COLUMN EXPERIMENTS AND ANOMALOUS CONDUCTIVITY IN HYDROCARBON-IMPACTED SOILS
A laboratory experiment was designed to increase the understanding of the geoelectric effects of microbial " degradation of hydrocarbons. Eight large columns were were paired to provide a replicate of each of four experiments. These large-volume columns contained "sterilized" soi...
USDA-ARS?s Scientific Manuscript database
Bulk electrical conductivity (EC) in superactive soils has been shown to strongly influence electromagnetic sensing of permittivity. However, these effects are dependent on soil water content and temperature as well as the pore water conductivity. We carried out isothermal column displacement experi...
NASA Astrophysics Data System (ADS)
Atekwana, E.; Atekwana, E.; Werkema, D.; Duris, J.; Rossbach, S.; Sauck, W.; Koretsky, C.; Cassidy, D.; Means, J.; Sherrod, L.
2003-04-01
In this study, we describe the results of a mesoscale pilot experiment designed to investigate the influence of biogeochemical processes on electrical conductivity of soils impacted by hydrocarbons. This is an interdisciplinary study integrating geophysics, geochemistry, and microbiology which was undertaken to: 1) verify microbial hydrocarbon degradation by monitoring changes in microbial types, population, and community structure, 2) document temporal changes in the electrical conductivity of soils, and 3) document changes in pore fluid geochemistry using major ions and stable carbon isotopes. We constructed duplicate soil columns as follows: Columns 1 and 2 had no bacteria, no diesel; columns 3 and 4 had diesel and no bacteria; columns 5 and 6 had bacteria and no diesel; and columns 7 and 8 had bacteria and diesel. Soil cores were sampled at 5 cm intervals and analyzed for bacteria using the most probable number (MPN) and the rDNA intergenic spacer region analyses (RISA) techniques. The MPN method showed an increase in the percentage of alkane degraders with time, and accounted for 1.2x (120%) the number of heterotrophic bacteria in colums 7 and 8 compared to less than 15% for the other columns. The RISA analysis of the communities in columns 7 and 8 showed a shift towards less diversity over time in response to the contaminant stress to a composition that is more capable of the utilization of an alkane as a carbon source. These results confirm microbial mineralization of diesel within contaminated columns. Electrical conductivity measurements were made using a Wenner array at 2 cm spacing. The electrical measurements show an initial decrease in conductivity. This is consistent with the diesel replacing the more conductive pore waters and changes in water saturation, especially within the unsaturated zone. However, a slow increase in conductivity was observed in column 7 overtime compared to the other columns. The slight increase in electrical conductivity for the contaminated column may be attributed to microbial degradation of hydrocarbon and secondary weathering of the soil minerals. However, the magnitude in the shift of the pore fluid chemistry does not appear to directly translate to changes in soil electrical conductivity. At present, since the experiment is still ongoing, we expect that as more degradation and mineral weathering occur in the soils columns, we should be able to model the magnitude of the pore fluid chemical change on the soil conductivity.
EVIDENCE FOR MICROBIAL ENHANCED ELECTRICAL CONDUCTIVITY IN HYDROCARBON-CONTAMINATED SEDIMENTS
Electrical conductivity of sediments during microbial mineralization of diesel was investigated in a mesoscale column experiment consisting of biotic contaminated and uncontaminated columns. Microbial population numbers increased with a clear pattern of depth zonation within the ...
Mini-columns for Conducting Breakthrough Experiments. Design and Construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittrich, Timothy M.; Reimus, Paul William; Ware, Stuart Douglas
Experiments with moderately and strongly sorbing radionuclides (i.e., U, Cs, Am) have shown that sorption between experimental solutions and traditional column materials must be accounted for to accurately determine stationary phase or porous media sorption properties (i.e., sorption site density, sorption site reaction rate coefficients, and partition coefficients or K d values). This report details the materials and construction of mini-columns for use in breakthrough columns to allow for accurate measurement and modeling of sorption parameters. Material selection, construction techniques, wet packing of columns, tubing connections, and lessons learned are addressed.
Leaching Behavior Of Mineral Processing Waste: Comparison Of Batch And Column Investigations
In this study, a comparison of laboratory batch and column experiments on metal release profile from a mineral processing waste (MPW) is presented. Batch (equilibrium) and column (dynamic) leaching tests were conducted on ground MPW at different liquid–solid ratios (LS) to determ...
Limited transport of functionalized multi-walled carbon nanotubes in two natural soils
USDA-ARS?s Scientific Manuscript database
Column experiments were conducted in undisturbed and in repacked soil columns at water contents close to saturation (85–96%) to investigate the transport and retention of functionalized 14C-labeled multi-walled carbon nanotubes (MWCNT) in two natural soils. Additionally, a field lysimeter experiment...
Fate and transport of phenol in a packed bed reactor containing simulated solid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saquing, Jovita M., E-mail: jmsaquing@gmail.com; Knappe, Detlef R.U., E-mail: knappe@ncsu.edu; Barlaz, Morton A., E-mail: barlaz@ncsu.edu
Highlights: Black-Right-Pointing-Pointer Anaerobic column experiments were conducted at 37 Degree-Sign C using a simulated waste mixture. Black-Right-Pointing-Pointer Sorption and biodegradation model parameters were determined from batch tests. Black-Right-Pointing-Pointer HYDRUS simulated well the fate and transport of phenol in a fully saturated waste column. Black-Right-Pointing-Pointer The batch biodegradation rate and the rate obtained by inverse modeling differed by a factor of {approx}2. Black-Right-Pointing-Pointer Tracer tests showed the importance of hydrodynamic parameters to improve model estimates. - Abstract: An assessment of the risk to human health and the environment associated with the presence of organic contaminants (OCs) in landfills necessitates reliable predictivemore » models. The overall objectives of this study were to (1) conduct column experiments to measure the fate and transport of an OC in a simulated solid waste mixture, (2) compare the results of column experiments to model predictions using HYDRUS-1D (version 4.13), a contaminant fate and transport model that can be parameterized to simulate the laboratory experimental system, and (3) determine model input parameters from independently conducted batch experiments. Experiments were conducted in which sorption only and sorption plus biodegradation influenced OC transport. HYDRUS-1D can reasonably simulate the fate and transport of phenol in an anaerobic and fully saturated waste column in which biodegradation and sorption are the prevailing fate processes. The agreement between model predictions and column data was imperfect (i.e., within a factor of two) for the sorption plus biodegradation test and the error almost certainly lies in the difficulty of measuring a biodegradation rate that is applicable to the column conditions. Nevertheless, a biodegradation rate estimate that is within a factor of two or even five may be adequate in the context of a landfill, given the extended retention time and the fact that leachate release will be controlled by the infiltration rate which can be minimized by engineering controls.« less
Surfactant enhanced remediation of soil columns contaminated by residual tetrachloroethylene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pennell, K.D.; Jin, M.; Abriola, L.M.
1994-01-01
The ability of aqueous surfactant solutions to recover tetrachloroethylene (PCE) entrapped in Ottawa sand was evaluated in four column experiments. Residual PCE was emplaced by injecting (14)C-labeled PCE into water-saturated soil columns and displacing the free product with water. Miscible displacement experiments were conducted before and after PCE entrapment to determine the influence or residual PCE on column dispersivities. The first two column studies involved the injection of a 4% solution of polyoxyethylene (POE) (20) sorbitan monooleate, resulting in the removal of 90% and 97% of the residual PCE from 20-30- and 40-120-mesh Ottawa sand, respectively. Although micellar solubilization ofmore » PCE was the primary mode of recovery in these experiments, this process was shown to be rate-limited.« less
EFFECTS OF VELOCITY ON THE TRANSPORT OF TWO BACTERIA THROUGH SATURATED SAND. GROUND WATER.
Transport of the bacteria Klebsiella oxytoca and Burkholderia cepacia G4PR1 (G4PR1) was investigated in column experiments conducted under conditions that allowed us to quantify sorption under a range of ground water velocities. Column experiments (33 mm I.D. X 114 mm long colu...
NASA Astrophysics Data System (ADS)
Ha, Jong Heon; Jeen, Sung-Wook
2017-04-01
Groundwater quality change due to the leakage of CO2 in a shallow aquifer system is an important aspect of environmental impact assessment in a carbon dioxide capture and storage (CCS) site. This study evaluated geochemical changes in a shallow aquifer system resulting from leakage of CO2 through laboratory column experiments and reactive transport modeling. In the column experiments, two columns were set up and filled with the sediment from the Environmental Impact Test (EIT) facility of the Korea CO2 Storage Environmental Management (K-COSEM) Research Center. Groundwater, also collected form the EIT site, was purged with CO2 or Ar gases, and was pumped into the columns with the pumping rates of 200-1000 mL day-1 (0.124-0.62 m day-1). Profile and time-series effluent samplings were conducted to evaluate the spatial and temporal geochemical changes in the aquifer materials upon contact with CO2. The experimental results showed that after injecting CO2-purged groundwater, the pH was decreased, and alkalinity, electrical conductivity (EC) and concentrations of major cations were increased. The spatial and temporal geochemical changes from the column experiments indicate that dissolution of aquifer materials in contact with dissolved CO2 is the major contributor to the changes in groundwater geochemistry. The reactive transport modeling has been conducted to reproduce these geochemical changes in the aquifer system by incorporating dissolution of the dominant aluminosilicate minerals in the aquifer such as microcline, anorthite, albite, and biotite. This study suggests that pH, alkalinity, EC and concentrations of major cations are important monitoring parameters for detecting CO2 leakage in a shallow groundwater aquifer system.
Krueger, C.J.; Radakovich, K.M.; Sawyer, T.E.; Barber, L.B.; Smith, R.L.; Field, J.A.
1998-01-01
Transport and biodegradation of linear alkylbenzenesulfonate (LAS) in sewage-contaminated groundwater were investigated for a range of dissolved oxygen concentrations. Both laboratory column and an 80-day continuous injection tracer test field experiments were conducted. The rates of LAS biodegradation increased with increasing dissolved oxygen concentrations and indicated the preferential biodegradation of the longer alkyl chain LAS homologues (i.e., C12 and C13) and external isomers (i.e., 2-and 3- phenyl). However, for similar dissolved oxygen concentrations, mass removal rates for LAS generally were 2-3 times greater in laboratory column experiments than in the field tracer test. Under low oxygen conditions (<1 mg/L) only a fraction of the LAS mixture biodegraded in both laboratory and field experiments. Biodegradation rate constants for the continuous injection field test (0.002-0.08 day-1) were comparable to those estimated for a 3-h injection (pulsed) tracer test conducted under similar biogeochemical conditions, indicating that increasing the exposure time of aquifer sediments to LAS did not increase biodegradation rates.Transport and biodegradation of linear alkylbenzenesulfonate (LAS) in sewage-contaminated groundwater were investigated for a range of dissolved oxygen concentrations. Both laboratory column and an 80-day continuous injection tracer test field experiments were conducted. The rates of LAS biodegradation increased with increasing dissolved oxygen concentrations and indicated the preferential biodegradation of the longer alkyl chain LAS homologues (i.e., C12 and C13) and external isomers (i.e., 2- and 3-phenyl). However, for similar dissolved oxygen concentrations, mass removal rates for LAS generally were 2-3 times greater in laboratory column experiments than in the field tracer test. Under low oxygen conditions (<1 mg/L) only a fraction of the LAS mixture biodegraded in both laboratory and field experiments. Biodegradation rate constants for the continuous injection field test (0.002-0.08 day-1) were comparable to those estimated for a 3-h injection (pulsed) tracer test conducted under similar biogeochemical conditions, indicating that increasing the exposure time of aquifer sediments to LAS did not increase biodegradation rates.
NASA Astrophysics Data System (ADS)
Dittrich, T. M.; Boukhalfa, H.; Reimus, P. W.
2014-12-01
The objective of this study was to investigate and quantify the effects of desorption kinetics and colloid transport on radionuclides with different sorption affinities. We focused on quantifying transport mechanisms important for upscaling in time and distance. This will help determine the long-term fate and transport of radionuclides to aid in risk assessments. We selected a fractured/weathered granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model crystalline rock repository system because the system has been thoroughly studied and field experiments involving radionuclides have already been conducted. Working on this system provides a unique opportunity to compare lab experiments with field-scale observations. Weathered fracture fill material (FFM) and bentonite used as backfill at the GTS were characterized (e.g., BET, SEM/EDS, QXRD), and batch and breakthrough column experiments were conducted. Solutions were prepared in synthetic groundwaters that matched the natural water chemistry. FFM samples were crushed, rinsed, sieved (150-355 μm), and equilibrated with synthetic groundwater. Bentonite was crushed, sodium-saturated, equilibrated with synthetic groundwater, and settled to yield a stable suspension. Suspensions were equilibrated with Am, Cs, or Pu. All experiments were conducted with Teflon®materials to limit sorption to system components. After radionuclide/colloid injections reached stability, radionuclide-free solutions were injected to observe the desorption and release behavior. Aliquots of effluent were measured for pH, colloid concentration, and total and dissolved radionuclides. Unanalyzed effluent from the first column was then injected through a second column of fresh material. The process was repeated for a third column and the results of all three breakthrough curves were modeled with a multi-site/multi-rate MATLAB code to elucidate the sorption rate coefficients and binding site densities of the bentonite colloids and fracture fill material. Nearly 50% of the sorbed Am was exchanged from the colloids to the fracture filling material in each of the three columns; whereas, less Cs and Pu was desorbed with each pass through a new column. Using a two-site kinetic model allowed for interrogation of desorption rates and dominant transport parameters.
Mobility of multiwalled carbon nanotubes in porous media.
Liu, Xueying; O'Carroll, Denis M; Petersen, Elijah J; Huang, Qingguo; Anderson, C Lindsay
2009-11-01
Engineered multiwalled carbon nanotubes (MWCNTs) are the subject of intense research and are expected to gain widespread usage in a broad variety of commercial products. However, concerns have been raised regarding potential environmental and human health risks. The mobility of MWCNTs in porous media is examined in this study using one-dimensional flow-through column experiments under conditions representative of subsurface and drinking water treatment systems. Results demonstrate that pore water velocity strongly influenced MWCNT transport, with high MWCNT mobility at pore water velocities greater than 4.0 m/d. A numerical simulator, which incorporated a newly developed theoretical collector efficiency relationship for MWCNTs in spherical porous media, was developed to model observed column results. The model, which incorporated traditional colloid filtration theory in conjunction with a site-blocking term, yielded good agreement with observed results in quartz sand-packed column experiments. Experiments were also conducted in glass bead-packed columns with the same mean grain size as the quartz sand-packed columns. MWCNTs were more mobile in the glass bead-packed columns.
Emerson, H P; Zengotita, F; Richmann, M; Katsenovich, Y; Reed, D T; Dittrich, T M
2018-10-01
The results presented in this paper highlight the complexity of adsorption and incorporation processes of Nd with dolomite and significantly improve upon previous work investigating trivalent actinide and lanthanide interactions with dolomite. Both batch and mini column experiments were conducted at variable ionic strength. These data highlight the strong chemisorption of Nd to the dolomite surface (equilibrium K d 's > 3000 mL/g) and suggest that equilibrium adsorption processes may not be affected by ionic strength based on similar results at 0.1 and 5.0 M ionic strength in column breakthrough and equilibrium batch (>5 days) results. Mini column experiments conducted over approximately one year also represent a significant development in measurement of sorption of Nd in the presence of flow as previous large-scale column experiments did not achieve breakthrough likely due to the high loading capacity of dolomite for Nd (up to 240 μg/g). Batch experiments in the absence of flow show that the rate of Nd removal increases with increasing ionic strength (up to 5.0 M) with greater removal at greater ionic strength for a 24 h sampling point. We suggest that the increasing ionic strength induces increased mineral dissolution and re-precipitation caused by changes in activity with ionic strength that lead to increased removal of Nd through co-precipitation processes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Evaporative Mass Transfer Behavior of a Complex Immiscible Liquid
McColl, Colleen M.; Johnson, Gwynn R.; Brusseau, Mark L.
2010-01-01
A series of laboratory experiments was conducted with a multiple-component immiscible liquid, collected from the Picillo Farm Superfund Site in Rhode Island, to examine liquid-vapor mass-transfer behavior. The immiscible liquid, which comprises solvents, oils, pesticides, PCBs, paint sludges, explosives, and other compounds, was characterized using gas chromatography and gas chromatography/mass spectrometry to determine mole fractions of selected constituents. Batch experiments were conducted to evaluate equilibrium phase-partitioning behavior. Two sets of air-stripping column studies were conducted to examine the mass-transfer dynamics of five selected target compounds present in the immiscible-liquid mixture. One set of column experiments was designed to represent a system with free-phase immiscible liquid present; the other was designed to represent a system with a residual phase of immiscible liquid. Initial elution behavior of all target components generally appeared to be ideal for both systems, as the initial vapor-phase concentrations were similar to vapor-phase concentrations measured for the batch experiment and those estimated using Raoult’s law (incorporating the immiscible-liquid composition data). Later-stage removal of 1,2-dichlorobenzene appeared to be rate limited for the columns containing free-phase immiscible liquid and no porous medium. Conversely, evaporative mass transfer appeared to be ideal throughout the experiment conducted with immiscible liquid distributed relatively uniformly as a residual phase within a sandy porous medium. PMID:18614196
Evaporative mass transfer behavior of a complex immiscible liquid.
McColl, Colleen M; Johnson, Gwynn R; Brusseau, Mark L
2008-09-01
A series of laboratory experiments was conducted with a multiple-component immiscible liquid, collected from the Picillo Farm Superfund Site in Rhode Island, to examine liquid-vapor mass-transfer behavior. The immiscible liquid, which comprises solvents, oils, pesticides, PCBs, paint sludges, explosives, and other compounds, was characterized using gas chromatography and gas chromatography/mass spectrometry to determine mole fractions of selected constituents. Batch experiments were conducted to evaluate equilibrium phase-partitioning behavior. Two sets of air-stripping column studies were conducted to examine the mass-transfer dynamics of five selected target compounds present in the immiscible-liquid mixture. One set of column experiments was designed to represent a system with free-phase immiscible liquid present; the other was designed to represent a system with a residual phase of immiscible liquid. Initial elution behavior of all target components generally appeared to be ideal for both systems, as the initial vapor-phase concentrations were similar to vapor-phase concentrations measured for the batch experiment and those estimated using Raoult's law (incorporating the immiscible-liquid composition data). Later-stage removal of 1,2-dichlorobenzene appeared to be rate limited for the columns containing free-phase immiscible liquid and no porous medium. Conversely, evaporative mass transfer appeared to be ideal throughout the experiment conducted with immiscible liquid distributed relatively uniformly as a residual phase within a sandy porous medium.
Evaluation of Fuel Oxygenate Degradation in the Vadose Zone
2005-03-01
Goltz (Member) date AFIT/GES/ENV/05M-05 Abstract Groundwater contamination by petroleum products poses a potential human health...this experiment. The column porosity was estimated from work conducted by a contractor, Jason Lach. An estimate of the column soil porosity
The objective of these laboratory experiments was to determine the role nitrate plays in enhancing the biodegradation of fuel contaminated groundwater. Column studies were conducted to simulate the nitrate field demonstration project carried out earlier at Traverse City, MI so a...
A series of miscible displacement experiments was conducted to investigate the significance of intraorganic matter diffusion (IOMD) as the rate-limiting step in sorption of organic and inorganic solutes during steady water flow in soil columns. Displacement studies were performed...
Bacteriophage PRD1 batch experiments to study attachment, detachment and inactivation processes
NASA Astrophysics Data System (ADS)
Sadeghi, Gholamreza; Schijven, Jack F.; Behrends, Thilo; Hassanizadeh, S. Majid; van Genuchten, Martinus Th.
2013-09-01
Knowledge of virus removal in subsurface environments is pivotal for assessing the risk of viral contamination of water resources and developing appropriate protection measures. Columns packed with sand are frequently used to quantify attachment, detachment and inactivation rates of viruses. Since column transport experiments are very laborious, a common alternative is to perform batch experiments where usually one or two measurements are done assuming equilibrium is reached. It is also possible to perform kinetic batch experiments. In that case, however, it is necessary to monitor changes in the concentration with time. This means that kinetic batch experiments will be almost as laborious as column experiments. Moreover, attachment and detachment rate coefficients derived from batch experiments may differ from those determined using column experiments. The aim of this study was to determine the utility of kinetic batch experiments and investigate the effects of different designs of the batch experiments on estimated attachment, detachment and inactivation rate coefficients. The experiments involved various combinations of container size, sand-water ratio, and mixing method (i.e., rolling or tumbling by pivoting the tubes around their horizontal or vertical axes, respectively). Batch experiments were conducted with clean quartz sand, water at pH 7 and ionic strength of 20 mM, and using the bacteriophage PRD1 as a model virus. Values of attachment, detachment and inactivation rate coefficients were found by fitting an analytical solution of the kinetic model equations to the data. Attachment rate coefficients were found to be systematically higher under tumbling than under rolling conditions because of better mixing and more efficient contact of phages with the surfaces of the sand grains. In both mixing methods, more sand in the container yielded higher attachment rate coefficients. A linear increase in the detachment rate coefficient was observed with increased solid-water ratio using tumbling method. Given the differences in the attachment rate coefficients, and assuming the same sticking efficiencies since chemical conditions of the batch and column experiments were the same, our results show that collision efficiencies of batch experiments are not the same as those of column experiments. Upscaling of the attachment rate from batch to column experiments hence requires proper understanding of the mixing conditions. Because batch experiments, in which the kinetics are monitored, are as laborious as column experiments, there seems to be no major advantage in performing batch instead of column experiments.
NASA Astrophysics Data System (ADS)
Herbert, Roger
2010-05-01
Laboratory column experiments have been conducted to determine nitrate removal rates from mine effluents by denitrification, with the purpose of providing initial data for the construction of a pilot scale reactive barrier system at the Malmberget iron mine, Sweden. Experiments were conducted at several different flow rates at 5C, 10C and room temperature; annual mean temperatures at the Malmberget site lie close to 0C. Columns were filled with an organic substrate consisting of sawdust mixed with sewage sludge, the source of denitrifying bacteria, supported by oven-dried clay pellets. Apparent denitrification rates, calculated from inflow and outflow nitrate concentrations and column hydraulic residence time, ranged from 5 to 13 mg N/L/d, with the lowest rates corresponding to the 5C experiments. These rates are, however, limited to a certain degree by the low flow rate and the supply of electrons acceptors (i.e. nitrate) to denitrifying bacteria. Results from the column experiment have been used to construct a barrier system in Malmberget, Sweden. Trial runs with the pilot-scale barrier will be conducted during 2010, with the purpose of determining the performance of the barrier as mean air temperatures increase from below to above 0C and saturated flow commences in the barrier. The barrier system is constructed as a rectangular container with steel sheet walls (9m length in flow direction, 1.5m deep), and the flow rate will be adjusted to a hydraulic residence time of 1 day. The pilot-scale barrier system currently lies above ground, but a permanent barrier system would be installed below the ground surface so that the system can be maintained at positive temperatures throughout the year.
Practical issues relating to soil column chromatography for sorption parameter determination.
Bi, Erping; Schmidt, Torsten C; Haderlein, Stefan B
2010-08-01
Determination of sorption distribution coefficients (K(d)) of organic compounds by a dynamic soil column chromatography (SCC) method was developed and validated. Eurosoil 4, quartz, and alumina were chosen as exemplary packing materials. Heterocyclic aromatic compounds were selected in the validation of SCC. The prerequisites of SCC with regard to column dimension, packing procedure, and sample injection volume are discussed. Reproducible soil column packing was achieved by addition of a pre-column and an HPLC pump for subsequent compression of the packed material. Various methods to determine retention times from breakthrough curves are discussed and the use of the half mass method is recommended. To dilute soil with inert material can prevent column-clogging and help to complete experiments in a reasonable period of time. For the chosen probe compounds, quartz rather than alumina proved a suitable dilution material. Non-equilibrium issue can be overcome by conducting the experiments under different flowrates and/or performing numerical simulation. Copyright 2010 Elsevier Ltd. All rights reserved.
The impact of three commercially-available nanoparticles (NPs) on trichloroethylene (TCE) adsorption onto granular activated carbon (GAC) was investigated. TCE Adsorption isotherm and column breakthrough experiments were conducted in the presence and absence of silicon dioxide (S...
NASA Astrophysics Data System (ADS)
Banzhaf, S.; Nödler, K.; Licha, T.; Krein, A.; Scheytt, T.
2012-04-01
Laboratory column experiments are suitable to investigate the sediment water interaction and to study the transport behaviour of solutes. Processes like retardation and degradation can be identified and quantified. The conducted experiment, which is closely connected to a field study in Luxembourg, investigated the transport behaviour of selected pharmaceutical compounds and their redox-dependent metabolism under water saturated conditions. Fine-grained natural sediment with a low hydraulic conductivity from a study site in Luxembourg was filled into the column. The water for the experiment was taken from a small stream at the same fieldsite. It was spiked with four pharmaceutical compounds (carbamazepine, diclofenac, ibuprofen, sulfamethoxazole) with concentrations between 170 and 300 ng/L for the different substances. The chosen pharmaceuticals were also detected in groundwater and surface water samples at the study site and used to qualify exchange/mixing of surface water and groundwater (BANZHAF et al., 2011). As some of the substances are known to exhibit redox-sensitive degradation, the redox-conditions were systematically varied throughout the experiment. This was realised by adding nitrate at the inflow of the column. During the experiment, which lasted for 2.5 months, four different nitrate concentrations (20-130 mg/L) were applied, beginning with the highest concentration. During the experiment water from the reservoir tank was sampled daily in order to detect a potential degradation of the pharmaceutical compounds before they enter the column. The effluent water was sampled every three hours to guarantee a maximum resolution for the analysis of the pharmaceuticals where necessary. In addition, major ions were analysed in the influent and effluent samples. Throughout the experiment physicochemical parameters (oxidation reduction potential (ORP), dissolved oxygen, electrical conductivity, and pH-value) were measured and logged at the outflow of the column. At the beginning, the ORP was positive (200 mV) and then dropped continuously. Negative values were reached after 1 month and at the end of the experiment -300 mV were measured. Apart from nitrate and nitrite no significant changes in ion concentrations were detected in the effluent. However, the added pharmaceuticals showed very different behaviour in the column. Diclofenac and especially carbamazepine were highly absorbed by the sediment. They were detected significantly later at the outflow of the column than sulfamethoxazole and ibuprofen. Sulfamethoxazole was heavily influenced by the redox-conditions. Its time variation curve in the effluent is negatively correlated with nitrite and nitrate: during nitrite formation the concentrations of sulfamethoxazole dropped considerably. The presented experiment yields a better understanding of the processes influencing the occurrence and transport behaviour of the studied compounds. In addition, some general findings on redox-dependent transport behaviour and metabolism of the antibiotic sulfamethoxazole are gained. This emphasizes the role of the ORP as a key parameter for the behaviour of this compound, which has to be considered. BANZHAF, S., KREIN, A. & SCHEYTT, T. (2011). Investigative approaches to determine exchange processes in the hyporheic zone of a low permeability riverbank. Hydrogeology Journal 19 (3), pp. 591-601.
Hafeznezami, Saeedreza; Zimmer-Faust, Amity G; Jun, Dukwoo; Rugh, Megyn B; Haro, Heather L; Park, Austin; Suh, Jae; Najm, Tina; Reynolds, Matthew D; Davis, James A; Parhizkar, Tarannom; Jay, Jennifer A
2017-10-01
Batch and column laboratory experiments were conducted on natural sediment and groundwater samples from a contaminated site in Maine, USA with the aim of lowering the dissolved arsenate [As(V)] concentrations through chemical enhancement of natural attenuation capacity. In batch factorial experiments, two levels of treatment for three parameters (pH, Ca, and Fe) were studied at different levels of phosphate to evaluate their impact on As(V) solubility. Results illustrated that lowering pH, adding Ca, and adding Fe significantly increased the sorption capacity of sediments. Overall, Fe amendment had the highest individual impact on As(V) levels. To provide further evidence for the positive impact of Ca on As(V) adsorption, isotherm experiments were conducted at three different levels of Ca concentrations. A consistent increase in adsorption capacity (26-37%) of sediments was observed with the addition of Ca. The observed favorable effect of Ca on As(V) adsorption is likely caused by an increase in the surface positive charges due to surface accumulation of Ca 2+ ions. Column experiments were conducted by flowing contaminated groundwater with elevated pH, As(V), and phosphate through both uncontaminated and contaminated sediments. Potential in-situ remediation scenarios were simulated by adding a chemical amendment feed to the columns injecting Fe(II) or Ca as well as simultaneous pH adjustment. Results showed a temporary and limited decrease in As(V) concentrations under the Ca treatment (39-41%) and higher levels of attenuation in Fe(II) treated columns (50-91%) but only after a certain number of pore volumes (18-20). This study illustrates the importance of considering geochemical parameters including pH, redox potential, presence of competing ions, and sediment chemical and physical characteristics when considering enhancing the natural attenuation capacity of sediments to mitigate As contamination in natural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Transport and retention of bacteria and viruses in biochar-amended sand.
Sasidharan, Salini; Torkzaban, Saeed; Bradford, Scott A; Kookana, Rai; Page, Declan; Cook, Peter G
2016-04-01
The transport and retention of Escherichia coli and bacteriophages (PRD1, MS2 and ФX174), as surrogates for human pathogenic bacteria and viruses, respectively, were studied in the sand that was amended with several types of biochar produced from various feedstocks. Batch and column studies were conducted to distinguish between the role of attachment and straining in microbe retention during transport. Batch experiments conducted at various solution chemistries showed negligible attachment of viruses and bacteria to biochar before or after chemical activation. At any given solution ionic strength, the attachment of viruses to sand was significantly higher than that of biochar, whereas bacteria showed no attachment to either sand or biochar. Consistent with batch results, biochar addition (10% w/w) to sand reduced virus retention in the column experiments, suggesting a potential negative impact of biochar application to soil on virus removal. In contrast, the retention of bacteria was enhanced in biochar-amended sand columns. However, elimination of the fine fraction (<60μm) of biochar particles in biochar-amended sand columns significantly reduced bacteria retention. Results from batch and column experiments suggest that land application of biochar may only play a role in microbe retention via straining, by alteration of pore size distribution, and not via attachment. Consequently, the particle size distribution of biochar and sediments is a more important factor than type of biochar in determining whether land application of biochar enhances or diminishes microbial retention. Copyright © 2016 Elsevier B.V. All rights reserved.
Bacteriophage PRD1 batch experiments to study attachment, detachment and inactivation processes.
Sadeghi, Gholamreza; Schijven, Jack F; Behrends, Thilo; Hassanizadeh, S Majid; van Genuchten, Martinus Th
2013-09-01
Knowledge of virus removal in subsurface environments is pivotal for assessing the risk of viral contamination of water resources and developing appropriate protection measures. Columns packed with sand are frequently used to quantify attachment, detachment and inactivation rates of viruses. Since column transport experiments are very laborious, a common alternative is to perform batch experiments where usually one or two measurements are done assuming equilibrium is reached. It is also possible to perform kinetic batch experiments. In that case, however, it is necessary to monitor changes in the concentration with time. This means that kinetic batch experiments will be almost as laborious as column experiments. Moreover, attachment and detachment rate coefficients derived from batch experiments may differ from those determined using column experiments. The aim of this study was to determine the utility of kinetic batch experiments and investigate the effects of different designs of the batch experiments on estimated attachment, detachment and inactivation rate coefficients. The experiments involved various combinations of container size, sand-water ratio, and mixing method (i.e., rolling or tumbling by pivoting the tubes around their horizontal or vertical axes, respectively). Batch experiments were conducted with clean quartz sand, water at pH 7 and ionic strength of 20 mM, and using the bacteriophage PRD1 as a model virus. Values of attachment, detachment and inactivation rate coefficients were found by fitting an analytical solution of the kinetic model equations to the data. Attachment rate coefficients were found to be systematically higher under tumbling than under rolling conditions because of better mixing and more efficient contact of phages with the surfaces of the sand grains. In both mixing methods, more sand in the container yielded higher attachment rate coefficients. A linear increase in the detachment rate coefficient was observed with increased solid-water ratio using tumbling method. Given the differences in the attachment rate coefficients, and assuming the same sticking efficiencies since chemical conditions of the batch and column experiments were the same, our results show that collision efficiencies of batch experiments are not the same as those of column experiments. Upscaling of the attachment rate from batch to column experiments hence requires proper understanding of the mixing conditions. Because batch experiments, in which the kinetics are monitored, are as laborious as column experiments, there seems to be no major advantage in performing batch instead of column experiments. Copyright © 2013 Elsevier B.V. All rights reserved.
Page, Declan; Vanderzalm, Joanne; Miotliński, Konrad; Barry, Karen; Dillon, Peter; Lawrie, Ken; Brodie, Ross S
2014-12-01
The success of Aquifer Storage and Recovery (ASR) schemes relies on defining appropriate design and operational parameters in order to maintain high rates of recharge over the long term. The main contribution of this study was to define the water quality criteria and hence minimum pre-treatment requirements to allow sustained recharge at an acceptable rate in a medium-coarse sand aquifer. The source water was turbid, natural water from the River Darling, Australia. Three treatments were evaluated: bank filtration; coagulation and chlorine disinfection; and coagulation plus granular activated carbon and chlorine disinfection (GAC). Raw source water and the three treated waters were used in laboratory columns packed with aquifer material in replicate experiments in saturated conditions at constant temperature (19 °C) with light excluded for 37 days. Declines in hydraulic conductivity from a mean of 2.17 m/d occurred over the 37 days of the experiment. The GAC-treated water gave an 8% decline in hydraulic conductivity over the 16 cm length of columns, which was significantly different from the other three source waters, which had mean declines of 26-29%. Within the first 3 cm of column length, where most clogging occurred in each column, the mean hydraulic conductivity declined by 10% for GAC-treated water compared with 40-50% for the other source waters. There was very little difference between the columns until day 21, despite high turbidity (78 NTU) in the source water. Reducing turbidity by treatment was not sufficient to offset the reductions in hydraulic conductivity. Biological clogging was found to be most important as revealed by the accumulation of polysaccharides and bacterial numbers in columns when they were dissected and analysed at the end of the experiment. Further chemical clogging through precipitation of minerals was found not to occur within the laboratory columns, and dispersion of clay was also found to be negligible. Due to the low reduction in hydraulic conductivity, GAC-treated water quality was used to set pre-treatment targets for ASR injection of turbidity <0.6 NTU, membrane filtration index (MFI) < 2 s/L(2), biodegradable dissolved organic carbon (BDOC) < 0.2 mg/L, total nitrogen < 0.3 mg/L and residual chlorine > 0.2 mg/L. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Song, Zhiyong; Zhu, Weiyao; Sun, Gangzheng; Blanckaert, Koen
2015-08-01
Microbial enhanced oil recovery (MEOR) depends on the in situ microbial activity to release trapped oil in reservoirs. In practice, undesired consumption is a universal phenomenon but cannot be observed effectively in small-scale physical simulations due to the scale effect. The present paper investigates the dynamics of oil recovery, biomass and nutrient consumption in a series of flooding experiments in a dedicated large-scale sand-pack column. First, control experiments of nutrient transportation with and without microbial consumption were conducted, which characterized the nutrient loss during transportation. Then, a standard microbial flooding experiment was performed recovering additional oil (4.9 % Original Oil in Place, OOIP), during which microbial activity mostly occurred upstream, where oil saturation declined earlier and steeper than downstream in the column. Subsequently, more oil remained downstream due to nutrient shortage. Finally, further research was conducted to enhance the ultimate recovery by optimizing the injection strategy. An extra 3.5 % OOIP was recovered when the nutrients were injected in the middle of the column, and another additional 11.9 % OOIP were recovered by altering the timing of nutrient injection.
Farrokhzadeh, Hasti; Hettiaratchi, J Patrick A; Jayasinghe, Poornima; Kumar, Sunil
2017-09-01
Aiming to improve conventional methane biofilter performance, a multiple-level aeration biofilter design is proposed. Laboratory flow-through column experiments were conducted to evaluate three actively-aerated methane biofilter configurations. Columns were aerated at one, two, and three levels of the bed depth, with air introduced at flow rates calculated from methane oxidation reaction stoichiometry. Inlet methane loading rates were increased in five stages between 6 and 18mL/min. The effects of methane feeding rate, levels of aeration, and residence time on methane oxidation rates were determined. Samples collected after completion of flow-through experiments were used to determine methane oxidation kinetic parameters, V max , K m , and methanotrophic community distribution across biofilter columns. Results obtained from mixed variances analysis and response surfaces, as well as methanotrophic activity data, suggested that, biofilter column with two aeration levels has the most even performance over time, maintaining 85.1% average oxidation efficiency over 95days of experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Variation in Hydraulic Conductivity with Decreasing pH in a Biologically-Clogged Porous Medium
NASA Astrophysics Data System (ADS)
Kirk, M. F.; Santillan, E.; McGrath, L. K.; Altman, S. J.
2011-12-01
Biological clogging can significantly lower the hydraulic conductivity of porous media, potentially helping to limit CO2 transport from geological carbon storage reservoirs. How clogging is affected by CO2 injection, however, is unclear. We used column experiments to examine how decreasing pH, a geochemical change associated with CO2 injection, will affect the hydraulic conductivity (K) of biologically clogged porous medium. Four biologically-active experiments and two control experiments were performed. Columns consisted of 1 mm2 capillary tubes filled with 105-150 μm diameter glass beads. Artificial groundwater medium containing 1 mM glucose was pumped through the columns at a rate of 0.015 mL/min (q = 21.6 m/day; Re = 0.045). Each column was inoculated with 10^8 CFU of Pseudomonas fluorescens tagged with a green fluorescent protein; cells introduced to control columns were heat sterilized. Biomass distribution and transport was monitored using scanning laser confocal microscopy and effluent plating. Growth was allowed to occur for 5 days in medium with pH 7 in the biologically active columns. During that time, K decreased to values ranging from 10 to 27% of the average control K and effluent cell levels increased to about 10^8 CFU/mL. Next, the pH of the inflowing medium was lowered to 4 in three experiments and 5.5 in one experiment. After pH 4 medium was introduced, K increased to values ranging from 21 to 64% of the average control K and culturable cell levels in the effluent fell by about 4 log units. Confocal images show that clogging persisted in the columns at pH 4 because most of the microbial biomass remained attached to bead surfaces. In the experiment where pH was lowered to 5.5, K changed little because biological clogging remained entirely intact. The concentration of culturable cells in the effluent was also invariant. These results suggest that biomass in porous medium will largely remain in place following exposure to acidic water in a CO2 storage reservoir, particularly where buffering is able to limit the extent of acidification. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
The influence of a fire-induced convection column on radiological fallout patterns
A. Broido; A.W. McMasters
1959-01-01
Since no nuclear devices have been detonated by the United States under conditions leading to both mass fires and radiological fallout, a theoretical and small-scale experimental study was undertaken to see if fire-induced convection columns could significantly affect fallout patterns. Experiments were conducted in a 6- by 6-foot low-velocity wind tunnel using full-...
Investigation related to hydrogen isotopes separation by cryogenic distillation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bornea, A.; Zamfirache, M.; Stefanescu, I.
2008-07-15
Research conducted in the last fifty years has shown that one of the most efficient techniques of removing tritium from the heavy water used as moderator and coolant in CANDU reactors (as that operated at Cernavoda (Romania)) is hydrogen cryogenic distillation. Designing and implementing the concept of cryogenic distillation columns require experiments to be conducted as well as computer simulations. Particularly, computer simulations are of great importance when designing and evaluating the performances of a column or a series of columns. Experimental data collected from laboratory work will be used as input for computer simulations run at larger scale (formore » The Pilot Plant for Tritium and Deuterium Separation) in order to increase the confidence in the simulated results. Studies carried out were focused on the following: - Quantitative analyses of important parameters such as the number of theoretical plates, inlet area, reflux flow, flow-rates extraction, working pressure, etc. - Columns connected in series in such a way to fulfil the separation requirements. Experiments were carried out on a laboratory-scale installation to investigate the performance of contact elements with continuous packing. The packing was manufactured in our institute. (authors)« less
Geoelectrical Evidence of Microbial Degradation of Diesel Contaminated Sediments
NASA Astrophysics Data System (ADS)
Werkema, D. D.; Atekwana, E. A.; Rossbach, S.; Sauck, W. A.
2003-12-01
The alteration of physical properties by microbial activity in petroleum contaminated sediments was investigated using geophysical techniques in laboratory column experiments. Microbial population growth was determined by the Most Probable Number technique (MPN), community dynamics were determined by the rDNA intergenic spacer analysis (RISA), microbial mineralization of diesel fuel was assessed using dissolved inorganic carbon (DIC), enhanced mineral dissolution was determined by dissolved calcium, and the vertical geoelectrical profile was measured using DC resistivity (converted to conductivity). The columns simulated a saturation profile and contained sanitized, uniform sand with the following experimental treatments: diesel + microbes, diesel, microbes, and no treatment. After 16 months, two important conclusions were drawn. First, the relative increase in magnitude of the parameters measured was highest in the diesel + microbe column (showing at least 110% increase), lower in the diesel column and lowest (actually showing a decrease) in the column with no treatment. Further, the diesel + microbe column showed the greatest increase in oil degrading microbial populations (135%) compared to the column with no treatment, which showed no changes. Secondly, the depth at which the conductivity reached the maximum occurred within and slightly above the diesel layer (which represents a depth that was originally water wet). It was further observed that the relative change in bulk conductivity below the saturated zone is of a lower magnitude than above (<10%). These results suggest the diesel layer, and the zone slightly above, were the most biologically active. Additionally, the diesel + microbe column showed RISA fragments attributed to microbial succession typically observed in organic contaminant plumes. A simple Archie's Law analysis was used to estimate the pore water conductivities necessary to reproduce the bulk conductivity measured. This analysis shows that relative to the column with only microbes (selected as the control to be most representative of field conditions), the diesel column revealed a 2.3 fold increase and the diesel + microbe column showed a 3 fold increase in pore water conductivity. This increase was located within the diesel layer above the water saturated zone. Within the saturated zone, the no treatment column showed a 0.81 fold increase, the diesel column a 1.28, and the diesel + microbe column 1.45. We conclude from this study that microbial activity and the resultant biogeochemical changes played an important role in modifying the geoelectrical properties of aquifers and sediments rich in organic carbon and mineralized by bacteria by increasing the bulk conductivity. This conductive zone occurred within and immediately above the free-phase petroleum layer. In natural environments with high concentrations of organic compounds available as electron donors, geophysical techniques may potentially be used as indicators of microbial activity. Notice: This is an abstract of a proposed presentation and does not necessarily reflect the United States Environmental Protection Agency (EPA) policy. The actual presentation has not been peer reviewed by EPA. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.
Diurnal trends in methylmercury concentration in a wetland adjacent to Great Salt Lake, Utah, USA
Naftz, D.L.; Cederberg, J.R.; Krabbenhoft, D.P.; Beisner, K.R.; Whitehead, J.; Gardberg, J.
2011-01-01
A 24-h field experiment was conducted during July 2008 at a wetland on the eastern shore of Great Salt Lake (GSL) to assess the diurnal cycling of methylmercury (MeHg). Dissolved (<0.45??m) MeHg showed a strong diurnal variation with consistently decreasing concentrations during daylight periods and increasing concentrations during non-daylight periods. The proportion of MeHg relative to total Hg in the water column consistently decreased with increasing sunlight duration, indicative of photodegradation. During the field experiment, measured MeHg photodegradation rates ranged from 0.02 to 0.06ngL-1h-1. Convective overturn of the water column driven by nighttime cooling of the water surface was hypothesized as the likely mechanism to replace the MeHg in the water column lost via photodegradation processes. A hydrodynamic model of the wetland successfully simulated convective overturn of the water column during the field experiment. Study results indicate that daytime monitoring of selected wetlands surrounding GSL may significantly underestimate the MeHg content in the water column. Wetland managers should consider practices that maximize the photodegradation of MeHg during daylight periods. ?? 2011.
Cukrowska, Ewa M; Govender, Koovila; Viljoen, Morris
2004-07-01
New column leaching experiments were designed and used as an alternative rapid screening approach to element mobility assessment. In these experiments, field-moist material was treated with an extracting solution to assess the effects of acidification on element mobility in mine tailings. The main advantage of this version of column leaching experiments with partitioned segments is that they give quick information on current element mobility in conditions closely simulating field conditions to compare with common unrepresentative air-dried, sieved samples used for column leaching experiments. Layers from the tailings dump material were sampled and packed into columns. The design of columns allows extracting leachates from each layer. The extracting solutions used were natural (pH 6.8) and acidified (pH 4.2) rainwater. Metals and anions were determined in the leachates. The concentrations of metals (Ca, Mg, Fe, Mn, Al, Cr, Ni, Co, Zn, and Cu) in sample leachates were determined using ICP OES. The most important anions (NO3-, Cl-, and SO4(2)-) were determined using the closed system izotacophoresis ITP analyser. The chemical analytical data from tailings leaching and physico-chemical data from field measurements (including pH, conductivity, redox potential, temperature) were used for chemometric evaluation of element mobility. Principal factor analysis (PFA) was used to evaluate ions mobility from different layers of tailings dump arising from varied pH and redox conditions. It was found that the results from the partitioned column leaching illustrate much better complex processes of metals mobility from tailings dump than the total column. The chemometric data analysis (PFA) proofed the differences in the various layers leachability that are arising from physico-chemical processes due to chemical composition of tailings dump deposit. Copyright 2004 Elsevier Ltd.
Collapse of a Liquid Column: Numerical Simulation and Experimental Validation
NASA Astrophysics Data System (ADS)
Cruchaga, Marcela A.; Celentano, Diego J.; Tezduyar, Tayfun E.
2007-03-01
This paper is focused on the numerical and experimental analyses of the collapse of a liquid column. The measurements of the interface position in a set of experiments carried out with shampoo and water for two different initial column aspect ratios are presented together with the corresponding numerical predictions. The experimental procedure was found to provide acceptable recurrence in the observation of the interface evolution. Basic models describing some of the relevant physical aspects, e.g. wall friction and turbulence, are included in the simulations. Numerical experiments are conducted to evaluate the influence of the parameters involved in the modeling by comparing the results with the data from the measurements. The numerical predictions reasonably describe the physical trends.
NASA Astrophysics Data System (ADS)
Yang, L.; Molins, S.; Beller, H. R.; Brodie, E. L.; Steefel, C.; Nico, P. S.; Han, R.
2010-12-01
Microbially mediated Cr(VI) reduction at the Hanford 100H area was investigated by flow-through column experiments. Three separate experiments were conducted to promote microbial activities associated with denitrification, iron and sulfate reduction, respectively. Replicate columns packed with natural sediments from the site under anaerobic environment were injected with 5mM Lactate as the electron donor and 5 μM Cr(VI) in all experiments. Sulfate and nitrate solutions were added to act as the main electron acceptors in the respective experiments, while iron columns relied on the indigenous sediment iron (and manganese) oxides as electron acceptors. Column effluent solutions were analyzed by IC and ICP-MS to monitor the microbial consumption/conversion of lactate and the associated Cr(VI) reduction. Biogeochemical reactive transport modeling was performed to gain further insights into the reaction mechanisms and Cr(VI) bioreduction rates. All experimental columns showed a reduction of the injected Cr(VI). Columns under denitrifying conditions showed the least Cr(VI) reduction at early stages (<60 days) compared to columns run under other experimental conditions, but became more active over time, and ultimately showed the most consistent Cr(VI) reduction. A strong correlation between denitrification and Cr(VI) reduction processes was observed and was in agreement with the results obtained in batch experiments with a denitrifying bacterium isolated from the Hanford site. The accumulation of nitrite does not appear to have an adverse effect on Cr(VI) reduction rates. Reactive transport simulations indicated that biomass growth completely depleted influent ammonium, and called for an additional source of N to account for the measured reduction rates. Iron columns were the least active with undetectable consumption of the injected lactate, slowest cell growth, and the smallest change in Cr(VI) concentrations during the course of the experiment. In contrast, columns under sulfate-reducing/fermentative conditions exhibited the greatest Cr(VI) reduction capacity. Two sulfate columns evolved to complete lactate fermentation with acetate and propionate produced in the column effluent after 40 days of experiments. These fermenting columns showed a complete removal of injected Cr(VI), visible precipitation of sulfide minerals, and a significant increase in effluent Fe and Mn concentrations. Reactive transport simulations suggested that direct reduction of Cr(VI) by Fe(II) and Mn(II) released from the sediment could account for the observed Cr(VI) removal. The biogeochemical modeling was employed to test two hypotheses that could explain the release of Fe(II) and Mn(II) from the column sediments: 1) acetate produced by lactate fermentation provided the substrate for the growth of iron(III) and manganese(IV) oxide reducers, and 2) direct reduction of iron(III) and manganese(IV) oxides by hydrogen sulfide generated during sulfate reduction. Overall, experimental and modeling results suggested that Cr(VI) reduction in the sulfate-reducing columns occurred through a complex network of microbial reactions that included fermentation, sulfate reduction, and possibly the stimulated iron-reducing communities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertetti, F.P.; Birnbaum, S.J.
1992-01-01
Laboratory experiments were employed to determine the effects of microbial growth upon the hydraulic conductivity (K) of unconsolidated sediments at Kelly Air Force Base, Texas. Indigenous microflora were isolated from sediment samples collected at sites contaminated with toxic organic compounds (e.g. dichlorobenzene) by plating on concentrated and dilute media. Plexiglas columns were packed with silica beads or Kelly AFB sediment and used to simulate ground water flow conditions. Grain sizes were selected to yield realistic K values (2.0 [times] 10[sup [minus]1] to 8.0 [times] 10[sup [minus]3] cm/sec) defined by field data from the contaminated sites. Both individual and mixed microbialmore » colonies, selected based on morphological characteristics individual and mixed microbial colonies, selected based on morphological characteristics deemed favorable for porosity obstruction, were injected into sterile, saturated columns. Growth was stimulated by adding sterile liquid nutrient media. Media flow rates were based upon field derived hydraulic conductivity values and water table gradients. Flow rates were controlled using a peristaltic pump. Growth of the microorganisms produced biomass which reduced the column hydraulic conductivity by up to 90% in 11 days. Reduction in K was accomplished via clogging of pore throats by cell attachment and accumulation on bead surfaces, and extracellular biofilm development. Sediment packed columns showed reduction in K values similar to that of bead packed columns of equivalent grain size. Porosity obstruction and corresponding reduction in K persisted in the columns even when subjected to hydraulic gradients significantly exceeding gradients measured in the field thereby demonstrating the robust nature of biological barrier to flow.« less
Leachate Properties and Cadmium Migration Through Freeze-thaw Treated Soil Columns.
Xu, Meng; Zheng, Yue; Chen, Weiwei; Mao, Na; Guo, Ping
2017-01-01
Soil column leaching experiments were conducted to study the effects of multiple freeze-thaw cycles on the vertical migration of cadmium (Cd). Three Cd-spiked leaching solutions of different properties were derived from snowmelt, sludge, and straw, designated as B, W and J, respectively. The leaching solutions varied in dissolved organic matter (DOM) concentrations in the order of J > W > B. Changes in leachate properties and Cd concentration were observed. The results showed that pH values of all the leachate solutions through freeze-thaw treated soil columns were higher than those of leachates through unfrozen soils. However, electrical conductivity (EC) values decreased compared with leachates in unfrozen treated soil columns. Although the concentrations of DOM in leachate solutions had no evident differences between the freeze-thaw and unfrozen treated soil columns, the concentrations of DOM in the leachate solutions B, W and J were different. Freeze-thaw cycles resulted in increased concentrations of Cd in the leachate solutions in the order J > W > B, and promoted a deeper migration of Cd in the soil columns. Thus, it was shown that freeze-thaw cycles may increase the risk of groundwater pollution by Cd.
Variable-Resistivity Material For Memory Circuits
NASA Technical Reports Server (NTRS)
Nagasubramanian, Ganesan; Distefano, Salvador; Moacanin, Jovan
1989-01-01
Nonvolatile memory elements packed densely. Electrically-erasable, programmable, read-only memory matrices made with newly-synthesized organic material of variable electrical resistivity. Material, polypyrrole doped with tetracyanoquinhydrone (TCNQ), changes reversibly between insulating or higher-resistivity state and conducting or low-resistivity state. Thin film of conductive polymer separates layer of row conductors from layer of column conductors. Resistivity of film at each intersection and, therefore, resistance of memory element defined by row and column, increased or decreased by application of suitable switching voltage. Matrix circuits made with this material useful for experiments in associative electronic memories based on models of neural networks.
Chancellor Water Colloids: Characterization and Radionuclide Associated Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimus, Paul William; Boukhalfa, Hakim
2014-09-26
Column transport experiments were conducted in which water from the Chancellor nuclear test cavity was transported through crushed volcanic tuff from Pahute Mesa. In one experiment, the cavity water was spiked with solute 137Cs, and in another it was spiked with 239/240Pu(IV) nanocolloids. A third column experiment was conducted with no radionuclide spike at all, although the 137Cs concentrations in the water were still high enough to quantify in the column effluent. The radionuclides strongly partitioned to natural colloids present in the water, which were characterized for size distribution, mass concentration, zeta potential/surface charge, critical coagulation concentration, and qualitative mineralogy.more » In the spiked water experiments, the unanalyzed portion of the high-concentration column effluent samples were combined and re-injected into the respective columns as a second pulse. This procedure was repeated again for a third injection. Measurable filtration of the colloids was observed after each initial injection of the Chancellor water into the columns, but the subsequent injections (spiked water experiments only) exhibited no apparent filtration, suggesting that the colloids that remained mobile after relatively short transport distances were more resistant to filtration than the initial population of colloids. It was also observed that while significant desorption of 137Cs from the colloids occurred after the first injection in both the spiked and unspiked waters, subsequent injections of the spiked water exhibited much less 137Cs desorption (much greater 137Cs colloid-associated transport). This result suggests that the 137Cs that remained associated with colloids during the first injection represented a fraction that was more strongly adsorbed to the mobile colloids than the initial 137Cs associated with the colloids. A greater amount of the 239/240Pu desorbed from the colloids during the second column injection compared to the first injection, but then desorption decreased significantly in the third injection. This result suggests that the Pu(IV) nanocolloids probably at least partially dissolved during and after the first injection, resulting in enhanced desorption from the colloids during the second injection, but by the third injection the Pu started following the same trend that was observed for 137Cs. The experiments suggest a transport scale dependence in which mobile colloids and colloid-associated radionuclides observed at downstream points along a flow path have a greater tendency to remain mobile along the flow path than colloids and radionuclides observed at upstream points. This type of scale dependence may help explain observations of colloid-facilitated Pu transport over distances of up to 2 km at Pahute Mesa.« less
Sand filter clogging by septic tank effluent.
Spychała, M; Błazejewski, R
2003-01-01
The aim of this study was to characterise conditions and factors affecting fine sand clogging by septic tank effluent on the basis of physical modelling. The physical model consisted of 12 sand columns dosed with sewage from one household (5 persons), preliminary treated in a septic tank. Hydraulic loadings of the sand filters were equal to 82 mm/d. The mean discharge from sand columns, measured as the effluent volume collected during 10 minutes, decreased significantly over the experiment period from 34 cm3/min in August 2000 to 20 cm3/min in August 2001 at the same temperature of about 20 degrees C. First the columns clogged almost completely after 480 days in December 2001, however six columns had remained unclogged till the end of the experiment (March 2002). The temperature had a significant impact on hydraulic conductivity. A vertical distribution of accumulated mass and biomass was investigated in partly clogged sand. Microscopic survey of the clogging layer showed a presence of live micro-organisms, residuals of dead micro-organisms, particularly pieces of small animal armour and many fibres. These particles accelerated the accumulation of solids in the upper clogging layer. The study indicated that temperature impact on the filter hydraulic conductivity was more significant for biological activity, than for sewage viscosity.
NASA Astrophysics Data System (ADS)
Hamamoto, S.; Nihei, N.; Ueda, Y.; Moldrup, P.; Nishimura, T.
2016-12-01
The micro- and nano-bubbles (MNBs) have considerable potentials for the remediation of soil contaminated by organic compounds when used in conjunction with bioremediation technology. Understanding a transport mechanism of MNBs in soils is essential to optimize remediation techniques using MNBs. In this study, column transport experiments using glass beads with different size fractions (average particles size: 0.1 mm and 0.4 mm) were conducted, where MNBs created by oxygen gas were injected to the column with different flow rates. Effects of particle size and bubble characteristics on MNB transport in porous media were investigated based on the column experiments. The results showed that attachments of MNBs were enhanced under lower flow rate. Under higher flow rate condition, there were not significant differences of MNBs transport in porous media with different particle size. A convection-dispersion model including bubble attachment, detachment, and straining terms was applied to the obtained breakthrough curves for each experiment, showing good fitness against the measured data. Further investigations will be conducted to understand bubble characteristics including bubble size and zeta potential on MNB transport in porous media. Relations between in model parameters in the transport model and physical and chemical properties in porous media and MNBs will be discussed.
A Methodology for Characterizing Potential Uranium Transport in Deep Geological Disposal Sites
NASA Astrophysics Data System (ADS)
Dittrich, T. M.; Reimus, P. W.
2013-12-01
In order to make safe and reasonable decisions about radioactive waste disposal in deep geologic sites, it is important to understand the fate and potential transport of long half-life transuranic radionuclides over a wide range of time and distance scales. The objective of this study was to evaluate and demonstrate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured/weathered granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments involving uranium, as well as other actinides, have already been conducted. Working on this system provides a unique opportunity to compare lab experimental results with field-scale observations. Drilled rock cores and weathered fracture fill material (FFM) from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption/desorption and column breakthrough experiments. Uranium solutions were made by adding uranium to a synthetic Grimsel groundwater that matched the natural water chemistry found in the GTS groundwater. Batch and breakthrough experiments were conducted using solutions between pH 6.9 and 9.0. All column experiments were conducted using syringe pumps at low flow rate (<0.3 ml h-1) in small columns containing 5 g of material with pore volumes of 2-3 ml. These small columns allow rapid and economical evaluation of sorption/desorption behavior under flowing conditions (and in duplicate or triplicate). Solutions were switched to uranium-free synthetic Grimsel groundwater after equilibration in batch experiments or after near-steady uranium breakthrough occurred in column experiments. The measurement of uranium concentrations as a function of time under these conditions allowed interrogation of desorption rates which we believe control uranium fate and transport over long time and distance scales. Uranium transport was conservative and matched tritium breakthrough for pH 9.0; however, retardation increased when pH was reduced to 7.9 and 6.9. We are currently evaluating uranium adsorption/desorption rates as a function of water chemistry (initial focus on pH), with future testing planned to evaluate the influence of carbonate concentrations, flow rates, mineralogy, bentonite colloids and other actinides (e.g., Am). Figure 1. Uranium breakthrough results for (a) 6.5 μM U, (b) U-free solution, (c) flow rate increased from 0.3 to 0.6 mL h-1, (d) pH increased from 6.8 to 7.2, and (e) pH increased from 7.2 to 8.8.
Heat storage in the Hettangian aquifer in Berlin - results from a column experiment
NASA Astrophysics Data System (ADS)
Milkus, Chri(Sch)augott
2015-04-01
Aquifer Thermal Energy Storage (ATES) is a sustainable alternative for storage and seasonal availability of thermal energy. However, its impact on the subsurface flow regime is not well known. In Berlin (Germany), the Jurassic (Hettangian) sandstone aquifer with highly mineralized groundwater (TDS 27 g/L) is currently used for heat storage. The aim of this study was to examine the hydrogeochemical changes that are caused by the induced temperature shift and its effects on the hydraulic permeability of the aquifer. Column experiments were conducted, in which stainless steel columns were filled with sediment from the aquifer and flushed with native groundwater for several weeks. The initial temperature of the experiment was 20°C, comparable to the in-situ conditions within the aquifer. After reaching equilibrium between sediment and water, the temperature was increased to simulate heating of the aquifer. During the experiment, physical and chemical parameters (pH, ORP, dissolved oxygen and dissolved carbon dioxide) were measured at the outflow of the column and the effluent water was sampled. Using a Scanning Electron Microscope, the deposition of precipitated minerals and biofilm on sediment grains was analyzed. Changes in hydraulic properties of the sediment were studied by the use of tracer tests with Uranin.
The influence of mass transfer on solute transport in column experiments with an aggregated soil
NASA Astrophysics Data System (ADS)
Roberts, Paul V.; Goltz, Mark N.; Summers, R. Scott; Crittenden, John C.; Nkedi-Kizza, Peter
1987-06-01
The spreading of concentration fronts in dynamic column experiments conducted with a porous, aggregated soil is analyzed by means of a previously documented transport model (DFPSDM) that accounts for longitudinal dispersion, external mass transfer in the boundary layer surrounding the aggregate particles, and diffusion in the intra-aggregate pores. The data are drawn from a previous report on the transport of tritiated water, chloride, and calcium ion in a column filled with Ione soil having an average aggregate particle diameter of 0.34 cm, at pore water velocities from 3 to 143 cm/h. The parameters for dispersion, external mass transfer, and internal diffusion were predicted for the experimental conditions by means of generalized correlations, independent of the column data. The predicted degree of solute front-spreading agreed well with the experimental observations. Consistent with the aggregate porosity of 45%, the tortuosity factor for internal pore diffusion was approximately equal to 2. Quantitative criteria for the spreading influence of the three mechanisms are evaluated with respect to the column data. Hydrodynamic dispersion is thought to have governed the front shape in the experiments at low velocity, and internal pore diffusion is believed to have dominated at high velocity; the external mass transfer resistance played a minor role under all conditions. A transport model such as DFPSDM is useful for interpreting column data with regard to the mechanisms controlling concentration front dynamics, but care must be exercised to avoid confounding the effects of the relevant processes.
Non-modal analysis of the diocotron instability for cylindrical geometry with conducting boundary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailenko, V. V.; Seok Kim, Jin; Jo, Younghyun
2014-05-15
The temporal evolution of the linear diocotron instability of a cylindrical annular plasma column surrounded by a conducting boundary has been investigated by using the methodology of the cylindrical shearing modes. The linear solution of the initial and boundary-value problems is obtained which is valid for any time at which linear effects dominate. The solution reveals that the initial perturbations of the electron density pass through the stage of the non-modal evolution when the perturbation experiences spatio-temporal distortion pertinent to the considered geometry of the electron column. The result is confirmed by a two-dimensional cylindrical particle-in-cell simulation.
Cyclic performance of concrete-filled steel batten built-up columns
NASA Astrophysics Data System (ADS)
Razzaghi, M. S.; Khalkhaliha, M.; Aziminejad, A.
2016-03-01
Steel built-up batten columns are common types of columns in Iran and some other parts of the world. They are economic and have acceptable performance due to gravity loads. Although several researches have been conducted on the behavior of the batten columns under axial loads, there are few available articles about their seismic performance. Experience of the past earthquakes, particularly the 2003 Bam earthquake in Iran, revealed that these structural members are seismically vulnerable. Thus, investigation on seismic performance of steel batten columns due to seismic loads and providing a method for retrofitting them are important task in seismic-prone areas. This study aims to investigate the behavior of concrete-filled batten columns due to combined axial and lateral loads. To this end, nonlinear static analyses were performed using ANSYS software. Herein, the behaviors of the steel batten columns with and without concrete core were compared. The results of this study showed that concrete-filled steel batten columns, particularly those filled with high-strength concrete, may cause significant increases in energy absorption and capacity of the columns. Furthermore, concrete core may improve post-buckling behavior of steel batten columns.
Yin, J.; Haggerty, R.; Stoliker, D.L.; Kent, D.B.; Istok, J.D.; Greskowiak, J.; Zachara, J.M.
2011-01-01
In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry. Copyright 2011 by the American Geophysical Union.
Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.
2011-01-01
In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.
Porous media augmented with biochar for the retention of E. coli
NASA Astrophysics Data System (ADS)
Kolotouros, Christos A.; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.
2016-04-01
A significant number of epidemic outbreaks has been attributed to waterborne fecal-borne pathogenic microorganisms from contaminated ground water. The transport of pathogenic microorganisms in groundwater is controlled by physical and chemical soil properties like soil structure, texture, percent water saturation, soil ionic strength, pore-size distribution, soil and solution pH, soil surface charge, and concentration of organic carbon in solution. Biochar can increase soil productivity by improving both chemical and physical soil properties. The mixing of biochar into soils may stimulate microbial population and activate dormant soil microorganisms. Furthermore, the application of biochar into soil affects the mobility of microorganisms by altering the physical and chemical properties of the soil, and by retaining the microorganisms on the biochar surface. The aim of this study was to investigate the effect of biochar mixing into soil on the transport of Escherichia coli in saturated porous media. Initially, batch experiments were conducted at two different ionic strengths (1 and 150 mM KCl) and at varying E. coli concentrations in order to evaluate the retention of E. coli on biochar in aqueous solutions. Kinetic analysis was conducted, and three isotherm models were employed to analyze the experimental data. Column experiments were also conducted in saturated sand columns augmented with different biochar contents, in order to examine the effect of biochar on the retention of E. coli. The Langmuir model fitted better the retention experimental data, compared to Freundlich and Tempkin models. The retention of E. coli was enhanced at lower ionic strength. Finally, biochar-augmented sand columns were more capable in retaining E. coli than pure sand columns.
Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport
NASA Astrophysics Data System (ADS)
Rod, Kenton; Um, Wooyong; Chun, Jaehun; Wu, Ning; Yin, Xialong; Wang, Guohui; Neeves, Keith
2018-06-01
A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d-1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500-600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500-600 μm and 300-400 μm). A chemical heterogeneity was created using 25% of the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500-600 μm). Input solution with 0.5 mM CsI and 50 mg L-1 colloids (1-μm diameter SiO2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.
Wong, T.-P.; Byappanahalli, M.; Yoneyama, B.; Ray, C.
2008-01-01
Laboratory column experiments were conducted to study the effects of anionic polyacrylamide (PAM) polymer and surfactant linear alkylbenzene sulfonate (LAS) on the movement of Escherichia coli and the FRNA phage MS-2. The study was designed to evaluate if PAM or PAM + LAS would enhance the mobility of human pathogens in tropical soils under unsaturated conditions. No breakthrough of phage was observed in a 10 cm column after passing 100 pore volumes of solution containing 1 ?? 108 plaque-forming units (PFU)/ml. In later experiments, after passing 10-20 pore volumes of influent containing 1 ?? 108/ml MS-2 or E. coli through 15 cm columns, the soil was sliced and the organisms eluted. Phage moved slightly deeper in the polymer-treated column than in the control column. There was no measurable difference in the movement of E. coli in either polymer-treated or control columns. The properties of the soil (high amounts of metal oxides, kaolinitic clay), unsaturated flow conditions, and relatively high ionic strengths of the leaching solution attributed to significant retention of these indicators. The impacts of PAM and LAS on the mobility of E. coli or MS-2 phage in the chosen soils were not significant. ?? IWA Publishing 2008.
Chrysikopoulos, Constantinos V; Syngouna, Vasiliki I
2014-06-17
The role of gravitational force on colloid transport in water-saturated columns packed with glass beads was investigated. Transport experiments were performed with colloids (clays: kaolinite KGa-1b, montmorillonite STx-1b). The packed columns were placed in various orientations (horizontal, vertical, and diagonal) and a steady flow rate of Q = 1.5 mL/min was applied in both up-flow and down-flow modes. All experiments were conducted under electrostatically unfavorable conditions. The experimental data were fitted with a newly developed, analytical, one-dimensional, colloid transport model. The effect of gravity is incorporated in the mathematical model by combining the interstitial velocity (advection) with the settling velocity (gravity effect). The results revealed that flow direction influences colloid transport in porous media. The rate of particle deposition was shown to be greater for up-flow than for down-flow direction, suggesting that gravity was a significant driving force for colloid deposition.
Zhao, Muqiu; Chen, Xin; Shi, Yi; Zhou, Quanlai; Lu, Caiyan
2009-01-01
A soil column leaching experiment was conducted to study the vertical migration of phosphorus in aquic brown soil and light chernozem under different phosphorus fertilization rates. The results showed that total dissolved phosphorus concentration in the leachates from the two soils was nearly the same, but dissolved inorganic phosphorus concentration was obviously different. In all fertilization treatments, aquic brown soil had a higher content of phosphorus in calcium chloride extracts compared with light chernozem. But Olsen phosphorus content was higher at the soil depth beneath 0-20 cm, and increased with increasing phosphorus application rate.
NASA Astrophysics Data System (ADS)
Chrysikopoulos, C. V.; Syngouna, V. I.
2013-12-01
The role of gravitational force on biocolloid and colloid transport in water-saturated columns packed with glass beads was investigated. Transport experiments were performed with biocolloids (bacteriophages: ΦΧ174, MS2) and colloids (clays: kaolinite KGa-1b, montmorillonite STx-1b). The packed columns were placed in various orientations (horizontal, vertical, and diagonal) and a steady flow rate of Q=1.5 mL/min was applied in both up-flow and down-flow modes. All experiments were conducted under electrostatically unfavorable conditions. The experimental data were fitted with a newly developed, analytical, one dimensional, colloid transport model, accounting for gravity effects. The results revealed that flow direction has a significant influence on particle deposition. The rate of particle deposition was shown to be greater for up-flow than for down-flow direction, suggesting that gravity was a significant driving force for biocolloid and colloid deposition. Schematic illustration of a packed column with up-flow velocity having orientation (-i) with respect to gravity. The gravity vector components are: g(i)= g(-z) sinβ i, and g(-j)= -g(-z) cosβ j. Experimental setup showing the various column arrangements: (a) horizontal, (b) diagonal, and (c) vertical.
Sun, Hongbing; Huffine, Maria; Husch, Jonathan; Sinpatanasakul, Leeann
2012-08-01
Using soil column experiments and data from natural watersheds, this paper analyzes the changes in Na/Cl molar ratios during a salting cycle of aqueous-soil systems. The soil column experiments involved introducing NaCl salt at various initial concentrations into multiple soil columns. At the start of a salting cycle in the column experiments, sodium was adsorbed more than chloride due to cation exchange processes. As a result, the initial Na/Cl molar ratio in column effluent was lower than 1, but increased thereafter. One-dimensional PHREEQC geochemical transport simulations also were conducted to further quantify these trends under more diverse scenarios. The experimentally determined Na/Cl molar ratio pattern was compared to observations in the annual salting cycle of four natural watersheds where NaCl is the dominant applied road deicing salt. Typically, Na/Cl molar ratios were low from mid-winter to early spring and increased after the bulk of the salt was flushed out of the watersheds during the summer, fall and early winter. The established relationship between the Na/Cl molar ratios and the amount of sodium retention derived from the column experiments and computer simulations present an alternative approach to the traditional budget analysis method for estimating sodium retention when the experimental and natural watershed patterns of Na/Cl molar ratio change are similar. Findings from this study enhance the understanding of sodium retention and help improve the scientific basis for future environmental policies intended to suppress the increase of sodium concentrations in salted watersheds. Copyright © 2012 Elsevier B.V. All rights reserved.
Transport of viruses through saturated and unsaturated columns packed with sand
Anders, R.; Chrysikopoulos, C.V.
2009-01-01
Laboratory-scale virus transport experiments were conducted in columns packed with sand under saturated and unsaturated conditions. The viruses employed were the male-specific RNA coliphage, MS2, and the Salmonella typhimurium phage, PRD1. The mathematical model developed by Sim and Chrysikopoulos (Water Resour Res 36:173-179, 2000) that accounts for processes responsible for removal of viruses during vertical transport in one-dimensional, unsaturated porous media was used to fit the data collected from the laboratory experiments. The liquid to liquid-solid and liquid to air-liquid interface mass transfer rate coefficients were shown to increase for both bacteriophage as saturation levels were reduced. The experimental results indicate that even for unfavorable attachment conditions within a sand column (e.g., phosphate-buffered saline solution; pH = 7.5; ionic strength = 2 mM), saturation levels can affect virus transport through porous media. ?? Springer Science+Business Media B.V. 2008.
Reductive Dechlorination of Carbon Tetrachloride by Soil With Ferrous and Bisulfide
NASA Astrophysics Data System (ADS)
Choi, K.; Lee, W.
2008-12-01
Batch and column experiments were conducted to investigate the effect of concentration of reductants, contact time to activate reductive capacity, and pH on reductive dechlorination by soil with Fe(II) and HS- in this study. Carbon tetrachloride (CT) was used as a representative target organic compound. Sorption kinetic and isotherm tests were performed to investigate the influence of adsorption on the soil surface. Target compound in the soil suspension reached sorption equilibrium in 4 hours and the type of isotherm was well fitted by a linear type isotherm. In batch experiment, kinetic rate constants for the reductive dechlorination of CT increased with increasing the concentration of the reductants (Fe(II) and HS-). However, Fe(II) was a much more effective reductant, producing higher k values than those of HS-. The contact time of one day for the soil with HS- and that of four hours with Fe(II) showed the highest reaction rates. Additionally, the rate constants increased with the increase of pH in soil suspension with Fe(II) (5.2~8) and HS- (8.3~10.3), respectively. In column experiment, the soil column with Fe(II) showed larger bed volumes (13.76) to reach a column breakthrough than that with HS- indicating the treatment of Fe(II) is more effective for the reductive dechlorination of CT. To enhance reductive capacity of soil column under an acidic condition, CaO addition to the column treated with Fe(II) showed better results for the reductive dechlorination of CT than that of HS-. Fe(II) showed better CT dechlorination than HS- in batch and column reactors therefore, it can be used as an effective reducing agent for the treatment of soil contaminated with chlorinated organic compounds.
Yang, Kenton; Xu, Qiyong; Townsend, Timothy G; Chadik, Paul; Bitton, Gabriel; Booth, Matthew
2006-08-01
Hydrogen sulfide (H2S) generation in construction and demolition (C&D) debris landfills has been associated with the biodegradation of gypsum drywall. Laboratory research was conducted to observe H2S generation when drywall was codisposed with different C&D debris constituents. Two experiments were conducted using simulated landfill columns. Experiment 1 consisted of various combinations of drywall, wood, and concrete to determine the impact of different waste constituents and combinations on H2S generation. Experiment 2 was designed to examine the effect of concrete on H2S generation and migration. The results indicate that decaying drywall, even alone, leached enough sulfate ions and organic matter for sulfate-reducing bacteria (SRB) to generate large H2S concentrations as high as 63,000 ppmv. The codisposed wastes show some effect on H2S generation. At the end of experiment 1, the wood/drywall and drywall alone columns possessed H2S concentrations > 40,000 ppmv. Conversely, H2S concentrations were < 1 ppmv in those columns containing concrete. Concrete plays a role in decreasing H2S by increasing pH out of the range for SRB growth and by reacting with H2S. This study also showed that wood lowered H2S concentrations initially by decreasing leachate pH values. Based on the results, two possible control mechanisms to mitigate H2S generation in C&D debris landfills are suggested.
Bunn, Rebecca A.; Magelky, Robin D.; Ryan, Joseph N.; Elimelech, Menachem
2002-01-01
Field and laboratory column experiments were performed to assess the effect of elevated pH and reduced ionic strength on the mobilization of natural colloids in a ferric oxyhydroxide-coated aquifer sediment. The field experiments were conducted as natural gradient injections of groundwater amended by sodium hydroxide additions. The laboratory experiments were conducted in columns of undisturbed, oriented sediments and disturbed, disoriented sediments. In the field, the breakthrough of released colloids coincided with the pH pulse breakthrough and lagged the bromide tracer breakthrough. The breakthrough behavior suggested that the progress of the elevated pH front controlled the transport of the mobilized colloids. In the laboratory, about twice as much colloid release occurred in the disturbed sediments as in the undisturbed sediments. The field and laboratory experiments both showed that the total mass of colloid release increased with increasing pH until the concurrent increase in ionic strength limited release. A decrease in ionic strength did not mobilize significant amounts of colloids in the field. The amount of colloids released normalized to the mass of the sediments was similar for the field and the undisturbed laboratory experiments.
Sulaymon, Abbas H; Faisal, Ayad A H; Khaliefa, Qusey M
2015-10-30
The hydraulic conductivity and breakthrough curves of copper and zinc contaminants were measured in a set of continuous column experiments for 99 days using cement kiln dust (CKD)-filter sand as the permeable reactive barrier. The results of these experiments proved that the weight ratios of the cement kiln dust-filter sand (10:90 and 20:80) are adequate in preventing the loss of reactivity and hydraulic conductivity and, in turn, avoiding reduction in the groundwater flow. These results reveal a decrease in the hydraulic conductivity, which can be attributed to an accumulation of most of the quantity of the contaminant masses in the first sections of the column bed. Breakthrough curves for the description of the temporal contaminant transport within the barrier were found to be more representative by the Belter-Cussler-Hu and Yan models based on the coefficient of determination and Nash-Sutcliffe efficiency. The longevity of the barrier was simulated for the field scale, based on the laboratory column tests and the values verified that cement kiln dust can be effectively used in the future, as the reactive material in permeable reactive barrier technology. These results signify that the longevity of the barrier is directly proportional to its thickness and inversely to the percentage of the CKD used. Copyright © 2015 Elsevier B.V. All rights reserved.
Use of Traveling Magnetic Fields to Control Melt Convection
NASA Technical Reports Server (NTRS)
Ramachandran, Narayanan; Mazuruk, Konstantin; Volz, Martin P.
2000-01-01
An axially traveling magnetic wave induces a meridional base flow in an electrically conducting molten cylindrical zone. This flow can be beneficial for crystal growth applications. In particular, it can be effectively used to stir the melt in long cylindrical columns. It can also be tailored to modify the thermal and species concentration fields in the melt and to control the interface shape of the growing crystal. The basic theory of such an application is developed and data from a preliminary mercury column experiment are presented.
Kinetics of gibbsite dissolution under low ionic strength conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganor, J.; Mogollon, J.L.; Lasaga, A.C.
1999-06-01
Experiments measuring synthetic gibbsite dissolution rates were carried out using both a stirred-flow-through reactor and a column reactor at 25 C, and pH range of 2.5--4.1. All experiments were conducted under far from equilibrium conditions ({Delta}G < {minus}1.1 kcal/mole). The experiments were performed with perchloric acid under relatively low (and variable) ionic strength conditions. An excellent agreement was found between the results of the well-mixed flow-through experiments and those of the (nonmixed) column experiments. This agreement shows that the gibbsite dissolution rate is independent of the stirring rate and therefore supports the conclusion of Bloom and Erich (1987) that gibbsitemore » dissolution reaction is surface controlled and not diffusion controlled. The Brunauer-Emmett-Teller (BET) surface area of the gibbsite increased during the flow-through experiments, while in the column experiments no significant change in surface area was observed. The significant differences in the BET surface area between the column experiments and the flow-through experiments, and the excellent agreement between the rates obtained by both methods, enable the authors to justify the substitution of the BET surface area for the reactive surface area. The dissolution rate of gibbsite varied as a function of the perchloric acid concentration. The authors interpret the gibbsite dissolution rate as a result of a combined effect of proton catalysis and perchlorate inhibition. Following the theoretical study of Ganor and Lasaga (1998) they propose specific reaction mechanisms for the gibbsite dissolution in the presence of perchloric acid. The mathematical predictions of two of these reaction mechanisms adequately describe the experimental data.« less
Hibi, Yoshihiko; Kashihara, Ayumi
2018-03-01
A previous study has reported that Knudsen diffusion coefficients obtained by tracer experiments conducted with a binary gas system and a porous medium are consistently smaller than those obtained by permeability experiments conducted with a single-gas system and a porous medium. To date, however, that study is the only one in which tracer experiments have been conducted with a binary gas system. Therefore, to confirm this difference in Knudsen diffusion coefficients, we used a method we had developed previously to conduct tracer experiments with a binary carbon dioxide-nitrogen gas system and five porous media with permeability coefficients ranging from 10 -13 to 10 -11 m 2 . The results showed that the Knudsen diffusion coefficient of N 2 (D N2 ) (cm 2 /s) was related to the effective permeability coefficient k e (m 2 ) as D N2 = 7.39 × 10 7 k e 0.767 . Thus, the Knudsen diffusion coefficients of N 2 obtained by our tracer experiments were consistently 1/27 of those obtained by permeability experiments conducted with many porous media and air by other researchers. By using an inversion simulation to fit the advection-diffusion equation to the distribution of concentrations at observation points calculated by mathematically solving the equation, we confirmed that the method used to obtain the Knudsen diffusion coefficient in this study yielded accurate values. Moreover, because the Knudsen diffusion coefficient did not differ when columns with two different lengths, 900 and 1500 mm, were used, this column property did not influence the flow of gas in the column. The equation of the dusty gas model already includes obstruction factors for Knudsen diffusion and molecular diffusion, which relate to medium heterogeneity and tortuosity and depend only on the structure of the porous medium. Furthermore, there is no need to take account of any additional correction factor for molecular diffusion except the obstruction factor because molecular diffusion is only treated in a multicomponent gas system. Thus, molecular diffusion considers only the obstruction factor related to tortuosity. Therefore, we introduced a correction factor for a multicomponent gas system into the DGM equation, multiplying the Knudsen diffusion coefficient, which includes the obstruction factor related to tortuosity, by this correction factor. From the present experimental results, the value of this correction factor was 1/27, and it depended only on the structure of the gas system in the porous medium. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hibi, Yoshihiko; Kashihara, Ayumi
2018-03-01
A previous study has reported that Knudsen diffusion coefficients obtained by tracer experiments conducted with a binary gas system and a porous medium are consistently smaller than those obtained by permeability experiments conducted with a single-gas system and a porous medium. To date, however, that study is the only one in which tracer experiments have been conducted with a binary gas system. Therefore, to confirm this difference in Knudsen diffusion coefficients, we used a method we had developed previously to conduct tracer experiments with a binary carbon dioxide-nitrogen gas system and five porous media with permeability coefficients ranging from 10-13 to 10-11 m2. The results showed that the Knudsen diffusion coefficient of N2 (DN2) (cm2/s) was related to the effective permeability coefficient ke (m2) as DN2 = 7.39 × 107ke0.767. Thus, the Knudsen diffusion coefficients of N2 obtained by our tracer experiments were consistently 1/27 of those obtained by permeability experiments conducted with many porous media and air by other researchers. By using an inversion simulation to fit the advection-diffusion equation to the distribution of concentrations at observation points calculated by mathematically solving the equation, we confirmed that the method used to obtain the Knudsen diffusion coefficient in this study yielded accurate values. Moreover, because the Knudsen diffusion coefficient did not differ when columns with two different lengths, 900 and 1500 mm, were used, this column property did not influence the flow of gas in the column. The equation of the dusty gas model already includes obstruction factors for Knudsen diffusion and molecular diffusion, which relate to medium heterogeneity and tortuosity and depend only on the structure of the porous medium. Furthermore, there is no need to take account of any additional correction factor for molecular diffusion except the obstruction factor because molecular diffusion is only treated in a multicomponent gas system. Thus, molecular diffusion considers only the obstruction factor related to tortuosity. Therefore, we introduced a correction factor for a multicomponent gas system into the DGM equation, multiplying the Knudsen diffusion coefficient, which includes the obstruction factor related to tortuosity, by this correction factor. From the present experimental results, the value of this correction factor was 1/27, and it depended only on the structure of the gas system in the porous medium.
Gong, Zongqiang; Wilke, B-M; Alef, Kassem; Li, Peijun
2005-05-01
The influence of soil moisture on efficiency of sunflower oil extraction of polycyclic aromatic hydrocarbons (PAHs) from contaminated soil was investigated. The PAH-contaminated soil was collected from a manufactured gas plant (MGP) site in Berlin, Germany. Half of the soil was air-dried, and the other half was kept as field-moist soil. Batch experiments were performed using air-dried and field-moist soils, and sunflower oil was used as extractant at oil/soil ratios of 2:1 and 1:1 (v/m). The experimental data were fitted to a first-order empirical model to describe mass-transfer profiles of the PAHs. Column extraction experiments were also conducted. Field-moist and air-dried soils in the column were extracted using sunflower oil at an oil/soil ratio of 2:1. In the batch experiments, PAHs were more rapidly extracted from air-dried soil than from field-moist soil. Removal rate of total PAH increased 23% at oil/soil ratio of 1:1 and 15.5% at oil/soil ratio of 2:1 after the soil was air dried. The most favorable conditions for batch extraction were air-dried soil, with an oil/soil ratio of 2:1. In the column experiments, the removal rate of total PAH from air-dried soil was 30.7% higher than that from field-moist soil. For field-moist soil, extraction efficiencies of the batch extraction (67.2% and 81.5%) were better than that for column extraction (65.6%). However, this difference between the two methods became less significant for the air-dried soil, with a total removal rate of 96.3% for column extraction and 90.2% and 97% for batch extractions. A mass-balance test was carried out for analytical quality assurance. The results of both batch and column experiments indicated that drying the soil increased efficiency of extraction of PAHs from the MGP soil.
Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport
Rod, Kenton; Um, Wooyong; Chun, Jaehun; ...
2018-03-31
A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d -1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500–600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500–600 μm and 300–400 μm). A chemical heterogeneity was created using 25% ofmore » the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500–600 μm). Input solution with 0.5 mM CsI and 50 mg L -1 colloids (1-μm diameter SiO 2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.« less
Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rod, Kenton; Um, Wooyong; Chun, Jaehun
A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d -1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500–600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500–600 μm and 300–400 μm). A chemical heterogeneity was created using 25% ofmore » the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500–600 μm). Input solution with 0.5 mM CsI and 50 mg L -1 colloids (1-μm diameter SiO 2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.« less
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Swift, R. N.
1983-01-01
Airborne lidar oil spill experiments carried out to determine the practicability of the AOFSCE (absolute oil fluorescence spectral conversion efficiency) computational model are described. The results reveal that the model is suitable over a considerable range of oil film thicknesses provided the fluorescence efficiency of the oil does not approach the minimum detection sensitivity limitations of the lidar system. Separate airborne lidar experiments to demonstrate measurement of the water column Raman conversion efficiency are also conducted to ascertain the ultimate feasibility of converting such relative oil fluorescence to absolute values. Whereas the AOFSCE model is seen as highly promising, further airborne water column Raman conversion efficiency experiments with improved temporal or depth-resolved waveform calibration and software deconvolution techniques are thought necessary for a final determination of suitability.
Forbes, Margaret G; Dickson, Kenneth R; Golden, Teresa D; Hudak, Paul; Doyle, Robert D
2004-02-01
Using surface flow constructed wetlands for long-term phosphorus (P) retention presents a challenge due to the fact that P is stored primarily in the sediments. Subsurface flow wetlands have the potential to greatly increase P retention; however, the substrate needs to have both high hydraulic conductivity and high P sorption capacity. The objective of our study was to assess the P retention capacity of two substrates, masonry sand and lightweight expanded shale. We used sorption/desorption isotherms, flow-through column experiments, and pilot-scale wetlands to quantify P retained from treated municipal wastewater. Langmuir sorption isotherms predicted that the expanded shale has a maximum sorption capacity of 971 mg/kg and the masonry sand 58.8 mg/kg. In column desorption and column flow-through experiments, the masonry sand desorbed P when exposed to dilute P solutions. The expanded shale, however, had very little desorption and phosphorus did not break through the columns during our experiment. In pilot cells, masonry sand retained (mean +/- standard deviation) 45 +/- 62 g P/m2/yr and expanded shale retained 164 +/- 110 g P/m2/yr. We conclude that only the expanded shale would be a suitable substrate for retaining P in a subsurface flow wetland.
Boyd, Glen R; Ocampo-Gómez, Ana M; Li, Minghua; Husserl, Johana
2006-11-20
Packed column experiments were conducted to study effects of initial saturation of tetrachloroethene (PCE) in the range of 1.0-14% pore volume (PV) on mobilization and downward migration of the non-aqueous phase liquid (NAPL) product upon contact with aqueous isobutanol ( approximately 10 vol.%). This study focused on the consequences of swelling beyond residual saturation. Columns were packed with mixtures of neat PCE, water and glass beads and waterflooded to establish a desired homogeneous residual saturation, and then flooded with aqueous isobutanol under controlled hydraulic conditions. Results showed a critical saturation of approximately 8% PV for these packed column experimental conditions. At low initial PCE saturations (<8% PV), experimental results showed reduced risk of NAPL-product migration upon contact with aqueous isobutanol. At higher initial PCE saturations (>8% PV), results showed NAPL-product mobilization and downward migration which was attributed to interfacial tension (IFT) reduction, swelling of the NAPL-product, and reduced density modification. Packed column results were compared with good agreement to theoretical predictions of NAPL-product mobilization using the total trapping number, N(T). In addition to the packed column study, preliminary batch experiments were conducted to study the effects of PCE volumetric fraction in the range of 0.5-20% on density, viscosity, and IFT modification as a function of time following contact with aqueous isobutanol ( approximately 10 vol.%). Modified NAPL-product fluid properties approached equilibrium within approximately 2 h of contact for density and viscosity. IFT reduction occurred immediately as expected. Measured fluid properties were compared with good agreement to theoretical equilibrium predictions based on UNIQUAC. Overall, this study demonstrates the importance of initial DNAPL saturation, and the associated risk of downward NAPL-product migration, in applying alcohol flooding for remediation of DNAPL contaminated ground water sites.
NASA Astrophysics Data System (ADS)
Silver, M.; Schueth, C.; Wefer-Roehl, A.; Kuebeck, C.
2014-12-01
The EU FP7 project MARSOL seeks to address water scarcity challenges in arid regions. Within this framework, we conduct a series of experiments to evaluate the potential for water quality improvement and changes in hydraulic conductivity when managed aquifer recharge (MAR) is performed by infiltrating treated wastewater in soils that do not have high potential for sorption. For example, in the Attica (Athens and vicinity) region of Greece, the bedrock is mostly marble, resulting in calcite-rich soils that present little potential for sorption of contaminants to mineral surfaces. This leaves consumption of organic contaminants by microbes as the critical mechanism for water quality improvement, when treated wastewater is infiltrated through such soils. In order to enhance the potential for contaminant consumption by aerobic bacteria in a way that would be realistic to later perform in an infiltration basin, we conduct experiments using a series of wetting and drying cycles. The experimental setup consists of 90-cm long soil columns, fitted with oxygen sensors, time-domain reflectometry sensors (to measure moisture content), sampling ports, oxidation-reduction probes, and head observation tubes. We use the data collected from these sensors and features of the experimental setup to answer the following questions: 1. Does hydraulic conductivity change, from formation of a biofilm or dissolution of calcite (or both)? 2. Are organic contaminants consumed? 3. What effect do wetting and drying cycles have on consumption of organic contaminants? 4. How long can infiltration of treated wastewater last, before oxygen is consumed and conditions become reducing? These questions are investigated by observing the hydraulic head and outflow, performing tracer tests, taking samples from the sampling ports and outflow for chemical analyses, and measuring moisture content and oxygen concentration, in the course of performing multiple wetting and drying cycles. These column experiments will be used to evaluate the potential for new MAR applications in areas facing water scarcity challenges. In the future the experiments will be expanded to test multiple soils and optimize both the soil type and infiltration patterns in order to best obtain water quality improvements through MAR.
Evaluation of simultaneous reduction and transport of selenium in saturated soil columns
NASA Astrophysics Data System (ADS)
Guo, Lei; Frankenberger, William T.; Jury, William A.
1999-03-01
Speciation plays an important role in determining the overall leachability of selenium in soil. In this study we present a mathematical model and results of miscible displacement experiments that were conducted to evaluate simultaneous reduction and transport of selenate in saturated soil columns. The experiments were carried out in organic amended (compost manure or gluten) or unamended soil, with O2-sparged or nonsparged influent solution. In all columns, reduction of selenate was fast enough to produce selenite flux in the effluent and elemental Se in the soil profile during a mean residence time of ˜30 hours. Reduction was accelerated in the presence of organic amendments and under low O2 concentrations, resulting in an increased retardation of selenium transport as a whole. The results of our experiments show that although selenate does not sorb to solid surfaces during transport, it reduces rapidly to forms that are strongly retarded. On the basis of simulation with the consecutive reaction and transport model using parameters derived from this study, selenium is expected to be retained near the soil surface, even under extreme leaching conditions.
Bacterial transport in heterogeneous porous media: Observations from laboratory experiments
NASA Astrophysics Data System (ADS)
Silliman, S. E.; Dunlap, R.; Fletcher, M.; Schneegurt, M. A.
2001-11-01
Transport of bacteria through heterogeneous porous media was investigated in small-scale columns packed with sand and in a tank designed to allow the hydraulic conductivity to vary as a two-dimensional, lognormally distributed, second-order stationary, exponentially correlated random field. The bacteria were Pseudomonas ftuorescens R8, a strain demonstrating appreciable attachment to surfaces, and strain Ml, a transposon mutant of strain R8 with reduced attachment ability. In bench top, sand-filled columns, transport was determined by measuring intensity of fluorescence of stained cells in the effluent or by measuring radiolabeled cells that were retained in the sand columns. Results demonstrated that strain Ml was transported more efficiently than strain R8 through columns packed with either a homogeneous silica sand or a more heterogeneous sand with iron oxide coatings. Two experiments conducted in the tank involved monitoring transport of bacteria to wells via sampling from wells and sample ports in the tank. Bacterial numbers were determined by direct plate count. At the end of the first experiment, the distribution of the bacteria in the sediment was determined by destructive sampling and plating. The two experiments produced bacterial breakthrough curves that were quite similar even though the similarity between the two porous media was limited to first- and second-order statistical moments. This result appears consistent with the concept of large-scale, average behavior such as has been observed for the transport of conservative chemical tracers. The transported bacteria arrived simultaneously with a conservative chemical tracer (although at significantly lower normalized concentration than the tracer). However, the bacterial breakthrough curves showed significant late time tailing. The concentrations of bacteria attached to the sediment surfaces showed considerably more spatial variation than did the concentrations of bacteria in the fluid phase. This contrast between behavior in the fluid phase and on the solids is consistent with field observations by other authors and initial modeling of these heterogeneous media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
JE Szecsody; JS Fruchter; DS Sklarew
2000-03-21
Pacific Northwest National Laboratory (PNNL) conducted a bench-scale study to determine how effective chemically treated Ft. Lewis sediments can degrade trichloroethylene (TCE). The objectives of this experimental study were to quantify: (1) sediment reduction and oxidation reactions, (2) TCE degradation reactions, and (3) other significant geochemical changes that occurred. Sediment reduction and oxidation were investigated to determine the mass of reducible iron in the Ft. Lewis sediments and the rate of this reduction and subsequent oxidation at different temperatures. The temperature dependence was needed to be able to predict field-scale reduction in the relatively cold ({approximately}11 C) Ft. Lewis aquifer.more » Results of these experiments were used in conjunction with other geochemical and hydraulic characterization to design the field-scale injection experiment and predict barrier longevity. For example, the sediment reduction rate controls the amount of time required for the dithionite solution to fully react with sediments. Sediment oxidation experiments were additionally conducted to determine the oxidation rate and provide a separate measure of the mass of reduced iron. Laboratory experiments that were used to meet these objectives included: (1) sediment reduction in batch (static) systems, (2) sediment reduction in 1-D columns, and (3) sediment oxidation in 1-D columns. Multiple reaction modeling was conducted to quantify the reactant masses and reaction rates.« less
Modeling cesium ion exchange on fixed-bed columns of crystalline silicotitanate granules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latheef, I.M.; Huckman, M.E.; Anthony, R.G.
2000-05-01
A mathematical model is presented to simulate Cs exchange in fixed-bed columns of a novel crystalline silicotitanate (CST) material, UOP IONSIV IE-911. A local equilibrium is assumed between the macropores and the solid crystals for the particle material balance. Axial dispersed flow and film mass-transfer resistance are incorporated into the column model. Cs equilibrium isotherms and diffusion coefficients were measured experimentally, and dispersion and film mass-transfer coefficients were estimated from correlations. Cs exchange column experiments were conducted in 5--5.7 M Na solutions and simulated using the proposed model. Best-fit diffusion coefficients from column simulations were compared with previously reported batchmore » values of Gu et al. and Huckman. Cs diffusion coefficients for the column were between 2.5 and 5.0 x 10{sup {minus}11} m{sup 2}/s for 5--5.7 M Na solutions. The effect of the isotherm shape on the Cs diffusion coefficient was investigated. The proposed model provides good fits to experimental data and may be utilized in designing commercial-scale units.« less
Atrazine remediation in wetland microcosms.
Runes, H B; Bottomley, P J; Lerch, R N; Jenkins, J J
2001-05-01
Laboratory wetland microcosms were used to study treatment of atrazine in irrigation runoff by a field-scale-constructed wetland under controlled conditions. Three experiments, in which 1 ppm atrazine was added to the water column of three wetland, one soil control, and one water control microcosm, were conducted. Atrazine dissipation from the water column and degradate formation (deethylatrazine [DEA]; deisopropylatrazine [DIA]; and hydroxyatrazine [HA]) were monitored. Atrazine dissipation from the water column of wetland microcosms was biphasic. Less than 12% of the atrazine applied to wetland microcosms remained in the water column on day 56. Atrazine degradates were observed in water and sediment, with HA the predominant degradate. Analysis of day 56 sediment samples indicated that a significant portion of the initial application was detected as the parent compound and HA. Most probable number (MPN) assays demonstrated that atrazine degrader populations were small in wetland sediment. Wetland microcosms were able to reduce atrazine concentration in the water column via sorption and degradation. Based on results from this study, it is hypothesized that plant uptake contributed to atrazine dissipation from the water column.
Gupta, Anjali; Sankararamakrishnan, Nalini
2010-04-01
Decontamination of arsenic ions from aqueous media has been investigated using iron chitosan spacer granules (ICS) as an adsorbent. Drying of beads saturated with a spacer sucrose was considered as simple treatment, to prevent the restriction of polymer network and enhance sorption capacity. The novel sorbent was studied in up flow column experiments conducted at different flow rates, pH and bed depth to quantify the treatment performance. It was found that silicate was more inhibitory than phosphate, and the silicate in groundwater controlled the arsenic removal efficiency. The column regeneration studies were carried out for two sorption-desorption cycles using 0.1N NaOH as the eluant. TCLP leaching tests were conducted on the arsenic loaded adsorbent which revealed the containment of arsenic-laden sludge can be managed without adverse environmental impact. The developed procedure was successfully applied for the removal of both As(III) and As(V) from arsenic contaminated drinking water samples. Copyright 2009 Elsevier Ltd. All rights reserved.
Unraveling the Fate and Transport of SrEDTA-2 and Sr+2 in Hanford Sediments
NASA Astrophysics Data System (ADS)
Pace, M. N.; Mayes, M. A.; Jardine, P. M.; Mehlhorn, T. L.; Liu, Q. G.; Yin, X. L.
2004-12-01
Accelerated migration of strontium-90 has been observed in the vadose zone beneath the Hanford tank farm. The goal of this paper is to provide an improved understanding of the hydrogeochemical processes that contribute to strontium transport in the far-field Hanford vadose zone. Laboratory scale batch, saturated packed column experiments, and an unsaturated transport experiment in an undisturbed core were conducted to quantify geochemical and hydrological processes controlling Sr+2 and SrEDTA-2 sorption to Hanford flood deposits. After experimentation, the undisturbed core was disassembled and samples were collected from different bedding units as a function of depth. Sequential extractions were then performed on the samples. It has been suggested that organic chelates such as EDTA may be responsible for the accelerated transport of strontium due to the formation of stable anionic complexes. Duplicate batch and column experiments performed with Sr+2 and SrEDTA-2 suggested that the SrEDTA-2 complex was not stable in the presence of soil and rapid dissociation allowed strontium to be transported as a divalent cation. Batch experiments indicated a decrease in sorption with increasing rock:water ratios, whereas saturated packed column experiments indicated equal retardation in columns of different lengths. This difference between the batch and column experiments is primarily due to the difference between equilibrium conditions where dissolution of cations may compete for sorption sites versus flowing conditions where any dissolved cations are flushed through the system minimizing competition for sorption sites. Unsaturated transport in the undisturbed core resulted in significant Sr+2 retardation despite the presence of physical nonequilibrium. Core disassembly and sequential extractions revealed the mass wetness distribution and reactive mineral phases associated with strontium in the core. Overall, results indicated that strontium will most likely be transported through the Hanford far-field vadose zone as a divalent cation.
Bioclogging Effects Relevant to In-Situ Bioremediation of Organic Contaminants
NASA Astrophysics Data System (ADS)
Bielefeldt, A. R.; Illangasekare, T.
2002-05-01
This presentation will summarize 5 years of laboratory experiments investigating the effects of biodegradation of organic contaminants on the hydrodynamic properties of saturated sand due to biomass accumulation. The contaminants studied included naphthalene, decane, diesel fuel, propylene glycol, and aircraft de-icing fluid (ADF). Most of the experiments were conducted in columns (~6 cm dia x 15 cm L). A wide range of environmental conditions were simulated including low to high organic loading (1.2 to 38,000 mg C/kg dry sand/d), various nutrient concentrations (C:N 3:1 to 5424:1), seepage velocity (0.5-11 m/d), and sand size (average diameter 0.19, 0.32, 0.49 mm). Changes in the hydraulic conductivity and dispersivity of the media over time and the biomass distribution in the sand at the end of the experiments were measured. In general, the hydraulic conductivity in the columns declined over time until a steady-state minimum was reached when the new biogrowth was balanced by endogenous decay and shear stress losses from the system. The minimum conductivity was generally 2 to 4 orders of magnitude below that of the clean sand. Dispersivity was evaluated using bromide tracer tests and monitoring the break-through curves. Dispersivity after biomass growth was always higher than that of the clean sand (up to 10x), but trends over time did not always consistently increase. Under selected conditions the dispersivity initially increased and then decreased, although never achieving a level below that of the clean sand. Final biomass concentrations in the sand at steady state ranged from 0.1 to 10 mg dry weight/g dry sand. In some experiments the biomass was evenly distributed through the sand while in others significantly more biomass was present at the column inlet. Some experiments were also conducted in larger 2-D tanks (122 cm L x 46 cm H x 6 cm W) which allowed the groundwater flow to route around local areas of bioclogging as would be likely to occur in subsurface environments. The implications of ignoring bioclogging effects of the magnitude measured in the experimental systems when predicting contaminant plumes in the subsurface will be illustrated using simple models that incorporate biokinetics and hydrodynamic effects. The models will show the importance of including bioclogging effects when designing enhanced in-situ bioremediation systems.
NASA Astrophysics Data System (ADS)
Lindsay, Matthew B. J.; Blowes, David W.; Ptacek, Carol J.; Condon, Peter D.
2011-07-01
A laboratory-scale column experiment was conducted to evaluate the effect of organic carbon amendments on the mobility of As, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Tl and Zn in mine tailings. Three columns were packed with sulfide- and carbonate-rich tailings, which were amended with a 1:1 (vol.) mixture of peat and spent brewing grain at proportions of 0, 2 and 5 vol. %. A simulated input solution characterized by circumneutral pH and elevated concentrations of SO 4 and S 2O 3 was passed through the columns for 540 days. The input solution contained low concentrations of metal(loid)s during the initial 300 days and elevated concentrations thereafter. Decreases in mass transport of S 2O 3 were observed in all columns; with increased attenuation observed at 5 vol. % organic carbon content. Removal of Mn, Ni, Cu, Sb and Mo was observed in all columns during the initial 300 days. However, during this time, mobilization of Fe, As, Zn and Pb was observed, with the greatest increases in concentration observed at the higher organic carbon content. During the final 240 days, S 2O 3 removal was enhanced in columns containing organic carbon, and Fe, Mn, Ni, Tl, As and Sb removal also was observed. This study demonstrates the influence of organic carbon amendments on metal(loid) mobility in mine tailings. Decreases in mass discharge of metal(loid)s may be achieved using this technique; however, site-specific geochemical conditions must be considered before field-scale implementation.
Development of a high performance (188)W/(188)Re generator by using a synthetic alumina.
Lee, Jun Sig; Lee, Jong-Soup; Park, Ul-Jae; Son, Kwang-Jae; Han, Hyon-Soo
2009-01-01
A synthetic alumina functionalized with a sulfate moiety has been developed as the column material of (99)Mo/(99m)Tc and (188)W/(188)Re generators. This material is synthesized by a sol-gel processing. In order to characterize the adsorbent for the (188)W/(188)Re separation, both batch and column contact experiments were conducted. As a result of the experiments, it is found that the maximum capacity of the adsorbent for tungsten is higher than 450mg/g. Hence it is possible to produce approximately 3Ci (188)W/(188)Re generator with only 1g of the adsorbent from (188)W solutions supplied from ORNL, USA or RIAR, Russia. A demonstration study was conducted to show the performance of an (188)W/(188)Re generator column. In this study, 1Ci of (188)W purchased from RIAR, Russia, is loaded on a 0.9cm ID column packed with 0.7g of the adsorbent. Elution of (188)Re is performed every 4-7 days by using the saline solution for more than three months. Nearly 100% of tungsten is loaded by passing 5ml of the (188)W solution (pH=8) through the dry packed column at a 1ml/min flow rate. Elution efficiency of (188)Re is 70-90% by using 5ml of the saline solution. The ratio of (188)W/(188)Re in the eluted solution is 0.002-0.003%. When a Sep-Pak containing 0.26g of acid alumina is installed as a tandem column, the ratio is decreased to less than 10(-3)%. Thin layer chromatography for the eluted (188)Re solution shows 100% radiochemical purity. Also, alumina content in the eluted solution shows less than 10ppm. Through this study, the performance of this adsorbent was successfully demonstrated. By using the developed adsorbent, minimization of the generator column and consequently the volume of eluant could be possible while maintaining the quality of (188)Re just as much as that available in the market.
Dittrich, Timothy Mark; Boukhalfa, Hakim; Ware, Stuart Douglas; Reimus, Paul William
2015-10-01
Understanding the parameters that control colloid-mediated transport of radionuclides is important for the safe disposal of used nuclear fuel. We report an experimental and reactive transport modeling examination of americium transport in a groundwater-bentonite-fracture fill material system. A series of batch sorption and column transport experiments were conducted to determine the role of desorption kinetics from bentonite colloids in the transport of americium through fracture materials. We used fracture fill material from a shear zone in altered granodiorite collected from the Grimsel Test Site (GTS) in Switzerland and colloidal suspensions generated from FEBEX bentonite, a potential repository backfill material. The colloidal suspension (100 mg L(-1)) was prepared in synthetic groundwater that matched the natural water chemistry at GTS and was spiked with 5.5 × 10(-10) M (241)Am. Batch characterizations indicated that 97% of the americium in the stock suspension was adsorbed to the colloids. Breakthrough experiments conducted by injecting the americium colloidal suspension through three identical columns in series, each with mean residence times of 6 h, show that more than 95% of the bentonite colloids were transported through each of the columns, with modeled colloid filtration rates (k(f)) of 0.01-0.02 h(-1). Am recoveries in each column were 55-60%, and Am desorption rate constants from the colloids, determined from 1-D transport modeling, were 0.96, 0.98, and 0.91 h(-1) in the three columns, respectively. The consistency in Am recoveries and desorption rate constants in each column indicates that the Am was not associated with binding sites of widely-varying strengths on the colloids, as one binding site with fast kinetics represented the system accurately for all three sequential columns. Our data suggest that colloid-mediated transport of Am in a bentonite-fracture fill material system is unlikely to result in transport over long distance scales because of the ability of the fracture materials to rapidly strip Am from the bentonite colloids and the apparent lack of a strong binding site that would keep a fraction of the Am strongly-associated with the colloids. Published by Elsevier Ltd.
Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Weimin; Criddle, Craig S.
2015-11-16
We (the Stanford research team) were invited as external collaborators to contribute expertise in environmental engineering and field research at the ORNL IFRC, Oak Ridge, TN, for projects carried out at the Argonne National Laboratory and funded by US DOE. Specifically, we assisted in the design of batch and column reactors using ORNL IFRC materials to ensure the experiments were relevant to field conditions. During the funded research period, we characterized ORNL IFRC groundwater and sediments in batch microcosm and column experiments conducted at ANL, and we communicated with ANL team members through email and conference calls and face-to-face meetingsmore » at the annual ERSP PI meeting and national meetings. Microcosm test results demonstrated that U(VI) in sediments was reduced to U(IV) when amended with ethanol. The reduced products were not uraninite but unknown U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. Due to budget reductions at ANL, Stanford contributions ended in 2011.« less
NASA Astrophysics Data System (ADS)
Carmack, W. J.; Chichester, H. M.; Porter, D. L.; Wootan, D. W.
2016-05-01
The Mechanistic Fuel Failure (MFF) series of metal fuel irradiations conducted in the Fast Flux Test Facility (FFTF) provides an important comparison between data generated in the Experimental Breeder Reactor (EBR-II) and that expected in a larger-scale fast reactor. The MFF fuel operated with a peak cladding temperature at the top of the fuel column, but developed peak burnup at the centerline of the core. This places the peak fuel temperature midway between the core center and the top of fuel, lower in the fuel column than in EBR-II experiments. Data from the MFF-3 and MFF-5 assemblies are most comparable to the data obtained from the EBR-II X447 experiment. The two X447 pin breaches were strongly influenced by fuel/cladding chemical interaction (FCCI) at the top of the fuel column. Post irradiation examination data from MFF-3 and MFF-5 are presented and compared to historical EBR-II data.
Study of penetration behavior of PCB-DNAPL in a sand layer by a column experiment.
Okuda, Nobuyasu; Shimizu, Takaaki; Muratani, Masaru; Terada, Akihiko; Hosomi, Masaaki
2014-11-01
To better understand the infiltration performances of high concentration PCB oils (KC-300 and KC-1000 polychlorinated biphenyl (PCB) mixtures), representative dense non-aqueous phase liquid (DNAPL), under both saturated and unsaturated conditions, we conducted experiments on a sand column filled with Toyoura Standard Sand. When PCB oil with the volume comparable to the total porosity in the column was supplied, the residual PCB concentrations under PCB-water conditions were 4.9×10(4)mgkg(-1) in KC-300 and 3.9×10(4)mgkg(-1) in KC-1000. Under PCB-air conditions, residual PCB concentrations were 6.0×10(4)mgkg(-1) and 2.4×10(5)mgkg(-1) in the upper and lower parts for KC-300 and 3.6×10(4)mgkg(-1) and 1.5×10(5)mgkg(-1) in those for KC-1000, respectively, while the rest of the PCBs were infiltrated. On the other hand, when a small amount of PCB oil with the volume far smaller than the total porosity in the column was supplied, the original PCBs were not transported via water permeation. However, lower-chlorinated PCB congeners-e.g., di- or tri-chlorinated biphenyls-preferentially dissolved and were infiltrated from the bottom of the column. These propensities on PCB oil infiltration can be explained in conjunction with the degree of PCB saturation in the sand column. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
de Boer, C. V.; O'Carroll, D. M.; Sleep, B.
2014-12-01
Reactive zero-valent iron is currently being used for remediation of contaminated groundwater. Permeable reactive barriers are the current state-of-the-practice method for using zero-valent iron. Instead of an excavated trench filled with granular zero-valent iron, a relatively new and promising method is the injection of a nano-scale zero-valent iron colloid suspension (nZVI) into the subsurface using injection wells. One goal of nZVI injection can be to deposit zero valent iron in the aquifer and form a reactive permeable zone which is no longer bound to limited depths and plume treatment, but can also be used directly at the source. It is very important to have a good understanding of the transport behavior of nZVI during injection as well as the fate of nZVI after injection due to changes in the flow regime or water chemistry changes. So far transport was mainly tested using commercially available nZVI, however these studies suggest that further work is required as commercial nZVI was prone to aggregation, resulting in low physical stability of the suspension and very short travel distances in the subsurface. In the presented work, nZVI is stabilized during synthesis to significantly increase the physical suspension stability. To improve our understanding of nZVI transport, the feasibility for injection into various porous media materials and controlled deposition, a suite of column experiments are conducted. The column experiments are performed using a long 1.5m column and a novel nZVI measuring technique. The measuring technique was developed to non-destructively determine the concentration of nano-scale iron during the injection. It records the magnetic susceptibility, which makes it possible to get transient nZVI retention profiles along the column. These transient nZVI retention profiles of long columns provide unique insights in the transport behavior of nZVI which cannot be obtained using short columns or effluent breakthrough curves.
Algebraic motion of vertically displacing plasmas
NASA Astrophysics Data System (ADS)
Pfefferlé, D.; Bhattacharjee, A.
2018-02-01
The vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to come in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear "sinking" behaviour shown to be algebraic and decelerating. The acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.
Lorphensri, Oranuj; Sabatini, David A; Kibbey, Tohren C G; Osathaphan, Khemarath; Saiwan, Chintana
2007-05-01
The sorption and transport of three pharmaceutical compounds (acetaminophen, an analgesic; nalidixic acid, an antibiotic; and 17alpha-ethynyl estradiol, a synthetic hormone) were examined by batch sorption experiments and solute displacement in columns of silica, alumina, and low organic carbon aquifer sand at neutral pH. Silica and alumina were used to represent negatively-charged and positively-charged fractions of subsurface media. Column transport experiments were also conducted at pH values of 4.3, 6.2, and 8.2 for the ionizable nalidixic acid. The computer program UFBTC was used to fit the breakthrough data under equilibrium and nonequilibrium conditions with linear/nonlinear sorption. Good agreement was observed between the retardation factors derived from column model studies and estimated from equilibrium batch sorption studies. The sorption and transport of nalidixic acid was observed to be highly pH dependent, especially when the pH was near the pK(a) of nalidixic acid (5.95). Thus, near a compound's pK(a) it is especially important that the batch studies be performed at the same pH as the column experiment. While for ionic pharmaceuticals, ion exchange to oppositely-charged surfaces, appears to be the dominant adsorption mechanism, for neutral pharmaceuticals (i.e., acetaminophen, 17alpha-ethynyl estradiol) the sorption correlated well with the K(ow) of the pharmaceuticals, suggesting hydrophobically motivated sorption as the dominant mechanism.
USDA-ARS?s Scientific Manuscript database
Saturated sand-packed column experiments were conducted to investigate the influence of physicochemical factors on the transport and retention of surfactant stabilized silver nanoparticles (AgNPs). The normalized concentration in breakthrough curves (BTCs) of AgNPs increased with a decrease in solut...
Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil
USDA-ARS?s Scientific Manuscript database
Column experiments were conducted with undisturbed loamy sand soil under unsaturated conditions (around 90% saturation degree) to investigate the retention of surfactant stabilized silver nanoparticles (AgNPs) with various input concentration (Co), flow velocity, and ionic strength (IS), and the rem...
[A laboratory and field study on the disposal of domestic waste water based on soil permeation].
Yamaura, G
1989-02-01
The present study was conducted to get information necessary for the disposal of domestic waste water by soil permeation. The clarifying ability of soil was examined by conducting laboratory experiments using soil columns and making inquiries about practical disposal facilities based on soil permeation using trenches. In the column experiment, soil columns were prepared by packing polyvinyl chloride pipes with volcanic-ash loam, river sand, or an equivolume mixture of both, and secondary effluent of domestic waste water was poured into each soil column at a daily rate of 100 l/m2. In this experiment, loam and sand loam, both containing fine silt and clay, gave BOD removals of over 95% when the influent BOD load per 1 m3 of soil was less than 10 g/d and gave the coliform group removals of 100% when the influent coliform group load per 1 m3 soil was less than 10(9)/d. Loam and sand loam gave T-P removals of over 90%. The P adsorption capacity of soil was limited to less than 12% of the absorption coefficient of phosphoric acid. All the soils gave low T-N removals, mostly less than 50%. The trench disposal gave high removals of 90-97% for BOD, 90-97% for T-P, and 94-99% for the coliform group but low removals of 11-49% for T-N, showing a trend similar to that of the column disposal. Thus, we can roughly estimate the effectiveness of actual soil permeation disposal from the results of the column experiments. In the waste water permeation region, the extent of waste water permeation exceeded 700 cm horizontally from the trench, but the waste water load within 100 cm laterally from the trench occupied 60.3% of the total. The concentrations of T-C and T-N at almost all observation spots in the permeation region were lower than in the control region, and were not caused to accumulate in soil by waste water loading. In contrast, T-P was accumulated concentratively in the depth range from 50-100 cm right below the trench. The conditions for effective disposal of domestic waste water by soil permeation have been estimated to be: (1) the soil should contain more than 30% silt and clay, (2) the absorption coefficient of phosphoric acid should be more than 1000, (3) the permeation rate should be 1.0-1.8 mm/min, and (4) the soil volume to be permeated should be more than 6.86 m3/person.
Rod, Kenton A; Um, Wooyong; Flury, Markus
2010-11-01
We investigated the effects of water saturation and secondary precipitate formation on Sr and Cs transport through quartz sand columns under saturated and unsaturated flow. Column experiments were conducted at effective water saturation ranging from 0.2 to 1.0 under steady-state flow using either 0.1 M NaNO(3) or simulated tank waste leachate (STWL; 1 M NaNO(3) and 1 M NaOH) mimicking Hanford (Washington, USA) tank waste. In 0.1 M NaNO(3) columns, Sr transported like a conservative tracer, whereas Cs was retarded relative to Sr. The transport of Sr and Cs in the 0.1 M NaNO(3) columns under all water saturations could be described with the equilibrium convection-dispersion equation (CDE). In STWL columns, Sr mobility was significantly reduced compared to the 0.1 M NaNO(3) column, because Sr was incorporated into or sorbed to neo-formed secondary precipitates. Strontium sequestration by precipitates was confirmed by additional batch and electron micrograph analyses. In contrast(,) the transport of Cs was less affected by the STWL; retardation of Cs in STWL columns was similar to that found in 0.1 M NaNO(3) columns. Analysis of STWL column data revealed that both Sr and Cs breakthrough curves showed nonideal behavior that suggest nonequilibrium conditions, although nonlinear geochemical behavior cannot be ruled out.
Parallel array of independent thermostats for column separations
Foret, Frantisek; Karger, Barry L.
2005-08-16
A thermostat array including an array of two or more capillary columns (10) or two or more channels in a microfabricated device is disclosed. A heat conductive material (12) surrounded each individual column or channel in array, each individual column or channel being thermally insulated from every other individual column or channel. One or more independently controlled heating or cooling elements (14) is positioned adjacent to individual columns or channels within the heat conductive material, each heating or cooling element being connected to a source of heating or cooling, and one or more independently controlled temperature sensing elements (16) is positioned adjacent to the individual columns or channels within the heat conductive material. Each temperature sensing element is connected to a temperature controller.
Vijayaraghavan, K; Joshi, U M
2013-01-01
Laboratory batch and column experiments were carried out to examine the efficiency of algal-based treatment technique to clean-up wastewaters emanating from inductively coupled plasma-optical emission spectrometry (ICP-OES). Chemical characterization revealed the extreme complexity of the wastewater, with the presence of 14 different metals under very low pH (pH = 1.1), high conductivity (6.98 mS/cm), total dissolved solid (4.46 g/L) and salinity (3.77). Batch experiments using Sargassum biomass indicated that it was possible to attain high removal efficiencies at optimum pH of 4.0. Efforts were also made to continuously treat ICP-OES wastewater using up-flow packed column. However, swelling of Sargassum biomass leads to stoppage of column. To address the problem, Sargassum was mixed with sand at a ratio of 40: 60 on volume basis. Remarkably, the hybrid Sargassum-sand sorbent showed very high removal efficiency towards multiple metal ions with the column able to operate for 11 h at a flow rate of 10 mL/min. Metal ions such as Cu, Cd, and Pb were only under trace levels in the treated water until 11 h. The results of the treatment process were compared with trade effluent discharge standards. Further the process evaluation and cost analysis were presented.
Influence of plant roots on electrical resistivity measurements of cultivated soil columns
NASA Astrophysics Data System (ADS)
Maloteau, Sophie; Blanchy, Guillaume; Javaux, Mathieu; Garré, Sarah
2016-04-01
Electrical resistivity methods have been widely used for the last 40 years in many fields: groundwater investigation, soil and water pollution, engineering application for subsurface surveys, etc. Many factors can influence the electrical resistivity of a media, and thus influence the ERT measurements. Among those factors, it is known that plant roots affect bulk electrical resistivity. However, this impact is not yet well understood. The goals of this experiment are to quantify the effect of plant roots on electrical resistivity of the soil subsurface and to map a plant roots system in space and time with ERT technique in a soil column. For this research, it is assumed that roots system affect the electrical properties of the rhizosphere. Indeed the root activity (by transporting ions, releasing exudates, changing the soil structure,…) will modify the rhizosphere electrical conductivity (Lobet G. et al, 2013). This experiment is included in a bigger research project about the influence of roots system on geophysics measurements. Measurements are made on cylinders of 45 cm high and a diameter of 20 cm, filled with saturated loam on which seeds of Brachypodium distachyon (L.) Beauv. are sowed. Columns are equipped with electrodes, TDR probes and temperature sensors. Experiments are conducted at Gembloux Agro-Bio Tech, in a growing chamber with controlled conditions: temperature of the air is fixed to 20° C, photoperiod is equal to 14 hours, photosynthetically active radiation is equal to 200 μmol m-2s-1, and air relative humidity is fixed to 80 %. Columns are fully saturated the first day of the measurements duration then no more irrigation is done till the end of the experiment. The poster will report the first results analysis of the electrical resistivity distribution in the soil columns through space and time. These results will be discussed according to the plant development and other controlled factors. Water content of the soil will also be detailed. Reference Lobet G, Hachez C, Chaumont F, Javaux M, Draye X. Root water uptake and water flow in the soil-root domain. In: Eshel A and Beeckman T, editors. Plant Roots. The Hidden Half. Boca Raton (US):CRC Press,2013. p. 24-1 - 24-13.
NASA Astrophysics Data System (ADS)
Wu, Y.; Hubbard, C. G.; Dong, W.; Hubbard, S. S.
2011-12-01
Microbially enhanced hydrocarbon recovery (MEHR) mechanisms are expected to be impacted by processes and properties that occur over a wide range of scales, ranging from surface interactions and microbial metabolism at the submicron scale to changes in wettability and pore geometry at the pore scale to geological heterogeneities at the petroleum reservoir scale. To eventually ensure successful, production-scale implementation of laboratory-developed MEHR procedures under field conditions, it is necessary to develop approaches that can remotely monitor and accurately predict the complex microbially-facilitated transformations that are expected to occur during MEHR treatments in reservoirs (such as the evolution of redox profiles, oil viscosity or matrix porosity/permeability modifications). Our initial studies are focused on laboratory experiments to assess the geophysical signatures of MEHR-induced biogeochemical transformations, with an ultimate goal of using these approaches to monitor field treatments. Here, we explore the electrical signatures of two MEHR processes that are designed to produce end-products that will plug high permeability zones in reservoirs and thus enhance sweep efficiency. The MEHR experiments to induce biopolymers (in this case dextran) and iron mineral precipitates were conducted using flow-through columns. Leuconostoc mesenteroides, a facultative anaerobe, known to produce dextran from sucrose was used in the biopolymer experiments. Paused injection of sucrose, following inoculation and initial microbial attachment, was carried out on daily basis, allowing enough time for dextran production to occur based on batch experiment observations. Electrical data were collected on daily basis and fluid samples were extracted from the column for characterization. Changes in electrical signal were not observed during initial microbial inoculation. Increase of electrical resistivity and decrease of electrical phase response were observed during the experiment and is correlated with the accumulation of dextran in the column. The changes of the electrical signals are interpreted to be due to surface masking of sand grains by dextran that reduces polarizable surface area of the sand grains. A second experiment was conducted to evaluate the sensitivity of electrical geophysical methods to iron mineral precipitation as an alternative plugging mechanism. Although anaerobic iron oxidation coupled with nitrate reduction is the targeted process, aerobic experiments were first conducted as a simplified case without biologically related effects. In this experiment, iron minerals were precipitated through oxidation of ferrous iron by oxygen. Changes in geophysical signals as well as hydraulic permeability across the column were measured. Quantification of iron mineral precipitation was carried out through mass balance and the precipitate morphology and mineralogy were analyzed with optical and electron microscopy and XRD at the end of the experiments. Correlation between geophysical signature and iron mineral precipitation was established and will be used to guide the next experiment, which will focus on microbial facilitated iron oxidation coupled with nitrate reduction under anaerobic conditions.
NASA Technical Reports Server (NTRS)
Palmer, Michael T.; Abbott, Kathy H.
1994-01-01
This study identifies improved methods to present system parameter information for detecting abnormal conditions and to identify system status. Two workstation experiments were conducted. The first experiment determined if including expected-value-range information in traditional parameter display formats affected subject performance. The second experiment determined if using a nontraditional parameter display format, which presented relative deviation from expected value, was better than traditional formats with expected-value ranges included. The inclusion of expected-value-range information onto traditional parameter formats was found to have essentially no effect. However, subjective results indicated support for including this information. The nontraditional column deviation parameter display format resulted in significantly fewer errors compared with traditional formats with expected-value-ranges included. In addition, error rates for the column deviation parameter display format remained stable as the scenario complexity increased, whereas error rates for the traditional parameter display formats with expected-value ranges increased. Subjective results also indicated that the subjects preferred this new format and thought that their performance was better with it. The column deviation parameter display format is recommended for display applications that require rapid recognition of out-of-tolerance conditions, especially for a large number of parameters.
USDA-ARS?s Scientific Manuscript database
Packed column experiments were conducted to investigate the transport and blocking behavior of surfactant- and polymer-stabilized engineered silver nanoparticles (Ag-ENPs) in saturated natural aquifer material with varying silt and clay content, background solution chemistry, and flow velocity. Brea...
USDA-ARS?s Scientific Manuscript database
Nitrate-nitrogen removal rates can be increased substantially in denitrifying bioreactors with a corn cob bed medium compared to woodchips; however, additional organic carbon (C) is released into the effluent. This laboratory column experiment was conducted to test the performance of a post-bed cha...
Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Remus, Ruben; Ismail, Syed
2016-05-20
Field experiments were conducted to test and evaluate the initial atmospheric carbon dioxide (CO2) measurement capability of airborne, high-energy, double-pulsed, 2-μm integrated path differential absorption (IPDA) lidar. This IPDA was designed, integrated, and operated at the NASA Langley Research Center on-board the NASA B-200 aircraft. The IPDA was tuned to the CO2 strong absorption line at 2050.9670 nm, which is the optimum for lower tropospheric weighted column measurements. Flights were conducted over land and ocean under different conditions. The first validation experiments of the IPDA for atmospheric CO2 remote sensing, focusing on low surface reflectivity oceanic surface returns during full day background conditions, are presented. In these experiments, the IPDA measurements were validated by comparison to airborne flask air-sampling measurements conducted by the NOAA Earth System Research Laboratory. IPDA performance modeling was conducted to evaluate measurement sensitivity and bias errors. The IPDA signals and their variation with altitude compare well with predicted model results. In addition, off-off-line testing was conducted, with fixed instrument settings, to evaluate the IPDA systematic and random errors. Analysis shows an altitude-independent differential optical depth offset of 0.0769. Optical depth measurement uncertainty of 0.0918 compares well with the predicted value of 0.0761. IPDA CO2 column measurement compares well with model-driven, near-simultaneous air-sampling measurements from the NOAA aircraft at different altitudes. With a 10-s shot average, CO2 differential optical depth measurement of 1.0054±0.0103 was retrieved from a 6-km altitude and a 4-GHz on-line operation. As compared to CO2 weighted-average column dry-air volume mixing ratio of 404.08 ppm, derived from air sampling, IPDA measurement resulted in a value of 405.22±4.15 ppm with 1.02% uncertainty and 0.28% additional bias. Sensitivity analysis of environmental systematic errors correlates the additional bias to water vapor. IPDA ranging resulted in a measurement uncertainty of <3 m.
Water pollution potential of spent oil shale residues. [From USBM, UOC, and TOSCO processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1971-12-01
Physical properties, including porosity, permeability, particle size distribution, and density of spent shale from three different retorting operations, (TOSCO, USBM, and UOC) have been determined. Slurry experiments were conducted on each of the spent shales and the slurry analyzed for leachable dissolved solids. Percolation experiments were conducted on the TOSCO spent shale and the quantities of dissolved solids leachable determined. The concentrations of the various ionic species in the initial leachate from the column were high. The major constituents, SO/sub 4//sup 2 -/ and Na/sup +/, were present in concentrations of 90,000 and 35,000 mg/l in the initial leachate; howevermore » the succeeding concentrations dropped markedly during the course of the experiment. A computer program was utilized to predict equilibrium concentrations in the leachate from the column. The extent of leaching and erosion of spent shale and the composition and concentration of natural drainage from spent shale have been determined using oil shale residue and simulated rainfall. Concentrations in the runoff from the spent shale have been correlated with runoff rate, precipitation intensity, flow depth, application time, slope, and water temperature. 18 tables, 32 figures.« less
Hyporheic less-mobile porosity and solute transport in porous media
NASA Astrophysics Data System (ADS)
MahmoodPoorDehkordy, F.; Briggs, M. A.; Day-Lewis, F. D.; Scruggs, C.; Singha, K.; Zarnetske, J. P.; Lane, J. W., Jr.; Bagtzoglou, A. C.
2017-12-01
Solute transport and reactive processes are strongly influenced by hydrodynamic exchange with the hyporheic zone. Contaminant transport and redox zonation in the hyporheic zone and near-stream aquifer can be impacted by the exchange between mobile and less-mobile porosity zones in heterogeneous porous media. Less-mobile porosity zones can be created by fine materials with tight pore throats (e.g. clay, organics) and in larger, well-connected pores down gradient of flow obstructions (e.g. sand behind cobbles). Whereas fluid sampling is primarily responsive to the more-mobile domain, tracking solute tracer dynamics by geoelectrical methods provides direct information about both more- and less-mobile zones. During tracer injection through porous media of varied pore connectivity, a lag between fluid and bulk electrical conductivity is observed, creating a hysteresis loop when plotted in conductivity space. Thus, the combination of simultaneous fluid and bulk electrical conductivity measurements enables a much improved quantification of less-mobile solute dynamics compared to traditional fluid-only sampling approaches. We have demonstrated the less-mobile porosity exchange in laboratory-scale column experiments verified by simulation models. The experimental approach has also been applied to streambed sediments in column and reach-scale field experiments and verified using numerical simulation. Properties of the resultant hysteresis loops can be used to estimate exchange parameters of less-mobile porosity. Our integrated approach combining field experiments, laboratory experiments, and numerical modeling provides new insights into the effect of less-mobile porosity on solute transport in the hyporheic zone.
NASA Astrophysics Data System (ADS)
Aaron, R. B.; Zheng, Q.; Flynn, P.; Singha, K.; Brantley, S.
2008-12-01
Three flow-through columns outfitted with Ag/AgCl electrodes were constructed to test the effects of different microbial processes on the geophysical measurements of self potential (SP), bulk electrical conductivity (σ b), and induced polarization (IP). The columns were filled with sieved, Fe-bearing subsurface sediment from the Delmarva Peninsula near Oyster, VA, inoculated (9:1 ratio) with a freshly-collected, shallow subsurface sediment from a wetland floodplain (Dorn Creek) near Madison, WI. Each of the columns was fed anoxic and sterile PIPES buffered artificial groundwater (PBAGW) containing different concentrations of acetate and nitrate. The medium fed to Column 1 (nitrate-reducing) was amended with 100 μM acetate and 2 mM nitrate. Column 2 (iron-reducing) was run with PBAGW containing 1.0 mM acetate and 0 mM nitrate. Column 3 (alternating redox state) was operated under conditions designed to alternately stimulate nitrate-reducing and iron-reducing populations to provide conditions, i.e., the presence of both nitrate and microbially-produced Fe(II), that would allow growth of nitrate-dependent Fe(II)-oxidizing populations. We operated Column 3 with a cycling strategy of 14-18 days of high C medium (1 mM acetate and 100 μ M nitrate) followed by 14-18 days of low C medium (100 μ M acetate and 2 mM nitrate). Effluent chemistry (NO3-, NO2-, NH4+, acetate, and Fe2+) was sampled daily for four months so as to be concurrent with the electrical measurements. We observed chemical evidence of iron reduction (dissolved [Fe(II)] = 0.2mM) in the effluent from the iron reduction and alternating redox columns. Chemical depletion of NO3- ([NO3-] ranged from 1 to 0.02mM), the production of NO2-, and possible production of NH4+ (0.2 mM) was observed in the nitrate reducing column as well as the alternating redox column. All three columns displayed loss of acetate as microbial activity progressed. σ b remained constant in the alternating redox column (~0.15 S/m), increased in the iron reducing column (0.2 S/m to 0.8 S/m) and increased markedly in the nitrate reducing column (0.3 S/m to 1.2 S/m). This runs counter to our expectations. We expected to see an increase in σ b as [Fe(II)] increased and a decrease in σ b as nitrate was removed from the columns. All three columns showed little or no IP response at the outset and developed negative chargeabilities over the course of the experiment (as great as -20 mV/V). These values are anomalous and difficult to interpret. SP signals show the most variable response. Initially all three columns had SP values at or very near 0 mV. SP for the nitrate reducing column remained constant around 0mV. The iron reducing column displayed an increasingly negative SP response for the first two months that became constant at about -200mV for the remainder of the experiment. The alternating redox column displayed an oscillating signal recording large positive values (~475 mV) when nitrate concentrations were low and returning to a baseline value (~160mV) when nitrate was introduced to the column. The results of these column experiments indicate that there is a link between microbial activity and geophysical signals and that further research is needed to better quantify these signals.
Semi-industrial experimental study on bauxite separation using a cell-column integration process
NASA Astrophysics Data System (ADS)
Zhang, Ning-ning; Zhou, Chang-chun; Cong, Long-fei; Cao, Wen-long; Zhou, You
2016-01-01
The cyclonic-static micro-bubble flotation column (FCSMC) is a highly efficient mineral processing equipment. In this study, a cell-column (FCSMC) integration process was investigated for the separation of bauxite and its feasibility was analyzed on a theoretical basis. The properties of low-grade bauxite ore from Henan Province, China were analyzed. Parameters such as reagent dosage, scraping bubble time, and pressure of the circulating pump during the sorting process were investigated and optimized to improve the flotation efficiency. On the basis of these parameters, continuous separation experiments were conducted. Bauxite concentrate with an aluminum-to-silicon (A/S) mass ratio of 6.37 and a 77.63wt% recovery rate were achieved via a flow sheet consisting of "fast flotation using a flotation cell, one roughing flotation and one cleaning flotation using flotation columns". Compared with the full-flotation-cells process, the cell-column integration process resulted in an increase of the A/S ratio by 0.41 and the recovery rate by 17.58wt%. Cell-column integration separation technology represents a new approach for the separation of middle-to-low-grade bauxite ore.
NASA Astrophysics Data System (ADS)
Dozier, R.; Montgomery, D.; Wylie, E. M.; Dogan, M.; Moysey, S. M.; Powell, B. A.; Martinez, N. E.
2015-12-01
Experiments were performed under various reducing conditions to evaluate the transport behavior of technetium-99 (99Tc) in the presence of sandy clay loam soil from the Savannah River Site (SRS) and goethite, magnetite, and iron sulfide, which were selected for their increasing reducing potential. The experiments were conducted to investigate how redox reaction equilibria and rates affect the overall mobility of 99Tc as it transitions between the mobile Tc(VII) and immobile Tc(IV). Under oxygen-rich conditions, batch sorption isotherms measured for TcO4- across the concentration range 0.5 to 50 μg/L were linear with distribution coefficients (Kd) of 0.78 mL/g or lower, with decreasing sorption for goethite, magnetite, and iron sulfide, respectively. Addition of Na2S resulted in a marked increase in apparent 99Tc sorption to the solid phase, with Kd of 43 mL/g, 35 mL/g, and 29 mL/g, following the same mineral trend as previously. The increased Kd values are possibly due to reduction of Tc(VII) to Tc(IV), resulting in the formation of TcO2(s). SRS soil batch sorption isotherms measured for TcO4- across the same concentration range were also linear, with Kd of 0.7 mL/g for unadjusted pH, 5.1 mL/g for pH of around 6, and 6.7 mL/g for pH of around 4. Kinetic batch sorption tests showed less than 10% 99Tc sorption in an oxidizing environment and greater than 95% sorption in a reducing environment, with both reactions occurring on the order of minutes. In contrast, desorption experiments initiated by transferring the samples from a reducing environment (0.1% H2(g)/99.9% N2(g)) to atmospheric conditions resulted in a slow desorption step on the order of days. Column experiments conducted with the SRS sands indicate a retardation factor of 1.17 for 99Tc under oxygen rich conditions. Additional column experiments are being conducted to evaluate 99Tc transport dependencies on transitions between oxygen rich and poor conditions.
Regulation of Microbial Herbicide Transformation by Coupled Moisture and Oxygen Dynamics in Soil
NASA Astrophysics Data System (ADS)
Marschmann, G.; Pagel, H.; Uksa, M.; Streck, T.; Milojevic, T.; Rezanezhad, F.; Van Cappellen, P.
2017-12-01
The key processes of herbicide fate in agricultural soils are well-characterized. However, most of these studies are from batch experiments that were conducted under optimal aerobic conditions. In order to delineate the processes controlling herbicide (i.e., phenoxy herbicide 2-methyl-4-chlorophenoxyacetic acid, MCPA) turnover in soil under variable moisture conditions, we conducted a state-of-the-art soil column experiment, with a highly instrumented automated soil column system, under constant and oscillating water table regimes. In this system, the position of the water table was imposed using a computer-controlled, multi-channel pump connected to a hydrostatic equilibrium reservoir and a water storage reservoir. The soil samples were collected from a fertilized, arable and carbon-limited agricultural field site in Germany. The efflux of CO2 was determined from headspace gas measurements as an integrated signal of microbial respiration activity. Moisture and oxygen profiles along the soil column were monitored continuously using high-resolution moisture content probes and luminescence-based Multi Fiber Optode (MuFO) microsensors, respectively. Pore water and solid-phase samples were collected periodically at 8 depths and analyzed for MCPA, dissolved inorganic and organic carbon concentrations as well as the abundance of specific MCPA-degrading bacteria. The results indicated a clear effect of the water table fluctuations on CO2 fluxes, with lower fluxes during imbibition periods and enhanced CO2 fluxes after drainage. In this presentation, we focus on the results of temporal changes in the vertical distribution of herbicide, specific herbicide degraders, organic carbon concentration, moisture content and oxygen. We expect that the high spatial and temporal resolution of measurements from this experiment will allow robust calibration of a reactive transport model for the soil columns, with subsequent identification and quantification of rate limiting processes of MCPA turnover. This will ultimately improve our overall understanding of herbicide fate processes as a function of soil water regime.
Building the GPM-GV Column from the GPM Cold season Precipitation Experiment (Invited)
NASA Astrophysics Data System (ADS)
Nesbitt, S. W.; Duffy, G. A.; Gleicher, K.; McFarquhar, G. M.; Kulie, M.; Williams, C. R.; Petersen, W. A.; Munchak, S. J.; Tokay, A.; Skofronick Jackson, G.; Chandrasekar, C. V.; Kollias, P.; Hudak, D. R.; Tanelli, S.
2013-12-01
Within the context of the Drop Size Distribution Working Group (DSDWG) of the Global Precipitation Mission-Ground Validation (GPM-GV) program, a major science and satellite precipitation algorithm validation focus is on quantitatively determining the variability of microphysical properties of precipitation in the vertical column, as well as the radiative properties of those particles at GPM-relevant microwave frequencies. The GPM Cold season Precipitation Experiment, or GCPEx, was conducted to address both of these objectives in mid-latitude winter precipitation. Radar observations at C, X, Ku, Ka, and W band from ground based scanning radars, profiling radars, and aircraft, as well as an aircraft passive microwave imager from GCPEx, conducted in early 2012 near Barrie, Ontario, Canada, can be used to constrain the observed reflectivites and brightness temperatures in snow as well as construct radar dual frequency ratios (DFRs) that can be used to identify regimes of microwave radiative properties in observed hydrometeor columns. These data can be directly matched with aircraft and ground based in situ microphysical probes, such as 2-D and bulk aircraft probes and surface disdrometers, to place the microphysical and microwave scattering and emission properties of the snow in context throughout the column of hydrometeors. In this presentation, particle scattering regimes will be identified in GCPEx hydrometeor columns storm events using a clustering technique in a multi-frequency DFR-near Rayleigh radar reflectivity phase space using matched ground-based and aircraft-based radar and passive microwave data. These data will be interpreted using matched in situ disdrometer and aircraft probe microphysical data (particle size distributions, habit identification, fall speed, mass-diameter relationships) derived during the events analyzed. This database is geared towards evaluating scattering simulations and the choice of integral particle size distributions for snow precipitation retrieval algorithms for ground and spaceborne radars at relevant wavelengths. A comparison of results for different cases with varying synoptic forcing and microphysical evolution will be presented.
The impact of column connection on band broadening in very high pressure liquid chromatography.
Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Guiochon, Georges
2013-09-01
A series of experiments was conducted to evaluate the degree of band broadening in very high pressure LC due to column connections. Different column manufacturers use slightly different designs for their column fittings. If the same column connections are repeatedly used to attach columns of different origins, different void volumes form between capillary tubes and column inlets. An Agilent Ultra Low Dispersion Kit (tubing id 75 μm) was installed on an Agilent Infinity 1290 ultra HPLC and used to connect successively an Agilent, a Phenomenex, and a Waters column. A series of uracil (unretained) samples were injected and eluted at a wide range of flow rates with a water/acetonitrile mixture as eluent. In order to determine the variance contribution from column connections as accurately as possible a nonretained probe compound was selected because the variance contribution from the column is the smallest for analytes, which have very low k values. Yet, this effect still has an impact on the resolution for moderately retained compounds (k > 2) for narrow-bore columns packed with fine particles, since variance contributions are additive for linear chromatographic systems. Each injection was replicated five times under the same experimental conditions. Then NanoViper column connections (tubing id 75 μm) were used and the same injections were made. This system was designed to minimize connection void volumes for any column. Band variances were calculated as the second central moment of elution peaks and used to assess the degree of band broadening due to the column connections. Band broadening may increase from 3.8 to 53.9% when conventional metal ferrules were used to join columns to connection sites. The results show that the variance contribution from improper connections can generate as much as 60.5% of the total variance observed. This demonstrates that column connections can play a larger role than the column packing with respect to band dispersion. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mellage, Adrian; Smeaton, Christina M; Furman, Alex; Atekwana, Estella A; Rezanezhad, Fereidoun; Van Cappellen, Philippe
2018-02-20
Geophysical techniques, such as spectral induced polarization (SIP), offer potentially powerful approaches for in situ monitoring of subsurface biogeochemistry. The successful implementation of these techniques as monitoring tools for reactive transport phenomena, however, requires the deconvolution of multiple contributions to measured signals. Here, we present SIP spectra and complementary biogeochemical data obtained in saturated columns packed with alternating layers of ferrihydrite-coated and pure quartz sand, and inoculated with Shewanella oneidensis supplemented with lactate and nitrate. A biomass-explicit diffusion-reaction model is fitted to the experimental biogeochemical data. Overall, the results highlight that (1) the temporal response of the measured imaginary conductivity peaks parallels the microbial growth and decay dynamics in the columns, and (2) SIP is sensitive to changes in microbial abundance and cell surface charging properties, even at relatively low cell densities (<10 8 cells mL -1 ). Relaxation times (τ) derived using the Cole-Cole model vary with the dominant electron accepting process, nitrate or ferric iron reduction. The observed range of τ values, 0.012-0.107 s, yields effective polarization diameters in the range 1-3 μm, that is, 2 orders of magnitude smaller than the smallest quartz grains in the columns, suggesting that polarization of the bacterial cells controls the observed chargeability and relaxation dynamics in the experiments.
Contaminant Leach Testing of Hanford Tank 241-C-104 Residual Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantrell, Kirk J.; Snyder, Michelle M.V.; Wang, Guohui
2015-07-01
Leach testing of Tank C-104 residual waste was completed using batch and column experiments. Tank C-104 residual waste contains exceptionally high concentrations of uranium (i.e., as high as 115 mg/g or 11.5 wt.%). This study was conducted to provide data to develop contaminant release models for Tank C-104 residual waste and Tank C-104 residual waste that has been treated with lime to transform uranium in the waste to a highly insoluble calcium uranate (CaUO4) or similar phase. Three column leaching cases were investigated. In the first case, C-104 residual waste was leached with deionized water. In the second case, crushedmore » grout was added to the column so that deionized water contacted the grout prior to contacting the waste. In the third case, lime was mixed in with the grout. Results of the column experiments demonstrate that addition of lime dramatically reduces the leachability of uranium from Tank C-104 residual waste. Initial indications suggest that CaUO4 or a similar highly insoluble calcium rich uranium phase forms as a result of the lime addition. Additional work is needed to definitively identify the uranium phases that occur in the as received waste and the waste after the lime treatment.« less
An experiment for determining the Euler load by direct computation
NASA Technical Reports Server (NTRS)
Thurston, Gaylen A.; Stein, Peter A.
1986-01-01
A direct algorithm is presented for computing the Euler load of a column from experimental data. The method is based on exact inextensional theory for imperfect columns, which predicts two distinct deflected shapes at loads near the Euler load. The bending stiffness of the column appears in the expression for the Euler load along with the column length, therefore the experimental data allows a direct computation of bending stiffness. Experiments on graphite-epoxy columns of rectangular cross-section are reported in the paper. The bending stiffness of each composite column computed from experiment is compared with predictions from laminated plate theory.
Quantifying microbe-mineral interactions leading to remotely detectable induced polarization signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ntarlagiannis, Dimitrios; Moysey, Stephen; Dean, Delphine
2013-11-14
The objective of this project was to investigate controls on induced polarization responses in porous media. The approach taken in the project was to compare electrical measurements made on mineral surfaces with atomic force microscopy (AFM) techniques to observations made at the column-scale using traditional spectral induced polarization measurements. In the project we evaluated a number of techniques for investigating the surface properties of materials, including the development of a new AFM measurement protocol that utilizes an external electric field to induce grain-scale polarizations that can be probed using a charged AFM tip. The experiments we performed focused on idealizedmore » systems (i.e., glass beads and silica gel) where we could obtain the high degree of control needed to understand how changes in the pore environment, which are determined by biogeochemical controls in the subsurface, affect mechanisms contributing to complex electrical conductivity, i.e., conduction and polarization, responses. The studies we performed can be classified into those affecting the chemical versus physical properties of the grain surface and pore space. Chemical alterations of the surface focused on evaluating how changes in pore fluid pH and ionic composition control surface conduction. These were performed as column flow through experiments where the pore fluid was exchanged in a column of silica gel. Given that silica gel has a high surface area due to internal grain porosity, high-quality data could be obtained where the chemical influences on the surface are clearly apparent and qualitatively consistent with theories of grain (i.e., Stern layer) polarization controlled by electrostatic surface sorption processes (i.e., triple layer theory). Quantitative fitting of the results by existing process-based polarization models (e.g., Leroy et al., 2008) has been less successful, however, due to what we have attributed to differences between existing models developed for spherical grains versus the actual geometry associated with the nano-pores in the silica gel, though other polarization processes, e.g., proton hopping along the surface (Skold et al., 2013), may also be a contributing factor. As an alternative model-independent approach to confirming the link between surface sorption and SIP we initiated a study that will continue (unfunded) beyond the completion of this project to independently measure the accumulation of gamma emitting isotopes on the silica gel during the SIP monitoring experiments. Though our analyses of the project data are ongoing, our preliminary analyses are generally supportive of the grain (Stern layer) polarization theory of SIP. Experiments focused on evaluating the impact of physical modifications of the medium on polarization included etching and biotic and abiotic facilitated precipitation of carbonate and iron oxides to alter the roughness and electrical conductivity of the surfaces. These experiments were performed for both silica gel and glass beads, the latter of which lacked the interior porosity and high surface area of the silica gel. The results appear to be more nuanced that the chemical modifications of the system. In general, however, it was found that deposition of iron oxides and etching had relatively minimal or negative impacts on the polarization response of the medium, whereas carbonate coatings increased the polarization response. These results were generally consistent with changes in surface charge observed via AFM. Abiotic and biotic column flow through experiments demonstrated that precipitation of carbonate within the medium significantly impacted the real and imaginary conductivity over time in a manner generally consistent with the carbonate precipitation as observed from the batch grain coating experiments. Biotic effects were not observed to provide distinctly different signatures, but may have contributed to differences in the rate of changes observed with SIP. AFM was used in a variety of different ways to investigate the grain surfaces throughout the course of the project. Standard imaging methods were used to evaluate surface roughness and charge density, which showed that these data could provide qualitative insights about consistency between surface trends and the electrical behavior at the column scale (for the case of glass beads). Polarization and conductive force microscopy (PCFM) measurements were developed by the original project PI (Treavor Kendall), which illustrated the importance of the initial few monolayers of water on the mineral surface for producing surface conductivity. The technique allowed for initial local estimates of complex electrical conductivity on mineral surfaces, but could not be pursued after Kendall left the project due to phase locking limitations with the AFM instrument at Clemson and an inability to perform measurements in solution, which limited their value for linking the measurements to column-scale SIP responses. As a result, co-PI Dean developed a new methodology for making AFM measurements within an externally applied electric field. In this method, the charged tip of an AFM probe is brought within the proximity of a polarization domain while an external electric field is applied to the sample. The premise of the approach is that the tip will be attracted to or rebound from charge accumulations on the surface, which allow for detection of the local polarization response. Initial experiments showed promise in terms of the general trends of responses observed, though we have not yet been able to develop a quantitative interpretation technique that can be applied to predicting column scale responses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moysey, Stephen; Dean, Delphine; Dimitrios, Ntarlagiannis
2013-11-13
The objective of this project was to investigate controls on induced polarization responses in porous media. The approach taken in the project was to compare electrical measurements made on mineral surfaces with atomic force microscopy (AFM) techniques to observations made at the column-scale using traditional spectral induced polarization measurements. In the project we evaluated a number of techniques for investigating the surface properties of materials, including the development of a new AFM measurement protocol that utilizes an external electric field to induce grain-scale polarizations that can be probed using a charged AFM tip. The experiments we performed focused on idealizedmore » systems (i.e., glass beads and silica gel) where we could obtain the high degree of control needed to understand how changes in the pore environment, which are determined by biogeochemical controls in the subsurface, affect mechanisms contributing to complex electrical conductivity, i.e., conduction and polarization, responses. The studies we performed can be classified into those affecting the chemical versus physical properties of the grain surface and pore space. Chemical alterations of the surface focused on evaluating how changes in pore fluid pH and ionic composition control surface conduction. These were performed as column flow through experiments where the pore fluid was exchanged in a column of silica gel. Given that silica gel has a high surface area due to internal grain porosity, high-quality data could be obtained where the chemical influences on the surface are clearly apparent and qualitatively consistent with theories of grain (i.e., Stern layer) polarization controlled by electrostatic surface sorption processes (i.e., triple layer theory). Quantitative fitting of the results by existing process-based polarization models (e.g., Leroy et al., 2008) has been less successful, however, due to what we have attributed to differences between existing models developed for spherical grains versus the actual geometry associated with the nano-pores in the silica gel, though other polarization processes, e.g., proton hopping along the surface (Skold et al., 2013), may also be a contributing factor. As an alternative model-independent approach to confirming the link between surface sorption and SIP we initiated a study that will continue (unfunded) beyond the completion of this project to independently measure the accumulation of gamma emitting isotopes on the silica gel during the SIP monitoring experiments. Though our analyses of the project data are ongoing, our preliminary analyses are generally supportive of the grain (Stern layer) polarization theory of SIP. Experiments focused on evaluating the impact of physical modifications of the medium on polarization included etching and biotic and abiotic facilitated precipitation of carbonate and iron oxides to alter the roughness and electrical conductivity of the surfaces. These experiments were performed for both silica gel and glass beads, the latter of which lacked the interior porosity and high surface area of the silica gel. The results appear to be more nuanced that the chemical modifications of the system. In general, however, it was found that deposition of iron oxides and etching had relatively minimal or negative impacts on the polarization response of the medium, whereas carbonate coatings increased the polarization response. These results were generally consistent with changes in surface charge observed via AFM. Abiotic and biotic column flow through experiments demonstrated that precipitation of carbonate within the medium significantly impacted the real and imaginary conductivity over time in a manner generally consistent with the carbonate precipitation as observed from the batch grain coating experiments. Biotic effects were not observed to provide distinctly different signatures, but may have contributed to differences in the rate of changes observed with SIP. AFM was used in a variety of different ways to investigate the grain surfaces throughout the course of the project. Standard imaging methods were used to evaluate surface roughness and charge density, which showed that these data could provide qualitative insights about consistency between surface trends and the electrical behavior at the column scale (for the case of glass beads). Polarization and conductive force microscopy (PCFM) measurements were developed by the original project PI (Treavor Kendall), which illustrated the importance of the initial few monolayers of water on the mineral surface for producing surface conductivity. The technique allowed for initial local estimates of complex electrical conductivity on mineral surfaces, but could not be pursued after Kendall left the project due to phase locking limitations with the AFM instrument at Clemson and an inability to perform measurements in solution, which limited their value for linking the measurements to column-scale SIP responses. As a result, co-PI Dean developed a new methodology for making AFM measurements within an externally applied electric field. In this method, the charged tip of an AFM probe is brought within the proximity of a polarization domain while an external electric field is applied to the sample. The premise of the approach is that the tip will be attracted to or rebound from charge accumulations on the surface, which allow for detection of the local polarization response. Initial experiments showed promise in terms of the general trends of responses observed, though we have not yet been able to develop a quantitative interpretation technique that can be applied to predicting column scale responses.« less
Transport processes and mutual interactions of three bacterial strains in saturated porous media
NASA Astrophysics Data System (ADS)
Stumpp, Christine; Lawrence, John R.; Hendry, M. Jim; Maloszewski, Pitor
2010-05-01
Transport processes of the bacterial strains Klebsiella oxytoca, Burkholderia cepacia G4PR-1 and Pseudomonas sp #5 were investigated in saturated column experiments to study the differences in transport characteristics and the mutual interactions of these strains during transport. Soil column experiments (114 mm long x 33 mm in diameter) were conducted with constant water velocities (3.9-5.7 cm/h) through a medium to coarse grained silica sand. All experiments were performed in freshly packed columns in quadruplicate. Chloride was used as tracer to determine the mean transit time, dispersivity and flow rate. It was injected as a pulse into the columns together with the bacterial strains suspended in artificial groundwater medium. In the first setup, each strain was investigated alone. In the second setup, transport processes were performed injecting two strains simultaneously. Finally, the transport characteristics were studied in successive experiments when one bacterium was resident on the sand grains prior to the introduction of the second strain. In all experiments the peak C/Co bacterial concentrations were attenuated with respect to the conservative tracer chloride and a well defined tailing was observed. A one dimensional mathematical model for advective-dispersive transport that accounts for irreversible and reversible sorption was used to analyze the bacterial breakthrough curves and tailing patterns. It was shown that the sorption parameters were different for the three strains that can be explained by the properties of the bacteria. For the species Klebsiella oxytoca and Burkholderia cepacia G4PR-the transport parameters were mostly in the same range independent of the experimental setup. However, Pseudomonas sp #5, which is a motile bacterium, showed differences in the breakthrough curves and sorption parameters during the experiments. The simultaneous and successive experiments indicated an influence on the reversible sorption processes when another strain was present during the transport processes.
NASA Astrophysics Data System (ADS)
Jeen, S.; Bain, J. G.; Blowes, D. W.
2007-12-01
A column experiment has been conducted to evaluate the performance of three reactive mixtures which may be used in a permeable reactive barrier (PRB) for the treatment of low quality mine drainage water from a waste rock storage area in northern Saskatchewan, Canada. The key element of concern in the drainage water is dissolved Ni, which occurs at approximately 13 mg/L. The water is low pH ~4.3, oxidized, contains high concentrations of dissolved sulfate (4400-4750 mg/L), Al (45 mg/L), Zn (3 mg/L), Co (3 mg/L) and relatively low concentrations of other dissolved heavy metals and iron. Three columns, each containing one of the mixtures, were constructed: column A (peat/lime/limestone/gravel), column B (peat/zero valent iron (ZVI) filings (20%/vol)/limestone/gravel), and column C (peat/ZVI filings (10%/vol)/limestone/gravel). The experimental results have shown that the mixtures promote bacterially-mediated sulfate reduction and metal removal by precipitation of metal sulfides, metal precipitation, and adsorption under relatively high pH conditions (pH of 7 to 8). Reducing conditions (Eh of 0 to -200 mV) have developed in all of the columns, from the highly oxidized influent water (Eh of +500 to +600 mV). Hydrogen sulfide is detected in the effluent water, and dissolved sulfate concentrations decrease by several hundred mg/L. Based on sulfate removal, sulfate reduction occurs more strongly in columns B and C than column A. All of the columns are removing Ni to below the limit of detection (typically < 0.01 mg/L); however, the removal rate in column A is slower than in columns B and C and has decreased over time. Most other metals are removed to low concentrations in all of the columns. The results suggest that while the longevity of mixtures including ZVI will be much longer than mixtures containing only peat, considering economic aspects, the PRB consisting of only peat could also be an alternative option, if breakthrough time can be predicted and replacement of peat can be conducted in a timely manner. This study shows that the use of reactive mixtures that facilitate microbial activities and redox reactions in subsurface could be a valuable means to remove various metal contaminants originated from mine drainage sites.
Effects of simulated acid rain on microbial characteristics in a lateritic red soil
Hua-qin Xu; Jia-en Zhang; Ying Ouyang; Ling Lin; Guo-ming Quan; Ben-liang Zhao; Jia-yu Yu
2015-01-01
A laboratory experiment was performed to examine the impact of simulated acid rain (SAR) on nutrient leaching, microbial biomass, and microbial activities in a lateritic red soil in South China. The soil column leaching experiment was conducted over a 60-day period with the following six SAR pH treatments (levels): 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 and one control...
Wei, Xiaorong; Shao, Mingan; Du, Lina; Horton, Robert
2014-12-01
Understanding the transport of humic acids (HAs) in porous media can provide important and practical evidence needed for accurate prediction of organic/inorganic contaminant transport in different environmental media and interfaces. A series of column transport experiments was conducted to evaluate the transport of HA in different porous media at different flow velocities and influent HA concentrations. Low flow velocity and influent concentration were found to favor the adsorption and deposition of HA onto sand grains packed into columns and to give higher equilibrium distribution coefficients and deposition rate coefficients, which resulted in an increased fraction of HA being retained in columns. Consequently, retardation factors were increased and the transport of HA through the columns was delayed. These results suggest that the transport of HA in porous media is primarily controlled by the attachment of HA to the solid matrix. Accordingly, this attachment should be considered in studies of HA behavior in porous media. Copyright © 2014. Published by Elsevier B.V.
A Laboratory Study of Natural Zeolite for Treatment of Fluorinated Water
NASA Astrophysics Data System (ADS)
Pandey, A.
2015-12-01
Fluoride contamination is mainly induced in ground water by chemical interaction between water and fluoride bearing rocks and natural fluoridation is further catalyzed by anthropogenic activities. Elevated fluoride concentrations in the water bodies above the permissible limits are not only degrading water for drinking purposes but also to the agricultural, industrial as well as daily household needs. Fluoride content in water has been constantly a subject of serious concern to the concerned authorities. It is significantly contributing in increasing tolls of arthritis, brain and kidney diseases, cancer, male fertility issues and cases of thyroid diseases. Hence, the present study has been conducted to investigate the possibility of treating fluorinated water using zeolites. The capabilities of natural zeolites are attributed to their catalytic, molecular sieve, adsorption and ion-exchange properties which have been utilized in our laboratory experiment. The experiment was carried out in two phases. In the first phase of the experiment, the properties of zeolites were tested in solid and liquid phases using ICP-OES, SEM, EDX and IC tests. Physio-chemical alterations induced by zeolites in the fluid chemistry were monitored by analyzing fluid sample regularly for pH, redox potential, electrical conductivity and total dissolved solids, and by conducting metal and anion tests. In second phase, zeolite was used for treatment of fluorinated water with known concentration of fluoride, and the geochemical processes associated with fluoride remediation were monitored by conducting non-invasive, invasive geochemical and physical measurements at regular time periods on the water samples collected from both control column and the experiment column. Results thus obtained in this study showed decrease in fluoride concentration over time, indicating the possibility of use of zeolites in treatment of fluorinated water.
NASA Astrophysics Data System (ADS)
Aminuddin, K. M.; Saggaff, Anis; Tahir, Mahmood Md
2017-11-01
Beam-to-column connections setting up as isolated joint of cold-formed steel sections were tested up to failure. This experiment was conducted to observe the behaviour of connection in term of strength, stiffness and ductility. The type of connection used was rectangular gusset plate which stiffen the beam-to-column connection. The behaviour of the proposed connection was expressed with Moment-Rotation curves plotted from the experiment test results. The capacity of connections on this research were done in two ways: theoretical calculation by adopting Eurocode 3 BS EN 1993-1-8:2005 and experimental test results. The theoretical calculation of the moment capacit y of the proposed connection has found (Mj) to be 10.78 kNm with joint stiffness (Sj) amount to 458.53 kNm/rad. The experimental test results has recorded that the Moment capacity (Mj) of 15.68 kNm with joint stiffness (Sj) of 1948.06 kNm/rad. The moment ratio of theoretical to experimental amount to 0.69. The joint stiffness ratio of theoretical to experimental amount to 0.24.
Dittrich, Timothy Mark; Boukhalfa, Hakim; Ware, Stuart Douglas; ...
2015-07-13
Understanding the parameters that control colloid-mediated transport of radionuclides is important for the safe disposal of used nuclear fuel. We report an experimental and reactive transport modeling examination of americium transport in a groundwater–bentonite–fracture fill material system. A series of batch sorption and column transport experiments were conducted to determine the role of desorption kinetics from bentonite colloids in the transport of americium through fracture materials. We used fracture fill material from a shear zone in altered granodiorite collected from the Grimsel Test Site (GTS) in Switzerland and colloidal suspensions generated from FEBEX bentonite, a potential repository backfill material. Themore » colloidal suspension (100 mg L –1) was prepared in synthetic groundwater that matched the natural water chemistry at GTS and was spiked with 5.5 × 10 –10 M 241Am. Batch characterizations indicated that 97% of the americium in the stock suspension was adsorbed to the colloids. Breakthrough experiments conducted by injecting the americium colloidal suspension through three identical columns in series, each with mean residence times of 6 h, show that more than 95% of the bentonite colloids were transported through each of the columns, with modeled colloid filtration rates (k f) of 0.01–0.02 h –1. Am recoveries in each column were 55–60%, and Am desorption rate constants from the colloids, determined from 1-D transport modeling, were 0.96, 0.98, and 0.91 h –1 in the three columns, respectively. The consistency in Am recoveries and desorption rate constants in each column indicates that the Am was not associated with binding sites of widely-varying strengths on the colloids, as one binding site with fast kinetics represented the system accurately for all three sequential columns. As a result, our data suggest that colloid-mediated transport of Am in a bentonite-fracture fill material system is unlikely to result in transport over long distance scales because of the ability of the fracture materials to rapidly strip Am from the bentonite colloids and the apparent lack of a strong binding site that would keep a fraction of the Am strongly-associated with the colloids.« less
Dousset, S; Thevenot, M; Pot, V; Simunek, J; Andreux, F
2007-12-07
In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due to higher preferential flow and lower fraction of equilibrium sorption sites.
NASA Astrophysics Data System (ADS)
Dousset, S.; Thevenot, M.; Pot, V.; Šimunek, J.; Andreux, F.
2007-12-01
In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due to higher preferential flow and lower fraction of equilibrium sorption sites.
Facilitated transport of copper with hydroxyapatite nanoparticles in saturated sand
USDA-ARS?s Scientific Manuscript database
Saturated packed column experiments were conducted to investigate the facilitated transport of Cu with hydroxyapatite nanoparticles (nHAP) at different pore water velocities (0.22-2.2 cm min–1), solution pH (6.2-9.0), and fraction of Fe oxide coating on grain surfaces (', 0-0.36). The facilitated tr...
USDA-ARS?s Scientific Manuscript database
Batch and saturated soil column experiments were conducted to investigate sorption and mobility of two 14C-labeled contaminants, the hydrophobic chlordecone (CLD) and the readily water-soluble sulfadiazine (SDZ), in the absence or presence of functionalized multi-walled carbon nanotubes (MWCNTs). Th...
A matrix of batch, column and two-dimensional (2-D) box experiments was conducted to investigate the coupled effects of rate-limited solubilization and layering on the entrapment and subsequent recovery of a representative dense NAPL, tetrachloroethylene (PCE)...
NASA Astrophysics Data System (ADS)
Silver, Matthew; Selke, Stephanie; Balsaa, Peter; Wefer-Roehl, Annette; Kübeck, Christine; Schüth, Christoph
2017-04-01
The EU FP7 project MARSOL addresses water scarcity challenges in arid regions, where managed aquifer recharge (MAR) is an upcoming technology to recharge depleted aquifers using alternative water sources. Within this framework, column experiments were conducted to investigate the fate of pharmaceuticals when secondary treated wastewater (TWW) is infiltrated through a natural soil (organic matter content 6.8%) being considered for MAR. Three parallel experiments were run under conditions of continuous infiltration (one column) and wetting-drying cycles (two columns, with different analytes) over a 16 month time period. The pharmaceuticals diclofenac, ibuprofen, carbamazepine, naproxen, gemfibrozil, and fenoprofen, as well as the antibiotics doxycycline, sulfadimidine, and sulfamethoxazole, are commonly present in treated wastewater in varying concentrations. For the experiments, concentration variability was reduced by spiking the column inflow water with these compounds. Concentrations were periodically analyzed at different depths in each column and the mass passing each depth over the duration of the experiment was calculated. At the end of the experiments, sorbed pharmaceuticals were extracted from soil samples collected from different depths. A pressurized liquid extraction method was developed and resulted in recoveries from spiked post-experiment soil samples ranging from 64% (gemfibrozil) to 82% (carbamazepine) for the six non-antibiotic compounds. Scaling results by these recovery rates, the total mass of pharmaceuticals sorbed to the soil in the columns was calculated and compared to the calculated attenuated mass (i.e. mass that left the water phase). The difference between the attenuated mass and the sorbed mass is considered to be mass that degraded. Results for continuous infiltration conditions indicate that for carbamazepine and diclofenac, sorption is the primary attenuation mechanism, with missing (i.e. degraded) mass lying within the propagated measurement error range. Over the duration of the experiment, 36% of carbamazepine and 59% of diclofenac passed the deeper sediment (depth 71 cm, last sampling point along an 88 cm flowpath through soil) in the water phase. On the other hand, the compounds fenoprofen, gemfibrozil, ibuprofen and naproxen showed degradation rates (degraded relative to total infiltrated mass) of 51%, 57%, 63% and 95%, respectively. Corresponding results for wetting-drying cycles (one column with antibiotics spiked and analyzed, one without) will also be presented, where oxygenated conditions during drying periods and may influence degradation. The results indicate that while substantial portions of mass degrade for some compounds, sorption is also an important mechanism for mass leaving the water phase. Although the most sorbed mass is present near the surface, substantial amounts of mass also sorb at depth. A flowpath through a thick unsaturated zone composed of a soil favorable to sorbing polar organic compounds presents the best chance to attenuate the most mass, but consequently micropollutants will accumulate in the soil if degradation remains low and re-mobilization of the compounds may occur when system conditions change. However, the results of these experiments also suggest that for the chosen soil and infiltration conditions, near-complete degradation of fenoprofen, gemfibrozil, ibuprofen and naproxen is possible considering a substantial unsaturated zone thickness.
Algebraic motion of vertically displacing plasmas
NASA Astrophysics Data System (ADS)
Bhattacharjee, Amitava; Pfefferle, David; Hirvijoki, Eero
2017-10-01
The vertical displacement of tokamak plasmas is modelled during the non-linear phase by a free-moving current-carrying rod coupled to a set of fixed conducting wires and a cylindrical conducting shell. The models capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the vacuum vessel. The plasma is assumed not to vary during the VDE such that it behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented from coming in contact with the wall due to steep effective potential barriers by the eddy currents, and will hence oscillate at Alfvénic frequencies about a given force-free position. In addition to damping oscillations, resistivity allows for the column to drift towards the vessel on slow flux penetration timescales. The initial exponential motion of the plasma, i.e. the resistive vertical instability, is succeeded by a non-linear sinking behaviour, that is shown analytically to be algebraic and decelerative. The acceleration of the plasma column often observed in experiments is thus conjectured to originate from an early sharing of toroidal current between the core, the halo plasma and the wall or from the thermal quench dynamics precipitating loss of plasma current
Algebraic motion of vertically displacing plasmas
Pfefferle, D.; Bhattacharjee, A.
2018-02-27
In this paper, the vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to comemore » in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear “sinking” behaviour shown to be algebraic and decelerating. Finally, the acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.« less
Algebraic motion of vertically displacing plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfefferle, D.; Bhattacharjee, A.
In this paper, the vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to comemore » in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear “sinking” behaviour shown to be algebraic and decelerating. Finally, the acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.« less
Use of column experiments to investigate the fate of organic micropollutants - a review
NASA Astrophysics Data System (ADS)
Banzhaf, Stefan; Hebig, Klaus H.
2016-09-01
Although column experiments are frequently used to investigate the transport of organic micropollutants, little guidance is available on what they can be used for, how they should be set up, and how the experiments should be carried out. This review covers the use of column experiments to investigate the fate of organic micropollutants. Alternative setups are discussed together with their respective advantages and limitations. An overview is presented of published column experiments investigating the transport of organic micropollutants, and suggestions are offered on how to improve the comparability of future results from different experiments. The main purpose of column experiments is to investigate the transport and attenuation of a specific compound within a specific sediment or substrate. The transport of (organic) solutes in groundwater is influenced by the chemical and physical properties of the compounds, the solvent (i.e., the groundwater, including all solutes), and the substrate (the aquifer material). By adjusting these boundary conditions a multitude of different processes and related research questions can be investigated using a variety of experimental setups. Apart from the ability to effectively control the individual boundary conditions, the main advantage of column experiments compared to other experimental setups (such as those used in field experiments, or in batch microcosm experiments) is that conservative and reactive solute breakthrough curves can be derived, which represent the sum of the transport processes. There are well-established methods for analyzing these curves. The effects observed in column studies are often a result of dynamic, non-equilibrium processes. Time (or flow velocity) is an important factor, in contrast to batch experiments where all processes are observed until equilibrium is reached in the substrate-solution system. Slight variations in the boundary conditions of different experiments can have a marked influence on the transport and degradation of organic micropollutants. This is of critical importance when comparing general results from different column experiments investigating the transport behavior of a specific organic compound. Such variations unfortunately mean that the results from most column experiments are not transferable to other hydrogeochemical environments but are only valid for the specific experimental setup used. Column experiments are fast, flexible, and easy to manage; their boundary conditions can be controlled and they are cheap compared to extensive field experiments. They can provide good estimates of all relevant transport parameters. However, the obtained results will almost always be limited to the scale of the experiment and are not directly transferrable to field scales as too many parameters are exclusive to the column setup. The challenge for the future is to develop standardized column experiments on organic micropollutants in order to overcome these issues.
NASA Astrophysics Data System (ADS)
Paillet, Frederick
2012-08-01
A simple mass-balance code allows effective modeling of conventional fluid column resistivity logs in dilution tests involving column replacement with either distilled water or dilute brine. Modeling a series of column profiles where the inflowing formation water introduces water quality interfaces propagating along the borehole gives effective estimates of the rate of borehole flow. Application of the dilution model yields estimates of borehole flow rates that agree with measurements made with the heat-pulse flowmeter under ambient and pumping conditions. Model dilution experiments are used to demonstrate how dilution logging can extend the range of borehole flow measurement at least an order of magnitude beyond that achieved with flowmeters. However, dilution logging has the same dynamic range limitation encountered with flowmeters because it is difficult to detect and characterize flow zones that contribute a small fraction of total flow when that contribution is superimposed on a larger flow. When the smaller contribution is located below the primary zone, ambient downflow may disguise the zone if pumping is not strong enough to reverse the outflow. This situation can be addressed by increased pumping. But this is likely to make the moveout of water quality interfaces too fast to measure in the upper part of the borehole, so that a combination of flowmeter and dilution method may be more appropriate. Numerical experiments show that the expected weak horizontal flow across the borehole at conductive zones would be almost impossible to recognize if any ambient vertical flow is present. In situations where natural water quality differences occur such as flowing boreholes or injection experiments, the simple mass-balance code can be used to quantitatively model the evolution of fluid column logs. Otherwise, dilution experiments can be combined with high-resolution flowmeter profiles to obtain results not attainable using either method alone.
Hansen, David J.; McGuire, Jennifer T.; Mohanty, Binayak P.
2013-01-01
Biogeochemical dynamics in the vadose zone are poorly understood due to the transient nature of chemical and hydrologic conditions, but are nonetheless critical to understanding chemical fate and transport. This study explored the effects of a soil layer on linked geochemical, hydrological, and microbiological processes. Three laboratory soil columns were constructed: a homogenized medium-grained sand, a homogenized organic-rich loam, and a sand-over-loam layered column. Upward and downward infiltration of water was evaluated during experiments to simulate rising water table and rainfall events respectively. In-situ collocated probes measured soil water content, matric potential, and Eh while water samples collected from the same locations were analyzed for Br−, Cl−, NO3−, SO42−, NH4+, Fe2+, and total sulfide. Compared to homogenous columns, the presence of a soil layer altered the biogeochemistry and water flow of the system considerably. Enhanced biogeochemical cycling was observed in the layered column over the texturally homogeneous soil columns. Enumerations of iron and sulfate reducing bacteria showed 1-2 orders of magnitude greater community numbers in the layered column. Mineral and soil aggregate composites were most abundant near the soil-layer interface; the presence of which, likely contributed to an observed order-of-magnitude decrease in hydraulic conductivity. These findings show that quantifying coupled hydrologic-biogeochemical processes occurring at small-scale soil interfaces is critical to accurately describing and predicting chemical changes at the larger system scale. Findings also provide justification for considering soil layering in contaminant fate and transport models because of its potential to increase biodegradation and/or slow the rate of transport of contaminants. PMID:22031578
Remote sensing of freeze-thaw transitions in Arctic soils using the complex resistivity method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yuxin; Hubbard, Susan S; Ulrich, Craig
2013-01-01
Our ability to monitor freeze - thaw transitions is critical to developing a predictive understanding of biogeochemical transitions and carbon dynamics in high latitude environments. In this study, we conducted laboratory column experiments to explore the potential of the complex resistivity method for monitoring the freeze - thaw transitions of the arctic permafrost soils. Samples for the experiment were collected from the upper active layer of Gelisol soils at the Barrow Environmental Observatory, Barrow Alaska. Freeze - thaw transitions were induced through exposing the soil column to controlled temperature environments at 4 C and -20 C. Complex resistivity and temperaturemore » measurements were collected regularly during the freeze - thaw transitions using electrodes and temperature sensors installed along the column. During the experiments, over two orders of magnitude of resistivity variations were observed when the temperature was increased or decreased between -20 C and 0 C. Smaller resistivity variations were also observed during the isothermal thawing or freezing processes that occurred near 0 C. Single frequency electrical phase response and imaginary conductivity at 1 Hz were found to be exclusively related to the unfrozen water in the soil matrix, suggesting that these geophysical 24 attributes can be used as a proxy for the monitoring of the onset and progression of the freeze - thaw transitions. Spectral electrical responses and fitted Cole Cole parameters contained additional information about the freeze - thaw transition affected by the soil grain size distribution. Specifically, a shift of the observed spectral response to lower frequency was observed during isothermal thawing process, which we interpret to be due to sequential thawing, first from fine then to coarse particles within the soil matrix. Our study demonstrates the potential of the complex resistivity method for remote monitoring of freeze - thaw transitions in arctic soils. Although conducted at the laboratory scale, this study provides the foundation for exploring the potential of the complex resistivity signals for monitoring spatiotemporal variations of freeze - thaw transitions over field-relevant scales.« less
Degradation of landfill leachate compounds by persulfate for groundwater remediation
Zhong, Hua; Tian, Yaling; Yang, Qi; Brusseau, Mark L; Yang, Lei; Zeng, Guangming
2016-01-01
In this study, batch and column experiments were conducted to evaluate the feasibility of using persulfate oxidation to treat groundwater contaminated by landfill leachate (CGW). In batch experiments, persulfate was compared with H2O2, and permanganate for oxidation of organic compounds in CGW. It was also compared with the potential of biodegradation for contaminant removal from CGW. Persulfate was observed to be superior to H2O2 and permanganate for degradation of total organic carbon (TOC) in the CGW. Conversely, biodegradation caused only partial removal of TOC in CGW. In contrast, persulfate caused complete degradation of the TOC in the CGW or aged CGW, showing no selectivity limitation to the contaminants. Magnetite (Fe3O4) enhanced degradation of leachate compounds in both CGW and aged CGW with limited increase in persulfate consumption and sulfate production. Under dynamic flow condition in 1-D column experiments, both biodegradation and persulfate oxidation of TOC were enhanced by Fe3O4. The enhancement, however, was significantly greater for persulfate oxidation. In both batch and column experiments, Fe3O4 by itself caused minimal consumption of persulfate and production of sulfate, indicating that magnetite is a good persulfate activator for treating CGW in heterogeneous systems The results of the study show that the persulfate-based in-situ chemical oxidation (ISCO) method has great potential to treat the groundwater contaminated by landfill leachate. PMID:28584519
Pantoja, M L; Jones, H; Garelick, H; Mohamedbakr, H G; Burkitbayev, M
2014-01-01
Iron hydroxide supported onto porous diatomite (D-Fe) is a low-cost material with potential to remove arsenic from contaminated water due to its affinity for the arsenate ion. This affinity was tested under varying conditions of pH, contact time, iron content in D-Fe and the presence of competitive ions, silicate and phosphate. Batch and column experiments were conducted to derive adsorption isotherms and breakthrough behaviours (50 μg L(-1)) for an initial concentration of 1,000 μg L(-1). Maximum capacity at pH 4 and 17% iron was 18.12-40.82 mg of arsenic/g of D-Fe and at pH 4 and 10% iron was 18.48-29.07 mg of arsenic/g of D-Fe. Adsorption decreased in the presence of phosphate and silicate ions. The difference in column adsorption behaviour between 10% and 17% iron was very pronounced, outweighing the impact of all other measured parameters. There was insufficient evidence of a correlation between iron content and arsenic content in isotherm experiments, suggesting that ion exchange is a negligible process occurring in arsenate adsorption using D-Fe nor is there co-precipitation of arsenate by rising iron content of the solute above saturation.
NASA Astrophysics Data System (ADS)
Azizian, Mohammad F.; Behrens, Sebastian; Sabalowsky, Andrew; Dolan, Mark E.; Spormann, Alfred M.; Semprini, Lewis
2008-08-01
A continuous-flow anaerobic column experiment was conducted to evaluate the reductive dechlorination of tetrachloroethene (PCE) in Hanford aquifer material after bioaugmentation with the Evanite (EV) culture. An influent PCE concentration of 0.09 mM was transformed to vinyl chloride (VC) and ethene (ETH) within a hydraulic residence time of 1.3 days. The experimental breakthrough curves were described by the one-dimensional two-site-nonequilibrium transport model. PCE dechlorination was observed after bioaugmentation and after the lactate concentration was increased from 0.35 to 0.67 mM. At the onset of reductive dehalogenation, cis-dichloroethene (c-DCE) concentrations in the column effluent exceeded the influent PCE concentration indicating enhanced PCE desorption and transformation. When the lactate concentration was increased to 1.34 mM, c-DCE reduction to vinyl chloride (VC) and ethene (ETH) occurred. Spatial rates of PCE and VC transformation were determined in batch-incubated microcosms constructed with aquifer samples obtained from the column. PCE transformation rates were highest in the first 5 cm from the column inlet and decreased towards the column effluent. Dehalococcoides cell numbers dropped from ˜ 73.5% of the total Bacterial population in the original inocula, to about 0.5% to 4% throughout the column. The results were consistent with estimates of electron donor utilization, with 4% going towards dehalogenation reactions.
Elliott, Mark; Stauber, Christine E.; DiGiano, Francis A.; Fabiszewski de Aceituno, Anna; Sobsey, Mark D.
2015-01-01
The biosand filter (BSF) is an intermittently operated, household-scale slow sand filter for which little data are available on the effect of sand composition on treatment performance. Therefore, bench-scale columns were prepared according to the then-current (2006–2007) guidance on BSF design and run in parallel to conduct two microbial challenge experiments of eight-week duration. Triplicate columns were loaded with Accusand silica or crushed granite to compare virus and E. coli reduction performance. Bench-scale experiments provided confirmation that increased schmutzdecke growth, as indicated by decline in filtration rate, is the primary factor causing increased E. coli reductions of up to 5-log10. However, reductions of challenge viruses improved only modestly with increased schmutzdecke growth. Filter media type (Accusand silica vs. crushed granite) did not influence reduction of E. coli bacteria. The granite media without backwashing yielded superior virus reductions when compared to Accusand. However, for columns in which the granite media was first backwashed (to yield a more consistent distribution of grains and remove the finest size fraction), virus reductions were not significantly greater than in columns with Accusand media. It was postulated that a decline in surface area with backwashing decreased the sites and surface area available for virus sorption and/or biofilm growth and thus decreased the extent of virus reduction. Additionally, backwashing caused preferential flow paths and deviation from plug flow; backwashing is not part of standard BSF field preparation and is not recommended for BSF column studies. Overall, virus reductions were modest and did not meet the 5- or 3-log10 World Health Organization performance targets. PMID:26308036
Non-isothermal infiltration and tracer transport experiments on large soil columns
NASA Astrophysics Data System (ADS)
Sobotkova, Martina; Snehota, Michal; Cejkova, Eva; Tesar, Miroslav
2016-04-01
Isothermal and non-isothermal infiltration experiments were carried out in the laboratory on large undisturbed soil columns (19 cm in diameter, 25 cm high) taken at the experimental catchments Roklan (Sumava Mountains, Czech Republic) and Uhlirska (Jizera Mountains, Czech republic). The aim of the study was twofold. The first goal was to obtain water flow and heat transport data for indirect parameter estimation of thermal and hydraulic properties of soils from two sites by inverse modelling. The second aim was to investigate the extent of impact of the temperature on saturated hydraulic conductivity (Ksat) and dispersity of solute transport. The temperature of infiltrating water in isothermal experiment (20 °C) was equal to the initial temperature of the sample. For non-isothermal experiment water temperature was 5°C, while the initial temperature of the sample was 20°C as in previous case. The experiment was started by flooding the sample surface. Then water level was maintained at constant level throughout the infiltration run using the optical sensor and peristaltic pump. Concentration pulse of deuterium was applied at the top of the soil sample, during the steady state flow. Initial pressure head in the sample was close to field capacity. Two tensiometers and two temperature sensors were inserted in the soil sample in two depths (9 and 15 cm below the top of the sample). Two additional temperature sensors monitored the temperature entering and leaving the samples. Water drained freely through the perforated plate at the bottom of sample by gravity. Inflow and outflow water flux densities, water pressure heads and soil temperatures were monitored continuously during experiments. Effluent was sampled in regular time intervals and samples were analysed for deuterium concentrations by laser spectroscopy to develop breakthrough curves. The outcome of experiments are the series of measured water fluxes, pressure heads and temperatures ready for inverse modelling by dual permeability. The saturated hydraulic conductivity of soil columns was higher in the case of higher temperature of flowing water. The change was however not proportional to Ksat change induced by temperature change of viscosity only.
Impact Forces from Tsunami-Driven Debris
NASA Astrophysics Data System (ADS)
Ko, H.; Cox, D. T.; Riggs, H.; Naito, C. J.; Kobayashi, M. H.; Piran Aghl, P.
2012-12-01
Debris driven by tsunami inundation flow has been known to be a significant threat to structures, yet we lack the constitutive equations necessary to predict debris impact force. The objective of this research project is to improve our understanding of, and predictive capabilities for, tsunami-driven debris impact forces on structures. Of special interest are shipping containers, which are virtually everywhere and which will float even when fully loaded. The forces from such debris hitting structures, for example evacuation shelters and critical port facilities such as fuel storage tanks, are currently not known. This research project focuses on the impact by flexible shipping containers on rigid columns and investigated using large-scale laboratory testing. Full-scale in-air collision experiments were conducted at Lehigh University with 20 ft shipping containers to experimentally quantify the nonlinear behavior of full scale shipping containers as they collide into structural elements. The results from the full scale experiments were used to calibrate computer models and used to design a series of simpler, 1:5 scale wave flume experiments at Oregon State University. Scaled in-air collision tests were conducted using 1:5 scale idealized containers to mimic the container behavior observed in the full scale tests and to provide a direct comparison to the hydraulic model tests. Two specimens were constructed using different materials (aluminum, acrylic) to vary the stiffness. The collision tests showed that at higher speeds, the collision became inelastic as the slope of maximum impact force/velocity decreased with increasing velocity. Hydraulic model tests were conducted using the 1:5 scaled shipping containers to measure the impact load by the containers on a rigid column. The column was instrumented with a load cell to measure impact forces, strain gages to measure the column deflection, and a video camera was used to provide the debris orientation and speed. The tsunami was modeled as a transient pulse command signal to the wavemaker to provide a low amplitude long wave. Results are expected to show the effect of the water on the debris collision by comparing water tests with the in-air tests. It is anticipated that the water will provide some combination of added mass and cushioning of the collision. Results will be compared with proposed equations for the new ASCE-7 standard and with numerical models at the University of Hawaii.
Relations between macropore network characteristics and the degree of preferential solute transport
NASA Astrophysics Data System (ADS)
Larsbo, M.; Koestel, J.; Jarvis, N.
2014-12-01
The characteristics of the soil macropore network determine the potential for fast transport of agrochemicals and contaminants through the soil. The objective of this study was to examine the relationships between macropore network characteristics, hydraulic properties and state variables and measures of preferential transport. Experiments were carried out under near-saturated conditions on undisturbed columns sampled from four agricultural topsoils of contrasting texture and structure. Macropore network characteristics were computed from 3-D X-ray tomography images of the soil pore system. Non-reactive solute transport experiments were carried out at five steady-state water flow rates from 2 to 12 mm h-1. The degree of preferential transport was evaluated by the normalised 5% solute arrival time and the apparent dispersivity calculated from the resulting breakthrough curves. Near-saturated hydraulic conductivities were measured on the same samples using a tension disc infiltrometer placed on top of the columns. Results showed that many of the macropore network characteristics were inter-correlated. For example, large macroporosities were associated with larger specific macropore surface areas and better local connectivity of the macropore network. Generally, an increased flow rate resulted in earlier solute breakthrough and a shifting of the arrival of peak concentration towards smaller drained volumes. Columns with smaller macroporosities, poorer local connectivity of the macropore network and smaller near-saturated hydraulic conductivities exhibited a greater degree of preferential transport. This can be explained by the fact that, with only two exceptions, global (i.e. sample scale) continuity of the macropore network was still preserved at low macroporosities. Thus, for any given flow rate, pores of larger diameter were actively conducting solute in soils of smaller near-saturated hydraulic conductivity. This was associated with larger local transport velocities and, hence, less time for equilibration between the macropores and the surrounding matrix which made the transport more preferential. Conversely, the large specific macropore surface area and well-connected macropore networks associated with columns with large macroporosities limit the degree of preferential transport because they increase the diffusive flux between macropores and the soil matrix and they increase the near-saturated hydraulic conductivity. The normalised 5% arrival times were most strongly correlated with the estimated hydraulic state variables (e.g. with the degree of saturation in the macropores R2 = 0.589), since these combine into one measure the effects of irrigation rate and the near-saturated hydraulic conductivity function, which in turn implicitly depends on the volume, size distribution, global continuity, local connectivity and tortuosity of the macropore network.
Study of iron oxide nanoparticles in soil for remediation of arsenic
NASA Astrophysics Data System (ADS)
Shipley, Heather J.; Engates, Karen E.; Guettner, Allison M.
2011-06-01
There is a growing interest in the use of nanoparticles for environmental applications due to their unique physical and chemical properties. One possible application is the removal of contaminants from water. In this study, the use of iron oxide nanoparticles (19.3 nm magnetite and 37.0 nm hematite) were examined to remove arsenate and arsenite through column studies. The columns contained 1.5 or 15 wt% iron oxide nanoparticles and soil. Arsenic experiments were conducted with 1.5 wt% iron oxides at 1.5 and 6 mL/h with initial arsenate and arsenite concentrations of 100 μg/L. Arsenic release occurred after 400 PV, and 100% release was reached. A long-term study was conducted with 15 wt% magnetite nanoparticles in soil at 0.3 mL/h with an initial arsenate concentration of 100 μg/L. A negligible arsenate concentration occurred for 3559.6 pore volumes (PVs) (132.1 d). Eventually, the arsenate concentration reached about 20% after 9884.1 PV (207.9 d). A retardation factor of about 6742 was calculated indicating strong adsorption of arsenic to the magnetite nanoparticles in the column. Also, increased adsorption was observed after flow interruption. Other experiments showed that arsenic and 12 other metals (V, Cr, Co, Mn, Se, Mo, Cd, Pb, Sb, Tl, Th, U) could be simultaneously removed by the iron oxide nanoparticles in soil. Effluent concentrations were less than 10% for six out of the 12 metals. Desorption experiment showed partial irreversible sorption of arsenic to the iron oxide nanoparticle surface. Strong adsorption, large retardation factor, and resistant desorption suggest that magnetite and hematite nanoparticles have the potential to be used to remove arsenic in sandy soil possibly through in situ techniques.
Xin, Jia; Tang, Fenglin; Yan, Jing; La, Chenghong; Zheng, Xilai; Liu, Wei
2018-06-01
In this study, long-term column experiments were conducted in three media (Milli-Q water, fresh groundwater and saline groundwater) to evaluate the trichloroethylene (TCE) removal performance, electron efficiency (EE), and permeability loss of a microscale zero valent iron-based in situ reactive zone (mZVI-IRZ) under different field conditions. A potential scenario of in situ contamination plume remediation was simulated by adding a TCE-containing influent to columns filled with mixed mZVI particles and silica sand at a flow rate of 4 mL h -1 for 6 months. Results showed that, over the course of 100 pore volumes (PV) for 6 months, mZVI displayed the lowest TCE breakthrough rate (0.0026 PV -1 ) and highest TCE removal capacity (43.72 mg) but the poorest EE value (25-40%) in saline groundwater. Mineral characterization (SEM, XRD), ion concentration analysis, and geochemical modeling corroborated that different dominant solid precipitates (magnetite, siderite, dolomite/magnetite) were identified inside the three columns. The column containing saline groundwater experienced the greatest porosity loss, approximately 30.23 mL over the course of 100 PVs. This study illustrates that, to improve designs of mZVI-IRZs, EE as well as hydraulic conductivity should be taken into consideration for predictive evaluations. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rees, Frédéric; Simonnot, Marie-Odile; Morel, Jean-Louis
2014-05-01
Biochar has been claimed to be not only a promising carbon sequestration or fertilizing agent in soils but also a high capacity sorbent, of particular interest for the management of contaminated soils. Several studies have described its positive effects on the mobility of different potentially toxic elements in soils, but many doubts remain about the underlying mechanisms. In particular, the distinction between the actual adsorption of elements on biochar and their biochar-induced retention on soil particles is often impossible to achieve. We studied here the dynamic interactions between one biochar produced at 450°C from a mix of hard wood and soft wood, and two soils contaminated by Cd, Pb and Zn which were sampled near a smelter and only differed from their pH. In order to distinguish between the actual immobilization of elements on biochar and their modified retention on soil particles, we developed a two-column leaching experiment using calcium nitrate as the initial leaching solution. The first column was filled with one of the two soils, and was linked in a closed loop with the second column containing a mass of pure biochar equivalent to 10% of the soil mass. The leaching solution circulated first in the soil column, then through the biochar column and again in the soil column and so on, so that it became progressively equilibrated with both soil and biochar. Each experiment lasted for 12 days at a flow rate of 1 mL/min. The pH and electrical conductivity of the leaching solution was continuously monitored at the outlet of the biochar column, and samples of the leaching solution were regularly taken for further analysis, both before and after having passed each of the columns. Our results show that the chemical equilibrium between soil and biochar was obtained in a short time for major elements such as Na, K and Mg, whereas for heavy metals and other elements as well as for pH and dissolved carbon, the equilibrium was still not reached at the end of the experiment. This observation highlights the slow, diffusive nature of biochar chemical interactions with the soil. The comparison of samples enabled us to quantify the immobilization of elements on biochar from its indirect effect on the retention capacity of the soil, mostly due to the increase of pH and the dynamics of inorganic and organic carbon in the solution. Altogether, these results provide new information about the complex effects of biochar on soil properties and about its efficiency in the context of soil remediation.
USDA-ARS?s Scientific Manuscript database
Accurately predicting the fate and transport of graphene oxide (GO) in porous media is critical to assess its environmental impact. In this work, sand column experiments were conducted to determine the effect of input concentration and grain size on transport, retention, and size perturbation of GO ...
Adsorption isotherm, adsorption kinetics and column breakthrough experiments evaluating trichloroethylene (TCE) adsorption onto granular activated carbon (GAC) were conducted in the presence and absence of silica nanoparticles (SiO2 NPs). Zeta potential of the SiO
USDA-ARS?s Scientific Manuscript database
Water-saturated column experiments were conducted to investigate the effect of input concentration (Co) and sand grain size on the transport and retention of low concentrations (1, 0.01, and 0.005 mg L/1) of functionalized 14C-labeled multi-walled carbon nanotubes (MWCNT) under repulsive electrostat...
Investigations on gel forming media use in low gravity bioseparations research
NASA Technical Reports Server (NTRS)
Todd, Paul; Szlag, David C.; Plank, Lindsay D.; Delcourt, Scott G.; Kunze, M. Elaine
1989-01-01
Research on gelling media and conditions suitable for the preservation of the spatial configuration of cell suspensions and macromolecular solutions after separation in free fluid during low gravity experiments is presented. The examples studied included free electrophoresis of cells in a cylindrical column and two-phase aqueous polymer separation. Microgravity electrophoresis experiments were simulated by separating model cell types (animal or human) in a vertical density gradient containing low-conductivity buffer, 1.7-6.5 percent Ficoll, 6.8-5.0 percent sucrose, and 1 percent SeaPrep low-melting temperature agarose. Upon cooling, a gel formed in the column and cells could be captured at the forming locations. Two-phase extraction experiments were simulated using two-polymer solutions in which phase separation occurs in normal saline at temperatures compatible with cell viability and in which one or both phases form a gel upon cooling. Suitable polymers included commercial agaroses (1-2 percent), maltodextrin (5-7 percent), and gelatin (5-20 percent).
NASA Technical Reports Server (NTRS)
Fowler, A. M.; Joyce, R. R.
1990-01-01
The Hughes 20 x 64 Si:As impurity band conduction arrays designed for ground-based and spaceborne astronomy observations is described together with experiments performed at NOAO to test these arrays. Special attention is given to the design and the characteristics of the test system and to the test methods. The initial tests on two columns of one array indicate that the array is easy to operate and performed satisfactorily.
Second Law Violations by Means of a Stratification of Temperature Due to Force Fields
NASA Astrophysics Data System (ADS)
Trupp, Andreas
2002-11-01
In 1868 J.C. Maxwell proved that a perpetual motion machine of the second kind would become possible, if the equilibrium temperature in a vertical column of gas subject to gravity were a function of height. However, Maxwell had claimed that the temperature had to be the same at all points of the column. So did Boltzmann. Their opponent was Loschmidt. He claimed that the equilibrium temperature declined with height, and that a perpetual motion machine of the second kind operating by means of such column was compatible with the second law of thermodynamics. Extending the general idea behind Loschmidt's concept to other force fields, gravity can be replaced by molecular forces acting on molecules that try to escape from the surface of a liquid into the vapor space. Experiments proving the difference of temperature between the liquid and the vapor phase were conducted in the 19th century already.
Dollé, Laurent; Droulez, Jacques; Bennequin, Daniel; Berthoz, Alain; Thibault, Guillaume
2015-01-01
Few studies have explored how humans memorize landmarks in complex multifloored buildings. They have observed that participants memorize an environment either by floors or by vertical columns, influenced by the learning path. However, the influence of the building’s actual structure is not yet known. In order to investigate this influence, we conducted an experiment using an object-in-place protocol in a cylindrical building to contrast with previous experiments which used rectilinear environments. Two groups of 15 participants were taken on a tour with a first person perspective through a virtual cylindrical three-floored building. They followed either a route discovering floors one at a time, or a route discovering columns (by simulated lifts across floors). They then underwent a series of trials, in which they viewed a camera movement reproducing either a segment of the learning path (familiar trials), or performing a shortcut relative to the learning trajectory (novel trials). We observed that regardless of the learning path, participants better memorized the building by floors, and only participants who had discovered the building by columns also memorized it by columns. This expands on previous results obtained in a rectilinear building, where the learning path favoured the memory of its horizontal and vertical layout. Taken together, these results suggest that both learning mode and an environment’s structure influence the spatial memory of complex multifloored buildings. PMID:26770288
NASA Astrophysics Data System (ADS)
Wang, Y.; Liang, X.; Zhuang, J.; Radosevich, M.
2016-12-01
Anaerobic bioremediation is widely applied to create anaerobic subsurface conditions designed to stimulate microorganisms that degrade organic contaminants and immobilize toxic metals in situ. Anaerobic conditions that accompany such techniques also promotes microbially mediated Fe(III)-oxide mineral reduction. The reduction of Fe(III) could potentially cause soil structure breakdown, formation of clay colloids, and alternation of soil surface chemical properties. These processes could then affect bioremediation and the migration of contaminants. Column experiments were conducted to investigate the impact of anaerobic bioreduction on soil structure, hydraulic properties, colloid formation, and transport of three tracers (bromide, DFBA, and silica shelled silver nanoparticles). Columns packed with inoculated water stable soil aggregates were placed in anaerobic glovebox, and artificial groundwater media was pumped into the columns to simulate anaerobic bioreduction process for four weeks. Decent amount of soluble Fe(II) accompanied by colloids were detected in the effluent from bioreduction columns a week after initiation of bioreduction treatment, which demonstrated bioreduction of Fe(III) and formation of colloids. Transport experiments were performed in the columns before and after bioreduction process to assess the changes of hydraulic and surface chemical properties through bioreduction treatment. Earlier breakthrough of bromide and DFBA after treatment indicated alterations in flow paths (formation of preferential flow paths). Less dispersion of bromide and DFBA, and less tailing of DFBA after treatment implied breakdown of soil aggregates. Dramatically enhanced transport and early breakthrough of silica shelled silver nanoparticles after treatment supported the above conclusion of alterations in flow paths, and indicated changes of soil surface chemical properties.
Kim, Jung J; Youm, Kwang-Soo; Reda Taha, Mahmoud M
2014-01-01
A numerical method to identify thermal conductivity from time history of one-dimensional temperature variations in thermal unsteady-state is proposed. The numerical method considers the change of specific heat and thermal conductivity with respect to temperature. Fire test of reinforced concrete (RC) columns was conducted using a standard fire to obtain time history of temperature variations in the column section. A thermal equilibrium model in unsteady-state condition was developed. The thermal conductivity of concrete was then determined by optimizing the numerical solution of the model to meet the observed time history of temperature variations. The determined thermal conductivity with respect to temperature was then verified against standard thermal conductivity measurements of concrete bricks. It is concluded that the proposed method can be used to conservatively estimate thermal conductivity of concrete for design purpose. Finally, the thermal radiation properties of concrete for the RC column were estimated from the thermal equilibrium at the surface of the column. The radiant heat transfer ratio of concrete representing absorptivity to emissivity ratio of concrete during fire was evaluated and is suggested as a concrete criterion that can be used in fire safety assessment.
2014-01-01
A numerical method to identify thermal conductivity from time history of one-dimensional temperature variations in thermal unsteady-state is proposed. The numerical method considers the change of specific heat and thermal conductivity with respect to temperature. Fire test of reinforced concrete (RC) columns was conducted using a standard fire to obtain time history of temperature variations in the column section. A thermal equilibrium model in unsteady-state condition was developed. The thermal conductivity of concrete was then determined by optimizing the numerical solution of the model to meet the observed time history of temperature variations. The determined thermal conductivity with respect to temperature was then verified against standard thermal conductivity measurements of concrete bricks. It is concluded that the proposed method can be used to conservatively estimate thermal conductivity of concrete for design purpose. Finally, the thermal radiation properties of concrete for the RC column were estimated from the thermal equilibrium at the surface of the column. The radiant heat transfer ratio of concrete representing absorptivity to emissivity ratio of concrete during fire was evaluated and is suggested as a concrete criterion that can be used in fire safety assessment. PMID:25180197
Simulation of nonstationary phenomena in atmospheric-pressure glow discharge
NASA Astrophysics Data System (ADS)
Korolev, Yu. D.; Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas'yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.
2016-06-01
Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.
Simulation of nonstationary phenomena in atmospheric-pressure glow discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korolev, Yu. D., E-mail: korolev@lnp.hcei.tsc.ru; Frants, O. B.; Nekhoroshev, V. O.
2016-06-15
Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark andmore » aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.« less
Experimental testing of flexible barriers for containment of debris flows
DeNatale, Jay S.; Iverson, Richard M.; Major, Jon J.; LaHusen, Richard G.; Fliegel, Gregg L.; Duffy, John D.
1999-01-01
In June 1996, six experiments conducted at the U.S. Geological Survey Debris Flow Flume demonstrated that flexible, vertical barriers constructed of wire rope netting can stop small debris flows. All experimental debris flows consisted of water-saturated gravelly sand with less than two percent finer sediment by weight. All debris flows had volumes of about 10 cubic meters, masses of about 20 metre tons, and impact velocities of 5 to 9 meters per second. In four experiments, the debris flow impacted pristine, unreformed barriers of varying design; in the other two experiments, the debris flow impacted barriers already loaded with sediment from a previous flow. Differences in barrier design led to differences in barrier performance. Experiments were conducted with barriers constructed of square-mesh wire-rope netting with 30centimeter, 20centimeter, and 15 centimeter mesh openings as well as 30centimeter diameter interlocking steel rings. In all cases, sediment cascading downslope at the leading edge of the debris flows tended to spray through the nets. Nets fitted with finer-mesh chain link or chicken wire liners contained more sediment than did unlined nets, and a ring net fitted with a synthetic silt screen liner contained nearly 100 percent of the sediment. Irreversible net displacements of up to 2 meters and friction brake engagement on the support and anchor cables dissipated some of the impact energy. However, substantial forces developed in the steel support columns and the lateral and tie-back anchor cables attached to these columns. As predicted by elementary mechanics, the anchor cables experienced larger tensile forces when the support columns were hinged at the base rather than bolted rigidly to the foundation. Measured loads in the lateral anchor cables exceeded those in the tie-back anchor cables and the load cell capacity of 45 kilo-Newtons. Measurements also indicated that the peak loads in the tie- back anchors were highly transient and occurred at the points of maximum momentum impulse to the net.
Arthur, Jennifer D; Mark, Noah W; Taylor, Susan; Šimůnek, Jiří; Brusseau, Mark L; Dontsova, Katerina M
2018-05-15
Military training exercises can result in deposition of energetic residues on range soils, which ultimately can contaminate groundwater with munitions constituents. Column experiments followed by HYDRUS-1D modeling were conducted to evaluate dissolution and transport of energetic constituents from the new insensitive munitions (IM) formulations IMX-101, a mixture of 3-nitro-1,2,4-triazol-5-one (NTO), nitroguanidine (NQ), and 2, 4-dinitroanisole (DNAN), and IMX-104, a mixture of NTO, 1,3,5-hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and DNAN. NTO and DNAN are emerging contaminants associated with the development of insensitive munitions as replacements for traditional munitions. Flow interruption experiments were performed to investigate dissolution kinetics and sorption non-equilibrium between soil and solution phases. The results indicated that insensitive munitions compounds dissolved in order of their aqueous solubility, consistent with prior dissolution studies conducted in the absence of soil. Initial elution of the high concentration pulse of highly soluble NTO and NQ was followed by lower concentrations, while DNAN had generally lower and more constant concentrations in leachate. The sorption of NTO and NQ was low, while RDX, 1,3,5,7-octahydro-1,3,5,7-tetranitrotetrazocine (HMX, an impurity in technical grade RDX), and DNAN all exhibited appreciable sorption. DNAN transformation was observed, with formation of amino-reduction products 2-ANAN (2-amino-4-nitroanisole) and 4-ANAN (4-amino-2-nitroanisole). HYDRUS-1D model, incorporating one-dimensional advective-dispersive transport with particle dissolution and first-order solute transformation was used to simulate the measured breakthrough curves. Optimized dissolution parameters varied widely but were correlated between compounds in the same formulation. Determined adsorption coefficients generally agreed with values determined from batch and column studies conducted with pure NTO and DNAN, while mass-loss rate coefficients were in better agreement with ones from batch than column studies possibly due to suppression of microbial transformation during elution of high concentrations of explosives. Even in the low organic matter soils selected in this study DNAN experienced significant retardation and transformation, indicating potential for its natural attenuation. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Xingxin; Wu, Zhonghan; Cai, Qipeng; Cao, Wei
2018-04-01
It is well established that seismic waves traveling through porous media stimulate fluid flow and accelerate particle transport. However, the mechanism remains poorly understood. To quantify the coupling effect of hydrodynamic force, transportation distance, and ultrasonic stimulation on particle transport and fate in porous media, laboratory experiments were conducted using custom-built ultrasonic-controlled soil column equipment. Three column lengths (23 cm, 33 cm, and 43 cm) were selected to examine the influence of transportation distance. Transport experiments were performed with 0 W, 600 W, 1000 W, 1400 W, and 1800 W of applied ultrasound, and flow rates of 0.065 cm/s, 0.130 cm/s, and 0.195 cm/s, to establish the roles of ultrasonic stimulation and hydrodynamic force. The laboratory results suggest that whilst ultrasonic stimulation does inhibit suspended-particle deposition and accelerate deposited-particle release, both hydrodynamic force and transportation distance are the principal controlling factors. The median particle diameter for the peak concentration was approximately 50% of that retained in the soil column. Simulated particle-breakthrough curves using extended traditional filtration theory effectively described the experimental curves, particularly the curves that exhibited a higher tailing concentration.
Vereecken, H; Vanderborght, J; Kasteel, R; Spiteller, M; Schäffer, A; Close, M
2011-01-01
In this study, we analyzed sorption parameters for pesticides that were derived from batch and column or batch and field experiments. The batch experiments analyzed in this study were run with the same pesticide and soil as in the column and field experiments. We analyzed the relationship between the pore water velocity of the column and field experiments, solute residence times, and sorption parameters, such as the organic carbon normalized distribution coefficient ( ) and the mass exchange coefficient in kinetic models, as well as the predictability of sorption parameters from basic soil properties. The batch/column analysis included 38 studies with a total of 139 observations. The batch/field analysis included five studies, resulting in a dataset of 24 observations. For the batch/column data, power law relationships between pore water velocity, residence time, and sorption constants were derived. The unexplained variability in these equations was reduced, taking into account the saturation status and the packing status (disturbed-undisturbed) of the soil sample. A new regression equation was derived that allows estimating the values derived from column experiments using organic matter and bulk density with an value of 0.56. Regression analysis of the batch/column data showed that the relationship between batch- and column-derived values depends on the saturation status and packing of the soil column. Analysis of the batch/field data showed that as the batch-derived value becomes larger, field-derived values tend to be lower than the corresponding batch-derived values, and vice versa. The present dataset also showed that the variability in the ratio of batch- to column-derived value increases with increasing pore water velocity, with a maximum value approaching 3.5. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
NASA Astrophysics Data System (ADS)
Sobotkova, Martina; Snehota, Michal; Tesar, Miroslav
2017-04-01
Isothermal and non-isothermal infiltration experiments with tracer breakthrough were carried out in the laboratory on intact column of sandy loam soil taken from Roklan site (Sumava Mountains, Czech Republic). In the case of isothermal experiment, the temperature of infiltrating water was almost equal to the initial temperature of the sample. For the non-isothermal case the infiltration was performed using water approximately 10 °C colder than was the initial temperature of soil sample. The experiments were otherwise conducted under the same initial and boundary conditions. Pressure heads and temperatures in two depths (8.8 and 15.3 cm) inside the soil were monitored as well as the temperature of water entering and leaving the sample. Water drained freely through the perforated plate at the bottom of the sample by gravity and outflow was measured using tipping bucket flowmeter. Permeability of the sample calculated for steady state stages of the experiment showed that significant difference between water flow rates recorded during two experiment could not be justified only by temperature induced changes of water viscosity and density. Results of deuterium breakthrough were nearly identical for isothermal and non-isothermal conditions.
USDA-ARS?s Scientific Manuscript database
Column experiments were conducted to investigate the facilitated transport of Cu in association with hydroxyapatite nanoparticles (nHAP) in water-saturated quartz sand at different solution concentrations of NaCl (0 to 100 mM) or CaCl2 (0.1 to 1.0 mM). The experimental breakthrough curves and retent...
USDA-ARS?s Scientific Manuscript database
Saturated soil column experiments were conducted to investigate the transport, retention, and release behavior of a low concentration (1 mg L-1) of functionalized 14C-labeled multi-walled carbon nanotubes (MWCNTs) in a natural soil under various solution chemistries. Breakthrough curves (BTCs) for M...
Zhao, Jianhu; Zhang, Hongmei; Wang, Shiqi
2017-01-01
Multibeam echosounder systems (MBES) can record backscatter strengths of gas plumes in the water column (WC) images that may be an indicator of possible occurrence of gas at certain depths. Manual or automatic detection is generally adopted in finding gas plumes, but frequently results in low efficiency and high false detection rates because of WC images that are polluted by noise. To improve the efficiency and reliability of the detection, a comprehensive detection method is proposed in this paper. In the proposed method, the characteristics of WC background noise are first analyzed and given. Then, the mean standard deviation threshold segmentations are respectively used for the denoising of time-angle and depth-angle images, an intersection operation is performed for the two segmented images to further weaken noise in the WC data, and the gas plumes in the WC data are detected from the intersection image by the morphological constraint. The proposed method was tested by conducting shallow-water and deepwater experiments. In these experiments, the detections were conducted automatically and higher correct detection rates than the traditional methods were achieved. The performance of the proposed method is analyzed and discussed. PMID:29186014
[Denitrification water treatment with zeolite composite filter by intermittent operation].
Qing, Cheng-Song; Bao, Tao; Chen, Tian-Hu; Chen, Dong; Xie, Jing-Jing
2012-12-01
The zeolite composite filters (ZCF) with the size of4-8 mm were prepared using raw zeolite (0.15-0.18 mm) as the main material and the cement as binder. After a combination of material characterizations, such as the void fraction, apparent density, compression strength and surface area, the optimal prepared conditions of composite filters were obtained as follow: weight ratio of m (zeolite): m (cement) = 7 : 3, curing for 15 d under the moisture condition and ambient temperature. Through upflow low-concentration ammonia nitrogen wastewater, ZCF filled in the experimental column was hung with the biological membrane. Thus, intermittent dynamic experiments were conducted, the intermittent operation cycle included adsorption, biological regeneration and drip washing. Until concentration of ammonia nitrogen was more than 2 mg x L(-1) of effluent standards, water in experiment column was firstly emptied, and then blast biological regeneration was conducted. After the filters were bathed with water, the zeolite adsorption-biological regeneration cycle was performed repeatedly. The experimental results show that under conditions of 24 h blast and 5 d of continuous operation period, ammonia nitrogen removal rate is up to 87.6% on average, total nitrogen removal rate reaches 51.2% on average.
Reproducibility of up-flow column percolation tests for contaminated soils
Naka, Angelica; Sakanakura, Hirofumi; Kurosawa, Akihiko; Inui, Toru; Takeo, Miyuki; Inoba, Seiji; Watanabe, Yasutaka; Fujikawa, Takuro; Miura, Toshihiko; Miyaguchi, Shinji; Nakajou, Kunihide; Sumikura, Mitsuhiro; Ito, Kenichi; Tamoto, Shuichi; Tatsuhara, Takeshi; Chida, Tomoyuki; Hirata, Kei; Ohori, Ken; Someya, Masayuki; Katoh, Masahiko; Umino, Madoka; Negishi, Masanori; Ito, Keijiro; Kojima, Junichi; Ogawa, Shohei
2017-01-01
Up-flow column percolation tests are used at laboratory scale to assess the leaching behavior of hazardous substance from contaminated soils in a specific condition as a function of time. Monitoring the quality of these test results inter or within laboratory is crucial, especially if used for Environment-related legal policy or for routine testing purposes. We tested three different sandy loam type soils (Soils I, II and III) to determine the reproducibility (variability inter laboratory) of test results and to evaluate the difference in the test results within laboratory. Up-flow column percolation tests were performed following the procedure described in the ISO/TS 21268–3. This procedure consists of percolating solution (calcium chloride 1 mM) from bottom to top at a flow rate of 12 mL/h through softly compacted soil contained in a column of 5 cm diameter and 30 ± 5 cm height. Eluate samples were collected at liquid-to-solid ratio of 0.1, 0.2, 0.5, 1, 2, 5 and 10 L/kg and analyzed for quantification of the target elements (Cu, As, Se, Cl, Ca, F, Mg, DOC and B in this research). For Soil I, 17 institutions in Japan joined this validation test. The up-flow column experiments were conducted in duplicate, after 48 h of equilibration time and at a flow rate of 12 mL/h. Column percolation test results from Soils II and III were used to evaluate the difference in test results from the experiments conducted in duplicate in a single laboratory, after 16 h of equilibration time and at a flow rate of 36 mL/h. Overall results showed good reproducibility (expressed in terms of the coefficient of variation, CV, calculated by dividing the standard deviation by the mean), as the CV was lower than 30% in more than 90% of the test results associated with Soil I. Moreover, low variability (expressed in terms of difference between the two test results divided by the mean) was observed in the test results related to Soils II and III, with a variability lower than 30% in more than 88% of the cases for Soil II and in more than 96% of the cases for Soil III. We also discussed the possible factors that affect the reproducibility and variability in the test results from the up-flow column percolation tests. The low variability inter and within laboratory obtained in this research indicates that the ISO/TS 21268–3 can be successfully upgraded to a fully validated ISO standard. PMID:28582458
Effect of centrifugal fractionation protocols on quality and recovery rate of equine sperm.
Edmond, A J; Brinsko, S P; Love, C C; Blanchard, T L; Teague, S R; Varner, D D
2012-03-15
Centrifugal fractionation of semen is commonly done to improve quality of human semen in assisted-reproduction laboratories, allowing sperm separation based on their isopycnic points. Sperm with morphologic abnormalities are often more buoyant, promoting their retention above defined density media, with structurally normal sperm passing through the media following centrifugation. Three experiments were conducted to evaluate the effects of density-medium type, centrifuge-tube size, sperm number, and density-medium volume (column height) on stallion sperm quality and recovery rate in sperm pellets following centrifugation. In all three experiments, equine semen was initially centrifuged to increase sperm concentration. In Experiment 1, semen was layered over continuous or discontinuous gradients. For Experiment 2, semen was layered over three column heights of continuous gradients in 15- or 50-ml conical-bottom tubes. For Experiment 3, increasing sperm numbers were layered over continuous gradient in 15- or 50-ml conical-bottom tubes. Following centrifugation, sperm pellets were evaluated for sperm morphologic quality, motility, DNA integrity, and recovery rate. Centrifugal fractionation improved (P < 0.05) sperm morphology, motility, and DNA integrity, as compared to controls. The continuous gradient increased (P < 0.05) sperm recovery rate relative to the discontinuous gradient, whereas sperm processed in 15-ml tubes yielded higher velocity and higher recovery rates (P < 0.05 for each) than that processed in 50-ml tubes. Sperm recovery rate was not affected (P > 0.05) by column height of gradient. Increasing sperm number subjected to gradient centrifugation decreased (P < 0.05) sperm recovery rate when 15-ml tubes were used. Copyright © 2012 Elsevier Inc. All rights reserved.
Rapid repair of severely damaged reinforced concrete columns.
DOT National Transportation Integrated Search
2012-11-01
Research on rapid repair of reinforced concrete (RC) columns has been limited to columns with slight or moderate damage. Moreover, : few studies have been conducted on repair of severely damaged columns, particularly with buckled or fractured reinfor...
2018-01-31
properties in the presence of oil, such as conductivity, temperature , and turbidity (Battelle, 2014). The National Response Team (NRT) divides subsea...monitoring of oil and conditions (conductivity, temperature , salinity) in the water column, and discrete sampling and analysis (Battelle, 2014). Sensors
Fractional Skin Harvesting: Autologous Skin Grafting without Donor-site Morbidity
Wang, Ying; Farinelli, William A.; Jiménez-Lozano, Joel; Franco, Walfre; Sakamoto, Fernanda H.; Cheung, Evelyn J.; Purschke, Martin; Doukas, Apostolos G.; Anderson, R. Rox
2013-01-01
Background: Conventional autologous skin grafts are associated with significant donor-site morbidity. This study was conducted to determine feasibility, safety, and efficacy of a new strategy for skin grafting based on harvesting small columns of full-thickness skin with minimal donor-site morbidity. Methods: The swine model was used for this study. Hundreds of full-thickness columns of skin tissue (~700 µm diameter) were harvested using a custom-made harvesting device, and then applied directly to excisional skin wounds. Healing in donor and graft sites was evaluated over 3 months by digital photographic measurement of wound size and blinded, computer-aided evaluation of histological features and compared with control wounds that healed by secondary intention or with conventional split-thickness skin grafts (STSG). Results: After harvesting hundreds of skin columns, the donor sites healed rapidly without scarring. These sites reepithelialized within days and were grossly and histologically indistinguishable from normal skin within 7 weeks. By contrast, STSG donor sites required 2 weeks for reepithelialization and retained scar-like characteristics in epidermal and dermal architecture throughout the experiment. Wounds grafted with skin columns resulted in accelerated reepithelialization compared with ungrafted wounds while avoiding the “fish-net” patterning caused by STSG. Conclusion: Full-thickness columns of skin can be harvested in large quantities with negligible long-term donor-site morbidity, and these columns can be applied directly to skin wounds to enhance wound healing. PMID:25289241
Towards the Complete Characterization of Marine-Terminating Glacier Outlet Systems
NASA Astrophysics Data System (ADS)
Mayer, L. A.; Jakobsson, M.; Mix, A. C.; Jerram, K.; Hogan, K.; Heffron, E.; Muenchow, A.
2016-12-01
The Petermann Glacier Experiment was aimed at understanding past variations in Petermann Glacier and their relationship to changes in climatic and oceanographic conditions. A critical component of the experiment was a comprehensive program conducted on the icebreaker Oden to map submarine glacial landforms, offering insight into past ice dynamics and establishing the overall geomorphological context of the region. Concurrent water-column mapping provided remarkable insight into modern glacial, oceanographic, and biological processes suggesting that a carefully designed experiment could provide a near-complete characterization of marine-terminating glacier outlet systems. Water-column mapping revealed seeps emanating from several seafloor regions. These features appeared along common depth zones and may represent fresh water emanating from a submerged aquifer; initial pore water analyses of cores also imply a fresh water flux into the fjord system. Water-column data also show a spatially consistent but variable distribution of a strong mid-water scattering layer, a biological response possibly tracing the inflow of Atlantic water into the fjord and enhanced by input from local outlet glaciers. The continuous nature of these acoustic records over 30 days offers a complete 4-D picture of the distribution of the scattering layer (and perhaps internal circulation patterns and water-mass interactions) with a spatial and temporal distribution far beyond that achievable by traditional oceanographic stations. Additional, higher-resolution water-column imaging around local outlet glaciers presents a clear picture of subglacial sediment-laden meltwater plumes. Thus in addition to the paleoceanographic information they provided, the acoustic systems deployed captured a 4D-view of many of the modern geological, oceanographic and ecological processes within and adjacent to the Petermann Glacier marine system. With the addition of seafloor and water-column sampling, long-term oceanographic moorings, a much more robust biological program (to understand what we are mapping in the water-column) and, the ability to extend our measurements under the ice sheet, we stand poised to truly characterize and hopefully understand the processes at work in front of marine-terminating outlet glaciers.
GOSAT field experiments with a new portable mid-IR FTS in the western US
NASA Astrophysics Data System (ADS)
Shiomi, K.; Kikuchi, N.; Kuze, A.; Suto, H.; Kawakami, S.; Hashimoto, M.; Kataoka, F.; Kasai, K.; Arai, T.; Hedelius, J.; Viatte, C.; Wennberg, P. O.; Roehl, C. M.; Leifer, I.; Yates, E. L.; Marrero, J. E.; Iraci, L. T.; Bruegge, C. J.; Schwandner, F. M.; Crisp, D.
2016-12-01
The column-average dry air mole fractions of carbon dioxide (XCO2), methane (XCH4) and carbon monoxide (XCO) were measured from the surface using direct sunlight at near-IR wavelengths. Simultaneous detection of CO is helpful to characterize CO2 source type. We measured XCO along with XCO2 and XCH4 using a new portable Fourier transform spectrometer (FTS), EM27/SUN mid-IR,in western US field experiments at 1) Caltech, in Pasadena, a northern Los Angeles suburb, 2) Chino, a dairy farming region east of Los Angeles, and 3) Railroad Valley (RRV), a desert playa in Nevada. These measurements were conducted during the GOSAT/OCO-2 joint campaign for vicarious calibration and validation (cal/val) and its preparatory experiments in the early summer of 2016. Before the campaign, measurements from the JAXA EM27/SUN mid-IR were compared with those from the Total Carbon Column Observing Network (TCCON) station at Caltech. Then, we observed a diurnal cycle at the Chino dairy site, an area of concentrated animal husbandry, producing a CH4 point source. Finally, we conducted the cal/val campaign at RRV coincident with GOSAT and OCO-2 overpass observations. Over RRV, in-situ vertical profiles of CO2 and CH4 were measured using the Alpha Jet research aircraft as a part of the NASA Ames Alpha Jet Atmospheric eXperiment (AJAX). We will compare experimental results from the cal/val campaign for XCO2 and XCH4 with the portable FTS.
Smith, J.A.; Sahoo, D.; Mclellan, H.M.; Imbrigiotta, T.E.
1997-01-01
Transport of a nonionic surfactant (Triton X-100) at aqueous concentrations less than 400 mg/L through a trichloroethene-contaminated sand-and-gravel aquifer at Picatinny Arsenal, NJ, has been studied through a series of laboratory and field experiments. In the laboratory, batch and column experiments were conducted to quantify the rate and amount of Triton X-100 sorption to the aquifer sediments. In the field, a 400 mg/L aqueous Triton X-100 solution was injected into the aquifer at a rate of 26.5 L/min for a 35-d period. The transport of Triton X-100 was monitored by sampling and analysis of groundwater at six locations surrounding the injection well. Equilibrium batch sorption experiments showed that Triton X-100 sorbs strongly and nonlinearly to the field soil with the sharpest inflection point of the isotherm occurring at an equilibrium aqueous Triton X-100 concentration close to critical micelle concentration. Batch, soil column, and field experimental data were analyzed with zero-, one-, and two- dimensional (respectively) transient solute transport models with either equilibrium or rate-limited sorption. These analyses reveal that Triton X- 100 sorption to the aquifer solids is slow relative to advective and dispersive transport and that an equilibrium sorption model cannot simulate accurately the observed soil column and field data. Comparison of kinetic sorption parameters from batch, column, and field transport data indicate that both physical heterogeneities and Triton X-100 mass transfer between water and soil contribute to the kinetic transport effects.Transport of a nonionic surfactant (Triton X-100) at aqueous concentrations less than 400 mg/L through a trichloroethene-contaminated sand-and-gravel aquifer was studied. Equilibrium batch sorption experiments showed that Triton X-100 sorbs strongly and nonlinearly to the field soil with the sharpest inflection point of the isotherm occurring at an equilibrium aqueous Triton X-100 concentration close to critical micelle concentration. Batch, soil column, and field experimental data were analyzed with zero-, one-, and two-dimensional transient solute transport models with either equilibrium or rate-limited sorption. These analyses revealed that Triton X-100 sorption to the aquifer solids was slow relative to advective and dispersive transport.
Reactive transport of uranium in fractured crystalline rock: Upscaling in time and distance
Dittrich, Timothy M.; Reimus, Paul W.
2015-09-29
In this study, batch adsorption and breakthrough column experiments were conducted to evaluate uranium transport through altered material that fills fractures in a granite rock system at the Grimsel Test Site in Switzerland at pH 6.9 and 7.9. The role of adsorption and desorption kinetics was evaluated with reactive transport modeling by comparing one-, two-, and three-site models. Emphasis was placed on describing long desorption tails that are important for upscaling in time and distance. The effect of increasing pH in injection solutions was also evaluated. For pH 6.9, a three-site model with forward rate constants between 0.07 and 0.8more » ml g –1 h –1, reverse rate constants between 0.001 and 0.06 h –1, and site densities of 1.3, 0.104, and 0.026 μmol g –1 for ‘weak/fast’, ‘strong/slow’, and ‘very strong/very slow’ sites provided the best fits. For pH 7.9, a three-site model with forward rate constants between 0.05 and 0.8 mL g –1 h –1, reverse rate constants between 0.001 and 0.6 h –1, and site densities of 1.3, 0.039, and 0.013 μmol g –1 for a ‘weak/fast’, ‘strong/slow’, and ‘very strong/very slow’ sites provided the best fits. Column retardation coefficients (R d) were 80 for pH 6.9 and 10.3 for pH 7.9. Model parameters determined from the batch and column experiments were used in 50 year large-scale simulations for continuous and pulse injections and indicated that a three-site model is necessary at pH 6.9, although a K d-type equilibrium partition model with one-site was adequate for large scale predictions at pH 7.9. Batch experiments were useful for predicting early breakthrough times in the columns while column experiments helped differentiate the relative importance of sorption sites and desorption rate constants on transport.« less
Imidacloprid sorption and transport in cropland, grass buffer and riparian buffer soils
Satkowski, Laura E.; Goyne, Keith W.; Anderson, Stephen H.; Lerch, Robert N.; Allen, Craig R.; Snow, Daniel D.
2018-01-01
An understanding of neonicotinoid sorption and transport in soil is critical for determining and mitigating environmental risk associated with the most widely used class of insecticides. The objective of this study was to evaluate mobility and transport of the neonicotinoid imidacloprid (ICD) in soils collected from cropland, grass vegetative buffer strip (VBS), and riparian VBS soils. Soils were collected at six randomly chosen sites within grids that encompassed all three land uses. Single-point equilibrium batch sorption experiments were conducted using radio-labeled (14C) ICD to determine solid–solution partition coefficients (Kd). Column experiments were conducted using soils collected from the three vegetation treatments at one site by packing soil into glass columns. Water flow was characterized by applying Br− as a nonreactive tracer. A single pulse of 14C-ICD was then applied, and ICD leaching was monitored for up to 45 d. Bromide and ICD breakthrough curves for each column were simulated using CXTFIT and HYDRUS-1D models. Sorption results indicated that ICD sorbs more strongly to riparian VBS (Kd = 22.6 L kg−1) than crop (Kd = 11.3 L kg−1) soils. Soil organic C was the strongest predictor of ICD sorption (p < 0.0001). The column transport study found mean peak concentrations of ICD at 5.83, 10.84, and 23.8 pore volumes for crop, grass VBS, and riparian VBS soils, respectively. HYDRUS-1D results indicated that the two-site, one-rate linear reversible model best described results of the breakthrough curves, indicating the complexity of ICD sorption and demonstrating its mobility in soil. Greater sorption and longer retention by the grass and riparian VBS soils than the cropland soil suggests that VBS may be a viable means to mitigate ICD loss from agroecosystems, thereby preventing ICD transport into surface water, groundwater, or drinking water resources.
Teerlink, Jennifer; Martínez-Hernández, Virtudes; Higgins, Christopher P; Drewes, Jörg E
2012-10-15
Onsite wastewater treatment is used by 20% of residences in the United States. The ability of these systems, specifically soil treatment units (STUs), to attenuate trace organic chemicals (TOrCs) is not well understood. TOrCs released by STUs pose a potential risk to downstream groundwater and hydraulically-connected surface water that may be used as a drinking water source. A series of bench-scale experiments were conducted using sand columns to represent STUs and to evaluate the efficacy of TOrC attenuation as a function of hydraulic loading rate (1, 4, 8, 12, and 30 cm/day). Each hydraulic loading rate was examined using triplicate experimental columns. Columns were initially seeded with raw wastewater to establish a microbial community, after which they were fed with synthetic wastewater and spiked with 17 TOrCs, in four equal doses per day, to provide a consistent influent water quality. After an initial start-up phase, effluent from all columns consistently demonstrated >90% reductions in dissolved organic carbon and nearly complete (>85%) oxidation of ammonia to nitrate, comparable to the performance of field STUs. The results of this study suggest STUs are capable of attenuating many TOrCs present in domestic wastewater, but attenuation is compound-specific. A subset of TOrCs exhibited an inverse relationship with hydraulic loading rate and attenuation efficiency. Atenolol, cimetidine, and TCPP were more effectively attenuated over time in each experiment, suggesting that the microbial community evolved to a stage where these TOrCs were more effectively biotransformed. Aerobic conditions as compared to anaerobic conditions resulted in more efficient attenuation of acetaminophen and cimetidine. Copyright © 2012. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Hao, N.; Moysey, S. M.; Powell, B. A.; Ntarlagiannis, D.
2014-12-01
Spectral Induced Polarization (SIP) has been used to monitor subsurface biogeochemical processes in a variety of lab and field studies. However, there are several competing mechanisms that have been proposed to explain the SIP effect. This work targets the influence of ion sorption to mineral surfaces as a controlling factor on SIP utilizing a pH dependent surface adsorption experiment. In this experiment we use silica gel as an idealized medium where the number of available sites for cation sorption, which in this case is limited to Na+ and H+ ions, is influenced by changes in pH via protonation/deprotonation of silanol groups. The experiment uses 22Na as an in situ tracer as the radioactive decay of this nuclide can be continuously and non-invasively monitored using sensors placed outside of a column. The experiment was conducted by continuously pumping a 0.01M NaCl solution spiked with of 1μCi/L 22Na in to the column under three pH conditions (pH 5.0, 6.0 and 8.0). In the experiment, we observed an increasing number of gamma counts caused by the accumulation of sorbed 22Na in the column as we increased the pH from 5.0 to 6.5, and finally to 8.0. Simultaneously, we observed a linearly correlated (R2 = 0.99) rise in the imaginary conductivity response of the SIP measurements. Using the triple layer electrochemical polarization model for grain polarization to simulate our experimental SIP responses, we found that the estimated surface site density is within a factor of two of that estimated from the mass accumulation of sodium. Since the accumulation of sodium on the silica gel surface is responsible for both the increase in gamma radiation and the change in the electrical response, these observations support the theory that mobile ions in the Stern layer of mineral surfaces provide the primary control on SIP signals in silicate materials.
Dong, Shunan; Gao, Bin; Sun, Yuanyuan; Shi, Xiaoqing; Xu, Hongxia; Wu, Jianfeng; Wu, Jichun
2016-12-15
Understanding the fate and transport of antibiotics in porous media can help reduce their contamination risks to soil and groundwater systems. In this work, batch and column experiments were conducted to determine the interactions between two representative antibiotics, sulfacetamide (SA) and levofloxacin (LEV), and sand porous media under various solution pH, humic acid (HA) concentration, grain size, and moisture content conditions. Batch sorption experimental results indicated that the sand had relatively strong bonding affinity to LEV, but little sorption of SA under different pH, HA concentration, grain size conditions. Results from the packed sand column experiments showed that SA had extremely high mobility in the porous media for all combinations of pH, HA concentration, grain size, and moisture content. The mass recovery of SA was higher than 98.5% in all the columns with the exception of the one packed with fine sand (97.2%). The retention of LEV in the columns was much higher and the recovery rates ranged from 0% to 71.1%. Decreases in solution pH, HA concentration, grain size, or moisture content reduced the mobility of LEV in the columns under the tested conditions. These results indicated that type of antibiotics and environmental conditions also played an important role in controlling their fate and transport in porous media. Mathematical models were applied to simulate and interpret experimental data, and model simulations described the interactions between the two antibiotics and sand porous media very well. Findings from this study elucidated the key factors and processes controlling the fate of SA and LEV in porous media, which can inform the prediction and assessment of the environmental risks of antibiotics. Copyright © 2016 Elsevier B.V. All rights reserved.
Transport of Lactate-modified Nanoscale Iron Particles in Porous Media
NASA Astrophysics Data System (ADS)
Reddy, K. R.
2012-12-01
Nanoscale iron particles (NIP) have recently shown to be effective for dehalogenation of recalcitrant organic contaminants such as pentachlorphenol (PCP) and dinitrotoluene (DNT) in the environment. However, effective transport of NIP into the contaminated subsurface zones is crucial for the success of in-situ remediation. Previous studies showed that the transport of NIP in soils is very limited and surface-modification of NIP is required to achieve adequate transport. This paper investigates the transport of NIP and lactate-modified NIP (LMNIP) through four different porous media (sands with different particle size and distribution). A series of laboratory column experiments was conducted to quantify the transport of NIP and LMNIP at two different slurry concentrations of 1 g/L and 4 g/L under two different flow velcoities. NIP used in this study possessed magentic properties, thus a magnetic susceptibility sensor system was used to monitor the changes in magnetic susceptibility (MS) along the length of the column at different times during the experiments. At the end of testing, the distribution of total Fe in the sand column was measured. Results showed a linear correlation between the Fe concentration and MS and it was used to assess the transient transport of NIP and LMNIP in the sand columns. Results showed that LMNIP transported better than bare NIP and higher concentration of 4 g/L LMNIP exhibited unform and greater transport compared to other tested conditions. Transport of NIP increased in the order from fine Ottawa sand > medium field sand > coarse field sand > coarse Ottawa sand. Filtration theory and advective-dispersion equation with reaction were applied to capture the transport response of NIP and LMNIP in the sand columns.
Smith, Sarah L; Boothman, Christopher; Williams, Heather A; Ellis, Beverly L; Wragg, Joanna; West, Julia M; Lloyd, Jonathan R
2017-01-01
Geological disposal of intermediate level radioactive waste in the UK is planned to involve the use of cementitious materials, facilitating the formation of an alkali-disturbed zone within the host rock. The biogeochemical processes that will occur in this environment, and the extent to which they will impact on radionuclide migration, are currently poorly understood. This study investigates the impact of biogeochemical processes on the mobility of the radionuclide technetium, in column experiments designed to be representative of aspects of the alkali-disturbed zone. Results indicate that microbial processes were capable of inhibiting 99m Tc migration through columns, and X-ray radiography demonstrated that extensive physical changes had occurred to the material within columns where microbiological activity had been stimulated. The utilisation of organic acids under highly alkaline conditions, generating H 2 and CO 2 , may represent a mechanism by which microbial processes may alter the hydraulic conductivity of a geological environment. Column sediments were dominated by obligately alkaliphilic H 2 -oxidising bacteria, suggesting that the enrichment of these bacteria may have occurred as a result of H 2 generation during organic acid metabolism. The results from these experiments show that microorganisms are able to carry out a number of processes under highly alkaline conditions that could potentially impact on the properties of the host rock surrounding a geological disposal facility for intermediate level radioactive waste. Copyright © 2016. Published by Elsevier B.V.
Evaluation of interactions between soil and coal fly ash leachates using column percolation tests.
Tsiridis, V; Petala, M; Samaras, P; Sakellaropoulos, G P
2015-09-01
The aim of this work was the assessment of the environmental impact of different origin fly ashes with regard to their final disposal. The experimental procedure included the performance of single column tests and column tests of fly ash and soil in series. The appraisal of the potential environmental hazards was implemented using physicochemical analyses and bioassays. Two different fly ash samples were examined, one fly ash produced from the combustion of sub-bituminous coal (CFA) and one fly ash produced from the combustion of lignite (LFA). Single column percolation tests were performed according to NEN 7343 protocol, while fly ash/soil experiments were conducted incorporating slight modifications to this protocol. The study focused on the release of metals Ba, Cr, Cu, Mo, Se and Zn and the ecotoxic behavior of leachates on crustacean Daphnia magna and bacteria Vibrio fischeri. The infiltration of the leachates of both fly ashes through soil affected considerably their leaching profile. The transport of Cu and Zn was facilitated by the dynamic leaching conditions and influenced by the pH of the leachates. Moreover, the release and bioavailability of Cr, Cu and Zn was probably altered during the infiltration experiments and organisms' response was not always correlated with the concentration of metals. Nevertheless, the results are signalling that possible manipulations and final disposal of fly ash should be considered when environmental threats are investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of biochar amendment on tylosin adsorption-desorption and transport in two different soils
Chang Yoon Jeong; Jim J. Wang; Syam K. Dodla; Thomas L. Eberhardt; Les Groom
2012-01-01
The role of biochar as a soil amendment on the adsorption¨C desorption and transport of tylosin, a macrolide class of veterinary antibiotic, is little known. In this study, batch and column experiments were conducted to investigate the adsorption kinetics and transport of tylosin in forest and agricultural corn field soils amended with hardwood and softwood biochars....
Leachate Testing of Hamlet City Lake, North Carolina, Sediment
1992-11-01
release; distribution is unlimited. 13. ABSTRACT (Maximum 200 words) Sediment leaching studies of Hamlet City Lake, Hamlet, NC, were conducted in...laboratories at the U.S. Army Engineer Waterways Experiment Station. The pur- pose of these studies was to provide quantitative information on the...conditions similar to landfarming. The study involved three elements: batch leach tests, column leach tests, and simulations using the Hydrologic
Effects of pH on nano-bubble stability and transport in saturated porous media
NASA Astrophysics Data System (ADS)
Hamamoto, Shoichiro; Takemura, Takato; Suzuki, Kenichiro; Nishimura, Taku
2018-01-01
An understanding of nano-scale bubble (NB) transport in porous media is important for potential application of NBs in soil/groundwater remediation. It is expected that the solution chemistry of NB water highly influences the surface characteristics of NBs and porous media and the interaction between them, thus affecting the stability and transport characteristics of NB. In this study, in addition to stability experiments, one-dimensional column transport experiments using glass beads were conducted to investigate the effects of pH on the NB transport behavior. The results showed that the NBs were more stable under higher pH. Column transport experiments revealed that entrapment of NBs, especially larger ones, was enhanced in lower-pH water, likely suggesting pH-dependent NB attachment and physical straining, both of which are also probably influenced by bubble size. Although relatively smaller NBs were released after switching the eluting fluid to one with lower ionic strength, most of the NBs in lower-pH water were still retained in the porous media even altering the chemical condition.
Effects of pH on nano-bubble stability and transport in saturated porous media.
Hamamoto, Shoichiro; Takemura, Takato; Suzuki, Kenichiro; Nishimura, Taku
2018-01-01
An understanding of nano-scale bubble (NB) transport in porous media is important for potential application of NBs in soil/groundwater remediation. It is expected that the solution chemistry of NB water highly influences the surface characteristics of NBs and porous media and the interaction between them, thus affecting the stability and transport characteristics of NB. In this study, in addition to stability experiments, one-dimensional column transport experiments using glass beads were conducted to investigate the effects of pH on the NB transport behavior. The results showed that the NBs were more stable under higher pH. Column transport experiments revealed that entrapment of NBs, especially larger ones, was enhanced in lower-pH water, likely suggesting pH-dependent NB attachment and physical straining, both of which are also probably influenced by bubble size. Although relatively smaller NBs were released after switching the eluting fluid to one with lower ionic strength, most of the NBs in lower-pH water were still retained in the porous media even altering the chemical condition. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Nerren, B. H.
1977-01-01
The electrophoresis of six columns was accomplished on the Apollo-Soyuz test Project. After separation, these columns were frozen in orbit and were returned for ground-based analyses. One major goal of the MA-011 experiment was the assessment of the separation achieved in orbit by slicing these frozen columns. The slicing of the frozen columns required a new device. The development of that device is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilbur, Daniel Scott
This research is a collaborative effort between the research groups of the PIs, Dr. D. Scott Wilbur in the Department of Radiation Oncology at the University of Washington (UW) and Matthew O’Hara at the Pacific Northwest National Laboratory (PNNL). In this report only those studies conducted at UW and the budget information from UW will be reported. A separate progress and financial report will be provided by PNNL. This final report outlines the experiments (Tasks) conducted and results obtained at UW from July 1, 2013 thru June 30, 2016 (2-year project with 1 year no-cost extension). The report divides themore » information on the experiments and results obtained into the 5 specific objectives of the research efforts and the Tasks within those objectives. This format is used so that it is easy to see what has been accomplished in each area. A brief summary of the major findings from the studies is provided below. Summary of Major Findings from Research/Training Activities at UW: Anion and cation exchange columns did not provide adequate 211At capture and/or extraction results under conditions studied to warrant further evaluation; PEG-Merrifield resins containing mPEG350, mPEG750, mPEG2000 and mPEG5000 were synthesized and evaluated; All of the mPEG resins with different sized mPEG moieties conjugated gave similar 211At capture (>95%) from 8M HCl solutions and release with conc. NH 4OH (~50-80%), but very low quantities were released when NaOH was used as an eluent; Capture and release of 211At when loading [ 211At]astatate appeared to be similar to that of [ 211At]astatide on PEG columns, but further studies need to be conducted to confirm that; Capture of 211At on PEG columns was lower (e.g. 80-90%) from solutions of 8M HNO 3, but higher capture rates (e.g. 99%) can be obtained when 10M HNO 3 is mixed with an equal quantity of 8M HCl; Addition of reductants to the 211At solutions did not appear to change the percent capture, but may have an effect on the % extracted; There was some indication that the PEG-Merrifield resins could be saturated (perhaps with Bi) resulting in lower capture percentages, but more studies need to be done to confirm that; A target dissolution chamber, designed and built at PNNL, works well with syringe pumps so it can be used in an automated system; Preliminary semi-automated 211At isolation studies have been conducted with full-scale target dissolution and 211At isolation using a PEG column on the Hamilton automated system gave low overall recoveries, but HNO 3 was used (rather than HCl) for loading the 211At and flow rates were not optimized; Results obtained using PEG columns are high enough to warrant further development on a fully automated system; Results obtained also indicate that additional studies are warranted to evaluate other types of columns for 211At separation from bismuth, which allow use of HNO 3/HCl mixtures for loading and NaOH for eluting 211At. Such a column could greatly simplify the overall isolation process and make it easier to automate.« less
Evaluation of spatial, radiometric and spectral Thematic Mapper performance for coastal studies
NASA Technical Reports Server (NTRS)
Klemas, V. (Principal Investigator)
1983-01-01
A series of experiments were initiated to determine the feasibility of using thematic mapper spectral data to estimate wetlands biomass. The experiments were conducted using hand-held radiometers simulating thematic mapper wavebands 3, 4 and 5. Spectral radiance data were collected from the ground and from a low altitude aircraft in an attempt to gain some insight into the potential utility of actual thematic mapper data for biomass estimation in wetland plant communities. In addition, radiative transfer models describing volume reflectance of eight water column containing submerged aquatic vegetation were refined.
Geoelectrical inference of mass transfer parameters using temporal moments
Day-Lewis, Frederick D.; Singha, Kamini
2008-01-01
We present an approach to infer mass transfer parameters based on (1) an analytical model that relates the temporal moments of mobile and bulk concentration and (2) a bicontinuum modification to Archie's law. Whereas conventional geochemical measurements preferentially sample from the mobile domain, electrical resistivity tomography (ERT) is sensitive to bulk electrical conductivity and, thus, electrolytic solute in both the mobile and immobile domains. We demonstrate the new approach, in which temporal moments of collocated mobile domain conductivity (i.e., conventional sampling) and ERT‐estimated bulk conductivity are used to calculate heterogeneous mass transfer rate and immobile porosity fractions in a series of numerical column experiments.
From the surface to the seafloor: How giant larvaceans transport microplastics into the deep sea.
Katija, Kakani; Choy, C Anela; Sherlock, Rob E; Sherman, Alana D; Robison, Bruce H
2017-08-01
Plastic waste is a pervasive feature of marine environments, yet little is empirically known about the biological and physical processes that transport plastics through marine ecosystems. To address this need, we conducted in situ feeding studies of microplastic particles (10 to 600 μm in diameter) with the giant larvacean Bathochordaeus stygius. Larvaceans are abundant components of global zooplankton assemblages, regularly build mucus "houses" to filter particulate matter from the surrounding water, and later abandon these structures when clogged. By conducting in situ feeding experiments with remotely operated vehicles, we show that giant larvaceans are able to filter a range of microplastic particles from the water column, ingest, and then package microplastics into their fecal pellets. Microplastics also readily affix to their houses, which have been shown to sink quickly to the seafloor and deliver pulses of carbon to benthic ecosystems. Thus, giant larvaceans can contribute to the vertical flux of microplastics through the rapid sinking of fecal pellets and discarded houses. Larvaceans, and potentially other abundant pelagic filter feeders, may thus comprise a novel biological transport mechanism delivering microplastics from surface waters, through the water column, and to the seafloor. Our findings necessitate the development of tools and sampling methodologies to quantify concentrations and identify environmental microplastics throughout the water column.
From the surface to the seafloor: How giant larvaceans transport microplastics into the deep sea
Katija, Kakani; Choy, C. Anela; Sherlock, Rob E.; Sherman, Alana D.; Robison, Bruce H.
2017-01-01
Plastic waste is a pervasive feature of marine environments, yet little is empirically known about the biological and physical processes that transport plastics through marine ecosystems. To address this need, we conducted in situ feeding studies of microplastic particles (10 to 600 μm in diameter) with the giant larvacean Bathochordaeus stygius. Larvaceans are abundant components of global zooplankton assemblages, regularly build mucus “houses” to filter particulate matter from the surrounding water, and later abandon these structures when clogged. By conducting in situ feeding experiments with remotely operated vehicles, we show that giant larvaceans are able to filter a range of microplastic particles from the water column, ingest, and then package microplastics into their fecal pellets. Microplastics also readily affix to their houses, which have been shown to sink quickly to the seafloor and deliver pulses of carbon to benthic ecosystems. Thus, giant larvaceans can contribute to the vertical flux of microplastics through the rapid sinking of fecal pellets and discarded houses. Larvaceans, and potentially other abundant pelagic filter feeders, may thus comprise a novel biological transport mechanism delivering microplastics from surface waters, through the water column, and to the seafloor. Our findings necessitate the development of tools and sampling methodologies to quantify concentrations and identify environmental microplastics throughout the water column. PMID:28835922
Nitrification in a zeoponic substrate
NASA Technical Reports Server (NTRS)
McGilloway, R. L.; Weaver, R. W.; Ming, D. W.; Gruener, J. E.
2003-01-01
Clinoptilolite is a zeolite mineral with high cation exchange capacity used in zeoponic substrates that have been proposed as a solid medium for growing plants or as a fertilizer material. The kinetics of nitrification has not been measured for NH4+ saturated zeoponic substrate. Experiments were conducted to evaluate the production of NO2- and NO3-, and nitrifier populations in zeoponic substrates. Small columns were filled with zeoponic substrate inoculated with a commercial inoculum or soil enrichment culture of nitrifying bacteria. In addition to column studies, a growth chamber study was conducted to evaluate the kinetics of nitrification in zeoponic substrates used to grow radishes (Raphanus sativus L.). The zeoponic substrate provided a readily available source of NH4+, and nitrifying bacteria were active in the substrate. Ammonium oxidation rates in column studies ranged from 5 to 10 micrograms N g-1 substrate h-1, and NO2- oxidation rates were 2 to 9.5 micrograms N g-1 substrate h-1. Rates determined from the growth chamber study were approximately 1.2 micrograms N g-1 substrate h-1. Quantities of NH4+ oxidized to NO2- and NO3- in inoculated zeoponic substrate were in excess of plant up-take. Acidification as a result of NH4+ oxidation resulted in a pH decline, and the zeoponic substrate showed limited buffering capacity.
Transport of Escherichia coli in 25 m quartz sand columns
NASA Astrophysics Data System (ADS)
Lutterodt, G.; Foppen, J. W. A.; Maksoud, A.; Uhlenbrook, S.
2011-01-01
To help improve the prediction of bacteria travel distances in aquifers laboratory experiments were conducted to measure the distant dependent sticking efficiencies of two low attaching Escherichia coli strains (UCFL-94 and UCFL-131). The experimental set up consisted of a 25 m long helical column with a diameter of 3.2 cm packed with 99.1% pure-quartz sand saturated with a solution of magnesium sulfate and calcium chloride. Bacteria mass breakthrough at sampling distances ranging from 6 to 25.65 m were observed to quantify bacteria attachment over total transport distances ( αL) and sticking efficiencies at large intra-column segments ( αi) (> 5 m). Fractions of cells retained ( Fi) in a column segment as a function of αi were fitted with a power-law distribution from which the minimum sticking efficiency defined as the sticking efficiency of 0.001% bacteria fraction of the total input mass retained that results in a 5 log removal were extrapolated. Low values of αL in the order 10 - 4 and 10 - 3 were obtained for UCFL-94 and UCFL-131 respectively, while αi-values ranged between 10 - 6 to 10 - 3 for UCFL-94 and 10 - 5 to 10 - 4 for UCFL-131. In addition, both αL and αi reduced with increasing transport distance, and high coefficients of determination (0.99) were obtained for power-law distributions of αi for the two strains. Minimum sticking efficiencies extrapolated were 10 - 7 and 10 - 8 for UCFL-94 and UCFL-131, respectively. Fractions of cells exiting the column were 0.19 and 0.87 for UCFL-94 and UCL-131, respectively. We concluded that environmentally realistic sticking efficiency values in the order of 10 - 4 and 10 - 3 and much lower sticking efficiencies in the order 10 - 5 are measurable in the laboratory, Also power-law distributions in sticking efficiencies commonly observed for limited intra-column distances (< 2 m) are applicable at large transport distances(> 6 m) in columns packed with quartz grains. High fractions of bacteria populations may possess the so-called minimum sticking efficiency, thus expressing their ability to be transported over distances longer than what might be predicted using measured sticking efficiencies from experiments with both short (< 1 m) and long columns (> 25 m). Also variable values of sticking efficiencies within and among the strains show heterogeneities possibly due to variations in cell surface characteristics of the strains. The low sticking efficiency values measured express the importance of the long columns used in the experiments and the lower values of extrapolated minimum sticking efficiencies makes the method a valuable tool in delineating protection areas in real-world scenarios.
Characterization of blocks impacts from acoustic emissions: insights from laboratory experiments
NASA Astrophysics Data System (ADS)
Farin, Maxime; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud; Shapiro, Nikolaï
2014-05-01
Rockfalls, debris flows and rock avalanches represent a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and glass and over rock blocks. The elastic energy emitted by a single bouncing bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. We obtained simple scaling laws relating the impactor characteristics (size, height of fall, material,...) to the elastic energy and spectral content. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, accelerometers (1 Hz to 56 kHz) were used to record the signals in a wide frequency range. The experiments were also monitored optically using fast cameras. Eventually, we looked at what types of features in the signal are affected by individual impacts, rolling of beads or by the large scale geometry of the avalanche.
Characterization of blocks impacts from elastic waves: insights from laboratory experiments
NASA Astrophysics Data System (ADS)
Farin, M.; Mangeney, A.; Toussaint, R.; De Rosny, J.; Shapiro, N.
2013-12-01
Rockfalls, debris flows and rock avalanches constitute a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and rock blocks. The elastic energy emitted by a single bouncing steel bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, two types of acoustic sensors were used to record the signals in a wide frequency range: accelerometers (1 Hz to 56 kHz) and piezoelectric sensors (100 kHz to 1 MHz). The experiments were also monitored optically using fast cameras. We developed a technique to use quantitatively both types of sensors to evaluate the elastic energy emitted by the sources. Eventually, we looked at what types of features in the signal are affected by individual shocks or by the large scale geometry of the avalanche.
Validated HPLC method for determination of sennosides A and B in senna tablets.
Sun, Shao Wen; Su, Hsiu Ting
2002-07-31
This study developed an efficient and reliable ion-pair liquid chromatographic method for quantitation of sennosides A and B in commercial senna tablets. Separation was conducted on a Hypersil C 18 column (250 x 4.6 mm, 5 microm) at a temperature of 40 degrees C, using a mixture of 0.1 M acetate buffer (pH 6.0) and acetonitrile (70:30, v/v) containing 5 mM tetrahexylammonium bromide as mobile phase. Sennosides A and B were completely separated from other constituents within 14 min. The developed method was validated. Both run-to-run repeatability (n=10) and day-to-day reproducibility (n=3) of peak area were below 0.4% RSD. Linearity of peak area was tested in the range 30-70 microg/ml (r>0.9997). Accuracy was assessed with recovery and the recoveries for sennosides A and B were 101.73+/-1.30% and 101.81+/-2.18% (n=3 x 6), respectively. Robustness of the analytical method was tested using a three-leveled Plackett-Burman design in which 11 factors were assessed with 23 experiments. Eight factors (column, concentration of ion pair reagent, % of organic modifier (acetonitrile), buffer pH, column temperature, flow rate, time constant and detection wavelength) were investigated in a specified range above and below the nominal method conditions. It was found that: (1) column and % acetonitrile affected significantly resolution and retention time, (2) column, % acetonitrile, column temperature, flow rate and time constant affected significantly the plate number of sennoside A, and (3) column and time constant affected significantly the tailing factor.
Shelton, D R; Pachepsky, Y A; Kiefer, L A; Blaustein, R A; McCarty, G W; Dao, T H
2014-08-01
As sediments increasingly become recognized as reservoirs of indicator and pathogen microorganisms, an understanding of the persistence of indicator organisms becomes important for assessment and predictions of microbial water quality. The objective of this work was to observe the response of water column and sediment coliform populations to the change in nutrient concentrations in the water column. Survival experiments were conducted in flow-through chambers containing sandy sediments. Bovine feces were collected fresh and introduced into sediment. Sixteen days later, the same fecal material was autoclaved and diluted to provide three levels - 1×, 0.5×, and 0.1× of nutrient concentrations - spike in water column. Total coliforms, Escherichia coli, and total aerobic heterotrophic bacterial concentrations were monitored in water and sediment. Bacteria responded to the nutrient spike with initial growth both in the water column and in sediment. The response of bacterial concentrations in water column was nonlinear, with no significant changes at 0.1 and .5× spikes, but a substantial change at 1× spike. Bacteria in sediment responded to the spikes at all added nutrient levels. Coliform inactivation rates both in sediment and in water after the initial growth occurred, were not significantly different from the inactivation rates before spike. These results indicate that introduction of nutrients into the water column results in nonlinear response of E. coli concentrations both in water and in sediments, followed by the inactivation with the same rate as before introduction of nutrients. Published by Elsevier Ltd.
Gritti, Fabrice; Gilar, Martin; Jarrell, Joseph A
2016-04-29
A cylindrical vacuum chamber (inner diameter 5 cm) housing a narrow-bore 2.1 mm×100 mm column packed with 1.8 μm HSS-T3 fully porous particles was built in order to isolate thermally the chromatographic column from the external air environment. Consistent with statistical physics and the mean free path of air molecules, the experimental results show that natural air convection and conduction are fully eliminated for housing air pressures smaller than 10(-4) Torr. Heat radiation is minimized by wrapping up the column with low-emissivity aluminum-tape (emissivity coefficient ϵ=0.03 vs. 0.28 for polished stainless steel 316). Overall, the heat flux at the column wall is reduced by 96% with respect to standard still-air ovens. From a practical viewpoint, the efficiency of the column run at a flow rate of 0.6 mL/min at a constant 13,000 psi pressure drop (the viscous heat power is around 9 W/m) is improved by up to 35% irrespective of the analyte retention. Models of heat and mass transfer reveal that (1) the amplitude of the radial temperature gradient is significantly reduced from 0.30 to 0.01 K and (2) the observed improvement in resolution power stems from a more uniform distribution of the flow velocity across the column diameter. The eddy dispersion term in the van Deemter equation is reduced by 0.8±0.1 reduced plate height unit, a significant gain in column performance. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of soil fortified by polyurethane foam on septic tank effluent treatment.
Nie, J Y; Zhu, N W; Lin, K M; Song, F Y
2011-01-01
Fortified soil was made up of a mixture at a mass ratio 4/1000-6/1000 of sponge and natural soil according to the results of column experiment. The fortified soil had bigger porosity and higher hydraulic conductivity than the natural soil. The columns packed with 900 mm of the fortified soil endured a flow rate equivalent to 100 L/m(2)/d of septic tank effluent and the average chemical oxygen demand, nitrogen, and phosphorus removal rates were around 92%, 75% and 96%, respectively. After 100 weeks of operation, the saturated hydraulic conductivity of the fortified soil kept higher than 0.2 m/d. The bigger porosity of sponge improved the effective porosity, and the bigger specific surface area of sponge acted as an ideal support for biomat growth and ensured the sewage treatment performance of the fortified soil. The comparable performance was due to a similar and sufficient degree of soil clogging genesis coupled with bioprocesses that effectively purified the septic tank effluent given the adequate retention times.
Leaching Characteristics of Calcium and Strontium from Phosphogypsum Under Acid Rain.
Wang, Mei; Luo, Houqiao; Chen, Yong; Yang, Jinyan
2018-02-01
Phosphogypsum (PG) stored close to phosphorus chemical plants has caused worldwide environmental problems. Column leaching experiments were conducted to evaluate Ca and Sr leaching from PG under simulated acid rain at pH levels typical for rain in the study region (Shifang, China). High concentrations of Ca and Sr in leachates in the first five leaching events could pollute the soil and groundwater around the PG. Leachates pH was lower than and had no correlation with simulated rain pH. No correlations between simulated rain pH and cumulative Ca and Sr content in leachates were noted. Around 2.0%-2.2% of Ca and 0.5%-0.6% of Sr were leached out from PG by the simulated summer rainfall in Shifang. Electrical conductivity values, Ca and Sr concentrations at bottom sections of PG columns were higher than those of top sections, while pH values showed a reverse trend. More precautions should be taken to protect the environment around PG stacks.
NASA Astrophysics Data System (ADS)
Ballarini, E.; Graupner, B.; Bauer, S.
2015-12-01
For deep geological repositories of high-level radioactive waste (HLRW), bentonite and sand bentonite mixtures are investigated as buffer materials to form a a sealing layer. This sealing layer surrounds the canisters and experiences an initial drying due to the heat produced by HLRW and a successive re-saturation with fluid from the host rock. These complex thermal, hydraulic and mechanical processes interact and were investigated in laboratory column experiments using MX-80 clay pellets as well as a mixture of 35% sand and 65% bentonite. The aim of this study is to both understand the individual processes taking place in the buffer materials and to identify the key physical parameters that determine the material behavior under heating and hydrating conditions. For this end, detailed and process-oriented numerical modelling was applied to the experiments, simulating heat transport, multiphase flow and mechanical effects from swelling. For both columns, the same set of parameters was assigned to the experimental set-up (i.e. insulation, heater and hydration system), while the parameters of the buffer material were adapted during model calibration. A good fit between model results and data was achieved for temperature, relative humidity, water intake and swelling pressure, thus explaining the material behavior. The key variables identified by the model are the permeability and relative permeability, the water retention curve and the thermal conductivity of the buffer material. The different hydraulic and thermal behavior of the two buffer materials observed in the laboratory observations was well reproduced by the numerical model.
Heerspink, Brent Porter; Pandey, Sachin; Boukhalfa, Hakim; Ware, Doug S; Marina, Oana; Perkins, George; Vesselinov, Velimir V; WoldeGabriel, Giday
2017-09-01
High-explosive compounds including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) were used extensively in weapons research and testing at Los Alamos National Laboratory (LANL). Liquid effluents containing RDX were released to an outfall pond that flowed to Cañon de Valle at LANL's Technical Area 16 (TA-16), resulting in the contamination of the alluvial, intermediate and regional groundwater bodies. Monitoring of groundwater within Cañon de Valle has shown persistent RDX in the intermediate perched zone located between 225 and 311 m below ground surface. Monitoring data also show detectable levels of RDX putative anaerobic degradation products. Batch and column experiments were conducted to determine the extent of adsorption-desorption and transport of RDX and its degradation products (MNX, DNX, and TNX) in major rock types that are within the RDX plume. All experiments were performed in the dark using water obtained from a well located at the center of the plume, which is fairly oxic and has a neutral pH of 7.5. Retardation factors and partitioning coefficient (K d ) values for RDX were calculated from batch experiments. Additionally, retardation factors and K d values for RDX and its degradation products were calibrated from column experiments using a one-dimensional transport model with equilibrium sorption (linear isotherm). Results from the column and batch experiments showed little to no sorption of RDX to the aquifer materials tested, with retardation factors ranging from 1.0 to 1.8 and K d values varying from 0 to 0.70 L/kg. Results also showed no measurable differences between the transport properties of RDX and its degradation products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Heerspink, Brent Porter; Pandey, Sachin; Boukhalfa, Hakim; ...
2017-05-02
High-explosive compounds including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) were used extensively in weapons research and testing at Los Alamos National Laboratory (LANL). Liquid effluents containing RDX were released to an outfall pond that flowed to Cañon de Valle at LANL's Technical Area 16 (TA-16), resulting in the contamination of the alluvial, intermediate and regional groundwater bodies. Monitoring of groundwater within Cañon de Valle has shown persistent RDX in the intermediate perched zone located between 225 and 311 m below ground surface. Monitoring data also show detectable levels of RDX putative anaerobic degradation products. Batch and column experiments were conducted to determine the extentmore » of adsorption-desorption and transport of RDX and its degradation products (MNX, DNX, and TNX) in major rock types that are within the RDX plume. All experiments in this paper were performed in the dark using water obtained from a well located at the center of the plume, which is fairly oxic and has a neutral pH of 7.5. Retardation factors and partitioning coefficient (K d) values for RDX were calculated from batch experiments. Additionally, retardation factors and K d values for RDX and its degradation products were calibrated from column experiments using a one-dimensional transport model with equilibrium sorption (linear isotherm). Results from the column and batch experiments showed little to no sorption of RDX to the aquifer materials tested, with retardation factors ranging from 1.0 to 1.8 and K d values varying from 0 to 0.70 L/kg. Finally, results also showed no measurable differences between the transport properties of RDX and its degradation products.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heerspink, Brent Porter; Pandey, Sachin; Boukhalfa, Hakim
High-explosive compounds including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) were used extensively in weapons research and testing at Los Alamos National Laboratory (LANL). Liquid effluents containing RDX were released to an outfall pond that flowed to Cañon de Valle at LANL's Technical Area 16 (TA-16), resulting in the contamination of the alluvial, intermediate and regional groundwater bodies. Monitoring of groundwater within Cañon de Valle has shown persistent RDX in the intermediate perched zone located between 225 and 311 m below ground surface. Monitoring data also show detectable levels of RDX putative anaerobic degradation products. Batch and column experiments were conducted to determine the extentmore » of adsorption-desorption and transport of RDX and its degradation products (MNX, DNX, and TNX) in major rock types that are within the RDX plume. All experiments in this paper were performed in the dark using water obtained from a well located at the center of the plume, which is fairly oxic and has a neutral pH of 7.5. Retardation factors and partitioning coefficient (K d) values for RDX were calculated from batch experiments. Additionally, retardation factors and K d values for RDX and its degradation products were calibrated from column experiments using a one-dimensional transport model with equilibrium sorption (linear isotherm). Results from the column and batch experiments showed little to no sorption of RDX to the aquifer materials tested, with retardation factors ranging from 1.0 to 1.8 and K d values varying from 0 to 0.70 L/kg. Finally, results also showed no measurable differences between the transport properties of RDX and its degradation products.« less
Vertical migration of some herbicides through undisturbed and homogenized soil columns
Aktar, Md. Wasim; Sengupta, Dwaipayan; Purkait, Swarnali; Chowdhury, Ashim
2008-01-01
A laboratory experiment was conducted by using three herbicides, two from dinitroaniline group and one from thiocarbamate group to know their degree of downward movement (leachability) through soil columns and their contribution in ground water contamination. Soil columns were loaded with Pendimethalin, Benthiocarb and Oryzalin at doses of 10.0, 10.0 and 7.7 kg/ha, respectively. After 30 days soil samples were analyzed from each segments (i.e. 0–6, 6–12, 12–18, 18–24 and 24–30 cm) for Benthiocarb and Pendimethalin by GLC equipped with Ni63 electron capture detector (ECD) and for Oryzalin by HPLC coupled with UV-VIS detector. The results obtained in the present study reveal that the residues of the three herbicides under investigation were predominantly confined to the upper soil layer (0–6 cm). Comparatively, low mobility of these herbicides in soils could be due to strong adsorption of these chemical to soil colloids. PMID:21218121
Lee, Sang Cheol; Park, Sunkyu
2016-09-01
It has been proposed to remove all potential inhibitors and sulfuric acid in biomass hydrolysates generated from dilute-acid pretreatment of biomass, based on three steps of sugar purification process. This study focused on its first step in which furan and phenolic compounds were selectively removed from the simulated hydrolysates using activated charcoal. Batch adsorption experiments demonstrated that the affinity of activated charcoal for each component was highest in the order of vanillic acid, 4-hydroxybenzoic acid, furfural, acetic acid, sulfuric acid, and xylose. The affinity of activated charcoal for furan and phenolic compounds proved to be significantly higher than that of the other three components. Four separation strategies were conducted with a combination of batch adsorption and continuous fixed-bed column adsorption methods. It was observed that xylose loss was negligible with near complete removal of furan and phenolic compounds, when at least one fixed-bed column adsorption was implemented in the strategy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of Solution Chemistry on Nano-Bubbles Transport in Saturated Porous Media
NASA Astrophysics Data System (ADS)
Hamamoto, S.; Takemura, T.; Suzuki, K.; Nihei, N.; Nishimura, T.
2017-12-01
Nano-bubbles (NBs) have a considerable potential for the remediation of soil and groundwater contaminated by organic compounds, especially when used in conjunction with bioremediation technologies. Understanding the transport mechanisms of NBs in soils is essential to optimize NB-based remediation techniques. In this study, one-dimensional column transport experiments using glass beads with 0.1 mm size were conducted, where NBs created by oxygen gas at different pH and ionic strength were injected to the column at the constant flow rate. The NBs concentration in the effluent was quantified using a resonant mass measurement technique. Effects of solution chemistry of the NBs water on NB transport in the porous media were investigated. The results showed that attachment of NBs was enhanced under higher ionic strength and lower pH conditions, caused by the reduced repulsive force between NBs and glass beads. In addition, bubble size distributions in the effluents showed that relatively larger NBs were retained in the column. This trend was more significant at lower pH condition.
ERIC Educational Resources Information Center
Davies, Don R.; Johnson, Todd M.
2007-01-01
A simple experiment for undergraduate organic chemistry students to separate a colorless mixture using column chromatography and then monitor the outcome of the separation using thin-layer chromatography (TLC) and infrared spectroscopy(IR) is described. The experiment teaches students the principle and techniques of column and thin-layer…
Colloid-Facilitated Transport of 137Cs in Fracture-Fill Material. Experiments and Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittrich, Timothy M.; Reimus, Paul William
2015-10-29
In this study, we demonstrate how a combination of batch sorption/desorption experiments and column transport experiments were used to effectively parameterize a model describing the colloid-facilitated transport of Cs in the Grimsel granodiorite/FFM system. Cs partition coefficient estimates onto both the colloids and the stationary media obtained from the batch experiments were used as initial estimates of partition coefficients in the column experiments, and then the column experiment results were used to obtain refined estimates of the number of different sorption sites and the adsorption and desorption rate constants of the sites. The desorption portion of the column breakthrough curvesmore » highlighted the importance of accounting for adsorption-desorption hysteresis (or a very nonlinear adsorption isotherm) of the Cs on the FFM in the model, and this portion of the breakthrough curves also dictated that there be at least two different types of sorption sites on the FFM. In the end, the two-site model parameters estimated from the column experiments provided excellent matches to the batch adsorption/desorption data, which provided a measure of assurance in the validity of the model.« less
Chen, A; Lin, C; Lu, W; Ma, Y; Bai, Y; Chen, H; Li, J
2010-03-15
A column leaching experiment was conducted to investigate the chemical dynamics of the percolating water and washed soil during decontamination of an acidic mine water-polluted soil. The results show that leaching of the contaminated soil with clean water rapidly reduced soluble acidity and ion concentrations in the soils. However, only <20% of the total actual acidity in the soil column was eliminated after 30 leaching cycles. It is likely that the stored acidity continues to be released to the percolating water over a long period of time. During the column leaching, dissolved Cu and Pb were rapidly leached out, followed by mobilization of colloidal Cu and Pb from the exchangeable and the oxide-bound fractions as a result of reduced ionic strength in the soil solution. The soluble Fe contained in the soil was rare, probably because the soil pH was not sufficiently low; marked mobility of colloidal Fe took place after the ionic strength of the percolating water was weakened and the mobilized Fe was mainly derived from iron oxides. In contrast with Cu, Pb and Fe, the concentration of leachate Zn and Mn showed a continuously decreasing trend during the entire period of the experiment. (c) 2009 Elsevier B.V. All rights reserved.
Comparison of formation and fluid-column logs in a heterogeneous basalt aquifer
Paillet, F.L.; Williams, J.H.; Oki, D.S.; Knutson, K.D.
2002-01-01
Deep observation boreholes in the vicinity of active production wells in Honolulu, Hawaii, exhibit the anomalous condition that fluid-column electrical conductivity logs and apparent profiles of pore-water electrical conductivity derived from induction conductivity logs are nearly identical if a formation factor of 12.5 is assumed. This condition is documented in three boreholes where fluid-column logs clearly indicate the presence of strong borehole flow induced by withdrawal from partially penetrating water-supply wells. This result appears to contradict the basic principles of conductivity-log interpretation. Flow conditions in one of these boreholes was investigated in detail by obtaining flow profiles under two water production conditions using the electromagnetic flowmeter. The flow-log interpretation demonstrates that the fluid-column log resembles the induction log because the amount of inflow to the borehole increases systematically upward through the transition zone between deeper salt water and shallower fresh water. This condition allows the properties of the fluid column to approximate the properties of water entering the borehole as soon as the upflow stream encounters that producing zone. Because this condition occurs in all three boreholes investigated, the similarity of induction and fluid-column logs is probably not a coincidence, and may relate to aquifer response under the influence of pumping from production wells.
Comparison of formation and fluid-column logs in a heterogeneous basalt aquifer.
Paillet, F L; Williams, J H; Oki, D S; Knutson, K D
2002-01-01
Deep observation boreholes in the vicinity of active production wells in Honolulu, Hawaii, exhibit the anomalous condition that fluid-column electrical conductivity logs and apparent profiles of pore-water electrical conductivity derived from induction conductivity logs are nearly identical if a formation factor of 12.5 is assumed. This condition is documented in three boreholes where fluid-column logs clearly indicate the presence of strong borehole flow induced by withdrawal from partially penetrating water-supply wells. This result appears to contradict the basic principles of conductivity-log interpretation. Flow conditions in one of these boreholes was investigated in detail by obtaining flow profiles under two water production conditions using the electromagnetic flowmeter. The flow-log interpretation demonstrates that the fluid-column log resembles the induction log because the amount of inflow to the borehole increases systematically upward through the transition zone between deeper salt water and shallower fresh water. This condition allows the properties of the fluid column to approximate the properties of water entering the borehole as soon as the upflow stream encounters that producing zone. Because this condition occurs in all three boreholes investigated, the similarity of induction and fluid-column logs is probably not a coincidence, and may relate to aquifer response under the influence of pumping from production wells.
PAR and UV effects on vertical migration and photosynthesis in Euglena gracilis.
Richter, Peter; Helbling, Walter; Streb, Christine; Häder, Donat-P
2007-01-01
Recently it was shown that the unicellular flagellate Euglena gracilis changes the sign of gravitaxis from negative to positive upon excessive radiation. This sign change persists in a cell culture for hours even if subsequently transferred to dim light. To test the ecological relevance of this behavior, a vertical column experiment was performed (max. depth 65 cm) to test distribution, photosynthetic efficiency and motility in different horizons of the column (surface, 20, 40 and 65 cm). One column was covered with a UV cut-off filter, which transmits photosynthetically active radiation (PAR) only, the other with a filter which transmits PAR and UV. The columns were irradiated with a solar simulator (PAR 162 W m(-2), UV-A 32.6 W m(-2), UV-B 1.9 W m(-2)). The experiment was conducted for 10 days, normally with a light/dim light cycle of 12 h:12 h, but in some cases the light regime was changed (dim light instead of full radiation). Under irradiation the largest fraction of cells was found at the bottom of the column. The cell density decreased toward the surface. Photosynthetic efficiency, determined with a pulse amplitude modulated fluorometer, was negligible at the surface and increased toward the bottom. While the cell suspension showed a positive gravitaxis at the bottom, the cells in the 40 cm horizon were bimodally oriented (about the same percentage of cells swimming upward and downward, respectively). At 20 cm and at the surface the cells showed negative gravitaxis. Positive gravitaxis was more pronounced in the UV + PAR samples. At the surface and in the 20 and 40 cm horizons photosynthetic efficiency was better in the PAR-only samples than in the PAR + UV samples. At the bottom photosynthetic efficiency was similar in both light treatments. The data suggest that high light reverses gravitaxis of the cells, so that they move downward in the water column. At the bottom the light intensity is lower (attenuation of the water column and self shading of the cells) and the cells recover. After recovery the cells swim upward again until the negative gravitaxis is reversed again.
Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Dushaw, Brian D; Baggeroer, Arthur B; Heaney, Kevin D; D'Spain, Gerald L; Colosi, John A; Stephen, Ralph A; Kemp, John N; Howe, Bruce M; Van Uffelen, Lora J; Wage, Kathleen E
2013-10-01
A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers.
suk O, Jin; Jeen, Sung-Wook; Gillham, Robert W; Gui, Lai
2009-01-26
Column experiments and numerical simulation were conducted to test the hypothesis that iron material having a high corrosion rate is not beneficial for the long-term performance of iron permeable reactive barriers (PRBs) because of faster passivation of iron and greater porosity loss close to the influent face of the PRBs. Four iron materials (Connelly, Gotthart-Maier, Peerless, and ISPAT) were used for the column experiments, and the changes in reactivity toward cis-dichloroethene (cis-DCE) degradation in the presence of dissolved CaCO3 were evaluated. The experimental results showed that the difference in distribution of the accumulated precipitates, resulting from differences in iron corrosion rate, caused a difference in the migration rate of the cis-DCE profiles and a significant difference in the pattern of passivation, indicating a faster passivation in the region close to the influent end for the material having a higher corrosion rate. For the numerical simulation, the accumulation of secondary minerals and reactivity loss of iron were coupled using an empirically-derived relationship that was incorporated into a multi-component reactive transport model. The simulation results provided a reasonable representation of the evolution of iron reactivity toward cis-DCE treatment and the changes in geochemical conditions for each material, consistent with the observed data. The simulations for long-term performance were also conducted to further test the hypothesis and predict the differences in performance over a period of 40 years under typical groundwater conditions. The predictions showed that the cases of higher iron corrosion rates had earlier cis-DCE breakthrough and more reduction in porosity starting from near the influent face, due to more accumulation of carbonate minerals in that region. Therefore, both the experimental and simulation results appear to support the hypothesis and suggest that reactivity changes of iron materials resulting from evolution of geochemical conditions should be considered in the design of iron PRBs.
Distillation Column Flooding Predictor
DOE Office of Scientific and Technical Information (OSTI.GOV)
George E. Dzyacky
2010-11-23
The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillationmore » columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid/vapor traffic that produce increased contact area and lead to substantial increases in separation efficiency – which translates to a 10% increase in energy efficiency on a BTU/bbl basis. The Flooding Predictor™ operates on the principle that between five to sixty minutes in advance of a flooding event, certain column variables experience an oscillation, a pre-flood pattern. The pattern recognition system of the Flooding Predictor™ utilizes the mathematical first derivative of certain column variables to identify the column’s pre-flood pattern(s). This pattern is a very brief, highly repeatable, simultaneous movement among the derivative values of certain column variables. While all column variables experience negligible random noise generated from the natural frequency of the process, subtle pre-flood patterns are revealed among sub-sets of the derivative values of column variables as the column approaches its hydraulic limit. The sub-set of column variables that comprise the pre-flood pattern is identified empirically through in a two-step process. First, 2ndpoint’s proprietary off-line analysis tool is used to mine historical data for pre-flood patterns. Second, the column is flood-tested to fine-tune the pattern recognition for commissioning. Then the Flooding Predictor™ is implemented as closed-loop advanced control strategy on the plant’s distributed control system (DCS), thus automating control of the column at its hydraulic limit.« less
Band Gap Optimization Design of Photonic Crystals Material
NASA Astrophysics Data System (ADS)
Yu, Y.; Yu, B.; Gao, X.
2017-12-01
The photonic crystal has a fundamental characteristic - photonic band gap, which can prevent light to spread in the crystals. This paper studies the width variation of band gaps of two-dimension square lattice photonic crystals by changing the geometrical shape of the unit cells’ inner medium column. Using the finite element method, we conduct numerical experiments on MATLAB 2012a and COMSOL 3.5. By shortening the radius in vertical axis and rotating the medium column, we design a new unit cell, with a 0.3*3.85e-7 vertical radius and a 15 degree deviation to the horizontal axis. The new cell has a gap 1.51 percent wider than the circle medium structure in TE gap and creates a 0.0124 wide TM gap. Besides, the experiment shows the first TM gap is partially overlapped by the second TE gap in gap pictures. This is helpful to format the absolute photonic band gaps and provides favorable theoretical basis for designing photonic communication material.
Kijjanapanich, P; Pakdeerattanamint, K; Lens, P N L; Annachhatre, A P
2012-12-01
This research was conducted to select suitable natural organic substrates as potential carbon sources for use as electron donors for biological sulphate reduction in a permeable reactive barrier (PRB). A number of organic substrates were assessed through batch and continuous column experiments under anaerobic conditions with acid mine drainage (AMD) obtained from an abandoned lignite coal mine. To keep the heavy metal concentration at a constant level, the AMD was supplemented with heavy metals whenever necessary. Under anaerobic conditions, sulphate-reducing bacteria (SRB) converted sulphate into sulphide using the organic substrates as electron donors. The sulphide that was generated precipitated heavy metals as metal sulphides. Organic substrates, which yielded the highest sulphate reduction in batch tests, were selected for continuous column experiments which lasted over 200 days. A mixture of pig-farm wastewater treatment sludge, rice husk and coconut husk chips yielded the best heavy metal (Fe, Cu, Zn and Mn) removal efficiencies of over 90%.
Horel, Agota; Schiewer, Silke; Misra, Debasmita
2015-09-01
The present research investigated to what extent results obtained in small microcosm experiments can be extrapolated to larger settings with non-uniform concentrations. Microbial hydrocarbon degradation in sandy sediments was compared for column experiments versus homogenized microcosms with varying concentrations of diesel, Syntroleum, and fish biodiesel as contaminants. Syntroleum and fish biodiesel had higher degradation rates than diesel fuel. Microcosms showed significantly higher overall hydrocarbon mineralization percentages (p < 0.006) than columns. Oxygen levels and moisture content were likely not responsible for that difference, which could, however, be explained by a strong gradient of fuel and nutrient concentrations through the column. The mineralization percentage in the columns was similar to small-scale microcosms at high fuel concentrations. While absolute hydrocarbon degradation increased, mineralization percentages decreased with increasing fuel concentration which was corroborated by saturation kinetics; the absolute CO2 production reached a steady plateau value at high substrate concentrations. Numerical modeling using HYDRUS 2D/3D simulated the transport and degradation of the investigated fuels in vadose zone conditions similar to those in laboratory column experiments. The numerical model was used to evaluate the impact of different degradation rate constants from microcosm versus column experiments.
Evaluation of leaching potential of three systemic neonicotinoid insecticides in vineyard soil
NASA Astrophysics Data System (ADS)
Kurwadkar, Sudarshan; Wheat, Remington; McGahan, Donald G.; Mitchell, Forrest
2014-12-01
Dinotefuran (DNT), imidacloprid (IMD), and thiamethoxam (THM) are commonly used neonicotinoid insecticides in a variety of agriculture operations. Although these insecticides help growers control pest infestation, the residual environmental occurrence of insecticides may cause unintended adverse ecological consequences to non-target species. In this study, the leaching behavior of DNT, IMD, and THM was investigated in soils collected from an active AgriLife Research Extension Center (AREC) vineyard. A series of column experiments were conducted to evaluate the leaching potential of insecticides under two experimental scenarios: a) individual pulse mode, and b) mixed pulse mode. In both scenarios, the breakthrough pattern of the insecticides in the mostly acidic to neutral vineyard soil clearly demonstrates medium to high leachability. Of the three insecticides studied for leaching, DNT has exhibited high leaching potential and exited the column with fewer pore volumes, whereas IMD was retained for longer, indicating lower leachability. Relative differences in leaching behavior of neonicotinoids could be attributed to their solubility with the leaching pattern IMD < THM < DNT showing strong correlation with increasing aqueous solubility 610 mg/L < 4100 mg/L < 39,830 mg/L. Triplicate column study experiments were conducted to evaluate the consistency of the breakthrough pattern of these insecticides. The repeatability of the breakthrough curves shows that both DNT and IMD are reproducible between runs, whereas, THM shows some inconsistency. Leaching behavior of neonicotinoid insecticides based on the leachability indices such as groundwater ubiquity score, relative leaching potential, and partitioning between different environmental matrices through a fugacity-based equilibrium criterion model clearly indicates that DNT may pose a greater threat to aquatic resources compared to IMD and THM.
Lee, Seung-Chan; Kang, Jin-Kyu; Sim, Eun-Hye; Choi, Nag-Choul; Kim, Song-Bae
2017-11-10
The aim of this study was to investigate Cr(VI) removal from chromium-plating rinse water using modacrylic anion-exchange fibers (KaracaronTM KC31). Batch experiments were performed with synthetic Cr(VI) solutions to characterize the KC31 fibers in Cr(VI) removal. Cr(VI) removal by the fibers was affected by solution pH; the Cr(VI) removal capacity was the highest at pH 2 and decreased gradually with a pH increase from 2 to 12. In regeneration and reuse experiments, the Cr(VI) removal capacity remained above 37.0 mg g -1 over five adsorption-desorption cycles, demonstrating that the fibers could be successfully regenerated with NaCl solution and reused. The maximum Cr(VI) removal capacity was determined to be 250.3 mg g -1 from the Langmuir model. In Fourier-transform infrared spectra, a Cr = O peak newly appeared at 897 cm -1 after Cr(VI) removal, whereas a Cr-O peak was detected at 772 cm -1 due to the association of Cr(VI) ions with ion-exchange sites. X-ray photoelectron spectroscopy analyses demonstrated that Cr(VI) was partially reduced to Cr(III) after the ion exchange on the surfaces of the fibers. Batch experiments with chromium-plating rinse water (Cr(VI) concentration = 1178.8 mg L -1 ) showed that the fibers had a Cr(VI) removal capacity of 28.1-186.4 mg g -1 under the given conditions (fiber dose = 1-10 g L -1 ). Column experiments (column length = 10 cm, inner diameter = 2.5 cm) were conducted to examine Cr(VI) removal from chromium-plating rinse water by the fibers under flow-through column conditions. The Cr(VI) removal capacities for the fibers at flow rates of 0.5 and 1.0 mL min -1 were 214.8 and 171.5 mg g -1 , respectively. This study demonstrates that KC31 fibers are effective in the removal of Cr(VI) ions from chromium-plating rinse water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jung Hwa; Hyung, Seok-Won; Mun, Dong-Gi
2012-08-03
A multi-functional liquid chromatography system that performs 1-dimensional, 2-dimensional (strong cation exchange/reverse phase liquid chromatography, or SCX/RPLC) separations, and online phosphopeptides enrichment using a single binary nano-flow pump has been developed. With a simple operation of a function selection valve, which is equipped with a SCX column and a TiO2 (titanium dioxide) column, a fully automated selection of three different experiment modes was achieved. Because the current system uses essentially the same solvent flow paths, the same trap column, and the same separation column for reverse-phase separation of 1D, 2D, and online phosphopeptides enrichment experiments, the elution time information obtainedmore » from these experiments is in excellent agreement, which facilitates correlating peptide information from different experiments.« less
Effect of physicochemical factors on transport and retention of graphene oxide in saturated media.
Chen, Chong; Shang, Jianying; Zheng, Xiaoli; Zhao, Kang; Yan, Chaorui; Sharma, Prabhakar; Liu, Kesi
2018-05-01
Fate and transport of graphene oxide (GO) have received much attention recently with the increase of GO applications. This study investigated the effect of salt concentration on the transport and retention behavior of GO particles in heterogeneous saturated porous media. Transport experiments were conducted in NaCl solutions with three concentrations (1, 20, and 50 mM) using six structurally packed columns (two homogeneous and four heterogeneous) which were made of fine and coarse grains. The results showed that GO particles had high mobility in all the homogeneous and heterogeneous columns when solution ionic strength (IS) was low. When IS was high, GO particles showed distinct transport ability in six structurally heterogeneous porous media. In homogeneous columns, decreasing ionic strength and increasing grain size increased the mobility of GO. For the column containing coarse-grained channel, the preferential flow path resulted in an early breakthrough of GO, and further larger contact area between coarse and fine grains caused a lower breakthrough peak and a stronger tailing at different IS. In the layered column, there was significant GO retention at coarse-fine grain interface where water flowed from coarse grain to fine grain. Our results indicated that the fate and transport of GO particles in the natural heterogeneous porous media was highly related to the coupled effect of medium structure and salt solution concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.
LNAPL Removal from Unsaturated Porous Media using Surfactant Infiltration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Lirong; Oostrom, Martinus
A series of unsaturated column experiments was performed to evaluate light non-aqueous phase liquid (LNAPL) fate and removal during surfactant solution infiltration. Surfactant-LNAPL phase behavior tests were conducted to optimize the remedial solutions. Packed sand and site sediment columns were first processed to establish representative LNAPL smear zone under unsaturated conditions. Infiltration of low-concentration surfactant was then applied in a stepwise flush mode, with 0.3 column pore volume (PV) of solution in each flush. The influence of infiltrated surfactant solution volume and pH on LNAPL removal was assessed. A LNAPL bank was observed at the very front of the firstmore » surfactant infiltration in each column, indicating that a very low surfactant concentration is needed to reduce the LNAPL-water interfacial tension sufficiently enough to mobilize trapped LNAPL under unsaturated conditions. More LNAPL was recovered as additional steps of surfactant infiltration were applied. Up to 99% LNAPL was removed after six infiltration steps, with less than 2.0 PV of total surfactant solution application, suggesting surfactant infiltration may be an effective method for vadose zone LNAPL remediation. The influence of pH tested in this study (3.99~10.85) was insignificant because the buffering capacity of the sediment kept the pH in the column higher than the zero point charge, pHzpc, of the sediment and therefore the difference between surfactant sorption was negligible.« less
NASA Astrophysics Data System (ADS)
Abdullah, Muhammad Faiz; Puay, How Tion; Zakaria, Nor Azazi
2017-10-01
Sustainable Urban Drainage System (SuDS) such as swales and rain gardens is showing growing popularity as a green technology for stormwater management and it can be used in all types of development to provide a natural approach to managing drainage. Soil permeability is a critical factor in selecting the right SuDS technique for a site. On this basis, we have set up a laboratory experiment to investigate the porosity and saturated hydraulic conductivity of single size and binary (two sizes) mixture using column-test as a preliminary investigation with two sets of glass beads with different sizes are used in this study. The porosity and saturated hydraulic conductivity for varies volume fraction of the course and fine glass beads were measured. It was found that the porosity of the binary mixture does not increase with the increment of the ratio of coarse to fine beads until the volume fraction of fine particles is equal to the coarse component. Saturated hydraulic conductivity result shows that the assumption of random packing was not achieved at the higher coarse ratio where most of the fine particles tend to sit at the bottom of the column forming separate layers which lower the overall hydraulic conductivity value.
NASA Astrophysics Data System (ADS)
Lautz, Laura K.
2012-09-01
SummaryRates of water exchange between surface water and groundwater (SW-GW) can be highly variable over time due to temporal changes in streambed hydraulic conductivity, storm events, and oscillation of stage due to natural and regulated river flow. There are few effective field methods available to make continuous measurements of SW-GW exchange rates with the temporal resolution required in many field applications. Here, controlled laboratory experiments were used to explore the accuracy of analytical solutions to the one-dimensional heat transport model for capturing temporal variability of flux through porous media from propagation of a periodic temperature signal to depth. Column experiments were used to generate one-dimensional flow of water and heat through saturated sand with a quasi-sinusoidal temperature oscillation at the upstream boundary. Measured flux rates through the column were compared to modeled flux rates derived using the computer model VFLUX and the amplitude ratio between filtered temperature records from two depths in the column. Imposed temporal changes in water flux through the column were designed to replicate observed patterns of flux in the field, derived using the same methodology. Field observations of temporal changes in flux were made over multiple days during a large-scale storm event and diurnally during seasonal baseflow recession. Temporal changes in flux that occur gradually over days, sub-daily, and instantaneously in time can be accurately measured using the one-dimensional heat transport model, although those temporal changes may be slightly smoothed over time. Filtering methods effectively isolate the time-variable amplitude and phase of the periodic temperature signal, effectively eliminating artificial temporal flux patterns otherwise imposed by perturbations of the temperature signal, which result from typical weather patterns during field investigations. Although previous studies have indicated that sub-cycle information from the heat transport model is not reliable, this laboratory experiment shows that the sub-cycle information is real and sub-cycle changes in flux can be observed using heat transport modeling. One-dimensional heat transport modeling provides an easy-to-implement, cost effective, reliable field tool for making continuous observations of SW-GW exchange through time, which may be particularly useful for monitoring exchange rates during storms and other conditions that create temporal change in hydraulic gradient across the streambed interface or change in streambed hydraulic conductivity.
A Column Dispersion Experiment.
ERIC Educational Resources Information Center
Corapcioglu, M. Y.; Koroglu, F.
1982-01-01
Crushed glass and a Rhodamine B solution are used in a one-dimensional optically scanned column experiment to study the dispersion phenomenon in porous media. Results indicate that the described model gave satisfactory results and that the dispersion process in this experiment is basically convective. (DC)
Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles.
Xu, Yinhui; Zhao, Dongye
2007-05-01
Laboratory batch and column experiments were conducted to investigate the feasibility of using a new class of stabilized zero-valent iron (ZVI) nanoparticles for in situ reductive immobilization of Cr(VI) in water and in a sandy loam soil. Batch kinetic tests indicated that 0.08g/L of the ZVI nanoparticles were able to rapidly reduce 34mg/L of Cr(VI) in water at an initial pseudo first-order rate constant of 0.08h(-1). The extent of Cr(VI) reduction was increased from 24% to 90% as the ZVI dosage was increased from 0.04 to 0.12g/L. The leachability of Cr preloaded in a Cr-loaded sandy soil was reduced by nearly 50% when the soil was amended with 0.08g/L of the ZVI nanoparticles in batch tests at a soil-to-solution ratio of 1g: 10mL. Column experiments indicated that the stabilized ZVI nanoparticles are highly deliverable in the soil column. When the soil column was treated with 5.7 bed volumes of 0.06g/L of the nanoparticles at pH 5.60, only 4.9% of the total Cr was eluted compared to 12% for untreated soil under otherwise identical conditions. The ZVI treatment reduced the TCLP leachability of Cr in the soil by 90%, and the California WET (Waste Extraction Test) leachability by 76%. The stabilized ZVI nanoparticles may serve as a highly soil-dispersible and effective agent for in situ reductive immobilization of chromium in soils, groundwater, or industrial wastes.
NASA Astrophysics Data System (ADS)
Reichel, Katharina; Totsche, Kai Uwe
2013-04-01
Biogeochemical interfaces in soils (Totsche et al. 2010) are the "hot spots" of microbial activity and the processing of organic compounds in soils. The production and relocation of mobile organic matter (MOM) and biocolloids like microorganisms are key processes for the formation and depth propagation of biogeochemical interfaces in soils (BGI). Phenanthrene (PHE) has been shown to affect microbial communities in soils (Ding et al. 2012) and may induce shifts in MOM quantity and quality (amount, type and properties of MOM). We hypothesize that the properties of BGI in soil change significantly due to the presence of PHE. The objectives of this study are (i) to evaluate the effect of PHE on soil microbial communities and on MOM quantity and quality under flow conditions with single- and two-layer column experiments and (ii) to assess the role of these processes for the physicochemical, mechanical and sorptive properties of BGI in soils. The soil columns were operated under water-unsaturated conditions. The top layer (source layer, SL, 2 cm) is made of sieved soil material (Luvisol, Scheyern, Germany) spiked with PHE (0.2 mg/g). The bottom layer (reception layer, RL, 10 cm) comprised the same soil without PHE. PHE-free columns were conducted in parallel as reference. Release and transport of MOM in mature soil of a single-layer column experiment was found to depend on the transport regime. The release of larger sized MOM (>0.45 µm) was restricted to an increased residence time during flow interruptions. Steady flow conditions favor the release of smaller MOM (<0.45 µm). Compared to the reference, in the two-layer column experiments higher OC concentrations were detected in the effluent from PHE spiked columns after enhanced flow interruptions (26d, 52d). That indicated the PHE influenced production or mobilization of MOM. Parallel factor analysis of fluorescence excitation and emission matrices revealed the presence of a constant DOM background and two new unknown components in the effluent, probably PHE metabolites. The emergence of new components emphasizes the role of metabolization processes in the release of MOM. The identification of key microbial actors and communities are currently in progress. Totsche, K.U. et al. (2010): Biogeochemical interfaces in soil: The interdisciplinary challenge for soil science. J. Plant Nutr. Soil Sci., 173(1), 88-99 Ding, G.-C., Heuer, H. & Smalla, K. (2012): Dynamics of bacterial communities in two unpolluted soils after spiking with phenanthrene: soil type specific and common responders. Front Microbio 10.3389/fmicb.2012.00290.
Fate and Transport of CL-20 and RDX in Unsaturated Laboratory Columns
NASA Astrophysics Data System (ADS)
Lemond, L. A.; Gamerdinger, A. P.; Szecsody, J. E.
2005-05-01
This research examines the fate and transport of two explosive compounds, Hexanitrohexaazaisowurtzitane (CL-20) and Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in unsaturated laboratory columns. The transport and fate of these compounds were studied under saturated and unsaturated conditions in three natural soils: coarse sand, sandy loam, and a silt loam. Unsaturated column experiments were conducted using an ultra-centrifugation method. Sorption and degradation parameters were determined by moment analysis and hydrodynamic parameters were assessed with a two-region flow model. Differences in these parameters were evaluated as a function of water content. The fate and transport of CL-20 is highly dependent on 1) the soil type and 2) the compound's residence time in the soil and 3) water content of the media. Sorption of CL-20 was rate-limited. CL-20 degradation in saturated columns produced a half-life of as much as 22hr, but in unsaturated columns the degradation rate increased considerably, producing a half life of as little as 2hr. The fate and transport of RDX are also affected by the soil type, but sorption appeared to be instantaneous. Degradation of RDX was negligible. Our results suggest that at very low water content immobile water regions may become (at least in effect) isolated water regions and significantly alter the retardation of the tracer. In the sandy loam, there was as much as a 20-fold over-prediction of the retardation factor in the unsaturated saturated columns when predicted by Kd values derived from saturated columns. In the coarse sand, Kd values derived from saturated columns over-predicted retardation in the unsaturated columns by as much as 30%. In the silt loam, retardation factors were over-predicted by as much as 80%. At very low water contents, predictions of tracer behavior become very difficult because of changes in the flow regime that cannot be directly accounted for.
Can we estimate biogeochemical uptake rates in sediments from reach-scale data or vice versa?
NASA Astrophysics Data System (ADS)
Gonzalez-Pinzon, R.; Garayburu-Caruso, V. A.
2017-12-01
Hydrologists and stream ecologists want to understand how reactive transport processes from sub-meter to reach scales aggregate to determine nutrient and carbon export across watersheds. Mesocosm (sub-meter) scale experiments offer the advantage of being tractable and affordable but may be spatially and temporally irrelevant for describing watershed-scale processes. While reach scale experiments sample larger heterogeneities, they provide aggregated information that does not allow for easy detection of hot-spots and hot-moments, and might still be irrelevant for describing watershed processes if they are not conducted under varying flow conditions. We conducted mesocosm (column) and reach-scale experiments along a first-to-eight stream order continuum using nutrient and resazurin tracers to investigate how information collected at the sub-meter scale (mesocosom experiments) compares to that collected at the reach scale, and vice versa. Our work highlights the difficulty of finding useful patterns not only across stream orders (i.e., for the same type of experiment) but also across experiments. Our results offer quantitative perspective on why hydrologists and stream ecologists must depart from the status quo of conducting solute-specific (e.g., only N), site-specific (primarily headwaters) and single-season (mainly summer) experiments to understand controls on nutrient retention.
Separation of the Carotenoid Bixin from Annatto Seeds Using Thin-Layer and Column Chromatography
ERIC Educational Resources Information Center
McCullagh, James V.; Ramos, Nicholas
2008-01-01
In this experiment the carotenoid bixin is isolated from annatto ("Bixa orellana") seeds using column chromatography. The experiment has several key advantages over previous pigment separation experiments. First, unlike other experiments significant quantities of the carotenoid (typically 20 to 25 mg) can be isolated from small quantities of plant…
ARM - Midlatitude Continental Convective Clouds - Single Column Model Forcing (xie-scm_forcing)
Xie, Shaocheng; McCoy, Renata; Zhang, Yunyan
2012-10-25
The constrained variational objective analysis approach described in Zhang and Lin [1997] and Zhang et al. [2001]was used to derive the large-scale single-column/cloud resolving model forcing and evaluation data set from the observational data collected during Midlatitude Continental Convective Clouds Experiment (MC3E), which was conducted during April to June 2011 near the ARM Southern Great Plains (SGP) site. The analysis data cover the period from 00Z 22 April - 21Z 6 June 2011. The forcing data represent an average over the 3 different analysis domains centered at central facility with a diameter of 300 km (standard SGP forcing domain size), 150 km and 75 km, as shown in Figure 1. This is to support modeling studies on various-scale convective systems.
NASA Astrophysics Data System (ADS)
Li, Wen; Wang, Tong; Na, Yu
2017-08-01
FRP tube-concrete-steel tube composite column (DSTC) was a new type of composite structures. The column consists of FRP outer tube and steel tube and concrete. Concrete was filled between FRP outer tube and steel tube. This column has the character of light and high strength and corrosion resistance. In this paper, properties of DSTC axial compression were studied in depth. The properties were studied by two groups DSTC short columns under axial compression performance experiment. The different size of DSTC short columns was importantly considered. According to results of the experiment, we can conclude that with the size of the column increases the ability of it to resist deformation drops. On the other hand, the size effect influences on properties of different concrete strength DSTC was different. The influence of size effect on high concrete strength was less than that of low concrete.
Variation in Biofilm Stability with Decreasing pH Affects Porous Medium Hydraulic Properties
NASA Astrophysics Data System (ADS)
Kirk, M. F.; Santillan, E. F.; McGrath, L. K.; Altman, S. J.
2010-12-01
Changes to microbial communities caused by subsurface CO2 injection may have many consequences, including possible impacts to CO2 transport. We used column experiments to examine how decreasing pH, a geochemical change associated with CO2 injection, will affect biofilm stability and ultimately the hydraulic properties of porous media. Columns consisted of 1 mm2 square capillary tubes filled with 105-150 µm diameter glass beads. Artificial groundwater medium containing 1 mM glucose was pumped through the columns at a rate of 0.01 mL/min (q = 14.4 m/day; Re = 0.03). Columns were inoculated with 3 × 10^8 CFU (avg.) of Pseudomonas fluorescens, a model biofilm former, transformed with a green fluorescent protein. Biomass distribution and transport was examined using scanning laser confocal microscopy and effluent plating. Variation in the bulk hydraulic properties of the columns was measured using manometers. In an initial experiment, biofilm growth was allowed to occur for seven days in medium with pH 7.3. Within this period, cells uniformly coated bead surfaces, effluent cell numbers stabilized at 1 × 10^9 CFU/mL, and hydraulic conductivity (K) decreased 77%. Next, medium with pH 4 was introduced. As a result, biomass within the reactor redistributed from bead surfaces to pores, effluent cell numbers decreased to 3 × 10^5 CFU/mL, and K decreased even further (>94% reduction). This decreased K was maintained until the experiment was terminated, seven days after introducing low pH medium. These results suggest that changes in biomass distribution as a result of decreased pH may initially limit transport of solubility-trapped CO2 following CO2 injection. Experiments in progress and planned will test this result in more detail and over longer periods of time. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Long-term flow rates and biomat zone hydrology in soil columns receiving septic tank effluent.
Beal, C D; Gardner, E A; Kirchhof, G; Menzies, N W
2006-07-01
Soil absorption systems (SAS) are used commonly to treat and disperse septic tank effluent (STE). SAS can hydraulically fail as a result of the low permeable biomat zone that develops on the infiltrative surface. The objectives of this experiment were to compare the hydraulic properties of biomats grown in soils of different textures, to investigate the long-term acceptance rates (LTAR) from prolonged application of STE, and to assess if soils were of major importance in determining LTAR. The STE was applied to repacked sand, Oxisol and Vertisol soil columns over a period of 16 months, at equivalent hydraulic loading rates of 50, 35 and 8L/m(2)/d, respectively. Infiltration rates, soil matric potentials, and biomat hydraulic properties were measured either directly from the soil columns or calculated using established soil physics theory. Biomats 1 to 2 cm thick developed in all soils columns with hydraulic resistances of 27 to 39 d. These biomats reduced a 4 order of magnitude variation in saturated hydraulic conductivity (K(s)) between the soils to a one order of magnitude variation in LTAR. A relationship between biomat resistance and organic loading rate was observed in all soils. Saturated hydraulic conductivity influenced the rate and extent of biomat development. However, once the biomat was established, the LTAR was governed by the resistance of the biomat and the sub-biomat soil unsaturated flow regime induced by the biomat. Results show that whilst initial soil K(s) is likely to be important in the establishment of the biomat zone in a trench, LTAR is determined by the biomat resistance and the unsaturated soil hydraulic conductivity, not the K(s) of a soil. The results call into question the commonly used approach of basing the LTAR, and ultimately trench length in SAS, on the initial K(s) of soils.
Design and Operation of Cryogenic Distillation Research Column for Ultra-Low Background Experiments
NASA Astrophysics Data System (ADS)
Chiller, Christopher; Alanson Chiller, Angela; Jasinski, Benjamin; Snyder, Nathan; Mei, Dongming
2013-04-01
Motivated by isotopically enriched germanium (76Ge and 73Ge) for monocrystalline crystal growth for neutrinoless double-beta decay and dark matter experiments, a cryogenic distillation research column was developed. Without market availability of distillation columns in the temperature range of interest with capabilities necessary for our purposes, we designed, fabricated, tested, refined and operated a two-meter research column for purifying and separating gases in the temperature range from 100-200K. Due to interest in defining stratification, purity and throughput optimization, capillary lines were integrated at four equidistant points along the length of the column such that real-time residual gas analysis could guide the investigation. Interior gas column temperatures were monitored and controlled within 0.1oK accuracy at the top and bottom. Pressures were monitored at the top of the column to four significant figures. Subsequent impurities were measured at partial pressures below 2E-8torr. We report the performance of the column in this paper.
Reliability assessment of slender concrete columns at the stability failure
NASA Astrophysics Data System (ADS)
Valašík, Adrián; Benko, Vladimír; Strauss, Alfred; Täubling, Benjamin
2018-01-01
The European Standard for designing concrete columns within the use of non-linear methods shows deficiencies in terms of global reliability, in case that the concrete columns fail by the loss of stability. The buckling failure is a brittle failure which occurs without warning and the probability of its formation depends on the columns slenderness. Experiments with slender concrete columns were carried out in cooperation with STRABAG Bratislava LTD in Central Laboratory of Faculty of Civil Engineering SUT in Bratislava. The following article aims to compare the global reliability of slender concrete columns with slenderness of 90 and higher. The columns were designed according to methods offered by EN 1992-1-1 [1]. The mentioned experiments were used as basis for deterministic nonlinear modelling of the columns and subsequent the probabilistic evaluation of structural response variability. Final results may be utilized as thresholds for loading of produced structural elements and they aim to present probabilistic design as less conservative compared to classic partial safety factor based design and alternative ECOV method.
Sulphate release from construction and demolition material in soils
NASA Astrophysics Data System (ADS)
Abel, Stefan; Wessolek, Gerd
2013-04-01
In Berlin and many other cities soils are heavily influenced by anthropogenic activities and deposited substrates. A widespread technical substrate in technosols is construction and demolition material from residential and industrial buildings. Existing rubble landfills without sealing facilities pose threats to ground water quality. In the central city of Berlin rising sulphate concentrations of groundwaters (up to 1200 mg/L) are measured since more than two decades. Previous studies point out that the high sulphate concentrations are mainly attributed to World War II rubble. The major part of debris was deposited in form of landfills and contains approximately 0.3 wt% gypsum. The scope of our research is to determine mechanisms of sulphate release from debris material, interactions between sulphate release, soil hydraulic properties and potential sinks of sulphur. To estimate equilibrium concentration and kinetics of sulphate release of various debris components batch and column experiments are conducted. The same method is applied to determine potential adsorptive character of common debris components. To analyse the impacts of soil hydraulic properties on sulphate leaching we carry out soil column experiments with defined upper and lower boundary conditions, varying water flow velocity and induced preferential flow. Simultaneously we monitor sulphate concentration of soil leachate in a 2 m³ lysimeter. First results of the batch experiments show that gypsum from broken stucco is the main source of sulphate in the observed technosols. Other components as mortar and slag show a quite low sulphate release. Similar results are found within the column experiments. For brigs medium and strongly time dependent sulphate release is determined. Concentrations up to 1500 mg/L are measured in the soil leachate from the lysimeter.
Seismic retrofit of cruciform-shaped columns in the Aurora Avenue Bridge using FRP wrapping.
DOT National Transportation Integrated Search
2010-08-01
Experimental tests were conducted on seven 1/3-scale column specimens to evaluate the vulnerabilities of existing cruciform-shaped columns and to develop appropriate retrofit measures that address the identified vulnerabilities. The specimens represe...
NASA Technical Reports Server (NTRS)
Dobler, Jeremy T.; Harrison, F. Wallace; Browell, Edward V.; Lin, Bing; McGregor, Doug; Kooi, Susan; Choi, Yonghoon; Ismail, Syed
2013-01-01
The 2007 National Research Council (NRC) Decadal Survey on Earth Science and Applications from Space recommended Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) as a mid-term, Tier II, NASA space mission. ITT Exelis, formerly ITT Corp., and NASA Langley Research Center have been working together since 2004 to develop and demonstrate a prototype Laser Absorption Spectrometer for making high-precision, column CO2 mixing ratio measurements needed for the ASCENDS mission. This instrument, called the Multifunctional Fiber Laser Lidar (MFLL), operates in an intensity-modulated, continuous-wave mode in the 1.57- micron CO2 absorption band. Flight experiments have been conducted with the MFLL on a Lear-25, UC-12, and DC-8 aircraft over a variety of different surfaces and under a wide range of atmospheric conditions. Very high-precision CO2 column measurements resulting from high signal-to-noise (great than 1300) column optical depth measurements for a 10-s (approximately 1 km) averaging interval have been achieved. In situ measurements of atmospheric CO2 profiles were used to derive the expected CO2 column values, and when compared to the MFLL measurements over desert and vegetated surfaces, the MFLL measurements were found to agree with the in situ-derived CO2 columns to within an average of 0.17% or approximately 0.65 ppmv with a standard deviation of 0.44% or approximately 1.7 ppmv. Initial results demonstrating ranging capability using a swept modulation technique are also presented.
Adsorption kinetic and desorption studies of Cd2+ on Multi-Carboxylic-Functionalized Silica Gel
NASA Astrophysics Data System (ADS)
Li, Min; Wei, Jian; Meng, Xiaojing; Wu, Zhuqiang; Liang, Xiuke
2018-01-01
In the present study, the adsorption behavior of cadmium (II) ion from aqueous solution onto multi-carboxylic-functionalized silica gel (SG-MCF) has been investigated in detail by means of batch and column experiments. Batch experiments were performed to evaluate the effects of contact time on adsorption capacity of cadmium (II) ion. The kinetic data were analyzed on the basis of the pseudo-first-order kinetic and the pseudo-second-order kinetic models and consequently, the pseudo-second-order kinetic can better describe the adsorption process than the pseudo-first-order kinetic model. And the adsorption mechanism of the process was studied by intra-particle and film diffusion, it was found out that the adsorption rate was governed primarily by film diffusion to the adsorption onto the SG-MCF. In addition, column experiments were conducted to assess the effects initial inlet concentration and the flow rate on breakthrough time and adsorption capacity ascertaining the practical applicability of the adsorbent. The results suggest that the total amount of adsorbed cadmium (II) ion increased with declined flow rate and increased the inlet concentration. The adsorption-desorption experiment confirmed that adsorption capacity of cadmium (II) ion didn’t present an obvious decrease after five cycles.
Adsorption kinetic and desorption studies of Cu2+ on Multi-Carboxylic-Functionalized Silica Gel
NASA Astrophysics Data System (ADS)
Li, Min; Meng, Xiaojing; Liu, Yushuang; Hu, Xinju; Liang, Xiuke
2018-01-01
In the present study, the adsorption behavior of copper (II) ion from aqueous solution onto multi-carboxylic-functionalized silica gel (SG-MCF) has been investigated in detail by means of batch and column experiments. Batch experiments were performed to evaluate the effects of contact time on adsorption capacity of copper (II) ion. The kinetic data were analyzed on the basis of the pseudo-first-order kinetic and the pseudo-second-order kinetic models and consequently, the pseudo-second-order kinetic can better describe the adsorption process than the pseudo-first-order kinetic model. And the adsorption mechanism of the process was studied by intra-particle and film diffusion, it was found out that the adsorption rate was governed primarily by film diffusion to the adsorption onto the SG-MCF. In addition, column experiments were conducted to assess the effects initial inlet concentration and the flow rate on breakthrough time and adsorption capacity ascertaining the practical applicability of the adsorbent. The results suggest that the total amount of adsorbed copper (II) ion increased with declined flow rate and increased the inlet concentration. The adsorption-desorption experiment confirmed that adsorption capacity of copper (II) ion didn’t present an obvious decrease after five cycles.
Fetzer, Jasmin; Holzner, Markus; Plötze, Michael; Furrer, Gerhard
2017-12-01
Clogging of streambeds by suspended particles (SP) can cause environmental problems, as it can negatively influence, e.g., habitats for macrozoobenthos, fish reproduction and groundwater recharge. This especially applies in the case of silt-sized SP. Until now, most research has dealt with coarse SP and was carried out in laboratory systems. The aims of this study are to examine (1) whether physical clogging by silt-sized SP exhibits the same dynamics and patterns as by sand-sized SP, and (2) the comparability of results between laboratory and field experiments. We carried out vertical column experiments with sand-sized bed material and silt-sized SP, which are rich in mica minerals. In laboratory experiments, we investigated the degree of clogging quantified by the reduction of porosity and hydraulic conductivity and the maximum clogging depth as a function of size and shape of bed material, size of SP, pore water flow velocity, and concentration of calcium cations. The SP were collected from an Alpine sedimentation basin, where our field experiments were carried out. To investigate the clogging process in the field, we buried columns filled with sand-sized quartz in the stream bed. We found that the maximal bed-to-grain ratio where clogging still occurs is larger for silt-sized SP than for sand-sized SP. The observed clogging depths and the reduction of flow rate through the column from our laboratory experiments were comparable to those from the field. However, our field results showed that the extent of clogging strongly depends on the naturally-occurring hydrological dynamics. The field location was characterized by a more polydisperse suspension, a strongly fluctuating water regime, and high SP concentrations at times, leading to more heterogeneous and more pronounced clogging when compared to laboratory results. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Chemical factors influencing colloid-facilitated transport of contaminants in porous media
Roy, Sujoy B.; Dzombak, David A.
1997-01-01
The effects of colloids on the transport of two strongly sorbing solutesa hydrophobic organic compound, phenanthrene, and a metal ion, Ni2+were studied in sand-packed laboratory columns under different pH and ionic strength conditions. Two types of column experiments were performed as follows: (i) sorption/mobilization experiments where the contaminant was first sorbed in the column under conditions where no colloids were released and mobilized under conditions where colloids were released as a result of ionic strength reduction in the influent; and (ii) transport experiments where the contaminant, dissolved or sorbed on colloids, was injected into columns packed with a strongly sorbing porous medium. In the first type of experiment, contaminant mobilization was significant only when all releasable colloids were flushed from the column. In all other cases, although high colloid particle concentrations were encountered, there was no marked effect on total contaminant concentrations. In the second type of experiment, colloid deposition efficiencies were shown to control the enhancement of transport. The deposition efficiency was a function of the pH (for a high organic content sand) and of the contaminant concentration (for a charged species such as Ni2+).
NASA Astrophysics Data System (ADS)
Regberg, A. B.; Singha, K.; Picardal, F.; Brantley, S. L.
2011-12-01
Previous research has linked measured changes in the bulk electrical conductivity (σb) of water-saturated sediments to the respiration and growth of anaerobic bacteria. If the mechanism causing this signal is understood and characterized it could be used to identify and monitor zones of bacterial activity in the subsurface. The 1-D reactive transport model PHREEQC was used to understand σb signals by modeling chemical gradients within two column reactors and corresponding changes in effluent chemistry. The flow-through column reactors were packed with Fe(III)-bearing sediment from Oyster, VA and inoculated with an environmental consortia of microorganisms. Influent in the first reactor was amended with 1mM Na-acetate to encourage the growth of iron-reducing bacteria. Influent in the second reactor was amended with 0.1mM Na-Acetate and 2mM NaNO3 to encourage the growth of nitrate-reducing bacteria. While effluent concentrations of acetate, Fe(II), NO3-, NO2-, and NH4+ remained at steady state, we measured a 3-fold increase (0.055 S/m - 0.2 S/m) in σb in the iron-reducing column and a 10-fold increase in σb (0.07 S/m - 0.8 S/m) in the nitrate-reducing column over 198 days. The ionic strength in both reactors remained constant through time indicating that the measured increases in σb were not caused by changing effluent concentrations. PHREEQC successfully matched the measured changes in effluent concentrations for both columns when the reaction database was modified in the following manner. For the iron-reducing column, kinetic expressions governing the rate of iron reduction, the rate of bacterial growth, and the production of methane were added to the reaction database. Additionally, surface adsorption and cation exchange reactions were added so that the model was consistent with measured effluent chemistry. For the nitrate-reducing column, kinetic expressions governing nitrate reduction and bacterial growth were added to the reaction database. Additionally, immobile porosity was added along with adsorption and cation exchange reactions. Although the model revealed the existence of chemical and biological gradients within the columns that were not discernable as changes in effluent concentrations, none of the chemical reactions or gradients could explain the measured σb increases in either column. This result is not consistent with chemical gradients within the column reactor causing the measured changes in σb. To test the alternate hypothesis that microbial biofilms are electrically conductive, we used the output from PHREEQC to calculate the amount of biomass produced within the column reactors. If biofilm causes the σb changes, our model is consistent with an electrical conductivity for biomass in the iron-reducing column between 2.75 and 220 S/m. The model is also consistent with an electrical conductivity for biomass in the nitrate-reducing column between 350 and 35,000 S/m. These estimates of biomass electrical conductivity are poorly constrained but represent a first step towards understanding the electrical properties associated with respiring biofilms.
Complex conductivity of oil-contaminated clayey soils
NASA Astrophysics Data System (ADS)
Deng, Yaping; Shi, Xiaoqing; Revil, André; Wu, Jichun; Ghorbani, A.
2018-06-01
Spectral induced polarization (SIP) is considered as a promising tool in environmental investigations. However, few works have done regarding the electrical signature of oil contamination of clayey soils upon induced polarization. Laboratory column experiments plus one sandbox experiment are conducted in this study to investigate the performances of the SIP method in oil-contaminated soils. First, a total of 12 soils are investigated to reveal the influences of water and soil properties on the saturation dependence of the complex conductivity below 100 Hz. Results show that the magnitude of the complex conductivity consistently decreases with decreasing water saturation for all soils samples. The saturation n and quadrature conductivity p exponents tend to increase slightly with increasing water salinity when using a linear conductivity model. The saturation exponent increases marginally with the cation exchange capacity (CEC) and the specific surface area (Ssp) while the quadrature conductivity exponent exhibits a relatively stronger dependence on both CEC and Ssp. For the low CEC soil samples (normally ≤10 meq/100 g), the quadrature conductivity exponent p correlates well with the saturation exponent n using the relationship p = n-1. SIP method is further applied in a sandbox experiment to estimate the saturation distribution and total volume of the oil. Results demonstrate that the SIP method has a great potential for mapping the organic contaminant plume and quantifying the oil volume.
Jiang, Xiaoyue; Tang, Hao-Yen; Lu, Yipeng; Ng, Eldwin J; Tsai, Julius M; Boser, Bernhard E; Horsley, David A
2017-09-01
In this paper, we present a single-chip 65 ×42 element ultrasonic pulse-echo fingerprint sensor with transmit (TX) beamforming based on piezoelectric micromachined ultrasonic transducers directly bonded to a CMOS readout application-specific integrated circuit (ASIC). The readout ASIC was realized in a standard 180-nm CMOS process with a 24-V high-voltage transistor option. Pulse-echo measurements are performed column-by-column in sequence using either one column or five columns to TX the ultrasonic pulse at 20 MHz. TX beamforming is used to focus the ultrasonic beam at the imaging plane where the finger is located, increasing the ultrasonic pressure and narrowing the 3-dB beamwidth to [Formula: see text], a factor of 6.4 narrower than nonbeamformed measurements. The surface of the sensor is coated with a poly-dimethylsiloxane (PDMS) layer to provide good acoustic impedance matching to skin. Scanning laser Doppler vibrometry of the PDMS surface was used to map the ultrasonic pressure field at the imaging surface, demonstrating the expected increase in pressure, and reduction in beamwidth. Imaging experiments were conducted using both PDMS phantoms and real fingerprints. The average image contrast is increased by a factor of 1.5 when beamforming is used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veeger, A.I.; Moulton, K.L.
1993-03-01
The nature of low-temperature chemical reactions occurring in bedrock aquifers of southern Rhode Island was investigated in the laboratory using flow-through columns. Crushed samples of Narragansett Pier Granite (NPG), Scituate Granite Gneiss (SGG), Hope Valley Alaskite Gneiss (HVAG) and Ten Rod Granite Gneiss (TRGG) were placed in flow-through columns. Water was circulated through the columns at a 3 ml/min and maintained at 25 C and at equilibrium with atmospheric carbon dioxide. Samples were collected from the columns at increasing time intervals and were analyzed for pH, conductivity, major cations and anions, and silica. The leachate compositions show that distinctive chemicalmore » differences can be expected in ground water that flows through each of these different rock types. Chemical modeling of the leachate solutions shows that reactions involving plagioclase feldspar (albiteoligoclase), reactive accessory minerals such as sphene, and, to a lesser degree, potassium feldspar and biotite, dominate the solution chemistry, with amorphous oxides and aluminosilicates formed as products of the weathering reactions. Small concentrations of reactive minerals may profoundly affect the composition of the leachate. Batch experiments using mineral separates revealed that the calcium in the NPG leachate was almost entirely attributable to sphene which comprises less than 1% of the rock.« less
Chang, Hyun-Shik; Um, Wooyong; Rod, Kenton; Serne, R Jeff; Thompson, Aaron; Perdrial, Nicolas; Steefel, Carl I; Chorover, Jon
2011-10-01
Leaching behavior of Sr and Cs in the vadose zone of Hanford site (Washington) was studied with laboratory-weathered sediments mimicking realistic conditions beneath the leaking radioactive waste storage tanks. Unsaturated column leaching experiments were conducted using background Hanford pore water focused on first 200 pore volumes. The weathered sediments were prepared by 6 months reaction with a synthetic Hanford tank waste leachate containing Sr and Cs (10(-5) and 10(-3) molal representative of LO- and HI-sediment, respectively) as surrogates for (90)Sr and (137)Cs. The mineral composition of the weathered sediments showed that zeolite (chabazite-type) and feldspathoid (sodalite-type) were the major byproducts but different contents depending on the weathering conditions. Reactive transport modeling indicated that Cs leaching was controlled by ion-exchange, while Sr release was affected primarily by dissolution of the secondary minerals. The later release of K, Al, and Si from the HI-column indicated the additional dissolution of a more crystalline mineral (cancrinite-type). A two-site ion-exchange model successfully simulated the Cs release from the LO-column. However, a three-site ion-exchange model was needed for the HI-column. The study implied that the weathering conditions greatly impact the speciation of the secondary minerals and leaching behavior of sequestrated Sr and Cs.
Pressure fluctuation caused by moderate acceleration
NASA Astrophysics Data System (ADS)
Tagawa, Yoshiyuki; Kurihara, Chihiro; Kiyama, Akihito
2017-11-01
Pressure fluctuation caused by acceleration of a liquid column is observed in various important technologies, e.g. water-hammer in a pipeline. The magnitude of fluctuation can be estimated by two different approaches: When the duration time of acceleration is much shorter than the propagation time for a pressure wave to travel the length of the liquid column, e.g. sudden valve closure for a long pipe, Joukowsky equation is applied. In contrast, if the acceleration duration is much longer, the liquid is modeled as a rigid column, ignoring compressibility of the fluid. However, many of practical cases exist between these two extremes. In this study we propose a model describing pressure fluctuation when the duration of acceleration is in the same order of the propagation time for a pressure wave, i.e. under moderate acceleration. The novel model considers both temporal and spatial evolutions of pressure propagation as well as gradual pressure rise during the acceleration. We conduct experiments in which we impose acceleration to a liquid with varying the length of the liquid column, acceleration duration, and properties of liquids. The ratio between the acceleration duration and the propagation time is in the range of 0.02 - 2. The model agrees well with measurement results. JSPS KAKENHI Grant Numbers 26709007 and 17H01246.
Sustainable materials used as stone column filler: A short review
NASA Astrophysics Data System (ADS)
Zukri, Azhani; Nazir, Ramli
2018-04-01
Stone columns (also known as granular piles) are one of the methods for soft soil stabilization and typically used to increase bearing capacity and stability of slope.; Apart from decreasing the compressibility of loose and fine graded soils, it also accelerates the consolidation effect by improving the drainage path for pore water pressure dissipation and reduces the liquefaction potential of soils during earthquake event. Stone columns are probably the most “natural” ground treatment method or foundation system in existence to date. The benefit of stone columns is owing to the partial replacement of compressible soil by more competent materials such as stone aggregate, sand and other granular materials. These substitutes also act as reinforcement material, hence increasing overall strength and stiffness of the soft soil. Nowadays, a number of research has been conducted on the behaviour and performance of stone columns with various materials utilized as column filler replacing the normal aggregate. This paper will review extensively on previously conducted research on some of the materials used as stone column backfill materials, its suitability and the effectiveness as a substitute for regular aggregates in soft soil improvement works.
TNT transport and fate in contaminated soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comfort, S.D.; Shea, P.J.; Hundal, L.S.
1995-11-01
Past disposal practices at munitions production plants have contaminated terrestrial and aquatk ecosystems with 2,4,6-trinitrotoluene (TNT). We determined TNT transport, degradation, and long-term sorption characteristics in soil. Transport experiments were conducted with repacked, unsaturated soil columns containing uncontaminated soil or layers of contaminated and uncontaminated soil. Uncontaminated soil columns received multiple pore volumes (22-50) of a TNT-{sup 3}H{sub 2}O pulse, containing 70 or 6.3 mg TNT L{sup -1} at a constant pore water velocity. TNT breakthrough curves (BTCs) never reached initial solute pulse concentrations. Apex concentrations (C/C{sub o}) were between 0.6 and 0.8 for an initial pulse of 70 mgmore » TNT L{sup -1} and 0.2 to 0.3 for the 6.3 mg TNT L{sup -1} pulse. Earlier TNT breakthrough was observed at the higher pulse concentration. This mobility difference was predicted from the nonlinear adsorption isotherm determined for TNT sorption. In all experiments, a significant fraction of added TNT was recovered as amino degradates of TNT. Mass balance estimates indicated 81% of the added TNT was recovered (as TNT and amino degradates) from columns receiving the 70 mg TNT L{sup -1} pulse compared to 35% from columns receiving the 6.3 mg TNT L{sup -1} pulse. Most of the unaccountable TNT was hypothesized to be unextractable. This was supported by a 168-d sorption experiment, which found that within 14d, 80% of {sup 14}C activity (added as {sup 14}C-TNT) was adsorbed and roughly 40% unextractable. Our observations illustrate that TNT sorption and degradation are concentration-dependent and the assumptions of linear adsorption and adsorption-desorption singularity commonly used in transport modeling, may not be valid for predicting TNT transport in munitions-contaminated soils. 29 refs., 6 figs., 7 tabs.« less
NASA Astrophysics Data System (ADS)
Yazdanpanah, Najme; Mahmoodabadi, Majid
2010-05-01
Soil salinity and sodicity are escalating problems worldwide, especially in Iran since 90 percent of the country is located in arid and semi-arid. Reclamation of sodic soils involves replacement of exchangeable Na by Ca. While some researches have been undertaken in the controllable laboratory conditions using soil column with emphasis on soil properties, the properties of effluent as a measure of soil reclamation remain unstudied. In addition, little attention has been paid to the temporal variability of effluent quality. The objective of this study was to investigate the effect of different amendments consist of gypsum, manure, pistachio residue, and their combination for ameliorating a calcareous saline sodic soil. Temporal variability of effluent properties during reclamation period was studied, as well. A laboratory experiment was conducted to evaluate the effect of different amendments using soil columns. The amendment treatments were: control, manure, pistachio residue, gypsum powder (equivalent of gypsum requirement), manure+gypsum and pistachio residue+gypsum, which were applied once in the beginning of the experiment. The study was performed in 120 days period and totally four irrigation treatments were supplied to each column. After irrigations, the effluent samples were collected every day at the bottom of the soil columns and were analyzed. The results show that for all treatments, cations (e.g. Ca, Mg, Na and K) in the outflow decreased with time, exponentially. Manure treatment resulted in highest rate of Ca, Mg, Na leaching from soil solution, in spite of the control which had the lowest rate. In addition, pistachio residue had the most effect on K leaching. Manure treatment showed the most EC and SAR in the leachate, while gypsum application leads to the least rate of them. The findings of this research reveal different rates of cations leaching from soil profile, which is important in environmental issues. Keywords: Saline sodic soil, Reclamation, Organic Matter, Gypsum, Leachate.
Characterization of granular collapse onto hard substrates by acoustic emissions
NASA Astrophysics Data System (ADS)
Farin, Maxime; Mangeney, Anne; Toussaint, Renaud; De Rosny, Julien
2013-04-01
Brittle deformation in granular porous media can generate gravitational instabilities such as debris flows and rock avalanches. These phenomena constitute a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and rock blocks. The elastic energy emitted by a single bouncing steel bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, two types of acoustic sensors were used to record the signals in a wide frequency range: accelerometers (1 Hz to 56 kHz) and piezoelectric sensors (100 kHz to 1 MHz). The experiments were also monitored optically using fast cameras. We developed a technique to use quantitatively both types of sensors to evaluate the elastic energy emitted by the sources. Eventually, we looked at what types of features in the signal are affected by individual shocks or by the large scale geometry of the avalanche.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Prasesh; Mayes, Melanie; Tang, Guoping
Contamination of soils/groundwater by munition compounds (TNT, RDX, HMX) is of significant concern at many U.S. Department of Defense sites. We collected soils from operational ranges in Maryland (APG), Massachusetts (MMR-B and MMR-E) and Washington (JBLM) and conducted sorption/transport studies to investigate effects of soil organic carbon (OC) and clay content on fate of dissolved munition compounds (MCs). Sorption experiments showed higher sorption coefficients [TNT:42-68 kg/L, RDX:6.9-8.7 Kg/L and HMX:2.6-3.1 Kg/L] in OC rich soils (JBLM, MMR-E) compared to clay rich soils MMR-B and APG [TNT:19-21 Kg/L, RDX:2.5-3.4 Kg/L, HMX:0.9-1.2 Kg/L]. In column experiments, breakthrough of MCs was mostly quickermore » in MMR-B and APG soil filled columns compared to MMR-E and JBLM. Between TNT, RDX and HMX, breakthrough was fastest for RDX followed by HMX and TNT for all soil columns. Separation of effluents into dissolved (<3 kDa) vs unfiltered (total) fractions in effluents showed 30-50% of TNT in the fraction >3kDa (colloidal fraction). HMX and RDX were completely associated with dissolved fraction. Results demonstrate that OC rich soils may enhance sorption and delay transport of TNT, RDX and HMX. Furthermore, colloids could contribute to transport of dissolved TNT to a significant amount.« less
Commander prepares glass columns for electrophoresis experiment
NASA Technical Reports Server (NTRS)
1982-01-01
Commander Jack Lousma prepares on of the glass columns for the electrophoresis test in the middeck area of the Columbia. The experiment, deployed in an L-shaped mode in upper right corner, consists of the processing unit with glass columns in which the separation takes place; a camera (partially obscurred by Lousma's face) to document the process; and a cryogenic freezer to freeze and store the samples after separation.
Kahn Bani Sa’ad Correctional Facility, Kahn Bani Sa’ad, Iraq
2008-07-25
building (Building No. 07/03): 1. Ground floor columns were tested with a Schmidt hammer devise (measures the elastic properties or strength of...3. First floor columns – Schmidt hammer and ultrasonic tests were conducted on all the first floor columns. The test results showed the strength...Building Nos. 07/02 and 07/01): 1. Ground floor columns – Using a Schmidt hammer device, very few columns showed low strength. Further study and
NASA Astrophysics Data System (ADS)
Agaoglu, Berken; Scheytt, Traugott; Copty, Nadim K.
2012-10-01
This study examines the mechanistic processes governing multiphase flow of a water-cosolvent-NAPL system in saturated porous media. Laboratory batch and column flushing experiments were conducted to determine the equilibrium properties of pure NAPL and synthetically prepared NAPL mixtures as well as NAPL recovery mechanisms for different water-ethanol contents. The effect of contact time was investigated by considering different steady and intermittent flow velocities. A modified version of multiphase flow simulator (UTCHEM) was used to compare the multiphase model simulations with the column experiment results. The effect of employing different grid geometries (1D, 2D, 3D), heterogeneity and different initial NAPL saturation configurations was also examined in the model. It is shown that the change in velocity affects the mass transfer rate between phases as well as the ultimate NAPL recovery percentage. The experiments with low flow rate flushing of pure NAPL and the 3D UTCHEM simulations gave similar effluent concentrations and NAPL cumulative recoveries. Model simulations over-estimated NAPL recovery for high specific discharges and rate-limited mass transfer, suggesting a constant mass transfer coefficient for the entire flushing experiment may not be valid. When multi-component NAPLs are present, the dissolution rate of individual organic compounds (namely, toluene and benzene) into the ethanol-water flushing solution is found not to correlate with their equilibrium solubility values.
Column-to-column packing variation of disposable pre-packed columns for protein chromatography.
Schweiger, Susanne; Hinterberger, Stephan; Jungbauer, Alois
2017-12-08
In the biopharmaceutical industry, pre-packed columns are the standard for process development, but they must be qualified before use in experimental studies to confirm the required performance of the packed bed. Column qualification is commonly done by pulse response experiments and depends highly on the experimental testing conditions. Additionally, the peak analysis method, the variation in the 3D packing structure of the bed, and the measurement precision of the workstation influence the outcome of qualification runs. While a full body of literature on these factors is available for HPLC columns, no comparable studies exist for preparative columns for protein chromatography. We quantified the influence of these parameters for commercially available pre-packed and self-packed columns of disposable and non-disposable design. Pulse response experiments were performed on 105 preparative chromatography columns with volumes of 0.2-20ml. The analyte acetone was studied at six different superficial velocities (30, 60, 100, 150, 250 and 500cm/h). The column-to-column packing variation between disposable pre-packed columns of different diameter-length combinations varied by 10-15%, which was acceptable for the intended use. The column-to-column variation cannot be explained by the packing density, but is interpreted as a difference in particle arrangement in the column. Since it was possible to determine differences in the column-to-column performance, we concluded that the columns were well-packed. The measurement precision of the chromatography workstation was independent of the column volume and was in a range of±0.01ml for the first peak moment and±0.007 ml 2 for the second moment. The measurement precision must be considered for small columns in the range of 2ml or less. The efficiency of disposable pre-packed columns was equal or better than that of self-packed columns. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Fate of five pharmaceuticals under different infiltration conditions for managed aquifer recharge.
Silver, Matthew; Selke, Stephanie; Balsaa, Peter; Wefer-Roehl, Annette; Kübeck, Christine; Schüth, Christoph
2018-06-18
Infiltration of treated wastewater (TWW) to recharge depleted aquifers, often referred to as managed aquifer recharge, is a solution to replenish groundwater resources in regions facing water scarcity. We present a mass balance approach to infer the amounts of five pharmaceuticals (carbamazepine, diclofenac, fenoprofen, gemfibrozil, and naproxen) degraded in column experiments based on concentrations of pharmaceuticals in the aqueous and solid (sorbed) phases. Column experiments were conducted under three different conditions: continuous infiltration, wetting and drying cycles, and wetting and drying cycles with elevated concentrations of antibiotics (which may reduce microbially aided degradation of other compounds). A mass balance comparing pharmaceutical mass in the water phase over the 16-month duration of the experiments to mass sorbed to the soil was used to infer the mass of pharmaceuticals degraded. Results show sorption as the main attenuation mechanism for carbamazepine. About half of the mass of diclofenac was degraded with wetting and drying cycles, but no significant degradation was found for continuous infiltration, while 32% of infiltrated mass sorbed. Fenoprofen was degraded in the shallow and aerobic part of the soil, but degradation appeared to cease beyond 27 cm depth. Gemfibrozil attenuated through a combination of degradation and sorption, with slight increases in attenuation with depth from both mechanisms. Naproxen degraded progressively with depth, resulting in attenuation of >90% of the mass. In the column with elevated concentrations of antibiotics, the antibiotics attenuated to about 50% or less of inflow concentrations by 27 cm depth and within this zone, less degradation of the other compounds was observed. Copyright © 2018 Elsevier B.V. All rights reserved.
Frohnert, Anne; Apelt, Susann; Klitzke, Sondra; Chorus, Ingrid; Szewzyk, Regine; Selinka, Hans-Christoph
2014-11-01
To protect groundwater as a drinking water resource from microbiological contamination, protection zones are installed. While travelling through these zones, concentrations of potential pathogens should decline to levels that pose no risks to human health. Removal of viruses during subsurface passage is influenced by physicochemical conditions, such as oxygen concentration, which also affects virus survival. The aim of our study was to evaluate the effect of redox conditions on the removal of viruses during sand filtration. Experiments in glass columns filled with medium-grained sand were conducted to investigate virus removal in the presence and absence of dissolved oxygen. Bacteriophages MS2 and PhiX174, as surrogates for human enteric viruses were spiked in pulsed or in continuous mode and pumped through the columns at a filter velocity of about 1m/d. Virus breakthrough curves were analyzed by calculating total viral elimination and fitted using one-dimensional transport models (CXTFIT and HYDRUS-1D). While short-term experiments with pulsed virus application showed only small differences with regard to virus removal under oxic and anoxic conditions, a long-term experiment with continuous dosing revealed a clearly lower elimination of viruses under anoxic conditions. These findings suggest that less inactivation and less adsorption of viruses in anoxic environments affect their removal. Therefore, in risk assessment studies aimed to secure drinking water resources from viral contamination and optimization of protection zones, the oxic and anoxic conditions in the subsurface should also be considered. Copyright © 2014 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Yuzhong; Wang, Yuhang; Crawford, James; Cheng, Ye; Li, Jianfeng
2018-05-01
Obtaining the full spatial coverage of daily surface ozone fields is challenging because of the sparsity of the surface monitoring network and the difficulty in direct satellite retrievals of surface ozone. We propose an indirect satellite retrieval framework to utilize the information from satellite-measured column densities of tropospheric NO2 and CH2O, which are sensitive to the lower troposphere, to derive surface ozone fields. The method is applicable to upcoming geostationary satellites with high-quality NO2 and CH2O measurements. To prove the concept, we conduct a simulation experiment using a 3-D chemical transport model for July 2011 over the eastern US. The results show that a second order regression using both NO2 and CH2O column densities can be an effective predictor for daily maximum 8-h average ozone. Furthermore, this indirect retrieval approach is shown to be complementary to spatial interpolation of surface observations, especially in regions where the surface sites are sparse. Combining column observations of NO2 and CH2O with surface site measurements leads to an improved representation of surface ozone over simple kriging, increasing the R2 value from 0.53 to 0.64 at a surface site distance of 252 km. The improvements are even more significant with larger surface site distances. The simulation experiment suggests that the indirect satellite retrieval technique can potentially be a useful tool to derive the full spatial coverage of daily surface ozone fields if satellite observation uncertainty is moderate.
Influence of different irrigation levels on the root water uptake and the physiology of root-chicory
NASA Astrophysics Data System (ADS)
Vandoorne, B.; Dekoninck, N.; Lutts, S.; Capelle, B.; Javaux, M.
2009-04-01
In the context of global warming and given recent heat waves observed in Western Europe, the relationship between the soil water status and the plant health has recently received more attention, especially for cash crops like chicory. In this study we particularly investigated the impact of soil water status on the chicory root water uptake and density and made a link with physiological and yield parameters. During five months, we imposed different irrigation levels to 10 plants of chicory (Cichorium intybus var. sativum) growing in greenhouses. Each seed, coming from an autogamous selection in this allogamous species, was sown in a column of 1.42m height and 0.4m diameter filled with yellow sand and irrigated from the bottom with Hoagland solution. On those 10 columns, we measured the distribution of soil moisture with TDR (8 columns) and ERT (2 columns) probes. Lateral windows also allowed us to follow the root growth. The column weights were also monitored in order to quantify the plant transpiration. During the experiment, several physiological indices were also followed like the gas exchange (CO2 and transpiration), the chlorophyll fluorescence, the stomatal conductance, the plastochron, and the Leaf Area Index (LAI). At the end of the experiment, the complete root length density and the water content profiles were measured. We had also a look to the osmotic potential, the pigments content and the isotopic discrimination of carbon in the leaves, which gives information about the level of stress. At a biochemical point of view, we measured the content in enzymes involves in inulin metabolism and sugars synthesis. We observed that the plants suffering from a slight water stress developed better. A simple1-D model was built which describes the root growth in function of the irrigation level and of the soil and atmospheric boundary conditions.
NASA Astrophysics Data System (ADS)
Heerspink, B. P.; Wang, D.; Ware, D.; Marina, O.; Perkins, G.; WoldeGabriel, G. W.; Goering, T.; Boukhalfa, H.
2017-12-01
High-explosive compounds including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) were used extensively in weapons research and testing at Los Alamos National Laboratory (LANL) in Los Alamos, NM. Liquid effluents containing RDX released at LANL's Technical Area 16 (TA-16) resulted in the contamination of alluvial, perched-intermediate, and regional groundwater bodies. Past investigations have shown persistent RDX contamination in the perched-intermediate zone located between 225 to 311 m below ground surface, where transport studies have shown that RDX and its degradation products transport conservatively. In this study, we compared RDX degradation by chemical treatments using reduction by sodium dithionite, oxidation by potassium permanganate, and alkaline hydrolysis by carbonate/bicarbonate buffering, with microbial degradation under biostimulated conditions. The experiments were conducted using groundwater and sediments representative of the contaminated aquifer beneath TA-16. Batch testing showed that all chemical treatments degraded RDX very rapidly, with half-lives ranging from 50 minutes to 22 hours. Comparatively, RDX degradation in biostimulated reactors under strict anaerobic conditions was significantly slower, with half-lives of about 3 weeks. Results from column experiments with chemically treated sediments deviated from the results of the batch testing. Dithionite treated sediments reduced RDX with no breakthrough observed before clogging occurred at 50 pour volumes. Treatments by oxidation using potassium permanganate, and hydrolysis under buffered alkaline conditions, were less effective with complete RDX breakthrough after 2 pore volumes. No known degradation products were observed in the column effluents. RDX degradation in biostimulated columns was very effective initially for both treatments. However, the column biostimulated with safflower oil clogged very rapidly. The column biostimulated with molasses was very effective when molasses was continuously supplied but less effective after molasses injection stopped. Degradation products (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine [MNX]; hexahydro-1,3-dinitro-5-nitro-1,3,5-triazine [DNX]; 2,4,6-trinitroxylene [TNX]) were visible in the effluents from the biostimulated columns.
Mohanty, Sanjay K; Torkelson, Andrew A; Dodd, Hanna; Nelson, Kara L; Boehm, Alexandria B
2013-10-01
Bioinfiltration systems facilitate the infiltration of urban stormwater into soil and reduce high flow events and flooding. Stormwater carries a myriad of pollutants including fecal indicator bacteria (FIB). Significant knowledge gaps exist about the ability of bioinfiltration systems to remove and retain FIB. The present study investigates the ability of model, simplified bioinfiltration systems containing quartz sand and iron oxide-coated quartz sand (IOCS) to remove two FIB (Enterococcus faecalis and Escherichia coli) suspended in synthetic stormwater with and without natural organic matter (NOM) as well as the potential for accumulated FIB to be remobilized during intermittent flow. The experiments were conducted in two phases: (1) the saturated columns packed with either sand or IOCS were contaminated by injecting stormwater with bacteria followed by injection of sterile stormwater and (2) the contaminated columns were subjected to intermittent infiltration of sterile stormwater preceded by a pause during which columns were either kept saturated or drained by gravity. During intermittent flow, fewer bacteria were released from the saturated column compared to the column drained by gravity: 12% of attached E. coli and 3% of attached Ent. faecalis were mobilized from the drained sand column compared to 3% of attached E. coli and 2% attached Ent. faecalis mobilized from the saturated sand column. Dry and wet cycles introduce moving air-water interfaces that can scour bacteria from grain surfaces. During intermittent flows, less than 0.2% of attached bacteria were mobilized from IOCS, which bound both bacteria irreversibly in the absence of NOM. Addition of NOM, however, increased bacterial mobilization from IOCS: 50% of attached E. coli and 8% of attached Ent. faecalis were released from IOCS columns during draining and rewetting. Results indicate that using geomedia such as IOCS that promote irreversible attachment of bacteria, and maintaining saturated condition, could minimize the mobilization of previous attached bacteria from bioinfiltration systems, although NOM may significantly decrease these benefits.
Column experiments on organic micropollutants - applications and limitations
NASA Astrophysics Data System (ADS)
Banzhaf, Stefan; Hebig, Klaus
2016-04-01
As organic micropollutants become more and more ubiquitous in the aquatic environment, a sound understanding of their fate and transport behaviour is needed. This is to assure both safe and clean drinking water supply for mankind in the future and to protect the aquatic environment from pollution and negative consequences caused by manmade contamination. Apart from countless field studies, column experiments were and are frequently used to study transport of organic micropollutants. As the transport of (organic) solutes in groundwater is controlled by the chemical and physical properties of the compounds, the solvent (the groundwater including all solutes), and the substrate (the aquifer material), the adjustment and control of these boundary conditions allow to study a multitude of different experimental setups and to address specific research questions. The main purpose, however, remains to study the transport of a specific compound and its sorption and degradation behaviour in a specific sediment or substrate. Apart from the effective control of the individual boundary conditions, the main advantage of columns studies compared to other experimental setups (such as field studies, batch/microcosm studies), is that conservative and reactive solute breakthrough curves are obtained, which represent the sum of the transport processes. The analysis of these curves is well-developed and established. Additionally, limitations of this experimental method are presented here: the effects observed in column studies are often a result of dynamic, non-equilibrium processes. Time (or flow velocity) plays a major role in contrast to batch experiments, in which all processes will be observed until equilibrium is reached in the substrate-solution-system. Slightly modifying boundary conditions in different experiments have a strong influence on transport and degradation behaviour of organic micropollutants. This is a significant severe issue when it comes to general findings on the transport behaviour of a specific organic compound that are transferable to any given hydrogeochemical environment. Unfortunately, results of most column experiments therefore remain restricted to their specific setup. Column experiments can provide good estimates of all relevant transport parameters. However, the obtained results will almost always be limited to the scale they were obtained from. This means that direct application to field scale studies is infeasible as too many parameters are exclusive for the laboratory column setup. The remaining future challenge is to develop standard column experiments on organic micropollutants that overcome this issue. Here, we present a review of column experiments on organic micropollutants. We present different setups and discuss weaknesses, problems and advantages and provide ideas how to obtain more comparable results on the transport of organic micropollutants in the future.
NASA Astrophysics Data System (ADS)
Viel, Emelie; Coquet, Yves
2016-04-01
Since a few decades, the Calcaire de Beauce aquifer is contaminated with nitrate. The nitrate dynamics in the aquifer and in the surface soil are quite well understood, but its transport through the vadose zone remains largely unknown. When models fail to simulate nitrate concentrations in wells, preferential flow or physical non-equilibrium transport in soil and in the vadose zone is usually put forward to explain this failure. To study transport processes in the vadose zone of the Calcaire de Beauce aquifer, undisturbed cores (30 cm length and 20 cm diameter) have been taken below the deepest soil horizon. At the field scale, the vadose zone is composed of powdery limestone spatially very heterogeneous, and including a variable amount of coarse elements. Two columns were selected: column "6" is made of very fine homogeneous limestone whereas column "8" is very heterogeneous with a large proportion of coarse elements. Elution experiments have been performed on both columns. A tracer (Br- or DFBA) in a solution of 5 mM CaCl2 was spread as a pulse on the top of the column with a rainfall simulator. Input flow rate was kept constant for steady state cases, or suddenly closed for flux interruption cases. Outflow was collected as a function of time for tracer concentration measurement. The collected fractions were analyzed by HPLC (High-performance liquid chromatography) with a UV detector. Three types of experiments took place: • For steady state experiments, three rainfall rates, respectively 4, 8, and 16 mm/h, have been used to study the occurrence of immobile water in the columns. The tracer was injected during 120 min followed by CaCl2 tracer-free solution at same flow rate. • For flux-interruption experiments, only the 4 and 8 mm/h rainfall rates were used. The tracer was injected during 120 min, input and output fluxes were then stopped and restarted seven days later with the same flow rate. • For drainage experiments, only the 4 and 8 mm/h rainfall rates were used as well. The tracer was injected during 120 min, input flux was stopped while output flux continued to occur under the -25 cm matric head bottom boundary condition. Flux restarted seven days later with the same flow rate or another flow rate. STANMOD was used for each BTC to estimate transport parameters assuming steady state flux. The standard CDE was suitable for column 6 steady-state experiments, but the MIM had to be used to describe properly the BTCs of column 8. In this column, the immobile water fraction represented 38 %. Flux interruption experiments showed that the form of the BTC for Column 6 was not disturbed for the 4 and 8 mm/h input flux, whereas the form of BTC for Column 8 had significantly changed with a visible steeper increase after an interruption time compared to the corresponding steady state experiment. This difference of behavior could be related to the difference in limestone material. The immobile water fraction was found to be significant only for columns made of heterogeneous limestone.
Park, Jong-Hwan; Cho, Ju-Sik; Ok, Yong Sik; Kim, Seong-Heon; Kang, Se-Won; Choi, Ik-Won; Heo, Jong-Soo; DeLaune, Ronald D; Seo, Dong-Cheol
2015-01-01
The objective of this research was to evaluate adsorption of heavy metals in single- and ternary-metal forms onto chicken bone biochar (CBB). Competitive sorption of heavy metals by CBB has never been reported previously. The maximum adsorption capacities of metals by CBB were in the order of Cu (130 mg g(-1)) > Cd (109 mg g(-1)) > Zn (93 mg g(-1)) in the single-metal adsorption isotherm and Cu (108 mg g(-1)) > Cd (54 mg g(-1)) ≥ Zn (44 mg g(-1)) in the ternary-metal adsorption isotherm. Cu was the most retained cation, whereas Zn could be easily exchanged and substituted by Cu. Batch experimental data best fit the Langmuir model rather than the Freundlich isotherms. In the column experiments, the total adsorbed amounts of the metals were in the following order of Cu (210 mg g(-1)) > Cd (192 mg g(-1)) > Zn (178) in single-metal conditions, and Cu (156) > Cd (123) > Zn (92) in ternary-metal conditions. Results from both the batch and column experiments indicate that competitive adsorption among metals increases the mobility of these metals. Especially, Zn in single-metal conditions lost it adsorption capacity most significantly. Based on the 3D simulation graphs of heavy metals, adsorption patterns under single adsorption condition were different than under competitive adsorption condition. Results from both the batch and column experiments show that competitive adsorption among metals increases the mobility of these metals. The maximum metal adsorption capacity of the metals in the column experiments was higher than that in the batch experiment indicating other metal retention mechanisms rather than adsorption may be involved. Therefore, both column and batch experiments are needed for estimating retention capacities and removal efficiencies of metals in CBB.
Phosphate-Induced Immobilization of Uranium in Hanford Sediments.
Pan, Zezhen; Giammar, Daniel E; Mehta, Vrajesh; Troyer, Lyndsay D; Catalano, Jeffrey G; Wang, Zheming
2016-12-20
Phosphate can be added to subsurface environments to immobilize U(VI) contamination. The efficacy of immobilization depends on the site-specific groundwater chemistry and aquifer sediment properties. Batch and column experiments were performed with sediments from the Hanford 300 Area in Washington State and artificial groundwater prepared to emulate the conditions at the site. Batch experiments revealed enhanced U(VI) sorption with increasing phosphate addition. X-ray absorption spectroscopy measurements of samples from the batch experiments found that U(VI) was predominantly adsorbed at conditions relevant to the column experiments and most field sites (low U(VI) loadings, <25 μM), and U(VI) phosphate precipitation occurred only at high initial U(VI) (>25 μM) and phosphate loadings. While batch experiments showed the transition of U(VI) uptake from adsorption to precipitation, the column study was more directly relevant to the subsurface environment because of the high solid:water ratio in the column and the advective flow of water. In column experiments, nearly six times more U(VI) was retained in sediments when phosphate-containing groundwater was introduced to U(VI)-loaded sediments than when the groundwater did not contain phosphate. This enhanced retention persisted for at least one month after cessation of phosphate addition to the influent fluid. Sequential extractions and laser-induced fluorescence spectroscopy of sediments from the columns suggested that the retained U(VI) was primarily in adsorbed forms. These results indicate that in situ remediation of groundwater by phosphate addition provides lasting benefit beyond the treatment period via enhanced U(VI) adsorption to sediments.
Phosphate-Induced Immobilization of Uranium in Hanford Sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Zezhen; Giammar, Daniel E.; Mehta, Vrajesh
2016-12-20
Phosphate can be added to subsurface environments to immobilize U(VI) contamination. The efficacy of immobilization depends on the site-specific groundwater chemistry and aquifer sediment properties. Batch and column experiments were performed with sediments from the Hanford 300 Area in Washington State and artificial groundwater prepared to emulate the conditions at the site. Batch experiments revealed enhanced U(VI) sorption with increasing phosphate addition. X-ray absorption spectroscopy measurements of samples from the batch experiments found that U(VI) was predominantly adsorbed at conditions relevant to the column experiments and most field sites (low U(VI) loadings, <25 μM), and U(VI) phosphate precipitation occurred onlymore » at high initial U(VI) (>25 μM) and phosphate loadings. While batch experiments showed the transition of U(VI) uptake from adsorption to precipitation, the column study was more directly relevant to the subsurface environment because of the high solid:water ratio in the column and the advective flow of water. In column experiments, nearly six times more U(VI) was retained in sediments when phosphate-containing groundwater was introduced to U(VI)-loaded sediments than when the groundwater did not contain phosphate. This enhanced retention persisted for at least one month after cessation of phosphate addition to the influent fluid. Sequential extractions and laser-induced fluorescence spectroscopy of sediments from the columns suggested that the retained U(VI) was primarily in adsorbed forms. These results indicate that in situ remediation of groundwater by phosphate addition provides lasting benefit beyond the treatment period via enhanced U(VI) adsorption to sediments.« less
Phosphate-Induced Immobilization of Uranium in Hanford Sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Zezhen; Giammar, Daniel E.; Mehta, Vrajesh
2016-12-20
Phosphate can be added to subsurface environments to immobilize U(VI) contamination. The efficacy of immobilization depends on the site-specific groundwater chemistry and aquifer sediment properties. Batch and column experiments were performed with sediments from the Hanford 300 Area in Washington State and artificial groundwater prepared to emulate the conditions at the site. Batch experiments revealed enhanced U(VI) sorption with increasing phosphate addition. X-ray absorption spectroscopy measurements of samples from the batch experiments found that U(VI) was predominantly adsorbed at conditions relevant to the column experiments and most field sites (low U(VI) loadings, <25 μM), and U(VI) phosphate precipitation occurred onlymore » at high initial U(VI) (>25μM) and phosphate loadings. While batch experiments showed the transition of U(VI) uptake from adsorption to precipitation, the column study was more directly relevant to the subsurface environment because of the high solid:water ratio in the column and the advective flow of water. In column experiments, nearly six times more U(VI) was retained in sediments when phosphate-containing groundwater was introduced to U(VI)-loaded sediments than when the groundwater did not contain phosphate. This enhanced retention persisted for at least one month after cessation of phosphate addition to the influent fluid. Sequential extractions and laser-induced fluorescence spectroscopy of sediments from the columns suggested that the retained U(VI) was primarily in adsorbed forms. These results indicate that in situ remediation of groundwater by phosphate addition provides lasting benefit beyond the treatment period via enhanced U(VI) adsorption to sediments.« less
A "Greenhouse Gas" Experiment for the Undergraduate Laboratory
ERIC Educational Resources Information Center
Gomez, Elaine; Paul, Melissa; Como, Charles; Barat, Robert
2014-01-01
This experiment and analysis offer an effective experience in greenhouse gas reduction. Ammoniated water is flowed counter-current to a simulated flue gas of air and CO2 in a packed column. The gaseous CO2 concentrations are measured with an on-line, non- dispersive, infrared analyzer. Column operating parameters include total gas flux, dissolved…
Barzgar, Sonya; Hettiaratchi, Joseph Patrick; Pearse, Lauretta; Kumar, Sunil
2017-12-01
This study focussed on evaluating the effect of hydrogen sulfide (H 2 S) on biological oxidation of waste methane (CH 4 ) gas in compost biofilters, Batch experiments were conducted to determine the dependency of maximum methane oxidation rate (V max ) on two main factors; pH and moisture content, as well as their interaction effects. The maximum V max was observed at a pH of 7.2 with decreasing V max values observed with decreasing pH, irrespective of moisture content. Flow-through columns operated at a pH of 4.5 oxidized CH 4 at a flux rate of 53g/m 2 /d compared to 146g/m 2 /d in columns operated at neutral pH. No oxidation activity was observed for columns operated at pH 2.5, and DNA sequencing analysis of samples led to the conclusion that highly acidic conditions were responsible for inhibiting the ability of methanotrophs to oxidize CH 4 . Biofilter columns operated at pH 2.5 contained only 2% methanotrophs (type I) out of the total microbial population, compared to 55% in columns operated at pH 7.5. Overall, changes in the population of methanotrophs with acidification within the biofilters compromised its capacity to oxidize CH 4 which demonstrated that a compost biofilter could not operate efficiently in the presence of high levels of H 2 S. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of hydrated lime on radionuclides stabilization of Hanford tank residual waste.
Wang, Guohui; Um, Wooyong; Cantrell, Kirk J; Snyder, Michelle M V; Bowden, Mark E; Triplett, Mark B; Buck, Edgar C
2017-10-01
Chemical stabilization of tank residual waste is part of a Hanford Site tank closure strategy to reduce overall risk levels to human health and the environment. In this study, a set of column leaching experiments using tank C-104 residual waste were conducted to evaluate the leachability of uranium (U) and technetium (Tc) where grout and hydrated lime were applied as chemical stabilizing agents. The experiments were designed to simulate future scenarios where meteoric water infiltrates through the vadose zones into the interior of the tank filled with layers of grout or hydrated lime, and then contacts the residual waste. Effluent concentrations of U and Tc were monitored and compared among three different packing columns (waste only, waste + grout, and waste + grout + hydrated lime). Geochemical modeling of the effluent compositions was conducted to determine saturation indices of uranium solid phases that could control the solubility of uranium. The results indicate that addition of hydrated lime strongly stabilized the uranium through transforming uranium to a highly insoluble calcium uranate (CaUO 4 ) or similar phase, whereas no significant stabilization effect of grout or hydrated lime was observed on Tc leachability. The result implies that hydrated lime could be a great candidate for stabilizing Hanford tank residual wastes where uranium is one of the main concerns. Published by Elsevier Ltd.
ADSORPTION MECHANISMS AND TRANSPORT BEHAVIOR BETWEEN SELENATE AND SELENITE ON DIFFERENT SORBENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Michelle MV; Um, Wooyong
Adsorption of different oxidation species of selenium (Se), selenate (SeO42-) and selenite (SeO32-), with varying pHs (2 - 10) and ionic strengths (I = 0.01 M, 0.1 M and 1.0 M NaNO3) was measured on quartz, aluminum oxide, and synthetic iron oxide (ferrihydrite) using batch reactors to obtain a more detailed understanding of the adsorption mechanisms (e.g., inner- and outer-sphere complex). In addition to the batch experiments with single minerals contained in native Hanford Site sediment, additional batch adsorption studies were conducted with native Hanford Site sediment and groundwater as a function of 1) total Se concentration (from 0.01 tomore » 10 mg L-1) and 2) soil to solution ratios (1:20 and 1:2 grams per mL). Results from these batch studies were compared to a set of saturated column experiments that were conducted with natural Hanford sediment and groundwater spiked with either selenite or selenate to observe the transport behavior of these species. Both batch and column results indicated that selenite adsorption was consistently higher than that of selenate in all experimental conditions used. These different adsorption mechanisms between selenite and selenate result in the varying mobility of Se in the subsurface environment and explain the dependence on the oxidation species.« less
ERIC Educational Resources Information Center
Bindis, Michael P.; Bretz, Stacey Lowery; Danielson, Neil D.
2011-01-01
The high-performance liquid chromatography (HPLC) experiment, most often done in the undergraduate analytical instrumentation laboratory course, generally illustrates reversed-phase chromatography using a commercial C[subscript]18 silica column. To avoid the expense of periodic column replacement and introduce a choice of columns with different…
Stability and Structure of Star-Shape Granules
NASA Astrophysics Data System (ADS)
Zhao, Yuchen; Bares, Jonathan; Zheng, Matthew; Dierichs, Karola; Menges, Achim; Behringer, Robert
2015-11-01
Columns are made of convex non-cohesive grains like sand collapse after being released from initial positions. On the other hand, various architectures built by concave grains can maintain stability. We explore why these structures are stable, and how stable they can be. We performed experiments by randomly pouring identical star-shape particles into hollow cylinders left on glass and a rough base, and observed stable granular columns after lifting the cylinders. Particles have six 9 mm arms, which extend symmetrically in the xyz directions. Both the probability of creating a stable column and mechanical stability aspects have been investigated. We define r as the weight fraction of particles that fall out of the column after removing confinement. r gradually increases as the column height increases, or the column diameter decreases. We also explored different experiment conditions such as vibration of columns with confinement, or large basal friction. We also consider different stability measures such as the maximum inclination angle or maximum weight a column can support. In order to understand structure leading to stability, 3D CT scan reconstructions of columns have been done and coordination number and packing density will be discussed. We acknowledge supports from W.M.Keck Foundation and Research Triangle MRSEC.
Bernhardt, Katrin; Valenta, Hana; Kersten, Susanne; Humpf, Hans-Ulrich; Dänicke, Sven
2016-05-01
A sensitive method for the simultaneous determination of T-2 toxin, HT-2 toxin, neosolaniol, T-2 triol, and T-2 tetraol in layer feed using high-performance liquid chromatography coupled to triple quadrupole mass spectrometry in the positive ionization mode (LC-ESI-MS/MS) is described. Two fast and easy clean-up methods-with BondElut Mycotoxin and MycoSep 227 columns, respectively-were tested. The separation of the toxins was conducted on a Pursuit XRs Ultra 2.8 HPLC column using 0.13 mM ammonium acetate as eluent A and methanol as eluent B. Detection of the mycotoxins was carried out in the multiple reaction monitoring (MRM) mode using ammonium adducts as precursor ions. Quantification of all analytes was performed with d3-T-2 toxin as an internal standard. The clean-up method with MycoSep 227 columns gave slightly better results for layer feed compared to the method using BondElut Mycotoxin columns (MycoSep 227: recovery between 50 and 63%, BondElut Mycotoxin: recovery between 32 and 67%) and was therefore chosen as the final method. The limits of detection ranged between 0.9 and 7.5 ng/g depending on the mycotoxin. The method was developed for the analysis of layer feed used at carry-over experiments with T-2 toxin in laying hens. For carry-over experiments, it is necessary that the method includes not only T-2 toxin but also the potential metabolites in animal tissues HT-2 toxin, neosolaniol, T-2 triol, and T-2 tetraol which could naturally occur in cereals used as feed stuff as well.
Transport of bisphenol-A in sandy aquifer sediment: Column experiment.
Zakari, Sissou; Liu, Hui; Tong, Lei; Wang, Yan; Liu, Jianfeng
2016-02-01
The present paper aims to study the transport behavior of bisphenol-A (BPA) in sandy aquifer so as to provide important parameters for the prediction and control of contaminant plume in aquifer. Miscible displacement experiments were conducted and the breakthrough curves (BTCs) were simulated using HYDRUS-1D software. The effects of pore-water velocity (10-52 cm h(-1)) and initial concentration (2.5-40 mg L(-1)) on the sorption were also investigated. The BTCs of BPA fit the linear first-order non-equilibrium two-site model. The parameters such as partition coefficient (K(d)), the fraction of instantaneous adsorption on "Type-1" sites (F), the first order sorption rate coefficient for the kinetic non-equilibrium (type-2) sites (α), the retardation coefficient (R), and sorption capacity (q(column)) were computed. Results showed that BPA transported 0.11-0.83 m with various pore water velocity in sandy sediment column when water flowed 1 m. The sorption of BPA was mainly caused by the instantaneous surface adsorption as F varied from 0.596 to 0.908. The transport velocity of BPA was affected by pore water velocity (v) and followed the linear equation 1/R = 0.0600 + 0.0110v (r(2) = 0.9724). The parameter K(d) were also closely related to v and followed the equation LnK(d) = 1.0023-0.0482v (r(2) = 0.9690). The sorption capacity was more related to the initial BPA concentration (C0) and followed the linear equation q(column) = 0.265 + 0.253C0 (r(2) = 0.9727). The parameter α was affected by both v and C0 whereas F was not dramatically affected by both. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kostanyan, Artak E; Erastov, Andrey A; Shishilov, Oleg N
2014-06-20
The multiple dual mode (MDM) counter-current chromatography separation processes consist of a succession of two isocratic counter-current steps and are characterized by the shuttle (forward and back) transport of the sample in chromatographic columns. In this paper, the improved MDM method based on variable duration of alternating phase elution steps has been developed and validated. The MDM separation processes with variable duration of phase elution steps are analyzed. Basing on the cell model, analytical solutions are developed for impulse and non-impulse sample loading at the beginning of the column. Using the analytical solutions, a calculation program is presented to facilitate the simulation of MDM with variable duration of phase elution steps, which can be used to select optimal process conditions for the separation of a given feed mixture. Two options of the MDM separation are analyzed: 1 - with one-step solute elution: the separation is conducted so, that the sample is transferred forward and back with upper and lower phases inside the column until the desired separation of the components is reached, and then each individual component elutes entirely within one step; 2 - with multi-step solute elution, when the fractions of individual components are collected in over several steps. It is demonstrated that proper selection of the duration of individual cycles (phase flow times) can greatly increase the separation efficiency of CCC columns. Experiments were carried out using model mixtures of compounds from the GUESSmix with solvent systems hexane/ethyl acetate/methanol/water. The experimental results are compared to the predictions of the theory. A good agreement between theory and experiment has been demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.
Han, Xiuli; Wang, Wei; Ma, Xiaojian
2011-01-01
The adsorption potential of lotus leaf to remove methylene blue (MB) from aqueous solution was investigated in batch and fixed-bed column experiments. Langmuir, Freundlich, Temkin and Koble-Corrigan isotherm models were employed to discuss the adsorption behavior. The results of analysis indicated that the equilibrium data were perfectly represented by Temkin isotherm and the Langmuir saturation adsorption capacity of lotus leaf was found to be 239.6 mg g(-1) at 303 K. In fixed-bed column experiments, the effects of flow rate, influent concentration and bed height on the breakthrough characteristics of adsorption were discussed. The Thomas and the bed-depth/service time (BDST) models were applied to the column experimental data to determine the characteristic parameters of the column adsorption. The two models were found to be suitable to describe the dynamic behavior of MB adsorbed onto the lotus leaf powder column.
Rasoulnia, P; Mousavi, S M
2016-09-01
Spent-medium bioleaching of V and Ni from a power plant residual ash (PPR ash) was conducted using organic acids produced by Aspergillus niger. The production of organic acids in a bubble column bioreactor was optimized through selecting three most influencing factors. Under optimum condition of aeration rate of 762.5(ml/min), sucrose concentration of 101.9(g/l) and inoculum size of 40(ml/l), respectively 17,185, 4539, 1042 and 502(ppm) of oxalic, gluconic, citric and malic acids were produced. Leaching experiments were carried out using biogenic produced organic acids under leaching environment temperature of 60°C and rotary shaking speed of 135rpm, with various pulp densities of 1, 2, 3, 5, 7 and 9(%w/v). The results showed that biogenic produced organic acids leached V much more efficiently than Ni so that even at high pulp density of 9(%w/v), 83% of V was recovered while Ni recovery yield was 30%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Influence of liquid medium on the activity of a low-alpha Fischer-Tropsch catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gormley, R.J.; Zarochak, M.F.; Deffenbaugh, P.W.
1995-12-31
The purpose of this research was to measure activity, selectivity, and the maintenance of these properties in slurry autoclave experiments with a Fischer-Tropsch (FT) catalyst that was used in the {open_quotes}FT II{close_quotes} bubble-column test, conducted at the Alternative Fuels Development Unit (AFDU) at LaPorte, Texas during May 1994. The catalyst contained iron, copper, and potassium and was formulated to produce mainly hydrocarbons in the gasoline range with lesser production of diesel-range products and wax. The probability of chain growth was thus deliberately kept low. Principal goals of the autoclave work have been to find the true activity of this catalystmore » in a stirred tank reactor, unhindered by heat or mass transfer effects, and to obtain a steady conversion and selectivity over the approximately 15 days of each test. Slurry autoclave testing of the catalyst in heavier waxes also allows insight into operation of larger slurry bubble column reactors. The stability of reactor operation in these experiments, particularly at loadings exceeding 20 weight %, suggests the likely stability of operations on a larger scale.« less
Jansen, A S; Farkas, E; Mac Sams, J; Loewy, A D
1998-02-16
Chemical stimulation of the lateral or ventrolateral columns of the midbrain periaqueductal gray matter (PAG) in conscious animals produces opposite responses (viz., defensive behavior and pressor responses from the lateral column vs. quiescence and depressor responses from the ventrolateral column), raising the possibility that the two columns are interconnected. To test this hypothesis, two types of anatomical experiments were performed in rats. First, the anterograde axonal marker Phaseolus vulgaris leuco-agglutinin (PHA-L) was injected into individual PAG columns or adjoining regions which included the Edinger-Westphal, dorsal raphe, and precommissural nuclei. The results shows that each column projects bilaterally to all of the other PAG columns, and also provides local connections within its own column. Furthermore, the Edinger-Westphal and precommissural nuclei project to all four PAG columns, while the dorsal raphe nucleus projects only to the ventrolateral and lateral columns. In a second experiment, we found that cardiovascular-related PAG projection neurons of both the lateral and ventrolateral columns receive an input from the reciprocal PAG column. This was demonstrated by a double tracer neuroanatomical study in which PHA-L was first iontophoretically ejected into either the lateral or ventrolateral PAG columns and then, several days later the retrograde transneuronal viral tracer, pseudorabies virus, was injected into the stellate sympathetic ganglion. Intra-PAG circuits were visualized by a dual immunohistochemical procedure. These results suggest that during the fight-or-flight response when the 'fight' program is activated, inhibition of the 'flight' PAG network may occur and the converse situation may occur during the flight response. Copyright 1997 Elsevier Science B.V.
Isoelectric focusing of red blood cells in a density gradient stabilized column
NASA Technical Reports Server (NTRS)
Smolka, A. J. K.; Miller, T. Y.
1980-01-01
The effects of Ficoll and cell application pH on red blood cell electrophoretic mobility and focusing pH were investigated by focusing cells in a density gradient stabilized column. Sample loading, cell dispersion, column conductivity, resolution of separation, and the effect of Ampholines were examined.
Bartsch, L.A.; Richardson, W.B.; Sandheinrich, M.B.
2003-01-01
We conducted a factorial experiment, in outdoor mesocosms, on the effects of zebra mussels and water column mixing (i.e., turbulence) on the diet, growth, and survival of larval fathead minnows (Pimephales promelas). Significant (P < 0.05) larval mortality occurred by the end of the experiment with the highest mortality (90%) occurring in the presence of both turbulence and zebra mussels, whereas mortality was 37% in treatment with turbulence and 17% and 18% in the zebra mussels treatment, and the control, respectively. The size of individual fish was significantly different among treatments at the end of the experiment and was inversely related to survival. Levels of trophic resources (i.e., phyto and zooplankton) varied among treatments and were treatment specific. Turbulent mixing facilitated removal of phytoplankton by zebra mussels by making the entire water column of the tanks available to these benthic filter feeders. Early in the experiment (Day = 0 to 14) the physical process of turbulent mixing likely caused a reduction in standing stocks of zooplankton. The interactive effect of turbulence and mussels reduced copepod and rotifer stocks, through physical processes and through filtration by zebra mussels, relative to the turbulence treatment. The reductions in the number of total zooplankton in the turbulent mixing mesocosms and the further reduction of rotifer and copepod in the turbulence and mussels treatment coincided with a period of increased reliance of larval fathead minnows on these prey. Estimates of consumption from bioenergetics modeling and measured prey standing stocks indicated caloric resources of suitable prey in turbulence treatments during the early weeks of the experiment were insufficient to prevent starvation. Early mortality in the turbulence and mussels treatment likely released surviving fish from intense intraspecific competition and resulted in higher individual growth rates. A combination of high abundance of zebra mussels in an environment with a well-mixed water column can have significant effects on larval fish survival and growth.
Bartsch, L.A.; Richardson, W.B.; Sandheinrich, M.B.
2003-01-01
We conducted a factorial experiment, in outdoor mesocosms, on the effects of zebra mussels and water column mixing (i.e., turbulence) on the diet, growth, and survival of larval fathead minnows (Pimephales promelas). Significant (P < 0.05) larval mortality occurred by the end of the experiment with the highest mortality (90%) occurring in the presence of both turbulence and zebra mussels, whereas mortality was 37% in treatment with turbulence and 17% and 18% in the zebra mussels treatment, and the control, respectively. The size of individual fish was significantly different among treatments at the end of the experiment and was inversely related to survival. Levels of trophic resources (i.e., phyto and zooplankton) varied among treatments and were treatment specific. Turbulent mixing facilitated removal of phytoplankton by zebra mussels by making the entire water column of the tanks available to these benthic filter feeders. Early in the experiment (Day = 0 to 14) the physical process of turbulent mixing likely caused a reduction in standing stocks of zooplankton. The interactive effect of turbulence and mussels reduced copepod and rotifer stocks, through physical processes and through filtration by zebra mussels, relative to the turbulence treatment. The reductions in the number of total zooplankton in the turbulent mixing mesocosms and the further reduction of rotifer and copepod in the turbulence and mussels treatment coincided with a period of increased reliance of larval fathead minnows on these prey. Estimates of consumption from bioenergetics modeling and measured prey standing stocks indicated caloric resources of suitable prey in turbulence treatments during the early weeks of the experiment were insufficient to prevent starvation. Early mortality in the turbulence and mussels treatment likely released surviving fish from intense intraspecific competition and resulted in higher individual growth rates. A combination of high abundance of zebra mussels in an environment with a well-mixed water column can have significant effects on larval fish survival and growth.
Bykova, Olga; Laursen, Andrew; Bostan, Vadim; Bautista, Joseph; McCarthy, Lynda
2006-12-01
This study examined possible relationships between the presence of zebra mussels (Dreissena polymorpha) and Microcystis spp. abundance. Experiments were conducted in 12 microcosms designed to mimic shallow lake ecosystems. Fresh, aerated water with phytoplankton (pseudokirchneriella spp. and Microcystis spp.) was pumped into each microcosm daily to ensure zebra mussels were exposed to oxygen and food. Microcosms containing zebra mussels experienced significantly higher fluxes of nitrate (p=0.019) and lower fluxes of ortho-phosphate (p=0.047) into sediments. In a second experiment, water column nutrient concentrations were compared in microcosms with and without live zebra mussels. Consistent with results of the previous experiment, microcosms with zebra mussels had significantly less nitrate (p=0.023) and organic nitrogen (p=0.003) in the water column, while ammonium (p=0.074), phosphate (p=0.491), and dissolved organic carbon (p=0.820) in the water column were not different between microcosms with or without zebra mussels. Microcosms with zebra mussels also experienced a reduction in green algae (pseudokirchneriella) (p<0.001) and an increase in abundance of Microcystis (p<0.001) relative to microcosms without zebra mussels. In an experiment without zebra mussels, nutrient ratios (N/P) were manipulated to determine potential links between N/P and relative abundance of each phytoplankton. Manipulation of N/P was intended to mimic differences observed in microcosms with and without zebra mussels in the previous experiment. Low N/P (mimicking microcosms with zebra mussels) was related to an increase in Microcystis (p<0.001) and Microcystis/Pseudokirchneriella biovolume (p<0.001). It is this shift in N/P, and possibly some level of selective feeding, that is believed to have driven changes in the relative abundance of Microcystis. In lakes invaded by zebra mussels, alterations in the processing of nitrogen and phosphorus could contribute to the re-emergence of Microcystis blooms.
NASA Astrophysics Data System (ADS)
López-Ortiz, C. M.; Boluda-Botella, N.; Prats-Rico, D.; Sentana-Gadea, I.
2018-02-01
Coastal areas submitted to seawater intrusion and with discharges from urban and industrial wastewaters, municipal landfill leachates, rivers, recreational waters and other sources are sensitive to be polluted with parabens. Understanding the fate of these compounds in environmental studies, it requires previously the knowledge of the reactive processes in controlled conditions. In this research, laboratory columns experiments were carried out with a group of parabens (methyl-, ethyl-, propyl- and butylparaben) and their main degradation compound (4-hydroxybenzoic acid) to study mainly the dynamic sorption processes in different aquifer materials (100% sand and heterogeneous: 81% sand, 9% silt and 10% clay) and with fresh and sea waters, the end members of seawater intrusions. To the column hydrodynamic characterization, tracer assays with increase and decrease of salinity were performed, to obtain the mean residence time of each column and other transport parameters which allow us to compare parabens' sorption in different conditions. The results of the adsorption and desorption of parabens in the sand column demonstrated be fast and simultaneous, with a short delay and without influence of the water salinity. Very different results were found in the column experiments with heterogeneous material, where the presence of clay and organic matter increase the time of adsorption/desorption as the length of the alkyl chain paraben increased, according with their hydrophobicity. It should be noted that despite the quick desorption of the major quantities of parabens, the elution of their trace concentrations was very slow (for the seawater, the buthylparaben required a dimensionless time of 800). Planning the restoration of a coastal aquifer with freshwater, and in the conditions of the studied sand column experiment, it will need a dimensionless time of 160. However, it is necessary to take into account that the studied parabens and 4-hydroxybenzoic acid are biodegradable substances, as can be seen in long term experiments, when bacterial proliferation could occur, despite starting the experiment under sterile conditions.
An Updated Model for the Anomalous Resistivity of LNAPL Plumes in Sandy Environments
NASA Astrophysics Data System (ADS)
Sauck, W. A.; Atekwana, E. A.; Werkema, D. D.
2006-05-01
Anomalously low resistivities have been observed at some sites contaminated by light non-aqueous phase liquid (LNAPL) since. The model that has been used to explain this phenomenon was published in 2000. This working hypothesis invokes both physical mixing and bacterial action to explain the low resistivities near the base of the vadose zone and the upper part of the aquifer. The hydrocarbon-degrading bacteria (of which there are numerous species found in soils) produce organic acids and carbonic acids. The acidic pore waters dissolve readily soluble ions from the native soil grains and grain coatings, to produce a leachate high in total dissolved solids. The free product LNAPL is initially a wetting phase, although not generally more than 50% extent, and seasonal water table fluctuations mix the hydrocarbons vertically through the upper water saturated zone and transition zone. This update introduces several new aspects of the conductive model. The first is that, in addition to the acids being produced by the oil-degrading bacteria, they also produce surfactants. Surfactants act similarly to detergents in detaching the oil phase from the solid substrate, and forming an emulsion of oil droplets within the water. This has helped to explain how continuous, high-TDS capillary paths can develop and pass vertically through what appears to be a substantial free product layer, thus providing easy passage for electrical current during electrical resistivity measurements. Further, it has also been shown that the addition of organic acids and biosurfactants to pore fluids can directly contribute to the conductivity of the pore fluids. A second development is that large-diameter column experiments were conducted for nearly two years (8 columns for 4 experiments). The columns had a vertical row of eletrodes for resistivity measurements, ports for extracting water samples with a syringe, and sample tubes for extracting soil samples. Water samples were used for chemical analysis and the soil samples for bacterial assays. Those columns to which diesel oil had been added (4) clearly showed the resistivity to decrease, the TDS of water samples to increase, and a radical change in bacterial populations favoring the oil degraders to occur. In the laboratory, most of the significant changes occurred in the time span of 4 to 6 months. The third development that may have a bearing on anomalous conductivity was the recent discovery that certain bacteria, (e.g., Geobacter sulfurreducens) have hairlike structures called pili that are excellent electrical conductors. These pili (nano-wires), longer than the bacterial body itself, are apparently used for electron transfer by the bacteria. In sufficient numbers, they could conceivably alter the electrical resistivity of a volume of earth. In summary, our understanding for the cause of anomalous conductive zones associated with areas impacted by LNAPL spills has been significantly improved by these recent developments.
Behaviour of fibre reinforced polymer confined reinforced concrete columns under fire condition
NASA Astrophysics Data System (ADS)
Chowdhury, Ershad Ullah
In recent years, fibre reinforced polymer (FRP) materials have demonstrated enormous potential as materials for repairing and retrofitting concrete bridges that have deteriorated from factors such as electro-chemical corrosion and increased load requirements. However, concerns associated with fire remain an obstacle to applications of FRP materials in buildings and parking garages due to FRP's sensitivity to high temperatures as compared with other structural materials and to limited knowledge on their thermal and mechanical behaviour in fire. This thesis presents results from an ongoing study on the fire performance of FRP materials, fire insulation materials and systems, and FRP wrapped reinforced concrete columns. The overall goal of the study is to understand the fire behaviour of FRP materials and FRP strengthened concrete columns and ultimately, provide rational fire safety design recommendations and guidelines for FRP strengthened concrete columns. A combined experimental and numerical investigation was conducted to achieve the goals of this research study. The experimental work consisted of both small-scale FRP material testing at elevated temperatures and full-scale fire tests on FRP strengthened columns. A numerical model was developed to simulate the behaviour of unwrapped reinforced concrete and FRP strengthened reinforced concrete square or rectangular columns in fire. After validating the numerical model against test data available in literature, it was determined that the numerical model can be used to analyze the behaviour of concrete axial compressive members in fire. Results from this study also demonstrated that although FRP materials experience considerable loss of their mechanical and bond properties at temperatures somewhat below the glass transition temperature of the resin matrix, externally-bonded FRP can be used in strengthening concrete structural members in buildings, if appropriate supplemental fire protection system is provided over the FRP strengthening system.
Han, Young-Soo; Tokunaga, Tetsu K
2014-12-01
Renewed interest in managing C balance in soils is motivated by increasing atmospheric concentrations of CO2 and consequent climate change. Here, experiments were conducted in soil columns to determine C mass balances with and without addition of CaSO4-minerals (anhydrite and gypsum), which were hypothesized to promote soil organic carbon (SOC) retention and soil inorganic carbon (SIC) precipitation as calcite under slightly alkaline conditions. Changes in C contents in three phases (gas, liquid and solid) were measured in unsaturated soil columns tested for one year and comprehensive C mass balances were determined. The tested soil columns had no C inputs, and only C utilization by microbial activity and C transformations were assumed in the C chemistry. The measurements showed that changes in C inventories occurred through two processes, SOC loss and SIC gain. However, the measured SOC losses in the treated columns were lower than their corresponding control columns, indicating that the amendments promoted SOC retention. The SOC losses resulted mostly from microbial respiration and loss of CO2 to the atmosphere rather than from chemical leaching. Microbial oxidation of SOC appears to have been suppressed by increased Ca(2+) and SO4(2)(-) from dissolution of CaSO4 minerals. For the conditions tested, SIC accumulation per m(2) soil area under CaSO4-treatment ranged from 130 to 260 g C m(-1) infiltrated water (20-120 g C m(-1) infiltrated water as net C benefit). These results demonstrate the potential for increasing C sequestration in slightly alkaline soils via CaSO4-treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
BACTERIOPHAGE TRANSPORT IN SANDY SOIL AND FRACTURED TUFF
Bacteriophage transport was investigated in laboratory column experiments using sandy soil, a controlled field study in a sandy wash, and laboratory experiments using fractured rock. In the soil columns, the phage MS-2 exhibited significant dispersion and was excluded from 35 to ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Last, George V.; Snyder, Michelle M.V.; Um, Wooyong
Performance and risk assessments of immobilized low-activity waste (ILAW) at the Integrated Disposal Facility (IDF) have shown that risks to groundwater are quite sensitive to adsorption-desorption interactions occurring in the near- and far-field environment. These interactions between the underlying sediments and the contaminants present in the leachates that descend from the buried glass, secondary waste grouts, and potentially Cast Stone low-activity waste packages have been represented in these assessments using the contaminant distribution coefficient (Kd) construct. Some contaminants (99Tc, 129I, and Cr) present in significant quantities in these wastes have low Kd values and tend to drive risk to publicmore » health and the environment. Relatively small changes in the Kd value can cause relatively large changes in the retardation factor. Thus, even relatively small uncertainty in the Kd value can result in a relatively large uncertainty in the risk determined through performance assessment modeling. The purpose of this study is to further reduce the uncertainty in Kd values for 99Tc, iodine (iodide and iodate), and Cr (chromate; CrO42-) by conducting systematic adsorption-desorption experiments using actual sand-dominated Hanford formation sediments from beneath the IDF and solutions that closely mimic Hanford vadose zone pore water and leachates from Cast Stone and ILAW glass waste forms. Twenty-four batch and 21 flow-through column experiments were conducted, yielding 261 Kd measurements for these key contaminants, and contributing to our understanding for predicting transport from wastes disposed to the IDF. While the batch Kd methodology is not well-suited for measuring Kd values for non-sorbing species (as noted by the U.S. Environmental Protection Agency), the batch Kd results presented here are not wholly inconsistent with the column Kd results, and could be used for sensitivity purposes. Results from the column experiments are consistent with the best estimate and lower range of Kd values reported by Krupka et al. and Cantrell et al.« less
Cordy, Gail E.; Duran, Norma L.; Bouwer, Herman; Rice, Robert C.; Furlong, Edward T.; Zaugg, Steven D.; Meyer, Michael T.; Barber, Larry B.; Kolpin, Dana W.
2004-01-01
A proof-of-concept experiment was devised to determine if pharmaceuticals and other organic waste water compounds (OWCs), as well as pathogens, found in treated effluent could be transported through a 2.4 m soil column and, thus, potentially reach ground water under recharge conditions similar to those in arid or semiarid climates. Treated effluent was applied at the top of the 2.4 m long, 32.5 cm diameter soil column over 23 days, Samples of the column inflow were collected from the effluent storage tank at the beginning (Tbegin) and end (Tend) of the experiment, and a sample of the soil column drainage at the base of the column (Bend) was collected at the end of the experiment. Samples were analyzed for 131 OWCs including veterinary and human antibiotics, other prescription and nonprescription drugs, widely used household and industrial chemicals, and steroids and reproductive hormones, as well as the pathogens Salmonella and Legionella. Analytical results for the two effluent samples taken at the beginning (Tbegin) and end (Tend) of the experiment indicate that the number of OWCs detected in the column inflow decreased by 25% (eight compounds) and the total concentration of OWCs decreased by 46% while the effluent was in the storage tank during the 23-day experiment. After percolating through the soil column, an additional 18 compounds detected in Tend (67% of OWCs) were no longer detected in the effluent (Bend) and the total concentration of OWCs decreased by more than 70%. These compounds may have been subject to transformation (biotic and abiotic), adsorption, and (or) volatilization in the storage tank and during travel through the soil column. Eight compounds—carbamazapine; sulfamethoxazole; benzophenone; 5-methyl-1H-benzotriazole; N,N-diethyltoluamide; tributylphosphate; tri(2-chloroethyl) phosphate; and cholesterol—were detected in all three samples indicating they have the potential to reach ground water under recharge conditions similar to those in arid and semiarid climates. Results from real-time polymerase chain reactions demonstrated the presence of Legionella in all three samples. Salmonella was detected only in Tbegin, suggesting that the bacteria died off in the effluent storage tank over the period of the experiment. This proof-of-concept experiment demonstrates that, under recharge conditions similar to those in arid or semiarid climates, some pharmaceuticals, pathogens, and other OWCs can persist in treated effluent after soil-aquifer treatment.
NASA Astrophysics Data System (ADS)
Arora, B.; Mohanty, B. P.; McGuire, J. T.
2009-12-01
Fate and transport of contaminants in saturated and unsaturated zones in the subsurface is controlled by complex biogeochemical processes such as precipitation, sorption-desorption, ion-exchange, redox, etc. In dynamic systems such as wetlands and anaerobic aquifers, these processes are coupled and can interact non-linearly with each other. Variability in measured hydrological, geochemical and microbiological parameters thus corresponds to multiple processes simultaneously. To infer the contributing processes, it is important to eliminate correlations and to identify inter-linkages between factors. The objective of this study is to develop quantitative relationships between hydrological (initial and boundary conditions, hydraulic conductivity ratio, and soil layering), geochemical (mineralogy, surface area, redox potential, and organic matter) and microbiological factors (MPN) that alter the biogeochemical processes at the column scale. Data used in this study were collected from controlled flow experiments in: i) two homogeneous soil columns, ii) a layered soil column, iii) a soil column with embedded clay lenses, and iv) a soil column with embedded clay lenses and one central macropore. The soil columns represent increasing level of soil structural heterogeneity to better mimic the Norman Landfill research site. The Norman Landfill is a closed municipal facility with prevalent organic contamination. The sources of variation in the dataset were explored using multivariate statistical techniques and dominant biogeochemical processes were obtained using principal component analysis (PCA). Furthermore, artificial neural networks (ANN) coupled with HP1 was used to develop mathematical rules identifying different combinations of factors that trigger, sustain, accelerate/decelerate, or discontinue the biogeochemical processes. Experimental observations show that infiltrating water triggers biogeochemical processes in all soil columns. Similarly, slow release of water from low permeability clay lenses sustain biogeochemical cycling for a longer period of time than in homogeneous soil columns. Preliminary results indicate: i) certain variables (anion, cation concentrations, etc.) do not follow normal or lognormal distributions even at the column scale, ii) strong correlations exist between parameters related to redox geochemistry (pH with S2- concentrations), and iii) PCA can identify dominant processes (e.g. iron and sulfate reduction) occurring in the system by grouping together causative variables (e.g. dominant TEAPs).
Modelling the evolution of complex conductivity during calcite precipitation on glass beads
NASA Astrophysics Data System (ADS)
Leroy, Philippe; Li, Shuai; Jougnot, Damien; Revil, André; Wu, Yuxin
2017-04-01
When pH and alkalinity increase, calcite frequently precipitates and hence modifies the petrophysical properties of porous media. The complex conductivity method can be used to directly monitor calcite precipitation in porous media because it is sensitive to the evolution of the mineralogy, pore structure and its connectivity. We have developed a mechanistic grain polarization model considering the electrochemical polarization of the Stern and diffuse layers surrounding calcite particles. Our complex conductivity model depends on the surface charge density of the Stern layer and on the electrical potential at the onset of the diffuse layer, which are computed using a basic Stern model of the calcite/water interface. The complex conductivity measurements of Wu et al. on a column packed with glass beads where calcite precipitation occurs are reproduced by our surface complexation and complex conductivity models. The evolution of the size and shape of calcite particles during the calcite precipitation experiment is estimated by our complex conductivity model. At the early stage of the calcite precipitation experiment, modelled particles sizes increase and calcite particles flatten with time because calcite crystals nucleate at the surface of glass beads and grow into larger calcite grains. At the later stage of the calcite precipitation experiment, modelled sizes and cementation exponents of calcite particles decrease with time because large calcite grains aggregate over multiple glass beads and only small calcite crystals polarize.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kearney, Steven; Shu, Deming
A vibration survey of the APS experiment hall floor was conducted. It was found that beamlines 10-20 have particularly low levels of vibration when compared to the rest of the facility. The vibration spectrum for each beamline floor can be found in the appendix. Throughout the majority of the 5-100 Hz vibration spectrum beamlines at the APS fall below the most stringent NEST vibration criteria. Lastly, it was concluded that the magnitude of vibrations at a particular beamline is largely dependent upon the magnitude of vibrations present at the nearby mezzanine support column.
Do diatoms percolate through soil and can they be used for tracing the origin of runoff?
NASA Astrophysics Data System (ADS)
De Graaf, Lenka; Cammeraat, Erik; Pfister, Laurent; Wetzel, Carlos; Klaus, Julian; Hissler, Christophe
2015-04-01
Tracers are widely used to study the movement of water in a catchment. Because of depletion of scientific possibilities with most common tracer types, we proposed the use of diatoms as a natural tracer. Paradoxical results on the contribution of surface runoff to the storm hydrograph were obtained in pioneer research on this idea. Diatom transport via the subsurface flow to the stream would explain this paradox. Prerequisite for this is vertical transport of diatoms through soils, which is the topic of this study. Emphasis is on percolation behavior (speed of percolation, speed of percolation over time, and species distribution) of Pseudostaurosira sp. and Melosira sp. (Bacillariophyceae) through undisturbed soil columns of contrasting substrates. Co-objective is to study the flowpaths of water through the soil columns. Natural undisturbed soil columns were sampled in the Attert basin (Luxembourg) on schist, marl and sandstone substrates. Rain simulation experiments were performed to study vertical diatom transport. Rhodamine dye experiments were carried out to gain insight in the active flowpaths of water, and breakthrough experiments were performed to study the responses of the soil columns to applied water. Diatoms were transported through the soil columns of the three substrates. A vast majority of diatom percolation took place within the first 15 minutes, percolation hereafter was marginal but nevertheless present. Peaks in diatom percolation corresponded with a high flux caused by the addition of the diatom culture, but seepage of diatoms along the sides is unlikely according to the species distribution and the rhodamine dye experiment. Pseudostaurosira sp. percolated significantly better than Melosira sp. Significantly more diatoms percolated through the marl columns compared to the schist columns and variance within the sandstone group was very high. Absolute differences between substrates however, were marginal. Most preferential flowpaths were observed in the marl columns, indicating highest active macroporosity in these columns. Although the sample size of this study was small, it is suspected that the highest diatom percolation percentages of the marl columns is linked to its greater macroporosity and most importantly, diatoms can percolate through soil (macro-) pores.
Removal of Sb-125 and Tc-99 from Liquid Radwaste by Novel Adsorbents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harjula, R.O.; Koivula, R.; Paajanen, A.
2006-07-01
Novel proprietary metal oxide materials (MOM) have been tested for the removal of Sb-125 from simulated Floor Drain Waters of BWR. Antimony was present in the solutions as oxidized anionic form. Long term column experiment with simulated liquid that showed high Sb-125 removal at least up to 8000 bed volumes. One column experiments was carried out using nonradioactive Sb to exhaust the column. Leaching tests with 1000 ppm boric acid showed that 100 % of absorbed Sb remains in the sorbent material. Column experiments with real Fuel Pond Water from Olkiluoto NPP (BWR) showed reduction of Sb-125 (feed level 400more » Bq/L, 1.10{sup -5} {mu}Ci/mL) below detection limit (MDA = 1.7 Bq/L, 5.10{sup -8},{mu}Ci/mL). Additional experiments have also been carried out with pertechnetate (Tc-99) ions. Results indicate that MOM materials are efficient also for the removal of Tc-99 from concentrated NaNO{sub 3} solution. (authors)« less
Stability and Structure of Star-Shape Granules
NASA Astrophysics Data System (ADS)
Zhao, Yuchen; Bares, Jonathan; Liu, Kevin; Zheng, Matthew; Dierichs, Karola; Menges, Achim; Behringer, Robert
Columns made of convex noncohesive grains like sand collapse after being released from a confining container. While various architectures built by concave grains are stable. We explore why these structures are stable, and how stable they can be. We performed experiments by randomly pouring identical star-shape particles into hollow cylinders resting on glass or a roughened base, and then observed how stable these granular columns were after carefully lifting the cylinders. We used particles that are made of acrylics and have six 9 mm arms, which extend symmetrically in xyz directions. We investigated the probability of creating a stable column and other mechanical stability aspects. We define r as the weight fraction of particles that fall out of the column after the confining cylinder is removed. r gradually increases as the column height increases, or the column diameter decreases. We found high column stability when the inter-particle friction was greater. We also explored experiment conditions such as initial vibration of columns when they were confined and loading on the top. In order to understand the inner structure leading to stability, we obtained 3D CT reconstruction data of stable columns. We will discuss coordination number and orientation, etc. We acknowledge supports from W.M.Keck Foundation and Research Triangle MRSEC.
Adsorption and desorption of hexavalent chromium in an alluvial aquifer near Telluride, Colorado
Stollenwerk, K.G.; Grove, D.B.
1985-01-01
A laboratory investigation of reactions between hexavalent chromium [Cr(VI)] and alluvium was conducted to evaluate reactions of Cr(VI) contaminating an alluvial aquifer near Telluride, CO and to determine the mechanisms responsible for these reactions. Uncontaminated alluvium and groundwater (spiked with CrO42-) from the study site were used in batch and column experiments. Results of these experiments show that Cr(VI) was adsorbed by the alluvium. Distribution coefficients from batch experiments ranged from 52 L/kg at an equilibrium CrO42- concentration of 0.4 ??mol/L to 1.7 L/kg at an equilibrium concentration of 1400 ??mol/L. The zero point of charge for the alluvium was approximately 8.3, and the alluvium had a positive net charge at the groundwater pH of 6.8. Visual and chemical evidence indicated that Fe oxide and hydroxide coatings on the alluvial particles principally were responsible for the absorption of Cr(VI). During column experiments, Cr(VI) initially was desorbed easily from the alluvium by Cr-free groundwater; however, the rate of desorption decreased rapidly, and > 60 pore volumes of groundwater were required to decrease the effluent concentration of Cr(VI) to 3 ??mol/L [drinking water standard for Cr(VI) = 1 ??mol/L]. The quantity of Cr(VI) adsorbed varied with the type and concentration of other anions in solution.
Characterizing potential water quality impacts from soils treated with dust suppressants.
Beighley, R Edward; He, Yiping; Valdes, Julio R
2009-01-01
Two separate laboratory experiment series, surface runoff and steady-state seepage, were performed to determine if dust suppressant products can be applied to soils with an expected minimal to no negative impact on water quality. The experiments were designed to mimic arid field conditions and used two soils (clayey and sandy) and six different dust suppressants. The two experiments consisted of: (i) simulated rainfall (intensities of 18, 33, or 61 mm h(-1)) and associated runoff from soil trays at a surface slope of 33%; and (ii) steady-state, constant head seepage through soil columns. Both experiment series involved two product application scenarios and three application ages (i.e., to account for degradation effects) for a total of 126 surface runoff and 80 column experiments. One composite effluent sample was collected from each experiment and analyzed for pH, electrical conductivity, total suspended solids (TSS), total dissolved solids, dissolved oxygen, total organic carbon, nitrate, nitrite, and phosphate. Paired t tests at 1 and 5% levels of significance and project specific data quality objectives are used to compare water quality parameters from treated and untreated soils. Overall, the results from this laboratory scale study suggest that the studied dust suppressants have minimal potential for adverse impacts to selected water quality parameters. The primary impacts were increased TSS for two synthetic products from the surface runoff experiments on both soils. The increase in TSS was not expected based on previous studies and may be attributed to this study's focus on simulating real-world soil agitation/movement at an active construction site subjected to rough grading.
Rácz, Norbert; Kormány, Róbert; Fekete, Jenő; Molnár, Imre
2015-04-10
Column technology needs further improvement even today. To get information of batch-to-batch repeatability, intelligent modeling software was applied. Twelve columns from the same production process, but from different batches were compared in this work. In this paper, the retention parameters of these columns with real life sample solutes were studied. The following parameters were selected for measurements: gradient time, temperature and pH. Based on calculated results, batch-to-batch repeatability of BEH columns was evaluated. Two parallel measurements on two columns from the same batch were performed to obtain information about the quality of packing. Calculating the average of individual working points at the highest critical resolution (R(s,crit)) it was found that the robustness, calculated with a newly released robustness module, had a success rate >98% among the predicted 3(6) = 729 experiments for all 12 columns. With the help of retention modeling all substances could be separated independently from the batch and/or packing, using the same conditions, having high robustness of the experiments. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pavlenko, A. N.; Zhukov, V. E.; Pecherkin, N. I.; Nazarov, A. D.; Li, X.; Li, H.; Gao, X.; Sui, H.
2017-09-01
The use of modern structured packing in the distillation columns allows much more even distribution of the liquid film over the packing surface, but it does not completely solve the problem of uniform distribution of flow parameters over the entire height of the packing. Negative stratification of vapor along the packing height caused by different densities of vapor mixture components and higher temperature in the lower part of the column leads to formation of large-scale maldistributions of temperature and mixture composition over the column cross-section even under the conditions of uniform irrigation of packing with liquid. In these experiments, the idea of compensatory action of liquid distributor on the large-scale maldistribution of mixture composition over the column cross-section was implemented. The experiments were carried out in the distillation column with the diameter of 0.9 m on 10 layers of the Mellapak 350Y packing with the total height of 2.1 m. The mixture of R-21 and R-114 was used as the working mixture. To irrigate the packing, the liquid distributorr with 126 independently controlled solenoid valves overlapping the holes with the diameter of 5 mm, specially designed by the authors, was used. Response of the column to the action of liquid distributor was observed in real time according to the indications of 3 groups of thermometers mounted in 3 different cross-sections of the column. The experiments showed that the minimal correction of the drip point pattern in the controlled liquid distributor can significantly affect the pattern of flow parameter distribution over the cross-section and height of the mass transfer surface and increase separation efficiency of the column within 20%.
Data Assimilation Experiments Using Quality Controlled AIRS Version 5 Temperature Soundings
NASA Technical Reports Server (NTRS)
Susskind, Joel
2009-01-01
The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains a number of significant improvements over Version 4. Two very significant improvements are described briefly below. 1) The AIRS Science Team Radiative Transfer Algorithm (RTA) has now been upgraded to accurately account for effects of non-local thermodynamic equilibrium on the AIRS observations. This allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval algorithm during both day and night. Following theoretical considerations, tropospheric temperature profile information is obtained almost exclusively from clear column radiances in the 4.3 micron CO2 band in the AIRS Version 5 temperature profile retrieval step. These clear column radiances are a derived product that are indicative of radiances AIRS channels would have seen if the field of view were completely clear. Clear column radiances for all channels are determined using tropospheric sounding 15 micron CO2 observations. This approach allows for the generation of accurate values of clear column radiances and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel clear column radiances. These error estimates are used for quality control of the retrieved products. Based on error estimate thresholds, each temperature profiles is assigned a characteristic pressure, pg, down to which the profile is characterized as good for use for data assimilation purposes. We have conducted forecast impact experiments assimilating AIRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the NASA FVGCM, at a spatial resolution of 0.5 deg by 0.5 deg. Assimilation of Quality Controlled AIRS temperature profiles down to pg resulted in significantly improved forecast skill compared to that obtained from experiments when all data used operationally by NCEP, except for AIRS data, is assimilated. These forecasts were also significantly better than to those obtained when AIRS radiances (rather than temperature profiles) are assimilated, which is the way AIRS data is used operationally by NCEP and ECMWF.
Im, Huncheol; Yeo, Inseol; Maeng, Sung Kyu; Park, Chul Hwi; Choi, Heechul
2016-01-01
Batch and column experiments were conducted to evaluate the removal of organic matter, nutrients, and pharmaceuticals and to identify the removal mechanisms of the target contaminants. The sands used in the experiments were obtained from the Youngsan River located in South Korea. Neutral and cationic pharmaceuticals (iopromide, estrone, and trimethoprim) were removed with efficiencies greater than 80% from different sand media during experiments, due to the effect of sorption between sand and pharmaceuticals. However, the anionic pharmaceuticals (sulfamethoxazole, ketoprofen, ibuprofen, and diclofenac) were more effectively removed by natural sand, compared to baked sand. These observations were mainly attributed to biodegradation under natural conditions of surface organic matter and ATP concentrations. The removal of organic matter and nitrogen was also found to increase under biotic conditions. Therefore, it is indicated that biodegradation plays an important role and act as major mechanisms for the removal of organic matter, nutrients, and selected pharmaceuticals during sand passage and the managed aquifer recharge, which is an effective treatment method for removing target contaminants. However, the low removal efficiencies of pharmaceuticals (e.g., carbamazepine and sulfamethoxazole) require additional processes (e.g., AOPs, NF and RO membrane), a long residence time, and long travel distance for increasing the removal efficiencies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Experiences from full-scale rockfall testing of protection gallery
NASA Astrophysics Data System (ADS)
Volkwein, Axel; Fergg, Daniel; Hess, Reto; Schellenberg, Kristian
2017-04-01
Vertical drop tests have been performed at the Swiss Oberalppass road. The planned deconstruction of two avalanche protection galleries enabled a precedent evaluation of one gallery (Parde 1} regarding its capacity against rockfall. The background for this evaluation was also to evaluate an existing model for predicting the protection capacity of a rockfall gallery. Based on this model existing galleries can be evaluated whether their residual capacity is sufficient or if it is necessary to strengthen the structureaccording to the current guidelines. This contribution focusses the conduction of the experiments and the experiences obtained from. The presentation gives details on experimental setup, impact characterization, gallery performance, weather implications, data retrieval and data analysis.According to the limited time span for testing and the resources available, a compact testing series has been setup. Three fields of the gallery were tested with drop weights of 800, 1600 and 3200 kg falling from up to 25 m height. The blocks were lifted by a mobil crane. The concrete roof is supported by columns on the valley side and on the mountainside simply supported on the retention wall. The roof slabspans approximately 6x5 m with a thickness of about 0.60 m and is covered by a soil cushion, which has been unified to 0.40 m thickness previous to the test. Additional wooden columns have been installed at the roof's valleyside to avoid a failure of the concrete columns and to favorize a failure of the roof itself due to bending or punching. The measurements performed consist of high speed video records, accelerations within the impactors and on the bottom surface of the gallery roof.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Hyun-Shik; Um, Wooyong; Rod, Kenton A.
2011-10-01
Leaching behavior of Sr and Cs in the vadose zone of Hanford site (WA, USA) was studied with laboratory-weathered sediments mimicking realistic conditions beneath the leaking radioactive waste storage tanks. Unsaturated column leaching experiments were conducted using background Hanford pore water focused on first 200 pore volumes. The weathered sediments were prepared by 6 months reaction with a synthetic Hanford tank waste leachate containing Sr and Cs (10-5 and 10-3 molal representative of LO- and HI-sediment, respectively) as surrogates for 90Sr and 137Cs. The mineral composition of the weathered sediments showed that zeolite (chabazite-type) and feldspathoid (sodalite-type) were the majormore » byproducts but different contents depending on the weathering conditions. Reactive transport modeling indicated that Cs leaching was controlled by ion-exchange, while Sr release was affected primarily by dissolution of the secondary minerals. The later release of K, Al, and Si from the HI-column indicated the additional dissolution of a more crystalline mineral (cancrinite-type). A two-site ion-exchange model successfully simulated the Cs release from the LO-column. However, a three-site ion-exchange model was needed for the HI-column. The study implied that the weathering conditions greatly impact the speciation of the secondary minerals and leaching behavior of sequestrated Sr and Cs.« less
Nethaji, S; Sivasamy, A; Kumar, R Vimal; Mandal, A B
2013-06-01
Char was obtained from lotus seed biomass by a simple single-step acid treatment process. It was used as an adsorbent for the removal of malachite green dye (MG) from simulated dye bath effluent. The adsorbent was characterized for its surface morphology, surface functionalities, and zero point charge. Batch studies were carried out by varying the parameters such as initial aqueous pH, adsorbent dosage, adsorbent particle size, and initial adsorbate concentration. Langmuir and Freundlich isotherms were used to test the isotherm data and the Freundlich isotherm best fitted the data. Thermodynamic studies were carried out and the thermodynamic parameters such as ∆G, ∆H, and ∆S were evaluated. Adsorption kinetics was carried out and the data were tested with pseudofirst-order model, pseudosecond-order model, and intraparticle diffusion model. Adsorption of MG was not solely by intraparticle diffusion but film diffusion also played a major role. Continuous column experiments were also conducted using microcolumn and the spent adsorbent was regenerated using ethanol and was repeatedly used for three cycles in the column to determine the reusability of the regenerated adsorbent. The column data were modeled with the modeling equations such as Adam-Bohart model, Bed Depth Service Time (BDST) model, and Yoon-Nelson model for all the three cycles.
MODELING CST ION EXCHANGE FOR CESIUM REMOVAL FROM SCIX BATCHES 1 - 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, F.
2011-04-25
The objective of this work is, through modeling, to predict the performance of Crystalline Silicotitinate (CST) for the removal of cesium from Small Column Ion Exchange (SCIX) Batches 1-4 (as proposed in Revision 16 of the Liquid Waste System Plan). The scope of this task is specified in Technical Task Request (TTR) 'SCIX Feed Modeling', HLE-TTR-2011-003, which specified using the Zheng, Anthony, Miller (ZAM) code to predict CST isotherms for six given SCIX feed compositions and the VErsatile Reaction and SEparation simulator for Liquid Chromatography (VERSE-LC) code to predict ion-exchange column behavior. The six SCIX feed compositions provided in themore » TTR represent SCIX Batches 1-4 and Batches 1 and 2 without caustic addition. The study also investigated the sensitivity in column performance to: (1) Flow rates of 5, 10, and 20 gpm with 10 gpm as the nominal flow; and (2) Temperatures of 25, 35, and 45 C with 35 C as the nominal temperature. The isotherms and column predictions presented in this report reflect the expected performance of engineered CST IE-911. This form of CST was used in experiments conducted at the Savannah River National Laboratory (SRNL) that formed the basis for estimating model parameters (Hamm et al., 2002). As has been done previously, the engineered resin capacity is estimated to be 68% of the capacity of particulate CST without binder.« less
Direct Down-scale Experiments of Concentration Column Designs for SHINE Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youker, Amanda J.; Stepinski, Dominique C.; Vandegrift, George F.
Argonne is assisting SHINE Medical Technologies in their efforts to become a domestic Mo-99 producer. The SHINE accelerator-driven process uses a uranyl-sulfate target solution for the production of fission-product Mo-99. Argonne has developed a molybdenum recovery and purification process for this target solution. The process includes an initial Mo recovery column followed by a concentration column to reduce the product volume from 15-25 L to < 1 L prior to entry into the LEU Modified Cintichem (LMC) process for purification.1 This report discusses direct down-scale experiments of the plant-scale concentration column design, where the effects of loading velocity and temperaturemore » were investigated.« less
Batch soil adsorption and column transport studies of 2,4-dinitroanisole (DNAN) in soils
NASA Astrophysics Data System (ADS)
Arthur, Jennifer D.; Mark, Noah W.; Taylor, Susan; Šimunek, J.; Brusseau, M. L.; Dontsova, Katerina M.
2017-04-01
The explosive 2,4,6-trinitrotoluene (TNT) is currently a main ingredient in munitions; however the compound has failed to meet the new sensitivity requirements. The replacement compound being tested is 2,4-dinitroanisole (DNAN). DNAN is less sensitive to shock, high temperatures, and has good detonation characteristics. However, DNAN is more soluble than TNT, which can influence transport and fate behavior and thus bioavailability and human exposure potential. The objective of this study was to investigate the environmental fate and transport of DNAN in soil, with specific focus on sorption processes. Batch and column experiments were conducted using soils collected from military installations located across the United States. The soils were characterized for pH, electrical conductivity, specific surface area, cation exchange capacity, and organic carbon content. In the batch rate studies, change in DNAN concentration with time was evaluated using the first order equation, while adsorption isotherms were fitted using linear and Freundlich equations. Solution mass-loss rate coefficients ranged between 0.0002 h- 1 and 0.0068 h- 1. DNAN was strongly adsorbed by soils with linear adsorption coefficients ranging between 0.6 and 6.3 L g- 1, and Freundlich coefficients between 1.3 and 34 mg1 - n Ln kg- 1. Both linear and Freundlich adsorption coefficients were positively correlated with the amount of organic carbon and cation exchange capacity of the soil, indicating that similar to TNT, organic matter and clay minerals may influence adsorption of DNAN. The results of the miscible-displacement column experiments confirmed the impact of sorption on retardation of DNAN during transport. It was also shown that under flow conditions DNAN transforms readily with formation of amino transformation products, 2-ANAN and 4-ANAN. The magnitudes of retardation and transformation observed in this study result in significant attenuation potential for DNAN, which would be anticipated to contribute to a reduced risk for contamination of ground water from soil residues.
Macropore system characteristics controls on non-reactive solute transport at different flow rates
NASA Astrophysics Data System (ADS)
Larsbo, Mats; Koestel, John
2014-05-01
Preferential flow and transport in macroporous soils are important pathways for the leaching of agrochemicals through soils. Preferential solute transport in soil is to a large extent determined by the macropore system characteristics and the water flow conditions. The importance of different characteristics of the macropore system is likely to vary with the flow conditions. The objective of this study was to determine which properties of the macropore system that control the shape of non-reactive tracer solute breakthrough curves at different steady-state flow rates. We sampled five undisturbed columns (20 cm high, 20 cm diameter) from the soil surface of four soils with clay contents between 21 and 50 %. Solute transport experiments were carried out under unsaturated conditions at 2, 4, 6, 8 and 12 mm h-1 flow rates. For each flow rate a pulse of potassium bromide solution was applied at the soil surface and the electrical conductivity was measured with high temporal resolution in the column effluent. We used the 5 % arrival time and the holdback factor to estimate the degree of preferential transport from the resulting breakthrough curves. Unsaturated hydraulic conductivities were measured at the soil surface of the columns using a tension disc infiltrometer. The macropore system was imaged by industrial X-ray computed tomography at a resolution of 125 μm in all directions. Measures of the macropore system characteristics including measures of pore continuity were calculated from these images using the ImageJ software. Results show that the degree of preferential transport is generally increasing with flow rate when larger pores become active in the transport. The degree of preferential flow was correlated to measures of macropore topology. This study show that conclusions drawn from experiments carried out at one flow rate should generally not be extrapolated to other flow rates.
Batch soil adsorption and column transport studies of 2,4-dinitroanisole (DNAN) in soils.
Arthur, Jennifer D; Mark, Noah W; Taylor, Susan; Šimunek, J; Brusseau, M L; Dontsova, Katerina M
2017-04-01
The explosive 2,4,6-trinitrotoluene (TNT) is currently a main ingredient in munitions; however the compound has failed to meet the new sensitivity requirements. The replacement compound being tested is 2,4-dinitroanisole (DNAN). DNAN is less sensitive to shock, high temperatures, and has good detonation characteristics. However, DNAN is more soluble than TNT, which can influence transport and fate behavior and thus bioavailability and human exposure potential. The objective of this study was to investigate the environmental fate and transport of DNAN in soil, with specific focus on sorption processes. Batch and column experiments were conducted using soils collected from military installations located across the United States. The soils were characterized for pH, electrical conductivity, specific surface area, cation exchange capacity, and organic carbon content. In the batch rate studies, change in DNAN concentration with time was evaluated using the first order equation, while adsorption isotherms were fitted using linear and Freundlich equations. Solution mass-loss rate coefficients ranged between 0.0002h -1 and 0.0068h -1 . DNAN was strongly adsorbed by soils with linear adsorption coefficients ranging between 0.6 and 6.3Lg -1 , and Freundlich coefficients between 1.3 and 34mg 1 - n L n kg -1 . Both linear and Freundlich adsorption coefficients were positively correlated with the amount of organic carbon and cation exchange capacity of the soil, indicating that similar to TNT, organic matter and clay minerals may influence adsorption of DNAN. The results of the miscible-displacement column experiments confirmed the impact of sorption on retardation of DNAN during transport. It was also shown that under flow conditions DNAN transforms readily with formation of amino transformation products, 2-ANAN and 4-ANAN. The magnitudes of retardation and transformation observed in this study result in significant attenuation potential for DNAN, which would be anticipated to contribute to a reduced risk for contamination of ground water from soil residues. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Graeber, Daniel; Poulsen, Jane R.; Rasmussen, Jes J.; Kronvang, Brian; Zak, Dominik; Kamjunke, Norbert
2016-04-01
In the recent years it has become clear that the largest part of the terrestrial dissolved organic carbon (DOC) pool is removed on the way from the land to the ocean. Yet it is still unclear, where in the freshwater systems terrestrial DOC is actually taken up, and for streams DOC uptake was assumed to happen mostly at the stream bottom (benthic zone). However, a recent monitoring study implies that water column but not benthic bacteria are strongly affected by the amount and composition of DOM entering streams from the terrestrial zone. We conducted an experiment to compare the reaction of the bacterial production and heterotrophic uptake in the water column and the benthic zone to a standardized source of terrestrial DOC (leaf leachate from Beech litter). In detail, we sampled gravel and water from eight streams with a gradient in stream size and land use. For each stream four different treatments were incubated at 16°C for three days and each stream: filtered stream water with gravel stones (representing benthic zone bacteria) or unfiltered stream water (representing water column bacteria), both either with (n = 5) or, without (n = 3) leaf leachate. We found that the bacterial uptake of leaf litter DOC was higher for the benthic zone likely due to the higher bacterial production compared to the water column. In contrast, the bacterial production per amount of leaf leachate DOC taken up was significantly higher for the bacteria in the water column than for those in the benthic zone. This clearly indicates a higher growth efficiency with the leaf leachate DOC for the bacteria in the water column than in the benthic zone. We found a high variability for the growth efficiency in the water column, which was best explained by a negative correlation of the DOC demand with stream width (R² = 0.86, linear correlation of log-transformed data). This was not the case for the benthic zone bacteria (R² = 0.02). This implies that water column bacteria in very small streams are more dependent on terrestrial DOC sources for their growth than those in larger streams. Based on this experiment and literature data we hypothesize that: I) The response of the bacterial production to terrestrial DOC in the water column is stronger than for the benthic zone and is decreasing with increasing stream size, likely due to the increase of autochthonous DOC production within the stream. II) Independent of stream size there is only a small reaction to terrestrial DOC for the bacterial production in the benthic zone, either due to internal DOC production or a stronger dependency on particulate organic carbon. We propose that this terrestrial DOC dependency concept is generally applicable, however, its potential underlying mechanisms and concept predictions need to be tested further for other stream and river ecosystems.
SURFACTANT ENHANCED REMEDIATION OF SOIL COLUMNS CONTAMINATED BY RESIDUAL TETRACHLOROETHYLENE
The ability of aqueous surfactant solutions to recover tetrachloroethylene (PCE) entrapped in Ottawa sand was evaluated in four column experiments. Residual PCE was emplaced by injecting 14C-labeled PCE into water-saturated soil columns and displacing the free product ...
Agaoglu, Berken; Scheytt, Traugott; Copty, Nadim K
2012-10-01
This study examines the mechanistic processes governing multiphase flow of a water-cosolvent-NAPL system in saturated porous media. Laboratory batch and column flushing experiments were conducted to determine the equilibrium properties of pure NAPL and synthetically prepared NAPL mixtures as well as NAPL recovery mechanisms for different water-ethanol contents. The effect of contact time was investigated by considering different steady and intermittent flow velocities. A modified version of multiphase flow simulator (UTCHEM) was used to compare the multiphase model simulations with the column experiment results. The effect of employing different grid geometries (1D, 2D, 3D), heterogeneity and different initial NAPL saturation configurations was also examined in the model. It is shown that the change in velocity affects the mass transfer rate between phases as well as the ultimate NAPL recovery percentage. The experiments with low flow rate flushing of pure NAPL and the 3D UTCHEM simulations gave similar effluent concentrations and NAPL cumulative recoveries. Model simulations over-estimated NAPL recovery for high specific discharges and rate-limited mass transfer, suggesting a constant mass transfer coefficient for the entire flushing experiment may not be valid. When multi-component NAPLs are present, the dissolution rate of individual organic compounds (namely, toluene and benzene) into the ethanol-water flushing solution is found not to correlate with their equilibrium solubility values. Copyright © 2012 Elsevier B.V. All rights reserved.
Attempt to model laboratory-scale diffusion and retardation data.
Hölttä, P; Siitari-Kauppi, M; Hakanen, M; Tukiainen, V
2001-02-01
Different approaches for measuring the interaction between radionuclides and rock matrix are needed to test the compatibility of experimental retardation parameters and transport models used in assessing the safety of the underground repositories for the spent nuclear fuel. In this work, the retardation of sodium, calcium and strontium was studied on mica gneiss, unaltered, moderately altered and strongly altered tonalite using dynamic fracture column method. In-diffusion of calcium into rock cubes was determined to predict retardation in columns. In-diffusion of calcium into moderately and strongly altered tonalite was interpreted using a numerical code FTRANS. The code was able to interprete in-diffusion of weakly sorbing calcium into the saturated porous matrix. Elution curves of calcium for the moderately and strongly altered tonalite fracture columns were explained adequately using FTRANS code and parameters obtained from in-diffusion calculations. In this paper, mass distribution ratio values of sodium, calcium and strontium for intact rock are compared to values, previously obtained for crushed rock from batch and crushed rock column experiments. Kd values obtained from fracture column experiments were one order of magnitude lower than Kd values from batch experiments.
Development Of ABEC Column For Separation Of Tc-99 From Northstar Dissolved Target Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepinski, Dominique C.; Bennett, Megan E.; Naik, Seema R.
Batch and column breakthrough experiments were performed to determine isotherms and mass-transfer parameters for adsorption of Tc on aqueous biphasic extraction chromatographic (ABEC) sorbent in two solutions: 200 g/L Mo, 5.1 M K +, 1 M OH -, and 0.1 M NO 3 - (Solution A) and 200 g/L Mo, 9.3 M K +, 5 M OH -, and 0.1 M NO 3 - (Solution B). Good agreement was found between the isotherm values obtained by batch and column breakthrough studies for both Solutions A and B. Potassium-pertechnetate intra-particle diffusivity on ABEC resin was estimated by VERSE simulations, and goodmore » agreement was found among a series of column-breakthrough experiments at varying flow velocities, column sizes, and technetium concentrations. However, testing of 10 cc cartridges provided by NorthStar with Solutions A and B did not give satisfactory results, as significant Tc breakthrough was observed and ABEC cartridge performance varied widely among experiments. These different experimental results are believed to be due to inconsistent preparation of the ABEC resin prior to packing and/or inconsistent packing.« less
NASA Astrophysics Data System (ADS)
Olson, Mitchell R.; Sale, Tom C.
2015-06-01
Soil remediation is often inhibited by subsurface heterogeneity, which constrains contaminant/reagent contact. Use of soil mixing techniques for reagent delivery provides a means to overcome contaminant/reagent contact limitations. Furthermore, soil mixing reduces the permeability of treated soils, thus extending the time for reactions to proceed. This paper describes research conducted to evaluate implications of soil mixing on remediation of non-aqueous phase liquid (NAPL) source zones. The research consisted of column studies and subsequent modeling of field-scale systems. For column studies, clean influent water was flushed through columns containing homogenized soils, granular zero valent iron (ZVI), and trichloroethene (TCE) NAPL. Within the columns, NAPL depletion occurred due to dissolution, followed by either column-effluent discharge or ZVI-mediated degradation. Complete removal of TCE NAPL from the columns occurred in 6-8 pore volumes of flow. However, most of the TCE (> 96%) was discharged in the column effluent; less than 4% of TCE was degraded. The low fraction of TCE degraded is attributed to the short hydraulic residence time (< 4 days) in the columns. Subsequently, modeling was conducted to scale up column results. By scaling up to field-relevant system sizes (> 10 m) and reducing permeability by one-or-more orders of magnitude, the residence time could be greatly extended, potentially for periods of years to decades. Model output indicates that the fraction of TCE degraded can be increased to > 99.9%, given typical post-mixing soil permeability values. These results suggest that remediation performance can be greatly enhanced by combining contaminant degradation with an extended residence time.
Heavy metal leaching from mine tailings as affected by plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, D.; Schwab, A.P.; Banks, M.K.
A column experiment was conducted to determine the impact of soil cover and plants on heavy metal leaching from mine tailings and heavy metal contaminated soil. Columns made of PVC were constructed with 30 cm subsoil covered by 30 cm of mine tailings followed by 0, 30, or 60 cm subsoil covered by 30 cm of mine tailings followed by 0, 30, or 60 cm of clean topsoil. Two grasses, tall fescue (Festuca arundinacea Schreb.) and big bluestem (Andropogon gerardii), were grown in the columns. The columns were leached at a slow rate for 1 yr with a 0.001 Mmore » CaCl{sub 2} solution under unsaturated conditions. The presence of both tall fescue and big bluestem increased Zn and Cd concentrations in the leachate. Lead concentrations in leachates were not affected by the presence of plants. Although plants generally reduced the total amount of water leached, total mass of Zn and Cd leached generally was not impacted by plants. Total mass of Pb leached was positively correlated with total leachate collected from each column. Covering the mine tailings with 60 cm of topsoil increased the mass of Zn and Cd leached relative to no topsoil. When the subsoil was absent, Zn and Cd leaching increased by as much as 20-fold, verifying the ability of soil to act as a sink for metals. Mine tailing remediation by establishing vegetation can reduce Pb movement but may enhance short-term Cd and Zn leaching. However, the changes were relatively small and do not outweigh the benefits of using vegetation in mine tailings reclamation.« less
Núñez-Delgado, Avelino; López-Períago, Eugenio; Diaz-Fierros-Viqueira, Francisco
2002-09-01
Designing soil filtration systems or vegetated filter strips as a means of attenuating water pollution should take into account soil purging capacity. Here we report data on laboratory column trials used to investigate the capacity of a Hortic Anthrosol to attenuate contamination due to downward leaching from cattle slurry applied at the surface. The columns comprised 900 g of soil to a depth of about 20-25 cm, and had been used previously in an experiment involving passage of at least 5 pore volumes of an ion-containing cattle slurry-like feed solution. For the present experiments, the columns were first washed through with distilled water (simulating resting and rain falling after passage of the feed solution), and then received a single slurry dose equivalent to about 300 m3 ha(-1). The columns were then leached with distilled water, with monitoring of chemical oxygen demand (COD) and ion contents in outflow. The results indicated that the pollution-neutralising capacity of the soil was still high but clearly lower than in the earlier experiments with the feed solution. Furthermore, the time-course of COD showed that organic acids were leached through the column even more rapidly than chloride (often viewed as an inert tracer) enhancing the risk of heavy metals leaching and subsequent water pollution. Resting and alternate use of different soil-plant buffer zones would increase the lifespan of purging systems that use soil like the here studied one.
A Comprehensive Real-World Distillation Experiment
ERIC Educational Resources Information Center
Kazameas, Christos G.; Keller, Kaitlin N.; Luyben, William L.
2015-01-01
Most undergraduate mass transfer and separation courses cover the design of distillation columns, and many undergraduate laboratories have distillation experiments. In many cases, the treatment is restricted to simple column configurations and simplifying assumptions are made so as to convey only the basic concepts. In industry, the analysis of a…
We conducted a multi-year study of the Louisiana continental shelf (LCS) to better understand the linkages between water column net metabolism and the formation of hypoxia (dissolved oxygen <2 ml O2 L-1) in the region. Rates of water column community respiration (R) and primary p...
Removal of phosphorus from water by using volcanic ash soil (VAS): batch and column experiments.
Nguyen, Huy Van; Maeda, Morihiro
2016-09-01
Using low-cost and naturally available materials is considered an optimal adsorbent for removing phosphorus (P) from water due to its simplicity and economic efficiency. This study examined the removal of P from water using volcanic ash soil (VAS) by batch and column experiments. The maximum adsorption capacity of P was 2.94 mg g -1 , estimated from the batch experiment according to a Langmuir isotherm. The column study showed a higher adsorption capacity of 5.57 mg g -1 . The breakthrough curve showed that influent water containing 2 mg L -1 P was completely purified by VAS within 1,230 pore volumes (PV). The breakthrough and saturation points of the curves were 3,100 PV and 14,875 PV, respectively. After an adsorption column was loaded with 20,508 PV, a regeneration procedure was developed to determine whether an ion exchange of P with chloride occurred or adsorbed P in the columns could be eluted. Approximately 20% of P was recovered from columns by desorption tests, regardless of NaCl solution or deionized water. Specific surface area and mineral concentrations are both important characteristics that improve the adsorption capacity of VAS. The present study suggests that VAS is a promising adsorbent to remove P in water.
ERIC Educational Resources Information Center
Lee, Shan-Hu; Mukherjee, Souptik; Brewer, Brittany; Ryan, Raphael; Yu, Huan; Gangoda, Mahinda
2013-01-01
An undergraduate laboratory experiment is described to measure Henry's law constants of organic compounds using a bubble column and gas chromatography flame ionization detector (GC-FID). This experiment is designed for upper-division undergraduate laboratory courses and can be implemented in conjunction with physical chemistry, analytical…
NASA Astrophysics Data System (ADS)
Freitag, Peter; Schöftner, Philipp; Waldner, Georg; Reichenauer, Thomas G.; Nickel, Claudia; Spitz, Marcus; Dietzel, Martin
2014-05-01
Trichloroethylene (TCE) was widely used as a cleaning and degreasing agent. Companies needing these agents were often situated in or close to built up areas, so spillage led to contaminated sites which now can only be remediated using in situ techniques. The situation is compounded by the fact that TCE tends to seep through ground water bodies forming pools at the bottom of the aquifer. When reacting with TCE, nanoscale zero valent iron (nZVI) is known to reduce it into non-toxic substances. The difficulty is to bring it in contact with the pollutant. Attempts using passive insertion into the groundwater via wells yielded mixed results. Reasons for this are that ZVI tends to coagulate, to sediment and to adsorb on the matrix of the aquifer. Also, in inhomogeneous aquifers a passive application of nZVI can be difficult and might not bring the desired results, due to existence of preferential flow paths. A possible solution to this problem is the physical in situ mixing of ZVI into the contaminant source. This can, in principle, be done by adapting jet grouting - a method that uses a high pressure slurry jet, consisting of water and geotechnical additives ("binders"), to mix and compact zones ("columns") in soil. These columns are commonly used to solve foundation problems but can also be used to solve the problem of delivering nZVI to TCE source zones. This paper examines the influence binders have on the degradation reaction between TCE and nZVI. The necessity of these binders is explained by the fact that the subsoil structure is rearranged during the jetting process leading to subsidence on the surface. These subsidences could result in damage to neighbouring structures. A series of batch experiments was conducted in this study. Contaminated groundwater was brought into contact with samples of slurries commonly used in geotechnical applications. We tested the effects of concresole, bentonite, zeolithe, fly ash, slag sand and cement on the kinetics of TCE degradation by nZVI. The degradation of TCE was measured using GC Headspace samples. Furthermore, additional experiments were conducted to investigate the interaction between binders and TCE as well as binders and nZVI. The results of these experiments led to the conclusion that jet grouting could be well suited for the delivery of nZVI to TCE contaminated source zones. Currently, soil column experiments and large-scale experiments in test facilities are performed to confirm the batch testing results.
EDTA-assisted leaching of Pb and Cd from contaminated soil.
Qiao, Jiangbo; Sun, Huimin; Luo, Xiuhua; Zhang, Wang; Mathews, Shiny; Yin, Xianqiang
2017-01-01
Lead (Pb) and cadmium (Cd) contamination of soil and its harmful effects on human and environmental health have been one concern. In this study, batch and column leaching experiments were conducted to investigate the effects of two EDTA-assisted leaching methods, continuous and intermittent (dry-wet alternate), on the removal of Pb and Cd from contaminated soil. Total content and fractions of Pb and Cd at every 1 cm soil column depth were analyzed before and after the leaching. The results indicated that continuous leaching removed 75.43% of Pb (19.370 mg) and 53.21% of Cd (6.168 mg) and intermittent leaching removed 78.08% of Pb (20.051 mg) and 57.37% of Cd (6.650 mg), which showed intermittent leaching removed more Pb and Cd, but didn't differ significantly (P > 0.05) compared to the continuous leaching. In both leaching methods, total Pb and Cd content in all soil depths reduced after leaching. The two leaching methods made no significant differences in Pb and Cd distributions at different depths of the soil column. Copyright © 2016 Elsevier Ltd. All rights reserved.
SHINE and Mini-SHINE Column Designs for Recovery of Mo from 140 g-U/L Uranyl Sulfate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepinski, Dominique C.; Vandegrift, George F.
Argonne is assisting SHINE Medical Technologies (SHINE) in their efforts to develop an accelerator-driven process that utilizes a uranyl-sulfate solution for the production of fission Mo-99. In an effort to design a Mo-recovery system for the SHINE project using low-enriched uranium (LEU), we conducted batch, breakthrough, and pulse tests to determine the Mo isotherm, mass-transfer zone (MTZ), and system parameters for a 130 g-U/L uranyl sulfate solution at pH 1 and 80°C, as described previously. The VERSE program was utilized to calculate the MTZ under various loading times and velocities. The results were then used to design Mo separation andmore » recovery columns employing a pure titania sorbent (110-μm particles, S110, and 60 Å pore size). The plant-scale column designs assume Mo will be separated from 271 L of a 141 g-U/L uranyl sulfate solution, pH 1, containing 0.0023 mM Mo. The VERSE-designed recovery systems have been tested and verified in laboratory-scale experiments, and this approach was found to be very successful.« less
Shanmugaprakash, M; Sivakumar, V
2015-12-01
The present work, analyzes the potential of defatted pongamia oil cake (DPOC) for the biosorption of Zn(II) ions from aqueous solutions in the both batch and column mode. Batch experiments were conducted to evaluate the optimal pH, effect of adsorbent dosage, initial Zn(II) ions concentration and contact time. The biosorption equilibrium and kinetics data for Zn(II) ions onto the DPOC were studied in detail, using several models, among all it was found to be that, Freundlich and the second-order model explained the equilibrium data well. The calculated thermodynamic parameters had shown that the biosorption of Zn(II) ions was exothermic and spontaneous in nature. Batch desorption studies showed that the maximum Zn(II) recovery occurred, using 0.1 M EDTA. The Bed Depth Service Time (BDST) and the Thomas model was successfully employed to evaluate the model parameters in the column mode. The results indicated that the DPOC can be applied as an effective and eco-friendly biosorbent for the removal of Zn(II) ions in polluted wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Werisch, Stefan; Müller, Marius
2017-04-01
Determination of soil hydraulic properties has always been an important part of soil physical research and model applications. While several experiments are available to measure the water retention of soil samples, the determination of the unsaturated hydraulic conductivity is often more complicated, bound to strong assumption and time consuming. Although, the application of unit gradient experiments is recommended since the middle of the last century, as one method towards a (assumption free) direct measurement of the unsaturated hydraulic conductivity, data from unit gradient experiments is seldom to never reported in literature. We developed and build a fully automated, pressure controlled, unit gradient experiment, which allows a precise determination of the unsaturated soil hydraulic conductivity K(h) and water retention VWC(h), especially in the highly dynamic near saturated range. The measurement apparatus applies the concept of hanging water columns and imposes the required soil water pressure by dual porous plates. This concepts allows the simultaneous and direct measurement of water retention and hydraulic conductivity. Moreover, this approach results in a technically less demanding experiment than related flux controlled experiments, and virtually any flux can be measured. Thus, both soil properties can be measured in mm resolution, for wetting and drying processes, between saturation and field capacity for all soil types. Our results show, that it is important to establish separate measurements of the unsaturated hydraulic conductivity in the near saturated range, as the shape of the retention function and hydraulic conductivity curve do not necessarily match. Consequently, the prediction of the hydraulic conductivity curve from measurements of the water retention behavior in combination with a value for the saturated hydraulic conductivity can be misleading. Thus, separate parameterizations of the individual functions might be necessary and are possible with this approach. Furthermore, the apparatus allows a convenient quantification of temperature effects on both hydraulic properties and first results demonstrate impressively the important role of temperature on hydraulic conductivity, which is notoriously underestimated.
Column Experiments to Interpret Weathering in Columbia Hills
NASA Technical Reports Server (NTRS)
Hausrath, E. M.; Morris, R.V.; Ming, D.W.; Golden, D.C.; Galindo, C.; Sutter, B.
2009-01-01
Phosphate mobility has been postulated as an indicator of early aqueous activity on Mars. In addition, rock surfaces analyzed by the Mars Exploration Rover Spirit are consistent with the loss of a phosphate- containing mineral To interpret phosphate alteration behavior on Mars, we performed column dissolution experiments leaching the primary phases Durango fluorapatite, San Carlos olivine, and basalt glass (Stapafjell Volcano, courtesy of S. Gislason, University of Iceland) [3,4]) with acidic solutions. These phases were chosen to represent quickly dissolving phases likely present in Columbia Hills. Column dissolution experiments are closer to natural dissolution conditions than batch experiments, although they can be difficult to interpret. Acidic solutions were used because the leached layers on the surfaces of these rocks have been interpreted as resulting from acid solutions [5].
NASA Astrophysics Data System (ADS)
Park, Y.; Hou, L.; Atwill, R.; Packman, A. I.; Harter, T.
2009-12-01
Cryptosporidium is one of the most common enteric parasites of humans and domestic animals, and a number of outbreaks of Cryprosporidiosis, a diarrheal disease caused by Cryptosporidium have been reported worldwide. Natural porous media has been demonstrated to be an effective filter for removing Cryptosporidium parvum from contaminated water and the amount of Cryptosporidium filtered is known to be highly dependent on physical and chemical conditions of the porous media and the water. Cryptosporidium deposition in saturated porous media involves two main steps: approach and attachment. In contrast to the approach mechanisms, attachment processes have not been systematically described to predict a priori because theories that represent attachment behavior (colloid stability) such as DLVO are insufficient to explain experimental data. For this reason, attachment efficiency is calculated based on empirical data, typically experimental breakthrough curves in laboratory columns or field experiments. In this study, collision (attachment) efficiencies (α) of C. parvum oocyst were calculated to test the effect of chemical property changes on the association of oocysts with sand grains. The breakthrough curve data obtained from twelve column experiments and three models were employed to calculate single collector efficiency (η) and α. The first ten experiments were conducted by changing ionic strength and pH, and mixing with natural sediments under the same physical properties (same η). Our experiment results show that iron coating or clay/suspended solids mixture drastically enhanced oocyst deposition. The experiments also showed that increase in ionic strength and decrease in pH enhanced the attachment efficiency. However, the experiment with 100mM NaCl resulted in low attachment efficiency and the experiment with pH 8.5 showed similar attachment efficiency to the one at pH 7. Based on the results from two additional experiments with different flow velocities, it appears that attachment efficiency changes when the flow velocity changes, which contradicts CFT. The results prove that predicting attachment efficiency of C. parvum oocyst using ionic strength or pH is inappropriate when non-DLVO interactions are involved. A review of our results and comparison to existing data shows that it is challenging to accurately predict the attachment efficiency using single peak value of breakthrough curve data from geochemical information of porous media.
2012-01-01
Background Sundarbans is the single largest deltaic mangrove forest in the world, formed at estuarine phase of the Ganges - Brahmaputra river system. Primary productivity of marine and coastal phytoplankton contributes to 15% of global oceanic production. But unfortunately estuarine dynamics of tropical and subtropical estuaries have not yet received proper attention in spite of the fact that they experience considerable anthropogenic interventions and a baseline data is required for any future comparison. This study is an endeavor to this end to estimate the primary productivity (gross and net), community respiration and nitrification rates in different rivers and tidal creeks around Jharkhali island, a part of Sundarbans estuary surrounded by the mangrove forest during a period of three years starting from November’08 to October’11. Results Various physical and chemical parameters of water column like pH, temperature, conductivity, dissolved oxygen, turbidity, suspended particulate matter, secchi disc index, tidal fluctuation and tidal current velocity, standing crop and nutrients were measured along with water column productivity. Relationship of net water column productivity with algal biomass (standing crop), nutrient loading and turbidity were determined experimentally. Correlations of bacterial abundance with community respiration and nitrification rates were also explored. Annual integrated phytoplankton production rate of this tidal estuary was estimated to be 151.07 gC m-2 y-1. Gross primary productivity showed marked inter annual variation being lowest in monsoon and highest in postmonsoon period. Conclusion Average primary production was a function of nutrient loading and light penetration in the water column. High aquatic turbidity, conductivity and suspended particulate matter were the limiting factors to attenuate light penetration with negative influence on primary production. Community respiration and nitrification rates of the estuary were influenced by the bacterial abundance. The estuary was phosphorus limited in postmonsoon whereas nitrogen-limited in premonsoon and monsoon period. High algal biomass and primary productivity indicated the estuary to be in eutrophic state in most of the time throughout the year. Our study also indicated a seasonal shifting between autotrophic and heterotrophic conditions in Sundarban estuarine ecosystem and it is a tropical, well mixed (high tidal influx) and marine dominated (no fresh water connection) system. PMID:23083531
Chaudhuri, Kaberi; Manna, Suman; Sarma, Kakoli Sen; Naskar, Pankaj; Bhattacharyya, Somenath; Bhattacharyya, Maitree
2012-10-19
Sundarbans is the single largest deltaic mangrove forest in the world, formed at estuarine phase of the Ganges - Brahmaputra river system. Primary productivity of marine and coastal phytoplankton contributes to 15% of global oceanic production. But unfortunately estuarine dynamics of tropical and subtropical estuaries have not yet received proper attention in spite of the fact that they experience considerable anthropogenic interventions and a baseline data is required for any future comparison. This study is an endeavor to this end to estimate the primary productivity (gross and net), community respiration and nitrification rates in different rivers and tidal creeks around Jharkhali island, a part of Sundarbans estuary surrounded by the mangrove forest during a period of three years starting from November'08 to October'11. Various physical and chemical parameters of water column like pH, temperature, conductivity, dissolved oxygen, turbidity, suspended particulate matter, secchi disc index, tidal fluctuation and tidal current velocity, standing crop and nutrients were measured along with water column productivity. Relationship of net water column productivity with algal biomass (standing crop), nutrient loading and turbidity were determined experimentally. Correlations of bacterial abundance with community respiration and nitrification rates were also explored. Annual integrated phytoplankton production rate of this tidal estuary was estimated to be 151.07 gC m-2 y-1. Gross primary productivity showed marked inter annual variation being lowest in monsoon and highest in postmonsoon period. Average primary production was a function of nutrient loading and light penetration in the water column. High aquatic turbidity, conductivity and suspended particulate matter were the limiting factors to attenuate light penetration with negative influence on primary production. Community respiration and nitrification rates of the estuary were influenced by the bacterial abundance. The estuary was phosphorus limited in postmonsoon whereas nitrogen-limited in premonsoon and monsoon period. High algal biomass and primary productivity indicated the estuary to be in eutrophic state in most of the time throughout the year. Our study also indicated a seasonal shifting between autotrophic and heterotrophic conditions in Sundarban estuarine ecosystem and it is a tropical, well mixed (high tidal influx) and marine dominated (no fresh water connection) system.
Hydrogen in rocks: an energy source for deep microbial communities
NASA Technical Reports Server (NTRS)
Freund, Friedemann; Dickinson, J. Thomas; Cash, Michele
2002-01-01
To survive in deep subsurface environments, lithotrophic microbial communities require a sustainable energy source such as hydrogen. Though H2 can be produced when water reacts with fresh mineral surfaces and oxidizes ferrous iron, this reaction is unreliable since it depends upon the exposure of fresh rock surfaces via the episodic opening of cracks and fissures. A more reliable and potentially more voluminous H2 source exists in nominally anhydrous minerals of igneous and metamorphic rocks. Our experimental results indicate that H2 molecules can be derived from small amounts of H2O dissolved in minerals in the form of hydroxyl, OH- or O3Si-OH, whenever such minerals crystallized in an H2O-laden environment. Two types of experiments were conducted. Single crystal fracture experiments indicated that hydroxyl pairs undergo an in situ redox conversion to H2 molecules plus peroxy links, O3Si/OO\\SiO3. While the peroxy links become part of the mineral structure, the H2 molecules diffused out of the freshly fractured mineral surfaces. If such a mechanism occurred in natural settings, the entire rock column would become a volume source of H2. Crushing experiments to facilitate the outdiffusion of H2 were conducted with common crustal igneous rocks such as granite, andesite, and labradorite. At least 70 nmol of H2/g diffused out of coarsely crushed andesite, equivalent at standard pressure and temperature to 5,000 cm3 of H2/m3 of rock. In the water-saturated, biologically relevant upper portion of the rock column, the diffusion of H2 out of the minerals will be buffered by H2 saturation of the intergranular water film.
Ussher, Simon J; Milne, Angela; Landing, William M; Attiq-ur-Rehman, Kakar; Séguret, Marie J M; Holland, Toby; Achterberg, Eric P; Nabi, Abdul; Worsfold, Paul J
2009-10-12
A detailed investigation into the performance of two flow injection-chemiluminescence (FI-CL) manifolds (with and without a preconcentration column) for the determination of sub-nanomolar dissolved iron (Fe(II)+Fe(III)), following the reduction of Fe(III) by sulphite, in seawater is described. Kinetic experiments were conducted to examine the efficiency of reduction of inorganic Fe(III) with sulphite under different conditions and a rigorous study of the potential interference caused by other transition metals present in seawater was conducted. Using 100microM concentrations of sulphite a reduction time of 4h was sufficient to quantitatively reduce Fe(III) in seawater. Under optimal conditions, cobalt(II) and vanadium(IV)/(III) were the major positive interferences and strategies for their removal are reported. Specifically, cobalt(II) was masked by the addition of dimethylglyoxime to the luminol solution and vanadium(IV) was removed by passing the sample through an 8-hydroxyquinoline column in a low pH carrier stream. Manganese(II) also interfered by suppression of the CL response but this was not significant at typical open ocean concentrations.
Estrella, M R; Brusseau, M L; Maier, R S; Pepper, I L; Wierenga, P J; Miller, R M
1993-01-01
The fate of an organic contaminant in soil depends on many factors, including sorption, biodegradation, and transport. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was used as a model compound to illustrate the impact of these interacting factors on the fate of an organic contaminant. Batch and column experiments performed with a sandy loam soil mixture under saturated and unsaturated conditions were used to determine the effects of sorption and biodegradation on the fate and transport of 2,4-D. Sorption of 2,4-D was found to have a slight but significant effect on transport of 2,4-D under saturated conditions (retardation factor, 1.8) and unsaturated conditions (retardation factor, 3.4). Biodegradation of 2,4-D was extensive under both batch and column conditions and was found to have a significant impact on 2,4-D transport in column experiments. In batch experiments, complete mineralization of 2,4-D (100 mg kg-1) occurred over a 4-day period following a 3-day lag phase under both saturated and unsaturated conditions. The biodegradation rate parameters calculated for batch experiments were found to be significantly different from those estimated for column experiments. PMID:8285717
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, S.; Yokosawa, M.; Matsuyama, M.
To study the practical application of a tritium separation process using Self-Developing Gas Chromatography (SDGC) using a Pd-Pt alloy, intermediate scale-up experiments (22 mm ID x 2 m length column) and the development of a computational simulation method have been conducted. In addition, intermediate scale production of Pd-Pt powder has been developed for the scale-up experiments.The following results were obtained: (1) a 50-fold scale-up from 3 mm to 22 mm causes no significant impact on the SDGC process; (2) the Pd-Pt alloy powder is applicable to a large size SDGC process; and (3) the simulation enables preparation of a conceptualmore » design of a SDGC process for tritium separation.« less
NASA Astrophysics Data System (ADS)
Huntzinger, D. N.; McCray, J. E.; Siegrist, R.; Lowe, K.; VanCuyk, S.
2001-05-01
Sixteen, one-dimensional column lysimeters have been developed to evaluate the influence of loading regime and infiltrative surface character on hydraulic performance in wastewater soil absorption systems. A duplicate design was utilized to evaluate two infiltrative surface conditions (gravel-free vs. gravel-laden) under four hydraulic loading regimes representative of possible field conditions. By loading the columns at rates of 25 to 200 cm/day, the 17 weeks of column operation actually reflect up to approximately 13 yrs of field operation (at 5 cm/day). Therefore, the cumulative mass throughput and infiltrative rate loss for each loading regime can be examined to determine the viability of accelerated loading as a means to compress the time scale of observation, while still producing meaningfully results for the field scale. During operation, the columns were loaded with septic tank effluent at a prescribed rate and routinely monitoring for applied effluent composition, infiltration rate, time-dependant soil water content, water volume throughput, and percolate composition. Bromide tracer tests were completed prior to system startup and at weeks 2, 6, and 17 of system operation. Hydraulic characterization of the columns is based on measurements of the hydraulic loading rate, volumetric throughput, soil water content, and bromide breakthrough curves. Incipient ponding of wastewater developed during the 1st week of operation for columns loaded at the highest hydraulic rate (loading regimes 1 and 2), and during the 3rd and 6th week of operation for loading regimes 3 and 4, respectfully. The bromide breakthrough curves exhibit later breakthrough and tailing as system life increases, indicating the development of spatially variability in hydraulic conductivity within the column and the development of a clogging zone at the infiltrative surface. Throughput is assessed for each loading regime to determine the infiltration rate loss versus days of operation. Loading regimes 1 and 2 approach a comparable long-term throughput rate less than 20 cm/day, while loading regimes 3 and 4 reach a long-term throughput rate of less than 10 cm/day. These one-dimensional columns allow for the analysis of infiltrative rate loss and hydraulic behavior as a result of infiltrative surface character and loading regime.
NASA Astrophysics Data System (ADS)
Dangelmayr, Martin A.; Reimus, Paul W.; Johnson, Raymond H.; Clay, James T.; Stone, James J.
2018-06-01
This research assesses the ability of a GC SCM to simulate uranium transport under variable geochemical conditions typically encountered at uranium in-situ recovery (ISR) sites. Sediment was taken from a monitoring well at the SRH site at depths 192 and 193 m below ground and characterized by XRD, XRF, TOC, and BET. Duplicate column studies on the different sediment depths, were flushed with synthesized restoration waters at two different alkalinities (160 mg/l CaCO3 and 360 mg/l CaCO3) to study the effect of alkalinity on uranium mobility. Uranium breakthrough occurred 25% - 30% earlier in columns with 360 mg/l CaCO3 over columns fed with 160 mg/l CaCO3 influent water. A parameter estimation program (PEST) was coupled to PHREEQC to derive site densities from experimental data. Significant parameter fittings were produced for all models, demonstrating that the GC SCM approach can model the impact of carbonate on uranium in flow systems. Derived site densities for the two sediment depths were between 141 and 178 μmol-sites/kg-soil, demonstrating similar sorption capacities despite heterogeneity in sediment mineralogy. Model sensitivity to alkalinity and pH was shown to be moderate compared to fitted site densities, when calcite saturation was allowed to equilibrate. Calcite kinetics emerged as a potential source of error when fitting parameters in flow conditions. Fitted results were compared to data from previous batch and column studies completed on sediments from the Smith-Ranch Highland (SRH) site, to assess variability in derived parameters. Parameters from batch experiments were lower by a factor of 1.1 to 3.4 compared to column studies completed on the same sediments. The difference was attributed to errors in solid-solution ratios and the impact of calcite dissolution in batch experiments. Column studies conducted at two different laboratories showed almost an order of magnitude difference in fitted site densities suggesting that experimental methodology may play a bigger role in column sorption behavior than actual sediment heterogeneity. Our results demonstrate the necessity for ISR sites to remove residual pCO2 and equilibrate restoration water with background geochemistry to reduce uranium mobility. In addition, the observed variability between fitted parameters on the same sediments highlights the need to provide standardized guidelines and methodology for regulators and industry when the GC SCM approach is used for ISR risk assessments.
Dangelmayr, Martin A; Reimus, Paul W; Johnson, Raymond H; Clay, James T; Stone, James J
2018-06-01
This research assesses the ability of a GC SCM to simulate uranium transport under variable geochemical conditions typically encountered at uranium in-situ recovery (ISR) sites. Sediment was taken from a monitoring well at the SRH site at depths 192 and 193 m below ground and characterized by XRD, XRF, TOC, and BET. Duplicate column studies on the different sediment depths, were flushed with synthesized restoration waters at two different alkalinities (160 mg/l CaCO 3 and 360 mg/l CaCO 3 ) to study the effect of alkalinity on uranium mobility. Uranium breakthrough occurred 25% - 30% earlier in columns with 360 mg/l CaCO 3 over columns fed with 160 mg/l CaCO 3 influent water. A parameter estimation program (PEST) was coupled to PHREEQC to derive site densities from experimental data. Significant parameter fittings were produced for all models, demonstrating that the GC SCM approach can model the impact of carbonate on uranium in flow systems. Derived site densities for the two sediment depths were between 141 and 178 μmol-sites/kg-soil, demonstrating similar sorption capacities despite heterogeneity in sediment mineralogy. Model sensitivity to alkalinity and pH was shown to be moderate compared to fitted site densities, when calcite saturation was allowed to equilibrate. Calcite kinetics emerged as a potential source of error when fitting parameters in flow conditions. Fitted results were compared to data from previous batch and column studies completed on sediments from the Smith-Ranch Highland (SRH) site, to assess variability in derived parameters. Parameters from batch experiments were lower by a factor of 1.1 to 3.4 compared to column studies completed on the same sediments. The difference was attributed to errors in solid-solution ratios and the impact of calcite dissolution in batch experiments. Column studies conducted at two different laboratories showed almost an order of magnitude difference in fitted site densities suggesting that experimental methodology may play a bigger role in column sorption behavior than actual sediment heterogeneity. Our results demonstrate the necessity for ISR sites to remove residual pCO2 and equilibrate restoration water with background geochemistry to reduce uranium mobility. In addition, the observed variability between fitted parameters on the same sediments highlights the need to provide standardized guidelines and methodology for regulators and industry when the GC SCM approach is used for ISR risk assessments. Copyright © 2018 Elsevier B.V. All rights reserved.
Photometric analysis of a space shuttle water venting
NASA Technical Reports Server (NTRS)
Viereck, R. A.; Murad, E.; Pike, C. P.; Kofsky, I. L.; Trowbridge, C. A.; Rall, D. L. A.; Satayesh, A.; Berk, A.; Elgin, J. B.
1991-01-01
Presented here is a preliminary interpretation of a recent experiment conducted on Space Shuttle Discovery (Mission STS 29) in which a stream of liquid supply water was vented into space at twilight. The data consist of video images of the sunlight-scattering water/ice particle cloud that formed, taken by visible light-sensitive intensified cameras both onboard the spacecraft and at the AMOS ground station near the trajectory's nadir. This experiment was undertaken to study the phenomenology of water columns injected into the low-Earth orbital environment, and to provide information about the lifetime of ice particles that may recontact Space Shuttle orbits later. The findings about the composition of the cloud have relevance to ionospheric plasma depletion experiments and to the dynamics of the interaction of orbiting spacecraft with the environment.
Katsuo, Shigeharu; Langel, Christian; Sandré, Anne-Laure; Mazzotti, Marco
2011-12-30
One of the modified simulated moving bed (SMB) processes, the intermittent SMB (I-SMB) process, has been recently analyzed theoretically [1] and its superior performance compared to the conventional SMB process has been demonstrated at a rather low total feed concentration through experiments and simulations [2]. This work shows that the I-SMB process outperforms the conventional SMB process also at high feed concentration where the species are clearly subject to a nonlinear adsorption isotherm. In the case of the separation of the Tröger's base's enantiomers in ethanol on ChiralPak AD, the two processes operated in a six-column 1-2-2-1 configuration (one column in sections 1 and 4 and two columns in sections 2 and 3) and in a four-column 1-1-1-1 configuration (one column in each section) are compared at high feed concentration through both experiments and simulations. Even under nonlinear conditions the four column I-SMB process can successfully separate the two enantiomers achieving purity levels as high as the two six column processes and exhibiting better productivity. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bridge, J. W.; Dormand, J.; Cooper, J.; Judson, D.; Boston, A. J.; Bankhead, M.; Onda, Y.
2014-12-01
The legacy to-date of the nuclear disaster at Fukushima Dai-ichi, Japan, has emphasised the fundamental importance of high quality radiation measurements in soils and plant systems. Current-generation radiometers based on coded-aperture collimation are limited in their ability to locate sources of radiation in three dimensions, and require a relatively long measurement time due to the poor efficiency of the collimation system. The quality of data they can provide to support biogeochemical process models in such systems is therefore often compromised. In this work we report proof-of-concept experiments demonstrating the potential of an alternative approach in the measurement of environmentally-important radionuclides (in particular 137Cs) in quartz sand and soils from the Fukushima exclusion zone. Compton-geometry imaging radiometers harness the scattering of incident radiation between two detectors to yield significant improvements in detection efficiency, energy resolution and spatial location of radioactive sources in a 180° field of view. To our knowledge we are reporting its first application to environmentally-relevant systems at low activity, dispersed sources, with significant background radiation and, crucially, movement over time. We are using a simple laboratory column setup to conduct one-dimensional transport experiments for 139Ce and 137Cs in quartz sand and in homogenized repacked Fukushima soils. Polypropylene columns 15 cm length with internal diameter 1.6 cm were filled with sand or soil and saturated slowly with tracer-free aqueous solutions. Radionuclides were introduced as 2mL pulses (step-up step-down) at the column inlet. Data were collected continuously throughout the transport experiment and then binned into sequential time intervals to resolve the total activity in the column and its progressive movement through the sand/soil. The objective of this proof-of-concept work is to establish detection limits, optimise image reconstruction algorithms, and develop a novel approach to time-lapse quantification of radionuclide dynamics in the soil-plant system. The aim is to underpin the development of a new generation of Compton radiometers equipped to provide high resolution, dynamic measurements of radionuclides in terrestrial biogeochemical environments.
Olson, Mitchell R; Sale, Tom C
2015-01-01
Soil remediation is often inhibited by subsurface heterogeneity, which constrains contaminant/reagent contact. Use of soil mixing techniques for reagent delivery provides a means to overcome contaminant/reagent contact limitations. Furthermore, soil mixing reduces the permeability of treated soils, thus extending the time for reactions to proceed. This paper describes research conducted to evaluate implications of soil mixing on remediation of non-aqueous phase liquid (NAPL) source zones. The research consisted of column studies and subsequent modeling of field-scale systems. For column studies, clean influent water was flushed through columns containing homogenized soils, granular zero valent iron (ZVI), and trichloroethene (TCE) NAPL. Within the columns, NAPL depletion occurred due to dissolution, followed by either column-effluent discharge or ZVI-mediated degradation. Complete removal of TCE NAPL from the columns occurred in 6-8 pore volumes of flow. However, most of the TCE (>96%) was discharged in the column effluent; less than 4% of TCE was degraded. The low fraction of TCE degraded is attributed to the short hydraulic residence time (<4 days) in the columns. Subsequently, modeling was conducted to scale up column results. By scaling up to field-relevant system sizes (>10 m) and reducing permeability by one-or-more orders of magnitude, the residence time could be greatly extended, potentially for periods of years to decades. Model output indicates that the fraction of TCE degraded can be increased to >99.9%, given typical post-mixing soil permeability values. These results suggest that remediation performance can be greatly enhanced by combining contaminant degradation with an extended residence time. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N. R. Mann; T. A. Todd; K. N. Brewer
1999-04-01
Development of waste treatment processes for the remediation of radioactive wastes is currently underway. A number of experiments were performed at the Idaho Nuclear Technology and Environmental Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) with the commercially available sorbent material, IONSIV IE-911, crystalline silicotitanate (CST), manufactured by UOP LLC. The purpose of this work was to evaluate the removal efficiency, sorbent capacity and selectivity of CST for removing Cs-137 from actual and simulated acidic tank waste in addition to dissolved pilot-plant calcine solutions. The scope of this work included batch contact tests performed with non-radioactivemore » dissolved Al and Run-64 pilot plant calcines in addition to simulants representing the average composition of tank waste. Small-scale column tests were performed with actual INEEL tank WM-183 waste, tank waste simulant, dissolved Al and Run-64 pilot plant calcine solutions. Small-scale column experiments using actual WM-183 tank waste resulted in fifty-percent Cs-137 breakthrough at approximately 589 bed volumes. Small-scale column experiments using the tank waste simulant displayed fifty-percent Cs-137 breakthrough at approximately 700 bed volumes. Small-scale column experiments using dissolved Al calcine simulant displayed fifty-percent Cs-137 breakthrough at approximately 795 bed volumes. Column experiments with dissolved Run-64, pilot plant calcine did not reach fifty-percent breakthrough throughout the test.« less
Scott, Charles D.; Hancher, Charles W.
1977-01-01
A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.
Adhikari, K; Pal, S; Chakraborty, B; Mukherjee, S N; Gangopadhyay, A
2014-10-01
The movement of contaminants through soil imparts a variety of geo-environmental problem inclusive of lithospheric pollution. Near-surface aquifers are often vulnerable to contamination from surface source if overlying soil possesses poor resilience or contaminant attenuation capacity. The prediction of contaminant transport through soil is urged to protect groundwater from sources of pollutants. Using field simulation through column experiments and mathematical modeling like HYDRUS-1D, assessment of soil resilience and movement of contaminants through the subsurface to reach aquifers can be predicted. An outfall site of effluents of a coke oven plant comprising of alarming concentration of phenol (4-12.2 mg/L) have been considered for studying groundwater condition and quality, in situ soil characterization, and effluent characterization. Hydrogeological feature suggests the presence of near-surface aquifers at the effluent discharge site. Analysis of groundwater of nearby locality reveals the phenol concentration (0.11-0.75 mg/L) exceeded the prescribed limit of WHO specification (0.002 mg/L). The in situ soil, used in column experiment, possess higher saturated hydraulic conductivity (KS = 5.25 × 10(-4) cm/s). The soil containing 47 % silt, 11 % clay, and 1.54% organic carbon content was found to be a poor absorber of phenol (24 mg/kg). The linear phenol adsorption isotherm model showed the best fit (R(2) = 0.977, RMSE = 1.057) to the test results. Column experiments revealed that the phenol removal percent and the length of the mass transfer zone increased with increasing bed heights. The overall phenol adsorption efficiency was found to be 42-49%. Breakthrough curves (BTCs) predicted by HYDRUS-1D model appears to be close fitting with the BTCs derived from the column experiments. The phenol BTC predicted by the HYDRUS-1D model for 1.2 m depth subsurface soil, i.e., up to the depth of groundwater in the study area, showed that the exhaustion point was reached within 12 days of elapsed time. This clearly demonstrated poor attenuation capacity of the soil to retard migration of phenol to the groundwater from the surface outfall site. Suitable liner, based on these data, may be designed to inhibit subsurface transport of phenol and thereby to protect precious groundwater from contamination.
NASA Astrophysics Data System (ADS)
Maneta, M. P.; Simeone, C.; Dobrowski, S.; Holden, Z.; Sapes, G.; Sala, A.; Begueria, S.
2017-12-01
In semiarid regions, drought-induced seedling mortality is considered to be caused by failure in the tree hydraulic column. Understanding the mechanisms that cause hydraulic failure and death in seedlings is important, among other things, to diagnose where some tree species may fail to regenerate, triggering demographic imbalances in the forest that could result in climate-driven shifts of tree species. Ponderosa pine is a common lower tree line species in the western US. Seedlings of ponderosa pine are often subject to low soil water potentials, which require lower water potentials in the xylem and leaves to maintain the negative pressure gradient that drives water upward. The resilience of the hydraulic column to hydraulic tension is species dependent, but from greenhouse experiments, we have identified general tension thresholds beyond which loss of xylem conductivity becomes critical, and mortality in Ponderosa pine seedlings start to occur. We describe this hydraulic behavior of plants using a mechanistic soil-vegetation-atmosphere transfer model. Before we use this models to understand water-stress induced seedling mortality at the landscape scale, we perform a modeling analysis of the dynamics of soil moisture, transpiration, leaf water potential and loss of plant water conductivity using detailed data from our green house experiments. The analysis is done using a spatially distributed model that simulates water fluxes, energy exchanges and water potentials in the soil-vegetation-atmosphere continuum. Plant hydraulic and physiological parameters of this model were calibrated using Monte Carlo methods against information on soil moisture, soil hydraulic potential, transpiration, leaf water potential and percent loss of conductivity in the xylem. This analysis permits us to construct a full portrait of the parameter space for Ponderosa pine seedling and generate posterior predictive distributions of tree response to understand the sensitivity of transpiration, hydraulic tension in the plant, and percent loss of conductivity to environmental stresses.
Repetitive Regeneration of Media #1 in a Dynamic Column Extraction using Brine #1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary Garland
This data is from a regeneration study from a dynamic column extraction experiment where we ran a solution of REE's through a column of media #1 then stripped the REE's off the media using 2M HNO3 solution. We then re-equilibrated the media and repeated the process of running a REE solution through the column and stripping the REE's off the media and comparing the two runs.
Seeking New Submissions for the Student Connections Column
ERIC Educational Resources Information Center
Klotz, Mary Beth; Frank, Michael; McLendon, Katherine E.
2017-01-01
Student Connections is a long-running monthly column in Communiqué that provides a platform for students to share perspectives and experiences from their graduate school training. Many of the columns have had a broader application and are of interest to both seasoned practitioners and graduate educators. Articles for Student Connections are…
Gas chromatographic column for the Viking 1975 molecular analysis experiment
NASA Technical Reports Server (NTRS)
Novotny, M.; Hayes, J. M.; Bruner, F.; Simmonds, P. G.
1975-01-01
A gas chromatographic column has been developed for use in the remote analysis of the Martian surface. The column, which utilizes a liquid-modified organic adsorbent (Tenax) as the stationary phase, provides efficient transmission and resolution of nanogram quantities of organic materials in the presence of millionfold excesses of water and carbon dioxide.
Simple gas chromatographic system for analysis of microbial respiratory gases
NASA Technical Reports Server (NTRS)
Carle, G. C.
1972-01-01
Dual column ambient temperature system, consisting of pair of capillary columns, microbead thermistor detector and micro gas-sampling valve, is used in remote life-detection equipment for space experiments. Performance outweighs advantage gained by utilizing single-column systems to reduce weight, conserve carrier gas and operate at lower power levels.
Using the spectral induced polarization method to assess biochar performance as a remediation agent
NASA Astrophysics Data System (ADS)
Ntarlagiannis, D.; Kirmizakis, P.; Kalderis, D.; Soupios, P. M.
2016-12-01
Olive mill waste-water (OMW), the waste product of olive oil production, typically holds a high concentration of hazardous substances (e.g. phenols) to humans and the environment. OMW is usually disposed of into unregulated, not properly constructed, evaporation ponds in the close vicinity of the olive mil. Efficient, easy to apply, remediation methods are sought to address the impact of uncontrolled OMW in the Mediterranean region. Biochar amended soils could be used to reduce the detrimental effects of OMW since it has been shown to reduce the organic load of impacted soils. We present results from a laboratory experiment designed [a] to treat OMW using biochar, and [b] utilize the spectral induced polarization (SIP) method to monitor the remediation process. Three biochar amended columns (5%, 10%, 25%) and one control were saturated with OMW from the Alikianos waste pond. After 10 day treatment the organic load was reduced on all biochar amended columns, with the 10% showing the highest reduction. Early results indicate aerobic degradation at the initial treatment stages, followed by anaerobic conditions later. SIP monitoring provides some very interesting results, with the real and imaginary components behaving differently. The real conductivity appears to increase significantly only for the 10% biochar column, the one with highest organic load removal. Imaginary conductivity appears to increase with time in all biochar amended columns, and it seems to be affected by the amount of biochar present. Finally, scaning electron microscopy (SEM) showed no alterations on the physical structure of the biochar, potentially allowing for multiple treatments and/or re-using. These early results suggest that biochar is suitable for OMW treatment, and SIP is sensitive to the remediation processes. Overall, the method is simple to set-up, run and monitor and does not require any safety precautions. Further geochemical analysis is performed to provide additional insight on OMW and biochar processes, and their links to SIP responses.
Synthesis of Biofluidic Microsystems (SYNBIOSYS)
2007-10-01
reaction system. 58 FIGURE 41. The micro reactor is represented by a PFR network model. The calculation of reaction and convection is conducted in...one column of PFRs and the calculation of diffusional mixing is conducted between two columns of PFRs. 59 FIGURE 42. Apply the numerical method of...lines to calculate the diffusion in the channel width direction. Here, we take 10 discretized concentration points in the channel: ci1 - ci10. Points
Processes and catalysts for conducting fischer-tropsch synthesis in a slurry bubble column reactor
Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.
1999-01-01
Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided.
Strength and stiffness of reinforced rectangular columns under biaxially eccentric thrust.
DOT National Transportation Integrated Search
1976-01-01
Compression tests on nine reinforced concrete rectangular columns subjected to : constant thrust and biaxially eccentric moments were conducted at the off-campus : research facility of The University of Texas, The Civil Engineering Structures : Labor...
NASA Technical Reports Server (NTRS)
Russell, Philip B.
1994-01-01
Many theoretical studies have shown that anthropogenic aerosol particles can change the radiation balance in an atmospheric column and might thereby exert a significant effect on the Earth's climate. In particular, recent calculations have shown that sulfate particles from anthropogenic combustion may already exert a cooling influence on the Earth that partially offsets the warming caused by the greenhouse gases from the same combustion. Despite the potential climatic importance of anthropogenic aerosols, simultaneous measurements of anthropogenic aerosol properties and their effect on atmospheric radiation have been very rare. Successful comparisons of measured radiation fields with those calculated from aerosol measurements - now referred to as column closure comparisons - are required to improve the accuracy and credibility of climate predictions. This paper reviews the column closure experiment performed at the Mt. Sutro Tower in San Francisco in 1975, in which elevated radiometers measured the change in Earth-plus-atmosphere albedo caused by an aerosol layer, while a lidar, sunphotometer, nephelometer, and other radiometers measured properties of the responsible aerosol. The time-dependent albedo calculated from the measured aerosol properties agreed with that measured by the tower radiometers. Also presented are designs for future column closure studies using radiometers and aerosol instruments on the ground, aircraft, and satellites. These designs draw upon algorithms and experience developed in the Sutro Tower study, as well as more recent experience with current measurement and analysis capabilities.
NASA Astrophysics Data System (ADS)
Agaoglu, B.; Scheytt, T. J.; Copty, N. K.
2011-12-01
This study examines the mechanistic processes governing multiphase flow of a water-cosolvent-NAPL system in saturated porous media. Laboratory batch and column flushing experiments were conducted to determine the equilibrium properties of pure NAPL and synthetically prepared NAPL mixtures as well as NAPL recovery mechanisms for different water-ethanol contents. The effect of contact time was investigated by considering different steady and intermittent flow velocities. A modified version of multiphase flow simulator (UTCHEM) was used to compare the multiphase model simulations with the column experiment results. The effect of employing different grid geometries (1D, 2D, 3D), heterogeneity and different initial NAPL saturation configurations were also examined in the model. It is shown that the change in velocity affects the mass transfer rate between phases as well as the ultimate NAPL recovery percentage. The experiments with slow flow rate flushing of pure NAPL and the 3D UTCHEM simulations gave similar effluent concentrations and NAPL cumulative recoveries. The results were less consistent for fast non-equilibrium flow conditions. The dissolution process from the NAPL mixture into the water-ethanol flushing solutions was found to be more complex than dissolution expressions incorporated in the numerical model. The dissolution rate of individual organic compounds (namely Toluene and Benzene) from a mixture NAPL into the ethanol-water flushing solution is found not to correlate with their equilibrium solubility values.The implications of this controlled experimental and modeling study on field cosolvent remediation applications are discussed.
Non-linear wave interaction in a magnetoplasma column. I - Theory. II Experiment
NASA Technical Reports Server (NTRS)
Larsen, J.-M.; Crawford, F. W.
1979-01-01
The paper presents an analysis of non-linear three-wave interaction for propagation along a cylindrical plasma column surrounded either by a metallic boundary, or by an infinite dielectric, and immersed in an infinite, static, axial magnetic field. An averaged Lagrangian method is used and the results are specialized to parametric amplification and mode conversion, assuming an undepleted pump wave. Computations are presented for a magneto-plasma column surrounded by free space, indicating that parametric growth rates of the order of a fraction of a decibel per centimeter should be obtainable for plausible laboratory plasma parameters. In addition, experiments on non-linear mode conversion in a cylindrical magnetoplasma column are described. The results are compared with the theoretical predictions and good qualitative agreement is demonstrated.
Effects of Humidity Swings on Adsorption Columns for Air Revitalization: Modeling and Experiments
NASA Technical Reports Server (NTRS)
LeVan, M. Douglas; Finn, John E.
1997-01-01
Air purification systems are necessary to provide clean air in the closed environments aboard spacecraft. Trace contaminants are removed using adsorption. One major factor concerning the removal of trace contaminants is relative humidity. Water can reduce adsorption capacity and, due to constant fluctuations, its presence is difficult to incorporate into adsorption column designs. The purpose of the research was to allow for better design techniques in trace contaminant adsorption systems, especially for feeds with water present. Experiments and mathematical modeling research on effects of humidity swings on adsorption columns for air revitalization were carried out.
NASA Astrophysics Data System (ADS)
Kinsman, L.; Gerhard, J.; Torero, J.; Scholes, G.; Murray, C.
2013-12-01
Self-sustaining Treatment for Active Remediation (STAR) is a relatively new remediation approach for soil contaminated with organic industrial liquids. This technology uses smouldering combustion, a controlled, self-sustaining burning reaction, to destroy nonaqueous phase liquids (NAPLs) and thereby render soil clean. While STAR has been proven at the bench scale, success at industrial scales requires the process to be scaled-up significantly. The objective of this study was to conduct an experimental investigation into how liquid smouldering combustion phenomena scale. A suite of detailed forward smouldering experiments were conducted in short (16 cm dia. x 22 cm high), intermediate (16 cm dia. x 127 cm high), and large (97 cm dia. x 300 cm high; a prototype ex-situ reactor) columns; this represents scaling of up to 530 times based on the volume treated. A range of fuels were investigated, with the majority of experiments conducted using crude oil sludge as well as canola oil as a non-toxic surrogate for hazardous contaminants. To provide directly comparable data sets and to isolate changes in the smouldering reaction which occurred solely due to scaling effects, sand grain size, contaminant type, contaminant concentration and air injection rates were controlled between the experimental scales. Several processes could not be controlled and were identified to be susceptible to changes in scale, including: mobility of the contaminant, heat losses, and buoyant flow effects. For each experiment, the propagation of the smouldering front was recorded using thermocouples and analyzed by way of temperature-time and temperature-distance plots. In combination with the measurement of continuous mass loss and gaseous emissions, these results were used to evaluate the fundamental differences in the way the reaction front propagates through the mixture of sand and fuel across the various scales. Key governing parameters were compared between the small, intermediate, and large scale experiments, including: peak temperatures, velocities and thicknesses of the smouldering front, rates of mass destruction of the contaminant, and rates of gaseous emissions during combustion. Additionally, upward and downward smouldering experiments were compared at the column scale to assess the significance of buoyant flow effects. An understanding of these scaling relationships will provide important information to aid in the design of field-scale applications of STAR.
Complex resistivity signatures of ethanol biodegradation in porous media
Personna, Yves Robert; Slater, Lee; Ntarlagiannis, Dimitrios; Werkema, Dale D.; Szabo, Zoltan
2013-01-01
Numerous adverse effects are associated with the accidental release of ethanol (EtOH) and its persistence in the subsurface. Geophysical techniques may permit non-invasive, real time monitoring of microbial degradation of hydrocarbon. We performed complex resistivity (CR) measurements in conjunction with geochemical data analysis on three microbial-stimulated and two control columns to investigate changes in electrical properties during EtOH biodegradation processes in porous media. A Debye Decomposition approach was applied to determine the chargeability (m), normalized chargeability (mn) and time constant (τ) of the polarization magnitude and relaxation length scale as a function of time. The CR responses showed a clear distinction between the bioaugmented and control columns in terms of real (σ′) and imaginary (σ″) conductivity, phase (ϕ) and apparent formation factor (Fapp). Unlike the control columns, a substantial decrease in σ′ and increase in Fapp occurred at an early time (within 4 days) of the experiment for all three bioaugmented columns. The observed decrease in σ′ is opposite to previous studies on hydrocarbon biodegradation. These columns also exhibited increases in ϕ (up to ~ 9 mrad) and σ″ (up to two order of magnitude higher) 5 weeks after microbial inoculation. Variations in m and mn were consistent with temporal changes in ϕ and σ″ responses, respectively. Temporal geochemical changes and high resolution scanning electron microscopy imaging corroborated the CR findings, thus indicating the sensitivity of CR measurements to EtOH biodegradation processes. Our results offer insight into the potential application of CR measurements for long-term monitoring of biogeochemical and mineralogical changes during intrinsic and induced EtOH biodegradation in the subsurface.
Role of air-water interfaces on retention of viruses under unsaturated conditions
NASA Astrophysics Data System (ADS)
Torkzaban, S.; Hassanizadeh, S. M.; Schijven, J. F.; van den Berg, H. H. J. L.
2006-12-01
We investigated transport of viruses through saturated and unsaturated sand columns. Unsaturated experiments were conducted under conditions of uniform saturation and steady state water flow. The water saturation ranged from 1 to 0.5. Bacteriophages MS2 and ϕX174 were used as surrogates for pathogenic viruses in these studies. Phosphate-buffered solutions with different pH values (7.5, 6.2, 5.5, and 5) were utilized. Virus transport was modeled assuming first-order kinetic adsorption for interactions to the solid-water interface (SWI) and the air-water interface (AWI). Under saturated conditions, virus retention increased as pH decreased, and a one-site kinetic model produced a good fit to the breakthrough curves. Under unsaturated conditions a two-site kinetic model was needed to fit the breakthrough curves satisfactorily. The second site was attributed to the adsorption of phages to the AWI. According to our results, ϕX174 exhibits a high affinity to the AWI at pH values below 6.6 (the isoelectric point of ϕX174). Although it is believed that MS2 is more hydrophobic than ϕX174, MS2 had a lower affinity to the AWI than ϕX174, presumably because of the lower isoelectric point of MS2, which is equal to 3.9. Under unsaturated conditions, viruses captured within the column could be recovered in the column outflow by resaturating and immediately draining the column. Draining columns under saturated conditions, however, did not result in any recovery of viruses. Therefore the recovery can be attributed to the release of viruses adsorbed to the AWI. Our results suggest that electrostatic interactions of viruses with the AWI are much more important than hydrophobicity.
Experimental studies and model analysis of noble gas fractionation in porous media
Ding, Xin; Kennedy, B. Mack.; Evans, William C.; Stonestrom, David A.
2016-01-01
The noble gases, which are chemically inert under normal terrestrial conditions but vary systematically across a wide range of atomic mass and diffusivity, offer a multicomponent approach to investigating gas dynamics in unsaturated soil horizons, including transfer of gas between saturated zones, unsaturated zones, and the atmosphere. To evaluate the degree to which fractionation of noble gases in the presence of an advective–diffusive flux agrees with existing theory, a simple laboratory sand column experiment was conducted. Pure CO2 was injected at the base of the column, providing a series of constant CO2 fluxes through the column. At five fixed sampling depths within the system, samples were collected for CO2 and noble gas analyses, and ambient pressures were measured. Both the advection–diffusion and dusty gas models were used to simulate the behavior of CO2 and noble gases under the experimental conditions, and the simulations were compared with the measured depth-dependent concentration profiles of the gases. Given the relatively high permeability of the sand column (5 ´ 10−11 m2), Knudsen diffusion terms were small, and both the dusty gas model and the advection–diffusion model accurately predicted the concentration profiles of the CO2 and atmospheric noble gases across a range of CO2 flux from ?700 to 10,000 g m−2 d−1. The agreement between predicted and measured gas concentrations demonstrated that, when applied to natural systems, the multi-component capability provided by the noble gases can be exploited to constrain component and total gas fluxes of non-conserved (CO2) and conserved (noble gas) species or attributes of the soil column relevant to gas transport, such as porosity, tortuosity, and gas saturation.
Study on Predicting Axial Load Capacity of CFST Columns
NASA Astrophysics Data System (ADS)
Ravi Kumar, H.; Muthu, K. U.; Kumar, N. S.
2017-11-01
This work presents an analytical study and experimental study on the behaviour and ultimate load carrying capacity of axially compressed self-compacting concrete-filled steel tubular columns. Results of tests conducted by various researchers on 213 samples concrete-filled steel tubular columns are reported and present authors experimental data are reported. Two theoretical equations were derived for the prediction of the ultimate axial load strength of concrete-filled steel tubular columns. The results from prediction were compared with the experimental data. Validation to the experimental results was made.
Cesium migration in saturated silica sand and Hanford sediments as impacted by ionic strength.
Flury, Markus; Czigány, Szabolcs; Chen, Gang; Harsh, James B
2004-07-01
Large amounts of 137Cs have been accidentally released to the subsurface from the Hanford nuclear site in the state of Washington, USA. The cesium-containing liquids varied in ionic strengths, and often had high electrolyte contents, mainly in the form of NaNO3 and NaOH, reaching concentrations up to several moles per liter. In this study, we investigated the effect of ionic strengths on Cs migration through two types of porous media: silica sand and Hanford sediments. Cesium sorption and transport was studied in 1, 10, 100, and 1000 mM NaCl electrolyte solutions at pH 10. Sorption isotherms were constructed from batch equilibrium experiments and the batch-derived sorption parameters were compared with column breakthrough curves. Column transport experiments were analyzed with a two-site equilibrium-nonequilibrium model. Cesium sorption to the silica sand in batch experiments showed a linear sorption isotherm for all ionic strengths, which matched well with the results from the column experiments at 100 and 1000 mM ionic strength; however, the column experiments at 1 and 10 mM ionic strength indicated a nonlinear sorption behavior of Cs to the silica sand. Transport through silica sand occurred under one-site sorption and equilibrium conditions. Cesium sorption to Hanford sediments in both batch and column experiments was best described with a nonlinear Freundlich isotherm. The column experiments indicated that Cs transport in Hanford sediments occurred under two-site equilibrium and nonequilibrium sorption. The effect of ionic strength on Cs transport was much more pronounced in Hanford sediments than in silica sands. Effective retardation factors of Cs during transport through Hanford sediments were reduced by a factor of 10 when the ionic strength increased from 100 to 1000 mM; for silica sand, the effective retardation was reduced by a factor of 10 when ionic strength increased from 1 to 1000 mM. A two order of magnitude change in ionic strength was needed in the silica sand to observe the same change in Cs retardation as in Hanford sediments. Copyright 2003 Elsevier B.V.
Kinetic Release of Alkalinity from Particle-Containing Oil-in-Water Emulsions
NASA Astrophysics Data System (ADS)
Muller, K.; Chapra, S. C.; Ramsburg, A.
2014-12-01
Oil-in-water emulsions are typically employed during remediation to promote biotic reduction of contaminants. Emulsions, however, hold promise for encapsulated delivery of many types of active ingredients required for successful site remediation or long-term site stewardship. Our research is currently focused on using alkalinity-containing particles held within oil-in-water emulsions to sustain control of subsurface pH. Here we describe results from laboratory experiments and mathematical modeling conducted to quantify the kinetics associated with the emulsion delivery and alkalinity release process. Kinetically stable oil-in-water emulsions containing (~60 nmCaCO3 or ~100 nm MgO particles) were previously developed using soybean oil and Gum Arabic as a stabilizing agent. Batch and column experiments were employed to assess the accessibility and release of the alkalinity from the emulsion. Successive additions of HCl were used in batch systems to produce several pH responses (pH rebounds) that were subsequently modeled to elucidate release mechanisms and rates for varying emulsion compositions and particle types. Initial results suggest that a linear-driving-force model is generally able to capture the release behavior in the batch system when the temporally-constant, lumped mass-transfer coefficient is scaled by the fraction of particle mass remaining within the droplets. This result suggests that the rate limiting step in the release process may be the interphase transfer of reactive species at the oil-water interface. 1-d column experiments were also completed in order to quantify the extent and rate of alkalinity release from emulsion droplets retained in a sandy medium. Alkalinity release from the retained droplets treated a pH 4 influent water for 25-60 pore volumes (the duration depended on particle type and mass loading), and the cessation in treatment corresponded to exhaustion of the particle mass held within the oil. Column experiments were simulated using a transport code containing the linear-driving-force expression evaluated in the batch experiments. In these simulations the lumped mass transfer coefficient was fit and compared with values predicted using existing correlations for liquid-liquid and solid-liquid interfaces in porous media.
Wang, Yonggang; Kim, Jae-Hong; Baek, Jong-Beom; Miller, Gary W.; Pennell, Kurt D.
2012-01-01
A series of one-dimensional column experiments was conducted to examine the effects of tube length on the transport and deposition of 4-ethoxybenzoic acid functionalized multi-wall carbon nanotubes (MWCNTs) in water-saturated porous media. Aqueous MWCNTs suspensions were prepared to yield three distributions of tube lengths; 0.02–1.3 μm (short), 0.2–7.5 μm (medium), and 0.2–21.4 μm (long). Results of the column studies showed that MWCNT retention increased with increasing tube length. Nevertheless, more than 76% of the MWCNT mass delivered to the columns was detected in effluent samples under all experimental conditions, indicating that the functionalized MWCNTs were readily transported through 40–50 mesh Ottawa sand. Examination of MWCNT length distributions in the effluent samples revealed that nanotubes with lengths greater than 8 μm were preferentially deposited. In addition, measured retention profiles exhibited the greatest MWCNT deposition near the column inlet, which was most pronounced for the long MWCNTs, and decreased sharply with travel distance. Scanning electron microscope (SEM) images showed that MWCNTs were deposited on sand surfaces over the entire column length, while larger MWCNT bundles were retained at grain intersections and near the column inlet. A mathematical model based on clean bed filtration theory (CBFT) was unable to accurately simulate the measured retention profile data, even after varying the weighting function and incorporating a nonuniform attachment rate coefficient expression. Modification of the mathematical model to account for physical straining greatly improved predictions of MWCNT retention, yielding straining rate coefficients that were four orders-of-magnitude greater than corresponding attachment rate coefficients. Taken in concert, these experimental and modeling results demonstrate the potential importance of, and need to consider, particle straining and tube length distribution when describing MWCNT transport in water-saturated porous media. PMID:22704927
Wang, Yonggang; Kim, Jae-Hong; Baek, Jong-Beom; Miller, Gary W; Pennell, Kurt D
2012-09-15
A series of one-dimensional column experiments was conducted to examine the effects of tube length on the transport and deposition of 4-ethoxybenzoic acid functionalized multi-wall carbon nanotubes (MWCNTs) in water-saturated porous media. Aqueous MWCNTs suspensions were prepared to yield three distributions of tube lengths; 0.02-1.3 μm (short), 0.2-7.5 μm (medium), and 0.2-21.4 μm (long). Results of the column studies showed that MWCNT retention increased with increasing tube length. Nevertheless, more than 76% of the MWCNT mass delivered to the columns was detected in effluent samples under all experimental conditions, indicating that the functionalized MWCNTs were readily transported through 40-50 mesh Ottawa sand. Examination of MWCNT length distributions in the effluent samples revealed that nanotubes with lengths greater than 8 μm were preferentially deposited. In addition, measured retention profiles exhibited the greatest MWCNT deposition near the column inlet, which was most pronounced for the long MWCNTs, and decreased sharply with travel distance. Scanning electron microscope (SEM) images showed that MWCNTs were deposited on sand surfaces over the entire column length, while larger MWCNT bundles were retained at grain intersections and near the column inlet. A mathematical model based on clean bed filtration theory (CBFT) was unable to accurately simulate the measured retention profile data, even after varying the weighting function and incorporating a nonuniform attachment rate coefficient expression. Modification of the mathematical model to account for physical straining greatly improved predictions of MWCNT retention, yielding straining rate coefficients that were four orders-of-magnitude greater than corresponding attachment rate coefficients. Taken in concert, these experimental and modeling results demonstrate the potential importance of, and need to consider, particle straining and tube length distribution when describing MWCNT transport in water-saturated porous media. Copyright © 2012 Elsevier Ltd. All rights reserved.
Xu, Kai; Deng, Qingshan; Cai, Lujun; Ho, Siuchun; Song, Gangbing
2018-04-28
Some of the most severe structural loadings come in the form of blast loads, which may be caused by severe accidents or even terrorist activities. Most commonly after exposure to explosive forces, a structure will suffer from different degrees of damage, and even progress towards a state of collapse. Therefore, damage detection of a structure subject to explosive loads is of importance. This paper proposes a new approach to damage detection of a concrete column structure subjected to blast loads using embedded piezoceramic smart aggregates (SAs). Since the sensors are embedded in the structure, the proposed active-sensing based approach is more sensitive to internal or through cracks than surface damage. In the active sensing approach, the embedded SAs act as actuators and sensors, that can respectively generate and detect stress waves. If the stress wave propagates across a crack, the energy of the wave attenuates, and the reduction of the energy compared to the healthy baseline is indicative of a damage. With a damage index matrix constructed by signals obtained from an array of SAs, cracks caused by blast loads can be detected throughout the structure. Conventional sensing methods such as the measurement of dynamic strain and acceleration were included in the experiment. Since columns are critical elements needed to prevent structural collapse, knowledge of their integrity and damage conditions is essential for safety after exposure to blast loads. In this research, a concrete column with embedded SAs was chosen as the specimen, and a series of explosive tests were conducted on the column. Experimental results reveal that surface damages, though appear severe, cause minor changes in the damage index, and through cracks result in significant increase of the damage index, demonstrating the effectiveness of the active sensing, enabled by embedded SAs, in damage monitoring of the column under blast loads, and thus providing a reliable indication of structural integrity in the event of blast loads.
Damage Detection of a Concrete Column Subject to Blast Loads Using Embedded Piezoceramic Transducers
Deng, Qingshan; Cai, Lujun; Ho, Siuchun; Song, Gangbing
2018-01-01
Some of the most severe structural loadings come in the form of blast loads, which may be caused by severe accidents or even terrorist activities. Most commonly after exposure to explosive forces, a structure will suffer from different degrees of damage, and even progress towards a state of collapse. Therefore, damage detection of a structure subject to explosive loads is of importance. This paper proposes a new approach to damage detection of a concrete column structure subjected to blast loads using embedded piezoceramic smart aggregates (SAs). Since the sensors are embedded in the structure, the proposed active-sensing based approach is more sensitive to internal or through cracks than surface damage. In the active sensing approach, the embedded SAs act as actuators and sensors, that can respectively generate and detect stress waves. If the stress wave propagates across a crack, the energy of the wave attenuates, and the reduction of the energy compared to the healthy baseline is indicative of a damage. With a damage index matrix constructed by signals obtained from an array of SAs, cracks caused by blast loads can be detected throughout the structure. Conventional sensing methods such as the measurement of dynamic strain and acceleration were included in the experiment. Since columns are critical elements needed to prevent structural collapse, knowledge of their integrity and damage conditions is essential for safety after exposure to blast loads. In this research, a concrete column with embedded SAs was chosen as the specimen, and a series of explosive tests were conducted on the column. Experimental results reveal that surface damages, though appear severe, cause minor changes in the damage index, and through cracks result in significant increase of the damage index, demonstrating the effectiveness of the active sensing, enabled by embedded SAs, in damage monitoring of the column under blast loads, and thus providing a reliable indication of structural integrity in the event of blast loads. PMID:29710807
Column Chromatography To Obtain Organic Cation Sorption Isotherms.
Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A
2016-08-02
Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation.
Experimental study on neptunium migration under in situ geochemical conditions
NASA Astrophysics Data System (ADS)
Kumata, M.; Vandergraaf, T. T.
1998-12-01
Results are reported for migration experiments performed with Np under in situ geochemical conditions over a range of groundwater flow rates in columns of crushed rock in a specially designed facility at the 240-level of the Underground Research Laboratory (URL) near Pinawa, Manitoba, Canada. This laboratory is situated in an intrusive granitic rock formation, the Lac du Bonnet batholith. Highly altered granitic rock and groundwater were obtained from a major subhorizontal fracture zone at a depth of 250 m in the URL. The granite was wet-crushed and wet-sieved with groundwater from this fracture zone. The 180-850-μm size fraction was selected and packed in 20-cm long, 2.54-cm in diameter Teflon™-lined stainless steel columns. Approximately 30-ml vols of groundwater containing 3HHO and 237Np were injected into the columns at flow rates of 0.3, 1, and 3 ml/h, followed by elution with groundwater, obtained from the subhorizontal fracture, at the same flow rates, for a period of 95 days. Elution profiles for 3HHO were obtained, but no 237Np was detected in the eluted groundwater. After terminating the migration experiments, the columns were frozen, the column material was removed and cut into twenty 1-cm thick sections and each section was analyzed by gamma spectrometry. Profiles of 237Np were obtained for the three columns. A one-dimensional transport model was fitted to the 3HHO breakthrough curves to obtain flow parameters for this experiment. These flow parameters were in turn applied to the 237Np concentration profiles in the columns to produce sorption and dispersion coefficients for Np. The results show a strong dependence of retardation factors ( Rf) on flow rate. The decrease in the retarded velocity of the neptunium ( Vn) varied over one order of magnitude under the geochemical conditions for these experiments.
Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor
Singleton, A.H.; Oukaci, R.; Goodwin, J.G.
1999-08-17
Processes and catalysts are disclosed for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided. 1 fig.
Sidoli, Pauline; Lassabatere, Laurent; Angulo-Jaramillo, Rafael; Baran, Nicole
2016-07-01
The transport of pesticides to groundwater is assumed to be impacted by flow processes and geochemical interactions occurring in the vadose zone. In this study, the transport of S-metolachlor (SMOC) and its two metabolites ESA-metolachlor (MESA) and OXA-metolachlor (MOXA) in vadose zone materials of a glaciofluvial aquifer is studied at laboratory scale. Column experiments are used to study the leaching of a conservative tracer (bromide) and SMOC, MESA and MOXA under unsaturated conditions in two lithofacies, a bimodal gravel (Gcm,b) and a sand (S-x). Tracer experiments showed water fractionation into mobile and immobile compartments more pronounced in bimodal gravel columns. In both lithofacies columns, SMOC outflow is delayed (retardation factor>2) and mass balance reveals depletion (mass balance of 0.59 and 0.77 in bimodal gravel and sand, respectively). However, complete mass elution associated with retardation factors close to unity shows that there is no adsorption of MESA and MOXA in either lithofacies. SMOC transport is characterized by non-equilibrium sorption and sink term in both bimodal gravel and sand columns. Batch experiments carried out using agitation times consistent with column water residence times confirmed a time-dependence of SMOC sorption and high adsorption rates (>80%) of applied concentrations. Desorption experiments confirm the irreversibility of a major part of the SMOC adsorption onto particles, corresponding to the sink term in columns. In the bimodal gravel column, SMOC adsorption occurs mainly on reactive particles in contact with mobile water because of flow regionalization whereas in the sand column, there is pesticide diffusion to the immobile water. Such results clearly show that sorption mechanisms in the vadose zone solids below the soil are both solute and contact-time-dependent and are impacted by hydrodynamic conditions. The more rapid transport of MESA and MOXA to the aquifer would be controlled mainly by water flow through the unsaturated zone whereas SMOC transport is retarded by sorption processes within the vadose zone. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Muamar Rifa'i, Alfian; Setiawan, Bambang; Djarwanti, Noegroho
2017-12-01
The expansive soil is soil that has a potential for swelling-shrinking due to changes in water content. Such behavior can exert enough force on building above to cause damage. The use of columns filled with additives such as Calcium Carbide is done to reduce the negative impact of expansive soil behavior. This study aims to determine the effect of carbide columns on expansive soil. Observations were made on swelling and spreading of carbides in the soil. 7 Carbide columns with 5 cm diameter and 20 cm height were installed into the soil with an inter-column spacing of 8.75 cm. Wetting is done through a pipe at the center of the carbide column for 20 days. Observations were conducted on expansive soil without carbide columns and expansive soil with carbide columns. The results showed that the addition of carbide column could reduce the percentage of swelling by 4.42%. Wetting through the center of the carbide column can help spread the carbide into the soil. The use of carbide columns can also decrease the rate of soil expansivity. After the addition of carbide column, the plasticity index value decreased from 71.76% to 4.3% and the shrinkage index decreased from 95.72% to 9.2%.
"Captive Column" Crash Tests : Crash Testing of a Light Standard Luminaire Pole
DOT National Transportation Integrated Search
1981-03-01
Under contract No. DOT-FH-11-9606 the Nevada Department of Transportation (NDOT) conducted crash testing to study the capability of "Captive Column" light standard appurtenances under controlled conditions. The studies were precursors of actual on si...
NASA Astrophysics Data System (ADS)
Schmale, O.; Stolle, C.; Leifer, I.; Schneider von Deimling, J.; Kiesslich, K.; Krause, S.; Frahm, A.; Treude, T.
2013-12-01
The diversity and abundance of methanotrophic microorganisms is well studied in the aquatic environment, indicating their importance in biogeochemical cycling of methane in the sediment and the water column. However, whether methanotrophs are distinct populations in these habitats or are exchanged between benthic and pelagic environments, remains an open question. Therefore, field studies were conducted at the 'Rostocker Seep' site (Coal Oil Point seep area, California, USA) to test our hypothesis that methane-oxidizing microorganisms can be transported by gas bubbles from the sediment into the water column. The natural methane emanating location 'Rostocker Seep' showed a strong surface water oversaturation in methane with respect to the atmospheric equilibrium. Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) analyzes were performed to determine the abundance of aerobic and anaerobic methanotrophic microorganisms. Aerobic methane oxidizing bacteria were detected in the sediment and the water column, whereas anaerobic methanotrophs were detected exclusively in the sediment. The key device of the project was the newly developed "Bubble Catcher" used to collect naturally emanating gas bubbles at the sea floor together with particles attached to the bubble surface rim. Bubble Catcher experiments were carried out directly above a natural bubble release spot and on a reference site at which artificially released gas bubbles were caught, which had no contact with the sediment. CARD-FISH analyzes showed that aerobic methane oxidizing bacteria were transported by gas bubbles from the sediment into the water column. In contrast anaerobic methanotrophs were not detected in the bubble catcher. Further results indicate that this newly discovered Bubble Shuttle transport mechanism might influence the distribution pattern of methanotrophic microorganisms in the water column and even at the air-sea interface. Methane seep areas are often characterized by an elevated abundance of methane-oxidizing microorganisms, which consume a considerable amount of methane before it escapes into the atmosphere. Based on our study we hypothesize that the Bubble Shuttle transport mechanism contributes to this pelagic methane sink by a sediment-water column transfer of methane oxidizing microorganisms. Furthermore, this Bubble Shuttle may influence the methanotrophic community in the water column after massive short-term submarine inputs of methane (e.g. release of methane from bore holes). Especially in deep-sea regions, where the abundance of methane oxidizing microorganisms in the water column is low in general, Bubble Shuttle may inject a relevant amount of methane oxidizing microorganisms into the water column during massive inputs, supporting indirectly the turnover of this greenhouse active trace gas in the submarine environment.
Significance of fixation of the vertebral column for spinal cord injury experiments.
Liu, Fei; Luo, Zhuo-Jin; You, Si-Wei; Jiao, Xi-Ying; Meng, Xiao-Mei; Shi, Ming; Wang, Chun-Ting; Ju, Gong
2003-08-01
Thoracic spinal cord transections were performed in adult rats. The animals were divided into two groups, with or without internal fixation of the involved vertebral column. Histologic and immunohistochemical studies were performed to compare the effect of internal fixation of the vertebral column. To find out the aspects and extent of beneficial effects of vertebral column fixation for spinal cord repair. Vertebral column fixation is a routine procedure in clinical spinal cord surgery. Paradoxically, most, if not all, animal spinal cord experiments seem to have ignored the importance of vertebral column fixation. During trunk movements, the vertebral column flexes to different directions, accompanied by bending of the spinal cord. Following spinal cord lesions, with frequent bending of the cord there will be repeated bleeding, inflammation, and other pathologic processes at the lesion site. Thus, the healing process will be hampered. The severity of the damages that will be brought about by bending of the cord is, to a certain degree, unpredictable. There will be rather big individual variations in injury and repair among the same type of experiments, rendering quantification and conclusion difficult. Adult Sprague-Dawley rats were used. The thoracic spinal cord was transected. Strong stainless steel wires were used for internal fixation of the vertebral column. The histology of the horizontal sections of the spinal cord segment, which included the lesion site, was examined at the 14th postoperative day. The volumes of the secondary degeneration and meningeal scar, the gap between the borders of the proximal and distal stumps of the transected spinal cord, the thickness of the meningeal scar, the astrocytic reaction, and the abundance of regenerating nerve fibers at the lesion site were compared between the vertebral column fixed and nonfixed groups. Whenever possible, the results were evaluated quantitatively. In all these aspects, the internally fixed group was consistently far better than the unfixed group. The quantitative analyses were as follows (fixed/unfixed): 1)volume of secondary degeneration: 1.07 +/- 0.20/1.81 +/- 0.43 mm3 (P < 0.01); 2) volume of meningeal scar: 2.38 +/- 0.55/4.34 +/- 1.40 mm3 (P < 0.05); 3) distance between cord stumps: 1.38 +/- 0.34/2.35 +/- 0.79 mm (P < 0.05); 4) the mean thinnest dimension of the meningeal scar: 0.90 +/- 0.43/1.98 +/- 0.85 mm (P < 0.05). Vertebral column fixation is a crucial procedure for spinal cord animal experiments.
NASA Astrophysics Data System (ADS)
Wang, H.; Carrera, J.; Ayora, C.; Licha, T.
2012-04-01
Emerging pollutants (EPs) have been detected in water resources as a result of human activities in recent years. They include pharmaceuticals, personal care products, dioxins, flame retardants, etc. They are a source of concern because many of them are resistant to conventional water treatment, and they are harmful to human health, even in low concentrations. Generally, this study aims to characterize the behaviour of emerging pollutants in reclaimed water in column experiments which simulates artificial recharge. One column set includes three parts: influent, reactive layer column (RLC) and aquifer column (AC). The main influent is decided to be Secondary Effluent (SE) of El Prat Wastewater Treatment Plant, Barcelona. The flow rate of the column experiment is 0.9-1.5 mL/min. the residence time of RLC is designed to be about 1 day and 30-40 days for AC. Both columns are made of stainless steel. Reactive layer column (DI 10cm * L55cm) is named after the filling material which is a mixture of organic substrate, clay and goethite. One purpose of the application of the mixture is to increase dissolve organic carbon (DOC). Leaching test in batchs and columns has been done to select proper organic substrate. As a result, compost was selected due to its long lasting of releasing organic matter (OM). The other purpose of the application of the mixture is to enhance adsorption of EPs. Partition coefficients (Kow) of EPs indicate the ability of adsorption to OM. EPs with logKow>2 could be adsorbed to OM, like Ibuprofen, Bezafibrate and Diclofenac. Moreover, some of EPs are charged in the solution with pH=7, according to its acid dissociation constant (Ka). Positively charged EPs, for example Atenolol, could adsorb to clay. In the opposite, negatively charged EPs, for example Gemfibrozil, could adsorb to goethite. Aquifer column (DI 35cm * L1.5m) is to simulate the processes taking place in aquifer in artificial recharge. The filling of AC has two parts: silica sand and compost. The grain size of the sand is about 0.5mm. Aquifer deposits usually contain some natural organic matter. Therefore, compost (<1mm) was selected to be mixed with sand with the ratio of 1:99. Long residence time of AC and high concentration of DOC are favourable to generate variable redox states, which favour EPs degradation.
Recognition of degraded handwritten digits using dynamic Bayesian networks
NASA Astrophysics Data System (ADS)
Likforman-Sulem, Laurence; Sigelle, Marc
2007-01-01
We investigate in this paper the application of dynamic Bayesian networks (DBNs) to the recognition of handwritten digits. The main idea is to couple two separate HMMs into various architectures. First, a vertical HMM and a horizontal HMM are built observing the evolving streams of image columns and image rows respectively. Then, two coupled architectures are proposed to model interactions between these two streams and to capture the 2D nature of character images. Experiments performed on the MNIST handwritten digit database show that coupled architectures yield better recognition performances than non-coupled ones. Additional experiments conducted on artificially degraded (broken) characters demonstrate that coupled architectures better cope with such degradation than non coupled ones and than discriminative methods such as SVMs.
FY12 ARRA-NRAP Report – Studies to Support Risk Assessment of Geologic Carbon Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantrell, Kirk J.; Shao, Hongbo; Thompson, C. J.
2011-09-27
This report summarizes results of research conducted during FY2012 to support the assessment of environmental risks associated with geologic carbon dioxide (CO2) sequestration and storage. Several research focus areas are ongoing as part of this project. This includes the quantification of the leachability of metals and organic compounds from representative CO2 storage reservoir and caprock materials, the fate of metals and organic compounds after release, and the development of a method to measure pH in situ under supercritical CO2 (scCO2) conditions. Metal leachability experiments were completed on 6 different rock samples in brine in equilibrium with scCO2 at representative geologicmore » reservoir conditions. In general, the leaching of RCRA metals and other metals of concern was found to be limited and not likely to be a significant issue (at least, for the rocks tested). Metals leaching experiments were also completed on 1 rock sample with scCO2 containing oxygen at concentrations of 0, 1, 5, and 10% to simulate injection of CO2 originating from the oxy-fuel combustion process. Significant differences in the leaching behavior of certain metals were observed when oxygen is present in the CO2. These differences resulted from oxidation of sulfides, release of sulfate, ferric iron and other metals, and subsequent precipitation of iron oxides and some sulfates such as barite. Experiments to evaluate the potential for mobilization of organic compounds from representative reservoir materials and cap rock and their fate in porous media (quartz sand) have been conducted. Results with Fruitland coal and Gothic shale indicate that lighter organic compounds were more susceptible to mobilization by scCO2 compared to heavier compounds. Alkanes demonstrated very low extractability by scCO2. No significant differences were observed between the extractability of organic compounds by dry or water saturated scCO2. Reaction equilibrium appears to have been reached by 96 hours. When the scCO2 was released from the reactor, less than 60% of the injected lighter compounds (benzene, toluene) were transported through dry sand column by the CO2, while more than 90% of the heavier organics were trapped in the sand column. For wet sand columns, most (80% to 100%) of the organic compounds injected into the sand column passed through, except for naphthalene which was substantial removed from the CO2 within the column. A spectrophotometric method was developed to measure pH in brines in contact with scCO2. This method provides an alternative to fragile glass pH electrodes and thermodynamic modeling approaches for estimating pH. The method was tested in simulated reservoir fluids (CO2–NaCl–H2O) at different temperatures, pressures, and ionic strength, and the results were compared with other experimental studies and geochemical models. Measured pH values were generally in agreement with the models, but inconsistencies were present between some of the models.« less
Assessing the potential of spectral induced polarization to detect in situ changes in iron reduction
NASA Astrophysics Data System (ADS)
Rosier, C. L.; Price, A.; Sharma, S.; Atekwana, E. A.
2016-12-01
The near surface geophysical technique Spectral Induced Polarization (SIP), provides promise as an effective method measuring in situ biofilm formation/development. Yet, potential mechanisms responsible for observed shifts in SIP response due to biofilm are not clearly understood. In order to address possible mechanisms we assessed the influence of Shewanella oneidensis (MR1) cell density (colony forming units; CFU), biofilm production (Bradford assay) and iron reduction metabolism (colorimetric assay) on SIP response. Laboratory measurements were collected over three months on columns packed with either iron-coated or iron-free sands and amended with artificial ground water and acetate in order to stimulate biofilm production and microbial iron reduction. Additionally, scanning electron microscopy (SEM) was used to confirm the presence of S. oneidensis cells and biofilm. Our results suggest that during early/initial stage (<30 days) of the iron-coated column incubations, both phase and imaginary conductivity response increased 4-fold as concentrations of reduced iron increased from 0-50 mM. In the later stages (>75 days) of column incubation, SIP measurements revealed that phase and imaginary conductivity responses decreased as the concentration of reduced iron decreased below 2.0 mM. In contrast, we observed only a moderate increase in phase and imaginary conductivity ( 30%) within iron-free columns as a result of increases in S. oneidensis cells (CFU 1.5 x 1011) and biofilm production (7.0 mg ml-1). SEM analysis confirmed the presence of biofilm and cells within both iron-coated and iron-free columns. We hypothesize that the production of microbial metabolic byproducts is a potential mechanism explaining large phase shits observed in previous studies ( 50 mrads) rather than the conductivity of cells or biofilm. Our findings provide support for the following: i) ratio of cells to biofilm production only moderately influences both phase and imaginary conductivity response and ii) largest phase and imaginary conductivity response resulted from microbial metabolism (i.e. iron reduction) and potentially biofilm trapping of conductive materials (i.e. cations).
Lundgren, Johanna; Salomonsson, John; Gyllenhaal, Olle; Johansson, Erik
2007-06-22
Metoprolol and a number of related amino alcohols and similar analytes have been chromatographed on aminopropyl (APS) and ethylpyridine (EPS) silica columns. The mobile phase was carbon dioxide with methanol as modifier and no amine additive was present. Optimal isocratic conditions for the selectivity were evaluated based on experiments using design of experiments. A central composite circumscribed model for each column was used. Factors were column temperature, back-pressure and % (v/v) of modifier. The responses were retention and selectivity versus metoprolol. The % of modifier mainly controlled the retention on both columns but pressure and temperature could also be important for optimizing the selectivity between the amino alcohols. The compounds could be divided into four and five groups on both columns, with respect to the selectivity. Furthermore, on the aminopropyl silica the analytes were more spread out whereas on the ethylpyridine silica, due to its aromaticity, retention and selectivity were closer. For optimal conditions the column temperature and back-pressure should be high and the modifier concentration low. A comparison of the selectivity using optimized conditions show a few switches of retention order between the two columns. On aminopropyl silica an aldehyde failed to be eluted owing to Schiff-base formation. Peak symmetry and column efficiency were briefly studied for some structurally close analogues. This revealed some activity from the columns that affected analytes that had less protected amino groups, a methyl group instead of isopropyl. The tailing was more marked with the ethylpyridine column even with the more bulky alkyl substituents. Plate number N was a better measure than the asymmetry factor since some analyte peaks broadened without serious deterioration of symmetry compared to homologues.
NASA Astrophysics Data System (ADS)
Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Pawar, R. J.; Komatsu, M.; Jensen, K. H.; Illangasekare, T. H.
2011-12-01
Geologic sequestration of CO2 has received significant attention as a potential method for reducing the release of greenhouse gases into the atmosphere. Potential risk of leakage of the stored CO2 to the shallow zones of the subsurface is one of the critical issues that is needed to be addressed to design effective field storage systems. If a leak occurs, gaseous CO2 reaching shallow zones of the subsurface can potentially impact the surface and groundwater sources and vegetation. With a goal of developing models that can predict these impacts, a research study is underway to improve our understanding of the fundamental processes of gas-phase formation and multi-phase flow dynamics during CO2 migration in shallow porous media. The approach involves conducting a series of highly controlled experiments in soil columns and tanks to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. This paper presents the results from a set of column studies. A 3.6m long column was instrumented with 16 soil moisture sensors, 15 of which were capable of measuring electrical conductivity (EC) and temperature, eight water pressure, and two gas pressure sensors. The column was filled with test sands with known hydraulic and retention characteristics with predetermined packing configurations. Deionized water saturated with CO2 under ~0.3 kPa (roughly the same as the hydrostatic pressure at the bottom of the column) was injected at the bottom of the column using a peristaltic pump. Water and gas outflow at the top of the column were monitored continuously. The results, in general, showed that 1) gas phase formation can be triggered by multiple factors such as water pressure drop, temperature rise, and heterogeneity, 2) transition to gas phase tends to occur rather within a short period of time, 3) gas phase fraction was as high as ~40% so that gas flow was not via individual bubble movement but two-phase flow, 4) water outflow that was initially equal to the inflow rate increased when gas-phase started to form (i.e., water gets displaced), and 5) gas starts to flow upward after gas phase fraction stabilizes (i.e., buoyant force overcomes). These results suggest that the generation and migration processes of gas phase CO2 can be modelled as a traditional two-phase flow with source (when CO2 gas exsolved due to complex factors) as well as sink (when gas dissolved) terms. The experimental data will be used to develop and test the conceptual models that will guide the development of numerical simulators for applications involving CO2 storage and leakage.
NASA Astrophysics Data System (ADS)
Mériaux, Catherine
2006-09-01
This paper describes a series of experiments designed to investigate the fall of granular columns in a quasi-static regime. Columns made of alternatively green and red sand layers were initially laid out in a box and then released when a retaining wall was set in slow motion with constant speed. The dependence of the dynamics of the fall on the initial aspect ratio of the columns, the velocity of the wall, and the material properties was investigated within the quasi-static regime. A change in the behavior of the columns was identified to be a function of the aspect ratio (height/length) of the initial sand column. Columns of high aspect ratio first subsided before sliding along failure planes, while columns of small aspect ratio were only observed to slide along failure planes. The transition between these two characteristic falls occurred regardless of the material and the velocity of the wall in the context of the quasi-static regime. When the final height and length of the piles were analyzed, we found power-law relations of the ratio of initial to final height and final run-out to initial length with the aspect ratio of the column. The dissipation of energy is also shown to increase with the run-out length of the pile until it reaches a plateau. Finally, we find that the structure of the slip planes that develop in our experiments are not well described by the failure of Coulomb's wedges for twin retaining rough walls.
Innervation zone shift at different levels of isometric contraction in the biceps brachii muscle.
Piitulainen, Harri; Rantalainen, Timo; Linnamo, Vesa; Komi, Paavo; Avela, Janne
2009-08-01
Experiments were carried out to examine whether innervation zone (IZ) location remains stable at different levels of isometric contraction in the biceps brachii muscle (BB), and to determine how the proximity of the IZ affects common surface electromyography (sEMG) parameters. Twelve subjects performed maximal (MVC) and submaximal voluntary isometric contractions at 10%, 20%, 30%, 40%, 50% and 75% of MVC. sEMG signals were recorded with a 13 rows x 5 columns grid of electrodes from the short head of BB. The IZ shifted in the proximal direction by up to 2.4 cm, depending upon the subject and electrode column. The mean shift of all the columns was 0.6+/-0.4 cm (10% vs. 100% MVC, P<0.001). This shift biased the average values of mean frequency (+21.8+/-9.9 Hz, P<0.001), root mean square (-0.16+/-0.15 mV, P<0.05) and conduction velocity (-1.15+/-0.93 m/s, P<0.01) in the channels immediately proximal to the IZ. The shift in IZ could be explained by shortening of the muscle fibers, and thus lengthening of the (distal) tendon due to increasing force. These results underline the importance of individual investigation of IZ locations before the placement of sEMG electrodes, even in isometric contractions.
NASA Astrophysics Data System (ADS)
Adadevoh, J.; Triolo, S.; Ramsburg, C. A.; Ford, R.
2015-12-01
The use of chemotactic bacteria in bioremediation has the potential to increase access to, and biotransformation of, contaminant mass within the subsurface environment. This laboratory-scale study aimed to understand and quantify the influence of chemotaxis on residence times of pollutant-degrading bacteria within homogeneous treatment zones. Focus was placed on a continuous flow sand-packed column system in which a uniform distribution of naphthalene crystals created distributed sources of dissolved phase contaminant. A 10 mL pulse of Pseudomonas putida G7, which is chemotactic to naphthalene, and Pseudomonas putida G7 Y1, a non-chemotactic mutant strain, were simultaneously introduced into the sand-packed column at equal concentrations. Breakthrough curves obtained for the bacteria from column experiments conducted with and without naphthalene were used to quantify the effect of chemotaxis on transport parameters. In the presence of the chemoattractant, longitudinal dispersivity of PpG7 increased by a factor of 3 and percent recovery decreased from 21% to 12%. The results imply that pore-scale chemotaxis responses are evident at an interstitial fluid velocity of 1.7 m/d, which is within the range of typical groundwater flow. Within the context of bioremediation, chemotaxis may work to enhance bacterial residence times in zones of contamination thereby improving treatment.
Floating treatment wetlands for domestic wastewater treatment.
Faulwetter, J L; Burr, M D; Cunningham, A B; Stewart, F M; Camper, A K; Stein, O R
2011-01-01
Floating islands are a form of treatment wetland characterized by a mat of synthetic matrix at the water surface into which macrophytes can be planted and through which water passes. We evaluated two matrix materials for treating domestic wastewater, recycled plastic and recycled carpet fibers, for chemical oxygen demand (COD) and nitrogen removal. These materials were compared to pea gravel or open water (control). Experiments were conducted in laboratory scale columns fed with synthetic wastewater containing COD, organic and inorganic nitrogen, and mineral salts. Columns were unplanted, naturally inoculated, and operated in batch mode with continuous recirculation and aeration. COD was efficiently removed in all systems examined (>90% removal). Ammonia was efficiently removed by nitrification. Removal of total dissolved N was ∼50% by day 28, by which time most remaining nitrogen was present as NO(3)-N. Complete removal of NO(3)-N by denitrification was accomplished by dosing columns with molasses. Microbial communities of interest were visualized with denaturing gradient gel electrophoresis (DGGE) by targeting specific functional genes. Shifts in the denitrifying community were observed post-molasses addition, when nitrate levels decreased. The conditioning time for reliable nitrification was determined to be approximately three months. These results suggest that floating treatment wetlands are a viable alternative for domestic wastewater treatment.
Comparison of neptunium sorption results using batch and column techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Triay, I.R.; Furlano, A.C.; Weaver, S.C.
1996-08-01
We used crushed-rock columns to study the sorption retardation of neptunium by zeolitic, devitrified, and vitric tuffs typical of those at the site of the potential high-level nuclear waste repository at Yucca Mountain, Nevada. We used two sodium bicarbonate waters (groundwater from Well J-13 at the site and water prepared to simulate groundwater from Well UE-25p No. 1) under oxidizing conditions. It was found that values of the sorption distribution coefficient, Kd, obtained from these column experiments under flowing conditions, regardless of the water or the water velocity used, agreed well with those obtained earlier from batch sorption experiments undermore » static conditions. The batch sorption distribution coefficient can be used to predict the arrival time for neptunium eluted through the columns. On the other hand, the elution curves showed dispersivity, which implies that neptunium sorption in these tuffs may be nonlinear, irreversible, or noninstantaneous. As a result, use of a batch sorption distribution coefficient to calculate neptunium transport through Yucca Mountain tuffs would yield conservative values for neptunium release from the site. We also noted that neptunium (present as the anionic neptunyl carbonate complex) never eluted prior to tritiated water, which implies that charge exclusion does not appear to exclude neptunium from the tuff pores. The column experiments corroborated the trends observed in batch sorption experiments: neptunium sorption onto devitrified and vitric tuffs is minimal and sorption onto zeolitic tuffs decreases as the amount of sodium and bicarbonate/carbonate in the water increases.« less
Removal of Cr(VI) from groundwater by Fe(0)
NASA Astrophysics Data System (ADS)
Gao, Yanjiao; Liu, Rui
2017-11-01
This research was conducted to investigate the treatment of hexavalent chromium (Cr(VI)) by iron powder (Fe(0)) columns of simulated permeable reactive barriers with and without calcium carbonate (CaCO3). Two columns filled with Fe(0) were used as Cr(VI) removal equipment running at a flow velocity of 10 ml/min at room temperature. After 200 days running of the two columns, the results showed that Fe(0) was an effective material for Cr(VI) reduction with an average removal rate of above 84.6%. The performance of Column 2 with CaCO3 was better than Column 1 without CaCO3 in terms of average Cr(VI) removal rate. The presence of CaCO3 buffered the increasing pH caused by Fe(0) corrosion in Column 2 and enhanced the removal rate of Column 2. Scanning Electron Microscopy (SEM) images of Fe(0) in the three stages of running of the two columns illustrated that the coat layer of Column 1 was a little thicker than that of Column 2. Energy-dispersive spectrometry (EDS) results showed that the surface of Fe(0) of Column 2 contained more chromium elements. Raman spectroscopy found that all iron oxide was generated on the Fe(0) surface of Column 1 and Column 2 and chromium class objects were only detected on Fe(0) surface in Column 2.
Performance of lap splices in large-scale column specimens affected by ASR and/or DEF.
DOT National Transportation Integrated Search
2012-06-01
This research program conducted a large experimental program, which consisted of the design, construction, : curing, deterioration, and structural load testing of 16 large-scale column specimens with a critical lap splice : region, and then compared ...
EVALUATING CAPACITIES OF GAC PRELOADED WITH NATURAL WATER
Adsorption studies are conducted to determine how preloading a natural groundwater onto GAC affects the adsorption of cis-1,2-dichloroexthene in small-scale and pilot-scale columns. Capacities are determined from batch-isotherm tests, microcolumns, and pilot columns, which are p...
Behavior of hollow-core FRP-concrete-steel columns subjected to cyclic axial compression.
DOT National Transportation Integrated Search
2014-08-01
This report presents the results of an experimental study that was conducted to investigate the effects of key parameters on the compressive behavior of fiber reinforced polymer (FRP)-concrete-steel double-skin tubular columns (FSDT). Hybrid FSDT col...
COLUMN STUDIES ON BTEX BIODEGRADATION UNDER MICROAEROPHILIC AND DENITRIFYING CONDITIONS
Two column tests were conducted using aquifer material to simulate the nitrate field demonstration project carried out earlier at Traverse City, Michigan. The objectives were to better define the effect nitrate addition had on biodegradation of benzene, toluene, ethylbenzene, xyl...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, Kaye S.; Zhu, Wenyi; Barnett, Mark O.
2013-05-13
Experimental approach Column experiments were devised to investigate the role of changing fluid composition on mobility of uranium through a sequence of geologic media. Fluids and media were chosen to be relevant to the ground water plume emanating from the former S-3 ponds at the Oak Ridge Integrated Field Research Challenge (ORIFC) site. Synthetic ground waters were pumped upwards at 0.05 mL/minute for 21 days through layers of quartz sand alternating with layers of uncontaminated soil, quartz sand mixed with illite, quartz sand coated with iron oxides, and another soil layer. Increases in pH or concentration of phosphate, bicarbonate, ormore » acetate were imposed on the influent solutions after each 7 pore volumes while uranium (as uranyl) remained constant at 0.1mM. A control column maintained the original synthetic groundwater composition with 0.1mM U. Pore water solutions were extracted to assess U retention and release in relation to the advective ligand or pH gradients. Following the column experiments, subsamples from each layer were characterized using microbeam X-ray absorption spectroscopy (XANES) in conjunction with X-ray fluorescence mapping and compared to sediment core samples from the ORIFC, at SSRL Beam Line 2-3. Results U retention of 55-67mg occurred in phosphate >pH >control >acetate >carbonate columns. The mass of U retained in the first-encountered quartz layer in all columns was highest and increased throughout the experiment. The rate of increase in acetate- and bicarbonate-bearing columns declined after ligand concentrations were raised. U also accumulated in the first soil layer; the pH-varied column retained most, followed by the increasing-bicarbonate column. The mass of U retained in the upper layers was far lower. Speciation of U, interpreted from microbeam XANES spectra and XRF maps, varied within and among the columns. Evidence of minor reduction to U(IV) was observed in the first-encountered quartz layer in the phosphate, bicarbonate, and pH columns while only U(VI) was observed in the control and acetate columns. In the soil layer, the acetate and bicarbonate columns both indicate minor reduction to U(IV), but U(VI) predominated in all columns. In the ORIFC soils, U was consistently present as U(VI); sorption appears to be the main mechanism of association for U present with Fe and/or Mn, while U occurring with P appears in discrete particles consistent with a U mineral phase. U in soil locations with no other elemental associations shown by XRF are likely uranium oxide phases.« less
Öztürk, Zuhal; Tansel, Berrin; Katsenovich, Yelena; Sukop, Michael; Laha, Shonali
2012-10-01
Batch and column experiments were conducted with eucalyptus mulch and commercial compost to evaluate suitability of highly organic natural media to support anaerobic decomposition of trichloroethylene (TCE) in groundwater. Experimental data for TCE and its dechlorination byproducts were analyzed with Hydrus-1D model to estimate the partitioning and kinetic parameters for the sequential dechlorination reactions during TCE decomposition. The highly organic natural media allowed development of a bioactive zone capable of decomposing TCE under anaerobic conditions. The first order TCE biodecomposition reaction rates were 0.23 and 1.2d(-1) in eucalyptus mulch and compost media, respectively. The retardation factors in the eucalyptus mulch and compost columns for TCE were 35 and 301, respectively. The results showed that natural organic soil amendments can effectively support the anaerobic bioactive zone for remediation of TCE contaminated groundwater. The natural organic media are effective environmentally sustainable materials for use in permeable reactive barriers. Copyright © 2012 Elsevier Ltd. All rights reserved.
Model of vertical plasma motion during the current quench
NASA Astrophysics Data System (ADS)
Breizman, Boris; Kiramov, Dmitrii
2017-10-01
Tokamak disruptions impair plasma position control, which allows the plasma column to move and hit the wall. These detrimental events enhance thermal and mechanical loads due to halo currents and runaway electron losses. Their fundamental understanding and prevention is one of the high-priority items for ITER. As commonly observed in experiments, the disruptive plasma tends to move vertically, and the timescale of this motion is rather resistive than Alfvenic. These observations suggest that the plasma column is nearly force-free during its vertical motion. In fact, the force-free constraint is already used in disruption simulators. In this work, we consider a geometrically simple system that mimics the tokamak plasma surrounded by the conducting structures. Using this model, we highlight the underlying mechanism of the vertical displacement events during the current quench phase of plasma disruption. We also address a question of ideal MHD stability of the plasma during its resistive motion. Work supported by the U.S. Department of Energy Contracts DEFG02-04ER54742 and DE-SC0016283.
Shieh, Kong-King; Shen, I-Hsuan
2004-06-01
An experiment was conducted to investigate the effect of order of report on multidimensional stimulus identification. Subjects were required to identify each two-dimensional symbol by pushing corresponding buttons on the keypad on which there were two columns representing the two dimensions. Order of report was manipulated for the dimension represented by the left or right column. Both behavioral data and event-related potentials were recorded from 14 college students. Behavioral data analysis showed that order of report had a significant effect on response times. Such results were consistent with those of previous studies. Analysis of event-related brain potentials showed significant differences in peak amplitude and mean amplitude at time windows of 120-250 msec. at Fz, F3, and F4 and of 350-750 msec. at Fz, F3, F4, Cz, and Pz. Data provided neurophysiological evidence that reporting dimensional values according to natural language habits was appropriate and less cognitively demanding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boving, T.B.; Wang, X.; Brusseau, M.L.
1999-03-01
The development of improved methods for remediation of contaminated aquifers has emerged as a significant environmental priority. One technology that appears to have considerable promise involves the use of solubilization agents such as surfactants and cosolvents for enhancing the removal of residual phase immiscible liquids. The authors examined the use of cyclodextrin, a glucose-based molecule, for solubilizing and removing residual-phase immiscible liquid from porous media. Batch experiments were conducted to measure the degree of trichloroethene (TCE) and tetrachloroethene (PCE) solubilization induced by hydroxypropyl-{beta}-cyclodextrin (HPCD) and methyl-{beta}-cyclodextrin (MCD). These studies revealed that the solubilities of TCE and PCE were enhanced bymore » up to 9.5 and 36.0 times, respectively. Column experiments were conducted to compare water and cyclodextrin-enhanced flushing of Borden sand containing residual saturations of TCE and PCE. The results indicate that solubilization and mass removal were enhanced substantially with the use of cyclodextrins. The effluent concentrations during the steady-state phase of the HPCD and MCD flushing experiments were close to the apparent solubilities measured with the batch experiments, indicating equilibrium concentrations were maintained during the initial phase of cyclodextrin flushing. Mobilization was observed for only the TCE-MCD and PCE-5%MCD experiments.« less
NASA Astrophysics Data System (ADS)
Lin, Yu; Harrison, P. J.
2000-06-01
A series of enclosed ecosystem experiments were conducted in a land-based tank near the seaside of West Xiamen Harbor. The results of experiments conducted in different seasons and years showed a repeatable phytoplankton succession. In this relatively stable ecosystem with added nutrients and trace metals, diatoms dominated initially, dinoflagellates dominated in the later stage, and dinoflagellate red tides eventually occurred. Vitamin B12 enrichment may speed up this succession process. Stirring the water column could stop this process. Soluble Mn at a level of 3 4 μg/L in seawater, which also is the existing concentration of soluble Mn in Xiamen Harbor seawater, is sufficient for the multiplication of algae and occurrence of red tide. The present study showed that excessive soluble Mn in Xiamen Harbor cannot cause red tide, and that Fe was one of the important factors causing diatiom red tide in this present study.
ERIC Educational Resources Information Center
de Avellar, Isa G. J.; Cotta, Tais A. P. G.; Neder, Amarilis de V. Finageiv
2012-01-01
Soil is an important and complex environmental compartment and soil contamination contributes to the pollution of aquifers and other water basins. A simple and low-cost experiment is described in which the mobility of three organic compounds in an artificial soil is examined using dry-column flash chromatography. The compounds were applied on top…
Hysteresis of Soil Point Water Retention Functions Determined by Neutron Radiography
NASA Astrophysics Data System (ADS)
Perfect, E.; Kang, M.; Bilheux, H.; Willis, K. J.; Horita, J.; Warren, J.; Cheng, C.
2010-12-01
Soil point water retention functions are needed for modeling flow and transport in partially-saturated porous media. Such functions are usually determined by inverse modeling of average water retention data measured experimentally on columns of finite length. However, the resulting functions are subject to the appropriateness of the chosen model, as well as the initial and boundary condition assumptions employed. Soil point water retention functions are rarely measured directly and when they are the focus is invariably on the main drying branch. Previous direct measurement methods include time domain reflectometry and gamma beam attenuation. Here we report direct measurements of the main wetting and drying branches of the point water retention function using neutron radiography. The measurements were performed on a coarse sand (Flint #13) packed into 2.6 cm diameter x 4 cm long aluminum cylinders at the NIST BT-2 (50 μm resolution) and ORNL-HFIR CG1D (70 μm resolution) imaging beamlines. The sand columns were saturated with water and then drained and rewetted under quasi-equilibrium conditions using a hanging water column setup. 2048 x 2048 pixel images of the transmitted flux of neutrons through the column were acquired at each imposed suction (~10-15 suction values per experiment). Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert’s law in conjunction with beam hardening and geometric corrections. The pixel rows were averaged and combined with information on the known distribution of suctions within the column to give 2048 point drying and wetting functions for each experiment. The point functions exhibited pronounced hysteresis and varied with column height, possibly due to differences in porosity caused by the packing procedure employed. Predicted point functions, extracted from the hanging water column volumetric data using the TrueCell inverse modeling procedure, showed very good agreement with the range of point functions measured within the column using neutron radiography. Extension of these experiments to 3-dimensions using neutron tomography is planned.
Development of an ICT-Based Air Column Resonance Learning Media
NASA Astrophysics Data System (ADS)
Purjiyanta, Eka; Handayani, Langlang; Marwoto, Putut
2016-08-01
Commonly, the sound source used in the air column resonance experiment is the tuning fork having disadvantage of unoptimal resonance results due to the sound produced which is getting weaker. In this study we made tones with varying frequency using the Audacity software which were, then, stored in a mobile phone as a source of sound. One advantage of this sound source is the stability of the resulting sound enabling it to produce the same powerful sound. The movement of water in a glass tube mounted on the tool resonance and the tone sound that comes out from the mobile phone were recorded by using a video camera. Sound resonances recorded were first, second, and third resonance, for each tone frequency mentioned. The resulting sound stays longer, so it can be used for the first, second, third and next resonance experiments. This study aimed to (1) explain how to create tones that can substitute tuning forks sound used in air column resonance experiments, (2) illustrate the sound wave that occurred in the first, second, and third resonance in the experiment, and (3) determine the speed of sound in the air. This study used an experimental method. It was concluded that; (1) substitute tones of a tuning fork sound can be made by using the Audacity software; (2) the form of sound waves that occured in the first, second, and third resonance in the air column resonance can be drawn based on the results of video recording of the air column resonance; and (3) based on the experiment result, the speed of sound in the air is 346.5 m/s, while based on the chart analysis with logger pro software, the speed of sound in the air is 343.9 ± 0.3171 m/s.
Numerical modelling techniques of soft soil improvement via stone columns: A brief review
NASA Astrophysics Data System (ADS)
Zukri, Azhani; Nazir, Ramli
2018-04-01
There are a number of numerical studies on stone column systems in the literature. Most of the studies found were involved with two-dimensional analysis of the stone column behaviour, while only a few studies used three-dimensional analysis. The most popular software utilised in those studies was Plaxis 2D and 3D. Other types of software that used for numerical analysis are DIANA, EXAMINE, ZSoil, ABAQUS, ANSYS, NISA, GEOSTUDIO, CRISP, TOCHNOG, CESAR, GEOFEM (2D & 3D), FLAC, and FLAC 3. This paper will review the methodological approaches to model stone column numerically, both in two-dimensional and three-dimensional analyses. The numerical techniques and suitable constitutive model used in the studies will also be discussed. In addition, the validation methods conducted were to verify the numerical analysis conducted will be presented. This review paper also serves as a guide for junior engineers through the applicable procedures and considerations when constructing and running a two or three-dimensional numerical analysis while also citing numerous relevant references.
Evaluation of mixed valent iron oxides as reactive adsorbents for arsenic removal.
Mishra, Dhananjay; Farrell, James
2005-12-15
The objective of this research was to determine if Fe(II)-bearing iron oxides generate ferric hydroxides at sufficient rates for removing low levels of arsenic in packed-bed reactors, while at the same time avoiding excessive oxide production that contributes to bed clogging in oxygenated waters. Column experiments were performed to determine the effectiveness of three media for arsenic removal over a range in empty bed contact times, influent arsenic concentrations, dissolved oxygen (DO) levels, and solution pH values. Corrosion rates of the media as a function of the water composition were determined using batch and electrochemical methods. Rates of arsenic removal were first order in the As(V) concentration and were greater for media with higher corrosion rates. As(V) removal increased with increasing DO levels primarily due to faster oxidation of the Fe2+ released by media corrosion. To obtain measurable amounts of arsenic removal in 15 mM NaCl electrolyte solutions containing 50 microg/L As(V), the rate of Fe2+ released by the media needed to be at least 15 times greater than the As(V) feed rate into the column. In waters containing 30 mg/L of silica and 50 microg/L of As(V), measurable amounts of arsenic removal were obtained only for Fe2+ release rates that were at least 200 times greater than the As(V) feed rate. Although all columns showed losses in hydraulic conductivity overthe course of 90 days of operation, the conductivity values remained high, and the losses could be reversed by backwashing the media. The reaction products produced by the media in domestic tap water had average As-to-Fe ratios that were approximately 25% higher than those for a commercially available adsorbent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bornea, A.; Zamfirache, M.; Stefan, L.
ICIT (Institute for Cryogenics and Isotopic Technologies) has used its experience in cryogenic water distillation process to propose a similar process for hydrogen distillation that can be used in detritiation technologies. This process relies on the same packages but a stainless filling is tested instead of the phosphorous bronze filling used for water distillation. This paper presents two types of packages developed for hydrogen distillation, both have a stainless filling but it differs in terms of density, exchange surface and specific volume. Performance data have been obtained on laboratory scale. In order to determine the characteristics of the package, themore » installation was operated in the total reflux mode, for different flow rate for the liquid. There were made several experiments considering different operating conditions. Samples extracted at the top and bottom of cryogenic distillation column allowed mathematical processing to determine the separation performance. The experiments show a better efficiency for the package whose exchange surface was higher and there were no relevant differences between both packages as the operating pressure of the cryogenic column was increasing. For a complete characterization of the packages, future experiments will be considered to determine performance at various velocities in the column and their correlation with the pressure in the column. We plan further experiments to separate tritium from the mixture of isotopes DT, having in view that our goal is to apply this results to a detritiation plant.« less
Dangelmayr, Martin A.; Reimus, Paul W.; Wasserman, Naomi L.; ...
2017-05-01
The purpose of this study was to determine the attenuation potential and retardation of uranium in sediments taken from boreholes at the Smith-Ranch Highland in-situ recovery (ISR) site. Five column experiments with four different sediments were conducted to study the effects of variable mineralogy and alkalinity on uranium breakthrough. Uranium transport was modeled with PHREEQC using a generalized composite surface complexation model (GC SCM) with one, two, and, three generic surfaces, respectively. Reactive surface areas were approximated with PEST using BET derived surface areas to constrain fitting parameters. Uranium breakthrough was delayed by a factor of 1.68, 1.69 and 1.47more » relative to the non-reactive tracer for three of the 5 experiments at an alkalinity of 540 mg/l. A sediment containing smectite and kaolinite retained uranium by a factor of 2.80 despite a lower measured BET surface area. Decreasing alkalinity to 360 mg/l from 540 mg/l increased retardation by a factor of 4.26. Model fits correlated well to overall BET surface area in the three columns where clay content was less than 1%. For the sediment with clay, models consistently understated uranium retardation when reactive surface sites were restricted by BET results. Calcite saturation was shown to be a controlling factor for uranium desorption as the pH of the system changes. A pH of 6 during a secondary background water flush remobilized previously sorbed uranium resulting in a secondary uranium peak at twice the influent concentrations. Furthermore, this study demonstrates the potential of GC SCM models to predict uranium transport in sediments with homogenous mineral composition, but highlights the need for further research to understand the role of sediment clay composition and calcite saturation in uranium transport.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dangelmayr, Martin A.; Reimus, Paul W.; Wasserman, Naomi L.
The purpose of this study was to determine the attenuation potential and retardation of uranium in sediments taken from boreholes at the Smith-Ranch Highland in-situ recovery (ISR) site. Five column experiments with four different sediments were conducted to study the effects of variable mineralogy and alkalinity on uranium breakthrough. Uranium transport was modeled with PHREEQC using a generalized composite surface complexation model (GC SCM) with one, two, and, three generic surfaces, respectively. Reactive surface areas were approximated with PEST using BET derived surface areas to constrain fitting parameters. Uranium breakthrough was delayed by a factor of 1.68, 1.69 and 1.47more » relative to the non-reactive tracer for three of the 5 experiments at an alkalinity of 540 mg/l. A sediment containing smectite and kaolinite retained uranium by a factor of 2.80 despite a lower measured BET surface area. Decreasing alkalinity to 360 mg/l from 540 mg/l increased retardation by a factor of 4.26. Model fits correlated well to overall BET surface area in the three columns where clay content was less than 1%. For the sediment with clay, models consistently understated uranium retardation when reactive surface sites were restricted by BET results. Calcite saturation was shown to be a controlling factor for uranium desorption as the pH of the system changes. A pH of 6 during a secondary background water flush remobilized previously sorbed uranium resulting in a secondary uranium peak at twice the influent concentrations. Furthermore, this study demonstrates the potential of GC SCM models to predict uranium transport in sediments with homogenous mineral composition, but highlights the need for further research to understand the role of sediment clay composition and calcite saturation in uranium transport.« less
NASA Astrophysics Data System (ADS)
Plaza, F.; Wen, Y.; Liang, X.
2017-12-01
Acid rock drainage (ARD) caused by abundance of coal refuse (CR) deposits in mining regions requires adequate treatment to prevent serious water pollution due to its acidity and high concentrations of sulfate and metals/metalloids. Over the past decades, various approaches have been explored and developed to remediate ARD. This study uses laboratory experiments to investigate the effectiveness and impacts of ARD passive remediation using alkaline clay (AC), a by-product of the aluminum refining process. Twelve column kinetic leaching experiments were set up with CR/AC mixing ratios ranging from 1%AC to 10%AC. Samples were collected from these columns to measure the pH, sulfate, metals/metalloids, acidity and alkalinity. Additional tests of XRD and acid base accounting were also conducted to better characterize the mineral phase in terms of the alkalinity and acidity potential. Based on the leachate measurement results, these columns were further classified into two groups of neutral/near neutral pH and acidic pH for further analysis. In addition, impacts of the vegetation and saturated sand layer on the remediation effectiveness were explored. The results of our long-term (more than three years in some cases) laboratory experiments show that AC is an effective ARD remediation material for the neutralization of leachate pH and immobilization of sulfate and metals such as Fe, Mn, Cu, Zn, Ni, Pb, Cd, Co. The CR/AC mixing ratios higher than 3%AC are found to be effective, with 10% close to optimal. Moreover, the results demonstrate the benefits of using vegetation and a saturated sand barrier. Vegetation acted as a phytoaccumulation/phytoextraction agent, causing an additional immobilization of metals. The saturated sand barrier blocked the oxygen and water diffusion downwards, leading to a reduction of the pyrite oxidation rate. Finally, the proposed remediation approach shows that the acidity consumption will likely occur before all the alkalinity is exhausted, guaranteeing an adequate long-term performance of this remediation approach.
Interfacial stability of CoSi2/Si structures grown by molecular beam epitaxy
NASA Technical Reports Server (NTRS)
George, T.; Fathauer, R. W.
1992-01-01
The stability of CoSi2/Si interfaces was examined in this study using columnar silicide structures grown on (111) Si substrates. In the first set of experiments, Co and Si were codeposited using MBE at 800 C and the resulting columnar silicide layer was capped by epitaxial Si. Deposition of Co on the surface of the Si capping layer at 800 C results in the growth of the buried silicide columns. The buried columns grow by subsurface diffusion of the deposited Co, suppressing the formation of surface islands of CoSi2. The column sidewalls appear to be less stable than the top and bottom interfaces, resulting in preferential lateral growth and ultimately in the coalescence of the columns to form a continuous buried CoSi2 layer. In the second set of experiments, annealing of a 250 nm-thick buried columnar layer at 1000 C under a 100 nm-thick Si capping layer results in the formation of a surface layer of CoSi2 with a reduction in the sizes of the CoSi2 columns. For a sample having a thicker Si capping layer the annealing leads to Ostwald ripening producing buried equiaxed columns. The high CoSi2/Si interfacial strain could provide the driving force for the observed behavior of the buried columns under high-temperature annealing.
Tomographic analysis of reactive flow induced pore structure changes in column experiments
NASA Astrophysics Data System (ADS)
Cai, Rong; Lindquist, W. Brent; Um, Wooyong; Jones, Keith W.
2009-09-01
We utilize synchrotron X-ray computed micro-tomography to capture and quantify snapshots in time of dissolution and secondary precipitation in the microstructure of Hanford sediments exposed to simulated caustic waste in flow-column experiments. The experiment is complicated somewhat as logistics dictated that the column spent significant amounts of time in a sealed state (acting as a batch reactor). Changes accompanying a net reduction in porosity of 4% were quantified including: (1) a 25% net decrease in pores resulting from a 38% loss in the number of pores <10-4mm in volume and a 13% increase in the number of pores of larger size; and (2) a 38% decrease in the number of throats. The loss of throats resulted in decreased coordination number for pores of all sizes and significant reduction in the number of pore pathways.
Bridwell, Keith H
2006-09-01
Author experience and literature review. To investigate and discuss decision-making on when to perform a Smith-Petersen osteotomy as opposed to a pedicle subtraction procedure and/or a vertebral column resection. Articles have been published regarding Smith-Petersen osteotomies, pedicle subtraction procedures, and vertebral column resections. Expectations and complications have been reviewed. However, decision-making regarding which of the 3 procedures is most useful for a particular spinal deformity case is not clearly investigated. Discussed in this manuscript is the author's experience and the literature regarding the operative options for a fixed coronal or sagittal deformity. There are roles for Smith-Petersen osteotomy, pedicle subtraction, and vertebral column resection. Each has specific applications and potential complications. As the magnitude of resection increases, the ability to correct deformity improves, but also the risk of complication increases. Therein, an understanding of potential applications and complications is helpful.
Effects of picture amount on preference, balance, and dynamic feel of Web pages.
Chiang, Shu-Ying; Chen, Chien-Hsiung
2012-04-01
This study investigates the effects of picture amount on subjective evaluation. The experiment herein adopted two variables to define picture amount: column ratio and picture size. Six column ratios were employed: 7:93,15:85, 24:76, 33:67, 41:59, and 50:50. Five picture sizes were examined: 140 x 81, 220 x 127, 300 x 173, 380 x 219, and 460 x 266 pixels. The experiment implemented a within-subject design; 104 participants were asked to evaluate 30 web page layouts. Repeated measurements revealed that the column ratio and picture size have significant effects on preference, balance, and dynamic feel. The results indicated the most appropriate picture amount for display: column ratios of 15:85 and 24:76, and picture sizes of 220 x 127, 300 x 173, and 380 x 219. The research findings can serve as the basis for the application of design guidelines for future web page interface design.
Oláh, Erzsébet; Fekete, Szabolcs; Fekete, Jeno; Ganzler, Katalin
2010-06-04
Today sub-2 microm packed columns are very popular to conduct fast chromatographic separations. The mass-transfer resistance depends on the particle size but some practical limits exist not to reach the theoretically expected plate height and mass-transfer resistance. Another approach applies particles with shortened diffusion path to enhance the efficiency of separations. In this study a systematical evaluation of the possibilities of the separations obtained with 5 cm long narrow bore columns packed with new 2.6 microm shell particles (1.9 microm nonporous core surrounded by a 0.35 microm porous shell, Kinetex, Core-Shell), packed with other shell-type particles (Ascentis Express, Fused-Core), totally porous sub-2 microm particles and a 5 cm long narrow bore monolith column is presented. The different commercially available columns were compared by using van Deemter, Knox and kinetic plots. Theoretical Poppe plots were constructed for each column to compare their kinetic performance. Data are presented on polar neutral real-life analytes. Comparison of a low molecular weight compounds (MW=270-430) and a high molecular weight one (MW approximately 900) was conducted. This study proves that the Kinetex column packed with 2.6 microm shell particles is worthy of rivaling to sub-2 microm columns and other commercially available shell-type packings (Ascentis Express or Halo), both for small and large molecule separation. The Kinetex column offers a very flat C term. Utilizing this feature, high flow rates can be applied to accomplish very fast separations without significant loss in efficiency. Copyright 2010 Elsevier B.V. All rights reserved.
Wave–turbulence interaction-induced vertical mixing and its effects in ocean and climate models
Qiao, Fangli; Yuan, Yeli; Deng, Jia; Dai, Dejun; Song, Zhenya
2016-01-01
Heated from above, the oceans are stably stratified. Therefore, the performance of general ocean circulation models and climate studies through coupled atmosphere–ocean models depends critically on vertical mixing of energy and momentum in the water column. Many of the traditional general circulation models are based on total kinetic energy (TKE), in which the roles of waves are averaged out. Although theoretical calculations suggest that waves could greatly enhance coexisting turbulence, no field measurements on turbulence have ever validated this mechanism directly. To address this problem, a specially designed field experiment has been conducted. The experimental results indicate that the wave–turbulence interaction-induced enhancement of the background turbulence is indeed the predominant mechanism for turbulence generation and enhancement. Based on this understanding, we propose a new parametrization for vertical mixing as an additive part to the traditional TKE approach. This new result reconfirmed the past theoretical model that had been tested and validated in numerical model experiments and field observations. It firmly establishes the critical role of wave–turbulence interaction effects in both general ocean circulation models and atmosphere–ocean coupled models, which could greatly improve the understanding of the sea surface temperature and water column properties distributions, and hence model-based climate forecasting capability. PMID:26953182
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Zhenqing; Balogh-Brunstad, Zsuzsanna; Grant, Michael R.
Background and Aims Plant nutrient uptake is affected by environmental stress, but how plants respond to cation-nutrient stress is poorly understood. We assessed the impact of varying degrees of cation-nutrient limitation on cation uptake in an experimental plant-mineral system. Methods Column experiments, with red pine (Pinus resinosa Ait.) seedlings growing in sand/mineral mixtures, were conducted for up to nine months under a range of Ca- and K-limited conditions. The Ca and K were supplied from both minerals and nutrient solutions with varying Ca and K concentrations. Results Cation nutrient stress had little impact on carbon allocation after nine months ofmore » plant growth and K was the limiting nutrient for biomass production. The Ca/Sr and K/Rb ratio results allowed independent estimation of dissolution incongruency and discrimination against Sr and Rb during cation uptake processes. The fraction of K in biomass from biotite increased with decreasing K supply from nutrient solutions. The mineral anorthite was consistently the major source of Ca, regardless of nutrient treatment. Conclusions Red pine seedlings exploited more mineral K in response to more severe K deficiency. This did not occur for Ca. Plant discrimination factors must be carefully considered to accurately identify nutrient sources using cation tracers.« less
e-Science and data management resources on the Web.
Gore, Sally A
2011-01-01
The way research is conducted has changed over time, from simple experiments to computer modeling and simulation, from individuals working in isolated laboratories to global networks of researchers collaborating on a single topic. Often, this new paradigm results in the generation of staggering amounts of data. The intensive use of data and the existence of networks of researchers characterize e-Science. The role of libraries and librarians in e-Science has been a topic of interest for some time now. This column looks at tools, resources, and projects that demonstrate successful collaborations between libraries and researchers in e-Science.
Amos, Richard T.; Mayer, K. Ulrich
2006-01-01
Ebullition of gas bubbles through saturated sediments can enhance the migration of gases through the subsurface, affect the rate of biogeochemical processes, and potentially enhance the emission of important greenhouse gases to the atmosphere. To better understand the parameters controlling ebullition, methanogenic conditions were produced in a column experiment and ebullition through the column was monitored and quantified through dissolved gas analysis and reactive transport modeling. Dissolved gas analysis showed rapid transport of CH4 vertically through the column at rates several times faster than the bromide tracer and the more soluble gas CO2, indicating that ebullition was the main transport mechanism for CH4. An empirically derived formulation describing ebullition was integrated into the reactive transport code MIN3P allowing this process to be investigated on the REV scale in a complex geochemical framework. The simulations provided insights into the parameters controlling ebullition and show that, over the duration of the experiment, 36% of the CH4 and 19% of the CO2 produced were transported to the top of the column through ebullition.
DOT National Transportation Integrated Search
2015-01-01
This report is the first of three volumes and presents interpretation of all experimental and numerical data and recommendations. In : total, 30 large scale reinforced concrete columns tests were conducted under a variety of loading conditions. Using...
Joyner, Katherine; Wang, Weizhen; Yu, Yihua Bruce
2011-01-01
The effect of column and eluent fluorination on the retention and separation of non-fluorinated amino acids and proteins in HPLC is investigated. A side-by-side comparison of fluorocarbon column and eluents (F-column and F-eluents) with their hydrocarbon counterparts (H-column and H-eluents) in the separation of a group of 33 analytes, including 30 amino acids and 3 proteins, is conducted. The H-column and the F-column contain the n-C8H17 group and n-C8F17 group, respectively, in their stationary phases. The H-eluents include ethanol (EtOH) and isopropanol (ISP) while the F-eluents include trifluoroethanol (TFE) and hexafluorosopropanol (HFIP). The 2 columns and 4 eluents generated 8 (column, eluent) pairs that produce 264 retention time data points for the 33 analytes. A statistical analysis of the retention time data reveals that although the H-column is better than the F-column in analyte separation and H-eluents are better than F-eluents in analyte retention, the more critical factor is the proper pairing of column with eluent. Among the conditions explored in this project, optimal retention and separation is achieved when the fluorocarbon column is paired with ethanol, even though TFE is the most polar one among the 4 eluents. This result shows fluorocarbon columns have much potential in chromatographic analysis and separation of non-fluorinated amino acids and proteins. PMID:21318121
Li, Ming-Hsu; Wang, Tsing-Hai; Teng, Shi-Ping
2009-02-15
This study investigated breakthrough curves (BTCs) from a series of column experiments, including different column lengths and flow rates, of a conservative tracer, tritium oxide (HTO), and a radionuclide, cesium, in crushed granite using a reactive transport model. Results of the short column, with length of 2cm, showed an underestimation of the retardation factor and the corresponding HTO BTCs cannot be successfully modeled even with overestimated fluid dispersivity. Column supporting elements, including filters and rings, on both ends of packed granite were shown to be able to induce additional dispersive mixing, thus significantly affecting BTCs of short columns while those of the long column, with length of 8cm, were less affected. By increasing flow rates from 1mL/min to 5mL/min, the contribution of structural dispersive mixing to the false tilting of short column BTCs still cannot be detached. To reduce the influence of structural dispersivity on BTCs, the equivalent pore volume of column supporting materials should be much smaller than that of packed porous medium. The total length of column supporting structures should be greatly shorter than that of porous medium column.
Xie, Shaocheng; Klein, Stephen A.; Zhang, Minghua; ...
2006-10-05
[1] This study represents an effort to develop Single-Column Model (SCM) and Cloud-Resolving Model large-scale forcing data from a sounding array in the high latitudes. An objective variational analysis approach is used to process data collected from the Atmospheric Radiation Measurement Program (ARM) Mixed-Phase Arctic Cloud Experiment (M-PACE), which was conducted over the North Slope of Alaska in October 2004. In this method the observed surface and top of atmosphere measurements are used as constraints to adjust the sounding data from M-PACE in order to conserve column-integrated mass, heat, moisture, and momentum. Several important technical and scientific issues related tomore » the data analysis are discussed. It is shown that the analyzed data reasonably describe the dynamic and thermodynamic features of the Arctic cloud systems observed during M-PACE. Uncertainties in the analyzed forcing fields are roughly estimated by examining the sensitivity of those fields to uncertainties in the upper-air data and surface constraints that are used in the analysis. Impacts of the uncertainties in the analyzed forcing data on SCM simulations are discussed. Results from the SCM tests indicate that the bulk features of the observed Arctic cloud systems can be captured qualitatively well using the forcing data derived in this study, and major model errors can be detected despite the uncertainties that exist in the forcing data as illustrated by the sensitivity tests. Lastly, the possibility of using the European Center for Medium-Range Weather Forecasts analysis data to derive the large-scale forcing over the Arctic region is explored.« less
NASA Astrophysics Data System (ADS)
Song, Chao; Liu, Changli; Han, Guilin; Liu, Congqiang
2017-09-01
Carbonate weathering, as a significant vector for the movement of carbon both between and within ecosystems, is strongly influenced by agricultural fertilization, since the addition of fertilizers tends to change the chemical characteristics of soil such as the pH. Different fertilizers may exert a different impact on carbonate weathering, but these discrepancies are as yet not well-known. In this study, a field column experiment was conducted to explore the response of carbonate weathering to the addition of different fertilizers. We compared 11 different treatments, including a control treatment, using three replicates per treatment. Carbonate weathering was assessed by measuring the weight loss of limestone and dolostone tablets buried at the bottom of soil-filled columns. The results show that the addition of urea, NH4NO3, NH4HCO3, NH4Cl and (NH4)2CO3 distinctly increased carbonate weathering, which was attributed to the nitrification of NH4+. The addition of Ca3(PO4)2, Ca-Mg-P and K2CO3 induced carbonate precipitation due to the common ion effect. The addition of (NH4)3PO4 and NaNO3 had a relatively small impact on carbonate weathering in comparison to those five NH4-based fertilizers above. The results of NaNO3 treatment raise a new question: the negligible impact of nitrate on carbonate weathering may result in an overestimation of the impact of N fertilizer on CO2 consumption by carbonate weathering on the regional/global scale if the effects of NO3 and NH4 are not distinguished.
Vapour-Phase Processes Control Liquid-Phase Isotope Profiles in Unsaturated Sphagnum Moss
NASA Astrophysics Data System (ADS)
Edwards, T. W.; Yi, Y.; Price, J. S.; Whittington, P. N.
2009-05-01
Seminal work in the early 1980s clearly established the basis for predicting patterns of heavy-isotope enrichment of pore waters in soils undergoing evaporation. A key feature of the process under steady-state conditions is the development of stable, convex-upward profiles whose shape is controlled by the balance between downward-diffusing heavy isotopologues concentrated by evaporative enrichment at the surface and the upward capillary flow of bulk water that maintains the evaporative flux. We conducted an analogous experiment to probe evaporation processes within 20-cm columns of unsaturated, living and dead (but undecomposed) Sphagnum moss evaporating under controlled conditions, while maintaining a constant water table. The experiment provided striking evidence of the importance of vapour-liquid mass and isotope exchange in the air-filled pores of the Sphagnum columns, as evidenced by the rapid development of hydrologic and isotopic steady-state within hours, rather than days, i.e., an order of magnitude faster than possible by liquid-phase processes alone. This is consistent with the notion that vapour-phase processes effectively "short-circuit" mass and isotope fluxes within the Sphagnum columns, as proposed also in recent characterizations of water dynamics in transpiring leaves. Additionally, advection-diffusion modelling of our results supports independent estimates of the effective liquid-phase diffusivities of the respective heavy water isotopologues, 2.380 x 10-5 cm2 s-1 for 1H1H18O and 2.415 x 10-5 cm2 s-1 for 1H2H16O, which are in notably good agreement with the "default" values that are typically assumed in soil and plant water studies.
Lestremau, François; Cooper, Andrew; Szucs, Roman; David, Frank; Sandra, Pat
2006-03-24
High plate numbers were obtained in conventional LC by coupling columns and by using temperature to reduce the viscosity of the mobile phase. At 80 degrees C up to eight columns of 25 cm x 4.6 mm I.D. packed with 5 microm ODS particles could be coupled generating 180,000 effective plates while the pressure drop was only 350bar. For routine work, a set of four columns is preferred. The analysis times on one column operated at 30 degrees C and 1 mL/min flow rate and on four columns at 80 degrees C and 2 mL/min flow rate are the same in isoeluotropic conditions while the resolution is doubled. Multicolumn systems were successfully applied in isocratic and gradient mode for the analysis of pharmaceutical and environmental samples.
Repair of earthquake-damaged bridge columns with interlocking spirals and fractured bars.
DOT National Transportation Integrated Search
2014-07-01
During earthquakes, reinforced concrete (RC) bridge columns may experience different levels of damage such as cracking, spalling, or crushing of concrete and yielding, buckling, or fracture of reinforcing bars. Although several repair options exist f...
Liu, Zhao-Dong; Wang, Hai-Cui; Li, Jiu-Yu; Xu, Ren-Kou
2017-10-01
The interaction between rice roots and Fe/Al oxide-coated quartz was investigated through zeta potential measurements and column leaching experiments in present study. The zeta potentials of rice roots, Fe/Al oxide-coated quartz, and the binary systems containing rice roots and Fe/Al oxide-coated quartz were measured by a specially constructed streaming potential apparatus. The interactions between rice roots and Fe/Al oxide-coated quartz particles were evaluated/deduced based on the differences of zeta potentials between the binary systems and the single system of rice roots. The zeta potentials of the binary systems moved in positive directions compared with that of rice roots, suggesting that there were overlapping of diffuse layers of electric double layers on positively charged Fe/Al oxide-coated quartz and negatively charged rice roots and neutralization of positive charge on Fe/Al oxide-coated quartz with negative charge on rice roots. The greater amount of positive charges on Al oxide led to the stronger interaction of Al oxide-coated quartz with rice roots and the more shift of zeta potential compared with Fe oxide. The overlapping of diffuse layers on Fe/Al oxide-coated quartz and rice roots was confirmed by column leaching experiments. The greater overlapping of diffuse layers on Al oxide and rice roots led to more simultaneous adsorptions of K + and NO 3 - and greater reduction in leachate electric conductivity when the column containing Al oxide-coated quartz and rice roots was leached with KNO 3 solution, compared with the columns containing rice roots and Fe oxide-coated quartz or quartz. When the KNO 3 solution was replaced with deionized water to flush the columns, more K + and NO 3 - were desorbed from the binary system containing Al oxide-coated quartz and rice roots than from other two binary systems, suggesting that the stronger electrostatic interaction between Al oxide and rice roots promoted the desorption of K + and NO 3 - from the binary system and enhanced overlapping of diffuse layers on these oppositely charged surfaces compared with other two binary systems. In conclusion, the overlapping of diffuse layers occurred between positively charged Fe/Al oxides and rice roots, which led to neutralization of opposite charge and affected adsorption and desorption of ions onto and from the charged surfaces of Fe/Al oxides and rice roots.
Investigations of infiltration processes from flooded areas by column experiments
NASA Astrophysics Data System (ADS)
Mohrlok, U.; Bethge, E.; Golalipour, A.
2009-04-01
In case of inundation of flood plains during flood events there is an increased risk of groundwater contamination due to infiltration of increasingly polluted river water. Specifically in densely populated regions, this groundwater may be used as source for drinking water supply. For the evaluation of this a detailed quantitative understanding of the infiltration processes under such conditions is required. In this context the infiltration related to a flood event can be described by three phases. The first phase is defined by the saturation of the unsaturated soils. Within the second phase infiltration takes place under almost saturated conditions determined by the hydraulic load of the flood water level. The drainage of the soils due to falling groundwater table is characterizing the third phase. Investigations by soil columns gave a detailed insight into the infiltration processes caused by flooding. Inflow at the soil top was established by a fixed water table fed by a Mariotte bottle. Free outflow and a groundwater table were used as lower boundary condition. Inflow and outflow volume were monitored. The evolution of the matrix pressure was observed by micro-tensiometers installed at several depths within the soil column. The flow processes during phase one and two were characterized by a tracer test. Some of the experiments were repeated in order to study the influence of preliminary events. Main results were a difference in infiltration due to the lower boundary condition with regard to inflow rate, outflow dynamics and matrix pressure evolution which is directly related to the water content evolution. Further, the influence of preliminary events was different for the different boundary conditions. A replacement of pre-event water could be observed which was confirmed by volume balances calculated for the infiltration experiments. Although these water balances were almost closed significant dynamics of the matrix pressure remained in soil column in the drainage phase. The detailed analysis of the hydraulic conditions and the flow rates provided an estimate of the unsaturated hydraulic conductivity that could be related to the degree of saturation. Numerical simulations were not able to reproduce these conditions. These results could be used to estimate time scales of flow and solute transport in soils caused by flood events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Guohui; Qafoku, Nikolla; Lawter, Amanda R.
A series of batch and column experiments combined with solid phase characterization studies (i.e., quantitative x-ray diffraction and wet chemical extractions) were conducted to address a variety of scientific issues and evaluate the impacts of the potential leakage of carbon dioxide (CO2) from deep subsurface storage reservoirs. The main objective was to gain an understanding of how CO2 gas influences: 1) the aqueous phase pH; and 2) mobilization of major, minor, and trace elements from minerals present in an aquifer overlying potential CO2 sequestration subsurface repositories. Rocks and slightly weathered rocks representative of an unconfined, oxidizing carbonate aquifer within themore » continental US, i.e., the Edwards aquifer in Texas, were used in these studies. These materials were exposed to a CO2 gas stream or were leached with a CO2-saturated influent solution to simulate different CO2 gas leakage scenarios, and changes in aqueous phase pH and chemical composition were measured in the liquid samples collected at pre-determined experimental times (batch experiments) or continuously (column experiments). The results from the strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the Edward aquifer samples contain As, Cd, Pb, Cu, and occasionally Zn, which may potentially be mobilized from the solid to the aqueous phase during or after exposure to CO2. The results from the batch and column experiments confirmed the release of major chemical elements into the contacting aqueous phase (such as Ca, Mg, Ba, Sr, Si, Na, and K); the mobilization and possible rapid immobilization of minor elements (such as Fe, Al, and Mn), which are able to form highly reactive secondary phases; and sporadic mobilization of only low concentrations of trace elements (such as As, Cd, Pb, Cu, Zn, Mo, etc.). The results from this experimental research effort will help in developing a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption) in the aquifer sediments and will support site selection, risk assessment, policy-making, and public education efforts associated with geologic carbon sequestration.« less
Chen, Dan; Zhou, Jun; Wang, Hongyu; Yang, Kai
2018-01-01
There is an increasing need to explore effective and clean approaches for hazardous contamination removal from wastewaters. In this work, a novel bead adsorbent, polyvinyl alcohol-graphene oxide (PVA-GO) macroporous hydrogel bead was prepared as filter media for p-nitrophenol (PNP), dye methylene blue (MB), and heavy metal U(VI) removal from aqueous solution. Batch and fixed-bed column experiments were carried out to evaluate the adsorption capacities of PNP, MB, and U(VI) on this bead. From batch experiments, the maximum adsorption capacities of PNP, MB, and U(VI) reached 347.87, 422.90, and 327.55 mg/g. From the fixed-bed column experiments, the adsorption capacities of PNP, MB, and U(VI) decreased with initial concentration increasing from 100 to 400 mg/L. The adsorption capacities of PNP, MB, and U(VI) decreased with increasing flow rate. Also, the maximum adsorption capacity of PNP decreased as pH increased from 3 to 9, while MB and U(VI) presented opposite tendencies. Furthermore, the bed depth service Time (BDST) model showed good linear relationships for the three ions' adsorption processes in this fixed-bed column, which indicated that the BDST model effectively evaluated and optimized the adsorption process of PVA-GO macroporous hydrogel bead in fixed-bed columns for hazardous contaminant removal from wastewaters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espanol, C.E.
1960-01-01
The effect of the appearance of localized perturbations on the separation factor and operation time of a thermal diffusion column is studied. The separation factor of a column was obtained experimentally and the enrichment was recorded continuously as a function of time by measurement of the thermal conductivity of the gaseous mixture at the foot and head of the column. A mixture of Ar and CO/sub 2/ was used as it behaves as an isotopic mixture. The results showed the linear decrease of the separation factor with the number of stages and the operation time practically does not vary. Themore » introduction of localized turbulences in a thermal diffusion column reduces the column yield. (J.S.R.)« less
Shin, Min Jae; Tan, Lihan; Jeong, Min Ho; Kim, Ji-Heung; Choe, Woo-Seok
2011-08-05
Immobilized metal affinity monolith column as a new class of chromatographic support is shown to be superior to conventional particle-based column as plasmid DNA (pDNA) purification platform. By harnessing the affinity of endotoxin to copper ions in the solution, a majority of endotoxin (90%) was removed from the alkaline cell lysate using CuCl(2)-induced precipitation. RNA and remaining endotoxin were subsequently removed to below detection limit with minimal loss of pDNA using either monolith or particle-based column. Monolith column has the additional advantage of feed concentration and flowrate-independent dynamic binding capacity for RNA molecules, enabling purification process to be conducted at high feed RNA concentration and flowrate. The use of monolith column gives three fold increased productivity of pDNA as compared to particle-based column, providing a more rapid and economical platform for pDNA purification. Copyright © 2011 Elsevier B.V. All rights reserved.
Qiu, Hongdeng; Zhang, Qinghua; Chen, Limei; Liu, Xia; Jiang, Shengxiang
2008-08-01
Separations of common inorganic anions were carried out on ODS columns coated with two long-chain alkylimidazolium ionic liquids ([C(12)MIm]Br and [C(14)MIm]Br) as new cationic surfactants for ion chromatography. With phthalate buffer solution as the mobile phases and non-suppressed conductivity detection, high column efficiencies and excellent selectivity were obtained in the separation of inorganic anions. Chromatographic parameters are calculated and the results show that the coated column possesses significant potential for the analysis of some inorganic anions such as CH(3)COO(-), IO(3)(-), Cl(-), BrO(3)(-), NO(2)(-), Br(-), NO(3)(-), SO(4)(2-), I(-), BF(4)(-), and SCN(-). The effect of eluent pH values on the separation of anions has been studied on the column coated with [C(12)MIm]Br. The stability of the coated columns was also examined.
Effect of biochar type on macronutrient retention and release from soilless substrate
USDA-ARS?s Scientific Manuscript database
A series of column studies were conducted to determine the influence of three different biochar types on nitrate, phosphate, and potassium retention and leaching in a typical greenhouse soilless substrate. Glass columns were filled with 85 sphagnum peat moss : 15 perlite (v:v) and amended with 10% ...
Characterizing The Microbial Community In A TCE DNAPL Site: SABRE Column And Field Studies
The SABRE (Source Area BioREmediation) project is evaluating accelerated anaerobic bioremediation of chlorinated solvents in areas of high concentration, such as DNAPL source areas. In support of a field scale pilot test, column studies were conducted to design the system and ob...
An explanation for differences in the process of colloid adsorption in batch and column studies
USDA-ARS?s Scientific Manuscript database
It is essential to understand the mechanisms that control virus and bacteria removal in the subsurface environment to assess the risk of groundwater contamination with fecal microorganisms. This study was conducted to explicitly provide a critical and systematic comparison between batch and column e...
Gas Chromatograph Method Optimization Trade Study for RESOLVE: 20-meter Column v. 8-meter Column
NASA Technical Reports Server (NTRS)
Huz, Kateryna
2014-01-01
RESOLVE is the payload on a Class D mission, Resource Prospector, which will prospect for water and other volatile resources at a lunar pole. The RESOLVE payload's primary scientific purpose includes determining the presence of water on the moon in the lunar regolith. In order to detect the water, a gas chromatograph (GC) will be used in conjunction with a mass spectrometer (MS). The goal of the experiment was to compare two GC column lengths and recommend which would be best for RESOLVE's purposes. Throughout the experiment, an Inficon Fusion GC and an Inficon Micro GC 3000 were used. The Fusion had a 20m long column with 0.25mm internal diameter (Id). The Micro GC 3000 had an 8m long column with a 0.32mm Id. By varying the column temperature and column pressure while holding all other parameters constant, the ideal conditions for testing with each column length in their individual instrument configurations were determined. The criteria used for determining the optimal method parameters included (in no particular order) (1) quickest run time, (2) peak sharpness, and (3) peak separation. After testing numerous combinations of temperature and pressure, the parameters for each column length that resulted in the most optimal data given my three criteria were selected. The ideal temperature and pressure for the 20m column were 95 C and 50psig. At this temperature and pressure, the peaks were separated and the retention times were shorter compared to other combinations. The Inficon Micro GC 3000 operated better at lower temperature mainly due to the shorter 8m column. The optimal column temperature and pressure were 70 C and 30psig. The Inficon Micro GC 3000 8m column had worse separation than the Inficon Fusion 20m column, but was able to separate water within a shorter run time. Therefore, the most significant tradeoff between the two column lengths was peak separation of the sample versus run time. After performing several tests, it was concluded that better detection via good peak separation with a longer run time is a better asset than moderate peak separation with a shorter run time. Even given that RESOLVE is highly interested in water and that mission timeline is of significant importance given the short seven-to-ten-day mission timeline, worse detection with an 8m column may lead to overlooking other substances existing on the moon that could advance planetary science. Thus, I recommend the 20m column. However, if mission timeline and water separation are deemed the highest priority, the 8m column should be selected due to its ability to separate water within a shorter run time than the 20m column.
Sorption Modeling and Verification for Off-Gas Treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavlarides, Lawrence; Yiacoumi, Sotira; Tsouris, Costas
2016-12-20
This project was successfully executed to provide valuable adsorption data and improve a comprehensive model developed in previous work by the authors. Data obtained were used in an integrated computer program to predict the behavior of adsorption columns. The model is supported by experimental data and has been shown to predict capture of off gas similar to that evolving during the reprocessing of nuclear waste. The computer program structure contains (a) equilibrium models of off-gases with the adsorbate; (b) mass-transfer models to describe off-gas mass transfer to a particle, diffusion through the pores of the particle, and adsorption on themore » active sites of the particle; and (c) incorporation of these models into fixed bed adsorption modeling, which includes advection through the bed. These models are being connected with the MOOSE (Multiphysics Object-Oriented Simulation Environment) software developed at the Idaho National Laboratory through DGOSPREY (Discontinuous Galerkin Off-gas SeParation and REcoverY) computer codes developed in this project. Experiments for iodine and water adsorption have been conducted on reduced silver mordenite (Ag0Z) for single layered particles. Adsorption apparatuses have been constructed to execute these experiments over a useful range of conditions for temperatures ranging from ambient to 250°C and water dew points ranging from -69 to 19°C. Experimental results were analyzed to determine mass transfer and diffusion of these gases into the particles and to determine which models best describe the single and binary component mass transfer and diffusion processes. The experimental results were also used to demonstrate the capabilities of the comprehensive models developed to predict single-particle adsorption and transients of the adsorption-desorption processes in fixed beds. Models for adsorption and mass transfer have been developed to mathematically describe adsorption kinetics and transport via diffusion and advection processes. These models were built on a numerical framework for solving conservation law problems in one-dimensional geometries such as spheres, cylinders, and lines. Coupled with the framework are specific models for adsorption in commercial adsorbents, such as zeolites and mordenites. Utilizing this modeling approach, the authors were able to accurately describe and predict adsorption kinetic data obtained from experiments at a variety of different temperatures and gas phase concentrations. A demonstration of how these models, and framework, can be used to simulate adsorption in fixed- bed columns is provided. The CO 2 absorption work involved modeling with supportive experimental information. A dynamic model was developed to simulate CO 2 absorption using high alkaline content water solutions. The model is based upon transient mass and energy balances for chemical species commonly present in CO 2 absorption. A computer code was developed to implement CO 2 absorption with a chemical reaction model. Experiments were conducted in a laboratory scale column to determine the model parameters. The influence of geometric parameters and operating variables on CO 2 absorption was studied over a wide range of conditions. Continuing work could employ the model to control column operation and predict the absorption behavior under various input conditions and other prescribed experimental perturbations. The value of the validated models and numerical frameworks developed in this project is that they can be used to predict the sorption behavior of off-gas evolved during the reprocessing of nuclear waste and thus reduce the cost of the experiments. They can also be used to design sorption processes based on concentration limits and flow-rates determined at the plant level.« less
Comparison of twin-cell centrifugal partition chromatographic columns with different cell volume.
Goll, Johannes; Audo, Gregoire; Minceva, Mirjana
2015-08-07
Two twin-cell centrifugal partition chromatographic columns (SCPC 250 and SCPE-250-BIO, Armen Instrument, France) with the same column volume but different cell size and number were compared in terms of stationary phase retention and column efficiency. The columns were tested with two types of solvent systems: a commonly used organic solvent based biphasic system from the ARIZONA solvent system family and a polymer/salt based aqueous two phase system (ATPS). The efficiency of the columns was evaluated by pulse injection experiments of two benzenediols (pyrocatechol and hydroquinone) in the case of the ARIZONA system and a protein mixture (myoglobin and lysozyme) in the case of the ATPS. As result of high stationary phase retention, the column with the lower number of larger twin-cells (SCPE-250-BIO) is suitable for protein separations using ATPS. On the other hand, due to higher column efficiency, the column with the greater number of smaller cells (SCPC 250) is superior for batch elution separations performed with standard liquid-liquid chromatography organic solvent based biphasic systems. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Muraleedharan, K. R.; Dinesh Kumar, P. K.; Prasanna Kumar, S.; Srijith, B.; John, Sebin; Naveen Kumar, K. R.
2017-04-01
Alappuzha mud bank draws special attention among the twenty-mud bank locations reported along the Kerala coast by its remoteness from riverine sources. Among several hypotheses proposed for the formation of mud bank, the subterranean hypothesis was most accepted because of the occurrence of low salinity in the bottom layers. The present study provides evidence to show that occurrence of low salinity waters near the bottom in the mud bank region is an artifact of measuring technique employed for the measurement of salinity. The usual technique of conductivity based salinity determination completely fails in the presence of water laden with high amount of suspended sediment. Laboratory experiments were conducted to determine the response of electrode and conductivity cell sensor types to determine the salinity using a range of suspended sediment in the water column. Actual sediment samples from the mud bank region were utilized for the above studies. Based on field observations and experiments, we conclude that the low salinity was the manifestation of the presence highly turbid fluid mud formation in the mud bank region rather than the influence of fresh water.
NASA Astrophysics Data System (ADS)
Huang, Tao; Zhou, Lulu; Tao, Junjun; Liu, Longfei
2018-01-01
The paper discusses enhancement and efficiency of removing spiked heavy metal (HM) contaminants from the municipal solid waste incineration (MSWI) fly ashes in the cylindrical electrolyser device. The characterization parameters of the electrolyte solution pH, electric current, electrical conductivity, voltage gradient were discussed after the experiment. The chemical speciation of HMs was analysed between the original samples and remediated ones by BCR sequential extraction. The detoxification efficiencies of Zn, Pb, Cu and Cd in the column-uniform device were compared with that in the traditional rectangular apparatus. The pH value changed smoothly with small amplitude of oscillation in general in cathode and anode compartments except the initial break. The electrical current rapidly increased on the first day of the experiment and steadily declined after that and the electrical conductivity presented a clear rising trend. The residual partition of detoxified samples were obviously lifted which was much higher than the analysis data of the raw materials. The pH and the electrical conductivity in sample region were distributed more uniformly and the blind area was effectively eliminated in the electrolytic cells which was indirectly validated by the contrastive detoxification result of the spiked HMs between the rectangular and cylindrical devices.
NASA Astrophysics Data System (ADS)
Sung, K.; Park, S.
2007-12-01
Increased atmospheric concentrations of greenhouse gases (GHG) caused by anthropogenic activities has been related to global climate change. Methane, the second most important GHG after CO2, is 21 times more effective at trapping heat than CO2. Therefore, methane emission control is of utmost importance for global warming reduction. To minimize leachate production and protect groundwater resources, modern sanitary landfills are equipped with composite covers and gas collection systems. Methane from modern sanitary landfills is vented directly to the atmosphere, except for some of the largest landfills where it is recovered as energy and burned at the site. However, the efficiency of energy recovery systems in larger landfills is reduced as the amount of CH4 generated from landfill begins to decrease. In this study, the performance of a lab-scale model biofilter system was investigated to treat CH4 gas emitted from modern sanitary landfills by conducting batch and column experiments using landfill cover soil amended with earthworm cast as the filter bed medium. From the batch experiments to measure the influence of moisture content and temperature of the filter medium on CH4 removal capacity of a biofilter system, the optimum moisture content and temperature were found to be 10-15% by weight and 25-35°C, respectively. The column experiment was conducted to measure the influence of inlet CH4 concentration and CH4 loading rate on CH4 removal capacity of a biofilter system. As the inlet CH4 concentration decreased, the percentage of CH4 oxidized increased. Up to a CH4 loading rate of 2785 g CH4 m3 h- 1 (EBRT = 7.7 min), the CH4 removal efficiency of the biofilter was able to reach 100%. Based on the results of the study, the installation of a properly managed biofilter system should be capable of achieving a reduction in atmospheric CH4 emissions from modern sanitary landfills at low CH4 generation stage.
Ion exchange of several radionuclides on the hydrous crystalline silicotitanate, UOP IONSIV IE-911
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huckman, M.E.; Latheef, I.M.; Anthony, R.G.
1999-04-01
The crystalline silicotitanate, UOP IONSIV IE-911, is a proven material for removing radionuclides from a wide variety of waste streams. It is superior for removing several radionuclides from the highly alkaline solutions typical of DOE wastes. This laboratory previously developed an equilibrium model applicable to complex solutions for IE-910 (the power form of the granular IE-911), and more recently, the authors have developed several single component ion-exchange kinetic models for predicting column breakthrough curves and batch reactor concentration histories. In this paper, the authors model ion-exchange column performance using effective diffusivities determined from batch kinetic experiments. This technique is preferablemore » because the batch experiments are easier, faster, and cheaper to perform than column experiments. They also extend these ideas to multicomponent systems. Finally, they evaluate the ability of the equilibrium model to predict data for IE-911.« less
Weisz, Adrian; Ito, Yoichiro
2011-09-09
The performance of three types of high-speed counter-current chromatography (HSCCC) instruments was assessed for their use in separating components in hydrophilic and hydrophobic dye mixtures. The HSCCC instruments compared were: (i) a J-type coil planet centrifuge (CPC) system with a conventional multilayer-coil column, (ii) a J-type CPC system with a spiral-tube assembly-coil column, and (iii) a cross-axis CPC system with a multilayer-coil column. The hydrophilic dye mixture consisted of a sample of FD&C Blue No. 2 that contained mainly two isomeric components, 5,5'- and 5,7'-disulfonated indigo, in the ratio of ∼7:1. The hydrophobic dye mixture consisted of a sample of D&C Red No. 17 (mainly Sudan III) and Sudan II in the ratio of ∼4:1. The two-phase solvent systems used for these separations were 1-butanol/1.3M HCl and hexane/acetonitrile. Each of the three instruments was used in two experiments for the hydrophilic dye mixture and two for the hydrophobic dye mixture, for a total of 12 experiments. In one set of experiments, the lower phase was used as the mobile phase, and in the second set of experiments, the upper phase was used as the mobile phase. The results suggest that: (a) use of a J-type instrument with either a multilayer-coil column or a spiral-tube assembly column, applying the lower phase as the mobile phase, is preferable for separating the hydrophilic components of FD&C Blue No. 2; and (b) use of a J-type instrument with multilayer-coil column, while applying either the upper phase or the lower phase as the mobile phase, is preferable for separating the hydrophobic dye mixture of D&C Red No. 17 and Sudan II. Published by Elsevier B.V.
Steel-reinforced concrete-filled steel tubular columns under axial and lateral cyclic loading
NASA Astrophysics Data System (ADS)
Farajpourbonab, Ebrahim; Kute, Sunil Y.; Inamdar, Vilas M.
2018-03-01
SRCFT columns are formed by inserting a steel section into a concrete-filled steel tube. These types of columns are named steel-reinforced concrete-filled steel tubular (SRCFT) columns. The current study aims at investigating the various types of reinforcing steel section to improve the strength and hysteresis behavior of SRCFT columns under axial and lateral cyclic loading. To attain this objective, a numerical study has been conducted on a series of composite columns. First, FEM procedure has been verified by the use of available experimental studies. Next, eight composite columns having different types of cross sections were analyzed. For comparison purpose, the base model was a CFT column used as a benchmark specimen. Nevertheless, the other specimens were SRCFT types. The results indicate that reinforcement of a CFT column through this method leads to enhancement in load-carrying capacity, enhancement in lateral drift ratio, ductility, preventing of local buckling in steel shell, and enhancement in energy absorption capacity. Under cyclic displacement history, it was observed that the use of cross-shaped reinforcing steel section causes a higher level of energy dissipation and the moment of inertia of the reinforcing steel sections was found to be the most significant parameter affecting the hysteresis behavior of SRCFT columns.
Whiting, Joshua; Sacks, Richard
2003-05-15
A series-coupled ensemble of a nonpolar dimethyl polysiloxane column and a polar trifluoropropylmethyl polysiloxane column with independent at-column heating is used to obtain pulsed heating of the second column. For mixture component bands that are separated by the first column but coelute from the column ensemble, a temperature pulse is initiated after the first of the two components has crossed the column junction point and is in the second column, while the other component is still in the first column. This accelerates the band for the first component. If the second column cools sufficiently prior to the second component band crossing the junction, the second band experiences less acceleration, and increased separation is observed for the corresponding peaks in the ensemble chromatogram. High-speed at-column heating is obtained by wrapping the fused-silica capillary column with resistance heater wire and sensor wire. Rapid heating for a temperature pulse is obtained with a short-duration linear heating ramp of 1000 degrees C/min. During a pulse, the second-column temperature increases by 20-100 degrees C in a few seconds. Using a cold gas environment, cooling to a quiescent temperature of 30 degrees C can be obtained in approximately 25 s. The effects of temperature pulse initiation time and amplitude on ensemble peak separation and resolution are described. A series of appropriately timed temperature pulses is used to separate three coeluting pairs of components in a 13-component mixture.
Mobility of engineered inorganic nanoparticles in porous media
NASA Astrophysics Data System (ADS)
Metreveli, George; Heidmann, Ilona; Schaumann, Gabriele Ellen
2013-04-01
Besides the excellent properties and great potential for various industrial, medical, pharmaceutical, cosmetic, and life science applications, engineered inorganic nanoparticles (EINP) can show also disadvantages concerning increasing risk potential with increasing application, if they are released in the environmental systems. EINP can influence microbial activity and can show toxic effects (Fabrega et al., 2009). Similar to the inorganic natural colloids, EINP can be transported in soil and groundwater systems (Metreveli et al., 2005). Furthermore, due to the large surface area and high sorption and complex formation capacity, EINP can facilitate transport of different contaminants. In this study the mobility behaviour of EINP and their effect on the transport of different metal(loid) species in water saturated porous media was investigated. For these experiments laboratory column system was used. The column was filled with quartz sand. The interactions between EINP and metal(loid)s were characterised by coupling of asymmetrical flow field flow fractionation (AF4) with inductively coupled plasma mass spectrometer (ICP-MS). As EINP laponite (synthetic three layer clay mineral), and as metal(loid)s Cu, Pb, Zn, Pt and As were used. In AF4 experiments sorption of metal(loid)s on the surface of EINP could be observed. The extent of interactions was influenced by pH value and was different for different metal(loid)s. Laboratory column experiments showed high mobility of EINP, which facilitated transport of most of metal(loid)s in water saturated porous media. Furthermore the migration of synthetic silver nanoparticles in natural soil columns was determined in leaching experiments. Acknowledgement Financial support by German Research Council (DFG) and Max-Buchner-Research Foundation (MBFSt) is gratefully acknowledged. We thank Karlsruhe Institute of Technology (KIT) for the opportunity to perform the column and AF4 experiments. References: Fabrega, J., Fawcett, S. R., Renshaw, J. C. Lead, J. R. 2009. Silver nanoparticle impact on bacterial growth: Effect of pH, concentration, and organic matter. Environ. Sci. Technol. 43 (19): 7285-7290 Metreveli, G., Kaulisch, E.-M., Frimmel, F. H. 2005. Coupling of a column system with ICP-MS for the characterisation of colloid mediated metal(loid) transport in porous media. Acta Hydrochim. Hydrobiol. 33 (4): 337-345
Effects of Humidity Swings on Adsorption Columns for Air Revitalization: Modeling and Experiments
NASA Technical Reports Server (NTRS)
LeVan, M. Douglas; Finn, John E.
1997-01-01
The goal of this research was to develop a dynamic model which can predict the effect of humidity swings on activated carbon adsorption beds used to remove trace contaminants from the atmosphere in spacecraft. Specifically, the model was to be incorporated into a computer simulation to predict contaminant concentrations exiting the bed as a function of time after a humidity swing occurs. Predicted breakthrough curves were to be compared to experimentally measured results. In all respects the research was successful. The two major aspects of this research were the mathematical model and the experiments. Experiments were conducted by Mr. Appel using a fixed-bed apparatus at NASA-Ames Research Center during the summers of 1994 and 1995 and during the first 8 months of 1996. Mr. Appel conducted most of his mathematical modeling work at the University of Virginia. The simulation code was used to predict breakthrough curves using adsorption equilibrium correlations developed previously by M. D. LeVan's research group at the University of Virginia. These predictions were compared with the experimental measurements, and this led to improvements in both the simulation code and the apparatus.
Numerical and experimental analyses of lighting columns in terms of passive safety
NASA Astrophysics Data System (ADS)
Jedliński, Tomasz Ireneusz; Buśkiewicz, Jacek
2018-01-01
Modern lighting columns have a very beneficial influence on road safety. Currently, the columns are being designed to keep the driver safe in the event of a car collision. The following work compares experimental results of vehicle impact on a lighting column with FEM simulations performed using the Ansys LS-DYNA program. Due to high costs of experiments and time-consuming research process, the computer software seems to be very useful utility in the development of pole structures, which are to absorb kinetic energy of the vehicle in a precisely prescribed way.
Influence of the gas-flow Reynolds number on a plasma column in a glass tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Dong Jun; Uhm, Han S.; Cho, Guangsup
2013-08-15
Atmospheric-plasma generation inside a glass tube is influenced by gas stream behavior as described by the Reynolds number (Rn). In experiments with He, Ne, and Ar, the plasma column length increases with an increase in the gas flow rate under laminar flow characterized by Rn < 2000. The length of the plasma column decreases as the flow rate increases in the transition region of 2000 < Rn < 4000. For a turbulent flow beyond Rn > 4000, the length of the plasma column is short in front of the electrode, eventually leading to a shutdown.
Yu, Ju-Hua; Zhong, Ji-Cheng; Zhang, Yin-Long; Fan, Cheng-Xin; He, Wei; Zhang, Lei; Tang, Zhen-Wu
2012-10-01
A simulated experiment was conducted to investigate the impacts of sediment dredging on sediment resuspension and phosphorus transfer in the summer and winter seasons under the common wind-wave disturbance, and the contaminated sediment used in this study was from Meiliang Bay, Taihu lake. The result showed that 20 cm dredging could effectively inhibit the sediment resuspension in study area, dredging in winter has a better effect than that in summer, and the higher values of the total suspended solid (TSS) in undredged and dredged water column during the process of wind wave disturbance were 7.0 and 2.2, 24.3 and 6.4 times higher than the initial value in summer and winter simulation respectively. The paired-samples t-test result demonstrated that total phosphorus (TP) and phosphate (PO4(3-)-P) loading positively correlated to TSS content in dredged (P<0.01) and undredged water column (P<0.05), which proved that internal phosphorus fulminating release induced by wind-wave disturbance would significantly increase the TP and PO4(3-)-P loading in the water column. The effect of dredging conducted in summer on the TP and PO4(3)-P loading in the water column was negative, but not for winter dredging (P<0.01). The pore water dissolved reactive phosphorus (DRP) profile at water-sediment interface in summer simulation was also investigated by diffusive gradients in thin films (DGT) technique. Diffusion layer of the DRP profile in undredged sediment was wider than that in dredged sediment. However, the DRP diffusion potential in dredged sediment was greater than that in undredged sediment, showing that dredging can effectively reduce the risk of the DRP potential release in dredged pore water, but also would induce the DRP fulminating release in the short time under hydrodynamic action. Generally, dredging was usually deployed during the summer and the autumn. Considering Taihu Lake is a large, shallow, eutrophic lake and the contaminant distribution is spatially heterogeneous, it is vital to determine the optimal time, depth and scope of dredging.
Uncertainty in dual permeability model parameters for structured soils.
Arora, B; Mohanty, B P; McGuire, J T
2012-01-01
Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface ( K sa ) and macropore tortuosity ( l f ) but also of other parameters of the matrix and macropore domains.
The Effect of Initial Irrigation Conditions on Heap Leaching Efficiency
NASA Astrophysics Data System (ADS)
Briseño Arellano, A. D.; Milczarek, M.; Yao, M.; Brusseau, M. L. L.
2017-12-01
Heap leaching is an unsaturated flow metal recovery process, in which mined ore is irrigated with a lixiviant to dissolve metal contained in the ore. The metal is then extracted from solution. Large scale operations involve stacking ore to depths of 6 to 18 meters on pads that may be hundreds of hectares in area. Heterogeneities within the stacked ore can lead to uneven wetting and the formation of preferential flow pathways, which reduces solution contact and lowers metal recovery. Furthermore, mineral dissolution can cause alteration of the porous media structure and loss of ore permeability. Many mine operators believe that slow initial irrigation rates help minimize permeability loss and increase metal recovery rates. However, this phenomenon has not been studied in detail. Experiments were conducted to investigate the effect of varying initial irrigation rates on leach ore stability. These were conducted with large columns (1.5 m high, 0.5 m in diameter) packed with crushed ore samples that are known to have permeability constraints. The columns were highly instrumented to assess potential changes in material properties both spatially and temporally. Water content was measured with three different methods: capacitance soil moisture sensors placed at 20-cm intervals; a neutron probe to periodically log every 30 cm from four different directions; and electrical resistivity sensors to create a 2-dimensional tomography profile of water content over time. Tensiometers were paired with the soil moisture sensors to measure matric suction and characterize moisture retention characteristics. A non-reactive tracer was used to characterize advective-dispersive transport under unsaturated conditions. A dye solution was introduced at the end of each experiment to map preferential pathways. Continuous monitoring of settling at the surface assisted in measuring consolidation and loss in permeability.
Effect of residual oil saturation on hydrodynamic properties of porous media
NASA Astrophysics Data System (ADS)
Zhang, Junjie; Zheng, Xilai; Chen, Lei; Sun, Yunwei
2014-07-01
To understand the effect of residual oil on hydraulic properties and solute dispersive behavior of porous media, miscible displacement column experiments were conducted using two petroleum products (diesel and engine oil) and a sandy soil. The effective water permeability, effective water-filled porosity, and dispersivity were investigated in two-fluid systems of water and oil as a function of residual oil saturation (ROS). At the end of each experiment, the distribution of ending ROS along the sand column was determined by the method of petroleum ether extraction-ultraviolet spectrophotometry. Darcy’s Law was used to determine permeability, while breakthrough curves (BTCs) of a tracer, Cl-, were used to calibrate effective porosity and dispersivity. The experimental results indicate that the maximum saturated zone residual saturation of diesel and engine oil in this study are 16.0% and 45.7%, respectively. Cl- is found to have no sorption on the solid matrix. Generated BTCs are sigmoid in shape with no evidence of tailing. The effective porosity of sand is inversely proportional to ROS. For the same level of ROS, the magnitude of reduction in effective porosity by diesel is close to that by engine oil. The relative permeability of sand to water saturation decreases with increasing amount of trapped oil, and the slope of the relative permeability-saturation curve for water is larger at higher water saturations, indicating that oil first occupies larger pores, which have the most contribution to the conductivity of the water. In addition, the reduction rate of relative permeability by diesel is greater than that by engine oil. The dispersivity increases with increasing ROS, suggesting that the blockage of pore spaces by immobile oil globules may enhance local velocity variations and increase the tortuosity of aqueous-phase flow paths.
Uncertainty in dual permeability model parameters for structured soils
NASA Astrophysics Data System (ADS)
Arora, B.; Mohanty, B. P.; McGuire, J. T.
2012-01-01
Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface (Ksa) and macropore tortuosity (lf) but also of other parameters of the matrix and macropore domains.
Müller, K; Duwig, C; Prado, B; Siebe, C; Hidalgo, C; Etchevers, J
2012-01-01
In the Mezquital Valley, Mexico, crops have been irrigated with untreated municipal wastewater for more than a century. Atrazine has been applied to maize and alfalfa grown in the area for weed control for 15 years. Our objectives were to analyse (i) how wastewater irrigation affects the filtering of atrazine, and (ii) if the length of irrigation has a significant impact. We compared atrazine sorption to Phaeozems that have been irrigated with raw wastewater for 35 (P35) and 85 (P85) years with sorption to a non-irrigated (P0) Phaeozem soil under rainfed agriculture. The use of bromide as an inert water tracer in column experiments and the subsequent analysis of the tracers' breakthrough curves allowed the calibration of the hydrodynamic parameters of a two-site non equilibrium convection-dispersion model. The quality of the irrigation water significantly altered the soils' hydrodynamic properties (hydraulic conductivity, dispersivity and the size of pores that are hydraulically active). The impacts on soil chemical properties (total organic carbon content and pH) were not significant, while the sodium adsorption ratio was significantly increased. Sorption and desorption isotherms, determined in batch and column experiments, showed enhanced atrazine sorption and reduced and slower desorption in wastewater-irrigated soils. These effects increased with the length of irrigation. The intensified sorption-desorption hysteresis in wastewater-irrigated soils indicated that the soil organic matter developed in these soils had fewer high-energy, easily accessible sorption sites available, leading to lower and slower atrazine desorption rates. This study leads to the conclusion that wastewater irrigation decreases atrazine mobility in the Mezquital valley Phaeozems by decreasing the hydraulic conductivity and increasing the soil's sorption capacity.
Removal of arsenic from aqueous solutions using waste iron columns inoculated with iron bacteria.
Azhdarpoor, Abooalfazl; Nikmanesh, Roya; Samaei, Mohammad Reza
2015-01-01
Arsenic contamination of water resources is one of the serious risks threatening natural ecosystems and human health. This study investigates arsenic removal using a waste iron column with and without iron bacteria in continuous and batch phases. In batch experiments, the effects of pH, contact time, initial concentration of arsenic and adsorbent dose were investigated. Results indicated that the highest arsenate removal efficiency occurred at pH 7 (96.76%). On increasing the amount of waste iron from 0.25 to 1 g, the removal rate changed from about 42.37%-96.70%. The results of continuous experiments on the column containing waste iron showed that as the empty bed contact time increased from 5 to 60 min, the secondary arsenate concentration changed from 23 to 6 µg/l. In experiments involving a waste iron column with iron bacteria, an increase in residence time from 5 to 60 min decreased the secondary arsenate concentration from 14.97 to 4.86 µg/l. The results of this study showed that waste iron containing iron bacteria is a good adsorbent for removal of arsenic from contaminated water.
Anderson, P; Davidson, C M; Duncan, A L; Littlejohn, D; Ure, A M; Garden, L M
2000-06-01
Made-up ground collected from layers of a trial pit excavated on a former industrial site was treated with artificial rainwater in a series of column leaching and sorption experiments. Metal mobility and the ability of various layers of material obtained from the pit to act as sources or sinks of potentially toxic elements were assessed. Samples from different layers varied in their abilities to raise the pH of rainwater applied at pH 3.5 and 4.3, and this was reflected in the amounts of metals mobilised by the rainwater as it percolated through the soil column. Material from the top two layers of the pit released cadmium, copper, manganese, lead, nickel and zinc to the aqueous phase, but the lower layers, with higher buffering capacity, were able to resist acidification even when the equivalent of 12 months' rainfall (western UK) was applied. Column sorption experiments confirmed the ability of material from layer 4 (48-50 cm) to take up copper, manganese and zinc. Metals were determined in the leachates by flame and electrothermal atomic absorption spectrometry and principle anions by ion chromatography.
Long-range attraction of an ultrarelativistic electron beam by a column of neutral plasma
NASA Astrophysics Data System (ADS)
Adli, E.; Lindstrøm, C. A.; Allen, J.; Clarke, C. I.; Frederico, J.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Litos, M. D.; O'Shea, B.; Yakimenko, V.; An, W.; Clayton, C. E.; Marsh, K. A.; Mori, W. B.; Joshi, C.; Vafaei-Najafabadi, N.; Corde, S.; Lu, W.
2016-10-01
We report on the experimental observation of the attraction of a beam of ultrarelativistic electrons towards a column of neutral plasma. In experiments performed at the FACET test facility at SLAC we observe that an electron beam moving parallel to a neutral plasma column, at an initial distance of many plasma column radii, is attracted into the column. Once the beam enters the plasma it drives a plasma wake similar to that of an electron beam entering the plasma column head-on. A simple analytical model is developed in order to capture the essential physics of the attractive force. The attraction is further studied by 3D particle-in-cell numerical simulations. The results are an important step towards better understanding of particle beam-plasma interactions in general and plasma wakefield accelerator technology in particular.
Kwon, Kyu-Sang; Kim, Song-Bae; Choi, Nag-Choul; Kim, Dong-Ju; Lee, Soonjae; Lee, Sang-Hyup; Choi, Jae-Woo
2013-01-01
In this study, the deposition and transport of Pseudomonas aeruginosa on sandy porous materials have been investigated under static and dynamic flow conditions. For the static experiments, both equilibrium and kinetic batch tests were performed at a 1:3 and 3:1 soil:solution ratio. The batch data were analysed to quantify the deposition parameters under static conditions. Column tests were performed for dynamic flow experiments with KCl solution and bacteria suspended in (1) deionized water, (2) mineral salt medium (MSM) and (3) surfactant + MSM. The equilibrium distribution coefficient (K(d)) was larger at a 1:3 (2.43 mL g(-1)) than that at a 3:1 (0.28 mL g(-1)) soil:solution ratio. Kinetic batch experiments showed that the reversible deposition rate coefficient (k(att)) and the release rate coefficient (k(det)) at a soil:solution ratio of 3:1 were larger than those at a 1:3 ratio. Column experiments showed that an increase in ionic strength resulted in a decrease in peak concentration of bacteria, mass recovery and tailing of the bacterial breakthrough curve (BTC) and that the presence of surfactant enhanced the movement of bacteria through quartz sand, giving increased mass recovery and tailing. Deposition parameters under dynamic condition were determined by fitting BTCs to four different transport models, (1) kinetic reversible, (2) two-site, (3) kinetic irreversible and (4) kinetic reversible and irreversible models. Among these models, Model 4 was more suitable than the others since it includes the irreversible sorption term directly related to the mass loss of bacteria observed in the column experiment. Applicability of the parameters obtained from the batch experiments to simulate the column breakthrough data is evaluated.
Tracer experiments in periodical heterogeneous model porous medium
NASA Astrophysics Data System (ADS)
Majdalani, Samer; Delenne, Carole; Guinot, Vincent
2017-06-01
It is established that solute transport in homogenous porous media follows a classical 'S' shape breakthrough curve that can easily be modelled by a convection dispersion equation. In this study, we designed a Model Heterogeneous Porous Medium (MHPM) with a high degree of heterogeneity, in which the breakthrough curve does not follow the classical 'S' shape. The contrast in porosity is obtained by placing a cylindrical cavity (100% porosity) inside a 40% porosity medium composed with 1mm glass beads. Step tracing experiments are done by injecting salty water in the study column initially containing deionised water, until the outlet concentration stabilises to the input one. Several replicates of the experiment were conducted for n = 1 to 6 MHPM placed in series. The total of 116 experiments gives a high-quality database allowing the assessment of experimental uncertainty. The experimental results show that the breakthrough curve is very different from the `S' shape for small values of n, but the more n increases, the more the classical shape is recovered.
Liu, Yuzhen; Yu, Hong; Li, Siwen
2011-10-01
A method was developed on a monolithic column for the fast determination of trace iodate (IO(3)- ) by ion-pair chromatography with direct conductivity detection. The analytes were separated using a mobile phase of tetrabutylammonium hydroxide (TBA)-phthalic acid-acetonitrile on a reversed-phase silica-based monolithic column. The effects of eluent, flow rate and column temperature on the retention of iodate were investigated. The optimized chromatographic conditions for the determination of the anion were as follows: 0. 25 mmol/L TBA-0. 18 mmol/L phthalic acid-3% acetonitrile (pH 5.5) as mobile phase, a flow rate of 4.0 mL/min and a column temperature of 30 degrees C. Under the optimal conditions, retention time of iodate was less than 0. 5 min and the baseline separation of iodate was achieved without any interference by other anions (Cl-, NO , SO4(2)-, I- ). The detection limit (S/N= 3) was 0.36 mg/L for IO(3)- . Relative standard deviation (RSD, n = 5) of chromatographic peak area and retention time were 0. 35% and 0. 28%, respectively. The proposed method was applied to the determination of trace iodate in iodized medicine. The spiked recovery of iodate was 96. 4%. The method is rapid, simple, accurate, reliable, and practical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, James A.; Mailloux, Brian J.; Onstott, Tullis C.
2005-02-01
Twenty eight bacterial and Br transport experiments were performed in the field to determine the effects of physical and chemical heterogeneity of the aquifer sediment. The experiments were performed using groundwater from two field locations to examine the effects of groundwater chemistry on transport. Groundwater was extracted from multilevel samplers and pumped through 7 cm long columns of intact sediment or re-packed sieved and coated or uncoated sediment from the underlying aquifer. Two bacterial strains, Comamonas sp. DA001 and Paenibacillus polymyxa FER-02, were injected along with Br into the influent end of the columns to examine the effect of cellmore » morphology and surface properties on bacterial transport. The effect of column sediment grain size and mineral coatings coupled with groundwater geochemistry were also delineated. Significant irreversible attachment of DA001 was observed in the Fe oxyhydroxide coated columns, but only in the sub-oxic groundwater where the concentrations of dissolved organic carbon (DOC) were ca. 1 ppm. In the oxic groundwater where DOC was ca. 8 ppm, little attachment of DA001 to the Fe oxyhydroxide coated columns was observed. This indicates that DOC can significantly reduce bacterial attachment due electrostatic interactions. The larger and more negatively charged FER-02 displayed increasing attachment with decreasing grain size regardless of DOC concentration, and modeling of FER-02 attachment revealed that the presence of Fe and Al coatings on the sediment also promoted attachment. Finally, the presence of Al coatings and Al containing minerals appeared to significantly retard the Br tracer regardless of the concentration of DOC. These findings suggest that DOC in shallow oxic groundwater aquifers can significantly enhance the transport of bacteria by reducing attachment to Fe, Mn and Al oxyhydroxides. This effect is profound for weakly charged, hydrophilic bacteria and may contribute to differences in observations between laboratory experiments verses field-scale investigations particularly if the groundwater pH remains circum-neutral and Fe oxyhydroxide phases exist. These observations validate the novel approach taken in the experiments outlined here of performing laboratory-scale experiments on site to facilitate the use of fresh groundwater and thus be more representative of in situ groundwater conditions.« less
NASA Astrophysics Data System (ADS)
Amiaz, Yanai; Ronen, Zeev; Adar, Eilon; Weisbrod, Noam
2015-04-01
A chalk fractured aquitard beneath an industrial site is subjected to intense contamination due to percolation of contaminants from the different facilities operating at the site. In order to reduce further contamination, draining trenches were excavated and filled with coarse gravel (3-4 cm in diameter) forming a porous medium, to which the contaminated groundwater discharges from the fractures surrounding the trenches. This research is aimed at establishing a biodegrading process of high efficiency and performance within the draining trenches. The research includes both field and laboratory experiments. An experimental setup of five columns (50 cm length and 4.5 cm in diameter) was constructed under highly controlled conditions. Over the course of the experiments, the columns were filled with different particle sizes and placed in a temperature controlled chamber. Filtered groundwater (0.2 µm) from the site groundwater, enriched by a model contaminant carbofuran (CRF), was injected to the columns; as two of the columns were inoculated by CRF degrading microorganisms native in the site's groundwater, two columns were inoculated by CRF degrading bacteria from the external environment, and one column was used as a control. During the experiment, measurements were taken from different locations along each column. These include: (a) CRF concentration and (b) hydraulic pressure and solution viscosity (in order to obtain the changes in permeability). A tracer test using uranine was carried out in parallel, in order to obtain the changes in hydraulic parameters. Correlating CRF concentration variations to changes of hydraulic parameters enable the deduction due to the effect that biological activity (under different temperature regimes) has on the hydraulic properties of the porous medium and its effect on the process of contaminant groundwater bodies' remediation. Preliminary results suggest that although biodegradation occurs, microbial activity has minor effect on the hydraulic properties of the porous medium under the explored conditions.
NASA Astrophysics Data System (ADS)
Zubarev, N. M.; Zubareva, O. V.
2017-06-01
The magnetic shaping problem is studied for the situation where a cylindrical column of a perfectly conducting fluid is deformed by the magnetic field of a system of linear current-carrying conductors. Equilibrium is achieved due to the balance of capillary and magnetic pressures. Two two-parametric families of exact solutions of the problem are obtained with the help of conformal mapping technique. In accordance with them, the column essentially deforms in the cross section up to its disintegration.
Xe/Kr Selectivity Measurements using AgZ-PAN at Various Temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garn, Troy Gerry; Greenhalgh, Mitchell Randy; Watson, Tony Leroy
2015-05-01
In preparation for planned FY-15 Xe/Kr multi-column testing, a series of experiments were performed to determine the selectivity of Xe over Kr using the silver converted mordenite-polyacrylonitrile (AgZ-PAN) sorbent. Results from these experiments will be used for parameter selection guidelines to define test conditions for Kr gas capture purity evaluations later this year. The currently configured experimental test bed was modified by installing a new cooling apparatus to permit future multi-column testing with independent column temperature control. The modified test bed will allow for multi-column testing to facilitate a Xe separation followed by a Kr separation using engineered form sorbents.more » Selectivity experiments were run at temperatures of 295, 250 and 220 K. Two feed gas compositions of 1000 ppmv Xe, 150 ppmv Kr in either a He or an air balance were used. AgZ-PAN sorbent selectivity was calculated using Xe and Kr capacity determinations. AgZ-PAN sorbent selectivities for Xe over Kr of 72 were calculated at room temperature (295 K) using the feed gas with a He balance and 34 using the feed gas with an air balance. As the test temperatures were decreased the selectivity of Xe over Kr also decreased due to an increase in both Xe and Kr capacities. At 220 K, the sorbent selectivities for Xe over Kr were 22 using the feed gas with a He balance and 28 using the feed gas with an air balance. The selectivity results indicate that AgZ-PAN used in the first column of a multi-column configuration will provide adequate partitioning of Xe from Kr in the tested temperature range to produce a more pure Kr end product for collection.« less
Assessing Arsenic Removal by Metal (Hydr)Oxide Adsorptive Media Using Rapid Small Scale Column Tests
The rapid small scale column test (RSSCT) was use to evaluate the the performance of eight commercially available adsorptive media for the removal of arsenic. Side-by-side tests were conducted using RSSCTs and pilot/full-scale systems either in the field or in the laboratory. ...
The variability of total column ozone (TCO) and tropospheric column ozone (TrCO) was examined in Central Asia. Measurements were conducted at the Lidar Station Teplokluchenka in eastern Kyrgyzstan for one year, July 2008–July 2009. TCO was obtained using a handheld Microtops II ...
We conducted a multi-year study of the Louisiana continental shelf (LCS) to better understand the linkages between water column metabolism and the formation of hypoxia (dissolved oxygen <2 mg L-1) in the region. Water column community respiration rates (WR) were measured on 10 cr...
Long-Term Transport of Cryptosporidium Parvum
NASA Astrophysics Data System (ADS)
Andrea, C.; Harter, T.; Hou, L.; Atwill, E. R.; Packman, A.; Woodrow-Mumford, K.; Maldonado, S.
2005-12-01
The protozoan pathogen Cryptosporidium parvum is a leading cause of waterborne disease. Subsurface transport and filtration in natural and artificial porous media are important components of the environmental pathway of this pathogen. It has been shown that the oocysts of C. parvum show distinct colloidal properties. We conducted a series of laboratory studies on sand columns (column length: 10 cm - 60 cm, flow rates: 0.7 m/d - 30 m/d, ionic strength: 0.01 - 100 mM, filter grain size: 0.2 - 2 mm, various solution chemistry). Breakthrough curves were measured over relatively long time-periods (hundreds to thousands of pore volumes). We show that classic colloid filtration theory is a reasonable tool for predicting the initial breakthrough, but it is inadequate to explain the significant tailing observed in the breakthrough of C. parvum oocyst through sand columns. We discuss the application of the Continuous Time Random Walk approach to account for the strong tailing that was observed in our experiments. The CTRW is generalized transport modeling framework, which includes the classic advection-dispersion equation (ADE), the fractional ADE, and the multi-rate mass transfer model as special cases. Within this conceptual framework, it is possible to distinguish between the contributions of pore-scale geometrical (physical) disorder and of pore-scale physico-chemical heterogeneities (e.g., of the filtration, sorption, desorption processes) to the transport of C. parvum oocysts.
NASA Astrophysics Data System (ADS)
Sung, Menghau; Teng, Chun-Hao; Yang, Tsung-Hsien
2017-07-01
Soil flushing using micro-nano-sized bubbles (MNB) in water as the flushing solution was tested in laboratory sand columns for the cleanup of residual trichloroethene (TCE) non-aqueous-phase-liquid (NAPL). Experiments considering flushing with MNB as well as ozone MNB (OZMNB) in water to treat soils contaminated with residual TCE liquid were conducted to examine effects of ozone on dissolution enhancement. The degrees of residual TCE saturation in soils, ranging from 0.44% to 7.6%, were tested. During flushings, aqueous TCE concentrations at the column exit were monitored and TCE masses remained in the columns after flushing were determined. Experimental results between runs with MNB and OZMNB in water revealed that dissolution enhancement was dependent on residual saturation conditions, and the maximum enhancement was around 9%. Governing equations consisting of three coupled partial differential equations (PDEs) were developed to model the system, and high-order finite difference (HOFD) method was employed to solve these PDEs. From mathematical modeling of reactive mass transfer under low residual saturation conditions (0.44% and 1.9%), experimental data were simulated and important controlling mechanisms were identified. It was concluded that a specific parameter pertinent to NAPL-water interfacial area in the Sherwood number had to be modified to satisfactorily describe the dissolution of TCE in the presence of MNB in water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Lirong; Truex, Michael J.; Kananizadeh, Negin
In situ anaerobic biological processes are widely applied for dechlorination of chlorinated solvents in groundwater. A wide range of organic substrates have been tested and applied to support the dechlorination processes. Vegetable oils are a promising substrate and have been shown to induce effective dechlorination, have limited geochemical impacts, and good longevity. Distribution of vegetable oil in the subsurface, because it is a non-aqueous phase material, has typically been addressed by creating emulsified oil solutions. In this study, inexpensive waste vegetable oils were suspended in a xanthan gum solution, a shear-thinning fluid, as an alternative oil delivery mechanism. The stability,more » oil droplet size and distribution, and rheological behavior of the oil suspensions that are created in the xanthan solutions were studied in batch experiments. The injectability of the suspensions and oil distribution in porous medium were evaluated in column tests. Numerical modeling of the oil droplet transport and distribution in porous media was conducted to help interpret the column-test data. Batch studies showed that simple mixing of vegetable oil and xanthan solution produced stable suspensions of the oil as micron-size droplets. The mixture rheology retains shear-thinning properties that facilitate improved uniformity of substrate distribution in heterogeneous aquifers. Column tests demonstrated successful injection of the vegetable oil suspension into porous medium. This study provided evidence that vegetable oil suspensions in xanthan are a potential substrate to support in situ anaerobic bioremediation with favorable injection properties.« less
Dynamic chemical characteristics of soil solution after pig manure application: a column study.
Hao, Xiuzhen; Zhou, Dongmei; Sun, Lei; Li, Lianzhen; Zhang, Hailin
2008-06-01
When manures from intensive livestock operations are applied to agricultural or vegetable fields at a high rate, large amounts of salts and metals will be introduced into soils. Using a column leaching experiment, this study assessed the leaching potential of the downward movement of Cu and Zn as well as some salt ions after an intensive farm pig manure at rates of 0%, 5% and 10% (w/w) were applied to the top 20 cm of two different textured soils (G soil -sandy loam soil; H soil-silty clay loam soil), and investigated the growth of amaranth and Cu and Zn transfer from soil to amaranth (Amaranthus tricolor). Soil solutions were obtained at 20, 40 and 60 cm depth of the packed column and analyzed for pH, electrical conductivity (EC), dissolved organic matter (DOC) and Cu and Zn concentrations. The results indicated that application of pig manure containing Cu and Zn to sandy loam soil might cause higher leaching and uptake risk than silty clay loam soil, especially at high application rates. And manure amendment at 5% and 10% significantly decreased the biomass of amaranth, in which the salt impact rather than Cu and Zn toxicity from manures played more important role in amaranth growth. Thus the farmer should avoid application the high rate of pig manure containing metal and salt to soil at a time, especially in sandy soil.
Surfactant-Enhanced Size-Excluded Transport of Bacteria Through Unsaturated Porous Media.
NASA Astrophysics Data System (ADS)
Zhu, J.
2017-12-01
US domestic waste water is rich in surfactants because of the intensive usage of surfactants-containing household product. It results in a surfactants presence environment when this untreated waste water released into subsurface. It was reported that surfactants enhance the colloidal transport in porous media, which have significant effect on issues such as subsurface pathogens contamination and biodegradation. In this study, soil column experiments were conducted. The soil column was remained unsaturated and with a steady flow passing through it. Escherichia coli K-12 transported in the soil column and its breakthrough data was collected in presence of surfactant anionic surfactant linear alkylbenzene sulfonate (LAS) concentration range over 0, 0.25, 0.5, 0.75, 1, and 2 times Critical Micelle Concentration (CMC). It was found that the increase in LAS concentration greatly increases breakthrough concentration C/C0 and decreases breakthrough time tb until LAS concentration reaches 1 xCMC. Numerical models were built simulating and investigating this phenomenon. The goodness of model fitting was greatly improved by adding exclusion factor into the model, which indicated that the presence of surfactant might enhance the exclusion effect. The relationships between LAS concentration and the two coefficients, deposition rate coefficient k and exclusion effect coefficient θim, were found can be fitted by a quasi-Langmuir equation. And the model validation with observed data showed that the model has an acceptable reliability.
Celis, Rafael; Gámiz, Beatriz; Adelino, María A; Cornejo, Juan; Hermosín, María C
2015-11-01
Soil incubation and column leaching experiments were conducted to address the question of whether the type of formulation (unsupported versus clay supported) and repeated applications of the chiral fungicide (RS)-metalaxyl affected the enantioselectivity of its dissipation and leaching in a slightly alkaline, loamy sand agricultural soil. Regardless of the type of formulation and the number of fungicide applications, the R-enantiomer of metalaxyl was degraded faster than the S-enantiomer, but the individual degradation rates of R- and S-metalaxyl were highly affected by the different application regimes assayed (t1/2 = 2-104 days). Repeated applications accelerated the degradation of the biologically active R-metalaxyl enantiomer, whereas they led to slower degradation of the non-active S-metalaxyl enantiomer. The type of formulation had less influence on the dissipation rates of the enantiomers. For all formulations tested, soil column leachates became increasingly enriched in S-enantiomer as the number of fungicide applications was increased, and application of metalaxyl to soil columns as clay-based formulations reduced the leaching of both enantiomers. Pesticide application conditions can greatly influence the enantioselective dissipation of chiral pesticides in soil, and hence are expected to exert a great impact on both the biological efficacy and the environmental chiral signatures of pesticides applied as mixtures of enantiomers or racemates to agricultural soils. © 2014 Society of Chemical Industry.
Azizian, Mohammad F; Marshall, Ian P G; Behrens, Sebastian; Spormann, Alfred M; Semprini, Lewis
2010-04-01
A continuous-flow column study was conducted to analyze the reductive dehalogenation of trichloroethene (TCE) with aquifer material with high content of iron oxides. The column was bioaugmented with the Point Mugu (PM) culture, which is a mixed microbial enrichment culture capable of completely transforming TCE to ethene (ETH). We determined whether lactate, formate, or propionate fermentation resulted in more effective dehalogenation. Reductive dehalogenation, fermentation, and sulfate, Fe(III), and Mn(IV) reduction were all exhibited within the column. Different steady-states of dehalogenation were achieved based on the concentration of substrates added, with effective transformation to ETH obtained when ample electron donor equivalents were provided. Most of the metabolic reducing equivalents were channeled to sulfate, Fe(III), and Mn(IV) reduction. When similar electron reducing equivalents were added, the most effective dehalogenation was achieved with formate, with 14% of the electron equivalents going towards dehalogenation reactions, compared to 6.5% for lactate and 9.6% for propionate. Effective dehalogenation was maintained over 1000 days of column operation. Over 90% of electron equivalents added could be accounted for by the different electron accepting processes in the column, with 50% associated with soluble and precipitated Fe(II) and Mn(II). Bulk Fe(III) and Mn(IV) reduction was rather associated with lactate and propionate addition than formate addition. Sulfate reduction was a competing electron acceptor reaction with all three electron donors. DNA was extracted from solid coupon samples obtained during the course of the experiment and analyzed using 16S rRNA gene clone libraries and quantitative PCR. Lactate and propionate addition resulted in a significant increase in Geobacter, Spirochaetes, and Desulfitobacterium phylotypes relative to "Dehalococcoides" when compared to formate addition. Results from the molecular biological analyses support chemical observations that a greater percentage of the electron donor addition was channeled to Fe(III) reduction when lactate and propionate were added compared to formate, and formate was more effective than lactate in supporting dehalogenation. The results demonstrate the importance of electron donor selection and competing electron acceptor reactions when implementing reductive dehalogenation remediation technologies. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Azizian, Mohammad F.; Marshall, Ian P. G.; Behrens, Sebastian; Spormann, Alfred M.; Semprini, Lewis
2010-04-01
A continuous-flow column study was conducted to analyze the reductive dehalogenation of trichloroethene (TCE) with aquifer material with high content of iron oxides. The column was bioaugmented with the Point Mugu (PM) culture, which is a mixed microbial enrichment culture capable of completely transforming TCE to ethene (ETH). We determined whether lactate, formate, or propionate fermentation resulted in more effective dehalogenation. Reductive dehalogenation, fermentation, and sulfate, Fe(III), and Mn(IV) reduction were all exhibited within the column. Different steady-states of dehalogenation were achieved based on the concentration of substrates added, with effective transformation to ETH obtained when ample electron donor equivalents were provided. Most of the metabolic reducing equivalents were channeled to sulfate, Fe(III), and Mn(IV) reduction. When similar electron reducing equivalents were added, the most effective dehalogenation was achieved with formate, with 14% of the electron equivalents going towards dehalogenation reactions, compared to 6.5% for lactate and 9.6% for propionate. Effective dehalogenation was maintained over 1000 days of column operation. Over 90% of electron equivalents added could be accounted for by the different electron accepting processes in the column, with 50% associated with soluble and precipitated Fe(II) and Mn(II). Bulk Fe(III) and Mn(IV) reduction was rather associated with lactate and propionate addition than formate addition. Sulfate reduction was a competing electron acceptor reaction with all three electron donors. DNA was extracted from solid coupon samples obtained during the course of the experiment and analyzed using 16S rRNA gene clone libraries and quantitative PCR. Lactate and propionate addition resulted in a significant increase in Geobacter, Spirochaetes, and Desulfitobacterium phylotypes relative to " Dehalococcoides" when compared to formate addition. Results from the molecular biological analyses support chemical observations that a greater percentage of the electron donor addition was channeled to Fe(III) reduction when lactate and propionate were added compared to formate, and formate was more effective than lactate in supporting dehalogenation. The results demonstrate the importance of electron donor selection and competing electron acceptor reactions when implementing reductive dehalogenation remediation technologies.
Full-length U-xPu-10Zr (x = 0, 8, 19 wt.%) fast reactor fuel test in FFTF
NASA Astrophysics Data System (ADS)
Porter, D. L.; Tsai, Hanchung
2012-08-01
The Integral Fast Reactor-1 (IFR-1) experiment performed in the Fast Flux Test Facility (FFTF) was the only U-Pu-10Zr (Pu-0, 8 and 19 wt.%) metallic fast reactor test with commercial-length (91.4-cm active fuel-column length) conducted to date. With few remaining test reactors, there is little opportunity for performing another test with a long active fuel column. The assembly was irradiated to the goal burnup of 10 at.%. The beginning-of-life (BOL) peak cladding temperature of the hottest pin was 608 °C, cooling to 522 °C at end-of-life (EOL). Selected fuel pins were examined non-destructively using neutron radiography, precision axial gamma scanning, and both laser and spiral contact cladding profilometry. Destructive exams included plenum gas pressure, volume, and gas composition determinations on a number of pins followed by optical metallography, electron probe microanalysis (EPMA), and alpha and beta-gamma autoradiography on a single U-19Pu-10Zr pin. The post-irradiation examinations (PIEs) showed very few differences compared to the short-pin (34.3-cm fuel column) testing performed on fuels of similar composition in Experimental Breeder Reactor-II (EBR-II). The fuel column grew axially slightly less than observed in the short pins, but with the same pattern of decreasing growth with increasing Pu content. There was a difference in the fuel-cladding chemical interaction (FCCI) in that the maximum cladding penetration by interdiffusion with fuel/fission products did not occur at the top of the fuel column where the cladding temperature is highest, as observed in EBR-II tests. Instead, the more exaggerated fission-rate profile of the FFTF pins resulted in a peak FCCI at ˜0.7 X/L axial location along the fuel column. This resulted from a higher production of rare-earth fission products at this location and a higher ΔT between fuel center and cladding than at core center, together providing more rare earths at the cladding and more FCCI. This behavior could actually help extend the life of a fuel pin in a "long pin" reactor design to a higher peak fuel burnup.
Jain, Suyog N; Gogate, Parag R
2018-03-15
Biosorbent synthesized from dead leaves of Prunus Dulcis with chemical activation during the synthesis was applied for the removal of Acid Green 25 dye from wastewater. The obtained biosorbent was characterized using Brunauer-Emmett-Teller analysis, Fourier transform-infrared spectroscopy and scanning electron microscopy measurements. It was demonstrated that alkali treatment during the synthesis significantly increased surface area of biosorbent from 67.205 to 426.346 m 2 /g. The effect of various operating parameters on dye removal was investigated in batch operation and optimum values of parameters were established as pH of 2, 14 g/L as the dose of natural biosorbent and 6 g/L as the dose of alkali treated biosorbent. Relative error values were determined to check fitting of obtained data to the different kinetic and isotherm models. It was established that pseudo-second order kinetic model and Langmuir isotherm fitted suitably to the obtained batch experimental data. Maximum biosorption capacity values were estimated as 22.68 and 50.79 mg/g for natural biosorbent and for alkali activated Prunus Dulcis, respectively. Adsorption was observed as endothermic and activation energy of 6.22 kJ/mol confirmed physical type of adsorption. Column experiments were also conducted to probe the effectiveness of biosorbent for practical applications in continuous operation. Breakthrough parameters were established by studying the effect of biosorbent height, flow rate of dye solution and initial dye concentration on the extent of dye removal. The maximum biosorption capacity under optimized conditions in the column operation was estimated as 28.57 mg/g. Thomas and Yoon-Nelson models were found to be suitably fitted to obtained column data. Reusability study carried out in batch and continuous column operations confirmed that synthesized biosorbent can be used repeatedly for dye removal from wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.
Evaluation of the Carrying Capacity of Rectangular Steel-Concrete Columns
NASA Astrophysics Data System (ADS)
Vatulia, Glib; Rezunenko, Maryna; Petrenko, Dmytro; Rezunenko, Sergii
2018-06-01
Experimental studies of rectangular steel-concrete columns under centric compression with random eccentricity were conducted. The stress-strain state and the carrying capacity exhaustion have been assessed. The regression dependence is proposed to determine the maximum carrying capacity of such columns. The mathematical model takes into account the combined influence of the physical and geometric characteristics of the columns, such as their length, crosssectional area, casing thickness, prism strength of concrete, yield strength of steel, modulus of elasticity of both steel and concrete. The correspondence of the obtained model to the experimental data, as well as the significance of the regression parameters are confirmed by the Fisher and Student criteria.
Stiffening of short small-size circular composite steel–concrete columns with shear connectors
Younes, Sherif M.; Ramadan, Hazem M.; Mourad, Sherif A.
2015-01-01
An experimental program was conducted to investigate the effect of shear connectors’ distribution and method of load application on load–displacement relationship and behavior of thin-walled short concrete-filled steel tube (CFT) columns when subjected to axial load. The study focused on the compressive strength of the CFT columns and the efficiency of the shear stud in distribution of the load between the concrete core and steel tube. The study showed that the use of shear connectors enhanced slightly the axial capacity of CFT columns. It is also shown that shear connectors have a great effect on load distribution between the concrete and steel tubes. PMID:27222757
Fully integrated and encapsulated micro-fabricated vacuum diode and method of manufacturing same
Resnick, Paul J.; Langlois, Eric
2015-12-01
Disclosed is an encapsulated micro-diode and a method for producing same. The method comprises forming a plurality columns in the substrate with a respective tip disposed at a first end of the column, the tip defining a cathode of the diode; disposing a sacrificial oxide layer on the substrate, plurality of columns and respective tips; forming respective trenches in the sacrificial oxide layer around the columns; forming an opening in the sacrificial oxide layer to expose a portion of the tips; depositing a conductive material in of the opening and on a surface of the substrate to form an anode of the diode; and removing the sacrificial oxide layer.
Method of manufacturing a fully integrated and encapsulated micro-fabricated vacuum diode
Resnick, Paul J.; Langlois, Eric
2014-08-26
Disclosed is an encapsulated micro-diode and a method for producing same. The method comprises forming a plurality columns in the substrate with a respective tip disposed at a first end of the column, the tip defining a cathode of the diode; disposing a sacrificial oxide layer on the substrate, plurality of columns and respective tips; forming respective trenches in the sacrificial oxide layer around the columns; forming an opening in the sacrificial oxide layer to expose a portion of the tips; depositing a conductive material in of the opening and on a surface of the substrate to form an anode of the diode; and removing the sacrificial oxide layer.
Phyto (in)stabilization of elements.
Jacob, Donna L; Otte, Marinus L; Hopkins, David G
2011-01-01
The effects of plants (corn, soybean, and sunflower) and fertilizer on mobility of more than 60 elements were assessed in a greenhouse experiment. Unplanted columns with the same soil served as controls. Half the columns received fertilizer and all columns were watered at the same rate. At the end of the experiment, the columns were watered to mimic a rainstorm event such that water drained from the bases of the columns, which was collected and analyzed for element content. Soil from between the roots of the plants was also collected and the water-extractable fraction determined. It was expected that (1) more mobile elements, as measured by water extraction, would be leached from the soils at a higher rate compared to less mobile elements, (2) plants would immobilize most elements, but that some would be immobilized, and (3) that this would depend on plant species. The results led to the following conclusions: plants cause metal mobility to vary over a wide range for a specific soil and do mobilize some elements (e.g., Th) while immobilizing others (e.g., U). The effects depended on plant species for some elements. Water-extractable fractions of elements do not predict mobility.
NASA Astrophysics Data System (ADS)
Britan, A.; Liverts, M.; Shapiro, H.; Ben-Dor, G.
2013-02-01
A phenomenological study of the process occurring when a plane shock wave reflected off an aqueous foam column filling the test section of a vertical shock tube has been undertaken. The experiments were conducted with initial shock wave Mach numbers in the range 1.25le {M}_s le 1.7 and foam column heights in the range 100-450 mm. Miniature piezotrone circuit electronic pressure transducers were used to record the pressure histories upstream and alongside the foam column. The aim of these experiments was to find a simple way to eliminate a spatial averaging as an artifact of the pressure history recorded by the side-on transducer. For this purpose, we discuss first the common behaviors of the pressure traces in extended time scales. These observations evidently quantify the low frequency variations of the pressure field within the different flow domains of the shock tube. Thereafter, we focus on the fronts of the pressure signals, which, in turn, characterize the high-frequency response of the foam column to the shock wave impact. Since the front shape and the amplitude of the pressure signal most likely play a significant role in the foam destruction, phase changes and/or other physical factors, such as high capacity, viscosity, etc., the common practice of the data processing is revised and discussed in detail. Generally, side-on pressure measurements must be used with great caution when performed in wet aqueous foams, because the low sound speed is especially prone to this effect. Since the spatial averaged recorded pressure signals do not reproduce well the real behaviors of the pressure rise, the recorded shape of the shock wave front in the foam appears much thicker. It is also found that when a thin liquid film wet the sensing membrane, the transducer sensitivity was changed. As a result, the pressure recorded in the foam could exceed the real amplitude of the post-shock wave flow. A simple procedure, which allows correcting this imperfection, is discussed in detail.
Murrell, Michael C; Caffrey, Jane M; Marcovich, Dragoslav T; Beck, Marcus W; Jarvis, Brandon M; Hagy, James D
2018-05-01
Seasonal responses in estuarine metabolism (primary production, respiration, and net metabolism) were examined using two complementary approaches. Total ecosystem metabolism rates were calculated from dissolved oxygen time series using Odum's open water method. Water column rates were calculated from oxygen-based bottle experiments. The study was conducted over a spring-summer season in the Pensacola Bay estuary at a shallow seagrass-dominated site and a deeper bare-bottomed site. Water column integrated gross production rates more than doubled (58.7 to 130.9 mmol O 2 m -2 d -1 ) from spring to summer, coinciding with a sharp increase in water column chlorophyll-a, and a decrease in surface salinity. As expected, ecosystem gross production rates were consistently higher than water column rates, but showed a different spring-summer pattern, decreasing at the shoal site from 197 to 168 mmol O 2 m -2 d -1 and sharply increasing at the channel site from 93.4 to 197.4 mmol O 2 m -2 d -1 . The consistency among approaches was evaluated by calculating residual metabolism rates (ecosystem - water column). At the shoal site, residual gross production rates decreased from spring to summer from 176.8 to 99.1 mmol O 2 m -2 d -1 , but were generally consistent with expectations for seagrass environments, indicating that the open water method captured both water column and benthic processes. However, at the channel site, where benthic production was strongly light-limited, residual gross production varied from 15.7 mmol O 2 m -2 d -1 in spring to 86.7 mmol O 2 m -2 d -1 in summer. The summer rates were much higher than could be realistically attributed to benthic processes, and likely reflected a violation of the open water method due to water column stratification. While the use of sensors for estimating complex ecosystem processes holds promise for coastal monitoring programs, careful attention to the sampling design, and to the underlying assumptions of the methods, is critical for correctly interpreting the results. This study demonstrated how using a combination of approaches yielded a fuller understanding of the ecosystem response to hydrologic and seasonal variability.
Caraballo, Manuel A; Rötting, Tobias S; Silva, Verónica
2010-09-15
Three laboratory column experiments were performed to test the suitability of two different MgO-rich reagents for removal of Mn and Al from the out-flowing waters of Shilbottle passive treatment system (Northumberland, UK). The input water was doped with 100 mg/L Zn in order to extrapolate results to waters in sulphide mining districts. One column was filled with a Dispersed Alkaline Substrate (DAS) containing 12.5% (v/v) caustic magnesia precipitator dust (CMPD) from Spain mixed with wood shavings, two columns were filled with DAS containing wood shavings and 12.5% or 25% (v/v), respectively, of dolomitic lime precipitator dust (DLPD) from Thrislington, UK. The two columns containing 12.5% of CMPD or DLPD completely removed the contaminants from the inflow water during the first 6 weeks of the experiment (mean removal of 88 mg/L Al, 96 mg/L Zn and 37 mg/L Mn), operating at an acidity load of 140 g acidity/m(2)day. At this moment, a substantial increase of the Al and Mn water concentration in the out-flowing waters of Shilbottle occurred (430 g acidity/m(2)day), leading to passivation of the reactive material and to the development of preferential flow paths within less than another 6 weeks, probably mainly due to Al precipitates. Al should be removed prior to MgO treatment. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Burghardt, D.; Simon, E.; Knöller, K.; Kassahun, A.
2007-12-01
The main object of the study was the development of a long-term efficient and inexpensive in-situ immobilization technology for uranium (U) and arsenic (As) in smaller and decentralized groundwater discharges from abandoned mining processing sites. Therefore, corrosion of grey cast iron (gcFe) and nano-scale iron particles (naFe) as well as hydrogen stimulated autotrophic sulphate reduction (aSR) were investigated. Two column experiments with sulphate reducing bacterias (SRB) (biotic gcFe , biotic naFe) and one abiotic gcFe-column experiment were performed. In the biotic naFe column, no particle translocation was observed and a temporary but intensive naFe corrosion indicated by a decrease in Eh, a pH increase and H 2 evolution. Decreasing sulphate concentrations and 34S enrichment in the column effluent indicated aSR. Fe(II) retention could be explained by siderite and consequently FeS precipitation by geochemical modeling (PhreeqC). U and As were completely immobilised within the biotic naFe column. In the biotic gcFe column, particle entrapment in open pore spaces resulted in a heterogeneous distribution of Fe-enriched zones and an increase in permeability due to preferential flow. However, Fe(II) concentrations in the effluent indicated a constant and lasting gcFe corrosion. An efficient immobilization was found for As, but not for U.
Mishra, Ashutosh; Tripathi, Brahma Dutt; Rai, Ashwani Kumar
2016-10-01
The present study represents the first attempt to investigate the biosorption potential of Fenton modified Hydrilla verticillata dried biomass (FMB) in removing chromium(VI) and nickel(II) ions from wastewater using up-flow packed-bed column reactor. Effects of different packed-bed column parameters such as bed height, flow rate, influent metal ion concentration and particle size were examined. The outcome of the column experiments illustrated that highest bed height (25cm); lowest flow rate (10mLmin(-1)), lowest influent metal concentration (5mgL(-1)) and smallest particle size range (0.25-0.50mm) are favourable for biosorption. The maximum biosorption capacity of FMB for chromium(VI) and nickel(II) removal were estimated to be 89.32 and 87.18mgg(-1) respectively. The breakthrough curves were analyzed using Bed Depth Service Time (BDST) and Thomas models. The experimental results obtained agree to both the models. Column regeneration experiments were also carried out using 0.1M HNO3. Results revealed good reusability of FMB during ten cycles of sorption and desorption. Performance of FMB-packed column in treating secondary effluent was also tested under identical experimental conditions. Results demonstrated significant reduction in chromium(VI) and nickel(II) ions concentration after the biosorption process. Copyright © 2016 Elsevier Inc. All rights reserved.
Behaviour of axially and eccentrically loaded short columns reinforced with GFRP bars
NASA Astrophysics Data System (ADS)
Sreenath, S.; Balaji, S.; Saravana Raja Mohan, K.
2017-07-01
The corrosion of steel reinforcing bars is a predominant factor in limiting the life expectancy of Reinforced Cement Concrete (RCC) structures. Corrosion resistant Fibre Reinforced Polymer (FRP) bars can be an effective alternative to steel bars in this context. Recent investigations reported the flexural behaviour of RCC beams reinforced with Glass Fibre Reinforced Polymer (GFRP) bars. This study is meant to investigate the suitability of Sand Coated GFRP reinforcement bars in short square columns which when loaded axially and loaded with a minimum eccentricity. Standard tests to assess mechanical properties of GFRP bars and pullout test to quantify the bond strength between the bars and concrete were conducted. GFRP reinforced column specimens with a cross-sectional dimension of 100mm X 100mm and of length 1000mm were cast and tested under axial and eccentric loading. The assessed load carrying capacity was compared with that of conventional steel reinforced columns of the same size. The yield load and ultimate load at failure withstood by the steel reinforced columns were considerably more than that of GFRP reinforced columns. The energy absorption capacity of GFRP reinforced columns was also poor compared to steel reinforced columns. Both the columns exhibited nearly the same ductile behaviour. Hence GFRP reinforcements are not recommendable for compression members.
Long-range attraction of an ultrarelativistic electron beam by a column of neutral plasma
Adli, Erik; Lindstrom, C. A.; Allen, J.; ...
2016-10-12
Here, we report on the experimental observation of the attraction of a beam of ultrarelativistic electrons towards a column of neutral plasma. In experiments performed at the FACET test facility at SLAC we observe that an electron beam moving parallel to a neutral plasma column, at an initial distance of many plasma column radii, is attracted into the column. Once the beam enters the plasma it drives a plasma wake similar to that of an electron beam entering the plasma column head-on. A simple analytical model is developed in order to capture the essential physics of the attractive force. Themore » attraction is further studied by 3D particle-in-cell numerical simulations. The results are an important step towards better understanding of particle beam–plasma interactions in general and plasma wakefield accelerator technology in particular.« less
Long-range attraction of an ultrarelativistic electron beam by a column of neutral plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adli, Erik; Lindstrom, C. A.; Allen, J.
Here, we report on the experimental observation of the attraction of a beam of ultrarelativistic electrons towards a column of neutral plasma. In experiments performed at the FACET test facility at SLAC we observe that an electron beam moving parallel to a neutral plasma column, at an initial distance of many plasma column radii, is attracted into the column. Once the beam enters the plasma it drives a plasma wake similar to that of an electron beam entering the plasma column head-on. A simple analytical model is developed in order to capture the essential physics of the attractive force. Themore » attraction is further studied by 3D particle-in-cell numerical simulations. The results are an important step towards better understanding of particle beam–plasma interactions in general and plasma wakefield accelerator technology in particular.« less