Mach number M = 0) and flow from a sonic orifice (M = 1). Sonic orifice solutions are approximate, developed using a fair simulacrum fitted to the free molecule solution. Expressions are also developed for a spherically-symmetric thermal expansion (M = 0). CND solutions are found for the most general paths relative to these sources and briefly explored. It is determined that the maximum CND from a distant location through directed effusion and sonic orifice cases occurs along the path parallel to the source plane that intersects the plume axis. For the effusive case this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plume's axis. For sonic plumes this ratio is reduced to about 4/3. For high Mach number cases the maximum CND will be found along the axial centerline path. Keywords: column number density, plume flows, outgassing, free molecule flow.
Seasonal variability of the hydrogen exosphere of Mars
NASA Astrophysics Data System (ADS)
Halekas, J. S.
2017-05-01
The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission measures both the upstream solar wind and collisional products from energetic neutral hydrogen atoms that precipitate into the upper atmosphere after their initial formation by charge exchange with exospheric hydrogen. By computing the ratio between the densities of these populations, we derive a robust measurement of the column density of exospheric hydrogen upstream of the Martian bow shock. By comparing with Chamberlain-type model exospheres, we place new constraints on the structure and escape rates of exospheric hydrogen, derived from observations sensitive to a different and potentially complementary column from most scattered sunlight observations. Our observations provide quantitative estimates of the hydrogen exosphere with nearly complete temporal coverage, revealing order of magnitude seasonal changes in column density and a peak slightly after perihelion, approximately at southern summer solstice. The timing of this peak suggests either a lag in the response of the Martian atmosphere to solar inputs or a seasonal effect driven by lower atmosphere dynamics. The high degree of seasonal variability implied by our observations suggests that the Martian atmosphere and the thermal escape of light elements depend sensitively on solar inputs.
Rastas, Pasi; Calboli, Federico C. F.; Guo, Baocheng; Shikano, Takahito; Merilä, Juha
2016-01-01
High-density linkage maps are important tools for genome biology and evolutionary genetics by quantifying the extent of recombination, linkage disequilibrium, and chromosomal rearrangements across chromosomes, sexes, and populations. They provide one of the best ways to validate and refine de novo genome assemblies, with the power to identify errors in assemblies increasing with marker density. However, assembly of high-density linkage maps is still challenging due to software limitations. We describe Lep-MAP2, a software for ultradense genome-wide linkage map construction. Lep-MAP2 can handle various family structures and can account for achiasmatic meiosis to gain linkage map accuracy. Simulations show that Lep-MAP2 outperforms other available mapping software both in computational efficiency and accuracy. When applied to two large F2-generation recombinant crosses between two nine-spined stickleback (Pungitius pungitius) populations, it produced two high-density (∼6 markers/cM) linkage maps containing 18,691 and 20,054 single nucleotide polymorphisms. The two maps showed a high degree of synteny, but female maps were 1.5–2 times longer than male maps in all linkage groups, suggesting genome-wide recombination suppression in males. Comparison with the genome sequence of the three-spined stickleback (Gasterosteus aculeatus) revealed a high degree of interspecific synteny with a low frequency (<5%) of interchromosomal rearrangements. However, a fairly large (ca. 10 Mb) translocation from autosome to sex chromosome was detected in both maps. These results illustrate the utility and novel features of Lep-MAP2 in assembling high-density linkage maps, and their usefulness in revealing evolutionarily interesting properties of genomes, such as strong genome-wide sex bias in recombination rates. PMID:26668116
Molecular surface mesh generation by filtering electron density map.
Giard, Joachim; Macq, Benoît
2010-01-01
Bioinformatics applied to macromolecules are now widely spread and in continuous expansion. In this context, representing external molecular surface such as the Van der Waals Surface or the Solvent Excluded Surface can be useful for several applications. We propose a fast and parameterizable algorithm giving good visual quality meshes representing molecular surfaces. It is obtained by isosurfacing a filtered electron density map. The density map is the result of the maximum of Gaussian functions placed around atom centers. This map is filtered by an ideal low-pass filter applied on the Fourier Transform of the density map. Applying the marching cubes algorithm on the inverse transform provides a mesh representation of the molecular surface.
THE CO-TO-H{sub 2} CONVERSION FACTOR AND DUST-TO-GAS RATIO ON KILOPARSEC SCALES IN NEARBY GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandstrom, K. M.; Walter, F.; Leroy, A. K.
2013-11-01
We present ∼kiloparsec spatial resolution maps of the CO-to-H{sub 2} conversion factor (α{sub CO}) and dust-to-gas ratio (DGR) in 26 nearby, star-forming galaxies. We have simultaneously solved for α{sub CO} and the DGR by assuming that the DGR is approximately constant on kiloparsec scales. With this assumption, we can combine maps of dust mass surface density, CO-integrated intensity, and H I column density to solve for both α{sub CO} and the DGR with no assumptions about their value or dependence on metallicity or other parameters. Such a study has just become possible with the availability of high-resolution far-IR maps frommore » the Herschel key program KINGFISH, {sup 12}CO J = (2-1) maps from the IRAM 30 m large program HERACLES, and H I 21 cm line maps from THINGS. We use a fixed ratio between the (2-1) and (1-0) lines to present our α{sub CO} results on the more typically used {sup 12}CO J = (1-0) scale and show using literature measurements that variations in the line ratio do not affect our results. In total, we derive 782 individual solutions for α{sub CO} and the DGR. On average, α{sub CO} = 3.1 M{sub ☉} pc{sup –2} (K km s{sup –1}){sup –1} for our sample with a standard deviation of 0.3 dex. Within galaxies, we observe a generally flat profile of α{sub CO} as a function of galactocentric radius. However, most galaxies exhibit a lower α{sub CO} value in the central kiloparsec—a factor of ∼2 below the galaxy mean, on average. In some cases, the central α{sub CO} value can be factors of 5-10 below the standard Milky Way (MW) value of α{sub CO,{sub MW}} = 4.4 M{sub ☉} pc{sup –2} (K km s{sup –1}){sup –1}. While for α{sub CO} we find only weak correlations with metallicity, the DGR is well-correlated with metallicity, with an approximately linear slope. Finally, we present several recommendations for choosing an appropriate α{sub CO} for studies of nearby galaxies.« less
Stability and Structure of Star-Shape Granules
NASA Astrophysics Data System (ADS)
Zhao, Yuchen; Bares, Jonathan; Zheng, Matthew; Dierichs, Karola; Menges, Achim; Behringer, Robert
2015-11-01
Columns are made of convex non-cohesive grains like sand collapse after being released from initial positions. On the other hand, various architectures built by concave grains can maintain stability. We explore why these structures are stable, and how stable they can be. We performed experiments by randomly pouring identical star-shape particles into hollow cylinders left on glass and a rough base, and observed stable granular columns after lifting the cylinders. Particles have six 9 mm arms, which extend symmetrically in the xyz directions. Both the probability of creating a stable column and mechanical stability aspects have been investigated. We define r as the weight fraction of particles that fall out of the column after removing confinement. r gradually increases as the column height increases, or the column diameter decreases. We also explored different experiment conditions such as vibration of columns with confinement, or large basal friction. We also consider different stability measures such as the maximum inclination angle or maximum weight a column can support. In order to understand structure leading to stability, 3D CT scan reconstructions of columns have been done and coordination number and packing density will be discussed. We acknowledge supports from W.M.Keck Foundation and Research Triangle MRSEC.
Daily Global Mapping of Mars Ozone Column Abundances with MARCI UV Band Imaging
NASA Technical Reports Server (NTRS)
Clancy, R. Todd; Wolff, Michael J.; Lefevre, Franck; Cantor, Bruce A.; Malin, Michael C.; Smith, Michael D.
2015-01-01
Since November of 2006, The Mars Color Imager (MARCI) onboard the Mars Reconnaissance Orbiter (MRO) has obtained multiple-filter daily global images of Mars centered upon a local time (LT) of 3 pm. Ultraviolet imaging bands placed within (260 nm) and longward (320 nm) of Hartley band (240-300 nm) ozone (O3) absorption support retrievals of atmospheric ozone columns, with detection limits (approximately 1 micrometer-atm) appropriate to mapping elevated O3 abundances at low latitudes around Mars aphelion, and over mid-to-high latitudes during fall/winter/spring seasons. MARCI O3 maps for these regions reveal the detailed spatial (approximately 1 deg lat/long, for 8 x 8 pixel binned resolution) and temporal (daily, with substantial LT coverage at pole) behaviors of water vapor saturation conditions that force large variations in water vapor photolysis products (HOx-OH, HO2, and H) responsible for the catalytic destruction of O3 in the Mars atmosphere. A detailed description of the MARCI O3 data set, including measurement and retrieval characteristics, is provided in conjunction with comparisons to Mars Express SPICAM ozone measurements (Perrier, S. et al. [2006]. J. Geophys. Res. (Planets) 111) and LMD GCM simulated O3 abundances (Lefevre, F. [2004]. J. Geophys. Res. (Planets) 109). Presented aspects of the MARCI ozone mapping data set include aphelion increases in low latitude O3, dynamically evolving high latitude O3 maxima associated with planetary waves and weather fronts during northern early spring, and distinctive winter/spring O3 and CO increases within the Hellas Basin associated with transport of condensation enhanced south polar air mass. Comparisons of coincident MARCI measurements and LMD simulations for ice cloud and O3 columns are considered in the context of potential heterogeneous photochemical processes (Lefevre, F. [2008]. Nature 454, 971-975), which are not strongly evidenced in the MARCI observations. Modest interannual variations are exhibited, most notably a 20% reduction in aphelion low latitude O3 columns following the 2007 perihelic global dust storm.
Daily global mapping of Mars ozone column abundances with MARCI UV band imaging
NASA Astrophysics Data System (ADS)
Todd Clancy, R.; Wolff, Michael J.; Lefèvre, Franck; Cantor, Bruce A.; Malin, Michael C.; Smith, Michael D.
2016-03-01
Since November of 2006, The Mars Color Imager (MARCI) onboard the Mars Reconnaissance Orbiter (MRO) has obtained multiple-filter daily global images of Mars centered upon a local time (LT) of 3 pm. Ultraviolet imaging bands placed within (260 nm) and longward (320 nm) of Hartley band (240-300 nm) ozone (O3) absorption support retrievals of atmospheric ozone columns, with detection limits (∼1 μm-atm) appropriate to mapping elevated O3 abundances at low latitudes around Mars aphelion, and over mid-to-high latitudes during fall/winter/spring seasons. MARCI O3 maps for these regions reveal the detailed spatial (∼1° lat/long, for 8 × 8 pixel binned resolution) and temporal (daily, with substantial LT coverage at pole) behaviors of water vapor saturation conditions that force large variations in water vapor photolysis products (HOx-OH, HO2, and H) responsible for the catalytic destruction of O3 in the Mars atmosphere. A detailed description of the MARCI O3 data set, including measurement and retrieval characteristics, is provided in conjunction with comparisons to Mars Express SPICAM ozone measurements (Perrier, S. et al. [2006]. J. Geophys. Res. (Planets) 111) and LMD GCM simulated O3 abundances (Lefèvre, F. [2004]. J. Geophys. Res. (Planets) 109). Presented aspects of the MARCI ozone mapping data set include aphelion increases in low latitude O3, dynamically evolving high latitude O3 maxima associated with planetary waves and weather fronts during northern early spring, and distinctive winter/spring O3 and CO increases within the Hellas Basin associated with transport of condensation-enhanced south polar air mass. Comparisons of coincident MARCI measurements and LMD simulations for ice cloud and O3 columns are considered in the context of potential heterogeneous photochemical processes (Lefèvre, F. [2008]. Nature 454, 971-975), which are not strongly evidenced in the MARCI observations. Modest interannual variations are exhibited, most notably a 20% reduction in aphelion low latitude O3 columns following the 2007 perihelic global dust storm.
Multi- and hyperspectral remote sensing of tropical marine benthic habitats
NASA Astrophysics Data System (ADS)
Mishra, Deepak R.
Tropical marine benthic habitats such as coral reef and associated environments are severely endangered because of the environmental degradation coupled with hurricanes, El Nino events, coastal pollution and runoff, tourism, and economic development. To monitor and protect this diverse environment it is important to not only develop baseline maps depicting their spatial distribution but also to document their changing conditions over time. Remote sensing offers an important means of delineating and monitoring coral reef ecosystems. Over the last twenty years the scientific community has been investigating the use and potential of remote sensing techniques to determine the conditions of the coral reefs by analyzing their spectral characteristics from space. One of the problems in monitoring coral reefs from space is the effect of the water column on the remotely sensed signal. When light penetrates water its intensity decreases exponentially with increasing depth. This process, known as water column attenuation, exerts a profound effect on remotely sensed data collected over water bodies. The approach presented in this research focuses on the development of semi-analytical models that resolves the confounding influence water column attenuation on substrate reflectance to characterize benthic habitats from high resolution remotely sensed imagery on a per-pixel basis. High spatial resolution satellite and airborne imagery were used as inputs in the models to derive water depth and water column optical properties (e.g., absorption and backscattering coefficients). These parameters were subsequently used in various bio-optical algorithms to deduce bottom albedo and then to classify the benthos, generating a detailed map of benthic habitats. IKONOS and QuickBird multispectral satellite data and AISA Eagle hyperspectral airborne data were used in this research for benthic habitat mapping along the north shore of Roatan Island, Honduras. The AISA Eagle classification was consistently more accurate (84%) including finer definition of geomorphological features than the satellite sensors. IKONOS (81%) and QuickBird (81%) sensors showed similar accuracy to AISA, however, such similarity was only reached at the coarse classification levels of 5 and 6 habitats. These results confirm the potential of an effective combination of high spectral and spatial resolution sensor, for accurate benthic habitat mapping.
Cassini atmospheric chemistry mapper. Volume 1. Investigation and technical plan
NASA Technical Reports Server (NTRS)
Smith, William Hayden; Baines, Kevin Hays; Drossart, Pierre; Fegley, Bruce; Orton, Glenn; Noll, Keith; Reitsema, Harold; Bjoraker, Gordon L.
1990-01-01
The Cassini Atmospheric Chemistry Mapper (ACM) enables a broad range of atmospheric science investigations for Saturn and Titan by providing high spectral and spatial resolution mapping and occultation capabilities at 3 and 5 microns. ACM can directly address the major atmospheric science objectives for Saturn and for Titan, as defined by the Announcement of Opportunity, with pivotal diagnostic measurements not accessible to any other proposed Cassini instrument. ACM determines mixing ratios for atmospheric molecules from spectral line profiles for an important and extensive volume of the atmosphere of Saturn (and Jupiter). Spatial and vertical profiles of disequilibrium species abundances define Saturn's deep atmosphere, its chemistry, and its vertical transport phenomena. ACM spectral maps provide a unique means to interpret atmospheric conditions in the deep (approximately 1000 bar) atmosphere of Saturn. Deep chemistry and vertical transport is inferred from the vertical and horizontal distribution of a series of disequilibrium species. Solar occultations provide a method to bridge the altitude range in Saturn's (and Titan's) atmosphere that is not accessible to radio science, thermal infrared, and UV spectroscopy with temperature measurements to plus or minus 2K from the analysis of molecular line ratios and to attain an high sensitivity for low-abundance chemical species in the very large column densities that may be achieved during occultations for Saturn. For Titan, ACM solar occultations yield very well resolved (1/6 scale height) vertical mixing ratios column abundances for atmospheric molecular constituents. Occultations also provide for detecting abundant species very high in the upper atmosphere, while at greater depths, detecting the isotopes of C and O, constraining the production mechanisms, and/or sources for the above species. ACM measures the vertical and horizontal distribution of aerosols via their opacity at 3 microns and, particularly, at 5 microns. ACM recovers spatially-resolved atmospheric temperatures in Titan's troposphere via 3- and 5-microns spectral transitions. Together, the mixing ratio profiles and the aerosol distributions are utilized to investigate the photochemistry of the stratosphere and consequent formation processes for aerosols. Finally, ring opacities, observed during solar occultations and in reflected sunlight, provide a measurement of the particle size and distribution of ring material. ACM will be the first high spectral resolution mapping spectrometer on an outer planet mission for atmospheric studies while retaining a high resolution spatial mapping capability. ACM, thus, opens an entirely new range of orbital scientific studies of the origin, physio-chemical evolution and structure of the Saturn and Titan atmospheres. ACM provides high angular resolution spectral maps, viewing nadir and near-limb thermal radiation and reflected sunlight; sounds planetary limbs, spatially resolving vertical profiles to several atmospheric scale heights; and measures solar occultations, mapping both atmospheres and rings. ACM's high spectral and spatial resolution mapping capability is achieved with a simplified Fourier Transform spectrometer with a no-moving parts, physically compact design. ACM's simplicity guarantees an inherent stability essential for reliable performance throughout the lengthy Cassini Orbiter mission.
Yuan, Ruijuan; Wang, Yan; Ding, Guosheng
2010-01-01
A sulfated poly β-cyclodextrin (SPCD) modified silica-based monolithic column was prepared for enantiomeric separation. First, 2-hydroxy-3-allyloxy-propyl-β-cyclodextrin (allyl-β-CD) was bonded onto a bifunctional reagent 3-(methacryloxy)propyltriethoxysilane (γ-MAPS) modified silica-based monolith through radical polymerization; the column was then sulfated with chlorosulfonic acid. The SPCD chiral stationary phase resolved the boring problem associated with desalting when sulfated CDs were synthesized to act as chiral additives. The inorganic salt in the column introduced during the sulfating process could be easily removed by washing the column with water for some time. Chiral compounds investigated were successfully resolved into their enantiomers on the SPCD modified monolith in the capillary electrochromatography (CEC) mode. Due to the existence of the -SO(3)H group, electrosmotic flow (EOF) was obviously increased, and all of the separations could be carried out in 20 min with only a minor loss in the column efficiency and resolution.
The H i-to-H{sub 2} Transition in a Turbulent Medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bialy, Shmuel; Sternberg, Amiel; Burkhart, Blakesley, E-mail: shmuelbi@mail.tau.ac.il
2017-07-10
We study the effect of density fluctuations induced by turbulence on the H i/H{sub 2} structure in photodissociation regions (PDRs) both analytically and numerically. We perform magnetohydrodynamic numerical simulations for both subsonic and supersonic turbulent gas and chemical H i/H{sub 2} balance calculations. We derive atomic-to-molecular density profiles and the H i column density probability density function (PDF) assuming chemical equilibrium. We find that, while the H i/H{sub 2} density profiles are strongly perturbed in turbulent gas, the mean H i column density is well approximated by the uniform-density analytic formula of Sternberg et al. The PDF width depends onmore » (a) the radiation intensity–to–mean density ratio, (b) the sonic Mach number, and (c) the turbulence decorrelation scale, or driving scale. We derive an analytic model for the H i PDF and demonstrate how our model, combined with 21 cm observations, can be used to constrain the Mach number and driving scale of turbulent gas. As an example, we apply our model to observations of H i in the Perseus molecular cloud. We show that a narrow observed H i PDF may imply small-scale decorrelation, pointing to the potential importance of subcloud-scale turbulence driving.« less
A new model is described for computing in-chamber actinic flux using site specific conditions that include time of day, air pressure, total column ozone, total column water vapor, relative humidity, aerosol type, aerosol optical density at 500 nm, and the spectral albedo of the g...
Accretion Makes a Splash on TW Hydrae
NASA Astrophysics Data System (ADS)
Brickhouse, N. S.
2011-12-01
The Chandra Large Program on the Classical T Tauri star TW Hydrae (489 ksec, obtained over the course of one month) brings a wealth of spectral diagnostics to the study of X-ray emission from a young star. The emission measure distribution shows two components separated by a gap (i.e. no emission measure in between). Light curves for the two components can then be constructed from the summed light curves of the appropriate individual lines. The two light curves show uncorrelated variability, with one large flare occurring only in the hot component. We associate the hotter component with the corona, since its peak temperature is ˜10 MK. Ne IX line ratio diagnostics for temperature and density indicate that the source of the cooler component is indeed the accretion shock, as originally reported by Kastner et al. (2002). The temperature and density of the accretion shock are in excellent agreement with models using mass accretion rates derived from the optical. We require a third component, which we call the "post-shock region," from line ratio diagnostics of O VII. The density derived from O VII is lower than the density derived from Ne IX, contrary to standard one-dimensional model expectations and from hydrodynamics simulations to date. The column densities derived from the two ions are also significantly different, with the column density from O VII lower than that from Ne IX. This post-shock region cannot be the settling flow expected from the cooling of the shock column, since its mass is 30 times the mass of material that passes through the shock. Instead this region is the splash of stellar atmosphere that has been hit by the accretion stream and heated by the accretion process (Brickhouse et al. 2010).
NASA Astrophysics Data System (ADS)
Bock, James Joseph
1994-01-01
We report an observation of 158 micron line emission from singly ionized carbon from the diffuse interstellar medium at high galactic latitude. The integrated line intensity is measured in a 36 arcmin field-of-view along a triangular scan path in a 5 deg x 20 deg region in Ursa Major using a rocket-borne, liquid helium cooled spectrophotometer. The scan includes high latitude infrared cirrus, molecular clouds, a bright external galaxy, M82, and the HI Hole, which is a region of uniquely low neutral hydrogen column density. Emission from (CII) is observed in all regions and, in the absence of appreciable CO emission, is well correlated with neutral hydrogen column density. We observe a (CII) gas cooling rate which varies from (3.25 +/- 0.8 to 1.18 +/- 0.4) x 10-26 ergs-1 H-atom-1, in good agreement with recent observations of UV absorption lines at high galactic latitude. Regions with CO emission have enhanced (CII) line emission over that expected from the correlation with neutral hydrogen column density. The line-to-continuum ratio varies from I(CII)/lambda Ilambda = 0.002 to 0.008 in comparison with the all sky average of 0.0082 reported by FIRAS, which is heavily weighted towards the Galactic plane. The far-infrared continuum intensity, measured at 134 microns, 154 microns, and 186 microns, correlates with the 100 micron brightness measured by IRAS, and in regions excluding molecular clouds, with HI column density. The far-infrared brightness correlated with HI column density is fit by a thermal spectrum with a temperature T = 16.4 (+2.3/-1.8) K assuming an index of emissivity n = 2. The residual brightness after subtracting the emission correlated with neutral hydrogen column density yields an upper limit to the far-infrared extra-galactic background radiation of lambda Ilambda (154 microns) less than 2.6 x 10-12 W cm-2 sr-1. The observation of M82 confirms the laboratory calibration of the instrument. Unique instrumentation was developed to realize the instrument. A high sensitivity detection system consisting of stressed Ge:Ga photoconductors coupled to charge integrating amplifiers is described. We developed a compact, miniature He-4 refrigerator suitable for spaceborne operation. A silicon-gap Fabry-Perot filter, designed for use in high-throughput, compact optical systems, was developed. The performance of a far-infrared low-pass filter stack with high out-of-band rejection is reported. We tested the performance of a telescope baffle system with high-off axis rejection in a combination of ground-based and rocket-borne experiments. A submillimeter-black coating suitable for use in spaceborne telescopes is described. We report the laboratory testing of the instrument and the performance during the flight, and discuss the scientific implications of the observations.
NASA Astrophysics Data System (ADS)
Federrath, Christoph; Salim, Diane M.; Medling, Anne M.; Davies, Rebecca L.; Yuan, Tiantian; Bian, Fuyan; Groves, Brent A.; Ho, I.-Ting; Sharp, Robert; Kewley, Lisa J.; Sweet, Sarah M.; Richards, Samuel N.; Bryant, Julia J.; Brough, Sarah; Croom, Scott; Scott, Nicholas; Lawrence, Jon; Konstantopoulos, Iraklis; Goodwin, Michael
2017-07-01
Stars form in cold molecular clouds. However, molecular gas is difficult to observe because the most abundant molecule (H2) lacks a permanent dipole moment. Rotational transitions of CO are often used as a tracer of H2, but CO is much less abundant and the conversion from CO intensity to H2 mass is often highly uncertain. Here we present a new method for estimating the column density of cold molecular gas (Σgas) using optical spectroscopy. We utilize the spatially resolved Hα maps of flux and velocity dispersion from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. We derive maps of Σgas by inverting the multi-freefall star formation relation, which connects the star formation rate surface density (ΣSFR) with Σgas and the turbulent Mach number (M). Based on the measured range of ΣSFR = 0.005-1.5 {M_{⊙} yr^{-1} kpc^{-2}} and M=18-130, we predict Σgas = 7-200 {M_{⊙} pc^{-2}} in the star-forming regions of our sample of 260 SAMI galaxies. These values are close to previously measured Σgas obtained directly with unresolved CO observations of similar galaxies at low redshift. We classify each galaxy in our sample as 'star-forming' (219) or 'composite/AGN/shock' (41), and find that in 'composite/AGN/shock' galaxies the average ΣSFR, M and Σgas are enhanced by factors of 2.0, 1.6 and 1.3, respectively, compared to star-forming galaxies. We compare our predictions of Σgas with those obtained by inverting the Kennicutt-Schmidt relation and find that our new method is a factor of 2 more accurate in predicting Σgas, with an average deviation of 32 per cent from the actual Σgas.
H I Structure and Topology of the Galaxy Revealed by the I-GALFA H I 21-cm Line Survey
NASA Astrophysics Data System (ADS)
Koo, Bon-Chul; Park, G.; Cho, W.; Gibson, S. J.; Kang, J.; Douglas, K. A.; Peek, J. E. G.; Korpela, E. J.; Heiles, C. E.
2011-05-01
The I-GALFA survey mapping all the H I in the inner Galactic disk visible to the Arecibo 305m telescope within 10 degrees of the Galactic plane (longitudes of 32 to 77 degrees at b = 0) completed observations in 2009 September and will soon be made publicly available. The high (3.4 arcmin) resolution and tremendous sensitivity of the survey offer a great opportunity to observe the fine details of H I both in the inner and in the far outer Galaxy. The reduced HI column density maps show that the HI structure is highly filamentary and clumpy, pervaded by shell-like structures, vertical filaments, and small clumps. By inspecting individual maps, we have found 36 shell candidates of angular sizes ranging from 0.4 to 12 degrees, half of which appear to be expanding. In order to characterize the filamentary/clumpy morphology of the HI structure, we have carried out statistical analyses of selected areas representing the spiral arms in the inner and outer Galaxy. Genus statistics that can distinguish the ``meatball'' and ``swiss-cheese'' topologies show that the HI topology is clump-like in most regions. The two-dimensional Fourier analysis further shows the HI structures are filamentary and mainly parallel to the plane in the outer Galaxy. We also examine the level-crossing statistics, the results of which are described in detail in an accompanying poster by Park et al.
The Transition from Diffuse to Dense Gas in Herschel Dust Emission Maps
NASA Astrophysics Data System (ADS)
Goldsmith, Paul
Dense cores in dark clouds are the sites where young stars form. These regions manifest as relatively small (<0.1pc) pockets of cold and dense gas. If we wish to understand the star formation process, we have to understand the physical conditions in dense cores. This has been a main aim of star formation research in the past decade. Today, we do indeed possess a good knowledge of the density and velocity structure of cores, as well as their chemical evolution and physical lifetime. However, we do not understand well how dense cores form out of the diffuse gas clouds surrounding them. It is crucial that we constrain the relationship between dense cores and their environment: if we only understand dense cores, we may be able to understand how individual stars form --- but we would not know how the star forming dense cores themselves come into existence. We therefore propose to obtain data sets that reveal both dense cores and the clouds containing them in the same map. Based on these maps, we will study how dense cores form out of their natal clouds. Since cores form stars, this knowledge is crucial for the development of a complete theoretical and observational understanding of the formation of stars and their planets, as envisioned in NASA's Strategic Science Plan. Fortunately, existing archival data allow to derive exactly the sort of maps we need for our analysis. Here, we describe a program that exclusively builds on PACS and SPIRE dust emission imaging data from the NASA-supported Herschel mission. The degree-sized wide-field Herschel maps of the nearby (<260pc) Polaris Flare and Aquila Rift clouds are ideal for our work. They permit to resolve dense cores (<0.1pc), while the maps also reveal large-scale cloud structure (5pc and larger). We will generate column density maps from these dust emission maps and then run a tree-based hierarchical multi-scale structure analysis on them. Only this procedure permits to exploit the full potential of the maps: we will characterize cloud structure over a vast range of spatial scales. This work has many advantages over previous studies, where information about dense cores and their environment was pieced together using a variety of methods an instruments. Now, the Herschel maps permit for the first time to characterize both molecular clouds and their cores in one shot in a single data set. We use these data to answer a variety of simple yet very important questions. First, we study whether dense cores have sharp boundaries. If such boundaries exist, they would indicate that dense cores have an individual identity well-separate from the near-fractal cloud structure on larger spatial scales. Second, we will --- in very approximate sense --- derive global density gradients for molecular clouds from radii <0.1pc to 5pc and larger. These "synoptic" density gradients provide a useful quantitative description of the relation between cloud material at very different spatial scales. Also, these measurements can be compared to synoptic density gradients derived in the same fashion for theoretical cloud models. Third, we study how dense cores are nested into the "clumps" forming molecular clouds, i.e., we study whether the most massive dense cores in a cloud (<0.1pc) reside in the most massive regions identified on lager spatial scale (1pc and larger). This will show how the properties of dense cores are influenced by their environment. Our study will derive unique constraints to cloud structure. But our small sample forbids to make strong statements. This pilot study does thus prepare future larger efforts. Our entire project builds on data reduction and analysis methods which our team has used in the past. This guarantees a swift completion of the project with predictable efficiency. We present pilot studies that demonstrate that the data and analysis methods are suited to tackle the science goals. This project is thus guaranteed to return significant results.
Yule, Daniel L.; Adams, Jean V.; Warner, David M.; Hrabik, Thomas R.; Kocovsky, Patrick M.; Weidel, Brian C.; Rudstam, Lars G.; Sullivan, Patrick J.
2013-01-01
Pelagic fish assessments often combine large amounts of acoustic-based fish density data and limited midwater trawl information to estimate species-specific biomass density. We compared the accuracy of five apportionment methods for estimating pelagic fish biomass density using simulated communities with known fish numbers that mimic Lakes Superior, Michigan, and Ontario, representing a range of fish community complexities. Across all apportionment methods, the error in the estimated biomass generally declined with increasing effort, but methods that accounted for community composition changes with water column depth performed best. Correlations between trawl catch and the true species composition were highest when more fish were caught, highlighting the benefits of targeted trawling in locations of high fish density. Pelagic fish surveys should incorporate geographic and water column depth stratification in the survey design, use apportionment methods that account for species-specific depth differences, target midwater trawling effort in areas of high fish density, and include at least 15 midwater trawls. With relatively basic biological information, simulations of fish communities and sampling programs can optimize effort allocation and reduce error in biomass estimates.
Galactic cold cores. IV. Cold submillimetre sources: catalogue and statistical analysis
NASA Astrophysics Data System (ADS)
Montillaud, J.; Juvela, M.; Rivera-Ingraham, A.; Malinen, J.; Pelkonen, V.-M.; Ristorcelli, I.; Montier, L.; Marshall, D. J.; Marton, G.; Pagani, L.; Toth, L. V.; Zahorecz, S.; Ysard, N.; McGehee, P.; Paladini, R.; Falgarone, E.; Bernard, J.-P.; Motte, F.; Zavagno, A.; Doi, Y.
2015-12-01
Context. For the project Galactic cold cores, Herschel photometric observations were carried out as a follow-up of cold regions of interstellar clouds previously identified with the Planck satellite. The aim of the project is to derive the physical properties of the population of cold sources and to study its connection to ongoing and future star formation. Aims: We build a catalogue of cold sources within the clouds in 116 fields observed with the Herschel PACS and SPIRE instruments. We wish to determine the general physical characteristics of the cold sources and to examine the correlations with their host cloud properties. Methods: From Herschel data, we computed colour temperature and column density maps of the fields. We estimated the distance to the target clouds and provide both uncertainties and reliability flags for the distances. The getsources multiwavelength source extraction algorithm was employed to build a catalogue of several thousand cold sources. Mid-infrared data were used, along with colour and position criteria, to separate starless and protostellar sources. We also propose another classification method based on submillimetre temperature profiles. We analysed the statistical distributions of the physical properties of the source samples. Results: We provide a catalogue of ~4000 cold sources within or near star forming clouds, most of which are located either in nearby molecular complexes (≲1 kpc) or in star forming regions of the nearby galactic arms (~2 kpc). About 70% of the sources have a size compatible with an individual core, and 35% of those sources are likely to be gravitationally bound. Significant statistical differences in physical properties are found between starless and protostellar sources, in column density versus dust temperature, mass versus size, and mass versus dust temperature diagrams. The core mass functions are very similar to those previously reported for other regions. On statistical grounds we find that gravitationally bound sources have higher background column densities (median Nbg(H2) ~ 5 × 1021 cm-2) than unbound sources (median Nbg(H2) ~ 3 × 1021 cm-2). These values of Nbg(H2) are higher for higher dust temperatures of the external layers of the parent cloud. However, only in a few cases do we find clear Nbg(H2) thresholds for the presence of cores. The dust temperatures of cloud external layers show clear variations with galactic location, as may the source temperatures. Conclusions: Our data support a more complex view of star formation than in the simple idea of a column density threshold. They show a clear influence of the surrounding UV-visible radiation on how cores distribute in their host clouds with possible variations on the Galactic scale. Planck (http://www.esa.int/Planck) is a project of the European Space Agency - ESA - with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific consortium led and funded by Denmark.Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Full Table B.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A92
A Servicewide Benthic Mapping Program for National Parks
Moses, Christopher S.; Nayegandhi, Amar; Beavers, Rebecca; Brock, John
2010-01-01
In 2007, the National Park Service (NPS) Inventory and Monitoring Program directed the initiation of a benthic habitat mapping program in ocean and coastal parks in alignment with the NPS Ocean Park Stewardship 2007-2008 Action Plan. With 74 ocean and Great Lakes parks stretching over more than 5,000 miles of coastline across 26 States and territories, this Servicewide Benthic Mapping Program (SBMP) is essential. This program will deliver benthic habitat maps and their associated inventory reports to NPS managers in a consistent, servicewide format to support informed management and protection of 3 million acres of submerged National Park System natural and cultural resources. The NPS and the U.S. Geological Survey (USGS) convened a workshop June 3-5, 2008, in Lakewood, Colo., to discuss the goals and develop the design of the NPS SBMP with an assembly of experts (Moses and others, 2010) who identified park needs and suggested best practices for inventory and mapping of bathymetry, benthic cover, geology, geomorphology, and some water-column properties. The recommended SBMP protocols include servicewide standards (such as gap analysis, minimum accuracy, final products) as well as standards that can be adapted to fit network and park unit needs (for example, minimum mapping unit, mapping priorities). SBMP Mapping Process. The SBMP calls for a multi-step mapping process for each park, beginning with a gap assessment and data mining to determine data resources and needs. An interagency announcement of intent to acquire new data will provide opportunities to leverage partnerships. Prior to new data acquisition, all involved parties should be included in a scoping meeting held at network scale. Data collection will be followed by processing and interpretation, and finally expert review and publication. After publication, all digital materials will be archived in a common format. SBMP Classification Scheme. The SBMP will map using the Coastal and Marine Ecological Classification Standard (CMECS) that is being modified to include all NPS needs, such as lacustrine ecosystems and submerged cultural resources. CMECS Version III (Madden and others, 2010) includes components for water column, biotic cover, surface geology, sub-benthic, and geoform. SBMP Data Archiving. The SBMP calls for the storage of all raw data and final products in common-use data formats. The concept of 'collect once, use often' is essential to efficient use of mapping resources. Data should also be shared with other agencies and the public through various digital clearing houses, such as Geospatial One-Stop (http://gos2.geodata.gov/wps/portal/gos). To be most useful for managing submerged resources, the SBMP advocates the inventory and mapping of the five components of marine ecosystems: surface geology, biotic cover, geoform, sub-benthic, and water column. A complete benthic inventory of a park would include maps of bathymetry and the five components of CMECS. The completion of mapping for any set of components, such as bathymetry and surface geology, or a particular theme (for example, submerged aquatic vegetation) should also include a printed report.
LRO-LAMP Observations of Lunar Exospheric Helium
NASA Astrophysics Data System (ADS)
Grava, Cesare; Retherford, Kurt D.; Hurley, Dana M.; Feldman, Paul D.; Gladstone, Randy; Greathouse, Thomas K.; Cook, Jason C.; Stern, Alan; Pryor, Wayne R.; Halekas, Jasper S.; Kaufmann, David E.
2015-11-01
We present results from Lunar Reconnaissance Orbiter’s (LRO) UV spectrograph LAMP (Lyman-Alpha Mapping Project) campaign to study the lunar atmosphere. Two kinds of off-nadir maneuvers (lateral rolls and pitches towards and opposite the direction of motion of LRO) were performed to search for resonantly scattering species, increasing the illuminated line-of-sight (and hence the signal from atoms resonantly scattering the solar photons) compared to previously reported LAMP “twilight observations” [Cook & Stern, 2014]. Helium was the only element distinguishable on a daily basis, and we present latitudinal profiles of its line-of-sight column density in December 2013. We compared the helium line-of-sight column densities with solar wind alpha particle fluxes measured from the ARTEMIS (Acceleration, Reconnection, Turbulence, & Electrodynamics of Moon’s Interaction with the Sun) twin spacecraft. Our data show a correlation with the solar wind alpha particle flux, confirming that the solar wind is the main source of the lunar helium, but not with a 1:1 relationship. Assuming that the lunar soil is saturated with helium atoms, our results suggest that not all of the incident alpha particles are converted to thermalized helium, allowing for a non-negligible fraction (~50 %) to escape as suprathermal helium or simply backscattered from the lunar surface. We also support the finding by Benna et al. [2015] and Hurley et al. [2015], that a non-zero contribution from endogenic helium, coming from radioactive decay of 232Th and 238U within the mantle, is present, and is estimated to be (4.5±1.2) x 106 He atoms cm-2 s-1. Finally, we compare LAMP-derived helium surface density with the one recorded by the mass spectrometer LACE (Lunar Atmospheric Composition Experiment) deployed on the lunar surface during the Apollo 17 mission, finding good agreement between the two measurements. These LRO off-nadir maneuvers allow LAMP to provide unique coverage of local solar time and latitude of the lunar exospheric helium, allowing for a better understanding of the temporal and spatial structure of the lunar exosphere.
Tsai, Hsin Y; Robledo, Diego; Lowe, Natalie R; Bekaert, Michael; Taggart, John B; Bron, James E; Houston, Ross D
2016-07-07
High density linkage maps are useful tools for fine-scale mapping of quantitative trait loci, and characterization of the recombination landscape of a species' genome. Genomic resources for Atlantic salmon (Salmo salar) include a well-assembled reference genome, and high density single nucleotide polymorphism (SNP) arrays. Our aim was to create a high density linkage map, and to align it with the reference genome assembly. Over 96,000 SNPs were mapped and ordered on the 29 salmon linkage groups using a pedigreed population comprising 622 fish from 60 nuclear families, all genotyped with the 'ssalar01' high density SNP array. The number of SNPs per group showed a high positive correlation with physical chromosome length (r = 0.95). While the order of markers on the genetic and physical maps was generally consistent, areas of discrepancy were identified. Approximately 6.5% of the previously unmapped reference genome sequence was assigned to chromosomes using the linkage map. Male recombination rate was lower than females across the vast majority of the genome, but with a notable peak in subtelomeric regions. Finally, using RNA-Seq data to annotate the reference genome, the mapped SNPs were categorized according to their predicted function, including annotation of ∼2500 putative nonsynonymous variants. The highest density SNP linkage map for any salmonid species has been created, annotated, and integrated with the Atlantic salmon reference genome assembly. This map highlights the marked heterochiasmy of salmon, and provides a useful resource for salmonid genetics and genomics research. Copyright © 2016 Tsai et al.
Increasing phytoplankton-available phosphorus and inhibition of macrophyte on phytoplankton bloom.
Dai, Yanran; Wu, Juan; Ma, Xiaohang; Zhong, Fei; Cui, Naxin; Cheng, Shuiping
2017-02-01
We assembled mesocosms to address the coherent mechanisms that an increasing phosphorus (P) concentration in water columns coupled with the phytoplankton bloom and identify the performance gap of regulating phytoplankton growth between two macrophyte species, Ceratophyllum demersum L. and Vallisneria spiralis L. Intense alkaline phosphatase activities (APA) were observed in the unplanted control, with their predominant part, phytoplankton APA (accounting for up to 44.7% of the total APA), and another large share, bacterial APA. These correspond with the large average concentration of total phosphorus (TP), total dissolved phosphorus (TDP) and soluble reactive (SRP) as well as high phytoplankton density in the water column. The consistency among P concentrations, phytoplankton density and APA, together with the positive impact of phytoplankton density on total APA revealed by the structural equation modelling (SEM), indicates that facilitated APA levels in water is an essential strategy for phytoplankton to enhance the available P. Furthermore, a positive interaction between phytoplankton APA and bacteria APA was detected, suggesting a potential collaboration between phytoplankton and bacteria to boost available P content in the water column. Both macrophyte species had a prominent performance on regulating phytoplankton proliferation. The phytoplankton density and quantum yield in C. demersum systems were all significantly lower (33.8% and 24.0%) than those in V. spiralis systems. Additionally, a greater decoupling effect of C. demersum on the relationship between P, APA, phytoplankton density, bacteria dynamic and quantum yield was revealed by SEM. These results imply that the preferred tactic of different species could lead to the performance gap. Copyright © 2016 Elsevier B.V. All rights reserved.
Test of direct and indirect effects of agrochemicals on the survival of fecal indicator bacteria.
Staley, Zachery R; Rohr, Jason R; Harwood, Valerie J
2011-12-01
Water bodies often receive agrochemicals and animal waste carrying fecal indicator bacteria (FIB) and zoonotic pathogens, but we know little about the effects of agrochemicals on these microbes. We assessed the direct effects of the pesticides atrazine, malathion, and chlorothalonil and inorganic fertilizer on Escherichia coli and enterococcal survival in simplified microcosms held in the dark. E. coli strain composition in sediments and water column were positively correlated, but none of the agrochemicals had significant direct effects on E. coli strain composition or on densities of culturable FIBs. In a companion study, microcosms with nondisinfected pond water and sediments were exposed to or shielded from sunlight to examine the potential indirect effects of atrazine and inorganic fertilizer on E. coli. The herbicide atrazine had no effect on E. coli in dark-exposed microcosms containing natural microbial and algal communities. However, in light-exposed microcosms, atrazine significantly lowered E. coli densities in the water column and significantly increased densities in the sediment compared to controls. This effect appears to be mediated by the effects of atrazine on algae, given that atrazine significantly reduced phytoplankton, which was a positive and negative predictor of E. coli densities in the water column and sediment, respectively. These data suggest that atrazine does not directly affect the survival of FIB, rather that it indirectly alters the distribution and abundance of E. coli by altering phytoplankton and periphyton communities. These results improve our understanding of the influence of agricultural practices on FIB densities in water bodies impacted by agricultural runoff.
Test of Direct and Indirect Effects of Agrochemicals on the Survival of Fecal Indicator Bacteria▿
Staley, Zachery R.; Rohr, Jason R.; Harwood, Valerie J.
2011-01-01
Water bodies often receive agrochemicals and animal waste carrying fecal indicator bacteria (FIB) and zoonotic pathogens, but we know little about the effects of agrochemicals on these microbes. We assessed the direct effects of the pesticides atrazine, malathion, and chlorothalonil and inorganic fertilizer on Escherichia coli and enterococcal survival in simplified microcosms held in the dark. E. coli strain composition in sediments and water column were positively correlated, but none of the agrochemicals had significant direct effects on E. coli strain composition or on densities of culturable FIBs. In a companion study, microcosms with nondisinfected pond water and sediments were exposed to or shielded from sunlight to examine the potential indirect effects of atrazine and inorganic fertilizer on E. coli. The herbicide atrazine had no effect on E. coli in dark-exposed microcosms containing natural microbial and algal communities. However, in light-exposed microcosms, atrazine significantly lowered E. coli densities in the water column and significantly increased densities in the sediment compared to controls. This effect appears to be mediated by the effects of atrazine on algae, given that atrazine significantly reduced phytoplankton, which was a positive and negative predictor of E. coli densities in the water column and sediment, respectively. These data suggest that atrazine does not directly affect the survival of FIB, rather that it indirectly alters the distribution and abundance of E. coli by altering phytoplankton and periphyton communities. These results improve our understanding of the influence of agricultural practices on FIB densities in water bodies impacted by agricultural runoff. PMID:22003017
The structure and statistics of interstellar turbulence
NASA Astrophysics Data System (ADS)
Kritsuk, A. G.; Ustyugov, S. D.; Norman, M. L.
2017-06-01
We explore the structure and statistics of multiphase, magnetized ISM turbulence in the local Milky Way by means of driven periodic box numerical MHD simulations. Using the higher order-accurate piecewise-parabolic method on a local stencil (PPML), we carry out a small parameter survey varying the mean magnetic field strength and density while fixing the rms velocity to observed values. We quantify numerous characteristics of the transient and steady-state turbulence, including its thermodynamics and phase structure, kinetic and magnetic energy power spectra, structure functions, and distribution functions of density, column density, pressure, and magnetic field strength. The simulations reproduce many observables of the local ISM, including molecular clouds, such as the ratio of turbulent to mean magnetic field at 100 pc scale, the mass and volume fractions of thermally stable Hi, the lognormal distribution of column densities, the mass-weighted distribution of thermal pressure, and the linewidth-size relationship for molecular clouds. Our models predict the shape of magnetic field probability density functions (PDFs), which are strongly non-Gaussian, and the relative alignment of magnetic field and density structures. Finally, our models show how the observed low rates of star formation per free-fall time are controlled by the multiphase thermodynamics and large-scale turbulence.
Excitation of the molecular gas in the nuclear region of M 82
NASA Astrophysics Data System (ADS)
Loenen, A. F.; van der Werf, P. P.; Güsten, R.; Meijerink, R.; Israel, F. P.; Requena-Torres, M. A.; García-Burillo, S.; Harris, A. I.; Klein, T.; Kramer, C.; Lord, S.; Martín-Pintado, J.; Röllig, M.; Stutzki, J.; Szczerba, R.; Weiß, A.; Philipp-May, S.; Yorke, H.; Caux, E.; Delforge, B.; Helmich, F.; Lorenzani, A.; Morris, P.; Philips, T. G.; Risacher, C.; Tielens, A. G. G. M.
2010-10-01
We present high-resolution HIFI spectroscopy of the nucleus of the archetypical starburst galaxy M 82. Six 12CO lines, 2 13CO lines and 4 fine-structure lines have been detected. Besides showing the effects of the overall velocity structure of the nuclear region, the line profiles also indicate the presence of multiple components with different optical depths, temperatures, and densities in the observing beam. The data have been interpreted using a grid of PDR models. It is found that the majority of the molecular gas is in low density (n = 103.5 cm-3) clouds, with column densities of NH = 1021.5 cm-2 and a relatively low UV radiation field (G0 = 102). The remaining gas is predominantly found in clouds with higher densities (n = 105 cm-3) and radiation fields (G0 = 102.75), but somewhat lower column densities (NH = 1021.2 cm-2). The highest J CO lines are dominated by a small (1% relative surface filling) component, with an even higher density (n = 106 cm-3) and UV field (G0 = 103.25). These results show the strength of multi-component modelling for interpretating the integrated properties of galaxies.
Shetty, Priya B; Tang, Hua; Feng, Tao; Tayo, Bamidele; Morrison, Alanna C; Kardia, Sharon L R; Hanis, Craig L; Arnett, Donna K; Hunt, Steven C; Boerwinkle, Eric; Rao, Dabeeru C; Cooper, Richard S; Risch, Neil; Zhu, Xiaofeng
2015-02-01
Admixture mapping of lipids was followed-up by family-based association analysis to identify variants for cardiovascular disease in African Americans. The present study conducted admixture mapping analysis for total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. The analysis was performed in 1905 unrelated African American subjects from the National Heart, Lung and Blood Institute's Family Blood Pressure Program (FBPP). Regions showing admixture evidence were followed-up with family-based association analysis in 3556 African American subjects from the FBPP. The admixture mapping and family-based association analyses were adjusted for age, age(2), sex, body mass index, and genome-wide mean ancestry to minimize the confounding caused by population stratification. Regions that were suggestive of local ancestry association evidence were found on chromosomes 7 (low-density lipoprotein cholesterol), 8 (high-density lipoprotein cholesterol), 14 (triglycerides), and 19 (total cholesterol and triglycerides). In the fine-mapping analysis, 52 939 single-nucleotide polymorphisms (SNPs) were tested and 11 SNPs (8 independent SNPs) showed nominal significant association with high-density lipoprotein cholesterol (2 SNPs), low-density lipoprotein cholesterol (4 SNPs), and triglycerides (5 SNPs). The family data were used in the fine-mapping to identify SNPs that showed novel associations with lipids and regions, including genes with known associations for cardiovascular disease. This study identified regions on chromosomes 7, 8, 14, and 19 and 11 SNPs from the fine-mapping analysis that were associated with high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides for further studies of cardiovascular disease in African Americans. © 2014 American Heart Association, Inc.
High-resolution 2-deoxyglucose mapping of functional cortical columns in mouse barrel cortex.
McCasland, J S; Woolsey, T A
1988-12-22
Cortical columns associated with barrels in layer IV of the somatosensory cortex were characterized by high-resolution 2-deoxy-D-glucose (2DG) autoradiography in freely behaving mice. The method demonstrates a more exact match between columnar labeling and cytoarchitectonic barrel boundaries than previously reported. The pattern of cortical activation seen with stimulation of a single whisker (third whisker in the middle row of large hairs--C3) was compared with the patterns from two control conditions--normal animals with all whiskers present ("positive control")--and with all large whiskers clipped ("negative control"). Two types of measurements were made from 2DG autoradiograms of tangential cortical sections: 1) labeled cells were identified by eye and tabulated with a computer, and 2) grain densities were obtained automatically with a computer-controlled microscope and image processor. We studied the fine-grained patterns of 2DG labeling in a nine-barrel grid with the C3 barrel in the center. From the analysis we draw five major conclusions. 1. Approximately 30-40% of the total number of neurons in the C3 barrel column are activated when only the C3 whisker is stimulated. This is about twice the number of neurons labeled in the C3 column when all whiskers are stimulated and about ten times the number of neurons labeled when all large whiskers are clipped. 2. There is evidence for a vertical functional organization within a barrel-related whisker column which has smaller dimensions in the tangential direction than a barrel. There are densely labeled patches within a barrel which are unique to an individual cortex. The same patchy pattern is found in the appropriate regions of sections above and below the barrels through the full thickness of the cortex. This functional arrangement could be considered to be a "minicolumn" or more likely a group of "minicolumns" (Mountcastle: In G.M. Edelman and U.B. Mountcastle (eds): The Material Brain: Cortical Organization and the Group-Selective Theory of Higher Brain Function. Cambridge: MIT Press, '78). 3. Within the stereotyped geometry of the barrel field, there is considerable individual variation in the radial labeling distribution in corresponding (homotypical) columns of different cerebral hemispheres. This result is consistent with the hypothesis that dynamic processes operate to determine the connection strengths between neural elements in somatosensory cortex. It provides a basis for testing various "connectionist" and "group selection" theories of neural organization and development.(ABSTRACT TRUNCATED AT 400 WORDS)
Model-based local density sharpening of cryo-EM maps
Jakobi, Arjen J; Wilmanns, Matthias
2017-01-01
Atomic models based on high-resolution density maps are the ultimate result of the cryo-EM structure determination process. Here, we introduce a general procedure for local sharpening of cryo-EM density maps based on prior knowledge of an atomic reference structure. The procedure optimizes contrast of cryo-EM densities by amplitude scaling against the radially averaged local falloff estimated from a windowed reference model. By testing the procedure using six cryo-EM structures of TRPV1, β-galactosidase, γ-secretase, ribosome-EF-Tu complex, 20S proteasome and RNA polymerase III, we illustrate how local sharpening can increase interpretability of density maps in particular in cases of resolution variation and facilitates model building and atomic model refinement. PMID:29058676
Column-to-column packing variation of disposable pre-packed columns for protein chromatography.
Schweiger, Susanne; Hinterberger, Stephan; Jungbauer, Alois
2017-12-08
In the biopharmaceutical industry, pre-packed columns are the standard for process development, but they must be qualified before use in experimental studies to confirm the required performance of the packed bed. Column qualification is commonly done by pulse response experiments and depends highly on the experimental testing conditions. Additionally, the peak analysis method, the variation in the 3D packing structure of the bed, and the measurement precision of the workstation influence the outcome of qualification runs. While a full body of literature on these factors is available for HPLC columns, no comparable studies exist for preparative columns for protein chromatography. We quantified the influence of these parameters for commercially available pre-packed and self-packed columns of disposable and non-disposable design. Pulse response experiments were performed on 105 preparative chromatography columns with volumes of 0.2-20ml. The analyte acetone was studied at six different superficial velocities (30, 60, 100, 150, 250 and 500cm/h). The column-to-column packing variation between disposable pre-packed columns of different diameter-length combinations varied by 10-15%, which was acceptable for the intended use. The column-to-column variation cannot be explained by the packing density, but is interpreted as a difference in particle arrangement in the column. Since it was possible to determine differences in the column-to-column performance, we concluded that the columns were well-packed. The measurement precision of the chromatography workstation was independent of the column volume and was in a range of±0.01ml for the first peak moment and±0.007 ml 2 for the second moment. The measurement precision must be considered for small columns in the range of 2ml or less. The efficiency of disposable pre-packed columns was equal or better than that of self-packed columns. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Peng, Wenzhu; Xu, Jian; Zhang, Yan; Feng, Jianxin; Dong, Chuanju; Jiang, Likun; Feng, Jingyan; Chen, Baohua; Gong, Yiwen; Chen, Lin; Xu, Peng
2016-01-01
High density genetic linkage maps are essential for QTL fine mapping, comparative genomics and high quality genome sequence assembly. In this study, we constructed a high-density and high-resolution genetic linkage map with 28,194 SNP markers on 14,146 distinct loci for common carp based on high-throughput genotyping with the carp 250 K single nucleotide polymorphism (SNP) array in a mapping family. The genetic length of the consensus map was 10,595.94 cM with an average locus interval of 0.75 cM and an average marker interval of 0.38 cM. Comparative genomic analysis revealed high level of conserved syntenies between common carp and the closely related model species zebrafish and medaka. The genome scaffolds were anchored to the high-density linkage map, spanning 1,357 Mb of common carp reference genome. QTL mapping and association analysis identified 22 QTLs for growth-related traits and 7 QTLs for sex dimorphism. Candidate genes underlying growth-related traits were identified, including important regulators such as KISS2, IGF1, SMTLB, NPFFR1 and CPE. Candidate genes associated with sex dimorphism were also identified including 3KSR and DMRT2b. The high-density and high-resolution genetic linkage map provides an important tool for QTL fine mapping and positional cloning of economically important traits, and improving common carp genome assembly. PMID:27225429
Broeckhoven, Ken; Desmet, Gert
2007-11-16
Using a combination of both analytical and numerical techniques, approximate analytical expressions have been established for the transient and long time limit band broadening, originating from the presence of a thin disturbed sidewall layer in liquid chromatography columns, including packed, monolithic as well as microfabricated columns. The established expressions can be used to compare the importance of a thin disturbed sidewall layer with that of other radial heterogeneity effects (such as transcolumn packing density variations due to the relief of packing stresses). The expressions are independent of the actual velocity profile inside the layer as long as the disturbed sidewall layer occupies less than 2.5% of the column width.
Gas-solid fluidized bed reactors: Scale-up, flow regimes identification and hydrodynamics
NASA Astrophysics Data System (ADS)
Zaid, Faraj Muftah
This research studied the scale-up, flow regimes identification and hydrodynamics of fluidized beds using 6-inch and 18- inch diameter columns and different particles. One of the objectives was to advance the scale-up of gas-solid fluidized bed reactors by developing a new mechanistic methodology for hydrodynamic similarity based on matching the radial or diameter profile of gas phase holdup, since gas dynamics dictate the hydrodynamics of these reactors. This has been successfully achieved. However, the literature reported scale-up methodology based on matching selected dimensionless groups was examined and it was found that it was not easy to match the dimensionless groups and hence, there was some deviation in the hydrodynamics of the studied two different fluidized beds. A new technique based on gamma ray densitometry (GRD) was successfully developed and utilized to on-line monitor the implementation of scale-up, to identify the flow regime, and to measure the radial or diameter profiles of gas and solids holdups. CFD has been demonstrated as a valuable tool to enable the implementation of the newly developed scale-up methodology based on finding the conditions that provide similar or closer radial profile or cross sectional distribution of the gas holdup. As gas velocity increases, solids holdup in the center region of the column decreases in the fully developed region of both 6 inch and 18 inch diameter columns. Solids holdup increased with the increase in the particles size and density. Upflowing particles velocity increased with the gas velocity and became steeper at high superficial gas velocity at all axial heights where the center line velocity became higher than that in the wall region. Smaller particles size and lower density gave larger upflowing particles velocity. Minimum fluidization velocity and transition velocity from bubbly to churn turbulent flow regimes were found to be lower in 18 inch diameter column compared to those obtained in 6 inch diameter column. Also the absolute fluctuation of upflowing particles velocity multiplied by solids holdups vś 3ś as one of the terms for solids mass flux estimation was found to be larger in 18-inch diameter column than that in 6-inch diameter column using same particles size and density.
The Dusty Galactic Center as Seen by SCUBA-2
NASA Astrophysics Data System (ADS)
Parsons, H.; Dempsey, J. T.; Thomas, H. S.; Berry, D.; Currie, M. J.; Friberg, P.; Wouterloot, J. G. A.; Chrysostomou, A.; Graves, S.; Tilanus, R. P. J.; Bell, G. S.; Rawlings, M. G.
2018-02-01
We present new JCMT SCUBA-2 observations of the Galactic Center region from 355^\\circ < l< 5^\\circ and b< +/- 1^\\circ , covering 10 × 2 square degrees along the Galactic Plane to a depth of 43 mJy beam‑1 at 850 μm and 360 mJy beam‑1 at 450 μm. We describe the mapping strategy and reduction method used. We present 12CO(3-2) observations of selected regions in the field. We derive the molecular-line conversion factors (mJy beam‑1 per K km s‑1) at 850 and 450 μm, which are then used to obtain the amount of contamination in the continuum maps due to 12CO(3-2) emission in the 850 μm band. Toward the fields where the CO contamination has been accounted for, we present an 850 μm CO-corrected compact source catalog. Finally, we look for possible physical trends in the CO contamination with respect to column density, mass, and concentration. No trends were seen in the data despite the recognition of three contributors to CO contamination: opacity, shocks, and temperature, which would be expected to relate to physical conditions. These SCUBA-2 Galactic Center data and catalog are available via https://doi.org/10.11570/17.0009.
High spatial resolution spectroscopy of Tycho’s SNR with Chandra
NASA Astrophysics Data System (ADS)
Guo, Yun-Dong; Yang, Xue-Juan
2017-02-01
We present high spatial resolution X-ray spectroscopy of Tycho’s supernova remnant (SNR) using observational data from Chandra. The whole remnant was divided into 26 × 27 regions, with each of them covering 20\\prime\\prime × 20\\prime\\prime. We selected 536 pixels with enough events to generate spectra and fit them with an absorbed two component non-equilibrium ionization model. We obtained maps of absorbing column density, weight-averaged temperature, ionization age and abundances for O, Ne, Mg, Si, S and Fe, with emission used to determine the weight. The abundance maps and the finding that Fe abundance is not correlated with any other element suggest that Fe is located at a smaller radius than other elements, supporting the onion shell model with emission from more massive elements peaking more toward the center. A tight correlation between Si and S abundances support both Si and S coming from explosive O-burning and/or incomplete Si-burning. O and Ne abundances show no correlation with any other element. Considering that O, Ne and Mg are all synthesized in the same process (C/Ne-burning), we suggest that O/Ne/Mg might mix well with other elements during the explosion of the supernova and the expansion of the SNR.
Jones, B.H.; Noble, M.A.; Dickey, T.D.
2002-01-01
Moorings and towyo mapping were used to study the temporal and spatial variability of physical processes and suspended particulate material over the continental shelf of the Palos Verdes Peninsula in southwestern Los Angeles, California during the late summer of 1992 and winter of 1992-93. Seasonal evolution of the hydrographic structure is related to seasonal atmospheric forcing. During summer, stratification results from heating of the upper layer. Summer insolation coupled with the stratification results in a slight salinity increase nearsurface due to evaporation. Winter cooling removes much of the upper layer stratification, but winter storms can introduce sufficient quantities of freshwater into the shelf water column again adding stratification through the buoyancy input. Vertical mixing of the low salinity surface water deeper into the water column decreases the sharp nearsurface stratification and reduces the overall salinity of the upper water column. Moored conductivity measurements indicate that the decreased salinity persisted for at least 2 months after a major storm with additional freshwater inputs through the period. Four particulate groups contributed to the suspended particulate load in the water column: phytoplankton, resuspended sediments, and particles in treated sewage effluent were observed in every towyo mapping cruise; terrigenous particles are introduced through runoff from winter rainstorms. Terrigenous suspended particulate material sinks from the water column in <9 days and phytoplankton respond to the stormwater input of buoyancy and nutrients within the same period. The suspended particles near the bottom have spatially patchy distributions, but are always present in hydrographic surveys of the shelf. Temporal variations in these particles do not show a significant tidal response, but they may be maintained in suspension by internal wave and tide processes impinging on the shelf. ?? 2002 Elsevier Science Ltd. All rights reserved.
Chemical Quantification of Atomic-Scale EDS Maps under Thin Specimen Conditions
Lu, Ping; Romero, Eric; Lee, Shinbuhm; ...
2014-10-13
We report our effort to quantify atomic-scale chemical maps obtained by collecting energy-dispersive X-ray spectra (EDS) using scanning transmission electron microscopy (STEM) (STEM-EDS). Under a thin specimen condition and when the EDS scattering potential is localized, the X-ray counts from atomic columns can be properly counted by fitting Gaussian peaks at the atomic columns, and can then be used for site-by-site chemical quantification. The effects of specimen thickness and X-ray energy on the Gaussian peak-width are investigated by using SrTiO 3 (STO) as a model specimen. The relationship between the peak-width and spatial-resolution of an EDS map is also studied.more » Furthermore, the method developed by this work is applied to study a Sm-doped STO thin film and antiphase boundaries present within the STO film. We find that Sm atoms occupy both Sr and Ti sites but preferably the Sr sites, and Sm atoms are relatively depleted at the antiphase boundaries likely due to the effect of strain.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins-Fekete, Charles-Antoine; Beaulieu, Luc; Se
2016-08-15
To present two related developments of proton radiography (pRad) to minimize range uncertainty in proton therapy. The first combines a pRad with an X-ray CT to produce a patient-specific relative stopping power (RSP) map. The second aims to improve the pRad spatial resolution for accurate registration prior to the first. The enhanced-pRad can also be used in a novel proton-CT reconstruction algorithm. Monte Carlo pRad were computed from three phantoms; the Gammex, the Catphan and an anthropomorphic head. An optimized cubic-spline estimator derives the most likely path. The length crossed by the protons voxel-by-voxel was calculated by combining their estimatedmore » paths with the CT. The difference between the theoretical (length×RSP) and measured energy loss was minimized through a least squares optimization (LSO) algorithm yielding the RSP map. To increase pRad spatial resolution for registration with the CT, the phantom was discretized into voxels columns. The average column RSP was optimized to maximize the proton energy loss likelihood (MLE). Simulations showed precise RSP (<0.75%) for Gammex materials except low-density lung (<1.2%). For the head, accurate RSP were obtained (µ=−0.10%1.5σ=1.12%) and the range precision was improved (ΔR80 of −0.20±0.35%). Spatial resolution was increased in pRad (2.75 to 6.71 lp/cm) and pCT from MLE-enhanced pRad (2.83 to 5.86 lp/cm). The LSO decreases the range uncertainty (R80σ<1.0%) while the MLE-enhanced pRad spatial resolution (+244%) and is a great candidate for pCT reconstruction.« less
Park, Hae-Jeong; Kwon, Jun Soo; Youn, Tak; Pae, Ji Soo; Kim, Jae-Jin; Kim, Myung-Sun; Ha, Kyoo-Seob
2002-11-01
We describe a method for the statistical parametric mapping of low resolution electromagnetic tomography (LORETA) using high-density electroencephalography (EEG) and individual magnetic resonance images (MRI) to investigate the characteristics of the mismatch negativity (MMN) generators in schizophrenia. LORETA, using a realistic head model of the boundary element method derived from the individual anatomy, estimated the current density maps from the scalp topography of the 128-channel EEG. From the current density maps that covered the whole cortical gray matter (up to 20,000 points), volumetric current density images were reconstructed. Intensity normalization of the smoothed current density images was used to reduce the confounding effect of subject specific global activity. After transforming each image into a standard stereotaxic space, we carried out statistical parametric mapping of the normalized current density images. We applied this method to the source localization of MMN in schizophrenia. The MMN generators, produced by a deviant tone of 1,200 Hz (5% of 1,600 trials) under the standard tone of 1,000 Hz, 80 dB binaural stimuli with 300 msec of inter-stimulus interval, were measured in 14 right-handed schizophrenic subjects and 14 age-, gender-, and handedness-matched controls. We found that the schizophrenic group exhibited significant current density reductions of MMN in the left superior temporal gyrus and the left inferior parietal gyrus (P < 0. 0005). This study is the first voxel-by-voxel statistical mapping of current density using individual MRI and high-density EEG. Copyright 2002 Wiley-Liss, Inc.
Occurrence of turbulent flow conditions in supercritical fluid chromatography.
De Pauw, Ruben; Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken
2014-09-26
Having similar densities as liquids but with viscosities up to 20 times lower (higher diffusion coefficients), supercritical CO2 is the ideal (co-)solvent for fast and/or highly efficient separations without mass-transfer limitations or excessive column pressure drops. Whereas in liquid chromatography the flow remains laminar in both the packed bed and tubing, except in extreme cases (e.g. in a 75 μm tubing, pure acetonitrile at 5 ml/min), a supercritical fluid can experience a transition from laminar to turbulent flow in more typical operation modes. Due to the significant lower viscosity, this transition for example already occurs at 1.3 ml/min for neat CO2 when using connection tubing with an ID of 127 μm. By calculating the Darcy friction factor, which can be plotted versus the Reynolds number in a so-called Moody chart, typically used in fluid dynamics, higher values are found for stainless steel than PEEK tubing, in agreement with their expected higher surface roughness. As a result turbulent effects are more pronounced when using stainless steel tubing. The higher than expected extra-column pressure drop limits the kinetic performance of supercritical fluid chromatography and complicates the optimization of tubing ID, which is based on a trade-off between extra-column band broadening and pressure drop. One of the most important practical consequences is the non-linear increase in extra-column pressure drop over the tubing downstream of the column which leads to an unexpected increase in average column pressure and mobile phase density, and thus decrease in retention. For close eluting components with a significantly different dependence of retention on density, the selectivity can significantly be affected by this increase in average pressure. In addition, the occurrence of turbulent flow is also observed in the detector cell and connection tubing. This results in a noise-increase by a factor of four when going from laminar to turbulent flow (e.g. going from 0.5 to 2.5 ml/min for neat CO2). Copyright © 2014 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
High-density linkage maps are vital to supporting the correct placement of scaffolds and gene sequences on chromosomes and fundamental to contemporary organismal research and scientific approaches to genetic improvement; high-density linkage maps are especially important in paleopolyploids with exce...
NASA Technical Reports Server (NTRS)
Wanjek, Christopher
2003-01-01
In June, NASA plans to launch the Microwave Anisotropy Probe (MAP) to survey the ancient radiation in unprecedented detail. MAP will map slight temperature fluctuations within the microwave background that vary by only 0.00001 C across a chilly radiation that now averages 2.73 C above absolute zero. The temperature differences today point back to density differences in the fiery baby universe, in which there was a little more matter here and a little less matter there. Areas of slightly enhanced density had stronger gravity than low-density areas. The high-density areas pulled back on the background radiation, making it appear slightly cooler in those directions.
The Einstein objective grating spectrometer survey of galactic binary X-ray sources
NASA Technical Reports Server (NTRS)
Vrtilek, S. D.; Mcclintock, J. E.; Seward, F. D.; Kahn, S. M.; Wargelin, B. J.
1991-01-01
The results of observations of 22 bright Galactic X-ray point sources are presented, and the most reliable measurements to date of X-ray column densities to these sources are derived. The results are consistent with the idea that some of the objects have a component of column density intrinsic to the source in addition to an interstellar component. The K-edge absorption due to oxygen is clearly detected in 10 of the sources and the Fe L and Ne K edges are detected in a few. The spectra probably reflect emission originating in a collisionally excited region combined with emission from a photoionized region excited directly by the central source.
Size and DNA distributions of electrophoretically separated cultured human kidney cells
NASA Technical Reports Server (NTRS)
Kunze, M. E.; Plank, L. D.; Todd, P. W.
1985-01-01
Electrophoretic purification of purifying cultured cells according to function presumes that the size of cycle phase of a cell is not an overriding determinant of its electrophoretic velocity in an electrophoretic separator. The size distributions and DNA distributions of fractions of cells purified by density gradient electrophoresis were determined. No systematic dependence of electrophoretic migration upward in a density gradient column upon either size or DNA content were found. It was found that human leukemia cell populations, which are more uniform function and found in all phases of the cell cycle during exponential growth, separated on a vertical sensity gradient electrophoresis column according to their size, which is shown to be strictly cell cycle dependent.
THE GAS/DUST RATIO OF CIRCUMSTELLAR DISKS: TESTING MODELS OF PLANETESIMAL FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horne, David; Gibb, Erika; Rettig, Terrence W.
2012-07-20
We present high-resolution, near-infrared NIRSPEC observations of CO absorption toward six class II T Tauri stars: AA Tau, DG Tau, IQ Tau, RY Tau, CW Tau, and Haro 6-5b. {sup 12}CO overtone absorption lines originating from the circumstellar disk of each object were used to calculate line-of-sight gas column densities toward each source. We measured the gas/dust ratio as a function of disk inclination, utilizing measured visual extinctions and inclinations for each star. The majority of our sources show further evidence for a correlation between the gas/dust column density ratio and disk inclination similar to that found by Rettig etmore » al.« less
NASA Astrophysics Data System (ADS)
Xu, Luhua; Han, Jung-Kyu; Liang, Jarrett Jun; Tu, K. N.; Lai, Yi-Shao
2008-06-01
To overcome the effect of current crowding on electromigration-induced pancake-type void formation in flip chip solder joints, two types of Cu column in 90μm flip chip SnAgCu solder joints have been studied. They were (1) the solder contacts the Cu column at bottom and side walls and (2) the solder wets only the bottom surface of the copper column. With a current density of 1.6×104A/cm2 at 135°C, no failure was detected after 1290h. However, the resistance increased by about 10% due to the formation of a large fraction of intermetallic compounds. We found that electromigration has accelerated the consumption rate of copper column and converted almost the entire solder joint into intermetallic compound. Mechanically, drop impact test indicates a brittle fracture failure in the intermetallic. The electromigration critical product for the intermetallic is discussed.
Secondary-School Earth Science: A Column for Teachers.
ERIC Educational Resources Information Center
Christman, Robert
1984-01-01
Six secondary school teachers describe their most successful earth science investigations. They include various outdoor field activities, road-map reading skills, student-prepared and conducted investigations, and use of several materials for studying volcanoes. (JN)
The organization of orientation selectivity throughout macaque visual cortex.
Vanduffel, Wim; Tootell, Roger B H; Schoups, Aniek A; Orban, Guy A
2002-06-01
A double-label deoxyglucose technique was used to study orientation columns throughout visual cortex in awake behaving macaques. Four macaques were trained to fixate while contrastreversing, stationary gratings or one-dimensional noise of a single orientation or an orthogonal orientation were presented, during uptake of [14C]deoxyglucose ([14C]DG) or [3H]DG, respectively. The two orthogonal stimulus orientations produced DG-labeled columns that were maximally separated in the two isotope maps (inter-digitated) in four areas: V1, V2, V3 and VP. The topographic change from interdigitated to overlapping columns occurred abruptly rather than gradually, at corresponding cortical area borders (e.g. VP and V4v, respectively). In addition, the data suggest that orientation column topography systematically changes with retinotopic eccentricity. In V1, the orientation columns systematically avoided the cytochrome oxidase blobs in the parafoveal representation, but converged closer to the blobs in the foveal representation. A control experiment indicated that this was unlikely to reflect eccentricity-dependent differences in cortical spatial frequency sensitivity. A similar eccentricity-dependent change in the topography of orientation columns occurred in V2. In parafoveal but not foveal visual field representations of V2, the orientation columns were centered on the thick cytochrome oxidase stripes, extended into the adjacent interstripe region, but were virtually absent in the thin stripes.
Complete temperature profiles in ultra-high-pressure liquid chromatography columns.
Gritti, Fabrice; Guiochon, Georges
2008-07-01
The temperature profiles were calculated along and across seven packed columns (lengths 30, 50, 100, and 150 mm, i.d., 1 and 2.1 mm, all packed with Acquity UPLC, BEH-C 18 particles, average d(p) approximately 1.7 microm) and their stainless steel tubes (o.d. 4.53 and 6.35 mm). These columns were kept horizontal and sheltered from forced air convection (i.e., under still air conditions), at room temperature. They were all percolated with pure acetonitrile, either under the maximum pressure drop (1034 bar) or at the maximum flow rate (2 mL/min) permitted by the chromatograph. The heat balance equation of chromatographic columns was discretized and solved numerically with minimum approximation. Both the compressibility and the thermal expansion of the eluent were taken into account. The boundary conditions were determined from the experimental measurements of the column inlet pressure and of the temperature profile along the column wall, which were made with a precision better than +/-0.1 K. These calculation results provide the 3-D temperature profiles along and across the columns. The axial and radial temperature gradients are discussed in relationship with the experimental conditions used. The temperature map obtained permits a prediction of the chromatographic data obtained under a very high pressure gradient.
Han, Koeun; Jeong, Hee-Jin; Yang, Hee-Bum; Kang, Sung-Min; Kwon, Jin-Kyung; Kim, Seungill; Choi, Doil; Kang, Byoung-Cheorl
2016-04-01
Most agricultural traits are controlled by quantitative trait loci (QTLs); however, there are few studies on QTL mapping of horticultural traits in pepper (Capsicum spp.) due to the lack of high-density molecular maps and the sequence information. In this study, an ultra-high-density map and 120 recombinant inbred lines (RILs) derived from a cross between C. annuum'Perennial' and C. annuum'Dempsey' were used for QTL mapping of horticultural traits. Parental lines and RILs were resequenced at 18× and 1× coverage, respectively. Using a sliding window approach, an ultra-high-density bin map containing 2,578 bins was constructed. The total map length of the map was 1,372 cM, and the average interval between bins was 0.53 cM. A total of 86 significant QTLs controlling 17 horticultural traits were detected. Among these, 32 QTLs controlling 13 traits were major QTLs. Our research shows that the construction of bin maps using low-coverage sequence is a powerful method for QTL mapping, and that the short intervals between bins are helpful for fine-mapping of QTLs. Furthermore, bin maps can be used to improve the quality of reference genomes by elucidating the genetic order of unordered regions and anchoring unassigned scaffolds to linkage groups. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
An upper limit on interstellar C IV in the spectrum of gamma-2 Velorum
NASA Technical Reports Server (NTRS)
Lengyel-Frey, D.; Stecher, T. P.; West, D. K.
1975-01-01
An upper limit on the column density of C IV along the line of sight to gamma-2 Vel is derived from upper limits placed on the equivalent widths of the interstellar C IV doublet with rest wavelengths at 1548.20 A and 1550.77 A. A lower limit of 250,000 K is calculated for the electron temperature of O VI emitting regions by combining the C IV results with a measurement of the column density of interstellar O VI for the same star and using calculations for the relative ionization of some abundant elements as a function of electron temperature in a low-density plasma. Since gamma-2 Vel is in the central part of the Gum Nebula, the high temperature suggested by these results is shown to support the idea that a high-temperature phase of the interstellar medium, possibly maintained by supernova explosions, may exist.-
Covariance and correlation estimation in electron-density maps.
Altomare, Angela; Cuocci, Corrado; Giacovazzo, Carmelo; Moliterni, Anna; Rizzi, Rosanna
2012-03-01
Quite recently two papers have been published [Giacovazzo & Mazzone (2011). Acta Cryst. A67, 210-218; Giacovazzo et al. (2011). Acta Cryst. A67, 368-382] which calculate the variance in any point of an electron-density map at any stage of the phasing process. The main aim of the papers was to associate a standard deviation to each pixel of the map, in order to obtain a better estimate of the map reliability. This paper deals with the covariance estimate between points of an electron-density map in any space group, centrosymmetric or non-centrosymmetric, no matter the correlation between the model and target structures. The aim is as follows: to verify if the electron density in one point of the map is amplified or depressed as an effect of the electron density in one or more other points of the map. High values of the covariances are usually connected with undesired features of the map. The phases are the primitive random variables of our probabilistic model; the covariance changes with the quality of the model and therefore with the quality of the phases. The conclusive formulas show that the covariance is also influenced by the Patterson map. Uncertainty on measurements may influence the covariance, particularly in the final stages of the structure refinement; a general formula is obtained taking into account both phase and measurement uncertainty, valid at any stage of the crystal structure solution.
USDA-ARS?s Scientific Manuscript database
Construction of genetic linkage map is essential for genetic and genomic studies. Recent advances in sequencing and genotyping technologies made it possible to generate high-density and high-resolution genetic linkage maps, especially for the organisms lacking extensive genomic resources. In the pre...
Characterisation of RPLC columns packed with porous sub-2 microm particles.
Petersson, Patrik; Euerby, Melvin R
2007-08-01
Eight commercially available sub-2 microm octadecyl silane columns (C18 columns) have been characterised by the Tanaka protocol. The columns can be grouped into two groups that display large differences in selectivity and peak shape due to differences in hydrophobicity, degree of surface coverage and silanol activity. Measurements of particle size distributions were made using automated microscopy and electrical sensing zone measurements. Only a weak correlation could be found between efficiency and particle size. Large differences in column backpressure were observed. These differences are not related to particle size distribution. A more likely explanation is differences in packing density. In order to take full advantage of 100-150 mm columns packed with sub-2 microm particles, it is often necessary to employ not only an elevated pressure but also an elevated temperature. A comparison between columns packed with sub-2, 3 and 5 microm versions of the same packing indicates potential method transferability problems for several of the columns due to selectivity differences. Currently, the best alternative for fast high-resolution LC is the use of sub-2 microm particles in combination with elevated pressure and temperature. However, as shown in this study additional efforts are needed to improve transferability as well as column performance.
The Cygnus OB2 Star Forming Complex
NASA Astrophysics Data System (ADS)
Rybarczyk, Daniel R.; Bania, Thomas
2018-01-01
Almost all astrophysical systems—from planets to stars to supernovae to entire galaxies—are impacted by the process of star formation. The brightest, most massive stars (OB stars) form in hot young clusters called OB associations. Cygnus OB2 is an OB association containing over 160 OB stars, making it one of the largest in the Milky Way Galaxy. At a distance of less than 1.5 kpc, its proximity to the Sun makes it optimal for assessing the process of Galactic star formation and its implications for stellar evolution, Galactic structure, and Galactic chemical evolution. Using existing data sets, we derive comprehensive maps of the distribution of thermal continuum, atomic, and molecular emission from the interstellar gas in Cyg OB2. The thermal continuum emission stems from the plasma ionized by OB stars. The atomic gas is probed by emission from atomic hydrogen, HI, at 21 cm wavelength. The molecular gas is traced by emission from the CO molecule which is a proxy for molecular hydrogen, H2. We combine these atomic and molecular data to derive a map of the total proton column density distribution in Cyg OB2. We also analyze the velocity fields of the OB stars, the atomic and molecular hydrogen gas, and the HII regions' radio recombination emission. As expected, we find HII regions to be spatially coincident with zones of higher cloud density. Surrounding the greatest concentration of OB stars is a cavity in the radio continuum and CO emission. This results from shock waves produced by the combined action of the high HII region pressure and winds from the OB stars. Such a distribution implies that Cyg OB2 is old enough to have evolved to this state.
NASA Astrophysics Data System (ADS)
Cambrésy, Laurent
1999-11-01
This thesis consists in a study of molecular clouds, essentially of the point of view of the interstellar environment, but also of the one of the star formation. The original method to estimate extinction presented here is based on adaptive star counts as well as on a wavelet decomposition. For the first time, an extinction map of the whole sky is proposed (USNO-PMM optical data). Access to very large field maps offers the opportunity to analyze the interstellar matter distribution in various environments. A first result is that the contained mass in regions for which AV > 1 would not exceed half of the total cloud mass. Using DENIS data, it becomes possible to probe dense regions of clouds. For instance, star counts in the Chamaeleon complex show cores which were not resolved before. Moreover, the selection of stars with a strong infrared excess yields about fifty T Tauri candidates. From their luminosity function, I derived the average lifetime of circumstellar disc of low--mass stars: ~4cdot 106 years. It is difficult to understand the relation between extinction and molecular emission, but it appears clearly that molecular emission is a bad estimator of the column density for low extinction area. Actually, thresholds exist in the CO detection and I conclude that photodissociation, density and cloud geometry have important consequences on the CO emission when AV < 2. Investigation of the relation between extinction and far--infrared emission in Polaris leads to a four times larger emissivity in cold areas than in hot areas. This result explains the low temperatures in this cloud and implies severe restrictions concerning the use of far--infrared fluxes as an extinction estimator.
NASA Astrophysics Data System (ADS)
Yun, S. H.; Chang, C.
2015-12-01
It is the numerical simulation using a VolcFlow model to determine the runout range of pyroclastic density currents where an eruption column had been formed by the explosive Plinian eruption and the collapse of the column had caused to occur on Mt. Baekdu. We assumed that the most realistic way for the simulation of a sustained volcanic column is to modify the topography with a cone above the crater to follow expert advice from Dr. Karim Kelfoun, the developer of VolcFlow. Then we set the radius and height of the cone, the volume of pyroclastic flow, and the duration and simulation time accoding to the volcanic explosivity index (VEI). Also we set the yield stress as 5,000 Pa, 10,000 Pa, 15,000 Pa, the basal friction angle as 3°, 5°, 10°, respectively. As the simulation results, the longest runout range was 2.3 km, 9.1 km, 14.4 km, 18.6 km, 23.4 km from VEI 3 to VEI 7, respectively. It can be used as a very important material to predict the impact range of pyroclastic density currents and to minimize human and material damages caused by pyroclastic density currents derived from the future explosive eruption of Mt. Baekdu. This research was supported by a grant 'Development of Advanced Volcanic Disaster Response System considering Potential Volcanic Risk around Korea' [MPSS-NH-2015-81] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.
Physical properties of CO-dark molecular gas traced by C+
NASA Astrophysics Data System (ADS)
Tang, Ningyu; Li, Di; Heiles, Carl; Wang, Shen; Pan, Zhichen; Wang, Jun-Jie
2016-09-01
Context. Neither Hi nor CO emission can reveal a significant quantity of so-called dark gas in the interstellar medium (ISM). It is considered that CO-dark molecular gas (DMG), the molecular gas with no or weak CO emission, dominates dark gas. Determination of physical properties of DMG is critical for understanding ISM evolution. Previous studies of DMG in the Galactic plane are based on assumptions of excitation temperature and volume density. Independent measurements of temperature and volume density are necessary. Aims: We intend to characterize physical properties of DMG in the Galactic plane based on C+ data from the Herschel open time key program, namely Galactic Observations of Terahertz C+ (GOT C+) and Hi narrow self-absorption (HINSA) data from international Hi 21 cm Galactic plane surveys. Methods: We identified DMG clouds with HINSA features by comparing Hi, C+, and CO spectra. We derived the Hi excitation temperature and Hi column density through spectral analysis of HINSA features. The Hi volume density was determined by utilizing the on-the-sky dimension of the cold foreground Hi cloud under the assumption of axial symmetry. The column and volume density of H2 were derived through excitation analysis of C+ emission. The derived parameters were then compared with a chemical evolutionary model. Results: We identified 36 DMG clouds with HINSA features. Based on uncertainty analysis, optical depth of HiτHi of 1 is a reasonable value for most clouds. With the assumption of τHi = 1, these clouds were characterized by excitation temperatures in a range of 20 K to 92 K with a median value of 55 K and volume densities in the range of 6.2 × 101 cm-3 to 1.2 × 103 cm-3 with a median value of 2.3 × 102 cm-3. The fraction of DMG column density in the cloud (fDMG) decreases with increasing excitation temperature following an empirical relation fDMG =-2.1 × 10-3Tex,(τHi = 1) + 1.0. The relation between fDMG and total hydrogen column density NH is given by fDMG = 1.0-3.7 × 1020/NH. We divided the clouds into a high extinction group and low extinction group with the dividing threshold being total hydrogen column density NH of 5.0 × 1021 cm-2 (AV = 2.7 mag). The values of fDMG in the low extinction group (AV ≤ 2.7 mag) are consistent with the results of the time-dependent, chemical evolutionary model at the age of ~10 Myr. Our empirical relation cannot be explained by the chemical evolutionary model for clouds in the high extinction group (AV > 2.7 mag). Compared to clouds in the low extinction group (AV ≤ 2.7 mag), clouds in the high extinction group (AV > 2.7 mag) have comparable volume densities but excitation temperatures that are 1.5 times lower. Moreover, CO abundances in clouds of the high extinction group (AV > 2.7 mag) are 6.6 × 102 times smaller than the canonical value in the Milky Way. Conclusions: The molecular gas seems to be the dominate component in these clouds. The high percentage of DMG in clouds of the high extinction group (AV > 2.7 mag) may support the idea that molecular clouds are forming from pre-existing molecular gas, I.e., a cold gas with a high H2 content but that contains a little or no CO content.
NASA Technical Reports Server (NTRS)
Cody, R. J.; Payne, W. A.; Thorn, R. P., Jr.; Romani, P. N.; Stief, L. J.; Nesbitt, F. L.; Iannone, M. A.; Tardy, D. C.
2002-01-01
The methyl free radical (CH3) has been observed in the atmospheres of Saturn and Neptune by the ISO satellite. There are discrepancies between the column densities for the CH3 radical derived from the ISO observations and the column densities derived from atmospheric photochemical models. For Neptune the model column density is 1.5 times that derived from ISO. For Saturn the model is 6 times that from ISO. The recombination of methyl radicals is the major loss process for methyl in these atmospheres. The serious disagreement between observed and calculated levels of CH3 has led to suggestions that the atmospheric models greatly underestimated the loss of CH3 due to poor knowledge of the rate of the reaction (1) CH3 + CH3 + M goes to C2H6 + M at the low temperatures and pressures of these atmospheric systems. Although the reaction CH3 + CH3 + M goes to C2H6 + M has been extensively studied both theoretically and experimentally, the laboratory conditions have been, with only a few exceptions, higher temperatures (T greater than 298K), higher pressures (P greater than or equal to 10 Torr - 13.3 mbar) or M=Ar rather than H2 or He as the bath gas.
Observational Tracers of Hot and Cold Gas in Isolated Galaxy Simulations
NASA Astrophysics Data System (ADS)
Brzycki, Bryan; Silvia, Devin
2018-01-01
We present results from an analysis comparing simulations of isolated spiral galaxies with recent observations of the circumgalactic medium (CGM). As the interface containing inflows and outflows between the interstellar and intergalactic media, the CGM plays an important role in the composition and evolution of galaxies. Using a set of isolated galaxy simulations over different initial conditions and star formation and feedback parameters, we investigate the evolution of CGM gas. Specifically, in light of recent observational studies, we compute the radial column density profiles and covering fractions of various observable ion species (H I, C IV, O VI, Mg II, Si III) for each simulated galaxy. Taking uniformly random sightlines through the CGM of each simulated galaxy, we find the abundance of gas absorbers and analyze their contribution to the overall column density along each sightline. By identifying the prevalence of high column density absorbers, we seek to characterize the distribution and evolution of observable ion species in the CGM. We also highlight a subset of our isolated galaxy simulations that produce and maintain a stable precipitating CGM that fuels high rates of sustained star formation. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.
NASA Astrophysics Data System (ADS)
Liu, X.; Kowalewski, M. G.; Janz, S. J.; Bhartia, P. K.; Chance, K.; Krotkov, N. A.; Pickering, K. E.; Crawford, J. H.
2011-12-01
The DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) mission has just finished its first flight campaign in the Baltimore-Washington D.C. area in July 2011. The ACAM, flown on board the NASA UC-12 aircraft, includes two spectrographs covering the spectral region 304-900 nm and a high-definition video camera, and is expected to provide column measurements of several important air quality trace gases and aerosols for the DISCOVER-AQ mission. The quick look results for NO2 have been shown to very useful in capturing the strong spatiotemporal variability of NO2. Preliminary fitting of UV/Visible spectra has shown that ACAM measurements have adequate signal to noise ratio to measure the trace gases O2, NO2, HCHO, and maybe SO2 and CHOCHO, at individual pixel resolution, although a great deal of effort is needed to improve the instrument calibration and derive proper reference spectrum for retrieving absolute trace gas column densities. In this study, we present analysis of ACAM instrument calibration including slit function, wavelength registration, and radiometric calibration for both nadir-viewing and zenith-sky measurements. Based on this analysis, an irradiance reference spectrum at ACAM resolution will be derived from a high-resolution reference spectrum with additional correction to account for instrument calibration. Using the derived reference spectrum and/or the measured zenith sky measurements, we will perform non-linear least squares fitting to investigate the retrievals of slant column densities of these trace gases from ACAM measurements, and also use an optimal estimation based algorithm including full radiative transfer calculations to derive the vertical column densities of these trace gases. The initial results will be compared with available in-situ and ground-based measurements taken during the DISCOVER-AQ campaign.
2011-01-01
Background Technological advances are progressively increasing the application of genomics to a wider array of economically and ecologically important species. High-density maps enriched for transcribed genes facilitate the discovery of connections between genes and phenotypes. We report the construction of a high-density linkage map of expressed genes for the heterozygous genome of Eucalyptus using Single Feature Polymorphism (SFP) markers. Results SFP discovery and mapping was achieved using pseudo-testcross screening and selective mapping to simultaneously optimize linkage mapping and microarray costs. SFP genotyping was carried out by hybridizing complementary RNA prepared from 4.5 year-old trees xylem to an SFP array containing 103,000 25-mer oligonucleotide probes representing 20,726 unigenes derived from a modest size expressed sequence tags collection. An SFP-mapping microarray with 43,777 selected candidate SFP probes representing 15,698 genes was subsequently designed and used to genotype SFPs in a larger subset of the segregating population drawn by selective mapping. A total of 1,845 genes were mapped, with 884 of them ordered with high likelihood support on a framework map anchored to 180 microsatellites with average density of 1.2 cM. Using more probes per unigene increased by two-fold the likelihood of detecting segregating SFPs eventually resulting in more genes mapped. In silico validation showed that 87% of the SFPs map to the expected location on the 4.5X draft sequence of the Eucalyptus grandis genome. Conclusions The Eucalyptus 1,845 gene map is the most highly enriched map for transcriptional information for any forest tree species to date. It represents a major improvement on the number of genes previously positioned on Eucalyptus maps and provides an initial glimpse at the gene space for this global tree genome. A general protocol is proposed to build high-density transcript linkage maps in less characterized plant species by SFP genotyping with a concurrent objective of reducing microarray costs. HIgh-density gene-rich maps represent a powerful resource to assist gene discovery endeavors when used in combination with QTL and association mapping and should be especially valuable to assist the assembly of reference genome sequences soon to come for several plant and animal species. PMID:21492453